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Abstract

Superconductors are used in many applications where large electrical cur-
rents are needed. This is due to their ability to transport an electric current
without resistance. There is however a limit to the magnitude of current
that can be conducted before dissipation starts to occur. This is known as
the critical current and is a topic of great interest in applied superconduc-
tivity.

For type II superconductors, it is well known that vortex motion plays
a role in the determination of the in-field critical current. This has led great
effort in engineering the microstructure of these superconductors to hin-
der the motion of vortices and enhance their critical currents. However the
self-field critical current (when there is no applied external field) generally
does not see any enhancement due to efforts to pin vortex motion.

The work here examines the behaviour of the self-field critical current
in thin-film and cylindrical wire superconductors of many different super-
conductor types and sizes. It is found that a critical state is reached when
the current density at the surface of the sample reaches the magnitude of
Bc/µ0λ for type I and Bc1/µ0λ for type II superconductors regardless of
the size and material type. This finding shows that there is a fundamental
limit to the self-field current density that cannot be enhanced by engineer-
ing the microstructure and is essentially of thermodynamic origin.

The result also sets up the self-field critical current density as a probe
of the superfluid density. This was explored in many different supercon-
ductor types by considering the temperature dependence of the self-field
critical current. The ground-state magnetic penetration depth, ground-
state energy gap and specific heat jump at the critical temperature were



key thermodynamic parameters extracted from the critical current data.
For a very large number of superconductors the extracted parameters in
general matched well with literature values measured using conventional
but much more complex techniques.

A result inferred from the critical state was that the current distribution
across the width of a rectangular superconductor would be uniform, con-
trary to expectations of the Meissner state. This was tested by measuring
the perpendicular magnetic field resulting from a transport current in a
superconducting tape as it reached the critical state. It was indeed found
that the current distribution is uniform across the width.

The self-field critical current was also measured in YBa2Cu3Oy samples
with Zn impurities to measure the superfluid density and further test the
self-field critical current as a measure of superfluid density and in particu-
lar explore whether it follows the canonical dependence on the transition
temperature observed for superconductors with d-wave symmetry. Here
the critical current was found to reduce as more impurities were added
and indeed this matched its expected canonical reduction, following the
superfluid density as Jc(sf) ∝ ρ3/2.

These results taken together support the unexpected existence of a fun-
damental limit in the self-field critical current, which is thermodynamic in
origin.
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Chapter 1

Introduction

The most distinctive property of a superconductor is the ability to conduct
electric current without resistance. This lack of dissipation and therefore
absence of heating effect means that superconductors are capable of car-
rying large current densities on the order of MA/cm2. This has led to
them being used for the generation of magnetic fields for many applica-
tions such as in nuclear magnetic resonance (NMR), magnetic resonance
imaging (MR) and maglev trains.

However, superconductors have a maximum current they can support
before dissipation starts to occur. This is known as the critical current.
This property has been a subject of research for many years with an eye
to obtaining ever higher critical currents. The critical current is known to
be affected by the type of material and its microstructure as well as the
temperature and the magnitude and orientation of the applied magnetic
field.

In particular the self-field critical current is the critical current of a su-
perconductor when no external field has been applied so that the only
field present is that generated by the transport current alone. For type I
superconductors it is often taken to be the current at which the self-field
reaches the critical field (Silsbee’s hypothesis [1]), but more rigorously it is
the current at which Cooper pairs depair due to the Doppler shift in their
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2 CHAPTER 1. INTRODUCTION

energy [2], [3].

For type II superconductors at equilibrium a vortex state exists above
the lower critical field Bc1. In general currents applied in this state will be
dissipative due to the Lorentz force acting on the vortices, causing them
to move. Vortex motion can be hindered by “pinning centres”, and will
only occur when the Lorentz force on the vortex is greater than the pin-
ning force. This means that in general the critical current in type II su-
perconductors must be dependent on the microstructure of the material as
the pinning of vortices plays a usually dominant role in its determination.
The critical current in type II superconductors is therefore widely viewed
as an engineering parameter and is not fundamental. This understanding
has led to ongoing increases of critical currents in practical superconduc-
tors like Nb3Sn and NbTi over the past 40 years [4, 5], which continue to
this day.

This key role for pinning has certainly been found to be true for critical
currents when there is an applied field, however when the conductor is
under self-field an increase in critical current due to pinning has not been
observed. This seems to be not widely recognised and the result is so im-
portant that a number of examples are referenced here just for the single,
but important case, of YBa2Cu3O7 [6, 7, 8, 9]. In every case, whether the
pinning is introduced as precipitates, or by irradiation, the in-field criti-
cal current is significantly enhanced but the self-field critical current is not
increased, and in some cases is even slightly reduced.

The question here to be answered is whether vortices play any role
in the determination of the self-field critical current in type II supercon-
ductors or there exists a fundamental limit not governed by engineering
parameters. This work finds that there is indeed a fundamental limit to the
self-field critical current, which is a thermodynamic parameter governed
only by the superfluid density. This relationship is exploited to establish
a new method of determining the ground-state penetration depth and the
energy gap magnitude using temperature dependent self-field critical cur-
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rent data.

Chapter synopsis

A short introduction to many of the concepts needed to understand the
work carried out in the thesis is presented in chapter 2. The important con-
cepts of superconductivity are introduced with a focus on self-field critical
currents and the factors that affect them.

Chapter 3 outlines how thin film YBCO+Zn samples were made as well
as how in house measurements of the critical current density were carried
out.

Chapter 4 explores the self-field critical current across samples of many
sizes demonstrating universal behaviour where the surface current den-
sity always reaches a fundamental limit at the critical state.

In chapter 6 the temperature-dependent relationship established be-
tween the self-field critical current and the penetration depth in chap-
ter 4 is used to estimate the ground-state penetration depth, energy gap
and specific heat jump at the critical temperature. These parameters are
able to be estimated by analyzing temperature dependent self-field critical
current data and fitting to an extended Bardeen-Cooper-Schrieffer (BCS)
model.

Measurements of the magnetic field distribution around a thin-film
superconductor are reported in chapter 7. These measurements were in-
formed by findings in chapter 4. Here the current distribution across the
width of a thin film is shown to become uniform when the critical current
is reached.

Chapter 8 presents the measurements of the critical current in thin-
films of YBCO+Zn. Here an expected reduction in the critical temperature
and self-field critical current is found which is quantitatively consistent
with a drop expected in the superfluid density. This is an independent test
of the central hypothesis that the self-field critical current is a thermody-
namic parameter governed only by the superfluid density.
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Overall the results here come together to form a robust case for this
hypothesis and this has highly important implications for the electrody-
namics of all superconductors - a subject studied for 80 years yet clearly
still not fully mature.



Chapter 2

Background

Superconductivity is a low temperature electronic superfluid state found
in many materials known as superconductors. Below a critical tempera-
ture Tc the material is said to be in the superconducting state while above
Tc the material reverts to the normal state. The change in state is due to the
electrons organizing in reciprocal k-space into Cooper pairs and forming
a superconducting condensate (known as a superfluid) [10]. The two most
notable characteristics that superconductors exhibit are the conduction of
dc current without resistance and perfect diamagnetism also known as
the Meissner effect [11]. Several good books are avaliable on the subject
for example see Tinkham [12] or Poole [13].

The discovery of superconductivity was due to Kamerlingh Onnes in
1911 [14]. He was measuring the electrical properties of mercury at liq-
uid helium temperatures and he observed a sharp drop of the resistance
to zero at a temperature of 4.15 K. Since this initial discovery there has
been a quest to find materials with ever higher transition temperatures,
the progress of which is illustrated in figure 2.1. Currently superconduc-
tivity has been observed in many different types of materials including
pure metals [14], alloys [15], heavy fermion systems [16], organics [17],
cuprates [18], pnictides [19] and hydrides [20]. These materials have a
range of critical temperatures from near zero to around 200 K in the case

5
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of the H2S system under extreme pressure [20].

Figure 2.1: Timeline of the discovery and transition temperatures for many
known superconductors. Many of the alloys and elemental superconduc-
tors are green, the cuprates in blue, the pnctides in orange and the heavy
fermion superconductors are lime. The graph is reproduced from Pia
Jensen Ray, Figure 2.4 in Master’s thesis, ”Structural investigation of La(2-
x)Sr(x)CuO(4+y) - Following staging as a function of temperature”. Niels
Bohr Institute, Faculty of Science, University of Copenhagen. Copen-
hagen, Denmark, November 2015. DOI:10.6084/m9.figshare.2075680.v2.

2.0.1 The Bardeen-Cooper-Schrieffer theory of supercon-

ductivity

The microscopic Bardeen-Cooper-Schrieffer (BCS) theory describing su-
perconductivity [10] was not published until 47 years after Onnes’ initial
discovery. A helpful description of the historical timeline leading up to
the BCS theory has been given by Schrieffer [21]. One of the reasons a
microscopic theory took so long to complete was that any effort to apply
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perturbation theory to the normal-state electrons would have been unable
to reproduce a superconducting state exhibiting the Meissner effect [22].
This is because the Meissner effect arises exclusively from a broken gauge
symmetry, completely unrelated to the symmetry of the ground metallic
state.

An important aspect of the BCS theory is the Cooper pair which is a
pair of electrons bound together due to an attractive interaction between
them. In the normal state the electron states are occupied up to the Fermi
energy due to the Pauli exclusion principal. If one considers two electrons
at the Fermi energy that have an attractive interaction between them, these
two electrons will lower their energy by forming a bound state [23]. It is
this change of electron behaviour that is needed for superconductivity.

However with enough energy the Cooper pairs can be broken apart.
Fluctuations due to temperature will work to break apart Cooper pairs
making their formation unstable and so the temperature must be low to
form stable Cooper pairs.

In the BCS theory when the superconductor is cooled below the tran-
sition temperature, Tc, it is now energetically favourable for the Cooper
pairs to form. The Cooper pairs act like bosons and are able to occupy the
same quantum state (or condense into the same state) and this results in
the observation of macroscopic quantum behaviour. Also because the elec-
trons around the Fermi energy form the Cooper pairs and are no longer
present as single particle quasiparticles, a gap in the density of states forms
which is known as the energy gap, ∆.

Pairing mechanism

As electrons do not naturally attract each other (due to their Coulomb re-
pulsion) there must be some mechanism through which an attraction oc-
curs so that pairing can occur in superconductors. This is known as the
pairing mechanism [24]. The BCS theory does not require a specific pairing
mechanism, it just requires that there is an attractive interaction between
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the electrons that can overcome the Coulomb repulsion, however the en-
ergy scale of the pairing mechanism is important in the BCS theory as it
determines several of the superconductor properties. For conventional su-
perconductors the electrons couple with the lattice and can interact via the
exchange of a phonon [25] [26].

Energy Gap

The energy gap, ∆(T ), is the size of the gap formed at EF in the density
of states, and it is also the energy range about the Fermi surface where the
electrons contributing to the pairing come from. In the BCS theory it can
be calculated self-consistently using the equation:

∆k = −
∑
k′

Vkk′
∆k′

2Ek′
tanh

βEk′

2
(2.1)

where β = (kBT )−1, Ek =
√
ξ2
k + ∆2

k where ξk are the energies of the elec-
trons in the normal state, and Vkk′ is the interaction term which is due to
the pairing mechanism. It can be seen that the gap can have a k depen-
dence and its symmetry will be dependent on the interaction term Vkk′ .

A common model considered that applies to many elemental and alloy
superconductors is the s-wave weak-coupling model. Here the interaction
term is set to be a constant V0 up to a cut-off which is the Debye cut-off
frequency, ~ωD, defined by the Debye temperature θD = ~ωD/kB. This
creates an isotropic gap with s-wave symmetry and a ground-state mag-
nitude of ∆(0) = 2~ωD exp(−1/N(0)V0) where N(0) is the density of states
at the Fermi energy. The gap ratio, 2∆(0)/kBTc, can be calculated and it
is found to be a constant for all weak-coupled superconductors regardless
of the phonon energy used for the interaction. The temperature depen-
dece of the gap in the s-wave model is plotted in figure 2.2 as the blue line
where it has been normalized to unity.

Another type of pairing symmetry found in cuprate superconductors
is d-wave symmetry [27]. The energy gap around the Fermi surface is
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anisotropic following the function cos(2θ). The s-wave and d-wave sym-
metries have slightly different gap temperature dependences (shown in
figure 2.2) however the difference between them are able to be observed
more easily in measurements of the penetration depth.

Figure 2.2: The temperature dependence of the superconducting energy
gap, ∆(T ), calculated using equation 2.1. For the s-wave symmetry (blue
line) the interaction term, Vkk′ , is a constant (V0) up to the cut-off energy
(~ωD) after which it is zero. For the d-wave symmetry (red line) the inter-
action term is set to be V0 cos(2θ) cos(2θ′) [28] [29] up to the cut-off energy
(~ωD) after which it is zero.



10 CHAPTER 2. BACKGROUND

2.0.2 Meissner effect and magnetic penetration depth

As noted, a key behaviour of a superconductor is the expulsion of mag-
netic field from inside the superconductor when it is in the superconduct-
ing state. This is known as the Meissner effect and the superconductor is
said to be in the “Meissner state”. In the Meissner state the penetration of
the magnetic field into the superconductor falls off exponentially [30]. The
resulting depth of penetration is small and is given by the magnetic pene-
tration depth or London penetration depth, λ(T ). This penetration depth
is a material dependent property (for example see table 12.1 in [31]).

The expulsion of the field is caused by circulating supercurrents which
act to reduce the internal field to zero - a process known as “screening”.
This will only happen for magnetic fields up a to certain strength where
there will be a distinction between two classes of superconductors, type I
and type II which are discussed further down. These screening currents
also only penetrate to a depth of the order λ.

A derivation for calculating the penetration depth using the BCS theory
is given by Chandrasekhar [32] and an expression for different supercon-
ductor types is given in chapter 6.

2.0.3 Critical currents in superconductors

Very soon after the discovery of superconductivity it was found that there
were limits to the conduction of current without resistance. It was two
years after Onnes’ first observation of superconductivity that he discov-
ered the existence of a “threshold” current in Hg [33]. Increasing the cur-
rent past this threshold value would result in a resistance reappearing.
This became known as the critical current, Ic, which is the maximum cur-
rent a superconductor can carry without dissipation.

Usually many factors can determine the Ic of a sample such as the par-
ticular superconductor itself, the size and shape, the microstructure (e.g.
defects or grain boundaries), the temperature T , the magnetic field ori-
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entation and strength B or the existence of competing electronic phases
which may serve to weaken the superconductivity [34], [35], [36].

There is an upper limit to the critical current density the is known as
the depairing current density. This is the current where the kinetic energy
of a Cooper pair exceeds its binding energy 2∆ causing pair breaking. This
depairing current density is given as

Jd =
nse∆

mevf
=

φ0κ

2
√

2πµ0λ3
(2.2)

where ns is the density of super electrons, me is the mass of an electron, vf
is the Fermi velocity and phi0 = h/2e is the flux quantum.

In BCS theory . When these states are perturbed by a transport current
the momentum of the electrons changes by the value dk resulting in the
new states (↑,k+dk) and (↓,−k+dk). The depairing current is that where
the

Distribution of currents and fields inside a superconductor: London the-
ory

The earliest and most simple theory that describes how currents and fields
are distributed in superconductors was developed by the London brothers
[37]. It is usual to express their two equations as

∂J

∂t
=
nse

2

m
E, ∇× J = −nse

2

m
B (2.3)

where E is the electric field, B is the magnetic field, ns is the superfluid
density, e is the electron charge and m is the electron mass. These equa-
tions together with Maxwell’s equations determine the fields and currents
inside the superconductors and can be considered valid when the super-
conductor is in the Meissner state.

The result of these equations is that the electric field, magnetic field
and current density will all follow a Helmholtz equation:

∇2J =
1

λ2
J, ∇2B =

1

λ2
B, ∇2E =

1

λ2
E (2.4)
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where λ2 = m/µ0nse
2 defines the London penetration depth and µ0 is the

vacuum permeability. For further analysis later on we will consider two
conductor geometries, the first being a wire with a radius a and the second
being a thin film of width 2a and thickness 2b with no applied fields.

For a wire of radius awhere we are using cylindrical coordinates, (ρ, θ),
the current in the wire will be J = J(ρ)ẑ resulting in the differential equa-
tion

1

ρ

∂

∂ρ

(
ρ
∂J

∂ρ

)
=

1

λ2
J (2.5)

which is just a Bessel equation. If we require our solution to be finite every-
where in the superconductor and apply the boundary condition J(a) = Js

the solution will be

J(ρ) = Js
I0(ρ/λ)

I0(a/λ)
(2.6)

where Iν(z) is the modified Bessel function of the first kind. The total cur-
rent density will be Jt = Js

2λ
a
I1(a/λ)
I0(a/λ)

, which we find is well approximated
by Jt = Js

2λ
a

tanh( a
2λ

), a result which does not seem to appear in the lit-
erature. The percentage error between the approximation and the true
function is plotted in figure 2.3 showing that the only notable error occurs
between the values of 1 to 100 for a/λ. It is interesting to note that the
mathematical form of this (surprisingly good) approximation is the same
as that for the rectangular case (which is shown further below in equation
2.8) and will prove very useful in our scaling analysis.

