
On the Primal-Dual Method
of Multipliers and its

Applications

by

Matthew O’Connor

A thesis
submitted to the Victoria University of Wellington

and the Australian National University
in fulfilment of the

requirements for the degree of
Doctor of Philosophy

in Engineering.

Victoria University of Wellington &
The Australian National University

2018

Abstract

With ever growing sources of digital data and the reductions in cost of
small-scale wireless processing nodes, equipped with various sensors, mi-
croprocessors, and communication systems, we are seeing an increasing
need for efficient distributed processing algorithms and techniques. This
thesis focuses on the Primal-Dual Method of Multipliers (PDMM) as it
applies to wireless sensor networks, and develops new algorithms based
on PDMM more appropriate for the limitations on processing power, bat-
tery life, and memory that these devices suffer from. We develop FS-
PDMM and QA-PDMM that greatly improve the efficiency of local node
computations when dealing with regularized optimization problems and
smooth cost function optimization problems, respectively. We combine
these approaches to form the FSQA-PDMM algorithm that may be ap-
plied to problems with smooth cost functions and non-smooth regulariza-
tion functions. Additionally, these three methods often eliminate the need
for numerical optimization packages, reducing the memory cost on our
nodes. We present the FT-PDMM algorithm for finite-time convergence
of quadratic consensus problems, reducing the number of in-network it-
erations required for network convergence. Finally, we present two sig-
nal processing applications that benefit from our theoretical work: a dis-
tributed sparse near-field acoustic beamformer; and a distributed image
fusion algorithm for use in imaging arrays. Simulated experiments con-
firm the benefit of our approaches, and demonstrate the computational
gains to be made by tailoring our techniques towards sensor networks.

ii

Acknowledgments

I would like to thank Professor Bastiaan Kleijn and Professor Thushara
Abhayapala for the guidance and support they have provided me over
the duration of my postgraduate studies, it has been invaluable. I would
additionally like to thank Victoria University of Wellington and the Aus-
tralian National University for affording me the opportunity of undertak-
ing a dual PhD between the institutes. I have formed networks and met
peers I would never have otherwise. Finally, I would like to thank Re-
bekah for supporting me through my studies and in particular my final
year. I couldn’t have done it without you.

iii

iv

Publications of the thesis

The contents of this thesis have been published or will appear in the form
of the following papers,

I M. O’Connor, W. B. Kleijn, T. Abhayapala, “Distributed Sparse MVDR Beam-

forming using the Bi-Alternating Direction Method of Multipliers”, in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
(March 2016)

II M. O’Connor, W. B. Kleijn, T. Abhayapala, “Distributed TV-L1 Image Fu-

sion using PDMM”, in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). (March 2017)

III M. O’Connor, G. Zhang, W. B. Kleijn, T. Abhayapala, “Function Splitting

and Quadratic Approximation of the Primal-Dual Method of Multipliers

for Distributed Optimization over Graphs”, in IEEE Transactions on Signal
and Information Processing over Networks (TSIPN). (December 2018)

IV G. Zhang, M. O’Connor, “Finite-Time Convergence of Asynchronous Primal-

Dual Method of Multipliers for Quadratic Consensus Optimization”, Sub-
mitted for publication.

V G. Zhang, M. O’Connor, L. Li, “On Convergence Analysis of Gradient Based

Primal-Dual Method of Multipliers”, in IEEE Statistical Signal Processing
Workshop (SSP). (June 2018)

VI M. O’Connor, G. Zhang, W. B. Kleijn, T. Abhayapala, “The FSQA-PDMM

Algorithm for Regularized Optimization over Networks using Inexact Up-

dates”, To be submitted for publication.

v

vi

List of Common Notation

V set of all nodes, or vertices, in our network

E set of all directionless edges between node pairs

Vi set of all nodes neighbouring node i

xki local primal optimization vector held by node i at

iteration k

λki|j local dual optimization vector held by node i relat-

ing to neighbour j at iteration k

(x∗i , λ
∗
i|j) optimal primal and dual point for node i related to

neighbour j

Ai|j constraint matrix held by node i relating to neigh-

bour j

P ij tuning parameter matrix for the edge (i, j), notated

ρ if it is a common scalar over all edges

fi(xi) cost function of node i with local primal variable

xi

E[Y] expected value of random variable Y

‖y‖p the p-norm of vector y

‖y‖2M the weighted vector norm yTMy

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the thesis . 3
1.3 Structure of the thesis . 5

2 Background 7
2.1 Summary of Notation and Wireless Sensor Networks 7

2.1.1 Summary of Notation 8
2.1.2 Modelling the Physical Network 9
2.1.3 Distributed processing building blocks 9
2.1.4 Implications for Distributed Signal Processing 11

2.2 Distributed Processing . 11
2.2.1 Distributed Averaging using Randomized Gossip Al-

gorithms (RGA) . 12
2.2.2 Belief Propagation . 14
2.2.3 Distributed Gradient Methods (DGM) 18
2.2.4 Alternating Direction Method of Multipliers (ADMM) 22
2.2.5 Primal-Dual Method of Multipliers (PDMM) 24

2.3 Beamforming . 28
2.3.1 Multichannel Wiener Filter 30
2.3.2 Minimum Variance Distortionless Response 31
2.3.3 Delay-and-Sum Beamformer 33
2.3.4 Summary . 35

ix

x CONTENTS

2.4 Existing Distributed Near-Field Beamformers 36

2.4.1 Distributed LCMV Beamforming in a Wireless Sen-
sor Network With Single-Channel Per-Node Signal
Transmission . 38

2.4.2 RGA delay and sum 39

2.4.3 Distributed MVDR Beamforming for (Wireless) Mi-
crophone Networks Using Message Passing 41

2.4.4 Diffusion MVDR . 43

3 A Distributed Beamformer using PDMM 47

3.0.1 Derivation of a PDMM Beamformer 47

3.1 Numerical Simulation . 51

3.1.1 Results and Discussion 52

4 PDMM Network Function Splitting 55

4.1 Function Splitting . 56

4.1.1 Problem Form and Naı̈ve Approach 56

4.1.2 Function Splitting and Proximal Operators 58

4.2 Equivalence Analysis . 60

4.3 Numerical Simulation . 63

4.3.1 l1 Data Fitting . 63

4.3.2 Elastic Net Regularized Least-Squares 65

4.4 Summary . 67

5 Quadratic Approximation PDMM 69

5.1 The QA-PDMM Algorithm 70

5.2 QA-PDMM Convergence . 73

5.2.1 Convergence Analysis 1 73

5.2.2 Convergence Analysis 2 76

5.3 Numerical Simulation . 79

5.4 Summary . 81

CONTENTS xi

6 FSQA-PDMM 83
6.1 The FSQA-PDMM Algorithm 84
6.2 Convergence Analysis . 86

6.2.1 Equivalence to Mixed Approximation PDMM 86
6.2.2 Convergence of Mixed Approximation PDMM 88

6.3 Numerical Simulation . 93
6.4 Summary . 95

7 Finite Time Convergence PDMM 97
7.1 Problem Form and Conventional PDMM 98
7.2 Parameter Selection and FT-PDMM 100
7.3 Numerical Simulation . 104
7.4 Summary . 107

8 Signal Processing Applications 109
8.1 Application to Distributed Beamforming 109

8.1.1 System model and background 110
8.1.2 Distributed Sparse PDMM Beamformer 112
8.1.3 Numerical Simulation 116
8.1.4 Summary . 118

8.2 Application to Distributed Image Fusion 118
8.2.1 System overview . 121
8.2.2 Centralized TV-L1 Image Fusion 122
8.2.3 Distributed PDMM Image Fusion 123
8.2.4 Improving Computational Efficiency with FS-PDMM 127
8.2.5 Equivalence to central fusion 128
8.2.6 Numerical Simulation 130
8.2.7 Summary . 133

9 Conclusions and Future Works 135
9.1 Conclusions . 135
9.2 Future Works . 136

xii CONTENTS

A Appendix 137
A.1 QA-PDMM Convergence Inequality 1 137
A.2 QA-PDMM Convergence Inequality 2 142
A.3 FSQA-PDMM Convergence Inequality 146

Chapter 1

Introduction

1.1 Motivation

Imagine the following: a distant planet, yet to feel the footstep of its first
human visitor, is orbited by a spacecraft. Before sending a brave soul
down for exploration, it would seem prudent to perform a preliminary in-
vestigation of the planet’s surface. How may we accomplish this? One ap-
proach would be to send a sophisticated robot down to roam around and
report back to the satellite. However, this may be costly and for basic mea-
surements of the planets magnetic field or surface temperature it may be
unecessary. Another option is to fire out hundreds of small, inexpensive,
wireless processing units equipped with microprocessors, transceivers for
communication, and thermal, acoustic, and pressure sensors for measure-
ment of the planet. These self contained units would be capable of collab-
oratively and distributively collecting data from the planet. Return trans-
mission of this data could then be accomplished by collectively transmit-
ting the measurements to the orbiting mothership.

Science fiction? Not necessarily. We are, in fact, witnessing the birth
of these exact systems. An example more closely realisable may be dis-
tributed public recording of sound, allowing large wireless microphone
networks to isolate sources of interest and reduce background interfer-

1

2 CHAPTER 1. INTRODUCTION

ence. Networks such as these could occur, for example, when a large
crowd at a music concert wishes to collaboratively record a performance
using their smart phones.. Over the last few years electronic sensor tech-
nology has seen a rapid increase in processing power as well as a decrease
in component cost. This coupled with recent advances in wireless com-
munication technology has made feasible the development of large scale
wireless sensor networks for use in speech detection, interference cancel-
lation and temperature sensing, among others. Ad-hoc networks, with
random topologies, are particularly attractive as mobile sensor devices
(e.g., smart phones) are ubiquitous and self-localisation is now becom-
ing possible (e.g., [45]). These developments in hardware and software
are finally allowing for practical research into distributed systems, with
the final piece of the puzzle being the distributed algorithms necessary for
performing useful tasks over geographically separated networks.

In recent years there has been an increasing focus on distributed op-
timization methods, driven by areas such as cloud computing [143], big
data [21, 109], and wireless sensor networks [107]. The growing size of cur-
rent databases and sensor networks are reducing the effectiveness of cen-
tralized processing schemes, due to the large volume of data as well as the
geographically distributed sensors often present in these systems. Many
of these approaches exploit dual decomposition techniques [102, 16] to
distribute computations among processing units, that use gradient meth-
ods [67, 148] for local objective function minimization. Incremental local
optimization and parameter sharing throughout the network leads to the
minimization of global utility.

Existing methods in the literature for distributed processing can be
roughly classified into three categories: distributed averaging methods,
belief propagation methods, and methods developed for decomposable
convex and nonconvex optimization problems. Decomposable problems,
in particular, have seen increasing attention in the past decade as a flexible
and efficient framework for distributed processing [15, 157, 61, 32, 96, 26].

1.2. CONTRIBUTIONS OF THE THESIS 3

Two closely related methods for solving decomposable optimization prob-
lems are the Primal-Dual Method of Multipliers (PDMM) [158, 153] and
the popular Alternating Direction Method of Multipliers (ADMM) [15, 41,
48]. These both exhibit a practically useful tradeoff between local com-
putational complexity and global network convergence speed when solv-
ing distributed problems, leading to their appropriateness for distributed
processing. These approaches have found use in distributed acoustic pro-
cessing [98, 130], network power flow optimization [34], communications
[111, 71, 160, 119], and distributed machine learning [15], among others.
However, distributed wireless sensor networks are naturally very limited
when it comes to local computation power, battery life, and available op-
timization packages due to memory restrictions. This increases the need
for local computational simplicity when designing algorithms for these
systems.

1.2 Contributions of the thesis

In this thesis we consider improving on the applicability of PDMM for dis-
tributed optimization over wireless sensor networks. This improvement
will come in three forms: a reduction in the necessary local computation
required by improving algorithmic efficiency; an elimination in the need
for optimization packages to be held at individual sensor nodes for a com-
mon class of problems; and a reduction in total network processing iter-
ations required for accurate problem solutions. Additionally, we develop
practical signal processing algorithms in the areas of acoustics and imag-
ing that utilize some of our methods in order to demonstrate their real
world use.

We propose three variations on PDMM, and experimentally analyse a
fourth, each with different application strengths. Firstly, we develop the
asynchronous Function Splitting PDMM (FS-PDMM) algorithm for use in
regularized optimization problems. We show that local computational

4 CHAPTER 1. INTRODUCTION

efficiency is significantly improved for coupled optimization problems,
while also eliminating the need for numerical solution packages. Sec-
ondly, we develop and analyse the synchronous Quadratic Approxima-
tion (QA-PDMM) algorithm for use in optimization problems where local
cost functions are Lipschitz smooth. We show that for smooth problems
this algorithm also improves local computational efficiency while elimi-
nating the need for optimization packages. Thirdly, we combine the FS-
PDMM and QA-PDMM algorithms in order to expand the applicability
of the methods to a larger class of optimization problems. We show that
the synchronous FSQA-PDMM algorithm benefits from both aspects of the
constituent algorithms, leading to greater improvements when applied to
problems with a smooth cost function and a non-smooth regularization
function. We experimentally study the final variation, Finite-Time PDMM
(FT-PDMM), for use in distributed quadratic problems. For quadratic con-
sensus problems, we show that FT-PDMM converges in finite time rather
than sub-linearly reducing optimization variable error. Finally, we present
two signal processing applications for these algorithms. We develop a dis-
tributed sparse near-field acoustic beamformer and a distributed image
fusion approach, for use in wireless sensor networks, and demonstrate
how these benefit from our theoretical developments.

We summarize the contributions as follows

• The development and analysis of FS-PDMM for efficient distributed
regularized optimization

• The development and analysis of QA-PDMM for efficient distributed
optimization with smooth functions

• The combination and analysis of the above two algorithms, resulting
in FSQA-PDMM for optimization of functions with a smooth cost
function and non-smooth regularization function.

• The experimental analysis of FT-PDMM for optimization of distributed
quadratic problems in finite iterations.

1.3. STRUCTURE OF THE THESIS 5

• The development of a sparse near-field acoustic beamformer that
uses regularization to naturally select an optimal subset of network
nodes for beamformer output.

• The development of a distributed image fusion algorithm that allows
geographically distant imaging sensors with partially overlapping
fields of view to fuse common imaging regions, thereby improving
image fidelity.

1.3 Structure of the thesis

The remainder of this thesis is organized as follows. Chapter 2 provides
notation, the wireless sensor network system model, and background on
distributed processing, beamforming, and distributed beamforming. Chap-
ter 3 presents the problem formulation and simulation of a preliminary
distributed PDMM beamformer, and motivates the need for more efficient
distributed algorithms.

Chapter 4 (included in publication III) presents the FS-PDMM algo-
rithm, including application to the problem of distributed elastic net reg-
ularized least-squares and an equivalence analysis. Chapter 5 (included
in publication III & V) motivates and develops the QA-PDMM algorithm,
which is analysed and then applied to distributed logistic regression. Chap-
ter 6 (included in publication VI) combines the two previous algorithms
into the FSQA-PDMM algorithm, analysing convergence and applying it
to the problem of sparse logistic regression. Chapter 7 (included in publi-
cation IV) summarizes the FT-PDMM algorithm and applies it to the dis-
tributed quadratic consensus problem, studying its experimental conver-
gence.

Chapter 8 (included in publications I & II) presents a distributed sparse
beamformer and a distributed image fusion algorithm, employing some
of the methods discussed in earlier chapters. Finally, we summarized the

6 CHAPTER 1. INTRODUCTION

thesis in chapter 9, including the possibility of future work.

Chapter 2

Background

In this chapter we cover the general mathematical notation used through-
out the thesis and describe how the distributed sensor network is mod-
elled. We then provide an overview of distributed processing techniques
and how these pertain to solving problems over sensor networks. We then
provide a background on beamforming, a signal processing method that
will serve as motivation for algorithms developed later in the thesis.

2.1 Summary of Notation and Wireless Sensor

Networks

We begin by presenting the notation used in the remainder of this thesis
and by establishing the mathematical model used to describe our wireless
sensor networks (WSN). We will then briefly summarize the current state
of WSN technology that allows for the design and implementation of dis-
tributed signal processing systems. This section aims to set the stage for
the distributed processing techniques that appear later in the chapter.

7

8 CHAPTER 2. BACKGROUND

2.1.1 Summary of Notation

The notation throughout this thesis will abide by this section, except where
otherwise stated. Vectors will be denoted by lowercase bold italics, matri-
ces will be denoted by uppercase bold italics, while scalars will use regular
font. Blackboard bold font, such as R will be used to refer to the dimen-
sionality of our vectors. Therefore w ∈ RV denotes a vector of length V ,
A ∈ RV×V denotes a V × V matrix, and α ∈ R denotes a real scalar. All
vectors are considered to be column vectors. Calligraphic letters will refer
to sets and the scalar cardinality of a set will be uppercase normal font. In
this way, the set V has scalar cardinality V . In the context of optimization,
Greek letters will generally refer to dual variables, or Lagrange multipli-
ers. Therefore a problem with primal vector variable xmay have the dual
vector variable λ. Subscripts will be used to denote ownership by a sensor
node, such as node i’s weight vector xi. Superscripts will refer to update
indices in iterative algorithms and parentheses will refer to time indices.
In this way,wk

i is node i’s weight vector at update iteration k while uk(t) is
the scalar observation of node k at time sample t.(·)T will refer to vector or
matrix transposition and (·)∗ will refer to optimal points when consider-
ing optimization procedures. We will refer to component l of vector xi as
[xi]l, assign ∇ the role of the derivative operator, and denote the expected
value of a random variable E[·]. The regular font letters f , g, R, and L re-
fer to functions, where L denotes the Lagrangian function. When referring
to the convergence rate of an algorithm we will use big O notation [124]
such as O(1/k) to refer to an algorithm with a convergence rate that im-
proves linearly in iterations k. I denotes an identity matrix. The notation
M � 0 (or M � 0) represents a symmetric positive semi-definite matrix
(or a symmetric positive definite matrix) while (·)−1 represents matrix in-
version. Given a vector y, we use ‖y‖ to denote its l2 norm. Furthermore,
for a positive-definite matrix M , where M = P TP , the weighted l2 norm
of a vector y is notated as ‖y‖M = ‖Py‖2. Consequently, we have that the
square of this weighted norm gives ‖y‖2

M = yTMy.

2.1. SUMMARY OF NOTATION AND WIRELESS SENSOR NETWORKS9

2.1.2 Modelling the Physical Network

We consider a network of nodes, or vertices, denoted by the set V with
cardinality V = |V|. The network is connected by a set of edges E with
cardinalityE = |E|. If there exists an edge between two nodes i and j form
the unordered pair {(i, j} ∈ E . The node and edge sets together form our
network graph G = (V , E). The set of all nodes sharing an edge with a node
i is denoted as its neighbourhood Vi with cardinality Vi = |Vi|, i.e. Vi =

{j|{i, j} ∈ E}. Each node i carries a vector of length ni denoted as xi ∈ Rni .
As an example, consider figure 2.1 with V = 9 randomly connected nodes.
The neighbourhood of node 8 is the set {8, 2, 3, 6}. This implies that node

Figure 2.1: Network of nodes showing the local neighbourhood of node 8.

8 is able to communicate with nodes {8, 2, 3, 6} in a single communication
step.

2.1.3 Distributed processing building blocks

For any form of spatial processing to be applied we first require two forms
of localization: self localization and source localization. Self localization
refers to the ability of every node to determine its position with respect to

10 CHAPTER 2. BACKGROUND

its neighbours while source localization refers to estimating the position
of a source of interest, in our case a sound source, relative to each node.
In recent years there has been substantial development on distributed self
localization [37, 72, 30, 68, 45] and source localization [106, 84] algorithms
in sensor networks. Nodes therefore know which other nodes are within
their communication neighbourhood and where they should be listening
for a source signal.

The final building block for considering distributed sensor network au-
dio processing is a method of synchronizing sensor clocks. It is often nec-
essary that signal samples are recorded synchronously to ensure the ef-
fectiveness of signal processing methods, such as beamforming. This is an
important fundamental challenge in distributed systems a distant nodes in
large networks may be out of synchronization on the order of whole time
samples with sensor clocks drifting randomly. Approaches such as [115]
and [81] make use of message exchange and gossip algorithms to estimate
neighbouring node clock differences and correct these differences based
on a virtual master clock. These approaches improve clock synchronic-
ity, particularly for nodes near to one another, but as nodes become more
distant this relative difference becomes more pronounced.

Some signal processing methods additionally require the estimation
of network covariances. There has been some progress in distributed co-
variance estimation techniques [142], though these methods often make
the simplifying assumption of covariance only between connected nodes.
This allows each neighbourhood to function as a fully connected set of
sensors for the purpose of centrally estimating neighbourhood covariance
matrices, or, as in [142], these neighbourhood covariances may be esti-
mated in a distributed manner using belief propagation (discussed in sec-
tion 2.2.2). Once each node has an estimate of the covariance matrix for
its neighbourhood the collection of these matrices may be used as a dis-
tributed sparse approximation of the true centralized covariance matrix,
as was used in [97]. This approximation is poor, however, when the sen-

2.2. DISTRIBUTED PROCESSING 11

sor communication range is low relative to the audible range of the audio
source signal since acoustic interference correlation may extend beyond
the immediate neighbourhood. Further research in this area may lead to
better approximations for this distributed covariance estimation.

2.1.4 Implications for Distributed Signal Processing

The results of the areas of research in this section, along with hardware
advances in microprocessor and sensor technology, provide the neces-
sary building blocks for a distributed signal processing system. Nodes
know where other nodes are; they know where the source is located; they
can estimate local noise covariances; they are operating on signal samples
taken at roughly the same time; and they are equipped with sensors, mi-
croprocessors, and low range electromagnetic transmitters and receivers.
We may now move on to distributed processing techniques that solve in-
network problems.

2.2 Distributed Processing

The wireless sensor networks discussed in section 2.1 provide the nec-
essary infrastructure for advanced signal processing techniques such as
distributed target tracking, distributed blind source separation, and dis-
tributed beamforming which may often be framed as specific cases of more
general distributed optimization problems. We will now introduce the
most popular and recent approaches to solving these optimization prob-
lems as well as discuss their performance with regards to convergence
rates, synchronicity, communication requirements, computational com-
plexity, simplicity, and ability to deal with optimization constraints. Ex-
isting methods in the literature for distributed processing can be roughly
classified into three categories: distributed averaging methods, belief prop-
agation methods, and methods developed for decomposable convex and

12 CHAPTER 2. BACKGROUND

nonconvex optimizations. Decomposable convex and nonconvex opti-
mizations, in particular, have seen increasing attention in the past decade
as a flexible and efficient framework for distributed signal processing [15,
158, 61, 32, 96, 26]. The basic idea is to rephrase a signal processing prob-
lem as the minimization of a sum of individual objective functions sub-
ject to local constraints between neighbouring nodes. Distributed averag-
ing, for example, can be formulated as a quadratic consensus optimization
[158] problem.

First, within the category of distributed averaging, we will cover ran-
domized gossip algorithms. We will then give an overview of general be-
lief propagation, followed by three methods for decomposable optimiza-
tion: distributed subgradient methods; the alternating direction method of
multipliers (ADMM); and the primal-dual method of multipliers (PDMM).

2.2.1 Distributed Averaging using Randomized Gossip Al-

gorithms (RGA)

Distributed averaging methods [14, 86, 31] intend to perform averaging
across a graph distributedly and iteratively using only local communica-
tion between neighbours. After algorithmic convergence, every node in
the graph has either an approximate or the exact averaging value. The
simplest of these algorithms is a randomized pairwise protocol to perform
distributed averaging [14, 13, 31]. Given a randomly connected network of
V nodes with initial scalar value gi(0) at node i the randomized gossip al-
gorithm (RGA) aims to find the average of these values gave = 1

V

∑V
k=1 gi(0)

through iterative pairwise communication. Asymptotically, all nodes will
approach the average value of the network [14].

Let gk = [gk1 , · · · , gkV]T denote the scalar values of all V nodes at the
end of iteration k, where (·)T denotes vector transposition. All nodes are
equipped with Poisson clocks1 that run independently at each iteration.

1A Poisson clock is an exponentially distributed timer with a mean value of λ seconds.

2.2. DISTRIBUTED PROCESSING 13

When node i’s clock ticks it randomly selects one of its neighbours, j, with
probability pi,j . These probabilities are stored in an V × V right stochastic
matrix C with nonzero entries where a connection exists between node i
and node j, and zero entries where there are no links. Nodes i and j then
set their values to the average of their previous values, i.e., gk+1

i = gk+1
j =

(gki + gkj)/2. This can be expressed in vector notation as

gk+1 = U kgk (2.1)

where U k is an V × V update matrix selected independently across time,
given by

U k = IV −
1

2
(ei − ej)(ei − ej)T , (2.2)

where ei = [0, · · · , 0, 1, 0, · · · , 0]T is an V dimensional vector with element
i equal to 1 and IV is the V × V identity matrix. Since the total ’mass’ of
the values across the network are conserved at each iteration, this pairwise
averaging drives the nodes to converge on the global average with conver-
gence time proportional to the second largest eigenvalue of the expected
value of the update matrix E[U] [14]. Convergence is therefore dependent
on the connectivity of the network, with less connected networks converg-
ing slower. For the best case of a fully connected network the averaging
time increases linearly as a function of the number of nodes V , or O(V)

[31] in ’big O’ notation, while for the worst case of a line connected graph
the averaging time increases substantially to O(V 3) [149].

In recent years, a number of algorithms have been proposed which are
able to perform exact averaging in finite iterations by smartly making use
the properties of the graphic topology (see [24, 112, 113]), however these
generally require an additional overhead prior to processing. Applications
of distributed averaging include distributed speech enhancement [150],
distributed detection [73], and distributed source localization [31]. RGA is
a simple and computationally efficient method to implement and it allows
for asynchronous iterations. However, the simplicity comes with limita-
tions since we only perform a very basic distributed operation (averaging)

14 CHAPTER 2. BACKGROUND

at a mediocre convergence rate. The algorithm may be used to break down
centralized problems into distributed averaging sub tasks which provides
flexibility but means network-wide convergence is required for each aver-
aging process before the centralized equivalent algorithm may progress.
It is therefore often better to use an approach designed from the ground
up to deal with the problem in a distributed fashion, optimizing variables
directly with each iteration, rather than trying to perform central optimiza-
tion updates with global averages.

2.2.2 Belief Propagation

Belief propagation methods are designed within the framework of proba-
bility theory [90, 91, 134] and are used for performing statistical inference
on probabilistic graphical models such as Markov random fields (MRF)
[12], where a set of V memoryless random variables X = {X1, . . . , XV }
represent their dependencies through undirected edges (not so different,
in fact, from the model of our wireless sensor network) [95, 145]. Note
that for this subsection uppercase normal font letters such as X will refer
to random variables. The goal is to determine the marginal distribution of
each random variable within this set. The naive method of calculating this
marginal distribution, in the case of discrete random variables taken from
an alphabetA, would be to sum over all possible configurations giving the
marginal distribution of Xi

pXi
(xi) =

∑
(Xj∈A)∈X\{Xi}

p(x1, . . . , xV), (2.3)

where our summation is over all values of the random variable Xj from
our alphabet A for all random variables in our set X apart from Xi. The
time to calculate these is on the order of |A|V , which is obviously com-
putationally prohibitive, but the structure of the graphical model may of-
ten be exploited to reduce this. One such case is when the factor graph
representing our variables’ probability mass function is a tree [12]. The

2.2. DISTRIBUTED PROCESSING 15

structure allows the summation of all configurations to now be expressed
recursively by first summing over the leaves of the tree and progressing
upwards to successive parent nodes. The time complexity of this proce-
dure now grows linearly with V .

Distributed ’message passing’ algorithms may be used to express the
recursive summation where ’messages’ associated with edges in the factor
graph are used in local computations at graph nodes to produce iterative
updates [75]. The update procedure that produces exact marginals in the
case of tree structured graphs has been independently discovered in var-
ious fields such as probabilistic inference in Bayesian networks [104] and
decoding theory [42], and is known by names such as the Bethe Peierls
approximation, belief propagation, and the sum-product algorithm. Re-
cently it has become popular due to its proposed effectiveness in more
general graphs containing loops [139, 2]. The precision of the algorithm
in these cases is related to the connectivity of the underlying factor graph
since in extremely sparse situations we may view the graph locally as a
tree. Since the algorithm performs local updates, intuitively this local tree
structure should lead to success. The correlation of distant (in the sense
of number of edges required to reach one another) variables will also de-
grade performance [2, 95].

