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Synopsis 

Substantiated by theoretical considerations and empirical evidence, this study corroborates 

the suitability of a stochastic differential equation specification with a linear drift function 

and a quadratic diffusion function to model continuous-time cash flows. 
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ABSTRACT  

 

The focal point of this dissertation is stochastic continuous-time cash flow models. These 

models, as underpinned by the results of this study, prove to be useful to describe the rich 

and diverse nature of trends and fluctuations in cash flow randomness. Firstly, this study 

considers an important preliminary question: can cash flows be fully described in continuous 

time? Theoretical and empirical evidence (e.g. testing for jumps) show that under some not 

too stringent regularities, operating cash flow processes can be well approximated by a 

diffusion equation, whilst investing processes -preferably- will first need to be rescaled by a 

system-size variable. Validated by this finding and supported by a multitude of theoretical 

considerations and statistical tests, the main conclusion of this dissertation is that an 

equation consisting of a linear drift function and a complete quadratic diffusion function 

(hereafter: “the linear-quadratic model”) is a specification preferred to other specifications 

frequently found in the literature. These so-called benchmark processes are: the geometric 

and arithmetic Brownian motions, the mean-reverting Vasicek and Cox, Ingersoll and Ross 

processes, and the modified Square Root process. Those specifications can all be considered 

particular cases of the generic linear-quadratic model. The linear-quadratic model is 

classified as a hybrid model since it is shown to be constructed from the combination of 

geometric and arithmetic Brownian motions. The linear-quadratic specification is described 

by a fundamental model, rooted in well-studied and generally accepted business and 

financial assumptions, consisting of two coupled, recursive relationships between operating 

and investing cash flows. The fundamental model explains the positive feedback mechanism 

assumed to exist between the two types of cash flows. In a stochastic environment, it is 

demonstrated that the linear-quadratic model can be derived from the principles of the 

fundamental model. There is no (known) general closed-form solution to the hybrid linear-

quadratic cash flow specification. Nevertheless, three particular and three approximated 

exact solutions are derived under not too stringent parameter restrictions and cash flow 

domain limitations. Weak solutions are described by (forward or backward) Fokker-Planck- 

Kolmogorov equations. This study shows that since the process is converging in time (that is, 

approximating a stable probability distribution), (uncoupled) investing cash flows can be 

described by a Pearson diffusion process approaching a stationary Person-IV probability 

density function, more appropriately a Student diffusion process. In contrast, (uncoupled) 
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operating cash flow processes are diverging in time, that is exploding with no stable 

probability density function, a dynamic analysis in a bounded cash flow domain is required. 

A suggested solution method normalises a general hypergeometric differential equation, 

after separation of variables, which is then transformed into a Sturm-Liouville specification, 

followed by a choice of three separate second transformations. These second 

transformations are the Jacobi, the Hermitian and the Schrödinger, each yielding a 

homonymous equation. Only the Jacobi transformation provides an exact solution, the 

other two transformations lead to approximated closed-form general solutions. It turns out 

that a space-time density function of operating cash flow processes can be construed as the 

multiplication of two (independent) time-variant probability distributions: a stationary 

family of distributions akin to Pearson’s case 2, and the evolution of a standard normal 

distribution. The fundamental model and the linear-quadratic specification are empirically 

validated by three different statistical tests. The first test provides evidence that the 

fundamental model is statistically significant. Parameter values support the conclusion that 

operating and investing processes are converging to overall long-term stable values, albeit 

with significant stochastic variation of individual firms around averages. The second test 

pertains to direct estimation from approximated SDE solutions. Parameter values found, are 

not only plausible but agree with theoretical considerations and empirical observations 

elaborated in this study. The third test relates to an approximated density function and its 

associated approximated maximum likelihood estimator. The Ait-Sahalia- method, in this 

study adapted to derive the Fourier coefficients (of the Hermite expansion) from a (closed) 

system of moment ODEs, is considered a superior technique to derive an approximated 

density function associated with the linear-quadratic model. The maximum likelihood 

technique employed, proper for high-parametrised estimations, includes re-parametrisation 

(based on the extended invariance principle) and stepwise maximisation. Reported 

estimation results support the hypothesised superiority of the linear-quadratic cash flow 

model, either in complete (five-parameter form) or in a reduced-parameter form, in 

comparison to the examined five benchmark processes.  
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1   A General Stochastic Continuous-time Cash Flow Model  1 
 

1. A General Stochastic Continuous-time Cash Flow Model  
 

Chapter 1 sets-out what a stochastic continuous-time cash flow model is and how it can be 

formulated in mathematical terms. Particular attention is given to the question if, and under 

what conditions, cash flow processes can be approximated by a continuous stochastic 

process as opposed to more general Lévy processes including jumps. Conclusions are 

supported by empirical evidence. 

1.1. Introduction to cash flow models 

A cash flow model is an abstract (usually mathematical) representation of real-world cash 

flows with the aim of describing and explaining how cash flows can be predicted, managed 

and controlled. Modelling cash flows is also useful because cash flows are often difficult to 

observe directly; commonly they are measured as the change in cash balances at subsequent 

times. 

Cash flow models can be categorised according to various criteria; in this study (Figure 1-1) 

the dimensions of time (discrete-time versus continuous-time) and uncertainty 

(deterministic versus stochastic) are employed. Historically, and still in many current 

practical applications, a discrete deterministic model with largely subjective point estimates 

of cash flows, is the model of choice. Over time, other increasingly sophisticated cash flow 

models have emerged. These models aim at describing cash flow processes more 

completely and more objectively. Two developments are important to mention. The first 

development is the application of ordinary differential equations (ODEs) to model 

deterministic continuous-time cash flows. The second is the introduction of probabilistic 

models in which cash flows are represented as random variables governed by an 

appropriate probability distribution. 

In the past decades these two developments have merged to advance much richer 

stochastic models capable of describing a wide variety of stochastic characteristics and 

properties. This synthesis is embedded in stochastic differential equations (SDEs) that are 

used to mathematically model stochastic continuous-time cash flow processes. 
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Figure 1-1  Categories of cash flow models 

The field of stochastic continuous-time cash flow models is still at a relatively early stage of 

development, which is apparent from the small number of publications addressing these 

models relative to the other categories of cash flow models to be found in the literature.  

The consequent opportunity to contribute to advancement of the field and practice is the 

main motivator for focusing this study exclusively on stochastic continuous-time cash flow 

models. As mentioned before, (stochastically) predicting future cash flows is an important 

reason to utilise cash flow models. Following from those forecasts, is the want to better 

manage and control cash flows. Here one can think of, inter alia, the optimisation of cash 

balances held by firms, dividend pay-out decisions and the selection of the best funding 

options available to the firm. Whilst this study is primarily concentrated on models to 

(stochastically) predict cash flows, managing and controlling cash flows is of no less 

importance. An example of how cash balances can be optimised in a stochastic environment 

by using a particular version of the model developed in this study, can be found in J. van der 

Burg et al. (2018). 

When modelling cash flows, it is good practice to take an accounting model as a starting 

point, if only because businesses report cash flows accordingly. A similar approach is 

advocated in, for example, Kruschwitz and Loeffler (2006). The cash flow component model 

adopted in this study is illustrated in Figure 1-2 above.   
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Each of the building blocks in Figure 1-2 can be seen as a separate cash flow process (or a 

cumulative cash flow process in the case of cash balances). In practice (discrete) cash flows 

are customarily predicted from a more general forecast model that explicitly describes the 

set of relationships between cash flow components and a myriad of underlying business and 

financial variables, see, for example, Fight (2005) or Tangsucheeva and Prabhu (2014) who 

include working capital management parameters in a stochastic cash flow model. Thus, cash 

flow randomness is directly related to the assessment of uncertainty in each of the 

underlying components. In a stochastic continuous-time environment, however, such an 

approach would often become mathematically and computationally burdensome. Hence, 

the cash flow models considered in this study describe cash flow processes in isolation 

(disregarding the relationships with the underlying explanatory business and financial 

  Figure 1-2  Cash flow component model used in this study 
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variables) and consider randomness as the accumulation of uncertainty in each explanatory 

variable.   

The general stochastic model specification can be expressed as: development of cash flow in 

time = deterministic trend + “noise” around this trend, where “noise” stands for integral 

randomness at an aggregate level. The risk of this approach is that the choice of the 

specification of the cash flow model is treated as somewhat arbitrary, without economic 

theory suggesting a concrete functional form for the process. As a consequence, model 

misspecification may yield misleading conclusions on the dynamics of the process and with 

the likelihood of large errors in practical applications (B. Chen and Song (2013, p. 1)). To 

partially avoid this critique, the focus of this study is on theoretically and empirically 

analysing the interdependencies between operating cash flow processes and investing cash 

flow processes, two important components of the cash flow model in Figure 1-2. In addition, 

being the resultant of these two processes, in several sections of this study free cash flow 

processes are examined because of their relevance to, for example, business valuation. 

This study pursues to show the usefulness of stochastic continuous-time cash flow models. 

The trade-off between discrete-time and continuous-time models is discussed in detail in 

Section 1.3. Until then it suffices to cite Kruschwitz and Loeffler (2006) whose book deals 

with discrete-time cash flow models: “(Continuous-time models) are much more popular 

than discrete models. But the mathematical tools required in the continuous time models are 

far more demanding than those which can be used in discrete time models. …… In this book 

we always apply the framework of a discrete time model. This is purely and solely for 

practical reasons”.  

Lastly, the relationship between cash flows and cash balances deserves further attention. 

Obviously, cash flow is a flow variable whilst a cash balance is a stock variable. In discrete 

time the relationship between the two is clear: the change in the cash balance is seen as 

cumulative cash in and out flows over a period of time. In continuous-time, however, the 

concept of cash flow is slightly more problematic, as will become clear in Section 1.3. 
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1.2. Real-world cash flows 

As a preliminary to examining the concept of continuous-time cash flows, Figures 1-3 to 1-6, 

below, show the behaviours of cash flow processes in discrete time for a sample1 of 16 small 

and large North-American firms that consistently reported cash flow data over the period 

1987-2016. The sample was drawn from the dataset model for this study: 5,202 listed 

North-American firms with cash flow data reported during at least 20 consecutive quarters 

(for a detailed description of the data set used see Appendix S1).  

Figures 1-3 to 1-6 (below) suggest the following conclusions: 

• Operating cash flows of most firms show a strong seasonal (inter-quarter) pattern; for 

investing cash flows there is no corresponding seasonal pattern. The reported 

(dis)investment flows are significantly more irregular than the operating cash flows. 

However, measured over a longer period, a positive correlation between operating cash 

flows and (cumulative) investments seems plausible; 

• Whilst the vast majority of the sample firms experienced modest growth during the 

reported 29 years, a few exceptions (Johnson & Johnson, Lilly (Eli) & Co) achieved high 

operating cash flow growth rates. One firm (ITT Inc) was significantly restructured 

including a massive disinvestment programme that resulted in a strong reduction of 

operating cash flow; 

• For most (but not all) firms, the variability of operating cash flow tends to increase with 

time (and with cash flow size); for investing cash flows this conclusion is also mostly true 

but the pattern is less regular. 

 

                                                           
1  The firms included in the sample were selected on the basis of having 118 consecutive reporting quarters to show cash flow behaviour 

over the longest period possible. Accordingly, the sample is biased towards firms with longevity.  
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From visually comparing Figure 1-3 to Figure 1-4 the impression is that investing cash flow 

follow a stochastic process that is different from that of operating cash flows. Sections 2.2. 

(drift function), 2.3. (diffusion function) and 2.4 (link between operating and investing cash 

flows) present a more rigorous analysis of some of the above observations.  

 

1.3. Cash flow models in continuous time 

The term ‘continuous-time stochastic cash flows’ is a contradictio in terminis: in reality cash 

flows are discrete random variables, both in amount and timing, regardless of the time-

interval over which they are measured. Therefore, the question is valid why cash flows 

should be modelled in continuous time. 

Some of the arguments made by Gandolfo (2012) can be adopted for the importance of 

studying cash flow models in continuous-time. 

1. Discrete-time changes in cash flows and cash balances are the single-time outcomes of 

the interaction of a great number of other underlying stochastic variables and decisions 

taken by the firm’s managers, all occurring at different times. Bergstrom (1990, p. 1) 

notes that for the financial and other aggregates controlled by large publicly listed firms 

“there will be thousands of small changes during random intervals of time on a single 

day, and the changes occur at any time during that day.  A realistic aggregate model 

which, accurately, takes account of these microeconomic decision processes must, 

therefore, be formulated in continuous time”. In financial markets, continuous 

information flows often provide a justification for using continuous-time models; a 

similar reasoning applies to cash flow processes since managers’ decisions and other 

stochastic variables are influenced by continuously updated information flows. Hence it 

is appropriate to treat cash flow processes as if they were continuous. 

2. The result of analysis of cash flows in discrete time can be dependent on the chosen 

time-interval. That is, if the model is not well-defined and consistent, the properties of 

stochastic variables can vary with respect to the time-length of the period being 

considered. Continuous-time models are not subject to these potential issues.  
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3. If adjustment speeds in the model are high, it may be difficult if not impossible to 

estimate these properly in discrete time since the set value practically coincides with 

the observed value over the period. Consider for example the relationship between 

operating cash flow and investing cash flow: most investments take a longer time 

before they come to fruition. However, there are also investments that almost 

instantaneously produce (additional) cash flows for which the adaptation time is 

unmeasurably small. With continuous-time cash flow models, it is always possible to 

obtain asymptotically unbiased estimates of the adjustment speed even for relatively 

long observation periods. 

4. Analytically, differential equation systems in continuous time are usually more easily 

handled than corresponding difference systems in discrete time. Once parameter 

estimates are obtained, differential equations enable the forecast and simulation of 

sample paths regardless of the chosen time interval. Discrete models, on the contrary, 

cannot provide more information than included in the time-unit inherent to the data. 

Moreover, Cox and Miller (1977, p. 235) note that a “… useful procedure … is one of 

using a diffusion process to study a discrete process.  This procedure is useful because 

mathematical methods associated with the continuum (e.g. differential equations, 

integration) very often lend themselves more easily to analytical treatment than those 

associated with discrete coordinate axes.” Similarly, Karlin and Taylor (1981, p. 356) 

acknowledge that “A great advantage in the use of continuous stochastic differential 

equations versus discrete models in describing certain … economic processes is that 

explicit answers are frequently accessible in the continuous formulations.  The 

dependence and sensitivity of the process on the parameters are therefore more easily 

accessible and interpretable.  The process realisations (or expectation, variance and 

distributional quantities) for discrete time models rarely admit explicit representations 

and so their qualitative discussion is more formidable”. 

In continuous-time the change of the cash balance is also a continuous-time variable 

expressed as:  dCBt = ∫ Csds
t+dt

t
 where dCBt is the change in the cash balance at time t, Cs 

is a cash flow process (a particular solution to the corresponding SDE) with s defined on 
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some time interval [0, T]. The variable Cs should therefore be interpreted as cash flow 

intensity, in other words: the instantaneous change of the cash balance2. 

Importantly, cash flow intensity is a construct that cannot be measured directly, so that 

what actually is observed, is the integral of the cash flow process over the observation 

period(s). This has serious but not insurmountable implications for expressing continuous-

time cash flow processes in a mathematical equation. 

One of the methodological challenges that one needs to overcome is estimating the 

parameters of a continuous-time cash flow model with what are essentially discrete-time 

data (Lo (1988), Chambers (1999), Davidson and Tippett (2012, pp. 170-171)). Most firms 

record cash transactions on a daily basis, in larger firms on an hourly basis (and in some 

instances even on a minute time scale). Nonetheless, firms publically report their cash 

positions and flows over a quarterly if not annual time-interval. It suffices to say that if much 

more granular cash flow observations were available, say on a daily or even an hourly time-

basis, then the stochastic behaviour of cash flow processes could be analysed far more 

precisely. It is the objective of this study to nevertheless demonstrate that by using 

continuous-time models and statistical inference from publicly available reported data, a 

useful contribution can be made to the knowledge of cash flow processes.  

In his seminal contribution to the ‘Handbook of Econometrics’, edited by Griliches and 

Intriligator (1983), Chapter 20, Bergstrom convincingly laid the mathematical and statistical 

foundations for estimation of continuous-time stochastic models from discrete data that are 

reported on a quarterly or annual basis. These, and other methodological challenges of 

using continuous-time models, will be discussed in this dissertation, where appropriate.  

 

 

                                                           
2  In some applications cash balances (excluding overdrafts) are used instead of cash flows. The advantage of cash balances is that by 

definition amounts must be positive and the data can be fitted to a wider range of models including those that admit non-negative 
values. In the view the author, this comes at the price of loss of information that is embedded in the composite parts of a cash balance, 
in particular operating and investing cash flows. 
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1.4. Deriving the general cash flow model 

If cash flow processes are considered in continuous-time, the question arises whether cash 

flows can be modelled as a continuous Markov process (in which future data depend on the 

most recent realisation only). Do cash flow processes have a (short-term) memory in very 

small time? If so, seemingly the mathematical representation of cash flow processes will 

become considerably more complicated. Recall the observation in point 1. in Section 1-3, 

that cash flows are the single-time outcomes of the interaction of a great number of other 

underlying stochastic variables. Longer-term these interactions can be regarded as 

independent forces each acting separately on cash flows. In the very short term, however, a 

closer dependency and coordination is plausible and therefore the immediate history of the 

whole system is required to predict its probabilistic future. In Gardiner (1985, p. 45), the 

same issue is discussed which led the author to the conclusion that “… there is really no such 

thing as a Markov process; rather, there may be systems whose memory time is so small 

that, on the time scale on which we carry out observations, it is fair to regard them as being 

well approximated by a Markov process”. Gardiner’s conclusion that continuous Markov 

processes do exist mathematically and can reasonably approximate identified real-world 

processes (Gardiner provides examples from physics and chemistry), is in this study adopted 

for cash flows; for now this is considered a workable assumption but its validity will be more 

rigorously discussed in Section 6.2. 

Markov cash flow processes are commonly modelled as a stochastic processes that permit 

cash flows ct to increase as well as to decrease; the simplest of these processes is the well-

known Birth and Death process, see for instance Karlin and Taylor (2012, p. 131). In the 

following, the derivation of a general cash flow model will be constructed in a few steps: 

(i) first a generic n-state discrete Markov model at a firm-level will be presented; 

(ii) then this model will be developed into a continuous-state firm-level model that includes 

(combinations of) pure diffusions and pure jumps; 

(iii) after which the extended model will be elevated to a multi-firm equation; and 

(iv) lastly, it will be shown how an Itô process, a specification essential to the development 

of the linear-quadratic cash flow model, can be derived from the prior steps. 
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In a discrete state-time setting an n-state-probability equation is given by 

P(ci, t2) = p(ci, t2 | cj, t1)P(cj, t1) + p(ci, t2 | ci, t1)P(ci, t1)                                          (1.1) 

where ci is state i of an n-state discrete-time cash flow (i ≤ n) at time t1, and cj is state j of 

an n-state discrete-time cash flow (j ≤ n) at time t2 with t2 > t1, P(ci, t2) is the probability 

of the system having a (future) cash flow of ci at t2, P(ci, t1) is the probability of the system 

having a (realised) cash flow of ci at t1, P(cj, t1) is the probability of the system having a 

(realised) cash flow of cj at t1, p(ci, t2 | cj, t1) is the transition probability that the cash flow 

changes from cj to ci in ∆t =  t2 − t1, p(ci, t2 | ci, t1) is the transition probability that the 

cash flow remains cn in ∆t, which latter probability is equal to 

 [1 − p(cj, t2 | ci, t1)]. Using the fact that the transition probability is the multiplication of a 

transition rate w and ∆t: p(cj, t2 | ci, t1) = w(ci → cj)∆t and p(ci, t2 | cj, t1) = w(cj →

ci)∆t, it is well-known (Van Kampen (2011, p. 96)) that Equation (1.1) can be re-written as 

∆P(ci, ∆t)

∆t
= ∑w(cj → ci)P(cj, t1) − w(ci → cj)P(ci, t1)

j≠i

                                                     (1.2) 

where equation (1.2) describes the complete probability spectrum. Taking the limit ∆t ↓ 0, 

Equation (1.2) reduces to the following discrete state, continuous-time expression, also 

called the Master Equation (Gillespie (1992, pp. 381-383), Risken and Frank (2012, pp. 11-

12)) 

∂P(ci, ∆t)

∂t
= ∑w(cj → ci)P(cj, t1) − w(ci → cj)P(ci, t1)                                                     

j≠i

(1.3) 

Similarly, the equivalent Master Equation for P(cj, t2) is 

∂P(cj, ∆t)

∂t
= ∑w(ci → cj)P(ci, t1) − w(cj → ci)P(cj, t1)

i≠j

                                                     (1.4) 

The analysis above considers only two time-steps {t1, t2} to describe the dynamics of the 

process. The analysis to follow interposes a third time step t3 and uses the Chapman-

Kolmogorov equation to connect the conditional probabilities and describe the processes 

more accurately in a localised time setting (Appendix M1 provides a detailed derivation of 



 
 

1   A General Stochastic Continuous-time Cash Flow Model  15 
 

the result). Notice that the cash flow variable c is now defined as a continuous variable and 

the cash flow subscripts {c1, c2, c3} denote specific values (out of a number of infinite states) 

that the cash flow variable can take at times {t1, t2, t3}  

∂p(c2,t2 | c1,t1)

∂t
= 

−∂α(c,t)p(c2, t2 |c1, t1)

∂c
+ 

1

2

∂2β(c,t)p(c2, t2 |c1, t1)

∂c2 +

∫[ J(c2|c3, t2) p(c3, t2 |c1, t1) −  J(c3|c2, t2) p(c2, t2 |c1, t1)] dc                                             (1.5)   

where: 

c1 is realised cash flows at t1, c2 and c3 are future cash flows at t2, where t2 > t1; 

p(c2, t1 | c1, t1) is the conditional transition probability between a realised cash flows c2 at 

t2 and a future cash flow c3 at t1 after a (discontinuous) jump between c2 and c3 at t2;  

p(c3, t2 |c1, t1) is the conditional transition probability between a realised cash flow c3 at t2 

and a future cash flow c3 at t1 before a (discontinuous) jump between c2 and c3 at t2; 

α(c, t) is a continuous, once-differentiable function of c and t;  

β(c, t) is a continuous, twice-differentiable function of c and t;  

J(c2|c3, t2) is a jump function from c3 to c2; 

J(c3|c2, t2) is a jump function from c2 to c3.  

Notice that function J represents the probability distribution of the size of jumps and the 

expression ∫[ J(c2|c3, t2) p(c2, t2 |c1, t1) −  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc is the Master 

Equation of the jump process. Also notice that the step size c2 − c1 is relatively small in 

comparison to step size c3 − c2 to distinguish a smooth diffusion from jump. 

In Gardiner (1985, pp. 47-51) this equation is called the differential Chapman-Kolmogorov 

equation. It is powerful equation since it can model a wide variety of stochastic cash flow 

processes as a combination of diffusion and jump processes. The conditional probability 

p(c2, t1 | c1, t1) function includes Gaussian and non-Gaussian density functions alike. The 

general equation has at least three separate special processes (for details see Appendix 

M1): 

a. a deterministic process described by an ordinary differential equation  
dz(c1)

dt
=

α(z(c1), t) where z(c1) is a non-random function of cash flows. 
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b. a diffusion process represented by the generic Fokker-Planck equation 
∂p(c2,t2 | c1,t1)

∂t
=

 
−∂α(c,t)p(c2, t2 |c1, t1)

∂c
+ 

1

2

∂2β(c,t)p(c2, t2 |c1, t1)

∂c2  which equation describes cash flows as 

a continuous process with solutions of p(c2, t2 |c1, t1). Solutions to the generic Fokker-

Planck equation are a Gaussian fluctuation β(c, t) superimposed on a systematic drift 

α(c, t).  

c. A pure jump process 
∂

∂t
p(c2, t2 | c1, t1) =  ∫[ J(c2|c3, t2) p(c3, t2 |c1, t1) −

 J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc which, in a very small discrete time ∆t, can be 

approximated by the following discrete equation: p(c2, t + ∆t | c1, t) =

𝛿(c2 − c1) [1 − ∆t ∫ J(c2|c1, t2) dc  ] − ∆t J(c3|c1, t2) 

with initial condition p(c2, t2 |c1, t1) = 𝛿(c2 − c1) where δ( ) is Dirac’s delta function 

(Hoskins (2009)). 

An analogy can be drawn between the physics of multiple particles and the analysis of cash 

flows by observing cash flows at microscopic, mesoscopic and macroscopic levels (see Figure 

1-7); for a robust mathematical discussion of the topic, refer to Kotelenez (2007)).  At a 

microscopic level, individual realisations of cash flows over time are the primary object of 

study. The emphasis is on a detailed specification of cash flow paths of individual firms, 

including jump processes, i.e. solutions to Equation (1.1) or its corresponding Stochastic 

Ordinary Differential equation (“SDE”). By implication the size of the system has to be small 

otherwise the system becomes unmanageably complex. 

At a mesoscopic level the focus is expanded to include all possible paths that a cash flow 

process can follow. The analysis moves from a small-size system to a large-size system in 

which discrete movements of cash flows can be neglected and the detailed description of 

cash flow processes of individual firms can be approximated by a diffusion process (see b. 

above) representing an ‘average’ of all possible individual jump processes. The system can 

be described by a Stochastic Partial Differential Equation (“SPDE”) of the Fokker-Planck type 

which class of equations are based on the principle of conservation of probability over 

time3. The solution of the Fokker-Planck equation is the evolution of a probability density 

function. 

                                                           
3  At any moment in time the sum of the probabilities of all possible events should always equal 1. 
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When elevating the analysis to a macroscopic level, all firms in the ensemble under study 

are included. Now the emphasis shifts completely to studying the aggregate behaviour of 

the system ignoring cash flow variability of individual firms. A deterministic ordinary 

differential equation such as the one under a. above, forms an approximation of the average 

behaviour of the cash flow system. 

 

 

 

 

 

 

 

 

Figure 1-7  Levels of analysing cash flow processes 

Unquestionably, the microscopic approach describes cash flow processes most accurately, 

followed by the mesoscopic and then by the macroscopic approach. 

The distinction between observing cash flow processes from a single-firm or from a multi-

firm perspective is important. Consider Equation (M1.7) in Appendix M1, which was used in 

the derivation of Equation (1.5) in this section above.  

∂∫ f(c, t)p(c3, t2 | c1 , t1)dc

∂t

=  ∫ [
∂f(c, t)α(c, t)

∂c
+ 

1

2

∂2f(c, t)β(c, t)

∂c2
] dc∫ [

∂f(c, t)α(c, t)

∂c

+ 
1

2

∂2f(c, t)β(c, t)

∂c2
] dc  p(c2, t2 |c1, t1)

+ ∬f(c, t) [ J(c2|c3, t1) p(c3, t2 |c1, t1)

−  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc2 dc                                                                                             (1.6) 

where f(c2) is replaced by f(c, t). Recall that f(c, t) is an arbitrary space-time function of 

cash flow which essentially describes the cash flow processes of multiple firms. If it is 

Microscopic

Emphasis on the individual 
firm

Stochastic process including 
individual jumps

Decribed by a Master 
Equation or a SDE

Mesoscopic

Emphasis on multiple firms

Approximated by (stochastic) 
difussion process

Decribed by a SPDE

Macroscopic

Emphasis on the whole 
ensemble of firms

Approximated by an average 
deterministic process

Decribed by an ODE
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assumed that jump processes of individual firms approximately even-out and therefore can 

be ignored, then replacing probabilities p(c2, t2 |c1, t1) and p(c3, t2 | c1, t1) in Equation (1.6) 

by a more generally formulated conditional probability density function p(c, t |c0, t0), and 

using the cash flow expectations operator 𝔼c,  Equation (1.6) can be re-written as  

∂𝔼cf(c, t)

∂t
=  𝔼c [α(c, t)

∂f(c, t)

∂c
+ 

1

2
β(c, t)

∂2f(c, t)

∂c2
]                                                                (1.7) 

Equation (1.7) is the expected value of Itô’s formula applied to the arbitrary function 

f(c(t), t) in which dc(t) is specified as dc(t) =  α(c, t) + √β(c, t)ξ(t) where ξ(t) is an i.i.d. 

standard normal process. Using the fact that 
∂𝔼cf(c,t)

∂t
=

𝔼c ∂f(c,t)

∂t
 and abstracting out the 

expected value operator on both sides, Equation (1.7) becomes 

dc(t) =  α(c, t)dt + √β(c, t)dW(t)                                                                                                (1.8) 

where dW(t) =  ξ(t)dt. 

The step from Equation (1.7) to Equation (1.8) has important implications. The arbitrary 

function f(c, t) in Equation (1.7) represents uncountable many (future) realisations of a cash 

flow process as opposed to a single (but random) realisation in Equation (1.8). The two 

equations are made compatible by using the expected value operator in Equation (1.9) 

which transforms a multi-firm equation into a single-firm equation4. The remainder of this 

section further investigates single-firm cash flow specifications. 

For a complete description of the general cash flow model, consider the third term of 

Equation (1.6) which expresses a jump process 

 ∫[ J(c2|c3, t2) p(c3, t2 |c1, t1) −  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc                                           (1.9) 

In time dt,  p(c2, t2 |c1, t1)dt is the probability that the cash flow remains in c2 or jumps 

from c3 to c2 with a step size governed by the probability function J(c3|c2, t2). Similarly, 

p(c3, t2 |c1, t1)dt is the probability that the cash flow remains in c3 or jumps from c2 to c3 

with probability J(c2|c3, t2). Equation (1.9) is often modelled as a compound Poisson 

process with the timing of the jump and the jump size governed by a Poisson process. 

                                                           
4  Also known as Langevin equation 
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Define ν1(ct, t)dN1,t = ∫[ J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc  and ν2(ct, t)dN2,t =

∫[ J(c2|c3, t2) p(c3, t2 |c1, t1)] dc and call the aggregated jump process ν2(ct, t)dN2,t −

ν1(ct, t)dN1,t = ν(ct, t)dNt                                                                                                            (1.10) 

Finally, combine Equation (1.8) with Equation (1.10) to express the general cash flow 

process as a single-firm stochastic differential equation 

dct =  α(ct, t)dt + √β(ct, t)dWt + ν(ct, t)dNt                                                                         (1.11) 

In accordance with the Doob-Meyer decomposition theorem, see Doob (1990), α(ct, t) 

represents the deterministic (predictable) component and √β(ct, t)dWt the continuous 

random component. The Lévy- Itô decomposition is an extension of Doob-Meyer and relates 

to all terms of Equation (1.11) by combining a Brownian motion in the first two terms with a 

jump process in the third term in order to expand the continuous process to the more 

general class of Lévy processes ζ(ct, t)dZt
5. (Refer to D. Applebaum (2004) and Bertoin 

(1998) for a general introduction to Lévy processes). 

In the preceding analysis, a general cash flow process (including jumps) was employed to 

(indirectly) derive an Itô cash flow specification (a pure continuous-time diffusion process 

without jumps). Irrespectively, a Birth and Death Markov process is already sufficient to 

directly define an Itô-process. In a two-state Birth and Death process, state j is replaced by 

state i + 1. Often, a binomial grid in discrete time (subsequent combinations of up ticks and 

down ticks in small-time ∆t) is advanced to a continuous-time version by taking the limit 

∆t ↓ 0. The system of transition rates {w(ci → ci+1),w(ci+1 → ci) } is an important process 

characteristic and for a homogeneous Birth and Death Markov process it defines the 

complete dynamics of the cash flow process. For instance, Risken and Frank (2012, p. 76) 

explain how the system of transition rates are connected to the drift function α(c(t), t) and 

diffusion function β(c(t), t) in small ∆t if the process is approximated by a diffusion 

equation with a one-step change 

α(c(t), t) =  ∆c[w(ci → ci+1) − w(ci+1 → ci)] ,  

                                                           
5  The class of Levy processes consists of all stochastic processes with stationary, independent increments. It extends the Gaussian 

conditional pdf typical for Wiener processes to other probability density functions. 
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β(c(t), t) =
∆2c

2
[w(ci → ci+1) + w(ci+1 → ci)]                                                                       (1.12) 

For cash flow processes, the following observations can be made about the system of one-

step transition rates: 

1. The generation rate w(ci → ci+1) is expected to be (on average for all firms) larger than 

the recombination rate w(ci+1 → ci) which on balance ensures growing cash flows in a 

deterministic environment. Observed over the whole lifetime of the firm, cash flow 

growth is necessary for the long-term survival of firms. 

2. Both the generation rate and recombination rate should be large relative to ∆t, which 

underpins the jumpiness that cash flow processes typically display. By definition, jumps 

are discontinuous but under certain conditions they can be approximated by a 

continuous cash flow process. See Sections 1-5. and 1-6. 

 

1.5. Approximated continuous cash flow processes – theoretical foundation 

Departing from the general single-firm cash flow Equation (1.11), the question can be asked 

under what conditions this equation can be reduced to the following general continuous-

time Itô specification 

dCt =  α(Ct, t)dt + √β(Ct, t)dWt                                                                                                 (1.13) 

If justified, the modelling of cash flow processes can benefit from an arsenal of well-known 

and already developed mathematical methods and techniques, such as the Fokker-Planck 

equation, which greatly increases the chances of finding tractable, analytical solutions. 

Indeed, at first glance the dynamics of cash flow processes will tend to indicate jump-like 

behaviour. This is most evident for investing cash flow processes where the cash flow size is 

relatively large and the occurrence of changes is infrequent compared to that of operating 

cash flows. On the other hand, operating cash flows can also exhibit large fluctuations from 

time to time, for instance when a large sales order is paid at once.  

The starting point of the analysis is to consider three different approaches to approximate a 

general Lévy cash flow process by a more specific Itô cash flow process. These approaches 
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are: (i) Time-step size reduction, (ii) Diffusion approximation, and (iii) Instantaneous 

variance increase. 

Time-step size reduction  

If the size of the time-step of the cash flow process is reduced, at least for some processes, 

jumps become relatively smaller and the process smoother. This is the case if the Lindeberg 

condition (Lindeberg (1922), W. Feller (1971, pp. 93-94)) is met, i.e. that a cash flow process 

is continuous if for all ct its conditional probability p(c2, t2 |c1, t1) between two cash flows 

{c1, c2 } goes faster to zero than ∆t =  t2 − t1 does, or mathematically expressed: 

lim
∆t→0

∫p(c2, t1 + ∆t |c1, t1)dc

∆t
= 0 where the integral is taken over |c2 − c1| > ε6. The 

Lindeberg condition implies that jump sizes are infinitesimally small compared to the total 

size of the system or, in different words that the transition rate of the processes varies 

slowly with the cash flow7. If the Lindeberg condition is not obeyed, then the process has 

true (discontinuous) jumps. In reality, cash flow processes will still exhibit finite size jumps 

which, provided these are sufficiently small, can be approximated by a diffusion process. For 

instance: a monthly cash flow report shows large jagged movements but if these amounts 

are broken down to daily cash deposits and disbursements, cash patterns often turn into 

much smoother flows.  Nonetheless, large (relative to the system-size) one-off amounts will 

still show significant discontinuities and therefore cannot be approximated by a diffusion 

process. 

Diffusion approximation 

As will become apparent in Section 1.5., most well-known stochastic cash flow specifications 

have a set of linear functions {α(Ct, t), β(Ct, t)}. Introducing nonlinear functions for α and β 

widens the scope of this study considerably, but at the price of methodological and 

mathematical complications, even if the cash flow process under examination meets all the 

conditions to qualify as a continuous-time process.  

The issue, raised in Van Kampen (2011, p. 244), is the following. If the transition rates (step 

functions) w(c1 → c2) and w(c2 → c1) are nonlinear, which is likely for cash flow processes, 

                                                           
6  In a slightly alternative expression: for all ct , ∫ p(c2, t1 + ∆t |c1, t1)dc =  𝒪(∆t) where the integral is taken over |c2 − c1| > ε 
7  It can be shown that for example a Brownian motion obeys the Lindeberg condition. 
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then the corresponding Master Equation cannot be solved exactly, and one has to resort to 

approximation methods of which the Fokker-Planck equation8 is the best known. This is 

explained in detail in Scott (2013, pp. 128-133). When stepping-up from a microscopic 

(Master Equation) to a mesoscopic-macroscopic level (Fokker-Planck equation), a single-firm 

cash flow transforms into a multi-firm average cash flow (and its associated probability 

density function):  Ct → Ct̅ = ∫ Ctp(Ct, t)
∞

−∞
dCt. The evolution of this ensemble average is 

dCt̅̅ ̅

dt
=  ∫ Ct

∂p(Ct,t)

∂t

∞

−∞
dCt. From the general Fokker-Planck equation it follows that the 

expansion of the first moment is 
dCt̅̅ ̅

dt
 = ∫ α(Ct, t)p(Ct, t)

∞

−∞
dCt = 𝔼tα(Ct, t). The two 

preceding expressions are equal if  
dCt̅̅ ̅

dt
= α(Ct̅, t)  or α(Ct̅, t) =  𝔼tα(Ct, t) which is only true 

for specifications linear in Ct. A similar reasoning can be developed for β(Ct, t): Ct
2 → C̅t

2 =

∫ Ct
2p(Ct, t)

∞

−∞
dCt and 

dC̅t
2

dt
=

∂

∂t
∫ c2p dc = −∫ c2 ∂pα(Ct̅̅ ̅,t)

∂c
dc + ∫ c2 1

2

∂2p(Ct̅̅ ̅,t)

∂c2 dc =

𝔼t(β(c, t)) + 2𝔼t[c. α(c, t)] =  β(Ct̅, t) + 2α(Ct̅, t) + 2
dα(Ct̅̅ ̅,t)

dc
𝔼t(c

2) which last equality is 

only exact if {α(Ct, t), β(Ct, t)} are linear functions. Therefore, if a nonlinear set of functions 

{α(Ct, t), β(Ct, t)} is transformed into the corresponding Fokker-Planck equation, it is 

implicitly assumed that α(Ct, t) is a smooth function with relatively small fluctuations 

around its average, i.e. α(Ct̅, t) ≈ 𝔼tα(Ct, t)9 which also pertains to β(Ct, t). If one of 

{α(Ct, t), β(Ct, t)} is nonlinear, or both functions are, a diffusion process (as described by a 

Fokker-Planck equation), then α(Ct, t) can only be an approximation of the true process.  

Various methods have been developed to derive a proper diffusion approximation in cases 

of nonlinearity. Van Kampen (2011, Chapter X) discusses the Linear Noise Approximation 

(LNA) which rests on the assumption that the stochastic variable, in this study cash flow, can 

be separated into a deterministic part and a random part. Both parts relate to the system 

size N, and that the fluctuations of the random part scale about proportionally to the square 

root of the system size: Ci = ciN + √Nξi where Ci is a cash flow, ci is a cash flow relative to 

the system size (‘cash flow concentration’) and ξi is a random variable. The full probability 

                                                           
8  Here, it should be noted that the Fokker-Planck equation is nothing but a Kramers Mayol expansion, truncated after two terms, of the 

underlying Master Equation (based on the Chapman-Kolmogorov functional equation) 
9  Taking the average of a Taylor expansion of α around the average of Ct:  α(Ct, t) =  α(Ct̅, t) + α′(Ct̅, t)(Ct − Ct̅) +

1

2
α′′(Ct̅, t)(Ct − Ct̅)

2 + ⋯.  𝔼tα(Ct, t) =  α(Ct̅, t) +
1

2
α′′(Ct̅, t)(Ct − Ct̅)

2  + ⋯ and assuming that Ct  ≈ Ct̅ it follows that 𝔼tα(Ct, t) ≈

 α(Ct̅, t). 
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density function of the process is replaced by the probability distribution function of the 

fluctuations on the macroscopic trajectory. Furthermore, Fuchs (2013, chapter 4) 

investigates five different methods10, including LNA, that can be used to approximate a 

diffusion process. All these methods result in a de-scaled diffusion equation  

dCt =  α(Ct, t)dt + √
β(Ct, t)

N
dW(t)                                                                                            (1.14) 

where Ct = Nct, Ct is the original cash flow process, ct is the de-scaled process and N 

(independent of Ct) is some proxy of the system size. The system size parameter N bridges 

the scale on which jump-like conditions do matter and the other scale on which 

macroscopic properties of the process are measured and jumps can be neglected. For cash 

flow processes, N could be represented by the firm’s overall revenue or the value of total 

assets. Implicit in the derivation is the assumption that the transition probability of the 

original system scales proportionally to the probability rate of the de-scaled system: 

pN(c2, t2 |c1, t1) = N p(c2, t2 |c1, t1).  

Another approximation technique, called linear approximation, is described in Socha (2007); 

linear approximation techniques extend to linearization of higher-order or lower-order 

replacement systems, and linearization of probability and spectral density functions. 

Instantaneous variance increase 

This approach views the question from a different angle: if it is assumed that cash flow 

processes are continuous and governed by a general Itô process dCt =  α(Ct, t)dt +

√β(Ct, t)dWt, which specifications will best mimic cash flow behaviour? Alternatively 

worded: which drift and diffusion functions admit adequate variability around a 

(deterministic) trend to simulate the jump-like behaviour that is typical for cash flow 

processes? 

                                                           
10 The other methods are: convergence of the Master Equation, convergence of the infinitesimal generator, the Langevin approach and 

the Kramers-Moyal expansion. 
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Since continuity implies that the term ν(Ct, t)dNt is dropped from Equation (1.11), the 

Fokker-Planck equation can be used to express the evolution of moments, in this case the 

second moment11.  

∂

∂t
∫ c2pdc =  ∫ [

−c2 ∂α(c, t)p

∂c
+ 

c2

2

∂2β(c, t)p

∂c2
] dc                                                             (1.15) 

where p is the conditional probability density function p(c, t) in a continuous setting.  

After integrating in parts the RHS of Equation (1.15), the evolution of the second moment is: 

∂

∂t
∫ c2pdc =  𝔼t(β(c, t)) + 2𝔼t[c α(c, t)]                                                                                (1.16) 

If the LHS of Equation (1.15) is re-written in terms of the variance, 𝕧t(c) =  𝔼t( c −

𝔼t(c))
2 = 𝔼t(c

2) − 𝔼t
2(c), then Equation (1.16) becomes an equation for the evolution of 

the fluctuation of the cash flow process  

d𝕧t(c)

dt
=  𝔼t(β(c, t)) + 2𝔼t[(c − 𝔼t(c)) α(c, t)]                                                                      (1.17) 

In the following step, the functions β(c, t) and α(c, t) are approximated by a Taylor 

expansion to the third term around the average (deterministic trend) 𝔼t(c) to (partially) 

circumvent the issue identified above for nonlinear {α(c, t), β(c, t)}. This technique is 

described in Cox and Miller (1977, pp. 236-237) and is known as a Bartlett expansion 

(Bartlett (1955, p. 83)). 

β(c, t) =  β(c̅ ) + (c − c̅)β′(c̅ ) +
1

2
(c − c̅)2β′′(c̅ ) + 𝒪[(c − c̅)3]                                      (1.18) 

α(c, t) =  α(c̅ ) + (c − c̅)α′(c̅ ) +
1

2
(c − c̅)2α′′(c̅ ) + 𝒪[(c − c̅)2]                                    (1.19a) 

and directly multiply Equation (1.19a) by (c − c̅) to get to Equation (1.19b) 

(c − c̅)α(c, t) =  (c − c̅)α(c̅ ) + (c − c̅)2α′(c̅ ) + 𝒪[(c − c̅)3]                                           (1.19b) 

where c̅ = 𝔼t(c).  

                                                           
11 For notational convenience Ct is written as c. 
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Applying the expected value operator 𝔼t to Equations (1.18) and (1.19b) and then 

substituting the results into Equation (1.17) gives the following equation  

d𝕧t(c)

dt
= (β(c̅ ) +

1

2
β′′(c̅ )(c̅ )𝔼t(c − c̅)2) + 2α′(c̅ )𝔼t[(c − c̅)2] = [

1

2
β′′(c̅ )  +

2α′(c̅ )] 𝕧t(c) + β(c̅ )                                                                                                                      (1.20)  

Equation (1.20) can be interpreted in a mesoscopic-macroscopic context: c̅ is the ‘average’ 

cash flow of the population of firms and only variable in t, α′(c̅ ) is an approximation of the 

first derivative of the ‘average’ drift function and β(c̅ ) and β′′(c̅ ) are approximations that 

relate to the ‘average’ diffusion function. 

The solution to Equation (1.20) can be expressed in the following generic form 

 𝕧t(c) = K e∫ (
1

2
β′′(ξ )+2α′(ξ ))d

t
0 ξ + e∫ (

1

2
β′′(ξ )+2α′(ξ ))d

t
0 ξ

∫ [β(Ξ)e−∫ (
1

2
β′′(ξ )+2α′(ξ ))d

t
0 ξ]

t

0
dΞ (1.21) 

where K is an integration constant. 

From Equation (1.21) it follows that the first RHS term,  K e∫ (
1

2
β′′(ξ )+2α′(ξ ))d

𝑡
0 ξ, is the 

dominant (i.e. exponential) determinant of the cash flow variance if 
1

2
β′′(c̅ ) + 2α′(c̅ ) > 0 

or β′′(c̅ ) >  −4α′(c̅). In other words, the variance of cash flow processes, where the 

diffusion term β(c̅ ) is (at least) quadratic in c̅ or the drift term is (at least) linear in c̅, or 

preferably the combination of both, is significantly higher than the variance of lower order 

cash flow processes that are dominated only by the second RHS term of Equation (1.21).  

A related, but not less important, question is under what conditions the variance of cash 

flow processes evolves to a steady-state. From Equation (1.20) it can be shown that a 

steady-state equilibrium holds if 

𝕧s(c) =  
−β(c̅ )

1
2

β′′(c̅ ) + 2α′(c̅ )
                                                                                                           (1.22) 

where 
1

2
β′′(c̅ ) + 2α′(c̅ ) < 0 since β(c̅ ) ≥ 0 and 𝕧t(c) ≥ 0. The equation is singular at 

1

2
β′′(c̅ ) + 2α′(c̅ ) = 0. Therefore, no steady state is defined if  

1

2
β′′(c̅ ) + 2α′(c̅ ) ≥ 0. 

Combining the conclusions from Equations (1.21) and (1.22) it follows that: 



 
 
26                                                                                                   
 

  

1. If  
1

2
β′′(c̅ ) + 2α′(c̅ ) > 0, the variance process is dominated by an exploding (diverging) 

exponential term; 

2. If  
1

2
β′′(c̅ ) + 2α′(c̅ ) = 0, the variance process is dominated by an exploding (diverging) 

non-exponential term with variances that are significantly below variances dominated 

by processes with an exponential term; 

3. If  
1

2
β′′(c̅ ) + 2α′(c̅ ) < 0, the variance process is dominated by a mean-reverting 

exponential term (converging to a constant K). The domination of the exponential term 

diminishes strongly over time. 

Discussion 

If cash flow processes can be adequately approximated by a diffusion process the resulting 

mathematical tractability gives enhanced prospect of finding a closed-form solution. The key 

question is under what conditions a better approximation can be found. Firstly, reducing the 

time step-size is accommodating but only if the underlying process is sufficiently continuous 

regardless of step-size. Secondly, re-scaling cash-flows in proportion to the system-size is 

another technique that can be applied (with or without process linearization). Finally, 

assuming that the processes can be sufficiently approximated by a diffusion process, it was 

shown that specifications with a quadratic diffusion term and linear drift term are superior 

in mimicking jump-like continuous cash flow processes over specifications with lower-order 

diffusion and drift terms. 

 

1.6. Approximated continuous cash flow processes – empirical evidence 

This section presents analysis of the quarterly changes to operating and investing cash flows 

of the 5,202 listed North American firms comprising the dataset for this study. The analysis 

includes Q-Q plots and a test to detect jumps. Notice that not all 5,202 firms consistently 

report operating cash flows and investing cash flows, or that in some instances the number 

of observations is too small to perform a specific statistical test.  

Normal Q-Q plots 

A normal Q-Q plot provides a first visual impression as to whether a process is 

approximately continuous, i.e. its increments are about normally distributed. 
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Figure 1-8 (below) clearly shows that changes in operating cash flows (left-hand plot) are 

strongly non-Gaussian with significant left-side and right-side fat tails. For changes in the de-

scaled operating cash flows (right-hand plot), the tails are less pronounced but still notably 

fat. 

 

 

 

 

 

 

 

Figure 1-8  Normal Q-Q plots of Changes in Operating Cash Flow 

 

A similar conclusion can be drawn for investing cash flows (see Figure 1-9). 

 

 

 

 

 

 

 

 

 

 
Figure 1-9  Normal Q-Q plots of Change in Investing Cash Flow 
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Note that the above conclusions are only valid for quarter-to-quarter observations: if a finer 

time grid had been used then the cash flow changes may well have been more normally 

distributed. 

Testing for jumps 

In the literature, few statistical tests are found that can be used to determine whether a 

stochastic process is (sufficiently) continuous, that is, excludes sizeable jumps. Most tests 

are parametric and require an ex-ante specification of the continuous process; an early 

example is Ait-Sahalia (1996)’s ‘double-transformation’ specification test which was applied 

to diffusion processes in Aït-Sahalia (2002a, 2002b). This author also examined 

nonparametric continuity tests in Aït-Sahalia et al. (2009) and Ait-Sahalia and Jacod (2009). 

Another (fairly convoluted) diffusion process test is described in B. Chen and Song (2013), 

which has its theoretical foundations in Barndorff-Nielsen and Shephard (2004) and 

practical applications are discussed in Barndorff-Nielsen and Shephard (2006).  

The Barndorff-Nielsen Shephard test splits the overall bi-power variation of time series into 

two components: (i) a component that is contributable to a continuous process and (ii) a 

component that captures the specific variation of jumps. The test is explained in more detail 

in Appendix S2. The two test statistics (linear and ratio) must be interpreted with caution 

when calculated from low-frequency realised discrete-time time series since the statistics 

asymptotically converge slowly to a normal distribution and therefore the authors 

recommend using the test with high-frequency data only. In addition, restricting the test to 

quarterly data excludes its ability to find jumps within a quarter12. Notwithstanding an 

average number of no more than 75 data points per firm, it is presumed that the Barndorff-

Nielsen Shephard test provides at least a good indication of the occurrence of significant 

jumps in cash flow processes. 

Seemingly, from Table 1-1, operating cash flows can be reasonably well approximated by a 

continuous process: 30.2% of examined firms test positively for jumps at a 5% significance 

level which drops to 19.2% at a 1% significance level. Merely 7.8% of firms show indications 

                                                           
12 If these inter-quarterly jumps balance each other out, then they will not be detected by measuring only (cumulative) quarterly jumps. In 

contrast, the test could detect what appears to be a quarterly jump but in reality is a series of very small jumps observed over smaller 
time intervals.  
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of significant jumps, here defined as greater than 4 times the standard deviation. For 

investing cash flows, the opposite conclusion is arrived at. Jumps are present as is evident 

from the fact that 67.2% at a 5% significance level and 58.7% at a 1% significance level of all 

firms exhibited jump conditions in time series, and 42.5% of firms provide indications of 

significant jumps, again defined as greater than 4 times the standard deviation. 

Table 1-1  Barndorff-Nielsen Shephard test results for cash flows 

CASH FLOW SERIES WITH JUMPS N  FIT *   FIT **  FIT 4 σ  MEAN STD 

OPERATING CASH FLOW 5138 100% 1550 30.2% 985 19.2% 402 7.8% 218.99 1811.49 

INVESTING CASH FLOW 5189 100% 3487 67.2% 3046 58.7% 2207 42.5% 195.80 3907.56 

 
These results give rise to the following question: if jumps do matter, can this be mitigated by 

re-scaling cash flows as suggested in the prior section? Table 1-2 gives the answer. Re-

scaling operating cash flow by revenue and investing cash flow by total assets has a slightly 

negative (but barely significant) impact on the jump characteristics of the cash flow 

processes as such; however, process variability as measured by standard deviation is, as 

expected, greatly reduced.  

Table 1-2  Barndorff-Nielsen-Shephard test results for re-scaled cash flows 

CASH FLOW SERIES WITH JUMPS N  FIT *  FIT **  FIT 4 σ  MEAN STD 

OPERATING CASH FLOW 5138 100% 1750 34.1% 1205 23.5% 621 12.1% 2.87 110.30 

INVESTING CASH FLOW 5189 100% 3592 69.2% 3112 60.0% 2240 43.2% 0.02 6.12 

 

In more recent papers the full power of the Barndorff-Nielsen Shephard test to detect jumps 

is questioned (refer for example to Andersen et al. (2012) and Buckle et al. (2016))13. 

Therefore, the tests are rerun by amending the original Barndorff-Nielsen Shephard test 

statistic to include a bi-power variation term based on the median of five consecutive 

quarterly changes in cash flows (the ‘modified Barnhoff-Nielsen Shephard test’, see 

Appendix S2 for a further explanation).  

Table 1-3  Modified Barndorff-Nielsen Shephard test results for cash flows 

CASH FLOW SERIES WITH JUMPS N  FIT *  FIT **  FIT 4 σ  MEAN   STD 

OPERATING CASH FLOW 5141 100% 4466 86.9% 4153 80.8% 2760 53.7% 218.99 1811.49 

INVESTING CASH FLOW 5188 100% 4991 96.2% 4871 93.9% 4339 83.6% 195.80 3907.56 

                                                           
13 Which leads to the conclusion that currently there is no generally accepted test for jump detection. 
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Indeed, Table 1-3 shows that the modified Barndorff-Nielsen Shephard test is much more 

demanding in detecting jumps14. For both cash flows, as reported in Table 1-3, the modified 

test identifies a significantly higher number of firms with jumps: 86.9% and 96.2% (at a 5% 

significance level). Notice that for investing cash flow almost all jump statistics qualify as 

significant (greater than 4 standard deviations) while operating cash flow jumps appear to 

be more consistent with above. 

Table 1-4  Modified Barndorff-Nielsen Shephard test results for re-scaled cash flows 

CASH FLOW SERIES WITH JUMPS N  FIT *  FIT **  FIT 4 σ  MEAN STD 

OPERATING CASH FLOW 5141 100% 4142 80.6% 3908 76.0% 2980 58.0% 2.87 110.30 

INVESTING CASH FLOW 5191 100% 4997 96.3% 4924 94.9% 4521 87.1% 0.02 6.12 

 

Table 1-4 shows that there is also a material difference in outcomes between the original 

and the modified Barndorff-Nielsen Shephard test when applied to re-scaled operating cash 

flow, albeit not as pronounced as for re-scaled investing cash flows.  

Discussion 

Within restrictions inherent to the test methodology, in particular the ambiguity in the 

power of the two test variants, it can be concluded that operating cash flow displays jumps 

of a relatively modest size. Significant jumps, however, are a prominent feature of investing 

cash flow of most firms.  

The impact of jumps on estimating parameters can be markedly reduced by re-scaling cash 

flows (in proportion to total revenue or total asset value as proxies of a system-size variable) 

resulting in strongly deflated jumps which is observable from the difference in volatility. Re-

scaling does not mitigate jump patterns as such, only their size, as is obvious from the 

reported jump statistics. Therefore, the methods to re-scale cash flows described in Section 

1.5. are of importance to approximate cash flow processes by a continuous stochastic 

process. 

 

                                                           
14 The point can be made that the modified Barndorff-Nielsen Shephard test may be overly demanding in a low-frequency data 

environment. 
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1.7. Conclusions from Chapter 1 

After motivating the importance of continuous-time stochastic models to describe cash flow 

processes, a generic cash flow model that includes a diffusion and a jump component is 

introduced. The generic model is able to describe a broad range of stochastic cash flow 

behaviour. It is firmly anchored in well-known principles of a continuous-time Markov 

processes.  

An important question that follows, is if -and under which conditions- the generic cash flow 

model can be expressed as a pure diffusion model, thus considerably enhancing the 

mathematical tractability and availability of solution techniques. Empirical testing supports 

the conclusion that under some not too stringent regularities, operating cash flow processes 

can be well approximated by a continuous process whilst investing processes will first need 

to be rescaled by a system-size variable, for instance when estimating model parameters, 

after which the incremental variance is small enough to permit such approximation. If cash 

flow processes are approximated by a diffusion processes, then it was shown that a 

specification consisting of a linear drift function and a quadratic diffusion function is an 

adequate general specification to mimic important stochastic properties of cash flow 

processes.  
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2. Characteristics of Stochastic Continuous-time Cash Flows  
 

After examining cash flow specifications found in the literature, Chapter 2 discusses in detail 

which specifications are appropriate to describe the drift function and the diffusion function 

of cash flow processes. Ample consideration is given to a theoretical foundation supported 

by a multitude of empirical evidence. The possible (bi-causal) relationship between 

operating cash flow and investing cash flow is also investigated. 

2.1. Cash flow specifications found in the literature 

This section, discusses the cash flow specifications that are commonly found in the 

literature. The majority of cash flow models are continuous without addition of a jump 

term. In the literature, a limited number of studies consider cash flows models that include 

a (non-Wiener) jump process. These mixed continuous-jump specifications will be noted if 

they are important to cash flow models. Of the well-known cash flow models, the most 

important stochastic characteristics will be identified.  

There are surprisingly few finance papers on stochastic continuous-time cash flow models as 

such. Most publications are limited to applications of cash flow models. Hardly any author(s) 

provide(s) compelling reasons for choosing a particular specification above others; often 

words are used like “cash flows are governed by the usual GBM”. This is remarkable because 

the choice of a cash flow specification has a fundamental impact on the results from 

analyses.  

The accounting literature is another source of publications around the theme of cash flow 

forecasts, particularly those that refer to the quality and sophistication of analysts’ cash flow 

forecasts. Givoly et al. (2009) examine properties of analysts’ cash flow forecasts in relation 

to earnings forecasts. They find that analysts’ cash flow forecasts are less accurate than 

analysts’ earnings forecasts and appear to be a naïve extension of earnings forecasts. Call et 

al. (2013) largely contradict that view. After detailed research Call et al. (2013) conclude that 

when analysts prepare cash flow forecasts they attempt to adjust earnings for a number of 

financial variables, such as the movement in working capital and accruals, and do not merely 

add back depreciation. Their findings suggest that investors view analysts’ forecasts as 

sufficiently sophisticated.  
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One of the early statistical cash flow models is an ARIMA time-series model to predict 

quarterly cash flow from operations and is described in Brown and Rozeff (1979). A succinct 

overview of more recent cash flow prediction models can be found in Lorek (2014) who 

classifies those models into the following classes: (i) complex, cross-sectional estimated 

disaggregated-accrual models, (ii) parsimonious ARIMA models, (iii) disaggregated-accrual 

regression models, and (iv) parsimonious ARIMA models with both adjacent and seasonal 

characteristics. However, none of these models use stochastic continuous-time cash flow 

specifications. Ashton et al. (2004) is one of the few papers in the accounting literature that 

apply stochastic models to forecasting dividends (and hence indirectly to cash flow 

forecasts). Nevertheless, the remainder of this review will focus on applications of stochastic 

continuous-time cash flow models in the finance literature given the limited number of 

similar publications found in the accounting literature. 

In the finance literature five specifications frequently feature as cash flow models in 

applications such as cash management models, capital project analysis, and business 

valuation: 

1. Geometric Brownian Motion (GBM); dCt =  μCtdt +  σCt dWt                                       (2.1) 

2. Arithmetic Brownian Motion (ABM); dCt =  μdt +  σdWt                                                (2.2) 

3. Mean-reverting Vasicek process (Vasicek process); dCt = α(m − Ct)dt +  σdWt      (2.3) 

4. Mean-reverting Cox, Ingersoll and Ross process (square root or CIR process); dCt =

α(m − Ct)dt +  σ√CtdWt                                                                                                         (2.4) 

5. Modified Square Root process (MSR process); dCt =  μCtdt + √k1
2 + k2

2Ct
2dWt      (2.5) 

 

The section below draws on selected core papers and/or books to provide a description of 

each of the above five specifications. 

Cash flow models based on GBM 

Selected core literature: 

Dixit, R. K., & Pindyck, R. S. (2012). Investment under Uncertainty: Princeton University 
Press. 
 

This book is considered one of the standard works on stochastic investment processes. In 

Chapter 3 a generalised Brownian motion - Itô process is defined with the GBM as an 
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important special case. The authors show how the present value of a so called ‘profit flow’ 

that follows GBM, can be calculated. Interestingly, they criticise the GBM for excluding 

negative project values. The application of mean-reverting processes and jump processes in 

investment analysis is also covered. 

Kanniainen, J. (2008). Can properly discounted projects follow geometric Brownian motion? 
Mathematical Methods of Operations Research, 70(3), 435-450. doi:10.1007/s00186-008-
0275-0 
 

Geometric Brownian motion is routinely used as a dynamic model of underlying project 

value in real option analysis. The author concludes that the conditions of a Geometric 

Brownian motion can only rarely be met, and therefore real option analysis should be based 

on models of cash flow factors rather than a direct model of project value. The paper 

specifies necessary and sufficient conditions for project volatility and drift to be time-

varying, and shows how fixed costs can cause project volatility to be mean-reverting. 

Other authors:  

GBM is widely applied in Real Option Analysis; see, for example, the ground-breaking works 

of Brennan and Schwartz (1985) and McDonald and Siegel (1986) and also more recent 

papers such as Bolton et al. (2014). Cash flow processes directly described as GBM are found 

in the Marketed Asset Disclaimer method which was first introduced by Copeland (2001). 

They argue that the present value of the project’s cash flows without options is the best 

estimator for the market value of the project ‘‘were it a traded asset’’. To tackle the issue of 

negative project values, Câmara (2001) suggests that operating cash flows can be better 

described by a displaced log-normal distribution allowing for log-normal distributions that 

extend to negative cash flow values. In his dissertation about valuation of cash flows 

Armerin (2004) analyses the dynamics of cash flow processes specified as a GBM and as 

mean-reverting in their corresponding value processes. Su (2006) examines the application 

of a simple GBM and a GBM including a compound Poisson in the context of real option 

analysis. The underlying NPV process is modelled with output prices following a general Levy 

process. Jaimungal and Lawryshyn (2015) assume that there exists a non-tradable 

underlying process called the stochastic driver that determines the cash-flows and can be 

mapped to the distributions of cash flows specified by managers. The stochastic drivers they 
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consider, are the GBM, the Uhlenbeck and Ornstein (1930) process and the William Feller 

(1951) process. 

To include rare events and related jump processes, Merton (1976) develops a mixed GBM 

and Poisson process model, and Guimarães Dias (1999) a mixed mean-reverting and Poisson 

process model. A more recent paper Grenadier and Malenko (2010) proposes a mixed GBM 

and Poisson jump process which includes, in the context of Bayesian learning options, 

temporary and permanent shocks in the cash flow model.  

Cash flow models based on ABM 

Selected core literature: 

Alexander, D. R., Mo, M., & Stent, A. F. (2012). Arithmetic Brownian motion and real 
options. European Journal of Operational Research, 219(1), 114-122. 
doi:10.1016/j.ejor.2011.12.023 
 

This paper is one of the few applications of ABM to real option analysis. To model the 

project valuation process, the authors advocate ABM since it permits the occurrence of 

negative project values. They argue that variation in project values does not need to scale 

with the size of the project, a position they defend by referring as an example to values of 

capacity constrained physical assets, and hence a constant-volatility specification like ABM is 

more appropriate to describe project valuation processes.  

Other authors: 

If the valuation process is governed by an ABM process, then it can be shown that the 

underlying cash flow process needs to be ABM as well, see J. G. Van der Burg (2015). 

Yang (2011) considers the pricing and timing of real options under partial information. The 

paper considers an ABM cash flow process with a (non-observable) variable drift parameter 

governed by a mean-reverting process. 

Cash flow models based on mean-reverting processes (Vasicek and CIR) 

Selected core literature: 

Bhattacharya, S. (1978). PROJECT VALUATION WITH MEAN-REVERTING CASH FLOW 
STREAMS. The Journal of Finance, 33(5), 1317-1331. doi:10.1111/j.1540-
6261.1978.tb03422.x 
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This paper appears to have been the first that applies a stochastic continuous-time cash 

flow model to capital budgeting decisions. The author proposes a mean-reverting stochastic 

cash flow process, in contrast to an extrapolative random walk cash flow process (as for 

example in Myers and Turnbull (1977)), on the grounds that ‘in a competitive economy we 

should expect some long-run tendency for project cash flows to revert to levels that make 

firms indifferent across new investments in the particular type of investment opportunity 

that a given project represents rather than "wandering" forever’. The specification used in 

the paper is akin to the CIR model which does not permit negative cash flows. Not 

surprisingly, Bhattacharya comes to the conclusion that the results of the model are not as 

robust as hoped for as numerical simulations based on reasonable parameter values show 

an inaccuracy level of 8 – 10% in gross value. The author concedes that the theoretical 

rigour of the analysis suffered in the quest for simplicity of the model. 

Other authors: 

In a paper about multi-period firm valuation, T.-k. Chen and Liao (2004) combine a mean-

reverting Wiener process with Poisson diffusion jumps to model the firm’s abnormal 

changes to cash flow.  

Cash flow models based on the modified square root process 

Selected core literature: 

Biekpe, N., Klumpes, P., & Tippett, M. (2001). Analytic solutions for the value of the option 
to (dis)invest. R&D Management, 31(2), 149-161. doi:10.1111/1467-9310.00205. 
 

Klumpes, P., & Tippett, M. (2004). A Modified ‘Square Root’ Process for Determining the 
Value of the Option to (Dis)invest. Journal of Business Finance & Accounting, 31(9-10), 1449-
1481.  
 

In their 2001 paper the authors examine the value of investments with two underlying cash 

flow processes: a CIR process and an Uhlenbeck and Ornstein (Vasicek) mean-reverting 

random walk. Of the two processes, only the latter accommodates negative cash flows. One 

of the more interesting technical aspects of the paper is that it shows how a power 

expansion can be used to derive analytic expressions for the value of the firm’s investment 

opportunities that otherwise would have been difficult to achieve. The paper clearly 



 
 
38                                                                                                   
 

  

demonstrates the implied impact of different cash flow specifications on project valuation, 

leading often to non-trivial valuation outcomes. 

The analysis is extended in Klumpes and Tippett (2004), by developing a novel specification 

in which the expected instantaneous change in cash flow (per time unit) scales linearly with 

cash flow size, and that the variance (per time unit) of the instantaneous change in cash 

flow scales quadratically with cash flow size. A benefit of this new specification is that 

negative cash flows are admissible. These assumptions are considered to be much more 

realistic than the ones underpinning other cash flow models. The authors call their 

specification the ‘modified square root process’. They obtain a closed-form solution for a 

modified square root process with particular parameter values. Similar to Biekpe et al. 

(2001), this paper shows how a power series expansion can result in an approximated 

closed-form solution of the investment valuation function. The paper explains in a few 

examples the significant impact that the cash flow specification can have on the optimal 

investment criteria that should be applied by firms. 

The Klumpes and Tippett (2004) paper is relevant to this study since it is (to the author’s 

knowledge) the first paper that develops a cash flow specification which is based on 

stochastic characteristics of real-world cash flow processes. 

In Chapter 9, Appendix O1, an overview is given of the stochastic characteristics of the five 

common cash flow processes described in this section. 

 

2.2. Specification of the drift function 

From Section 2-1, common cash flow specifications have one of the following three drift 

functions:  

(a) α(Ct, t) = μ; a linear trend specification in t, also called additive growth process (ABM); 

(b) α(Ct, t) = μCt; an exponential trend specification in t, also called multiplicative growth 

process with (i) a diverging (exploding) evolution (GBM, MSR), or, (ii) an evolution 

converging to a long-term value (Vasicek, CIR). 
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This section attempts to answer two questions with regard to drift functions: 

1. Are the above three specifications supported by general business research? 

2. Can the aforementioned drift functions be empirically validated; i.e. do they resemble 

the ones found in real-world cash flow processes? 

Business growth processes 

If it is assumed that there exists a correlation15 between the firm’s size and its cash flow 

generating capacity, then the cash flow process can be linked to the business growth 

process.  

Exponential business growth follows from the Law of Proportionate Effect, first described by 

Gibrat (1931), which states that the growth rate of a firm’s size is proportional to the 

current size of the firm. Saichev et al. (2009) show that the drift function of the GBM 

specification is consistent with the Law of Proportionate Effect in continuous-time which 

implies that the instantaneous relative growth rate of the cash flow 
dCt

Ctdt
 in Equations (2.1), 

(2.3), (2.4) and (2.5) above is scale invariant. Interestingly, the authors show that the log-

normal unconditional probability density function of the GBM, in long time asymptotically 

approximates a power function. Heavy-tailed distributions, for instance the ones related to 

                                                           
15 The most likely relationship is positive time-lagged correlation provided that the firm’s management is able to convert growth    

opportunities into additional cash flow. 

 

Figure 2-1  Common drift functions 
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power functions, provide a far better description than does the Gaussian distribution16 for 

the occurrence of many multiplicative processes, such as the incidence rate of extremely 

successful and fast growing firms (see, for example, Sornette (2003), Rachev (2003), 

Malevergne and Sornette (2006) and Sornette (2007)). 

Since the Law of Proportionate Effect is a compelling explanation of the firm’s growth 

process, it has been thoroughly tested and challenged by many authors; for a detailed 

overview of publications including empirical research, see Santarelli (2006). Marathe and 

Ryan (2005) analyse how often stochastic processes (as varied as electric utility data, 

passenger data, cell-phone revenue data and Internet host data) follow a GBM (with 

constant drift and volatility). The authors conclude that the GBM occurs less frequently in 

practice than the literature assumes on a priori grounds. Pammolli et al. (2007) find 

evidence that the firm’s growth rate follows a Laplace (symmetrical exponential) 

distribution with long tails that are more significant than predicted by Zipf’s law. In other 

words: the vast majority of firms achieve growth rates close to zero whilst only few firms 

(but a larger number than predicted by a normal distribution) experience spectacular 

growth or decline rates. The paper shows that a Laplace distribution can be explained from 

modelling proportional growth in both scale (number of the same products sold) and scope 

(the number of different products sold) as independent stochastic processes17. Coad (2009) 

confirms that business growth rates, after adjusting for the control variables size and age,  

are randomly distributed with pronounced heavy tails. Growth rates not only vary 

substantially across firms but also the growth rate of individual firms displays variability over 

time with little evidence of persistent levels of growth despite continuing significant inter-

firm differences in productivity, innovative capacity, and profitability. Aoyama et al. (2010) 

analyse growth rate data from different countries and come to the following conclusions: 

Gibrat’s theory holds only for larger firms above a minimum size threshold, not for typical 

small and medium size enterprises for which the variance in the distribution for the growth-

rate has a scaling relation with respect to company size. 

                                                           
16 Often Gaussian distributions are explained by the Central Limit Theorem (CLT); however, this refers to the additive variant of the CLT 

and not the multiplicative (log transformed) CLT expression corresponding to a lognormal distribution. 
17 The normal-Laplace (NL) distribution results from convolving independent normally distributed and Laplace distributed components. It 

is the distribution of the stopped state of a Brownian motion with a normally distributed starting value if the stopping hazard rate is 
constant. See for example Balakrishnan et al. (2007), Chapter 4. 
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Empirical tests of common drift functions 

The two common drift function specifications, outlined at the beginning of this section, 

were tested on this study’s dataset of 5,202 listed North-American firms with cash flow data 

reported during at least 20 consecutive quarters (for a detailed description of the data set 

used see Appendix S1 and for the results of the analysis see Appendix S3).  

A pure exponential growth process can mathematically only be defined on a positive range 

of cash flows Ct: [0,∞]. Unsurprisingly, this constraint poses a serious limitation on the 

applicability of the multiplicative model as a single specification. Of the sample firms, no 

more than 511 (9.8%) have consistently positive operating cash flows during the observed 

period and even fewer firms, 410 (7.9%), have positive investing cash flows (no quarterly 

divestments on balance). 

From Table 2-1 the conclusion can be drawn that for the subset of firms with positive cash 

flows, the exponential growth process is a good fit (measured by the F-statistic) for about 3 

out of 4 firms.  

Table 2-1  Exponential Growth Process - Goodness of Fit and Growth Rates 

    
SIGNIFICANCE LEVEL 

  
ANNUALLY COMPOUNDED 

GROWTH RATE   
N Fit * 

 

Fit ** 
 

Fit *** 
 

Fit **** 
 

Average Max Min 
             

OPERATING CASH FLOW 511 409 80.0% 375 73.4% 326 63.8% 0 0.0% 9.1% 63.7% -15.9%              

INVESTING CASH FLOW 410 292 83.1% 252 74.6% 207 64.9% 0 0.0% -7.7% 42.5% -50.7% 

 

The average annually compounded growth rate of operating cash flows is 9.1% in a 95% 

confidence interval between [8.4%, 9.8%] while the comparable numbers for investing cash 

flows are: -7.7% [-8.7%, -6.7%]. Of significant importance is that if cash flows are modelled 

as an exponential growth process, operating cash flows are diverging and investing cash 

flows converging, see Figure 2-1 above. A theoretical explanation of this finding will be given 

in Chapter 3.  

A linear cash growth process is a good fit (as measured by the F-statistic) for the operating 

cash flow of about half of all firms, and for investing cash flow of about one third of all firms, 

as can be observed in Table 2-2. Recall that the ABM with an unconditional Gaussian 

probability distribution describes a linear growth process. 
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Table 2-2  Linear Growth Process - Goodness of Fit and Growth Rates 

    
SIGNIFICANCE LEVEL 

  
ANNUALLY COMPOUNDED GROWTH RATE  

 
N Fit * 

 

Fit ** 
 

Fit *** 
 

Fit **** 
 

Average 1 Max 2 Min2 
             

OPERATING CASH FLOW 5202 3282 63.1% 2749 52.8% 2188 34.5% 1794 34.5% 7.9% 4512.0% -10798.1%              

INVESTING CASH FLOW 5202 2565 49.3% 1920 36.9% 1320 25.4% 933 17.9% 14.3% 4864.0%      -2091.8% 

1 Defined as (last cash flow – first cash flow)/number of years        2 Calculated for firms with <1% (**) Goodness of Fit 

The subset of firms with exclusively positive cash flows, was further analysed. Interestingly, 

a relative high proportion of those firms (71.4% for operating cash flow and 56.1% for 

investing cash flows) have a good fit (at a 1% significance level) with the exponential and the 

linear specifications alike. 