For a thin film with thickness 2b and width 2a and b << a the differ-
ential equation is more complicated as it contains second derivatives with
respect to the x and y directions, however because we want to consider
critical currents we can assume for the time being the current distribution
along the width to be constant [38]. This will be justified in chapter 4. The
current in the wire will be J = J(y)ẑ (x is in the width direction and y is in
the thickness direction). This leaves us with the differential equation

∂2J

∂y2
=

1

λ2
J. (2.7)
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Figure 2.3: The percentage error between the functions I1(a/λ)
I0(a/λ)

and
tanh(a/2λ) is plotted showing a very good approximation aside from the
region 1-100 where the error peaks at 12%

The solution must be an even function (J(y) = J(−y)) and have the bound-
ary condition J(b) = Js. The solution we obtain is

J(y) = Js
cosh(y/λ)

cosh(b/λ)
. (2.8)

Here the total current density will be Jt = Js(λ/b) tanh(b/λ). While this
is exact the correspondence with the approximation of the equivalent for-
mula for cylindrical symmetry is notable.
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2.0.4 Ginzburg-Landau theory

For the sake of distinguishing the difference between type I and type II
superconductors we will first look at the Ginzburg-Landau theory for su-
perconductors [39]. It is a phenomenological theory that describes the su-
perconducting state near the transition point. It can however be derived
from the BCS theory [40]. The approach here is taken from chapter 6 in
[41].

The free energy functional for a superconductor with order parameter
ψ takes the form

fs[ψ] = fn +
1

V

∫
d3r

[
1

2m∗
(−i~∇+ e∗A)ψ∗ · (i~∇+ e∗A)ψ

+
1

2µ0

B2(r)− µ0H(r) ·M(r) + aψψ∗ +
b

2
ψψ∗ψψ∗

] (2.9)

where fs is the free energy density of the superconducting state, fn is the
free energy density of the normal state, a and b are parameters that will be
material specific where a has a temperature dependence a = a0(T/Tc − 1)

with a0 and b = b0 as positive, V is the volume, ~ is the reduced Planck’s
constant, e∗ = 2e is the charge carried by the Cooper pairs and m∗ = 2m

is the mass of the Cooper pairs. The field H is defined by H = B/µ0 −M

where M is the magnetisation. The order parameter is zero above Tc and
takes on a complex value below Tc.

To get the Ginzburg-Landau (GL) equations we require that the free
energy be a minimum with respect to variations in the order parameter
and vector potential. The GL equations then take the form:

1

2m∗
(i~∇+ e∗A)2ψ + aψ + b|ψ|2ψ = 0

µ0J = − i~e
∗

2m∗
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗
A|ψ|2

µ0J =
e∗

m∗
|ψ|2 (~∇ϕ− e∗A)

(2.10)

where in the last equation for J the complex order parameter takes the
form ψ = |ψ| exp(iϕ) where both |ψ| and ϕ are real.
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Looking first at the solution to the GL equations deep inside a super-
conductor, the order parameter takes the value |ψ∞|2 = (a0/b0)(1−T/Tc) =

n∗s where n∗s is known as the superfluid density. Two characteristic lengths
can also be derived from the GL theory. The first is the coherence length,
ξ =

√
~2/2m∗|a|, the distance over which the order parameter begins to

approach its bulk value. The coherence length is related to the average
distance between the electrons in a Cooper pair. The second is the London
penetration depth and is given as λ =

√
m∗/µ0e∗2|ψ∞|2.

Type I and II superconductors

By considering an interface between the normal and superconducting states
under a magnetic field a distinction can be made between two groups of
superconductors, type I and type II. By considering a plane which can be
cut into two half planes, a surface tension σ can be defined to be the differ-
ence in free energy per unit area between a phase where the whole plane is
either normal or superconducting and a mixed phase where half the plane
is superconducting and the other half is normal [41]. At the critical field,
Hc, it is found that the surface tension will be either negative or positive
depending on the Ginzburg-Landau parameter, κ = λ/ξ [39]. Its critical
value is 1/

√
2 marking the boundary between superconductors that are

type I (κ < 1/
√

2) and type II (κ > 1/
√

2).
When the surface energy is positive, normal-state regions in the super-

conductor result in an increase in the free energy, however if the surface
energy is negative these normal-state regions embedded in the supercon-
ductor lower the free energy. For type I superconductors, which have a
positive surface energy, when the field reaches the critical field Bc the ma-
terial will return to the normal state. For type II superconductors where
the surface energy is negative there will be a lower critical field Bc1 above
which the superconductor is in the “mixed” or “vortex” state where the
core is in the normal state and the circumference of the core forms a sur-
face boundary stabilized by the negative surface energy. There will also
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be an upper critical field Bc2 which is the point at which the vortices over-
lap and the material will return to the normal state (figure 2.4 shows the
regions of different phases for both type I and type II superconductors).

Type II superconductors generally have a higher critical temperature
and upper critical field compared to the critical temperatures and fields of
type I superconductors as well as being more common. The three critical
fields can be calculated using the expressions:

Bc =
Φ0κ

2
√

2πλ2
, Bc1 =

Φ0(lnκ+ 0.5)

4πλ2
, Bc2 =

Φ0

2πξ2
. (2.11)

The thermodynamic critical field is therefore approximately equal to the
geometrical mean of Bc1 and Bc2.

2.0.5 Magnetic field penetration in type I superconductors

For type I superconductors in a magnetic field (see for example Tinkham
[12] or Ketterson [42]), the geometry will affect how the field penetrates.
For example a spherical superconductor in a magnetic field Hc > Ha >

2/3Hc will have penetration at the edges as the field here is increased due
to the Meissner effect and the associated distortion of field lines outside
the conductor but near its surface. In this way the field at the edges in-
creases above Hc causing domains of penetration at the edges. This is the
so called intermediate state and is to be distinguished from the mixed state
associated with vortices penetrating a type II superconductor.

The strength of applied field needed for a type I superconductor to
enter the intermediate state will depend on the geometry of the sample
and its orientation in the field.

This intermediate state will also be present in superconductors in a
magnetic field which are carrying a current above the depairing value,
displaying a so called fractional resistance. The supercurrent remaining
inside the core of the conductor is such that it generates the field Hc at its
core surface, the rest of the current outside the core is dissipative (causing a
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Figure 2.4: The temperature dependence of the critical fields of type II
superconductors. Also presented is an illustration of the field distribution
for the three different states (Meissner, mixed, and normal). In the mixed
state an applied magnetic field will penetrate the sample in thin threads of
flux known as vortices.
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resistance to appear) as it is supported only by normal quasiparticles. This
situation is particularly relevant to the case of approximately equiaxed
rectangular cross-section as discussed later in Chapter refC:GeoFactor.

For cylindrical symmetry the depairing current density is reached si-
multaneously at all points on the circumference. This means the super-
current is now confined to a smaller radius and it must therefore exceed
the depairing current density and so the conductor catastrophically tran-
sitions to the normal state. For a rectangular cross section, the depairing
current density is first reached at the edges, while the current density at
the middle falls far short of this value and so such a conductor does exhibit
an intermediate state with the supercurrent confined to the central portion
of the cross-section.

2.0.6 Vortices in type II superconductors

Abrikosov predicted in 1957 that in the mixed state the magnetic field
penetrates the superconductor as thin threads of magnetic flux [43] illus-
trated in figure 2.4. These magnetic flux threads take discrete values of flux
Φ = nΦ0 = nh/2e where n is an integer, Φ0 is the magnetic flux quantum,
h is Planck’s constant and e is the charge on an electron. This is due to the
fact that the free energy will be minimized when the normal regions are
as small in volume as possible whilst having a large surface area. The flux
threads will also form a lattice type structure due to the repulsion between
different flux threads [43].

Weak-links

It is well known that materials and thin-films are often not perfectly crys-
talline, exhibiting discontinuities in their structures such as dislocations,
voids and grain boundaries. In a superconductor the critical current may
be sensitive to these defects, especially if the current must flow across
them. In particular a grain boundary presents a potential barrier that the
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supercurrent must tunnel through, which in general results in a suppres-
sion of the current.

The term weak-link generally refers to a junction between two bulk su-
perconducting regions [44]. The junction may be conducting or insulating
as long as Cooper pairs can tunnel through it. The presence of weak-links
in a sample may be enough to suppress the critical current [45] [46]. A
broadening of the width of the transition is also expected as the number
of weak-links increase in the sample [45].

2.0.7 Critical currents in type II superconductors

Critical currents in type II superconductors become more complicated due
to the appearance of the mixed state. In the mixed state a current applied
perpendicular to the vortices induces a Lorentz force fL = J ×B that will
act on each vortex. This will cause a movement of vortices and hence the
current will now be dissipative due to the work done on the vortices.

However these vortices can be pinned by inhomogeneities in the crys-
tal lattice of the superconductor such as defects or grain boundaries. If
there is a flux lattice present it will be pinned in a collective manner by
any pinning centres present. This is because of the long range order of
the flux lattice. Interactions between vortices ensure that the flux lattice
possesses a rigidity. Thus pinning a few vortices can ensure the collective
pinning of the entire vortex array. The pinning force will be integrated
over the number of pinning centers, whilst the Lorentz force on the lattice
depends on the current and is integrated over the total number of vortices
(which in turn is determined by the strength of applied field).

This means that the critical state will be determined by a balance equa-
tion including the forces on the vortices due to the current and the pinning
forces, hence the critical current will depend on the microstructure of the
crystal. It has been demonstrated many times in the literature the effect
pinning can have on increasing the critical current under an applied mag-
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netic field [47, 48, 49, 50] . This has led to decades of study on how to
manipulate the microstructure to bring about the largest currents [5], [4].

Illustrated in figure 2.5 is the effect of adding pinning centres to a su-
perconductor. The data is taken from [6] and it shows how the in-field crit-
ical current is increased up to a certain point with added BaZrO3 nanopar-
ticles. The self-field (zero applied field) critical current however does not
see an increase. Other studies have also failed to show an increase in the
self-field critical current even when the in-field critical current is enhanced
[47, 48, 51, 49, 52, 53, 50].

Figure 2.5: In field critical current measurements taken from [6]. The
measurements were done on thin-film samples of YBa2Cu3Oy with added
BaZrO3 (BZO). It can be see that the effect of adding BaZrO3 particles to en-
hance pinning is only able to increase the critical currents at higher fields,
and a noticable difference is not achieved at self-field.

This begs the question, are vorticies important for determining the self-
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field critical current in a superconductor or is there a fundamental limit not
governed by engineering parameters that might be thermodynamic in ori-
gin? This question is explored in the next chapters where it is answered
in the affirmative. The findings also open up the self-field critical current
to be used as a probe of the superfluid density, enabling the estimation
of several superconductor parameters from a rather straightforward mea-
surement.
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Chapter 3

Methods

Much of the focus of this thesis is on the application of a new method to ex-
tract fundamental thermodynamic properties of superconductors through
the use of critical current data. Much of the data used was taken from the
literature by digitizing figures using a free online tool[54], however some
of the data was obtained by measurements undertaken in-house including
those on superconducting films fabricated in our laboratory. The methods
used to prepare these thin film samples and measure their critical currents
are described here. [55]

3.1 MOD-TFA YBCO+Zn thin-films

Part of the study involved investigating the effects of impurities on self-
field critical currents, and thin-film samples of YBCO (YBa2Cu3Oy) with
added Zn impurities were prepared for this purpose. There were several
reasons to use thin-films:

1. Thin films can be made to have the high degree of crystallinity needed
for critical current measurements unimpeded by weak links.

2. It is a straight forward process to construct a current bridge on a
thin-film and have a well-defined geometry for current transport.

23
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3. The lab was already set up to make thin-film samples of the type we
required.

4. Our critical current measurement equipment was setup optimally
for experiments on such thin-film samples.

3.1.1 Thin film synthesis

The thin-films were made using the metal-organic deposition (MOD) method
using trifluoroacetate (TFA) precursors. The particular method outlined
here has also been covered in other publications [56] [57]. Firstly the pre-
cursor compounds (Y-TFA, Ba-TFA, Cu-OHP1, and Zn-TFA) were weighed
out and dissolved one at a time in dry methanol. To ensure each precursor
compound was fully dissolved a sonicator was used to mix the solution.
Propionic acid was also added to the solution after the first compound to
aid the dissolving process.

After all the precursor compounds had been dissolved the next step
was to spin coat a substrate with the mixed solution. The trademarked
RABiTS (Rolling-Assisted Bi-axially Textured Substrate) was used as it has
good lattice matching with YBCO. The base is a Ni-W alloy and on the top
are three buffer layers, Y2O3, YSZ and CeO2, each being 75 nm in thick-
ness. The substrate is pre-cut into a size of 10 mm×15 mm. The spin coat-
ing is done in a glove box with an atmosphere free of oxygen and moisture
and after the coating process most of the methanol has evaporated away
leaving a gel. This process determines the thickness of the YBCO layer, in
our case being around 800 nm. This thickness could be varied by changing
the spin speed and concentration of solution.

The samples are then taken out of the glove box in a sealed container
and transferred immediately into a furnace for decomposition. The fur-
nace for this part of the process has an atmosphere of flowing oxygen and
water vapour. During this process the furnace is heated up to around 450C

1The chemical formula is a trade secret however a Cu-acetate salt may be used instead.
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to remove organic material, leaving behind oxides (Y2O3 and CuO) in both
polycrystalline and amorphous phases, as well as Ba-OF.

Next the samples go through a reaction process where the phase of
YBa2Cu3Oy is formed. This is done under a controlled partial pressure
of oxygen and water vapour. The samples go through a proprietary tem-
perature ramping process. During the initial ramp when the temperature
rises above 525C the Ba-OF converts to BaF2 and above 720C the BaF2 re-
acts with water to make BaO and 2HF. The HF is removed leaving behind
the BaO to take part in the formation of YBCO which is done at 788C in
our case. The temperature ramp rate has to be optimized with respect to
the ratio of BaF2:BaO at each temperature for the formation of epitaxial
thin-films with the c-axis aligned vertically, normal to the substrate.

After the reaction process a silver capping layer was deposited on the
top using evaporation. The film is placed inside a vacuum chamber with
a portion of silver wire inside a coil of tungsten wire suspended above
the sample. The tungsten coil is heated causing the silver wire to evapo-
rate. Some of the evaporated silver vapour condenses on top of the film
building a layer of silver. This was done to seal off the YBCO layer from
reacting with the atmosphere as well as providing a way of later soldering
on electrical contacts for measurements. The silver also provides an alter-
nate current path during measurements for when the current exceeds the
critical current. If there was no alternate current path the film would heat
up quickly burning the current bridge. In this way the silver layer helps to
reduce sample heating. The thickness of this layer was generally around
1-3 µm.

To acquire the desired oxygen stoichiometry a further annealing in oxy-
gen atmosphere was carried out. The samples were heated up to 350◦C
and then slowly cooled down to room temperature. This ensured they
had an oxygen content close to y = 7. The annealing was done after the
silver deposition. This was to nullify the effect of any sample heating that
may have occurred during the silver deposition process.
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As a check of the doping state, or oxygen stoichiometry, measurements
of the Seebeck coefficient [58] were made of a few samples. These mea-
surements indicated that using the same annealing conditions resulted
in similar doping states. The measured TEP only changed slightly from
around -4 µV/K in the YBCO film without Zn impurities to around -3
µV/K in samples with 1% and 2% Zn content.

3.1.2 Current bridge fabrication

For the purpose of critical current measurements the thin-films were pat-
terned with a current bridge. This ensures we are able to calculate the
critical current density as the geometry through which the current flows
will be well defined. The bridge was constructed by using techniques from
photolithography. Photoresist (AZ 600MIF) was deposited on the surface
and UV light was exposed through a bridge pattern onto the thin-film. The
exposed photo resist was then removed leaving behind the bridge pattern
on the film. The exposed silver was then etched chemically using a solu-
tion of hydrogen peroxide and ammonia in water, thus exposing the YBCO
layer which was also etched chemically using ethylenediaminetetraacetic
acid.

The length of the current bridges was 5 mm and the widths used were
either 1.25 mm or 0.5 mm depending on the Zn doping amount with the
bridge width determining the absolute magnitude of the critical current.
The small bridge widths are needed to reduce the critical current to a level
that can be measured using the equipment avaliable. If no bridge was used
with the film having a width of 1 cm it would take a current above 1400 A
to reach the critical current density for YBCO. The critical current density
is calculated by dividing the current by the cross sectional area (thickness
of the YBCO layer multiplied by the width of the current bridge). A typical
bridge is shown in figure 3.1.