Suppose we wish to compute the marginal distributions of continuous
random variables in the set X , where each random variable Xi ∈ X is
associated with a single node i ∈ N . The set of nodes V together with a set
of undirected edges E form a MRF, assuming they satisfy the local Markov
property (i.e. each node is conditionally independent of all other nodes
given its neighbours). We may represent this MRF as a factor graph [12],
which decomposes our joint density function as

pX (x) =
∏
i∈F

fi(xi), (2.4)

where pX is the joint density function, x = [x1, . . . , xV]T is the vector of our
random variables, xi is a subvector of x that forms a clique (or complete

16 CHAPTER 2. BACKGROUND

subgraph) in the MRF, fi is the potential (or factor) function associated
with the clique, and F is the set of indexes for the potential functions. This
density function may be further factorized into edge potentials ψij and self
potentials φi as [120]

pX (x) ∝
∏
i∈N

φi(xi)
∏

(i,j)∈E

ψij(xi, xj). (2.5)

The edge potentials ψij may be thought of as compatibility measures be-
tween the marginal estimates of nodes i and j while the self potentials φi
may be thought of as evidence of the marginal estimate of node i. This
leads to the BP update messages

mij(xj) ∝
∫
xi

ψij(xi, xj)φi(xi)
∏

l∈Vi\{j}

mli(xi)dxi, (2.6)

where mij(xj) is the message sent from node i to node j. We may then
compute the marginals according to the product rule as [139, 120]

pXi
(xi) = αφi(xi)

∏
j∈Ni

mji(xi), (2.7)

where α ∈ R is a scaling parameter.
An important contribution in Gaussian belief propagation (where our

marginal distributions are assumed to be Gaussian) very relevant to the
work of this thesis is the link between the inference of the vector of marginal
means using the message passing algorithm discussed above and the so-
lution to the set of linear equations [120]

Ax− b = 0, (2.8)

where A ∈ SN++ is a positive definite matrix, {b,0} ∈ RN are column vec-
tors, and x ∈ RN is the solution vector to this linear system. We may also
solve this linear system by optimizing the convex quadratic program

minimize
1

2
xTAx− bTx, (2.9)

2.2. DISTRIBUTED PROCESSING 17

where the equivalence of these problems may be seen by simply setting
the derivative of the quadratic function with respect to x equal to zero.
Let us now define the joint Gaussian probability density function

p(x) , Z−1e−
1
2
xTAx+bTx, (2.10)

where Z is a distribution normalization factor. We denote µ , A−1b and
may rewrite the Gaussian density function as

p(x) = Z−1e
1
2
µTAµe−

1
2
xTAx+uTAx− 1

2
uTAu

= ζ−1e−
1
2

(x−u)TA(x−u)

= N (u,A−1),

(2.11)

where ζ , Ze
1
2
uTAu is the new normalization factor and N (u,A−1) is a

multivariate normal distribution with mean vector u and covariance ma-
trix A−1. Assuming non-neighbouring nodes in our graph are indepen-
dent we may decompose this density function as in (2.6), distributing the
nature of our cost function.

We may now solve the linear system (2.8) by inferring the marginal
densities p([x]i) ∼ N ([u]i, [A

−1]ii), where [·]ij denotes the element of ma-
trix (·) at row i and column j. In other words, we have performed a
quadratic optimization distributed over V nodes where updates are per-
formed using two parameters for each node - the mean and the variance.
This can be extended to cost functions of higher order by using distri-
butions with more parameters [91]. The Generalized Linear Coordinate-
Descent (GLiCD) algorithm [152] generalizes this concept by providing an
update scheme that requires only one parameter, regardless of the form of
the individual cost functions, by incorporating feedback. In this manner
we may perform general convex optimization across a graph using sin-
gle parameter statistical inference. Belief propatation methods have found
use in many applications, such as telecommunications (see [110, 93]).

18 CHAPTER 2. BACKGROUND

2.2.3 Distributed Gradient Methods (DGM)

Distributed gradient methods tackle distributed processing by first defin-
ing local cost functions at each node which requires our original central
function to be separable over all nodes. The global sum of these local costs
is then minimized by the DGM iteratively. We begin by describing cen-
tralized subgradient ascent in the dual variable domain, followed by dual
subgradient decomposition, and finally a primal gradient method known
as diffusion adaptation.

Dual Gradient Ascent

Suppose we wish to minimize a convex function f : RN → R subject to
some linear constraint

minimize f(x),

subject to Ax = b,
(2.12)

where x ∈ RN is our primal optimization variable, and the matrix A ∈
RM×N and vector b ∈ RM define a set of linear equality constraints. We
form the Lagrangian, with multiplier ν ∈ RM , as

L(x,ν) = f(x) + νT (Ax− b), (2.13)

from which we may derive the dual problem

maximize g(ν), (2.14)

where g(ν) = infx L(x,ν) is the dual function [16]. Given that our original
function f was convex and the problem only contained a linear equality
constraint, Slater’s condition (and therefore strong duality) will always
hold allowing us to instead perform our optimization over the new dual
problem. We may then recover the optimal primal point as

x∗ = arg min
x

L(x,ν∗), (2.15)

2.2. DISTRIBUTED PROCESSING 19

where x∗ and ν∗ are the optimal primal and dual variables, respectively,
provided there is only one minimizer of L(x,ν∗) which can be ensured if
f is strictly convex [15]. This dual problem form is often easier to solve
since, firstly, it is now unconstrained and, secondly, if M < N (i.e. there
are fewer rows of linear constraints than the size of the primal variable x)
then the dual problem is an optimization of lower dimensionality than the
primal problem. It is worth noting that the dual problem is also always
convex, regardless of our original problem [16]. We can maximize g(ν)

iteratively using gradient ascent

νk+1 = νk + µ∇g(νk), (2.16)

where µ is the manually set step size and the gradient ∇g(νk) may be
found as

∇g(νk) = Ax̃− b (2.17)

where x̃ = arg minx L(x,νk). The dual ascent algorithm is therefore

xk+1 = arg min
x

L(x,νk), (2.18)

νk+1 = νk + µ(Axk+1 − b). (2.19)

Dual Gradient Ascent Decomposition

Suppose that our cost function is separable such that f(x) =
∑

i fi(xi)

where xi ∈ RVi are V disjoint subsets of x. Note that we can always
slice up the constraint matrix column-wise as Ax =

∑
i∈V Aixi. The La-

grangian is now separable across these subsets

L(x,ν) =
∑
i

Li(xi,ν) (2.20)

=
∑
i

(fi(xi) + νTAixi − (1/V)νTb), (2.21)

and the x-minimization in dual ascent is splittable into V separate mini-
mizations

xk+1
i = arg min

xi

Li(xi,ν
k), (2.22)

20 CHAPTER 2. BACKGROUND

which can be computed in parallel. The basic dual decomposition (ascent)
algorithm [35, 77, 46, 146] is then

xk+1
i = arg min

xi

Li(xi,ν
k) ∀i, (2.23)

νk+1 = νk + µ(
V∑
i=1

Aix
k+1
i − b). (2.24)

As with standard dual gradient ascent, the algorithm requires f to be
strictly convex in order to guarantee convergence. Practically for the al-
gorithm to work νk would be shared with all V nodes, each node would
compute xk+1

i in parallel, and all the constraint pieces Aix
k+1
i would be

collected and used to update νk+1. Using this we are able to solve large
problems through parallel subproblems.

The algorithm is simple and computationally efficient. However, its
sublinear convergence rate of O(1/k2/3) [66] is often slow in applications
and a global summation or averaging phase is required at each dual up-
date. This requires information to be mixed through the entire network
and may be accomplished with simple distributed averaging algorithms
such as the RGA.

Diffusion Adaptation

The adapt-then-combine diffusion strategy developed by Sayed et al. in
[114] is an iterative procedure to optimize problems of the form

minimize
∑
k∈V

fk(x), (2.25)

where the cost functionals fk(x) are assumed to be convex and differen-
tiable over x, and are typically quadratic. The algorithm takes weighted
averages of local gradients to form intermediate updates and then aver-

2.2. DISTRIBUTED PROCESSING 21

ages these for the final variable update. It may be expressed as

x̃ki = xki − µi
∑
j∈Vi

cji[∇fj(xki)],

xk+1
i =

∑
j∈Vi

Aj|ix̃
k
j ,

(2.26)

where µi is a constant scalar step size, Vi represents the neighbourhood of
node i, and Aj|i and cji are data flow coefficients from node j to node i
chosen to satisfy

Aj|i ≥ 0,
V∑
i=1

Aj|i = 1, Aj|i = 0 if j /∈ Vi,

cji ≥ 0,
V∑
i=1

cji = 1, cji = 0 if j /∈ Vi,
(2.27)

to ensure these incremental update values produce a weighted average
over the neighbourhood of node i.

The diffusion adaptation method differs from dual gradient ascent in
three main ways. Firstly, the diffusion optimization variables will always
tend towards equality across all nodes, i.e. x1 = · · · = xV , since a com-
mon optimization variable x is assumed in the original problem. This is
in contrast to the dual gradient ascent primal variables that are consid-
ered independent disjoint subsets of our original problem variable and
may therefore take on values different from their neighbours. Secondly,
diffusion is not able to deal with constraints directly whereas dual gradi-
ent ascent employs a linear matrix equality constraint

∑
i∈V Aixi = b. The

final difference is the ability for diffusion to perform updates without a
global collection phase, which is required for dual gradient ascent. This
is the main strength of diffusion since it allows updates to be performed
while new observations are being sampled by the sensor network, instead
of requiring all nodes to wait until a satisfactory global averaging is com-
plete.

The algorithm is simple to implement, relatively efficient computa-
tionally, and does not require a collection phase to reach convergence at

22 CHAPTER 2. BACKGROUND

each time sample. However, it does not deal with constraints directly, re-
quires synchronous gradient estimates to be performed across the whole
network, and due to its gradient-based nature may practically never con-
verge. The sometimes slow convergence of gradient methods is due to
the nature of the gradient updates when the function being optimized has
highly asymmetric level sets.

2.2.4 Alternating Direction Method of Multipliers (ADMM)

The alternating direction method of multipliers was developed in the 1970s
[41, 48] and studied into 1980s and 1990s [36, 40, 39, 33, 25] but was mostly
forgotten due to inadequate hardware for practical applications. It has
since seen resurgence after a paper by Boyd et al. [15] represented the
algorithm in the context of statistical machine learning with large data
sets. The method was developed from dual ascent decomposition and
the augmented Lagrangian method [57, 58, 11], also known as the method
of multipliers, which also uses a quadratic penalty term to augment the
Lagrangian function, as we will see.

We will focus on ADMM for general form consensus optimization where
we suppose a theoretical global master node holds the variable z ∈ RV .
All nodes i contain a selection of the components of the master variable in
their own local variable xi ∈ RVi , where Vi ≤ V . Unlike in the dual gra-
dient ascent case, these components are not necessarily disjoint sets im-
plying that multiple nodes may all have access to the same component of
the global variable. We can describe this association with a mapping from
the global variable index to local variable indices given by g = G(i, j),
meaning that global variable component [z]g corresponds to local variable
component [xi]j . If we achieve consensus among our variables we have

[xi]j = zG(i,j) i = 1, . . . , V, j = 1, . . . , Ni, (2.28)

meaning that the master variable and all local variables are in agreement.

2.2. DISTRIBUTED PROCESSING 23

The general form consensus optimization problem is then

minimize
∑
i∈V

fi(xi),

subject to xi − z̃i = 0 ∀i ∈ V ,
(2.29)

where z̃i ∈ RVi is defined by [z̃i]j = zG(i,j), i.e. z̃i is what the global vari-
able thinks xi should be.

The augmented Lagrangian function for (2.29) is

Lρ(x, z,ν) =
∑
i∈Vi

(
fi(xi) + νTi (xi − z̃i) +

ρ

2
‖xi − z̃i‖2

2

)
(2.30)

where νi ∈ RVi is the dual variable and the final term is a quadratic penalty
funtion, with the factor of 1

2
present for algebraic simplicity. The penalty

term is added to provide better practical convergence and robustness since
any deviation from the linear consensus constraint is now explicitly pe-
nalized. Additionally, the inclusion of this term yields convergence with-
out the assumption of strict convexity or finiteness of f , as was required
in dual gradient ascent. Using alternating update steps, the ADMM La-
grangian is optimized as

xk+1
i = arg min

xi

(
fk(xi) + νkTi xi +

ρ

2
‖xi − z̃ki ‖2

2

)
,

zk+1
g = (1/Ng)

∑
G(i,j)=g

[xk+1
i]j

νk+1
i = νki + ρ(xk+1

i − z̃k+1
i).

(2.31)

where Ng is the number of components corresponding to global index g.
The first step xk+1

i minimizes the primal variable over the augmented La-
grangian function, the second step zk+1

g averages the components of all
nodes corresponding to the global index g, and the final step νk+1

i updates
our dual variable using the difference between what our local variable is
and what the theoretical master variable thinks it should be. Steps one and
three may be computed independently and asynchronously while step

24 CHAPTER 2. BACKGROUND

two requires an averaging phase over all nodes containing components
corresponding to global index g. Whether this results in global averaging
is dependent upon the problem and what each local variable is designed
to hold.

ADMM functions well if a central collector or master node is present
since the network-wide collection step is quickly processed. If there is no
central collector then an averaging phase must be performed at each it-
eration which requires time to converge. In recent years, however, there
has been a lot of work on reformulating the ADMM algorithm to remove
the aggregation step in the dual update [138, 64] in order to make the al-
gorithm more suited to distributed network based optimization. It has a
linear convergence rate O(1/k) [65], which is moderately faster than the
gradient algorithms such as dual gradient ascent decomposition and dif-
fusion adaptation. If the problem is formulated correctly then many affine
equality constraints may be directly enforced while the independent na-
ture of the iterations mean that asynchronous primal updates are possi-
ble. In some cases where the original cost functions are complicated the
independent primal updates may be computationally expensive [15] lead-
ing to extensions such as Decentralized Linearized ADMM developed by
Ling in [82]. In most cases, however, the primal update subproblems are
efficiently solvable and often even have analytic solutions.

2.2.5 Primal-Dual Method of Multipliers (PDMM)

The Primal-Dual Method of Multipliers (PDMM) [158, 154], also referred
to as the Bi-Alternating Direction Method of Multipliers due to the algo-
rithm’s formulation involving the convex bi-conjugate, draws inspiration
from ADMM and uses similar Douglas-Rachford splitting on a primal-
dual Lagrangian. While both methods use Gauss-Seidel iterations [50]
to perform alternating primal and dual variable updates, the formula-
tion and structure exploited by PDMM exhibits a faster convergence be-

2.2. DISTRIBUTED PROCESSING 25

haviour in certain scenarios when compared with ADMM [155] (although
this may be primarily due to the parameter setting schemes of both meth-
ods) and provides a general framework for asynchronous and distributed
updates when performing partial consensus optimization with general
convex functions.

PDMM combines the practically rapid O(1/k) convergence rates of
ADMM [138] with asynchronous and fully independent updates for closed,
proper, and convex functions with general linear coupling constraints over
each network edge, including partial consensus optimization [158, 127].
This is advantageous when optimizing a large number of variables, specif-
ically in problems where only certain nodes contain information pertinent
to certain variables. In a global consensus implementation of this type of
problem all nodes would carry copies of all variables across the entire net-
work, regardless of whether each node contributes to the optimization of
these variables. The partial consensus approach is therefore more flexible
for many physical network based problems where the number of variables
increases with network size, and where neighbouring nodes contain infor-
mation relevant to a common subset of global variables. However, the ben-
efits of the PDMM algorithm come with added difficulty in deriving up-
date equations for applications involving regularization, as computation
of the Fenchel conjugate [16] of the original function, or optimization of
coupled convex optimization problems, is required. This difficulty is com-
pounded for many practical methods since the Fenchel conjugate of these
regularized functions are often intractable without the necessary problem
transformation, and the coupled optimization problems generally require
numerical solution.

The partial consensus approach is of particular interest for problems
where the total number of all distinct vector elements is significantly larger
than the size of the local vectors xi used at each node. In fact, in some
physical network applications where nodes have access to overlapping
vector elements and the number of distinct vector elements depends on

26 CHAPTER 2. BACKGROUND

the size of the network, partial consensus becomes necessary for true scal-
ability of network optimization. Problems that are of this form include
distributed acoustic and image processing (e.g. beamforming [98], image
fusion [99]) in large sensor networks.

PDMM, as presented in [156], optimizes the distributed general con-
sensus problem

minimize
∑
i∈V

fi(xi)

subject to Ai|jxi = Aj|ixj ∀(i, j) ∈ E ,
(2.32)

where fi is assumed to be closed, proper and convex, and the two matrices
(Ai|j,Aj|i) are known a priori for each edge (i, j) ∈ E . A common exam-
ple of the usage of edge-wise constraints in graphs is for partial consensus
optimization, where equality is enforced between certain vector elements
of neighbouring nodes. In this setting each local variable xi may have el-
ements in common with neighbouring nodes. In fact, by using edge-wise
constraints we may enforce element-wise consensus between even distant
nodes provided these nodes are connected by nodes also sharing the en-
forced elements. In other words, we assume that nodes with common
elements form connected subgraphs. In this way, our general problem
form (2.32) may be used to specify partial consensus optimization through
edge-wise equality constraints, where the matrices {Ai|j,Aj|i} contain en-
tries of either 0,−1, or +1 (see [161, 98] for practical usefulness). It becomes
a full consensus problem when the set of edge constraints are reduced to
{xi = xj|(i, j) ∈ E}. In the literature, the majority of research has focused
on the full consensus problem [32, 96, 26, 123, 53, 85, 61], giving PDMM
flexibility compared with these methods.

PDMM iteratively finds the saddle point of the augmented primal-dual
Lagrangian for problem (2.32) defined as

LΦ(x,λ) =
∑
i∈V

[
fi(xi)− f ∗i

(∑
j∈Vi

AT
i|jλi|j

)

2.2. DISTRIBUTED PROCESSING 27

+
∑
j∈Vi

λTj|i(Ai|jxi)

]
+ Φ(x,λ) (2.33)

where λi|j is one of two symmetric dual variables for the edge (i, j) held
by node i related to node j, f ∗i is the convex conjugate function of fi [16],
and Φ(x,λ) is a primal-dual augmentation function defined as

Φ(x,λ) =
∑

(i,j)∈E

1

2

[
ρ‖Ai|jxi −Aj|ixj‖2

2 −
1

ρ
‖λi|j + λj|i‖2

2

]
, (2.34)

where ρ is a tuning parameter that determines the level of quadratic aug-
mentation. The primal and dual variables are iteratively optimized for by
asynchronously (or synchronously) triggering nodes for primal and dual
update [156]. When a node i is randomly (with uniform distribution) se-
lected for update, it performs

xk+1
i = arg min

xi

[
fi(xi) + xTi

(∑
j∈Vi

ATijλ
k
j|i

)
+
∑
j∈Vi

ρ

2
‖Ai|jxi −Aj|ix

k
j‖2

2

]
, (2.35a)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi, (2.35b)

(xk+1
m ,λk+1

m|q) = (xkm,λ
k
m|q) ∀m ∈ V ,m 6= i, ∀q ∈ Vm, (2.35c)

where k is the update iteration number, (2.35c) indicates that all non-triggered
node variables retain the value of their previous iteration, and the relation
(2.35b) is used to update the dual variables so as not to require the poten-
tially costly computation of the conjugate function f ∗i [158]. Additionally,
synchronous operation is achieved by triggering all nodes simultenously
for primal and dual variable update. The primal and dual updates, (2.35a)
and (2.35b), require only local information in node i’s neighbourhood from
previous iterations k to perform independent updates. This means nodes
may randomly and asynchronously perform updates, without the need
for global synchronization or for a data sharing phase over more than a
single neighbourhood.

28 CHAPTER 2. BACKGROUND

Theoretical convergence analysis of synchronous and asynchronous
PDMM is provided in [158] and [127] for decomposable convex functions.
[158] makes use of variational inequality (VI) to conduct the analysis while
[127] relies on the monotonic operator theory. In practice roughly equal
update rates from uniformly distributed node triggers have been found
to converge [98, 156]. The algorithm has been applied successfully for
solving a number of practical problems, which include distributed dic-
tionary learning [162], distributed support vector machine (SVM) [156],
distributed speech enhancement over a wireless microphone network (see
[130, 131, 98, 121]), and distributed image fusion [99].

In summary, PDMM exhibits good linear convergence rates of O(1/i)

[159] that practically perform optimizations faster and more reliably than
the gradient methods such as dual gradient ascent or diffusion. The PDMM
algorithm can also sacrifice robustness to transmission error for commu-
nication efficiency by broadcasting variable updates to local neighbours
[154] rather than sending node-specific updates. However, this broadcast
implementation requires that no errors occur during transmission so may
not be appropriate in very noisy or unstable networks. Some affine con-
straints may be enforced with manipulation of the original problem form
but (as with many more sophisticated algorithms) PDMM requires more
understanding, particularly in the realm of convex optimization, when
manipulating the original problem.

2.3 Beamforming

Beamforming is a signal processing technique used in conjunction with
an array of sensors or transmitters to accomplish spatial filtering [55, 133].
The beamformer exploits the principle of superposition of waves to esti-
mate a signal from a desired direction in the presence of interferring sig-
nals and noise when multiple receivers are used, or to amplify a source
signal when using multiple transmit antennas. This serves many practical

2.3. BEAMFORMING 29

purposes, such as multiple transmission antennas in communication sys-
tems that boost signal transmit power in a chosen direction, or to reduce
audio interference when using a microphone array for recording. Since a
phase shift is equivalent to a time delay in the narrowband case (such as
radar communication systems), receiver beamforming systems are able to
weight and time delay the receive signals from each sensor [47]. These val-
ues are then summed to produce the beamformer output. In the wideband
case, however, this time delay is no longer appropriate. The signals are
therefore transformed to the frequency domain and phase shifted directly.
This research will focus on the wideband case typical of audio systems.

We denote our wideband signal of interest as s0(t, ω) ∈ C, with t and
ω indexing the time sample and frequency subband, respectively. We may
express the linear receive model at node i of our source signal, P interfer-
ers, and noise as

ui(t, ω) = di0(ω)s0(t, ω) +
P∑
p=1

dip(ω)sp(t, ω) + vi(t, ω),

= di(ω)s(t, ω) + ni(t, ω),

(2.36)

where ui(t, ω) is node k’s observed noisy signal at time t and subband ω

that is a combination of the desired signal s0(t, ω), interferences sp(t, ω)

and additive noise vi(t, ω). di0(ω) and dip(ω) represent the complex acous-
tic transfer functions that scale each subband of the source and interference
signals, respectively, which are constant over time. The noise and interfer-
ence may be combined into the variable ni(t, ω) for convenience, allowing
us to drop the 0 subscripts on di0(ω)s0(t, ω). The acoustic transfer function
of node i at subband ω consists of an attenuation factor ai(ω) and phase
offset e−j2πfωτi , where fω is the frequency associated with subband ω and
τi is the relative delay from source to node i, i.e.

di(ω) = ai(ω)e−j2πfωτi . (2.37)

When multiple sensors, such as microphones, are used we may repre-
sent the acoustic transfer functions to each sensor as the vector d(ω) ∈ CN ,

30 CHAPTER 2. BACKGROUND

allowing us to express a vector of noisy observations across these sensors
as

u(t, ω) = d(ω)s(t, ω) + n(t, ω), (2.38)

where {u(t, ω), n(t, ω)} ∈ CN are the vectors of observations and interfer-
ences from all N sensors, respectively. Beamforming aims to estimate the
source signal s(t, ω) by combining these noisy observations in a weighted
sum to produce a single scalar output

z(t, ω) = wH(ω)u(t, ω), (2.39)

where z(t, ω) is the beamformed output andw(t, ω) ∈ CN is the weighting
vector used to combine the observations.

We will now describe three methods for determining the weight vector
in a traditional centralized manner: the multichannel Wiener filter, which
is optimal in the minimum mean square error (MMSE) sense; the Mini-
mum Variance Distortionless Response (MVDR) beamformer, which sac-
rifices mean squared error performance for a distortionless source signal;
and the simple delay-and-sum beamformer that is optimal in the presence
of spatially uncorrelated noise.

2.3.1 Multichannel Wiener Filter

The multichannel Wiener filter was originally developed as a method of
estimating a continuous process corrupted by additive noise [141, 140],
and was then reformulated for the discrete time case [80] by Levinson.
It provides a means of optimally estimating, in a minimum mean square
error (MMSE) sense, our original source signal s(t, ω). We begin by ex-
pressing the error in each subband ω as e(ω) = s(ω)−z(ω), where we have
assumed the signal and noise to be independent over time allowing us to
omit the time index t. The squared error at time t may then be written as

E[|e(ω)|2] = E[|s(ω)− z(ω)|2] (2.40)

2.3. BEAMFORMING 31

= E[|s(ω)−wH(ω)u(ω)|2] (2.41)

= E[
(
s(ω)−wH(ω)u(ω)

)(
sH(ω)− uH(ω)w(ω)

)
] (2.42)

= rss(ω)−wH(ω)rus(ω)− rHus(ω)w(ω) +wH(ω)Ruu(ω)w(ω),

(2.43)

where E[·] is the statistical expectated value operator, rss(ω) is the source
signal autocorrelation, rus(ω) is the cross-correlation of noisy observations
u(ω) and source signal s(ω), and Ruu(ω) is the covariance matrix of the
noisy observations. Assuming all subbands are independent, minimizing
the sum of the error across all frequencies may be accomplished by mini-
mizing each of these real-valued squared errors separately. Therefore

∇(E[|e(ω)|2]) = −2rus(ω) + 2Ruu(ω)w(ω) = 0, (2.44)

and, assuming the covariance matrix Ruu(ω) is nonsingular, we may de-
rive the optimal Wiener filter as [133, 17]

wMMSE(ω) = R−1
uu (ω)rus(ω), (2.45)

where we have used the subscript w(ω)MMSE to indicate that this is the
optimal weight vector in the mean squared error sense. In practice the
cross-correlation vector rus(ω) may be quite difficult to estimate as we
don’t necessarily have access to the clean source signal. This motivates
the development of the MVDR beamformer, which is optimal in the mean
squared error sense subject to no distortion of the source signal.

2.3.2 Minimum Variance Distortionless Response

The MVDR beamformer, also known as the Capon filter [20], does not re-
quire an estimate of the cross-correlation vector rus(ω) when determining
a weight vector but instead requires knowledge of where the source is lo-
cated. As such, the acoustic transfer function vector for each subband d(ω)

is assumed to be known. We now minimize the energy of the beamformed

32 CHAPTER 2. BACKGROUND

signal z(ω) subject to unity (or distortionless) gain in the direction of the
source. Any reduction in the beamformed signal’s energy is therefore the
result of attenuation of noise or interfering signals. This may be expressed
as the constrained optimization problem

minimize E[|wH(ω)u(ω)|2],

subject to dH(ω)w(ω) = 1.
(2.46)

Using the method of Lagrange multipliers it can be shown that the solu-
tion to this linearly constrained minimization problem in the presence of
stationary and ergodic interference is [133, 17, 7]

wMVDR(ω) =
R−1
uu (ω)d(ω)

dH(ω)R−1
uu (ω)d(ω)

. (2.47)

This scheme requires knowledge of where the source is located but does
not need an estimate of the cross-correlation rus(ω) for calculating the
weight vector. We may explore the relation between the MMSE solution
(2.45) and the MVDR solution (2.47) by first evaluating the autocorrelation
of the output of the MVDR beamformer

rMVDR
zz (ω) = E[zMVDR(ω)zHMVDR(ω)] (2.48)

=
dH(ω)R−1

uu (ω)E[u(ω)uH(ω)]R−1
uu (ω)d(ω)

dH(ω)R−1
uu (ω)d(ω)dH(ω)R−1

uu (ω)d(ω)
(2.49)

=
1

dH(ω)R−1
uu (ω)d(ω)

. (2.50)

Next, assuming that the source signal s(ω) and the noise vector n(ω) are
mutually independent, we may write the cross-correlation vector as

rus(ω) = rss(ω)d(ω). (2.51)

Using (2.50) and (2.51) we may express the output of the Wiener filter as

zMMSE(ω) = wH
MMSE(ω)u(ω) (2.52)

=
rss(ω)

rMVDR
zz (ω)

dH(ω)R−1
uu (ω)u(ω)

dH(ω)R−1
uu (ω)d(ω)

(2.53)

2.3. BEAMFORMING 33

=
rss(ω)

rMVDR
zz (ω)

zMVDR(ω), (2.54)

which is a product of the scalar mask rss(ω)/rMVDR
zz (ω), called the Wiener

post-filter [17, 7], and the MVDR output zMVDR(ω). The multichannel
Wiener filter is therefore equal to the MVDR beamformer combined with
a scalar post-filter. We may also view the MVDR beamformer as a spe-
cific case of the Wiener filter when the source signal autocorrelation and
the MVDR output autocorrelation are equal. It should be noted that the
signal-to-noise ratio (SNR) of the two methods is the same at each sub-
band, however the Wiener filter results in better mean squared error than
the MVDR beamformer. This is a result of the post-filter providing a com-
plex scaling of the MVDR output, maintaining the SNR on each subband
but reducing the contribution of particularly noisy subbands to the final
signal output. The trade-off between the two approaches is lower mean
squared error (and higher total signal SNR when averaged across all sub-
bands) at the cost of higher frequency distortion to the source signal (since
each subband is independently scaled).