Discussion 

The literature on business growth processes and the results from my empirical cash flow 

tests suggest that none of the two examined drift functions is a superior specification. The 

consensus in the literature is that exponential growth is the benchmark process; however 

more recent papers all point into the direction of a more complex exponential process 

characterised by a mild form of scale variance (as opposed to a constant instantaneous 

relative growth rate) and significant long tails. In line with these observations, the empirical 

findings noted above indicate that both the exponential and the linear growth process are 

by and large consistent with real-world cash flow data, albeit with a diverging exponential 

growth for operating cash flows and a converging exponential growth for investing cash 

flows. Therefore, the combination of two pure processes into a composite drift function 

with specification α(Ct, t) = μ1Ct + μ0 is proposed. As will become clear in the remainder of 

this study, (the stochastic variant) of this composite process has properties that transcend 

the added properties of the two individual processes.  

 

2.3. Specification of the diffusion function 

There are at least four important determinants of a diffusion function for a cash flow 

process: 

1. The development of the instantaneous change in cash flow variance; 

2. The specification of the transition (conditional) distribution; 

3. The specification of the marginal (unconditional) distribution; 
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4. The evolution of moments of the cash flow process. 

Development of the instantaneous change in cash flow variance 

Considering the general cash flow model dCt =  α(Ct, t)dt + √β(Ct, t)dWt, the question 

arises how the diffusion function β(Ct, t), also called the the instantaneous change in cash 

flow variance, develops in relation to cash flow size. In the following section the assumption 

is made that the diffusion function is time homogeneous, i.e. β(Ct) does not explicitly 

depend on t but only implicitly by cash flows themselves changing in time. 

On theoretical grounds, it would be expected that a quadratic diffusion function in Ct better 

incorporates the jump-like volatility of most cash flow processes than a linear relationship 

with Ct (for an explanation see Section 1-5). This assumption was tested on cash flow data 

of 5,202 listed North-American firms by calculating the quarterly change of cash flow 

variance. Prior to calculating the variance, cash flows were adjusted for a linear cash flow 

growth trend, i.e. α(Ct) =  μ1Ct + μ0, as proposed at the end of Section 2-2.  

As is apparent from the F-tests18 in Table 2-3, 50% of the total number of examined firms 

have operating cash flow data that show a good fit (at a 5% significance level) with a linear 

diffusion specification, whilst this percentage is 64.2% for a quadratic specification. Table 2-

4 confirms a similar conclusion pertaining to investing cash flows with 50% for a linear 

specification respectively 71.5% for a quadratic specification (at a 5% significance level). 

Table 2-3  Operating Cash Flows: Fit with Linear and Quadratic Diffusion function 

OPERATING CASH FLOWS 
  

TOTAL FIRMS EXAMINED 5191 100.0% 

GOOD FIT WITH A LINEAR DIFFUSION FUNCTION 
  

F -TEST (*) 2596 50.0% 

F-TEST (**) 1963 37.8% 

GOOD FIT WITH A QUADRATIC DIFFUSION FUNCTION 
  

F -TEST (*) 3333 64.2% 

F-TEST (**) 2619 50.5% 

 

 

                                                           
18 Since the diffusion function is by nature stochastic, reporting goodness of fit measures like the R2 statistic is not useful. 
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Table 2-4 Investing Cash Flows: Fit with Linear and Quadratic Diffusion function  

INVESTING CASH FLOWS CASH FLOWS 
  

TOTAL FIRMS EXAMINED 5197 100.0% 

GOOD FIT WITH A LINEAR DIFFUSION FUNCTION 
  

F -TEST (*) 2597 50.0% 

F-TEST (**) 1872 36.0% 

GOOD FIT WITH A QUADRATIC DIFFUSION FUNCTION 
  

F -TEST (*) 3717 71.5% 

F-TEST (**) 2805 54.0% 

 

At first glance these results may not seem to convincingly suggest a quadratic specification 

but one ought to take into account that the measured variance data are likely to have been 

influenced by the occurrence of some significant jumps (see Section 1-6). 

To ascertain that the quadratic specification is indeed superior to the linear specification, 

further tests were performed. For each specification, the AIC (“Akaike Information 

Criterion”) and BIC (“Bayesian Information Criterion”) statistics were calculated and 

compared for all examined firms (Table 2-5).  

Table 2-5  Comparison of AIC and BIC for Linear and Quadratic Diffusion functions 

 
OCF 

 
ICF 

 
TOT 

 

NUMBER OF FIRMS WITH F-TEST (*) FOR LM AND QM 2426 100.0% 2370 100.0% 4796 100.0% 

AIC QM< AIC LM 999 41.2% 1108 46.8% 2107 43.9% 

AIC QM>= AIC LM 1427 58.8% 1262 53.2% 2689 56.1% 

BIC QM< BIC LM 960 39.6% 1076 45.4% 2036 42.5% 

BIC QM>= BIC LM 1466 60.4% 1294 54.6% 2760 57.5% 

Note: LM: Linear Model, QM: Quadratic Model, OCF: operating cash flows, ICF: investing cash flows 

 

Of the number of firms that tested positively at a 5% significance level for both the Linear 

Model and the Quadratic Model, in total 43.9% have a lower AIC value for a Quadratic 

Model than for Linear Model, suggesting that a quadratic diffusion specification is preferred 

to a linear specification. With respect to BIC this percentage is 42.5%. Between operating 

and investing cash flows no important variances are identified. 

The above results seemingly contradict the usefulness of a quadratic diffusion function. 

However, it should be noted that the quadratic specification does include a linear expression 

as a special case. This can be easily observed from β(c) =  σ2c
2 + σ1c + σ0 which reduces 

to β(c) =  σ1c + σ0 if parameter σ2 is not significant. An additional t-test on the significance 
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of each of the parameters σ2, σ1 and σ0 for firms with a significant F-test (at a 5% level) of a 

quadratic specification, reveals the following results. 

Table 2-6  Significance of parameters: results of t-test 

 
OCF 

 
ICF 

 
TOT 

 

NUMBER OF FIRMS WITH F-TEST (*) FOR QM 3333 100.0% 3717 100.0% 7050 100.0% 

A. ONLY 𝛔𝟎 SIGNIFICANT (BASED ON ABM) 666 20.0% 817 22.0% 1483 21.0% 

B. ONLY 𝛔𝟏 SIGNIFICANT (BASED ON CIR) 31 0.9% 0 0.0% 31 0.4% 

C. ONLY 𝛔𝟐 SIGNIFICANT (BASED ON GBM) 5 0.2% 0 0.0% 5 0.1% 

D. ONLY 𝛔𝟏 AND 𝛔𝟎 SIGNIFICANT (BASED ON CIR PLUS CONSTANT) 754 22.6% 483 13.0% 1237 17.5% 

E. ONLY 𝛔𝟐 AND 𝛔𝟎 SIGNIFICANT (BASED ON MSR) 614 18.4% 954 25.7% 1568 22.2% 

F. ONLY 𝛔𝟐 AND 𝛔𝟏 SIGNIFICANT 66 2.0% 11 0.3% 77 1.1% 

G. ALL THREE PARAMETERS 𝛔𝟐, 𝛔𝟏 AND 𝛔𝟎 SIGNIFICANT 1197 35.9% 1452 39.1% 2649 37.6% 

Note 1: OCF: Operating Cash Flows, ICF: Investing Cash Flows 

Note 2: Results of t-test on significance of parameters under the condition that F-test agrees with quadratic specification 

 

Note that the basis process reported in Table 2-6, for example ABM, CIR and GBM, is 

derived from  √β(Ct) and not from the instantaneous change in variance β(Ct). The link to 

a process refers only to the diffusion process, not to the stochastic process including the 

drift function. 

In Table 2-6 the totals of cases A, B and D, comprising 38.9% of all firms, agree also with a 

linear specification despite being classified as a quadratic specification. In contrast, cases C, 

E, F and G are true quadratic expressions and count for 61.1% of all investigated firms. From 

this analysis, in addition to the AIC and BIC statistics in Table 2-5, it becomes clear that a 

quadratic diffusion specification, in full or in reduced form, does agree with a significant 

number (4,294; lines E, F, and G aggregated in Table 2-6) of examined aggregated operating 

and investing cash flow processes (10,388) of firms examined.  

Transition probabilities 

The transition (conditional) probabilities are governed by a continuous-time Gaussian 

distribution which, as explained in Section 1-4, follows directly from the assumption that a 

cash flow process is continuous in time. Recall from Section 1-4 that the Fokker-Planck 

equation for transition probabilities in a very small discrete time ∆t is  

 
∂p(c2,t2 | c1,t1)

∂t
= 

−∂α(c,t)p(c2, t2 |c1, t1)

∂c
+ 

1

2

∂2β(c,t)p(c2, t2 |c1, t1)

∂c2                                            (2.6) 

Equation (2.6) is equivalent to: 
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∂p(c2, t + ∆t | c1, t)

∂t
=  

−∂α(c, t)p(c2, t + ∆t | c1, t)

∂c
+ 

1

2

∂2β(c, t)p(c2, t + ∆t | c1, t)

∂c2
     (2.7) 

In Gardiner (1985, p. 53), one can find the analytic solution to Equation (2.7): 

p(c2, t + ∆t | c1, t) =
1

√2πβ(c, t)∆t
exp [−

(∆c − α(c, t))
2

2β(c, t)∆t
]                                                    (2.8) 

where ∆c = c2 − c1. 

The question can be raised how the empirical findings reported in Section 1.6. are 

compatible with the normal distribution governed by Equation (2.8)? Indeed, Q-Q plots 

show that transitional probabilities measured over a quarterly period are far from normally 

distributed, although de-scaled cash flows are closer to a normal distribution than unscaled 

cash flows. The explanation is that Equation (2.8) is valid only in very small time ∆t but if ∆t 

is aggregated over a much longer period ∆T where ∆T ≫ ∆t, and Equation (2.13) in Chapter 

1 is discretised over n =
∆T

∆t
  time increments with ∆t = ti+1 − ti, ∆T =  tn − t0, t0 <

t1 … < ti …  < tn, then the process is defined by the iterative relationship (see for instance 

Iacus (2009)) 

Ci+1 = Ci + α(Ci, ti)∆t + √β(Ci, ti)∆Wi                                                                                      (2.9)  

Chapter 3 develops a continuous-time cash flow model where α(Ci, ti) is replaced by a 

linear equation μ1Ct + μ0 and β(Ci, ti) by a quadratic function σ2Ct
2 + σ1Ct + σ0.  With this 

particular parametrisation of Equation (2.9) the CLT is not applicable if the transition 

probability is aggregated over ∆T. Given that the incremental cash flows Ci+1 − Ci in very 

small-time step ∆t are normally distributed, the distribution of the aggregated increments 

Cn − C0 in ∆T will become more leptokurtic as ∆T increases. This is caused by the quadratic 

term in β(Ci, ti) which represents a multiplicative process. The foregoing provides additional 

evidence that a cash flow process could well be modelled with a quadratic diffusion 

function. 

In Section 1-5 it was stated that for a continuous stochastic process to describe a jump-like 

(jagged) cash flow process, it must have a relative large instantaneous variance. Equation 

(2.8) facilitates more precise expression of this goal. The variance of the normal distribution 

is described by the term β(c, t)∆t and hence the instantaneous variance is β(c, t). However, 

to compare firms it is necessary to normalise (de-scale) the variance and divide it by the 
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instantaneous mean of the normal distribution: 
β(c,t)

α(c,t)
. Consequently, the set of functions 

{α(c, t), β(c, t) } that fit the goal are those that have a large β(c, t) relative to α(c, t). The 

inference is that quadratic distribution functions allow for a better description of jump-like 

behaviour then lower-order distribution functions. This is in agreement with the conclusions 

from Section 1-5 (where the unconditional instantaneous variance was considered). 

Marginal probabilities 

The marginal (unconditional) probability density function represents the evolution of the 

(macroscopic) probability function of cash flows. It is a solution of the corresponding Fokker-

Plank PDE. The following theoretical grounds, provide the basis for postulating the 

properties that the joint probability time function of cash processes should have.  

A first requirement is that probability density functions must allow for negative cash flows 

since these are commonly observed in real-world cash flow processes. As already noted, this 

condition excludes the GBM (Equation (2.1), Section 2-1) and the square root process 

(Equation (2.4), Section 2-1) as appropriate cash flow specifications since these equations 

presuppose non-negative values.  

A second expected characteristic is a strong leptokurtic distribution. The vast majority of 

firms will be modestly profitable. Yet a significant number (relative to a normal distribution) 

will be successful to extremely successful. Assuming that operating cash flows and investing 

cash flows are linked to a firms’ growth path, this means that small changes happen more 

frequently (compared to a normal distribution) but that large fluctuations are also more likely, 

which is consistent with the fat tail frequency distributions found for firm’s growth rates (see for 

example Coad (2009)).  

A third requirement of cash flow specifications is right-sided skewness, which is related to 

the concept of managed randomness. This concept can best be explained by comparing it to 

unmanaged randomness where the outcome of a process is completely random. In that 

case, it is expected to find a symmetric probability distribution embodying approximate 

equal chances of positive and negative outcomes. However, it is sensible to assume that 

managers will strive to capture upside opportunities and limit downside risks: for an 

explanation of these ideas see, for example, Lafley and Martin (2013). In addition, there is a 
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Figure 2-2  Time-density functions of Operating cash flow (L) and Investing cash flow (R) 

natural floor to the ability of the firm to fund on-going negative cash flows: financiers are 

seldom prepared to write a blank cheque. Right-sided skewness is measured by a positive 

third moment of the cash flow distribution.  

As a result of the above properties, a large proportion of firms can be expected to be closely 

under or above the average cash flow of the population but a significant number of firms 

will be well above this average.  

These assumptions, were tested by examining time-series of cash flows kernel densities to 

approximate a space-time density function.  Figure 2-2 (below) displays the approximated 

space-time density functions of operating and investing cash flows of the study’s 5,202 

North America firms followed over a period of 120 quarters (from 1986 Q4 – 2016 Q3). 

Clearly, the space-time density functions are very peaked around the median cash flow. 

Further inspection of a cross section of time (in this case 1991 Q1 was selected) affirms how 

sharp in fact the peak is (Figure 2-3). Right-skewness is only detectable after zooming-in on 

the density chart (upper and lower right-hand graphs).  

 

 

 

 

 

 

 

 

 

 

In addition to the time cross-section of Figure 2-3, Figure 2-4 shows other (enlarged) cross-

sections (1998 Q2, 2007 Q3, 2015 Q1) of the two space-time density functions of Figure 2-2. 
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Not only do the sequences of each cash flow exhibit significant consistency over time, but 

Figures 2-3 and 2-4 confirm that the space-time density functions of operating cash and 

investing cash flows also show a great deal of similarity which suggests that the underlying 

stochastic processes are fairly analogous. This conclusion is interesting and will play an 

important part in the development of a new cash flow model in Chapter 3. As expected, the 

tails of each space-time density function tend to become fatter as time progresses, an effect 

that is more pronounced for the right-side tails than for the left-side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting next question is: “which of the well-known continuous distributions (if any) 

does fit the sample real-world cash flow data best?” A closely matching distribution can 

reveal important information about stochastic properties of cash flow processes. Only a 

Figure 2-3  Time cross-sections of the time-density functions of Operating and Investing cash 

flows (left-side graphs are full-scale, right-side graphs are increased-scale) 
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limited number of continuous distributions do admit values in the full range of ℝ [−∞;  ∞], 

(refer to Krishnamoorthy (2016)).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4  Time cross-sections of the time-density functions of operating and investing cash flows 

(constant scale) 
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In stochastic models for firm growth19, for example, Amaral et al. (2001), Bottazzi and Secchi 

(2003a) and Bottazzi and Secchi (2003b), a good fit with the Laplace distribution is 

consistently identified. The shape of the distribution is explained from competition amongst 

firms whose market success is cumulative or self-reinforcing20, leading to phenomena such 

as economies of scale, economies of scope, network externalities, and knowledge 

accumulation. In addition, the Laplace distribution has a strong connection with the Law of 

Proportionate Effect as discussed in Section 2-2.  

The left-hand side graphs of Figure 2-3 seem to coincide with a (two-sided exponential) 

Laplace distribution with its distinctive convex tent shape and (very) heavy tails explained 

from strong cumulative or self-reinforcing effects. Closer inspection of the right-hand side 

graphs (increased scale) in Figure 2-3, however, reveals at least two anomalies with a 

Laplace distribution: a convex-concave shape, distantly comparable to a bell-shaped 

distribution, and a mild right-sided skewness (as expected from the concept of managed 

randomness). Accordingly, the initial approach is to advocate a different set of 

unconditional distributions that is more appropriate to describe cash flow randomness, 

namely the family of Pearson distributions. There is a particular reason to use this family of 

distributions: the general Pearson distribution equation can be directly derived from a 

Fokker-Planck equation with α(c, t) defined as linear in c and β(c, t) as quadratic in c. The 

combination of a linear drift function and quadratic diffusion function are preferred 

functions to describe some important stochastic characteristics of cash flow processes.  

If a stationary solution to the Fokker-Planck equation exists, it satisfies  
∂p(c,t)

∂t
= 0 or 

equivalently the forward equation  
−∂α(c,t)pst(c,t)

∂c
− 

1

2

∂2β(c,t)pst(c,t)

∂c2 = 0                             (2.10) 

Meerschaert and Sikorskii (2012, chapter 7) show that integrating Equation (2.10) once, 

yields:  
dβ(c,t)pst(c,t)

dc
− 2α(c, t)pst(c, t) = K                                                                                (2.11) 

where K is an integration constant. 

                                                           
19 This presupposes that the distribution of growth rates translates into a similar distribution of firm sizes which in turn are related to the 

levels of operating cash flow and investing cash flow. 
20 Which behaviour can be statically modelled by Polya’s urn scheme. 
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Equation (2.11) reduces to 
dpst(c,t)

dc

pst(c,t)
=

 
2α(c,t)− 

dβ(c,t)

dc

β(c,t)
                                                                     (2.12) 

for K = 0. 

Assuming a linear drift function α(c, t) =  μ0 + μ1c and a quadratic diffusion function 

β(c, t) =  σ2c
2 + σ1c + σ0, Equation (2.12) becomes 

pst
′

pst
= 

2(μ1 − σ2)c + (2μ0 − σ1)

σ2c2 + σ1c + σ0
                                                                                                (2.13) 

where pst
′ =

dpst(c,t)

dc
. Equation (2.13) is called the K. Pearson (1893, 1894, 1901, 1916) 

differential equation and the solutions describe the family of Pearson distributions. The 

general solution to ODE (13) is 

pst(c) = K1 exp [∫
2(μ1 − σ2)c + (2μ0 − σ1)

σ2c2 + σ1c + σ0
dc]                                                                (2.14) 

where K1 is a normalisation constant. For cash flow processes two distinctive classes of 

solutions to Equation (2.14) are important: 

1. solutions obeying D < 0 with complex roots, and  

2. solutions obeying D ≥ 0 with one or two real roots, where D =  σ1
2 − 4σ0σ2 is the 

discriminant of the diffusion function β(c, t).  

First, examine case 1 and apply the following transform: c′ = c +
σ1

2σ2
. In addition, define a 

new variable λ =  
√4σ0σ2−σ1

2

2σ2
. Note that since D < 0,  4σ0σ2−σ1

2 will always be greater than 

zero. Making these substitutions, Equation (2.14) becomes 

pst(c
′) = K1exp [∫

2(μ1 − σ2)c
′ −

σ1

σ2
μ1 + 2μ0

σ2( c′2 + λ2)
dc′]                                                           (2.15) 

Consequently, the general three-parameter quadratic equation σ2c
2 + σ1c + σ0 is now 

mapped to a two-parameter quadratic equation σ2(c
′2 + λ2). Integrating Equation (2.15) 

leads to the following composite trigonometric function: 
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pst(c
′) =  K1exp [𝜈1 ln(c′2 + λ2) + 𝜈2 tan−1(

c′

λ
) + K2] =

                                                         K3(c
′2 + λ2)𝜈1exp [𝜈2tan

−1(
c′

λ
)]                                        (2.16)   

where 𝜈1 =
μ1−σ2

σ2
 , 𝜈2 =

2μ0−
σ1
σ2

μ1

σ2λ
 , λ > 0 and K3 = K1exp (K2) is a normalising constant. 

Transforming c′ back to c provides the stationary distribution function for c: 

pst(c) =  K3 [(c +
σ1

2σ2
)
2

+ λ2]

𝜈1

exp [𝜈2tan
−1 [

c +
σ1

2σ2

λ
]]                                                 (2.17) 

After normalisation, Equation (2.17) becomes the basis equation for the Pearson Type IV 

distribution which has support on the full cash flow range ℝ (for a more detailed description 

of the Pearson Type IV distribution, see for example Heinrich (2004)). 

Case 2 implies that Equation (2.14) can be re-written to: 

pst(c) = K1 exp [∫
2(μ1 − σ2)c + (2μ0 − σ1)

σ2(c − λ1)(c − λ2)
dc]                                                                (2.18) 

where λ1,2 = 
−σ1±√σ1

2−4σ0σ2

2σ2
 are real roots of the quadratic diffusion function. 

Integration of Equation (2.18) results in the following expression: 

pst(c) = K1exp[π1ln(c − λ1) − π2 ln(c − λ2) + K4] = K5[(c − λ1)
π1(c − λ2)

−π2]

= K5[(c − λ1)
−(aλ1+b)ν3(c − λ12)

(aλ2+b)ν3]

= K6 [(1 −
c

 λ1
)−(aλ1+b)ν3(1 −

c

 λ2
)(aλ2+b)ν3]                                                (2.19) 

where π1 =
−2λ1(μ1−σ2)−(2μ0−σ1)

σ2(λ2−λ1)
, π2 =

2λ2(μ1−σ2)+(2μ0−σ1)

σ2(λ2−λ1)
,  a = 2(μ1 − σ2), b = (2μ0 −

σ1), ν3 =
1

σ2(λ2−λ1)
,  λ2 ≥ λ1, K5 = K1exp (K4) and K6 = λ1

(aλ1+b)ν3λ2
−(aλ2+b)ν3K5 and can 

be interpreted as a normalising constant. In contrast to Case 1, cash flows are defined on a 

restricted domain. Only if the roots of the diffusion function σ2c
2 + σ1c + σ0 are of 

opposite sign then c is consistently defined on the range between the lower and upper root: 

λ1 ≤ c ≤ λ2. 

After normalisation, Equation (2.19) forms the basis for distributions as versatile as Pearson 

distribution Type I (generalised beta distribution), II (generalised symmetric beta 

distribution), III (gamma or chi square distribution), V (inverse gamma distribution) and VI 
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(beta prime distribution or F-distribution), all belonging to the wider family of Pearson 

distributions, see Crooks (2017), and refer to Figure 2-5 below. 

Pearson distributions

Generalised Beta 
distribution

(Pearson I distribution)
Beta Prime distribution Pearson IV distribution

Case 2: real roots Case 1: complex roots

Pearson II distribution Gamma  distribution
Inverse Gamma 

distribution
Pearson VII distribution

Uniform Exponential Normal Inverse exponential Cauchy

 

Figure 2-5  Hierarchy of Pearson distributions (lower-ranked distributions are specialties of higher-ranked general 

distributions) 

 

In order to analyse the occurrence of Case 1 and Case 2 distributions, cash flow data 

grouped into 114 quarters, was fitted to the general Pearson equation represented by 

Equation (2.13). The estimation method applied is the Method of Moments; the Pearson 

distribution has the convenient feature that its parameters can be directly expressed in the 

first four moments; for the method used, see Andreev et al. (2005). One of the challenges 

encountered is approximating a stationary distribution for all examined 114 quarters and 

this was achieved by normalising the cash flow variables. The following transform was 

applied: cn
′ =

cn−μn

σn
  where n is the number in the sequence of the quarters, μn is the 

average of cash flows of quarter n, and σn is the standard deviation of cash flows of quarter 

n. Details of the analysis are reported in Appendix S4. 
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Table 2-7  Results of analysing the roots of the Pearson distribution 

 
OPERATING CASH FLOW 

 
INVESTING CASH FLOW 

 

TOTAL N. OF QUARTERS 114 100.0% 
 

114 100.0% 
 

N. OF QUARTERS D < 0 15 13.2% 
 

111 97.4% 
 

N. OF QUARTERS D>=0 99 86.8% 100.0% 3 2.6% 100.0% 

OF WHICH N. OF QUARTERS WITH ROOTS OF OPPOSITE SIGN21 99 
 

100.0% 
 

3 100.0% 

OF WHICH N. OF QUARTERS WITH ROOTS OF SAME SIGN 0 
 

0.0% 
 

0 0.0% 

 

Table 2-7 describes an interesting contrast between operating and investing cash flows. 

Almost without exception the roots of investing cash flows are complex roots, typical for a 

cash flow process that follows a Pearson IV distribution. Unlike investing cash flows, 

operating cash flows of the majority of quarters are better modelled by a probability 

distribution defined on a restricted domain. 

A possible explanation for this finding is that operating cash flow typically show a diverging 

exponential growth process whereas investing cash flows tend to follow a converging 

exponential growth process (Section 2.2).  A condition for a stationary probability 

distribution is that the underlying stochastic process must converge in time. Recall the 

following conclusion drawn in Section 1.5. For a set of drift and diffusion functions 

{α(Ct, t), β(c, t)(Ct, t)} the following inequality must approximately hold for a finite 

stationary variance : 
1

2
β ′′(c̅ ) + 2α′(c̅ ) < 0. Applied to a linear drift function and a 

quadratic diffusion function, in this study used to describe cash flow processes, it can be 

shown that the variance condition translates to: μ1 < −
1

2
σ2. If this condition is combined 

with Equation (2.13) then the ratio 
pst

′

pst
 22 becomes smaller with increasing cash flows, a 

prerequisite for a stable conditional probability distribution. Hence, there is no reason to 

place a priori domain restrictions on the probability distribution of stationary processes. By 

implication, diverging processes have no stationary distribution and therefore a bounded 

rather than an unbounded diffusion process is more appropriate to describing their 

intertemporal dynamics. This issue will be analysed more comprehensively in Chapter 4. 

 

                                                           
21 Roots of an opposite sign, i.e.  λ1 < 0 < λ2, are characteristic for the Pearson Type I distribution. 
22 This ratio can be interpreted as the relative change of probability density per unit cash flow. 
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Evolution of moments 

This subparagraph examines the evolution of the first four moments of the time-density 

functions of operating and investing cash flow. Contingent on prior observations, the 

following is expected to be found: 

• The evolution of the first moment will depend on macro-economic growth and prosperity 

indicators that reflect the movement of the overall business cycle (for the dataset used in 

this study: the North American cycle); 

• The second moment (here measured as standard deviation) will be proportionally related 

to the evolution of the mean. This follows from the assumed constant risk (variability) per 

dollar cash flow; 

• A consistently modest positive third moment (here measured as the usual skewness 

statistic); and 

• A significant fourth moment (here measured as the usual kurtosis statistic) in all 

observed quarters, which follows from the pronounced leptokurtic shape of the time-

density functions (Figure 2-2). 

Figure 2-6 (below) provides the development of the aggregated first moment for all the 

study’s 5,202 North American firms23. Evidently, the graph shows the impact of the GFC 

(2008Q3) on the trend line of both cash flows; however, the break in the trend is markedly 

stronger for investing cash flow then for operating cash flow.  A plausible explanation is that 

most firms consider investments largely as discretionary spending and with the prevailing 

pessimistic outlook after the third quarter of 2008, directors decided to considerably reduce 

investment levels in the light of an anticipated economic contraction. 

Figure 2-7 (below) shows how the GFC has affected cash flow volatility: hardly any impact at 

all on operating cash flow but a notable jump in volatility of investing cash flow which 

endured to the close of the period. 

                                                           
23 The number and composition of firms in each quarter varies; nevertheless, the firms analysed are considered to be a representative 

sample of the population even though some of the statistics may have been influenced by outliers. 
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Figure 2-6  Evolution of first moment of operating cash flow and investing cash flow 

 

 

Figure 2-7  Evolution of second moment of operating cash flow and investing cash flow 

 

A regression of the second moment on the first, is compatible with a strong linear 

relationship for operating cash flow (Table 2-8) but a much weaker linear relationship for 

investing cash flow (Table 2-9).  Interestingly, both regression tables include a statistically 
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significant positive constant (intercept) corresponding to a diminishing cash flow risk as the 

size of cash flow increases. This suggests that some form of diversification may be at work, 

contrary to the paradigm that in a perfect and efficient capital market investors are better 

placed to diversify business risks in financial markets than companies can do in the real 

economy (refer to Brealey et al. (2011) for an explanation of the value additivity principle). 

Schlegel (2015) points out that few empirical tests have been conducted to investigate the 

existence of the value additivity principle. Those tests show mixed results which the author 

attributes to (i) a lagging arbitrage mechanism (it takes time to merge and demerge 

company structures), (ii) a natural risk diversification amongst activities of most companies, 

and (iii) agency costs related to management not strictly aligning their objectives with those 

of shareholders. The value additivity principle is also contested on other theoretical 

grounds: see for example Magni (2007). 

 Table 2-8  Statistics of regression of the second moment (STD) on the first moment of operating cash flow 

Regression Statistics        
Multiple R 0.915913        
R Square 0.838896        
Adjusted R Square 0.837458        
Standard Error 498.8484        
Observations 114        
         
ANOVA         

  df SS MS F Significance F    
Regression 1 1.45E+08 1.45E+08 583.2042 3.25E-46    
Residual 112 27871173 248849.8        
Total 113 1.73E+08          
         

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

         

Intercept 386.0707 67.61629 5.70973 9.42E-08 252.0977 520.0437 252.0977 520.0437 
STD Operating cash flow 4.405471 0.182424 24.14962 3.25E-46 4.044021 4.76692 4.044021 4.76692 

 

 

Table 2-9  Statistics of regression of the second moment (STD) on the first moment of investing cash flow 

         
Regression Statistics        

Multiple R 0.449725813     

 

  
R Square 0.202253307        
Adjusted R Square 0.195130568        
Standard Error 3102.394316        
Observations 114        
         
ANOVA         

  df SS MS F Significance F    
Regression 1 273301888.7 273301888.7 28.39544251 5.17524E-07    
Residual 112 1077983255 9624850.491        
Total 113 1351285144          
         

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept 1195.575607 459.9653313 2.599273305 0.010599809 284.2132634 2106.93795 284.2132634 2106.93795 
STD Investing cash flow 8.964007435 1.682201003 5.328737421 5.17524E-07 5.630941781 12.29707309 5.630941781 12.29707309 
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Figure 2-8  Evolution of third moment of operating cash flow and investing cash flow 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the skewness graph (Figure 2-8) present a bit of a surprise. Despite the 

predominance of right-sided skewness, there is no consistency, in particular, in the 

operating cash flow time series. Positive and negative skewness often alternate (operating 

cash flows) whilst the impact of the GFC is visible in an abrupt and major change from 
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Figure 2-9  Evolution of fourth moment of operating cash flow and investing cash flow 
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positive to negative skewness (investing cash flow). Negative skewness can be interpreted 

as a larger than 50% probability of cash flows being biased to the downside24. High but 

varying levels of kurtosis are confirmed in Figure 2-9 notably that of investing cash flow. 

Discussion 

In this section four important factors that determine a diffusion function for a cash flow 

process were discussed. The analysis of the instantaneous change in variance suggests that 

specifications linear and quadratic in cash flow, are both adequate specifications to model 

the diffusion function of cash flow processes of the majority of examined firms. Of those 

firms, between about 40% and 50% (depending on operating or investing cash flow process) 

have a better fit with a quadratic diffusion model than with a linear model. This number, 

however, increases significantly if it is recognised that a linear specification can be derived 

from a full quadratic specification as a special case. 

As has become evident in the above subparagraphs, each of the first four moments is 

relevant to characterising the diffusion function of cash flow processes. Visual inspection of 

the shape of the space-time density functions affirms stochastic similarity between 

operating cash flow and investing cash flow processes; a more detailed analysis, however, 

points to a few notable differences. Both cash flow processes are portrayed by a strongly 

leptokurtic probability density function which is apparent from significant kurtosis. 

Leptokurtic distributions are often related to self-reinforcing mechanisms (“success breeds 

success”). In addition, both cash flow processes show a mild right-skewness which can be 

explained by the concept of managed randomness. 

It is suggested that the Pearson family of distributions, with a linear drift function and a 

quadratic diffusion function, can describe the marginal density function of cash flow 

processes. Here, operating and investing cash flow part ways. Investing cash flow invariably 

have a stationary distribution typical for a converging process. Mostly, this is not the case 

for operating cash flow that is linked to a diverging diffusion process. Consequently, 

investing cash flow diffusions can be described by a (stable) Pearson Type IV distribution 

                                                           
24 Which means that a larger number of firms are concentrated at the lower end of the cash flow spectrum. This does not per se 

contradict growing average cash flows. 
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whilst the probability dynamics of the operating cash flow diffusions are more complex and 

require a detailed inspection of the underlying Fokker-Planck equation. 

The risk inherent in operating cash flow is strongly correlated to the evolution of mean cash 

flows; for investing cash flow this relationship is less unequivocal and is likely to be 

influenced by other variables as well. Generally, investing cash flow risk is significantly 

higher than operating cash flow risk which could be explained by better diversification of 

the latter risk compared to the first25. Regardless, if a firm grows (and scales-up its operating 

and investing cash flows) then the analysis shows that the impact of diversification on 

investing cash flow is larger than on operating cash flow. A diffusion function of cash flow 

processes should be adept to modelling the occurrence of materially positive as well as 

negative skewness.  

 

2.4. The relationship between operating and investing cash flow 

In order to develop a more substantial foundation for the choice of a cash flow specification, 

it is proposed to consider operating and investing cash flows as elements of one system of 

interacting cash flows. This proposition leads to the following important question: are the 

levels of operating cash flow and investment cash flow correlated, and if so, then what are 

the determinants of this relationship? A closely associated question, is the issue of how does 

causality runs? The relationship between operating and investment cash flows can be 

approached from at least three different angles: 

1. A firm may invest more from internally generated cash if (external) funding opportunities 

are constrained (soft or hard capital rationing) or if the cost of capital of external funding 

exceeds that of internal funding (related, for instance, to information asymmetries); 

2. Managers tend to overspend on internally available funds; and 

3. Self-enforcing mechanisms (as described in Section 2.3.) could provide an explanation. 

The literature provides evidence under the broad heading of ‘investment-cash flow 

sensitivities’, albeit that the conclusions from various studies are rather ambivalent. Kaplan 

and Zingales (1997) do find significant investment-cash flow sensitivities but conclude that 

                                                           
25 Commonly firms have wider opportunities to diversify income sources in the external market whilst investment is more idiosyncratic 

spending.  
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these sensitivities are not a good measure of financing constraints enforced on the firm. H. 

Chen and Chen (2012) contend that investment-cash flow sensitivities have declined and 

even completely disappeared in recent years, for which the authors admit to not having 

ascertained a satisfying explanation. In contrast, Lewellen and Lewellen (2016) find 

convincing evidence for those sensitivities, and an even stronger relationship between 

investments and a firm’s expected cash flow. 

The second angle, overspending on internally available funds, has been analysed by, for 

example, Pawlina and Renneboog (2005) and Cadenillas and Clark Steven (2007). In spite of 

traditional finance theory suggesting that each investment opportunity should be 

considered on its own merits, independent of how much prior cash the firm has generated, 

the problem of over or underinvesting is found to exist. 

The third angle, probably the least discussed in the literature, is the explanation of 

stochastic cumulative mechanisms at work in the interaction between operating and 

investing cash flows. Tails fatter than those defined by a normal distribution are usually an 

indication that recursive relationships, such as the one examined in this study (increase in 

investments → higher operating cash flow → more increase of investments, etcetera), are 

present (see Sornette (2003)). 

The above considerations underpin a two-way causality: 

1. One that runs from investing cash flow It to operating cash flow Ct, i.e. 

Ct =  F(ℒ(It),WC,t)                                                                                                                    (2.20)    

and   

2. One that goes in the opposite direction:  

It =  G(ℒ(Ct),WI,t)                                                                                                                     (2.21) 

where ℒ( ) is a time-lag operator. 

It should be noted that WC,t and WI,t are dependent Wiener processes since investing is not 

a completely autonomous random process: the amount and timing of investments are 

decided by the firm’s management after taking all relevant information, importantly, the 

generation of operating cash flow, into consideration. 
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Figure 2-7 demonstrates that at a macroscopic level (aggregate – averages for all firms) a 

modestly strong correlation exists between operating and investing cash flow (with a clear 

trend break at the start of the GFC). This relationship is further quantified in Appendix S5. 

From the regression statistics, summarised in Table 2-10, it is obvious that, prior to the GFC, 

there is a very strong fit between operating cash flows and investing cash flows pertaining 

to the same quarters. After, and arguably because of the GFC, the fit is much weaker. 

Table 2-10  Summary of statistics of regression of operating cash flow on investing cash flow 

 
FIT - R2 

           
∆𝐂

∆𝐈
 
 

CONSTANT 

FULL PERIOD 1988 Q1-2016 Q2 42.9% 0.97 62.0 

PRE-GFC PERIOD 1988 Q1-2008 Q2 93.2% 0.74 7.5 

POST-GFC PERIOD 2008 Q3-2016 Q2 34.9% 0.40 391.2 

 

Table 2-10 shows that prior to the GFC one dollar of investment translates almost 

instantaneously in $0.74 extra operating cash flow (regardless of future additional cash 

flows) whereas, due to the GFC, the 
∆𝐂

∆𝐈
 ratio drops to 0.40. In addition, there is a notable 

shift in the constant parameter: in the pre-GCF period the constant is statistically 

insignificant (suggesting a proportional relationship) but post-GFC the constant becomes 

relatively large and surely significant. The analysis indicates that as a consequence of the 

GFC, the operating cash flow- investing cash flow relationship is more variable, coupled with 

a lower immediate return on investments, i.e. it takes longer for investments to come to 

fruition and/or investing is less efficient (at least in the short run). 

The cash flow relationship at a microscopic (individual firm) level is much more complicated 

and prone to the influence of elevated randomness; Figures 1-3 and 1-4 in Chapter 1 

provide a visual testimony of this statement. A stable correlation typical for a macroscopic 

environment would not be expected to be found. It is supposed that the microscopic 

relationship is not uniform for all firms but is likely to vary in terms of, for example, the 

duration of the investment cycle, i.e. (i) the time between investment and its effect on 

business activity, and (ii) the mathematical specification of the link. As regards the latter, 

amongst others, Kaplan and Zingales (1997) and Lewellen and Lewellen (2016), suggest that 

the specification is a non-monotonic function, hence nonlinear. The analysis of the 
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microscopic relationship between operating cash flow and investing cash flow is deferred 

until this relationship is described in more detail in Chapters 3 and 4. 

Discussion 

On average (measured over all firms) there is a fairly strong connection between operating 

cash flow and investing cash flow, albeit that the fit between the two variables has 

considerably deteriorated after (and presumably from) the GFC.  

Unsurprisingly, at an individual firm-level, this connection is much fuzzier due to its 

stochastic nature. The literature provides good reasons for the relationship between 

investments and operating cash flow, despite the evidence sometimes being contradictory.  

 

2.5. Conclusions from Chapter 2 

From the review of the literature, five commonly used continuous cash flow specifications 

are identified: Geometric Brownian Motion, Arithmetic Brownian Motion, the Vasicek 

process, the Cox, Ingersoll and Ross process (CIR process or square root), and the Modified 

Square Root process (MSR process). These specifications will be used in Chapter 5 as bench 

mark specifications to test a newly developed cash flow model. 

The functional specifications of the drift and diffusion functions are further examined by 

using the available set of cash flow data from the study’s 5,202 North American firms. The 

particular interest is to identify similarities and discrepancies between operating cash flow 

processes and investing cash flow processes. 

With respect to the drift function, it is found that the choice between an exponential growth 

process and a linear growth process is too simple; therefore, a composite specification is 

advocated that supports a much wider range of stochastic cash flow processes than an 

exponential or a linear drift function in isolation. There are strong indications that, in the 

long run, operating cash flow processes diverge without reaching a stable level (and a 

stationary probability density function), as opposed to investing cash flows that do display 

converging behaviour. 

From examining the approximation of cash flows by a continuous process, it is clear that a 

nonlinear (second order) diffusion function is appropriate to mimic the jump-like behaviour 
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typical of a significant number of cash flow processes. Further analysis of the diffusion 

function reveals that a quadratic specification is in most cases superior to a linear 

specification, specifically because a linear diffusion can be seen as a special form of a more 

inclusive quadratic diffusion. 

A quadratic diffusion function also explains the gap between a Gaussian transition density in 

very small time, and the empirically observed quarterly transition probabilities that 

predominantly are characterised by fat and long tails. The space-time density functions, 

constructed of real-time cash flows, provide deeper insight in the unconditional density 

function. For both operating cash flow and investing cash flow these marginal density 

functions are (asymmetric) leptokurtic. The leptokurtic shape is often seen in connection 

with self-reinforcing mechanisms which are suspected of also playing an important role in 

the interaction between operating and investing cash flows. Asymmetry in the form of mild 

right-skewness is explained by the concept of managed randomness. 

The literature about stochastic business growth processes frequently mentions a 

(asymmetric) Laplace distribution as an appropriate distribution to describe the related 

marginal density function. A superficial observation of the marginal density function of cash 

flow processes seems to indicate such a distribution. However, closer inspection reveals 

properties different to the Laplace distribution which are better described by the Pearson 

family of distributions. Pearson distributions imply a linear drift function and a quadratic 

diffusion function, and in several places in this study are identified as appropriate functions 

to model cash flow processes. However, by definition, Pearson distributions converge to a 

stable distribution that requires the linear drift function to be mean-reverting. My empirical 

research suggests that investing cash flow processes can be adequately described by a 

Pearson Type IV distribution defined on the full range of cash flows. In contrast, operating 

cash flow processes converge to a stable Pearson distribution only within a restricted cash 

flow spectrum. Outside this spectrum, the process diverges. These findings are entirely 

consistent with the prior conclusion that investing cash flows characterised by a converging 

drift function and operating cash flows by diverging drift function. Therefore, operating cash 

flow processes cannot be described by a (stable) Pearson distribution. To examine the 



 
 
66                                                                                                   
 

  

stochastic properties of operating cash flow processes, it is necessary to refocus on the 

intertemporal dynamics of the process rather than on its long-time behaviour. 

From Table 2-11, it is obvious that operating and investing cash flow processes have 

different stochastic properties. Investigation of the evolution of the first four moments of 

the respective space-time density functions, reveals some important differences. The 

second moment (representing cash flow risk) is strongly correlated to the evolution of mean 

operating cash flow; this is less obvious for investing cash flow. The analysis shows a mild 

form of risk diversification if cash flow grows. This effect is more pronounced for investing 

cash flow than for operating cash flow.  

Review of the literature reinforces the presumption that operating cash flow and investing 

cash flow are connected and can be considered within one integrated stochastic model. This 

conclusion, in conjunction with other conclusions from Chapter 2, underpin the 

development of an integrated hybrid operating and investing cash flow model which is 

described in detail in Chapter 3.  
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3. A Coupled Linear-Quadratic Cash Flow Model 
 

Chapter 3 lays the foundation for what is called in this study a coupled hybrid linear-

quadratic cash flow model. The terms hybrid and coupled will be explained. The major 

contribution of this chapter is that it shows how a versatile deterministic, and even more 

sophisticated stochastic, cash flow model can be derived from a few premises that are 

underpinned by findings from the literature in addition to common finance and business 

knowledge. A simulation of the model is included to demonstrate its fit with real-world cash 

flows. 

3.1. Introduction 

Section 2.1. provided a review of five continuous-time cash flow specifications that 

commonly feature in the literature. In Chapter 1 strong indications were found that, to a 

varying degree, these specifications are inadequate to properly model cash flow processes. 

First, there is the issue of the cash flow domain. Restricted support on ℝ+ already 

disqualifies the pure Geometric Brownian Motion and the Cox, Ingersoll and Ross (square 

root) processes. The second issue relates to theoretical and empirically desirable drift and 

diffusion functions. A linear growth process, underpinning the Arithmetic Brownian Motion, 

does not agree with the findings from the literature nor is it supported by unequivocal 

empirical evidence. The results of the empirical research, indicates a skewed, heavy-tailed 

diffusion process, materially different from a normal distribution. This finding excludes again 

ABM and Vasicek processes which assume an unconditional normal distribution.  

In Chapter 1 repeated suggestions were made that a quadratic diffusion function is a 

preferable specification to mimic jump like behaviour of cash flow processes. All 

specifications but the Modified Square Root process have diffusion functions of less than 

second order. Even the Modified Square Root process, of all five specifications the most 

appropriate to model cash flows, has its limitations. It assumes that the drift function 

follows a pure exponential growth process despite the conclusion in Section 2.2. that the 

drift function of cash flow processes fits better with a more versatile linear specification, 

combining an exponential and linear growth process in one equation. Also, from Section 2.3. 

it transpires that, assuming a quadratic diffusion function, there is no reason to a priori 
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reduce the number of parameters from three to two, and thus limit the admissible 

members of the Pearson family of distributions. 

In conclusion, there are good reasons to develop an alternative continuous cash flow 

specification (alternative to the five well-known specifications) that not only has a strong 

theoretical foundation but, additionally, is firmly supported by empirical evidence. The cash 

flow model to be developed in this chapter, is a coupled linear-quadratic model linking 

operating and investing cash flows in one integral model based on a hybrid specification, 

which is a combination of two basic SDEs, the Geometric and Arithmetic Brownian motions. 

In the prior chapters, the symbols Ct and c were used to denote a cash flow or a cash flow 

process; in the sequent sections of this study a distinction will be made between operating 

cash flows represented by Ct and investing cash flows designated by It. The symbol Xt will 

denote a general cash flow process including operating and investing cash flows. 

 

3.2. Foundation of the model 

In Section 2.4. preliminary evidence was found for a stochastic relationship between 

operating cash flow and investing cash flow. There are strong indications that this 

relationship is nonlinear. This section explores the dynamics of a supposed stochastic 

relationship between operating and investing cash flows in detail. The view will be 

supported that this relationship is bi-causal. 

The starting point is the supposed time-lag between investing cash flow as an explanatory 

variable and operating cash flow as a dependent variable (‘the first fundamental 

relationship’), to be followed by the causality between operating cash flow as an 

explanatory variable and investing cash flow as a dependent variable (‘the second 

fundamental relationship’). In the following, endogenous and exogeneous factors are 

analysed that, in aggregate, explain the change of operating cash flow in time, and the 

evolution of the level of investing cash flow. 

The first fundamental relationship 

From macroeconomics, it is well-known that there is a relationship between the level of 

investments and the firm’s output - Cobb and Douglas (1928); Rowley (1970); Smith (1961). 



 
 

3   A Coupled Linear-Quadratic Cash Flow Model  71 
 

Since capital goods generally include tangible assets only26, this relationship is strong for 

industries with a high intensity of tangible assets and less relevant to firms that largely 

create intangible assets. Nevertheless, investments in productive assets are critical to the 

growth of the firm. Investments can be split into (i) replacement investments, here defined 

as investments required to maintain the current level of operating cash flows, and (ii) 

expansion investments, i.e. investments made with the aim of growing future operating 

cash flows beyond the current level. 

In the following a justification will be given for the first fundamental relationship. First, 

determining factors will be explained in isolation; thereafter it is assumed that these 

individual factors can be aggregated linearly. Suppose that replacement investments are 

approximately proportional to the level of operating cash flow to be conserved minus a 

constant m:  Ct =  k Ir,t − m (k > 0) where Ir,t is called the investment replacement 

threshold. Future growth of operating cash flows is considered also approximately 

proportional to the level of current investments above the investment replacement 

threshold Ir,t:  Ct+1 − Ct = β(It − Ir,t) if  It > Ir,t, i.e. It is assumed that the proportionality 

factor β holds for expansion investments only and can be different from k . 

Normally, investments will take time before they become fully productive and translate into 

incremental cash flows. Consequently, it is appropriate to consider a time-lagged response 

of cash flows to investments. The proportionality parameter β (≥ 0), also called the 

investment response parameter, is assumed to be time invariant. The investment response 

parameter is thought to be determined by industry characteristics and within an industry by 

firm-specific characteristics such as the ability of management to successfully turn 

investments into business growth.  

However, the expression Ct = k Ir,t − m can be reformulated to Ir,t =
1

k
Ct +

m

k
 (k,m > 0). 

Therefore, the expected future growth of operating cash flow Ct+1 will not only depend on 

the amount of total investments It but it also will be negatively proportional to Ct as 

follows: Ct+1 − Ct = β It −
βm

k
−

β

k
Ct = β It−𝜏0,t − 𝜏Ct where parameter 𝜏0,t =

βm

k
 and 𝜏 =

                                                           
26 The definition of investing cash flow used in this study (see Chapter 10, Definitions of Terms Used), includes the value of intangible 

assets if the firm acquires or sells an (equity instrument in) another entity at which moment an objective market value of those assets 
can be established. 
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β

k
 (> 0). The expression −𝜏0,t − 𝜏Ct  is called the cash flow attrition rate representing a 

decline in cash flow generating capacity if the firm has an investment level below the 

investment replacement threshold, i.e. It <  Ir,t. If It = 0 then the attrition rate −𝜏0,t is 

independent of the cash flow level. The cash flow attrition rate is supposed to be largely 

determined by the technology replacement rate in a specific industry. 

Furthermore, the firm’s existing capital goods Kt can have the ability to generate additional 

operating cash flows, for example because those capital goods are not producing at full 

capacity. The occupancy rate ω is here defined as ωt =
Ct

Kt
. If the firm succeeds in a better 

utilisation of its current production capacity Kt, then the additional operating cash flow 

generated will equate to Ct+1 − Ct = (ωt+1 − ωt)Kt =
(ωt+1−ωt)

ωt
Ct. 

Combining the two effects, the increase in operating cash flows from better capacity 

utilisation and the natural operating cash flow deterioration from capital goods attrition, in 

one equation leads to  Ct+1 − Ct = [
(ωt+1−ωt)

ωt
− 𝜏] Ct = αCt where a new parameter α 

replaces the expression 
(ωt+1−ωt)

ωt
− 𝜏. This parameter α is called the cash flow growth rate 

and is assumed to be constant. Notice that α will be positive if the impact of improved 

capacity utilisation on operating cash flow, on balance, is stronger than the cash flow 

deterioration effect, and α will be negative if the opposite is true. 

Other variables also affect the growth of future cash flows. These variables, in aggregate 

represented by parameter n, are exogenous to the model and it is assumed that (in 

aggregate) n is approximately constant over time. Another reason to include a constant n is 

that the assumed proportionality between Ct+1 and It could well be diminishing as the size 

of the firm grows and continues to invest: 
Ct+1

It
= β +

n

It
. Hereafter, a parameter δt is defined 

as the sum of −𝜏0 and n. It is assumed that δt is time-invariant, at least in small time Δt, i.e. 

δt = δ. 

A mathematical summary of the above aggregated factors, prompts the following discrete-

time equation with operating cash flow as both a lead and lag term, and investing cash flows 

as a lag term 
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Ct+1 − Ct = αCt + βIt  + δ                                                                                                             (3.1a) 

The second fundamental relationship 

This section examines the reverse relationship between operating cash flow as input 

variable and investing cash flow as output variable. Beside the literature already mentioned 

in Section 2.4. in support of this relationship, there is other evidence and alternative 

explanations for the reverse relationship. A good fit is normally found between (i) 

investment and (ii) current cash flow and Tobin’s Q. The latter reflects (market) expectations 

of future business growth (Abel and Eberly (2011) and ultimately cash flow growth. The 

significant coefficient in the regression of investment on cash flow, is explained by financing 

constraints faced by a firm (Abel (2016)), for instance smaller firms having restricted access 

to capital markets (Kadapakkam et al. (1998)). Another explanation is given by Gilchrist & 

Himmelberg (1995) which study suggests that cash flow is also a good indicator of the firm’s 

(future) investment opportunities since (current) cash flow is a fundamental (adjusted for 

the possible impact of financing constraints) predictor of future cash flows. The analysis 

below follows this reasoning. 

The level of investments is assumed proportional to the available cash balance of the firm at 

the time of investing:  It = r Bt. Furthermore, it is assumed that accumulated cash flow is an 

even better predictor of future cash flows than a cash flow at a single point in time. The 

other, implicit, assumption is that the firm in aggregate has enough investment projects that 

meet the firm’s hurdle rate to invest at least rBt each period. The movement in cash 

balance Bt is the sum of operating cash flow, investing cash flow and financing cash flow 

(Ft): Bt = Ct + It + Ft+Bt−1. Note that if the firm requires additional funding to externally 

finance investments, it is already included in the cash balance Bt.  

Combining the two expressions, gives It as It =
r

1−r
Ct +

r

1−r
Ft +

r

1−r
Bt−1. Now, express 

r

1−r
 

as γ which turns the prior expression into It = γ Ct + γ Ft + γ Bt−1. Parameter γ (0 < γ ≤

1) is called the cash investment rate and is assumed to be constant over time. 

In a next step, consider the expression γ Ft + γ Bt−1 in isolation and label it εt.  It is assumed 

that εt is approximately time-homogeneous and thus εt = ε. This follows from the 

assumption that γBt and Ft+1 are balancing quantities: if the firm has not accumulated 
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enough cash Bt−1 at time t-1 it will need to attract additional funding Ft, and conversely, if 

the firm has a sufficient cash balance Bt−1 it will require less external funding. A large cash 

surplus allows the firm to pay dividends or to accelerate the down payment of debt, and in 

either case  Ft becomes negative. 

Similar to Equation (3.1a), the second fundamental relationship can be expressed as 

It+1 = γCt +  ε                                                                                                                                   (3.1b) 

Here, investing cash flow is the lead term and operating cash flow is the lag term. 

Equations (3.1a) and (3.1b) can be written in difference form 

∆Ct+1 = αCt + βIt + δ                                                                                                                    (3.2a) 

∆It+1 = γCt − It +  ε                                                                                                                       (3.2b) 

or more conveniently expressed in a matrix notation 

∆𝐮t+1 = 𝐀𝐮t + 𝐛                                                                                                                                (3.3)                                                                                                                                                            

where ∆𝐮t+1 = (
∆Ct+1

∆It+1
),  𝐀 =  (

α β
γ −1

), 𝐮t = (
Ct

It
) and 𝐛 = (

δ
ε
).  

Equation (3.3) represents a {Ct, It} coupled system. The dynamics of Equation (3.2a) is based 

on a multiplicative time-series as opposed to the dynamics of Equation (3.2b) which is 

additive. Notice that Equation (3.3) describes a deterministic system, nevertheless, the 

interaction of the additive and multiplicative dynamics in the coupled system {Ct, It} is 

already capable of describing interesting cash flow behaviour. In Section 3.4. the 

deterministic system will be transposed to a random environment in order to model much 

more realistic stochastic cash flow behaviour as observed in the real world. However, the 

price paid is increased complexity. The first priority is to investigate solutions to Equation 

(3.3) in a deterministic environment. 

 

3.3. The cash flow model in a deterministic environment 

Studying the properties of a solution to the deterministic cash flow model is conducive to 

better understanding the dynamics of the model in a stochastic setting. No matter if a 

solution is deterministic or stochastic, decoupling the system is a condition necessary to 
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finding a solution. Decoupling is achieved by an eigen-decomposition27 of the system.  For a 

detailed explanation of decomposition techniques refer to Davidson and Tippett (2012, 

chapter 8) and Geiser (2009). 

Decoupling the system 

In order to solve the equations, decouple the system S {∆C∆t, ∆I∆t} where ∆t = [t, t + 1]. 

Decoupling is achieved by transforming the set of variables (
Ct

It
) into a new set of variables 

(
Ct

′

It
′ ) such that changes of each variable are expressed exclusively in their own variable.  

Mathematically this is done by diagonalising matrix 𝐀. Define a new set of variables 𝐯t =

(
Ct

′

It
′ ) = 𝐐−𝟏. 𝐮t where 𝐐−𝟏 is the inverse matrix of the eigenvectors of 𝐀. The eigenvectors 

of 𝐀 are 𝐐 = (
2β

−1−α+ω

2β

−1−α−ω

1 1
), hence 𝐐−𝟏 = (

(−1−α+ω)(1+α+ω)

4βω

−1−α+ω

2ω

−
(−1−α+ω)(1+α+ω)

4βω

1+α+ω

2ω

), and the 

diagonal matrix of eigenvalues is 𝚲 = (
Λ1 0
0 Λ2

) = (

1

2
(α − 1) +

1

2
ω 0

0
1

2
(α − 1) −

1

2
ω

)  

where ω =  √(α − 1)2 + 4(βγ + α). After some matrix algebra, the decoupled system 

becomes: ∆𝐯t+1 = 𝚲. 𝐯t + 𝐐−𝟏. 𝐛  or 

∆C∆t
′ = (

1

2
(α − 1) +

1

2
ω)Ct

′ + ϑ1                                                                                               (3.4a) 

∆I∆t
′ = (

1

2
(α − 1) −

1

2
ω) It

′ + ϑ2                                                                                                (3. 4b) 

where for notational convenience 𝛝 = (
ϑ1 
ϑ2 

) replaces 𝐐−𝟏. 𝐛.  Note that the solution 𝐯t can 

be transformed back to 𝐮t by 𝐮t = 𝐐. 𝐯t. 

The dynamics of the continuous-time system 

In order to analyse the dynamics of the deterministic cash flow system, it is useful to 

express Equations (3.2a) and (3.2b) in their continuous-time variant 

                                                           
27 Also known as spectral decomposition. 
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dCt

dt
= αCt + βIt + δ                                                                                                                         (3.5a) 

dIt
dt

= γCt − It +  ε                                                                                                                            (3.5b) 

Observe that the deterministic system S {Ct, It} consists of two coupled ODEs.  

Similar to Equation (3.3), Equations (3.5a) and (3.5b) can be expressed in matrix form as  

d𝐮t = 𝐀𝐮𝐭 + 𝐛                                                                                                                                    (3.6) 

where d𝐮t = (

dCt

dt
dIt

dt

),  𝐀 =  (
α β
γ −1

), 𝐮t = (
Ct

It
) and 𝐛 = (

δ
ε
).  

The following analysis is based on the methods and techniques set out in Perko (2008). 

First, transform 𝐮𝐭 to 𝐮𝐭
′: 𝐮𝐭

′ = 𝐮t − 𝐀−𝟏𝐛 to eliminate vector 𝐛. The transformed system 

becomes 

d𝐮𝐭
′ = 𝐀𝐮𝐭

′                                                                                                                                             (3.7) 

It is not difficult to see that the equilibrium point of 𝐮𝐭
′ (where the system is stationary in 

time) is (C∗, I∗) = (0,0)28 if α + βγ ≠ 0. The characteristic equation of 𝐮𝐭
′ , λ2 − (α − 1)λ −

(α + βγ) = 0, provides insight in the stability of the system. The roots of the characteristic 

equation are  Λ1,2 =
1

2
(α − 1) ±

1

2
√(α − 1)2 + 4(βγ + α). Since β, γ ≥ 0 the expression 

under the square root is always greater than zero and hence the system has only real roots. 

It can be shown that for Ct
′ ∈ (−∞;∞), the root of the operating cash flow process Λ1 goes 

asymptotically from the value -1 to infinity. Likewise, for It
′ ∈ (−∞;∞), the root of the 

investing cash flow process starts at minus infinity to asymptotically approach the value -1. 

For all It
′,  values of Λ2 are negative implying an investment process that is always 

converging in time to I∗ = 0 (conditional on the system 𝐮𝐭
′). Depending on the value of α, Λ1 

can be positive or negative with a transition point at α = −βγ. Therefore, if α < −βγ then 

                                                           
28 For the original system 𝐮t the equilibrium point is (C∗, I∗) = (

−(δ+βε)

α+βγ
,
αε−γδ

α+βγ
).  
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the operating cash flow process becomes converging in time to reach C∗ = 0 (conditional on 

the system 𝐮𝐭
′) for values α > −βγ the process is diverging over time to C∗ = infinity. 

The greater the value of parameter α is, the faster operating cash flow diverges to infinity, 

and the slower investment cash flow converges to a long-time value (Table 3-1).  

The smaller the value of parameter α is, the slower operating cash flow diverges to infinity; 

however, beyond the transition point α = −βγ it will converge faster to the long-time value. 

Lower alpha values also translate into faster converging investment cash flow (Table 3-1). 

Table 3-1  Values of roots Λ1,2 with changing parameter α (given β = 1, γ = 1) 

 

  

 

  

 

  
1000 1000.000999 -1.000999 

100 100.0099 -1.00990002 
10 10.09016994 -1.090169944 

9 9.099019514 -1.099019514 
8 8.109772229 -1.109772229 
7 7.123105626 -1.123105626 
6 6.140054945 -1.140054945 
5 5.16227766 -1.16227766 
4 4.192582404 -1.192582404 
3 3.236067977 -1.236067977 
2 2.302775638 -1.302775638 
1 1.414213562 -1.414213562 

0.5 1 -1.5 
0 0.618033989 -1.618033989 

-0.5 0.280776406 -1.780776406 
-1 0 -2 
-2 -0.381966011 -2.618033989 
-3 -0.585786438 -3.414213562 
-4 -0.697224362 -4.302775638 
-5 -0.763932023 -5.236067977 
-6 -0.807417596 -6.192582404 
-7 -0.83772234 -7.16227766 
-8 -0.859945055 -8.140054945 
-9 -0.876894374 -9.123105626 

-10 -0.890227771 -10.10977223 
-100 -0.98990002 -100.0101 

-1000 -0.998999 -1000.001001 
   

 

The above conclusions have interesting practical implications (Table 3-2). To ensure that the 

operating cash flow process continues to grow, the multiplication of the investment 

response rate β and the cash investment rate γ must be greater than minus the cash flow 

growth rate −α. However, if βγ is smaller than -α, then the operating cash flow will 

asymptotically approach a long-term value. Regardless of the value of parameters α, β, γ, 

the investment cash flow will always approach a long-term value, i.e. once growth of 

operating cash flow has taken off by ensuring βγ > −α, only a constant level of investment 

is required to maintain cash flow growth. 
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Table 3-2  How cash flow process characteristics depend on parameter values 

 OPERATING CASH FLOW PROCESS INVESTING CASH FLOW PROCESS FIRM CHARACTERISTICS 

𝛃𝛄 < −𝛂  Reverting to a long-time value 

(converging process) 

Reverting to a long-time value 

(converging process) 

Stable free cash flow, typical 

for static value firms 

𝛃𝛄 > −𝛂  Exploding growth (diverging process) Reverting to a long-time value 

(converging process) 

Increasing free cash flow, 

typical for growth value firms 

 

Equation (3.6) can be decoupled by setting 𝐯t = (
Ct

′

It
′ ) = 𝐐−𝟏𝐮𝐭 where 𝐐−𝟏 is the inverse of 

the eigenvectors of A. Matrix 𝐐−𝟏 = (

(−1−α+ω)(1+α+ω)

4βω

−1−α+ω

2ω

−
(−1−α+ω)(1+α+ω)

4βω

1+α+ω

2ω

)  and the diagonal 

matrix of eigenvalues is 𝚲 = (
Λ1 0
0 Λ2

) = (

1

2
(α − 1) +

1

2
ω 0

0
1

2
(α − 1) −

1

2
ω

) where ω =

√(α − 1)2 + 4(βγ + α). The transformed decoupled system is 

d𝐯t = 𝚲𝐯t + 𝐐−𝟏. 𝐛                                                                                                                            (3.8) 

Using e−𝚲t as an integrating factor, Equation (3.8) can be turned into the following 

(decoupled) system of differential equations 

e−𝚲td𝐯t = e−𝚲t𝚲𝐯t + e−𝚲t𝐐−𝟏. 𝐛                                                                                                  (3.9a) 

with equivalent expression 

d(e−𝚲t𝐯t) = e−𝚲t𝐐−𝟏. 𝐛                                                                                                                  (3.9b) 

Notice that the step from Equation (3.9a) to (3.9b) is admissible because the equality 

e−𝚲t𝐐−𝟏 = 𝐐−𝟏e−𝚲t holds. Integrating both sides gives the general solution to the 

uncoupled system 

𝐯t = e𝚲t ∫ e−𝚲sds
t

0

𝐐−𝟏𝐛 + e𝚲t𝐤 = [�̂� − e−𝚲t]𝐐−𝟏𝐛 + e𝚲t𝐤                                                 (3.10) 

where �̂� = (

1

Λ1
0

0
1

Λ2

) and 𝐤 is a vector of integration constants (
k1

k2
). 



 
 

3   A Coupled Linear-Quadratic Cash Flow Model  79 
 

Recall that 𝐮t = 𝐐. 𝐯t so that the general solution to the coupled system becomes 

𝐮t = 𝐐[�̂� − e−𝚲t]𝐐−𝟏𝐛 + 𝐐e𝚲t𝐤                                                                                                 (3.11) 

Finally, define 𝐮0 as a vector of initial values at t = 0. Replacing 𝐤 by the appropriate 

expression in 𝐮0 yields 

𝐮t = 𝐐e𝚲t𝐐−𝟏𝐮0 + [𝐈2 − e−𝚲t] �̂�𝐐−𝟏𝐛 = e𝚲t𝐮0 + [𝐈2 − e−𝚲t] �̂�𝐐−𝟏𝐛                           (3.12a) 

where 𝐈2 is the identity matrix (
1 0
0 1

). 

The elements {Ct, It } of Equation (3.12a) can now be written as 

Ct = C0e
1

2
(α−1)+

1

2
ω + (1 − e−[

1

2
(α−1)+

1

2
ω])

(−1−α+ω)(1+α+ω)

(2βω(α−1)+2βω2)
δ + (1 −

e−[
1

2
(α−1)−

1

2
ω])

(−1−α+ω)

(ω(α−1)+ω2)
ε                                                                                                         (3.12b)  

and as 

It = I0e
1

2
(α−1)−

1

2
ω − (1 − e−[

1

2
(α−1)+

1

2
ω])

(−1−α+ω)(1+α+ω)

(2βω(α−1)+2βω2)
δ + (1 −

e−[
1

2
(α−1)−

1

2
ω])

(1+α+ω)

(ω(α−1)+ω2)
ε                                                                                                         (3.12c)  

where ω = √(α − 1)2 + 4(βγ + α).  

Matrix e−𝚲t represents the exponential part of the cash flow processes e
1

2
(α−1)+

1

2
ω and 

e
1

2
(α−1)−

1

2
ω from which the uncoupled (Equation (3.10)) and the coupled (Equation (3.12a)) 

solutions are derived. In the graphs below the difference between a growth and a stable 

basic cash flow scenario is explained. 
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The coupled solutions are (weighted) composite solutions of above uncoupled cash flows 

(for the stochastic coupled solution see Section 4-4). 

If variable parameters α, β, γ are admitted then the system is even capable of describing 

operating cash flow processes where the firm first experiences a growth phase (βγ > −α) 

followed by a stabilisation phase (βγ < −α). 

Similar to Equations (3.5a) and (3.5b) a decoupled system can be defined that is governed 

by the following equations (for convenience label the transformed variables also Ct and It): 

dCt = (
1

2
(α − 1) +

1

2
ω)Ct + ϑ1                                                                                               (3.13a) 

dIt = (
1

2
(α − 1) −

1

2
ω) It + ϑ2                                                                                                 (3.13b) 

where ω = √(α − 1)2 + 4(βγ + α) and (
ϑ1 
ϑ2 

) = 𝐐−1𝐛 = (

(βγ+α)

βω

1

2
(1 −

(α−1)

ω
)

−(βγ+α)

βω

1

2
(1 −

(α−1)

ω
)
) (

δ
ε
) 

From (3.13a) and (3.13b) a new equation in which Ctand It are linked to each other for all t 

is 

dCt

dIt
 =

(
1

2
(α−1)+

1

2
ω)Ct+ϑ1

(
1

2
(α−1)−

1

2
ω)It+ϑ2 

→  

Figure 3-1  Evolution of basic cash flow processes depending on parameter values (stationary values > initial values) 
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Figure 3-2  Phase portrait of Equation (3.14) 

dCt

[(
1
2

(α − 1) +
1
2 ω)Ct + ϑ1]

−
dIt

[(
1
2

(α − 1) −
1
2ω) It + ϑ2 ]

= 0                                        (3.14) 

Figure 3-2 hereunder depicts a phase portrait of Equation (3.14). 

 

 

 

 

 

  

 

     

In the upper-right quadrant, firms with a high initial investing cash flow and a low operating 

cash flow move to a combination of lower investing cash flow and higher operating cash 

flow. In the lower right-quadrant the same movement is apparent, however the initial 

investment base is much lower. The firms in those two quadrants are called successful firms 

since (in a deterministic world) they will all be able to turn investments into growing 

operating cash flows. 

In contrast to the two right quadrants, firms in the two left quadrants are unsuccessful: their 

operating cash flow hits a ceiling at a relative low level and if cash flow remains negative 

they will fold. For those firms increasing investments is not effective to break though the 

cash flow ceiling nor can a reduction of investment spending save them from potentially 

liquidation. 

Solutions to Equation (3.14) are obtained as follows: set  (−
1

2
(α − 1) +

1

2
ω) = φ1 and 

(−
1

2
(α − 1) −

1

2
ω) = φ2, then integrating Equation (3.14) gives  

Ctk
(Itk) = K1(φ2Itk + ϑ2)

φ1
φ2 −

ϑ1 

φ1
                                                                                           (3.15a) 
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Itk(Ctk
) = K2(φ1Ctk

+ ϑ1)
φ2
φ1 −

ϑ2 

φ2
                                                                                           (3.15b)  

where K1and  K2 integration constants, and t = tk is a specific time. 

 

3.4. The cash flow model in a stochastic environment 

Cash flows as a Markov process 

The model presented in this section is inspired by similar approaches from the field of 

stochastic population models in biological science, found in E. Allen (2010); L. J. S. Allen 

(2010); Matis and Kiffe (2012).  

Define a Markov process as follows. For simplicity, suppose that in a small time ∆t changes 

to the system S {∆C∆t, ∆I∆t} can only occur in the following four states: 

State 1 describes a change of operating cash flow and consists of a constant in addition to a 

simultaneous uptick and downtick. The uptick is related to the prior level of investment and 

the downtick is caused by the deterioration of the firm’s cash flow earning capacity due to 

obsolescence of capital goods (attrition). For simplicity, it is assumed that the uptick and 

downtick are stochastically indistinguishable and therefore considered one and the same 

event (with altering upticks and downticks alike). 

Similar to the process description of State 1, State 2 expresses how each of the current 

operating cash flow (uptick), the prior investment level (downtick) and a constant 

representing the level of investment that is not directly related to the current amount of 

cash flow, affect the level of investment. Again, upticks and downticks are stochastically 

indistinguishable. 

State 3, simultaneous changes of Ct  and It. In discrete time, this can be excluded and 

consequently State 3 would not exist. This follows from the principle of recurrence, i.e. 

Ct−2 → It−1 → Ct etcetera, which implies that Ct and It will not change at exactly the same 

time and therefore the probability of those simultaneous states occurring is 0. However, in 

continuous time the principle of recurrence presupposes that operating and investing cash 

flows are stochastically independent processes, a possibility that was already discounted in 

Section 2.4. Therefore, in an infinitesimal small-time interval dt when a discrete-time 
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Markov process is replaced by continuous-time Markov process, it is suggested that there is 

a link between dCt and dIt underpinning the interdependency between the two processes. 

If such connection is defined in continuous time, then it also exists in discrete time. 

Furthermore, it is suggested that the simultaneous relationship between ∆Ct and ∆It is 

governed by a constant (time-invariant) parameter φ:  
∆C∆t 

∆I∆t
= φ. 

In state 4 none of the forgoing changes will happen. 

Table 3-2 presents a summary of the above analysis in the form of a Markov State-Change 

matrix {∆Ct, ∆It}. 

Table 3-2  State-Change matrix {∆𝐶𝑡, ∆𝐼𝑡}  

STATE CHANGES IN 𝐂𝐭 CHANGES IN 𝐈𝐭 PROBABILITY 
1 αC∆t + βI∆t +  δ  0 p1∆t  

2 0 γC∆t − I∆t + ε  p2∆t   

3 1  φ  p3∆t   

4 0 0 1 − p1∆t − p2∆t −p3∆t 

 

The vector of transition rates {p1, p2, p3} is usually interpreted as a vector of rates of 

change, i.e. the speed at which changes to Ct and It occur in time ∆t. Likewise, the 

parameters {p1∆t, p2∆t, p3∆t} are the transition amounts over time ∆t which can be 

normalised as follows: ∑ pi∆ti = 1 after which the parameters can be interpreted as 

probabilities of a change happening to either Ct ,It or to both in time ∆t.  

Supposedly, the transition probability of ∆Ct, p1∆t, is predominantly influenced by external 

factors including: 

- the size and frequency of market opportunities available to the firm (upward movement); 

- the speed of technology developments (downward movement).  

In contrast, the transition probability of It, p2∆t, depends largely on internal factors such as: 

- management recognising investment opportunities available to the firm; 

- management timely adapting required investment levels to those investment 

opportunities;  

- the firm having sufficient access to required external funding. 
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The sum of transition probabilities with non-zero changes is Pg = (p1 + p2 + p3)∆t. It is 

obvious that Pg determines the overall growth rate of the system and that the breakdown in 

{p1∆t, p2∆t, p3∆t} embodies the different sources of growth.  

The dynamics of the stochastic system {∆C∆t, ∆I∆t} are characterised by a set of external 

model parameters {α, β, δ, ε, p1} with a corresponding set of internal model parameters 

{γ, p2}, together with parameters {φ, p3} that describe the dependency between the 

operating and investing cash flow processes. Note that parameters {α, β, δ, ε, γ} also define 

the deterministic version of the system, and that, in addition, parameters {φ, p1,p2, p3} are 

required to typify the stochastic component of the system. 