For a measurement of the current bridge YBCO thickness, the silver
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Figure 3.1: A photo of one of the YBCO+Zn samples used. The current
bridge can be seen as well as contacts where current and voltage leads
were soldered on. Some of the silver capping layer has been etched away
to reveal the YBCO layer underneath. Both the silver and YBCO has been
etched away where the thick lines (bridge cuts) are to define the bridge.

was first etched away uncovering the YBCO layer. The measurement of
the current bridge thickness was done using a DekTak stylus profiler in-
strument. A pin is lowered to the surface being profiled, and changes in
the height of the pin are measured as it is moved along the surface. The
difference in height between the areas where the YBCO has been etched
away (bridge cuts) and where it remains (the middle of the bridge where
the current flows) can be used to obtain the YBCO thickness.

3.2 Critical current measurements

There are several methods for measuring critical currents in superconduc-
tors [59], including magnetisation or transport current approaches, how-
ever the 4 point transport method was chosen for this study. This method
is the most direct way to measure the response of the superconductor as
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current is pushed through. Magnetisation measurements are complicated
by the presence of trapped flux and geometric factors.

3.2.1 Critical current measurement system

The particular experimental setup used in our lab is described well by
Strickland et al. [60]. The critical current measurement system was built
in-house and has the capability to deliver currents up to 875 A as well as
to rotate the sample in an applied magnetic field of up to 8 T.

The system is cooled using a closed circulating gas system. Helium
gas is circulated using a pump and it is cooled using a Sumitomo CH-204S
cryocooler powered by a HC-4E1 compressor. The temperatures in the
system are monitored and controlled using a Lake Shore Model 336 Cryo-
genic Temperature Controller. Because it is a closed system, care must be
taken when changing samples as to stop any air or moisture getting in-
side. This is done by having a helium over pressure. If any air or moisture
enters the system and freezes, the system must be heated to room temper-
ature and flushed using helium gas.

The sample is mounted on a sample rod to be inserted into the system.
The sample rod has temperature sensors along it as well as two 22 W resis-
tive heaters which allows the sample to be heated or cooled. The control of
the sample temperature is usually good enough to obtain an uncertainty
of less then ±0.001 K. This is important because for a valid measurement
care must be taken to ensure the sample temperature remains constant.

A magnetic field up to 8 T can be applied using a high temperature
superconductor (HTS) split-coil magnet and the sample can be rotated in
this field using a stepper motor. A calibrated Hall sensor located directly
outside the sample space enables measurement of the field. An electrical
current up to 875 A is supplied by an Agilent 6680A dc power supply.
The current is measured across the sample using a precision 0.1 mΩ power
resistor included in the current circuit whilst the voltage across the sample
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is measured using a custom-built nanovolt amplifier with a gain of 10,000
before being read using a National Instruments USB-6211 multifunction
data-acquisition module.

3.2.2 Measurement process

For the measurement electrical contacts for current injection and voltage
measurement are soldered onto the sample at the positions indicated in
figure 3.2 and a temperature sensor is attached to the sample bridge. The
temperature is first set to a temperature near but below that of the critical
temperature. It is good to run a test measurement to ensure the system
is working. The measurement is done by first stabilizing the temperature.
Then the current is ramped up in exponential steps measuring the voltage
at each step. When the voltage rises over a set value the measurement is
automatically stopped, giving a current voltage (I-V) curve. Care must be
taken to set an appropriate value for the maximum voltage as the bridge
can be destroyed if the voltage is too high. Setting a maximum current is
a further option to add another layer of safety if there is for example some
short-circuit happening.

For a full measurement an automated process is used that measures I-V
curves for given temperature steps down to the lowest temperature ( 20K)
and then back up again. In practice we found there to be little difference
between measurements cooling down and heating up.

Since the sample is a superconductor we would expect the voltage to
not change until the critical current is reached during a measurement.
When this happens the voltage will start to increase rapidly due to dis-
sipation. A typical measurement is seen in figure 3.2.

In the case of a perfect superconductor a step would be seen in the
voltage-current curve with the resistance (the slope) after the step being
that of the normal state. However the step is smoothed out because of
fluctuations. Also the microstructural properties of the superconductor
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can also cause the transition to broaden. The resulting I-V curve is best fit
by a power law which is given by

V = Vc

(
I

Ic

)n
. (3.1)

Here Ic is the critical current and n is the exponent indicating the qual-
ity of the sample [61] where lower values can indicate samples with more
granular superconductivity. Generally the value of n is high for low tem-
perature measurements compared to measurements near the critical tem-
perature. This is due to fluctuations becoming important at temperatures
near the transition temperature.

Figure 3.2: An example of a typical voltage vs current measurement. The
red line is a power law (equation 3.1 fit to the data with the calculated crit-
ical current set by the voltage criterion shown. The value n is the resulting
power from the fit.

The value Vc is derived from an abitrary electric field criterionEc which
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is usually set to 100 µVm−1 as a standard value now used widely in such
measurements. As shown in figure 3.2 the critical current will be the cur-
rent when the voltage reaches Vc = Ecl where l is the length of the sample
bridge. Obviously the smaller Ec is the better the estimate of the critical
current will be, with the method always overestimating the critical cur-
rent. One must also consider fluctuations which tend to reduce the value
of n close to the transition temperature, causing a larger critical current
to be estimated in this region compared with temperatures further away
from the transition temperature.

This method was used because it is straight forward and easy to au-
tomate, however as we show in chapter 7 this is ultimately an arbitrary
criterion-driven method for establishing the critical current. A more fun-
damental measure is achieved using a surface field criterion.

We then obtain the critical current density, Jc(T ), by dividing Ic by the
cross sectional area of the bridge through which the current flows (see
figure 3.1).

3.3 Fitting Algorithm and errors in fitting param-

eters

The fitting of self-field critical current, Jc(sf, T ), data was carried out using
a program set up in Matlab. The program used the least squares method
to determine a fit of the data. Because of the nonlinear nature of the fitting
functions the matlab function lsqcurvefit was used, where the method
of fitting is described next.

In the least squares method the function for fitting the data has sev-
eral parameters to be determined (p̂ = p1, ..., pnp) where in our case these
were the critical temperature Tc, the ground-state gap magnitude ∆(0), the
ground-state penetration depth λ(0), and the jump in specific heat at the
critical temperature ∆C/C (see chapter 6). The fitted parameters are found
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by minimizing the sum of squared residuals

SSE(p̂) =
∑

(yi − f(p̂, xi))
2 (3.2)

with respect to the parameters. Here yi are the measured dependent data
points Jc(sf, Ti), and xi are the measured independent data points Ti. This
minimization was performed using a “subspace trust-region method and
is based on the interior-reflective Newton method” described in [62] [63].

The method of minimizing the sum of squared residuals involves cal-
culating the Jacobian

Jij =
∂f(p̂, xi)

∂pj
, (3.3)

which can be used to calculate the asymptotic covariance matrix V =

(σJTJ)−1 where σ = SSE/(N − np). The diagonal elements of V are the
estimated variance of each parameter δ2

pi
= Vii and the off-diagonal com-

ponents are the estimated covariances between parameters δ2
pi,pj

= Vij .
The estimated variance (error) gives an indication of how reliable the fit-
ted parameters are. A large variance with respect to the fitted value would
indicate that there may not be enough data points for a good determina-
tion of the parameter.

Another way to determine the reliability of the fitted parameters is to
find their mutual dependencies. These values can be thought of like this:
if the fitted parameters have a high mutual dependency > 0.99 then this
means the parameters can take on a wide range of value pairs (or tuples)
and still plot the same fitting function. This will often mean the fitting
function has redundant parameters. The mutual dependencies can be cal-
culated using mdpi = 1− 1/Vii(V

−1)ii.



Chapter 4

Universal scaling behaviour in
the self-field critical current

The purpose of this chapter is to demonstrate the totally unexpected uni-
versal behaviour of the self-field critical current Jc(sf) in many different
superconductors over a wide range of length scales. We will see that when
the critical current is reached the surface current is always Js = Bc/µ0λ for
type I superconductors or Js = Bc1/µ0λ for type II superconductors. As a
consequence Jc(sf) is a thermodynamic quantity, not an engineering quan-
tity. These ideas have been published in the paper [64].

4.1 Critical current behaviour across a wide range

of sample sizes

Recently it was shown that the self-field critical current density, Jc(sf, T ),
for thin films where the half thickness, b, was less than the penetration
depth, λ, took the following values for type I and type II superconductors
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respectively [65]:

Jc(sf, T ) =
Bc(T )

µ0λ(T )

Jc(sf, T ) =
Bc1(T )

µ0λ(T )
.

(4.1)

The result for type II superconductors was in particular surprising and
was indicative of some sort of universal behaviour. The 2015 paper how-
ever focused almost exclusively on data where the thickness of the films
was comparable to the penetration depth. A deeper investigation was
therefore warranted involving data sets with the superconducting film
half-thickness both greater and less than λ, with the purpose to elucidate
more clearly the situation. In the event nearly eight orders of magnitude
of sample size was covered.

To explore this relationship more fully we wish to scale or normalize
both the self-field critical current density and the conductor half thickness,
b, by their natural units so as to compare the behaviour of different super-
conductor types and materials over different length scales.

To begin with the half-thickness is normalized using the penetration
depth. As for the current density, J , for type I superconductors the natural
unit for current density is Hc/λ, where we recall that Hc is the thermody-
namic critical field. A consideration of equation 4.1 suggests we should
use Hc1/λ to normalize the current density of type II superconductors.

The normalized critical current density can thus be calculated using the
equations

Jc,n(T ) =
Jc(sf, T )

Bc(T )/(µ0λ(T ))

Jc,n(T ) =
Jc(sf, T )

Bc1(T )/(µ0λ(T ))

(4.2)

for type I and II respectively. The normalized critical current density pro-
vides a comparison between the measured self-field critical current den-
sity Jc(sf, T ) and the self-field critical current density predicted according
to equation 4.1 and any size dependent behaviour will be readily exposed.
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To calculate Jc,n we use the ground-state values for both Jc(sf, T ) and
λ(T ), i.e. the values at T = 0. The values of Jc(sf, 0) can be extrapo-
lated from temperature dependent critical current measurements and our
method for extrapolating values of Jc(sf, 0) is described in chapter 6. Val-
ues of λ(0) are taken from the literature with values and references given
extensively in [64].

Calculated values of Jc,n are shown in table 4.1 and 4.2 (reproduced
from table 1 in [64]) along with the references for each dataset used. Figure
4.1 (reproduced from figure 3 in [64]) is a plot of Jc,n vs the normalized
conductor dimension (b/λ for thin films and a/2λ for round wires where
as before a is the wire radius). The line plotted is the function λ

b
tanh( b

λ
)

which we derived from the London equations in chapter 2 and it can be
seen that the data points sit nicely and remarkably on this line.

The orange data points are for the YBCO cuprate superconductor where
anisotropy is present. For the data points here the current is flowing along
the a, b plane with the c-axis in the y direction normal to the film. For these
points the normalization is by Bc1(c)/µ0λab where Bc1(c) = φ0(log κc +

0.5)/4πλ2
ab [66]. The geometric normalization of the half thickness is sur-

prisingly b/λc, with the line plotted being λc
b

tanh
(
b
λc

)
. Justification for

this normalization is presented in detail in chapter 9

For the region where b/λ > 1 it can be seen that Jc,n reduces as λ/b is
increased. We see that an increase in superconductor thickness does not
result in an equivalent increase in current so therefore the current distri-
bution across the thickness cannot be uniform. The current is confined to
the surface of the superconductor with dead-space in between just as pre-
dicted by the London theory in the Meissner state. This observation is in
contrast to flux-entry models where the current in the critical state is dis-
tributed across the entire cross-section due to the ingress of vortices in the
mixed state[38].

Also it can be seen here that type II superconductors follow the same
behaviour as type I superconductors reinforcing the idea that vortices may
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not play a role in the onset of self-field dissipation. It also indicates that
London-Meissner currents are present in type II superconductors at crit-
ical current as they also are in type I. This is a new result that was not
previously found in [65].

For the region where b/λ < 1 it can be seen that Jc,n remains constant
at a value of unity essentially reconfirming the main finding of [65].

The datapoints plotted here have a large range of aspect ratios (a/b
from 1 to 3× 106) implying that any increase in width results in an equiva-
lent increase in current. This therefore implies that the current distribution
across the width at Jc(sf) must therefore be uniform. This prediction will
be confirmed in chapter 7.

The effective aspect ratio is given by a/λP where the Pearl length [67],
λP , is given by λP = λ2/b. From the samples considered this spans 10
orders of magnitude from 3.5 × 10−3 to 1.3 × 107. For samples with an
effective aspect ratio less than 1 a uniform current distribution across the
width is expected but for those samples with a ratio above 1 the current
is expected to flow mostly in the edges. This particular case (ab >> λ2,
a >> b) is given by Rhoderick and Wilson [68] for the Meissner state:

J(x) =
I

2πb
√
a2 − x2

. (4.3)

The result in figure 4.1 shows that Jc,n follows a line the depends only
on b and not on a. If the Rhoderick and Wilson current were correct, we
would see Jc,n drop off as 1/ab instead of just 1/b. It also must be uni-
form because there is no dependence on a. This indicates that even for
these samples with an effective aspect ratio above 1 the current distribu-
tion across the width is still uniform in contrast to what is predicted in
[68].

It can in fact be seen that Jc,n does not depend on the width a at all but
only on b/λ. This would indicate that for the whole range of normalized
conductor dimensions the current distribution across the width is uniform
at the onset of dissipation in self-field. This can be compared with the
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case of round wires where the current distribution in the azimuth direction
is necessarily constant by symmetry. The fact that both rectangular and
cylindrical conductors lie on the same universal curve shows that in both
cases the current distribution is uniform. Measurements of current and
field distribution are discussed in chapter 7.

4.2 Normalized surface current and surface field

In the preceding section we saw that the behaviour of the transport current
followed that predicted by the London equations. In chapter 2 the current
distribution for London-Meissner currents was given for both thin films
and round wires. In the case of a constant current across the width the
current distribution for a thin film was

J(y) = Js
cosh(y/λ)

cosh(b/λ)
(4.4)

where Js is the surface current density. The global current density, Jt, and
surface field, Bs, can be calculated as

Jt = Js
λ

b
tanh

(
b

λ

)
Bs = µ0bJt

(4.5)

where the latter equation follows from Ampere’s law. For a round wire the
current distribution, global current density and surface field are calculated
as

J(ρ) = Js
I0(ρ/λ)

I0(a/λ)

Jt = Js
2λ

b

I1(a/λ)

I0(a/λ)

Bs =
µ0aJt

2
.

(4.6)

where In(z) is the nth order modified Bessel function of the first kind and b
in this case is the radius of the wire. As noted, the ratio of Bessel functions
I1(a/λ)
I0(a/λ)

can be approximated well using the function (2λ/a) tanh(a/2λ).
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Using these equations we can now define two other normalized quan-
tities: the normalized surface current density, Js,n, and the normalized sur-
face field, Bs,n. At critical current the surface current density from equa-
tion 4.5 will be Js = Jc(b/λ)/ tanh(b/λ). These can be normalized in the
same way as before giving us

Js,n =
Jc

Bc1/λ

(b/λ)

tanh(b/λ)

Bs,n =
µ0bJc
Bc1

(4.7)

where the surface field has been normalized using the critical field Bc1.
These equations are for type II thin films but it is trivial to derive the
equivalent equations for type I superconductors as well as for round wires.
These quantities can now be calculated and are plotted in figure 4.2 (re-
produced from figure 5 in [64]) where again we have used independently
measured values of λ(0) for the normalisation. The calculated values of
Js,n and Bs,n are also shown in table 4.1 and 4.2 along with the references
for each dataset used.

The values of Js,n sit on the line of unity indicating that the surface
current density at the onset of self-field dissipation is always Bc/µ0λ for
type I or Bc1/µ0λ for type II superconductors. This result is irrespective
of the film width and thickness and is universal in nature, indicating a
thermodynamic limit.

The calculated values of Bs,n follow the mirror image of the values of
Jc,n. For b > λ the surface field is just the critical field, as expected, how-
ever for b < λ the surface field reduces below the critical field as b de-
creases. Because the surface field as at or less than Bc1 the superconductor
must still be in the Meissner state. As stated before this fact which was
also found by observing the 1/b drop off in Jc,n indicating that the current
only flowed at the edges for samples with b > λ.

This result gives further support to the idea that vortices may not play
a role in determining the self-field critical current in rectangular thin films
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and wires because the required field strength is not present. It also in-
dicates that current flowing in a superconductor at self-field may not be
limited due to the field but is limited, rather, due to a fundamental thresh-
old current density. This is because the universal criterion found here is
that the surface current density takes the same value, but the surface field
is varying.

The appearance of a fundamental threshold current density is perplex-
ing. There does exist a kind of fundamental threshold current density
known as the depairing current density which is well known to beBc/µ0λ.
This makes sense for type I superconductors, however for type II super-
conductors we see that the threshold current density is Bc1/µ0λ. Surely
there must be some function that describes this threshold current density
in both regions, but at this stage it is not known what mechanism would
describe this.