In situations where estimation of the observation covariances are in-
feasible or difficult we may wish to implement the simpler delay-and-sum
beamformer. This beamformer is optimal in the specific case of uncorre-
lated noise, as will be discussed next.

2.3.3 Delay-and-Sum Beamformer

The general delay-and-sum (GDS) beamformer may be derived from the
MVDR beamformer if we assume the noise signals across all sensors are
spatially uncorrelated with zero mean, as well as independent of the source
signal. In this case the covariance matrix Ruu = Rdsds + Rnn, where
Rdsds = E[|dk(ω)s(ω)|2] is the covariance of the noiseless attenuated source
signal and Rnn = E[|nk(ω)|2] = diag{σ2

n1
, . . . , σ2

nN
} is the noise covariance

matrix, which is diagonal due to spatial independence. Using the matrix

34 CHAPTER 2. BACKGROUND

inversion lemma, it can be shown that the weight vector is now [17]

wGDS(ω) =
R−1
nn(ω)d(ω)

dH(ω)R−1
nn(ω)d(ω)

, (2.55)

which gives us the GDS beamformer output

zGDS(ω) = wGDS(ω)u(ω) (2.56)

=

∑V
i=1 ai(ω)(σ2

ni
)−1ej2πfωτiui(ω)∑V

i=1 a
2
i (ω)(σ2

ni
)−1

(2.57)

=

∑V
i=1 a

2
i (ω)(σ2

ni
)−1
(
s(ω) + a−1

i (ω)ej2πfωτini(ω)
)∑V

i=1 a
2
i (ω)(σ2

ni
)−1

(2.58)

=

∑V
i=1 bi(ω)

(
s(ω) + ñi(ω)

)∑V
i=1 bi(ω)

(2.59)

= s(ω) +

∑V
i=1 bi(ω)

(
ñi(ω)

)∑V
i=1 bi(ω)

, (2.60)

which is simply the original source signal s(ω) plus a weighted average of
the scaled and phase shifted noise ñi(ω) = a−1

i (ω)ej2πfωτini(ω) at each sen-
sor, with weights bi(ω) = a2

i (ω)(σ2
ni

)−1. This method is optimal under the
assumption that the noise signals at each node are spatially independent,
leading to an output SNR of [17]

SNRzGDS
=

V∑
i=1

SNRi, (2.61)

where SNRzGDS
is the SNR of the GDS beamformer output and SNRi is the

SNR of node i’s observation.
The basic delay-and-sum (DS) beamformer makes a further simplifica-

tion of our system by assuming that the attenuation factors ai(ω) are all
unity and that the uncorrelated noise variances σni

(ω) are all equal, i.e.
a1(ω) =, . . . ,= aV (ω) = 1 and σn1(ω) =, . . . ,= σnV

(ω), respectively. This
results in the simple beamformer

zDS(ω) =
1

V

V∑
i=1

ej2πfωτiui(ω) (2.62)

2.3. BEAMFORMING 35

where the observations uk(ω) of each subband are first phase shifted (de-
layed) and then uniformly averaged (summed). This results in a collec-
tion of in-phase observations that is optimal if our conditions hold (unity
attenuation factors; equal and uncorrelated noise). The output SNR in this
specific case is therefore V times the SNR of each sensor [7]

SNRzDS
= V · SNR, (2.63)

which is impressive considering the simplicity of the method.

2.3.4 Summary

We have found that for the general case of correlated noise with arbitrary
complex acoustic transfer functions for each sensor, the MMSE optimal
weight vector to estimate of our source signal is the Wiener filter. Given
that the cross-correlation vector of the observations and the source signal
is required for the Wiener filter, we have shown that the MVDR beam-
former is an effective substitute that may be obtained without estimat-
ing this cross-correlation. In this case we instead require knowledge of
the location of our source. The Wiener filter and MVDR beamformer pro-
duce outputs of equal SNR at each subband, with the latter trading some
MMSE (and average signal SNR) performance for an undistorted source
signal. Finally, we derive the GDS and the DS weight vectors from the
MVDR weight vector by making progressively more restrictive system as-
sumptions, for which these beamformer outputs are optimal. These each
provide final output SNRs that are summations over the individual obser-
vation SNRs, given that our simplifying assumptions hold.

36 CHAPTER 2. BACKGROUND

2.4 Existing Distributed Near-Field Beamform-

ers

With the recent advancements in sensor networks [37, 72, 142, 115, 81] out-
lined previously, a natural progression for beamforming is its distribution
over a set of self-contained nodes, each equipped with microprocessors,
wireless EM communications and acoustic sensors. These nodes are as-
sumed to be within communication range of only a local subset of the total
nodes in the network. A distributed beamforming system should reduce
total transmission energy required within the network, provide robustness
to the addition or removal of nodes, eliminate the problem of a central
master node failure, lower the coordination or calibration cost associated
with setting up a large distributed network, and facilitate scalability of the
beamformer to arbitrary network sizes [132].

One of the earliest distributed beamforming implementations for wire-
less sensor networks was by Bertrand and Moonen [8, 9] who distributed
the processing of a linearly constrained minimum variance beamformer,
which is a generalisation of the minimum variance distortionless response
(MVDR) beamformer. Their method does not assume prior knowledge
of the noise covariance matrix and can handle a full covariance matrix.
However, their system does assume the network is fully connected (or
connected in a tree topology, depending on the implementation method)
and that each node k is equipped with multiple sensors. Additionally an
ordering of the computations in the nodes is required.

The distributed delay-and-sum beamformer developed by Zeng and
Hendriks [149] iteratively broadcasts information between neighbouring
nodes using a randomized gossip protocol [14]. The approach requires no
restriction on the network topology and may perform updates indepen-
dently across all nodes. However, the noise at all nodes must be uncor-
related and assumed known, resulting in suboptimal performance in the
presence of general correlated interference. The message-passing based

2.4. EXISTING DISTRIBUTED NEAR-FIELD BEAMFORMERS 37

MVDR beamformer of [59] operates on scalar values in an asynchronous
manner to perform weight vector optimization, does not require global
convergence or collection phase for weight updates, and may be used in
arbitrarily connected networks. However, the performance of the result-
ing MVDR beamformer is limited by the network topology as the inter-
ferences of non-neighbouring nodes are assumed to be uncorrelated. This
is compounded by the requirement of the covariance matrix to be diago-
nally dominant, which is accomplished in [59] by an artificial damping of
all off-diagonal elements. The diffusion-based MVDR beamformer of [97]
is adaptive to varying interference statistics, only requires a single update
per iteration, and approximates a full MVDR centralized beamformer with
two-hop covariances. However, each node ultimately ends up with a large
vector containing every node in the network’s weight value as well as re-
quire the projection of this vector onto the linear constraint subspace. This
limits the algorithm’s true distributed nature, particularly in very large
networks. Additionally, convergence can be slow due to the gradient op-
timization employed. All three of the above methods also require a global
averaging at each time sample to produce a beamformer output.

More recently, the distributed privacy-protecting beamformer of [151]
requires each node to hold a vector (with length on the order of the net-
work size) of covariances with all other nodes, which is impractical and
potentially impossible in very large networks. The LCMV beamformer of
[10] assumes a fully connected network, but does contain details on how to
extend the approach for more general networks. However, this extension
requires node coordination to prune the partially connected network to a
tree topology which introduces costly system overheads. Suboptimal ap-
proaches such as the time-frequency masking procedure in [128] and the
related pseudo-coherence beamformer of [129] require less transmission
power when compared with the above methods by utilizing sub-arrays of
the total network. However, these approaches lack the flexibility to change
their sub-array size depending on whether higher fidelity or lower power

38 CHAPTER 2. BACKGROUND

consumption is desired. The three, primarily recursive, distributed LCMV
beamformers reviewed in [87] are shown to be optimal when operating
over a fully connected graph, and extension to partially connected net-
work is briefly discussed. However, the partially connected network must
first be pruned to a tree topology which incurs a computation overhead.
Additionally, this approach is not robust to node removal or addition since
any changes in the partially connected network may require another prun-
ing operation to ensure a tree topology.

As there are relatively few distributed near-field acoustic beamformers
currently in the literature, we suggest room for further development of
these systems. We briefly outline a few of the current distributed beam-
formers as examples of how the distributed processing techniques in sec-
tion 2.2 may be applied in practice. We cover: a linearly constrained
minimum variance (LCMV) beamformer that is restricted to tree or fully
connected networks; a delay-and-sum beamformer implemented with dis-
tributed averaging via RGA; an approximate MVDR beamformer that as-
sumes interference covariance between only neighbouring nodes and uti-
lizes a message passing algorithm for optimization; and finally, an approx-
imate MVDR beamformer that assumes two hop interference covariance
and uses the diffusion adaptation paradigm for weight vector optimiza-
tion.

2.4.1 Distributed LCMV Beamforming in a Wireless Sen-

sor Network With Single-Channel Per-Node Signal

Transmission

As mentioned, one of the earliest distributed beamforming implementa-
tions for wireless sensor networks was by Bertrand and Moonen [8, 9] who
distributed the processing of a linearly constrained minimum variance
beamformer, which is a generalisation of the MVDR beamformer where
the single MVDR linear constraint dHw = 1 has been replaced with a more

2.4. EXISTING DISTRIBUTED NEAR-FIELD BEAMFORMERS 39

general set of Q linear constraints given by DHw = f , where D ∈ CN×Q.
The system assumes the network is fully connected (or connected in a tree
topology, depending on the implementation method) and that each node
i is equipped with Mi sensors.

Each node i is then able to produce a local beamformer output using
these sensors as zki = wkH

i u
k
i , where wk

i , uki ∈ CMi are the weight vector
and observation vector, respectively, for node i’s sensors at iteration k. At
each iteration every node broadcasts their local beamformer outputs to all
other nodes to form the global beamformer output zk

zk = wkH
i u

k
i +

∑
j∈V {i}

zkj , (2.64)

followed by an update of each local weight vector wk
i determined by a

combination of the current local weight vector, the inverse of the local sen-
sor covariance matrix Rk

i ∈ CMi×Mi , and the linear constraint D. For a full
description of the lengthy routine for the weight vector update see [9].

The algorithm broadcasts only scalar values and inverts only small lo-
cal covariance matrices Rk

i when performing weight vector updates, re-
sulting in a low total transmit cost when compared with the centralized
computation procedure. The global covariances are also estimated implic-
itly sparing us the costly computation (and inversion) of a large network
covariance matrix. The obvious limitations are that the network topology
is restricted to either the fully connected case or to a tree structure, and
that the updates must be performed synchronously across all nodes.

2.4.2 RGA delay and sum

The consensus based distributed delay-and-sum beamformer (DDSB) de-
veloped by Zeng and Hendriks [149] iteratively broadcasts information
from a node k to one of its neighbours. A randomized gossip protocol is
used to perform averaging of scalar values that converge on a beamformed
output signal at each node per time sample. Since we are dealing with a

40 CHAPTER 2. BACKGROUND

delay-and-sum beamformer, noise is assumed to be independent for each
node k leading to a diagonal covariance matrix and allowing equations
(8.3) and (2.47) to be combined to compute a beamformed signal as

z =

∑V
i=1 aiσ

−2
i e−jωτiui∑V

i=1 a
2
iσ
−2
i

, (2.65)

where σ2
i is the noise variance at node i, and ai and e−jωτi represent the

scalar magnitude scaling and phase offset, respectively, resulting from
the transfer function di of node i. By assuming that each node i at time
t has two initial values ũ0

i (t) = d∗iσ
−2
i ui(t) = aiσ

−2
i e−jωτiui(t) and d̃0

i =

d∗i (σi)
−1di = a2

i (σi)
−1 which are stacked into two V dimensional vectors

ũ0(t) = [ũ0
1(t), · · · , ũ0

V (t)]T and d̃
0

= [d̃0
1, · · · , d̃0

V]T , equation (2.65) may be
obtained as:

z = ũave/d̃ave, (2.66)

where ũave = 1
V

1T ũ0(t) and d̃ave = 1
N

1T d̃
0

with 1 denoting anN×1 column
vector of all ones. This is a ratio of network information averages and can
therefore be iteratively calculated using a RGA by letting ũk(t) and d̃k be
defined as vector ũ(t) and d̃ at iteration k, respectively. Using equation
(2.1), the state of these vectors at iteration k is given by

ũk+1(t) = Uk+1ũk(t),

d̃
k+1

= Uk+1d̃
k
,

(2.67)

while the DDSB output of node i at time sample t and averaging iteration
k is given by

z̃ki (t) = ũki (t)/d̃
k
i . (2.68)

The assumption of known acoustic transfer function di and noise variance
σ2
i is made since these may be estimated at each successive sample us-

ing methods such as [43] and [56], respectively, allowing attention to be
focused on the distributed beamforming algorithm.

The distributed delay-and-sum beamformer is simple to implement,
requires only scalar computations, and asynchronously shares scalar val-
ues with random neighbouring nodes meaning a low communication cost.

2.4. EXISTING DISTRIBUTED NEAR-FIELD BEAMFORMERS 41

However, the algorithm requires peer-to-peer pairwise communications
during updates and, more importantly, is limited by the diagonal assump-
tion of the covariance matrix. This becomes especially pronounced in en-
vironments containing spatially occuring interferences such as a loud ve-
hicle or another speaker.

2.4.3 Distributed MVDR Beamforming for (Wireless) Mi-

crophone Networks Using Message Passing

The distributed MVDR beamformer developed by Heusdens et al. [59]
utilizes the GLiCD message-passing algorithm to compute an MVDR op-
timal estimate over a general sensor network. The GLiCD algorithm re-
quires that all correlated nodes are connected in the graph, meaning that
non-neighbouring nodes are assumed to have a covariance of zero. The
beamformer uses message-passing to optimize a scaled weight vector w̃
over all nodes via statistical inference, followed by a global averaging us-
ing RGA at each time sample to produce a beamformed signal output.

We begin by stating the centralized MVDR beamformer output as

z =
w̃Tu

w̃Td
, (2.69)

where w̃ = R−1d. Next we assume that the covariance matrix has unit
diagonal elements by rescaling our using T = diag(

√
[R]11, · · · ,

√
[R]V V).

We therefore consider computing

x = J−1h, (2.70)

where the unit-diagonal matrix J = T TRT and h = Td. As described in
section 2.2.2, we may relate this with a quadratic cost function

f(x) ,
1

2
xTJx− hTx (2.71)

42 CHAPTER 2. BACKGROUND

which may be decomposed into pairwise cliques of the underlying graph
G as

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi,xj), (2.72)

where fi is a node potential function and fij is an edge potential func-
tion. This decomposition is possible since non-neighbouring nodes are
assumed to have uncorrelated interference covariance. From [59, 152] it is
shown that the update equations for the each

zk+1
ij =

ρ|[J]ij|2

1− ρ2|[J]ij|2

ρ[h]j + ρ
∑

m∈Vj\{i}

zkmj + (1− ρ)xkj|i


− ρ|[J]ij|2

1− ρ2|[J]ij|2

ρ[h]i + ρ
∑

n∈Vi\{j}

zkni + (1− ρ)xki|j

 ,

(2.73)

where 0 < ρ ≤ 1 controls the rate of convergence, zij is an intermediate
variable for the edge (i, j), and

xk+1
j|i = [h]j +

∑
m∈Vj\{k}

zkmj + zk+1
ij (2.74)

is the estimate of optimal element [x∗]j held by node j relating to node i,
which should converge to the same value for all neighbours i, i.e. xkj|i →
[x∗]j ∀i ∈ Vj as k →∞.

The message passing-based MVDR beamformer operates on scalar val-
ues in an asynchronous manner to perform weight vector optimization
and does not require a global convergence or collection phase at each it-
eration. However, the performance of the resulting MVDR beamformer is
limited by the network topology as the interferences of non-neighbouring
nodes are assumed to be uncorrelated. This is compounded by the re-
quirement of the covariance matrixR to be diagonally dominant, which is
accomplished in [59] by an artificial damping of all off-diagonal elements.
Additionally, each node k is assumed to know the covariance with all of
its neighbours.

2.4. EXISTING DISTRIBUTED NEAR-FIELD BEAMFORMERS 43

For relatively small and fully connected networks this approach works
well and distributes the calculation of the optimal weight vector. For large
and fully connected networks knowledge of all neighbouring covariances
may result in memory overload, while for large and sparsely connected
networks the weight vector estimate falls short of the true MVDR per-
formance as a result of the assumed independence of non-neighbouring
nodes and the off-diagonal scaling.

2.4.4 Diffusion MVDR

The diffusion-based MVDR beamformer of [97] makes use of the diffusion
adaptation algorithm for networks to iteratively optimize weight values
across the sensors. The beamformer is partially MVDR since the algorithm
assumes covariances only among at most two-hop neighbours leading to
a sparse covariance matrix for network sensor observations where distant
nodes are considered independent. The beamformer is therefore divided
into two components: the weight vector optimization process; and the
weighted averaging that is required to produce a beamformed output sig-
nal.

To determine the weight vector, local cost functions are first defined at
each node i that include a prescaling term to account for multiple occu-
rances of the same node to node covariances within the network. These
are given by

Jk(w) = C†2 ◦ E[|uVi(t)∗w|2], (2.75)

where uVi(t) is the vector of observations in the neighbourhood of node
i, ◦ is the Hadamard or element-wise product, and C†2 is the protected
element-wise inverse ofC2, the square of the adjacency matrix (also known
as the binary connection matrix). This results in a global cost function
given by the sum of all local costs

Jglob(w) ,
V∑
i=1

C†2 ◦ E[|uVi(t)∗w|2] = w∗R̃uw, (2.76)

44 CHAPTER 2. BACKGROUND

where R̃u is the partial covariance matrix of the network observations.
The local cost function (2.75) is expanded and differentiated giving [89]

Ji(w) = w∗(C†2 ◦ R̃u)w,

−[∇Ji(w)]∗ = −(C†2 ◦ R̃u)w,
(2.77)

where an instantaneous approximation of this moment will be used

R̃u = E[uVi(t)u
∗
Vi(t)] ≈ uVi(t)u

∗
Vi(t). (2.78)

With no linear constraint the trivial solution to equation (2.75) will be the
zero vector, resulting in a beamformer output of zero. We will therefore
orthogonally project the outputs of each diffusion iteration onto the sub-
space satisfying this linear constraint. This yields the following iterative
diffusion process

φk+1
i = wk

i − µi
∑
l∈Ni

cji[C
†2 ◦ uVj(t)u∗Vj(t)]w

k
i

ψk+1
i = P⊥d φ

k+1
i + d(d∗d)−1

wk+1
i =

∑
l∈Vi

ajiψ
k+1
j

(2.79)

where φk+1
i is a stochastic gradient descent step, ψk+1

i is an intermediate
step that projects the estimate φk+1

i onto the linear constraint subspace
[16], and wk+1

i is a summation of neighbourhood intermediate variables
to diffuse information.

The diffusion process and projection requires knowledge of the net-
work topology, a reasonable assumption due to recent developments [45],
and also requires a transfer of receive vectors at the start of every iteration
to form the vector uVi(t). Once the weighting values are optimized a sim-
ple averaging process may be used to form the final beamformer output,
such as RGA.

The diffusion-based MVDR beamformer is adaptive to varying inter-
ference statistics, only requires a single update per iteration, and approx-
imates a full MVDR centralized beamformer with two-hop covariances.

2.4. EXISTING DISTRIBUTED NEAR-FIELD BEAMFORMERS 45

However, each node will ultimately end up with a length N vector of ev-
ery node in the network’s weight value as well as require the projection of
this vector onto the linear constraint subspace. This limits the algorithm’s
true distributed nature, particularly in very large networks. Additionally,
convergence can be quite slow due to the gradient optimization steps and
synchronous vector updates are required for each update iteration.

46 CHAPTER 2. BACKGROUND

Chapter 3

A Distributed Beamformer using
PDMM

In this chapter will describe the development of a distributed MVDR beam-
former using both the alternating direction method of multipliers (ADMM)
and the primal-dual method of multipliers (PDMM). We will first for-
mulate our beamformer as a separable linearly constrained convex opti-
mization problem in the primal domain and then derive the dual problem
form. This will allow us to phrase the problem in a form acceptable by
the ADMM and PDMM algorithm. We will derive update equations for a
distributed ADMM MVDR beamformer and finally discuss the difficulty
encountered in the PDMM case.

3.0.1 Derivation of a PDMM Beamformer

Recall that the traditional centralized MVDR beamformer minimizes out-
put energy while maintaining a distortionless response in the direction of
the source. This may be expressed as an optimization problem of the form

minimize
w

E[|u∗w|2] = w∗Rw,

subject to d∗w = 1,
(3.1)

47

48 CHAPTER 3. A DISTRIBUTED BEAMFORMER USING PDMM

where u ∈ CN is the complex observed signal vector, w ∈ CV is the com-
plex weight vector over which the optimization is performed, d ∈ CV is
the complex acoustic transfer function vector, and R ∈ CV×V

+ is the Her-
metian positive semi-definite covariance matrix of the observed signals.

A problem that arises in optimization problems over complex variables
is the difference in differentiability by real variables when compared with
complex variables [76]. A common approach for dealing with this issue is
to convert the optimization of real functions in complex variables into an
optimization of real functions in real variables by considering the real and
imaginary components of our complex variables as two separate real vari-
ables [18, 125]. This essentially doubles the dimension of our optimization
problem as we are now optimizing over variables in R2V . However, these
higher dimension expressions become cumbersome and only add to the
confusion of our derivations. Therefore, throughout the rest of this report
we will assume this transformation has already been performed and deal
with real valued functions of dimension V , i.e. u,w,d ∈ RV .

We now make the following three assumptions:

• Assumption 1 - The underlying network is sparsely connected.

• Assumption 2 - Observations of nodes not sharing a neighbourhood
are assumed to be independent, i.e.

E|uTi uj| = [R]i,j = 0, ∀i, j /∈ Vk, (3.2)

where [R]i,j is element (i, j) of the covariance matrixR.

• Assumption 3 - Each node k stores local estimates of neighbouring
weight components and the estimated covariances of their neigh-
bourhoods [R]i,j ∀(i, j) ∈ Vi.

Using our system assumptions we may decompose the MVDR cost func-

49

tion as
1

2
w∗Rw =

1

2
w∗(C†2 ◦R)w

=
1

2

∑
i∈V

w∗iRiwi

(3.3)

where wi ∈ RV is the vector of weights in the neighbourhood of node i,
C†2 is a mask that applies the network sparsity pattern and accounts for
multiple neighbours carrying the same entry of the global weight vector
w, and Ri ∈ SV+ is the resulting prescaled sparse covariance matrix of the
neighbourhood Vi. This has allowed us to separate our centralized cost
function into a sum of N local cost functions present at each node i across
the network.

A problem still remains, however, for application of PDMM. The global
distortionless response constraint d∗w = 1 is not immediately able to be
encoded in the edge-wise constraints present in the PDMM problem form
(2.32). To deal with this problem we first recall the central analytic solution

w =
R−1d

dHR−1d
. (3.4)

Rather than attempting to find the weight vector w across all nodes we
instead restrict our attention to finding a scaled version of the weight vec-
tor x = R−1d since the beamformer output may then be calculated using
gossip algorithms as

z =
xTu

xTd
=

1
V

∑
i∈V [x]Ti [u]i

1
V

∑
i∈V [x]Ti [d]i

. (3.5)

This is simply the ratio of two global averages, which is required to pro-
duce a beamformer output signal regardless of the method used to op-
timize our weight vector. To obtain x we construct the unconstrained
quadratic program

minimize f(x) =
1

2
xTRx− dTx, (3.6)

50 CHAPTER 3. A DISTRIBUTED BEAMFORMER USING PDMM

which we may then decompose as

1

2
xTRx− dTx =

∑
i∈V

(
1

2
xT (C†2 ◦R)x− dTi xi

)
=
∑
i∈V

(
1

2
xTi Rixi − dTi xi

)
.

(3.7)

where xi ∈ RVi is the local vector of neighbourhood elements from the
global vector x, di ∈ RVi is a vector containing all zeros apart from the
kth entry which is equal to node i’s scalar ATF di, and Ri ∈ RVi×Vi is the
covariance matrix for the neighbourhood Vi. Provided we enforce pair-
wise consensus constraints between the primary scalar element of node i
(i.e. [x]i) and the copy held by node j for all j ∈ Vi, we obtain the optimal
vector entries of x across neighbourhoods of k as solutions of

minimize
∑
i∈V

fi(xk) =
∑
i∈V

(
1

2
xTi Rixi − dTi xi

)
,

subject to Ai|jxi = Aj|ixj ∀(i, j) ∈ E ,
(3.8)

where the matrices Ai|j ∈ R2×Vi and Aj|i ∈ R2×Vj contain entries of 1 or 0

to enforce consistency (with one row each for the consensus of node i and
j’s primary elements and their copies), and the local vector xi is node ik’s
idea of the elements of x belonging to its neighbourhood Vi. Using the
PDMM update equations of section 2.2.5 we arrive at the iterations ∀i ∈ V

xk+1
i =

(∑
j∈Vi

ρAT
i|jAi|j +Ri

)−1(
di +

∑
j∈Vi

AT
i|j(ρAj|ix

k
j − λkj|i)

)
(3.9)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi. (3.10)

In the next section we will test the proposed PDMM beamformer in a
simulated environment to confirm that it converges to the central solution
obtained by (3.4). Recall that this approach does not include any form of
weight regularization, such as attempting to reduce the energy of weights
or induce sparsity in our weight set.

3.1. NUMERICAL SIMULATION 51

3.1 Numerical Simulation

A wireless sensor network was simulated with V = 20 microphone nodes
and a point source randomly distributed in a 10 m×10 m×10 m room. The
distances from node k to all its neighbours were assumed to be known and
the network was connected in a random sparse manner corresponding to a
randomly generated sparse covariance matrix. Edges exist between nodes
k and l if there is a nonzero covariance entry at row k and column l of
the covariance matrix. The acoustic transfer function for each node is a
complex scaling by dk = 1

lk
e−jτk where lk is the distance between node k

and the source, τk = lk
c

2πfs and the speed of sound c = 340 ms−1.
The signal of interest was a 10 second speech sample randomly chosen

from a 60 second recording and the interference was zero-mean Gaussian
using the sparse covariance matrix as described above. The covariance
matrix was scaled by the speech sample’s power to produce a signal-to-
noise ratio (SNR) of either 5 dB or −5 dB, followed by a transfer function
scaling to produce distant dependent covariances. This covariance matrix
was then used to create interference for each node. In this way the ob-
served signal at each node was the sum of the source signal and some ran-
dom correlated interference, scaled by the respective distance dependent
transfer functions, allowing both the SNR and covariances to be perfectly
determined. The sample rate at each node was fs = 8 kHz and processing
was carried out on 6.25 ms Hanning windowed blocks with a 50% overlap.

We show the convergence of the PDMM weight vector to the MVDR
optimal weight vector as a function of update iterations. Weight vector
mean squared error (MSE) of the PDMM estimated weight vector at node
i compared with the MVDR optimal weight vector, averaged over Q reali-
sations, is defined as

MSEk
i =

1

Q

Q∑
q=1

‖wk
q,i −wq,MVDR‖2 (3.11)

where wiq,k and wq,MVDR are the estimated weight vector of node k at iter-

52 CHAPTER 3. A DISTRIBUTED BEAMFORMER USING PDMM

ation i and the optimal weight vector, respectively, for the qth realisation.
This is the most fundamental measure of our algorithms convergence since
the optimization of our weight vector in the mean squared error sense is
what we are attempting to achieve.

3.1.1 Results and Discussion

We now present the simulation results of our PDMM beamformer when
compared with the MVDR optimal beamformer as discussed in section
3.0.1. The weight vector convergence for noisy observations SNRs of 5

dB, 0 dB and −5 dB were simulated and the results are shown in figure
3.1. We see that the weight vector error follows the same, sublinear, con-
vergence rate regardless of the noisy observation SNRs. This is consistent
with the convergence properties discussed in section 2.2.5. The PDMM

Iterations per node (i)
0 5 10 15 20 25 30 35 40 45 50

M
ea

n
sq

ua
re

d
er

ro
r

(M
S

E
)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

5 dB
0 dB
-5 dB

Figure 3.1: MSE of PDMM weight vector relative to MVDR weight vector
as a function of iteration number

beamformer converges on the optimal MVDR beamformer weight vector

3.1. NUMERICAL SIMULATION 53

given our initial assumption that nodes not sharing a common neighbour-
hood experience uncorrelated interference. This is the same assumption
made in the diffusion-based MVDR beamformer summarized in section
2.4.4. In sparsely connected networks this is appropriate but in densely
connected large networks this may not be the case.