The expected value and variance of the decoupled system 

In Appendix M2 the expected value vector and the variance-covariance matrix are derived 

for the decoupled, stochastic system S′{∆C∆t
′ , ∆I∆t

′ }. It is shown that the expected value 

vector is linear and diagonal in variables {∆C∆t
′ , ∆I∆t

′ }: 

𝔼(Δ𝐯) = 𝚳. 𝐯 +  𝛍                                                                                                                           (3.16) 

where Δ𝐯 =  (
∆Ct

′

∆It
′ ) , 𝐯 = (

Ct
′

It
′ ) ,𝚳 = (

μC,1 0

0 μI,1
) is a symmetric diagonal matrix and 𝛍 =

(
μC,2

μI,2
) is a vector of constants.  

The elements of the vector 𝔼(Δ𝐯) are 

𝔼∆C∆t
′ = μC,1Ct

′∆t + μC,0 ∆t                                                                                                         (3.17a) 

𝔼∆I∆t
′ = μI,1It

′∆t + μI,0 ∆t                                                                                                             (3.17b) 

Likewise, the variance-covariance matrix is quadratic and diagonal in variables {∆C∆t
′ , ∆I∆t

′ }: 

𝕍∆v = 𝚲 = (
Λ11 Λ12

Λ21 Λ22
)                                                                                                                (3.18) 

where 

Λ11 = ςC,1Ct
′ 2∆t + ςC,2Ct

′∆t + ςC,3∆t                                                                                         (3.19a) 

Λ12 = ςC,4Ct
′ 2∆t + ςC,5Ct

′∆t + ςC,6∆t                                                                                         (3.19b) 

Λ21 = ςI,1It
′ 2∆t + ςI,2It

′∆t + ςI,3 ∆t                                                                                             (3.19c) 

Λ22 = ςI,4It
′ 2∆t + ςI,5It

′∆t + ςI,6 ∆t                                                                                            (3.19d) 
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From the variance-covariance matrix 𝚲 the standard deviation matrix 𝚺′ can be derived: 

𝚺′ = 𝚲
1

2 = (
ςC,1Ct

′ 2 + ςC,2Ct
′ + ςC,3 ςC,4Ct

′ 2 + ςC,5Ct
′ + ςC,6

ςI,1It
′ 2 + ςI,2It

′ + ςI,3 ςI,4It
′ 2 + ςI,5It

′ + ςI,6 
)

1

2

∆t .  

Since 𝕍∆v is the variance-covariance matrix of the decoupled system S′{∆C∆t
′ , ∆I∆t

′ }, the 

processes ∆C∆t
′  and ∆I∆t

′  can be considered to be stochastically independent thus: 

𝚺′ = 𝚲
1

2 =

(

 
√ςC,1Ct

′ 2 + ςC,2Ct
′ + ςC,3 √ςC,4Ct

′ 2 + ςC,5Ct
′ + ςC,6

 √ςI,1It
′ 2 + ςI,2It

′ + ςI,3 √ςI,4It
′ 2 + ςI,5It

′ + ςI,6  )

 ∆t                               (3.20)   

Matrix 𝚺′ is the standard deviation of the process in localised time ∆t. In order to observe 

the process over a series of sequential ∆t’s, it is necessary to derive the variance process: 

 𝚺′. 𝛇∆t =

(

 
√ςC,1Ct

′ 2 + ςC,2Ct
′ + ςC,3 √ςC,4Ct

′ 2 + ςC,5Ct
′ + ςC,6

 √ςI,1It
′ 2 + ςI,2It

′ + ςI,3 √ςI,4It
′ 2 + ςI,5It

′ + ςI,6  )

 (
∆ζ1,∆t

∆ζ2,∆t
)∆t                  (3.21) 

where ζ∆t = (
ζ1,∆t

ζ2,∆t
) is a vector of increments with ζ∆t ~ 𝒩(0, I) for a number of ∆t 

observations, sufficiently large to invoke the CLT. This is the discrete-time equivalent to the 

derivation of Equation (1.8) in Section 1.4. 

Subsequently, replace (
∆ζ1,∆t

∆ζ2,∆t
)∆t by a vector of discrete-time Wiener processes ∆𝐖′ =

(
∆W1,∆t

∆W2,∆t
) and calculate the product 𝚺′. 𝛇∆t: 

𝚺′. 𝛇∆t =

(

 
√(ςC,1 + ςC,4)Ct

′ 2 + (ςC,2 + ςC,5)Ct
′ + (ςC,3+ςC,6)∆WC,∆t

√(ςI,1 + ςI,4)It
′ 2 + (ςI,2 + ςI,5)It

′ + (ςI,3+ςI,6)∆WI,∆t )

                               (3.22)  

by applying the formula of the sum of two independent Brownian motions (Wiersema 

(2008, pp. 89-95)): the combined Brownian motion of σ1∆W1,∆t and σ2∆W2,∆t is σ∆W∆t 

where σ =  √σ1
2 + σ2

2.  

Replace ςC,1 + ςC,4 by σC,2, ςC,2 + ςC,5 by σC,1, ςC,3 + ςC,6 by σC,0, ςI,1 + ςI,4 by σI,2, ςI,2 + ςC,5 

by σI,1 and ςI,3 + ςI,6 by σI,0 after which Equation (3.22) becomes: 
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𝚺′. 𝛇∆t =

(

 
√(σC,2Ct

′ 2 + σC,1Ct
′ + σC,0)∆WC,∆t

√(σI,2It
′ 2 + σI,1It

′ + σI,0)∆WI,∆t )

 =                                                                 (3.23) 

Combining Equation (3.16) with Equation (3.23) provides the equations for the integral 

model 

∆C∆t
′ = (μC,1Ct

′ + μC,0 )∆t + √(σC,2Ct
′ 2 + σC,1Ct

′ + σC,0)∆WC,∆t                                       (3.24a) 

∆I∆t
′ = (μI,1It

′ + μI,0) ∆t + √(σI,2It
′ 2 + σI,1It

′ + σI,0)∆WI,∆t                                               (3.24b) 

or expressed in matrix notation 

Δ𝐯 = (𝚳. 𝐯 +  𝛍)dt +  𝚺∆𝐖                                                                                                         (3.25) 

where Δ𝐯 =  (
∆Ct

′

∆It
′ ) , 𝐯 = (

Ct
′

It
′ ) ,𝚳 = (

μC,1 0

0 μI,1
) is a symmetric diagonal matrix and 𝛍 =

(
μC,2

μI,2
) is a vector of constants,  𝚺 =

(

 
√(σC,2Ct

′ 2 + σC,1Ct
′ + σC,0) 0

 0 √(σI,2It
′ 2 + σI,1It

′ + σI,0)  )

  is the standard deviation matrix 

of independent processes  ∆WC,∆t and ∆WI,∆t, and ∆𝐖 is the corresponding vector. 

The continuous-time model 

The analysis above provides all the ingredients necessary to describe the stochastic process 

S′{∆C∆t
′ , ∆I∆t

′ } in the limiting case of continuous-time. According to the CLT the process S′ is 

approximately normally distributed with S ~ 𝒩(𝔼(Δ𝐯), 𝕍(Δ𝐯)) provided of course that 

there are a sufficient number of ∆t′s.  

Taking the time limit ∆t → 0 the system S {Ct
′, It

′} can now be described by the following 

two SDEs 

dCt
′ = (μC,1Ct

′ + μC,0)dt + √(σC,2Ct
′2 + σC,1Ct

′ + σC,0) dWC,t                                             (3.26a)       

dIt
′ = (μI,1It

′ + μI,0)dt + √(σI,2It
′2 + σI,1It

′ + σI,0) dWI,t                                                      (3.26b) 
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There is some caution warranted when taking the time limit: recall from Sections 1.5. and 

1.6. the issues that may arise when a (fairly spiked) discrete process is approximated by a 

continuous process. One of the solutions to reduce process variability per time unit is to de-

scale cash flows by an appropriate proxy for the system size, i.e. ct
′ =

Ct
′

N1
 and it

′ =
It
′

N2
 , where 

{N1, N2} are system size proxies and {ct
′, It

′} are de-scaled cash flows. The de-scaled system 

then becomes 

dct
′ = (μC,1ct

′ + μC,0)dt + √
(σC,2ct

′2+σC,1ct
′+σC,0)

N1
 dWC,t                                                          (3.27a)       

dit
′ = (μI,1it

′ + μI,0)dt + √
(σI,2it

′2+σI,1it
′+σI,0)

N2
 dWI,t                                                                  (3.27b)  

Specifically for investing cash flow processes, Equation (3.27b) can be expected to provide 

better fitting statistics than Equations (3.26b). 

The above SDEs are called hybrid SDEs since they can be considered to be a mix of two basic 

SDEs. Shaw and Schofield (2015) demonstrate how, for example in this study, the equation       

dCt
′ = (μC,1Ct

′ + μC,0)dt + √(σC,2Ct
′2 + σC,1Ct

′ + σC,0) dWC,t can be decomposed into a 

Geometric Brownian motion and an Arithmetic Brownian motion which are stochastically 

dependent on each other 

dCt
′ = (μC,1Ct

′ + μC,0)dt + √(σC,2Ct
′2 + σC,1Ct

′ + σC,0) dWC,t = (μC,1Ct
′ + μC,0)dt +

√(σC,2Ct
′2 + 2ρ√(σC,2σC,0Ct

′ + σC,0 dWC,t = ⌈μC,1Ct
′dt + √σC,2Ct

′dWC,2,t⌉
GBM

+

⌈μC,2dt + √σC,0 dWC,0,t ⌉
ABM

                                                                                                         (3.28)  

where σC,1 = 2ρ√(σC,2σC,0 and ρ is the correlation coefficient between WC,2,t and WC,1,t. 

Notice that an alternative expression for Equations (3.26a) (and similarly for (3.26b)) is: 

dCt
′ = (μC,1Ct

′ + μC,0)dt + √(σC,2Ct
′2 + 2ρ√σC,2σC,0Ct

′ + σC,0) dWC,t                               (3.29) 

Another example of a hybrid SDE, a combination of an ABM and a CIR process, can be found 

in Schofield (2015). Interestingly, as will also become clear in Chapter 4, the stochastic 
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properties of hybrid SDEs are much richer than the sum of the properties of the basic SDEs. 

These SDEs underpin probability distributions that are more versatile and often more 

complex than those of the underlying basic processes. Here it suffices to cite Shaw and 

Schofield (2015, p. 977): “Under mean-reverting circumstances we are led naturally to 

equilibrium fat-tailed return distribution with a Student-t or skew Student form, with the 

latter defined in the framework of ‘Pearson diffusions’….”. Indeed, observing Equations 

(3.13) and (3.14) in Chapter 2, it is not hard to see the connection between the equilibrium 

Pearson differential equation and Equations (3.26a) and (3.26b). This connection potentially 

provides access to all members of the Pearson family of probability distributions, especially 

the Type-IV ones as mentioned by Shaw & Schofield, that were supported by empirical 

research as a good fit with the investing cash flow process (refer to Section 2-4). 

Furthermore, Equations (3.26a) and (3.26b) not only describe mean-reverting behaviour as 

implied by the Pearson diffusion process, but, in addition, diverging behaviour typical for the 

operating cash flow process. In Chapter 4 solutions to these equations, that admit a wide 

and diverse range of solutions, will be investigated in more detail. 

The issue of the cash flow domain on which Equations (3.26a) and (3.26b) are valid, is now 

discussed. The linear drift functions, μC,1Ct
′ + μC,0 and μI,1It

′ + μI,0, warrant no particular 

domain restrictions. Test results in Chapter 2 show that parameter μC,1 usually has positive 

values and hence the domain of operating cash-flow must be unrestricted to permit a 

diverging process in time. By contrast, values for μI,1are almost always negative and 

consequently the process is mean-reversing, implying a restricted investing cash flow 

domain. The domain of the diffusion function (instantaneous chance of variance) is slightly 

more complicated. For the square root of to be defined, it must have positive real values. By 

implication: the diffusion function of investing cash flow must be positive over the full 

domain and the diffusion function of operating cash flow must be positive over part of the 

domain. In Chapter 2 evidence is presented that operating cash flows have predominantly 

two real roots and investing cash flows are characterised by complex roots. First the 

investing cash flow case: If σI,2It
′2 + σI,1It

′ + σI,0 ≥ 0 then it follows that σI,2 > 0. Operating 

cash flows have two real roots and the domain of the diffusion function is between the 

lower and upper root, as will be substantiated in Chapter 4. Hence, for σC,2Ct
′2 + σC,1Ct

′ +
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σC,0 ≥ 0 and λ1 < Ct
′ < λ2 (where λ1; λ2 are the roots of σC,2Ct

′2 + σC,1Ct
′ + σC,0) to be true, 

σC,2 must be smaller than zero. This poses an apparent contradiction that is resolved by 

accepting that for the purpose of this study σC,2Ct
′2 + σC,1Ct

′ + σC,0 is equivalent to 

−(σC,2Ct
′2 + σC,1Ct

′ + σC,0). The same reasoning applies to investing cash flow diffusion 

functions. A summary of the foregoing is presented in Figure 3-3. 

If, however, positive cash flow values on the whole domain (−∞; +∞) are a prerequisite, 

then an absolute value of the quadratic function serves the purpose. For instance, some 

inverse transformations require positive domain values only. Figure 3-4 illustrates this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3  Domain of diffusion functions (LHS: quadratic function; RHS: square root of quadratic function) 

Figure 3-4  Domain of absolute value of diffusion functions (LHS: quadratic function; RHS: square root of quadratic function) 
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In Chapters 4 and 5 the inverse of the diffusion function will be employed, for instance when 

applying a Lamperti transformation. From Figure 3-5 it is obvious that the inverse diffusion 

function of operating cash flows has singularities for each of the (real) roots. 

 

  

 

 

 

 

 

 

 

 

 

 

 

One final remark: solutions to Equations (3.26a) and (3.26b) are solutions to the decoupled 

system S {Ct
′, It

′}; solutions to the coupled system S {Ct, It} require one extra step 𝐮t =

𝐐 𝐯t where 𝐮t = (
Ct

It
), 𝐯t = (

Ct
′

It
′ ) and 𝐐 = (

2β

−1−α+ω

2β

−1−α−ω

1 1
) where ω =

 √(α − 1)2 + 4(βγ + α). Similar to the solutions of the coupled system in a deterministic 

environment (see Section 2.3.), these linear combinations of solutions to the coupled 

system augment the stochastic capabilities of the model even further. 

 

3.5. A simulation of the linear-quadratic cash flow model 

Before exploring solutions to the linear-quadratic cash flow model, it is useful to perform a 

reality check. A discrete-time model was constructed that simulates trajectories of 

stochastic realisations, each representing a fictitious firm, encompassing 100 points of 

operating and investing cash flow data on a time line. The results of one such simulation are 

depicted in Figures 3-6 and 3-7 below. 

Figure 3-5  Domain of inverse of diffusion functions (LHS: quadratic function; RHS: square root of quadratic function) 
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Comparison of the simulated data in Figures 3-6 and 3-7 to the real-world data of Figures 1-

3 and 1-4, allows a number of observations to be made: 

• It takes considerable time before the growth of cash flows becomes noticeable: this is 

the exponential growth process, particularly visible in Figure 2-3 (operating cash flow), 

at work. When making the above comparison, only data-points from roughly time 50 in 

Figures 2-3 and 2-4 should be considered: all prior data-points, from inception date to 

time = 50, represent the firm in its infancy state prior to being qualified for a public 

listing. 

• Both operating cash flow graphs clearly agree on a fat tail marginal probability 

distribution: few firms (which is not exceptionally rare with only 20 realisations) are 

very successful while the majority of firms experience modest growth. Note that in the 

simulation model no attempt was made to mimic the seasonal revenue pattern 

characteristic of real-world quarterly operating cash flow data. 
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3.6. Conclusions from Chapter 3 

Five-well-known continuous-time specifications that are frequently encountered in the 

literature, are all rejected as being adequate, on different grounds and to varying degrees, 

for modelling cash flow processes. Therefore, there is a need for a new cash flow 

specification.   

It was demonstrated that a relatively simple model consisting of two stochastic equations, is 

capable of simulating real-world cash flow behaviour. The model is founded on a bi-causal 

relationship between operating cash flow and investing cash flow, mathematically 

configured as a coupled model. 

Furthermore, it was shown that the discrete Markov version of the model, can be 

sufficiently well approximated by a continuous-time model consisting of two decoupled and 

independent Wiener processes, both consisting of a linear drift and a quadratic diffusion 

function. This model is a hybrid of two basic stochastic processes: a geometric Brownian 

motion and an arithmetic Brownian motion. 

Consistent with observations and theoretical considerations from Chapters 1 and 2, the 

approximated continuous-time model is expected to be a more versatile and accurate 

representation of real cash flow processes than the five well-known cash flow specifications 

from the literature. However, this must still be corroborated by proper benchmark statistical 

testing which will be performed in Chapter 5. 
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4. Solutions to the Coupled Linear-Quadratic Cash Flow Model 
 

Chapter 4 deals with solutions to the coupled linear-quadratic cash flow model as described 

in detail in Chapter 3. Possible solutions to the stochastic differential equation and the 

corresponding Kolmogorov equations, are analysed and discussed. The emphasis is on 

techniques to derive particular and limiting solutions if an overarching general solution is 

not feasible. The last section of the chapter shows how the decoupled solutions to the 

operating and investing cash flow processes, can be recombined to a coupled solution. 

4.1. Solutions to the hybrid cash flow Stochastic Differential Equation 

Existence, uniqueness and convergence of strong solutions 

In Equation (3.26a) of Chapter 3, the decoupled operating cash flow was derived in this SDE 

format: dCt
′ = (μC,1Ct

′ + μC,0)dt + √(σC,2Ct
′2 + σC,1Ct

′ + σC,0) dWC,t                                (4.1a) 

For notational convenience, Equation (4.1a) can be reformulated to a (uncoupled) general 

cash flow process 

dXt = (μ1Xt + μ0)dt + √(σ2Xt
2 + σ1Xt + σ0) dWt                                                                (4.1b) 

where Xt can be either an operating cash flow Ct or investing cash flow It. 

Appendix M3 provides mathematical evidence that a general cash flow process is 

approximately Lipschitz continuous and exactly continuous according to the (less restrictive) 

Aït-Sahalia conditions. The importance of this test is to show that unique, strong29 solutions 

to the SDE do exist.  

In addition to continuity, Appendix M3 examines under what conditions a general cash flow 

process (1b) converges or diverges in time. It was found that convergence (in the mean-

square sense) of the diffusion function is entirely dependent on the behaviour of the drift 

function. If the drift function reverts to the mean, which occurs under the condition that 

μ1 < 0 (Equation (4.1b)), then the diffusion process is also converging. If, however, the drift 

                                                           
29 A strong solution to the SDE has the functional form Xt(t,Wt). 
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function shows diverging behaviour, μ1 > 0, then the diffusion process is dominated by the 

drift process and the combined behaviour of Equation (4.1b) becomes also diverging. 

Exact general solutions to the SDE 

After having established that there are unique, strong solutions to the (uncoupled) general 

cash flow process equation, the logical next question is whether solutions are analytically 

tractable. It is a well-known fact that only a limited number of SDEs have exact (closed-form) 

solutions, and that most SDEs must be solved approximately by numerical solution 

techniques. In this section, it is examined if, and under which conditions, Equation (4.1b) has 

exact solutions. 

A very useful test for exact solutions, based on Itô’s lemma, is presented in Stepanov (2013, 

paragraphs 2.4 and 2.7).  For a general Itô process dXt =  α(Xt, t)dt + √β(Xt, t)dWt the so-

called compatibility condition can be expressed in the following equality 

1

s(t)

∂

∂t
{

s(t)

√β(Xt, t)
} =

1

2

∂2√β(Xt, t)

∂x2
−

∂

∂x
{

α(Xt, t)

√β(Xt, t)
}                                                              (4.2) 

where Ft(Xt) is a transformation function, accomplishing that the transformed process 

becomes an Itô integrable process 

dFt = f(t)dt + s(t)dWt                                                                                                                     (4.3)  

with f(t) =
∂Ft

∂t
+ α(Xt, t)

∂Ft

∂x
+

β(Xt,t)

2

∂2Ft

∂x2  and s(t) = √β(Xt, t) 
∂Ft

∂x
. 

For time-invariant functions {α(Xt),√β(Xt)}, assumed to exist for the general cash flow 

process, the compatibility condition (2) can be written in the following form 

∂s(t)
∂t

s(t)
=

1

2
 √β(Xt) 

∂2√β(Xt)

∂x2
− 

∂ [
α(Xt)

√β(Xt)
]

∂x
                                                                              (4.4) 

Since the LHS of Equation (4.4) depends on t only, and the RHS on Xt only, both sides can be 

equated to a constant λ. 

Integrating Equation (4.4) yields the following expression in which the drift function (LHS) is 

related to the diffusion function (LHS) 

α(Xt) =
1

2

∂β(Xt)

∂x
+ K√β(Xt) − λ√β(Xt)∫

dx

√β(Xt)
                                                                (4.5) 

where K is an integration constant. 
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Substituting the drift and diffusion functions of Equation (4.1b) into Equation (4.5), results in 

the following specific compatibility condition 

μ1Xt + μ0 =
1

2
(2σ2Xt + σ1) + K √(σ2Xt

2 + σ1Xt + σ0) −

λ
√(σ2Xt

2+σ1Xt+σ0)

√σ2
∫

dx

√(σ2Xt
2+σ1Xt+σ0)

                                                                                                 (4.6)   

Hence, Equation (4.1b) has exact solutions for all Xt and all parameters {μ0, μ1, σ0, σ1, σ2}, 

only if the equality in Equation (4.6) is obeyed. Since the LHS of Equation (4.6) is linear in Xt, 

the three terms of the RHS will need to be also linear in Xt, so that, with arbitrary values 

for K and λ, the equation meets the prior conditions of a general solution. 

It is clear that the second term of the RHS of Equation (4.6) is nonlinear (for K ≠ 0, 

{σ0, σ1, σ2} ≠ 0 ) which is, generally, also true for the third term (for λ ≠ 0, {σ0, σ1, σ2} ≠

0 ). Jeffrey (2004, section 4.3.4) provides the following (multiple) solutions to the integral in 

Equation (4.6) 

1

√σ2
ln |2√σ2 √(σ2Xt

2 + σ1Xt + σ0) + 2σ2Xt + σ1| if σ2 > 0 which expression evolves to 

(i) 
1

√σ2
sinh−1 [

2σ2Xt+σ1

√∆
] if ∆> 0, or 

(ii) 
1

√σ2
ln | 2σ2Xt + σ1| if ∆= 0, or 

(iii) 
−1

√−σ2
sin−1 [

2σ2Xt+σ1

√−∆
] if σ2 < 0 and ∆< 0, 

where ∆= 4σ2σ0 − σ1
2. 

Evidently, there is no general linear equation30 with parameters {μ0, μ1, σ0, σ1, σ2, K, λ}  that 

can replace the second and third terms on the RHS of Equation (4.6) and therefore the 

conclusion is that SDE (1b) admits no general exact solution. 

Nevertheless, if Equation (4.1b) is considered a hybrid of the two underlying basic SDEs in 

the form of a GBM and an ABM process, comparable to the decomposition of Equation 

(3.28) in Chapter 3, an exact fundamental solution can indeed be derived (see Shaw and 

Schofield (2015, p. 984) for an outline of this method). 

                                                           
30 Other than a linear approximation of nonlinear functions. 
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Equation (4.1b) written in decomposed format is 

dXt = μ1Xtdt + √σ2XtdW1,t + μ0dt + √σ0dW2,t                                                                      (4.7) 

Define the stochastic integrating factor as 

It = exp (−√σ2W1,t + (
1

2
σ2 − μ1)t)                                                                                            (4.8) 

which implies that  

dIt = (σ2 − μ1)Itdt − √σ2ItdW1,t                                                                                                 (4.9) 

Furthermore, define Qt = ItXt. Then dQt = d(ItXt) =  ItdXt + XtdIt + dItdXt and observe 

that dW1,tdW2,t =  ρdt  where ρ is the correlation coefficient between W1 and W2. 

Then dQt = It[(μ0 − ρ√σ0 √σ2)dt + √σ0dW2,t]                                                                    (4.10) 

and Xt = It
−1 ∫ Is[(μ0 − ρ√σ0 √σ2)ds + √σ0dW2,s]                                                             (4.11) 

Since t is the reference time, Equation (4.11) can be re-written to: 

Xt = ∫It
−1Is[(μ0 − ρ√σ0 √σ2)ds + √σ0dW2,s]                                                                     (4.12) 

The expression  It
−1Is can be interpreted as a time shift function which evaluates to: 

 It
−1Is = exp [√σ2W̃1,u + (

1

2
σ2 − μ1)u]                                                                                     (4.13)  

where  W̃1,u = W1,t − W1,s and u = s − t 

Now, Equation (4.22) becomes the following functional expression: 

Xt = exp [√σ2W̃1,u + (
1

2
σ2 − μ1)u]∫[(μ0 − ρ√σ0 √σ2)ds + √σ0dW2,s]                     (4.14) 

Equation (4.14) provides an insight into the functional form of general solutions to the cash 

flow process: these can be defined as the product of an exponential (time-shifted) Brownian 

motion and the integral of another linear Brownian motion, correlated to the first motion.   
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Exact particular solutions to the SDE 

In the prior subsection, it was inferred that there are no general solutions to the cash flow 

process. Hence, one has to revert to specific solutions such as particular solutions and 

approximated solutions. In this subsection, some particular solutions to Equation (4.1b) are 

analysed. 

Here, particular solutions are defined as exact solutions that can be derived from imposing 

restrictions on the set of model parameters {μ0, μ1, σ0, σ1, σ2}. Particular solutions can, for 

example, be extracted from Equation (4.6) by setting one or more of the parameters {K, λ} 

to zero. The obvious first choice is parameter λ = 0 which restriction implies that function 

s(t) in Equation (4.2) is a constant. Then Equation (4.6) is reduced to 

(μ1 − σ2)Xt + (μ0 −
1

2
σ1) = K √(σ2Xt

2 + σ1Xt + σ0)                                                          (4.15) 

The first special case can be deduced from Equation (4.15). 

Particular case one: 

The term K √(σ2Xt
2 + σ1Xt + σ0) can be made linear by equating parameter σ1 to 

2√σ0σ2 . This restriction brings about a linear diffusion process as a reduced form of the 

usual quadratic diffusion function. Now, Equation (4.15) becomes 

(μ1 − σ2)Xt + (μ0 −
1

2
σ1) =  K(√σ2 Xt + √σ0 )                                                                   (4.16) 

which equation is solved for (μ1 − σ2) =  K√σ2 and (σ2 −
1

2
σ1) = K√σ0.  

The solution to this equation implies that μ1 = σ2 + K√σ2 and μ0 =
1

2
σ1 + K√σ0 , i.e. for 

K ϵ ℝ, the set of parameters {μ0, μ1} can take any real value. As a result, Equation (4.1b) is 

now reduced to a linear SDE 

dXt = (μ1Xt + μ0)dt + K(√σ2 Xt + √σ0 )dWt                                                                       (4.17) 

Solutions to a linear SDE are well known: Kloeden and Platen (2011, section 4.2) 

Xt,K = It [Xo + (μ0 − K2√σ0σ2 )∫ Is
−1 ds + K√σ2 ∫Is

−1dWs]                                        (4.18) 

where It is an integration factor and It = exp [(μ1 −
1

2
K2σ2)t + K√σ2Wt] and Xo is the 

initial cash flow at t = 0.  

After evaluating the two integrals, Equation (4.18) yields the following expression 
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Xt,K = Xo exp [(μ1 −
1

2
K2σ2)t + K√σ2Wt] + [(μ0 − K2√σ0σ2 )t + K√σ2 Wt]              (4.19)  

Define a new parameter σ3 = K√σ2 and re-write Equation (4.19) to a three-parameter 

equation that is more generic in Xt 

Xt = Xo exp [(μ1 −
1

2
σ3

2)t + σ3Wt] + [(μ0 −
√σ0 

√σ2 
σ3

2) t + σ3Wt]                                       (4.20)  

Interestingly, Equation (4.20) is the sum of a multiplicative Brownian motion and an additive 

Brownian motion. Recall that the fundamental solution in Equation (4.14) also includes a 

multiplicative and an additive component. Comparing the two equations, one can observe 

that linearization of the diffusion equation alters the functional form to the sum of two 

Brownian motions instead of two multiplied Brownian motions where different Wiener 

processes in the functional solution are transformed into one common Wiener process after 

linearization.  

 

Figure 4-1  Example realisation of particular case one  

As visible in Figure 4-1, the process of particular case one is dominated by an exponential 

random growth process if μ1 >
1

2
σ3

2 and by a linear random process if μ1 <
1

2
σ3

2. With the 

appropriate choice of parameters, in particular setting μ0 = 0 and selecting a very small 

Xo = 1.5, μ0 = 0.1, μ1 = 0.1, σ0 = 0.05, σ2 = 0.05, σ3 = 0.05, ∆t = 1 
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parameter μ1, the process can be adapted to simulate behaviour that is mean-reverting: see 

Figure 4-2.  

 

Figure 4-2  Example realisation of particular case one 

 

Particular case two: 

A second special case can be derived from Equation (4.15) by imposing a further condition 

K = 0 which reduces the equation to 

(μ1 − σ2)Xt + (μ0 −
1

2
σ1) = 0                                                                                                    (4.21) 

Equation (4.21) is solved for μ1 = σ2 and μ0 =
1

2
σ1. Solutions are now restricted by 

parameters of the diffusion function bounded to those of the drift function. 

This is one of the cases of reducible SDEs mentioned in Kloeden and Platen (2011, p. 120) 

where the general SDE dXt = α(Xt, t)dt + √β(Xt, t)dWt is reduced to a solvable SDE: dXt =

 
1

2
√β(Xt, t)

∂√β(Xt,t)

∂x
dt + √β(Xt, t)dWt.   

Applying this reduction technique, the general cash flow equation obeys the following 

three-parameter equation 

dXt = (σ2Xt +
1

2
σ1) dt + √(σ2Xt

2 + σ1Xt + σ0)dWt                                                            (4.22) 

Xo = 5, μ0 = 0, μ1 = −0.001, σ0 = 0.05, σ2 = 0.05, σ3 = 0.1, ∆t = 1 
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There are multiple, conditional solutions to Equation (4.22), Jeffrey (2004, section 4.3.4) 

Xt =
√∆

2σ2
sinh(√σ2 (Wt + Η0)) −

σ1

2σ2
                                                                                    (4.23a) 

If σ2 > 0 and ∆> 0, where ∆= 4σ2σ0 − σ1
2 and Η0 =

1

√σ2
sinh−1 [

2σ2Xo+σ1

√∆
]  

Xt =
1

2σ2
e√σ2(Wt+Η0) −

σ1

2σ2
                                                                                                      (4.23b) 

If σ2 > 0 and ∆= 0, where ∆= 4σ2σ0 − σ1
2 and Η0 =

1

√σ2
ln | 2σ2X0 + σ1|  

Xt =
√−∆

2σ2
sin(−√−σ2 (Wt + Η0)) −

σ1

2σ2
                                                                              (4.23c) 

If σ2 < 0 and ∆< 0, where ∆= 4σ2σ0 − σ1
2 and Η0 =

−1

√−σ2
sin−1 [

2σ2X0+σ1

√−∆
]. 

Note that Xo is the initial cash flow at t = 0. 

The solutions to particular case two are depicted in Figure 4-3. To display the three graphs 

in one chart, a time unit of 0.01 had to be used. Measured on this time scale, the volatility of 

the Sinh-solution (Equation (4.23a)) is subdued to those of the Exp-solution (Equation 

(4.23b)) and the Sin-solution (Equation (4.23c)). All three solutions, however, show an 

increasing periodic randomness. 
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Figure 4-3  Example realisation of particular case two 

 

If the solutions are observed on a much longer time-scale like the ones of Figures 4-1 and 4-

2, periodicity remains but occasionally significant positive and negative spikes are seen. 

Observe that since μ1 = σ2, a negative value of σ2 will force the drift function to become 

mean-reverting. 

Particular case three: 

It is well-known, Pierre et al. (2005), Møller (2011)), that the Lamperti transformation Zt =

ψ(Xt) = ∫
dx

√β(Xt)
 converts a process, in this study a general cash flow, with time-

independent parameters dXt = α(Xt)dt + √β(Xt)dWt into a process with a unit 

instantaneous change of variance 

dZt = [
α(Xt)

√β(Xt)
+

1

2

d√β(Xt)

dx
] dt + dWt                                                                                    (4.24) 

Setting α(Xt) = (μ1Xt + μ0) and √β(Xt) = √(σ2Xt
2 + σ1Xt + σ0), the corresponding 

Lamperti transfer becomes 

Zt = ψ(Xt) =
1

√σ2

ln |√(σ2Xt
2 + σ1Xt + σ0)  +

2σ2Xt + σ1

2√σ2

|                                             (4.25)  

Xo = 1, μ0 = 0.1, μ1 = 0.1, σ2 = μ1, σ1 = 2μ0, ∆t = 0.01 
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Refer to Equations (4.23a) – (4.23c) for the evaluation of this equation under different 

conditions of parameters σ2 and ∆= 4σ2σ0 − σ1
2. 

The associated transformed process dZt is represented by this equation 

dZt = [
(μ1−

1

2
σ2)Xt+(μ0−

1

4
σ1)

√σ2Xt
2+σ1Xt+σ0

] dt + dWt = [
(μ1−

1

2
σ2)ψ−1(Zt)+(μ0−

1

4
σ1)

√σ2[ψ−1(Zt)]2+σ1ψ−1(Zt)+σ0
] dt + dWt               (4.26)  

The Lamperti transformation has a number of attractive properties. Importantly, the 

transformation is reversible. Another attractive property of the Lamperti transformation is 

that it can be used to transform self-similar processes31 into strongly stationary processes 

and vice versa (Lee et al. (2016); Viitasaari (2016)). Nevertheless, from Equation (4.1b) it is 

obvious that the cash flow process under study, is not self-similar due its quadratic 

expression and additive constants32.  

Here, the Lamperti transformation will be applied for another reason: to derive a particular 

linear solution of the form Zt =  λt + Wt to Equation (4.28) where λ is a parameter 

independent of  Xt. This solution can be subsequently transformed back to Xt by using the 

inverse of Equation (4.25). 

Setting the Lamperti transformed drift function to a constant, that is λ, gives 

[(μ1−
1

2
σ2)Xt + (μ0 −

1

4
σ1)]

2

= λ2(σ2Xt
2 + σ1Xt + σ0 )                                                    (4.27) 

Equating the parameters on both sides of Equation (4.27), yields three expressions for λ in 

different combinations of parameters {μ0, μ1, σ0, σ1, σ2}.  

λ =
μ1−

1

2
σ2

√σ2
, λ =

√2(μ1−
1

2
σ2)(μ0−

1

4
σ1)

√σ1
 and λ =

μ0−
1

4
σ1

√σ0
                                                                 (4.28)  

where σ2, σ1, σ0 > 0. 

                                                           
31 Self-similar processes are stochastic processes that are invariant in distribution under a suitable scaling of time and space. 

32 However, Equation (4.1b) is functionally invariant under translations and scale-transformation as explained in Schmidt (2008, p. 21)  
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Solving the system of Equations (4.28) effects the reduction of a five-parameter SDE to a 

four-parameter system, a mild restriction of the original SDE. Furthermore, integrating 

expression dZt =  λdt + dWt, gives the following linear function in Zt:  

Zt = Z0 + λt + Wt                                                                                                                            (4.29) 

where Zo = ψ(X0) =
1

√σ2
ln |2√σ2 √(σ2X0

2 + σ1X0 + σ0) + 2σ2X0 + σ1|. 

The inverse of Equation (4.25) is 

Xt = ψ−1(Zt) =
1

2√σ2
e√σ2Zt + (

σ1
2

8σ2

3
2

−
σ0

2√σ2
)e−√σ2Zt  −

σ1

2σ2
                                                     (4.30) 

Combined Equations (4.29) and (4.30) will eliminate Zt from expression (30) 

Xt = ψ−1(Zt) =
1

2√σ2
e√σ2λ(Z0+t+Wt) + (

σ1
2

8σ2

3
2

−
σ0

2√σ2
) e−√σ2λ(Z0+t+Wt)  −

σ1

2σ2
=

1

2√σ2
k1e√σ2λ(t+Wt) + (

σ1
2

8σ2

3
2

−
σ0

2√σ2
)k1e

−√σ2λ(t+Wt)  −
σ1

2σ2
                                                                  (4.31)  

where k1 = e√σ2λZ0 and k2 = e−√σ2λZ0. Figure 4-4 below, gives an impression of a possible 

realisation of Equation (4.31). 
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Figure 4-4  Example realisation of particular case three 

Notice that if the Lamperti transformed drift coefficient is positive, λ > 0, then the first 

term of the RHS of Equation (4.31) will dominate the process, whereas a negative drift 

coefficient λ < 0 makes the second term the controlling term. However, unlike particular 

solution one it is not possible to turn the process into an exclusively mean-reverting 

process: if σ2 is made smaller to reduce the growth rate in the exponential terms then 

consequently parameter λ will increase and so will the coefficients in front of the 

exponential terms. 

Approximated solutions 

Approximated solutions are solutions that are derived from the original SDE by replacing one 

or more non-linear terms by a linear approximation. As a consequence, such approximation 

is usually only sufficiently accurate in a limited domain of the cash flow variable Xt.  

Approximation method one: 

First, function √β(Xt, t) can be expressed as √(σ2Xt
2 + σ1Xt + σ0) =

√σ2Xt√(1 +
σ1

σ2
Xt

−1 +
σ0

σ2
Xt

−2) for σ2 > 0. Provided that σ2 is not very small relative to σ1 

Xo = 2, μ0 = 0.1, μ1 = 0.1, σ0 = 0.05, σ2 = 0.05, ∆t = 1 
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and σ0, the square root term can be approximated by a Taylor expansion33: 

√(1 +
σ1

σ2
Xt

−1 +
σ0

σ2
Xt

−2) ≈ 1 + 
σ1

2σ2
Xt

−1 + 𝒪(Xt
−2). Therefore, the following linear function 

serves as an approximation of the diffusion function:  

(i) if 
σ1

2√σ2
> 0 then √(σ2Xt

2 + σ1Xt + σ0) ≈  √σ2Xt +
σ1

2√σ2
, or 

(ii) if 
σ1

2√σ2
< 0 then √(σ2Xt

2 + σ1Xt + σ0) ≈  |√σ2Xt +
σ1

2√σ2
|. 

The approximation can be shown to be increasingly accurate, relative to Xt, as Xt becomes 

greater. Since cash flows are indeed frequently sizable amounts, it can be ascertained that 

the approximated SDE is a reasonable replacement for the original one. 

Table 4-1  Accuracy of linear approximation for different cash flow amounts 

 

 

Applying the suggested approximation, Equation (4.1b) can be transformed into the 

following solvable linear SDE: 

dXt = (μ1Xt + μ0)dt + (√σ2 Xt +
σ1

2√σ2

) dWt                                                                        (4.32) 

The solution is very similar to the solution in particular case one: 

Xt = Xo exp [(μ1 −
1

2
σ2)t + 2√σ2Wt] + [(μ0 − σ1)t + 2√σ2 Wt]                                      (4.33)  

for σ2 > 0. Parameter values are estimated by using for instance the method of moments. 

Approximation method two: 

This method combines the linear approximation from Approximation method one with the 

Lamperti transformation described under Particular case three. 

Substituting the aforementioned linear approximation into Equation (4.26), the 

approximated Lamperti transformation can be cast as follows 

                                                           
33 √1 + 𝑍 ≈ 1 +

𝑧

2
+  𝒪(Z2) where 𝑍 =

σ1

σ2
Xt

−1. The smaller 𝑍 is, the better the approximation. In this case Z is indeed small: cash flows Xt 

are normally sizeable amounts, and it was assumed that σ2 is not very small relative to σ1. 

Quadratic diffusion term Linear approximation Variance in %

1 0.3873 0.3354 0.05189 13.397%

10 2.2583 2.3479 -0.08955 -3.965%

100 22.3629 22.4725 -0.10957 -0.490%

1000 223.6070 223.7186 -0.11158 -0.050%

10000 2236.0680 2236.1798 -0.11178 -0.005%

100000 22360.6798 22360.7916 -0.11180 0.000%

σ0 = 0.05, σ1 = 0.05 , σ2 = 0.05 
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dZt = [
(μ1−

1

2
σ2)Xt+(μ0−

1

4
σ1)

√σ2 |Xt|+
σ1

2√σ2

] dt + dWt = [
(μ1−

1

2
σ2)ψ−1(Zt)+(μ0−

1

4
σ1)

√σ2 )ψ−1(Zt)+
σ1

2√σ2

] dt + dWt                  (4.34)  

The aim is to approximate the Lamperti transformed cash flow process by the first term 

only, i.e. the deterministic drift function in isolation, since the unit diffusion term (or more 

precisely: 𝒩(0,1) after adjusting for dt) becomes very small compared the size of the drift 

term. For cash flow processes this approximation will be achieved if the ratio  

(μ1−
1

2
σ2)Xt+(μ0−

1

4
σ1)

√σ2 |Xt|+
σ1

2√σ2

 increases as Xt becomes greater which equates to the condition 

μ1 >
1

2
σ2 + 2√σ2 .  

Table 4-2  Values of the Lamperti-transformed drift function for different cash flow amounts  

 

 

 

 

 

 

In Table 4-2 it can be seen that the approximation, calculated for the specific parameters 

used, is significantly (~ 50 times) greater than 𝒩(0,1), measured on a probability interval of  

±2σ , for cash flows roughly above 100,000 and below -100,000. 

Now, applying the chain rule, Equation (4.34) can be re-written to an ODE (in variable Xt): 

dXt

dt
=

dXt

dZt
 [

(μ1−
1
2σ2)Xt + (μ0 −

1
4σ1)

√σ2 |Xt| +
σ1

2√σ2

] dt                                                                            (4.35) 

where 
dXt

dZt
= √σ2 |Xt| +

σ1

2√σ2
 (which follows from to the approximated Lamperti-

transformation, Equation (4.35)). The resulting linear ODE is easy to solve: 

dXt

dt
= (μ1−

1

2
σ2)Xt + (μ0 −

1

4
σ1)                                                                                              (4.36) 

with solution: 

Xt = Ke(μ1−
1
2
σ2)t −

(μ0 −
1
4σ1)

(μ1−
1
2σ2)

                                                                                                   (4.37) 

Lamperti-transformed drift function 2 sigma /drift

0.01 0.1864 2 10.729

0.1 0.1987 2 10.066

1 0.3107 2 6.438

10                    0.9845 2 2.031

100                  3.3198 2 0.602

1,000              10.5953 2 0.189

10,000            33.5374 2 0.060

100,000          106.0649 2 0.019

1,000,000       335.4098 2 0.006

10,000,000     1060.6601 2 0.002

100,000,000  3354.1019 2 0.001

μ0 = 0.1, μ1 = 0.1, σ0 = 0.05, σ1 = 0.05, σ2 = 0.05 
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where K is an integration constant. If Equation (4.37) is compared to the pure deterministic 

process Xt = Keμ1t −
μ0

μ1
, see Section 3.3, then the equation can be interpreted as a ‘risk 

adjusted’ deterministic approximation of the stochastic cash flow process.  

Approximation method three: 

This method considers a transformation of the cash flow variable Xt into a new variable 

X̃t =
qXt+r

s
  where q = √σ2 for σ2 ≥ 0, r =

σ1

2√σ2
  and s2 =

σ1
2

4σ2
−σ0. Then, Equation (4.1b) 

takes the following specification 

dX̃t = (μ1X̃t + μ0
′ )dt + s√(X̃t

2 + 1) dWt                                                                                   (4.38) 

 where μ0
′ =

qμ0−r

s
 . Since s =

D

2√σ2
 and the discriminant D is defined as D = √σ1

2 − 4σ2σ0, it 

turns out that μ0
′  expressed in basis parameters is μ0

′ =
2σ2μ0−σ1

D
. 

Comparable to Particular case three and Approximation method two, a second 

transformation is proposed 

Zt = ∫
s dε

√2√εt
2 + 1

=  
s

√2
sinh−1(X̃t)                                                                                      (4.39a) 

and subsequent re-scaling of Zt to Zt
′ 

Zt
′ =

√2

s
Zt                                                                                                                                        (4.39b) 

which changes Equation (4.38) into  

dZt
′ = 

√2

s

[
 
 
 
(2μ1 + q)X̃t + 2μ0

′

2q√X̃t
2 + 1

]
 
 
 

dt + √2 dWt                                                                         (4.40a) 

Using Equation (4.39) X̃t = sinh (Zt
′) and the hyperbolic trigonometric identity 

√sinh2(
√2

s
Zt

′) + 1) = cosh(
√2

s
Zt

′), Equation (4.40a) can be re-expressed as 

dZt
′ = 

√2

s
[
(2μ1 + q)

2q
tanh(Zt

′) +
μ0

′

q
sech(Zt

′)] dt + √2 dWt                                             (4.40b) 
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Since |Zt
′| < 1, the two hyperbolic functions in Equation (4.40b) are approximated by a 

series expansion 

tanh(Zt
′) = Zt

′ + 𝒪(Zt
′ 3), sech(Zt

′) = Zt
′ + 𝒪(Zt

′ 2)                                                          (4.41) 

so that Equation (4.40b) is replaced by an approximated version 

dZt
′ = [

(2μ1 + q)

2q

√2

s
Zt

′ +
μ0

′

q

√2

s
] dt + √2 dWt                                                                     (4.42a) 

or after substituting q = √σ2,  μ0
′ =

2σ2μ0−σ1

D
,  s =

D

2√σ2
, where D = √σ1

2 − 4σ2σ0 

dZt
′ = [

(2μ1 + √σ2)√2

D
Zt

′ +
(4σ2μ0 − 2σ1)√2

D2
] dt + √2 dWt                                         (4.42b) 

or, re-expressed as 

dZt
′ = −

(2μ1 + √σ2)√2

D
[−

(4σ2μ0 − 2σ1)

(2μ1 + √σ2)D
−Zt

′] dt + √2 dWt                                        (4.42c) 

In its converging form, Equation (4.42b) is similar to the well-known Vasicek process 

(Appendix O1) with long-time average of −
(4σ2μ0−2σ1)

(2μ1+√σ2)D
, a speed of reversion 

−(2μ1+√σ2)√2

D
, 

and an instantaneous change of variance equal to constant 2. The associated 

inhomogeneous linear SDE with constant coefficients is solvable in closed-form (Kloeden 

and Platen (2011, p. 118)). The general solution is 

Zt
′ = −

4σ2μ0−2σ1

(2μ1+√σ2)D
+ [Z0

′ +
4σ2μ0−2σ1

(2μ1+√σ2)D
] e

[
(2μ1+√σ2)√2

D
]t

+ √2∫ e
[
(2μ1+√σ2)√2

D
]t′t

0
dWt′            (4.43)  

where Z0 is an integration constant representing the value of Z at t = 0. Given that σ2 > 0 

the process is converging or diverging in time, depending on the following conditions 

 
𝛍𝟏 < −

√𝛔𝟐

𝟐
 𝛍𝟏 > −

√𝛔𝟐

𝟐
 

𝐃 > 𝟎 converging diverging 

𝐃 < 𝟎 diverging converging 

 

A converging process goes to a stationary (long-time) value (lim t → ∞) equal to 

−
4σ2μ0−2σ1

(2μ1+√σ2)D
. The conditional density function of Zt is Gaussian: Zt~ 𝒩(μt, σt

2) where 
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[μt = −
4σ2μ0−2σ1

(2μ1+√σ2)D
+ [Z0

′ +
4σ2μ0−2σ1

(2μ1+√σ2)D
] e

[
(2μ1+√σ2)√2

D
]t
], and  σt

2 = −
(2μ1+√σ2)D

2σ2μ0−σ1
[1 −

e
[
(2μ1+√σ2)√2

2D
]t
]. The evolution of the first moment is described by the following equation  

𝔼(Zt
′) = −

4σ2μ0 − 2σ1

(2μ1 + √σ2)D
+ [Z0

′ +
4σ2μ0 − 2σ1

(2μ1 + √σ2)D
] e

[
(2μ1+√σ2)√2

D
]t
                                      (4.44) 

and the evolution of the variance by 

𝕍(Zt
′) =  −

(2μ1 + √σ2)D

2σ2μ0 − σ1
[1 − e

2[
(2μ1+√σ2)√2

D
]t
]                                                                  (4.45a) 

if the process is converging, or 

𝕍(Zt
′) =  

(2μ1 + √σ2)D

2σ2μ0 − σ1
[e

2[
(2μ1+√σ2)√2

D
]t

− 1]                                                                     (4.45b) 

if the process is diverging. 

Equations (4.44) and (4.45b) can be re-parametrised to 

𝔼(Zt
′) = −Θ1 + [Z0 + Θ1]e

Θ2t                                                                                                      (4.46) 

𝕍(Zt
′) = Θ3(e

2Θ2t − 1)                                                                                                                   (4.47) 

where Θ1 =
4σ2μ0−2σ1

(2μ1+√σ2)D
, Θ2 =

(2μ1+√σ2)√2

D
 and Θ3 = ±

(2μ1+√σ2)D

2σ2μ0−σ1
. 

The set of parameters {Θ̂1, Θ̂2, Θ̂3} are estimated from Equations (4.46) and (4.47). 

Nevertheless, the complete parameter system {μ0, μ1, σ0, σ1, σ2} is underspecified and 

without at least two restrictions on the parameters, it is seemingly not solvable. In such 

cases it is sometimes possible to derive a set of ODEs, sufficient in number to define a 

completely specified system of estimated parameters. For a discussion of evolution of 

moment ODEs and associated closure techniques refer to, for example, Kuehn (2016) and 

Nasell (2017). Despite the system being closed and thus admitting recursive solutions, 

mathematically it can be demonstrated that equations describing the evolution of higher 

moments (n ≥ 2) are all defined by a composite expression of the same parameter set 

{Θ̂1, Θ̂2, Θ̂3} and thus the under specification-problem is not removed. Under-specification is 
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caused by the first variable transform (as per Equation (4.38)) that requires knowledge of 

parameters {σ0, σ1, σ2}; however, these will follow from the final estimation. 

Discussion 

Figures 4-1 and 4-3 lead to the tentative conclusion that particular solutions one and three 

are suitable equations to model operating cash flow processes. Both equations include a 

randomised exponential growth process commonly observed in operating cash flow 

processes. Nevertheless, particular solution one can only under very restrictive parameter 

conditions be used to mimic the behaviour of investing cash flow processes. Comparing 

particular solution one to the functional form of a general solution explains why: 

linearization of the SDE transforms a multiplicative exponential growth specification into an 

additive specification. A similar conclusion can be drawn for particular solution three. This 

solution is the sum of an exponential growth process and a mean-reverting exponential 

process but there are no parameter values that can turn the equation into an exclusively 

mean-reverting process. 

Particular solution two exhibits randomised growing periodicity, behaviour that is typically 

seen in investing cash flow processes. However, this behaviour is caused by bounded drift 

and diffusion functions, which is only observed in relatively rare cases.  

In this section, two approximate solution methods were suggested. For both methods, 

larger cash flow values, as usually observed in financial datasets, result in a better 

approximation. Approximation method one leads to almost the same functional 

specification as Particular solution one. Therefore, the method is equally suitable to model 

operating cash flows but not investing cash flows. Approximation method two, links the 

corresponding deterministic process to stochastic solutions by including a risk-adjustment 

factor in the deterministic solution equation, an approach that generally works well for 

significantly large positive and negative cash flows (amounts in the order of at least 

$100,000).  Method three transforms a linear-quadratic process into a Vasicek process. The 

corresponding Gaussian conditional density function seems attractive; however, since the 

evolution of higher moments is defined by the same three parameters only, it does not 
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accommodate the estimation of the full parameter set (five parameters) of the linear-

quadratic equation.  

In the absence of an exact general solution to the cash flow process under study, and no 

particular and approximate solutions that satisfy operating and investing cash flows alike, or 

provide acceptable solutions over the whole range of cash flows, other approaches should 

be tried. One obvious approach is to examine weak34 solutions to the SDE by analysing the 

associated Fokker-Planck (or more general: Kolmogorov) equation(s). This will be the topic 

of Section 4.2 (investing cash flow) and Section 4.3 (operating cash flow). 

 

4.2. Solutions to the investing cash flow Fokker Planck Equation 

In this section, solutions to the investing cash flow Fokker-Planck equation are examined in 

more detail. Investing cash flows are analysed first since their solutions are considered less 

complicated than solutions for operating cash flow processes. 

The Fokker-Planck equation describes the full stochastic dynamics of the (uncoupled) cash 

flow process at a mesoscopic level: 

∂p(It, t)

∂t
=

−∂(μ1It + μ0)p(It, t)

∂It
+ 

1

2

∂2(σ2It
2 + σ2It + σ0)p(It, t)

∂It
2                                    (4.48) 

with initial condition p(It, 0) =  δ(c − c0) where p(It, t) is the conditional investing cash 

flow probability density function and δ() is Dirac’s delta function.  

The stationary solution pst(I) is found by expressing Equation (4.48) as  
∂p(It,t)

∂t
=

−∂J(It,t)

∂It

35, 

where J(It, t) represents the probability current [(μ1It + μ0) + 
1

2

∂(σ2It
2+σ1It+σ0)

∂It
] p(It, t), and 

subsequently setting 
∂J(It,t)

∂It
 to zero, gives  

pst(I) = K e−Φ(I)                                                                                                                              (4.49) 

                                                           
34 Weak solutions, as opposed to strong solutions (see Section 4.1), are defined as solutions that share a common probability density 

function. 
35 The representation of the Fokker-Planck equation in probability current format, explicates the conservation of probability in a spatial 

density system as an essential property of the equation. 
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where Φ(I) = ln (
σ2I2+σ2I+σ0

2
) − ∫

2(μ1ξ+μ0)

(σ2ξ2+σ1ξ+σ0)
dξ36 and K is a normalisation constant. 

Equation (4.49) is derived in for instance Risken and Frank (2012, p. 98). Equation (2.17) in 

Section 2-3 provided an alternative expression for pst(I): K′ [(I +
σ1

2σ2
)2 +

λ2]
𝜈1

exp [𝜈2tan
−1 [

I+
σ1
2σ2

λ
]], where 𝜈1 =

μ1−σ2

σ2
 , 𝜈2 =

2μ0−
σ1
σ2

μ1

σ2λ
 , λ > 0 and K′ is a 

normalisation constant. From λ =  
√4σ0σ2−σ1

2

2σ2
 in conjunction with λ > 037 and 4σ0σ2 − σ1

2 >

0, it follows that σ2 must be positive and therefore the sign of 𝜈1depends on the value of μ1. 

If μ1 < σ2 then 𝜈1 is smaller than zero. Since σ2 > 0, the condition μ1 < 0 must also hold 

for any value of σ2. Consequently, pst(I) ↓ 0 as I → +∞ or −∞. Notice that the term 

(I +
σ1

2σ2
)2 + λ2 always has positive value and the term 𝜈2tan

−1 [
I+

σ1
2σ2

λ
] asymptotically 

approaches +
𝜈2

2𝜋
 as I → +∞ and −

𝜈2

2𝜋
 as I → −∞. Since investing cash flow is defined on the 

whole range ℝ,  −∞ and +∞ act here as natural boundaries; hence there is no need to 

impose additional boundary conditions. 

Supported by empirical evidence, Section 2-3 shows that investing cash flow processes 

converge to a steady state governed by the class Pearson type IV distribution which follows 

from a quadratic diffusion function characterised by complex roots (and a negative 

discriminant). The stochastic properties of investment cash flow processes can therefore be 

studied from their stationary distributions. Stochastic processes based on Equation (4.1b) 

that have a stationary probability density function to which the process converges as t → ∞, 

are called Pearson diffusions. Since stationary density functions are generally observed for 

investment cash flow processes, this section will briefly discuss Pearson diffusions. Pearson 

diffusion processes are widely studied in the literature: see for instance E. Wong, The 

construction of a class of stationary Markov processes, in: Bellman and Society (1964, pp. 

264–276), Forman and Sorensen (2008), G. M. Leonenko and Phillips (2012), Shaw and 

Schofield (2015).  

                                                           
36 Often the term ln (

σ2I2+σ2I+σ0

2
) is omitted from the potential function Φ( ). 

37 Heinrich (2004, p. 1) states that the probability density function pst is invariant under a simultaneous transformation σ2 → −σ2 and 

𝜈2 → −𝜈2 and therefore the parameter σ2 is taken positively by convention. 



 
 

4   Solutions to the Coupled Linear-Quadratic Cash Flow Model  115 
 

The Pearson diffusion equation is commonly expressed as 

dXt = Θ(μ − Xt)dt + √2Θ(σ2
′ Xt

2 + σ1
′ Xt + σ0

′ ) dWt                                                              (4.50)                                  

where Xt is some converging cash flow process and parameter Θ > 0 represents the speed 

of the diffusion. Parameters μ, σ2
′ , σ1

′  and σ0
′  determine the state-space of the diffusion and 

the shape of the corresponding density function (Forman ( 2007, p. 9)). Note that the 

mapping to the parameters of Equation (4.1b) is the following: μ1 = −Θ, μ0 = Θμ, σ2 =

2Θσ2
′ , σ1 = 2Θσ1

′  and σ0 = 2Θσ0
′ . 

For six particular (or limiting) cases38, Equation (4.50) is known to have explicit (analytical) 

stationary solutions in the form of polynomial eigenfunctions (G. M. Leonenko and Phillips 

(2012)). Particular solutions are defined by (i) the degree of the quadratic equation d (0, 1, 

or 2), (ii) the sign of parameter σ2 (positive or negative) and (iii) the value of the 

discriminant D = σ1
2 − 4σ2σ0 (positive, negative, zero) of the quadratic diffusion function. 

Only two of the six cases are (unconditionally) defined on the full cash flow spectrum ℝ: the 

Ornstein-Uhlenbeck diffusion (d=0) and the Student diffusion (d=2, σ2 > 0, D < 0) (G. M. 

Leonenko and Phillips (2012)) and hence they are possible equations to describe investment 

cash flow processes. Since the vast majority of investing cash flow processes are of degree 1 

or 2 (see Section 2-3), the Student diffusion process is the process of choice. Indeed, 

Steinbrecher and Shaw (2008) and Shaw and Schofield (2015, Section 4), see the Student 

diffusion as a natural candidate for a mean-reverting GBM-ABM hybrid process as described 

by Equation (4.1b). 

Traditionally Student diffusion processes are parametrised as 

 dXt = −Θ(Xt − μ)dt + √αΘ[(Xt − β)2 + γ2] dWt                                                                (4.51) 

where, compared to Equation (4.1b), the parameters are: μ1 = −Θ, μ0 = μΘ, σ2 = αΘ, 

σ1 = −2αβΘ and σ0 = α(β2 + γ2)Θ.  

                                                           
38 The six cases are: Ornstein-Uhlenbeck diffusion, CIR diffusion, Jacobi diffusion, Reciprocal gamma diffusion, Student diffusion and 

Fisher-Snedecor diffusion. 
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Interestingly, using the hybrid decomposition of Equation (3.28) in Section 3-4, dXt =

(μ1Xt + μ0)dt + √σ2XtdW1,t + √σ0 dW2,t, Equation (4.51) can be reformulated, see Avram 

et al. (2013, p. 13), as 

dXt = −Θ(Xt − μ)dt + √σ2 [Xt + ρ
√σ0

√σ2

]

2

+ (1 − ρ2)
σ0

σ2
 dWt                                          (4.52) 

where ρ is the correlation coefficient between the Brownian motions W1,t and W2,t. 

Substituting the parameters of Equation (4.52) into Equation (4.48) leads to the following 

specific Fokker-Planck equation for investment cash flow processes 

∂p(It, t)

∂t
=

Θ∂((It − μ))p(It, t)

∂It
+ 

αΘ

2

∂2[(It − β)2 + γ2]p(It, t)

∂It
2                                         (4.53) 

The stationary (time-invariant) equation can be derived from Equation (4.53) by setting 

∂p(It,t)

∂t
= 0 with the resulting specific Pearson equation 

dp(I)
dI

p(I)
=  

(μ + 2αβ) − (1 + 2α)I

α[(It − β)2 + γ2]
                                                                                               (4.54)  

The Student diffusion process has been studied extensively in the literature (E. Wong, The 

construction of a class of stationary Markov processes, in: Bellman and Society (1964, pp. 

264–276), Grigelionis (2013), Avram et al. (2013)), and solutions to Equation (4.54) can be 

found for instance in Meerschaert and Sikorskii (2012, pp. 226-227) and G. M. Leonenko and 

Phillips (2012, pp. 2864-2867). The (asymmetric) invariant density function is 

p(I) =  η(μ, α, β, γ)
exp [

μ − β
αγ  tan−1 [

It − β
γ ]]

[1 + [
It − β

γ ]
2

]

 𝜈+1
2

                                                                       (4.55) 

where I ϵ ℝ , α > −1, η(μ, α, β, γ) =
Γ(

 𝜈+1

2
)

γ√𝜋  Γ(
 𝜈

2
)
∏ [1 + (

μ−β

αγ
 ν+1

2
+k

)

2

]

−1

∞
k=0 , 𝜈 =  1 +

1

α
  

representing the degrees of freedom. 
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Equation (4.55) can be considerably simplified if the density distribution is symmetric, i.e.  

μ = β in which case the equation becomes 

p(I) =  η(μ, α, β, γ)
1

[1 + [
It − β

γ ]
2

]

 𝜈+1
2

                                                                                      (4.56) 

where I ϵ ℝ , α > −1, η(μ, α, β, γ) =
Γ(

 𝜈+1

2
)

γ√𝜋  Γ(
 𝜈

2
)
, 𝜈 =  1 +

1

α
  representing the degrees of 

freedom. Equation (4.56) is a pre-eminent function to describe processes that evolve to 

heavy-tailed distributions such as the ones empirically found in Section 2-3 for investing 

cash flow processes. 

The next section deals with the dynamics of operating cash flows and gives a method to 

analyse the full (intertemporal) dynamics of the investing cash flow Fokker-Planck equation. 

 

4.3. Solutions to the operating cash flow Fokker Planck Equation 

In contrast to investing cash flows, (uncoupled) operating cash flow processes appear not to 

be converging to a stationary distribution (see Section 2-3), barring a few exceptions. From 

the conclusion in Section 4-1, that is, the convergence of cash flow processes is uniquely 

determined (dominated) by the drift function, and the drift function α(c) = μ1c + μ0 of 

operating cash flow is defined by μ1 > 0, the inference must be that operating cash flow 

processes do not have a stable probability distribution as  t → ∞. Therefore, the Pearson 

diffusion process is, excluding a few exceptions, not a suitable equation to describe 

operating cash flows. A wider net has to be cast as will become clear in the remainder of this 

section.  

There exist a large number of (combinations of) methods to solve the Fokker-Planck 

equation. Figure 4-5 outlines the methods considered in this study. Mutatis mutandis, the 

methods are applicable to the forward and backward Kolmogorov equations alike.  

Of all main solution techniques, the emphasis is on the method of separation of variables for 

reasons set-out in the following subsection. Since operating cash flows have arbitrary 

boundary values [λ1; λ2], standardising these values enhances the chances of finding 
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solutions. Two normalisations are further examined: the transformation to boundary values 

[−1; 1] and to boundary values [0; 1]. Additionally, recasting the problem to a Sturm-

Liouville problem, provides access to a range of well-known solutions. Once formulated as a 

Sturm-Liouville problem, other standard techniques can be applied. In this study the Jacobi, 

Hermitian and Schrödinger transformations are identified as convenient and commonly 

applied second-step solution techniques. Notice that not all these techniques will 

necessarily lead to a general solution; some special and approximated solutions will have to 

be considered as is the case with the linear-quadratic SDE (see Section 4-1).  
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Figure 4-5  Selection of Fokker-Planck solution techniques  

Note: in this section solutions are discussed that are marked as bold rectangles in Figure 4-5. 

The forward Kolmogorov diffusion equation 

The forward Kolmogorov diffusion equation, i.e. the Fokker-Planck equation, corresponding 

to the SDE of operating cash flow processes is 

∂p(Ct, t)

∂t
=

−∂(μ1Ct + μ0)p(Ct, t)

∂Ct
+ 

1

2

∂2(σ2Ct
2 + σ1Ct + σ0)p(Ct, t)

∂Ct
2                           (4.57a) 
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with initial condition p(Ct, 0) =  δ(c − c0) where p(C, t) is the conditional operating cash 

flow probability density function and δ() is Dirac’s delta function. In non-divergence form 

the equation can be written as 

∂p(Ct,t)

∂t
= (σ2 − μ1)p(Ct, t) + [(2σ2 − μ1)Ct + (σ1 − μ0)]

∂p(Ct,t)

∂Ct
+ 

1

2
(σ2Ct

2 + σ1Ct +

σ0)
∂2p(Ct,t)

∂Ct
2                                                                                                                                       (4.57b)  

To examine the inter-temporal dynamics of a space-time density function, solving the 

Fokker-Planck equation is commonly considered the preferred method since there are no 

constraints placed on the evolution of the density function in the form of an end condition. 

The Fokker-Planck equation is accompanied by an initial condition, often expressed as 

Dirac’s delta function that admits a wide variety of possible density specifications as the 

process evolves (over time). 

Boundary conditions 

One of the conclusions of the prior section is that an investing cash flow process has natural 

boundary conditions −∞ and +∞ attached to it. The question raises whether the same 

boundary conditions pertain to operating cash flows or that more stringent boundaries 

conditions are required. The latter is indeed the case as will now be set-out. 

Consider the density function plt(C) = K e−Φ(C), similar to the stationary density function 

pst(I) derived in Equation (4.49) for investing cash flows. It is clear that since an operating 

cash flow process does not converge to a stationary solution as t → ∞, no stationary density 

function pst(C) exists and therefore a long-time density function plt(C), where the 

probability current approximates a constant, needs to be defined39. Referring to Equations 

(18) and (19) in Section 4-3, it can be shown that, in analogy to Pearson’s Case 2, the long-

time density function can be evaluated to 

plt(c) = K (c − λ1)
−ν1(c − λ2)

−ν2                                                                                                (4.58) 

                                                           
39 An alternative approach is to require that the space-time density function approaches zero sufficiently fast as the cash flow range 

expands over time, Pavliotis (2014, pp. 88-89). 
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where λ1, λ2 are the (real) roots of β(c) = σ2c
2 + σ1c + σ0, α(c) = μ1c + μ0, 𝜈1 =

−(μ1λ1+μ0)

σ2(λ2−λ1)
 , 𝜈2 =

(μ1λ2+μ0)

σ2(λ2−λ1)
,  K > 0 is a normalisation constant, λ1 < c < λ2 and λ1 < 0 < λ2. 

For the following calculations, it is assumed that 𝜈1, 𝜈2 ≥ −1.  

Notice that for notational convenience, and for consistency with the remainder of this 

chapter, C is now replaced by c. 

From the fact that probability numbers must be greater than or equal to zero, it follows that 

(i) (c − λ1)
ν1(c − λ2)

ν2 ≥ 0 if σ2 > 0 or (ii) (c − λ1)
ν1(c − λ2)

ν2 ≤ 0 if σ2 < 0.  

Premise (i) can only be true if (c − λ1)
ν1 ≤ 0 and (c − λ2)

ν2 ≤ 0, or, (c − λ1)
ν1 ≥ 0 and 

(c − λ2)
ν2 ≥ 0. Both cases have to be ignored since cash flows can take any value, excluding 

λ1 ≤ c ≤ λ2 which is not logical.  

Premise (ii) can only be true if (c − λ1)
ν1 ≤ 0 and (c − λ2)

ν2 ≥ 0, or, (c − λ1)
ν1 ≥ 0 and 

(c − λ2)
ν2 ≤ 0. The first case has to be dismissed because c cannot be smaller than λ1 and 

greater than λ2 at the same time. Hence, c must be between the lower-boundary λ1 and the 

upper-boundary λ2 on a finite cash flow range 

 λ1 ≤ c ≤ λ2                                                                                                                                     (4.59a) 

Extended to the full space-time density function, these boundary conditions become time-

variant 

λ1,t ≤ c ≤ λ2,t                                                                                                                                 (4.59b) 

Besides the mathematical logic of a constrained cash flow process, financial-economic 

rationales can also be mentioned. Businesses that incur consistent negative cash flows 

without the prospect of a likely turnaround, will sooner or later fail. Practically, bankruptcy 

risk puts a natural lower limit on the size of negative operating cash flows. Hence, a lower-

boundary condition is justified. Comparable reasoning applies to upper-boundary 

conditions. No business, regardless of how successful it is, can maintain unlimited growth: 

there are natural restrictions to the physical size of organisations. 

Two boundary conditions are relevant when dealing with probability functions: (i) absorbing 

boundary conditions, and (ii) reflective boundary conditions.  
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Reflective boundary conditions impose a change of probability current that is equal to zero 

at the upper and lower cash flow boundaries. The probability current of the forward 

Kolmogorov equation can be found by expressing the equation as  
∂p(c,t)

∂t
=

−∂J(Ct,t)

∂c
 where 

J(c, t) is the probability current (μ1c + μ0) + 
1

2

∂(σ2c2+σ1c+σ0p(c,t))

∂c
. At the boundaries, the 

reflective boundary conditions produce 

(μ1c + μ0) + 
1

2

∂(σ2c
2 + σ1c + σ0p(c, t))

∂c
= 0                                                                       (4.60) 

for c =  λ1, λ2. 

Reflective boundary conditions admit a wide range of intermediate distribution functions, 

not only those with probability values approaching zero at both boundaries, i.e. p(c, t) = 0 

for c =  λ1, λ2.  The latter restriction is typical for absorbing boundary conditions, hence 

associated probability density functions are a subset of those of reflective boundary 

conditions. In the following part of this section, conscious that less general solutions are 

likely to be obtained but benefiting from often lesser complicated mathematics, absorbing 

boundary conditions instead of reflective boundary conditions, will be applied to find 

solutions to the Kolmogorov equations.  

Finally, following Linetsky (2004, p. 348), closed boundary conditions [λ1;  λ2] lead to a 

discrete spectrum with eigenvalues that are always non-oscillatory40. 

Discussion of solution methods 

The forward Kolmogorov equation was introduced above. From the literature it is apparent 

that finding general solutions to the Fokker-Planck equation is complicated and usually only 

possible for special drift and diffusion functions (Risken and Frank (2012, p. 99), Araujo and 

Drigo Filho (2012)). Therefore, the backward Kolmogorov equation is considered to be the 

next best option for finding a closed-form specification of the space-time density function. 

At the end of this section, the backward Kolmogorov equation, in particular its connection 

to the forward equation, will be discussed. First, however, methods for solving both 

Kolmogorov equations are to be discussed. 

                                                           
40 Meaning that the solution to the ODE has a finite number of roots. 
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Presuming that the Kolmogorov equations are not directly solvable, which they are only in 

rare cases with very rudimentary drift and diffusion functions, there exist at least two well-

known methods to solving the Kolmogorov equations under boundary restrictions: 

(i) Transforming one or more variables such that the resulting equation is easier to solve; 

and 

(ii) The method of separation of variables. 

The success of the first solution method, transformation of variable(s), depends on the 

specific form of the Kolmogorov equation. The Laplace or Fourier transform are frequently 

used to reduce the Kolmogorov PDE to an ODE in cash flow, respectively, to an ODE in time. 

Despite the attractiveness of this reduction technique, the Laplace and Fourier transform 

are often considered intractable because, except for a few very simple specifications of the 

Kolmogorov equations, an inverse transform cannot be found (in closed form). 

Potentially more productive methods transform all variables, independent and dependent 

alike, into a new PDE that is invariant relative to the original one. These invariant group 

transformation methods are explained in Bluman and Cole (1974) and specifically for the 

Fokker-Planck equation in Nariboli (1977). For instance, Sachdev (2000, Chapter 3) and 

Meleshko (2006, Chapter 5) provide a more recent treatment of the method including 

newer developments. In many cases, however, invariant group transformations result in an 

even more complex system of PDEs. Accordingly, success of the method hinges on finding 

the right set of transformations that significantly reduce the equation’s complexity. 

Furthermore, applied to PDEs the method leads to a reduction in the number of variables 

rather than order, and hence solutions of the transformed (system of) PDE(s) often become 

a particular solution of the untransformed PDE. Nevertheless, the method may be conducive 

to discovering hitherto unknown solutions to the linear-quadratic Kolmogorov equations.  

The method of separation of variables, considers the unconditional density function 

p(c(t), t) as the product of two separate functions, one in c and the other in t: p(c(t), t) =

pc(c)pt(t), see Cain and Meyer (2005); Logan (2014, Chapter 4)). There are strong 

indications that the method of separation of variables and invariant group transformations 

(also known as infinitesimal symmetry methods) are related to each other; however, the 

exact nature of the relationship is still unresolved. For the supposed connection between 
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the two methods, see e.g. Miller (1977) and Olver (2000). It is a matter of fact that in physics 

the method of separation of variables customarily does produce plausible results. 

Irrespective, there is no guarantee that the method leads to a general solution that 

enumerates all possible solutions. 

The question can be raised if separation of variables can be used to solve the Kolmogorov 

Equations (4.57a), (4.57b) and (4.58). Since these equations are second order linear 

parabolic and homogeneous PDEs, there is in principle no technical objection. In this regard, 

Weinberger (1995, p. 68), provides three conditions for the method to be applicable:  

(i) the differential operator must be separable, that is, there must be a function ϕ(c, t) 

such that 
ℒ(pc(c)pt(t))

ϕ(c,t)pc(c)pt(t)
= f(c) + g(t), 

(ii) all initial and boundary conditions must be on lines c = constant and pc(c) = constant, 

and  

(iii) the linear operators defining the boundary conditions at c = constant must not have 

partial derivatives of p(c(t), t) with respect to variable t, and those defining boundary 

conditions at pc(c) = constant must not have partial derivatives of p(c(t), t) with 

respect to variable c.  