In summary a scaling analysis of many superconductors of different
effective aspect ratios has shown that the normalized critical current den-
sity follows a universal relationship which is given by Jc,n = λ

b
tanh

(
b
λ

)
.

The 1/b drop off for b > λ indicates that the samples are still in the Meiss-
ner state. This is further supported by the normalized surface field data
showing that the surface field never exeeds Bc for type I or Bc1 for type
II superconductors. This precludes the role of vortices in determining the
self-field critical current in type II superconductors, contrary to the estab-
lished view.

The fact that there was no a dependence indicated that the current dis-
tribution across the width in the critical state is uniform, a hypothesis that
will be tested later in chapter 7. At the critical state the current density
across the surface reaches a critical value given by the equation 4.1 which
is universal and is a thermodynamic limit.
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Figure 4.1: Normalized self-field critical current density vs the normalized
superconductor dimension (b/λ for thin films and a/2λ for round wires).
The line is the function λ

b
tanh( b

λ
). The orange data points are the normal-

ized critical current densities for YBCO samples which are plotted vs b/λc.
The grey labels indicate type I superconductors, whilst the black labels
indicate type II superconductors. This graph is produced from tables 4.1
and 4.2 and can be found as supplementary figure 4 in [64] without the
Js,n and Bs,n data.
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Figure 4.2: Normalized self-field surface current density (red line and red
data points), normalized self-field critical current density (black line and
black data points) and normalized surface field (blue line and blue data
points) vs the sample half-thickness divided by the London penetration
depth. The orange data points are the normalized critical current densities
for YBCO samples which are plotted against b/λc. The pink data points are
the normalized surface fields times the anisotropy against b/λc for YBCO
again. For the few examples of cylindrical wires the data is plotted versus
a/2λ where a is the wire radius. The grey labels indicate type I super-
conductors, whilst the black labels indicate type II superconductors. This
graph is produced from tables 4.1 and 4.2 and can be found as supplemen-
tary figure 4 in [64].
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Material 2a (nm) 2b (nm) κ λ(0) (nm) Jc(0) (MA/cm2) Jc,n Js,n Bs,n b/λ(0)

Al (film) 610 89 0.03 [31] 50± 10 [69] 4.44 [70] 0.8287 1.0368 0.7375 0.89
680 98 46-51 [71] 3.38 [70] 0.6386 0.831 0.6258 0.98
880 99 51.5 [72] 4.06 [70] 0.9135 1.1941 0.9044 0.99
500 34 3.82 [70] 0.8274 0.859 0.2813 0.34
300 20 3.68 [70] 0.6198 0.628 0.124 0.2

Al (nano wire) 10 5 9.23 [73] 1.0391 1.04 0.052 0.05
8.4 5 7.94 [73] 0.8937 0.8944 0.0447 0.05
5.4 5 4.94 [73] 1.1115 1.1124 0.0556 0.05

In (thin-film) 360 100 0.11 [31] 40 [31] 41.1 [74] 0.7892 1.163 0.9865 1.25
320 100 20.9 [74] 0.6566 0.9676 0.8208 1.25

(wire) 520000 0.0105 [75] 0.0003 1.072 0.975 3250
270000 0.0211 [75] 0.0007 1.119 1.1813 1687.5
170000 0.036 [75] 0.0011 1.202 1.1688 1062.5
170000 0.0347 [75] 0.0011 1.158 1.1688 1062.5

Sn (nanowire) 70 0.23 [31] 56-68 [76] 9.1 [77] 0.5091 0.5226 0.1437 0.2823
(film) 1900 50 16.2 [78] 0.9065 0.9551 0.3655 0.4032
Nb (thin film) 82000 1000 1 [79] 47± 5 [80], 41± 4 [81] 5.12 [82] 0.091 0.928 0.9282 10.2

49000 1000 59.4± 0.2 [83] 5.92 [82] 0.1043 1.064 1.0639 10.2
TaS2 (thin film) 450 4.2 12.6-13.6 [84] 260-302 [84] 0.62 [85] 0.631 0.631 0.0039 0.00621

9.8 [86], 9.5 [87] 613 [87], 410 [88]
Nb3Sn (Wire) 101000 22 [31] 65 [31] 0.56 [89] 0.0033 1.27 1.2819 388.46

94000 0.46 [89] 0.0027 0.972 0.9762 361.54
(Commercial Tape) 150000 36000 0.761 [89] 0.0036 0.992 0.9969 276.92
(Thin film) 13000000 8500 2.59 [90] 0.0151 0.9904 0.9872 65.38

13000000 5760 4.58 [90] 0.0268 1.186 1.1875 44.31
MgB2 (thin film) 320 10 26 [91] 85 [92] 121 [93] 1.1698 1.171 0.065 0.05556

5000 10 100 [94] 78.2 [95] 1.1179 1.119 0.0621 0.05556
350 100 84.1 [96] 0.8881 0.889 0.0493 0.05556
1200000 200000 0.085 [97] 0.0012 1.376 1.3333 1111.11

NbN (thin film) 8900 8 40 [31] 200 [31] 7.9 7.9 [98] 1.0349 1.035 0.0213 0.0206
300 8 194 [99] 14.3 7.9 [98] 1.0349 1.035 0.0213 0.0206
6000 22.5 7.47 [100] 0.9338 0.9348 0.0542 0.058

MoN (wire) 160 54 [101] 440± 40 [102] 0.5923 [103] 0.8652 0.8676 0.0786 0.0909
FeSe (Single Atomic Layer) 1500000 0.55 72 [104] 324 [104] 1.65 [55] 0.897 0.897 0.0008 0.000849
MoGe (thin film) 10000 200 94± 14 [105], [106] 400 [107] 1.75 [105] 1.6958 1.731 0.424 0.25

20000 200 1.31 [105] 1.2697 1.296 0.3174 0.25
25000 200 1.13 [105] 1.0953 1.118 0.2738 0.25
30000 200 1.04 [105] 1.0081 1.029 0.252 0.25
40000 200 1.02 [105] 0.9885 1.009 0.2471 0.25

Ba(Fe,Co)2As2 (wire) 500000 90 [108] 270 [108] 0.0078 [109] 0.0027 1.201 1.1884 440.14
(thin film) 6700 220 274 [110], 307 [111] 2.19 [112] 0.7032 0.738 0.2723 0.3873
PbMo6S8 (wire) 160000 125 [113] 275 [113] 0.0216 [114] 0.0064 0.936 0.9309 145.45

Table 4.1: A table of Jc,n, Js,n and Bs,n calculated for superconductors of many different sizes and types.
The self-field critical current data sets used are referenced next to the Jc(0) value for each sample, and the
literature Ginzburg-Landau parameter κ and penetration depth λ(0) are also listed. For samples of cylin-
drical geometry only the diameter (2a) is listed and the value b/λ is now a/2λ instead. This is reproduced
from table 1 in [64] with Sn added in.
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Material 2a (nm) 2b (nm) κ λ(0) (nm) Jc(0) (MA/cm2) Jc,n Js,n Bs,n b/λc(0)

YBCO (thin film) 500000 850 95 [31] 125 [115] 31.8 [60], [65] 0.9251 1.04 1.037 0.6182
500000 1400 26 [116], [117] 0.7637 1.011 1.011 1.0182
50000 50 30 [118] 0.8966 0.897 0.177 0.0364
5000 150 28.9 [119] 0.8984 0.902 0.484 0.1091

(single crystal) 2000000 30000 2.04 [120] 0.0473 1.032 1.032 21.8182
2000000 30000 1.5 [120] 0.0349 0.761 0.761 21.8182

(STI tape) 500000 4500 135 (22 K) 10.6 [117] 0.3279 0.984 0.984 2.9861

Table 4.2: A table of Jc,n, Js,n and Bs,n calculated for different samples of
the anisotropic YBCO cuprate superconductor. The self-field critical cur-
rent data sets used are referenced next to the Jc(0) value for each sample,
and the literature Ginzburg-Landau parameter κ and penetration depth
λ(0) are also listed. This is reproduced from table 1 in [64].
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Chapter 5

Temperature dependence of
self-field critical current and
penetration depth

In chapter 4 it was shown that the ground-state self-field critical current
density follows the generic relationship

Jc(sf, T ) =
Bc

µ0λ
g(a, b, λ) (Type I), Jc(sf, T ) =

Bc1

µ0λ
g(a, b, λ) (Type II)

(5.1)
with the geometric factor of

g(a, b, λ) =
λ

b
tanh

b

λ
(5.2)

for thin film rectangular samples and g(a, b, λ) = λ
2a

tanh 2a
λ

for cylindrical
wires. This relationship was however only shown for the ground state (T
= 0 K). A question can be asked as to whether this relation is sustained as
a function of temperature?
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5.1 Tin - high aspect ratio

First we will look at the example of Sn. Experiments by Schawlow et al
[121] were only able to measure ∆λ(T ) = λ(T )−λ(0). However they used
a two-fluid model to estimate a ground-state penetration depth value of
λ(0) = 52 nm, which is close to other measured values of λ(0) such as 52
nm [122], 49 nm [123] and 50 nm [124].

The directly measured normalized λ(T ) data [121] is plotted in figure
5.1 (blue points). Also plotted here is λ(T ) calculated from a Jc(sf, T )

dataset from Hunt [78] using equation 5.1 (red points). The film here has
a high aspect ratio with the width being 1.9 µm and the thickness being
50 nm. The thickness is near the penetration depth and so in the scaling
graph from chapter 4 the data would sit near the knee. The solid curve is
the theoretical BCS calculation [125].

The temperature dependence of λ(T ) calculated from the Jc(sf, T ) data
matches remarkably well with the λ(T ) data measured by Schawlow et al
as well as with the theoretical BCS temperature dependence. The exponen-
tially flat temperature dependence of ∆λ at low temperature is evident in
all cases and is characteristic of s-wave superconductivity.

5.2 Tin - small aspect ratio

The Jc(sf, T ) data measured by Hunt [78] was for a thin film with a high
aspect ratio allowing us to ignore the width. A range of thin film Sn sam-
ples that have aspect ratios closer to 1 have been measured by Song et al
[126], [127]. They found that there was a crossover in the Jc(sf, T ) temper-
ature dependence as the thickness changed.

To examine this data we now use an approximation for the geometric
factor g(a, b, λ) more appropriate to equiaxed samples where b in equation
5.1 is replaced by b∗ = ab/(a + b). The theoretical background of this is
explored further in chapter 9. For the Song data there are 4 samples where
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Figure 5.1: Comparison of the temperature dependence of normalised
λ(T ) calculated from Jc(sf, T ) with independent measurements of λ(T )

for Sn. The blue Jc(sf, T )-derived data is from [78] and has been con-
verted into λ(T ) data using equation 5.1. The red λ(T ) data is from [121].
The black line is calculated using the BCS theory [125].

b∗ crosses from b∗ > 1 to b∗ < 1.

Plotted in figure 5.2 is the normalized λ(T ) derived from the Jc(sf, T )

data of Song [126], [127] along with the previous directly measured nor-
malized λ(T ) data [121] and the theoretical BCS calculation [125].

It can be seen that despite the crossover in temperature dependence
that occurs when b∗ ' λ, the derived λ(T ) matches well with the indepen-
dently measured data, confirming that equation 5.1 along with the modi-
fied b∗ in 5.2 describes the temperature dependence of Jc(sf, T ) quite well.
The only significant differences here are largely attributable to the absolute
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Figure 5.2: Comparison of the temperature dependence of normalised
λ(T ) calculated from Jc(sf, T ) with independent measurements of λ(T )

of Sn. The blue and purple Jc(sf, T )-derived data is from [126], [127] and
has been converted into λ(T ) data using equation 5.1. The red λ(T ) data is
from [121]. The black line is calculated using the BCS theory [125].

value and the evidently higher Tc in the Song samples.

5.3 BaKBiO3

An example of a type II superconductor Ba0.6K0.4BiO3 is shown in figure
5.3. Here the Jc(sf, T ) data from [128] is compared withBc1 data measured
by [129].

The comparison is made as follows. The Jc(sf, T ) dataset is used to
calculate λ(T ) using equation 5.1 from which Bc1 is then calculated from
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Figure 5.3: Comparison of the temperature dependence of Bc1 derived
from Jc(sf, T ) data (red) [128] with independently measured Bc1 data
(blue) from [129] for BaKBiO3. For comparison the theoretical BCS result
is plotted using λ(0) = 270 nm.

equation 2.10. The value of the Ginzburg-Landau parameter was taking to
be κ = 70 [130]. The film thickness was 150 nm [128]. The Bc1 values cal-
culated in this way are compared in the figure with direct measurements
of Bc1 [129].

The resulting plot shows that the temperature dependence of the two
data sets matches well, apart from the region near Tc where differences can
largely be attributed to differences in Tc. The superconducting properties
near Tc can be highly affected by the exact composition and crystallinity
and the sample reported by Mosley [129] is clearly more inhomogeneous
than the sample used by Schweinfurth for critical current measurements
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[128].

An example of the temperature dependence for d-wave superconductivity
is given previously for YBa2Cu3Oy [65] (see figure 3(a)). In contrast to the
s-wave case the low-temperature behaviour of ∆λ(T ) is linear in temper-
ature. The absolute values of λ(T ) determined from Jc(sf, T ) were shown
to be in excellent agreement with the independently measured λ(T ) by the
group of Hardy et al [131].

In conclusion the temperature dependence of self-field critical current den-
sity data when analysed using equation 5.1 gives λ(T ) values which match
both the theoretical BCS behaviour and the independent direct measure-
ments of λ(T ). This was shown by comparing with measurements of
∆λ(T ) in the case of Sn and measurements ofBc1 in the case of Ba0.6K0.4BiO3.

The number of other data sets for which direct comparisons can be
made is rather limited. More importantly in some cases the behaviour is
beyond the weak coupling limit. In fact the T dependence can be used as a
probe of the coupling strength and the magnitude of the order parameter.
This is addressed in the next chapter.



Chapter 6

Deriving thermodynamic
parameters from self-field critical
current

In the previous chapter it was found that the self-field critical current was
dependent almost exclusively on the penetration depth, λ. By consider-
ing how λ depends on the temperature which can be determined from the
temperature dependence of the superconducting gap, ∆(T ), the self-field
critical current data can be fit to determine the key thermodynamic super-
conducting parameters. In this chapter we explore these ideas.

A new model for extracting the superconducting gap and London pen-
etration depth from the temperature-dependent self-field critical current,
Jc(sf, T ), is presented and discussed. The model is applied to over 90 data
sets taken from the literature. Importantly, the data is not selected but rep-
resents an exhaustive list of available data sets. The work presented has
been published in [132].
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6.1 Model for temperature dependent self-field

critical currents

In the previous chapter it was found that the global self-field critical cur-
rent density of both rectangular thin films and round wires could be de-
scribed using

Jc(sf, T ) =
Bc(T )

µ0λ(T )
(6.1)

for type I superconductors and

Jc(sf, T ) =
Bc1(T )

µ0λ(T )
(6.2)

for type II superconductors where µ0 is the permeability of free space. For
samples of dimension large compared with λ these equations are multi-
plied by a geometric factor which is λ

b
tanh

(
b
λ

)
for rectangular thin films (b

is the half thickness) and 2λ
b
I1(b/λ)
I0(b/λ)

for round wires (b is the radius). In the
case of rectangular thin films where the aspect ratio, b/a, is not large the
geometric factor can be replaced by a size-dependent factor λ

a
tanh

(
a
λ

)
+

λ
b

tanh
(
b
λ

)
where a is the half width. This geometric factor is introduced

because it is expected that the geometric factor should take a form similar
to that for a wire when the sample is reduced to a square cross-section. It
is noted that the original paper [132] used this geometric factor however it
has recently been found that it should probably take the form λ

b∗
tanh

(
b∗

λ

)
where b∗ = ab

a+b
. This is discussed in chapter 9.

By using the expressions for both Bc and Bc1 (see equation 10 from the
background chapter) this can be seen as a direct relation between Jc(sf, T )

and λ(T ) where the Ginzburg-Landau parameter κ can be taken as a con-
stant, especially for the type II case where it is under a logarithm. Now
all is needed is an expression for the λ(T ) to be able to fit temperature-
dependent self-field critical current data.
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6.1.1 Semiclassical BCS expression for the superfluid den-

sity

An expression for the normalized superfluid density ρs(T ) = (λ(0)/λ(T ))2

can be derived using the semi classical approach outlined in [32]. The
London approximation J = −RA where J is the current density and A

is the vector potential, contains the symmetric response tensor Rii(T ) =

1/µ0λii(T )2 which is proportional to the superfluid density. The form of
the symmetric tensor is

Rij =
e2

4π3~c

∮
FermiSurf

dSk

[
viFv

j
F

|vf |

(
1 + 2

∫ ∞
∆(k)

∂f(E)

∂E

N(E)

N(0)
dE

)]
(6.3)

where viF is the Fermi velocity in the direction i, N(E) is the density of
states at the energy E =

√
ε2 + ∆(k, T ) , f(E) is the Fermi function and

∆(k, T ) is the superconducting gap. The normalized superfluid density
can then be calculated as ρs(T ) = Rii(T )/Rii(0).