Suppose now that we wish to apply a form of regularization to the
weight vectorw and therefore the optimization vectorx. A sparsity induc-
ing regularizer such as the l1 norm [5, 117] to reduce the number of active
distributed weight values. This may be desirable as it would reduce the
number of total nodes within the network that must transmit their scaled
signal observations for beamformer output. For a general regularization
function Ri at each node i, our distributed optimization problem would
then be

minimize
∑
i∈V

(
1

2
xTi Rixi − dTi xi +Ri(xi)

)
,

subject to Ai|jxi = Aj|ixj ∀(i, j) ∈ E ,
(3.12)

leading to the PDMM update iterations

xk+1
i = arg min

xi

(
1

2
xTi Rixi − dTi xi +Ri(xi)

+ xTi

(∑
j∈Vi

AT
i|jλ

k
j|i

)
+
∑
j∈Vi

ρ

2
‖Ai|jxi −Aj|ix

k
j‖2

2

)
, (3.13)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi. (3.14)

The primal variable update (3.13) may require a costly numerical solu-
tion at each update iteration k, such as when our regulization function is
the l1 norm. This presents a real problem for distributed sensor networks,
where computation power and battery life are very limited. Additionally,
small sensors may not be equipped with the optimization packages nec-
essary for this numerical solution as available memory is also a limited
resource. In the following chapter, we will investigate an approach for
splitting the cost and regularization functions with the aim of reducing
the computational cost of distributed PDMM regularized optimization.

54 CHAPTER 3. A DISTRIBUTED BEAMFORMER USING PDMM

Chapter 4

PDMM Network Function
Splitting

Motivated by the complications that arise when employing regularized
local subproblems for distributed PDMM optimization, in this chapter we
develop a variation of PDMM that allows for the separation of local func-
tions, which we refer to as Function Splitting PDMM (FS-PDMM). We
show that this approach simplifies local update iterations that must be
solved for each node, at each update iteration, improving computational
efficiency at the network’s distributed processors. In particular, the local
updates become greatly simplified when using regularization functions
with closed-form proximal operator expressions, such as common l1 and
l2 norm penalties used in Tikhonov regularization [49], sparse l1 regular-
ization [116, 78], LASSO [88, 38], and elastic net regularization [163].

We begin by presenting the general regularized problem form assumed
throughout this chapter and show how we might naı̈vely split the cost and
regularization functions using a separate application of PDMM or ADMM,
followed by the FS-PDMM algorithm. An equivalence analysis is then per-
formed to prove that FS-PDMM is theoretically equivalent to performing
conventional PDMM on a network twice the size as the physical network.
Finally, we presented simulated experiments that confirm the effectiveness

55

56 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

of FS-PDMM when applied to an elastic net [163] regularized least-squares
problem.

4.1 Function Splitting

In this section we address the difficulty of computing local PDMM primal
variable updates when using regularized functions, and describe a simple
method of local function splitting that requires numerical solution at each
update iteration. We then present an asynchronous updating proceedure
that separates the cost functions fi and regularization functions Ri across
two local subproblems. We show that this separation is particularly useful
when our regularization functions have simple proximal operator expres-
sions, such as for common l1 and l2 norms.

4.1.1 Problem Form and Naı̈ve Approach

To begin, we assume that over our network G = (V , E) we wish to perform
regularized optimization of the form

minimize
V∑
i=1

(
fi(xi) +Ri(M ixi)

)
subject to Ai|jxi = Aj|ixj ∀(i, j) ∈ E ,

(4.1)

where M i ∈ RM i×ni defines a general linear mapping on the variable xi
prior to regularization, the loss function fi : Rni → R∪{+∞} and regular-
ization function Ri : RM i → R ∪ {+∞} at node i are both closed, proper,
and convex, the matrices {Ai|j,Aj|i} define a linear constraint across the
edge (i, j). Compared with the general PDMM problem form (2.32), here
we have the local functions gi(xi) = fi(xi) +Ri(M ixi) ∀i ∈ V .

When gi in problem (2.32) is a relatively simple function, such as a
quadratic, updating the primal variable requires a minimization that may
be computed analytically and efficiently. However, when applying PDMM

4.1. FUNCTION SPLITTING 57

to problem (4.1), performing the PDMM primal variable update requires
an iterative numerical solution of each local subproblem. In low cost,
large sensor networks this iterative minimization at each node may be pro-
hibitive, both in terms of computation power at each node and given the
potentially limited library of numerical solvers available to each sensor.

To solve the PDMM primal update (2.35a) for a regularized problem of
the form (4.1), perhaps the most obvious approach would be to reformu-
late each local subproblem with the auxilliary variable zi = M ixi. The
PDMM primal variable iterate xk+1

i at node i may then be found as the
solution to the constrained optimization problem

minimize
[
fi(xi) +

∑
j∈Vi

δ

2
‖Ai|jxi −Aj|ix

k
j‖2

2

+ xTi

(∑
j∈Vi

AT
i|jλ

k
j|i

)]
+Ri(zi)

subject to zi = M ixi.

(4.2)

Applying ADMM [15] directly to this problem, leads to the iterates

xκ+1
i = arg min

xi

[
fi(xi) + xTi

(∑
j∈Vi

AT
i|jλ

k
j|i +MT

i ν
κ
i

)
+
∑
j∈Vi

ρ

2
‖Ai|jxi −Aj|ix

k
j‖2

2 +
δ

2
‖M ixi − zκi ‖2

2

]
(4.3a)

zκ+1
i = arg min

zi

[
Ri(zi) +

δ

2
‖zi − (M ix

κ+1
i + νκi /δ)‖2

2

]
(4.3b)

νκ+1
i = νκi + δ(M ix

κ+1
i − zκ+1

i), (4.3c)

where we are using κ to distinguish the local ADMM iterates from the cur-
rent global PDMM iteration index k, and δ controls the level of quadratic
augmentation for ADMM.

Taking the above approach means that at each global PDMM iterate k
we need to repeat (4.3a)-(4.3c) until we obtain an estimate to the solution
of the PDMM primal subproblem (2.35a). Additionally, for complex cost

58 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

functions fi the ADMM iterate (4.3a) may itself require numerical solution,
adding yet another nested loop to our network optimization.

4.1.2 Function Splitting and Proximal Operators

Given our regularized problem (4.1), we propose the asynchronous Func-
tion Splitting PDMM (FS-PDMM) updating scheme given in Algorithm 1,
where we exploit the proximal operator [94, 103, 29], defined for a function
h and vector v as

proxh,1/ρ(v) = arg min
x

(
h(x) +

ρ

2
‖x− v‖2

2

)
(4.4)

to simplify update expressions. We now have an auxiliary primal variable
zi and dual variable νi at each node i, and perform updates very similar to
a single pass over the ADMM updates (4.3a)-(4.3c). We will see in Section
4.2 that these updates may be interpreted as PDMM iterates performed at
auxiliary “virtual” nodes attached to each physical node.

The first primal update of Algorithm 1 requires the minimization of
the cost function fi and a quadratic penalty over the primal variable xi,
while the second primal update requires the minimization of the regu-
larization function Ri and a quadratic penalty (equivalently, the proximal
update) over the primal variable zi. The final two dual variable updates
are simple linear mappings. The proximal update may be easily evaluated
for many common regularization functions, such as the l1 and l2 norms,
leaving us with only a single cost function minimization. In contrast, us-
ing conventional PDMM would require performing a coupled minimiza-
tion over both functions fi and Ri as well as a quadratic penalty, which
generally would require numerical optimization. The local computational
savings of FS-PDMM will be demonstrated in Section 4.3.

We show in Section 4.2 that FS-PDMM is, in fact, equivalent to con-
ventional PDMM performed over a network of 2V nodes connected in a
very similar topology to our physical network. We can therefore apply all

4.1. FUNCTION SPLITTING 59

Algorithm 1 FS-PDMM

1: Initialize:
2: specify fi, Ri,M i,Ai|j, ρ, ε ∀i ∈ V ,∀j ∈ Vi
3: randomly initialize (xi, zi,νi,λi|j) ∀i ∈ V ,∀j ∈ Vi

4: Update procedure:
5: while stopping criterion == false do
6: randomly trigger node i for update

7: xk+1
i = arg minxi

[
ρ
2

∥∥M ixi − zki
∥∥2

2

+fi(xi) + xTi

(∑
j∈ViA

T
i|jλ

k
j|i +MT

i ν
k
i

)
+
∑

j∈Vi
ρ
2

∥∥Ai|jxi −Aj|ix
k
j

∥∥2

2

]
8: zk+1

i = proxRi,1/ρ
(2M ix

k+1
i − zki + νki /ρ)

9: νk+1
i = ρ(2M ix

k+1
i − zk+1

i − zki) + νki
10: λk+1

i|j = ρ(Aj|ix
k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi

11: share xk+1
i ,λk+1

i|j with neighbours j ∈ Vi
12: for m ∈ V ,m 6= i,∀q ∈ Vm do
13: (xk+1

m , zk+1
m ,νk+1

m ,λk+1
m|q) = (xkm, z

k
m,ν

k
m,λ

k
m|q)

14: end for
15: if ‖xk+1

i − xki ‖+ 1/Vi
∑

j∈Vi ‖λ
k+1
i|j − λ

k
i|j‖ < ε then

16: stopping criterion = true
17: end if
18: k ← k + 1

19: end while

60 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

PDMM [158] results, including the stopping criterion based on primal and
variable estimate stability and the O(1/k) convergence for cyclically trig-
gered node updates, to this transformed network topology. In Section 4.3
we apply FS-PDMM to an elastic net (linearly combined l1 and l2) regular-
ized least-squares problem.

4.2 Equivalence Analysis

In this section we analyze the FS-PDMM algorithm and show the equiv-
alence of FS-PDMM to conventional PDMM for a specific network topol-
ogy and updating order. FS-PDMM, as presented in Algorithm 1, requires
only the equivalent of a single pass over the iterates (4.3a)-(4.3c), while re-
taining the same convergence properties as PDMM as presented in [158].
We summarize this in the following theorem:

Theorem 1. Let FS-PDMM (Algorithm 1) be applied over a node set V with edge
set E . This is equivalent to performing PDMM over the same network, but where
each node i now has an additional node i+V attached only to it. The node i holds
the cost function fi while the node i+ V holds the regularization function Ri, for
all nodes i ∈ V . FS-PDMM therefore converges at rateO(1/k) when using cyclic
updates.

Proof. We begin by restating the FS-PDMM update iterations from Algo-
rithm 1 using the definition of the proximal operator (4.4). At each itera-
tion k we select a random node i and therefore perform

xk+1
i = arg min

xi

[
fi(xi) + xTi

(∑
j∈Vi

AT
i|jλ

k
j|i +MT

i ν
k
i

)
+
∑
j∈Vi

ρ

2
‖Ai|jxi −Aj|ix

k
j‖2

2 +
ρ

2
‖M ixi − zki ‖2

2

]
(4.5a)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi (4.5b)

ηk+1
i = ρ(zki −M ix

k+1
i)− νki (4.5c)

4.2. EQUIVALENCE ANALYSIS 61

zk+1
i = arg min

zi

[
ρ

2
‖zi − (M ix

k+1
i − ηk+1

i /ρ)‖2
2 +Ri(zi)

]
(4.5d)

νk+1
i = ρ(M ix

k+1
i − zk+1

i)− ηk+1
i (4.5e)

(xk+1
m , zk+1

m ,νk+1
m ,ηk+1

i ,λk+1
m|q)

= (xkm, z
k
m,ν

k
m,η

k
i ,λ

k
m|q)∀m ∈ V ,m 6= i, ∀q ∈ Vm, (4.5f)

where we have introduced the extra intermediate variable ηk+1
i rather than

including zki explicitly in the minimization over zi, for notational conve-
nience. Next we introduce a “virtual” node index t = i + V for each i ∈ V
and collect these new indices in the setW = {V + 1, . . . , V + V }. We then
create a larger index set U = V ∪ W , which contains all physical node in-
dices and the extra “virtual” indices. As with our physical neighbourhood
sets Vi, we may now define neighbourhood sets of this larger index set as

Ui =


Vi ∪ {i+ V } for i ∈ V

{i, i− V } for i ∈ W .

(4.6)

These new neighbourhood sets Ui represent the original structure of our
physical network, with the addition of an extra “virtual” node t = i + V

attached to each node i. Relabelling our optimization variables zki = xkt ,
νki = λkt|i, and ηki = λki|t then allows the update iterates (4.5a)-(4.5f) for a
triggered node i to be expressed as

xk+1
i = arg min

xi

[
fi(xi) + xTi

(∑
j∈Ui

BT
i|jλ

k
j|i

)
+
∑
j∈Ui

ρ

2
‖Bi|jxi −Bj|ix

k
j‖2

2

]
(4.7a)

λk+1
i|j = ρ(Bj|ix

k
j −Bi|jx

k+1
i)− λkj|i ∀j ∈ Ui (4.7b)

xk+1
t = arg min

xt

[
Rt(xt) + xTt B

T
t|iλ

k+1
i|t

+
ρ

2
‖Bt|ixt −Bi|tx

k+1
i ‖2

2

]
t = i+ V (4.7c)

62 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

λk+1
t|i = ρ(Bi|tx

k+1
i −Bt|ix

k+1
t)− λk+1

i|t t = i+ V (4.7d)

(xk+1
m ,λk+1

m|q) = (xkm,λ
k
m|q) ∀m ∈ U ,m 6= i ∨ t, ∀q ∈ Um, (4.7e)

where the new constraint matrices (Bi|j,Bj|i) are the same as our original
matrices (Ai|j,Aj|i) with the addition of two new constraints for each extra
“virtual” node, i.e.,

Bi|j = Ai|j ∀(i, j) ∈ E , (4.8)

Bi|t = M i for t = i+ V, (4.9)

Bt|i = I i for t = i+ V, (4.10)

whereM i is defined in our initial problem formulation (4.1), and we have
changed the index of our regularization function Rt to reflect the change
of variable index. Note that all of these changes are simple relabellings
and do not change the optimization problem or the values of variables
computed at each iteration.

The update iterations (4.7a)-(4.7e) are identical to those performed for
two successive iterations of PDMM as presented in [156] over a network
described by the node set U , the edge set (E ∪ {(t, i)|t = i+ V }), with edge
constraints (Bi|j,Bj|i) as defined in (6.5)-(6.7), where nodes i and t = i+V

hold the cost function fi and regularization function Ri, respectively, of
our original problem (4.1). �

We have essentially embedded our problem in a “virtual” network
with 2V nodes, where the topology is the same as our physical network
with the addition of an extra “virtual” node attached to each physical node
i. Our cost functions fi and regularization functions Ri are split between
these physical and “virtual” node pairs, and we trigger the pair succes-
sively when triggering a physical node i.

4.3. NUMERICAL SIMULATION 63

4.3 Numerical Simulation

In this section we present the results of simulations using FS-PDMM to
perform l1 data fitting and elastic net regularized least-squares (ENLS) op-
timization over a randomly connected graph. The local data and related
decision variable xi are kept locally at node i for optimization. Neighbour-
ing nodes l ∈ Vi may share some elements with node i while using their
own local data for collaborative optimization.

4.3.1 l1 Data Fitting

We begin with the l1 data fitting consensus problem described as

minimize
∑
j∈Vi

‖xi − ai‖1

subject to xi = xj ∀(i, j) ∈ E ,
(4.11)

where ai are data vectors held by each node i ∈ V . The optimization goal
is to find the common vector x that best fits all distributed data vectors
in the l1 sense. As demonstrated in [127] there are some instances where
PDMM directly applied to problem (4.11) fails to converge and instead os-
cillates indefinitely around a suboptimal point. The reasons for this lack
of convergence require knowledge of monotone operator theory and are
beyond the scope of this study. We will, however, show experimentally
that performing function splitting results in stable convergence for opti-
mization when compared to direct PDMM optimization.

To apply FS-PDMM to problem (4.11) we define our cost function as
fi(xi) = 0 and our regularization function as Ri(xi) = ‖xi−ai‖1 giving us

minimize
∑
j∈Vi

fi(xi) +Ri(xi)

subject to xi = xj ∀(i, j) ∈ E ,
(4.12)

where M i = I ∀i ∈ V and Ai|j = Aj|i = I ∀(i, j) ∈ E . Compared with
the FS-PDMM algorithm, we note that the extra constant term ai in the

64 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

regularization function R requires a minor adjustment to the FS-PDMM
update equations, but the general algorithm remains the same. We there-
fore have the following FS-PDMM update iterations for the l1 data fitting
consensus problem problem

xk+1
i =

1

2ρVi

(
ρzki + ρai − νki −

∑
j∈Vi

(λkji + ρxkj)

)
(4.13)

zk+1
i = proxli,1/ρ(2x

k+1
i − 2ai − zki + νki /ρ) (4.14)

νk+1
i = ρ(2xk+1

i − 2ai − zk+1
i − zki) + νki (4.15)

λk+1
i|j = ρ(xkj − xk+1

i)− λkj|i ∀j ∈ Vi, (4.16)

for all i ∈ V . Recalling the equivalence analysis from 4.2, we have effec-
tively embedded the linear difference (xi − ai) at each node in an edge-
wise constraint between the node and its “virtual” neighbour.

Since the solution to problem (4.11) is not guaranteed to be unique
our error measure will be the mean-square error of the objective function
rather than the optimal weight vector, i.e.,

MSEk =
1

V

∑
i∈V

(Ri(x
k
i)−Ri(x

opt
i))2, (4.17)

We simulate a randomly connected network of 20 nodes with randomly
generated data vectors ai ∀i ∈ V and ρ = 0.5 and generate 100 random
instances of this setup. Both conventional PDMM and FS-PDMM applied
to the l1 data fitting consensus problem problem and a plot of the function
MSE versus update iterations is presented in figure 4.1.

We see that conventional PDMM has a significantly slower conver-
gence rate than FS-PDMM on average. This is due to conventional PDMM
failing to converge in approximately one third of random network in-
stances. Conversely, FS-PDMM converges in all instances without getting
stuck oscillating around a suboptimal point. The convergence failure in
this specific scenario is analysed using monotone operator theory in [127],
but it appears that the splitting of cost and regularization functions per-
formed implicitly by FS-PDMM resolves this problem.

4.3. NUMERICAL SIMULATION 65

0 5 10 15 20 25 30

Iterations per node

10-6

10-4

10-2

100

102

O
bj

ec
tiv

e
F

un
ct

io
n

M
S

E

FS-PDMM
Conventional PDMM

Figure 4.1: Convergence rate of FS-PDMM and conventional PDMM for
the l1 data fitting consensus problem (asynchronous).

4.3.2 Elastic Net Regularized Least-Squares

For ENLS, the local problem function at node i is

gENLS
i (xi) = ‖Dixi − ci‖2 + ‖xi‖1 +

1

2
‖xi‖2

2, (4.18)

where Di and ci are the data block and error vectors, respectively. This is
a canonical sparsity inducing regularization problem involving a simple
least squares cost function, where the extra l2 norm on the optimization
variable allows the problem to be strictly convex and therefore have only
a single global minima. This means both algorithms will converge on the
same optimal point. FS-PDMM performing ENLS was compared to con-
ventional PDMM to determine the convergence rate and the runtime. A
randomly connected graph of 10 nodes was formed, each with between
five and ten vector elements. Each node randomly shared a subset of
these elements with their neighbours to initialise the consensus pattern
for the current simulation realisation. At iteration k a node i randomly

66 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

Iterations per node
0 5 10 15 20 25 30 35 40

P
rim

al
 v

ar
ia

bl
e

M
S

E

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

FS-PDMM
Conventional PDMM

(a) Convergence rate of FS-PDMM and con-
ventional PDMM for elastic net regularized
least-squares (asynchronous).

Runtime (s)
10-3 10-2 10-1 100

P
rim

al
 v

ar
ia

bl
e

M
S

E

10-6

10-4

10-2

100

102

FS-PDMM
Conventional PDMM

(b) Primal variable MSE versus local
runtime of FS-PDMM and conventional
PDMM for elastic net regularized least-
squares (asynchronous).

Figure 4.2: Performance of FS-PDMM and conventional PDMM.

was triggered from a uniform distribution for variable update, followed
by a sharing of these updated variables with local neighbours.

The optimal primal variable xopt
i was calculated for all nodes i to a

precision of 10−9 prior to distributed optimization. At each iteration of
the regularized and conventional PDMM optimization procedure we com-
pute the mean-square error (MSE) across all nodes as

MSEk =
1

V

∑
i∈V

‖xki − x
opt
i ‖2, (4.19)

and capture the runtime for each triggered node’s update routine to com-
plete.

Fig. 4.2a shows the MSE as a function of iterations per node for ENLS
using FS-PDMM and conventional PDMM. We see that they both perform
similarly, with FS-PDMM requiring around five iterations per node more
than conventional PDMM to reach an accuracy of 10−6. However, from
Fig. 4.2b we see that FS-PDMM has a runtime over an order of magnitude
less than conventional PDMM, which is performing local variable splitting

4.4. SUMMARY 67

and minimization using ADMM as in equations (4.3a)-(4.3c).
We would like to reiterate that the FS-PDMM algorithm, while provid-

ing lower computational complexity and runtimes, also does not require
any additional numerical optimizers. Practically, this allows our algorithm
to be implemented in systems where processing units have low memory
and are not able to store libraries of solvers. Large wireless sensor net-
works, for example, often have memory and processor restrictions at each
node that may make this overhead requirement infeasible.

4.4 Summary

In this section we proposed a distributed algorithm based on PDMM called
FS-PDMM for local function splitting with the aim of reducing local sub-
problem computation times. We showed that the FS-PDMM algorithm
is equivalent to conventional PDMM performed over an altered network
toplogy, and therefore retains the O(1/k) convergence rate for conven-
tional PDMM. Simulated experiments show that FS-PDMM performs local
update iterations roughly an order of magnitude faster than conventional
PDMM without the need for additional numerical optimizers, while in-
creasing the number of iterations until convergence slightly.

68 CHAPTER 4. PDMM NETWORK FUNCTION SPLITTING

Chapter 5

Quadratic Approximation PDMM

Given the computational savings as well as the simple form of many lo-
cal updates resulting from the function splitting in chapter 4, a natural
question to ask is whether the update efficiency of individual functions
may be improved. In this chapter, inspired by works such as [92] and [23],
we show that when our local cost functions fi(xi) are twice differentiable
with Lipschitz continuous gradients it is possible to quadratically approx-
imate local updates of these functions using the gradient information of
these functions. This greatly reduces the local computational cost of our
distributed optimization when utilizing certain cost functions, while still
allowing for rapid network convergence. Additionally, as in the case of
function splitting, this also often eliminates the need for complex opti-
mization packages that increasee the overhead of distributed sensors. We
will refer to the algorithm resulting from this approximation as Quadrati-
cally Approximated PDMM (QA-PDMM).

We begin by stating the quadratic approximation made to the local cost
function at each node and present the associated primal variable update
equations. We then present two convergence analyses for synchronous
QA-PDMM, where the first assumes Lipschitz continuity and strong con-
vexity of local functions and the second removes the assumption of strong
convexity. We provide sufficient conditions for convergence and show that

69

70 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

these lead to a guaranteed sublinear convergence rate of O(1/k). Finally,
we present simulated experiments that confirm the effectiveness of QA-
PDMM when applied to a distributed ridge regularized logistic regression
problem over a general random graph with partial consensus.

5.1 The QA-PDMM Algorithm

Inspired by the computational savings demonstrated in [92], in this section
we develop a PDMM updating scheme that uses a quadratic approxima-
tion of the local cost function fi when performing local primal variable
updates. Recall from section 2.2.5 that PDMM optimizes the decompos-
able problem form (2.32) using the update equations

xk+1
i = arg min

xi

[
fi(xi) +

∑
j∈Vi

λk,Tj|i Ai|jxi

+
1

2
‖Ai|jxi−Aj|ix

k
j‖2
P ij

]
i ∈ V (5.1)

λk+1
i|j =P ij(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i i ∈ V , j ∈ Vi (5.2)

where each P ij is a positive definite matrix (i.e., P ij � 0), and ‖ · ‖P repre-
sents the weighted Euclidean norm by the matrix P .

For some objective functions {fi|i ∈ V}, such as the softmax function
in logistic regression, it might be expensive to compute the exact solution
{xk+1

i |i ∈ V} in (5.1). In those situations, it would be computationally ben-
eficial to approximately perform the primal variable update if convergence
was still guaranteed. For this section we make the additional assumption
that each convex cost function fi : Rni → R is continuously differentiable
with the Lipschitz continuous gradient Qi > 0:

‖∇fi(xi)−∇fi(yi)‖ ≤ Qi‖xi − yi‖ ∀xi,yi ∈ Rni , (5.3)

where ‖ · ‖ denotes the standard Euclidean norm. This implies that there
is an upper bound on how rapidly the derivative of the function fi can

5.1. THE QA-PDMM ALGORITHM 71

change. Given this assumption, we quadratically approximate the cost
function fi at xki as

fki (xi)=fi(x
k
i)+(xi−xki)T∇fi(xki)+

1

2
‖xi−xki ‖2

Hk
i
i ∈ V , (5.4)

whereHk
i � 0 is a positive-definite weighting matrix for node i at iteration

k. This approximation is then used in the primal variable update (5.1),
giving the new update equations

xk+1
i = arg min

xi

[
fi(x

k
i) + (xi − xki)T∇fi(xki) +

1

2
‖xi − xki ‖2

Hk
i

+ xTi

(∑
j∈Vi

AT
i|jλ

k
j|i

)
+
∑
j∈Vi

1

2
‖Ai|jxi −Aj|ix

k
j‖2
P ij

]
∀i ∈ V (5.5)

λk+1
i|j = P ij(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi, ∀i ∈ V . (5.6)

QA-PDMM therefore attempts to simplify the optimization (5.1) by using
the gradient information of the objective function computed at the most
recent estimate, rather than performing an exact minimization. The only
condition required for convergence of QA-PDMM is that the weighting
matrix minus the Lipschitz constant multiplied by the identity matrix be
positive definite, i.e. Hk

i −QiIi � 0.
Simplifying this primal update to give an explicit expression yields

QA-PDMM presented in Algorithm 2, the convergence of which will be
analyzed in Section 5.2. The update procedure for QA-PDMM requires
only a single local matrix inversion and linear transformations for the pri-
mal variable update, and only simple linear transformations for the dual
update. This allows for large computational savings for certain optimiza-
tion problems, such as logistic regression, as we will see in Section 5.3.

Note that while the general PDMM algorithm may operate synchronously
or asynchronously across a network, we have restricted QA-PDMM to
synchronous updates. This is due to the convergence analysis performed
in Subsection 5.2, which assumes synchronous operation.

72 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

Algorithm 2 QA-PDMM

1: Initialize:
2: specify fi,Ai|j, ρ,H

k
i , ε ∀i ∈ V ,∀j ∈ Vi

3: randomly initialize (xi,λi|j) ∀i ∈ V ,∀j ∈ Vi

4: Update procedure:
5: while stopping criterion == false do
6: at each iteration k, all nodes i synchronously perform

7: xk+1
i = (

∑
j∈ViA

T
i|jP ijAi|j +Hk

i)−1

[
Hk
i x

k
i −∇fi(xki)

+
∑

j∈ViA
T
i|j(P ijAj|ix

k
j − λkj|i)

]
8: λk+1

i|j = P ij(Aj|ix
k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi

9: share xk+1
i ,λk+1

i|j with neighbours j ∈ Vi
10: if ‖xk+1

i − xki ‖+ 1/Vi
∑

j∈Vi ‖λ
k+1
i|j − λ

k
i|j‖ < ε then

11: stopping criterion = true
12: end if
13: k ← k + 1

14: end while

5.2. QA-PDMM CONVERGENCE 73

5.2 QA-PDMM Convergence

In this section we will present two convergence analyses that demonstrate
the convergence properties of QA-PDMM. Synchronous PDMM converges
to an optimal solution limk→∞(xk,λk) = (x?,λ?), wherex = [x1,x2, . . . ,x|V|]

T

and λ = [λ1,λ2, . . . ,λ|V|]
T , for the problem (2.32) if and only if (x?,λ?) sat-

isfies the following optimality conditions [158, 100]

∇fi(x?i) =
∑
j∈Vi

AT
i|jλ

?
i|j i ∈ V (5.7)

λ?i|j = λ?j|i (i, j) ∈ E (5.8)

Ai|jx
?
i = Aj|ix

?
j (i, j) ∈ E . (5.9)

We will show in next section that if the set of parameters {Hi|i ∈ V} are
properly chosen in the approximation (5.4), then synchronous QA-PDMM
converges to an optimal point.