The PDEs analysed in this study, all obey these three conditions. 

Separation of variables prompts solutions that have the following functional specification 

p(c(t), t) = e−κtpc(c)                                                                                                                     (4.61)  

where κ is a constant that can be positive or negative, and pc(c) is the solution of an ODE, 

which specification is determined by the specific drift and difussion functions. The 

derivation of this equation is explained in the next subsection. 

Since Kolmogorov equations deal with probabilities, the associated normalisation of the 

space-time density function, for all time t, may be regarded as a complication. In order to 

warrant the normalisation condition (that is, the cumulative density function equates to 1 at 

all times), solutions are expected to show a widening density function on the cash flow axis 

coupled with a shrinking probability height as time progresses. Reduction of probability 

height follows from the time function e−κt if κ > 0 in the forward Kolmogorov equation, 
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and, if κ < 0 in the backward Kolmogorov equation. The cash flow component of the 

solution, pc(c), seems static at first glance which is incompatible with the normalisation 

condition. The issue can be dealt with if e−κt is split into three functions e−ϱt, fp(t) and fe(t) 

and pc(c) is further factorised as pp(c)pe(c), where pp(c) is a (composite) power function 

and is pe(c) is a (composite) exponential function. Commonly, power and/or exponential 

functions form part of many well-known continuous probability distrbution functions. 

p(c(t), t) = e−κtpc(c) = e−ϱt fp(t)fe(t)pp(c)pe(c) = e−ϱt pp(fp(t)c)pe(c+fe(t))       (4.62)  

Now, fp(t) has become a (time-dependent) scaling factor and fe(t) a (time-dependent) 

translation factor. In fact, the equality fp(t)pp(c) = pp(fp(t)c) is valid for all self-similar 

functions of which power functions are only a sub-set. The self-similar property was already 

encountered in Section 4-1, Equation (4.27), where the Lamperti-transformation was 

discussed. 

In summary, the implied transformation of the space-time density function into the product 

of a (non-linear) factor e−κt and a time-independent density function pc(c) is only allowed if 

pc(c) is translated and scaled on a time-line, i.e. if, heuristically speaking, the shape of the 

density function is not fundamentally changed with a more complex transformation. 

Checking Figure 2-4 in Chapter 2, reveals that the shapes of the density function, observed 

at different points in time, show a close resemblence. The tentative conclusion must be that 

for both operating and investing cash flows, the method of separation of variables is a 

justifiable solution method. 

Consequently, in the remainder of this section focus will be on the method of separation of 

variables as a general strategy to solving the polynomial (linear-quadratic) Fokker-Planck 

equation. 

Separation of variables and the forward Kolmogorov equation 

Equation (4.57a) may be written in operator form, Risken and Frank (2012, pp. 101-108) 

∂p(c, t)

∂t
= ℒ𝐹𝑃 p(c, t)                                                                                                                    (4.63a) 

The applicable (absorbing) boundary conditions are 
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p(λ1,t, t) = 0, p(λ2,t, t) = 0                                                                                                 (4.63b) 

The Fokker-Planck operator is defined as follows 

ℒ𝐹𝑃 = − 
∂ α(c)

∂c
+ 

∂2β(c)

∂c2
=

∂ 

∂c
[β(c)e−Φ(c)

∂ 

∂c
eΦ(c)]                                                          (4.64) 

where Φ(c) = −∫
α(ξ)

β(ξ)
dξ. For a non-stationary process, Φ(c) represents a long-time density 

function for which the probability current becomes approximately constant (that is, 

asymptotically approaches a stable value). In case of the linear-quadratic specification, 

α(c) = (2σ2 − μ1)c + (σ1 − μ0),  and β(c) = 
1

2
[σ2c

2 + σ1c + σ0].  

After separation of the variables, Equation (4.63a) is transformed into a system of two ODEs 

dpt(t)

dt
= −κ pt(t)                                                                                                                             (4.65a)  

ℒ𝐹𝑃pc(c) = −κ pc(c)                                                                                                                    (4.65b)  

where κ is an arbitrary constant, by convention set to a negative value. 

The solution to Equation (4.65a) is straightforward 

pt(t) = K0e
−κt                                                                                                                                  (4.66) 

where K0 is an integration constant. This result was already used in the previous subsection 

when discussing the validity of the method of separation of variables. 

Solving Equation (4.65b) requires a more involved solution strategy. The full differential 

specification of the ODE is 

β(c)
d2pc(c)

dc2
+ α(c)

dpc(c)

dc
+ K pc(c)                                                                                      (4.67a) 

with associated boundary conditions 

pc(λ1) = 0, pc(λ2) = 0                                                                                                        (4.67b) 

In the case of the linear-quadratic specification 

1

2
[σ2c

2 + σ1c + σ0]
d2pc(c)

dc2
+ [2σ2 − μ1)c + (σ1 − μ0)]

dpc(c)

dc
+ σ2 − μ1 + κpc(c) =

0                                                                                                                                                           (4.67c)  



 
 
126                                                                                                   
 

  

where α(c) = (2σ2 − μ1)c + (σ1 − μ0), β(c) = 
1

2
[σ2c

2 + σ1c + σ0] =  
1

2
σ2(c − λ1)(c −

λ2), with λ1, λ2 being the (real) roots of β(c), and K = σ2 − μ1 + κ. 

Equation (4.67c) is of the general hypergeometric type. No known general exact solutions 

exist (G. M. Leonenko and Phillips (2012, p. 2855)). Regardless, spectral and pseudo-spectral 

methods based on (classical and non-classical) polynomials are used to solve the Fokker-

Planck and related Schrödinger equations (Shizgal (2015, Chapter 6)). Some of these 

methods will be applied in the remainder of this section. Essentially, they transform 

Equation (4.67a) into differential equations that have known solutions. There are two ways 

to accomplish this: 

(i) The general hypergeometric differential equation can be directly cast to a polynomial 

differential equation by restricting the number of parameters {μ0, μ1, σ0, σ1, σ2 }; or 

(ii) The general hypergeometric differential equation can be transformed into a general 

Sturm-Liouville problem for which a wide range of standard solutions occur.  

The first technique is often used in the literature. For a criterion to derive differential 

equations with polynomial solutions, and an extensive overview of examples, refer to 

Nasser et al. (2006). All six limiting cases known to be solutions of the Pearson diffusion 

Equation (4.50), Section 4.2, have polynomial solutions (G. M. Leonenko and Phillips (2012)). 

In the case of the Pearson diffusion, however, Equation (4.67a) is derived directly as a 

stationary ODE which presupposes a mean-reverting process. The six cases with known 

solutions are: Hermite polynomials (OU process), Laguerre polynomials (CIR process), Jacobi 

polynomials (Jacobi process), Bessel polynomials (reciprocal gamma process), Romanovski 

polynomials (Student process), and Fisher-Snedecor polynomials (Fisher-Snedecor process).  

Recall from Section 4.2 that the Student diffusion was considered a particularly useful 

process to describe investing cash flow processes since it is one of the few particular 

solutions that admit values in the whole cash flow range (−∞;∞). Noticeably, the Student 

diffusion is regarded as a special case of the more general hypergeometric diffusion 

(Linetsky (2004)). If the method of separation of variables is applied to examine the inter-

temporal dynamics of investing cash flow processes (which was suggested in Section 4.2) 
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then the corresponding space-time density function can be expressed as p(c, t) = e−κtpc(c) 

where, in this case, pc(c) is a solution consisting of Romanovski polynomials41. 

Whilst the Student diffusion process is a convenient process to describe investing cash flow 

(for the reasons set-out above), it has no bearing on operating cash flows. Hence a different 

approach ought to be considered. Below, the general hypergeometric differential Equation 

(4.69a) is transformed into a solvable polynomial differential equation.  

Transformation of the general hypergeometric equation 

Two transformations that turn Equation (4.67c) into a solvable polynomial equation, have 

been selected on the basis that they do not compromise generality. One transformation 

pertains to hypergeometric polynomials, a speciality of the general hypergeometric 

equation; the other to Jacobi polynomials. The two classes of polynomials are related, 

Kristensson (2010, Chapter 5). 

The first transformation (for a detailed explanation refer to Zaitsev and Polyanin (2002)) of 

the cash flow variable is the linear transformation c′ = 
c−λ1

λ2−λ1
 where λ1, λ2 are the (real) 

roots of the diffusion function σ2c
2 + σ2c + σ0. This transformation changes the boundary 

values from  [λ1; λ2] into [0; 1]. The transformed differential equation becomes 

1

2
σ2c

′(1 − c′)
d2p

c′(c′)

dc′2
+ [(2σ2 − μ1)c

′ +
(2σ2−μ1)λ1+σ1−μ0

(λ2−λ1)
]

dp
c′(c′)

dc′ + (σ2 − μ1 +

κ)pc′(c′) = 0                                                                                                                                    (4.68)   

Equation (4.68) brings about a wide range of solutions all related to Gaussian 

hypergeometric functions (Agarwal and O'Regan (2008, chapter 10); Aomoto et al. (2011); 

Schoutens (2012); J. Pearson (2009); Plastino and Rocca (2016)).  

The hypergeometric differential Equation (4.68) has exact solutions that can be found for 

instance in Zaitsev and Polyanin (2002, chapter 2, section 1, equations 171 and 179). If γ is 

not an integer, solutions can be expressed as 

                                                           
41 Romanovski polynomials Rn(c;  α, β) solve the following special version of the hypergeometric differential equation: 

(1 + c2)Rn
′′(c;  α, β) + (2βc + α)Rn

′ (c;  α, β) − n(2β + n − 1)Rn(c;  α, β) = 0. 
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pc′ = ℱ2,1(α, β, γ, c′) = C1ℱ2,1(α, β, γ, c′)  + C2c
′1−γ

ℱ2,1(α − γ + 1, β − γ + 1,2 −

γ, c′)                                                                                                                                                   (4.69a)  

and for γ ≠ 0,−1,−2,−3, …… .., solutions are 

pc′ = ℱ2,1(α, β, γ, c′) = 1 + ∑
αkβkc

′k

γk k!

∞

k=1

                                                                                 (4.69b) 

where ℱ2,1(α, β, γ, c′) is a Gaussian hypergeometric (2,1) function and the Pochhammer 

symbol k is defined as αk = α(α + 1)… . (α + k − 1). 

In both cases {α, β, γ} must be solved from the following (nonlinear) system of equations: 

[α + β + 1 = (2σ2 − μ1), γ =
−(2σ2 − μ1)λ1 + σ1 − μ0

(λ2 − λ1)
, αβ = (σ2 − μ1 + κ) ]        (4.69c) 

Recall that κ is an arbitrary constant. From Equation (4.69c) it follows that parameters α and 

β are dependent on κ which implies that for every κ there is a specific density function pc′,κ 

and consequently there are uncountably many solutions to Equation (4.68).  

If κ  is set to a predetermined value, solutions to the hypergeometric differential equation 

are usually derived as a Gaussian hypergeometric function that, depending on particular 

values of {α, β, γ}, includes many other special functions as specific or limiting cases. It 

should be noted that there is no known system for organising all of the identities but a 

number of algorithms are available that generate different series of identities. Important 

specific or limiting cases are: Kummer’s function (confluent hypergeometric function), 

Bessel functions, Legendre functions, incomplete beta functions and a variety of other 

polynomial functions. 

The conclusion is that the suggested transformation has the benefit of encapsulating a large 

number of different solution classes belonging to the general solution but its inherent 

weakness is that it does not provide a consistent framework to enumerate and describe 

these solutions. 

The second transformation changes Equation (4.67c) into one that has orthogonal 

polynomial solutions to arrive at easier solvable ODEs: Bochner (1929); Dunn and Stein 

(1961); W. Norrie Everitt (2005); Stein and Klopfenstein (1963). Special cases have been 

https://en.wikipedia.org/wiki/Special_case
https://en.wikipedia.org/wiki/Limiting_case_(mathematics)
https://en.wikipedia.org/wiki/Special_case
https://en.wikipedia.org/wiki/Limiting_case_(mathematics)
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extensively studied in the literature, for example Koekoek et al. (2010); Kristensson (2010). 

For an overview of solutions to the respective reduced ODEs see Zaitsev and Polyanin (2002, 

Section 2.1.2). Of all ODEs with polynomial solutions, a subset has orthogonal polynomial 

solutions. Bochner (1929) proves that, up to a linear change of variables, within the class of 

orthogonal polynomials, only the Hermite, Laguerre and Jacobi polynomials (also known as 

the classical orthogonal polynomials), satisfy Equation (4.67c). This theorem is explicitly (in a 

Sturm-Liouville setting) confirmed by Stein and Klopfenstein (1963). The Hermite and 

Laguerre polynomial differential equations lack generality in their linear terms (belonging to 

the first order derivate) as opposed to the Jacobi polynomial equation. Therefore, the Jacobi 

differential equation will now be derived from Equation (4.67c). Express the term 

1

2
[σ2c

2 + σ1c + σ0] in this format: 
1

2
s2 [[

qc+r

s
]
2

− 1], where the transformed variable c′ =

qc+r

s
, q = √σ2 , r =

σ1

2√σ2
  and s2 =

σ1
2

4σ2
−σ0. This transformation was discussed in Section 4-1 

under Approximation method three. The transformed differential equation yields 

1

2
σ2(c

′ + 1)(c′ − 1)
d2p

c′(c′)

dc′2
+ [(2σ2 − μ1)c

′ +
(σ1μ1−2σ2μ0)

√Δ
]

dp
c′(c′)

dc′ + (σ2 − μ1 +

κ)pc′(c′) = 0                                                                                                                                    (4.70)  

where the discriminant Δ = σ1
2 − 4σ2σ0. Recall that since the two roots of  σ2c

2 + σ1c + σ0 

are real, the discriminant is always positive. The transformation brings about a boundary 

value change from [λ1; λ2] into [−1; 1]. This transformation is a useful normalisation which 

enhances the possibilities of finding standard closed-form solutions to the ODE. Therefore, 

the normalised Ordinary Differential Equation (4.70) will be used in the Jacobi, Hermitian 

and Schrödinger transformation to follow. 

The general solution as a Sturm-Liouville problem 

Transforming the Fokker-Planck equation into a Sturm-Liouville problem, facilitates the 

general solution strategy considerably as outlined in, for example, Mathew (2015). The class 

of particular polynomial solutions pc(c) = Qn(c), can be found by setting κ = κn as 

eigenvalues where Qn is a polynomial eigenfunction in c of degree at most n. The Sturm-

Liouville solution strategy includes the following steps. First, the stationary density function 

(also called the Sturm-Liouville weight function) is established, then eigenvalues (for closed 

boundaries: discrete) and eigenfunctions of the ODE are found by applying appropriate 
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standard techniques, and lastly, the normalisation constant that satisfies the initial 

condition is calculated. Now, solutions take the following general format 

p(c, t|c0) =  pst(c)∑  
κ

[e−κtρκpκ(c)pκ(c0)]                                                                        (4.71a) 

where pst(c) is the stationary density function as t → ∞, c0 is the initial cash flow, κ are 

eigenvalues, ρκ =
1

∫ ω(ε)pκ
2(ε)

1
−1 dε

  are Fourier coefficients that serve also as normalisation 

constants, ω(c) is the Sturm-Liouville weight function, pκ(c) and pκ(c0) are corresponding 

(orthogonal) eigenfunctions. Commonly, Dirac’s delta function δ(c − c0) is adopted as an 

initial condition42, that is, the initial probability density function at t = 0.  

Equation (4.71a) shows how the stationary solution, as examined in the prior section for 

investing cash flows, can be turned into a dynamic solution. In this study, it was 

nevertheless found that operating cash flows rarely have stationary solutions. Therefore, it 

was suggested to replace the stationary density function by an approximate long-time 

density function; see the discussion leading to Equation (4.58).  Thus, for operating cash 

flows Equation (4.71a) can be expressed as 

p(c, t|c0) =  plt(c)∑  
κ

[e−κtρκpκ(c)pκ(c0)]                                                                        (4.71b) 

where plt(c) = K (c − λ1)
−ν1(c − λ2)

−ν2 (see Equation (4.58) for restrictions on validity).  

The Sturm-Liouville theory states (Atkinson and Mingarelli (2010, Chapter 1)) that solutions 

to the problem consist of an ordered sequence of eigenvalues κ1 < κ2 < κ3 ……κn, with 

corresponding to each eigenvalue, an eigenfunction pc,n(c), if it exists. The eigenfunctions, 

i.e. the terms in the brackets ρκpκ(c)pκ(c0) of Equation (4.71b), form together a Fourier 

series that defines a complete set of solutions p(c) = ∑ ρipc,i(c)
i=n
i=1  to the cash flow ODE.  

Fourier coefficients ρi are calculated from the property that eigenfunctions are mutually 

orthogonal43. There exist a considerable body of literature with a wide range of specific 

solutions to the Sturm-Liouville problem (for instance Al-Gwaiz (2008); Amrein et al. (2005)). 

The most important transformations in respect of Sturm-Liouville problems are discussed in 

W. Norrie Everitt (2005) and Avram et al. (2013, section 3.3).  

                                                           
42 It can be shown that if the original cash flow with boundaries [λ1; λ2] at time zero has a Dirac delta function to describe the initial 

probability density then also the transformed cash flow with boundaries [−1; 1] will have a Dirac delta function. 
43 Orthogonality is defined as ∫ pc,m(c)pc,n(c)ω(c)dc = 0

𝑏

𝑎
, where m ≠ n and ω(c) is called a weight function. 
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In the remainder of this subsection, three standard solution techniques will be discussed 

with respect to the [−1; 1]-transformed linear-quadratic cash flow model outlined in 

Equation (4.60). These techniques are: (i) Jacobi transformation, (ii) Hermitian 

transformation, and (ii) Schrödinger transformation. For each of these techniques, the 

general hypergeometric equation will be first developed into an appropriate Sturm-Liouville 

problem. 

For notational convenience Equation (4.70) will be written in the sequel as 

(c + 1)(c − 1)p′′ + [μ1
′ c + μ0

′ ]p′ + κ′p = 0                                                                          (4.72a)  

where p′′ =
d2p

c′(c′)

dc′2
, p′ =

dp
c′(c′)

dc′ , p = pc′(c′), μ1
′ =

(2σ2−μ1)
1

2
σ2

, μ0
′ =

(σ1μ1−2σ2μ0)
1

2
σ2√Δ

 and κ′ =

(σ2−μ1+κ)
1

2
σ2

. Notice that c′ is replaced by c despite being the same variable. 

Equivalent expression of Equation (4.72a) are 

(c2 − 1)p′′ + [μ1
′ c + μ0

′ ]p′ + κ′p = 0                                                                                     (4.72b) 

and 

(1 − c2)p′′ − [μ1
′ c + μ0

′ ]p′ − κ′p = 0                                                                                     (4.72c) 

The latter equation safeguards that 1 − c2 is always non-negative on the domain [−1; 1].  

Associated boundary conditions that apply to all three equations, are 

p(−1) = 0, p(1) = 0                                                                                                              (4.73) 

Jacobi transformation: 

If solutions (eigenfunctions) to Equation (4.74) are transformed into Jacobi polynomials then 

the Jacobi operator ℒJ,α,β links these eigenfunctions to related eigenvalues κn,α,β 

ℒJ,α,βp = −κn,α,β p                                                                                                                           (4.74)  

where p = Jn
α,β(c) =

Γ(n+α+1)

n!
∑ (

n
k
)

(n+α+β+1,k)

Γ(α+k+1)

n
k=0 [

c−1

2
]
k

 , α, β > −1, and n represents the 

degree of the polynomial. The Jacobi operator is defined as 
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ℒJ,α,β = −(1 − c)−α(1 + c)−β d 

dc
(1 − c)−α(1 + c)−β d 

dc
= (c + 1)(c − 1)

d2 

dc2 +

[(α + β + 2)c + ((α − β)]
d 

dc
                                                                                                        (4.75)  

Eigenvalues are calculated from the following formula 

κn,α,β = n(n + α + β + 1)                                                                                                             (4.76) 

For a derivation refer to Shen et al. (2011, Section 3.2). Similar to the hypergeometric 

differential equation, parameters α, β, n must be solved from the following system of 

equations 

[(α + β + 2) = μ1
′ , (α − β) = μ0

′ ,   n(n + α + β + 1) = κ′ ]                                             (4.77a)   

The parameters of ODE (72) are now directly related to the Jacobi polynomial Jn
α,β

 as a 

solution to the ODE. Expressed in explicit form, parameters α, β, n become 

α =
1

2
(μ1

′ + μ0
′ ) − 1);  β =

1

2
(μ1

′ − μ0
′ ) − 1) and n are the roots of the following quadratic 

equation in Z 

Z2 + (μ1
′ − 1)Z − κ′                                                                                                                      (4.77b) 

Written in the usual Sturm-Liouville format, Equation (4.74) is equal to 

d 

dc
[(1 − c)α+1(1 + c)β+1

dp

dc
] = κn,α,β p                                                                                    (4.78) 

The orthogonal property requires that for any two particular solutions Jm
α,β

 and Jn
α,β

 (m ≠ n) 

the following relation holds 

∫ Jm
α,β

(c)Jn
α,β

(c)
1

−1

ω(c) = κn,α,βδmn                                                                                              (4.79) 

where the weight function ω(c) = (1 − c)α(1 + c)β, and δmn is the Kronecker delta.  

Importantly, the weight function, sometimes called integration factor, is equal to the 

stationary density function Φst( ), Herman (2008, Chapter 6), and for a more detailed 

derivation: Cain and Meyer (2005, p. 57). Recall that in the beginning of this section, it was 

advocated that for operating cash flows the stationary density could be approximated by a 

long-time density function Φlt(c) 
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Φlt(c) = −∫
α(ξ)

β(ξ)
dξ = −∫

[(α + β + 2)ξ + ((α − β)]

(ξ + 1)(ξ − 1)
dξ = (1 − c)α(1 + c)β         (4.80a)  

Using the substitution 1 − c = 2z, it is easy to see that Φlt(z) = 2zα(1 − z)β is a Beta 

function (to be normalised) with parameters {α + 1, β + 1 } and cash flow range z: [0; 1]. If 

the transformation that led to Equation (4.70) is reversed then after some algebra it can be 

shown that 

Φlt(c) = (c − λ1)
α(c − λ2)

β                                                                                                       (4.80b) 

where λ1, λ2 are the (real) roots of the diffusion function σ2c
2 + σ2c + σ0. Equation (4.80b) 

is equivalent to Pearson’s Case 2, Equation (4.19) in Section 2-3, and admits a wide range of 

possible density function amongst which is the (generalised) Beta function. 

Recall that Equation (4.74) is subject to boundary conditions (73). At each of the boundary 

values, the Jacobi function Jn
α,β(c) evaluates to (Doha (2002, p. 3469) 

Jn
α,β(1) =

Γ(n + α + 1)

n!  Γ(α + 1)
= 0                                                                                                        (4.81a) 

 Jn
α,β(−1) =

(−1)nΓ(n + β + 1)

n!  Γ(β + 1)
= 0                                                                                        (4.81b) 

For known parameters α, β, Equations (4.81a) and (4.81b) facilitate the calculation of the 

degrees of the polynomial at which two of the equation’s zeros lie exactly at the upper and 

lower boundary values. Observe that the equations must be solved numerically. Once the 

values for n are found, corresponding eigenvalues are directly calculated from Equation 

(4.76).  

The general solution follows from Equations (4.71), (4.74) and (4.76) 

p(c, t|c0) = (1 − c)α(1 +

c)β ∑ {ρn e
−n(n+α+β+1)t [

Γ(n+α+1)

n!
(
n
k
)

(n+α+β+1,k)

Γ(α+k+1)
]
2

[
(c0−1)(c−1)

2
]
k

}n
k=0                                 (4.82)     

where ρn =
1

∫ ω(ε)pκ
2(ε)

1
−1

dε
=  

Γ(2n+α+β+2)

22𝑛+α+β+1Γ(n+α+1)Γ(n+β+1)
. 
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Hermitian transformation: 

The Fokker-Planck operator of Equation (4.64) can be turned into a (self-adjoint) Hermitian 

operator ℒ𝐻
44 that has some useful properties 

ℒ𝐻 = e
Φ(c)

2 ℒ𝐹𝑃e
−Φ(c)

2                                                                                                                       (4.83) 

where Φ(c) = −∫
α(ξ)

β(ξ)
dξ.  

Risken and Frank (2012, p. 106) show that Equation (4.83) can be re-written to 

ℒH =
d 

dc
β(c)

d 

dc
− V                                                                                                                        (4.84) 

where V(c) =
(β′(c)−α(c))

2

4β(c)
+

(α′(c)−β′′(c))

2
. 

After above operator transformation, Equation (4.67a) satisfies the ODE 

β(c)q′′ + β′(c)q′ − [
(β′(c)−α(c))

2

4β(c)
+

(β′′(c)−α′(c))

2
] q = −κ′ q                                               (4.85a)  

or, specifically for the linear-quadratic specification in Equation (4.67c), transformed into 

[−1; 1] boundaries in Equation (4.70) 

(c2 − 1)q′′ + 2c q′ − [
[(2−μ1

′ )c−μ0
′ )]

2

4(c2−1)
−

1

2
μ1

′ + 1] q = −κ′ q                                               (4.85b)  

where q = pc′
′ (c′) = e

Φ(c)

2 pc′(c′), μ1
′ =

(2σ2−μ1)
1

2
σ2

, μ0
′ =

(σ1μ1−2σ2μ0)
1

2
σ2√Δ

 and κ′ =
(σ2−μ1+κ)

1

2
σ2

. 

The advantage of this operator transformation and associated probability density transform, 

is that solutions to Equation (4.85b) take the general format of Equation (4.71b). Since the 

operator is Hermitian, eigenvalues must be positive (for finite boundaries) and pairwise 

orthogonal. Importantly, the eigenvalues of q are equal to those of the non-Hermitian 

probability density function pc′(c′). 

Equation (4.85b) is often expressed in Sturm-Liouville notation 

                                                           
44 Also called Sturm-Liouville operator. 
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[(c2 − 1)q′]′ − [
[(2−μ1

′ )c−μ0
′ )]

2

4(c2−1)
−

1

2
μ1

′ + 1] q = −κ′q                                                             (4.85c)  

or more appropriately 

[(1 − c2)q′]′ + [
[(2−μ1

′ )c−μ0
′ )]

2

4(1−c2)
−

1

2
μ1

′ + 1] q = κ′q                                                                (4.85d)  

Equation (4.85d) represents a singular Sturm-Liouville problem because the equation is 

singular at the boundary values [−1, 1]. 

Since Equation (4.85c) is mathematically not tractable, a further transformation is required 

with the aim of yielding a (hopefully) simpler and better solvable Sturm-Liouville form. A 

class of transformations that can achieve this purpose (if solutions do exist), is the Liouville 

normal transformation, described in for instance, William Norrie Everitt (1982, Section 4.3.), 

Zwillinger (1998, Section 31), W. Norrie Everitt (2005, Section 7) and Atkinson and Mingarelli 

(2010, Section 1.3).  

The suggested Liouville transformation is explained in W. Norrie Everitt (2005, Section 7). It 

comprises of a simultaneous transformation of the cash flow variable c to C(c) and the 

probability density variable from q to Q(q). Specifically, the cash flow transformation is 

C(c) = ∫
1

√1 − ε2
dε = ln [|√(1 − c2 + c|] = sin−1 [

1

c
]                                                    (4.86a) 

whilst the proposed probability density transformation is given by 

Q(q) = (1 − c2)
1
4q(c)                                                                                                                 (4.86b)  

Equation (4.85c) can then be re-cast to 

−Q′′ + [
(χ2c

2 +χ1c + χ0)

(1 − c2)
]Q = κ′Q                                                                                         (4.87a) 

where c =
1

sin(C)
 ,  χ2 = (

1

2
−

1

2
μ1

′ )2, χ1 =
1

2
(2 − μ1

′ )μ0
′  and χ0 =

1

4
μ0

′2 −
1

2
μ1

′ +
1

2
. 

Unfortunately, Equation (4.87a) is also not tractable; however, its stochastic behaviour can 

be approximately analysed for parts of the cash flow range [−1, 1].  The suggested method 

divides the total cash flow range into five sub-ranges: (−1.0;−0.7], (−0.7;−0.4], 

(−0.4; 0.4), [0.4; 0.7) and [0.7; 1.0). Since 
(χ2c2 +χ1c+χ0)

(1−c2)
 is symmetric at c = 0, the function 
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is approximated by three different constants c = ψj, j = 1,2,3. Each constant is linked to the 

(set of) sub-ranges {(−1.0;−0.7], [0.7; 1.0)}, {(−0.7;−0.4], [0.4; 0.7)} and (−0.4; 0.4) as is 

apparent from Figure 4-6. The optimum value of the respective constants ψj can be 

determined by employing numerical optimisation techniques (in Figure 4-6, for example, by 

minimising the sum of the squared error terms for each set of subranges. The error is 

defined as calculated minus approximated cash flows).  

Figure 4-6 shows the differences between the calculated and approximated values of the 

middle term of Equation (4.87a), and measures these differences in one number: an average 

absolute error of 15.3%. Since this number is significantly influenced by large deviations 

close to the boundaries, for a large part of the cash flow spectrum the specification c = ψj,

j = 1, 2, 3 (the three dotted lines in Figure 4-6) is nevertheless a reasonable approximation. 

However, in order to achieve a more accurate approximation, the proposed solution 

technique can easily be expanded to a much larger j coinciding with an increasing granular 

division of the cash flow spectrum. As will become clear below, the whole set of 

approximate constants have the same eigenfunctions. 

The proposed approximation is an uncomplicated example of the Perturbation theory that 

uses approximation schemes to describe a complex system in terms of a simpler one 

((Nayfeh (2011), Skinner (2011)). Perturbation theory includes more sophisticated 

approximations than the above, for example a series of linear approximations, or 

considering the second order ODE as a first order ODE with a second order perturbation 

term. 

The proposed approximation reduces the complexity of Equation (4.87a) considerably 

−Q′′ + ψjQ = κ′Q                                                                                                                         (4.87b) 

For κ′ > 0 the solution to Equation (4.87b) is 

Qj(c) =  K1 sin(ϕjc) + K2 cos(ϕjc)                                                                                        (4.88a) 

where K1 and K2 are normalisation constants and, since κ′ − ψj is assumed to be non-

negative, ϕj
2 = κ′ − ψj.  
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Figure 4-6  Values of the middle term of equation (77a)  

 

 

 

 

 

 

 

 

 

 

CASH FLOW RANGE CALCULATED VALUES APPROXIMATED VALUES VARIANCE ABSOLUTE VARIANCE AS % OF CALCULATED VALUES 

-1     

-0.95 1002544 259699.3 742844.5 74.1% 

-0.9 514422.1 259699.3 254722.8 49.5% 

-0.85 352188.8 259699.3 92489.5 26.3% 

-0.8 271457.1 259699.3 11757.9 4.3% 

-0.75 223352.6 259699.3 -36346.7 16.3% 

-0.7 191586.2 259699.3 -68113.1 35.6% 

-0.65 169179.4 134001.2 35178.2 20.8% 

-0.6 152645.8 134001.2 18644.6 12.2% 

-0.55 140050.9 134001.2 6049.7 4.3% 

-0.5 130236.9 134001.2 -3764.3 2.9% 

-0.45 122470.1 134001.2 -11531.2 9.4% 

-0.4 116264.4 134001.2 -17736.9 15.3% 

-0.35 111286.9 102183.9 9103.0 8.2% 

-0.3 107303.8 102183.9 5119.9 4.8% 

-0.25 104147.9 102183.9 1964.0 1.9% 

-0.2 101698.8 102183.9 -485.2 0.5% 

-0.15 99870.07 102183.9 -2313.8 2.3% 

-0.1 98601.2 102183.9 -3582.7 3.6% 

-0.05 97852 102183.9 -4331.9 4.4% 

0 97599.56 102183.9 -4584.3 4.7% 

0.05 97836.34 102183.9 -4347.6 4.4% 

0.1 98569.64 102183.9 -3614.3 3.7% 

0.15 99822.13 102183.9 -2361.8 2.4% 

0.2 101633.7 102183.9 -550.2 0.5% 

0.25 104064.5 102183.9 1880.6 1.8% 

0.3 107200.8 102183.9 5016.9 4.7% 

0.35 111162.3 102183.9 8978.4 8.1% 

0.4 116115.6 134001.2 -17885.7 15.4% 

0.45 122293.8 134001.2 -11707.5 9.6% 

0.5 130028.6 134001.2 -3972.6 3.1% 

0.55 139804.5 134001.2 5803.3 4.2% 

0.6 152352.9 134001.2 18351.7 12.0% 

0.65 168827.8 134001.2 34826.6 20.6% 

0.7 191157.4 259699.3 -68541.9 35.9% 

0.75 222817 259699.3 -36882.3 16.6% 

0.8 270762.9 259699.3 11063.6 4.1% 

0.85 351231.8 259699.3 91532.5 26.1% 

0.9 512942.3 259699.3 253243.0 49.4% 

0.95 999499.7 259699.3 739800.4 74.0% 

1     

AVERAGE  

 

 15.3% 

 Note: μ0 = 10, μ1 = 5, σ0 = −1, σ1 = 0.5, σ2 = 4 
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Equation (4.86b) can be used to revert transform Q to q (note: Equation (4.88a) is already 

expressed in c)  

qj(c) = (1 − c2)−
1

4[K1 sin(ϕjc) + K2 cos(ϕjc)]                                                                   (4.88b) 

In the following step transform q(c) back to pc,j(c) by pc,j(c) = e
−Φ(c)

2 qj(c) 

pc,j(c) =  e
−Φ(c)

2 (1 − c2)−
1
4[K1 sin(ϕjc) + K2 cos(ϕjc)]                                                    (4.88c) 

where −
Φ(c)

2
= −

1

2
∫

μ1
′ ξ+μ0

′

ξ2−1
dξ = ln [(1 − c)

1

4
(μ0

′ +μ1
′ )(1 + c)

1

4
(μ0

′ −μ1
′ )]. 

The first two terms can be combined to 

pc,j(c) = (1 − c)ν1(1 + c)ν2[K1 sin(ϕjc) + K2 cos(ϕjc)]                                                  (4.88d) 

where ν1 =
1

4
(μ0

′ + μ1
′ − 1), ν2 =

1

4
(μ0

′ − μ1
′ − 1), and 𝜈1, 𝜈2 ≥ −1. 

Now, the boundary conditions of Equation (4.83) can be applied to Equation (4.88c), 

beginning with the upper-boundary value c = 1 

(0)ν1(2)ν2[K1 sin(ϕj) + K2 cos(ϕj)] = 0                                                                              (4.89a)  

Since the first term (0)ν1(2)ν2  is always zero, the second term can either be zero or non-

zero. These two cases will be separately discussed. 

First, the non-zero case  

K1 sin(ϕj) + K2 cos(ϕj) = (K1 − K2) cos(ϕj)                                                                    (4.89b) 

The RHS of Equation (4.89b) is an arbitrary constant that can be set equal to (K1 −

K2) cos(ϕj). Notice that K1 and K2 (K1 ≠ K2) are also arbitrary constants, however one of 

the two is determined by the normalisation condition. 

After some algebra, Equation (4.89b) turns into 

tan(ϕj) = 1                                                                                                                                    (4.89c)   

for which parameters ϕj are 

ϕj =
1

4
π + πn                                                                                                                                 (4.89d) 
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where n = 0, 1, 2… . .∞. 

Next, the zero case where the second term is also set to zero 

K1 sin(ϕj) + K2 cos(ϕj) = 0                                                                                                     (4.90a) 

For the cases {K1 ≠ 0, K2 = 0} and {K1 = 0, K2 ≠ 0}, Equation (4.90a) has two mutual 

exclusive solutions that are well-known (Schiff (1955, p. 35), and Logan (2014, pp. 160-161) 

for the heat equation, i.e. the sine-function only) 

sin(ϕj) = 0 , cos(ϕj) = 0                                                                                                        (4.90b)  

with parameters ϕj  

ϕj =
1

2
πn                                                                                                                                         (4.90c) 

where n = 0, 1, 2… . .∞  and n is even for sin(ϕj) and n is odd for cos(ϕj). 

The foregoing step can be repeated for the lower boundary value c = −1. In this case the 

expression (−2)ν1(0)ν2 is also zero. The associated boundary equation yields for the non-

zero case  

tan(ϕj) = −1                                                                                                                                (4.91a)   

with parameters ϕj 

ϕj =
3

4
π + πn                                                                                                                                 (4.91b) 

and for the zero case the parameters ϕj are identical to the ones of Equation (4.90c). 

Eigenvalues can be calculated from κn,j
′ = ϕj

2 + ψj, and corresponding eigenfunctions are 

found by substituting parameters ϕj values from Equations (4.89d) and (4.91b) into 

Equation (4.88d), respectively, the parameter values from Equation (4.90c) into Equation 

(4.88d). The result is the following three equations 

pc(c) = (1 − c)ν1(1 + c)ν2 [K1 sin (
1

4
n1πc) + K2 cos (

1

4
n1πc)]                                    (4.92a) 

pc(c) = (1 − c)ν1(1 + c)ν2 [K1 sin (
1

2
n2πc)]                                                                       (4.92b) 
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pc(c) = (1 − c)ν1(1 + c)ν2 [K1 cos (
1

2
n3πc)]                                                                      (4.92c) 

where K1 and K2 are normalisation constants, ν1 =
1

4
(μ0

′ + μ1
′ − 1), ν2 =

1

4
(μ0

′ − μ1
′ −

1), 𝜈1, 𝜈2 ≥ −1, n1, n2, n3 = 0, 1, 2… . .∞ , n1 and n3 are odd numbers, and n2 are even 

numbers. Notice that all three ψj (j = 1, 2 ,3) have the same parameter ϕj values but not 

the same eigenvalues.  

All ingredients are now available to arrive at approximated general solutions to the Fokker-

Planck equation. By superposition, the equation 

p(c, t) = K′ (c − 1)ν1(c + 1)ν2 ∑ ∑ [ e−[
1

16
n2π2−ψj]t [an sin (

1

4
nπc) +

j=k
j=1

n=∞
n=0

bn cos (
1

4
nπc)]] = K (c − 1)ν1(c + 1)ν2  et ∑ [ e−[

1

16
n2π2−ψj]t [an sin (

1

4
nπc) +n=∞

n=0

bn cos (
1

4
nπc)]]                                                                                                                           (4.93a)  

satisfies the Fokker-Planck equation and applicable boundary conditions. First notice that 

Equation (4.93) includes all of the solutions (92a) – (92c) if n = 0, 1, 2, 3, 4…… .∞. 

Parameter K  is a remaining normalisation constant ensuring that ∫ p(c, t)
1

−1
dc = 1. 

Constant K is defined as: K = K′ ∑ e−ψjj=k
j=1  where parameter k represents the number of 

constants used in approximating the middle term of Equation (4.87a). 

Equation (4.93a) can be written in the form of 

p(c, t) = K (c − 1)ν1(c + 1)ν2  e−t {a0 + ∑ [ e−
1

16
n2π2t [an sin (

1

4
nπc) +n=∞

n=1

bn cos (
1

4
nπc)]]}                                                                                                                              (4.93b)  

The summation of the term a0 + ∑ [ e−
1

16
n2π2t [an sin (

1

4
nπc) + bn cos (

1

4
nπc)]]n=∞

n=1  is a 

Fourier series. Given that Dirac’s delta function δ(c − c0) is adopted as an initial condition, 

Fourier coefficients a0, an and bn can be calculated from  
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a0 =
1

2
∫ δ(c − c0)dc

1

−1

= 1                                                                                                          (4.93c) 

an = ∫ sin(
1

4
nπc) δ(c − c0)dc

1

−1

= sin(
1

4
nπc0)                                                                  (4.93d) 

bn = ∫ cos(
1

4
nπc) δ(c − c0)dc

1

−1

= cos(
1

4
nπc0)                                                                 (4.93e) 

Now, Equation (4.93b) becomes 

p(c, t) = K (c − 1)ν1(c + 1)ν2  e−t {a0 + ∑ [ e−
1

16
n2π2t [an sin (

1

4
nπc) +n=∞

n=1

bn cos (
1

4
nπc)]]}                                                                                                                            (4.94)  

where c0 is the initial cash flow at t = 0, ν1 =
1

4
(μ0

′ + μ1
′ − 1) and ν2 =

1

4
(μ0

′ − μ1
′ − 1), 

and  𝜈1, 𝜈2 ≥ −1. It is easy to see that Equation (4.94) also satisfies the long-time end-

condition 

p(c, T) = plt(c) = K̃(c − 1)ν1(c + 1)ν2e−T = K∗(c − 1)ν1(c + 1)ν2                                  (4.95) 

where e−(1+
1

16
n2π2)t ↓ 0 faster than e−t ↓ 0 as t → ∞ for n > 0 , and K̃ = Ke−Ta0 is a new 

normalisation constant. Indeed, Equation (4.95) has the same functional specification as 

Equation (4.58), admitting Pearson’s Case 1 family of distributions. 

Notice that variable c is still the [−1, 1]-transformed cash flow variable but can easily be 

transformed back to the original cash flow variable c with [λ1, λ2] boundary values.  

In addition to the preceding approximated general solution, Equation (4.87a) produces a 

number of interesting special cases of which six are analytically solvable. These are shown in 

Table 4-3 below. 
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Table 4-3  Special cases of the solution to Equation (4.87a) 

PARAMETER RESTRICTIONS SPECIFICATIONS SOLUTIONS 

𝛘𝟐 = 𝟎  −Q′′ + [
χ1c + χ0)

(1 − c2)
]Q = −κ′Q  Composite Heun confluent function, Hortacsu (2011) 

𝛘𝟏 = 𝟎  −Q′′ + [
(χ2c

2  + χ0)

(1 − c2)
]Q = −κ′Q Composite Heun confluent function, Hortacsu (2011) 

𝛘𝟎 = 𝟎  −Q′′ + [
χ0

(1 − c2)
]Q = −κ′Q Composite Heun confluent function, Hortacsu (2011) 

𝛘𝟏 = 𝟎, 𝛘𝟐 = −𝛘𝟎 −Q′′ + χ2Q = κ′Q 
Equation of free oscillations,  Zaitsev and Polyanin 

(2002, Section 2.1.2). Equation 2.1.2-1.1 

𝛘𝟏 = 𝛘𝟐+𝛘𝟎  −Q′′ + [
χ2c+χ0

1 − c
]Q = κ′Q 

Combined Whittaker functions, Lebedev and 

Silverman (2012, Section 9.13) 

𝛘𝟏 = −(𝛘𝟐+𝛘𝟎)  −Q′′ + [
χ2c−χ0

1 + c
]Q = κ′Q 

Combined Whittaker functions, Lebedev and 

Silverman (2012, Section 9.13) 

 

Schrödinger transformation: 

The Schrödinger transformation, and its connection to the Hermitian transformation, is 

explained in Pavliotis (2014, Section 4.9). The transformation itself is identical to the cash 

flow transformation of Equation (4.88a). It changes Equation (4.74) into an ODE with a unit 

diffusion coefficient and a transformed drift function 

α̂(C) =
1

√(1 − c2)
[(μ1

′ − 1)c + μ0
′ ]                                                                                            (4.96) 

The corresponding Fokker-Planck operator now becomes the Schrödinger operator, defined 

as 

 ℒ𝑆 = − 
d α̂(C)

dC
+ 

d2

dC2
                                                                                                                  (4.97) 

with pC(C) = √(1 − c2) pc(c). The derivation is found in Risken and Frank (2012, p. 97). 

Equation (4.96) is almost identical to the Lamperti transform described in Equation (4.24); 

only a few parameters vary. Importantly, the operator ℒ𝑆 has the same eigenvalue problem 

as the Hermitian operator in Equation (4.85): Risken and Frank (2012, p. 107). Hence, 

pC
′ (C) = e

Φ(c)

2 pC(C). In the remainder of this subsection, pC
′ (C) will be replaced by the 

symbol p.  

Similar to Equation (4.86), the Schrödinger operator ℒ𝑆 can be re-written to 
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Figure 4-7  Approximation of √(c2 − 1) by a Taylor expansion, adapted Taylor expansion and least-square quadratic fit 

ℒ𝑆 =
d2

dc2
− W                                                                                                                                   (4.98) 

where W(c) =
1

4
α̂(c)2 −

1

2

dα̂(c)

dc
=

1

4

[(μ1
′ −1)c+μ0

′ ]

(1−c2)

2

−
1

2

[2(μ1
′ −1)c2+2μ0

′ c)]

(1−c2)
3
2

−
1

2

[(μ1
′ (μ1

′ −1)c+(μ1
′ μ0

′ )]

(1−c2)
1
2

.  

Then, the associated ODE becomes 

−p′′ + [
1

4

[(μ1
′ −1)c+μ0

′ ]

(1−c2)

2

−
1

2

[2(μ1
′ −1)c2+2μ0

′ c)]

(1−c2)
3
2

−
1

2

[(μ1
′ (μ1

′ −1)c+(μ1
′ μ0

′ )]

(1−c2)
1
2

] p = κ′p                     (4.99a)  

To solve this equation, a Taylor approximation of the term (1 − c2)
1

2 is used: √(1 − c2) ≈

1 −
1

2
c2 (see Figure 4-7).  

This approximation allows Equation (4.96a) to be turned into an equation with a middle 

term of a quotient of two fourth-degree polynomial functions 

−p′′ + [
χ4c4 +χ3c3+χ2c2+χ1c+χ0)

−
1

2
c4+

3

2
c2−1

] p = κ′p                                                                                  (4.99b)  

where χ4 = −
1

8
(μ1

′ − 1)2,  χ3 = −
1

2
(μ1

′ − 1)(
1

2
μ0

′ + μ1
′ ),  χ2 = −(

1

8
μ0

′2 + (μ1
′ − 1) +

1

2
μ1

′ μ0
′ ),  χ1 =

1

2
(μ1

′ − 1)μ0
′ − μ0

′ +
1

2
μ1

′ (μ1
′ − 1)μ0

′  and  χ0 =
1

4
μ0

′2 +
1

2
μ1

′ μ0
′ . 
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Figure 4-8 below shows that constants c = ψ̂j (for convenience here only the case j = 1 is 

displayed) predominantly are a reasonable approximation of the middle term of Equation 

(4.99b). Comparing Figure 4-8 to Figure 4-6, it is evident that the quotient of two fourth 

degree polynomials exhibits a closer resemblance to a straight line then the quotients of 

two quadratic polynomials, at least for cash flow values not too close to the boundaries 

[−1, 1].   

After replacing the middle-term by a constant ψ̂j, the resulting equation is very similar to 

Equation (4.87b) 

−p′′ + ψ̂jp = κ′p                                                                                                                           (4.99c) 

Solutions to Equation (4.99c) are derived by using the same solution techniques as were 

applied to the Hermitian transformed equation. The Schrödinger equivalent of the 

Hermitian solution presented in Equation (4.94), is 

p(c, t) = K(c − 1)
1

2(c + 1)
1

2 et {a0 + ∑ [ e−
1

16
n2π2t [an sin (

1

4
nπc) +n=∞

n=1

bn cos (
1

4
nπc)]]}                                                                                                                           (4.100)  

Notice that Equation (4.100) is a particular case of Equation (4.94) with ν1 = ν2 =
1

2
, 

admitting the same family of probability distributions, that is the Pearson’s Case 2 family of 

distributions, with special parameters. The next subsection will discuss the interpretation of 

the results obtained as solutions to the Jacobi, Hermitian and Schrödinger transformations. 

Discussion of the Jacobi, Hermitian and Schrödinger transformations  

All three solution techniques demonstrate how challenging it is to find general, tractable 

solutions to the linear-quadratic Fokker-Planck equation. Only the Jacobi transformation 

provides an exact solution, albeit with a mix of combinatorial and polynomial terms that are 

difficult to interpret in a practical sense. The other two transformations have to include 

approximated terms to arrive at a closed-form general solution. Perturbation theory can be 

helpful in finding approximations that meet the accuracy requirements of most practical 

applications.  
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Figure 4-8  Values of the middle term of equation (87a) 

 

 

 

 

 

 

 

 

 

  

The remaining challenge is to derive a temporal (family) of probability density distribution(s) 

from the solutions expressed in Equations (4.94) and (4.100). Inspection of these two 

equations reveals that, whilst probability density functions are defined on a continuous cash 

flow spectrum, the solutions include a summation of discrete probability components. 

Under some mathematical restrictions (Zettl (2005, Section 3.5)), Equations (4.94) and 

(4.100) can be considered approximately continuous in the number of eigenvalues 

(represented by parameter n).  

In its continuous form and in the limit n → ∞, the approximation for the term                                   

{a0 + ∑ [ e−
1

16
n2π2t [an sin (

1

4
nπc) + bn cos (

1

4
nπc)]]n=∞

n=1 } is the integral 

∫ [ e−
1
16

n2π2t cos [
1

4
nπ(c−c0)]]

∞

0

dn                                                                                       (4.101) 

which evaluates to 

lim
n→∞

1

√πt
e−

1
4
(c−c0)2

t [erf [
−πtn + 2𝑖(c−c0)

4√t
] + erf [

−πtn − 2𝑖(c−c0)

4√t
]]                       (4.102a) 

μ0 = 10, μ1 = 5, σ0 = −1, σ1 = 0.5, σ2 = 4 
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where erf ( ) is the error function 
2

√π
∫ e−ε2c

0
dε. Although the term erf [

−πtn+2𝑖(c−c0)

4√t
] +

erf [
−πtn−2𝑖(c−c0)

4√t
] includes imaginary parts (𝑖 = √−1), it can be shown that the expression is 

equal to 2ℛ (
−πtn

4√t
+

2(c−c0)

4√t
𝑖) where ℛ( ) denotes the real part of a complex function b + a𝑖 

with b =
−πtn

4√t
 and a =

2(c−c0)

4√t
. Since the limit of lim

n→∞
erf(−n) = −1, Equation (4.102a) 

becomes 

−2

√πt
e−

1

4

(c−c0)2

t                                                                                                                                     (4.102b)  

Now, Equations (4.94) and (4.100) take the following forms 

p(c, t) = K̅(c − 1)ν1(c + 1)ν2e−
1
2
t 2

√2πt
e−

(c−c0)2

2t                                                                (4.103a) 

and 

p(c, t) = K̅(c − 1)
1
2(c + 1)

1
2e−

1
2
t 2

√2πt
e−

(c−c0)2

2t                                                                   (4.103b) 

where K̅ = −4K, time is scaled by a factor 
1

2
, and ν1 =

1

4
(μ0

′ + μ1
′ − 1), ν2 =

1

4
(μ0

′ − μ1
′ −

1). For a comparable solution technique applied to different potentials (the middle term in 

Equations (4.87a) and (4.99b)), see Araujo and Drigo Filho (2012); Araujo and Filho (2015); 

Brics et al. (2013). 

The result displayed in Equations (4.103a) and (4.103b), is significant. The space-time 

density function of operating cash flow processes can be constructed by multiplying two 

(independent) time-variant probability distributions: (i) the stationary (in case of operating 

cash flows: the approximate long-time distribution), and (ii) the evolution of a standard 

normal distribution. Notice that the term  e−
1

2
t in Equation (4.103b) ensures that the height 

of the stationary distribution function decreases exponentially over time, whilst the time-

component of the normal distribution underpins a widening distribution (on the cash flow 

axis) as time progresses (a condition analysed in the above subsection Discussion of solution 

methods). 
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An alternative approach is to view Equations (4.94) and (4.100) in the light of the Fourier 

transform. It can be demonstrated that there is a connection with probability functions via 

their characteristic functions (Brémaud (2014)). The first step of this approach is to express 

function cos [
1

4
nπ(c−c0)] as a complex term together with its conjugate: e

1

4
n𝑖π(c−c0) +

e−
1

4
n𝑖π(c−c0), to be followed by turning this expression into (an) appropriate characteristic 

function(s).  Unfortunately, a robust exploration of the interconnection between 

eigenfunctions, Fourier series and space-time density functions, falls outside the scope of 

this study.  

Finally, an observation about the practical meaning of the above solution. From physics, it is 

known that the general solution to Schrödinger’s equation is a wave function for the whole 

system, assembled from wave functions of individual states; each giving the relative 

importance of that state to the whole system. Squared wave functions measure the height 

of a probability distribution at a given point in space (for a comprehensive explanation refer 

to Gao (2017)). Analogically: solutions to Schrödinger’s cash flow equation are composed of 

uncountable or countable many probability distributions (eigenfunctions), each belonging to 

a particular state of the world (eigenvalue) with its own growth path e−κt. At a macroscopic 

level, they form a space-time density function for the ensemble of firms. 

Transformation of the general hypergeometric equation to a first order ODE 

The preceding subsections dealt with (general, particular and approximated) solutions to 

the Fokker-Planck Equation (4.63a) in conjunction with boundary conditions (4.63b). This 

subsection will explore another transformation where the general hypergeometric second 

order differential equation (equal to Equation (4.67c)) 

 
(σ2c2+σ1c+σ0)

2
p′′ + (2σ2 − μ1)c + (σ1 − μ0))p

′ + κp = 0                                                 (4.104) 

where p′′ =
d2pc(c)

dc2
, p′ =

dpc(c)

dc
 and p = pc(c), 

is transformed into a first order ODE; however, with original boundary values. It will be 

shown that a particular solution resembles the Pearson Type IV family of distributions. 

The transformed specification is 
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[r(c)p′ + s(c)p]′ = 0                                                                                                                   (4.105) 

where p = pc(c), r(c) and s(c) are functions yet to be determined, and the accent denotes 

the first derivative in respect of c. 

Equating expression (4.105) to Equation (4.104) leads to the following system of equations: 

r(c) =
(σ2c

2 + σ1c + σ0)

2
                                                                                                        (4.106a) 

r′(c) +  s(c) = (2σ2 − μ1)c + (σ1 − μ0)                                                                             (4.106b) 

s′(c) = κ                                                                                                                                        (4.106c) 

From (106c) it follows that g(c) = κc + K1 where K1 is an integration constant. Substituting 

this result into Equation (4.106b) yields the following identity: 

(σ2 + κ)c + (
1

2
σ1 + K1) = (2σ2 − μ1)c + (σ1 − μ0)                                                         (4.107) 

Since κ and K1 are arbitrary constants, this equation is valid for all values of parameters 

{μ0, μ1, σ1, σ2}. Therefore, after integration, Equation (4.105) becomes a first order ODE: 

 
(σ2c2+σ1c+σ0)

2
p′ + (κc + K1)p = K2                                                                                         (4.108) 

where K1 and K2 are integration constants. 

If K2 is set equal to the particular value zero45 then Equation (4.108) has the following 

solution: 

pc(c) = K3 (σ2c
2 + σ1c + σ0)

−κ
   2σ2  exp [

2(κσ1 − 2K1σ2)

σ2√∆
tanh−1(

2σ2c + σ1

√∆
)]          (4.109) 

where K1 and K3 are integration and normalisation constants, and ∆ = 4σ2σ0 − σ1
2. 

After normalisation, Equation (4.109) admits a Pearson Type IV distribution similar to one 

derived from the Pearson’s Case 1 stationary distribution in Equation (2.17), Section 2-3. 

                                                           
45 It can be shown that for K2 ≠ 0 the solution includes an undefined integral. 
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Setting Equation (4.109) to zero for both boundary values [λ1; λ2], results in the following 

equations: 

2(κσ1 − 2K1σ2)

σ2√∆
tanh−1(

2σ2λ1 + σ1

√∆
) = 1                                                                          (4.110a)  

2(κσ1 − 2K1σ2)

σ2√∆
tanh−1(

2σ2λ2 + σ1

√∆
) = 1                                                                           (4.110b) 

where K1 is an integration and normalisation constant, and ∆ = 4σ2σ0 − σ1
2. 

Solving Equations (4.110a) and (4.110b), yields the following expression for κ and K1: 

κ =
σ2√∆

4σ1
{[tanh−1(

2σ2λ1 + σ1

√∆
)]

−1

+ [tanh−1(
2σ2λ2 + σ1

√∆
)]

−1

}                               (4.111a) 

K1 =
−σ2√∆

8σ1
[tanh−1(

2σ2λ1 + σ1

√∆
)]

−1

+
σ2√∆

4σ1
[tanh−1(

2σ2λ2 + σ1

√∆
)]

−1

                  (4.111b) 

Substituting expressions (4.111a) and (4.111b) into Equation (4.109), provides an analytic 

solution to the general hypergeometric differential equation, albeit in limiting cases. 

Constant K3 remains as a normalisation factor to ensure that the integral of the density 

function is 1. 

If this result is combined with the time function pt(t) = K0e
−κt, then the intertemporal 

dynamics of the time-probability density function p(c, t) can be further analysed.  

Solutions to the backward Kolmogorov equation 

In the remainder of this section, the focus of attention will be on solving the backward 

Kolmogorov equation. As is apparent from its name, the backward Kolmogorov equation 

considers the space-time density function backwards in time, starting from a long-time 

probability distribution p(Ct, T) = Plt(Ct) with t ≪ T to observe the process dynamics in 

reversed time. From the equivalence of the forward and the backward Kolmogorov diffusion 

equation (Ghosh et al. (2010)), it follows that the backward equivalent of Equation (4.57a) 

can be written as follows 

−∂p(Ct, t)

∂t
= (μ1Ct + μ0)

∂p(Ct, t)

∂Ct
+ 

(σ2Ct
2 + σ1Ct + σ0)

2

∂2p(Ct, t)

∂Ct
2                          (4.112a) 
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with end-condition p(Ct, T) = Plt(Ct). A similar backward equation is found in Meerschaert 

and Sikorskii (2012, equation 7.35). 

In the case of a non-stationary process, and despite having to impose an end-condition, this 

approach has nevertheless some benefits compared to the Fokker-Planck equation: (i) no 

probability distribution exists if  t → ∞; the density function gradually transforms into a an 

infinite flat line, (ii) if a long-time density function is known or can be postulated, then it can 

serve as an end-condition of the backward Kolmogorov equation, and (ii) commonly the 

mathematics of the backward equation is simpler because drift and diffusion function 

appear outside of the derivatives (Meerschaert and Sikorskii (2012, p. 218)). The 

requirement of a known long-term-density function can be partially mitigated by assuming a 

general specification that includes a wide range of specialised density functions. As will 

become clear in the following, the Pearson Case 2 family of distributions (see Figure 2-5 in 

Section 4-3), is proposed as a suitable specification of an end-condition. 

Compared to the Fokker-Planck equation, the backward Kolmogorov equation requires a 

different expression of the probability current [μ1Ct + μ0 + 
1

2

∂(σ2Ct
2+σ1Ct+σ0)

∂Ct

∂

∂Ct
]

∂p(Ct,t)

∂Ct
 

(Mahnke et al. (2009, pp. 119-120)). Therefore, the reflective boundary condition, in case of 

the backward Kolmogorov equation, is 

[μ1c + μ0 + 
1

2

∂(σ2c
2 + σ1c + σ0)

∂c

∂

∂c
]
∂p(c, t)

∂c
= 0                                                          (4.112b) 

or equivalently,  

∂p(𝑐,t)

∂c
= 0                                                                                                                                       (4.112c)       

for c =  λ1, λ2. 

Similar to the Fokker-Planck equation, the backward Kolmogorov equation can be expressed 

in the following format 

−∂p(c, t)

∂t
= ℒ𝐵𝐾  p(c, t)                                                                                                             (4.113a) 

with the backward Kolmogorov operator ℒ𝐵𝐾  is defined as follows 
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ℒ𝐵𝐾 = α(c)
d 

dc
+ β(c)

d2

dc2
                                                                                                        (4.113b) 

The applicable (absorbing) boundary conditions are 

p(λ1,t, t) = 0, p(λ2,t, t) = 0                                                                                               (4.113c) 

Duplicating the steps in Equations (4.65a) and (4.65b), the two ODEs corresponding to the 

backward Kolmogorov equation become 

 
−dpt(t)

dt
= −κ pt(t)                                                                                                                       (4.114a)  

ℒ𝐵𝐾pc(c) = −κ pc(c)                                                                                                                 (4.114b) 

Equation (4.114a) produces the following solution 

pt(t) = K0e
κt                                                                                                                                  (4.115) 

where K0 is an integration constant. Notice that since the process moves backwards in time, 

the size of pt(t) will increase. 

For a linear-quadratic specification, α(c) = μ1c + μ0 and β(c) = 
1

2
[σ2c

2 + σ1c + σ0], 

Equation (4.114b) can be re-written to 

(σ2c2+σ1c+σ0)

2

∂2pc(c)pt(t)

∂c2 + (μ
1
c + μ

0
)

∂pc(c)pt(t)

∂c
= −κ pc(c)                                             (4.116a)  

with approximate end-condition p(c, T) = plt(c) = K e−Φ(c),  and (absorbing) boundary 

conditions 

pc(λ1) = 0, pc(λ2) = 0                                                                                                      (4.116b) 

Notice that Φ(c) = − ∫
α(ξ)

β(ξ)
dξ where α(c) = μ1c + μ0 and β(c) = 

1

2
[σ2c

2 + σ1c + σ0]. 

It can be shown that the Schrödinger operator described in Equation (4.97), is the nexus 

between the forward and backward Kolmogorov equation. After applying the Schrödinger 

transformation, as defined by Equation (4.86a), the function Φ(C) of the approximate end-

condition plt(C) = K1e
−Φ(C) becomes Φ(C) = −∫ α̂(C) dξ  where α̂(C) is described in 

Equation (4.96). If p(C, t) is defined as p(C, t) = Φ(C) q(C, t) then the Fokker-Planck 

Equation (4.63a) assumes the following form 
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∂q(C,t)

∂t
= Φ′(C)

∂q(C,t) 

∂C
+ 

∂2q(C,t)

∂C2 = α̂(C)
∂q(C,t) 

∂C
+ 

∂2q(C,t)

∂C2                                                  (4.117a)  

with qlt(C) = plt(C)Φ−1(C) = K
1

∫ α̂(C)dξ
 e∫ α̂(C)dξ  . For a derivation of Equation (4.117a) see 

Pavliotis (2014, Section 4.5). Since ∂t is the forward movement time, it must be expressed as  

−∂t in the backward equation. 

−
∂q(C,t)

∂t
= Φ′(C)

∂q(C,t) 

∂C
+ 

∂2q(C,t)

∂C2 = α̂(C)
∂q(C,t) 

∂C
+ 

∂2q(C,t)

∂C2                                             (4.117b)  

This result is important: Equation (4.117b) is a backward Kolmogorov equation with 

stochastic properties that are directly derivable from the Schrödinger equation and thus, 

after the appropriate transformation, also from the related forward Kolmogorov equation. 

Consequently, if a Schrödinger transformation is applied to the linear-quadratic Fokker-

Planck specification, and the resulting equation can be written in the form of equation 

(117b), then from the solution to this backward equation, the stochastic properties of the 

solution to the associated Fokker-Planck can be understood without solving the Fokker-

Planck equation itself. This approach is salient if the backward equation is markedly easier 

to solve than the comparable forward equation.  

 

4.4. Solutions to the coupled system  

In section 3.4 it was observed that solutions to the coupled system S {Ct, It} are linear 

combinations of solutions to the decoupled system S{Ct
′, It

′} where the weights are 

represented by the following matrix 𝐐 = (
2β

−1−α+ω

2β

−1−α−ω

1 1
) with ω =

 √(α − 1)2 + 4(βγ + α). This follows from the cash flow variable transformation 𝐮t = 𝐐 𝐯t 

which is applicable to the system observed in a deterministic environment (Section 3-3) as 

well as in a stochastic environment (Appendix M2). Recall that parameter α is the cash flow 

growth rate, parameter β (≥ 0) is the investment response parameter, and parameter γ 

(0 < γ ≤ 1) is called the cash investment rate (see section 3.2). 

In the preceding sections solutions to the decoupled system were discussed, hence the final 

step is to combine these to solutions of the coupled system: 

Ct = 𝓌1Ct
′ + 𝓌2It

′                                                                                                                      (4.118a) 
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It = Ct
′ + It

′                                                                                                                                    (4.118b) 

where 𝓌1 =
2β

−1−α+ω
 and 𝓌2 =

2β

−1−α−ω
. Weights 𝓌1 > 0 and 𝓌2 < 0 which follows from 

β > 0 and βγ > 0.  

Since S{Ct
′, It

′} is a decoupled, that is, a stochastically independent system, it is not hard to 

see that after applying Itô’s lemma to the bi-dimensional system, the following equalities 

hold:  

dCt = 𝓌1dCt
′+𝓌2dIt

′                                                                                                                 (4.119a) 

dIt = dCt
′+ dIt

′                                                                                                                             (4.119b) 

Recall from Section 3.4, Equations (3.26a) and (3.26b), the specifications for the decoupled 

operating and investing cash flows: 

dCt
′ = (μC,1Ct

′ + μC,2)dt + √(σC,1Ct
′2 + σC,2Ct

′ + σC,3) dWC′,t                                         (4.120a)       

dIt
′ = (μI,1It

′ + μI,2)dt + √(σI,1It
′2 + σI,2It

′ + σI,3) dWI′,t                                                  (4.120b) 

Combining (119a) and (119b) with (120a) and (120b) leads to the expressions below: 

dCt = [(𝓌1μC,1Ct
′+𝓌2μI,1It

′) + (𝓌1μC,2 + 𝓌2μI,2)]dt +

√(𝓌1
2σC,1Ct

′2 + 𝓌2
2σI,1It

′2) + (𝓌1
2σC,2Ct

′ + 𝓌2
2σI,2It

′) + 𝓌1
2σC,3 + 𝓌2

2σI,3)dWC,t   (4.121a)    

dIt = [(μC,1Ct
′+μI,1It

′) + (μC,2 + μI,2)]dt +

√(σC,1Ct
′2 + σI,1It

′2) + (σC,2Ct
′ + σI,2It

′) + σC,3 + σI,3)dWI,t                                               (4.121b)  

where 𝓌1 =
2β

−1−α+ω
 and 𝓌2 =

2β

−1−α−ω
 with ω = √(α + 1)2 + 4(βγ − α). 

Note that WC′,t and WI′,t are independent Brownian motions with correlation coefficient 

ρ = 0, that are combined to coupled Brownian motions WC,t and WI,t respectively. 

From Equations (4.121a) and (4.121b) the following conclusions can be drawn: 

(i) The coupled operating cash flow and investing cash flow processes are stochastically 

very similar to their decoupled specifications; only their parameter values differ; 

(ii) The diffusion processes of coupled operating cash flow processes and investing cash 

flow processes are identical; 
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(iii) Drift parameter values and diffusion parameter values of the coupled cash flow 

processes are weighted averages of the respective parameters of those of the 

decoupled processes; 

(iv) Weights are determined by the three parameters that are fundamental to cash flow 

processes: the cash flow attrition rate α, the investment response parameter β, and the 

cash investment rate γ . 

Interestingly, summed diffusion functions, like the one for the coupled operating and 

investing cash flow processes, are considered a flexible class of stochastic models that fit 

heavy-tailed, sharply peaked distributions (in this study typically found for cash flow 

processes), particularly well (Bibby et al. (2005), Forman ( 2007, section 2.2)). 

 

4.5. Conclusions from Chapter 4  

This chapter examines solutions to a general hybrid cash flow process specified as dXt =

(μ1Xt + μ0 )dt + √(σ2Xt
2 + σ1Xt + σ0)dWt, where Xt can either be an operating cash flow 

or an investing cash flow. 

Solutions to the above stochastic process do exist which follows from approximately 

meeting solutions meeting Lipschitz existence and continuity conditions, as well as exactly 

obeying Aït-Sahalia’s less restrictive conditions for the existence of strong solutions. 

It was shown that the diffusion function of the above specification always converges. 

However, whether the process as a whole converges or diverges in time, depends on the 

sign of parameter μ1 in the drift function. If the sign is positive, as typically found for 

operating cash flow processes, the process diverges, whereas a negative sign, characteristic 

for investing cash flow processes, implies a converging (that is, mean-reversion) process. 

Unfortunately, no general analytic solutions to the above specification exist, only particular 

and limiting solutions. Nevertheless, in the literature an exact formal solution to the hybrid 

form, consisting of the two constituting ABM and GBM processes, was found. In addition, 

this study explores six particular and limiting solutions in greater detail. In the first two 

solutions, parameter values are chosen contingent on transforming the specification into 

either a reducible SDE with a known solution, or a linear SDE that is solvable. Solutions are 



 
 

4   Solutions to the Coupled Linear-Quadratic Cash Flow Model  155 
 

known in the literature for both specifications. The third solution is a Lamperti-transform of 

the specification, followed by setting a parameter to a specific value. 

Furthermore, the fourth, fifth and sixth solutions are approximated solutions. The first 

approximation is valid for large Xt which cash flows generally are. The second one is based 

again on a Lamperti transform and the conditions under which the resulting unit Wiener 

process approximately vanishes, thus solving the remaining equation as an ODE. The third 

approximation transforms the linear-quadratic specification into a reduced form Vasicek 

specification. Nevertheless, (a) further parameter restriction(s) is required to estimate the 

complete linear-quadratic parameter set from the Vasicek equation. 

Associated with the above general cash flow process is a unique Fokker-Planck equation 

that describes the evolution of the transitional probability density function. Unsurprisingly, 

the solutions to this equation is very different for each of uncoupled operating cash flows 

and uncoupled investing cash flows. Converging (uncoupled) investing cash flow processes 

have a stationary distribution function. This process, also known as a Pearson diffusion 

process, has been studied in the literature for some time. Analytic solutions to six particular 

cases are comprehensively analysed and documented.  On theoretical grounds, it was found 

that one of these processes, the (asymmetric) Student diffusion process, is particularly well 

suited to describe investing cash flow processes. 

(Uncoupled) operating cash flows are governed by a diverging general cash flow process 

with no stable density function. These processes are not well understood and only few 

examples of possible solutions to the corresponding Fokker-Planck equation can be found in 

the literature. It can be shown that solutions pertaining to operating cash flow processes 

must be bounded by two boundary values: a lower and an upper boundary that take the 

values of the roots of the quadratic diffusion function. This result agrees with Pearson’s 

Case 2 family of density distributions that are, in an untransformed specification, only valid 

on a limited cash flow range [λ1, λ2]. 

Often, the Fokker-Planck equation is solved by the technique of separation of variables, an 

approach that this study advocates on theoretical and empirical grounds, after taking other 

solution methods into account. Separation of variables leads to a generic hypergeometric 

differential equation for which there are no known general analytic solutions; however, a 
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transformation of the cash flow variable provides a pathway to solutions. This study 

considers two such transformations: transforming the boundaries (via the cash flow 

variable) from [λ1, λ2] to [0, 1] and [−1, 1] respectively. The first transformation results in a 

composite Gaussian hypergeometric function that, depending on particular parameter 

values, includes a great number of special functions as specific or limiting cases. 

Irrespectively, this solution is considered too generic to be of much practical use. 

The second boundary transformation is potentially more fruitful, particularly if the derived 

equation is formulated as an analytically solvable Sturm-Liouville problem. The Sturm-

Liouville theory offers a broad range of elegant and well-analysed solution techniques. This 

study applies Sturm-Liouville techniques in the context of three well-known variable 

transformations: (i) the Jacobi, (ii) the Hermitian, and (iii) the Schrödinger transformations. 

Of the three transformations, only the Jacobi transformation provides an exact solution, 

albeit with a mix of combinatorial and polynomial terms that are difficult to interpret in a 

practical sense. The other two transformations have to include approximated terms to 

arrive at a closed-form general solution. Both transformations lead to a composite space-

time density function of operating cash flow processes that can be constructed as the 

multiplication of two (independent) time-variant probability distributions: (i) the stationary 

(in the case of operating cash flows: the approximate long-time distribution), and (ii) the 

evolution of a standard normal distribution. It should be noted that the Schrödinger 

transformation produces a less general solution than the Hermitian transformation: a 

possible explanation is that two approximations (simplifications) had to be used instead of 

one approximation in the case of the Hermitian transformation. 

Additionally, the transformation of the generic hypergeometric second order ODE into a 

first order ODE is analysed. This solution technique yields a particular solution only. The 

form of the solution is akin to the stationary Pearson Type IV distribution, commonly found 

for investing cash flows. This conclusion is consistent with empirical results reported in 

Chapter 2 where operating cash flows overwhelmingly follow a Pearson’s Case 2 stationary 

probability distribution but in exceptional cases are better described by a stationary Pearson 

Type IV distribution.  

https://en.wikipedia.org/wiki/Special_case
https://en.wikipedia.org/wiki/Limiting_case_(mathematics)
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In some instances, the backward Kolmogorov equation is better adapted to modelling 

operating cash flows than the Fokker-Planck (forward Kolmogorov) equation. The 

mathematics is considered less complicated and a possible known or postulated long-space-

time density function (comparable to a stationary density function for investing cash flows) 

could be used as an end condition of the PDE. This study explains a method to transform the 

linear-quadratic Fokker-Planck equation into an equivalent backward Kolmogorov equation. 

The final paragraph deals with converting solutions to the decoupled cash flow system back 

to solutions of the coupled system. It was found that the coupled processes are 

stochastically very similar to the decoupled ones and only differ in their parameter values 

(with parameter values of the coupled equations being a weighted sum of the uncoupled). 

Both coupled operating and investing cash flow processes appear to have an identical 

diffusion function. The coupled process can be considered a summed diffusion process that 

is especially adapted to model heavy-tailed, sharply peaked distributions, as typically found 

for cash flow processes in this study, underpinning an even richer set of potential solutions. 
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5. Statistical Estimation of the Linear-Quadratic Cash Flow Model 
 

Chapter 5 has bearing on statistical and econometric parameter estimation to maintain the 

empirical robustness of the coupled linear-quadratic cash flow model developed in Chapter 

3. First, the fundamental relationships and their parameter set  α, β, γ, δ and ε will be 

tested. Using these estimated values, decoupled cash flows can be calculated as input to 

testing the linear-quadratic specifications of the operating and investing cash flows 

respectively. Estimation results are benchmarked against the cash flow specifications from 

the literature as reported in Section 2.1. The data employed to estimate and test the 

relationships, are described in detail in Appendix S1. 