Expressions can be derived for the two common cases of gap symme-
try. For an s-wave superconductor with a spherical Fermi surface the inte-
gral can be simplified giving the superfluid density as

ρs(T ) = 1− 1

2πkBT

∞∫
0

cosh−2

(√
ε2 + ∆2(T )

2kBT

)
dε (6.4)

Also for a d-wave superconductor with a cylindrical Fermi surface the su-
perfluid density can be simplified to be

ρs(T ) = 1− 1

2πkBT

2π∫
0

cos2(ϕ)

∞∫
0

cosh−2

(√
ε2 + ∆2(T, ϕ)

2kBT

)
dεdϕ. (6.5)

In the d-wave case the gap is expressed as ∆(T, ϕ) = ∆(T ) cos(2ϕ) where
the angular part is due to the variation of the gap around the Fermi sur-
face.
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6.1.2 Energy gap temperature dependence

In order to calculate the superfluid density the energy gap, ∆(T ), must
be determined first. In general ∆(T ) must be calculated self-consistently
using BCS theory or the more complicated Eliashberg theory [133]. Here
we use a phenomenological gap equation found in [134] and it takes the
form

∆(T ) = ∆(0) tanh

(
πkbTc
∆(0)

√
η

∆C

C

[
Tc
T
− 1

])
(6.6)

where η is a constant that depends on the pairing symmetry (2/3 for s-
wave and 7/5 for d-wave) and ∆C/C is the specific heat jump at Tc. The
alpha-Padamsee model [135] can be used to derive the d-wave η value.
This solution is able to replicate the gap temperature dependence for both
weak- and strong-coupling superconductors.

With these equations we can now rather generally fit Jc(sf, T ) for su-
perconductors with the geometry of a round wire or rectangular thin film.
The superconductor type can be either type I or type II and the pairing
symmetry can be s-wave or d-wave.

For a reliable fit the Jc(sf, T ) data must have enough data points that
span much of the temperature range and reach close enough to T = 0 K.
This is necessary to be able to reliably determine ∆(0) and λ(0). Another
important point is that the sample must have minimal weak-links as these
reduce the magnitude of the current, changing the value of λ(0) resulting
from the analysis. As stated at the beginning of chapter 3, much of the
data is has been digitized from the literature. This has been referenced in
the tables at the end of the chapter.

6.2 s-wave superconductors

First we show the results from fitting s-wave datasets using equations 6.1,
6.2, 6.4 and 6.6. The references for the datasets fitted here can be found in
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[132] using the references from table 3 in the appendix of that publication
which is also reproduced here. Nine different superconductors (Al, In,
Sn, NbN, MoGe, Ba0.6K0.4BiO3, HoNi2B2C, YNi2B2C,H2S (155 GPa)) with
their derived fitting parameters are shown in table 6.1 along with the ref-
erences of the datasets. Eight of the superconductors are shown with the
raw Jc(sf, T ) data and fitted curve in figure 6.1 which is reproduced from
figure 2 in [132].

The red curves and data points are the calculated values of λ(T ) using
the Jc(sf, T ) raw data and fitted curve which are blue. For this calculation
equations 6.1 for type I and 6.2 for type II are used. The green data point
with its error bars shows the literature value of λ(0) together with its un-
certainty. It can be seen that the fits give λ(0) values close to the literature
value in most cases.

It should be noted here however that an absolute experimental deter-
mination of λ(0) is in general quite difficult and using Bc1 measurements
to determine it has its problems [65]. This is because Bc1 is determined by
looking at magnetisation data to find the point of non-linear behaviour.
Bc1(0) is then found by extrapotating to T = 0 K, however a true extrapo-
lation of Bc1 needs information of the gap function, which is not usually
known or used.

An example where usage of Bc1 to find the penetration depth lead to
an incorrect result is the case of Ren et al [136], who found from their
measurements of the penetration depth that the pnictide superconductor
BaxK1−xFe2As2 did not sit on the Uemura universal curve [137]. However
a later measurement by a senior author of the same paper found using
optical measurements the agreed upon value of λ(0) which put the super-
conductor back on the Uemura universal curve [138].

For the superconductors where multiple data sets were available only
a representative fit is shown as is the case for In, Sn, NbN and MoGe. The
derived parameters for all the datasets fitted can be found in table 6.1. The
ability to estimate values of λ(0) that are in good agreement with literature
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Figure 6.1: Reproduced from figure 2 in [132]. Experimental self-field
Jc(T ) data for s-wave superconductors as annotated (left axis, blue) to-
gether with values of λ (right axis, red) derived from equations 6.1, 6.2, 6.4
and 6.6. The solid curves are the fits using the model described. Note the
variable offset of the λ(T ) axis. The single green data points at T = 0 are,
where available, reported ground-state values of λ0 found in table 6.1. Fit
parameters: λ(0), ∆(0), ∆C/C and Tc are also summarised in table 6.1.
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values certainly reinforces the validity of equations 6.1 and 6.2.

The shape of the fits matches well with the data points in all cases ex-
cept one (HoNi2B2C) which is expanded upon below. The exponentially-
flat temperature dependence of λ(T ) at low temperature, characteristic of
s-wave symmetry, can be seen in all of the fits. Also the effect of strong
coupling can be seen as the flat region extends to higher relative tempera-
tures and the drop-off is steeper.

Special mention must be made of both HoNi2B2C and H2S (155 GPa).
HoNi2B2C shows a weak increase in Jc(sf, T ) down to the Néel temper-
ature whereupon Jc(sf, T ) rises similar to other superconductors. This is
a two-step behaviour of Jc(sf, T ) indicative of the opening of two distinct
gaps, and a similar behaviour is seen in measurements of ∆(T ) [139].

As for H2S compressed at 155 GPa the Jc(sf, T ) data is based on mag-
netisation measurements which are discussed in detail here [140]. Com-
pressed H2S is a newly discovered superconductor that has been able to
reach the highest ever recorded critical temperature of 203 K [20] and so is
of great interest currently.

This model provides a first estimate of the energy gap in this system
(around 27.3 meV). The result indicates that the system may be a weakly-
coupled rather than a strongly-coupled superconductor due to the low
BCS ratio (around 3.2) however the amount of data points was very low
and so the result must be considered with caution. Due to the extremely
high pressures present in this system, conventional methods would make
a measurement of the energy-gap quite difficult.

Figure 6.2 compares the values of the ground-state superconducting
gap magnitude, ∆(0), and the specific heat jump at critical temperature,
∆C
C

, found by fitting the Jc(sf, T ) to the extended BCS model presented
above (denoted by the word derived), with independently measured val-
ues from the literature (denoted by the word measured). The data points
for the graph are found in tables 6.1, 6.2 and 6.3 along with the references
for the Jc(sf, T ) datasets that have been fitted and literature values of ∆(0)
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and ∆C
C

.

On the left are plots for s-wave superconductors and on the right are
plots for d-wave superconductors. Looking in particular at the top left of
figure 6.2 it can be seen that the model is good at estimating ∆(0) values
close to what is found in literature for s-wave superconductors.

Figure 6.2: Comparison between values of the gap magnitude (top) and
specific heat jump (bottom) at Tc derived from self-field ciritcal current
measurements (derived) vs experimentally measured values (measured).
The plots on the left are for s-wave superconductors and the plots on the
right are for d-wave superconductors.

The specific heat jump at critical temperature, ∆C
C

, does not see as good
a correlation with independent experimental data as ∆(0) but it can still
be estimated reasonably in some cases. This may be due to the fact that
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∆C
C

is largely determined by the shape of the Jc(sf, T ) curve close to Tc

whilst ∆(0) is largely determined by where the Jc(sf, T ) curve begins its
downturn with respect to temperature. For measurements close to Tc, a
determination of Ic will be less accurate due to noise and inhomogeneities
in the sample. A comparison between the dervied ∆C

C
from this study and

literature values is also shown in the bottom left of figure 6.2.

Another reason for the lesser success in estimating ∆C
C

could be related
to the use of a phenomenological model. The model captures the general
shape of the ∆(T ) curve but it may not be completely accurate.

This finding however does show that ∆(0) may be estimated using
measurements of Jc(sf, T ). All that is needed for this estimate is an ac-
curate determination of the shape of the Jc(sf, T ) curve as ∆(0) does not
depend on the absolute magnitude.

6.3 d-wave superconductors

Table 6.2 shows the parameters dervied from fitting the Jc(sf, T ) data to
the extended BCS model for several d-wave cuprate superconductors. It
can also be found as table 4 in the appendix of [132] along with references
for all the datasets used. The data is fitted using equations 6.1, 6.2, 6.5 and
6.6.

Figure 6.3 (reproduced from figure 3 in [132]) shows the resulting fits
for eight of the nine cuprate datasets. Again the red lines and data points
are the calculated λ(T ) using equation 6.2 and the Jc(sf, T ) raw data and
fitted curves shown in blue. The green data points and error bars show
the independent literature values of λ(0).

The fitted lines again match well with the datasets and the derived λ(0)

are very close to those measured in the literature. The low-temperature
behaviour is linear as expected for d-wave superconductors, contrasting
the s-wave case.

Shown in the top right of figure 6.2 is a comparison between the values
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Figure 6.3: Reproduced from figure 3 in [132]. Experimental self-field
Jc(T ) data for s-wave superconductors as annotated (left axis, blue) to-
gether with values of λ (right axis, red) derived from equations 6.2, 6.5
and 6.6. The solid curves are the fits using the model described. Note the
variable offset of the λ(T ) axis. The single green data points at T = 0 are,
where available, reported ground-state values of λ0 found in table 6.2. Fit
parameters: λ(0), ∆(0), ∆C/C and Tc are also summarised in table 6.2.
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of ∆(0) derived here and values from literature. The derived ∆(0) values
match well enough for the RBa2Cu3Oy samples but not so well for the Bis-
muth, Mercury and Thallium cuprates. The reason for this is uncertain
however we do note that the measurement of the gap in the cuprates is
complicated by presence of an addition energy gap known as the pseudo-
gap [141].

The bottom right of figure 6.2 compares the ∆C
C

values and it can be
seen that this parameter is not estimated well in the case of cuprates. As
this fit parameter is largely determined by the Jc(sf, T ) data close to Tc

it is not surprising as the cuprates are well known to have Tc suppressed
from its mean-field value by fluctuations [142]. Extensive measurements
by Loram et al [143] have shown in great detail how the electronic specific
heat in the cuprates behaves differently from conventional BCS supercon-
ductors. ∆C/C is suppressed by the presence of the pseudogap. It is also
reduced by fluctuations below its mean-field value [142], as is the Tc value.

The superconductor GdBa2Cu3Oy has a large Curie term in the mag-
netic susceptibility arising from the Gd3+ ions [144]. This fact may com-
plicate measurements of λ(T ) that use magnetic techniques, however the
results presented here have shown Jc(sf, T ) ∝ ρ

3/2
s and so the extracted

λ(T ) should not be affected by the magnetic properties. This is an impor-
tant bonus of the technique.

6.4 Nanowire superconductors

Table 6.3 and figure 6.4 (table 5 from the appendix and figure 6 from [132]))
show the derived parameters and fits for nanowire samples. Again the fit-
ted lines match well with the datasets. The derived λ(0) match well for the
Al, MoN and YBCO samples but for the Zn and PbIn samples the derived
λ(0) values are higher. This may be due to weak-links in the samples.

For the example of PbIn, an examination of the voltage-current curves
[145] show that there are 3 different peaks in the dI/dV data. This step-
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wise nature of the voltage-current curves indicate that different regions of
the superconductor are transitioning to the normal state at different times.
This behaviour is indicative of the presence of weak-links that cause a re-
duction of the critical current.

In the case of Zn, the original papers [146], [147] show a distinct plateau
in the voltage-current curves during the transition. This strange behaviour
was described as a dissipative superconducting state. The state seems to
be directly affect the critical current causing our derived λ(0) to be signifi-
cantly higher then expected.

The nanowire datasets show a slightly different T -dependence in Jc(sf, T )

due to their small size. This is because the term λ
b

tanh
(
b
λ

)
changes the λ

dependence as the size is changed.

One last point to note about this analysis is the likely effect of weak-
links. If these are present, the sample is expected to have a reduced critical
current, raising the value of λ(0) extracted from the analysis. If the number
of weak-links are small with the current having a mostly unimpeded path,
the analysis will most likely give a λ(0) that is close to the proper value.
In any case the analysis should always be able to give an upper limit for
λ(0).

Also if the number of weak-links is small, the temperature dependence
is unlikely to change. However as weak-links start affecting the current
path, the temperature dependence is likely to transition to something like
that predicted by Ambegaokar and Baratoff [148],[149] where Ic(T ) =
π∆(T )
2eRn

tanh
(

∆(T )
2kBT

)
and Rn is the normal state resistance. This might be an

interesting transition to study in the future.

In summary, the model proposed here has been successful in extracting
key thermodynamic parameters by fitting the temperature dependence of
the self-field critical current. This method is relatively simple to imple-
ment making it an attractive option for estimating thermodynamic pa-
rameters compared with much more complex experiments conventionally
used to extract these parameters e.g. muon spin relaxation, tunneling mea-
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Figure 6.4: Reproduced from figure 6 in [132]. Experimental self-field
Jc(T ) data for various topologies of superconductors as annotated (left
axis, blue) together with values of λ (right axis, red) derived from equa-
tions 6.1, 6.2, 6.4 and 6.6. The solid curves are the fits using the model
described. Note the variable offset of the λ(T ) axis. The single green data
points at T = 0 are, where available, reported ground-state values of λ0

found in table 6.3. Fit parameters: λ(0), ∆(0), ∆C/C and Tc are also sum-
marised in table 6.3.
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surements, ARPES and specific heat measurements. Most importantly the
analysis confirms our fundamental hypothesis given by equations 6.1 and
6.2.
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Material/ 2a 2b κ Jc(0) Tc ∆0 ∆C/C λ0 2∆0/kBTc Bc1 Bc

geometry nm nm MA/cm2 (K) (meV) (nm) (mT) (mT)

s-wave
Al 610 89 0.03 [31] 4.44 [70] 1.2± 0.01 0.211± 0.005 1.1± 0.07 49.3± 0.09 4.1± 0.1 2.9

680 98 3.38 [70] 1.18± 0.01 0.22± 0.01 1.6± 0.2 53.8± 0.2 4.3± 0.2 2.4
880 99 4.06 [70] 1.18± 0.01 0.22± 0.01 1.6± 0.2 49.2± 0.2 4.3± 0.2 2.9
500 34 3.82 [70] 1.25± 0.01 0.175± 0.002 1.5± 0.1 55.8± 0.08 3.25± 0.06 2.2
300 20 3.68 [70] 1.34± 0.01 0.186± 0.002 1.4± 0.1 59.3± 0.09 3.22± 0.06 2.0

experiment 0.179 [150] 1.45 50± 10 [69]
46-51 [71]
51.5 [72]

In 360 100 0.11 [31] 41.1 [74] 3.378± 0.002 0.487± 0.003 1.18± 0.01 34.14± 0.06 3.35± 0.01 22.0
320 100 20.9 [74] 3.489± 0.006 0.505± 0.006 1.21± 0.02 46.4± 0.1 3.36± 0.01 11.9

experiment 0.525 [151] 1.9 [152] 40 [31]
0.541 [150]

Sn nanowire 70 70 0.23 [31] 9.1 [77] 3.70± 0.04 0.54± 0.05 2.5± 0.6 77.0± 0.3 3.4± 0.3 9.0
Sn film 1,900 50 16.2 [78] 3.78± 0.03 0.58± 0.03 2.0± 0.2 64.1± 0.8 3.5± 0.1 13.0
annular film 718800 170 0.0136 [153] 3.78± 0.01 0.75± 0.12 2.5± 0.3 41.8± 0.9 4.6± 0.7 30.7
Sn film 500 98 30.4 [126] [127] 3.89± 0.03 0.57± 0.01 2.31± 0.26 51.7± 0.2 3.4± 0.1 20.0
Sn film 500 380 18.3 [126] [127] 3.76± 0.01 0.58± 0.01 2.48± 0.09 46.5± 0.1 3.59± 0.06 24.8
experiment 0.593 [150] 1.6 [152] 56-68 [76]
NbN 8,900 8 40 [31] 7.9 [98] 14.37± 0.03 3.00± 0.03 2.83± 0.08 193.5± 0.1 4.83± 0.05 18.4 249