5.2.1 Convergence Analysis 1

In our first analysis we assume that the local objective functions fi(xi) are
twice differentiable and the eigenvalues of their local Hessians ∇2fi(xi)

are bounded by positive constants qi andQi where 0 < qi ≤ Qi <∞∀i ∈ V .
Therefore, for any xi ∈ Rni we have

qiIi � ∇2fi(xi) � QiIi ∀i ∈ V , (5.10)

where Ii ∈ Rni×ni is the identity matrix. The lower bound on the Hessian
implies that for all i ∈ V , each local function fi is strongly convex with
constant qi, i.e.,

(∇fi(xi)−∇fi(yi))T (xi − yi) ≥ qi‖xi − yi‖2
2 ∀xi,yi ∈ Rni , (5.11)

while the upper bound is equivalent to Lipschitz continuous gradients of
the local functions fi for all i ∈ V with constant Qi, i.e.,

‖∇fi(xi)−∇fi(yi)‖2 ≤ Qi‖xi − yi‖2 ∀xi,yi ∈ Rni . (5.12)

74 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

Additionally, we assume that the tuning matrices P ij = ρ ∀(i, j) ∈ E for
some scalar constant ρ > 0.

We begin by forming an inequality that captures the convergence of
our primal and dual variables.

Lemma 1. Given the assumption on the Hessian of each cost function fi as stated
in (5.10), for some scalar ci > 0 ∀i ∈ V we may form the inequality

∑
i∈V

[
(xk+1

i − x∗i)T
[
Hk
i + (2qi − ci)Ii

]
(xk+1

i − x∗i)

+ (xk+1
i − xki)T

[
Hk
i −

Qi

ci
Ii

]
(xk+1

i − xki)

+
1

2

∑
j∈Vi

[
‖ρ−1/2(λ∗i|j + λk+1

j|i) + ρ1/2(Ai|jx
∗
i −Aj|ix

k+1
j)‖2

+ ‖ρ−1/2(λk+1
i|j + λkj|i) + ρ1/2(Ai|jx

k+1
i −Aj|ix

k
j)‖2

]]
≤
∑
i∈V

‖xki − x∗i ‖2
Hk

i

+
1

2

∑
i∈V

∑
j∈Vi

‖ρ−1/2(λ∗i|j + λkj|i) + ρ1/2(Ai|jx
∗
i −Aj|ix

k
j)‖2. (5.13)

Proof. See the proof in Appendix A.1. �

Using the inequality of Lemma 1, we may present the convergence
guarantees for QA-PDMM in the following theorem.

Theorem 2. If each weighting matrix Hk
i is selected such that

Hk
i −

Qi

2qi
Ii � 0 (5.14)

we have

lim
k→∞

xki − x∗i = 0 ∀i ∈ V (5.15)

lim
k→∞

xk+1
i − xki = 0 ∀i ∈ V , (5.16)

5.2. QA-PDMM CONVERGENCE 75

and

lim
k→∞

Ai|jx
k
i = Aj|ix

k
j ∀(i, j) ∈ E (5.17)

lim
k→∞

λki|j + λkj|i = 0 ∀(i, j) ∈ E , (5.18)

i.e., each primal variable estimate xki converges to the optimal value x∗i ∀i ∈
V , the distance between estimates xk+1

i and xki tends to zero, and our estimate
converges to a primal and dual feasible point.

Proof. Let ci be a positive real number such that 2qi− ci > 0 for each i ∈ V .
ThenHk

i −(Qi/ci)Ii � 0 andHk
i +(2qi−ci)Ii � 0, i.e., the first two quadratic

terms in (5.13) are positive. This leads to (5.15) and (5.16).

Secondly, Lemma 1 implies that

lim
k→∞

[
ρ−1/2(λ∗i|j + λkj|i)

+ ρ1/2(Ai|jx
∗
i −Aj|ix

k
j)
]

= 0 ∀i ∈ V ,∀j ∈ Vi

lim
k→∞

[
ρ−1/2(λk+1

i|j + λkj|i)

+ ρ1/2(Ai|jx
k+1
i −Aj|ix

k
j)
]

= 0 ∀i ∈ V ,∀j ∈ Vi,

which results in

lim
k→∞

[
ρ−1/2(λk+1

i|j + λk+1
j|i)

+ ρ1/2(Ai|jx
k+1
i −Aj|ix

k+1
j)

]
= 0 ∀i ∈ V ,∀j ∈ Vi.

Therefore, for each edge (i, j) ∈ E we may write

lim
k→∞

[
ρ−1/2(λki|j + λkj|i) + ρ1/2(Ai|jx

k
i −Aj|ix

k
j)
]

= 0

lim
k→∞

[
ρ−1/2(λki|j + λkj|i) + ρ1/2(Aj|ix

k
j −Ai|jx

k
i)
]

= 0,

leading to (5.17) and (5.18). �

76 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

5.2.2 Convergence Analysis 2

In this section we will show that the lower bound on the Hessian eigen-
values (5.10), which imply strong convexity of the functions fi, is not nec-
essary to guarantee convergence of QA-PDMM. This second study makes
use of the analysis approach in [6] developed for the Fast Iterative-Shrinkage
Thresholding Algorithm (FISTA), and was lead by Dr. G. Zhang. We first
construct a special inequality for each xk+1

i in (5.5) and then exploit this to
analyze synchronous QA-PDMM.

We begin by introducing a standard inequality for each fi with Lips-
chitz continuous gradientQi in (6.2). Let each fi in (2.32) be a continuously
differentiable function with the Lipschitz continuous gradient Qi, then for
any hi ≥ Qi (Lemma 2.3 in [6])

fi(x)≤ fi(y)+(x−y)T∇fi(y)+
hi
2
‖x−y‖2 ∀x,y ∈ Rn. (5.19)

Next, from (5.5)-(5.6) the optimality condition for each xk+1
i can be easily

derived as

∇fi(xki) +Qi(x
k+1
i − xki) =

∑
j∈Vi

ATi|jλ
k+1
i|j i ∈ V . (5.20)

With (5.19) and (5.20) we may now derive an inequality for each xk+1
i in

(5.5), summarized in the following Lemma:

Lemma 2. Let hi ≥ Qi in the approximation function (5.4). Then for any xi ∈
Rni ,

fi(xi)−fi(xk+1
i)≥ hi

2
‖xk+1

i −xki ‖2−hi(xi−xki)T (xk+1
i −xki)

+ (xi−xk+1
i)T

∑
j∈Vi

ATi|jλ
k+1
i|j . (5.21)

Proof. From (5.4) and (5.19), we have

fi(xi)− fi(xk+1
i)

5.2. QA-PDMM CONVERGENCE 77

≥fi(xi)− fki (xk+1
i)

(a)

≥fi(xki) + (xi − xki)T∇fi(xki)− fki (xk+1
i)

=fi(x
k
i) + (xi − xki)T∇fi(xki)

−
[
fi(x

k
i)+(xk+1

i −xki)T∇fi(xki)+
hi
2
‖xk+1

i −xki ‖2

]
=(xi−xk+1

i)T∇fi(xki)−
hi
2
‖xk+1

i −xki ‖2

(b)
=(xi−xk+1

i)T

(∑
j∈Vi

ATi|jλ
k+1
i|j − hi(x

k+1
i − xki)

)

− hi
2
‖xk+1

i −xki ‖2,

where step (a) uses the property that fi is a convex function and step (b)

uses (5.20). The above expression can then be further simplified as (5.21)
using algebra. �

We may now derive the convergence properties of synchronous QA-
PDMM based on Lemma 2. The derivation procedure is similar to the
work in [157] for analyzing synchronous PDMM. Suppose (x?,λ?) is an
optimal point satisfying (5.7)-(5.9). We first derive an upper and lower
bound for the quantity

∑
i∈V

[
fi(x

k+1
i)−fi(x?i)−x

k+1,T
i

∑
j∈ViA

T
i|jλ

?
i|j

]
in a

lemma below.

Lemma 3. Let (x?,λ?) be an optimal solution satisfying (5.7)-(5.9). The estimate
(xk+1,λk+1) is obtained by performing (5.4)-(5.6) under the condition that hi ≥
Qi, i ∈ V . Then there is

0 ≤ 2
∑
i∈V

[
fi(x

k+1
i)− fi(x?i)− x

k+1,T
i

∑
j∈Vi

ATi|jλ
?
i|j

]
≤ 1

2

∑
i∈V

∑
j∈Vi

[
‖P−1/2

ij (λ∗i|j+λ
k
j|i)+P

1/2
ij (Ai|jx

∗
i −Aj|ixkj)‖2

−‖P−1/2
ij (λ∗i|j+λ

k+1
j|i)+P

1/2
ij (Ai|jx

∗
i −Aj|ixk+1

j)‖2

−‖P−1/2
ij (λk+1

i|j +λkj|i)+P
1/2
ij (Ai|jx

k+1
i −Aj|ixkj)‖2

]

78 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

+
∑
i∈V

hi‖xki − x?i ‖2 −
∑
i∈V

hi‖xk+1
i − x?i ‖2 (5.22)

where the equality for the lower bound holds if and only if (xk+1,λk+1) satisfies

∇fi(xk+1
i) =

∑
j∈Vi

ATi|jλ
?
j|i ∀i ∈ V . (5.23)

Proof. See the proof in Appendix A.2.
�

Next we show that the estimates (xk+1,λk+1) are always bounded us-
ing the results of Lemma 3.

Lemma 4. Every pair of estimates (x̂i
k+1, λ̂

k+1

i|j), i ∈ V , j ∈ Vi, k ≥ 0, in
Lemma 3 is upper bounded by a constant M under a squared error criterion:∥∥∥P− 1

2
ij (λ?i|j +λk+1

j|i) + P
1
2
ij(Ai|jx

?
i − Aj|ixk+1

j)
∥∥∥2

≤M. (5.24)

Proof. One can first prove (5.24) for k = 0 by using (5.22). The inequality
(5.24) for k > 0 can then be proved recursively. �

Upon obtaining the results in Lemma 3 and 4, we are ready to present
the convergence rate of synchronous GPDMM.

Theorem 3. Let (xk,λk), k = 1, . . . , K, be obtained by performing (5.4)-
(5.6) under the condition that hi ≥ Qi, i ∈ V . The average estimate
(x̄K , λ̄

K
) = (1

K

∑K
k=1 x

k, 1
K

∑K
k=1 λ

k) satisfies

0 ≤
∑
i∈V

[
fi(x̄

K
i)−fi(x?i)−x̄

K,T
i

∑
j∈Vi

AT
i|jλ

?
i|j

]
≤ O

(1

K

)
(5.25)

lim
K→∞

Ai|jx̄
K
i = Aj|ix̄

K
j ∀(i, j) ∈ E (5.26)

lim
K→∞

λ̄
K
i|j + λ̄

K
j|i = 0 ∀(i, j) ∈ E . (5.27)

5.3. NUMERICAL SIMULATION 79

Proof. The proof is similar to that for Theorem 2 in [157]. �

The conditions {hi ≥ Qi|i ∈ V} in Theorem 3 ensures that synchronous
QA-PDMM possesses the same convergence rate as synchronous PDMM.
Therefore, to guarantee convergence the weighting matrix in (5.5) must be
larger than the Lipschitz constant, i.e., Hk

i � Qi.

5.3 Numerical Simulation

In this section we consider solving the problem of ridge regularized lo-
gistic regression (RRLR) over a random graph of 10 nodes using partial
consensus constraints. The problem function at each node i is

fi(xi) =
1

10

10∑
p=1

log[1 + exp(−cipdTipxi)] + ‖xi‖2
2, (5.28)

where each node i holds 10 training points consisting of feature vector
dip ∈ R10 and binary label cip for p = 1, ..., 10. The logistic term is con-
vex but is computationally expensive to evaluate, where the extra l2 norm
on the optimization variable allows the problem to be strictly convex and
therefore have only a single global minima.

The objective is to perform distributed data training in the graph so
that after convergence all the nodes reach partial consensus over the ran-
dom graph. We performed the experiments over a randomly connected
graph of 10 nodes, each with between five and ten vector elements. Each
node randomly shared a subset of these elements with their neighbours to
initialise the consensus pattern for the current simulation realisation. At
iteration k all nodes were synchronously triggered for update, followed by
a sharing of these updated variables with local neighbours. The quadratic
approximation matrix H i

k was set to the scaled identity matrix 2Ii for each
node i for all iterations.

We evaluated both synchronous QA-PDMM and PDMM using Mat-
lab code on a Windows computer. In the implementation of synchronous

80 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

Iterations per node
0 5 10 15 20 25 30 35 40

P
rim

al
 v

ar
ia

bl
e

M
S

E

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

QA-PDMM
Conventional PDMM

(a) Convergence rate of QS-PDMM and
conventional PDMM for ridge regularized
logistic regression (synchronous).

Runtime (s)
10-3 10-2 10-1 100

P
rim

al
 v

ar
ia

bl
e

M
S

E

10-6

10-4

10-2

100

102

QA-PDMM
Conventional PDMM

(b) Primal variable MSE versus local
runtime of FS-PDMM and conventional
PDMM for ridge regularized logistic regres-
sion (synchronous).

Figure 5.1: Performance of QA-PDMM and conventional PDMM.

PDMM, the L-BFGS algorithm [83] was used to solve local subproblems
involving the functions {fi(xi)|i ∈ V}. For simplicity, we set all the ma-
trices Pij ∀j ∈ Vi, ∀i ∈ V to be a constant scalar parameter ρ for both
methods. At each iteration, the mean squared error (MSE) across all nodes
in the graph

MSEk =
1

|V|
∑
i∈V

‖xki − x?‖2,

was measured, where the global optimal solution x? was computed be-
forehand. Additionally, the cumulative computation time of all local sub-
problem optimizations were recorded in order to compare the computa-
tional efficiency of both algorithms. The optimal tuning parameter was
found to be ρ = 2.4 for both methods, and this was used for the perfor-
mance figures.

Fig. 5.1a shows the MSE as a function of iterations per node for RRLR
using QA-PDMM and conventional PDMM. We see that QA-PDMM takes
roughly twice as long as conventional PDMM to converge to the same ac-

5.4. SUMMARY 81

curacy, with QA-PDMM requiring around ten iterations per node more
than conventional PDMM to reach a MSE of 10−6. In Fig. 5.1b we see that
QA-PDMM has a significantly lower runtime than conventional PDMM
at nearly two orders of magnitude faster, with conventional PDMM in this
case using the L-BFGS algorithm [83] for local subproblem solution. From
the experiments it appears that a relatively simple setting for the quadratic
approximation matrix of 2Ii resulted in a stable and efficient QA-PDMM
convergence path. Further experiments on the optimal setting for the ap-
proximation matrix Hk

i would be beneficial in determining the practical
robustness of QA-PDMM in a variety of optimization contexts.

5.4 Summary

In this section we have presented an inexact synchronous update varia-
tion of PDMM named Quadratically Approximated PDMM (QA-PDMM).
The algorithm performs a second order approximation of local cost func-
tions to improve the computational efficiency of local update iterations.
We provide two convergence analyses for QA-PDMM, with the only nec-
essary condition for convergence being that the quadratic approximation
parameter matrix at each node must be larger than the Lipschitz constant
of each node’s cost function. We demonstrate experimentally that QA-
PDMM converges approximately half as slowly as conventional PDMM
for the case of partial consensus ridge regularized logistic regression over
a random graph, while reducing the local subproblem solution runtime
by over an order of magnitude. As future work a closer study on setting
the quadratic approximation matrix would be beneficial, both analytically
and experimentally.

82 CHAPTER 5. QUADRATIC APPROXIMATION PDMM

Chapter 6

FSQA-PDMM

So far we have introduced two separate algorithms based on PDMM that
help facilitate efficient distributed processing for wireless sensor networks:
Function Splitting PDMM (FS-PDMM) for problems with regularization
functions; and Quadratically Approximated PDMM (QA-PDMM) for prob-
lems with Lipschitz smooth cost functions. Both demonstrate significant
local computational savings when performing distributed optimization,
with minor reductions in global network convergence times. In many
cases they also eliminate the need for costly optimization package over-
heads. In this chapter we will combine the two approaches to develop
FSQA-PDMM, which may be applied when dealing with local functions
that are the sum of a smooth cost function term and a non-smooth regu-
larization term.

We begin by presenting the FSQA-PDMM algorithm and summariz-
ing the conditions required for convergence. We then present the con-
vergence analysis for synchronous FSQA-PDMM, using analysis similar
to FS-PDMM and QA-PDMM, and show that these lead to a guaranteed
sublinear convergence rate of O(1/k). Finally, we present simulated ex-
periments that confirm the effectiveness of FSQA-PDMM when applied to
a distributed sparse ridge regularized logistic regression problem over a
general random graph with partial consensus.

83

84 CHAPTER 6. FSQA-PDMM

6.1 The FSQA-PDMM Algorithm

To begin, we assume that over our network G = (V , E) we wish to perform
regularized optimization of the form

minimize
V∑
i=1

(
fi(xi) +Ri(M ixi)

)
subject to Ai|jxi = Aj|ixj ∀(i, j) ∈ E ,

(6.1)

where M i ∈ RM i×ni defines a general linear mapping on the variable xi
prior to regularization, the loss function fi : Rni → R∪{+∞} and regular-
ization function Ri : RM i → R ∪ {+∞} at node i are both closed, proper,
and convex, the matrices {Ai|j,Aj|i} define a linear constraint across the
edge (i, j). As in chapter 5, we make the additional assumption that each
convex cost function fi : Rni → R is continuously differentiable with the
Lipschitz continuous gradient Qi > 0:

‖∇fi(xi)−∇fi(yi)‖ ≤ Qi‖xi − yi‖ ∀xi,yi ∈ Rni , (6.2)

As in chapter 4 we split the cost and regularization functions and em-
bed them in a larger virtual network with 2V nodes. This allows the sim-
plification of local primal variable updates, including the use of proximal
operators when performing updates involving the regularization function
Ri. We are then able to apply the same reasoning as in chapter 5 to approx-
imate the cost functions fi at each node i using local gradient information,
leading to additional simplification of updates involving the cost function.

FSQA-PDMM, as summarized in Algorithm 3, requires the solution
of a linear system for the primal variable xi and a proximal update for
the primal variable zi. The dual variables νi and λi|j ∀j ∈ Vi are then
updated using linear mappings. Note that, as with the QA-PDMM algo-
rithm, the FSQA-PDMM algorithm is synchronous, requiring all nodes to
update their variables simultaneously.

6.1. THE FSQA-PDMM ALGORITHM 85

Algorithm 3 FSQA-PDMM

1: Initialize:
2: specify fi, Ri,M i,Ai|j, ρ, ε ∀i ∈ V ,∀j ∈ Vi
3: randomly initialize (xi, zi,νi,λi|j) ∀i ∈ V ,∀j ∈ Vi

4: Update procedure:
5: while stopping criterion == false do
6: trigger all nodes i ∈ V for synchronous update

7: xk+1
i = (

∑
j∈Vi ρA

T
i|jAi|j + ρMT

i M i +Hk
i)−1

[
Hk
i x

k
i −∇fi(xki)

+
∑

j∈ViA
T
i|j(Aj|ix

k
j − λkj|i) + ρMT

i z
k
i

]
8: zk+1

i = proxRi,1/ρ
(2M ix

k
i − zk−1

i + νk−1
i /ρ)

9: νk+1
i = ρ(2M ix

k
i − zk+1

i − zk−1
i) + νk−1

i

10: λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi

11: share xk+1
i ,λk+1

i|j with neighbours j ∈ Vi
12: if ‖xk+1

i − xki ‖+ 1/Vi
∑

j∈Vi ‖λ
k+1
i|j − λ

k
i|j‖ < ε then

13: stopping criterion = true
14: end if
15: k ← k + 1

16: end while

86 CHAPTER 6. FSQA-PDMM

6.2 Convergence Analysis

In this section we will present a convergence analysis for the FSQA-PDMM
algorithm. The analysis requires two main steps, building on the analy-
ses of chapters 4 and 5. Firstly, we show that a single pass of the FSQA-
PDMM algorithm may be seen as a conventional synchronous PDMM up-
date across a network of size 2V where cost functions fi and regulariza-
tion functions Ri are separated over the extra network nodes. The cost
functions fi have additionally been quadratically approximated using lo-
cal gradient information. We then perform a convergence analysis over
this expanded network where a subset of the nodes perform an inexact
update using the cost function approximation and the remaining nodes
perform an exact update.

6.2.1 Equivalence to Mixed Approximation PDMM

We begin by providing a theorem, similar to Theorem 1:

Theorem 4. FSQA-PDMM, as presented in Algorithm 3, is equivalent to per-
forming a mixture of PDMM and QA-PDMM updates on a network of size 2V .

Proof. We begin by restating the FSQA-PDMM update iterations from Al-
gorithm 3 using the definition of the proximal operator (4.4). At each iter-
ation k we select a random node i and therefore perform

xk+1
i = arg min

xi

[
fi(x

k
i) + (xi − xki)T∇fi(xki) +

1

2
‖xi − xki ‖2

Hk
i

+ xTi

(∑
j∈Vi

AT
i|jλ

k
j|i +MT

i ν
k
i

)
+
∑
j∈Vi

ρ

2
‖Ai|jxi −Aj|ix

k
j‖2

2 +
ρ

2
‖M ixi − zki ‖2

2

]
(6.3a)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi (6.3b)

ηk+1
i = ρ(zki −M ix

k+1
i)− νki (6.3c)

6.2. CONVERGENCE ANALYSIS 87

zk+1
i = arg min

zi

[
ρ

2
‖zi − (M ix

k
i − ηki /ρ)‖2

2 +Ri(zi)

]
(6.3d)

νk+1
i = ρ(M ix

k
i − zk+1

i)− ηki (6.3e)

where we have introduced the extra intermediate variable ηk+1
i rather than

including zki explicitly in the minimization over zi, for notational conve-
nience. Additionally, the minimization (6.3a) is equivalent to the xi up-
date in Algorithm 3. Using similar steps to those in Theorem 1, we see
that these update iterations are equivalent to performing ∀i ∈ V

xk+1
i = arg min

xi

[
fki (xi) + xTi

(∑
j∈Ui

BT
i|jλ

k
j|i

)
+
∑
j∈Ui

ρ

2
‖Bi|jxi −Bj|ix

k
j‖2

2

]
(6.4a)

λk+1
i|j = ρ(Bj|ix

k
j −Bi|jx

k+1
i)− λkj|i ∀j ∈ {Vi ∪ t} (6.4b)

xk+1
t = arg min

xt

[
Rt(xt) + xTt B

T
t|iλ

k
i|t

+
ρ

2
‖Bt|ixt −Bi|tx

k
i ‖2

2

]
t = i+ V (6.4c)

λk+1
t|i = ρ(Bi|tx

k
i −Bt|ix

k+1
t)− λki|t t = i+ V (6.4d)

where fki (xi) is the quadratically approximated function (5.4), the new
constraint matrices (Bi|j,Bj|i) are the same as our original matrices (Ai|j,Aj|i)

with the addition of two new constraints for each extra “virtual” node, i.e.,

Bi|j = Ai|j ∀(i, j) ∈ E , (6.5)

Bi|t = M i for t = i+ V, (6.6)

Bt|i = I i for t = i+ V, (6.7)

and we have changed the index of our regularization function Rt to reflect
the change of variable index. �

As in chapter 4, we have embedded our problem in a “virtual” network
with 2V nodes, where the topology is the same as our physical network

88 CHAPTER 6. FSQA-PDMM

with the addition of an extra “virtual” node attached to each physical node
i. However, our cost functions fi are now quadratically approximated by
fki at each iteration and the updates are now performed synchronously
rather than asynchronously.

6.2.2 Convergence of Mixed Approximation PDMM

To guarantee the convergence of the equivalent update iterations (6.4a)-
(6.4d) for FSQA-PDMM, in this section we will prove a more general con-
vergence result that applies to a network where an arbitrary number of
nodes hold Lipschitz continuous cost functions and their associated pri-
mal updates have been approximated using (5.5)-(5.4). We refer to this
more general problem as Mixed Approximation PDMM (MA-PDMM).

Disjoint subsets and optimality conditions

We begin by dividing our nodes into two disjoint subsets: those nodes
whose functions are approximated, denoted by set U ; and those nodes
whose functions are not approximated, denoted by set W . We therefore
have that the union of these subsets results in our original global node set,
i.e., U ∪ W = V . At nodes in the approximation set, i ∈ U , each convex
function fi is assumed to be continuously differentiable with the Lipschitz
continuous gradient Li(fi) > 0, i.e.,

‖∇fi(xi)−∇fi(yi)‖ ≤ Li(fi)‖xi − yi‖ ∀xi,yi ∈ Rni , (6.8)

where ‖·‖ denotes the standard Euclidean norm. Each individual function
fi at iteration k may then be approximated as (see [100])

fki (xi)=fi(x
k
i)+(xi−xki)T∇fi(xki)+

Li
2
‖xi−xki ‖2 i ∈ U , (6.9)

where Li > 0. Replacing fi(xi) in (2.35a)-(2.35b) with the approximation
fki (xi) for the node set U gives the updating expressions

xk+1
i = arg min

xi

[
fki (xi) +

∑
j∈Ni

1

2
‖Ai|jxi−Aj|ix

k
j‖2
P ij

6.2. CONVERGENCE ANALYSIS 89

+
∑
j∈Ni

λk,Tj|i Ai|jxi

]
i ∈ U (6.10)

λk+1
i|j =P ij(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i i ∈ U , j ∈ Ni, (6.11)

while nodes in the set without approximation,W , retain the original exact
PDMM update

xk+1
i = arg min

xi

[
fi(xi) +

∑
j∈Ni

1

2
‖Ai|jxi−Aj|ix

k
j‖2
P ij

+
∑
j∈Ni

λk,Tj|i Ai|jxi

]
i ∈ W (6.12)

λk+1
i|j =P ij(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i i ∈ W , j ∈ Ni. (6.13)

Synchronous PDMM converges to an optimal point limk→∞(xk,λk) =

(x?,λ?) for the problem (2.32) if and only if (x?,λ?) satisfies the following
optimality conditions [157, 100]∑

j∈Ni

AT
i|jλ

?
i|j ∈ ∂fi(x?i) i ∈ V (6.14)

Ai|jx
?
i = Aj|ix

?
j (i, j) ∈ E (6.15)

λ?i|j + λ?j|i = 0 (i, j) ∈ E . (6.16)

Additionally, with (6.9)-(6.11) the optimality condition for each xk+1
i at

nodes in the approximation set U can be derived as

∇fi(xki) + Li(x
k+1
i − xki) =

∑
j∈Ni

AT
i|jλ

k+1
i|j i ∈ U . (6.17)

We will show in next section that if the set of parameters {Li|i ∈ V} are
properly chosen in (6.9), synchronous MA-PDMM converges to an opti-
mal point.

Constructing an inequality for approximate node updates

We now present an inequality formed over the summation of all nodes
in the approximated update set U . We begin by deriving an inequality at

90 CHAPTER 6. FSQA-PDMM

each node i ∈ U for each approximated primal variable update xk+1
i in

(6.10):

Lemma 5. Let Li ≥ Li(fi) in the approximation function (6.9). Then for any
xi ∈ Rni ,

fi(xi)−fi(xk+1
i)≥ Li

2
‖xk+1

i −xki ‖2−Li(xi−xki)T (xk+1
i −xki)

+ (xi−xk+1
i)T

∑
j∈Ni

AT
i|jλ

k+1
i|j . (6.18)

Proof. Let each fi for i ∈ U be a continuously differentiable function with
the Lipschitz continuous gradient Li(fi). For any Li ≥ Li(fi), a standard
inequality, as presented in Lemma 2.3 of [6], is then

fi(x)≤ fi(y)+(x−y)T∇fi(y)+
Li
2
‖x−y‖2 ∀x,y ∈ Rn.

From the above inequality and (6.9), it then follows that

fi(xi)− fi(xk+1
i)

≥fi(xi)− fki (xk+1
i)

(a)

≥fi(xki) + (xi − xki)T∇fi(xki)− fki (xk+1
i)

=fi(x
k
i) + (xi − xki)T∇fi(xki)

−
[
fi(x

k
i)+(xk+1

i −xki)T∇fi(xki)+
Li
2
‖xk+1

i −xki ‖2

]
=(xi−xk+1

i)T∇fi(xki)−
Li
2
‖xk+1

i −xki ‖2

(b)
=(xi−xk+1

i)T

(∑
j∈Ni

AT
i|jλ

k+1
i|j − Li(x

k+1
i − xki)

)

−Li
2
‖xk+1

i −xki ‖2,

where step (a) uses the property that fi is a convex function and step (b)

uses (6.17). By using algebra, the above expression can be further simpli-
fied as (6.18). �

6.2. CONVERGENCE ANALYSIS 91

Constructing an inequality for exact node updates

We now present an inequality formed over the summation of all nodes in
the exact update setW . We begin by deriving an inequality at each node
i ∈ W for each exact primal variable update xk+1

i in (6.12):

Lemma 6. For any xi ∈ Rni and i ∈ W ,

fi(xi)−fi(xk+1
i)≥ (xi−xk+1

i)T
∑
j∈Ni

AT
i|jλ

k+1
i|j . (6.19)

Proof. We begin by using a standard inequality (as presented in the proof
for Lemma 8 in the appendix of []) exploited in the convergence analy-
sis for ADMM and PDMM. Let f1(x) and f2(x) be two arbitrary closed,
proper, and convex functions wherex∗minimizes the sum of the two func-
tions, i.e. x∗ = arg minx(f1(x) + f2(x)). Then,

f1(x)− f1(x∗) ≥ (x∗ − x)T r(x∗) ∀x (6.20)

where r(x∗) ∈ ∂xf2(x∗). Applying (6.20) to the exact updating equation
(6.12) yields

fi(xi)−fi(xk+1
i)≥ (xi−xk+1

i)T
∑
j∈Ni

AT
i|j

(
P ij

(
cij− (6.21)

Ai|jx
k+1
i −Aj|ix

k
i

)
+ λkj|i

)
, (6.22)

and substituting in (6.12) gives (6.19) �

Combined network inequality and convergence properties

In this subsection, we derive the convergence properties of synchronous
MA-PDMM based on Lemma 6. The derivation procedure is similar to our
early work [157] for analyzing synchronous PDMM. With the inequalities
presented in Lemmas 5 and 6, we may now derive an inequality over all
nodes in our network to analyse the behaviour of mixed approximate and
exact updates for PDMM.