5.1. Estimating the fundamental relationships  

Introduction 

The goal of this section is to derive a set of estimated parameters {α̂; β̂; γ̂; δ̂; ε̂} associated 

with the deterministic model (Section 3-3). Recall that the deterministic system is expanded 

to a stochastic system (Section 3-4) by introducing a set of probability transition rates 

{p1, p2, p3}. After some mathematical manipulations (Appendix M2), it is shown that the 

uncoupled system, in continuous-time can be approximately described by two independent 

linear-quadratic SDEs each completely defined by a set of estimated parameters 

{μ̂0, μ̂1, σ̂0, σ̂1, σ̂2}. Using estimated parameters {α̂; β̂; γ̂; δ̂; ε̂}, the uncoupled system is 

transformed back to a coupled system (Section 4-4).  

Obviously, the first challenge of this chapter is to properly estimate the deterministic 

parameter set {α̂; β̂; γ̂; δ̂; ε̂}. This is important to define the transformation matrix 𝐐 =

(
2β

−1−α+ω

2β

−1−α−ω

1 1
) with ω = √(α − 1)2 + 4(βγ + α). As explained in Section 3-3, matrix 

𝐐 serves to uncouple or couple the system by transforming the set of variables S {Ct, It} to 

S{Ct
′, It

′} and vice versa. Finding a deterministic environment from which the parameter set 

{α̂; β̂; γ̂; δ̂; ε̂} is inferred, seems arduous if not impossible. The closest approximation, 

however, is to examine the whole population by analysing a sufficient large and 

representative sample. Recall from Figure 1-7 in Section 1-4 that the analysis is then 

performed at a macroscopic level (with regard to all firms), and hence the outcome 
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represents an average (deterministic) cash flow process. Before the estimation results are 

presented and discussed, the two fundamental relationships will be summarised. 

The two fundamental relationships 

In Section 3-2, it was explained that the first fundamental relationship is characterised by 

the following equation 

∆Ct = αCt−1 + βIt−1 + δ                                                                                                                  (5.1) 

Variable C represents operating cash flow and variable I designates investing cash flow. 

Parameter α is called the cash flow growth rate that is influenced by two opposite forces. 

The first force is generating additional operating cash flow from better utilisation of existing 

capital goods, and the second is what is called the cash flow attrition rate. The latter 

represents a natural decline in cash flow generating capacity if the firm does not invest at 

all.  

Furthermore, the investment response parameter is denoted by parameter β (≥ 0). It 

signifies how much extra dollars future operating cash flow are spawned from one dollar 

investing cash flow. The investment response parameter is thought to be determined by 

industry characteristics and within an industry by firm-specific characteristics such as the 

ability of management to successfully turn investments into business growth. 

In aggregate, parameter δ captures all other variables that may affect the movement of 

operating cash flow, beside the level of operating cash flow itself and investing cash flow. In 

this study, all three parameters α, β and δ are presumed to be approximately time-

invariant; admittedly, a more realistic but significantly more complicated model will allow 

time-variant parameters. 

The second fundamental relationship is embodied in this specification 

It = γCt−1 +  ε                                                                                                                                      (5.2) 

where the level of future investment is determined by current operating cash flow and 

parameter ε is representing other variables. Parameter γ (0 < γ ≤ 1) is called the cash 

investment rate and is assumed to be constant over time. 
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Parameter ε, set equal to the expression γ Ft + γBt−1, is predominantly affected by the 

firm’s cash and financing policy. Bt−1 represents the prior cash balance, i.e. the amount of 

cash that the firm usually holds, and Ft stands for the net financing cash flow including items 

like borrowings, repayments and dividend payments. It is assumed that ε is approximately 

time-homogeneous, at least for mature firms with stable cash flow patterns. 

Both relationships are considered linear in specification. In a continuous-time model, with 

very small ∆t, this should not pose a problem. Nevertheless, the (discrete) data used in the 

tests are recorded on a quarterly basis and may not fit a linear relationship in the time 

period observed. Therefore, a linear specification test ought to be included in the post 

estimation tests performed. 

Modelling the fundamental relationships 

Since the overall model consisting of Equations (5.1) and (5.2) is recursive, that is, coupled, 

the  Two Stage Least Square (2SLS) estimation method is used (Wooldridge (2015, Chapter 

15)). The method is implemented in the statistical software package STATA-15 as part of 

Statistical Equation Modelling (Hancock and Mueller (2006); Schumacker and Lomax (2015)). 

The STATA procedure applies MLE (Maximum Likelihood) estimation. It turns out that the 

MLE estimator is more robust (i.e. converging and efficient) if the independent variable in 

Equation (5.1) is stated as an undifferenced cash flow amount regressed on time-lagged 

variants of the same variable. Instead of diagonalising the system matrix, the cash flow 

system can also be decoupled by transforming Equations (5.1) and (5.2) into second order 

difference equations. Then, Equation (5.1) produces the following AR(2) autoregressive 

specification for operating cash flows 

Ct = (α + 1)Ct−1 + βγCt−2 + βε + δ                                                                                            (5.3) 

The process is stable if all of the following conditions hold 

βγ < α + 2                                                                                                                                         (5.4a) 

βγ < −α                                                                                                                                             (5.4b) 

βγ > −1                                                                                                                                              (5.4c) 
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Figure 5-1  Components of the 2SLS regression model used to test the fundamental equations 

Recall from Section 3-3 that condition (4b) also implies a diverging cash flow process. In 

order to achieve a consistent parameter mapping, Equation (5.2) is left unaltered. 

Expressing the model in the above specification, avoids the complications of a usual 2SLS 

regression. Nevertheless, the error terms of both equations are assumed to be correlated. 

The model regresses the operating cash flow variable OCFL on the explanatory variables 

OCFL1 and OCFL2 where the last two letters ‘-LX’ stands for the time lag X expressed in 

calendar quarters. This step is embodied in Equation (5.3). The second part regresses the 

investing cash flow variable ICF on the one-quarter lagged variable OCFL1.  

Figure 5-1 provides an overview of the structure (variables and equations) of the estimation 

model. Recall from Appendix S1 that the data used are from an unbalanced panel dataset 

with a ‘firm’ and a ‘time’ dimension. Empirical evidence reported in Section 2-2 underpins 

the idea that the trend of cash flow data is a nonlinear function of time, and can best be 

described by a combination of a linear trend and an exponential growth trend. This is done 

by including in both regression steps the variables Quarter, Quarter2 (Quarter square) and 

Quarter3 (Quarter to the power 3). If statistical testing supports a significant unit root in 

cash flow time series then the effect of the trend must be eliminated from estimated 

parameters. 
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Figure 5-2  Operating cash flow (OCF1) and Investing cash flow (ICF1) plotted against residuals 

Preliminary examination of the data set maintains significant heteroscedasticity (see Figure 

5-2) in the error-terms. The cause of heteroscedasticity is largely attributed to a non-

Gaussian spread and frequency of cash flows associated with individual firms (for a graphic 

impression see Section 2-3; Figures 2-2, 2-3 and 2-4).   

 

 

 

 

 

 

 

This effect can be mitigated by including an instrumental variable in the regression model. 

The total amount of assets, AssetsTotal, was found to be a universally applicable proxy for 

the size of firms. Effectively, the inclusion of the variable AssetsTotal rescales the values of 

the estimated parameter set {α̂; β̂; γ̂; δ̂; ε̂}. 

Estimating the fundamental relationships 

Initially, the model was estimated by the default MLE method as implemented in STATA-15. 

Tables 5-1 to 5-4 show the test results. For Equation (5.1), all variables but Quarter3 

(displayed in Table 5-1 under the heading ‘OCF’), are statistically significant at a 5% 

confidence level. This justifies the assumption that operating cash flows have a nonlinear 

trend over time (approximately described by a quadratic time-function). Also, the dynamics 

of the operating cash flow process depend on the firm’s size, i.e. a positive scale-effect is 

established. By contrast, for Equation (5.2) only a limited number of variables are confirmed 

statistically significant at a 5% confidence level. The constant ε appears insignificant, 

suggesting a purely proportional relationship between variables ICF and OCFL1. Additionally, 

no significant time-trend is detected which is not surprisingly giving the predominantly 

periodic character of investing cash flows (Section 1-2); however, scale-dependency is also 
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Table 5-2  Test statistics of the fundamental model - parameter estimates  

an issue with investing cash flows. In contrast to operating cash flows, there is a negative 

scale effect. Irrespectively, coefficient values suggest a relatively mild scale-effect for both 

operating and investing cash flows. 

The Wald test supports that variables in both equations are jointly significant. Overall the 

(blocked-error) R2-statistics (Bentler and Raykov (2000)) indicate a good fit, taking loops and 

correlated residuals into account as commonly found in structural equation models. The 

overall fit of the model is overwhelmingly determined by Equation (5.3), much less by 

Equation (5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      model is not full rank.

Note: The LR test of model vs. saturated is not reported because the fitted

                                                                                 

cov(e.ICF,e.OCF)      746848   8883.227    84.07   0.000     729437.2    764258.8

                                                                                 

      var(e.OCF)     1596007   3933.844                       1588315     1603736

      var(e.ICF)    1.59e+07   39082.04                      1.58e+07    1.59e+07

                                                                                 

          _cons     46.62436   17.95503     2.60   0.009     11.43316    81.81556

    AssetsTotal     .0025215    .000032    78.79   0.000     .0024588    .0025843

          OCFL2      .092521   .0017275    53.56   0.000     .0891351    .0959069

       Quarter3    -.0001647   .0000934    -1.76   0.078    -.0003477    .0000183

       Quarter2     .0444372    .018249     2.44   0.015     .0086699    .0802045

        Quarter    -2.235588   1.063029    -2.10   0.035    -4.319087   -.1520893

          OCFL1     .6181012   .0017314   357.00   0.000     .6147077    .6214946

  OCF            

                                                                                 

          _cons    -.9236416   56.59626    -0.02   0.987    -111.8503     110.003

    AssetsTotal    -.0091039   .0001001   -90.93   0.000    -.0093001   -.0089077

       Quarter3    -.0003464   .0002943    -1.18   0.239    -.0009232    .0002304

       Quarter2      .043865   .0575223     0.76   0.446    -.0688767    .1566067

        Quarter     1.683428    3.35077     0.50   0.615    -4.883962    8.250817

          OCFL1     .4806212   .0040041   120.03   0.000     .4727734     .488469

  ICF            

Structural       

                                                                                 

                       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                  OIM

                                                                                 

Log likelihood     =  -23954623

Estimation method  = ml

Structural equation model                       Number of obs     =    329,271

Iteration 2:   log likelihood =  -23954623  

Iteration 1:   log likelihood =  -23954623  

Iteration 0:   log likelihood =  -23954649  

Fitting target model:

Observed:  OCFL1 Quarter Quarter2 Quarter3 OCFL2 AssetsTotal

Exogenous variables

Observed:  ICF OCF

Endogenous variables

                                                                     

   AssetsTotal       8381.812         73321     -106.969      3643585

         OCFL2       229.3224       1824.91      -110807       129731

      Quarter3         383425      441879.3            1      1771561

      Quarter2       4517.057       3850.12            1        14641

       Quarter       60.44838      29.37776            1          121

         OCFL1       231.9059      1833.249      -110807       129731

           OCF       234.7685      1839.713      -110807       129731

           ICF       201.2967      4088.289      -540050       286346

                                                                     

      Variable           Mean      Std. Dev.         Min          Max

                                                                     

Table 5-1  Test statistics of the fundamental model – variable statistics 
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Table 5-3  Test statistics of the fundamental model – goodness of fit 

Table 5-4  Test statistics of the fundamental model – Wald test 

 

 

 

 

 

 

 

 

The results of the overall Wald test (comparable to the F-test of a single equation), provide 

evidence that the tested equations are overall sufficiently specified; however, another 

regression analysis was performed, this time including a variable OCFL1SQ (the squared 

value of OCFL1). The purpose is to test whether the linearity assumption holds. The test 

results are displayed in Table 5-5. 

Evidently, for quarterly time-intervals a nonlinear specification is highly likely as can be 

interfered from the high z-scores of variable OCFL1SQ in both equations. Regardless, the 

impact of nonlinearity on the estimated parameter values is minor, in the order of 10% 

deviation. Therefore, the parameter estimates of the original, linear model will be analysed. 

 

 

 

 

 

 

 

 

mc2 = mc^2 is the Bentler-Raykov squared multiple correlation coefficient

mc  = correlation between depvar and its prediction

                                                                              

     overall                                      .5434777

                                                                              

         OCF     3381532    1785525    1596007    .5280225  .7266515  .5280225

         ICF    1.67e+07   856401.3   1.59e+07    .0512384   .226359  .0512384

observed                                        

                                                                              

     depvars      fitted  predicted   residual   R-squared        mc      mc2

                           Variance             

                                                                              

Equation-level goodness of fit

                                      

         OCF    3.7e+05    6    0.0000

         ICF   17782.46    5    0.0000

observed      

                                      

                   chi2   df         p

                                      

Wald tests for equations
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Note: including nonlinear cash flow term 

From the estimated parameter values in Table 5-2, the set of parameters {α̂; β̂; γ̂; δ̂; ε̂} and 

related parameter values can be calculated. These calculated parameter values are reported 

in Table 5-6 below. 

Table 5-6  Calculated parameters of the fundamental equations (default MLE) 

PARAMETERS CALCULATED PARAMETER VALUES 95%-LL 95%-UL 

�̂� -0.382 -0.385 -0.379 

�̂� 0.192 0.188 0.200 

�̂� 0.481 0.473 0.480 

�̂� 46.6 11.4 81.8 

�̂� 0 0 0 

�̂� 0.867 0.857 0.878 

�̂�𝟏 -0.257 -0.264 -0.250 

�̂�𝟐 -1.125 -1.121 -1.128 

 

In case the assumptions underpinning the default MLE estimator are violated, the regression 

analysis is redone by using a robust ML estimator. The results are displayed in Table 5-7: 

other than substantially increasing the 95%-confidence interval of parameters  α̂, β̂, and γ̂, 

. 

      model is not full rank.

Note: The LR test of model vs. saturated is not reported because the fitted

                                                                                 

cov(e.ICF,e.OCF)      794238   8801.745    90.24   0.000     776986.9    811489.1

                                                                                 

      var(e.OCF)     1567282   3863.161                       1559728     1574872

      var(e.ICF)    1.58e+07   38918.54                      1.57e+07    1.59e+07

                                                                                 

          _cons     47.05143   17.79271     2.64   0.008     12.17836    81.92451

        OCFL1SQ    -2.01e-06   2.58e-08   -78.17   0.000    -2.06e-06   -1.96e-06

    AssetsTotal     .0034169   .0000337   101.38   0.000     .0033509     .003483

          OCFL2      .082714   .0017128    48.29   0.000      .079357     .086071

       Quarter3    -.0002092   .0000925    -2.26   0.024    -.0003905   -.0000278

       Quarter2     .0501321   .0180841     2.77   0.006     .0146878    .0855763

        Quarter    -2.528199   1.053426    -2.40   0.016    -4.592877   -.4635222

          OCFL1     .6622078    .001801   367.69   0.000     .6586779    .6657377

  OCF            

                                                                                 

          _cons    -1.774931   56.47775    -0.03   0.975    -112.4693    108.9194

        OCFL1SQ     3.04e-06   8.16e-08    37.19   0.000     2.88e-06    3.20e-06

    AssetsTotal    -.0104202    .000106   -98.31   0.000     -.010628   -.0102125

       Quarter3    -.0002741   .0002937    -0.93   0.351    -.0008497    .0003015

       Quarter2     .0346358   .0574024     0.60   0.546    -.0778708    .1471424

        Quarter     2.155848   3.343778     0.64   0.519    -4.397836    8.709533

          OCFL1     .4242028   .0042739    99.25   0.000     .4158261    .4325796

  ICF            

Structural       

                                                                                 

                       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                  OIM

                                                                                 

Log likelihood     =  -30428214

Estimation method  = ml

Structural equation model                       Number of obs     =    329,271

Iteration 2:   log likelihood =  -30428214  

Iteration 1:   log likelihood =  -30428214  

Iteration 0:   log likelihood =  -30428245  

Fitting target model:

Observed:  OCFL1 Quarter Quarter2 Quarter3 OCFL2 AssetsTotal OCFL1SQ

Exogenous variables

Observed:  ICF OCF

Endogenous variables

Table 5-5  Test statistics of the fundamental model - parameter estimates  
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robust regression affects the estimated values of all parameters only moderately. Hence, 

the results of the robust regression will be used in the conclusions below. 

Table 5-7  Calculated parameters of the fundamental equations (robust MLE) 

PARAMETERS CALCULATED PARAMETER VALUES 95%-LL 95%-UL 

�̂� -0.372 -0.452 -0.312 

�̂� 0.192 0.098 0.244 

�̂� 0.481 0.340 0.621 

�̂� 46.6 21.3 72.0 

�̂� 0 0 0 

�̂� 0.874 0.658 1.040 

�̂�𝟏 -0.249 -0.397 -0.136 

�̂�𝟐 -1.123 -1.055 -1.176 

 

Based on above estimated parameters, and using the same model as in Section 3-5, a 

number of trajectories are simulated. The results are shown in the two graphs on the 

following page. 
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Figure 5-3  Simulated trajectories of Operating Cash Flow – Estimated parameters used 

 

Figure 5-4  Simulated trajectories of Investing Cash Flow – Estimated parameters used 
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Discussion 

Reiterating what was stated in the introduction to the prior subsection, the following 

conclusions are only valid (on average, in a deterministic sense) for the population of all 

firms (assuming that the sample examined is representative of all firms46). Checking stability 

conditions expressed in Equations (5.4a) to (5.4c), it can be ascertained that the AR(2) 

process described by Equation (5.3) is stable. A closer observation of the parameter values, 

reveals interesting information. In Equation (5.1), ∆Ct = αCt−1 + βIt−1 + δ, parameter α 

(the cash flow growth rate), is negative. This suggests a significant cash flow attrition rate 

(negative) dominating the effect of an improved utilisation rate (positive), or perhaps, a 

utilisation rate that also deteriorates with time. Furthermore, in the absence of any 

investments made, changes to operating cash flow declines by 37.2% each quarter until a 

stable long-term value of 46.6 (million US$, average for all examined firms) is reached. The 

quarterly cash flow growth rate equates to a continues-time rate of - 0.465. Abstracting out 

(natural) attrition, a one-dollar investment spending increases operating cash flow by 

$0.192 in the following quarter. Further analysis shows that in the coupled model the 

investment response parameter strongly declines in subsequent quarters, also because new 

capital goods, like existing, become prone to usual obsolesce.  

Observing Equation (5.2), It = γCt−1 + ε, it transpires that of every dollar operating cash 

flow generated, one quarter later $0.481 is invested in capital goods. Again, this is a pure 

proportional relationship since parameter ε is not significantly different from zero. 

To examine the operating and investing cash flow processes in isolation, one has to observe  

parameters ω̂, Λ̂1and Λ̂2 that pertain to the uncoupled cash flow model described in Section 

3-3, Equations (5.4a) and (4b). Since α̂ < −β̂γ̂, both parameters Λ̂1and Λ̂2 are negative. This 

implies that the uncoupled operating and investing cash flow processes are converging to 

long-time constant values, typical for stable cash flows in a static growth environment 

(depicted by the RHS graph in Figure 3-1, Section 3-3). As expected, the coupled processes 

are also converging in time (see Figure 5-5 below). Indeed, the population of firms is a 

                                                           
46 Since the selected firms are all public companies that are required to report their cash flow data regularly, the sample is likely to be 

biased in favour of larger, probably more professionally managed firms, excluding medium and small sized businesses which 
nevertheless constitute an important part of overall business activity. This may be a limitation on the application of the results of the 
study, but only if there are indications that cash flow processes of smaller, private businesses are fundamentally different from those of 
the sample. 
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dynamic mix, each firm with their own success story. Some of the new market entrants 

become hugely successful; however, most experience modest business growth over their 

life time. Other, less successful firms struggle and eventually fold. In aggregate these 

individual movements will (about) cancel each other, so that, for the whole population 

excluding individual firm randomness, average cash flow is believed to be stable to modestly 

growing in line with economic growth measured by changes to GDP.   

The level of operating cash flow approaches a stationary value of 166.86 (million US$, 

average for all examined firms), whilst the long-time values for investing cash flow is 80.19 

and the resulting free cash flow is 86.67. 

 

 

 

 

 

 

 

 

 

 

From the estimated and calculated parameters in Tables 5-6 and 5-7, the estimated 

matrixes �̂� = (
2β

−1−α+ω

2β

−1−α−ω

1 1
) = (

1.563 −0.256
1 1

) and �̂�−𝟏 = (
   0.550 0.141
−0.550 0.859

) are 

quantified. 

Lastly, the simulated stochastic trajectories portrayed in Figures 5-3 and 5-4, shows a close 

resemblance with the theoretically derived ones in Section 3-5, and real-world cash flows 

described in Section 1-2.  

Figure 5-5  Deterministic, coupled cash flow processes based on estimated parameters 
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5.2. Estimating the linear-quadratic model 

Introduction 

In this section, the Equations (3.26a) and (3.27b) that were obtained in Section 3-4, will be 

statistically tested. As a reminder, the decoupled operating and investing cash flow 

processes respectively, are represented in continuous-time by the following specifications 

dCt
′ = (μC,1Ct

′ + μC,0)dt + √(σC,2Ct
′2 + σC,1Ct

′ + σC,0) dWC,t                                               (5.5a)       

dIt
′ = (μI,1It

′ + μI,0)dt + √(σI,2It
′2 + σI,1It

′ + σI,0) dWI,t                                                        (5.5b) 

The estimation results of the linear-quadratic specification will be compared to those of the 

five specifications that figure commonly in the literature. Recall from Section 2-1 that these 

specifications (in this instance described for operating cash flows) are 

(i) Geometric Brownian Motion (GBM); dCt =  μCtdt +  σCt dWt                                     (5.6a) 

(ii) Arithmetic Brownian Motion (ABM);  dCt =  μdt +  σdWt                                             (5.6b) 

(iii) Mean-reverting Vasicek process (Vasicek model); dCt = α(m − Ct)dt +  σdWt      (5.6c) 

(iv) Mean-reverting Cox, Ingersoll and Ross process (square root or CIR model); dCt =

α(m − Ct)dt +  σ√CtdWt                                                                                                       (5.6d) 

(v) Modified Square Root process (MSR model); dCt =  μCtdt + √k1
2 + k2

2Ct
2dWt       (5.6e) 

In Section 2-3, it is shown that each of the above specifications, is a special form of the 

complete linear-quadratic Equation: (5.5a) for operating cash flows and (5.5b) for investing 

cash flows. The results of preliminary specification analysis that are reported in Tables 2-3 

and 2-4, suggest that a quadratic diffusion function is preferred to a linear diffusion 

function. This follows from the cash flow processes of a significant number of firms 

agreeing, in full or in reduced form, with a quadratic diffusion function. In this section, more 

specific and rigorous estimations will be performed on the complete linear-quadratic 

specification. 

The estimation in this section centers on validating Equations (5.5a) and (5.5b) for cases 

examined by testing the hypothesis whether all estimated parameters {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} are 

significantly different from zero. If not, the linear-quadratic model must be rejected to the 
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benefit of a more specialised specification, amongst the ones found in the literature 

(Equations (5.6a) – (5.6e)). Table 5-8 provides the connection between the full parameter 

set {μ0, μ1, σ0, σ1, σ2}  applicable to the linear-quadratic model, and the subsets of those 

parameters corresponding to the aforementioned particular models. 

Table 5-8  Parameters of the estimated specifications 

 DRIFT FUNCTION DIFFUSION FUNCTION 

 𝛍𝟎 𝛍𝟏 𝛔𝟎 𝛔𝟏 𝛔𝟐 
      

LINEAR-QUADRATIC √ √ √ √ √ 
GBM  √   √ 
ABM √  √   

VASICEK √ √ √   

SR √ √  √  

MSR  √ √  √ 

 

Estimation methodology 

As noted already in Section 1-3, estimating continuous-time processes with discrete (low-

frequency) data poses major challenges. These challenges have been extensively 

documented in the literature: for example, Ait-Sahalia (2006); Ait-Sahalia and Mykland 

(2003); B. Chen and Hong (2010); Duffie and Glynn (2004); Florens-Zmirou (1993); Fuchs 

(2013, Chapter 6); F. Li (2007); Sorensen (2002). 

In the hypothetical case that data were to be sampled continuously, it is straightforward to 

calculate the instantaneous change in variance from the quadratic variation of the cash flow 

process under consideration. Once the diffusion function is completely determined, for 

instance the uncoupled diffusion function of an operating cash flow process 

√(σ̂C,2Ct
′2 + σ̂C,1Ct

′ + σ̂C,0), then the corresponding drift function μ̂C,1Ct
′ + μ̂C,0 is estimated 

from a likelihood estimator based on a transformed, driftless process (Pavliotis (2014, 

Section 3.6)). Typically, the Radon-Nikodym derivative from Girsanov’s formula is used to 

accomplish a change of probability measure so that the drift function is eliminated, turning 

the process into a martingale (Fuchs (2013, subsection 6.1.1.)). 

Discrete observations, however, require an entirely different approach to estimate 

parameters of the diffusion function. Recall from Section 1-3 that a cash flow variable in a 

continuous-time setting, is a state variable, sometimes called cash flow intensity. A state 
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variable cannot be measured over a time-interval, except in some special cases (Ait-Sahalia 

(1996, p. 389)). Furthermore, and related to the foregoing, in Section 2-3 it is explained why 

a Gaussian transition density function applicable to a very small-time interval δt, becomes 

significantly non-Gaussian as the observed discrete time-interval ∆T increases. This creates 

additional challenges when estimating parameters. Even a Lamperti transform (discussed in 

Section 4-1) where the diffusion function is changed to unit variance and associated Wiener 

process, does not deal with the issue (entirely). Indeed, in case of a linear-quadratic 

specification, there is still a material cumulated effect of the transformed (nonlinear) drift 

function on the observed transition probability density, leading to a progressively non-

Normal distribution. Some of these issues can be mitigated if high-frequent sampled data 

are available but in case of low-frequency discrete data, for instance quarterly data used in 

this study, the problem of estimating parameters becomes significantly more difficult. In 

particular, there is no evident approximation scheme that can efficiently compute or mimic 

the continuous ML-estimator. Likewise, the usual nonparametric kernel estimators, based 

on differencing, do not provide consistent parameter estimates (Gobet et al. (2004)). 

Broadly, two important directions for addressing the problem of estimating parameters 

from discrete (low-frequency) observations, could be distinguished:  

(i) use a (approximated) closed-form solution of the SDE to directly estimate parameters; 

and 

(ii) apply the (approximated) transition density function of the SDE to indirectly estimate 

parameters. 

The first method assumes that a general closed-form solution exists or, at least, an accurate 

approximation of the exact solution is derivable. In other words, a solution function can be 

found with the following general specification 

Xt = F(t,Wt, 𝛉 )                                                                                                                                (5.7a) 

where Xt is some cash flow process, and 𝛉 is the set of parameters {μ0, μ1, σ0, σ1, σ2} to be 

estimated. To eliminate variable Wt, one commonly resorts to the method of the moments 

by turning Equation (5.7a) into 

Mt,X
n = Mn(t, 𝛉)                                                                                                                                 (5.7b) 
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where Mt,X
n  is the evolution of the nth moment of Xt. Note that usually Mn(t, 𝛉) is a 

nonlinear function of t, requiring a nonlinear parameter estimation technique.  

The second method is related to the forward Kolmogorov equation that describes the 

behaviour of the transition probability density function at any time t. The transition 

probability density p(Xt, t) is the solution of 

∂p(Xt, t)

∂t
=

−∂α(Xt, 𝛉)p(Xt, t)

∂Xt
+ 

1

2

∂2β(Xt, 𝛉)p(Xt, t)

∂Xt
2                                                             (5.8) 

where Xt is some cash flow process, p(Xt, t) is the transition probability density function, 

α(Xt, 𝛉) is the estimated linear drift function, √β(Xt, 𝛉) is the estimated diffusion function, 

and 𝛉 is the complete set of parameters to be estimated. Even though the probability 

density function follows from Equation (5.8), assuming it exists in analytical form, usually no 

direct link can be made between the set of functions {α(Xt, 𝛉),√β(Xt, 𝛉)} and p(Xt, t). 

Obviously, the Fokker-Planck identity, Equation (5.8), connects the two but, the LHS of 

Equation (5.8) is only valid in small-time ∂t. One way around this issue (Ait-Sahalia (1996)) is 

to observe Equation (5.8) under a stationary restriction by setting 
∂p(Xt,t)

∂t
= 0. As already 

explained in Sections 4-2 and 4-3, then the general solution to Equation (5.8) becomes 

pst(X) =
𝓃(𝛉)

√β(u, 𝛉)
exp [∫

2α(u, 𝛉)

√β(u, 𝛉)
du]                                                                                       (5.9) 

where 𝓃(𝛉) is a normalisation constant that depends on the parameter vector 𝛉. Equation 

(5.9) governs the connection between probability density, and the parameterisation of the 

drift and diffusion functions. Now, if a relationship between pst(X) and p(Xt, t) can be 

established, then, in principle, all information encapsulated in the space-time density 

function is available to estimate the function set {α(Xt, 𝛉),√β(Xt, 𝛉)}. In Chapter 4 such 

relationships are found for the linear-quadratic specification of operating and investing cash 

flow processes. Conveniently, these will be utilised to estimate parameter vector 𝛉 later in 

this section. Another work-around is described in Hansen et al. (1998) and Mathieu Kessler 

and Sorensen (1999). They propose a martingale estimation function based on 

eigenfunctions for the generator of the diffusion model. Mathieu Kessler and Sorensen 
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(1999, p. 300) purport that the route via spectral theory gives more explicit estimating 

equations, not necessarily limited to the usual polynomial expansions. 

Regardless of the particular specification, the Markov property allows the parameter set to 

be estimated from the corresponding maximum likelihood estimator. Assuming that 

discrete observations are sampled over a constant time-interval Δ, at each time Ti = ∑ Δi
i
1  

the probability density is conditional upon the density at Ti−1where i = 1 . . n. In that 

instance, the set of estimated parameters arises from maximising the following log-

likelihood function with respect to 𝛉 

ℓn = ∑ln[p(XTi
|XTi−1

; 𝛉)]

n

i=1

                                                                                                      (5.10a) 

Consequently, the estimated parameter vector observes 

�̂� = arg max ℓn(𝛉)                                                                                                                     (𝟓. 10b)  

Notice that Equation (5.10a) is based on the Chapman-Kolmogorov equation and effectively 

develops a series of consecutive transition density functions into a marginal probability 

distribution. This is conducive to solving the problem of relating the function set 

{α(Xt, 𝛉),√β(Xt, 𝛉)} to discretely observed data. However, the vast majority of stochastic 

processes have no known analytical probability density function p(Xt, t). Hence, parameter 

values must be obtained from pseudo-likelihood and approximated likelihood methods. For 

a general overview see M. Kessler et al. (2012); Rao (2014), and for available estimation 

methods refer to Fuchs (2013); Iacus (2009). Inference methods specifically applied to the 

linear-quadratic model are analysed and discussed, amongst others, in Forman and 

Sorensen (2008); Schmidt (2008). 

If exact likelihood inference is not an option because no analytical transition density 

function exists, then parameter estimation based on pseudo-likelihood methods are an 

alternative. Pseudo-likelihood methods approximate the (transformed) path of the 

stochastic process such that the corresponding transformed transition density function is 

suitable to apply maximum likelihood estimation. Therefore, it is no surprise that (local) 

Gaussian density function approximations are a popular choice (refer for example to 

Sorensen (2002) and Wei et al. (2016)). However, as pointed out in Iacus (2009, p. 122), 
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pseudo-likelihood methods provide good approximations only if the time between discrete 

observations, Δ, is sufficiently small. In this study low-frequency (quarterly) cash flow data 

are used that are considered too granular to apply pseudo-likelihood methods successfully. 

Consequently, the focus ought to be on approximated likelihood methods that are, as will 

become clear in the following subsections, more flexible in dealing with low-frequency data. 

Both methods, (i) approximated close-form solutions, and (ii) approximated likelihood 

estimation, will now be further examined in the context of statistical testing of a linear-

quadratic cash flow model. 

Approximated closed-form solutions 

Section 4-1 shows that a linear-quadratic SDE has no known closed-form solutions; 

however, two approximations will be used in conjunction to estimate the full set of 

parameters �̂�: {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2}. These two approximations are analysed in Section 4-1:    

(i) Approximation one, Equation (4.33), and (ii) Approximation three, Equation (4.43). Note 

that Approximation method two, Equation (4.37), is not taken into consideration because 

results are too inaccurate for smaller positive and negative cash flow values (roughly 

between +$100,000 and -$100,000; see Section 4-1). 

Method one is considered a good approximation for an operating cash flow process 

provided that cash flows are not too small (greater than $100 and smaller than -$100; see 

Section 4-1), and parameter σ2 is not very small relative to parameters σ1 and σ0. The 

method yields the following solution 

Xt = Zo exp [(μ1 −
1

2
σ2)t + √σ2Wt] + [(μ0 − σ1)t + √σ2 Wt]                                           (5.11)  

from which the expected value of Xt is calculated as 

𝔼(Xt) = Xo exp[μ1t] + (μ0 − σ1)t                                                                                            (5.12a)  

or, in parametrised form 

𝔼(Xt) = Xo exp[θ1t] + θ2t                                                                                                         (5.12b)  

where θ1 = μ1, θ2 = μ0 − σ1 and Xo is set to the arbitrary value of 1. 
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Approximation method three transforms the cash flow variable Xt first to X̃t =
qXt+r

s
  where 

q = √σ2 for σ2 ≥ 0, r =
σ1

2√σ2
  and s =

D

2√σ2
 with D = √σ1

2 − 4σ2σ0. A second 

transformation follows in which variable X̃t is transformed to Zt: Zt =
s

√2
sinh−1(X̃t). 

Finally, Zt is re-scaled to Zt
′ =

√2

s
Zt. The expected value of variable Zt

′ is already given in 

Equation (4.44), Section 4-1 

𝔼(Zt
′) = −

4σ2μ0 − 2σ1

(2μ1 + √σ2)D
+ [Z0

′ +
4σ2μ0 − 2σ1

(2μ1 + √σ2)D
] e

[
(2μ1+√σ2)√2

D
]t
                                      (5.13) 

For estimation purposes, Equation (5.13) needs to be expressed in 𝔼(Xt) by applying this 

expected value conversion 

𝔼(Xt) =
s

q
𝔼 [

√2

s
sinh (

s

√2
Zt

′)] −
r

q
                                                                                          (5.14a) 

Since |Zt
′| < 1, sinh (

s

√2
Zt

′) is approximated by a series expansion 

sinh (
s

√2
Zt

′) =
s

√2
Zt

′ + 𝒪(Zt
′ 3)                                                                                                    (5.14b)  

so that Equation (5.14a) is re-written to 

𝔼(Xt) =
s

q
𝔼[Zt

′] −
r

q
                                                                                                                     (5.14c) 

Substituting Equation (5.13) into Equation (5.14c) gives 

𝔼(Xt) = −
4σ2μ0−2σ1+σ1√σ2+2σ1μ1

2σ2(2μ1+√σ2)
+ [

D

2σ2
sinh−1 (

2σ2+σ1

D
) +

2σ2μ0−σ1

σ2(2μ1+√σ2)
] e

[
(2μ1+√σ2)√2

D
]t
                                                                                                              (5.15a)  

where Z0
′  is replaced by sinh−1 (

2σ2+σ1

D
) with X0 = 1. 

Parametrised, Equation (5.15a) leads to this structural equation 

𝔼(Xt) = θ3 + θ4e
θ5t                                                                                                                     (5.15b)  
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where θ3 = −
4σ2μ0−2σ1+σ1√σ2+2σ1μ1

2σ2(2μ1+√σ2)
 , θ4 = [

D

2σ2
sinh−1 (

2σ2+σ1

D
) +

2σ2μ0−σ1

σ2(2μ1+√σ2)
], θ5 =

[
(2μ1+√σ2)√2

D
]. 

Together Equations (5.12b) and (5.15b) contain five estimated parameters �̂�: 

{θ̂1, θ̂2, θ̂3, θ̂4, θ̂5}, all to be estimated from the evolution of the expected value of cash flow. 

These five parameters each represent a formula from which the parameter set 

{μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} can be solved. In other words: the system is exactly specified. 

Estimation results for operating cash flow 

A nonlinear regression with expected values of operating cash flow as a dependent variable, 

produces the following estimation results for Equation (5.12b) 

Table 5-9  Estimation results for θ1 and θ2 – Operating Cash Flows 

 

It turns out that Equation (5.15b) yields plausible estimation results only if parameter θ3 is 

constrained to zero. Then, the statistics for the remaining parameters are 

Table 5-10  Estimation results for θ4 and θ5 – Operating Cash Flows 

 

A mapping of the above parameter set �̂�: {θ̂1, θ̂2, θ̂3, θ̂4, θ̂5} to the calculated parameters 

{μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} is shown in Table 5-11. Notice that there are three solution sets for 

calculated parameters but the second solution has no practical meaning. Parameter σ̂0 is 

calculated from σ̂1, σ̂2 and D. 

 

                                                                              

     /theta1     .0551186   .0019325    28.52   0.000     .0512918    .0589454

     /theta2     4.141726   .4214576     9.83   0.000     3.307125    4.976327

                                                                              

        Mean        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                                    Res. dev.     =   1620.441

                                                    Root MSE      =   208.7845

                                                    Adj R-squared =     0.8385

                                                    R-squared     =     0.8412

Nonlinear regression                                Number of obs =        120

                                                                              

     /theta5     .0267981   .0023852    11.24   0.000     .0220748    .0315213

     /theta4     48.24198    10.1545     4.75   0.000      28.1333    68.35066

                                                                              

        Mean        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                                    Res. dev.     =   1610.628

                                                    Root MSE      =   200.4204

                                                    Adj R-squared =     0.8512

                                                    R-squared     =     0.8537

Nonlinear regression                                Number of obs =        120
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Table 5-11  Mapping of parameter sets - Operating Cash Flows 

    SOLUTION SET 1 SOLUTION SET 2 SOLUTION SET 3 

�̂�𝟏 0.0552  �̂�𝟎 -141.69 4.41417 -89.76 

�̂�𝟐 4.1417  �̂�𝟏 0.0552 0.0552 0.0552 

�̂�𝟑 0  �̂�𝟎 6684.79 - 6000.10 

�̂�𝟒 48.24  �̂�𝟏 -145.83 0 -93.90 

�̂�𝟓 0.0268  �̂�𝟐 0.7018 0 0.3114 

    D 50.03 0 36.66 

   �̂�𝟏 68.25  91.91 

   �̂�𝟐 139.54  209.63 

 

Estimation results for investing cash flow 

A similar regression is performed on investing cash flow data. The results obtained, are 

given in Table 5-12 below. 

Table 5-12  Estimation results for θ1 and θ2 – Investing Cash Flows 

 

Clearly, parameter θ̂1 = μ̂1 is not significantly different from zero. Comparable to the 

estimation for operating cash flows, here parameter θ3 is also constrained to zero in order 

to obtain robust results in the second regression 

Table 5-13  Estimation results for θ4 and θ5 – Investing Cash Flows 

 

Finally, a mapping similar to Table 5-11, this time for investing cash flows, is depicted in 

Table 5-14. Here too, only solution sets 1 and 3 are useful. 

                                                                              

     /theta1     2.15e-10   2.24e-10     0.96   0.339    -2.25e-10    6.55e-10

     /theta2     .1342978   .0120227    11.17   0.000     .1107337    .1578619

                                                                              

        Mean        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                 Observed   Bootstrap                         Normal-based

                                                                              

Bootstrap results

                                                    Res. dev.     =   1814.966

                                                    Root MSE      =    469.572

                                                    Adj R-squared =     0.4204

                                                    R-squared     =     0.4301

Nonlinear regression                                Number of obs =        120

                                                                              

     /theta5    -.0001508   .0000852    -1.77   0.079    -.0003194    .0000179

     /theta4     717.2247   191.8807     3.74   0.000     337.2487    1097.201

                                                                              

        Mean        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                                    Res. dev.     =   1770.893

                                                    Root MSE      =   390.7959

                                                    Adj R-squared =     0.5986

                                                    R-squared     =     0.6053

Nonlinear regression                                Number of obs =        120
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Table 5-14  Mapping of parameter sets - Investing Cash Flows 

    SOLUTION SET 1 SOLUTION SET 2 SOLUTION SET 3 

�̂�𝟏 0 
 

�̂�𝟎 -8176.24 0.1343 -4994.5 

�̂�𝟐 0.1343 
 

�̂�𝟏 0 0 -89.76 

�̂�𝟑 0 
 

�̂�𝟎 45495150 0 39708423 

�̂�𝟒 717.23 
 

�̂�𝟏 -8176.37 0 -4994.5 

�̂�𝟓 -0.00015 
 

�̂�𝟐 0.7108 0 0.3517 

    D -7906.45 0 -5561.92 

 

Even though parameter θ̂5 is not different from zero at a 5% significance level, it is decided 

to include the estimated parameter value in the mapping calculations. A value of zero 

generates unstable (that is, non-converging) results for the parameter set  

{μ̂0, μ̂1, σ̂0, σ̂1, σ̂2}. Nonetheless, the conclusion is that in Equation (5.12b) the relative 

weight of exponential growth is insignificant compared to that of the linear growth.  

Discussion of estimation results 

The estimation results are encouraging with consistently high R2-statistics (used as a 

goodness of fit measure in nonlinear estimations) for both cash flow processes. 

Approximation one produces exact results under the condition that parameter σ2 is not very 

small relative to parameters σ1 and σ0. Observing the results in Table 5-11 and 5-14, this 

condition is obviously not met; however, approximation three does not have the same 

restriction. Since the parameter set {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} is calculated from both equations, 

one can assume that inaccurateness introduced by method one is (partially) off-set by a 

much closer approximation inherent with method three. 

It is important to note that all parameters pertaining to the operating cash flow process are 

significantly different from zero, underpinning the hypothesis that on an aggregated firm-

level, the full linear-quadratic specification is superior to all particular specifications 

included in Table 5-8. This conclusion can be drawn also for investing cash flows but the 

results must be interpreted with much more caution since parameter μ̂1 and θ̂5 are 

statistically insignificant, the latter parameter affecting the calculations of the diffusion 

parameters {σ̂0, σ̂1, σ̂2}. It should be noted that these results are (as a sample) 

representative for the whole population of firms; a more restricted sample, for instance at 

industry level or at individual firm level, may well lead to a different conclusion. 
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In respect of investing cash flows, the conclusions are slightly more ambiguous. The full-

quadratic specification appears also valid but with the observation that the diffusion 

function is dominated by the constant in the quadratic expression, represented by 

parameter σ̂0.  

The reported values of D (the square root of the discriminant) are in conformity with 

expectations articulated in Section 2-3. For operating cash flows these are shown to be 

positive whilst the discriminants of investing cash flows invariably have large negative 

values. This contrast brings about important implications. The diffusion of investing cash 

flows (i) has complex roots, typical for a process that follows a Pearson-IV distribution 

(Pearson’s Case 1, Section 2-3, Figure 2-5), (ii) is defined on the full cash flow range ℝ, and 

(iii)  mostly converges to a stationary probability distribution. In contrast, operating cash 

flows are better modelled by probability distributions belonging to Pearson’s Case 2. Since 

the process is generally not converging, it must be defined on a restricted domain to ensure 

finding meaningful solutions to the Kolmogorov equations (refer to Chapter 4). 

Introduction to approximated likelihood estimation  

As mentioned in the beginning of this chapter, an alternative way to obtain parameter 

values, is to maximise the log-likelihood function of the transition density function with 

respect to parameter vector 𝛉. Most SDEs have no known analytical probability density 

function p(Xt, t) which, in Chapter 4 is corroborated to be the case also for the linear-

quadratic model. Hence, an approximation method will be required to conjecture a 

transition density function (at discrete times) from available data.  

The question arises which (family) of distributions the approximated transition density of 

the linear-quadratic model resembles. Only in special cases will a transition density function 

in discrete time be governed by a normal distribution; usually the underlying transition 

density is significantly non-Gaussian. The general linear-quadratic cash flow model is no 

exception. In Chapter 4, two general approximations for the linear-quadratic specification, 

Equations (4.55) and (4.103a), were found. For investing cash flows there exists a stationary 

Student probability density function that has the following specification 
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p(I) =  η(μ, α, β, γ)
exp [

μ − β
αγ  tan−1 [

It − β
γ ]]

[1 + [
It − β

γ ]
2

]

 𝜈+1
2

                                                                       (5.16) 

where I ϵ ℝ , α > −1, η(μ, α, β, γ) =
Γ(

 𝜈+1

2
)

γ√𝜋  Γ(
 𝜈

2
)
∏ [1 + (

μ−β

αγ
 ν+1

2
+k

)

2

]

−1

∞
k=0 , 𝜈 =  1 +

1

α
   

and for operating cash flows, the full dynamics of the process is described by the space-time 

density function  

p(c, t) = K̅(c − 1)ν1(c + 1)ν2e−
1
2
t 2

√2πt
e−

(c−c0)2

2t                                                                     (5.17) 

where ν1 and ν2 are composite parameters derived from the parameter set 

{μ0, μ1, σ0, σ1, σ2}. Especially the density function of operating cash flows is generic and 

therefore includes a wide range of more specialised density functions (for an overview see 

Figure 2-5 in Section 2-3). In the absence of known parameter values, it is nearly impossible 

to ascertain a specific density function that serves as a close enough approximation of the 

true density. Admittedly, the inference of a stationary Student diffusion, in this study found 

to be adequate to describe an investing cash flow process, has a specific density function 

(Equation(5.16)) and a related closed-form estimating function based on a Routh–

Romanovski finite polynomial expansion (N. N. Leonenko and Šuvak (2010)). Nevertheless, if 

possible, the preference is to determine an overarching density function that fits both 

operating and investing cash flow processes. 

In addition, there is the issue of non-normality of the transition density if discretely sampled 

from low-frequency data. In this instance, the inferred transition density will almost always 

be non-Gaussian, save in the exceptional case that the stochastic process itself is normal. 

Clearly, Equation (5.16) is non-Gaussian and Equation (5.17), albeit a composite function of 

a Gaussian and Pearson’s Case 2 long-time density function family, is generally non-

Gaussian as well47. If non-Gaussian density functions are used in parameter estimation, and 

they are part of a series approximation method, for instance an Edgeworth or a Gram-

                                                           
47 Only in the exceptional case that a particular solution to Pearson’s Case 2 density function is normally distributed, the composite 

function will be Gaussian. 
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Charlier series expansion, then the results tend to be inaccurate. Often, the tail(s) of the 

distribution are too thick to ensure that the expansion is (asymptotically) converging rapidly 

enough (Iacus (2009, p. 138)). This shortcoming is absent in a normal distribution due to its 

sufficiently thin tails.  

It is obvious that the transitional density belonging to the linear-quadratic equation ought to 

be derived from a generic and widely applicable statistical inference method, capable of 

dealing with approximated probability functions. The class of Approximate Maximum 

Likelihood Estimators (AMLE), that is the focus of this section, encapsulates a variety of 

methods, including but not limited to: Gaussian approximation of the transition density 

based on the Euler discretisation method (Mathieu Kessler (1997), approximation of 

continuous-time integrals (between discrete observations) by Itô and Riemann summations 

(Bibby and Sørensen (1995), Yoshida (1992)), approximation of the density function by 

series expansion (Ait-Sahalia (1996), Aït-Sahalia (2002a), Chang and Chen (2011), Chen-

Charpentier and Stanescu (2014)), and adaptive maximum likelihood estimation (Uchida and 

Yoshida (2012).  

Ait-Sahalia’s approximation method 

In this study a variant of the series expansion method developed by Ait-Sahalia (Aït-Sahalia 

(1999, 2002a)) is developed and applied. The Ait-Sahalia-method is chosen because it is 

well-established in the literature, it is supported by a wide range of different stochastic 

processes, it converges fast to an (unobservable) continuous-time solution, it is agreeable to 

low-frequency sampled data and it is applicable to stationary and non-stationary processes 

alike. The Ait-Sahalia- method approximates an analytical log-likelihood function (refer to 

Equation (5.10)) by first transforming the transition density function into one that is close to 

normal, followed by expanding the transformed density using Hermite polynomials. The 

method is explained, applied and further developed in a range of publications, amongst 

which are Chang and Chen (2011); Iacus (2009, Sec 3.3.3); M. Kessler et al. (2012, Chapter 

1); C. Li (2013); Singer (2006); Poulson (1999). The main characteristic of the Ait-Sahalia- 

method can be summarised as follows: a transformation of the (conditional) non-Gaussian 

density function into a Gaussian, with the aim of removing serious obstacles, discussed 
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above, that are related to statistical inference from low-frequent, significantly non-normal 

data. 

A transformed approximated conditional density function is pivotal to the Ait-Sahalia- 

method 

PZ
J(Δ, z|y0; 𝛉) = 𝒩(0,1)∑ ηZ

jJ
j=0 (Δ, z|y0; 𝛉)ℋj(z)                                                                  (5.18)  

The first term of the RHS of Equation (5.18) is a standard normal distribution, the second 

term is a Hermitian series-expansion that encapsulates all non-Gaussian characteristics of 

the transformed density distribution. Equation (5.18) includes two important parameters 

that ensure a broad application of the method: 

(i) parameter J represents how close the approximation is to the true transformed density 

function PZ(Δ, z|y0; 𝛉). Obviously, PZ(Δ, z|y0; 𝛉) = lim
J→∞

PZ
J(Δ, z|y0; 𝛉); however, 

empirical tests, for example Ait-Sahalia (1996, pp. 399-412), show that the expansion is 

strongly convergent. Very accurate approximations are feasible with an expansion of up 

to five or six terms; 

(ii) parameter Δ which constitutes the time-interval over which discrete observations are 

measured. The closer Δ is to zero, the more time-continuous the process becomes, 

resulting in a transitional density distribution that, with increasing accuracy, resembles 

a normal distribution. 

The two parameters are compensating levers: if Δ becomes too large to underpin an 

accurate approximation then parameter J can be increased to warrant the desired precision 

of the approximation results. In this study, a five-term approximation will be used, that is, 

J = 4; nevertheless, if greater accuracy is required, then J can be increased but at the 

expense of much more complex and lengthier calculations. Since cash flows are discretely 

sampled over an equal quarterly time-interval, defined by Δ = 1, t is set to Ti = ∑ Δi
i
1  where 

i = 1 . . n. For low-frequency sampling, as is clearly the case in this study, significantly non-

Gaussian conditional density functions are expected to be found.  

More specifically, the method employed to estimate the parameters of the linear-quadratic 

conditional density function, comprises the following steps: 
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1. The general linear-quadratic cash flow SDE dXt = (μ1Xt + μ0)dt +

√(σ2Xt
2 + σ1Xt + σ0) dWt is first turned into the following equation dYt = μ̃(Yt)dt +

dWt, an SDE with a unit instantaneous change of variance. A Lamperti transformation 

(discussed in Sections 4-1 and 4-3) achieves this purpose. The transformation function is 

given by 

Yt = F(Xt) = ∫
dξ

√|σ2Xt
2 + σ1Xt + σ0|

=
1

√σ2

ln |2√σ2  √|σ2Xt
2 + σ1Xt + σ0| + (σ1 + 2σ2Xt)|                      (5.19) 

where σ2 > 0. Notice that absolute values of the quadratic expression and the ln-form 

are taken to ensure that Yt is defined on a complete Xt-spectrum. 

The transformed drift function satisfies 

μ̃(Yt) =
((μ1−

1
2σ2)F

−1(Xt) + (μ0 −
1
4σ1))

√|σ2[F−1(Xt)]2 + σ1F−1(Xt) + σ0|
                                                                     (5.20) 

 Using  the discriminant D of σ2Xt
2 + σ1Xt + σ0, defined as D = σ1

2 − 4σ2σ0, Equation 

(5.19) evaluates to the following more particular forms (refer to Jeffrey (2004, section 

4.3.4)) 

Yt = F(Xt) =
1

√σ2
sinh−1 [

(σ1+2σ2Xt)

√D
]                                                                                   (5.21a)  

if D > 0 and σ2 > 0, applicable to most operating cash flow processes, 

Yt = F(Xt) =  
1

√σ2

ln |(σ1 + 2σ2Xt) |                                                                                  (5.21b) 

if D = 0 and σ2 > 0 

Yt = F(Xt) =
−1

√−σ2
sin−1 [

(σ1+2σ2Xt)

√−D
]                                                                                   (5.21c )  

if D < 0 and σ2 < 0, typical for almost all investing cash flow processes. Notice that since 

the function sin−1( ) is only defined on −1 ≤ sin−1( ) ≤ 1, cash flows Xt must be in the 

range of 
−1

√−σ2
𝜍1 ≤ Xt ≤

−1

√−σ2
𝜍2 where 𝜍1,2 =

−σ1±√−D

2σ2
. 
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2. A second transformation makes the process more suitable to a Hermite polynomial 

expansion by introducing the pseudo-normalised increment (Iacus (2009, p. 141)) as 

Zt =
Yt − Y0

√Δ
                                                                                                                                 (5.22) 

 where Δ is a discrete, constant time-interval over which observations are sampled and Zt 

is a nearly normal process. The vector of parameters to be estimated is defined as 

𝛉: [μ0, μ1, σ2, σ1, σ0]. 

3. Next, density PZ(Δ, z|y0; 𝛉) is approximated by Hermitian expansion   

PZ
J(Δ, z|y0; 𝛉) = 𝒩(0,1)∑ ηZ

jJ
j=0 (Δ, z|y0; 𝛉)ℋj(z)                                                             (5.23)  

 where 𝒩(0,1) is a standard normal function, ℋ𝑗(𝑧) are Hermite polynomials defined as 

(−1)ne
z2

2
dne

−
z2

2

dzn   for n = 0. . J, parameter J denotes the number of terms included in the 

expansion, Fourier coefficients ηZ
j (Δ, z|y0, 𝛉) are derived from the orthonormal property 

of Hermite polynomials  

ηZ
j (Δ, z|y0; 𝛉) =

1

j!
∫ ℋj(z)PZ

J(Δ, z|y0, 𝛉)dz
∞

−∞

=
1

j!
∫ ℋj (

Yt − Y0

√Δ
)PZ

J(Δ, z|y0, 𝛉)dz
∞

−∞

=
1

j!
𝔼𝛉 [ℋj (

Yt − Y0

√Δ
) |Yt = y0]                                                                   (5.24) 

Note that the integral evaluates to a conditional first moment. The Hermite polynomials 

are found relatively easy, as opposed to the Fourier coefficients. The latter are the first 

moments of the terms of the Hermitian expansion. In his landmark paper (Ait-Sahalia 

(1996, Appendix)), Ait-Sahalia replaces the first conditional moment by a Taylor 

expansion of (a recursively applied) infinitesimal generator of process Yt. He then proves 

that the Fourier coefficients can be described in closed-form as a polynomial expression 

of the transformed drift coefficient μ̃(Yt) and its derivatives (in increasing order)48. 

However, I will adopt a slightly different approach. Following Singer (2006) and Jeisman 

                                                           
48 The main reason not to follow Ait-Sahalia’s method to calculate Fourier coefficients, is the complexity of the derivatives of μ̃(Yt) for the 

linear-quadratic model. 
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(2006, Chapter 4), the Fourier coefficients are derived from a higher-moment 

approximation.  

4. To compute the Fourier coefficients ηZ
j (Δ, z|y0; 𝛉), a higher-moment expansion is used 

including terms 𝔼[ℋj(z)] where j > 3. It turns out that the first and second moment 

vanish from the calculation. From a closed system of ODEs that represent the evolution 

of the respective higher moments, these higher moments are then solved recursively and 

in an approximated sense. Solutions take the form 𝔼n(t; 𝛉).  

5. The approximated density function PZ
J(Δ, z|y0; 𝛉) is first transformed back to 

PY
J(Δ, y|y0, 𝛉) = √Δ PZ

J (Δ,
Yt−Y0

√Δ
|y0; 𝛉), and in a final retro-transformation to: 

 PX
J(Δ, x|x0; 𝛉) =  

1

√|σ2Xt
2+σ1Xt+σ0|

PY
J(Δ, F(Xt)|F(X0); 𝛉)                                                   (5.25) 

where Yt = F(Xt) = ∫
dξ

√|σ2Xt
2+σ1Xt+σ0|

=
1

√σ2
ln |2√σ2  √|σ2Xt

2 + σ1Xt + σ0| + (σ1 +

2σ2Xt)|.  

6. Since cash flows are discretely sampled over an equal time-interval Δ = 1, continuous-

time t is set to Ti = ∑ Δi
i
1  where i = 1 . . n. Thus, in the discrete version of Equation 

(5.25), variable t is replaced by variable Ti. Given the set of discrete observations 

{X0, X1, X2 ….  XT }, the approximated density function, conditional on the first 

observation X0, becomes 

PX
J(Δ, xTi

|x0; 𝛉) =  
1

√|σ2xTi

2 + σ1xTi
+ σ0|

PY
J(Δ , F(xTi

)|F(x0); 𝛉)                                (5.26) 

7. The conditional probability density function P̃X
J(Δ, xt|xt−1; 𝛉) is set equal to 

PX
J(Δ = 1, xTi

|x0; 𝛉) which arises from the Chapman-Kolmogorov identity applied to a 

homogeneous Markovian setting. Following Aït-Sahalia (2002a, p. 233), the result is 

obtained by ignoring the marginal initial density PX
J(Δ = 1, x0; 𝛉). In deriving the 

likelihood estimator, the initial marginal density is dominated by the series of transition 

densities (alternatively formulated: one observation compared to n observations). Hence, 
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 P̃X
J(Δ, Xt|Xt−1; 𝛉) = PX

J(Δ = 1, xTi
|x0; 𝛉) =

 
1

√|σ2xTi
2 +σ1xTi

+σ0|
PY

J(Δ = 1, F(xTi
)|F(x0); 𝛉)                                                                      (5.27)  

8. The conditional density function P̃X
J  is used in the derivation of the Approximated 

Maximum Likelihood Estimator (AMLE). Since the process is Markovian, the likelihood 

estimator is ℒ(𝛉) = ∏ P̃X
J(Δ = 1, xTi

|xTi−1; 𝛉)n
i=1 , and the associated log-likelihood 

estimator is ℓ(𝛉) = ∑ log P̃X
J(Δ = 1, xTi

|xTi−1; 𝛉)n
i=1 . Commonly, estimates are calculated 

by setting the first derivative of ℓ to zero under the condition that there exists a single 

critical vector 𝛉max that is indeed a global maximum49. 

In Appendix M4-A it is shown that steps 1 - 4 lead to a z-transformed approximated 

transitional density function PZ
J for J = 4, satisfying 

PZ
4(Δ, z|y0; 𝛉) =

1

√2π
e−

z2

2 [1 −
1

8
(z4 − 6z2 + 3) +

1

6
 (z3 − 3z )𝔼(z3, 𝛉) +

1

24
(z4 − 6z2

+ 3)𝔼(z4, 𝛉) ]                                                                                                       (5.28) 

Equation (5.28) consists of a leading Gaussian term and a fourth-degree polynomial term 

including a third and a fourth moment of the transformed random variable z. If the 

transition density is non-Gaussian, the last term introduces excess skewness and kurtosis to 

the normal z-distribution. For a true Gaussian random variable PZ
4(Δ, z|y0, 𝛉), skewness 

(𝔼(z3)) and kurtosis (𝔼(z4) − 3) are zero and the last term takes the value one, reducing 

PZ
4(Δ, z|y0; 𝛉) to 

1

√2π
e−

z2

2  (Singer (2006, p. 388). 

In step 5, the first retro-transformation yields the transitional density function in random 

variable y̌ = yt − y0 

PY
4(Δ, y|y0; 𝛉) =

1

√2π
e−

y̌2Δ

2 Δ
1

2 [1 −
1

8
(Δ2y̌4 − 6Δy̌2 + 3) +

1

6
(Δ

3

2y̌3 − 3Δ
1

2y̌ )Δ
3

2𝔼(y̌3; 𝛉) +

1

24
(Δ2y̌4 − 6Δy̌2 + 3)Δ2𝔼(y̌4; 𝛉) ]                                                                                            (5.29a)  

where y̌ = y − y0.  

                                                           
49 Or, if applicable, a local maximum under some parameter restrictions. 
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Setting Δ equal to one, that is, taking a time-interval of one quarter in a year, gives a more 

workable version of Equation (5.29a) 

PY
4(Δ, y|y0; 𝛉) =

1

√2π
e−

y̌2

2 [1 −
1

8
(y̌4 − 6y̌2 + 3) +

1

6
(y̌3 − 3y̌ )𝔼(y̌3; 𝛉) +

1

24
(y̌4 − 6y̌2 +

3)𝔼(y̌4; 𝛉) ]                                                                                                                                   (5.29b)  

Importantly, under the condition that μ̃(Yt) is approximated by a linear Taylor expansion 

around y0 (a condition not imposed by Jeisman (2006, Chapter 4) in an almost identical 

approximation method), additional to a few other mild approximations, it is shown in 

Appendix M4-B that 𝔼(y̌3; 𝛉) and 𝔼(y̌4; 𝛉) can be solved from a closed system of ODEs 

representing the evolution of the first four central moments. Indicative calculations shown 

in Appendix M4-B, substantiate the claim that a linear Taylor expansion serves as a 

sufficiently accurate approximation of the Lamperti transformed drift function μ̃(Yt) for 

expected parameter values.   

Note that higher moments 𝔼(y̌n; 𝛉), expressed in 𝛉 only, are calculated from the stationary 

probability distribution of y̌. Note that the condition for stationarity is π1(𝛉) < 0 (Appendix 

M4-B). Consequently, the marginal probability density admits the following mixed normal-

polynomial form  

PY
4(Δ = 1, y|y0; 𝛉))

=
1

√2π
e−

y̌2

2 [1 + ϑ0 + ϑ1y̌ + ϑ2 y̌
2 + ϑ3 y̌

3 + ϑ4 y̌
4]                                  (5.30) 

where ϑ0 = {−
3

8
−

1

8
α4(𝛉) −

3

16
α2(𝛉)β(𝛉) −

3

32
β2(𝛉)}, ϑ1 = {

1

2
α3(𝛉) +

3

2
α(𝛉)β(𝛉)}, 

ϑ2 = {
6

8
+

1

4
α4(𝛉) +

3

8
α2(𝛉)β(𝛉) +

3

16
β2(𝛉)}, ϑ3 = {−

1

6
α3(𝛉) −

1

2
α(𝛉)β(𝛉)} and ϑ4 =

{−
1

8
−

1

24
α4(𝛉) −

1

16
α2(𝛉)β(𝛉) −

1

32
β2(𝛉)}, α(𝛉) =

π0(𝛉)

π1(𝛉)
 and β(𝛉) =

1

π1(𝛉)
. 

The remainder of steps 5 – 7 encompasses the second retro-transformation from 

PY
4(Δ = 1, y|y0; 𝛉)) to PX

4(Δ = 1, x|y0; 𝛉) to be followed by expressing PX
4(Δ = 1, x|y0; 𝛉) in 

a conditional transition density format P̃X
J(Δ = 1, xTi

|xTi−1; 𝛉), and changing the time-basis 

of the probability density function from continuous to discrete. The result of these steps 

obeys 



 
 
190                                                                                                   
 

  

P̃X
J(Δ = 1, xt|xt−1; 𝛉) =  

1

√|σ2xTi
2 +σ1xTi

+σ0|
PY

J(Δ = 1, F(xTi
)|F(x0); 𝛉) =

1

√|σ2xTi
2 +σ1xTi

+σ0|

1

√2π
e
−

{DXTi
(xTi

;𝛉)−DX0(x0;𝛉)}
2

2σ2     

[1 + ϑ0(𝛉) + ϑ1(𝛉){DXTi
(xTi

; 𝛉) − DX0(x0; 𝛉)} − 2ϑ0(𝛉){DXTi
(xTi

; 𝛉) − DX0(x0; 𝛉)}
2
−

1

3
ϑ1(𝛉) {DXTi

(xTi
; 𝛉) − DX0(x0; 𝛉)}

3
+

1

3
ϑ0(𝛉){DXTi

(xTi
; 𝛉) −

DX0(x0; 𝛉)}
4
]                                                                                                                                    (5.31)  

where DXTi
(xTi

; 𝛉) = F(xTi
; 𝛉), DX0(x0; 𝛉) = DXT0

(xT0
; 𝛉) = F(x0; 𝛉), vector 

𝛝(𝛉): [{−
3

8
−

1

8
α4(𝛉) −

3

16
α2(𝛉)β(𝛉) −

3

32
β2(𝛉)} , {

1

2
α3(𝛉) +

3

2
α(𝛉)β(𝛉)}], α(𝛉) =

π0(𝛉)

π1(𝛉)
 

and β(𝛉) =
1

π1(𝛉)
. 

Note that the substitutions ϑ2 = −2ϑ0, ϑ3 = −
1

3
ϑ1 and ϑ4 =

1

3
ϑ0 have been made (see 

Appendix M4-B).  

Function F(xTi
; 𝛉) evaluates to: 

(i)  
1

√σ2
sinh−1 [

(σ1+2σ2x0)

√D
] if σ2 > 0 and the discriminant D of σ2Xt

2 + σ1Xt + σ0 is greater 

than zero (typical for operating cash flows); 

(ii) 
−1

√−σ2
sin−1 [

(σ1+2σ2x0)

√−D
] if σ2 < 0 and the discriminant D of σ2Xt

2 + σ1Xt + σ0 is smaller 

than zero (typical for investing cash flows). 

From here on the arguments xTi−1, Ti and 𝛉 are dropped from functions. 

For the approximated conditional density function, parameters π0(𝛉; y0) and π1(𝛉; y0) will 

need to be expanded around x0 instead of y0
50   

π0(𝛉; x0) =  
(μ1−

1

2
σ2)x0+(μ0−

1

4
σ1)

|σ2x0
2+σ1x0+σ0|

1
2

                                                                                                 (5.32a)  

                                                           
50 The function μ̃(Xt) is the conditional first central moment with x0 as the transformed proxy for the average of random variable Y. 
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 π1(𝛉; x0) =  
(
1

2
μ1σ1−μ0σ2−

1

4
σ1σ2+

1

4
σ2

2)x0−
1

2
μ0σ1+μ1σ0−

1

2
σ0σ2+

1

8
σ1σ2

|σ2x0
2+σ1x0+σ0|

3
2

                                        (5.32b) 

Variable x0 is solved from 

y0 = F(x0) =
1

√σ2

sinh−1 [
(σ1 + 2σ2x0)

√D
]                                                                              (5.33a) 

for D = σ1
2 − 4σ2σ0 > 0, or from 

y0 = F(x0) =
−1

√−σ2
sin−1 [

(σ1+2σ2x0)

√−D
]                                                                                       (5.33b)  

for D = σ1
2 − 4σ2σ0 < 0. 

Solutions to Equation (5.33a) and (5.33b) are 

x0 = −
σ1

2σ2
+

√D

2σ2
sinh (√σ2 y0)                                                                                               (5.34a) 

x0 = −
σ1

2σ2
+

√−D

2σ2
sin (√−σ2 y0)                                                                                           (5.34b) 

It is easy to see that if y0 is set to zero, then both equations become 

x0 = −
σ1

2σ2
                                                                                                                                      (5.34c) 

Substituting this result into Equations (5.32a) and (5.32b) gives 

π0(𝛉) =  
μ0− 

σ1
2σ2

μ1

|σ0−
σ1

2

4σ2
|
1
2

=
2√σ2(μ0− 

σ1
2σ2

μ1)

|−
1

2
D|

1
2

=
2√σ2μ0− 

σ1

√σ2
μ1

 |
1

2
D|

1
2

                                                            (5.35a)  

 π1(𝛉) =  
(4σ2)

3
2(μ0σ0−

σ1
2

4σ2
μ1+

1

8
D)

|
1

2
D|

3
2

                                                                                                  (5.35b) 

Conditional transitional density function 

The conditional transitional density function governed by Equation (5.31), can be split in 

three different components (Chang and Chen (2011, pp. 2824-2825)) 

(i) Component A1 =
1

√|σ2xTi
2 +σ1xTi

+σ0|
 which represents a non-linear scaling factor related 

to the Lamperti transform between x and y̌, vice versa; 
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(ii) Component A2 =
1

√2π
e
−

{DXTi
−DX0}

2

2σ2 =
1

√2π

σ2

σ2
e
−

{DXTi
−DX0}

2

2σ2 = σ2 𝒩(DX0, σ2), constitutes 

σ2 times a normal distribution of DXTi
 with mean DX0 and variance σ2 > 0; and  

(iii) Component A3 = 1 + ϑ0 + ϑ1(DXTi
− DX0) − 2ϑ0(DXTi

− DX0)
2 −

1

3
ϑ1 (DXTi

−

DX0)
3 +

1

3
ϑ0(DXTi

− DX0)
4, which adjusts the transition density for non-Gaussian 

characteristics of DXTi
 (that is, excess skewness and kurtosis if J = 4) relative to the 

same adjustment for DX0. 

Each part has its own significance in the complete transition density function and is 

discussed in more detail below. 

Component A1 =
1

√|σ2xTi
2 +σ1xTi

+σ0|
 has singularities if the roots of σ2xTi

2 + σ1xTi
+ σ0 are 

real, common for operating cash flows (see Figure 3.5). Singularities may cause issues with 

maximum likelihood algorithms as they are recognised by statistical estimation routines as 

discontinuities. Around these singularities, function A1 is highly nonlinear. If xTi
= xT0

= x0 

(that is, at time T0 of the first observation), then A1 evaluates to |
1

2
D|−

1

2 if D > 0, or to 

| −
1

2
D|−

1

2 if D < 0. 

For operating cash flows, component A2 = σ2 𝒩(DX0, σ2) yields 

σ2

1

√2πσ2

e
−

 {sinh−1[
σ1+2σ2xTi

√D
]− sinh−1[

σ1+2σ2x0

√D
]}

2

2σ2 = σ2

1

√2πσ2

e
−

 {sinh−1[
σ1+2σ2xTi

√D
]}

2

2σ2     (5.36) 

since sinh−1 [
σ1+2σ2x0

√D
] = 0. Observe that if xTi

= −
σ1

2σ2
, then A2 equals a constant 

1

√2π
. 

For investing cash flows, component A2 produces 

σ2

1

√2πσ2

e
−

 {sin−1[
σ1+2σ2xTi

√−D
]−sin−1[

σ1+2σ2x0

√−D
]}

2

2σ2 = σ2

1

√2πσ2

e
−

 {sin−1[
σ1+2σ2xTi

√−D
]}

2

2σ2           (5.37) 

Note that cash flows xTi
 are defined on a closed range 𝜍1 ≤ xTi

≤ 𝜍2 , 𝜍1,2 =
−σ1±√−D

2σ2
. If 

xTi
= −

σ1

2σ2
 then A2 =

1

√2π
. 
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For the value DX0 = 0, component A3 is simplified to 

A3 = 1 + ϑ0 + ϑ1DXTi
− 2ϑ0DXTi

2 −
1

3
ϑ1 DXTi

3 +
1

3
ϑ0DXTi

4                                               (5.38a) 

where 

(i)   in case of operating cash flows 

DXTi
= F(xTi

) =
1

√σ2

sinh−1 [
σ1 + 2σ2xTi

√D
]                                                                          (5.38b) 

or  

(ii) in case of investing cash flows 

DXTi
= F(xTi

) =
−1

√−σ2

sin−1 [
σ1 + 2σ2xTi

√−D
]                                                                         (5.38c) 

for cash flows xt defined on a closed range 𝜍1 ≤ xt ≤ 𝜍2 , 𝜍1,2 =
−σ1±√−D

2σ2
, and 

ϑ0 = {−
3

8
−

1

8
α4(𝛉) −

3

16
α2(𝛉)β(𝛉) −

3

32
β2(𝛉)} ,  ϑ1 = {

1

2
α3(𝛉) +

3

2
α(𝛉)β(𝛉)} , α(𝛉) =

π0(𝛉)

π1(𝛉)
, β(𝛉) =

1

π1(𝛉)
, π0(𝛉) =  

2√σ2μ0− 
σ1

√σ2
μ1

 |
1

2
D|

1
2

, π1(𝛉) =  
(4σ2)

3
2(μ0σ0−

σ1
2

4σ2
μ1+

1

8
D)

|
1

2
D|

3
2

.  

Approximated likelihood function 

The log-likelihood equality in Equation (5.31), is commonly solved by maximising the 

likelihood function P̃X
J(Δ = 1, xTi

|xTi−1; 𝛉), employing specialised software that includes a 

suite of appropriate numerical optimisation algorithms, for example the ML-routine of 

Stata-15 (Gould et al. (2010)). The AMLE is 

ℓi(𝛉) =  −
1

2
 ln[|σ2xTi

2 + σ1xTi
+ σ0|] −

1

2
DXTi

2 + ln [|1 + ϑ0 + ϑ1DXTi
− 2ϑ0DXTi

2 −

1

3
ϑ1 DXTi

3 +
1

3
ϑ0DXTi

4 |]                                                                                                                   (5.39)    

where DXTi
=

1

√σ2
sinh−1 [

σ1+2σ2xTi

√D
] if D > 0 and σ2 > 0, or DXTi

=
−1

√−σ2
sin−1 [

σ1+2σ2xTi

√−D
] 

if D < 0 and σ2 < 0. 
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Usually, maximum likelihood estimation works well for stochastic processes defined by a 

known density function with up to three estimation parameters. More complex, and 

therefore typically more generic stochastic processes, invariably include a larger number of 

estimation parameters. In the literature, these models are often called high-parametrised 

since their number of parameters is large relative to the number of observations. Additional 

complexity can arise from significant non-linearities in the underlying model. Usually, 

deriving an analytical parameter solution for a three-parameter-plus model is unrealistic, 

but nonetheless, even numerical algorithms have difficulties finding multiple global 

maximum parameter values simultaneously. To overcome this problem, different 

approaches have been tried and tested, for example, model augmentation (Hirose (2000)), 

decomposing the estimation problem into appropriate computationally tractable sub 

problems (Song et al. (2005), Hautsch et al. (2014)) and improved algorithms for 

approximated maximum likelihood estimators (Bertl et al. (2015)). 