4,900 8 8.65 [98] 13.62± 0.04 3.13± 0.04 2.67± 0.09 189.7± 0.1 5.33± 0.07 19.2 259
2,900 8 8.76 [98] 14.50± 0.05 3.51± 0.08 1.85± 0.07 192.1± 0.1 5.6± 0.2 18.7 253
1,900 8 8.02 [98] 13.79± 0.06 3.22± 0.08 2.0± 0.1 197.8± 0.1 5.4± 0.2 17.6 238
300 8 14.3 [98] 13.85± 0.07 2.03± 0.03 1.7± 0.1 191.5± 0.3 3.46± 0.05 18.8 254

6,000 22.5 7.47 [100] 11.81± 0.01 2.11± 0.08 1.98± 0.04 198.6± 1.3 4.15± 0.15 17.5 236
experiment 2.56 [154] 1.9± 0.1 [155] 200 [31]

194 [99]
MoGe 2,000 64 80 [106] 5.8 [156] 5.90± 0.03 1.35± 0.12 1.86± 0.14 239± 2 5.3± 0.5 9.2 214

5,000 64 2.9 [156] 6.28± 0.07 1.4± 0.3 2.1± 0.4 291± 7 5.2± 1.1 7.1 164
7,000 64 2.9 [156] 6.30± 0.09 1.2± 0.1 1.9± 0.3 292± 3 5.7± 1.0 7.1 165

experiment 1.49-2.23 [157] 1.8 [158] 400 [107]
Ba0.6K0.4BiO3 25,000 150 70 [130] 3.04 [128] 27.2± 0.2 4.20± 0.05 2.6± 0.2 273.3± 0.4 3.58± 0.05 10.5 218
experiment 4.5 [159] 2.0 [160] 289 [129]

4.3 [161] 1.8 [162] 270 [163]
340 [164]

HoNi2B2C 20,000 300 12.5 [165] 1.45 [166] 5.7± 0.4 1.1± 0.2 2.0± 1.4 297± 5 4.4± 0.9 5.7 33.0
experiment from ξ0 0.95 [167]
YNi2B2C 20,000 600 39 [168] 2.1 [166] 15.1± 0.7 2.6± 0.2 2.4± 1 268± 2 3.9± 0.3 9.6 126
experiment from ξ0 2.2 [169] 1.77 [169] 350± 50 [170]

2-2.5 [171]
H2S (155 GPa)
4 param fit 25,000 100 88 [20] 9.8 [20] 204.6± 0.1 26± 3 1.3± 0.1 188± 7 2.95± 0.3 23.2 580
2 param fit 88 [20] 10.5 [20] 27.8± 0.2 189± 2 3.17± 0.03 23.0 574
experiment from ξ0 163 [20]

Table 6.1: Fit parameters derived from fitting Jc(sf, T ) for s-wave superconductors (with selected examples
shown in figure 6.1). Bc1 and Bc are calculated from λ0. Reproduced from table 3 in the appendix of [132]
without theBx andBy values. References next to the Jc(0) values are where the Jc(sf, T ) data was obtained.
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Material/ 2a 2b κ Jc(0) Tc ∆0 ∆C/C λ0 2∆0/kBTc Bc1

geometry nm nm MA/cm2 (K) (meV) (nm) (mT)

d-wave
HgBa2CaCu2O8 450,000 250 123 [172] 10.4 [173] 120± 1 16.9± 0.3 0.96± 0.09 188.3± 0.6 3.27 24.8
experiment 32 [174] 145, 188 [175]
Bi2Sr2CaCu2O8 + Zn 10,000 360 170 [176] 10.1 [177] 82.7± 2.4 14.0± 0.6 0.76± 0.17 196± 1 3.93± 0.17 24.2
experiment 20.5 [178] 1.5 [143] 180 [179]

23 [180]
Bi2Sr2Ca2Cu3O10 20,000 100 170 [181] 14 [182] 85.3± 0.6 14.2± 0.3 0.69± 0.04 175.2± 0.7 3.86± 0.08 30.2
experiment 30 [180] 151-155 [183]
Tl2Ba2CaCu2O8 12,000 650 150 [184] 12.9 103± 1.9 19.1± 0.8 0.81± 0.13 179.4± 0.8 4.30± 0.18 28.2
experiment 16-28 [185] 0.6± 0.1 [186] 139, 188 [187]
(Y,Dy)Ba2Cu3O7 500,000 850 95 [31] 31.8 [60] [65] 92.0± 2.1 14.9± 0.3 0.78± 0.14 122.6± 0.2 3.80± 0.1 55.4
experiment 16.7 [188] 2.7 [189] 125 [115]
(Y,Dy)Ba2Cu3O7 500,000 1400 95 [31] 26 [116] [117] 87.5± 0.4 12.8± 0.1 1.23± 0.06 124.3± 0.3 3.4± 0.05 53.9
experiment 16.7 [188] 2.7 [189] 125 [115]
(Nd,Eu,Gd)Ba2Cu3O7 50,000 50 95 [31] 30 [118] 86.7± 0.6 15.3± 0.1 1.8± 0.2 130.5± 0.2 4.1± 0.04 48.9
experiment 16.7 [188] 2.7 [189] 118 [190]
GdBa2Cu3O7 50,000 50 95 [31] 22.7 [118] 85.4± 0.8 14.9± 0.2 0.75± 0.05 143.1± 0.2 4.05± 0.07 40.7
experiment 16.7 [188] 2.7 [189] 118 [190]
NdBa2Cu3O7 5,000 150 95 [31] 28.9 [119] 90.9± 0.8 17.3± 0.4 1.56± 0.16 134± 0.4 4.4± 0.1 46.4
experiment 16.7 [188] 2.7 [189] 118 [190]

Table 6.2: Fit parameters derived from Jc(sf, T ) for s-wave superconductors (as shown in figure 6.3). Bc1

and Bc are calculated from λ0. Reproduced from table 3 in the appendix of [132] without the Bx and By

values. References next to the Jc(0) values are where the Jc(sf, T ) data was obtained.
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Material/ 2a 2b κ Jc(0) Tc ∆0 ∆C/C λ0 2∆0/kBTc Bc1 Bc

geometry nm nm MA/cm2 (K) (meV) (nm) (mT) (mT)

Nanowire
Al 10 5 0.03 [31] 9.23 [73] 1.48± 0.01 0.193± 0.002 1.3± 0.1 49.33± 0.05 3.03± 0.05 - 2.87

9.3 5 8.68 [73] 1.386± 0.007 0.195± 0.002 1.36± 0.07 50.4± 0.09 3.27± 0.05 - 2.75
8.4 5 7.94 [73] 1.4± 0.01 0.205± 0.002 1.07± 0.05 51.89± 0.04 3.4± 0.06 - 2.60
7 5 6.4 [73] 1.518± 0.003 0.182± 0.001 0.96± 0.01 55.77± 0.01 2.78± 0.02 - 2.25

5.4 5 4.94 [73] 1.13± 0.01 0.14± 0.001 2.3± 0.3 60.79± 0.06 2.88± 0.05 - 1.89
experiment 0.179 [150] 1.45 [191] 50± 10 [69]

46-51 [71]
51.5 [72]

Zn 100 65 3 [192] 0.0302 [147] 0.82± 0.03 0.23± 0.04 4.3± 1.7 1114± 5 6.5± 1.1 0.21 0.56
100 65 fromHc0 0.0800 [146] 0.836± 0.02 0.228± 0.006 4.6± 0.7 805.9± 0.3 6.3± 0.2 0.41 1.08

experiment 0.115 [151] 30-60.5 [193]
Amorph-W 250 50 117 0.34 [194] 4.7± 0.2 0.9± 0.2 1.2± 0.5 738± 13 4.6± 1.1 1.59 50.0
experiment from ξ0 [194] 0.66
PbIn cylinder 27.5 - 5 [31] 1.06 [145] 7.6± 0.6 1.6± 0.1 5± 4 295± 2 4.8± 0.4 4.0 13.4
experiment 1.2-1.25 [195] 3.53-3.71 [135] 150 [31]
MoN cylinder 320 - 54 0.58 [103] 12.6± 0.1 2.9± 0.1 5± 0.7 463± 1 5.3± 0.2 3.45 58.7
experiment from ξ0 [101] 1.94 [196] 440± 40 [102]
YBa2Cu3O7 136 50 95 [31] 17.5 [197] 81± 1 15.3± 0.3 1.4± 0.2 160.7± 0.3 4.38± 0.01 32.2 857

50 48 76.1 [198] 81± 1 16.9± 0.4 1.6± 0.2 116.6± 0.3 4.8± 0.1 61.2 1626
experiment 16.7 [188] 2.7 [189] 125 [115]

Table 6.3: Fit parameters derived from Jc(sf, T ) for s-wave superconductors (as shown in figure 6.4). Bc1

and Bc are calculated from λ0. Reproduced from table 3 in the appendix of [132] without the Bx and By

values. References next to the Jc(0) values are where the Jc(sf, T ) data was obtained.
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Chapter 7

Perpendicular Field Distribution
measurements on
superconducting tapes

In chapter 4 we saw that the current distribution across a thin supercon-
ducting film is expected to be highly non-uniform across the width while
in the Meissner state when the effective aspect ratio is larger than 1. It was
found however that at the self-field critical current, the thin films satisfy
equation 3.1 over a large range of aspect ratios. This means that the lo-
cal critical current must be uniformly distributed across the width. This
predicted behaviour is tested in this chapter.

The current distribution in a conductor cannot be directly tested and
so must be inferred by measuring the spatial variation of the magnetic
field. Here measurements are shown which examine the profile of the
magnetic field perpendicular to the tape, generated by a transport current
in a rectangular superconductor. These measurements can be used to infer
how the current distributes across the width of the superconductor.

This experiment is carried out on several commercial high temperature
superconductor tapes with each producing similar results. The measure-
ments confirm the inference in chapter 4 stating that, at the onset of dis-
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sipation, the current distribution across the width of a superconductor is
uniform. The measured field data was first published in [199] and much
of the chapter is outlined in [200] .

7.1 Experimental setup

A schematic diagram of the experimental setup is shown in figure 7.1. The
perpendicular field above the sample is measured using an array of 7 Hall
sensors (Arepoc THV-MOD). The active area of each Hall sensor is 0.01
mm2 with each positioned 1.5 mm from each other along a line. This
means that the total width the sensor array spans is 9 mm. The sensors
are encased in plastic with a gap of 350 µm between the line of the sensors
and the bottom of the sensor casing.

Figure 7.1: A diagram of the experimental setup used to measure the per-
pendicular component of the self-field generated by transporting electric
current through a thin film superconductor tape. The Hall sensors used
to measure the field are shown in blue and the thin film superconducting
tape is shown in grey. The distances, dh and da, relate the position of the
superconductor to the hall sensors (not to scale).

The sample that is to be studied is fastened to the bottom of the sensor
casing. In figure 7.1 a distance, dh, is shown as there is a small gap between
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Table 7.1: Manufacturers and dimensions of HTS commercial tapes used
for measuring the field due to the transport current.

Wire Manufacturer Product Number Width (mm) Thickness (µm)
Fujikura Ltd FYSC-S10 10-0025-01 10 2.3
SuperPower Inc SCS12050-AP M4-382-5 12 1.5
THEVA TPL1100, ID 170468 12 2.6

the bottom of the sensor casing and the superconductor tape. The align-
ment of the sample relative to the sensors, da, can be changed to measure
the field directly above the sample or beyond the edge (in the figure it can
be seen that some of the field measured is beyond the edge of the sample).

The sample is connected in a circuit to a power supply where the trans-
port current applied to the sample can be controlled. For a typical mea-
surement the current is increased in steps and the field is measured at
every step. The whole sensor and sample was placed in a liquid nitro-
gen bath for cooling to ensure that the sample was in the superconducting
state. The critical current was also measured in the usual way (see chapter
3).

7.1.1 Superconducting tapes used

Several commercial high temperature superconducting (HTS) tapes from
three different wire manufacturers were used in this study. They were all
ReBa2Cu3Oy 2G wires with the companies and their active superconductor
dimensions shown in table 7.1.

7.2 Measurement data

The left panel of figure 7.2 shows how the field strength changes as the
current is increased. This is a SuperPower wire sample and it has been
aligned such that the sensor array is close to its centre. The dotted line
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marks a change from non-linear behaviour to linear behaviour and the
dashed line marks the measured critical current using an electric field cri-
terion of 100 µV/m. The field profile as a function of sensor position is
shown in the right panels of figure 7.2 for a low current measurement of
10 A (top right) and for the critical current of 516 A (bottom right).

Figure 7.2: (Left) Perpendicular magnetic field strength at each sensor as
a function of injected current in the sample. The sample is a 2G wire from
SuperPower Inc and the sample has been positioned so its centre is aligned
with the centre sensor. The data was first published in [199]. (Right top)
Field strength vs position for an injected current of 10 A. (Right bottom)
Field strength vs position for an injected current of 516 A.

It can be seen quite clearly that the field profile changes in behaviour
between the low and high current situations. The non-linear behaviour of
the field vs current plot indicates that there is a redistribution of current as
the injected current is increased. Also the linear behaviour at high currents
indicates that the current is no longer redistributing and, as we will see,
that the distribution of current in the sample has indeed become uniform.
The other samples show similar results to that seen here.
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The angular dependence of the field can be seen in the data. The per-
pendicular field is maximal at the edge as expected, and goes to zero at
the centre after which it flips to point in the other direction as one heads
towards the other edge of the superconductor. This is expected for rectan-
gular geometry.

The appearance of linear behaviour in the field before the measured
critical current indicates that the critical state is reached at an earlier trans-
port current value. This is to be expected as a voltage criterion was used
in measuring the critical current (see chapter 3). This also gives a more
fundamental way to determine what the critical current should be.

7.3 Field distribution from current distribution

For a given current distribution the resulting field can be calculated using
the Biot-Savart law. For a rectangular sample of width, 2a, and thickness,
2b, the perpendicular magnetic field above the sample will follow the ex-
pression

Bperp =
µ0

2π

∫ 2b

0

dy

∫ a

−a
J(x, y)

(x− x0)

(x− x0)2 + (y + y0)2
dx (7.1)

where J(x, y) is the current density, and x0 and y0 are the coordinates of
the sensor measured from the centre of the top edge of the sample.

At low currents the superconductor is expected to be in the London-
Meissner state where the current distribution across the width, averaged
across the thickness will be that given by Rhoderick and Wilson [68] as

J(x) =
I

π
√
a2 − x2

. (7.2)

A uniform current distribution (J(x) = constant) can also be considered.
Plotted in figure 7.3 is the field profiles for both the Rhoderick and uni-

form current distributions with different values of dh. When comparing
them to the data in figure 7.2 it can be seen that at low current the data
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matches the field profile due to the Rhoderick current distribution (com-
pare top right of figure 7.2) as there is an upturn and downturn at the
edges. At the critical current the field profile matches the uniform current
distribution (compare bottom right of figure 7.2). This behaviour was ob-
served in the other superconducting tape samples as well which can be
seen in a later plot.

The effect of changing dh sharpens or softens the peaks in the perpen-
dicular field at the sample edges, depending on if you move closer or fur-
ther away. If one was to change da the whole distribution would just be
translated along on the x axis the amount da.

The linear behaviour of the field at high currents implies that a uniform
current distribution will persist in this region. A uniform distribution of
current is also expected for a normal conductor.

To plot the theoretical field profile against the measured data, the dis-
tance between the sensors and the sample is needed. Their positions rela-
tive to each other are characterized by two variables, dh and da which are
illustrated in figure 7.1. These were not explicitly measured in this experi-
ment and so will need to be estimated in some way.

It has already been observed by comparing figures 7.2 and 7.3 the su-
perconductor has a uniform current distribution at high currents which
persist down to the current where the magnetic field behaviour is no longer
linear. This gives us one way of finding the parameters da and dh, by fit-
ting the field profile in this high current region as we know that it should
have a uniform current distribution.

Also the superconductor will be in the Meissner state at low currents,
and therefore should have a Rhoderick current distribution. This means
that we could also fit the magnetic field profile at low currents (a limit of
less than 0.1Ic is used) to extract da and dh. An inspection of figure 7.3
shows that using the low-current data may be better for estimating dh. If
there are no sensors measuring the field profile in the region close to the
edge of the sample the field profile due to a uniform current distribution



7.3. FIELD DISTRIBUTION FROM CURRENT DISTRIBUTION 75

Figure 7.3: (Top) Perpendicular magnetic field distribution due to the
Rhoderick current distribution where the injected current is 10 A. (Bot-
tom) Perpendicular magnetic field distribution due to the uniform current
distribution where the injected current is 516 A. The multiple lines are for
different values of dh. The width of the superconductor is 12 mm, and the
thickness is 1.5 µm.
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Table 7.2: The estimated values of da and dh found by fitting the high
current (uniform current distribution) and low current (Rhoderick current
distribution) magnetic field distributions.