92 CHAPTER 6. FSQA-PDMM

Lemma 7. Let (x?,λ?) be an optimal solution satisfying (6.14)-(6.16). The
updated estimate (xk+1,λk+1) is obtained by performing (6.9)-(6.11) or (6.12)-
(6.13), depending on whether the node belongs to set U orW . Then there is

0 ≤ 2
∑
i∈V

[
fi(x

k+1
i)− fi(x?i)− x

k+1,T
i

∑
j∈Ni

AT
i|jλ

k+1
i|j

]
≤ 1

2

∑
i∈V

∑
j∈Ni

[
‖P−1/2

ij (λ∗i|j+λ
k
j|i)+P

1/2
ij (Aijx

∗
i −Ajix

k
j)‖2

− ‖P−1/2
ij (λ∗i|j + λk+1

j|i) + P
1/2
ij (Aijx

∗
i −Ajix

k+1
j)‖2

−‖P−1/2
ij (λk+1

i|j +λkj|i)+P
1/2
ij (Aijx

k+1
i −Ajix

k
j)‖2

]
+
∑
i∈U

Li‖xki − x?i ‖2 −
∑
i∈U

Li‖xk+1
i − x?i ‖2 (6.23)

Proof. See appendix A.3. �

Next we show that the estimates (xk+1,λk+1) are always bounded us-
ing the results of Lemma 7.

Lemma 8. Every pair of estimates (x̂i
k+1, λ̂

k+1

i|j), i ∈ V , j ∈ Vi, k ≥ 0, in
Lemma 7 is upper bounded by a constant M under a squared error criterion:∥∥∥P− 1

2
ij (λ?i|j +λk+1

j|i) + P
1
2
ij(Ai|jx

?
i −Aj|ix

k+1
j)
∥∥∥2

≤M. (6.24)

Proof. One can first prove (6.24) for k = 0 by using (6.23). The inequality
(6.24) for k > 0 can then be proved recursively. �

Upon obtaining the results in Lemma 7 and 8, we are ready to present
the convergence rate of synchronous MA-PDMM.

Theorem 5. Let (xk,λk), k = 1, . . . , K, be obtained by performing (6.9)-(6.11)
under the condition that Li ≥ Li(fi) for nodes i ∈ U , and (6.12)-(6.13) for nodes
i ∈ W . The average estimate (x̄K , λ̄

K
) = (1

K

∑K
k=1 x

k, 1
K

∑K
k=1 λ

k) satisfies

0 ≤
∑
i∈V

[
fi(x̄

K
i)−fi(x?i)−x̄

K,T
i

∑
j∈Vi

AT
i|jλ

?
i|j

]
≤ O

(1

K

)
(6.25)

6.3. NUMERICAL SIMULATION 93

lim
K→∞

Ai|jx̄
K
i = Aj|ix̄

K
j ∀(i, j) ∈ E (6.26)

lim
K→∞

λ̄
K
i|j + λ̄

K
j|i = 0 ∀(i, j) ∈ E . (6.27)

Proof. The proof is similar to that for Theorem 2 in [157]. �

The conditions {Li ≥ Li(fi)|i ∈ V} in Theorem 5 ensures that syn-
chronous MA-PDMM possesses the same convergence rate as synchronous
PDMM. There is no additional requirement on the matrix set P for M-
PDMM to work.

Finally, since FSQA-PDMM is equivalent to performing (6.4a)-(6.4d),
which is a specific case of (6.10)-(6.11), the convergence results of MA-
PDMM apply to the FSQA-PDMM algorithm.

6.3 Numerical Simulation

In this section we present the results of simulations using FSQA-PDMM
to perform sparse ridge regularized logistic regression (SRRLR) over a
randomly connected graph under the partial consensus paradigm. The
local data and related decision variable xi are kept locally at node i for
optimization, and each node i applies l1 regularization to this local data.
Neighbouring nodes l ∈ Vi may share some elements with node i while
using their own local data for collaborative optimization. This requires
consensus to be reached between elements of vector xi and each neigh-
bouring vector xj , not full vector consensus.

For SRRLR, the problem function at node i is

gRRLR
i (xi) =

1

Pi

Pi∑
p=1

log[1 + exp(−cipdTipxi)] + ‖xi‖2
2 + ‖xi‖1, (6.28)

where each node holds Pi training points consisting of feature vector dip
and binary label cip for p = 1, . . . , Pi.

94 CHAPTER 6. FSQA-PDMM

FSQA-PDMM performing SRRLR were both compared to conventional
PDMM to determine the convergence rates and the runtimes. A randomly
connected graph of 10 nodes was formed, each with between five and ten
vector elements. Each node randomly shared a subset of these elements
with their neighbours to initialise the consensus pattern for the current
simulation realisation. At iteration k all nodes were triggered for update,
followed by a sharing of these updated variables with local neighbours.
The quadratic approximation matrix H i

k was set to the scaled identity ma-
trix 2Ii for each node i for all iterations.

The optimal primal variable x∗i was calculated for all nodes i to a preci-
sion of 10−9 prior to distributed optimization. At each iteration of the regu-
larized and conventional PDMM optimization procedure we compute the
mean-square error (MSE) across all nodes as

MSEk =
1

V

∑
i∈V

(xki − x
opt
i)2, (6.29)

and capture the runtime for each triggered node’s update routine to com-
plete.

Fig. 6.1a shows the MSE as a function of iterations per node for SR-
RLR using FSQA-PDMM and conventional PDMM. We see that they both
perform similarly, with FSQA-PDMM requiring around five iterations per
node more than conventional PDMM to reach an accuracy of 10−6. How-
ever, from Fig. 6.1b we see that FSQA-PDMM has a runtime nearly two
orders of magnitude less than conventional PDMM, which is performing
local variable splitting and minimization using ADMM as in equations
(4.3a)-(4.3c). This is due to the savings of function splitting combined with
the computational savings of quadratic approximation.

We would like to reiterate that the FSQA-PDMM algorithm, while pro-
viding lower computational complexity and runtimes, also does not re-
quire any additional numerical optimizers. Practically, this allows our al-
gorithm to be implemented in systems where processing units have low
memory and are not able to store libraries of solvers. Large wireless sen-

6.4. SUMMARY 95

0 5 10 15 20 25 30 35 40 45 50

Iterations per node

10-6

10-4

10-2

100

102

P
rim

al
 v

ar
ia

bl
e

M
S

E

FSQA-PDMM
Conventional PDMM

(a) Convergence rate of FSQA-PDMM and
conventional PDMM for elastic net regular-
ized least-squares (asynchronous).

10-3 10-2 10-1 100 101

Runtime (s)

10-6

10-4

10-2

100

102

P
rim

al
 v

ar
ia

bl
e

M
S

E

FSQA-PDMM
Conventional PDMM

(b) Primal variable MSE versus local run-
time of FSQA-PDMM and conventional
PDMM for elastic net regularized least-
squares (asynchronous).

Figure 6.1: Performance of FSQA-PDMM and conventional PDMM.

sor networks, for example, often have memory and processor restrictions
at each node that may make this overhead requirement infeasible.

6.4 Summary

Combining the two distributed optimization algorithms FS-PDMM and
QA-PDMM that employ function splitting and quadratic approximation,
respectively, we have created FSQA-PDMM with the aim of further reduc-
ing local subproblem computation times. We proved that FSQA-PDMM
converges at the rateO(1/k) for a common class of functions given a condi-
tion on the quadratic approximation matrix and simulated experiments to
show that local subproblems for sparse logistic regression run roughly two
orders of magnitude faster than conventional PDMM, without the need for
additional numerical optimizers. As with FS-PDMM and QA-PDMM, a
reduction in convergence time was observed but this was negligible when
compared with the computational savings. As further work, we intend

96 CHAPTER 6. FSQA-PDMM

to prove the convergence of random and asynchronously performed node
updates rather than the current synchronous paradigm.

Chapter 7

Finite Time Convergence PDMM

In chapters 4, 5, and 6 we discussed algorithms that reduce local compu-
tational complexity and often eliminate the need for optimization package
overheads when performing distributed optimization over networks. As
a trade-off, these methods slightly increased the number of network itera-
tions required for a given convergence accuracy when compared with con-
ventional PDMM. In this chapter we consider reducing the total workload
of PDMM from the opposite approach, increasing the network overhead to
provide significant reductions to the required network iterations for con-
vergence. More specifically, we present an algorithm that converges in a
finite number of iterations for the problem of quadratic distributed con-
sensus, which we will refer to as Finite-Time PDMM (FT-PDMM). The al-
gorithm requires a parameter setting protocol to be run prior to optimiza-
tion that must be performed over a directed acyclic graph (DAG) reduced
from the undirected general graph of the physical network. The theoretical
work of this section was carried out solely by Dr. G. Zhang, and therefore
will be omitted from this thesis. The author’s contribution is an evaluation
of the convergence of FT-PDMM when applied to quadratic consensus op-
timization. We will therefore present the resulting algorithms of this work
and the experimental simulations that were used to verify and test these.

We begin with a summary of the quadratic problem form, specific no-

97

98 CHAPTER 7. FINITE TIME CONVERGENCE PDMM

tation that will be assumed for this chapter, and provide the conventional
PDMM synchronous updating scheme to solve this problem. We will then
present a forward-backward PDMM updating scheme as well as the pa-
rameter setting and network routing overheads required for operation. Fi-
nally, we will present the experimental simulations that confirm the effec-
tiveness of the algorithm while also hinting at the possibility of a non-
routed synchronous PDMM approach that converges in finite time.

7.1 Problem Form and Conventional PDMM

Throughout the thesis so far we have dealt exclusively with the undirected
graph G = (V , E) used to describe the network of nodes over which our
optimization is performed. In this chapter we also consider a directed
graph ~G = (V , ~E), where ~E = {[i, j]|i, j ∈ V} represents the set of all di-
rected edges. The directed edge [i, j] indicates that node i can reach node
j through their edge, but the reverse is not true. We define a path from
node i to j as a sequence of consecutive directed edges connecting i and j.
The distance for a path from i to j measures the number of the consecutive
edges in between. ~G = (V , ~E) is a directed acyclic graph (DAG) if there
exists no path starting and ending at the same node in the graph. As will
be explained in subsection 7.2, any undirected cyclic graph G = (V , E) can
be reduced to a DAG by assigning proper directions for the edges in E .

Note that every node i in a DAG ~G = (V , ~E) may have incoming and
outgoing edges. Therefore, we use Vi,in and Vi,out to represent the sets of
preceding and succeeding neighbours of node i, respectively. It is imme-
diate that Vi = Vi,in ∪ Vi,out where Vi is the neighbourhood set of i in the
corresponding undirected graph. Since the graph ~G is directed and acyclic,
there exists one or more nodes that do not have a preceding neighbour. We
refer to these nodes as the leaf nodes. Finally, suppose there exists a path
from node u to v. Node u is an ancestor of node v while conversely node v is
a descendant of node u. We will use the DAG ~G for the parameter selection

7.1. PROBLEM FORM AND CONVENTIONAL PDMM 99

of FT-PDMM in section 7.2.
As a special form of (2.32), the quadratic consensus optimization over

an undirected cyclic graph G = (V , E) is defined as

minimize
V∑
i=1

(
fi(xi) =

1

2
xTi Σixi − aTi xi

)
subject to xi = xj ∀(i, j) ∈ E ,

(7.1)

where Σi ∈ Rn×n ∀i ∈ V is a symmetric positive definite matrix (i.e., Σi �
0), ai ∈ Rn is a constant vector at each node i, and x = [xT1 ,x

T
2 , . . . ,x

T
|V|]

T ∈
R|V|n. It is clear that there exists a unique optimal point x? of the above
quadratic optimization (7.1), where the distributed vectors {x?i |i ∈ V} take
the form of

x?i =

(∑
i∈V

Σi

)−1(∑
i∈V

ai

)
∀i ∈ V . (7.2)

One method for obtaining the optimal point (7.2) is to apply an informa-
tion aggregation approach [108, 28]. To do so, the graph G must first be
converted to a tree-structured graph rooted at the fusion center. Informa-
tion of the quadratic matrices {Σi|i ∈ V} and linear vectors {ai|i ∈ V}may
then be aggregated through the tree to the fusion center.

Applying conventional synchronous PDMM to problem (7.1) gives the
explicit primal and dual update iterations for all i ∈ V

xk+1
i =

(
Σi +

∑
j∈Vi

P ij

)−1(
ai +

∑
j∈Vi

λkj|i

)
(7.3)

λk+1
i|j = 2P ijx

k+1
i − λkj|i ∀j ∈ Vi, (7.4)

As with the scalar tuning parameter of ADMM [15], the set P of positive
definite matrices has a large impact on the convergence speed of PDMM.
In [158] the effect of parameter tuning on the convergence speed of PDMM
for the distributed averaging problem was experimentally investigated. A

100 CHAPTER 7. FINITE TIME CONVERGENCE PDMM

more thorough theoretical study was performed in [161], where the opti-
mal matrix set P∗ was constructed for a quadratic consensus problem over
a tree-structured graph, leading to finite-time convergence. In the follow-
ing section we will present a method to construct the optimal matrix setP∗

on our reduced DAG ~G as well as the FT-PDMM algorithm that uses these
parameters to perform finite-time optimization of the quadratic consensus
problem (7.1).

7.2 Parameter Selection and FT-PDMM

Performing FT-PDMM requires the initial computation of the optimal pa-
rameter set P∗ using a two step process. Firstly we convert an undirected
cyclic graph G = {V , E} to a DAG ~G = {V , ~E}. We then construct the ma-
trices in P∗ recursively over the directed edges in ~E by using the quadratic
matrices {Σi|i ∈ V} of (7.1).

Suppose G = {V , E} is an undirected cyclic graph. We must assign a
direction to every edge (i, j) ∈ E in order to build a DAG ~G = (V , ~E). We
first select any node r ∈ V to be a root node in the graph. Our objective is to
construct a set ~E such that starting from any node i ∈ V and traveling over
the directed graph ~G would eventually arrive at the root node r without
revisiting any node on the way. With the root node r, we now consider
constructing a proper set ~E for the graph G = (V , E). One approach to
construct the set ~E is to use the depth-first-search (DFS) method [118] to
explore the graph G from the root node r. The edges within the graph may
then be oriented toward the current search node as the DFS progresses
from the root node outwards. Naturally, the root node r is a descendant
of all the other nodes in the graph and all other nodes are ancestors of the
root node r.

With the DAG we may now construct the matrices in P∗ over ~G =

(V , ~E), starting from the leaf nodes. Suppose node u has no preceding
neighbours, i.e., Vu,in = {}. The matrix P uv for an outgoing edge [u, v] is

7.2. PARAMETER SELECTION AND FT-PDMM 101

Figure 7.1: Recursive matrix construction from all leaf nodes towards the root

node r over a DAG. The matrices over the outgoing edges of each node i are the

same, i.e., P ij = P i for all j ∈ Vi,out.

built as

P uv = P u =
1

|Vu,out|
Σu v ∈ Vu,out, (7.5)

where we introduce a new matrix P u for node u. After computing (7.5),
the other matrices in P∗ may then be constructed recursively along the
directed edges in ~E , towards the root node r. Suppose we are at node i
to determine the matrices {P ij|j ∈ Vi,out}. These outgoing edge matrices
may then be computed using the matrices {P ui|u ∈ Vi,in} of the preceding
edges as

P ij = P i =
1

|Vi,out|

Σi+
∑

u∈Vi,in

P ui

 j ∈ Vi,out, (7.6)

where the matrix P i is owned by node i (see Fig. 7.1 for demonstration).
Using the fact that the quadratic matrices {Σi, i ∈ V} in (7.1) are positive
definite, it is immediate that the matrices obtained by (7.5)-(7.6) are also
positive definite, which satisfy the conditions in (7.3)-(7.4). Equ. (7.5)-(7.6)
together collect and propagate the information of all the quadratic matri-
ces {Σi|i ∈ V} along the directed edges towards the root node r.

102 CHAPTER 7. FINITE TIME CONVERGENCE PDMM

With the optimal parameter set, we may now propose a forward-backward
updating scheme to produce the optimal estimates {x?i |i ∈ V} of all nodes
in finite time. Note that the optimal solution x?i = x?r for all i ∈ V . The
FT-PDMM algorithm first computes x?r using a sequential update order-
ing, starting from the leaf nodes and working towards the root node r (the
forward portion of the update). Once the root node is updated, it obtains
and then pushes the optimal point x?r from the root node r along all the
reverse direction of the edges in ~E (the backward portion of the update).

Algorithm 4 summarizes the FT-PDMM update procedure. Forward
computation activates nodes sequentially from i = 1 until i = m, and
backward computation activates nodes in reverse order from i = m − 1

until i = 1. After the backward computation each node i holds a copy of
the optimal point x?r . In the following section we will provide experimen-
tal verification for the FT-PDMM algorithm when applied to the simple
case of distributed averaging. Additionally we explore the application of
conventional synchronous PDMM when using the parameter set P∗.

7.2. PARAMETER SELECTION AND FT-PDMM 103

Algorithm 4 FT-PDMM

1: Initialize:
2: specify Σi and ai ∀i ∈ V
3: construct the optimal parameter set P∗ using (7.5)− (7.6)

4: randomly initialize (xi,λi|j) ∀i ∈ V ,∀j ∈ Vi

5: Forward computation:
6: for node i = 1, 2, . . . ,m− 1 do
7: at each iteration k, all nodes i synchronously perform
8: x1

i = (2|Vi,out|P i)
−1
(
ai +

∑
u∈Vi,in

λ1
u|i +

∑
v∈Vi,out

λ0
v|i

)
9: λ1

i|v = 2P ix
1
i − λ0

v|i, v ∈ Vi,out
10: end for
11: for node i = r = m do

12: x1
r =

(
Σr +

∑
u∈Vr,in

P u

)−1 (
ar +

∑
u∈Vr,in

λ1
u|r

)
13: λ2

r|u = 2P ux
1
r − λ1

u|r, u ∈ Vr,in
14: end for

15: Backward computation:
16: for node i = m− 1, . . . , 1 do
17: at each iteration k, all nodes i synchronously perform
18: x2

i = (2|Vi,out|P i)
−1
(
ai +

∑
u∈Vi,in

λ1
u|i +

∑
v∈Vi,out

λ2
v|i

)
19: λ2

i|u = 2P ux
2
i − λ1

u|i, u ∈ Vi,in
20: end for

104 CHAPTER 7. FINITE TIME CONVERGENCE PDMM

7.3 Numerical Simulation

In this section we evaluate both the FT-PDMM algorithm and conventional
synchronous PDMM using the optimal parameter set P∗ for a distributed
averaging problem. While the FT-PDMM algorithm should theoretically
converge in finite iterations, the affect of numerical quantization is unac-
counted for. Additionally, using the optimal parameter set P∗ for syn-
chronous PDMM may prove to provide new insights into the study of
finite-time convergence.

The quadratic consensus problem (7.1) includes the distributed aver-
aging problem as a special case. By letting Σi = In×n ∀i ∈ V , it is imme-
diate that the optimal subvector x?i , ∀i ∈ V , is the average of the vectors
{ai|∀i ∈ V}. A 5× 5 planar grid with directed edges as in Figure 7.2a and
7.2b were simulated, with random data vectors of dimension n = 5 gen-
erated at each node. The averaging operation of these data vectors can be
formulated by solving the optimization problem (7.1) where the quadratic
matrices {Σi = I|i ∈ V}, and the vectors {ai|i ∈ V} are our random data
vectors we wish to average.

In the first experiment, the DAG in Figure 7.2a was simulated, where
the longest path is of distance 12. The corresponding matrix set P was ob-
tained by following (7.5)-(7.6). Figure 7.3 displays the convergence results
of each node’s primal variable for a single instance of distributed averag-
ing. After 25 iterations, the root node is the first to obtain the exact solu-
tion to the averaging problem. For every iteration thereafter, the backward
computation of the updating scheme allows ancestor nodes back through
the network to compute the optimal value as well. After 49 iterations, the
leaf node is the last to obtain the optimal solution. The effect of numerical
error on the algorithmic convergence can be ignored for a graph with a
bounded number of nodes.

In the second experiment, we investigated the convergence speed of
synchronous PDMM. Three setups for the matrix set P were tested for

7.3. NUMERICAL SIMULATION 105

(a) (b)

Figure 7.2: Two different DAGs for a 5× 5 planar grid. The two DAGs share the

same root node r located at the bottom-right corner.

synchronous PDMM: 1) the set P by following (7.5)-(7.6) for the DAG in
Fig. 7.2a; 2) the set P by following (7.5)-(7.6) for the DAG in Fig. 7.2b; 3)
the set P = {P ij = ρ = 0.78|(i, j) ∈ E}. In the 3rd setup, all the matrices
in P were set to be a constant value. The finite convergence of FT-PDMM
is also included for reference. The parameter ρ = 0.78 leads to the fastest
convergence speed of synchronous PDMM over all other constant values
with respect to the mean squared error (MSE) criterion 1

|V|‖x
k −x∗‖2. This

was found by performing a parameter search for ρ over the range (0, 10]

in increments of 0.1 initially, and then increments of 0.01 over the range
[0.7, 0.8].

Figure 7.4a presents the MSE convergence of the above three setups
over all the nodes. Each curve is obtained by combining the results of 500

randomly realised data vector instances across the grid network. It is clear
that the third setup, with the optimal constant ρ value, leads to the fastest
convergence speed when compared with the first two setups where the
matrices in P are not constant.

We also evaluated the performance of the three setups only at the root
node r, as displayed in Fig. 7.4b. Interestingly, it is found that the second
setup leads to finite-time convergence of the estimate at the root node r in

106 CHAPTER 7. FINITE TIME CONVERGENCE PDMM

5 10 15 20 25 30 35 40 45 50

Iterations k

10-8

10-6

10-4

10-2

100

P
rim

al
 v

ar
ia

bl
e

no
de

 e
rr

or

Figure 7.3: The squared error for each node versus iteration number k for the

forward-backward updating scheme. The 25 curves correspond to the 25 nodes

in the 5× 5 planar grid.

9 iterations. This may be due to the property that the DAG in Fig. 7.2b has
a symmetric topology. The 9 iterations coincide with the longest distance
(equal to 8) between the leaf node and the root node r plus one in Fig. 7.2b.
On the other hand, the first setup takes much more iterations to converge
than the second and third setups. This may be due to the property that
the DAG in Fig. 7.2a is not symmetric, which is likely to be more common
in practice. As such, it appears the parameter-selection procedure (7.5)-
(7.6) does not help with the convergence speed of synchronous PDMM
for a general cyclic graph. Finally, the oscillation present for synchronous
PDMM over DAG (b) shown in Fig. 7.2a appears to be the result of graph
topology, although the exact cause of this extreme oscillation is unknown.

7.4. SUMMARY 107

0 10 20 30 40 50 60 70 80 90 100

Iterations k

10-10

10-8

10-6

10-4

10-2

100

P
rim

al
 v

ar
ia

bl
e

ne
tw

or
k

M
S

E

Forward-backward finite PDMM
Synchronous PDMM (P = = 0.78)
Synchronous PDMM (P set for (a))
Synchronous PDMM (P set for (b))

(a) Convergence rate of PDMM averaged
over all network nodes.

0 10 20 30 40 50 60 70 80

Iterations k

10-10

10-8

10-6

10-4

10-2

100

P
rim

al
 v

ar
ia

bl
e

ro
ot

 n
od

e
M

S
E

Forward-backward finite PDMM
Synchronous PDMM (P = = 0.78)
Synchronous PDMM (P set for (a))
Synchronous PDMM (P set for (b))

(b) Convergence rate of PDMM at only the
root node.

Figure 7.4: Performance of synchronous PDMM for three setups of the
matrix set P .

7.4 Summary

In this chapter we have considered the FT-PDMM algorithm using opti-
mal parameter setting for solving the quadratic consensus problem over
an undirected cyclic graph in finite iterations. The optimal parameters are
selected by converting the undirected graph to a directed acyclic graph,
which enables effective information flow over the directed graph, but adds
an additional overhead to the processing procedure. We have shown that
using these optimal parameters, the FT-PDMM algorithm converges to the
optimal point in finite iterations. The FT-PDMM algorithm as well as con-
ventional synchronous PDMM were experimentally simulated using the
optimal parameter setting. The FT-PDMM algorithm was found to op-
erate as expected, and interestingly the synchronous PDMM application
was found to converge in finite iterations in a specific symmetric network
topology. Future research directions include the extension of FT-PDMM
to general decomposable convex optimizations where the objective func-
tions are twice differentiable. It would be of interest to understand if the

108 CHAPTER 7. FINITE TIME CONVERGENCE PDMM

Hessian matrices of the objective functions can be used to accelerate the
convergence speed of PDMM.

Chapter 8

Signal Processing Applications

So far in this thesis we have developed four variations on the conven-
tional PDMM algorithm with the specific goal of improving the flexibility
and efficiency of distributed optimization in sensor networks. The simu-
lated experiments verifying these algorithms have been relatively simple
and general. In this section we present two potential real world applica-
tions in the area of distributed signal processing that are more complex
and nuanced than the toy examples presented thus far. We first present
a distributed beamforming algorithm that includes a sparsity regulariza-
tion, allowing the algorithm to naturally select an optimal subset of nodes
for combination. Secondly, we develop a distributed image fusion algo-
rithm that may be used for imaging arrays, allowing overlapping imaging
areas to be fused without a central processor.

8.1 Application to Distributed Beamforming

Until now, distributed acoustic beamforming has focused on optimizing
for a beamformer over an entire network, with each node contributing
to the beamformer output. We present a novel approach that introduces
sparsity to this beamformer computation, where we attempt to optimize
for a subset of nodes within the network that produce SNR gains roughly

109

110 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

equivalent to that of the optimal MVDR case. Due to the physical nature
of sound, this approach trades a small loss in SNR for a large reduction in
communication power and iterations required to produce a beamformer
output by reducing the active node set of our network. Our approach
operates in a fully distributed and asynchronous manner and does not
require a high update iteration rate to produce an output at each sample.

The contributions of this section are a novel approach to distributed
beamforming using sparsity, and a fully asynchronous and independent
method for accomplishing this. Instead of computing a full network-wide
MVDR beamformer we aim to find a subset of nodes and the associated
beamformer that are optimal for a given sparsity level. We therefore de-
scribe a distributed sparse beamformer that approximates a full MVDR
beamformer with a sparsity tradeoff parameter, using the asynchronous
FS-PDMM algorithm from chapter 4 for distributed optimization. The
traditional MVDR beamforming cost function is regularized with an l1

penalty of the weight vector to encourage sparsity in the final optimized
weight vector. This reduces the number of nodes that contribute to the fi-
nal beamformer output, simplifying the aggregation step required at each
time sample and greatly improving the practicality of the distributed beam-
forming system.

8.1.1 System model and background

We consider a network of nodes denoted by the set V with cardinality
V = |V|. The network is connected by a set of edges E with cardinality
E = |E|. If there exists an edge between two nodes i and j we say (i, j) ∈ E .
All nodes are considered self-connected. The node and edge sets together
form our network graph G = (V , E). The set of all nodes sharing an edge
with a node i is denoted as its neighbourhood Vi with cardinality Vi = |Vi|,
i.e. Vi = {l|(i, j) ∈ E}.