The linear-quadratic cash flow process is a good example of a high-parametrised model 

since it encompasses five parameters: 𝛉: {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} in an environment of low-

frequency data sampling. In fact, the true model (i.e. the one to be estimated from 

uncoupled (raw) data) has no less than twelve parameters (two times five for the coupled 

operating and investing cash flows and two weight parameters): see Section 4-4. In such 

situations, a one-step optimization is (computationally or numerically) not possible and 

parameters have to be estimated in multiple steps (Hautsch et al. (2014, p. 2)). 

Evidently, the estimation problem under consideration must be simplified. Three 

suggestions to reduce its complexity, are made below: 

1. Perform the estimation on uncoupled data instead of coupled data. Uncoupled data 

facilitate a separate estimation of the operating cash flow and the investing cash flow 

equations. The original twelve parameters are now reduced to two (isolated) sets of five 

parameters 𝛉OCF and 𝛉ICF. The remaining problem is the calculation of coupled data. 

Coupled data points are multiplied by the weight matrix as explained in Section 3-3: 

𝐯t = (
Ct

′

It
′ ) = 𝐐−𝟏. 𝐮t where 𝐮t is the vector of coupled data (

Ct

It
), 𝐐−𝟏 is the inverse 
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matrix of the eigenvectors of 𝐀 =  (
α β
γ −1

) and (
Ct

′

It
′ ) is the vector of uncoupled data 

points. In Section 5-1 values of 𝐐−𝟏 are estimated as �̂�−𝟏 = (
   0.550 0.141
−0.550 0.859

). An 

important follow-up question is whether these calculated weights can be applied 

indiscriminately to (groups of) firms alike, despite being derived from a very large 

sample of firms? The answer is allegedly affirmative since decoupling is a purely 

deterministic step prior to introducing stochastic variability into the model (Section 3-

4). Sampling form a very large data-set, ideally the whole population, comes closest to 

the abstract of a deterministic variant of a process since all individual firm variability is 

‘averaged-out’. 

2. For each of five-parameter sets 𝛉OCF and 𝛉ICF, find the initial parameter estimates of 

the drift function,  μ̂0
0 and μ̂1

0, independently from those of the diffusion function. This 

approach is considered feasible for two reasons:  

a. Doob-Meyer’s decomposition theorem, Doob (1990), underpins the separation of 

the cash flow process into a deterministic (predictable) component (drift function) 

and a continuous random component (diffusion function). 

b. it is known that drift and diffusion functions are linked to each other via the 

stationary density function: pst(Xt) = K exp [∫
α(ξ)

β(ξ)
dξ] where α(Xt) is a drift 

function, β(Xt) is a diffusion function, K is a normalisation constant, Xt is some cash 

flow process described by dXt = α(Xt)dt + √β(Xt) dWt and pst(Xt) is the stationary 

density. In other words, the diffusion function can be derived from the drift function, 

or vice versa, if the stochastic properties of the (stationary) cash flow process are 

known. See also the comments made following Equation (5.10b) of this Chapter. 

The advocated approach estimates the complete parameter set in three steps:  

(i) first fit the drift parameters via a non-linear least-square estimation algorithm 

using the specification Xt = −
μ0

μ1
+ (X0 +

μ0

μ1
)eμ1T, where {μ0, μ1} are drift 

parameters to be estimated and X0 is the first observation of the cash flow time 

series Xt. The result of this step is a set of initial values for the drift parameters 

μ̂0
0 and μ̂1

0 that can be used in the second step; 
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(ii) ML estimation of the overall parameter set 𝛉: {μ̂0
0 , μ̂1

0, σ0, σ1, σ2} where the 

initial values of 𝛉α
𝟎 : {μ̂0

0 , μ̂1
0} are already calculated; 

(iii) once the parameter set 𝛉: {μ̂0
0 , μ̂1

0, σ̂0, σ̂1, σ̂2} is obtained, the full parameter set 

is re-estimated, this time however with all five parameters optimised. The 

outcome is a final estimate of the full parameter set 𝛉: {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2}. 

3. Even after implementing the simplifications suggested under 1 and 2, the likelihood 

Equation (5.39) remains difficult to estimate. Further moderation can be brought about 

by:  

a. applying the invariance principle:  sup
𝛈

 ℓ𝑖
∗(𝛈) = sup

𝛈
 ℓi(G

−1(𝛈)) = sup
𝛉

 ℓi(𝛉) with 

maximum estimates attained at 𝛈 = G(𝛉) =  G(�̂�) where commonly G is restricted 

to one-to-one functions. However, Casella and Berger (2002, p. 320) demonstrate 

that the invariance principle51 effectively holds for all functions (regardless of 

whether they are one-to-one)52. The extension of the classical invariance principle is 

important and shows that from multiple maximum values G(𝛉), MLE ensures that 

the supreme value is selected. 

b. maximizing the likelihood function in parts. This technique is described in Song et al. 

(2005) and considers a decomposition of the overall likelihood function in ℓi(𝛉) = 

ℓi,1(𝛉) + ℓi,2(𝛉). Likelihood function ℓi,1(𝛉) is chosen such that the corresponding 

score function 
𝜕ℓi,1(𝛉)

𝜕𝛉
 is easy to compute. From 

𝜕ℓi,1(𝛉)

𝜕𝛉
= 0, the parameter set 𝛉1 is 

obtained. As expected, the efficiency of 𝛉1 is low because only part of the 

information contained in the full likelihood function is utilised. Therefore, In the next 

(iterative) step, the equality  
𝜕ℓi,1(𝛉)

𝜕𝛉
= −

𝜕ℓi,2(𝛉1)

𝜕𝛉
 is used to produce a set of more 

                                                           
51 The authors call ℓ𝑖

∗ the induced likelihood function. 
52 The proof is the following. Observe that 

(i) sup
𝛈

 ℓ𝑖
∗(�̂�) = sup

𝛈
 sup
{𝛉: G(𝛉)=𝛈}

ℓi(𝛈) = sup
𝛉

 ℓi(𝛉) = ℓi(�̂�), and 

(ii)  (ii) ℓi(�̂�) = sup
{𝛉: G(𝛉)=G(�̂�)}

 ℓi(𝛉) =  ℓ𝑖
∗ (G(�̂�)), so that the following equality holds: 

(iii)  ℓ𝑖
∗(�̂�) =  ℓ𝑖

∗ (G(�̂�)).  

to conclude: G(�̂�) is the MLE of G(𝛉). 
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efficient estimates 𝛉2. This step is repeated until there is no marked efficiency 

improvement with 𝛉k ( k = 2, 3, 4 …) denoting the final estimation value vector. 

Employing some of the above described methods and techniques to the likelihood function 

under consideration, leads to the following proposal 

1. The first term of Equation (5.39), −
1

2
 ln[|σ2xTi

2 + σ1xTi
+ σ0|], is initially factorised 

into (xTi
− λ1)(xTi

− λ2) where λ1, λ2 are its (real or complex) roots. Then, λ1 is re-

parametrised to θ1 − θ2, and λ2 to θ1 + θ2, where θ1 = −
σ1

2σ2
 and θ2 =

√|D| 

2σ2
. 

2. Define a third new parameter θ3 as θ3 = √|σ2|. Notice that parameter mapping from 

{σ0, σ1, σ2 } to {θ1, θ2, θ3 } covers the cases where (i) σ2 > 0 and D > 0 (operating 

cash flows) and (ii) σ2 < 0 and D < 0 (investing cash flows).  

3. A transformation of the cash flow variable xTi
 is suggested such that vTi

=

Τ(xTi
) =

1

θ3
sinh−1 [

xTi
−θ1

θ2
]. This transformation has two advantages 

(i) the first term −
1

2
 ln[|σ2xTi

2 + σ1xTi
+ σ0|] = −

1

2
 ln[(xTi

− λ1)(xTi
− λ2) |] is 

turned into this format: −
1

2
 ln[|(xTi

+ θ1 + θ2)|] −
1

2
 ln[(xTi

+ θ1 − θ2)|]; 

(ii) since vTi
=

1

θ3
sinh−1 [

xTi
−θ1

θ2
] = DXTi

, the second term 
 1

2
DXTi

2  vanishes from the 

likelihood function (being constant) and the third term becomes more 

manageable in terms of complexity. 

4. Underlying transformation calculations are shown in Appendix M5. Solutions (if they 

exist) follow from 
𝜕ℓ(𝛉)

𝜕𝛉
= 0 where 𝛉: {μ̂0, μ̂1, σ0, σ1, σ2} includes prior estimates of the 

drift function. The resulting system of derivatives must be numerically solved.  

5. If calculating derivatives of the third term of Equation (5.39) (arguably the most 

complex term of the whole likelihood equation), turns-out to be too demanding, then 

the method described in Song et al. (2005) can be applied (see above). 

6. Alternatively, if required the third term of Equation (5.39), after a variable 

transformation into a fourth-degree polynomial in vTi
, could be factorised to 
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ln [|1 + ϑ0 + ϑ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |] = ln[(vTi
+ Λ1)(vTi

+ Λ2)(vTi
+

Λ3)(vTi
+ Λ4)]                                                                                                                       (5.40) 

where Λ1, Λ2, Λ3, Λ4 are the (real or complex) roots of |1 + ϑ0 + ϑ1vTi
− 2ϑ0vTi

2 −

 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |. Then, in a following step, Equation (5.40) is approximated by a 

three-term Taylor expansion 

ln[(vTi
+ Λ1)(vTi

+ Λ2)(vTi
+ Λ3)(vTi

+ Λ4)] =  ln [Λ1(1 +
vTi

Λ1
)] + ln [Λ2(1 +

vTi

Λ2
)] + ln [Λ3(1 +

vTi

Λ31
)] + ln [Λ41(1 +

vTi

Λ4
)]  ≈ ln(Λ1Λ2Λ3Λ4) +

(Λ1+Λ2+Λ3+Λ4)

Λ1Λ2Λ3Λ4
vTi

+

(Λ1
2+Λ2

2+Λ3
2+Λ4

2)

(Λ1Λ2Λ3Λ4)2
vTi

2                                                                                                                      (5.41)   

Notice that the suggested Taylor approximation is only accurate in a limited range 

−0.5 <
vTi

Λm
< 1 where m = 1. .4, and therefore the approximation should be avoided 

if possible. 

Applying Vieta’s formula53, the approximation resulting from Equation (5.41) is re-

written to 

ln(Λ1Λ2Λ3Λ4) +
(Λ1+Λ2+Λ3+Λ4)

Λ1Λ2Λ3Λ4
vTi

+
(Λ1

2+Λ2
2+Λ3

2+Λ4
2)

(Λ1Λ2Λ3Λ4)2
  vTi

2 = ln (3
ϑ0

(1+ϑ0)
) +

ϑ1

3(1+ϑ0)
θ1

3 θ2
3vTi

+ [
ϑ1

2

ϑ0
2 + 12]

1

θ1
2θ2

2 vTi

2                                                                                (5.42)  

Implementing the suggested procedure in a standard statistical package, like Stata, proved 

too arduous. Nevertheless, Stata’s NL-routine (nonlinear estimation) was employed in a first 

step to estimate the initial parameters 𝛉α
𝟎 : {μ̂0

0 , μ̂1
0} of the drift function. Tailor-made code 

had to be written to calculate first and second derivatives (of parameter-points) for the 

respective likelihood functions. In a second step, optimisation of the diffusion functions was 

achieved by setting first derivatives of the diffusion parameters 𝛉β: {σ̂0, σ̂1, σ̂2} to zero 

under the appropriate condition of the Hessian matrix that ensure a maximum value is 

                                                           
53 For a polynomial function anx

n + an−1x
n−1 + an−2x

n−2 …a0, the sum of all roots is −
an−1

an
, the product of all roots is (−1)n a0

an
 and the 

sum of all roots squared is [
an−1

an
]
2

− 2 
an−2

an
. 
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obtained54. An evolutionary optimisation technique was utilised including a genetic 

algorithm. Fortunately, none of the simplifications described under 5. and 6. were required, 

albeit that the resulting derivatives, especially the second order ones, are, as expected, very 

complex formulas.  

Estimation results 

The two aggregated likelihood functions, derived in Appendix M5, that were used to obtain 

parameter estimates, are 

Operating cash flows 

ℓ(𝛉; vTi
) = −

1

2
∑ ln[|2θ1 + θ2 sinh[θ3vTi

] + θ2) |]i=n
i=1  −

1

2
 ∑ ln[|2θ1 +i=n

i=1

θ2(sinh[θ3vTi
] − θ2)|] + ∑ ln [|1 + ϑ0 + ϑ1θ1vTi

− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +i=n
i=1

1

3
ϑ0vTi

4 |]                                                                                                                                            (5.43a)  

Investing cash flows 

ℓ(𝛉; vTi
) = −

1

2
∑ ln[|2θ1 + θ2 sin[θ3vTi

] + θ2) |]i=n
i=1  −

1

2
 ∑ ln[|2θ1 + θ2(sin[θ3vTi

] −i=n
i=1

θ2)|] + ∑ ln [|1 + ϑ0 + ϑ1θ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |] i=n
i=1                                (5.43b)  

where DXTi
=

1

θ3
sinh−1 [

xTi
−θ1

θ2
] if D > 0, or DXTi

= −
1

θ3
sin−1 [

xTi
−θ1

θ2
] if D < 0, π0(𝛉) =

 
2√2θ3μ̂0−√2 θ1μ̂1

2θ2θ3
2 , π1(𝛉) =

√2(θ1−θ2
2)μ̂0−√2θ1

2μ̂1

θ2
3θ3

2 +
√2

2θ2
, ϑ0 = {−

3

8
−

1

8
α4(𝛉) −

3

16
α2(𝛉)β(𝛉) −

3

32
β2(𝛉)} ,  ϑ1 = {

1

2
α3(𝛉) +

3

2
α(𝛉)β(𝛉)} , α(𝛉) =

π0(𝛉)

π1(𝛉)
, β(𝛉) =

1

π1(𝛉)
.  

First, estimates were attained for the whole population of observed firms (in total 340,159 

data points from 5,202 different firms). The three-step estimation procedure, described 

above, was consistently applied and the results are reported in Tables 5-15 (operating cash 

flows) and 5-16 (investing cash flows). 

                                                           
54 This condition is that the eigenvalues of the Hessian matrix are negative definite, or equivalently, that the leading principal minors of a 

matrix alternate in sign.  
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Secondly, the linear-quadratic cash flow model was tested at an industry level, more 

specifically on 73 different industries according to the Global Industry Classification 

Standard (GICS). The results are shown in Appendix S6. 

A final test involves a set of cash flows of randomly selected individual firms. These results 

are detailed in Appendix S7. 

To calculate t-statistics and confidence intervals for the parameter-set {σ̂0, σ̂1, σ̂2} from 

{θ̂1, θ̂2, θ̂3}-statistics, it was assumed that each of the parameters {θ1, θ2, θ3} follows a 

normal distribution as per CLT and that these parameters are (almost) perfectly, positively 

correlated. The tests yielded consistent estimates with in most cases strong convergence to 

expected asymptotic values and in some cases only partial convergence regardless of 

multiple (repeated) optimisation runs.  

Discussion of ML estimation results 

All observed firms 

From Table 5-15 it transpires that all parameter estimates are significant (θ̂1, σ̂1) to highly 

significant (θ̂2, θ̂3, σ̂0, σ̂2). Obviously, parameter μ̂0 is least significant. Recall that the drift 

function is described by the equation Xt = −
μ0

μ1
+ (X0 +

μ0

μ1
)eμ1T, where in this instance Xt 

represents operating cash flow; β0 =
μ0

μ1
 and μ1 are parameters to be estimated. Since the 

data were examined for the whole population of firms, a possible explanation is that 

parameters μ0 of individual firms largely cancel each other out at an aggregate level. The 

results are supportive of the linear-quadratic cash flow model. 

When comparing parameters in Table 5-11 with those of Table 5-15, it should be noted that 

the two underlying estimation methods are dissimilar. The parameter estimates of Table 5-

11 are based on the expected values of a solution to two equivalent SDEs, ignoring 

probability characteristics other than expected values. By contrast, the likelihood method 

takes a richer ambit of probability information into account: in this case the first four 

moments are included in the approximated likelihood function.  

Comparing the set of estimated parameters �̂�: {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} in Table 5-15 with the 

ones in Table 5-11, it can be observed that the values are different, with some parameter 
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pairs agreeing more than others. The largest variance is found for parameter σ̂0. A relative 

elevated σ̂0-value can be interpreted as follows: for smaller operating cash flows, constant 

σ̂0 is the dominant term in the diffusion equation, and hence the diffusion process 

approximates an ABM-process with a Gaussian conditional density distribution if cash flows 

are small. Also, Table 5-11 shows a σ̂2-value of less than 1/3 of the corresponding value in 

Table 5-15. A possible explanation is that σ̂2, a parameter linked to the quadratic cash flow 

term, predominantly measures the ‘jumpiness’ of the cash flow diffusion process. For 

operating cash flows a relative low σ̂2-value (as opposed to investing cash flows) is 

expected: empirical evidence as reported in Chapter 2 of this study, underpins this. 

Table 5-15  Approximated Maximum Likelihood Estimation results – Operating Cash Flow- All observed firms 

OPERATING CASH FLOWS PARAMETER VALUES T-STATISTIC 95% CI - LL 95% CI - UL 
WALD 

STATISTIC 

�̂�𝟏 437.8 3.1 158.4 717.1 9.4 

�̂�𝟐 -2223.0 -108.0 -2263.3 -2182.6 11665.6 

�̂�𝟑 -0.446 -8.2 -0.55 -0.34 67.4 

�̂�𝟎 -0.406 -1.0 -0.4780 -0.3994  

�̂�𝟏 0.027 8.4 0.021 0.033  

�̂�𝟎 -943389.6 -25.4 -1016161.8 -870617.5  

�̂�𝟏 -173.9 -3.1 -284.9 -62.9  

�̂�𝟐 0.199 84.2 0.19399 0.20323  

DISCRIMINANT 779715.7     

FIRST ROOT �̂�𝟏 -1785.2     

SECOND ROOT �̂�𝟐 2660.7     

�̂�𝟎 -0.018     

�̂�𝟏 -0.075     

�̂� 0.244     

�̂� -13.3     

 �̂�𝟎 -16.7     

 �̂�𝟏 -0.096     

HESSIAN  Maximum     

R2 OF FIT �̂�𝟎, �̂�𝟏 0.72     

 

Based on significant t-statistics for all parameters except the σ1-parameter, Table 5-16 

below, the aggregate investing cash flow process is governed by a Modified Square Root 

process (a particular of the linear-quadratic model). As expected for investing cash flows, 

the discriminant displays a negative value. When comparing the results in Table 5-16 to 

those in Table 5-12, it should be noted that σ2Xt
2 + σ1Xt + σ0 is equivalent to −(σ2Xt

2 +

σ1Xt + σ0) where Xt is some cash flow process, refer to Section 3-4 for an explanation, and 
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therefore there is consistency in parameter signs. In line with prior estimates, the σ̂0-value 

is very large relative to other parameters, and also greater than the σ̂0-value shown in Table 

5-12, suggesting an approximate ABM process for smaller investing cash flows, more 

pronounced than that for operating cash flows. Following from the usually more jagged 

patterns of investing cash flows, unsurprisingly the σ̂2-value in Table 5-16 is more significant 

than the σ̂2-value in Table 5-15, reinforced by also a higher σ̂1-value. 

Table 5-16  Approximated Maximum Likelihood Estimation results – Investing Cash Flow- All observed firms 

INVESTING CASH FLOWS PARAMETER VALUES T-
STATISTIC 

95% CI - LL 95% CI - UL WALD 
STATISTIC 

�̂�𝟏 -27247.9 -0.9 -85463.2 30967.5 0.8 

�̂�𝟐 -49238.9 -1647.7 -49297.5 -49180.3 2714849.5 

�̂�𝟑 11.820 47.8 11.335 12.304 2285.1 

�̂�𝟎 -160614.407 -246087.8 -160618.070 -160614.0737  

�̂�𝟏 -5.323 -4157.0 -5.326 -5.321  

�̂�𝟎 -442424346456 2.4 -808776808443 -76071884469  

�̂�𝟏 -7613164.8 -0.9 -23980830.6 8754500.9  

�̂�𝟐 -139.702 -4.1 -206.676 -72.729  

DISCRIMINANT -189270156008622     

FIRST ROOT �̂�𝟏      

SECOND ROOT �̂�𝟐      

�̂�𝟎 0.002     

�̂�𝟏 -0.445     

�̂� -0.004     

�̂� -2.2     

 �̂�𝟎 -0.8     

 �̂�𝟏 0.00     

HESSIAN Maximum     

R2 OF FIT �̂�𝟎, �̂�𝟏 0.658     

 

From the foregoing results it follows that the general linear-quadratic model is supported as 

a suitable cash flow specification at an aggregated level, either in complete or in reduced 

parameter form. More precisely: the general linear-quadratic model is a more accurate 

description of an aggregate operating cash flow process than one of the particular 

benchmark specifications as outlined in Table 5-8, whilst investing cash flows follow a 

Modified Square Root process. 
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Industry-level 

A total number of 73 different industries were examined. For each industry the same 

statistics as used in Tables 5-15 and 5-16, were calculated. Appendix S6 shows detailed 

estimates of the parameter sets {θ̂1, θ̂2, θ̂3} and {μ̂0, μ̂1, σ̂0, σ̂1, σ̂2} including their respective 

t-statistics, reported separately for operating and investing cash flows. Tables 5-17 

(operating cash flow) and 5-18 (investing cash flow) summarise the results of the 

significance tests for parameters of the linear-quadratic model at an industry-level. 

Parameter estimates, both for operating and investing cash flows, unveil a large variance 

between different parameters. Generally, parameters can be ranked from larger to smaller 

estimated values in the following sequence:  σ̂0, σ̂1, σ̂2. This is consistent with prior 

estimates at an aggregated level. Within each of the parameters separately, there is a 

marked variance too; however, with the restriction that outliers (extreme parameter values) 

are mostly not significant. A comparison of operating cash flow estimates to those of 

investing cash flow, leads to the conclusion that the diffusion parameters of investing cash 

flow are significantly greater, in particular σ̂2-values. A plausible explanation is the 

‘jumpiness’ of cash flows. Commonly ‘jumpiness’ is more pronounced in investing cash flows 

than in operating cash flows. Interestingly, the estimated values of drift parameters show 

another contrast: for operating cash flows most industries (but certainly not all) display 

significant μ̂0-parameters as opposed to μ̂1-parameters, whilst the converse is generally 

true for investing cash flows. This suggests that investing cash flows are better fitted to an 

exponential trend and operating cash flows to a linear trend. 

For operating cash flows (Table 5-17) a 97.3% convergence rate was achieved; only 2 

industries exhibited partial convergence (which was likely to be caused by very slow 

convergence, given the fact that repeated convergence iterations only brought about 

marginally improved convergence). The test results in Table 5-17 reveal that a majority of 40 

(56.3%) industries display significant t-statistics (at a 5%-level) for at least one diffusion 

parameter. This number seems low if compared to cases with no significant diffusion 

parameters at all: 31 (43.7%). The latter number is relatively elevated for a number of 

reasons: (i) it turns-out that all 31 cases have one or two significant drift parameters 

suggesting that in those industries the drift function takes precedence over the diffusion 
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function; (ii) whilst parameters of all 31 cases almost fully converge, evidently diffusion 

parameter values were shown to be instable upon further convergence, i.e. marginally small 

additions to convergence often resulted in widely fluctuating parameter values; and (iii) the 

AMLE is derived under the condition that variable π1(𝛉) < 0 (see Appendix M4-B, 

Equations (M4B.17a)- (M4B.17h), a limitation that potentially restricts the domain of the 

parameter optimisation routine. 

A break-down of the 40 cases with significant diffusion parameters, yields 23 (32.4%) cases 

where all three diffusion parameters are significant, 7 (9.9%) cases with two significant 

diffusion parameters, and 10 (14.1%) cases with only one significant diffusion parameter. 

The 7 cases with two significant diffusion parameters are about evenly split between the 

parameter pair {σ̂0, σ̂2}, typical for the Modified Square Root (MSR) diffusion process, and 

the parameter pair {σ̂1, σ̂2}, not corresponding to any of the five benchmark diffusion 

specifications. The two-parameter diffusions found, and the complete, that is three-

parameter, diffusion process, are related. Recall from Section 3-4 that the complete 

diffusion process can be written as √σ2Xt
2 + σ1Xt + σ0 = √(σ2Xt

2 + 2ρ√σ2σ0Xt + σ0)  

where Xt is some cash flow process, and ρ is shown to be the correlation coefficient 

between an ABM and a GBM. If ρ = 0 then the specification becomes a Modified Square 

Root (MSR) process: √σ2Xt
2 + σ0 .  

The parameter pair {σ̂1, σ̂2} leads to the following specification: √σ2Xt
2 + σ1Xt =

√𝜐2Xt  √η2Xt + η1, where Xt is some cash flow process, σ2 = 𝜐2η2 and σ1 = 𝜐2η1. It is not 

hard to see that the process is a multiplication of two CIR (square root) diffusion processes: 

√𝜐2Xt  √𝜐1Xt
′ where Xt

′ is a linear transformation of Xt: Xt
′ = η2Xt + η1. 

Of the 10 cases with one significant diffusion parameter, 2 cases have a significant σ̂0-

parameter corresponding to a ABM diffusion process, and 8 cases are defined by a 

significant σ̂2-parameter suggesting an underlying GBM diffusion process. 
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Table 5-17  Operating Cash Flows - Significance of parameters - Industry level 

 

If the combined diffusion and drift functions are observed, a further break-down is provided 

in Table 5-18 of the 21 cases that have at least 4 significant parameters. The majority of 

those cases, 15 (65.2% of a total of 23 cases), must be described by the complete linear-

quadratic model encompassing all five parameters. 

Table 5-18  Operating Cash Flows - 4 and 5 parameters significant - Industry level 

DIFFUSION AND DRIFT FUNCTION 23 
 

ALL 5 PARAMETERS SIGNIFICANT 15 65.2% 

4 PARAMETERS SIGNIFICANT 8 34.8% 

 

Only 3 industries, i.e. Speciality Retail, Real Estate Management & Development, and 

Wireless Telecommunication Services, have two drift parameters that are not significant. 

Here, the diffusion function appears to dominate the drift function since all 3 industries 

present highly significant drift parameters as opposed to the diffusion parameters. 

Investing cash flows, Table 5-19, show a 100% convergence rate. The estimated parameters 

of just over half of all industries are all three significant. Of the industries with two 

significant parameters, all but one admit a Modified Square Root diffusion specification. In 

line with the observations under operating cash flows, of the 8 cases with only one 

significant diffusion parameter almost all pertain to the σ̂2-parameter, again, suggesting an 

underlying GBM diffusion process.  

Total number of industries 73 100.0%

Partially converging 2 2.7%

Fully converging 71 97.3%

of which:

Diffusion function 71 100.0%

All 3 parameters significant 23 32.4%

2 parameters significant 7 9.9%

1 parameter significant 10 14.1%

0 parameters significant 31 43.7%

Drift function 71 100.0%

All 2 parameters significant 47 66.2%

1 parameter significant 21 29.6%

0 parameters significant 3 4.2%

Diffusion function

significant 29 40.8% *)

significant 26 36.6% *)

significant 38 53.5% *)

Drift function

significant 49 69.0% *)

significant 66 93.0% *)

*) % of total fully converging cases
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Table 5-19  Investing Cash Flows - Significance of parameters - Industry level 

 

For industries with all three diffusion parameters insignificant, the process is dominated by 

the exponential growth drift parameter μ̂1. More generally, the parameter μ̂1 plays an 

important role in investing cash flow processes, as can be observed in Table 5-19. In 

comparison to operating cash flows, investment processes overall appear to be more 

strongly conditioned by a (deterministic) drift component than a (random) diffusion 

component. This is not surprising, since investing processes are determined by more 

predictable management actions rather than by random outside events as is the case with 

operating cash flows. 

Similar to operating cash flows, parameter σ̂2 is strongly represented in diffusion functions. 

More details are given in Appendix S6. 

Table 5-20  Investing Cash Flows - 4 and 5 parameters significant - Industry level 

DIFFUSION AND DRIFT FUNCTION 30 
 

ALL 5 PARAMETERS SIGNIFICANT 8 26.7% 

4 PARAMETERS SIGNIFICANT 22 73.3% 

 

Only 8 industries (26.7% of industries with at least 4 significant parameters) require that 

their investment processes are defined by all five model parameters (Table 5-20).  

In summary, the results of the analyses corroborate the linear-quadratic cash flow model as 

a specification appropriate to describe operating and investing cash flow processes at an 

Total number of industries 73 100.0%

Partially converging 0 0.0%

Fully converging 73 100.0%

of which:

Diffusion function 73 100.0%

All 3 parameters significant 40 54.8%

2 parameters significant 10 13.7%

1 parameter significant 8 11.0%

0 parameters significant 15 20.5%

Drift function 73 100.0%

All 2 parameters significant 16 21.9%

1 parameter significant 55 75.3%
0 parameters significant 2 2.7%

Diffusion function

significant 46 63.0% *)

significant 44 60.3% *)

significant 58 79.5% *)

Drift function

significant 19 26.0% *)

significant 68 93.2% *)

*) % of total fully converging cases
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industry level. Around one-third of all industries have cash flow processes that involve at 

least four model parameters (three diffusion parameters, and one or two drift parameters). 

Firm-level 

Of all 73 randomly selected firms, all show (almost) full convergence of operating cash flow 

parameter estimates. Grosso modo, the same conclusions hold as reported for the analysis 

of industry level estimates.  

In respect of operating cash flows (Table 5-21), just under 70% of all firms are characterised 

by at least one significant diffusion parameter. Of these 50 cases, 20 cases (27.4%) are 

exemplified by 3 significant diffusion parameters, 14 (19.2%) cases by 2 significant diffusion 

parameters, and 16 (21.9%) cases by only one significant diffusion parameter. The majority 

of two-parameter firms, 8 cases, are of the {σ̂1, σ̂2}-diffusion type (not one of the 

benchmark diffusion processes). The remaining 6 cases obey either a Modified Square Root 

(MSR) diffusion process (5 cases) or a Square Root (CIR) process (1 case). All 8 cases with 

one-parameter diffusion processes are GBM diffusions, underpinning again the relative 

importance of the σ̂2 parameter in comparison to the two other parameters.  

Table 5-21  Operating Cash Flows - Significance of parameters - Firm level 

 

Just over 65% of cases, have a drift function that is defined by two parameters {μ̂0, μ̂1}. The 

relative importance of the μ̂1-parameter in drift functions of operating cash flows, is 

Total number of firms 73 100.0%

Partially converging 0 0.0%

Fully converging 73 100.0%

of which:

Diffusion function 73 100.0%

All 3 parameters significant 20 27.4%

2 parameters significant 14 19.2%

1 parameter significant 16 21.9%

0 parameters significant 23 31.5%

Drift function 73 100.0%

All 2 parameters significant 48 65.8%

1 parameter significant 23 31.5%

0 parameters significant 2 2.7%

Diffusion function

significant 26 35.6% *)

significant 29 39.7% *)

significant 49 67.1% *)

Drift function

significant 51 69.9% *)

significant 68 93.2% *)

*) % of total fully converging cases
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confirmed by the observation that the remaining cases almost exclusively have an 

exponential term.  

Table 5-22  Operating Cash Flows - 4 and 5 parameters significant - Firm level 

DIFFUSION AND DRIFT FUNCTION 22 
 

ALL 5 PARAMETERS SIGNIFICANT 12 54.5% 

4 PARAMETERS SIGNIFICANT 10 45.5% 

 

From Table 5-22 it is clear that of the 22 firms with at least four significant parameters, the 

operating cash flow process of 12 (54.5%) firms have to be described by all five parameters.  

In Table 5-23 parameter estimates of investing cash flows at a firm-level are analysed. All 

but one case are fully converging. As expected, the diffusion parameters of the majority of 

firms are all three significant. Consistent with prior observations, cases with two significant 

diffusion parameters are about equally split between a {σ̂0, σ̂2}-diffusion process, and a 

Modified Square Root (MSR) diffusion process. Invariably, one-parameter processes are of 

the GBM-type. Again, the μ̂1-parameter dominates the drift function whereas the μ̂0- 

parameter is relatively unimportant. 

Table 5-23  Investing Cash Flows - Significance of parameters - Firm level 

 

Table 5-24  Investing Cash Flows - 4 and 5 parameters significant - Firm level 

DIFFUSION AND DRIFT FUNCTION 39 
 

ALL 5 PARAMETERS SIGNIFICANT 11 28.2% 

4 PARAMETERS SIGNIFICANT 28 71.8% 

Total number of firms 73 100.0%

Partially converging 1 1.4%

Fully converging 72 98.6%

of which:

Diffusion function 72 100.0%

All 3 parameters significant 39 54.2%

2 parameters significant 1 1.4%

1 parameter significant 8 11.1%

0 parameters significant 24 33.3%

Drift function 72 100.0%

All 2 parameters significant 16 22.2%

1 parameter significant 55 76.4%
0 parameters significant 1 1.4%

Diffusion function

significant 45 62.5% *)

significant 43 59.7% *)

significant 57 79.2% *)

Drift function

significant 18 25.0% *)

significant 69 95.8% *)

*) % of total fully converging cases



 
 

5   Statistical Estimation of the Linear-Quadratic Cash Flow Model  209 
 

Investment cash flow processes of 11 firms (28.2% of firms with at least four significant 

parameters) include all five model parameters (Table 5-24).  

In accordance with the prior conclusion from industry-level analysis of cash flows, the linear-

quadratic cash flow specification serves as a suitable model to describe operating and 

investing cash flow processes at a firm-level. Just over half of all firms require at least four 

parameters to model cash flow processes (three diffusion parameters, and one or two drift 

parameters). 

 

5.3. Conclusions from Chapter 5 

In this chapter the results of three different estimations are presented. Firstly, the results of 

estimates pertaining to the fundamental model (that theoretically justifies the linear-

quadratic cash flow model), are discussed. It turns out that the parameters of the two linear 

difference equations that underpin the fundamental model, ∆Ct+1 = αCt + βIt + δ and 

∆It+1 = γCt − It +  ε, are all statistically significant across the whole population of 

examined firms, with the exception of parameter ε. Overall, the model is sufficiently 

specified. The parameter values imply that the uncoupled operating and investing processes 

are converging to long-term stable values, not uncommon for a mature economy such as 

the USA where market dynamics see new firms entering at about the same rate as firms 

exit. Importantly, the estimation results support a recursive relationship between operating 

and investing cash flows, resulting in positive reinforcement effects between the two types 

of cash flows. These effects explain, for instance, the significant non-normal probability 

distribution of cash flows, as expected characterised by heavy tails and some skewness. The 

occurrence of non-normal densities plays an important role in selecting appropriate 

methods for statistical inference of the linear-quadratic cash flow model itself. 

The centre piece of Chapter 5 is testing the linear-quadratic model. The test methodology 

must be equipped to deal with some significant statistical challenges. First and foremost, 

there is the challenge, thoroughly documented in the literature, of fitting discretely sampled 

data to a continuous-time stochastic process. Whilst high-frequency data can mitigate some 

reported difficulties, sampling low-frequent data (in this study, quarterly data) only tends to 

compound statistical challenges. Additionally, the already mentioned significant non-
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Gaussian (conditional) densities pose a further challenge. Two main methods to derive 

parameter estimates are explored in this study: (i) directly estimating parameters from 

approximated solutions to the linear-quadratic SDE, and (ii) indirect estimations of 

parameters from an approximated probability density function and related approximated 

maximum likelihood estimator. 

In Chapter 4 two approximated SDE solutions were derived that are found to be conducive 

to direct estimation of parameters. The estimation results, all valid for the whole population 

of examined firms, are encouraging. Estimated parameter values are plausible and in 

conformity with theoretical considerations and empirical observations described in this 

study. The results support, on an aggregated level, the superiority of the generic linear-

quadratic cash flow model in complete specification.  

Indirectly estimation of parameter values from an approximated density function, has 

proved to be particularly demanding. For the reasons set-out in the chapter, most of the 

usual stochastic inference techniques do not apply. After careful screening, the Ait-Sahalia- 

method is selected as the preferred technique to derive an approximated density function 

for the linear-quadratic model. The Ait-Sahalia- method is capable of dealing with a wide 

range of different stochastic processes characterised by non-normal densities and is suitable 

for problems including discrete low-frequency data sampling. In essence, the method 

transforms a (conditional) non-Gaussian density function into a Gaussian, after which the 

density function is expanded into a standard normal component and a polynomial term 

derived from a Hermite series expansion. The accuracy of the approximation, that is how 

close the approximation is to the true but unobservable density function, is determined by 

two important parameters: (i) parameter J indicating the number of terms included in the 

expansion, and (ii) parameter Δ, the time-interval over which discrete data are sampled. In 

this study, a five-term (J=4) approximation is used, in the expectation that the method’s 

allegedly strong convergence to the true distribution sufficiently balances the very long 

sampling interval. Unlike Ait-Sahalia’s original method, this study advocates calculating the 

Fourier coefficients (of the Hermitian expansion) from a (closed) system of moment ODEs. 

The final expression of the conditional density function, after retro-transformation, is 

appropriate for the proposed ML estimation. It consists of three components: (i) a non-
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linear scaling factor related to the transformation from a non-normal to an approximated 

normal probability distribution, (ii) a standard normal distribution of the retro-transformed 

variable, and (iii) a term that adjusts the transition density for non-Gaussian characteristics 

(that is, excess skewness and kurtosis if J = 4). 

Converting the conditional transition density of the linear-quadratic model into a practically 

useable Approximated Maximum Likelihood Estimator (AMLE) has proved to be difficult. 

The convoluted specification of a mix of parameters and cash flow variables, requires a few 

considerable approximations, some compromising a desired high accuracy. Nevertheless, an 

attempt is made to apply the AMLE to three levels distinguished within the dataset of 5,202 

North American firms examined (see Appendix S1): (i) an overall level including all firms, (ii) 

an industry-level, grouping firms into identical industries (by their GICS-codes), and (iii) a 

firm-level by selecting a random sample from all firms. 

At an overall level, the ML-estimation results are not too dissimilar to those found for direct 

estimation; however, acknowledging that the ML-estimation technique encapsulates much 

richer probability information than the direct method. In addition, parameter estimates and 

related significance tests, were carried out at an industry level and on a random sample of 

individual firms. It turns out that the linear-quadratic cash flow model, in complete (five) 

parameter specification or in reduced parameter form, is appropriate to describe the vast 

majority of both operating cash flow and investing cash flow processes. In cases where less 

than three diffusion parameters are significant, four different reduced-form processes are 

observed. Two of these processes belong to the benchmark specifications: the Modified 

Square Root (MSR) diffusion process (two significant parameters) and a GBM-diffusion 

process (one significant σ̂2-parameter). The second two-parameter diffusion process 

derived from the estimates, is of the {σ̂1, σ̂2}-type, a process not often found in the 

literature, but derivable from the complete quadratic diffusion processes as the 

multiplication of two different CIR (square root) processes. In only one case was a Square 

Root (CIR) process identified. 

Drift functions pertaining to operating cash flows, are predominantly defined by their 

respective μ̂0-parameters, suggesting a strong linear trend. In contrast, the exponential 

parameter μ̂1 is in the vast majority of cases the only significant drift parameter relative to 
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investing cash flows. Interestingly, for cases where the full specification appears to not be 

applicable, either the diffusion process (predominantly for operating cash flows) or the drift 

process (almost always for investing cash flows) qualifies as a dominating process. 
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6. Conclusions and Recommendations 
 

In the epilogue, the most important findings and conclusions obtained from this study, are 

summarised. Furthermore, observations are made that serve to point-out areas where 

continuing development or refinement of the linear-quadratic model, as developed and 

analysed in this study, is seen as useful.  

6.1. Conclusions and findings from this study 

Cash flow is often recognised as the life-blood of an organisation. Models to predict, 

manage and control cash flows, are useful tools not only for timely identification of possible 

financial bottlenecks (and thus prevent cash crises), but also to support balanced business 

growth. 

The focal point of this dissertation is stochastic continuous-time cash flow models. At 

present these models have been reported relatively sparsely in the literature, and hardly 

any practical applications are known. Yet, stochastic continuous-time cash flow models, as 

underpinned by the results of this study, prove to be very useful to describe the rich and 

diverse nature of trends and fluctuations in cash flow randomness. However, at a price of 

considerable mathematical and statistical complexity. 

Before developing a generic stochastic continuous-time cash flow model from well-known 

stochastic principles, embodied in a general stochastic differential equation, the first 

chapter of this dissertation considers an important preliminary question: can cash flows be 

fully described in continuous time? Theoretical and empirical evidence (e.g. testing for 

jumps) shows that under some not too stringent regularities, operating cash flow processes 

can be well approximated by a diffusion equation, whilst investing processes -preferably- 

first need to be rescaled by a system-size variable to control for excess instantaneous 

change of variance. 

Chapter 2 starts with investigation of the five stochastic continuous-time cash flow 

specifications that are frequently found in the literature. These are: the Geometric Brownian 

Motion, the Arithmetic Brownian Motion, the mean-reverting Vasicek and Cox, Ingersoll and 

Ross processes, and the Modified Square Root process. A pivotal question is whether these 
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specifications are capable of sufficiently mimicking the behaviour of real-world cash flow 

processes. Consequently, the remainder of the chapter analyses the characteristics of cash 

flow processes from a theoretical and empirical perspective. Importantly, the mathematical 

form of the drift function and the diffusion function are examined in detail, as well as the 

evolution of the first four moments. The main conclusion is that an equation consisting of a 

linear drift function and a complete quadratic diffusion function (hereafter: “the linear-

quadratic model”) is a specification that is preferred to the five processes commonly 

considered in the literature. This outcome is consistently supported by a multitude of 

theoretical considerations and a number of (preliminary) statistical tests. Additionally, but 

not less significantly, it turns out that the specifications from the literature can all be 

derived as particular cases of the advocated model. Hence, the linear-quadratic model is 

classed as a hybrid model since it is constructed from different basic stochastic models, in 

particular, the combination of a multiplicative GBM and an additive ABM. Hybrid models are 

powerful because their stochastic properties incorporate behaviour that is more complex 

and versatile than the sum of the properties of the component parts. Finally, as an 

introduction to Chapter three, a bi-causal relationship between operating and investing cash 

flows is examined, showing strong indications of support for the linear-quadratic model. 

In Chapter 3, the presumed relationship between operating and investing cash flows is 

further developed into a two-variable, two equation (coupled) cash flow model, also called 

‘the two fundamental relationships’. It is demonstrated that the model is rooted in well-

studied and generally accepted business and financial knowledge. Furthermore, Chapter 

three lays the mathematical foundation for a decoupled (that is, a spectral decomposed) 

cash flow model, derived from the two fundamental relationships, that includes a hybrid 

linear-quadratic specification for each of the operating and investing cash flow variables in 

isolation. The decoupled system is described and analysed in both a deterministic and 

stochastic environment. To check its accuracy, simulation results for the model are 

compared to real-world cash flows. A large degree of similarity is found. 

Chapter 4 deals with solutions to the hybrid decoupled cash flow model developed in this 

study. First it is shown that, despite meeting continuity and convergence conditions, there is 

no general closed-form solution to the hybrid linear-quadratic cash flow specification. 
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Nevertheless, three particular and two approximated exact solutions are derived under not 

too stringent parameter restrictions and cash flow domain limitations. In the absence of a 

strong general solution, Chapter 4 also explores weak solutions described by (forward or 

backward) Fokker-Planck- Kolmogorov equations. Supported by (preliminary) empirical 

evidence from Chapter 2, it is shown that since the process is converging in time, 

(uncoupled) investing cash flows can be described by a Pearson diffusion process with a 

stationary Pearson Type-IV probability density function, more appropriately a Student 

diffusion process. In contrast, (uncoupled) operating cash flow processes are diverging in 

time with no stable probability density function. Therefore, a dynamic analysis in a bounded 

cash flow domain is required. Chapter 4 sets-out why a bounded operating cash flow is not 

only mathematically appropriate but that it is also supported by financial and business 

considerations. Hence, the analysis is centred on solving the linear-quadratic non-stationary 

forward Kolgomorov (Fokker Planck) equation and backward Kolmogorov equation in a 

bounded domain. 

It is well-known that the Fokker-Planck-Kolgomorov equations are notoriously difficult to 

solve analytically. Beginning with the Fokker-Planck equation, the method of separation of 

variables is proposed and defended (in comparison to other solution methods) to examine 

the intertemporal dynamics of the process. The suggested solution method comprises of 

several steps: first the general hypergeometric differential equation, pertaining to the cash 

flow component after separating the variables, is normalised on a bounded cash flow 

spectrum [0;1] and [-1;1] respectively. The [0;1]-normalisation leads to a composite 

Gaussian hypergeometric function that, depending on particular parameter values, includes 

a large number of special functions as specific or limiting cases. Furthermore, the [-1;1]-

normalised ODE is transformed into a Sturm-Liouville specification, followed by three 

separate second transformations. These second transformations are the Jacobi, the 

Hermitian and the Schrödinger, each yielding a homonymous55 equation. Only the Jacobi 

transformation provides an exact solution, albeit with a mix of combinatorial and 

polynomial terms that are difficult to interpret in a practical sense. The other two 

transformations require the inclusion of approximated terms to arrive at a closed-form 

general solution. Both transformations lead to a composite space-time density function of 

                                                           
55 Having the same designation. 

https://en.wikipedia.org/wiki/Special_case
https://en.wikipedia.org/wiki/Limiting_case_(mathematics)
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operating cash flow processes that can be constructed as the multiplication of two 

(independent) time-variant probability distributions: (i) the stationary, in the case of 

operating cash flows: the approximate long-time distribution, and (ii) the evolution of a 

standard normal distribution. It is shown that the long-time probability density function of 

operating cash flows is akin to the one that describes the (stationary) Pearson family of 

distributions with two real roots (Pearson’s case 2). Additionally, it turns out that a 

particular solution to the prior mentioned Sturm-Liouville equation obeys a Pearson Type IV 

distribution similar to the one found for investing cash flows. 

Furthermore, Chapter 4 also demonstrates that the Schrödinger transform is the nexus 

between the backward linear-quadratic Kolgomorov equation and the corresponding 

Fokker-Planck equation. Solving the backward equation can be useful if the resulting ODEs 

are easier to solve. The last part of the chapter explains how to convert solutions to the 

decoupled system, back to solutions of the coupled system. 

A final Chapter 5 estimates the parameters of the hybrid coupled model. The dataset used, 

comprises of quarterly cash flow data of 5,202 North-American firms over a period of 

(maximum) 120 consecutive quarters. The chapter reports the results of three different 

estimation methods. Firstly, the fundamental model, developed in Chapter 3 is estimated. 

Overall, the model is sufficiently specified. Parameters, with the exception of one, are 

statistically significant across the whole population of sample firms. Estimated parameter 

values support the conclusion that uncoupled (and therefore also coupled) operating and 

investing processes are converging to long-term stable values.  

Secondly, the results of direct parameter estimation from approximated SDE solutions are 

plausible and in line with theoretical considerations and empirical observations discussed in 

this study. The results support, at least at an aggregated level, the superiority of the generic 

linear-quadratic cash flow model over any of the specific models derived from the complete 

specification.  

Thirdly, overall parameter values are indirectly estimated from an approximated density 

function and its associated approximated maximum likelihood estimator. The so-called Ait-

Sahalia- method is argued to be a superior technique to derive an approximated density 

function for the linear-quadratic model. In essence, the method transforms a (conditional) 
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non-Gaussian density function into a Gaussian, after which the density function is expanded 

into a standard normal component and a polynomial term derived from a Hermite series 

expansion. Unlike Ait-Sahalia’s original method, this study advocates calculating the Fourier 

coefficients (of the Hermite expansion) from a (closed) system of moment ODEs. 

Furthermore, converting the conditional transition density of the linear-quadratic model 

into a practically useable Approximated Maximum Likelihood Estimator (AMLE) requires a 

several transformations and approximations. The estimation procedure itself, is suitable for 

high-parametrised estimations and includes re-parametrisation (based on the extended 

invariance principle) and stepwise maximisation. 

The most important conclusion derived from analysis of the reported AMLE results, is the 

corroboration of the hypothesised superiority of the linear-quadratic cash flow model, 

either in complete (five-parameter form) or in a reduced-parameter form, in comparison to 

the examined five benchmark processes. Reduced-parameter cases are found to be either (i) 

a Modified Square Root (MSR) diffusion process (two significant parameters), or (ii) a 

diffusion of the {σ̂1, σ̂2}-type (two significant diffusion parameters, each corresponding to 

two multiplied different CIR (square root) processes, or (iii) a GBM-diffusion process (one 

significant σ̂2-parameter). 

 

6.2. Recommendations for further research 

The previous section showed that the results of parameter estimations (tentatively) support 

the hypothesis of the superiority of the linear-quadratic cash flow model over the common 

benchmark specifications. Nonetheless, this section includes three areas where further 

development and refinement of the linear-quadratic cash flow model, would be useful and 

beneficial. 

Mixed diffusion-jump processes 

This study examines cash flow processes as a pure diffusion process. Despite the results of 

the empirical tests being (under some restrictions and limitations) supportive of a linear-

quadratic diffusion model, the question must be posed whether there are possibly better 
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stochastic continuous-time models to describe cash flow processes. Section 1-4 mentions a 

more general class of Lévy processes represented by the stochastic differential equation 

dCt =  α(Ct, t)dt + √β(Ct, t)dWt + ν(Ct, t)dNt                                                                          (6.1) 

Whereas a Lévy process enables sample paths to include discontinuous random jumps, the 

associated probability distribution of cash flow Ct is nevertheless infinitely divisible. These 

processes are considered the simplest class of mathematically robust processes whose 

paths consist of continuous motion interspersed with jump discontinuities of random size 

appearing at random times (David Applebaum (2004)). Consequently, the mathematical 

treatment of Lévy processes is significantly more challenging than the pure diffusion process 

but, in most cases, still manageable. This study shows that for larger firms with high-

frequent cash transactions, the diffusion model appropriately mimics operating cash flows 

as they are observed in practice. The diffusion model is, to a lesser degree (excluding one-

off, relatively large investment outflows) and under restrictions (re-scaling cash flow 

variance), also adequately models investing cash flow processes. Indeed, by their nature, 

investing cash flows are more ‘jumpy’. Consequently, it is expected that a Lévy process 

offers a more versatile specification and associated set of properties to further improve cash 

flow modelling. This is particularly true for smaller businesses with low frequency of cash 

transactions and more concentrated cash inflow and outflow time-patterns. In these cases, 

replacing a continuous-time diffusion model by a Lévy cash flow process, may prove to be 

beneficial. However, the suggestion is subject to supporting usefulness of empirical 

evidence. 

Non-Markov processes 

In financial asset markets the Markov assumption is assumed to hold reasonably well, at 

least for a short-time horizon (of up to several months). Regardless, there is some evidence 

against the Markov property: see B. Chen and Hong (2011) for a recent overview. Ait-Sahalia 

et al. (2010) describes an appropriate statistical test methodology to determine whether a 

process is Markovian or not. Market information is continuously updated, often described 

by the filtration: It ⊆ It−1 ⊆ It−2 … where time t > t − 1 > t − 2. The most recent 

information set includes all (actual) information of prior sets. Additionally, the Efficient 
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Market Hypothesis (Fama (1970)) states that, at all times, current market prices incorporate 

and reflect all relevant information. In well-functioning competitive financial asset markets, 

there are a sufficiently large number of buyers and sellers who trade on the latest available 

(public) information. Trading happens because market parties will interpret the same 

information differently.  

The question can be asked if similar conditions pertain to cash flow processes. Is 

information on cash flows continuously updated? Does information about the most recent 

reported cash flow include all (relevant and actual) prior cash flow information? Is the most 

recent cash flow the only input to future cash flow decisions? In Section 1-4, it is assumed 

that even if cash flow processes have memory time, they can be very well approximated by 

a continuous-time Markov process. But, do cash flow processes actually have only a small-

time memory or, in contrast, perhaps a (much) longer memory? Obviously, firms are 

different from financial asset markets: instead of prices being the outcome of a set of 

heterogeneous market forces, financial decisions in firms are made by a few appointed 

insiders (managers). Therefore, firm decisions tend to be more homogeneous. Managers act 

on information that is largely privy to the firm, only to be publicly disseminated if required 

under the applicable legal framework. Although there is no imminent need for managers to 

instantaneously incorporate all available information into financial decisions, as opposed to 

the effect of trading in a competitive market, undoubtedly firms too benefit from the most 

current information. However, financial decisions firms make are vastly more complex than 

the usual simple ‘buy-hold-sell’ decisions of many traders. They include, for instance, the 

allocation of cash amounts over investment projects, in terms of amounts and timing, the 

assessment of how external factors will affect these projects, usually captured under the 

name of risk assessment, and a projection of possible outcomes. It is highly plausible that 

managers require more financial information than just the latest reported cash flows. They 

want to analyse financial trends including realised past cash flows. Hence, future cash flow 

states may not only depend on the last cash flow realisation but, more likely, on prior 

realised cash flow states as well. Fortunately, the Chapman-Kolmogorov equation is not 

restricted to non-Markov processes and a non-Markov process can still be described as an 

Itô process (Joseph L. McCauley (2010); J. L. McCauley (2012)). More realistic continuous-
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time cash flow models may have to be modelled as non-Markov stochastic processes, or, at 

least should include some statistics (such as trends) derived from multiple prior realisations. 

Connection between microscopic to mesoscopic levels 

Implicitly it is assumed in this study (Section 1-4) that firms behave like equivalent entities, 

similar to particles in physics. This assumption is critical to elevating the analysis from a 

microscopic (individual firm) level to a mesoscopic (multiple firms) level; without it every 

cash flow path generated by a SDE would be a unique realisation, specific to that firm only. 

By assuming equivalence, stochastic processes become ergodic, that is, repeatable at the 

same time, and stochastic properties are therefore derivable from a probability distribution. 

If this important assumption turns out to be flawed, the methodological consequences 

would be profound. Characteristics of non-ergodic processes can vary significantly between 

ensembles of firms at the same time and aggregated time-paths of individual firms (Peters 

and Klein (2013)). At an aggregated level the problem becomes irreducible (Bookstaber 

(2017)) resulting in, for example, a disconnection between the SDE paths of individual firms 

(microscopic level) and the probability density function that follows from solving the 

corresponding Fokker Planck equation (mesoscopic level). Then, as the only option left, one 

has to revert to modelling the cash flow process of each firm individually and their possible 

interrelationships with idiosyncratic variables and other specific and general economic 

variables. No doubt a mammoth task. However, if it is supposed that firm’s cash flow 

processes share many common stochastic characteristics (a very reasonable abstraction 

from the position that firm’s cash flow processes are truly unique), then a single cash flow 

model can be used, but with firm-specific parameter values. Despite varying individual 

parameter estimates, the statistical techniques underpinning the parameter estimates 

require the process to be ergodic, i.e. repeatable amongst firms in the ensemble. By 

contrast, if enough evidence is compiled that cash flow processes must be non-ergodic, then 

the approach outlined in this study will not satisfy and, consequentially, a fundamentally 

different research methodology is warranted. Irreducible, and likely much more complex, 

models will be required to accurately describe cash flow processes of individual firms56. 

                                                           
56 What this methodology could include is speculative but so-called agent-based models (abm) describing behavioural characteristics of 

specific actors, and, importantly, how they inter-act with each other and their environment, appear to be gaining popularity at the time 
of this writing. 
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In conclusion, development of the linear-quadratic cash flow model could benefit from (less 

than radical) improvements such as including a jump term or considering a (finite) non-

Markovian underlying process. The value of such improvements is conditional on the 

assumption that cash flow processes are (close to) ergodic; if this premise was found to be 

wanting, the impact on the proposed linear-quadratic model would be major.   
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Appendix M1 – Derivation of the general cash flow specification 

The following derivation, adapted to cash flow processes, can be found in Gardiner (1985, 

chapter 3). Given its importance to the foundation of the general cash flow specification, 

the detailed derivation is included in this study.  

The starting point is a stochastic continuous-time cash flow function f(c, t), twice 

differentiable with respect to c. The time-evolution of the expected value of f(c, t) can be 

expressed as 
∂

∂t
∫ f(c, t)p(c3, t2 | c1 , t1)dc =

 lim
∆t→0

∫ f(c,t)[p(c3, t2 + ∆t |c1, t1)−p(c3, t2 | c1, t1)]dc

∆t
                                                                      (M1.1)    

with p(c3, t2 | c1, t1) being the continuous and once-differentiable conditional transition 

probability between time t1and t2 (t2 > t1), c1 are realised cash flows and c3 are future 

cash flows. cash flow variable c is now defined as a continuous variable and the cash flow 

subscripts {c1, c2, c3} denote specific values (out of a number of infinite states) that the cash 

flow variable can take at times {t1, t2, t3} 

Since the process is Markovian, the Chapman-Kolmogorov equation can be used to expand 

f(c, t)p(c3, t2 + ∆t |c1, t1) to ∫ f(c, t)p(c3, t2 + ∆t |c2, t2) p(c2, t2 |c1, t1)dc by introducing 

another future cash flow variable [c2, t2] at t2. The reason for this is to distinguish a 

continuous (smooth) process from a discontinuous process. For any ε > 0 a process is 

continuous if  lim
∆t→0

∫
p(c3, t2 + ∆t |c1, t1)dc

∆t
= 0 where the integral is taken over |c3 − c1| >

ε. This means that in the limit the absolute difference between c2 and c3, |c3 − c2|, goes 

faster to zero than ∆t. If this condition is not met, the process will be exhibit jump-like 

behaviour. 

Thus, Equation (M1.1) becomes 

lim
∆t→0

{
∫ ∫ f(c, t)p(c3, t2 + ∆t |c2, t2) p(c2, t2 |c1, t1)dc2 dc

∆t
− 

∫ p(c3, t2 | c1, t1)dc

∆t
}     (M1.2) 

Now, divide the integral over c in two regions: |c3 − c2| < ε and |c3 − c2| ≥ ε.  

For |c3 − c2| < ε the twice differentiable function f(c, t) can be expanded around 

c2 according to a (converging) Taylor series (with t kept constant): 

f(c) = f(c2) + 
∂f(c2)

∂c
(c − c2) + 

1

2

∂2f(c2)

∂c2
(c − c2)

2 + | c − c2|
3R(c, c2)                             (M1.3) 

where c = c3 and R(c, c2) is a rest term. Observe that R(c3, c2) → 0 as | c3 − c2| → 0. 

In the following step, substitute Equation (M1.3) in the RHS of Equation (M1.2) and write 

the results as the sum of the following terms: 
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lim
∆t→0

1

∆t
 {∬ [

∂f(c2)

∂c
(c − c2) + 

1

2

∂2f(c2)

∂c2
(c − c2)

2] dc2dc p(c3, t2 + ∆t |c2, t2)p(c2, t2 |c1, t1) +

                                                                                                                                                           (M1.4a)   

∬| c − c2|
3R(c, c2) p(c3, t2 + ∆t |c2, t2)p(c2, t2 |c1, t1)dc2dc +                                   (M1.4b) 

∬f(c, t)  p(c3, t2 + ∆t |c2, t2)p(c2, t2 |c1, t1) dc2dc +                                                       (M1.4c)   

∬ f(c2)  p(c3, t2 + ∆t |c2, t2)p(c2, t2 |c1, t1) dc3dc −                                                       (M1.4d) 

∬f(c2)  p(c3, t2 + ∆t |c2, t2)p(c2, t2 |c1, t1) dc2dc }                                                           (M1.4e) 

where the dc integral in (4a) and (4b) are over |c3 − c2| < ε, the dc2 integral in (4a) and (4b) 

are over [−∞;+∞], both integrals in (4c) are over |c3 − c2| ≥ ε, both integrals in (4d) are 

over |c3 − c2| < ε, and both integrals in (4e) are over [−∞;+∞].  

To evaluate (4a) define the following two continuous (in t, c and ε): 

lim
∆t→0

1

∆t
{∫(c − c2)p(c3, t2 + ∆t |c2, t2) d = α(c, t) + 𝑂(ε)                                                (M1.5a) 

lim
∆t→0

1

∆t
{∫(c − c2)

2p(c3, t2 + ∆t |c2, t2) d = β(c, t) + 𝑂(ε)                                              (M1.5a) 

where both integrals are taken over |c3 − c2| < ε , α(c, t) is a once-differentiable function 

and β(c, t) is a twice-differentiable function. 

Now, Equation (M1.4a) becomes 

∫ [
∂f(c2)α(c,t)

∂c
+ 

1

2

∂2f(c2)β(c,t)

∂c2 ] dc2 p(c2, t2 |c1, t1) + 𝑂(ε)                                                    (M1.6a)   

In Equation (M1.4b) as | c3 − c2| → 0 also | c3 − c2|
3R(c2, c3) → 0 and consequently the 

whole term (M1.4b) approaches 0. 

Equations (M1.4c), (M1.4d) and (M1.4e) can be grouped together to: 

∬f(c2) [ J(c2|c3, t2) p(c3, t2 |c1, t1) −  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc2dc                 (M1.6b) 

where both integrals are over |c3 − c2| ≥ ε and J(c3|c2, t1) =  lim
∆t→0

p(c3, t2 + ∆t |c2, t2)

∆t
. 

Notice that J(c3|c2, t1) is a (discontinuous) jump function. 

Taking the limit ε → 0, the LHS of Equation (M1.1) can be expressed as 
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∂

∂t
∫ f(c2, t)p(c3, t2 | c1 , t1)dc =  ∫ [

∂f(c2)α(c,t)

∂c
+ 

1

2

∂2f(c2)β(c,t)

∂c2
] dc2 p(c2, t2 |c1, t1) +

∬ f(c2) [ J(c2|c3, t1) p(c3, t2 |c1, t1) −  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc2dc                     (M1.7)           

Integrating Equation (M1.7) by parts, gives the following equation: 

∫ f(c2)
∂

∂t
p(c2, t2 | c1 , t1)dc2 = ∫ f(c2){[

−∂f(c2)α(c,t)

∂c
p(c2, t2 |c1, t1) +

 
1

2

∂2f(c2)β(c,t)

∂c2 p(c2, t2 |c1, t1)] dc2  + ∫[ J(c2|c3, t2) p(c3, t2 |c1, t1) −

 J(c3|c2, t2)  p(c2, t2 |c1, t1)]  dc2} c + S(c2, c3)                                                                     (M1.8)   

where S(c2, c3) are surface terms on the boundary of [c2, c3] which are non-existent if 

functions {α(c, t), β(c, t)} are continuous. Then, Equation (M1.8) can be re-written in 

differential form as: 

∂

∂t
p(c2, t2 | c1, t1) =  

−∂α(c,t)p(c2, t2 |c1, t1)

∂c
+ 

1

2

∂2 β(c,t)p(c2, t2 |c1, t1)

∂c2 +

∫[ J(c2|c3, t2) p(c3, t2 |c1, t1) −  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc                                        (M1.9)  

Equation (M1.9) can be evaluated in at least three different special forms: 

a. as a deterministic process if α(c, t) ≠ 0,  β(c, t) = 0 and { J(c2|c3, t2), J(c3|c2, t2)} = 0. 

Then Equation (M1.9) reduces to 
∂

∂t
p(c2, t2 | c1, t1) =  

−∂α(c,t)p(c2, t2 |c1, t1)

∂c
     (M1.10) 

Substitute p(c2, t2 |c1, t1) = δ[c2 − z(c1)] with initial condition p(c2, t2 |c1, t1) =

𝛿(c2 − c1) in the RHS of Equation (M1.10) to get 

 
−∂α(c,t)δ[c2−c(c1)]

∂c
= 

−∂α(z(c1),t)δ[c2−c(c1)]

∂c
= −α(z(c1), t)

∂δ[c2−z(c1)]

∂c
                     (M1.11) 

where δ[ ] is Dirac’s delta function. 

The LHS of Equation (M1.10) can be evaluated to  
∂

∂t
δ[c2 − z(c1)] =

 
−∂δ[c2−c(c1)]

∂c

dz(c1)

dt
                                                                                                                 (M1.12)    

Equating both the RHSs of Equations (M1.11) and (M1.12) leads to the ordinary 

differential equation  

dz(c1)

dt
= α(z(c1), t)                                                                                                             (M1.13) 

which describes a deterministic process. 

b. as a diffusion process if α(c, t) ≠ 0,  β(c, t) ≠ 0 and { J(c2|c3, t2), J(c3|c2, t2)} = 0. It is 

obvious that Equation (M1.9) now becomes the Fokker-Planck equation 

∂

∂t
p(c2, t2 | c1, t1) =  

−∂α(c,t)p(c2, t2 |c1, t1)

∂c
+ 

1

2

∂2 β(c,t)p(c2, t2 |c1, t1)

∂c2
                    (M1.14) 
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c. as a pure jump process if α(c, t) = 0,  β(c, t) = 0 and { J(c2|c3, t2), J(c3|c2, t2)} ≠ 0. The 

Master Equation for the jump process is 
∂

∂t
p(c2, t2 | c1, t1) =

 ∫[ J(c2|c3, t2) p(c3, t2 |c1, t1) −  J(c3|c2, t2)  p(c2, t2 |c1, t1)] dc                            (M1.15) 

Equation (M1.15) can be approximated in a very small discrete time ∆t by: 

p(c2, t + ∆t | c1, t) = 𝛿(c2 − c1) [1 − ∆t ∫ J(c2|c1, t2) dc  ] −  ∆t J(c3|c1, t2)       (M1.16)  

with initial condition p(c2, t2 |c1, t1) = 𝛿(c2 − c1). 

where δ( ) is Dirac’s delta function. 
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Appendix M2 – Expected value vector and co-variance matrix of the decoupled linear-

quadratic cash flow model 

Define the following matrices and vectors: 

𝐏 the diagonal probability matrix corresponding to the independent states of the state-

change matrix S {∆C∆t, ∆I∆t}:  𝐏 = (
p1 0
0 p2

) ∆t , the vector of cash flow variables 𝐮 = (
Ct

It
) , 

the state-change variable parameter matrix  𝐀 = (
α β
γ −1

), the state-change constant 

parameter vector 𝐛 = (
δ
ε
), vector 𝛗 = (

φ
φ), matrix  𝚽 = (φ

2 0
0 1

) and 𝐏′ = (
0 p3

p3 0
)∆t 

representing the dependency between the two parts of system S ,and the vector of 

decoupled cash flow variables 𝐯 = (
Ct

′

It
′ ) belonging to the decoupled system S′{∆C∆t

′ , ∆I∆t
′ }. 

 

Deriving the expected value of the decoupled system 

The expected value vector of S {∆C∆t, ∆I∆t} can be expressed as: 

𝔼(∆𝐮∆t) = 𝐏. (𝐀. 𝐮∆t + 𝐛) + 𝐏′. 𝛗                                                                                             (M2.1)  

For notational convenience, the subscript ∆t will be dropped from ∆𝐮∆t. 

To derive the expected value of the decoupled system S′{∆C∆t
′ , ∆I∆t

′ }, Equation (M2.1) will 

need to be diagonalised: 

𝔼(Δ𝐮) = (𝐐.𝚳.𝐐−𝟏. 𝐮 + 𝐏. 𝐛) + 𝐏′. 𝛗                                                                                     (M2.2)  

where 𝚳 = (
μC,1 0

0 μI,1
) = (

−
1

2
(αp1 − p2) +

1

2
ω 0

0 −
1

2
(αp1 − p2) −

1

2
ω

)∆t  is the 

diagonal matrix of eigenvalues of 𝐏. 𝐀, where ω = √(αp1 − p2)2 + 4(βγ + α)p1p2 and 

𝐐 = (
β

Λ1−α

β

Λ2−α

1 1
), the corresponding eigenvector matrix. 

 

If the transformation 𝐯 = 𝐐−𝟏. 𝐮 is defined then Equation (M2.2) can be re-written to: 

𝐐. 𝔼(Δ𝐯) = 𝐐(𝚳. 𝐯 + 𝐐−𝟏. 𝐏. 𝐛) + 𝐏′. 𝛗                                                                                  (M2.3)  

Furthermore, define a new probability matrix 𝐏′′ = 𝐐−𝟏. 𝐏 so that Equation (M2.3) 

becomes: 

𝔼(Δ𝐯) = 𝚳. 𝐯 + 𝐏′′. 𝐛 + 𝐏′. 𝛗                                                                                                     (M2.4) 

In Equation (M2.5) replace 𝐏′′. 𝐛 + 𝐏′. 𝛗 by the vector 𝛍 = (
μC,2

μI,2
) which leads to Equation 

(M2.5):  

𝔼(Δ𝐯) = 𝚳. 𝐯 +  𝛍                                                                                                                          (M2.5) 
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which is linear diagonal in variable 𝐯 with elements 

𝔼∆C∆t
′ = μC,1Ct

′∆t + μC,2 ∆t                                                                                                       (M2.6a) 

𝔼∆I∆t
′ = μI,1It

′∆t + μI,2 ∆t                                                                                                           (M2.6b) 

 

Deriving the variance of the decoupled system 

First derive an expression for the variance-covariance matrix of the coupled system S {∆C∆t, 

∆I∆t} by using the fact that  𝕍∆𝐮∆t = 𝔼[(Δ𝐮∆t − 𝔼∆𝐮∆t). (∆𝐮∆t − 𝔼∆𝐮∆t)
T] =

 𝔼[∆𝐮∆t∆𝐮∆t
T ] − 𝔼∆𝐮∆t. 𝔼∆𝐮∆t

T − 𝔼∆𝐮∆t
T . 𝔼∆𝐮∆t + 𝔼∆𝐮∆t. 𝔼∆𝐮∆t

T                                         (M2.7) 

It is easy to see that the last three terms of Equation (M2.9) are all of the order ∆2t  and 

since ∆2t approaches 0 in a small-time ∆t, the variance-covariance matrix in Equation (M2.7) 

can be approximated by 

 𝕍∆𝐮∆t ≈ 𝔼[∆𝐮∆t. ∆𝐮∆t
T ]                                                                                                                 (M2.8) 

Consistent with the Markov State-Change matrix {∆Ct, ∆It} defined in Section 2-4, the 

variance-covariance matrix of Equation (M2.8) can be expressed as follows: 

𝕍∆𝐮∆t =  𝐏. (𝐀. 𝐮∆t + 𝐛)(𝐀. 𝐮∆t + 𝐛)𝐓 + 𝚽.𝐏′                                                                      (M2.9) 

For notational convenience, the subscript ∆t will be dropped from ∆𝐮∆t. 

Now, diagonalise Equation (M2.9) by replacing 𝐏. 𝐀 = 𝐐.𝚳.𝐐−𝟏 as follows: 

𝕍∆𝐮 = (𝐐.𝚳.𝐐−𝟏. 𝐮 + 𝐏. 𝐛)(𝐏−𝟏𝐐.𝚳.𝐐−𝟏. 𝐮 + 𝐛)𝐓 + 𝚽.𝐏′                                         (M2.10) 

If the transformation 𝐯 = 𝐐−𝟏. 𝐮 is defined then Equation (M2.10) can be re-written to: 

𝕍∆𝐮 = [𝐐. (𝚳. 𝐯 + 𝐐−𝟏. 𝐏. 𝐛)][𝐏−𝟏. 𝐐. (𝚳. 𝐯 + 𝐐−𝟏. 𝐛]𝐓 + 𝚽.𝐏′                                    (M2.11) 

Using the fact that 𝕍∆𝐮 = 𝐐.𝕍∆𝐯. 𝐐𝐓, Equation (M2.11) becomes: 

𝕍∆𝐯 = [(𝚳. 𝐯 + 𝐐−𝟏. 𝐏. 𝐛][(𝚳. 𝐯 + 𝐐−𝟏. 𝐛]𝐓𝐐−𝟏. 𝐏𝐓−𝟏
 . 𝐐𝐓−𝟏

+ 𝐐−𝟏. 𝚽. 𝐏′. 𝐐𝐓−𝟏
    (M2.12) 

Replace (i) matrix 𝐐−𝟏. 𝐏𝐓−𝟏
 . 𝐐𝐓−𝟏

 by a transformed diagonal probability matrix 𝐏′′′, (ii) 

matrix  𝐐−𝟏. 𝚽. 𝐏′. 𝐐𝐓−𝟏
 by a transformed dependency matrix 𝚽′ and (iii) define a new 

variable 𝐱 =  𝐯 + 𝚳−𝟏. 𝐐−𝟏. 𝐏. 𝐛. Notice that since 𝚳−𝟏. 𝐐−𝟏. 𝐏. 𝐛 is a constant, 𝕍∆𝐱 = 𝕍∆𝐯.  