Wire Manufacturer Position
Low Current Fit High Current Fit
da (mm) dh (mm) da (mm) dh (mm)

Fujikura Ltd Centre 4.71 ± 0.01 0.39 ± 0.03 4.8 ± 0.1 0.6 ± 0.1
SuperPower Inc Centre 4.74 ± 0.06 0.90 ± 0.07 4.59 ± 0.09 0.4 ± 0.6
SuperPower Inc Centre 3.29 ± 0.03 0.6 ± 0.1 3.6 ± 0.1 0.4± 0.2
SuperPower Inc Off Centre 1.48 ± 0.06 0.91 ± 0.05 1.6 ± 0.2 0.90 ± 0.2
SuperPower Inc Off Centre 1.60 ± 0.08 0.94± 0.09 1.7 ± 0.2 1 ± 0.2
THEVA Off Centre 0.89 ± 0.09 0.89 ± 0.06 1 ± 0.3 0.9 ± 0.3

does not have much variation with dh. In contrast the field profile due
to the Rhoderick current distribution does have this variation and hence
should give a better estimate of dh.

But it should also be noted that fits of the high current region will better
estimate da. This is because the field depends linearly on position with a
good sized slope across the centre of the conductor unlike the low current
field distribution which is close to flat making it harder to spot where the
field changes direction.

Table 7.2 shows the result of fitting the magnetic field profile of both the
high- and low-current regions to estimate da and dh. Equation 7.1 is used
along with a uniform current distribution for the high-current region, and
a Rhoderick current distribution for the low-current region.

It can be seen that the point made previously is confirmed. For sam-
ples that were off-centre the derived high-current dh position was roughly
the same as that derived by using the low-current region, but for samples
which were roughly centered, and the sample was wider than the span
of the sensors, the derived high-current dh position did not match well
with that derived from the low-current measurements. The da position
was matched within error for both cases.
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Figure 7.4 shows plots of the magnetic field profile data against the
calculated field profile as described before for all the samples. The shape
of the data clearly does follow that of the theory for both the low-current
and high-current (in this case critical current) cases. This confirms the
hypothesis of chapter 4, that the distribution of current across the width
of a rectangular superconductor, will be uniform in the critical state.

7.4 Brandt and Indenbom fit to data

There is still a need to address the current redistribution as the current
is increased and the distribution goes from Rhoderick to uniform. One
model to consider is that of Brandt and Indenbom [38].

Brandt and Indenbom considered a rectangular superconductor under
self-field using the boundary condition that the current density cannot ex-
ceed some arbitrary critical current density, jc [38]. As current is injected
into the superconductor it first reaches jc at the edges, and then must re-
distribute due to the condition that it may not exceed jc at any point.

This results in the formation of a region, d, at the edges saturating at
the critical current. Outside of this region the current density falls away.
The region expands as the total current increases causing the saturation of
critical current to creep inwards until the whole width is at jc, and this is
the true critical current, Ic, of the sample. This is illustrated in figure 7.5
and is calculated using the equation

J(x) = 2Jcπ arctan

(√
a2 − d2

d2 − x2

)
, |x| < d

= Jc, d < |x| < a

(7.3)

where d is the penetration of the flux into the superconductor and is given
as d = a(1− (I2/I2

max)
2) and Imax = 2aJc.

The model is looking at the integrated current density, where the thick-
ness has already been integrated across. They assumed that the mech-
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Figure 7.4: The field profiles both measured and calculated for all the sam-
ples. Two SuperPower Samples were excluded for the sake of space. The
lines are calculated using equation 7.1 and a Rhoderick current distribu-
tion for low currents and a uniform current distribution for the critical
currents.
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Figure 7.5: The Brandt and Indenbom current density distribution calcu-
lated for different injected currents [38]. It was calculated using equation
7.3

anism causing this critical current jc was due to the ingress of vortices,
however the model is not derived with a specific mechanism in mind.

Figure 7.5 shows that in the Brandt and Indenbom model, the current
distribution takes the form of the Rhoderick and Wilson distribution for
low currents, and for critical currents the current distributes uniformly.

Figure 7.6 shows the magnetic field calculated using equation 7.3 and
7.1 against the data for the centered SuperPower sample. Here Imax has
been set to the current at which the field changes from non-linear to linear
behaviour.

It can be seen that the shape of the curve matches well and the absolute
values are also a reasonable match, however the absolute value of the up-
per two lines do not match so well as the lower lines. The edge magnitude
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Figure 7.6: Measured data points (transparent points) and calculated val-
ues (lines) using the Brandt and Indenbom current distribution for the
magnetic field profile of one of the SuperPower superconducting tapes.

of the magnetic field is around 12 mT which is close to the value of Bc1(‖c)
at 77 K [201] [202].

This can be interpreted as follows. The critical state starts at the edges
of the film and penetrates further into the superconductor as the current
increases until the critical current is reached. Here this critical state pene-
trates the whole width giving a uniform distribution.

As noted above Brandt and Indenbom presumed the mechanism limit-
ing the current is the ingress of vortices, however their model is not based
on any particular mechanism and so any critical state model will give the
same results. In particular figure 4.2 specifically excludes a vortex model
as the superconductor is still in the Meissner state. This new critical state
has not been previously described and its origins remain unclear at this
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time.
In conclusion the measurements of the magnetic field profile for a rect-

angular superconductor showed that at low transport currents the current
distribution follows that predicted by Rhoderick and Wilson [68]. When
the critical state is reached the current distribution has become unifrom,
confirming the hypothesis from chapter 4. The redistribution of the cur-
rent distribution also changes similarly to a model proposed by Brandt
and Indenbom where the critical state starts at the edges of the film and
penetrates furthur into the superconductor.



82 CHAPTER 7. FIELD DISTRIBUTION MEASUREMENTS



Chapter 8

Effects of impurity scattering on
critical current

In this chapter the self-field critical current is used as a probe to analyze
impurity effects in the YBCO cuprate superconductor. When impurities
are present in a d-wave superconductor, the superfluid density, ρ, is sup-
pressed in a distinctive manner and in particular the superfluid density is
suppressed much more rapidly than Tc [203]. This should therefore show
up distinctively in self-field critical current data and also will provide a
good test of the ideas developed in previous chapters. Several YBCO+Zn
thin film superconductors are used for this test and their preparation is
described in chapter 3

8.1 Impurity scattering in d-wave superconduc-

tors: Theory

The effects of impurities upon the superconducting state have been stud-
ied both theoretically and experimentally by a number of people [204]
[203] [205]. Impurities work to weaken the superconducting state and this
can be seen in the reduction of the superfluid density and of the critical
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temperature, Tc. Magnetic and non-magnetic impurities have different ef-
fects that depend on the symmetry of the order parameter and density of
states [203] [206].

Early work by Loram [189] on YBCO doped with Zn impurities found
evidence of strong pair breaking using specific heat measurements. Other
work [207] was able to measure the superfluid density dependence on im-
purity concentration, and found that the relation closely follows that ex-
pected for a d-wave superconductor.

Here we examine the case of a d-wave superconductor with nonmag-
netic impurities. In a d-wave superconductor impurity scattering causes a
non-zero density of states near the Fermi energy which would otherwise
be gapped. This causes a deviation from the expected linear T dependence
of the penetration depth, λ(T ), to a T 2 dependence at low temperatures
[208] [209].

In the case of a d-wave superconductor with unitary scattering with a
constant density of states around the Fermi surface Arberg and Carbotte
[210] have given the strong-coupling expressions for the renormalized gap
and renormalized Matsubara frequencies as

∆̃nk = ηkπT
∑
m

λ(n−m)〈ηk′
∆̃mk′√

ω̃2
m + ∆̃2

mk′

〉

ω̃n = ωn + πT
∑
m

λ(n−m)〈 ω̃m√
ω̃2
m + ∆̃2

mk′

〉+ πΓ〈 ω̃n√
ω̃2
n + ∆̃2

nk′

〉−1

(8.1)

where ω = (2n − 1)πT (n ∈ I) is the usual Matsubara frequency, ηk is
the gap symmetry, Γ is the impurity scattering constant linearly related to
the density of impurities, 〈...〉 is a normalized integration over the Fermi
surface and

λ(n−m) = 2N(0)

∫
ωα2F (ω)

ω2 + (ωn − ωm)2
dω (8.2)

where N(0) is the density of states at the Fermi energy and α2F (ω) is the
electron boson spectral density. The superfluid density can then be com-
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puted using

ρij(T ) =
πTN(0)

2e2µ0

∑
n

〈vkivkj
∆̃2
nk

(ω̃2
nk + ∆̃2

nk)3/2
〉 (8.3)

where vF is the Fermi velocity. To reduce to a BCS expression λ(n − m)

is assumed to be constant up to a cutoff frequency after which it will be
zero as well as setting the λ(n − m) term in the renormalized Matsubara
frequency to be zero. This means that the renormalized gap will no longer
depend on frequency.

As noted, based on our previous results we can use self-field critical
currents as a tool to study the effects of impurities on the superfluid den-
sity in superconductors.

In particular the YBa2Cu3Oy superconductor will be studied here and
Zn impurities will be added

8.2 YBCO+Zn critical current data

Several YBCO+Zn thin film samples with various concentrations of Zn
were made as specified in the methods section. For some of the samples,
their temperature-dependent self-field critical current measurements were
carried out on the device outlined in the methods section, and for the 3
samples which were measured down to 4.2 K the measurements were per-
formed by Dr. Michael Eisterer and his group in Vienna.

Figure 8.1 shows the results for the samples measured at Robinson Re-
search Institute (RRI). The graph looks similar to superfluid density mea-
surements reported in [205] which would be expected as Jc(sf, T ) ∝ ρ3/2.
It can be seen that there is the expected drop in Tc as the impurity concen-
tration is increased. There is also a drop in the magnitude of the self-field
critical current density, Jc(sf, T ), which is to be expected if it follows the
relationship Jc(sf, T ) ∝ ρ3/2. The spread of Jc(sf, T ) values for samples of
the same impurity concentration reflects the presence of weak-links which
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Figure 8.1: The self-field critical current densities of several different
YBCO thin films with various concentrations of Zn impurities are shown
plotted as a function of temperature here. Black data points are the “base-
line” samples which have no added impurities present. The dark blue has
a 0.5% concentration of Zn impurities added to the film, the blue has a 1%
concentration of Zn impurities added to the film, the red has a 2-2.5% con-
centration of Zn impurities added to the film. The data here was measured
in house at the Robin Research Institute.
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work to reduce the critical current. It can be seen however that Jc(sf, T )

(and by extension the superfluid density) reduces faster than Tc which is
the expected behaviour for impurity scattering.

It was found that after adding Zn past a concentration of 2-2.5%, Tc
did not reduce anymore. This is probably a solubility limit, where the Zn
atoms are no longer distributing throughout the Cu0 planes in a random
fashion but instead would be forming concentrated regions. Tweaks of the
sample synthesis method would be needed to get to higher concentrations
of Zn.

It is important to note that the concentrations specified refer to per-
centages of the total Cu content, as in YBa2(Cu1−xZnx)3Oy. However Zn
predominantly substitutes only for Cu on the CuO2 planes but not in the
CuO chains. Because each formula unit has two of the former and only
one of the latter the fraction on the CuO2 plane sites is (3/2)x. Thus the
effective percentages in figure 8.1 are 0%, 0.75%, 1.5% and 3-3.75%.

These data sets do not go to a low enough temperature to see the ef-
fect of impurity scattering on the temperature dependence of the super-
fluid density near T = 0. In particular we desire to observe the predicted
crossover from linear to quadratic behaviour. To explore the low tempera-
ture data several samples were sent to Vienna for testing.

Figure 8.2 shows the Jc(sf, T ) data measured at Vienna. The two sam-
ples with Zn impurities both show a leveling out of Jc(sf, T ) consistent
with a transition from ∆λ(T ) ∝ T to ∆λ(T ) ∝ T 2 (∆λ(T ) = λ(T ) − λ(0)).
Surprisingly there also is a leveling off in the self-field critical current of
the “pure” sample where one was not expected. This might suggest in-
trinsic scattering is present even in pure samples.

Again the absolute magnitude of the self-field critical current is sup-
pressed as before, however there seems to be little change in the temper-
ature dependence from one impurity concentration to another. If all the
curves are normalized they sit almost on top of each other especially the
two Zn samples. This is consistent however with the weak coupling the-
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Figure 8.2: The self-field critical current densities of three different YBCO
thin films with various concentrations of Zn impurities are shown in the
top panel. The black is the “baseline” sample which has no impurities
present. The blue has a 0.5% concentration of Zn impurities added to the
film, and the red has a 1% concentration of Zn impurities added to the film.
The data here was measured in Vienna by a group led by Dr. Michael Eis-
terer. The bottom panel shows the same data but normalized to compare
the shape of the T -dependence.
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ory as can be seen in Sun and Maki [203]. In figure 6 in their paper they
plot the superfluid density for different scattering constant values and it
can be seen that the temperature dependence is quite similar apart from
the pure case. This indicates that for superconductors of this kind the scat-
tering constant might not be able to be extracted just from one temperature
dependent measurement of Jc(sf, T ) or ρs(T ). The Tc and λ(0) may need
to be known of both a superconductor with and without the added impu-
rities.

Nonlocal electrodynamics can cause a transtion from a T to T 2 depen-
dence in the penetration depth [211]. This is expected to happen below a
cross-over temperature kBT ∗ = (ξ(0)/λ(0))∆(0). For YBCO this tempera-
ture is around 2 K and so the leveling out of Jc(sf, T ) in the pure samples,
occuring as it does near 5 K, is probably not due to nonlocal effects.

There is evidence however that surface bound Andreev states can cause
an upturn in the penetration depth [212]. Experiments measuring the pen-
etration depth in YBCO crystals cut along different crystallographic axes
showed an upturn for several of those geometries. The variation from a
linear T dependence started at around 6-7 K in most cases and the pene-
tration depth became flat as early as 4 K for the most extreme case turning
upwards after. This effect was seen to be suppressed by a small magnetic
field of about 10 mT [212].

Using the equation for the surface field Bs = µ0bJc the field along the
width at the surface will be around 100 mT. This will decay into the sample
as sinh(y/λ) and using the current distribution from chapter 4 the field will
drop to 10 mT at around 0.3b.

According to the fields calculated here this Andreev effect is expected
to be suppressed at the edges, however within the superconductor the
field quickly drops away to zero, and the effect may still be present within
the greater bulk of the sample. Field dependent studies of the low-temperature
Jc(sf, T ) would help to identify the mechanism here. Because a magnetic
field was shown to suppress the effect experiments applying small fields
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up to 10 mT may show an increase in Jc(sf, T ) at very low temperatures.

YBCO with Zn is generally considered to exhibit unitary scattering and
previous experiments measuring the ground state superfluid density com-
pare their results to the theory of a weak-coupling d-wave superconductor
with unitary scattering [207].

The same is done in figure 8.3 where the three samples presented ear-
lier in figure 8.2 are plotted. The data points are normalized using the
baseline Tc and Jc(sf, T ) values from the pure sample. The normalized
superfluid density is calculated by using the previously described theory
where Jc ∝ ρ3/2. The lowest temperature points are used as an approxi-
mation to the ground state (they occur around 4.2 K).

Also plotted is data from the literature for YBCO where Ca has been
used to reach the overdoped state [207] as well as data from [205]. These
samples have varying amounts of Zn which suppress the superfluid den-
sity and critical temperature. Moun spin relaxation was used to measure
the superfluid density here.

It can be seen that the data compares reasonably well. The 1% sam-
ple sits on the theory line and the 0.5% sample sits above. It is possible
that there are more weak links present in the 0.5% sample resulting in a
lower Jc(sf, T ). However, as is apparent in figure 8.3, it is notable that
directly measured values of the superfluid density[207] also tend to reveal
a larger than expected reduction in superfluid density due to the fact that,
even at low concentrations, Zn atoms will substitute at nearest neighbour
positions [213]

This super-supression can also be seen in the data of figure 8.1 which
is plotted on figure 8.3 where the values of Jc(sf, T ) at 25 K have now
been used as an approximation for the ground-state values. This gives the
purple data points and it can be seen they follow more closely the muon
spin relaxation data.
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Figure 8.3: The normalized critical temperature is plotted vs the impurity
dependent ground state superfluid density normalized by the impurity
free ground state superfluid density. The line represents the theoretical
curve for a d-wave superconductor with a cylindrical fermi surface in the
unitary scattering limit. The red points are YBCO overdoped with cal-
cium and added Zn impurities from [207] and the brown points are YBCO
with added Zn impurities from [205]. The purple and blue triangles are
from Jc(sf, T ) measurements of our YBCO+Zn thin films undertaken at
the (purple) Robinson Research Institute (RRI) and in (blue) Vienna by Dr.
Michael Eisterer and his group. The normalized superfluid density was
calculated using the relation between the critcal current density and the
superfluid density: Jc ρ3/2
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8.3 Conclusions

Several thin-film samples of YBCO doped with added Zn impurities were
synthesized and their self-field critical currents were measured. This self-
field critical current was an analysed using the ideas from our previous
chapters to extract the superfluid density. The superfluid density ampli-
tude was suppressed by impurities in a way consistent with previous mea-
surements from the literature using muon spin relaxation and it was sup-
pressed in a way that is expected of a d-wave superconductor.