We denote our wideband signal of interest as s0(t, ω), with t and ω in-

8.1. APPLICATION TO DISTRIBUTED BEAMFORMING 111

dexing the time sample and frequency subband, respectively. Let ui(t, ω)

denote node i’s observed noisy signal at time t and subband ω that is a
combination of the desired signal s0(t, ω), interferences sp(t, ω) and addi-
tive noise vi(t, ω). di0(ω) and dip(ω) represent the complex acoustic transfer
functions that scale and phase shift each subband of the source and inter-
ference signals, respectively, which are constant over time. We may then
express the linear receive model at node i of our source signal, P interfer-
ers, and noise as

ui(t, ω) = di0(ω)s0(t, ω) +
P∑
p=1

dip(ω)sp(t, ω) + vi(t, ω),

= di(ω)s(t, ω) + ni(t, ω).

(8.1)

The noise and interference can be combined into the variable ni(t, ω) for
convenience, allowing us to drop the 0 subscripts on dk0(ω)s0(t, ω). When
multiple sensors, such as microphones, are used we may represent the
acoustic transfer functions to each sensor as the vector d(ω) ∈ CN , allow-
ing us to express a vector of noisy observations across these sensors as

u(t, ω) = d(ω)s(t, ω) + n(t, ω), (8.2)

where {u(t, ω), n(t, ω)} ∈ CN are the vectors of observations and interfer-
ences from all N sensors, respectively.

Beamforming aims to estimate the source signal s(t, ω) by combining
the noisy observations in a weighted sum to produce a single scalar output

z(t, ω) = wH(ω)u(t, ω), (8.3)

where z(t, ω) is the beamformed output, (·)H represents Hermitian trans-
position, and w(ω) ∈ CN is the weighting vector used to combine the
observations. Since the signal is assumed to be independent over each fre-
quency bin ω and for all time t we will simplify notation by omitting these
indices henceforth.

112 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

The traditional MVDR beamformer [133, 55] is obtained by minimiz-
ing the energy of the beamformed output signal subject to unity gain in
the direction of the source, which may be expressed by the constrained
optimization problem

minimize E[|wHu|2],

subject to dHw = 1,
(8.4)

which can be solved using Lagrange multipliers as

w =
R−1d

dHR−1d
, (8.5)

where R = E[nnH] is the noise covariance matrix, and the source signal
is assumed independent of the noise. The MVDR beamformer requires
only knowledge of the source location (or equivalently the acoustic trans-
fer functions d at each node) and knowledge of the noise statistics in the
form of the covariance matrixR.

Thoughout the remainder of the section we will assume a common
mapping from the complex domain CN to the real domain of twice the
dimensionality R2N in order to focus on the distributed convex optimiza-
tion techniques employed. For the sake of brevity we omit the conversion
of our problem, and for notational simplicity we will refer to our problem
as one in RN . Additionally, we note that use of the l1 norm to encourage
sparsity, as presented in the next section, should therefore instead be the
group sparse l2 norm. This is because encouraging sparsity in the pairs of
real values associated with our original complex signal is equivalent to the
l1 norm of our complex vectors. The derivations and algorithm remain the
same, apart from the change of sparsity norm. For details see, for example,
[4].

8.1.2 Distributed Sparse PDMM Beamformer

Previously, emphasis has been placed on creating fully distributed so-
lutions to the traditionally centralized problem of MVDR beamforming.

8.1. APPLICATION TO DISTRIBUTED BEAMFORMING 113

These methods ideally aim to produce a beamformer output that is equal
to the centralized case, but approximations are often introduced to deal
with the restriction of the network topology or the nature of the distributed
algorithm being used. The most common approximations are limitations
on the structure of the noise covariance matrix, such as the requirement of
diagonal dominance or a sparsity structure representative of the underly-
ing network graph. However, as of the time of this work no approaches
deal with optimizing for a sparse weight vector.

In very large networks, nodes distant from a source may practically
capture none of the signal of interest, yet nearly all of the distributed beam-
forming methods reviewed require a mixing (or averaging) process across
the entire network to produce a beamformer output at each signal sample.
For networks on the order of 50 nodes (roughly the number used for sim-
ulation in the literature) the number of iterations required to reach con-
vergence per sample is not a problem, but for network sizes where these
distributed beamforming algorithms would actually be beneficial (at least
on the order of thousands of nodes) the iteration time and associated com-
munication cost required become infeasible.

One way of reducing the costly global mixing process is to encourage
sparsity in our beamforming weight vector. Since those nodes closest to
our source location are likely to be in the presence of a relatively high
signal-to-noise ratio (due to the physical fall-off of sound power over dis-
tance), a sparsely optimized weight vector will naturally produce zero en-
tries in nodes far from our source. Once we arrive at our sparse weight
vector we may produce our beamformer output in one of three ways: we
may perform the costly mixing process across the whole network; we may
form a subnetwork with the nodes containing nonzero weight vector en-
tries and perform a more efficient mixing over this far smaller network;
or we may simply designate a single node (such as the node closest to the
source) as our collection node for the current sample window and instruct
all nodes with nonzero weight values to transmit to this collection node.

114 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

Since all nonzero nodes will, in most cases, be physically near to the source
the transmission distances required will generally not be prohibitive.

Derivation of the sparse distributed PDMM beamformer

The proposed distributed sparse beamformer requires two separate oper-
ations. Firstly, the network will optimize (in a fully distributed manner)
the weight values at all nodes while encouraging sparsity in these weights.
This process will be independent and asynchronous at each node and re-
quires communication only between neighbouring nodes. Additionally,
this optimization process can be performed at any update rate without re-
quiring network-wide convergence in a short time (such as between signal
samples). Given these sparse weight values, we next require an aggrega-
tion operation to collect the weighted observations into a single scalar out-
put. As mentioned previously, this may be done in multiple ways but we
will restrict ourselves to single-node collection for the purpose of demon-
strating the effectiveness of the sparse PDMM beamformer.

We begin by optimizing for a scaled version of the weight vector x∗ =

R−1d, where (·)∗ refers to an optimal point, since the beamformer output
is then simply the ratio of two averages [59]

z∗ =
x∗Tu

x∗Td
=

1
N

∑
k∈V [x∗]Ti [u]i

1
N

∑
k∈V [x∗]Ti [d]i

, (8.6)

where (·)T represents transposition and [·]i denotes the kth element of a
vector. Additionally, we would like to encourage sparsity in our opti-
mized vector through the addition of an l1 penalty on the resulting vector
x. Therefore, in order to obtain the optimal sparse vector x∗ we construct
the unconstrained, l1-regularized quadratic program

minimize f(x) =
1

2
xTRx− dTx+ α‖x‖1, (8.7)

where α is our regularization parameter and ‖ · ‖1 is the l1 norm, widely
known to encourage sparsity in our optimization solution [5, 117]. Next,

8.1. APPLICATION TO DISTRIBUTED BEAMFORMING 115

we make an approximating assumption that nodes more than two com-
munication hops apart are uncorrelated allowing us to decompose the
quadratic term (as in [97]), resulting in

minimize
∑
k∈V

(
1

2
xTi Rixi − dTi xi

)
subject to Ai|jxi +Aj|ixl = 0 ∀(i, j) ∈ E ,

(8.8)

where the local vector xi ∈ RVi is node i’s estimate of the elements of x be-
longing to its neighbourhood Vi,Ri = (C†2 ◦R) ∈ RVi×Vi is the covariance
matrix for the neighbourhood Vi that we assume to be estimated within
each neighbourhood, di ∈ RVi is a vector containing all zeros apart from
the ith entry that is equal to node i’s scalar ATF di, the matricesAi|j ∈ R2×Vi

and Aj|i ∈ R2×Vj contain entries of 1, −1 or 0 to enforce consistency (with
one row each for the consensus of node i and j’s primary elements and
their copies) and C†2 is the protected elementwise inverse of the square of
the adjacency matrix [54, 97].

Since the l1 norm is separable across each element of x we may sim-
ply select out the scalar value [x]i and apply a local l1 regularization to it.
Formulating this in a form consistent with FS-PDMM gives

minimize
∑
k∈V

(
1

2
xTi Rixi − dTi xi + αi‖M ixi‖1

)
subject to Ai|jxi = Aj|ixl ∀(i, j) ∈ E ,

(8.9)

where the matrix M i ∈ R1×Vi selects out the value owned by node i, [x]i,
and the local regularization parameter αi = α ∀i ∈ V . This leads to the
asynchronous FS-PDMM update iterations ∀i ∈ V

xk+1
i =

(∑
j∈Vi

ρAT
i|jAi|j + ρMT

i M i +Ri

)−1(
di

+
∑
j∈Vi

AT
i|j(ρAj|ix

k
j − λkj|i) +MT

i (ρzki − νki)
)

(8.10)

zk+1
i =

(
2M ix

k+1
i − zki + νki /ρ− αi/ρ

)
+

116 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

−
(
−2M ix

k+1
i + zki − νki /ρ− αi/ρ

)
+

(8.11)

νk+1
i = ρ(2M ix

k+1
i − zk+1

i − zki) + νki (8.12)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi (8.13)

where (·)+ is projection onto the nonnegative orthant, i.e., setting all neg-
ative elements to zero.

Finally, for each signal sample we require a collection phase where
the noisy observations from throughout the network are weighted and
summed to produce our beamformed output signal. At each time sample
t we therefore must perform sharing and averaging iterations many times
for information to mix throughout the network. However, as we will show
in our simulation results, information at distant nodes within the network
often provide negligible performance gains. For the sake of our sparse
PDMM beamformer we simply transmit the weighted observations of our
active nodes to a single collection node (designated as the node closest to
the source).

8.1.3 Numerical Simulation

We simulated a network with N = 50 microphone nodes and a source sig-
nal randomly placed in a 100 m ×100 m ×100 m free-space environment.
The results are averaged over 20 realizations. The distances from node i to
all other nodes were assumed to be known and neighbours were truncated
to fall within a transmission distance of 50 m. The acoustic transfer func-
tion for each node was generated using the free-space model. The signal
of interest was a 20 s speech sample randomly chosen from a 60 s record-
ing. The interference was a randomly placed zero-mean Gaussian point
source with power equal to −5 dB, 0 dB, and 5 dB when compared to the
source signal. Estimation of the partial covariance matrix was assumed
beforehand. The sample rate at each node was fs = 16 kHz and process-
ing was carried out on 25 ms Hann windowed blocks with a 50% overlap.
The weight vector optimization process was performed asynchronously.

8.1. APPLICATION TO DISTRIBUTED BEAMFORMING 117

Figure 8.1 shows the effect of sparsity on our output SNR and on the
communication power required for beamformer outputs per sample, when
compared with the fully active MVDR node set (which uses distributed
averaging for sample output). Due to our local covariance matrix approx-
imation we see a drop of around 3 dB from the optimal case when all
nodes are active, with a loss of at most 7 dB as our active node set falls
to below 10 nodes. Communication power required for output (computed
using [135] for only power amplifier transmission with free space param-
eters, i.e., a power cost simply proportional to the square of the distance
between transmitter and receiver) in our sparse system using single node
collection is initially higher than distributed averaging due to the expense
of long range wireless communication with distant active nodes. How-
ever, our sparse system rapidly becomes more efficient as these distant
(low fidelity nodes) are excluded, falling to around 15 % of the averaging
power.

S
N

R
 (

dB
)

0

10

20

30

Sparse
MVDR

Active Nodes
5101520253035404550

C
om

m
un

ic
at

io
n

po
w

er
 (
0)

0

1

2

3

Sparse node collection
Distributed averaging output

Figure 8.1: Top: SNR as a function of active nodes; Bottom: Communica-
tion Power as a function of active nodes.

118 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

8.1.4 Summary

We have motived, designed and tested a sparse distributed beamforming
system that trades SNR performance for reduced inter-node power con-
sumption. The l1 norm is a natural first application of regularization to the
problem due to the physical fall-off of sound power over distance and the
resulting node fidelity pattern, particularly for large and sparse networks.
Our system optimization performs updates that are asynchronous, inde-
pendent, and do not rely on global collection phases. Further work would
include research into more appropriate regularization functions that, for
example, explicitly take into account the fidelity of each node and their
distance from the source.

8.2 Application to Distributed Image Fusion

Image fusion is a signal processing method of combining multiple images
of a common scene into a single image by exploiting the relevant informa-
tion from these images [137, 101, 136], similar to the concept of diversity
in multiple sensor electromagnetic communications systems. Arrays of
imaging sensors, often distributed nonuniformly, may be used to produce
varying images of a common scene that is then ‘fused’ at a central pro-
cessing unit to produce a single image of higher fidelity than any of the
constituent images [105, 52]. The imaging techniques used at each sensor
may also vary, allowing for the fusion of data that would otherwise not
be available to a single sensor. A common example of this is the fusion of
high dimensional panchromatic images (for geometric detail) and low di-
mensional multispectral data (for colour information) in satellite imaging
[122].

In recent years, two trends have arisen that motivate the concept of
image fusion performed in a distributed manner. Firstly, advancements
in wireless sensor network (WSN) technology [37, 72, 81] have meant that

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 119

small and low power sensor units equipped with microprocessors, wire-
less communications systems, and imaging sensors are becoming afford-
able for distributed surveillance [70, 63] or virtual reality mapping of real
world environments [51]. These may be used to form adhoc WSNs with
random topologies, such as aerial surveillance drone ‘flocks’ [74] that fuse
images of the terrain below their flight paths at each time sample. In this
case, sensor node energy consumption may be reduced by not requiring
raw image transmission from each sensor to a central collector. Local com-
munication between close neighbours may instead be used for the image
fusion process across the network. The fused image may then be transmit-
ted from a node if it is tapped for output.

The second motivation for distributed image fusion is the vast amount
of data present in systems such as large radio telescope arrays [44], e.g.,
the proposed Square Kilometre Array. The high resolution of the im-
ages at each radio telescope coupled with the number of such telescopes
make the transmission of raw data and the processing of fused images
prohibitive in terms of communication bandwidth, storage capacity, com-
putation power, and energy consumption [69]. Distributed fusion in this
case will act to alleviate these issues through in-network local fusion iter-
ations rather than transmission to, and processing at, a central collector.

While there has been significant recent progress in distributed data fu-
sion techniques [19, 60] there has been little work in extending traditional
image fusion to a distributed setting, suitable for fully decentralized pro-
cessing. The work in [79] partially distributes the computation of fusion
filters but still requires a central collection phase for final image estima-
tion. For large WSNs or high volume systems such as radio telescope ar-
rays this still results in an expensive bottleneck where image data from
many sensors needs to be routed to a fusion centre.

In the case of a WSN image fusion with many partially overlapping
fields of view (FOV), perhaps covering many square kilometers of total
imaging area, we encounter an obvious system limitation: for a fully fused

120 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

image to be formed at a single sensor node there must be enough memory
at said node to store, as well as enough communication power to transmit,
this large image throughout the network. This clearly infeasible approach
is also the solution that would arise from standard distributed consen-
sus optimization techniques [15] where a common network-wide solution
vector is optimized for. Instead, we will discuss a method that fuses re-
dundant overlapping imaging areas while still maintaining the original
image dimensions at each sensor.

We propose a new processing architecture for distributed image fu-
sion (which will work in both the WSN and antenna array examples dis-
cussed above) based on elementwise general form consensus [15] using
the Primal-Dual Method of Multipliers (PDMM) [155, 158]. Our system
will optimize the image held by each sensor node by exploiting the ad-
ditional information held by neighbouring nodes, effectively performing
fusion on the mutual area viewed by each pair of nodes. Our algorithm
will, in fact, exploit information from all nodes sharing mutual image ar-
eas provided the nodes that make up the communication path between
any two nodes also share the same mutual image area. This process will
operate using asynchronous and independent updates at each node, elim-
inating the need for a synchronous update iteration clock. The result of
our algorithm is a network of nodes whose image observations may be
improved via image information fused throughout the entire network us-
ing only local updates, without each node being required to contain a full
image of the full network imaging area.

Section 8.2.1 will give an overview of the proposed system; section 8.2.2
will discuss the centralized TV-L1 algorithm; section 8.2.3 will present the
derivation of our distributed PDMM fusion algorithm; section 8.2.5 will
analyse the distributed PDMM algorithm; section 8.2.6 will present sim-
ulated results of our algorithm’s performance; finally, section 8.2.7 will
summarise the conclusions of the section.

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 121

8.2.1 System overview

We first outline the system we are proposing to better motivate the dis-
tributed image fusion algorithm discussed in section 8.2.3. Throughout
the remainer of the section we will use the example of a network of aerial
imaging drones (perhaps used for security surveillance or for geographi-
cal mapping) where each drone node is equipped with a single imaging
sensor, a microprocessor, and electromagnetic (EM) communications for
inter-node communication. These nodes form a time varying WSN V with
cardinality V = |V|, where communication is restricted to nodes connected
by the edge set E with cardinality E = |E|. That is, if two nodes i and j are
within communication range of each other we say that the pair (i, j) ∈ E .

Each node i records an image at time t, denoted Zi(t), of the terrain
directly below. For the sake of simplicity we assume that: the network
topology remains fixed for the duration of each image fusion process and
that the communication range of each sensor is low enough that the FOV
of neighbouring nodes partially overlap. Additionally, for the purposes of
our algorithm presentation we will not fuse single node image tracks over
time. The advantage of multiple images taken at a single time sample
are that time varying phenomena (such as vehicles for drone surveillance
or oscillating pulsars for radio astronomy) will be captured rather than
filtered out of a single image track as noise. We also therefore omit the
time index t and assume images are processed on the same time sample
(although our system could be easily extended to multiple time samples).

Once each node has captured the local imaging area (LIA) they each
perform an image perspective transformation, in order for all images to
share a common orthographic aerial view [52, 1]. Each node is then able
to estimate the LIA overlap between neighbouring nodes by downsam-
pling, transmitting, and comparing their images [27, 62]. At this point
the distributed image fusion process may begin. Our distributed image
fusion process is then able to exploit the overlap between a node i and
most other nodes in the network by performing asynchronous optimiza-

122 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

tion updates at each node, as will be discussed in the following sections.
At convergence the fused image held by each node i is of higher fidelity
than the original image, having gained the information of overlapping im-
ages throughout the network.

Image outputs may now be drawn from the network in a number of
different ways. Firstly, we may ‘tap’ a single node to view the fused image
held by only this node. This would be an efficient way of drawing a high
fidelity fused image of a node’s LIA. Secondly, assuming each node is able
to be tracked (e.g., via GPS) by an outside system operator it would be
possible to determine a sparse set of nodes that would represent the fewest
node FOVs required to cover the whole of the global imaging are (GIA).
This sparse set of nodes (potentially an order of magnitude less than the
total network size) would then each transmit the fused image of their LIA
out of the network [69].

8.2.2 Centralized TV-L1 Image Fusion

Centralized image fusion has received significant attention over the past
three decades and a number of competing methods exist that have been
used with great success, with satellite [22] and medical [126] image fu-
sion being two of the most prominent current application areas. Recently,
the method of total variation (TV) denoising [147, 144] (and extensions in-
volving wavelet regularization [74]) has seen a resurgence in popularity
due to its relatively simple description and solution under the framework
of convex optimization. The approach of TV-L1 denoising, in particular,
has been used as a framework for efficient image fusion algorithms [147].

Our model begins by defining our discrete GIA image domain I as a
regular grid with dimensions H ×W where I = {(p, q) | 1 ≤ p ≤ H, 1 ≤
q ≤ W} with image observation U ∈ RH×W . The TV-L1 optimization
criteria for a single image is then the combination of a total variation term
of the denoised image Z ∈ RH×W and a data error term between each

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 123

denoised image pixel [Z]p,q and the observed image pixel [U]p,q, where
[Z]p,q represents the scalar element of Z at index (p, q). We may represent
this as the unconstrained regularized optimization problem [74]

minimize α
∥∥∇Z∥∥

1
+
∑

(p,q)∈I

∣∣[Z]p,q − [U]p,q
∣∣, (8.14)

where ∇ is the anisotropic discrete derivative operator, and α is a tune-
able parameter set by the implementer that determines the importance of
total image variation relative to observed pixel reconstruction accuracy.
When fusing N observed images that all cover the same global set of pix-
els (U 1, . . . ,UV) ∈ RH×W , we may extend the data error term to include
these observations [74], i.e.,

minimize
∑
i∈V

α
∥∥∇Z∥∥

1
+
∑
i∈V

∑
(p,q)∈I

∣∣[Z]p,q − [U i]p,q
∣∣, (8.15)

where the summation over the total variation term simply scales it by V ,
retaining the relative effect of the tuning parameter α. Optimizing this
function fuses the information of multiple images of a common global
pixel set, improving the fidelity of the final image. In contrast, traditional
centralized methods of performing this optimization assume that all im-
age data is sent to a central processor for computation, resulting in ex-
pensive communication costs for networks that cover a large area. Addi-
tionally, in high data volume applications it may be physically impossible
to store the images from all sensors in a single location due to memory
limitations.

8.2.3 Distributed PDMM Image Fusion

To overcome the problem of long distance data transmission, central data
housing, and central computation, we will distribute the image fusion de-
scribed by (8.15) among the V sensor nodes of the network. We begin by
presenting the most obvious method of distributing the fusion of image

124 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

data - the popular method of distributed consensus optimization [15]. We
introduce a local copy of the global optimization variable Z at each node i
denotedZi, and apply edge-wise equality constraints between each pair of
neighbouring nodes. Assuming the network is connected (i.e. it is possible
to traverse the network from a given node to any other), these constraints
will ensure all copies are equal and we may construct an equivalent prob-
lem to the centralized problem (8.15), i.e.

minimize
∑
k∈V

αi∥∥∇Zi

∥∥
1

+
∑

(p,q)∈I

∣∣[Zi]p,q − [U i]p,q
∣∣

subject to [Zi]p,q = [Zj]p,q ∀(p, q) ∈ I, ∀(i, j) ∈ E ,

(8.16)

where αi = α ∀i ∈ V . Solving this problem using PDMM or ADMM
does not require a central fusion processor, and only relies on local data
transmission between neighbouring nodes. There are still two important
limitations to this approach: each node i is required to store a full copy of
the GIA represented by the variable Zi; and during optimization of this
problem we require transmission of this full GIA variable copy. In cases
where the total GIA is small and all sensors have a high proportion of
this area in their FOV (i.e., there is high redundancy of a relatively small
imaging area), this approach is feasible. However, for our system to be
scalable to applications involving GIAs that are orders of magnitude larger
than the LIA of any single sensor with partial overlaps in FOV, we are
unable to store and transmit these full GIA copies.

To solve the problem of GIA data storage and transmission, we ex-
tend the consensus approach of (8.16) to a type of general form consensus
[158, 15] that enforces partial consensus of neighbouring nodes through
elementwise equality constraints of subsets of variable components. We
refer to this as general form neighbouring consensus (GFNC). In this way,
we are able to retain the original LIA image size at each node while opti-
mizing for the redundancy in overlapping regions. We begin by allowing
each node i to view a new LIA image domain with independent dimen-

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 125

sions Hi × Wi denoted Ii such that each LIA image domain is a subset
of the GIA image domain, i.e., Ii ⊂ I for all i. We then denote our new
LIA observation as U i ∈ RHi×Wi and our new local optimization variable
as X i ∈ RHi×Wi . We may now pose the partial consensus optimization
problem

minimize
∑
k∈V

αi∥∥∇X i

∥∥
1

+
∑

(p,q)∈Ii

∣∣[X i]p,q − [U i]p,q
∣∣

subject to [X i]p,q = [Xj]p,q ∀(p, q) ∈ Ii ∩ Ij, ∀(i, j) ∈ E ,

(8.17)

where we now only enforce consensus between pixels that are shared in
the LIA’s of neighbouring nodes.

To pose our new partial consensus problem in a form more readily
solvable by convex optimization methods we will vectorize our variables
xi = vec(X i) and ui = vec(U i) so that {xi,ui} ∈ RHiWi with new indices
defined as gi = (Hi(q − 1) + p). We may then write our optimization as

minimize
∑
k∈V

(
αi
∥∥Dixi

∥∥
1

+
∥∥xi − ui∥∥1

)
subject to Ai|jxi = Aj|ixl ∀(i, j) ∈ E ,

(8.18)

where Di is the derivative operator for vector k defined by the relation
Divec(·) = ∇(·), and the constraint matrices Ai|j and Aj|i may be seen as
relative alignment matrices for the edge (i, j) that contain all zeros apart
from at most a single entry of 1 for each row. These would be constructed
from the alignment process carried out prior to image fusion, and would
effectively select and permute entries in order to compare overlapping
pixel areas from the images held by nodes i and j. The equivalence of the
distributed partial consensus problem (8.18) and the centralized problem
(8.15) will be discussed further in section 8.2.5.

We may now use the primal-dual method of multipliers [158, 156] to
perform distributed, independent, and asynchronous updates across the

126 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

network using the local primal and dual variable updates

xk+1
i = arg min

xi

[
αi
∥∥Dixi

∥∥
1

+
∥∥xi − ui∥∥1

+ xTi

(∑
l∈Vi

AT
i|jλ

k
j|i

)
+
∑
l∈Vi

ρ

2
‖Ai|jxi −Aj|ix

k
l ‖2

2

]
∀i ∈ U , (8.19)

λk+1
i|j = ρ(Aj|ix

k
l −Ai|jx

k+1
i)− λij|i ∀i ∈ V , ∀l ∈ Vi. (8.20)

In order to pose our problem in a form solvable by many common opti-
mization methods, we combine the l1 terms and expand out the quadratic
edge-wise penalty to describe the primal update step as the optimal point
z∗i of the convex problem

minimize
1

2
xTi Rixi +wT

i xi + ‖M ixi − qi‖1, (8.21)

where

Ri = ρ
∑
l∈Vi

AT
i|jAi|j, (8.22)

wi =
∑
l∈Vi

(
λiTj|iAi|j − ρxTl AT

j|iAi|j
)
, (8.23)

M i = [αiDi I]T , qi = [0 ui]
T , (8.24)

0 is the zero vector, and I is the identity matrix. We may equivalently pose
problem (8.21) as the quadratic program

minimize
1

2
xTi Rixi +wT

i xi + 1Tyi

subject to yi ≥M ixi − qi
yi ≥ −M ixi + qi,

(8.25)

where the two constraints and the inner product 1Tyi ensure that the l1
norm of the quantityM ixi − qi is taken at convergence.

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 127

8.2.4 Improving Computational Efficiency with FS-PDMM

In this subsection we will discuss the application of function splitting to
the image fusion problem to improve local computational efficiency. The
quadratic program (8.25) may be simple to solve for very small images
where the dimensionality of our optimization variables zi low, but for
most practical imaging applications with images in the megapixel range
this optimization becomes prohibitively slow. To address this, one ap-
proach explored in [74] was to reduce optimization dimensionality of the
central problem (8.15) through wavelet transformation [3]. The optimiza-
tion procedure was then carried out in the lower dimensionality wavelet
domain rather than in the very high dimensional pixel domain. This is
effective in central applications, but for distributed problems where com-
putational power is even more constrained we would benefit from further
simplification of the optimization problem.

The FS-PDMM algorithm in chapter 4 presents an asynchronous method
of splitting coupled problems, such as common regularized optimization
problems, between two mathematically separate nodes in order to reduce
the computational cost and eliminate the overhead of extra optimization
packages. To apply FS-PDMM to this problem we initially combine the
two l1 terms in problem (8.18) as in the previous section using (8.24). This
function will now be treated as our regularization term, while our cost
function term will be empty. This gives the problem

minimize
∑
k∈V

(fi(xi) +Ri(xi))

subject to Ai|jxi = Aj|ixl ∀(i, j) ∈ E ,
(8.26)

where fi(xi) = 0 and Ri(xi) = ‖M ixi − qi‖1. Compared with the FS-
PDMM algorithm, we note that there is an extra constant term qi in the
regularization function Ri. This requires a minor adjustment to the FS-
PDMM update equations to include this constant, but the general algo-
rithm remains the same. We therefore have the following FS-PDMM up-

128 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

date iterations for the image fusion problem

xk+1
i =

(
ρMT

i M i + ρ
∑
j∈Vi

AT
i|jAi|j

)−1(
MT

i (ρzki + ρqi − νki) (8.27)

−
∑
j∈Vi

AT
i|j(λ

k
ji + ρAj|ix

k
j)

)
(8.28)

zk+1
i =

(
2M ix

k+1
i − 2qi − zki + νki /ρ− αi/ρ

)
+

−
(
−2M ix

k+1
i + 2qi + zki − νki /ρ− αi/ρ

)
+

(8.29)

νk+1
i = ρ(2M ix

k+1
i − 2qi − zk+1

i − zki) + νki (8.30)

λk+1
i|j = ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i ∀j ∈ Vi (8.31)

for all i ∈ V . We now have four simple updates to perform each iteration k.
The x update requires the solution of a linear system, where the matrix to
be inverted is constant for all iterations and may be possible to cache. The
z update is the soft thresholding operator which is efficient to evaluate,
and the final two dual variable updates are simple linear transformations.
These four updates, particularly for high dimensional problems, are far
simpler to solve than the quadratic program proposed in (8.25).