After above substitutions, the transformed variance-covariance matrix becomes: 

𝕍∆𝐱 = 𝚳. 𝐱. (𝚳. 𝐱 + 𝐛′)𝐓. 𝐏′′′ + 𝚽′                                                                                        (M2.13) 

or 

𝕍∆𝐱 = 𝚳. 𝐱. 𝐱𝐓. 𝚳𝐓. 𝐏′′′ + 𝚳. 𝐱. 𝐛′𝐓. 𝐏′′′ + 𝚽′                                                                     (M2.14) 
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where 𝐛′ = 𝐏−𝟏. 𝐛. The elements of matrix 𝐱. 𝐱𝐓 are (
x1

2 x1x2

x1x2 x2
2 ). Recall that in Section 2-

4 the dependency between simultaneous changes ∆C∆t and ∆I∆t in the coupled system was 

described as  
∆C∆t 

∆I∆t
= φ. This property will now be used to define  ∆𝐮∆t = (

∆C∆t

∆I∆t
) = (

1
φ

) 

which implies that ∆𝐯∆t = 𝐐(
1
φ

) and also ∆𝐱∆t = 𝐐(
1
φ

), again only for simultaneous 

changes of ∆C∆t and ∆I∆t. Hence, the elements of the vector  𝐱∆t are linked to each other by 

the vector 𝐐(
1
φ

) + 𝐤, where 𝐤 is a vector of constants (
k1

k2
). Replace 𝐐(

1
φ

) + 𝐤  by 

another vector of constants 𝐦 = (
m1

m2
). Matrix 𝐱. 𝐱𝐓 can now be re-written 

to: (
x1

2 m2

m1
x1

2

m1

m2
x2

2 x2
2

) = (
x1 0
0 x2

)(
x1

m2

m1
x1

m1

m2
x2 x2

) .  

In Equation (M2.14), 𝕍∆x can be replaced by 𝕍∆v and 𝐱  by 𝐯 + 𝐧  where 𝐧 is a vector of 

constants 𝐧 = 𝚳−𝟏. 𝐐−𝟏. 𝐏. 𝐛.  

Since 𝚳 and 𝐏′′′ are diagonal matrices, it is evident that the first RHS term of Equation 

(M2.14) admits a quadratic diagonal in variable 𝐯 + 𝐧, and the second RHS term is linear 

diagonal in variable 𝐯 + 𝐧. Consequently, 𝕍∆𝐱 can be expressed as a matrix 𝚲 with both 

first-row elements quadratic in Ct
′ and both second-row elements quadratic in It

′: 

𝕍∆v = 𝚲 = (
Λ11 Λ12

Λ21 Λ22
)                                                                                                            (M2.15) 

where 

Λ11 = ςC,1Ct
′ 2∆t + ςC,2Ct

′∆t + ςC,3∆t                                                                                     (M2.16a) 

Λ12 = ςC,4Ct
′ 2∆t + ςC,5Ct

′∆t + ςC,6∆t                                                                                     (M2.16b) 

Λ21 = ςI,1It
′ 2∆t + ςI,2It

′∆t + ςI,3 ∆t                                                                                         (M2.16c) 

Λ22 = ςI,4It
′ 2∆t + ςI,5It

′∆t + ςI,6 ∆t                                                                                         (M2.16d) 
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Appendix M3 – Testing existence, continuity and convergence of the general cash flow 

process  

Continuity and existence of solutions 

For a general cash flow process dXt =  α(Xt, t)dt + √β(Xt, t)dWt, where α(Xt, t) and 

√β(Xt, t) are adapted to the filtration generated by the Brownian motion Wt, solutions are 

unique and Lipschitz-continuous (Øksendal (2003, section 5.2.) if: 

|α(Xt,2, t) − α(Xt,1, t) + √β(Xt,2, t) − √β(Xt,1, t)| ≤ K1|Xt,2 − Xt,1|                              (M3.1a) 

|α(Xt, t) + √β(Xt, t)| ≤ K2(1 + |Xt|)                                                                                     (M3.1b) 

where Xt,2, Xt,1 ∈  ℝ and K1, K2 are some constants. 

For the functions α(Xt, t) = μ1Xt + μ0 and √β(Xt, t) = √(σ2Xt
2 + σ1Xt + σ0) it can be 

shown that the process is indeed unique and continuous. 

First, function √β(Xt, t) can be expressed as √(σ2Xt
2 + σ1Xt + σ0) =

√σ2Xt√(1 +
σ1

σ2
Xt

−1 +
σ0

σ2
Xt

−2). Provided that σ2 is not very small relative to σ1, the square 

root term can be approximated by a Taylor expansion57: √(1 +
σ1

σ2
Xt

−1 +
σ0

σ2
Xt

−2) ≈ 1 +

 
σ1

2σ2
Xt

−1 + 𝒪(Xt
−2). Therefore, the following linear function serves as an approximation of 

the diffusion function:  √(σ2Xt
2 + σ1Xt + σ0) ≈  √σ2Xt +

σ1

√σ2
.   

Now, Equation (M3.1a) becomes  

μ1|Xt,2 − Xt,1| + √σ2|Xt,2 − Xt,1| ≤ K1|Xt,2 − Xt,1|                                                             (M3.1c) 

and it is easy to set a value for the constant K1 such that Equation (M3.1c) is true. 

Similarly, Equation (M3.1b) can be written as 

μ1|Xt| + μ0 + √σ2|Xt| +
σ1

√σ2

≤ K2(1 + |Xt|)                                                                      (M3.1d) 

Since the LHS and RHS of Equation (M3.1d) are two straight lines, the following must hold: 

K2 > μ1 + √σ2 and K2 > μ0 +
σ1

√σ2
. Again, it is not difficult to set a value for the constant K2 

that obeys Equation (M3.1d).  

Admittedly, the above continuity test is only approximately valid. However, Ait-Sahalia 

(1996, p. 415) shows that strong solutions to the cash flow process studied exist under 

considerably less strict conditions then the Lipschitz conditions:  

(i) The drift function α(Xt) and diffusion function √β(Xt) are continuously differentiable in 

Xt and β(Xt) is strictly positive on the whole state space; 

                                                           
57 √1 + 𝑍 ≈ 1 +

𝑧

2
+  𝒪(Z2) where 𝑍 =

σ1

σ2
Xt

−1. The smaller 𝑍 is, the better the approximation. In this case Z is indeed small: cash flows Xt 

are normally sizeable amounts, and it was assumed that σ2 is not very small relative to σ1. 
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(ii) The integral of the scale density of the process, 𝕤(Xt) = exp [−∫
2α(Xt)

β(Xt)
dXt], diverges at 

both boundaries of the diffusion state space; 

(iii) The integral of the speed density of the process 𝕞(Xt) =
2

β(Xt) exp[−∫
2α(Xt)

β(Xt)
dXt]

=

2

β(Xt) 𝕤(Xt)
, converges at both boundaries of the diffusion state space. 

Condition (i) is easily met whilst a diverging scale density and a converging speed density 

implies that ∫
2α(Xt)

β(Xt)
dXt must be smaller than 0. The expression ∫

2α(Xt)

β(Xt)
dXt =

 ∫
2(μ1Xt+μ0)

σ2Xt
2+σ1Xt+σ0

dXt in (ii) and (iii) is closely linked to the integral encapsulated by Equation 

(2.14) in Section 2-3 for which there are two solutions: 

(i) The case where the discriminant of σ2Xt
2 + σ1Xt + σ0 is less than 0 corresponding to a 

process with complex roots (empirically found for investing cash flow processes); and 

(ii) The case where the discriminant of σ2Xt
2 + σ1Xt + σ0 is greater than or equal to 0, a 

process with real roots (empirically found for the majority of operating cash flow 

processes). 

In case (i) the integral ∫
2α(Xt)

β(Xt)
dXt, after a similar transform as applied to Equation (2.15) in 

Section 2-3, becomes:  

∫
2(μ1Xt + μ0)

σ2Xt
2 + σ1Xt + σ0

dXt = K [(Xt +
σ1

2σ2
)2 + λ2]

𝜈1

exp [𝜈2tan
−1 [

Xt +
σ1

2σ2

λ
]]          (M3.2a) 

where 𝜈1 =
μ1

σ2λ2 , 𝜈2 =
μ0−

σ1
σ2

σ2λ
 , λ =  

√4σ0σ2−σ1
2

2σ2
> 0 and K is an integrating constant. 

For K < 0 Equation (M3.2a) is smaller than 0 and obeys the Aït-Sahalia conditions stated 

above.  

In case (ii) the integral evaluates to: 

∫
2(μ1Xt + μ0)

σ2Xt
2 + σ1Xt + σ0

dXt =  K [(Xt − λ1)
−(aλ1+b)ν3(Xt − λ2)

(aλ2+b)ν3]                         (M3.2b) 

where λ1,2 = 
−σ1±√σ1

2−4σ0σ2

2σ2
 are real roots of σ2Xt

2 + σ1Xt + σ0, a = −2(μ1 − σ2), b =

2(μ1 − σ2), ν3 =
1

λ1−λ2
 and K is an integrating constant. Again, if  K < 0 with λ1 < Xt < λ2, 

Equation (M3.2b) is smaller than 0 and Aït-Sahalia’s conditions are met. 
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Convergence and divergence of the process 

Derivation of the hybrid and coupled model in Chapter 3, led to a system of continuous-time 

equations with a linear drift function and a quadratic diffusion function for operating and 

investing cash flow processes alike. The (uncoupled) general process equation is: 

dXt = (μ1Xt + μ0)dt + √(σ2Xt
2 + σ1Xt + σ0) dWt                                                               (M3.3) 

where Xt is some cash flow process. 

One of the conditions under which a stochastic process converges, is the mean-square 

criterion (Pollard (1984)), i.e.  lim
t→∞

𝔼(Xt − X∞)2 = 0                                                             (M3.4)  

where −∞ < X∞ < ∞ is a (finite) stable cash flow. This convergence criterion will be used 

to examine under which conditions the cash flow process governed by Equation (M3.3) is 

converging. 

First, write Equation (M3.4) in alternative form: lim
t→∞

𝔼(Xt
2) = lim

t→∞
(𝔼2X∞)                     (M3.5) 

From the solution to the ODE governing the evolution of the first moment, it follows that for 

the expression lim
t→∞

(𝔼2X∞) to have a finite value, the drift function must be mean-reverting. 

In other words, 𝔼Xt = Keμ1t −
μ0

μ1
, where K is an integration constant, and  lim

t→∞
(𝔼2X∞) has a 

finite value 
μ0

μ1

2
 only if μ1 ≤ 0. 

A further condition of Equation (M3.3) is that the diffusion must be also converging. To 

investigate this, Equation (M3.5) needs to be recast into a differential time format: 

lim
t→∞

d𝔼(Xt
2)

dt
= lim

t→∞

𝔼dXt
2

dt
=0                                                                                                       (M3.6) 

Applying Itô’s lemma, dXt
2 becomes: 

dXt
2 = [(2μ1+σ2)Xt

2+(2μ0 + σ1)Xt + σ0]dt + 2Xt√(σ2Xt
2 + σ1Xt + σ0) dWt             (M3.7) 

Hence, 

𝔼dXt
2

dt
= (2μ1+σ2)Xt

2+(2μ0 + σ1)Xt + σ0                                                                               (M3.8) 

and  

lim
t→∞

𝔼dXt
2

dt
= (2μ1+σ2)X∞

2 +(2μ0 + σ1)X∞ + σ0 = 0                                                            (M3.9) 

Equation (M3.9) is true for every X∞ since the quadratic expression always has one or two 

real roots, or distinctive complex roots. Therefore, the diffusion function of Equation (M3.3) 

will converge in the mean-square sense. However, if X∞ is infinitely large because of a 

diverging drift function as t → ∞, the diffusion function will be overridden by the drift 

function and will also become infinitely large. 
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Appendix M4 – Approximate Maximum Likelihood Estimation method applied to the 

Linear-Quadratic Model  

This appendix includes calculations that support derivation of the Approximate Maximum 

Likelihood Estimation Method (AMLE) in Section 5-2.  

A. Calculation of Hermite Polynomials and corresponding Fourier coefficients 

Hermite polynomials are calculated from ℋj(z) = (−1)ne
z2

2
dne

−
z2

2

dzn   for n = 0. . J.  

The expansion (Fourier) coefficients are conditional first moments of the Hermite 

polynomial terms: 

ηZ
j (Δ, z|y0; 𝛉) =

1

j!
𝔼𝛉 [ℋj (

Yt − Y0

√Δ
) |Yt = y0]                                                                     (M4A. 1) 

where z =
y−y0

√Δ
 is close to a standard normal variable 𝒩(0,1). As J → ∞, an exact 

approximation of the transformed transition density function PZ
J(Δ, z|y0; 𝛉) is obtained 

PZ(Δ, z|y0; 𝛉) = 𝒩(0,1)∑ ηZ
j∞

j=0 (Δ, z|y0; 𝛉)ℋj(z) =
1

√2𝜋
e−

z2

2 ∑ {
1

j!
𝔼𝛉 [ℋj (

Yt−Y0

√Δ
) |Yt =∞

j=0

y0]ℋj(z)}                                                                                                                                      (M4A. 2)  

For practical estimation purposes, Equation (M4A. 2) will need to be truncated. In this study, 

a five-term approximation, that is J = 4, is considered to be sufficiently accurate. Hence, the 

approximated density function becomes 

PZ
4(Δ, z|y0; 𝛉) =

1

√2π
e−

z2

2 ∑ηZ
j

4

j=0

(Δ, z|y0; 𝛉)ℋj(z)                                                            (M4A. 3) 

The corresponding Hermite polynomials, expanded to the fifth term, yield  

ℋ0(z) = 1                                                                                                                                   (M4A. 4a) 

ℋ1(z) = z                                                                                                                                   (M4A. 4b) 

ℋ2(z) = z2 − 1                                                                                                                         (M4A. 4c) 

ℋ3(z) = z3 − 3z                                                                                                                      (M4A. 4d) 

ℋ4(z) = z4 − 6z2 + 3                                                                                                             (M4A. 4e) 

Since variable z is close to a standard normal distribution, with mean zero and unit standard 

deviation, it follows that μz = 𝔼(z) = 0 and  σz = 𝔼(z2) − 𝔼2(z) = 𝔼(z2) = 1. This result 

is useful when calculating the first conditional moments of Equations (M4A. 4a) – (M4A. 4e). 

𝔼[ℋ0(z)] = 1                                                                                                                             (M4A. 5a) 

𝔼[ℋ1(z)] = 𝔼(z ) = 0                                                                                                             (M4A. 5b) 
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𝔼[ℋ2(z)] = 𝔼(z2) − 1 = 0                                                                                                    (M4A. 5c) 

𝔼[ℋ3(z)] = 𝔼(z3) − 3𝔼(z) = 𝔼(z3)                                                                                   (M4A. 5d) 

𝔼[ℋ4(z)] = 𝔼(z4) − 6𝔼(z2) + 3 = 𝔼(z4) − 3                                                                 (M4A. 5e) 

Equations (M4A. 5d) and (M4A. 5e) can be perceived as an adjustment to the leading 

Gaussian term for excess skewness and kurtosis. For a true Gaussian random variable 

PZ
4(Δ, z|y0, 𝛉), skewness (𝔼(z3)) and kurtosis (𝔼(z4) − 3) are zero and Equations (M4A. 5d) 

and (11e) effectively vanish from the Hermite expansion, reducing PZ
4(Δ, z|y0; 𝛉) to 

1

√2π
e−

z2

2  

(Singer (2006, p. 388). 

After substituting Equations (M4A. 4a) – (M4A. 4e) and Equations (M4A. 5a) – (M4A. 5e) 

into Equation (M4A. 3), the approximated transitional density function PZ
J for J = 4, satisfies 

PZ
4(Δ, z|y0; 𝛉) =

1

√2π
e−

z2

2 [1 −
1

8
(z4 − 6z2 + 3) +

1

6
 (z3 − 3z )𝔼(z3, 𝛉) +

1

24
(z4 − 6z2 +

3)𝔼(z4, 𝛉) ]                                                                                                                                 (M4A. 6)  

B. Solving the system of central moment ODEs 

Applying the first backward transformation in Equation (5.25), the transitional density 

function expressed in Y is calculated as 

PY
4(Δ, y|y0; 𝛉) =

1

√2π
e−

y̌2Δ

2 Δ
1

2 [1 −
1

8
(Δ2y̌4 − 6Δy̌2 + 3) +

1

6
(Δ

3

2y̌3 − 3Δ
1

2y̌ )Δ
3

2𝔼(y̌3; 𝛉) +

1

24
(Δ2y̌4 − 6Δy̌2 + 3)Δ2𝔼(y̌4; 𝛉) ]                                                                                         (M4B. 1)  

where y̌ = y − y0.  

To simplify calculations, from here on Δ will be set to 1. Accordingly, parameter values are 

calculated on a per quarter basis and, if required, can be rescaled to annual parameter 

values. 

Recall that y0 is considered a proxy for the average of random variable Y, and consequently 

the conditional moments 𝔼(y̌3; 𝛉) and 𝔼(y̌4; 𝛉) are to be interpreted as central moments. 

Furthermore, it is assumed that y̌0 ≈ 𝒩(0,1). 

Now, replacements for the two conditional central moments 𝔼(y̌3; 𝛉) and 𝔼(y̌4; 𝛉) have to 

be found such that the third and fourth moments are explicitly expressed in parameter 

vector 𝛉. From Section 5-2, Equations (5.19) and (5.20), it becomes apparent that the 

applicable SDE equates to dYt = μ̃(Yt)dt + dWt. Using the Fokker-Planck equation, Singer 

(2006, Appendix) proves that the following system of ODEs holds for associated conditional 

density functions: 
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d𝔼(y̌; 𝛉)

dt
= 𝔼[μ̃(Yt)]                                                                                                                   (M4B. 2) 

governing the first conditional moment, and 

d𝔼(y̌n; 𝛉)

dt
= n𝔼 {μ̃(Yt)[y̌

n−1 − 𝔼(y̌n−1; 𝛉)]} +
1

2
n(n − 1) 𝔼(y̌n−2; 𝛉)                         (M4B. 3) 

applicable to higher conditional moments (n ≥ 2) 

where μ̃(Yt) =
((μ1−

1

2
σ2)F−1(Xt)+(μ0−

1

4
σ1))

√σ2[F−1(Xt)]2+σ1F−1(Xt)+σ0
 and F(Xt) =

1

√σ2
ln |√(σ2Xt

2 + σ1Xt + σ0)  +

2σ2Xt+σ1

2√σ2
|. 

Obviously, function μ̃(Yt) is a rather complex expression to employ in the calculations to 

follow. Therefore, μ̃(Yt) will be approximated by a Taylor series expanded around y = y0, 

up to a linear term58.  

μ̃(Yt) = π0(𝛉; y0) + π1(𝛉)(y − y0) + 𝒪(y2)  

≈ π0(𝛉; y0) + π1(𝛉; y0)y̌                                                                               (M4B. 4) 

where π0(𝛉; y0) =  
(μ1−

1

2
σ2)y0+(μ0−

1

4
σ1)

(σ2y0
2+σ1y0+σ0)

1
2

 and 

π1(𝛉; y0) =  
(
1

2
μ1σ1−μ0σ2−

1

4
σ1σ2+

1

4
σ2

2)y0−
1

2
μ0σ1+μ1σ0−

1

2
σ0σ2+

1

8
σ1σ2

(σ2y0
2+σ1y0+σ0)

3
2

.  

The indicative example in Table 7-1 shows that a linear approximation of μ̃(Yt) is reasonably 

accurate for most cash flow values59; clearly, for the presumed parameter values, the 

quality of the approximations of investing cash flows is higher than those of operating cash 

flows. Note that the parameter values are estimates reported in the first part of Section 5-2. 

 

                                                           
58 Any higher-order approximation will make the system of moment ODEs non-recursive and thus unsolvable. 
59 Firms investigated in this study, show an average operating cash flow (uncoupled) of about 307 (STD 2816) and an average investing 

cash flow (uncoupled) of approximately 428 (STD 4751). All amounts are reported in millions of US$. 



 
 
240                                                                                                   
 

  

 Pa
ra

m
et

er
s 

O
CF

O
pe

ra
tin

g 
Ca

sh
 F

lo
w

In
ve

st
in

g 
Ca

sh
 F

lo
w

m
1

0.
05

52
x

y
Ac

tu
al

 d
rif

t f
un

ct
io

n
Ap

pr
ox

im
at

ed
 d

rif
t f

un
ct

io
n

Va
ria

nc
e

%
 v

ar
ia

nc
e

x
y

Ac
tu

al
 d

rif
t f

un
ct

io
n

Ap
pr

ox
im

at
ed

 d
rif

t f
un

ct
io

n
Va

ria
nc

e
%

 v
ar

ia
nc

e

m
0

-1
41

.6
9

-1
00

00
00

00
22

.3
93

38
35

9
-1

.8
21

48
42

96
-1

.7
91

88
80

91
0.

02
95

96
-  

   
   

1.
62

%
-1

00
00

00
00

22
.2

66
34

30
1

-0
.9

12
13

50
5

-0
.9

12
73

71
8

0.
00

06
02

13
-0

.0
7%

s2
0.

70
18

-1
00

00
00

0
19

.6
44

81
07

-1
.7

36
12

57
07

-1
.7

29
92

04
29

0.
00

62
05

-  
   

   
0.

36
%

-1
00

00
00

0
19

.5
35

82
93

4
-0

.9
11

76
71

21
-0

.9
12

29
58

73
0.

00
05

28
75

2
-0

.0
6%

s1
-1

45
.8

5
-1

00
00

00
16

.8
96

33
73

-1
.6

57
76

96
24

-1
.6

67
95

50
11

0.
01

01
85

   
   

  
-0

.6
1%

-1
00

00
00

16
.8

10
83

91
2

-0
.9

11
40

00
65

-0
.9

11
85

54
59

0.
00

04
55

39
4

-0
.0

5%

s0
66

84
.7

87
94

6
-1

00
00

0
14

.1
48

85
82

4
-1

.5
85

55
96

31
-1

.6
06

01
20

1
0.

02
04

52
   

   
  

-1
.2

9%
-1

00
00

0
14

.1
40

84
86

9
-0

.9
11

04
05

42
-0

.9
11

42
39

34
0.

00
03

83
39

2
-0

.0
4%

D
25

06
.6

85
77

8
-1

00
00

11
.4

11
26

08
-1

.5
18

96
70

81
-1

.5
44

29
17

95
0.

02
53

25
   

   
  

-1
.6

7%
-1

00
00

11
.9

50
27

54
-0

.9
10

74
56

66
-0

.9
11

06
98

93
0.

00
03

24
22

7
-0

.0
4%

La
m

bd
a1

68
.2

41
08

49
7

-1
00

0
8.

76
67

63
92

6
-1

.4
59

14
55

95
-1

.4
84

67
05

68
0.

02
55

25
   

   
  

-1
.7

5%
-1

00
0

11
.1

82
85

90
4

-0
.9

10
64

23
83

-0
.9

10
94

58
63

0.
00

03
03

48
-0

.0
3%

La
m

bd
a1

13
9.

58
16

56
6

-1
00

6.
72

77
85

71
2

-1
.4

15
74

47
92

-1
.4

38
70

09
99

0.
02

29
56

   
   

  
-1

.6
2%

-1
00

11
.0

87
69

08
4

-0
.9

10
62

95
75

-0
.9

10
93

04
81

0.
00

03
00

90
6

-0
.0

3%

y0
0

-1
0

5.
98

40
27

93
3

-1
.4

00
46

14
47

-1
.4

21
93

26
86

0.
02

14
71

   
   

  
-1

.5
3%

-1
0

11
.0

78
10

18
1

-0
.9

10
62

82
85

-0
.9

10
92

89
32

0.
00

03
00

64
7

-0
.0

3%

pi
0

-1
.2

87
02

04
1

-1
5.

87
27

83
06

-1
.3

98
19

97
22

-1
.4

19
42

46
26

0.
02

12
25

   
   

  
-1

.5
2%

-1
11

.0
77

14
25

8
-0

.9
10

62
81

56
-0

.9
10

92
87

77
0.

00
03

00
62

1
-0

.0
3%

pi
1

-0
.0

22
54

54
0

5.
85

96
79

43
-1

.3
97

93
37

21
-1

.4
19

12
92

0.
02

11
95

   
   

  
-1

.5
2%

0
11

.0
77

03
6

-0
.9

10
62

81
41

-0
.9

10
92

87
59

0.
00

03
00

61
8

-0
.0

3%

1
5.

84
64

12
65

2
-1

.3
97

66
44

97
-1

.4
18

83
00

95
0.

02
11

66
   

   
  

-1
.5

1%
1

11
.0

76
92

94
1

-0
.9

10
62

81
27

-0
.9

10
92

87
42

0.
00

03
00

61
5

-0
.0

3%

Pa
ra

m
et

er
s 

IC
F

10
5.

71
88

61
24

4
-1

.3
95

08
05

88
-1

.4
15

95
43

98
0.

02
08

74
   

   
  

-1
.5

0%
10

11
.0

75
97

01
2

-0
.9

10
62

79
98

-0
.9

10
92

85
87

0.
00

03
00

58
9

-0
.0

3%

m
1

0
10

0
4.

66
04

10
01

7
-1

.3
73

94
87

37
-1

.3
92

09
11

97
0.

01
81

42
   

   
  

-1
.3

2%
10

0
11

.0
66

37
49

6
-0

.9
10

62
67

07
-0

.9
10

92
70

36
0.

00
03

00
33

-0
.0

3%

m
0

-8
17

6.
24

10
00

8.
51

98
81

47
4

-1
.4

53
76

93
8

-1
.4

79
10

45
06

0.
02

53
35

   
   

  
-1

.7
4%

10
00

10
.9

70
73

68
8

-0
.9

10
61

38
36

-0
.9

10
91

15
79

0.
00

02
97

74
3

-0
.0

3%

s2
0.

71
08

10
00

0
11

.3
86

69
06

7
-1

.5
18

39
17

02
-1

.5
43

73
78

51
0.

02
53

46
   

   
  

-1
.6

7%
10

00
0

10
.9

18
50

82
6

-0
.9

10
60

68
07

-0
.9

10
90

31
38

0.
00

02
96

33
1

-0
.0

3%

s1
-8

17
6.

37
10

00
00

14
.1

46
40

13
5

-1
.5

85
49

75
68

-1
.6

05
95

66
19

0.
02

04
59

   
   

  
-1

.2
9%

10
00

00
14

.0
04

70
58

2
-0

.9
11

02
22

13
-0

.9
11

40
19

31
0.

00
03

79
71

7
-0

.0
4%

s0
45

49
51

50
10

00
00

0
16

.8
96

09
16

1
-1

.6
57

76
29

06
-1

.6
67

94
94

72
0.

01
01

87
   

   
  

-0
.6

1%
10

00
00

0
16

.7
97

19
78

4
-0

.9
11

39
82

28
-0

.9
11

85
32

54
0.

00
04

55
02

6
-0

.0
5%

D
-6

24
98

78
4.

1
10

00
00

00
19

.6
44

78
61

3
-1

.7
36

12
49

76
-1

.7
29

91
98

75
0.

00
62

05
-  

   
   

0.
36

%
10

00
00

00
19

.5
34

46
51

8
-0

.9
11

76
69

37
-0

.9
12

29
56

53
0.

00
05

28
71

5
-0

.0
6%

y0
0

10
00

00
00

0
22

.3
93

38
11

4
-1

.8
21

48
42

16
-1

.7
91

88
80

36
0.

02
95

96
-  

   
   

1.
62

%
10

00
00

00
0

22
.2

66
20

65
9

-0
.9

12
13

50
32

-0
.9

12
73

71
58

0.
00

06
02

12
6

-0
.0

7%

pi
0

-0
.9

09
13

84
8

pi
1

-0
.0

00
16

16
2

Ta
b

le
 7

-1
  A

p
p

ro
xi

m
at

io
n

 o
f 

tr
an

sf
o

rm
ed

 d
ri

ft
 f

u
n

ct
io

n
 b

y 
a 

lin
ea

r 
m

o
m

en
t 

eq
u

at
io

n
 



 
 

7   Mathematical Appendixes  241 
 

After adopting the suggested linear approximation, the system of central moment ODEs is 

described by the following two equations 

d𝔼(y̌; 𝛉)

dt
= π0(𝛉; y̅0) + π1(𝛉)𝔼(y̌, 𝛉)                                                                                  (M4B. 5a) 

d𝔼(y̌n; 𝛉)

dt
= n𝔼[(π0(𝛉; y̅0) + π1(𝛉; y̅0)y̌)(y̌

n−1 − 𝔼(y̌n−1; 𝛉)] +
1

2
n(n − 1)𝔼(y̌n−2; 𝛉)

= nπ1(𝛉; y̅0)[𝔼(y̌n; 𝛉) − 𝔼(y̌, 𝛉)𝔼(y̌n−1; 𝛉)]  

+
1

2
n(n − 1)𝔼(y̌n−2; 𝛉)                                                                               (M4B. 5b) 

Observe that y0 is treated as a constant in the above equations, hence 𝔼[π0(𝛉; y̅0)] =

π0(𝛉; y̅0) and 𝔼[π1(𝛉; y̅0)] = π1(𝛉; y̅0)y̌. Moreover, y̅0 in the ODE calculations is 

considered the expected value of y0 (being itself a stochastic variable), and hence 𝔼(y0) =

y̅0 = 0 which is consistent with the prior assumption of y̌0 ≈ 𝒩(0,1) and 𝔼(y̌0) ≈ 0. 

The above system of ODEs is closed and thus solved recursively. The solution60 to the first 

moment evolution equation satisfies 

𝔼(y̌, t; 𝛉) =
π0(𝛉)

π1(𝛉)
 [1 − eπ1(𝛉)t]                                                                                            (M4B. 6a) 

Under the condition that π1(𝛉) < 0, a condition seen for almost all investing cash flows and 

most operating cash flows61, the stationary value (as t → ∞) is 

𝔼(y̌,∞; 𝛉) =
π0(𝛉)

π1(𝛉)
                                                                                                                  (M4B. 6b) 

Subsequently, using Equation (M4B. 6b) a similar approximation will be applied to 

exponential terms of higher moments. Recognising that 𝔼(y̌2, 0, 𝛉) = 1, a solution to the 

ODE for 𝔼(y̌2; 𝛉) is 

𝔼(y̌2, t; 𝛉) = −
π0

2(𝛉)

π1
2(𝛉)

−
1

2π1(𝛉)
+ e2π1(𝛉)t [1 +

π0
2(𝛉)

π1
2(𝛉)

+
1

2π1(𝛉)
]                             (M4B. 6c) 

with stationary value 

𝔼(y̌2, ∞; 𝛉) = −
π0

2(𝛉)

π1
2(𝛉)

−
1

2π1(𝛉)
                                                                                        (M4B. 6d) 

The solution to the ODE for the third central moment evolution equation is  

                                                           
60 Notice that the solution to the system of ODEs is given in continuous-time despite the data being discretely sampled on an interval Δ =

1. However, in the following derivations, the continuous-time representation will be replaced by discrete points in time. 
61 Nevertheless, the condition π1(𝛉) < 𝟎 will be imposed in the numerical optimisation routines applied to estimate the parameter vector 

𝛉. 
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𝔼(y̌3, t; 𝛉) = −
π0

3(𝛉)

π1
3(𝛉)

−
3π0(𝛉)

π1
2(𝛉)

+ e3π1(𝛉)t [
π0

3(𝛉)

π1
3(𝛉)

+
3π0(𝛉)

π1
2(𝛉)

]                                     (M4B. 6e) 

with stationary value 

𝔼(y̌3,∞; 𝛉) = −
π0

3(𝛉)

π1
3(𝛉)

−
3π0(𝛉)

π1
2(𝛉)

                                                                                         (M4B. 6f) 

Finally, the fourth central moment evolution equation admits the following solution 

𝔼(y̌4, t; 𝛉) = −
π0

4(𝛉)

π1
4(𝛉)

−
3π0

2(𝛉)

2π1
3(𝛉)

−
3

4π1
2(𝛉)

+ e4π1(𝛉)t [
π0

4(𝛉)

π1
4(𝛉)

+
3π0

2(𝛉)

2π1
3(𝛉)

+
3

4π1
2(𝛉)

]                                                   (M4B. 6g) 

again, with stationary value 

𝔼(y̌4, ∞; 𝛉) = −
π0

4(𝛉)

π1
4(𝛉)

−
3π0

2(𝛉)

2π1
3(𝛉)

−
3

4π1
2(𝛉)

                                                                     (M4B. 6h) 

Plugging Equations (M4B. 6f)) and (M4B. 6h) into Equation (M4B. 1), leads to the following 

expression in which like terms are collected w.r.t. y̌n, n = 0 . . 4.  

PY
4(Δ = 1, y|y0; 𝛉)) =

1

√2π
e−

y̌2

2 [1 + ϑ0 + ϑ1y̌ + ϑ2 y̌
2 + ϑ3 y̌

3 + ϑ4 y̌
4]                    (M4B. 7) 

where ϑ0 = {−
3

8
−

1

8
α4(𝛉) −

3

16
α2(𝛉)β(𝛉) −

3

32
β2(𝛉)}, ϑ1 = {

1

2
α3(𝛉) +

3

2
α(𝛉)β(𝛉)}, 

ϑ2 = {
6

8
+

1

4
α4(𝛉) +

3

8
α2(𝛉)β(𝛉) +

3

16
β2(𝛉)}, ϑ3 = {−

1

6
α3(𝛉) −

1

2
α(𝛉)β(𝛉)} and ϑ4 =

{−
1

8
−

1

24
α4(𝛉) −

1

16
α2(𝛉)β(𝛉) −

1

32
β2(𝛉)}, α(𝛉) =

π0(𝛉)

π1(𝛉)
 and β(𝛉) =

1

π1(𝛉)
. 

Moreover, observe that ϑ2 = −2ϑ0, ϑ3 = −
1

3
ϑ1 and ϑ4 =

1

3
ϑ0 so that it is possible to 

express vector 𝛝 =

(

 
 

ϑ0

ϑ1

ϑ2

ϑ3

ϑ4)

 
 

 in a base of elements ϑ0 and ϑ1 only: 

(

 
 
 

  1    0
   0    1
−2    0

  0 −
1

3

  
1

3
   0)

 
 
 

(
ϑ0

ϑ1
). Also 

notice that functions α(𝛉) and β(𝛉) are directly related to the first and second moments of 

the stationary probability function: α(𝛉) = 𝔼(y̌,∞; 𝛉) and β(𝛉) = −2[𝔼2(y̌,∞; 𝛉) −

𝔼(y̌2, ∞; 𝛉)]. 

Table 7-2 below provides information about the order of parameter values, given the 

parameter estimates found in the first part of Section 5-2. 
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Since the coefficient vector 𝛝 is related to the probability density function transformed back 

from y back to x, the linear Taylor expansion of the Lamperti-transformed drift function 

should be expressed in x0- values corresponding to y0 = 0.  

Table 7-2  Calculation of coefficients of polynomial function 

 

  

Parameters OCF Operating Cash Flow

0.0552

-141.69 -68.00 -1381.06 -2190861.83 -16360.31

0.7018

-145.85

6684.787946

 -430.2

0.049239317

-0.00072408

Parameters ICF Investing Cash Flow

0

-8176.24 -1434.35 -0.87 -529091058712.03 -1475485576.23

0.7108

-8176.37

45495150

1655.41

-1.15411952

-0.000190277
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Appendix M5 – Numerical optimisation of the AMLE function. 

The starting point is the re-parametrised maximum likelihood estimation function described 

by Equation (5.41) in Section 5-2. The mapping of the parameter spaces {σ0, σ1, σ2} to 

{θ1, θ2, θ3}, obeys θ1 = −
σ1

2σ2
, θ2 =

√|D| 

2σ2
 and θ3 = √|σ2|. Note that each of the three 

transformations is monotonic. The re-parametrised maximum likelihood function is defined 

as 

ℓi(𝛉; xTi
) =  −

1

2
 ln[|(xTi

+ θ1 + θ2)|] −
1

2
 ln[(xTi

+ θ1 − θ2)|] −
1

2
DXTi

2 +

ln [|1 + ϑ0 + ϑ1DXTi
− 2ϑ0DXTi

2 −
1

3
ϑ1 DXTi

3 +
1

3
ϑ0DXTi

4 |]                                                 (M5.1)    

where DXTi
=

1

θ3
sinh−1 [

xTi
−θ1

θ2
] if D > 0, or DXTi

= −
1

θ3
sin−1 [

xTi
−θ1

θ2
] if D < 0, π0(𝛉) =

 
2√2θ3μ̂0−√2 θ1μ̂1

2θ2θ3
2 , π1(𝛉) =

√2(θ1−θ2
2)μ̂0−√2θ1

2μ̂1

θ2
3θ3

2 +
√2

2θ2
, ϑ0 = {−

3

8
−

1

8
α4(𝛉) −

3

16
α2(𝛉)β(𝛉) −

3

32
β2(𝛉)} ,  ϑ1 = {

1

2
α3(𝛉) +

3

2
α(𝛉)β(𝛉)} , α(𝛉) =

π0(𝛉)

π1(𝛉)
, β(𝛉) =

1

π1(𝛉)
.  

For operating cash flows (the case where D > 0) a transformation of the random variable 

xTi
 to vTi

= Τ(xTi
) =

1

θ3
sinh−1 [

xTi
−θ1

θ2
] is considered. Likewise, a transformation of 

investing cash flows (the case where D < 0) obeys vTi
= Τ(xTi

) =
1

θ3
sin−1 [

xTi
−θ1

θ2
] where 

θ1 − θ2 ≤ xTi
≤ θ1 + θ2. 

Observe that Τ(xTi
) is a bijective (one-to-one) and monotonic function, hence  

sup
𝛈

 ℓ𝑖
∗(𝛉, vTi

) = sup
𝛈

 ℓi (T
−1(𝛉, vwTi

 )) = sup
𝛉

 ℓi(𝛉, xTi
 )                                                 (M5.2)  

with maximum estimates attained at �̂� = T(�̂�, vTi
) = (�̂�, xTi

). 

If the variable transform vTi
=

1

θ3
sinh−1 [

xTi
−θ1

θ2
] is applied, then Equation (M5.1) becomes 

ℓi(𝛉; vTi
) =  −

1

2
 ln[|2θ1 + θ2 sinh[θ3vTi

] + θ2) |] −
1

2
 ln[|2θ1 + θ2(sinh[θ3vTi

] − θ2)|] −

1

2
vTi

2 + ln [|1 + ϑ0 + ϑ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |]                                               (M5.3a)    

or, neglecting the term 
1

2
vTi

2  (which is constant w.r.t. 𝛉), 
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ℓi(𝛉; vTi
) =  −

1

2
 ln[|2θ1 + θ2 sinh[θ3vTi

] + θ2) |] −
1

2
 ln[|2θ1 + θ2(sinh[θ3vTi

] − θ2)|] +

ln [|1 + ϑ0 + ϑ1θ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |]                                                        (M5.3b)    

Similarly, the variable transform vTi
=

1

θ3
sin−1 [

xTi
−θ1

θ2
],  

ℓi(𝛉; vTi
) =  −

1

2
 ln[|2θ1 + θ2 sin[θ3vTi

] + θ2) |] −
1

2
 ln[|2θ1 + θ2(sin[θ3vTi

] − θ2)|]

+ ln [|1 + ϑ0 + ϑ1θ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |]                      (M5.3c) 

where θ1 − θ2 ≤ xTi
≤ θ1 + θ2 

The corresponding aggregated likelihood log-function ℓ(𝛉; vTi
) for operating cash flows 

yields 

ℓ(𝛉; vTi
) = −

1

2
∑ ln[|2θ1 + θ2 sinh[θ3vTi

] + θ2) |]i=n
i=1  −

1

2
 ∑ ln[|2θ1 +i=n

i=1

θ2(sinh[θ3vTi
] − θ2)|] + ∑ ln [|1 + ϑ0 + ϑ1θ1vTi

− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +i=n
i=1

1

3
ϑ0vTi

4 |]                                                                                                                                            (M5.4a)  

and the one for investing cash flows is 

ℓ(𝛉; vTi
) = −

1

2
∑ ln[|2θ1 + θ2 sin[θ3vTi

] + θ2) |]i=n
i=1  −

1

2
 ∑ ln[|2θ1 + θ2(sin[θ3vTi

] −i=n
i=1

θ2)|] + ∑ ln [|1 + ϑ0 + ϑ1θ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |] i=n
i=1                               (M5.4b)  

A numerical algorithm was developed that maximises Equations (M5.4a) and (M5.4b). The 

sum of derivatives w.r.t. each parameter 𝛉: {θ1, θ2, θ3} is numerically optimised to be as 

close as possible to zero under the condition that the eigenvalues of the Hessian matrix are 

negative-definitive. Fortunately, all derivatives, including the complicated ones pertaining to 

the term ∑ ln [|1 + ϑ0 + ϑ1θ1vTi
− 2ϑ0vTi

2 − 
1

3
ϑ1vTi

3 +
1

3
ϑ0vTi

4 |]i=n
i=1 , were able to be 

calculated and the suggested simplifications (items 5. and 6.) in Section 5.2. under 

Approximated likelihood function, were not required. 
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Appendix S1 – Description of the dataset used for statistical testing 

 

Introduction 

The dataset was retrieved from Standard & Poor’s Compustat North America database. The 

North America database was chosen because it comprises a relative homogeneous sample 

of firms that publish comparable cash flow and other financial data. These companies, for 

instance, report under the same accounting standards, operate in identical market 

conditions and in a similar legal environment. In total 5,202 companies were selected with 

at least 40 consecutive quarters of reported cash flow data. Of those 5,202 entities, 4,854 

(93.3%) entities have their head quarter domiciled in the United States and 348 entities 

(6.7%) in Canada. Furthermore, the dataset contains both active (2,220 or 42.7% of total) 

and inactive (2,982 or 57.3% of total) companies. Companies can become inactive for 

various reasons, the most common are insolvency and acquisition by another legal entity. 

Inactive companies were included to avoid sample bias towards companies that are 

relatively successful by showing longevity. For groups the dataset encompasses 

consolidated financial data only since financial data of consolidated entities could be prone 

to inter-group transactions that may distort reporting true cash flows. 

Cross-section and time-series characteristics 

A total of 391,456 (excluding 215 observations with no reporting quarter allocated) cash 

flow data points were analysed. On average, there are 3,235 observations per quarter; for 

reasons of representativeness. In most analyses, quarters with less than 500 observations 

were excluded. Below are the descriptive statistics of the main financial variables analysed 

in this study. 

 

 

 

 

N Range Minimum Maximum Std. Deviation Variance

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Statistic Statistic Std. Error Statistic Std. Error

Operating Activities - Net Cash Flow 5202 72605.00 -22907.00 49698.00 273.32 23.60 1702.18 2897404.71 14.34 0.03 319.57 0.07

Investing Activities - Net Cash Flow 5199 184367.00 -69504.00 114863.00 -199.16 42.48 3062.66 9379901.92 9.85 0.03 612.29 0.07

Revenue - Total 5046 120347.16 -28.16 120319.00 954.89 58.19 4133.75 17087910.27 11.66 0.03 208.67 0.07

Assets - Total 5201 3234893.00 0.00 3234893.00 12208.11 1348.92 97281.52 9463693678.91 19.94 0.03 486.94 0.07

Delta OA 5085 54379.00 -28215.00 26164.00 88.15 14.61 1041.49 1084703.99 2.32 0.03 278.69 0.07

Delta IA 4778 73370.00 -20323.00 53047.00 -46.45 21.14 1461.21 2135132.38 14.50 0.04 569.15 0.07

% Delta OC 5085 1802.00 -467.00 1335.00 1.73 0.37 26.43 6983548.95 28.82 0.03 1363.55 0.07

% Delta IA 4778 3952.26 -1055.26 2897.00 0.25 0.96 66.03 43601635.48 31.76 0.04 1460.95 0.07

Valid N (listwise) 4622

Descriptive Statistics Financial Variables

Mean Skewness Kurtosis
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Alongside operating cash flow and investing cash flow, their absolute changes (delta) and 

relative changes (% delta) were computed. Total revenue and total assets were used to de-

scale cash flows by their approximate system size. 

The reporting period extends from 1986Q2 – 2016Q3 including 121 quarters. The average 

number of quarters over which firms reported financial data was 75.3 quarters. 

 

 

 

 

 

 

 

 

 

Representativeness 

A methodological issue concerns how representative the selected firms are of the wider 

population of all firms. Since the selected firms are all public companies that are required to 

report their cash flow data regularly, the sample is likely to be biased in favour of larger, 

probably more professionally managed firms, excluding medium and small sized businesses 

which nevertheless constitute an important part of overall business activity. This may be a 

limitation on the application of the results of the study, but only if there are indications that 

cash flow processes of smaller, private businesses are fundamentally different from those of 

the sample. In this research, the number of observations in each quarter was considered 

sufficiently large to be a representative sample of the population of all (listed) companies. 

Therefore, analyses of time-series were based on heterogeneous samples in time as 

opposed to following the same firms over a time period (which would have drastically 

reduced the number of observations).   
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Active/Inactive Status Marker 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Active 2220 42.7 42.7 42.7 

Inactive 2982 57.3 57.3 100.0 

Total 5202 100.0 100.0  

ISO Currency Code 

     

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid CAD 348 6.7 6.7 6.7 

USD 4854 93.3 93.3 100.0 

Total 5202 100.0 100.0  
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Appendix S2 – Testing for jumps 

 

The Barndorff-Nielsen Shephard jump test 

The Barndorff-Nielsen Shephard test splits the total quadratic variation [C]t =  

∑ (
j=n
j=1 Ctj − Ctj−1

)2 of a cash flow process Ct in two components: (i) a continuous part of the 

local martingale of  Ct, [C
c]t, and (ii) a pure discontinuous component [Cd]

t
, such that [C]t =

 [Cc]t + [Cd]
t
. In a high-frequency data environment each discrete time interval ∆t is 

subdivided into j partitions. The variation split, and corresponding calculations, is made for 

each ∆t separately, however, in this study having the restriction of having only low-

frequency data available, a one-time interval (i.e. the full reporting length) is observed and 

partitioned into related quarters. Below the test is adapted to a low-frequency data 

environment. 

Barndorff-Nielsen and Shephard (2006) show that the continuous component can be 

expressed as a realised 1,1 order Bi-power Variation Process (BPV): [Cc] =
√2

√π
 ∑ |

j=n
j=1 Cj−1||Cj|. 

Furthermore, they approximate the process variance by realised quad-power variation: q̃ =

∑ |Cj−3||Cj−2||
j=n
j=1 Cj−1||Cj|.  From the above information, they calculate the following linear 

(Ĝ) and ratio (Ĥ) test statistics: Ĝ =  
μ1

−2 ν̃−ν̂

√ϑμ1
−4q̃

 and Ĥ =  
μ1
−2 ν̃

ν̂
−1

√ϑμ1
−2 q̃

ν̃2

 where ν̃ =  ∑ |
j=n
j=1 Cj−1||Cj|, ν̂ =

 ∑ (
j=n
j=1 Cj − Cj−1)

2 and μ1 =
√2

√π
≈ 0.7979, ϑ ≈ 0.6090 are normalisation factors. Both test 

statistics converge asymptotically to 𝒩(0,1) as n → ∞. Significant left-side (negative) 

statistic values indicate the occurrence of one or more jumps in the time-series under 

investigation. 

A number of 5,103 firms (operating cash flow) and 5,176 firms (investing cash flow) were 

included in the tests, after removing (significant) outliers from the available total of 5,202 

firms. The results of the analysis are reported in Section 1.6. For smaller values both test 

statistics agreed but differences were identified for larger negative values (indicating 

jumps). Therefore, the reported test statistic is an (unweighted) average of the linear and 

ratio test statistic: Ĵ =  
Ĝ+Ĥ

2
. 



 
 
254                                                                                                   
 

  

The modified Barndorff-Nielsen Shephard jump test 

To accommodate the objections to the Barndorff-Nielsen Shephard test raised in the more 

recent literature, as suggested in Buckle et al. (2016), the original definitions of test statistics 

were modified. The test statistic ν̃ =  ∑ |
j=n
j=1 Cj−1||Cj| was replaced by a median-based 

statistic defined in the following equation: ν̃ =  ∑ (med|Cj−4|, |Cj−3|, |Cj−2|, |
j=n
j=1 Cj−1|, |Cj|)

2. 

The authors claim that this estimator is more robust to detect multiple closely located jumps 

which would remain undetected with the original Barndorff-Nielsen Shephard estimator. 

The results of the modified jump test are also reported in Section 1.6. 

Detailed results (per firm) and associated calculations of all of the above tests are available 

on request from the author. 
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Appendix S3 – Test of common drift functions 

 

The quarterly cash flow data of 5,202 firms were examined for a fit with (i) a linear growth 

trend and (ii) an exponential growth trend. A linear growth trend is defined as CT =  αT + β 

and an exponential growth trend as CT =  β𝑒αT or alternatively as ln CT =  αT + ln β, 

where T: [1, 2,3, … . n] stands for a number representing sequential quarters. 

For all individual firms, regressions were performed with respect to both equations. 

Generally, the coefficients of determination R2 are, as expected, low which can be explained 

by significant stochastic variability around the growth trend. Hence the main test statistic is 

the F-statistic which was evaluated at different significance levels.  

Admittedly, the test for the exponential growth trend is a little artificial since firms with 

consistent positive cash flows during their life time are very rare. Among the firms selected 

for this test, less than 10% have reported only positive cash flows in the observed period 

(and thus no negative cash flows).  

Detailed results (per firm) and associated calculations of both tests are available on request 

from the author. 
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Appendix S4 – Tests of Pearson distribution function 

 

To approximate a stationary probability density function, operating and investing cash flow 

data were normalised between quarters by applying the following transform: cn
′ =

cn−μn

σn
  where n is the number in the sequence of the quarters, μn is the average of cash 

flows of quarter n, and σn is the standard deviation of cash flows of quarter n. Quarters with 

less than 468 observations were excluded from the analysis. For each month, the mean (m), 

variance (v), skewness (s) and kurtosis (k) of the transformed cash flows  cn
′  were calculated. 

Using the Method of Moments, the set of parameters {σ0, σ1, σ2} of the Pearson differential 

equation 
pst

′

pst
= 

2(μ1−σ2)cn
′ +(2μ0−σ1)

σ2cn
′ 2

+σ1cn
′ +σ0

 are estimated as follows:  σ̂0,n =  
−vn(4kn−3sn

2)

10kn−12sn
2−18

 ,  σ̂1,n =

 
−√vn sn(kn+3)

0kn−12sn
2−18

 , σ̂2,n =
2kn−3sn

2−6)

10kn−12sn
2−18

. 

From the quarterly estimates {σ̂0, σ̂1,σ̂2} the discriminants of the transformed quadratic 

diffusion function σ2cn
′ 2

+ σ1cn
′ + σ0 were computed: Dn = √4σ0σ2 − σ1

2 or alternatively 

expressed as kn = 
σ1

2

4σ0σ2
 where Dn = σ1

2(1 −
1

kn
). Values of 0 < kn < 1 correspond to 

complex roots (Dn > 0), values of kn ≥ 1 or values of kn < 0 amount to real roots (Dn ≤

0) . If real roots were identified, these were calculated by the usual formula: r1,2 =

−σ1±√σ1
2−4σ0σ2

2σ2
. 

Averaged over all quarters the following parameter estimates were found: 

OPERATING CASH FLOWS �̂�𝟎,𝐚𝐯−𝐧 �̂�𝟏,𝐚𝐯−𝐧 �̂�𝟐,𝐚𝐯−𝐧 �̂�𝐚𝐯−𝐧 �̂�𝐚𝐯−𝐧 

PARAMETER ESTIMATES 
1.630 0.976 0.356 5.644 0.274 

STD 
9.446 0.435 0.203 34.885 0.278 

5%-UL 
3.364 1.056 0.393 12.048 0.325 

5%-LL 
-0.104 0.896 0.319 -0.760 0.222 

 
INVESTING CASH FLOWS �̂�𝟎,𝐚𝐯−𝐧 �̂�𝟏,𝐚𝐯−𝐧 �̂�𝟐,𝐚𝐯−𝐧 �̂�𝐚𝐯−𝐧 �̂�𝐚𝐯−𝐧 

PARAMETER ESTIMATES 
-0.081 0.095 -0.303 0.044 0.014 

STD 
0.048 0.025 0.014 0.078 0.010 

5%-UL 
-0.072 0.100 -0.301 0.058 0.016 

5%-LL 
-0.089 0.091 -0.306 0.030 0.012 
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Detailed results (per quarter) and associated calculations of both tests are available on 

request from the author. 
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Appendix S5 – Tests of relationship between operating and investing cash flow 

 

The relationship between operating and investing cash flow at a macroscopic level  

Full period 1988 Q1 – 2016 Q2 
 

SUMMARY OUTPUT                 
Regression Statistics        

Multiple R 0.655134        
R Square 0.429201        
Adjusted R Square 0.424105        
Standard Error 195.2177        
Observations 114                 
ANOVA         

  df SS MS F Significance F    
Regression 1 3209475 3209475 84.21618 2.62E-15    
Residual 112 4268315 38109.96        
Total 113 7477790                   

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept 62.03494 28.94325 2.14333 0.03425 4.687592 119.3823 4.687592 119.3823 
Investing cash flow 0.9714 0.105852 9.176938 2.62E-15 0.761667 1.181132 0.761667 1.181132 
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The relationship between operating and investing cash flow at a macroscopic level  

Pre-GFC period 1988 Q1 – 2008 Q2 

 

SUMMARY OUTPUT                 
Regression Statistics        

Multiple R 0.965629        
R Square 0.932439        
Adjusted R Square 0.931595        
Standard Error 29.32077        
Observations 82                 
ANOVA         

  df SS MS F Significance F    
Regression 1 949220.4 949220.4 1104.12 1.42E-48    
Residual 80 68776.6 859.7075        
Total 81 1017997                   

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept 7.480162 5.219669 1.433072 0.155734 -2.90731 17.86763 -2.90731 17.86763 
Investing cash flow 0.741806 0.022325 33.2283 1.42E-48 0.697379 0.786234 0.697379 0.786234 
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The relationship between operating and investing cash flow at a macroscopic level  

Post-GFC period 2008 Q1 – 2016 Q2 

 

SUMMARY OUTPUT                 
Regression Statistics        

Multiple R 0.590541        
R Square 0.348739        
Adjusted R Square 0.32703        
Standard Error 205.0899        
Observations 32                 
ANOVA         

  df SS MS F Significance F    
Regression 1 675702 675702 16.06447 0.000373    
Residual 30 1261856 42061.88        
Total 31 1937559                   

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept 391.242 60.77961 6.437061 4.14E-07 267.1135 515.3706 267.1135 515.3706 
Investing cash flow 0.685566 0.171047 4.008051 0.000373 0.336241 1.034892 0.336241 1.034892 

 

 

 

 

 

 

 

 

 

  



 
 
262                                                                                                   
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

8   Statistical Appendixes                       263 
 

Appendix S6 – Results of the approximated likelihood estimations – industry level 

Operating Cash Flows 

 

 

 

 

 

GISC Industry theta1 t theta2 t theta3 t mu0 t mu1 t sigma0 t sigma1 t sigma2 t Comment

101010 Energy Equipment & Services 1,420.1         0.0            (87,781.7)        (0.0)             (0.7)         (0.0)          (121,363.9)      (13,507.2)       17.63      4,325.6     (3,702,559,796.3)            0.0       (1,365.1)            (0.0)        0.48        0.0                 

101020 Oil, Gas & Consumable Fuels 437.3            5.0            (2,223.1)           (106.8)        0.5           29.7         (0.6)                  (12.7)               0.02        3.9             (1,166,066.8)                   65.1    (214.7)                (5.0)        0.25        895.5             

151010 Chemicals (26.3)             (3.1)           89.6                 104.9          0.2           39.1         0.3                    15.3                0.01        2.7             (358.4)                              15.0    2.6                     3.1          0.05        7,838.6         

151020 Construction Materials 3,748.3         0.9            14,024.6          472.3          5.2           14.0         (40,198.0)         (0.0)                 7.29        842.9        (4,900,444,387.6)            4.6       (201,144.9)        (0.9)        26.83      1.8                 

151030 Containers & Packaging 4,362.3         0.1            34,890.7          809.0          8.9           19.2         (323,635.6)      (28,779.8)       (8.92)       (787.9)       (95,730,831,278.7)         0.1       (696,980.6)        (0.1)        79.89      1.1                 

151040 Metals & Mining (5.9)               (5.5)           (2.7)                  (61.7)          1.0           153.1       (1.1)                  (128.9)            0.03        3.1             30.3                                  (2.2)     13.0                   5.5          1.09        5,360.0         

151050 Paper & Forest Products 1,098.4         0.0            (80,812.8)        (26.2)          (0.5)         (0.0)          (63,011.0)         (0.0)                 (16.55)     (319.4)       (1,662,953,559.4)            0.0       (559.5)                (0.0)        0.25        0.0                 

201010 Aerospace & Defense 4.9                0.4            1.0                    1.7              1.1           0.6            (1.4)                  (238.6)            0.03        3.8             26.5                                  (0.0)     (11.3)                  (0.1)        1.14        0.0                 

201020 Building Products 94,046.5      0.0            34,416.4          0.0              (11.8)       (0.0)          (2,812.5)           (0.0)                 (7.35)       (748.6)       1,069,570,147,607.2     (0.0)     (26,262,655.2)   (0.0)        139.63    0.0                 

201030 Construction & Engineering 9.9                57.8          1.4                    157.5          1.8           125.6       (1,325.1)           (0.5)                 (0.44)       (84.4)         326.6                               (27.6)   (67.2)                  (57.8)      3.39        1,163.2         

201040 Electrical Equipment 30.0              31.8          1.1                    98.1            2.0           119.6       (408,352.3)      (91,996.2)       20.00      5,514.4     3,546.3                            (15.6)   (236.5)                (31.8)      3.94        908.6             

201050 Industrial Conglomerates 11.2              17.9          2.8                    46.7            2.0           56.0         (776,447.9)      (0.0)                 (11.65)     (1,905.8)    483.5                               (8.0)     (91.8)                  (17.8)      4.09        191.4             

201060 Machinery 1,095.7         0.0            (54,320.1)        (0.0)             (0.7)         (0.0)          (65,564.4)         (995.3)            (19.73)     (6,166.5)    (1,323,923,928.2)            0.0       (983.6)                (0.0)        0.45        0.0                 

201070 Trading Companies & Distributors 16.7              11.4          (1.3)                  (50.3)          1.1           15.1         (0.7)                  (101.6)            0.02        2.5             317.9                               (5.1)     (38.3)                  (11.3)      1.15        49.8               

202010 Commercial Services & Supplies 1,498.3         1.2            3,089.5            26.5            1.1           2.9            (3.4)                  (3,947.3)         0.10        10.6           (8,312,843.6)                   2.9       (3,412.3)            (1.1)        1.14        1.7                 

202020 Professional Services 6,801.9         1.4            96,776.8          11.3            0.4           2.8            (4.1)                  (384.0)            0.17        28.6           (1,735,079,422.1)            11.8    (2,532.7)            (1.4)        0.19        10.1               

203010 Air Freight & Logistics 20.8              0.5            14.9                 43.2            1.3           35.8         (10,399.6)         (84.2)               (0.18)       (84.2)         369.5                               (0.6)     (73.0)                  (0.5)        1.75        182.6             

203020 Airlines (15,283.7)     (1.0)           76,262.6          3.8              0.7           2.0            (855.4)              (9,532.4)         18.62      2,100.3     (2,504,191,035.8)            3.8       13,712.1            0.9          0.45        2.1                 

203030 Marine 9,144.5         0.3            65,667.1          914.2          5.7           6.4            (221,809.2)      (4,040.4)         (9.72)       (2,028.1)    (135,208,904,188.3)       0.5       (584,792.8)        (0.3)        31.98      0.3                 

203040 Road & Rail 111.7            0.0            (2.6)                  (0.0)             5.8           0.0            (83.4)                (10.4)               (9.69)       (2,656.7)    417,876.2                        (0.0)     (7,488.7)            (0.0)        33.53      0.0                 

203050 Transportation Infrastructure 5.2                21.7          0.9                    62.1            1.3           464.1       (3,791.3)           (0.0)                 1.40        86.7           44.5                                  (10.5)   (17.5)                  (21.7)      1.67        32,259.4       

251010 Auto Components 1,655.8         0.0            (81,751.9)        (42.1)          (0.8)         (0.0)          (104,423.1)      (8,228.4)         15.48      3,174.8     (4,310,193,048.5)            0.0       (2,136.5)            (0.0)        0.65        0.0                 

251020 Automobiles 25,296.5      0.5            52,706.2          421.3          8.5           5.2            (77,440.4)         (0.0)                 10.53      1,965.4     (154,436,652,860.6)       0.1       (3,654,482.4)     (0.2)        72.23      0.1                 

252010 Household Durables (37,216.5)     (5.1)           (97,715.4)        (3.5)             0.6           10.5         (0.4)                  (755.4)            0.02        2.2             (2,970,188,357.8)            11.7    27,082.4            5.1          0.36        74.8               

252020 Leisure Products 3.0                0.2            1.3                    1.2              (0.7)         (23.4)        (400,853.1)      (0.0)                 6.11        888.6        3.0                                    (0.7)     (2.6)                    (0.2)        0.43        313.8             

252030 Textiles, Apparel & Luxury Goods 11,392.1      0.1            95,835.8          1,001.7      6.0           8.9            (416,337.9)      (43,022.9)       (6.73)       (1,424.5)    (329,344,661,526.3)       0.2       (828,724.9)        (0.1)        36.37      0.5                 

253010 Hotels, Restaurants & Leisure (19,846.4)     (3.1)           63,455.6          5.3              0.6           6.4            (0.3)                  (160.3)            0.21        5.2             (1,227,990,430.8)            19.0    13,417.6            3.1          0.34        29.7               

253020 Diversified Consumer Services 5.8                28.7          1.4                    91.5            1.0           121.9       (23.7)                (0.1)                 (0.00)       (0.2)           34.3                                  (13.4)   (12.6)                  (28.7)      1.09        3,411.2         

254010 Media 21.8              0.0            (1.1)                  (0.0)             1.9           0.0            (0.5)                  (44.7)               0.02        6.5             1,686.6                            (0.0)     (154.9)                (0.0)        3.55        0.0                 

255010 Distributors 13,238.2      0.1            53,671.1          1,358.6      8.4           16.5         (241,560.3)      (25,005.1)       (4.44)       (816.1)       (189,186,570,211.2)       (0.3)     (1,851,513.7)     (0.1)        69.93      1.0                 

255020 Internet & Direct Marketing Retail (10,673.6)     (0.5)           (48,906.0)        (456.5)        4.8           4.3            (47,889.5)         (0.0)                 (7.32)       (136.0)       (52,802,100,875.4)         0.3       494,837.3         0.3          23.18      0.2                 

255030 Multiline Retail 8,693.3         0.1            75,939.7          850.0          5.0           1.8            (237,963.2)      (0.0)                 (11.80)     (1,324.4)    (145,081,530,657.4)       0.0       (443,219.9)        (0.1)        25.49      0.0                 

255040 Specialty Retail 39.5              1.6            0.9                    2.8              (1.6)         (43.6)        (0.1)                  (0.1)                 (0.00)       (0.0)           4,229.1                            (1.0)     (214.1)                (1.6)        2.71        175.7             

301010 Food & Staples Retailing 7.5                4.1            (4.8)                  (46.6)          (1.3)         (69.4)        (1,255,937.4)   (0.1)                 15.23      3,314.3     53.7                                  (1.3)     (24.5)                  (4.1)        1.64        732.8             

302010 Beverages 28,536.6      2.3            62,209.2          2,128.8      13.1        45.6         (264,579.0)      (347.6)            (10.14)     (1,522.2)    (525,705,012,712.9)       66.2    (9,819,062.3)     (2.2)        172.04    3.0                 



 
 
264                                                                                                   
 

  

 

Operating Cash Flows 

 

 

 

 

 

GISC Industry theta1 t theta2 t theta3 t mu0 t mu1 t sigma0 t sigma1 t sigma2 t Comment

302020 Food Products 10,341.3      2.4            24,880.6          918.3          10.3        63.5         (195,936.8)      (68,707.2)       16.25      1,981.4     (54,641,478,580.5)         11.7    (2,206,822.7)     (2.4)        106.70    9.4                 

302030 Tobacco 664.1            0.0            (54,098.2)        (0.1)             (0.3)         (0.0)          (10,972.4)         (0.0)                 (9.64)       (965.7)       (219,865,700.1)               0.0       (99.8)                  (0.0)        0.08        0.0                 

303010 Household Products (2,872.5)       (0.1)           18,737.2          555.5          6.0           34.3         (290,081.8)      (2,071.6)         (9.44)       (4,307.2)    (12,297,605,436.0)         (0.4)     206,081.3         0.1          35.87      8.2                 

303020 Personal Products 0.1                2.3            1.1                    37.9            (0.4)         (45.5)        978,152.5        0.2                  19.52      4,241.0     (0.2)                                  17.9    (0.0)                    (2.3)        0.16        3,270.3        Partial convergence

351010 Health Care Equipment & Supplies 12.3              2.3            (5.7)                  (27.3)          1.3           82.7         (71.9)                (92.1)               0.01        3.0             207.9                               (1.1)     (43.2)                  (2.3)        1.76        973.0             

351020 Health Care Providers & Services 24.5              2.9            (1.4)                  (10.6)          1.6           5.6            (0.7)                  (19,899.8)       0.03        8.4             1,561.9                            (1.0)     (127.7)                (2.6)        2.60        3.0                 

351030 Health Care Technology (25,632.7)     (0.9)           (50,579.8)        (1,660.7)     9.5           22.1         (78,089.4)         (23,312.6)       (3.86)       (804.6)       (170,849,149,893.1)       1.0       4,606,713.4      0.9          89.86      1.4                 

352010 Biotechnology 3,784.0         0.0            46,294.3          842.4          4.4           0.1            (201,261.1)      (0.0)                 2.44        277.8        (40,606,501,181.5)         0.0       (144,355.2)        (0.0)        19.07      0.0                 

352020 Pharmaceuticals 7.0                0.0            13.2                 0.0              (0.5)         (0.0)          (11.3)                (244.6)            0.05        6.4             (28.7)                                0.0       (3.2)                    (0.0)        0.23        0.0                 

352030 Life Sciences Tools & Services (2,801.6)       (0.1)           31,404.3          944.1          4.6           21.9         (271,068.5)      (24,000.5)       (5.09)       (782.4)       (20,880,811,813.2)         (0.0)     119,583.5         0.1          21.34      5.6                 

401010 Banks 11,580.1      1.1            49,490.9          1,603.2      7.5           8.8            (165,349.8)      (0.0)                 (14.27)     (1,157.9)    (130,146,840,056.9)       0.6       (1,301,905.5)     (0.6)        56.21      0.3                 

401020 Thrifts & Mortgage Finance 6,774.7         0.2            50,234.2          1,146.1      5.6           12.1         (195,934.8)      (7,080.7)         (4.56)       (223.6)       (76,479,952,603.2)         1.1       (418,253.3)        (0.2)        30.87      1.2                 

402010 Diversified Financial Services 5.0                0.0            2.2                    0.0              1.1           0.0            (4.1)                  (9,176.7)         0.03        5.7             26.2                                  (0.0)     (12.9)                  (0.0)        1.29        0.0                 

402020 Consumer Finance 3,658.9         0.1            36,773.1          347.9          3.2           1.9            (90,124.4)         (0.0)                 7.62        1,060.0     (13,673,950,899.2)         0.1       (74,737.8)          (0.1)        10.21      0.1                 

402030 Capital Markets 9.9                23.1          0.9                    63.7            1.3           161.6       (0.4)                  (275.9)            0.28        8.0             170.2                               (11.4)   (34.5)                  (23.1)      1.74        3,759.5         
402040 Mortgage Real Estate Investment Trusts (REITs) 3,763.6         0.0            62,671.9          0.0              (2.2)         (0.0)          (203,361.2)      (34,553.5)       (19.97)     (1,039.6)    (18,198,278,886.5)         0.0       (35,001.7)          (0.0)        4.65        0.0                 

403010 Insurance 15.2              29.7          2.4                    87.9            2.0           110.2       (33,152.8)         (285.6)            0.61        127.5        922.1                               (14.2)   (124.5)                (29.7)      4.10        740.4             

404010 Internet Software & Services (old) 3.8                11.6          (0.1)                  (35.6)          1.9           21.8         (2.5)                  (374.3)            0.68        49.2           49.5                                  (4.9)     (26.3)                  (11.5)      3.50        34.0               

404020 IT Services (old) 49,246.1      9.7            62,341.2          2,143.2      13.9        74.9         (139,788.4)      (4,582.4)         14.10      2,849.4     (282,065,633,322.9)       3.3       (19,011,987.8)   (8.1)        193.03    7.3                 

404030 Real Estate Management & Development (2.8)               (4.1)           (5.7)                  (99.5)          (0.4)         (123.6)      (2.6)                  (0.5)                 (0.00)       (0.1)           (3.7)                                  6.2       0.8                     4.1          0.14        26,437.2       

451010 Internet Software & Services 8.0                15.4          1.4                    38.7            (1.4)         (121.5)      (2,502.0)           (1.0)                 (10.17)     (1,231.7)    126.9                               (7.4)     (32.8)                  (15.4)      2.05        1,796.4         

451020 IT Services 30,800.2      201.4        38,486.7          509.0          1.0           403.1       (0.7)                  (95.8)               0.02        5.5             (537,382,793.4)               56.5    (62,157.1)          (201.4)    1.01        40,257.7       

451030 Software 2,301.5         0.0            (62,265.6)        (0.0)             (1.3)         (0.0)          (139,095.8)      (956,748.2)     16.68      3,961.0     (7,031,930,422.4)            0.0       (8,360.1)            (0.0)        1.82        0.0                 

452010 Communications Equipment 33.6              0.0            (0.9)                  (0.0)             4.9           0.0            (107,598.7)      (11,954.5)       (13.70)     (4,173.2)    27,262.5                          (0.0)     (1,621.5)            (0.0)        24.09      0.0                 

452020 Technology Hardware, Storage & Peripherals 0.2                0.2            (17.4)                (125.5)        (2.8)         (619.6)      6.8                    361.2              (0.09)       (24.0)         (2,449.8)                           194.0  (3.5)                    (0.2)        8.07        11,886.2       

452030 Electronic Equipment, Instruments & Components 4,925.0         0.1            76,354.7          200.8          2.0           0.3            (61,709.7)         (65,551.9)       14.72      1,693.4     (23,874,086,057.7)         0.0       (40,504.4)          (0.0)        4.11        0.0                 

452040 Semiconductors & Semiconductor Equipment (old) (3,265.5)       (0.0)           31,561.7          32.4            5.1           0.0            (333,638.5)      (0.1)                 (7.71)       (250.5)       (25,450,214,442.3)         0.0       168,662.5         0.0          25.83      0.0                 

452050 Semiconductor Equipment & Products (3,862.6)       (0.1)           26,462.6          635.4          6.3           26.4         (298,507.2)      (1.9)                 9.27        420.3        (27,206,361,541.3)         0.0       306,672.4         0.1          39.70      4.4                 

453010 Semiconductors & Semiconductor Equipment (37,229.9)     (0.7)           (71,799.6)        (1,335.7)     13.6        43.6         (337,225.3)      (0.1)                 (8.99)       (2,699.0)    (695,404,053,036.2)       0.1       13,737,902.5    0.7          184.50    2.6                 

501010 Diversified Telecommunication Services 9.0                17.1          (6.6)                  (82.1)          (1.5)         (189.1)      (16,211.9)         (218.8)            (17.19)     (6,063.4)    90.2                                  (4.0)     (42.6)                  (17.1)      2.36        3,790.8         

501020 Wireless Telecommunication Services 0.0                0.0            (94.2)                (1,018.0)     1.8           3,192.0    4.8                    13.1                0.00        1.0             (29,867.2)                         100.5  (0.3)                    (0.0)        3.37        756,310.9     

551010 Electric Utilities 1,908.8         0.0            (58,788.8)        (3.4)             (1.3)         (0.1)          (127,300.5)      (5,127.2)         11.79      2,952.7     (5,872,321,542.1)            0.0       (6,493.5)            (0.0)        1.70        0.0                 

551020 Gas Utilities 2.0                0.0            (2.1)                  (0.0)             (0.6)         (0.0)          (0.9)                  (60.9)               (0.01)       (1.6)           (0.1)                                  0.0       (1.2)                    (0.0)        0.31        0.0                Partial convergence

551030 Multi-Utilities 4,302.2         0.0            56,073.9          0.0              (2.6)         (0.0)          (165,712.2)      (673.0)            (14.73)     (4,464.5)    (20,875,192,491.0)         0.0       (57,464.0)          (0.0)        6.68        0.0                 

551040 Water Utilities 13,720.9      0.4            65,993.7          1,094.8      14.9        82.0         (1,354,796.3)   (41,707.2)       19.67      4,210.4     (925,530,644,375.2)       1.8       (6,095,226.6)     (0.4)        222.11    7.6                 

551050 Independent Power and Renewable Electricity Producers 5.1                11.9          (3.3)                  (38.7)          1.1           54.7         (7.9)                  (113.5)            0.03        3.2             19.7                                  (3.4)     (13.2)                  (11.9)      1.29        581.0             

601010 Equity Real Estate Investment Trusts (REITs) 14.0              27.1          (1.9)                  (87.0)          1.9           127.9       (109.3)              (49.3)               0.01        1.6             657.3                               (13.1)   (96.0)                  (27.1)      3.44        1,189.6         

601020 Real Estate Management & Development 3,943.9         0.0            50,371.4          0.0              (2.7)         (0.0)          (147,993.6)      (53,550.8)       (11.53)     (1,728.4)    (17,796,149,395.7)         0.0       (55,665.0)          (0.0)        7.06        0.0                 
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101010 Energy Equipment & Services 5,774.9       1.4          19,945.6          504.7         6.51         21.8           (84,584.5)         (13,486.0)       12.75      3,127.3     1.83E+10 7.8          488,985.7             18.9          (42.34)     4,745.1             

101020 Oil, Gas & Consumable Fuels (5,186.0)     (0.4)         36,403.5          1,438.0     7.23         65.7           (456,259.7)       (0.0)                7.95         1,102.2     7.07E+10 (56.9)      (542,651.6)           (5.0)          (52.32)     895.5                

151010 Chemicals 5,003.9       0.0          (88,285.3)        (0.0)            (1.51)       (0.0)            (81,460.0)         (0.0)                (18.51)     (383.3)       1.78E+10 (15.1)      22,735.7               3.1            (2.27)       7,838.6             