The temperature dependence in all cases followed a quadratic like sat-
uration at low temperature. This was not expected for the pure sample and
it is likely due to intrinsic scattering but possibly could be accounted for
by Andreev surface bound states. The presence of Andreev bound states
could be ruled out by studying the field dependence of the self-field crit-
ical current at very low temperatures and low fields. If the bound states
are present a small increase of Jc(sf, T ) would be expected with increasing
field.



Chapter 9

Deriving the geometric factors
using the London equations

The results in chapter 4 show that the total self-field critical current den-
sity can be divided into two multiplicative terms, Jc(sf, T ) = pf · gf. The
pre-factor, pf, is the surface current density which is the universal condi-
tion giving the critical state and the geometric factor, gf, is given by the
distribution of the current across the thickness (and more generally across
the width).

At this critical state the superconductor is in the Meissner state and
so the London equations can be used to determine the geometric factor.
Some other theory describing the free energy would have to be used to
calculate the pre-factor, which is not the concern here. In this chapter the
London theory is used to derive the geometric factor, first for the case of
the anisotropic superconductor with a large aspect ratio, and then for su-
perconductors of arbitrary aspect ratios.
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9.1 Anisotropic London superconductors

It was previously stated without derivation that the self-field critical cur-
rent of the anisotropic cuprate superconductors followed the relation

Jc(sf) =
Bc1(c)

µ0λab

λc
b

tanh

(
b

λc

)
. (9.1)

If the origins of the prefactor were associated merely with nucleation of
vortices on the wide flat surfaces then a more complex result might be an-
ticipated, so it is important to see the justification for this result. Equation
9.1 can be derived by taking the anisotropic London equation from [42],

B + λ2
mean∇× (m̂(∇×B)) = 0 (9.2)

where m̂ is a 3 by 3 normalized mass tensor with diagonal components
mii = Mi/M̄ . Here Mi are the effective masses in each principal direction
and M̄ = (MxMyMz)

1/3. The penetration depth in each direction is given
by λi = λmeanm

1/2
i where λmean is a mean penetration depth.

By taking the curl the equation can be rearranged in terms of current
density to give

J + λ2
mean∇× (∇× (m̂J)) = 0. (9.3)

Consider an anisotropic thin film superconductor with width 2a in the
x̂ direction and thickness 2b in the ŷ direction. Let the crystalline c-axis be
along the ŷ direction and the transport current flowing in the ẑ direction.
If we consider that the superconductor has a penetration depth λab along
the x̂ − ẑ plane and a penetration depth λc along the ŷ axis, the resulting
partial differential equation for the current density will then be

J(x, y) = λ2
ab

∂2J

∂x2
+ λ2

c

∂2J

∂y2
(9.4)

which has the solution

J(x, y) = Cx cosh(x/λab) + Cy cosh(y/λc). (9.5)
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The Cosh functions appear because of the condition J(x, y) = J(−x, y) =

J(x,−y) = J(−x,−y). The constants will need to be determined by some
boundary conditions.

At the critical state the constant Cx can be set to zero because, as was
found previously, the surface current distribution across the width of a
rectangular superconductor is uniform at the critical state. It can be seen
now that the relevant length scale is just λc. The constant Cy can be found
by setting the surface current to Bc1(c)

µ0λab
, as was shown before. This results

in the solution

J(x, y) =
Bc1(c)

µ0λab

cosh(y/λc)

cosh(b/λc)
. (9.6)

and integrating to get the total current gives the previously stated equation
9.1.

9.2 Rectangular superconductor with arbitrary as-

pect ratios

In our published paper [132] a geometric factor was introduced to better
describe the critical current behaviour when the aspect ratio of a rectangu-
lar sample was near unity. It was given as

g(a, b, λ) =
λ

a
tanh

(a
λ

)
+
λ

b
tanh

(
b

λ

)
(9.7)

and the particular limits are shown in table 9.1.

b >> λ b << λ

a >> λ, a >> b λ
b

1

a ' b λ
a

+ λ
b
' 2λ

a
2

Table 9.1: The limits of the geometric factor λ
a

tanh
(
a
λ

)
+ λ

b
tanh

(
b
λ

)
intro-

duced in [132].
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The expected limits appear for three of the cases however for the fourth
(where a ' b and b << λ) the limit is 2. This is not expected as it implies
there is an unphysical doubling of the critical current in this limit. Rather,
the geometric factor for a ' b and b << λ should instead follow something
like the expression 2λ

a
tanh

(
a
2λ

)
similar to the cylindrical case, which must

be a reasonable approximation for a square cross-section and certainly will
not differ by a factor of 2.

This can be seen by considering the case of a square superconductor
where a >> λ. The current flows in the edges, and it can be seen that there
is a contribution to the current from both the surface regions of the width
and thickness, resulting in a factor of 2 showing up as 2λ

a
. However for the

case a << λ there is only one contribution filling the whole cross-section
resulting in a factor of 1.

An intuitive approximation for the geometric factor is that given by the
expression

g1(a, b, λ) =
λ(a+ b)

ab
tanh

(
ab

λ(a+ b)

)
(9.8)

where it can be seen to reduce to the expected expression λ
b

tanh
(
b
λ

)
when

a >> b, or to the expression 2λ
a

tanh
(
a
2λ

)
when a ' b. It turns out that

London theory can be used to derive this geometric factor.
Again consider the London equations for a rectangular superconductor

with current flowing in the ẑ direction and usual half width, a, and half
thickness, b. The result is the partial differential equation

J(x, y) = λ2∂
2J

∂x2
+ λ2∂

2J

∂y2
(9.9)

which when using the conditions J(x, y) = J(−x, y) = J(x,−y) = J(−x,−y)

has the solution

J(x, y) = C1 cosh
(x
λ

)
+ C2 cosh

(y
λ

)
. (9.10)

Considering the previous results, it is expected that the current at the
edges reaches the critical value Jc,s, on both the ŷ − ẑ plane and the ẑ − x̂
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plane, and so the constants can be set by using the boundary conditions
J(a, 0) = J(0, b) = Jc,s. This results in the equation

J(x, y) = Jc,s

(
cosh

(
b
λ

)
− 1

cosh
(
a
λ

)
cosh

(
b
λ

)
− 1

cosh
(x
λ

)
+

cosh
(
a
λ

)
− 1

cosh
(
a
λ

)
cosh

(
b
λ

)
− 1

cosh
(y
λ

))
(9.11)

for the current distribution. This can be integrated to get the total current
density with a final resulting geometric factor of

g2(a, b, λ) =
λ

ab

(
cosh

(
b
λ

)
− 1

cosh
(
a
λ

)
cosh

(
b
λ

)
− 1

b sinh
(a
λ

)
+

cosh
(
a
λ

)
− 1

cosh
(
a
λ

)
cosh

(
b
λ

)
− 1

a sinh

(
b

λ

))
.

(9.12)

It should be noted that if the width and height are equal, the expression
reduces to 2λ

a
tanh

(
a
2λ

)
, as found for cylindrical geometry.

The two geometric factors, equations 9.8 and 9.12, can be compared
with each other by plotting against b∗ = λ(a + b)/ab. This is shown in
figure 9.1. In the left-hand plot the functions are seen to sit on top of each
other, whilst the right-hand plot shows the percentage difference between
the two when the values of a, b, and λ are randomly selected values in
the range 10−9 to 10−1. This percentage difference is only significant in the
range b∗ = 0.1−5 where the difference reaches a maximum of around 1.5%.
This fully justifies the use of the simpler expression (9.8) for all practical
applications.

We recall that in section 5.2 we used the compound parameter b* de-
fined in this way to deduce λ(T ) in the case of rectangular Sn samples
of aspect ratio close to unity. The analysis reproduced a magnitude and
temperature dependence that almost exactly matched independent direct
experimental measurements.

A further investigation can be made into what happens when anisotropy
is involved in the calculation. In this case we have the anisotropic London
equation as before with the resulting partial differential equation 9.4 with
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Figure 9.1: Comparison between the approximated geometric factor
(equation 9.8) and that calculated using London theory (equation 9.12).
The function values were calculated by taking random values of a, b, and
λ between 10−9 and 10−1. The left panel shows the London expression (red
points) plotted on top of the approxmation (black line). The right panel
shows the percentage difference between the two functions ((g1 − g2)/g1).

a solution given by equation 9.5. In this case it would seem that the sur-
face currents might be different due to the anisotropy of λ and so the initial
conditions will be taken to be J(a, 0) = Js,a, J(0, b) = Js,b. This results in
the solution

J(x, y) =
Js,a cosh

(
b
λc

)
− Js,b

cosh
(

a
λab

)
cosh

(
b
λc

)
− 1

cosh

(
x

λab

)

+
Js,b cosh

(
a
λab

)
− Js,a

cosh
(

a
λab

)
cosh

(
b
λc

)
− 1

cosh

(
y

λc

) (9.13)
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and it can be integrated to get the total current density as

Jtotal =
1

4ab

∫ a

−a

∫ b

−b
J(x, y)dxdy

=
1

ab

[(
Js,a cosh

(
b

λc

)
− Js,b

)
bλab sinh

(
a

λab

)
+

(
Js,b cosh

(
a

λab

)
− Js,a

)
aλc sinh

(
b

λc

)]
/

(
cosh

(
a

λab

)
cosh

(
b

λc

)
− 1

)
(9.14)

The interesting, and as yet unresolved, question is whether in the Meiss-
ner critical state Js,a and Js,b differ or are equal. That will depend on the
detailed origins of the critical surface current density. If they are equal
then Js (which is equal to Js,a = Js,b) can be factored out and the equa-
tion, albeit complex, then defines the relevant anisotropic geometric form
factor.

Here the geometric factors governing the total self-field critical current
dependence on sample width and thickness have been derived. An in-
teresting test of the current distributions derived here would be position-
dependent magnetic field measurements of superconductors of varying
aspect ratios in the self-field critical state. Such measurements would also
confirm if the critical state surface current density for isotropic supercon-
ductors is the same across all surfaces, and for anisotropic superconduc-
tors differs across the different surfaces.



100 CHAPTER 9. GEOMETRIC FACTOR



Chapter 10

Conclusions and prospects

This chapter summarizes the work done in previous chapters. Some pos-
sible ideas are also put forward to explain the results.

10.1 Summary of results

The work presented here seeks to show that the self-field critical current
in type II superconductors is a fundamental parameter of thermodynamic
origins and therefore cannot be enhanced using engineering techniques.
This knowledge also opens a new and straightforward way to estimate
the relevant thermodynamic superconducting parameters using self-field
critical current measurements.

The scaling behaviour revealed in chapter 4 shows that, at the critical
state, the surface current density will reach the valueBc/µ0λ for type I and
Bc1/µ0λ for type II superconductors. This happens for both rectangular
and cylindrical symmetries of many sizes as well as for different material
types. It was also found for cases where the penetration depth was smaller
than half the thickness of the superconductor, that the surface field was at
or less than the critical field with a drop off for increasingly thinner sam-
ples. This fact implies that vortices are not involved in a determination of
the self-field critical current. It also implies there is a fundamental current
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limit rather than a field limit.

The result here also implied that the current distribution across the
width in rectangular geometries was uniform, something which was fur-
ther explored in chapter 7.

Chapter 6 explored the use of using measurements of the self-field crit-
ical current to determine the ground-state penetration depth, ground-state
energy gap and specific heat jump at the critical temperature. These ther-
modynamic parameters were found by fitting the temperature-dependent
critical current data to an extended BCS model.

In most cases the ground-state penetration depth was estimated with
great accuracy. However because this estimation relied only on the mag-
nitude of the self-field critical current, any presence of weak-links (which
work to reduce the critical current) will cause the penetration depth to be
over estimated. Therefore the most accurate analysis of the penetration
depth requires weak-link free samples.

Estimates of the ground-state energy gap were also accurate in many
cases. They tended to be better for the more conventional s-wave su-
perconductors however many estimates for d-wave superconductors were
still reasonable. And further, we note that many measurements of the su-
perconducting gap in the cuprates are complicated by the presence of an
often much larger pseudogap. For an accurate determination of the energy
gap, only the temperature dependence of the critical current data is impor-
tant (more specifically the low temperature data), and so the presence of
weak-links is not so much of a factor.

The specific heat jump at the critical temperature was also estimated.
Again the more conventional s-wave superconductors tended to fare bet-
ter here. Estimating this parameter accurately was the least successful out
of the three. The temperature dependent data near the critical tempera-
ture is the most important here to determine this. This data can often be
the least accurate part of the whole temperature range due to the low crit-
ical currents being measured and often a statistical variation of the local
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critical temperature value due to defects and impurities.

In general however the temperature dependence of the critical current
data matched well with that predicted by the model.

Recently we used this method to determine the thermodynamic pa-
rameters of the compressed H2S system [140] where a determination of
the energy gap by conventional methods would prove quite difficult.

This method can also be used to find multiple energy gaps in supercon-
ductors. This was carried out in a study of critical currents in the ultra-thin
systems of Ga, FeSe, and 2H-Ta [214]. It is known that these materials of-
ten undergo an enhancement in their critical temperatures as they become
thinner in dimension. By studying the self-field critical currents, it was
shown that a second superconducting gap opens up as the critical temper-
ature is enhanced. This seems to be correlated with the dimension of the
film thickness falling below the coherence length.

Chapter 7 reported measurements of the field perpendicular to the long
surface of various thin-film superconducting tapes. The results confirmed
the prediction that the current distribution along the width at the criti-
cal state would be uniform. In fact it crosses over from the highly non-
uniform distribution expected in the Meissner state at low current to uni-
form at the critical current.

Chapter 8 explored the effects of non-magnetic impurities on the crit-
ical current in the d-wave superconducting cuprate system YBCO. A d-
wave superconductor is expected to show a canonical suppression of the
superfluid density as the density of impurities is increased. Since the self-
field critical current can be used as a proxy to measure the superfluid den-
sity it should also show a similar suppression, but modified as in our case
Jc(sf) ∝ ρ3/2. The measurements showed a suppression in the self-field
critical current density consistent with conventional measurements of the
superfluid density using techniques such as muon spin relaxation.

Overall the work here was able to establish that there is a fundamental
limit to the self-field critical current and that it can be used as a probe of
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the superfluild density. There are some remaining challenges however.

As discussed in chapter 9 it would be interesting to test more thor-
oughly how anisotropy affects the self-field critical current density. The
cuprate superconductor Bi-2223 with its very large anisotropy [215] could
provide a rigorous test of equation 9.1. The difficulty perhaps is that sam-
ples with thickness well exceeding λc would be needed. It must be noted
that the doping dependence of λc is quite extreme [215], but this may also
provide another test. It may be possible with 1G wires where the overall
thickness is around 200 µm.

The first challenge is to determine what is the origin behind this uni-
versal behaviour of the self-field critical current density. For type I super-
conductors it is clear that at the critical state a surface current density of
J
s,I = Bc/µ0λ coincides with the depairing current density, however the

surface current density of J
s,II = Bc1/µ0λ for type II superconductors does

not. It is generally far smaller. They do, however, exhibit the same scaling
behaviour implying that Bc1/µ0λ may be some sort of type II depairing
limit.

Because the measurement of the self-field critical current is straightfor-
ward, our approach here could be applied to many different problems, for
example, critical current measurements could be carried out at the same
time as other measurements to gain a better understanding of the super-
conductor under investigation. One particular example could be ionic liq-
uid gating experiments. Ionic liquid gating has been used to change the
carrier density (essentially doping) of various superconducting systems
such as the transition metal dichalcogenides [216, 217, 218] and cuprates
[219, 220]. Self-field critical current measurements could be used in con-
junction with these experiments to better map out the phase diagrams of
these materials including changes in the superfluid density.

Self-field critical current analysis could also be used to probe materi-
als in which conventional experiments measuring properties like the gap
or superfluid are more difficult. This was already seen in the case of H2S
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under pressure [140], but could also be used in other high pressure exper-
iments. The technique could also be used as a first probe of the superfluid
density as it is a more accessible technique.

As discussed in chapter 8 it would be interesting to see if high quality
thin films or crystals of YBCO showed linear behaviour of the self-field
critical current as the temperature goes to zero. One might expect there
to be a downturn due to the effect of Andreev bound states and this will
have a characteristic field dependence.

To conclude we have presented a simple but powerful technique to
probe the superconducting condensate. It shows, unexpectedly, that the
self-field critical current is a fundamental parameter and this will be used
in a wide range of experiments in the future to routinely characterize type
II superconductors. Crucially this work establishes universal behaviour
for all superconductors irrespective of their type, material or symmetry.
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and F. Vidal, “Thermal fluctuation effects on the magnetization
above and below the superconducting transition in Bi2Sr2CaCu2O8

crystals in the weak magnetic field limit,” Physical Review B, vol. 53,
p. 15272, 1996.

[180] N. Hudákova, P. Samuely, P. Szabó, V. Plecháček, K. Knižek, and
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