151020 Construction Materials 8,283.9       2.1          29,072.6          3,797.5     9.34         153.0         (182,419.4)       (0.0)                (4.70)       (86.0)         7.98E+10 7.4          1,446,132.4         (15.1)        (87.29)     708.8                

151030 Containers & Packaging (8,175.2)     (0.0)         49,240.4          1,219.8     8.87         49.9           (816,210.0)       (0.0)                8.16         1,071.6     1.96E+11 0.0          (1,286,786.0)        (0.0)          (78.70)     0.0                     

151040 Metals & Mining (6,066.7)     (0.0)         (50,006.9)        (0.0)            2.93         0.0             (85,713.9)         (447.3)            13.30      1,672.5     2.19E+10 2.2          (104,491.4)           5.5            (8.61)       5,360.0             

151050 Paper & Forest Products (20,173.2)   (1.7)         79,472.3          3.8             0.59         3.6             (161.9)              (1.4)                8.12         178.8         2.31E+09 0.5          (13,893.1)             (1.2)          (0.34)       1,791,386.6      

201010 Aerospace & Defense 34,402.0     0.1          96,551.0          5.4             0.72         1.7             (0.7)                   (141.9)            0.01         1.0             5.47E+09 0.0          35,813.5               (0.1)          (0.52)       0.0                     

201020 Building Products 22,501.0     4.1          (48,907.6)        (6.3)            0.69         8.5             (26.4)                (907.0)            3.44         29.5           1.37E+09 6.2          21,299.5               (12.7)        (0.47)       65,172.1           

201030 Construction & Engineering (6,370.8)     (0.0)         28,042.9          801.8         9.31         7.3             (533,367.0)       (0.3)                9.70         1,083.4     7.17E+10 30.9       (1,104,719.9)        (61.7)        (86.70)     1,273.0             

201040 Electrical Equipment (46,101.0)   (0.5)         (96,828.4)        (802.8)       11.17      6.1             (112,445.0)       (0.0)                (8.38)       (127.7)       1.43E+12 0.5          (11,499,325.6)      (1.2)          (124.72)   82.9                   

201050 Industrial Conglomerates (34,121.3)   (0.0)         (76,938.9)        (0.0)            9.94         0.0             (131,738.4)       (7,790.2)         (4.82)       (251.6)       7.00E+11 8.4          (6,744,508.6)        (17.2)        (98.83)     181.5                

201060 Machinery 9,566.4       0.4          44,358.9          1,194.7     11.15      55.6           (441,006.4)       (0.0)                (9.34)       (1,170.0)    2.56E+11 14.6       2,377,265.2         (29.8)        (124.25)   886.6                

201070 Trading Companies & Distributors 1,446.7       0.0          (73,206.6)        (0.4)            (0.87)       (0.1)            (111,845.9)       (0.0)                11.39      1,624.9     4.06E+09 0.0          2,190.4                 (0.0)          (0.76)       0.0                     

202010 Commercial Services & Supplies 19,174.1     1.2          66,452.4          1,742.9     8.93         12.2           (209,994.9)       (0.0)                (11.64)     (2,680.8)    3.81E+11 (0.7)        3,055,659.3         (1.1)          (79.68)     1.7                     

202020 Professional Services (10,626.5)   (0.1)         (42,480.4)        (390.5)       5.54         1.5             (70,742.4)         (0.0)                (6.88)       (175.6)       5.88E+10 (8.8)        (651,879.6)           (1.4)          (30.67)     10.1                   

203010 Air Freight & Logistics 5,907.9       4.6          (13,964.5)        (6.8)            0.67         9.4             (0.3)                   3.0                  0.20         3.0             1.04E+08 0.1          5,363.6                 (1.0)          (0.45)       448.2                

203020 Airlines 1,150.2       0.0          (44,494.3)        (0.0)            (0.89)       (0.0)            (78,483.7)         (0.0)                13.88      973.4         1.56E+09 (0.0)        1,809.6                 0.0            (0.79)       0.0                     

203030 Marine (5,921.6)     (0.0)         (62,483.5)        (0.0)            2.57         0.0             (72,914.9)         (0.0)                8.33         899.9         2.60E+10 4.8          (78,187.0)             (8.4)          (6.60)       33.4                   

203040 Road & Rail (21,407.4)   (0.1)         (28,205.0)        (3,521.9)    12.01      4.2             (81,481.0)         (1.1)                2.51         361.6         1.81E+11 0.0          (6,173,278.9)        (0.0)          (144.19)   0.0                     

203050 Transportation Infrastructure 9,902.8       0.9          38,312.2          1,497.8     10.69      65.8           (309,789.1)       (0.0)                (8.60)       (122.2)       1.79E+11 5.5          2,262,316.4         (11.4)        (114.23)   42,038.6           

251010 Auto Components (6,843.3)     (0.2)         26,456.5          766.8         9.98         67.1           (559,701.5)       (12,376.0)       12.63      1,553.7     7.44E+10 (0.0)        (1,363,083.8)        0.0            (99.59)     0.0                     

251020 Automobiles 2,793.1       0.0          (78,542.3)        (0.0)            (1.40)       (0.0)            (162,741.9)       (0.0)                15.94      1,124.0     1.21E+10 (0.1)        10,977.8               (0.1)          (1.97)       9,925.9             

252010 Household Durables 2,639.7       0.0          (88,521.1)        (6.0)            (1.24)       (0.5)            (148,129.8)       (3,545.8)         (14.19)     (2,905.4)    1.20E+10 (8.8)        8,106.2                 5.1            (1.54)       74.8                   

252020 Leisure Products (21,404.5)   (1.2)         (39,315.6)        (1,258.4)    13.95      86.6           (342,844.4)       (0.0)                (11.34)     (2,261.7)    3.90E+11 0.0          (8,333,932.5)        (0.3)          (194.68)   325.4                

252030 Textiles, Apparel & Luxury Goods 6,728.7       0.4          23,741.6          1,299.4     10.83      94.7           (266,768.3)       (0.0)                5.82         115.7         7.15E+10 (0.2)        1,579,241.9         (0.1)          (117.35)   0.5                     

253010 Hotels, Restaurants & Leisure (5,617.8)     (0.1)         77,098.8          528.7         4.64         12.3           (820,430.9)       (0.0)                (14.44)     (376.2)       1.29E+11 (8.3)        (241,608.8)           3.1            (21.50)     29.7                   

253020 Diversified Consumer Services 4,573.2       1.0          16,872.5          375.1         5.02         9.9             (38,113.8)         (0.0)                9.05         426.0         7.70E+09 13.5       230,343.2             (28.7)        (25.18)     3,411.2             

254010 Media 1,871.7       0.1          (92,377.0)        (0.4)            (0.07)       (0.2)            (254.7)              (2,276.0)         (9.54)       (378.4)       3.86E+07 0.0          16.9                      (0.0)          (0.00)       0.0                     

255010 Distributors (43,039.0)   (5.0)         (99,671.0)        (7,756.5)    0.60         1,846.7     (0.1)                   (19.5)              (0.00)       (0.0)            4.31E+09 (13.1)      (31,447.1)             0.0            (0.37)       328.6                

255020 Internet & Direct Marketing Retail (4,732.6)     (0.0)         (78,044.4)        (0.0)            1.86         0.0             (50,259.6)         (0.0)                (8.81)       (378.2)       2.11E+10 5.1          (32,695.6)             (10.2)        (3.45)       93,762,735.2   

255030 Multiline Retail 35,736.5     2.5          77,800.4          3,370.9     18.62      231.1         (1,121,474.2)   (0.0)                13.77      287.9         2.54E+12 (5.2)        24,774,463.9       1.3            (346.63)   176,024.8         

255040 Specialty Retail (10,846.0)   (0.4)         47,315.8          1,110.8     12.17      111.8         (1,480,888.5)   (0.0)                (18.65)     (1,647.2)    3.49E+11 16.1       (3,210,244.1)        (31.2)        (147.99)   476.2                

301010 Food & Staples Retailing 4,727.2       0.3          31,946.7          905.6         5.32         20.3           (143,963.5)       (0.0)                5.16         175.1         2.96E+10 1.2          267,991.6             (4.1)          (28.35)     733.3                

302010 Beverages (38,865.9)   (0.0)         (94,104.9)        (512.4)       9.44         0.3             (68,405.0)         (0.0)                (8.45)       (1,101.2)    9.23E+11 (1.6)        (6,923,930.8)        (2.2)          (89.07)     3.0                     
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302020 Food Products 16,141.3     2.2          67,531.2          2,250.2     11.34      69.9           (490,007.1)       (0.0)                (17.80)     (516.6)       6.20E+11 14.8       4,148,465.3         (18.7)        (128.50)   13.1                   

302030 Tobacco 4,497.6       0.0          (82,913.7)        (0.0)            (1.90)       (0.0)            (158,001.1)       (0.0)                19.55      752.1         2.50E+10 (0.0)        32,574.1               (0.0)          (3.62)       0.0                     

303010 Household Products 4,705.5       0.4          39,753.9          892.6         4.87         17.2           (175,090.9)       (0.0)                6.90         842.4         3.80E+10 2.4          223,264.1             (5.1)          (23.72)     3,551.9             

303020 Personal Products (5,674.7)     (0.0)         (92,069.5)        (0.2)            2.04         0.0             (83,181.1)         (0.0)                6.86         574.0         3.54E+10 (0.0)        (47,170.4)             1.2            (4.16)       34.6                   

351010 Health Care Equipment & Supplies 6,729.5       0.4          32,240.5          668.8         10.97      31.3           (312,056.3)       (0.1)                (13.68)     (722.9)       1.31E+11 2.5          1,619,595.0         (6.5)          (120.34)   1,215.2             

351020 Health Care Providers & Services (11,274.0)   (0.0)         (76,582.1)        (0.0)            3.92         0.0             (126,391.6)       (0.2)                12.96      1,037.0     9.19E+10 2.2          (345,955.4)           (2.6)          (15.34)     3.0                     

351030 Health Care Technology 3,963.7       1.5          54,164.6          82.4           0.03         4.8             (5.8)                   (1,059.1)         0.84         35.9           2.14E+06 7.1          5.8                         (13.8)        (0.00)       123.6                

352010 Biotechnology 5,927.9       3.2          (8,482.3)           (5.1)            0.72         10.1           0.0                    2.9                  0.04         0.8             5.51E+07 20.1       6,103.4                 (39.4)        (0.51)       727.3                

352020 Pharmaceuticals 7,085.6       0.3          21,566.4          165.5         10.82      27.6           (160,818.3)       (0.0)                (8.54)       (525.4)       6.04E+10 (2.7)        1,660,427.3         (1.0)          (117.17)   5,416.5             

352030 Life Sciences Tools & Services 68,124.2     3.6          (97,879.1)        (6.3)            0.65         10.3           (0.2)                   (73.0)              0.07         2.0             6.02E+09 5.2          57,638.3               (10.7)        (0.42)       43,638.3           

401010 Banks (4,632.6)     (0.0)         57,938.2          726.1         5.08         7.9             (690,669.8)       (0.0)                (9.65)       (673.7)       8.73E+10 (0.2)        (239,403.0)           (0.6)          (25.84)     0.3                     

401020 Thrifts & Mortgage Finance 15,138.3     0.6          69,276.4          1,739.5     7.64         6.8             (206,037.5)       (20,366.8)       (11.00)     (728.7)       2.94E+11 5.0          1,767,425.0         (10.8)        (58.38)     748.2                

402010 Diversified Financial Services (79,505.8)   (3.6)         (93,318.0)        (5,820.6)    19.96      169.6         (493,721.2)       (0.0)                10.54      574.1         5.98E+12 0.1          (63,321,259.0)      (0.6)          (398.22)   7.8                     

402020 Consumer Finance (3,896.3)     (0.5)         25,774.6          1,002.4     6.56         47.0           (307,118.1)       (0.0)                10.87      229.8         2.92E+10 (0.0)        (335,190.6)           (0.1)          (43.01)     0.1                     

402030 Capital Markets 3,481.2       0.4          20,255.5          467.3         4.45         10.0           (66,748.0)         (0.0)                6.93         532.6         8.35E+09 12.5       137,641.6             (25.2)        (19.77)     5,760.2             
402040 Mortgage Real Estate Investment Trusts (REITs) 13,271.2     1.6          57,093.5          2,419.2     11.01      90.9           (469,195.6)       (0.0)                (11.73)     (222.0)       4.17E+11 2.2          3,219,685.7         (8.2)          121.30    1,368.3             

403010 Insurance 3,680.1       0.0          42,908.5          768.7         5.96         0.0             (252,446.9)       (0.0)                (9.14)       (555.0)       6.60E+10 11.6       261,771.7             (24.1)        35.57      842.6                

404010 Internet Software & Services (old) 1,218.7       0.0          (99,775.6)        (0.0)            (0.51)       (0.0)            (70,461.0)         (0.3)                19.92      1,121.2     2.62E+09 6.9          642.1                    (11.5)        (0.26)       34.0                   

404020 IT Services (old) 2,953.3       0.0          (74,375.6)        (1.2)            (1.74)       (0.0)            (181,226.9)       (0.0)                10.83      210.2         1.68E+10 (1.8)        17,948.1               (8.1)          (3.04)       7.3                     

404030 Real Estate Management & Development 3,407.2       0.0          (57,527.4)        (68.8)         (2.35)       (1.0)            (201,853.4)       (0.0)                12.94      1,851.1     1.84E+10 (6.3)        37,773.1               4.1            (5.54)       26,437.2           

451010 Internet Software & Services (24,224.8)   (9.0)         (36,403.8)        (6,336.5)    15.64      462.0         (284,768.6)       (0.0)                (7.87)       (57.6)         4.68E+11 8.1          (11,851,651.9)      (15.6)        (244.62)   187.3                

451020 IT Services 8,468.8       1.1          45,434.8          2,020.7     8.14         80.0           (363,680.6)       (0.1)                8.69         617.8         1.42E+11 (56.4)      1,122,673.6         (201.4)      (66.28)     40,257.7           

451030 Software 51,645.4     2.1          (99,573.3)        (9,364.4)    (0.74)       (4,438.7)    (0.1)                   (0.0)                0.00         0.0             6.80E+09 (6.5)        55,844.8               (134.6)      (0.54)       397,917.7         

452010 Communications Equipment 10,355.7     0.2          98,482.3          4.3             (0.07)       (0.6)            (3.4)                   (252.0)            (0.96)       (8.2)            5.50E+07 0.0          116.1                    (0.0)          (0.01)       0.0                     

452020 Technology Hardware, Storage & Peripherals (4,609.4)     (0.1)         29,166.9          1,196.5     7.26         61.2           (389,202.6)       (0.0)                5.80         338.3         4.60E+10 (188.5)    (486,539.5)           (0.2)          (52.78)     11,886.2           

452030 Electronic Equipment, Instruments & Components (3,913.9)     (3.4)         (77,813.2)        (5.4)            0.27         6.8             (1.6)                   (120.4)            0.18         3.9             4.46E+08 3.2          (574.8)                   (6.5)          (0.07)       333.8                

452040 Semiconductors & Semiconductor Equipment (old) (37,284.6)   (108.8)    59,362.0          142.3         0.76         217.6         (0.5)                   0.4                  0.17         1.5             2.86E+09 7.0          (43,371.9)             (14.3)        (0.58)       187,063.9         

452050 Semiconductor Equipment & Products 26,363.4     0.0          68,357.5          334.5         7.98         0.4             (95,897.4)         (18.2)              11.24      334.2         3.42E+11 (65.7)      3,360,845.9         (262.1)      (63.74)     2,277.6             

453010 Semiconductors & Semiconductor Equipment (3,491.3)     (0.0)         29,211.0          935.7         5.59         10.2           (292,948.6)       (0.0)                5.26         132.8         2.70E+10 24.2       (218,141.3)           (47.6)        (31.24)     1,206.3             

501010 Diversified Telecommunication Services (5,533.8)     (0.0)         (93,213.5)        (17.1)         1.87         0.0             (136,756.3)       (394.9)            20.00      4,419.6     3.06E+10 0.6          (38,825.3)             (1.5)          (3.51)       9.8                     

501020 Wireless Telecommunication Services (9,715.8)     (3.9)         (25,321.9)        (25.3)         0.16         7.4             (3.9)                   (0.2)                1.57         102.9         1.82E+07 (101.2)    (481.1)                   (0.0)          (0.02)       756,310.9         

551010 Electric Utilities 2,469.9       0.0          (79,856.0)        (0.0)            (1.43)       (0.0)            (252,258.0)       (52.9)              20.00      5,010.1     1.30E+10 (5.5)        10,075.5               (29.9)        (2.04)       245,977.6         

551020 Gas Utilities 3,291.4       2.9          11,082.4          1,348.8     6.57         75.2           (57,781.7)         (0.0)                7.64         803.2         5.77E+09 (0.0)        284,145.5             (0.0)          (43.17)     0.0                     

551030 Multi-Utilities 1,372.5       0.0          (36,781.5)        (0.0)            (1.29)       (0.0)            (120,324.9)       (0.0)                18.10      1,020.1     2.27E+09 0.0          4,595.8                 (0.2)          (1.67)       0.1                     

551040 Water Utilities (2,338.5)     (0.1)         (43,674.4)        (127.7)       1.50         0.5             (46,625.8)         0.0                  (11.04)     (1,223.2)    4.28E+09 1.8          (10,463.7)             (3.5)          (2.24)       33.7                   

551050 Independent Power and Renewable Electricity Producers 19,011.1     0.5          87,523.1          283.5         5.44         3.1             (113,606.5)       (0.0)                14.54      1,819.3     2.37E+11 3.4          1,124,135.0         (11.9)        (29.57)     581.0                

601010 Equity Real Estate Investment Trusts (REITs) (5,253.6)     (0.1)         (66,801.6)        (227.1)       2.25         0.5             (50,470.1)         0.0                  (9.84)       (751.2)       2.27E+10 13.4       (53,155.9)             (27.1)        (5.06)       1,189.6             

601020 Real Estate Management & Development (39,191.2)   (0.2)         (52,135.4)        (0.6)            (0.58)       (2.5)            (0.0)                   (1.7)                0.05         5.2             1.45E+09 6.3          (26,669.9)             (27.8)        (0.34)       684.2                
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GCC Ticker Symbol Company Name theta1 t theta2 t theta3 t mu0 t mu1 t sigma0 t sigma1 t sigma2 t Comment

1045 AAL AMERICAN AIRLINES GROUP INC (3,630.6)       (0.1)           34,469.7          483.9          5.01        18.5            (426,394.6)      (200,113.8)     (12.19)     (2,990.1)    (29,506,824,735.1)    (0.4)     182,349.8            0.1          25.11      3.4                   

1121 AE ADAMS RESOURCES & ENERGY INC 437.3            5.0            (2,223.1)           (106.8)        0.50        29.7            (0.6)                  (12.7)               0.02        3.9             (1,166,066.8)              (56.9)   (214.7)                  (5.0)        0.25        895.5               

1186 AEM AGNICO EAGLE MINES LTD 51.8              4.6            1.9                    3.6              (1.00)       (11.0)          (1.1)                  (1.5)                 (0.70)       (125.8)       2,692.7                       2.4       (104.0)                  (4.6)        1.00        30.1                 

1234 ATRI ATRION CORP 29,203.2      0.0            (88,412.2)        (0.0)             (8.28)       (0.0)            (180,537.1)      (0.0)                 12.77      1,476.5     (477,635,071,771.7)  (0.0)     (4,005,947.8)       (0.0)        68.59      0.0                   

1356 AA ALCOA INC 32.8              2.4            7.7                    146.8          1.24        150.1         (1,062.9)           (39.4)               0.01        1.3             1,566.8                       1.1       (101.0)                  (2.4)        1.54        3,660.1            

1388 AMR1 AMERICAN AIRLINES INC 23,671.8      0.0            (88,368.7)        (0.0)             (5.35)       (0.0)            (111,340.0)      (241,733.7)     (19.37)     (2,130.1)    (207,583,100,467.8)  (0.0)     (1,355,799.7)       (0.0)        28.64      0.0                   

1449 AFL AFLAC INC 9.1                34.3          1.6                    146.4          0.89        200.3         (6,643.6)           (0.0)                 (1.25)       (24.1)         63.0                             16.6    (14.3)                    (34.3)      0.79        12,733.0         

1487 AIG AMERICAN INTERNATIONAL GROUP (8,041.8)       (0.3)           17,969.6          821.5          13.84      132.4         (571,057.2)      (118,541.6)     16.89      2,212.7     (49,430,126,242.0)    (0.2)     3,078,623.5         0.3          191.41    22.9                 

1690 AAPL APPLE INC 7,339.5         0.4            70,287.9          1,628.4      8.98        44.3            (669,873.8)      (0.3)                 (10.60)     (1,080.6)    (393,749,898,223.2)  (3.2)     (1,182,817.1)       (0.4)        80.58      6.1                   

1712 TREC TRECORA RESOURCES 10.8              1.1            4.2                    10.6            1.31        35.0            (31,602.6)         (11.4)               (0.49)       (93.6)         169.4                          0.4       (37.0)                    (1.1)        1.72        177.6               

1794 ASH ASHLAND GLOBAL HOLDINGS INC 28.6              0.4            4.5                    12.7            1.45        18.5            (1,210,123.6)   (534,929.0)     17.65      4,865.8     1,676.4                       0.1       (120.1)                  (0.4)        2.10        40.6                 

1860 ATW ATWOOD OCEANICS 21.1              0.7            71.6                 505.2          1.57        436.4         (896,469.9)      (0.0)                 (10.32)     (1,688.4)    (11,597.3)                    (2.4)     (104.3)                  (0.7)        2.48        19,227.8         

1864 REX REX AMERICAN RESOURCES CORP 10.2              1.8            10.9                 97.9            1.00        91.6            (23,030.1)         (346.7)            (19.83)     (6,196.5)    (14.8)                           (0.1)     (20.4)                    (1.8)        1.00        2,096.0            

1920 AVP AVON PRODUCTS 5.0                14.3          (4.9)                  (80.2)          (1.04)       (135.3)        (210,659.9)      (159,333.2)     (13.71)     (2,160.3)    0.7                               0.2       (10.7)                    (14.3)      1.08        4,248.6            

1968 BMI BADGER METER INC 16,896.7      1.5            62,567.4          6.6              1.00        3.3              (7.2)                  (591.4)            0.20        21.4           (3,651,235,124.4)       (1.8)     (33,998.8)             (1.5)        1.01        2.6                   

2052 BRN BARNWELL INDUSTRIES 6,801.9         1.4            96,776.8          11.3            0.43        2.8              (4.1)                  (384.0)            0.17        28.6           (1,735,079,422.1)       (8.8)     (2,532.7)               (1.4)        0.19        10.1                 

2337 RFP RESOLUTE FOREST PRODUCTS INC 17.4              0.8            32.1                 221.4          1.13        160.6         (2,353.4)           1,368.5           2.94        1,368.5     (925.6)                         (0.7)     (44.4)                    (0.8)        1.27        5,059.3            

2444 BC BRUNSWICK CORP (16,627.4)     (0.0)           (99,703.5)        (0.0)             0.72        0.0              (951.1)              (9,908.5)         19.85      2,239.3     (5,025,016,851.9)       (0.0)     17,291.1              0.0          0.52        0.0                   

2556 CSS CSS INDUSTRIES INC 25.6              0.0            1.3                    0.0              4.44        0.0              (442.1)              (23.8)               (3.08)       (643.0)       12,859.7                     0.0       (1,008.5)               (0.0)        19.72      0.0                   

2787 CRS CARPENTER TECHNOLOGY CORP 111.7            0.0            (2.6)                  (0.0)             5.79        0.0              (83.4)                (10.5)               (9.69)       (2,656.7)    417,911.3                   0.0       (7,489.0)               (0.0)        33.53      0.0                   

3093 CLC CLARCOR INC 5.2                8.0            0.9                    26.6            1.28        462.0         (86,845.0)         (0.1)                 0.88        54.6           43.6                             3.9       (17.1)                    (8.0)        1.63        32,631.0         

3105 IHRT IHEARTMEDIA INC 28.8              0.5            6.2                    27.6            1.30        31.8            (135,712.2)      (11,270.6)       15.15      3,108.2     1,350.3                       0.1       (98.2)                    (0.5)        1.70        148.5               

3138 COKE COCA-COLA BTLNG CONS 4,894.8         0.1            36,971.1          847.5          5.21        10.1            (181,345.6)      (0.0)                 (4.91)       (916.1)       (36,474,403,286.6)    (0.2)     (265,896.9)          (0.1)        27.16      0.9                   

3226 CMCSA COMCAST CORP (37,216.5)     (5.1)           (97,715.4)        (3.5)             0.60        10.5            (0.4)                  (755.4)            0.02        2.2             (2,970,188,357.8)       (8.8)     27,082.4              5.1          0.36        74.8                 

3429 CTO CONSOLIDATED TOMOKA LAND CO 3.5                8.6            2.4                    38.3            (0.71)       (60.5)          (226,219.5)      (0.0)                 5.41        787.5         3.5                               2.3       (3.6)                      (8.6)        0.51        1,797.4            

3622 CRWS CROWN CRAFTS INC 11,392.1      0.1            95,835.8          1,001.7      6.03        8.9              (416,337.9)      (43,022.9)       (6.73)       (1,424.5)    (329,344,661,526.3)  (0.2)     (828,724.9)          (0.1)        36.37      0.5                   

3813 TGT TARGET CORP (19,846.4)     (3.1)           63,455.6          5.3              0.58        6.4              (0.3)                  (160.3)            0.21        5.2             (1,227,990,430.8)       (8.3)     13,417.6              3.1          0.34        29.7                 

4145 PKI PERKINELMER INC 5.8                28.7          1.4                    91.5            1.04        121.9         (23.7)                (0.1)                 (0.00)       (0.2)            34.3                             13.5    (12.6)                    (28.7)      1.09        3,411.2            

4201 EV EATON VANCE CORP 21.8              0.0            (1.1)                  (0.0)             1.88        0.0              (0.5)                  (44.7)               0.02        6.5             1,686.6                       0.0       (154.9)                  (0.0)        3.55        0.0                   

4275 ELSE ELECTRO-SENSORS INC 11.0              7.9            (45.2)                (54.3)          (0.18)       (17.7)          (2.0)                  (70.7)               (0.41)       (74.7)         (63.3)                           (35.5)   (0.7)                      (7.9)        0.03        2,379.1            

4485 KINS KINGSTONE COS INC (4,096.5)       (0.0)           30,669.0          734.3          6.00        20.7            (347,158.4)      (0.0)                 7.60        141.2         (33,245,167,812.3)    (0.1)     294,845.4            0.0          35.99      3.0                   

4600 FDML FEDERAL-MOGUL HOLDINGS CORP 4,874.2         0.0            (62,820.2)        (3.0)             (1.67)       (0.0)            (50,968.6)         (0.0)                 (16.21)     (1,819.3)    (10,993,994,642.4)    (0.0)     (27,322.0)             (0.0)        2.80        0.0                   

4605 FRT FEDERAL REALTY INVESTMENT TR (77,458.6)     (18.0)         47,721.9          221.4          (11.98)     (30.5)          (13,840.8)         (0.0)                 (14.69)     (3,503.6)    534,140,603,403.8    2.0       22,229,301.4      3.2          143.49    1.6                   

4885 BEN FRANKLIN RESOURCES INC 7.4                4.7            (4.8)                  (50.6)          (1.28)       (73.5)          (879,118.2)      (0.1)                 10.58      2,302.7     53.2                             1.4       (24.4)                    (4.7)        1.64        821.9               

4926 FUL FULLER (H. B.) CO 28,536.6      2.3            62,209.2          2,128.8      13.12      45.6            (264,579.0)      (347.6)            (10.14)     (1,522.2)    (525,705,012,712.9)  (1.6)     (9,819,062.3)       (2.2)        172.04    3.0                   
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4988 TGNA TEGNA INC 21.2              1.8            7.9                    108.4          0.95        77.2            (123,460.0)      (4,863.4)         1.31        159.5         353.2                          0.7       (38.6)                    (1.8)        0.91        1,640.6            

5046 GD GENERAL DYNAMICS CORP 1,341.1         0.0            (51,289.2)        (0.0)             (0.76)       (0.0)            (47,643.7)         (0.0)                 (12.98)     (1,300.1)    (1,537,857,539.7)       (0.0)     (1,569.1)               (0.0)        0.59        0.0                   

5087 SPXC SPX CORP 7,531.3         0.0            69,274.5          0.0              (4.86)       (0.0)            (572,223.5)      (1,913.4)         19.99      9,116.8     (112,157,525,701.2)  (0.0)     (356,243.8)          (0.0)        23.65      0.0                   

5125 GPC GENUINE PARTS CO (3.9)               (12.8)         5.6                    264.1          (0.60)       (288.2)        (18,355.5)         (0.0)                 4.59        996.9         (5.9)                             (6.7)     2.8                        12.8        0.36        57,701.7         

5237 GRC GORMAN-RUPP CO 12.2              0.0            (5.7)                  (0.0)             1.33        0.0              (68.7)                (102.4)            0.01        3.3             205.8                          0.0       (43.1)                    (0.0)        1.76        0.0                   

5256 GWW GRAINGER (W W) INC 24.5              2.9            (1.4)                  (10.6)          1.61        5.6              (0.7)                  (19,899.8)       0.03        8.4             1,561.9                       2.2       (127.7)                  (2.6)        2.60        3.0                   

5639 HRC HILL-ROM HOLDINGS INC 5.7                67.4          1.1                    201.1          0.88        135.4         (13,426.6)         (21,768.8)       3.57        743.2         24.3                             32.4    (8.9)                      (67.4)      0.78        5,894.3            

5680 HD HOME DEPOT INC 4,779.2         0.5            27,678.7          864.9          8.95        31.1            (225,657.1)      (0.0)                 (11.33)     (1,287.7)    (59,542,484,913.3)    (1.8)     (765,715.5)          (0.5)        80.11      3.0                   

5690 HNI HNI CORP 7.3                2.2            (5.5)                  (29.4)          1.00        35.7            (15.4)                (564.6)            0.08        10.8           22.7                             0.4       (14.7)                    (2.2)        1.01        316.3               

5783 JBHT HUNT (JB) TRANSPRT SVCS INC 10.7              2.8            5.1                    53.4            1.01        55.1            (1,681.5)           (5,366.1)         0.96        147.2         89.1                             1.1       (21.7)                    (2.8)        1.02        743.5               

5860 ITT ITT INC 7.4                2.6            3.3                    9.5              (1.73)       (22.5)          (260,040.9)      (0.0)                 (12.67)     (1,027.9)    131.8                          1.0       (44.3)                    (2.6)        2.98        42.4                 

5862 RYN RAYONIER INC (15.7)             (1.4)           10.4                 34.2            1.65        42.2            (96,651.5)         (11,983.7)       (6.69)       (327.8)       373.5                          0.4       84.9                      1.4          2.71        164.5               

6013 INS INTELLIGENT SYSTEM CORP 2,906.8         1.4            48,364.3          90.1            0.89        3.0              (1,663.6)           (408.9)            5.58        1,008.9     (1,865,371,046.4)       (2.3)     (4,653.0)               (1.3)        0.80        2.6                   

6104 IP INTL PAPER CO 3,632.9         0.1            36,188.6          344.8          3.19        1.7              (87,882.6)         (0.0)                 7.50        1,043.5     (13,196,418,450.6)    (0.0)     (73,960.3)             (0.1)        10.18      0.1                   

6266 JNJ JOHNSON & JOHNSON (10.4)             (8.4)           (3.2)                  (17.7)          1.00        114.3         (0.3)                  (309.6)            0.28        8.1             98.7                             3.8       20.8                      8.4          1.00        3,271.6            
6307 SHLD SEARS HOLDINGS CORP 8,548.0         0.0            48,923.7          0.0              (5.54)       (0.0)            (289,659.8)      (29,727.1)       (17.87)     (930.2)       (71,326,551,364.1)    (0.0)     (525,497.6)          (0.0)        30.74      0.0                   

6349 KATY KATY INDUSTRIES INC 10.6              6.8            2.4                    20.4            1.58        22.9            (113,802.0)      (338.4)            1.69        354.8         270.2                          3.4       (53.4)                    (6.8)        2.51        52.1                 

6379 KELYA KELLY SERVICES INC  -CL A 3.8                11.6          (0.1)                  (35.6)          1.87        21.8            (2.5)                  (374.3)            0.68        49.2           49.5                             6.9       (26.3)                    (11.5)      3.50        34.0                 

6543 LZB LA-Z-BOY INC 49,246.1      9.7            62,341.2          2,143.2      13.89      74.9            (139,788.4)      (4,582.4)         14.10      2,849.4     (282,065,633,322.9)  (1.8)     (19,011,987.8)     (8.1)        193.03    7.3                   

6669 LEN LENNAR CORP (25,188.0)     (1.0)           (54,839.7)        (1,793.1)     8.38        14.2            (57,588.8)         (1.2)                 (3.86)       (509.2)       (166,813,771,677.5)  (0.3)     3,541,333.1         0.8          70.30      0.7                   

6730 LLY LILLY (ELI) & CO 6,040.5         0.4            29,797.1          682.4          5.98        17.3            (124,507.5)      (82.4)               6.22        752.8         (30,445,649,031.3)    (0.9)     (432,023.4)          (0.4)        35.76      2.1                   

6742 LNC LINCOLN NATIONAL CORP 30,800.2      201.4        38,486.7          509.0          1.00        403.1         (0.7)                  (95.8)               0.02        5.5             (537,382,793.4)          (56.4)   (62,157.1)             (201.4)    1.01        40,257.7         

6791 FAC FIRST ACCEPTANCE CORP 48.2              22.9          (2.6)                  (93.1)          2.52        240.1         (202,399.3)      (42,546.5)       5.46        1,296.2     14,702.2                     11.5    (611.4)                  (22.9)      6.34        2,273.9            

6821 LPX LOUISIANA-PACIFIC CORP 32,202.3      1.6            56,930.0          1,607.4      12.39      43.1            (185,598.2)      (73,925.3)       7.30        2,224.8     (338,455,206,263.3)  (1.0)     (9,890,079.4)       (1.6)        153.56    3.0                   

7117 MLP MAUI LAND & PINEAPPLE CO 2,368.0         0.2            43,732.2          120.7          1.25        0.5              (16,041.2)         (16,080.1)       11.40      3,034.4     (2,975,133,931.6)       (0.0)     (7,389.0)               (0.0)        1.56        0.0                   

7138 MAYS MAYS (J.W.) INC 20,687.8      0.5            64,365.7          1,782.9      10.10      31.9            (272,065.7)      (17,554.0)       (4.98)       (573.2)       (378,900,080,073.9)  (0.8)     (4,220,030.5)       (0.5)        101.99    2.5                   

7146 MKC MCCORMICK & CO INC 5,548.1         0.0            (72,616.0)        (0.0)             (2.73)       (0.0)            (212,746.4)      (0.0)                 19.83      644.3         (38,927,656,296.3)    (0.0)     (82,396.2)             (0.0)        7.43        0.0                   

7241 CVS CVS HEALTH CORP 5,330.7         0.0            75,751.5          295.4          3.12        0.2              (183,421.0)      (1.0)                 10.94      496.3         (55,488,359,567.3)    (0.0)     (103,606.2)          (0.0)        9.72        0.0                   

7316 MIK MICHAELS COS INC 15.4              47.6          (0.5)                  (146.2)        (1.44)       (100.0)        0.6                    0.1                  (0.00)       (0.0)            489.3                          24.2    (63.7)                    (47.6)      2.07        1,206.3            

7343 MU MICRON TECHNOLOGY INC 28.1              0.9            11.3                 36.9            1.64        38.7            (1,424.2)           (324.0)            (1.05)       (370.0)       1,783.6                       0.3       (151.2)                  (0.9)        2.69        139.2               

7481 MOCO MOCON INC 0.0                0.0            (94.2)                (1,018.0)     1.84        3,192.0      4.8                    13.1                0.00        1.0             (29,867.2)                    (101.2) (0.3)                      (0.0)        3.37        756,310.9       

7906 NKE NIKE INC 17,796.0      0.0            68,465.6          1,342.6      10.48      2.7              (537,571.0)      (234,532.0)     6.30        1,579.0     (480,432,547,101.5)  (0.0)     (3,912,185.3)       (0.0)        109.92    0.0                   

7985 NOC NORTHROP GRUMMAN CORP 6,148.6         0.0            84,018.2          797.1          4.42        0.0              (297,636.1)      (3,419.5)         (15.12)     (4,128.2)    (137,109,911,748.3)  (0.0)     (240,137.3)          (0.0)        19.53      0.0                   

7991 TEX TEREX CORP 9,921.3         0.0            (46,328.1)        (0.0)             (3.40)       (0.0)            (36,104.4)         (174.0)            (12.36)     (3,748.0)    (23,660,416,202.4)    (0.0)     (229,257.2)          (0.0)        11.55      0.0                   

8123 OLN OLIN CORP (3,644.4)       (0.0)           42,809.7          457.1          4.37        7.1              (442,757.1)      (23,226.3)       (11.42)     (2,445.4)    (34,669,154,383.3)    (0.0)     138,891.8            0.0          19.06      0.6                   

8148 OLP ONE LIBERTY PROPERTIES INC 5.1                11.9          (3.3)                  (38.7)          1.13        54.7            (7.9)                  (113.5)            0.03        3.2             19.7                             3.4       (13.2)                    (11.9)      1.29        581.0               

8214 OC OWENS CORNING 14.0              27.1          (1.9)                  (87.0)          1.85        127.9         (109.3)              (49.3)               0.01        1.6             657.3                          13.4    (96.0)                    (27.1)      3.44        1,189.6            

8253 PCAR PACCAR INC 3,437.3         0.0            (77,047.4)        (0.0)             (1.64)       (0.0)            (175,226.9)      (98,045.5)       19.98      2,994.4     (16,008,058,759.6)    (0.0)     (18,575.0)             (0.0)        2.70        0.0                   
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1045 AAL AMERICAN AIRLINES GROUP INC 5,718.4       1.0          19,814.1          396.1         6.31         16.9        (83,893.9)         (12,585.5)       12.63      3,098.9     -1.41E+10 7.8          455,006.7             18.9          (39.78)     4,745.1                 

1121 AE ADAMS RESOURCES & ENERGY INC (5,186.0)     (0.1)         34,050.8          877.7         7.11         37.2        (454,956.3)       (0.0)                7.89         1,093.8     -1.97E+11 (56.9)      (524,198.0)           (5.0)          (50.54)     895.5                    

1186 AEM AGNICO EAGLE MINES LTD 1,754.0       0.0          (81,555.1)        (0.0)            (0.87)       (0.0)         (123,574.7)       (0.0)                (20.00)     (414.1)       -1.89E+63 (15.1)      2,661.7                 3.1            (0.76)       7,838.6                 

1234 ATRI ATRION CORP 7,948.2       1.1          28,622.5          2,032.1     9.66         88.7        (199,010.9)       (0.0)                (5.37)       (98.2)         -6.54E+10 7.4          1,482,975.6          (15.1)        (93.29)     708.8                    

1356 AA ALCOA INC (8,174.8)     (0.0)         47,988.3          63.3           9.05         0.1          (812,071.5)       (0.0)                8.12         1,066.7     3.27E+22 0.0          (1,339,850.8)        (0.0)          (81.95)     0.0                         

1388 AMR1 AMERICAN AIRLINES INC (3,800.1)     (0.0)         (53,501.3)        (0.0)            1.84         0.0          (78,091.1)         (267.0)            18.67      2,347.0     -4.89E+70 2.2          (25,869.9)              5.5            (3.40)       5,360.0                 

1449 AFL AFLAC INC (20,420.1)   (1.4)         78,622.1          3.6             0.55         3.0          (160.8)              (1.4)                8.07         177.5         1.76E+09 0.5          (12,563.5)              (1.2)          (0.31)       1,791,386.6          

1487 AIG AMERICAN INTERNATIONAL GROUP 34,548.8     4.4          96,589.2          29.8           0.73         8.4          (0.7)                   (93.4)              0.01         1.0             4.28E+09 0.0          36,569.9               (0.1)          (0.53)       0.0                         

1690 AAPL APPLE INC 22,495.6     1.2          (49,083.1)        (3.3)            0.52         3.8          (26.0)                (840.8)            3.40         29.1           4.39E+08 6.2          12,165.2               (12.7)        (0.27)       65,172.1               

1712 TREC TRECORA RESOURCES (6,364.3)     (0.0)         32,423.6          583.1         8.58         2.2          (549,316.8)       (0.3)                10.03      1,120.3     -8.35E+14 30.9       (937,981.9)           (61.7)        (73.69)     1,273.0                 

1794 ASH ASHLAND GLOBAL HOLDINGS INC (46,072.8)   (0.0)         (96,741.6)        (0.0)            11.17      0.0          (111,968.1)       (0.0)                (8.37)       (127.6)       4.08E+65 0.5          (11,492,443.2)      (1.2)          (124.72)   82.9                       

1860 ATW ATWOOD OCEANICS (34,556.7)   (0.6)         (76,617.1)        (1,385.4)    10.32      17.9        (145,878.1)       (8,200.6)         (5.20)       (271.4)       3.51E+11 8.4          (7,356,319.0)        (17.2)        (106.44)   181.5                    

1864 REX REX AMERICAN RESOURCES CORP 9,729.8       0.4          44,508.8          1,121.9     11.21      52.1        (441,878.9)       (0.0)                (9.39)       (1,175.8)    1.51E+11 14.6       2,447,030.1          (29.8)        (125.75)   886.6                    

1920 AVP AVON PRODUCTS (7,349.4)     (0.0)         (76,053.0)        (0.0)            2.08         0.0          (41,364.6)         (0.0)                14.01      1,999.1     1.15E+69 0.0          (63,358.1)              (0.0)          (4.31)       0.0                         

1968 BMI BADGER METER INC 19,174.1     1.1          66,452.4          1,689.5     8.93         11.8        (209,994.9)       (0.0)                (11.64)     (2,680.8)    7.31E+11 (0.7)        3,055,659.3          (1.1)          (79.68)     1.7                         

2052 BRN BARNWELL INDUSTRIES (10,626.5)   (0.1)         (42,480.4)        (384.0)       5.54         2.2          (70,742.4)         (0.0)                (6.88)       (175.6)       1.02E+13 (8.8)        (651,879.6)           (1.4)          (30.67)     10.1                       

2337 RFP RESOLUTE FOREST PRODUCTS INC 9,071.7       0.7          (15,738.8)        (3.9)            0.35         3.9          (1.7)                   15.6                1.01         15.6           -5.13E+05 0.1          2,215.3                 (1.0)          (0.12)       448.2                    

2444 BC BRUNSWICK CORP 1,130.1       0.0          (46,988.9)        (0.0)            (0.85)       (0.0)         (84,387.1)         (0.0)                15.97      1,119.4     4.29E+68 (0.0)        1,639.9                 0.0            (0.73)       0.0                         

2556 CSS CSS INDUSTRIES INC (7,264.6)     (0.0)         (98,995.8)        (0.0)            2.29         0.0          (151,952.5)       (0.0)                19.67      2,126.5     8.07E+71 4.8          (76,018.8)              (8.4)          (5.23)       33.4                       

2787 CRS CARPENTER TECHNOLOGY CORP (20,800.4)   (1.9)         (27,419.7)        (5,456.7)    11.76      116.6      (74,558.6)         (1.0)                2.28         328.6         2.81E+10 0.0          (5,755,593.5)        (0.0)          (138.35)   0.0                         

3093 CLC CLARCOR INC 11,179.0     1.4          36,540.3          2,103.3     10.73      87.5        (253,908.9)       (0.0)                (7.13)       (101.4)       1.32E+11 5.5          2,574,687.4          (11.4)        (115.16)   42,038.6               

3105 IHRT IHEARTMEDIA INC 7,321.4       1.1          25,042.1          1,347.8     11.45      111.7      (322,011.7)       (7,476.2)         10.44      1,284.3     6.93E+10 (0.0)        1,918,325.7          0.0            (131.01)   0.0                         

3138 COKE COCA-COLA BTLNG CONS 1,426.0       0.0          (70,892.9)        (0.0)            (0.89)       (0.0)         (118,258.8)       (0.0)                12.36      871.7         8.52E+58 (0.1)        2,244.9                 (0.1)          (0.79)       9,925.9                 

3226 CMCSA COMCAST CORP 15,857.2     0.0          (70,247.3)        (32.9)         (4.10)       (0.0)         (72,550.5)         (971.0)            (20.00)     (4,095.4)    3.29E+30 (8.8)        534,231.6             5.1            (16.85)     74.8                       

3429 CTO CONSOLIDATED TOMOKA LAND CO (21,404.5)   (1.0)         (39,315.6)        (1,191.1)    13.95      81.0        (342,844.4)       (0.0)                (11.34)     (2,261.7)    1.20E+11 0.0          (8,333,932.5)        (0.3)          (194.68)   325.4                    

3622 CRWS CROWN CRAFTS INC 6,723.8       0.1          22,164.5          1,157.8     11.02      45.6        (250,184.0)       (0.0)                5.66         112.6         -1.71E+12 (0.2)        1,633,825.3          (0.1)          (121.50)   0.5                         

3813 TGT TARGET CORP (5,617.8)     (0.0)         77,098.8          499.2         4.64         9.7          (820,430.9)       (0.0)                (14.44)     (376.2)       -6.08E+11 (8.3)        (241,608.8)           3.1            (21.50)     29.7                       

4145 PKI PERKINELMER INC 4,575.8       0.7          16,972.1          356.9         4.76         6.3          (30,743.2)         (0.0)                7.43         349.9         1.33E+10 13.5       207,419.3             (28.7)        (22.66)     3,411.2                 

4201 EV EATON VANCE CORP 1,871.7       0.1          (92,377.0)        (0.2)            (0.07)       (0.1)         (254.7)              (2,010.4)         (9.54)       (378.4)       3.15E+10 0.0          16.9                       (0.0)          (0.00)       0.0                         

4275 ELSE ELECTRO-SENSORS INC 15.1            0.0          (80,710.0)        (0.0)            (0.01)       (0.0)         (27.6)                (0.0)                (0.02)       (0.4)            7.49E+63 (13.1)      0.0                         0.0            (0.00)       328.6                    

4485 KINS KINGSTONE COS INC (4,729.4)     (0.1)         (94,139.8)        (171.8)       1.82         0.9          (90,593.5)         (0.0)                (15.66)     (672.0)       4.38E+12 5.1          (31,170.6)              (10.2)        (3.30)       93,762,735.2       

4600 FDML FEDERAL-MOGUL HOLDINGS CORP 35,749.9     2.5          76,809.9          3,314.6     18.60      226.2      (1,085,273.6)   (0.0)                13.51      282.4         1.53E+12 (5.2)        24,724,836.8       1.3            (345.80)   176,024.8             

4605 FRT FEDERAL REALTY INVESTMENT TR (10,768.3)   (0.2)         48,251.4          898.5         11.70      86.5        (1,477,713.6)   (0.0)                (18.60)     (1,643.3)    -1.00E+11 16.1       (2,948,402.2)        (31.2)        (136.90)   476.2                    

4885 BEN FRANKLIN RESOURCES INC 4,727.2       0.3          31,946.7          840.3         5.32         18.5        (143,963.5)       (0.0)                5.16         175.1         2.07E+10 1.2          267,991.6             (4.1)          (28.35)     733.3                    

4926 FUL FULLER (H. B.) CO (38,431.3)   (0.0)         (93,840.6)        (85.0)         9.31         0.0          (66,443.4)         (0.0)                (8.35)       (1,087.5)    1.42E+29 (1.6)        (6,669,031.1)        (2.2)          (86.77)     3.0                         
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Investing Cash Flows 

GCC Ticker Symbol Company Name theta1 t theta2 t theta3 t mu0 t mu1 t sigma0 t sigma1 t sigma2 t Comment

4988 TGNA TEGNA INC 16,726.4     1.5          63,445.2          1,529.4     12.15      53.7        (490,578.4)       (0.0)                (16.83)     (488.4)       5.39E+11 14.8       4,937,209.9          (18.7)        (147.59)   13.1                       

5046 GD GENERAL DYNAMICS CORP 550.6          0.0          (75,964.3)        (0.0)            (0.30)       (0.0)         (49,148.5)         (0.0)                17.45      671.3         5.79E+71 (0.0)        100.1                    (0.0)          (0.09)       0.0                         

5087 SPXC SPX CORP 4,330.4       0.2          32,967.9          692.4         4.58         9.0          (118,583.2)       (0.0)                4.77         582.9         1.19E+10 2.4          181,851.5             (5.1)          (21.00)     3,551.9                 

5125 GPC GENUINE PARTS CO (1,822.6)     (0.0)         (93,863.6)        (0.0)            0.71         0.0          (70,197.1)         (0.0)                12.54      1,048.9     1.55E+72 (0.0)        (1,862.3)                1.2            (0.51)       34.6                       

5237 GRC GORMAN-RUPP CO 6,712.9       0.4          31,873.9          661.4         10.82      30.4        (300,357.0)       (0.1)                (13.48)     (712.0)       8.41E+10 2.5          1,570,555.6          (6.5)          (116.98)   1,215.2                 

5256 GWW GRAINGER (W W) INC (3,848.2)     (0.0)         (97,550.8)        (6.1)            1.34         0.0          (124,677.9)       (0.1)                19.86      1,589.4     7.16E+38 2.2          (13,735.5)              (2.6)          (1.78)       3.0                         

5639 HRC HILL-ROM HOLDINGS INC (1,349.9)     (0.0)         (93,693.5)        (0.9)            0.02         0.1          (17.2)                (3,368.2)         2.48         106.6         1.05E+10 7.1          (1.4)                       (13.8)        (0.00)       123.6                    

5680 HD HOME DEPOT INC 5,925.8       2.4          (9,314.6)           (5.8)            0.72         7.3          (0.4)                   (30.2)              0.04         0.9             2.40E+07 20.1       6,121.5                 (39.4)        (0.52)       727.3                    

5690 HNI HNI CORP 7,515.3       0.5          21,590.7          744.8         10.64      32.9        (144,215.5)       (0.0)                (8.60)       (529.0)       2.67E+10 (2.7)        1,702,374.2          (1.0)          (113.26)   5,416.5                 

5783 JBHT HUNT (JB) TRANSPRT SVCS INC 68,172.8     3.1          (98,139.8)        (5.6)            0.65         9.8          (0.2)                   (64.3)              0.07         2.0             1.94E+09 5.2          57,658.6               (10.7)        (0.42)       43,638.3               

5860 ITT ITT INC (4,651.2)     (0.3)         98,667.9          2,174.3     4.39         24.8        (683,475.1)       (0.0)                (9.54)       (666.4)       1.82E+11 (0.2)        (179,009.3)           (0.6)          (19.24)     0.3                         

5862 RYN RAYONIER INC 15,834.9     0.2          67,031.2          1,005.7     7.65         2.8          (202,890.3)       (20,753.8)       (10.34)     (685.3)       5.94E+13 5.0          1,851,312.5          (10.8)        (58.46)     748.2                    

6013 INS INTELLIGENT SYSTEM CORP (78,888.1)   (4.6)         (92,325.8)        (5,993.2)    19.96      187.7      (490,851.5)       (0.0)                10.76      586.4         8.01E+11 0.1          (62,881,364.6)      (0.6)          (398.55)   7.8                         

6104 IP INTL PAPER CO (4,265.3)     (0.0)         25,908.0          506.0         6.20         13.4        (305,883.9)       (0.0)                10.87      229.7         -4.05E+11 (0.0)        (327,638.8)           (0.1)          (38.41)     0.1                         

6266 JNJ JOHNSON & JOHNSON 3,428.3       0.1          19,221.9          385.4         4.16         1.4          (48,513.6)         (0.0)                5.31         408.6         2.53E+12 12.5       118,521.1             (25.2)        (17.29)     5,760.2                 
6307 SHLD SEARS HOLDINGS CORP 13,011.0     1.4          48,951.4          1,678.3     11.20      63.8        (369,161.7)       (0.0)                (12.06)     (228.2)       -2.69E+11 2.2          (3,267,118.8)        (8.2)          125.55    1,368.3                 

6349 KATY KATY INDUSTRIES INC 8,117.1       0.3          48,010.4          973.9         5.87         4.9          (152,521.6)       (0.0)                (9.28)       (563.7)       -7.26E+11 11.6       (559,079.5)           (24.1)        34.44      842.6                    

6379 KELYA KELLY SERVICES INC  -CL A 8,117.1       0.3          48,010.4          973.9         5.87         4.9          (152,521.6)       (0.0)                (9.28)       (563.7)       -7.26E+11 6.9          (559,079.5)           (11.5)        34.44      34.0                       

6543 LZB LA-Z-BOY INC (8,041.2)     (0.0)         (64,179.5)        (0.0)            3.10         0.0          (114,200.6)       (0.0)                20.00      388.1         4.00E+70 (1.8)        (154,982.3)           (8.1)          (9.64)       7.3                         

6669 LEN LENNAR CORP 3,467.8       0.0          (62,687.2)        (0.0)            (2.21)       (0.0)         (196,806.4)       (0.0)                12.99      1,859.0     1.72E+62 (6.3)        33,805.5               4.1            (4.87)       26,437.2               

6730 LLY LILLY (ELI) & CO (24,815.3)   (2.2)         (37,021.4)        (2,423.7)    15.81      168.5      (277,291.7)       (0.0)                (7.73)       (56.5)         1.57E+11 8.1          (12,409,990.7)      (15.6)        (250.05)   187.3                    

6742 LNC LINCOLN NATIONAL CORP 8,966.5       0.6          46,021.2          1,202.0     7.78         42.9        (318,488.0)       (0.1)                8.56         608.3         1.12E+11 (56.4)      1,086,404.5          (201.4)      (60.58)     40,257.7               

6791 FAC FIRST ACCEPTANCE CORP 50,387.5     2.7          90,830.9          1,672.9     12.79      34.5        (215,808.5)       (0.0)                10.31      158.9         9.49E+11 (6.5)        16,474,945.4       (134.6)      (163.48)   397,917.7             

6821 LPX LOUISIANA-PACIFIC CORP 10,692.3     0.2          98,652.5          3.8             (0.07)       (0.5)         (3.4)                   (215.7)            (0.97)       (8.3)            3.71E+07 0.0          120.1                    (0.0)          (0.01)       0.0                         

7117 MLP MAUI LAND & PINEAPPLE CO (4,609.4)     (0.0)         28,713.9          208.4         7.26         0.4          (386,702.8)       (0.0)                5.78         337.4         7.32E+17 (188.5)    (486,494.5)           (0.2)          (52.77)     11,886.2               

7138 MAYS MAYS (J.W.) INC (3,915.8)     (3.1)         (77,815.0)        (4.9)            0.27         6.2          (1.6)                   (100.0)            0.18         3.9             4.48E+08 3.2          (575.3)                   (6.5)          (0.07)       333.8                    

7146 MKC MCCORMICK & CO INC (39,037.0)   (0.3)         54,983.4          0.8             0.59         5.9          (4.1)                   3.4                  1.47         13.0           -5.03E+09 7.0          (27,056.0)              (14.3)        (0.35)       187,063.9             

7241 CVS CVS HEALTH CORP 26,674.3     0.9          68,384.8          436.0         7.76         6.0          (82,553.4)         (15.4)              11.15      331.5         2.96E+12 (65.7)      3,212,657.7          (262.1)      (60.22)     2,277.6                 

7316 MIK MICHAELS COS INC (3,491.8)     (0.0)         28,888.6          946.6         5.68         5.1          (298,705.7)       (0.0)                5.24         132.2         -6.27E+12 24.2       (225,076.0)           (47.6)        (32.23)     1,206.3                 

7343 MU MICRON TECHNOLOGY INC (5,692.8)     (0.0)         (96,739.8)        (0.0)            1.87         0.0          (135,817.1)       (402.4)            19.67      4,347.2     1.27E+72 0.6          (39,766.1)              (1.5)          (3.49)       9.8                         

7481 MOCO MOCON INC (9,438.5)     (2.2)         25,422.2          15.2           0.16         4.3          (3.3)                   (0.2)                1.47         96.0           1.34E+07 (101.2)    (468.4)                   (0.0)          (0.02)       756,310.9             

7906 NKE NIKE INC 22,385.0     0.0          (60,633.1)        (0.0)            (8.21)       (0.0)         (133,380.8)       (40.5)              13.88      3,477.3     2.42E+65 (5.5)        3,017,227.4          (29.9)        (67.39)     245,977.6            Partial convergence

7985 NOC NORTHROP GRUMMAN CORP 3,299.1       2.0          11,559.1          1,000.1     6.27         50.2        (55,265.4)         (0.0)                7.36         773.9         4.73E+09 (0.0)        259,678.6             (0.0)          (39.36)     0.0                         

7991 TEX TEREX CORP 55,738.4     2.0          99,699.9          963.3         13.57      25.4        (294,525.7)       (0.0)                16.23      914.6         1.52E+12 0.0          20,513,365.4       (0.2)          (184.01)   0.1                         

8123 OLN OLIN CORP (2,338.5)     (0.0)         (43,674.4)        (119.4)       1.50         0.3          (46,625.8)         0.0                  (11.04)     (1,223.2)    2.50E+14 1.8          (10,463.7)              (3.5)          (2.24)       33.7                       

8148 OLP ONE LIBERTY PROPERTIES INC 19,011.1     0.4          87,523.1          267.8         5.44         2.9          (113,606.5)       (0.0)                14.54      1,819.3     1.30E+13 3.4          1,124,135.0          (11.9)        (29.57)     581.0                    

8214 OC OWENS CORNING (5,253.6)     (0.0)         (66,801.6)        (213.4)       2.25         0.0          (50,470.1)         0.0                  (9.84)       (751.2)       2.22E+22 13.4       (53,155.9)              (27.1)        (5.06)       1,189.6                 

8253 PCAR PACCAR INC (39,197.6)   (2.9)         (54,498.9)        (6.4)            (0.57)       (10.1)      (0.0)                   (1.2)                0.05         5.2             4.18E+08 6.3          (25,764.4)              (27.8)        (0.33)       684.2                    
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Appendix O1 – Stochastic characteristics of well-known cash flow specifications 

 Geometric Brownian Motion 

(GBM) 

Arithmetic Brownian 

Motion (ABM) 

Vasicek process Cox, Ingersoll and Ross (CIR) 

process 

Modified Square Root (MSR) 

process 

SDE 

specification 

dCt =  μCtdt +  σCt dWt  dCt =  μdt +  σdWt  dCt = α(m − Ct)dt +  σdWt  dCt = α(m − Ct)dt +  σ√CtdWt  dCt

= μCtdt + √k1
2 + k2

2Ct
2dWt 

Random process Wiener Wiener Wiener Wiener Wiener  

Parameters (constant)drift rate μ, 

(constant) σ (> 0) volatility 

rate 

(constant)drift rate μ, 

(constant) σ (> 0) 

volatility rate 

m is the long term average, α (> 

0) is a parameter that measures 

how rapidly this convergence in 

time to m occurs and σ (> 0) is a 

(constant) volatility parameter 

m is the long term average, α (> 

0) is a parameter that measures 

how rapidly this convergence in 

time to m occurs and σ (> 0) is a 

(constant) volatility parameter 

μ is the (constant) drift rate, k1
2 

and k2
2 are constant 

parameters defining the 

(constant) volatility rate 

SDE has closed 

solution 

Yes Yes Yes Yes Only in special case if k2
2 =

±2μ 

Domain of cash 

flow 

Ct [0 , ∞] Ct [−∞, +∞] Ct [−∞, +∞] Ct [0, ∞] Ct [−∞, +∞] 

Transitional 

probability 

density function 

Log-normal Normal Normal Noncentral chi-square Difference of  two log-normal 

distributions 

Stationary 

probability 

density function 

No No Yes Yes No 

Drift function Exponential growth trend Linear growth trend Mean-reverting Mean-reverting Exponential growth trend 



 
274                                                                                                   
                                                                                    
 

  

 

 

  



 
9   Other Appendixes                                             275 

  
 
Appendix O1 - Stochastic characteristics of well-known cash flow specifications (cont’ed) 

 Geometric Brownian Motion 

(GBM) 

Arithmetic Brownian 

Motion (ABM) 

Vasicek process Cox, Ingersoll and Ross (CIR) 

process 

Modified Square Root (MSR) 

process 

Diffusion function Multiplicative Additive Additive Multiplicative Multiplicative 

Evolution of first moment Diverging to +∞ or converging 

to 0, depending on choice of μ 

and σ; exponential growth 

trend. 

Diverging to +∞ for μ > 0; 

Growth trend linear in t. 

Exponentially fast 

converging to m. 

Exponentially fast converging 

to m. 

Diverging to +∞ or 

converging to 0, depending 

on choice of μ and σ; 

exponential growth trend. 

Evolution of second 

moment 

Diverging to +∞ or converging 

to 0, depending on choice of μ 

and σ; exponential growth 

trend. 

Diverging to +∞; 

quadratic function of t. 

Exponentially fast 

converging to m2 + 
σ2

4α
. 

Exponentially fast converging 

to 
αm2σ2

α
 , the higher the 

moment the faster the 

convergence. 

Exponentially fast converging 

to stationary value, the 

higher the moment the faster 

the convergence. 

Evolution of third moment Diverging to +∞ or converging 

to 0, depending on choice of μ 

and σ; exponential growth 

trend. 

 

0 0 Exponentially fast converging 

to stationary value, the 

higher the moment the 

faster the convergence 

Exponentially fast converging 

to stationary value, the 

higher the moment the faster 

the convergence 

Evolution of fourth 

moment 

Diverging to +∞ or converging 

to 0, depending on choice of μ 

and σ; exponential growth 

trend. 

Diverging to +∞; 

quadratic function of t. 

Can be expressed as 

function of the evolution 

of the second moment 

M2(t). 

Exponentially fast converging 

to stationary value, the 

higher the moment the 

faster the convergence. 

Exponentially fast converging 

to stationary value, the 

higher the moment the faster 

the convergence. 
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10. Definitions of terms used 
 

Akaike Information Criterion (AIC):  is a measure of the relative quality of statistical models for a 

given set of data. Since AIC estimates the quality of each model, relative to the other models, the 

criterion is AIC is used to select the best model, especially if models have a different number of 

parameters. The model with the lowest AIC is preferred. 

Approximated Maximum Likelihood Estimation (AMLE): particular form of MLE (see Maximum 

Likelihood Estimation) where complexity is reduced by deriving informative but low dimensional 

summaries from the data sets. Often this information is incorporated in a stochastic gradient 

algorithm that approximates the maximum likelihood estimate.  

Bayesian Information Criterion (BIC): see Akaike Information Criterion. The formula to calculate BIC 

is slightly different to that of AIC.  

Birth and Death process: a continuous-time Markov process where the state transitions are of only 

two types: "births", which increase the state variable by one and "deaths", which decrease the state 

by one. 

Boundary conditions: a set of additional constraints to differential equations that require solutions 

to be found in a bounded region. A solution to a boundary value problem is a solution to the 

differential equation which also satisfies the boundary conditions.  

Cash flow model: an abstract (usually mathematical) representation of real-world cash flows with 

the aim of describing and explaining how cash flows can be predicted, managed, and controlled  

Cash flow process: sequence of interdependent changes to cash that comes in and goes out of a 

company which are described and linked in time. 

Cash flow specification: is a formal expression defining the mathematical behaviour of a cash flow 

process. 

Conditional (or transitional) probability density function: for two jointly distributed random 

variables X and Y, the conditional probability distribution function of Y given X is the probability 

distribution of Y when X is known to be a particular value.  

Continuous process: a type of well-behaved stochastic process with time as a continuous variable. 

Continuous-time: variables measured in continuous time have a particular value for potentially only 

an infinitesimally short amount of time. Between any two points in time there are an infinite number 

of other points in time. 

Converging process: a stochastic process that in the limit of t → ∞ exhibits unchanged randomness 

which can be described by a time-invariant (stationary) probability distribution. 

https://en.wikipedia.org/wiki/Continuous-time_Markov_process
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Well-behaved
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Infinity
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Coupled linear-quadratic cash flow model: the cash-flow model developed in this study, consisting 

of a coupled operating cash flow and an investing cash flow process, where both equations are 

defined by a linear drift function and a quadratic diffusion function. 

Coupled process: a multi-variable stochastic process where the process dynamics are described by 

equations of which at least one equation includes more than one variable. To find solutions to a 

coupled process, the process has to be decoupled first by eigen-decomposition.  

Decoupled process:  a multi-variable stochastic process where the process dynamics are expressed 

in a solvable problem, described by equations that each contain exactly one variable. 

Deterministic: not random, having only one, pre-determined outcome. 

Diffusion function: the mathematical representation of the random component of a continuous-

time Markov process with almost surely continuous sample paths. 

Discrete-time: variables measured in discrete time have values at distinct, separate "points in time", 

or equivalently as being unchanged throughout each non-zero region of time ("time period"). 

Diverging process: a stochastic process with no stationary probability distribution and characterised 

by random values becoming more dispersed as t → ∞. 

Drift function: the mathematical representation of the deterministic component of a continuous-

time Markov process with almost surely continuous sample paths. 

Eigen-decomposition:  is the factorisation of a diagonalisable matrix into a canonical form, whereby 

the matrix is represented in terms of its eigenvalues and eigenvectors (or spectral decomposition).  

Financing cash flow: cash flow that results from external activities that allow a firm to raise capital. 

In addition to raising capital, financing activities also include repaying investors, adding or changing 

loans, or issuing more shares. 

Fokker-Planck equation: is a partial differential equation that describes the time evolution of the 

probability density function of an underlying Brownian motion. The equation is also known as the 

Kolmogorov forward equation. 

Hybrid stochastic differential equation: a stochastic differential equation that is the combination of 

two or more simpler stochastic differential equations. The properties of a hybrid SDE are 

significantly more complex than the sum of the properties of the underlying SDEs. 

Hypergeometric ordinary differential equation: a differential equation of the functional form 

𝑥(1 − 𝑥)
d2y(x)

dx2 + [γ − (α + β + 1)]
dy(x)

dx
 −  αβx = 0 which has three regular singular points: 0, 1 

and ∞. Any second order differential equation with three regular singular points can be converted to 

the hypergeometric differential equation by a change of variables. 

http://www.businessdictionary.com/definition/random.html
https://en.wikipedia.org/wiki/Markov_process
https://en.wikipedia.org/wiki/Almost_surely
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Markov_process
https://en.wikipedia.org/wiki/Almost_surely
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Factorization
https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/Canonical_form
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Spectral_decomposition
https://en.wikipedia.org/wiki/Regular_singular_point
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Investing cash flow: under US GAAP the main components of investing cash flow are: acquisition of 

debt instruments of other entities, sale of debt instruments of other entities, acquisition of equity 

instruments of other entities, sale of equity instruments of other entities, acquisition of property, 

plant and equipment, sale of property, plant and equipment, capital expenditures, and payment for 

purchase of another entity. 

Jump process: type of stochastic process that has discrete movements, called jumps, with random 

arrival times, rather than continuous movement, typically modelled as a simple or compound 

Poisson process. 

Kernel density estimation: is a non-parametric way to estimate the probability density function of a 

random variable. Kernel density estimation is a fundamental data smoothing problem where 

inferences about the population are made, based on a finite data sample. 

Kolmogorov equations: parabolic partial differential equations that describe how the probability 

density function of a stochastic process changes between states over time. There are two equivalent 

(leading to the same solutions) specifications: the forward Kolmogorov equation (or the Fokker-

Planck equation) and the backward Kolmogorov equation. 

Lamperti transform: transforms a state-dependent stochastic process into a state-independent 

process with unit instantaneous variance. 

Leptokurtic probability distribution:  a distribution where the points along the X-axis are clustered, 

resulting in a higher peak, or higher kurtosis, than the curvature found in a normal distribution. This 

high peak and corresponding fat tails mean the distribution is more clustered around the mean than 

in a mesokurtic or platykurtic distribution and has a relatively smaller standard deviation.  

Levy process: is a stochastic process with independent, stationary increments representing the 

motion of a point whose successive displacements are random and independent, and statistically 

identical over different time intervals of the same length. A Lévy process may thus be viewed as the 

continuous-time analog of a random walk. 

Lipschitz conditions: conditions that test how fast a function can change to remain continuous: 

there exists a definite real number such that, for every pair of points on the graph of this function, 

the absolute value of the slope of the line connecting them is not greater than this real number. 

Macroscopic: this approach considers that the system is made up of a very large number of 

individual entities, for instance firms. Each firm has different stochastic characteristics; however, the 

analysis is focused on the “average” behaviour of the system and only few properties are required to 

fully describe the system. 

https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Jump_discontinuity
https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Poisson_point_process#Compound_Poisson_point_process
https://en.wikipedia.org/wiki/Poisson_point_process#Compound_Poisson_point_process
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Statistical_population
https://en.wikipedia.org/wiki/Statistical_sample
http://www.investopedia.com/terms/m/mesokurtic.asp
http://www.investopedia.com/terms/p/platykurtic.asp
http://www.investopedia.com/terms/s/standarddeviation.asp
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Random_walk
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Markov process: a stochastic process where the behavior of the process in the future is 

stochastically independent of its behavior in the past, given the current state of the process. The 

sequence of steps over time is called Markov chain. 

Master Equation: describes the time evolution of a system that can be modelled as being in a 

probabilistic combination of states at any given time and the switching between states is determined 

by a transition rate matrix. The equations are a set of differential equations over time of the 

probabilities that the system occupies each of the different states. 

Maximum Likelihood Estimation (MLE): is a method of estimating the parameters of a statistical 

model given observations, by finding the parameter values that maximize the likelihood of making 

the observations given the parameters.  

Mean-square convergence: if the distance (square of differences) of a random variable to some 

defined value, measured over a long time, on average is very small, the variable is said to be 

converging in the mean-square. 

Mesoscopic: an approach that features between the microscopic and the macroscopic approach. It 

describes both aggregated system behaviour and higher-level randomness as a common 

denominator for all entities, for instance firms.  

Method of Moments: to estimate population parameters one starts with deriving equations that 

relate the population moments (i.e., the expected values of powers of the random variable under 

consideration) to the parameters of interest. A sample is drawn and the population moments are 

estimated from the sample. The equations are then solved for the parameters of interest, using the 

sample moments in place of the (unknown) population moments. This results in estimates of those 

parameters. 

Microscopic: this approach examines the detailed behaviour of individual entities, for instance firms. 

Usually a larger number of variables and/or complex relationships are needed to describe such a 

system and to model specific randomness.  

Particular solution: a solution that is only valid for specific parameter values as opposed to a general 

solution that is valid for all possible parameter values. 

Pearson diffusion: a flexible class of diffusions defined by linear mean-reverting drift function and a 

quadratic diffusion function. 

Perturbation theory: a set of approximation schemes directly related to mathematical perturbation 

for describing a complicated system in terms of a simpler one. From known solution to a simple 

system, the more complicated system can be described as weak disturbances, being small compared 

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Transition_rate_matrix
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Likelihood
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Perturbation_theory
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to the size of the simple system. Disturbances can be calculated using approximate methods such as 

asymptotic series. The complicated system can therefore be studied based on knowledge of the 

simpler one. 

Principle of superposition: states that, for all linear systems, the net response at a given place and 

time caused by two or more stimuli is the sum of the responses that would have been caused by 

each stimulus individually. 

Probability current: is a mathematical quantity describing the flow of probability in terms of 

probability per unit time per unit area (or probability flux).  

Pseudolikelihood estimation: estimation method where the probability density distribution is 

replaced by a collection of random variables that can provide an approximation to the likelihood 

function of a set of observed data which may either provide a computationally simpler problem for 

estimation, or may provide a way of obtaining explicit estimates of model parameters. 

Operating cash flow:  under US GAAP the main components of operating cash flow are: cash 

received from sale of goods or services, cash paid to suppliers and employees, receipt of dividends, 

receipt of interest, payment of interest, receipt of insurance proceeds, and income taxed paid. 

Q-Q plot: is a probability plot, which is a graphical method for comparing two probability 

distributions by plotting their quantiles against each other. Also called quantile-quantile plot. 

Space-time density function: a continuous three-dimensional function, the first dimension 

consisting of the variable considered, the second dimension the probability density function of the 

variable at a specific moment in time, and as a third dimension, time to show the evolution of the 

probability density.  

Stationary probability distribution: is a probability distribution that remains unchanged in the 

Markov chain as time progresses.  

Stochastic: random in time. 

Stochastic differential equation:  is a differential equation, describing a stochastic process, that 

contains a variable which represents calculated random white noise (Wiener process). 

Student diffusion: a diffusion process that is governed by a Student probability density function. 

Sturm-Liouville problem: a problem defined by a second order differential equation that can be 

expressed in a specific form, usually derived from separation of variables of a partial differential 

equation. The form includes a separation parameter that can be determined, if it exists, by satisfying 

given boundary conditions. Solutions consist of eigenvalues and corresponding eigenfunctions. 

https://en.wikipedia.org/wiki/Asymptotic_series
https://en.wikipedia.org/wiki/Linear_system
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Probability_plot
https://en.wikipedia.org/wiki/List_of_graphical_methods
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Wiener_process
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Unconditional (or marginal) probability density function: for two jointly distributed random 

variables X and Y, the unconditional or marginal probability distribution function of Y is the 

probability distribution of Y without reference to values of X. 

  

  

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_distribution
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11. Glossary of abbreviations used 
 

ABM: Arithmetic Brownian Motion. 

AIC: Akaike Information Criterion 

AMLE: Approximated Maximum Likelihood Estimator 

ARIMA model: Autoregressive Integrated Moving Average model. 

BIC: Bayesian Information Criterion 

CIR process: Cox, Ingersoll and Ross process (or Square Root process). 

CLT: Central Limit Theorem. 

GBM: Geometric BrownianM. 

GFC: Global Financial Crisis 

GMM: Generalised Method of Moments  

KDE: Kernel Density Estimation 

MLE: Maximum Likelihood Estimator 

MSR process: Modified Square Root process. 

ODE: Ordinary Differential Equation. 

PDE: Partial Differential Equation. 

PDF: Probability Density Function. 

SDE: Stochastic Differential Equation. 

SPDE: Stochastic Partial Differential Equation. 
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