8.2.5 Equivalence to central fusion

In this section we show that our distributed algorithm is equivalent to
centrally fusing the overlapping regions of all images. We assume that the
edge-wise consensus constraints in (8.17) are met and additionally that
any two nodes sharing a common subset of pixels are connected by other
nodes that also share this same pixel subset to ensure that these pixels all
reach consensus (analysis of the extent of this effect is worth pursuing in
future work, but our simulated experimental data suggests that the num-
ber of pixels not satisfying this second assumption are neglible). This anal-
ysis is intended as a sanity check, to validate that the proposed approach
solves our original optimization problem.

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 129

We define new disjoint image subsets (A1, . . . ,AM) ∈ I that represent
overlapping areas with fixed node sets. Geometrically these subsets are
exactly the polygons that are formed from the overlapping LIA borders,
and will be referred to as fixed observer-set polygons (FOSP). The union
of these FOSPs therefore cover the same area as the union of the LIAs, i.e.,
(A1 ∪ · · · ∪ AM) = (I1 ∪ · · · ∪ IN). Expanding out the total variation term
in equation (8.17) gives∑

i∈V

(∑
(p,q)∈Ii

αi
(
|[X i]p+1,q − [X i]p,q|

+ |[X i]p,q+1 − [X i]p,q|
)

+
∑

(p,q)∈Ii

∣∣[X i]p,q − [U i]p,q
∣∣) (8.32)

=
M∑
m=1

∑
(p,q)∈Am

∑
i∈Vm

αi
(
|[X i]p+1,q − [X i]p,q|

+ |[X i]p,q+1 − [X i]p,q|
)

+
∣∣[X i]p,q − [U i]p,q

∣∣ (8.33)

=
M∑
m=1

(∑
i∈Vm

(∑
(p,q)∈Am

αi
(
|Xp+1,q −Zp,q|

+ |Xp,q+1 −Xp,q|
))

+
∑
i∈Vm

∑
(p,q)∈Am

∣∣[X]p,q − [U i]p,q
∣∣), (8.34)

where the node set Vm = {k|Am ∩ Ii 6= ∅} denotes the set of all nodes
contributing to FOSP m, the three summations in equation (8.33) denote
summation over all FOSPs, summation over all pixels within each FOSP,
and summation over all nodes contributing to each FOSP, respectively, and
the i indices previously present on the Z variables have been omitted in
equation (8.34) since the consensus constraints constrain all copies of these
values to equality.

By inspection we see that equation (8.34) is a summation of M central-
ized TV-L1 fusion optimizations, each equivalent to problem (8.15) carried
out on an ‘overlap’ image subset. In other words, the distributed partial

130 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

consensus optimization presented in problem (8.17) effectively fuses the
pixels of all FOSPs, even when nodes contributing to these regions are not
all within the same neighbourhood.

8.2.6 Numerical Simulation

A random ad-hoc network was placed on a 800x800 pixel global imaging
area (c©Institute of Geodesy and Photogrammetry, ETH Zurich), each with
a local imaging area size of 256x256 pixels and a communication range of
100 pixels. Pixel values were in the continuous range 0 to 1 for the pur-
pose of optimization. The received images at each node were corrupted by
zero mean independent Gaussian noise with standard deviation of 0.003
as well as 0.05 density salt and pepper noise [74]. Perspective mapping
and alignment procedures were assumed to have been carried out prior
to the image fusion phase, resulting in the alignment matrices required by
problem (8.18). The PDMM algorithm was run by randomly triggering a
node at each iteration for update for an average of 10 iterations per node.

The peak signal-to-noise ratio (PSNR) was computed for a 512x512 area
in the centre of the network so as to avoid areas on the edge of the network
with no redundancy, with only the fewest fused node images required to
cover the area used for PDMM network output. This process was repeated
for 10 random instances of the network over a range of network node sizes.
This was compared to an image of the same area resulting from a stitched
collection of single images denoised using TV-L1 with no redundancy (sin-
gle image denoising), as well as this area fused centrally with maximum
redundancy. The tuning parameter λ was varied to find the optimal trade-
off value based on the PSNR performance.

We begin with a pictorial display of the performance of the 50 node
PDMM fusion algorithm in figure 8.2, comparing the raw noisy GIA and
LIA, the locally (single image) denoised GIA and LIA, and the PDMM
fused GIA and LIA. The local denoising does well to remove most noise

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 131

at the expense of fine details, whereas the redundancy exploited by the
PDMM fusion process allows fine details to be retained while reducing
the noise present. The effect of noise on the PDMM fused GIA is more
prevalent at the outer edges of the GIA. This is caused by a lack of redun-
dancy since these areas are only viewable from one or two nodes, resulting
in performance similar to the locally denoised pixels of these outer areas.

Figure 8.2: Top row from left: noisy GIA; locally denoised GIA; PDMM
denoised GIA. Bottom row from left: noisy LIA; locally denoised LIA;
PDMM denoised LIA.

Figure 8.3 shows the statistical performance of the algorithm averaged
over 10 instances with cross-validated tuning parameter. The PSNR of
the PDMM algorithm, the central fusion process, and local independent
denoising are compared as a function of average nodes per pixel and con-
trasted with the energy consumption ([135] using free space parameters)
of these systems with a central collector base station 1 km away. We see
that the performance of our distributed algorithm is roughly equal to that

132 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

of the central fusion process while consuming significantly less energy
since redundant information is fused within the network prior to trans-
mission to the base station, rather than each node transmitting a raw im-
age observation.

Finally, figure 8.4a and 8.4a show the global convergence speed and
runtime, respectively, of the distributed image fusion when comparing
conventional PDMM to FS-PDMM. Instances where conventional PDMM
failed to converge on a solution were removed in order to compare the
best case of PDMM with FS-PDMM. We see a reduction in runtime of FS-
PDMM by around two orders of magnitude as compared with conven-
tional PDMM, which uses local ADMM splitting to solve subproblems.
The global convergence speed is slightly reduced by using FS-PDMM.

P
S

N
R

 (
dB

)

25

30

35

40

Central Fusion
PDMM Fusion
Local Denoising

Redundancy (Average Nodes per Pixel)
5 10 15 20 25 30 35 40 45 50

C
om

m
un

ic
at

io
n

P
ow

er

106

107

108

Central Fusion
PDMM Fusion

Figure 8.3: PSNR and communication power versus nodes per pixel.

8.2. APPLICATION TO DISTRIBUTED IMAGE FUSION 133

0 5 10 15 20 25 30 35 40 45 50

Iterations per node

10-6

10-4

10-2

100

102

O
bj

ec
tiv

e
F

un
ct

io
n

M
S

E

FS-PDMM
Conventional PDMM

(a) Convergence rate of conventional

PDMM and FS-PDMM applied to dis-

tributed image fusion

10-3 10-2 10-1 100 101

Runtime (s)

10-6

10-4

10-2

100

102

P
rim

al
 v

ar
ia

bl
e

M
S

E

FS-PDMM
Conventional PDMM

(b) Computational efficiency of conven-

tional PDMM and FS-PDMM applied to

distributed image fusion

Figure 8.4: Performance of FS-PDMM and conventional PDMM.

8.2.7 Summary

A fully asynchronous distributed image fusion system was developed for
a general network of imaging sensors with partially overlapping FOVs.
We show that performing image fusion in this manner is equivalent to per-
forming centralized fusion over each overlapping FOV, even when non-
neighbouring nodes view common overlaps. Simulated results show that
we achieve roughly equal performance to the centralized case while con-
serving considerable transmission energy. We also show that applying the
FS-PDMM algorithm to the image fusion problem leads to a runtime re-
duction of around two orders of magnitude.

134 CHAPTER 8. SIGNAL PROCESSING APPLICATIONS

Chapter 9

Conclusions and Future Works

9.1 Conclusions

This thesis discussed recent developments in the area of distributed wire-
less sensor network processing and has specifically dealt with the dis-
tributed optimization algorithm of PDMM. We have developed the FS-
PDMM, QA-PDMM, FSQA-PDMM, and FT-PDMM algorithms, all of which
are variations on conventional PDMM. These variations were motivated
by the necessity for efficient and simple local computations when perform-
ing signal processing in wireless sensor networks. Distributed acoustic
beamforming served as a motivating application example for the simplifi-
cation of PDMM, and was used along with distributed image fusion as ap-
plication examples for practical distributed signal processing algorithms.

The FS-PDMM and QA-PDMM algorithms were developed to improve
the computational efficiency of regularized optimization and smooth cost
function optimization, respectively. Additionally, these methods elimi-
nate the need for numerical optimization packages for many common
problems. These algorithms were analysed to have a convergence rate of
O(1/k) for closed, proper, and convex functions. Simulated experiments
on elastic net regularized least squares optimization, for FS-PDMM, and
logistic regression, for QA-PDMM, showed that roughly an order of mag-

135

136 CHAPTER 9. CONCLUSIONS AND FUTURE WORKS

nitude improvement in computational efficiency was possible. The FSQA-
PDMM algorithm was then developed, analysed, and simulated, combin-
ing the benefits of both previous methods and allowing for efficient op-
timization when performing distributed optimization with a smooth cost
function and non-smooth regularization function. The FT-PDMM was de-
veloped as the primal variation on PDMM, and was experimentally shown
to converge in finite iterations when optimizing quadratic consensus prob-
lems.

Distributed signal processing applications of acoustic beamforming and
image fusions were demonstrated, using FS-PDMM to reduce the compu-
tational complexity of local updates. The beamformer included a novel
sparsity approach that naturally selected the most useful sensor contribu-
tions, allowing less relevant nodes to save communication energy by not
transmitting signals for beamformer combination. The image fusion algo-
rithm allowed for a network imaging sensors with partially overlapping
fields of view to fuse their common imaging areas and improve image fi-
delity in-network. This greatly reduced the potentially high cost of trans-
mitting redundant raw images to a central fusion center.

9.2 Future Works

As future work, we intend to apply the algorithms developed in this the-
sis to more practical problems in the areas of distributed signal processing
and distributed machine learning with the eventual real-world implemen-
tation of these methods in a lab-based sensor network. We would like to
further analyse the quadratic parameter matrix in QA-PDMM in order to
determine an optimal setting for a given problem, with low computational
complexity. Additionally, we would like to further explore finite-time con-
vergence and see whether more general cost functions could benefit from
the methods used in FT-PDMM.

Appendix A

Appendix

A.1 QA-PDMM Convergence Inequality 1

Recall the bounds on the Hessian assumed in equation (5.10). The lower
bound implies that for all i ∈ N , each local function fi is strongly convex
with constant qi, i.e.,

(∇fi(xi)−∇fi(yi))T (xi − yi) ≥ qi‖xi − yi‖2
2 ∀xi,yi ∈ Rni . (A.1)

The upper bound is equivalent to Lipschitz continuous gradients of the
local functions fi for all i ∈ N with constant Qi, i.e.,

‖∇fi(xi)−∇fi(yi)‖2 ≤ Qi‖xi − yi‖2 ∀xi,yi ∈ Rni . (A.2)

From equation (2.33), the unaugmented primal-dual Lagrangian of prob-
lem (2.32) is given by L(x,λ) = LΦ(x,λ) − Φ(x,λ), which has the KKT
conditions

∇fi(x∗i) +
∑
j∈Vi

AT
i|jλ

∗
j|i = 0 ∀i ∈ N (A.3)

Ai|jx
∗
i −Aj|ix

∗
j = 0 ∀i, j ∈ E (A.4)

λ∗i|j + λ∗j|i = 0 ∀i, j ∈ E , (A.5)

137

138 APPENDIX A. APPENDIX

where we have used gi = fi ∀i ∈ V . The optimality condition for the
quadratically approximated primal variable update xk+1

i in equation (5.5)
is

∇fi(xki) +Hk
i (xk+1

i − xki) +
∑
j∈Vi

AT
i|jλ

k
j|i

+
∑
j∈Vi

ρAT
i|j(Ai|jx

k+1
i −Aj|ix

k
j) = 0. (A.6)

We define a new function fki (xi) at iteration k for node i as

fki (xi) =fi(x
k
i) + 〈xi − xki ,∇fi(xki)〉

+
1

2
‖xi − xki ‖2

Hk
i
,

where fki (xi) is simply a quadratic approximation of fi at xki . Upon intro-
ducing fki (xi), (A.6) can be rewritten as

∇fki (xk+1
i) =∇fi(xki) +Hk

i (xk+1
i − xki)

=
∑
j∈Vi

AT
i|jλ

k+1
i|j . (A.7)

We now derive two different but equivalent expressions for the quan-
tity

∑
i∈V(∇fki (xk+1

i)−∇fi(x?i))T (xk+1
i − x∗i). The first expression is given

by ∑
i∈V

(∇fki (xk+1
i)−∇fi(x?i))T (xk+1

i − x∗i)

=
∑
i∈V

(∑
j∈Vi

AT
i|jλ

k+1
i|j

)T

(xk+1
i − x∗i)

−
∑
i∈V

(∑
j∈Vi

AT
i|jλ

?
i|j

)T

(xk+1
i − x∗i)

=
∑
i∈V

(∑
j∈Vi

AT
i|j(ρ(Aj|ix

k
j −Ai|jx

k+1
i)− λkj|i)

)T

(xk+1
i

A.1. QA-PDMM CONVERGENCE INEQUALITY 1 139

− x∗i)−
∑
i∈V

(∑
j∈Vi

AT
i|jλ

?
i|j

)T

(xk+1
i − x∗i)

=
∑
i∈V

∑
j∈Vi

[
ρ(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i

− λkj|i
]T
Ai|j(x

k+1
i − x∗i)

−
∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|j(x
k+1
i − x∗i)

−
∑
i∈V

∑
j∈Vi

λk+1
j|i Ai|j(x

k+1
i − x∗i), (A.8)

and the second expression is given by∑
i∈V

(∇fki (xk+1
i)−∇fi(x?i))T (xk+1

i − x∗i)

=
∑
i∈V

(∑
j∈Vi

AT
i|j(λ

k+1
i|j − λ

∗
i|j)

)T

(xk+1
i − x∗i)

=
∑
i∈V

∑
j∈Vi

(λk+1
i|j − λ

∗
i|j)

TAi|jx
k+1
i

−
∑
i∈V

∑
j∈Vi

(λk+1
i|j − λ

∗
i|j)

TAi|jx
∗
i

=
∑
i∈V

∑
j∈Vi

[
Aj|ix

k
j −

1

ρ
(λkj|i + λk+1

i|j)

]T
(λk+1

i|j − λ
?
i|j)

−
∑
i∈V

∑
j∈Vi

(λk+1
i|j − λ

∗
i|j)

TAi|jx
∗
i

=
∑
i∈V

∑
j∈Vi

[
Aj|i(x

k
j − xk+1

j)− 1

ρ
(λkj|i + λk+1

i|j)

]T
(λk+1

i|j

− λ?i|j) +
∑
i∈V

∑
j∈Vi

Aj|ix
k+1,T
j (λk+1

i|j − λ
?
i|j)

−
∑
i∈V

∑
j∈Vi

(λk+1
i|j − λ

∗
i|j)

TAi|jx
∗
i . (A.9)

Combining (A.8) and (A.9) produces

2
∑
i∈V

(∇fki (xk+1
i)−∇fi(x?i))T (xk+1

i − x∗i)

140 APPENDIX A. APPENDIX

+
∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|j(x
k+1
i − x∗i)

+
∑
i∈V

∑
j∈Vi

λk+1
j|i Ai|j(x

k+1
i − x∗i)

−
∑
i∈V

∑
j∈Vi

Aj|ix
k+1,T
j (λk+1

i|j − λ
?
i|j)

+
∑
i∈V

∑
j∈Vi

(λk+1
i|j − λ

∗
i|j)

TAi|jx
∗
i

=
∑
i∈V

∑
j∈Vi

[
ρ(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i

− λkj|i
]T
Ai|j(x

k+1
i − x∗i) +

∑
i∈V

∑
j∈Vi

[
Aj|i(x

k
j − xk+1

j)

− 1

ρ
(λkj|i + λk+1

i|j)
]T

(λk+1
i|j − λ

?
i|j). (A.10)

Next, we simplify the left-hand side (LHS) of (A.10) as

2
∑
i∈V

(∇fki (xk+1
i)−∇fi(x?i))T (xk+1

i − x∗i)

− 2
∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|jx
∗
i

=2
∑
i∈V

(∇fi(xki) +Hk
i (xk+1

i − xk)−∇fi(x?i))T (xk+1
i

− x∗i)− 2
∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|jx
∗
i

(a)
=2
∑
i∈V

(∇fi(xki)−∇fi(xk+1
i) +∇fi(xk+1

i)−∇fi(x?i))T

· (xk+1
i − x∗i)− 2

∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|jx
∗
i

+
∑
i∈V

(
‖xk+1

i − xki ‖2
Hk

i
+ ‖xk+1

i − x∗i ‖2
Hk

i
− ‖xki − x∗i ‖2

Hk
i

)
(b)

≥ + 2
∑
i∈V

(∇fi(xki)−∇fi(xk+1
i))T (xk+1

i − x∗i)

2
∑
i∈V

qi‖xk+1
i − x∗i ‖2 − 2

∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|jx
∗
i

A.1. QA-PDMM CONVERGENCE INEQUALITY 1 141

+
∑
i∈V

(
‖xk+1

i − xki ‖2
Hk

i
+ ‖xk+1

i − x∗i ‖2
Hk

i
− ‖xki − x∗i ‖2

Hk
i

)
≥ −

∑
i∈V

(1

ci
‖(∇fi(xki)−∇fi(xk+1

i))‖2 + ci‖xk+1
i − x∗i ‖2

)
2
∑
i∈V

qi‖xk+1
i − x∗i ‖2 − 2

∑
i∈V

∑
j∈Vi

λ?,Ti|j Ai|jx
∗
i

+
∑
i∈V

(
‖xk+1

i − xki ‖2
Hk

i
+ ‖xk+1

i − x∗i ‖2
Hk

i
− ‖xki − x∗i ‖2

Hk
i

)
(c)

≥
∑
i∈V

(2qi − ci)‖xk+1
i − x∗i ‖2

+
∑
i∈V

(xk+1
i − xki)T

[
Hk
i −

Qi

ci
I

]
(xk+1

i − xki)

+
∑
i∈V

(
‖xk+1

i − x∗i ‖2
Hk

i
− ‖xki − x∗i ‖2

Hk
i

)
, (A.11)

where ci > 0 is a scalar parameter, step (a) uses

2(a− b)TP (a− c) = ‖a− b‖2
P + ‖a− c‖2

P − ‖b− c‖2
P ,

step (b) uses (A.1), and step (c) uses (A.2) and (A.4)-(A.5). The right-hand
side (RHS) of (A.10) can be simplified as∑

i∈V

∑
j∈Vi

[
ρ(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i − λ
k
j|i

]T
Ai|j(x

k+1
i

− x∗i) +
∑
i∈V

∑
j∈Vi

[
Aj|i(x

k
j − xk+1

j)− 1

ρ
(λkj|i + λk+1

i|j)

]T
· (λk+1

i|j − λ
?
i|j)

=
∑
i∈V

∑
j∈Vi

[
ρAj|i(x

k
j − xk+1

j) + λk+1
j|i − λ

k
j|i

]T
Ai|j(x

k+1
i

− x∗i) +
∑
i∈V

∑
j∈Vi

[
Aj|i(x

k
j − xk+1

j) +
1

ρ
(λk+1

j|i − λ
k
j|i)

]T
· (λk+1

i|j − λ
?
i|j)−

∑
(i,j)∈E

ρ‖Aj|ix
k+1
j −Ai|jx

k+1
i ‖2

142 APPENDIX A. APPENDIX

−
∑

(i,j)∈E

1/ρ‖λk+1
i|j + λk+1

j|i ‖
2

=
∑
i∈V

∑
j∈Vi

[
ρ1/2Aj|i(x

k
j − xk+1

j) + ρ−1/2(λk+1
j|i − λ

k
j|i)
]T

·
[
ρ1/2Ai|j(x

k+1
i − x∗i) + ρ−1/2(λk+1

i|j − λ
?
i|j)
]

−
∑

(i,j)∈E

[
ρ‖Aj|ix

k+1
j −Ai|jx

k+1
i ‖2 − 1/ρ‖λk+1

i|j + λk+1
j|i ‖

2
]

(a)
=

1

2

∑
i∈V

∑
j∈Vi

[
‖ρ−1/2(λ∗i|j + λkj|i) + ρ1/2(Ai|jx

∗
i −Aj|ix

k
j)‖2

− ‖ρ−1/2(λ∗i|j + λk+1
j|i) + ρ1/2(Ai|jx

∗
i −Aj|ix

k+1
j)‖2

+ ‖ρ−1/2(λk+1
i|j + λk+1

j|i) + ρ1/2(Ai|jx
k+1
i −Aj|ix

k+1
j)‖2

− ‖ρ−1/2(λk+1
i|j + λkj|i) + ρ1/2(Ai|jx

k+1
i −Aj|ix

k
j)‖2

]
−
∑

(i,j)∈E

[
ρ‖Aj|ix

k+1
j −Ai|jx

k+1
i ‖2 − 1/ρ‖λk+1

i|j + λk+1
j|i ‖

2
]

=
1

2

∑
i∈V

∑
j∈Vi

[
‖ρ−1/2(λ∗i|j + λkj|i) + ρ1/2(Ai|jx

∗
i −Aj|ix

k
j)‖2

− ‖ρ−1/2(λ∗i|j + λk+1
j|i) + ρ1/2(Ai|jx

∗
i −Aj|ix

k+1
j)‖2

− ‖ρ−1/2(λk+1
i|j + λkj|i) + ρ1/2(Ai|jx

k+1
i −Aj|ix

k
j)‖2

]
, (A.12)

where step (a) uses

(a− b)T (c− d)

=
1

2
(‖a+ c‖2 − ‖a+ d‖2 − ‖b+ c‖2 + ‖b+ d‖2).

Combining (A.10)-(A.12) yields equation (5.13).

A.2 QA-PDMM Convergence Inequality 2

Invoking Lemma 6 with xi = x?i and rearranging the expression, we ob-
tain

hi
2
‖xk+1

i − x?i ‖2 + fi(x
k+1
i)− fi(x?i)

A.2. QA-PDMM CONVERGENCE INEQUALITY 2 143

≤ (xk+1
i − x?i)T

∑
j∈Ni

AT
i|jλ

k+1
i|j +

hi
2
‖xki − x?i ‖2 (A.13)

Summing the above inequality over i ∈ V and plugging the expression for
λk+1
i|j produces

∑
i∈V

[
hi
2
‖xk+1

i − x?i ‖2 + fi(x
k+1
i)− fi(x?i)

]
≤
∑
i∈V

∑
j∈Ni

(P ij(Aj|ix
k
j −Ai|jx

k+1
i)− λkj|i)T

·Ai|j(x
k+1
i − x?i) +

∑
i∈V

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(
P ij(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i − λ
k
j|i

)T
·Ai|j(x

k+1
i − x?i) +

∑
i∈V

hi
2
‖xki − x?i ‖2

−
∑
i∈V

∑
j∈Ni

λk+1
j|i Ai|j(x

k+1
i − x?i). (A.14)

Next we derive a different upper bound for the quantity on the left
hand side of (A.14). To do so, we note from (5.2) that Ai|jx

k+1
i can be

represented in terms of λk+1
i|j as

Ai|jx
k+1
i =Aj|ix

k
j −P−1

ij (λkj|i+λ
k+1
i|j) i ∈ V , j ∈ Ni, (A.15)

Similarly to the derivation of (A.14), we sum (A.19) over all i ∈ V and
plugging the expression (A.15) for Ai|jx

k+1
i where appropriate, which are

given by ∑
i∈V

[
hi
2
‖xk+1

i − x?i ‖2 + fi(x
k+1
i)− fi(x?i)

]
≤
∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|j

(
xk+1
i − x?i

)
+
∑
i∈V

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(λk+1
i|j −λ

?
i|j)

TAi|jx
k+1
i −

∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|jx

?
i

144 APPENDIX A. APPENDIX

+
∑
i∈V

∑
j∈Ni

λ?,Ti|j Ai|jx
k+1
i +

∑
i∈V

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

[
Aj|ix

k
j −P−1

ij (λkj|i+λ
k+1
i|j)

]T
(λk+1

i|j − λ
?
i|j)

−
∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|jx

?
i +

∑
i∈V

∑
j∈Ni

λ?,Ti|j Ai|jx
k+1
i

+
∑
i∈V

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

[
Aj|i(x

k
j − xk+1

j)−P−1
ij (λkj|i+λ

k+1
i|j)

]T
· (λk+1

i|j − λ
?
i|j)+

∑
i∈V

∑
j∈Ni

(Aj|ix
k+1
j)T (λk+1

i|j −λ
?
i|j)

−
∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|jx

?
i +

∑
i∈V

∑
j∈Ni

λ?,Ti|j Ai|jx
k+1
i

+
∑
i∈V

hi
2
‖xki − x?i ‖2 (A.16)

Combining (A.14)-(A.22) produces

2
∑
i∈V

[hi
2
‖xk+1

i − x?i ‖2 + fi(x
k+1
i)− fi(x?i)

− xk+1,T
i

∑
j∈Ni

ATi|jλ
?
i|j

]
≤
∑
i∈V

∑
j∈Ni

(
P ij(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i − λ
k
j|i

)T
·Ai|j(x

k+1
i − x?i) +

∑
i∈V

hi
2
‖xki − x?i ‖2

+
∑
i∈V

∑
j∈Ni

[
Aj|i(x

k
j − xk+1

j)−P−1
ij (λkj|i+λ

k+1
i|j)

]T
· (λk+1

i|j − λ
?
i|j) +

∑
i∈V

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(
P ijAj|i(x

k
j − xk+1

j) + λk+1
j|i − λ

k
j|i

)T

A.2. QA-PDMM CONVERGENCE INEQUALITY 2 145

·Ai|j(x
k+1
i − x?i)−

∑
(i,j)∈E

‖Aj|ixk+1
j − Ai|jxk+1

i ‖2
P ij

+
∑
i∈V

∑
j∈Ni

[
Aj|i(x

k
j − xk+1

j)−P−1
ij (λkj|i−λk+1

j|i)
]T

· (λk+1
i|j − λ

?
i|j)−

∑
(i,j)∈E

‖λk+1
i|j + λk+1

j|i ‖
2
P−1

ij

+ 2
∑
i∈V

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(
P

1
2
ijAj|i(x

k
j − xk+1

j) + P
− 1

2
ij (λk+1

j|i − λ
k
j|i)
)T

·
(
P

1
2
ijAi|j(x

k+1
i − x?i) + P

− 1
2

ij (λk+1
i|j − λ

?
i|j)
)

−
∑

(i,j)∈E

‖Aj|ixk+1
j − Ai|jxk+1

i ‖2
P ij
−
∑

(i,j)∈E

‖λk+1
i|j + λk+1

j|i ‖
2
P−1

ij

+ 2
∑
i∈V

hi
2
‖xki − x?i ‖2

(a)
=

1

2

∑
i∈V

∑
j∈Ni

[
‖P−1/2

ij (λk+1
i|j + λk+1

j|i) + P
1/2
ij (Ai|jx

k+1
i −Aj|ix

k+1
j)‖2

− ‖P−1/2
ij (λ∗i|j + λk+1

j|i) + P
1/2
ij (Ai|jx

∗
i −Aj|ix

k+1
j)‖2

+ ‖P−1/2
ij (λ∗i|j + λkj|i) + P

1/2
ij (Ai|jx

∗
i −Aj|ix

k
j)‖2

− ‖P−1/2
ij (λk+1

i|j + λkj|i) + P
1/2
ij (Ai|jx

k+1
i −Aj|ix

k
j)‖2

]
−
∑

(i,j)∈E

‖Aj|ixk+1
j − Ai|jxk+1

i ‖2
P ij
−
∑

(i,j)∈E

‖λk+1
i|j + λk+1

j|i ‖
2
P−1

ij

+ 2
∑
i∈V

hi
2
‖xki − x?i ‖2

(b)
=

1

2

∑
i∈V

∑
j∈Ni

[
− ‖P−1/2

ij (λ∗i|j + λk+1
j|i)+P

1/2
ij (Ai|jx

∗
i −Aj|ix

k+1
j)‖2

+ ‖P−1/2
ij (λ∗i|j+λ

k
j|i)+P

1/2
ij (Ai|jx

∗
i −Aj|ix

k
j)‖2

−‖P−1/2
ij (λk+1

i|j +λkj|i)+P
1/2
ij (Ai|jx

k+1
i −Aj|ix

k
j)‖2

]
+ 2

∑
i∈V

hi
2
‖xki − x?i ‖2 (A.17)

146 APPENDIX A. APPENDIX

where step (a) follows from the the identity

(a− b)T (c− d)

=
1

2
(‖a+ c‖2 − ‖a+ d‖2 − ‖b+ c‖2 + ‖b+ d‖2).

and step (b) uses (5.6) and (5.8)-(5.9), similar to the proof for Lemma 8 in
[157].

Next we prove the lower bound of (5.22).

2
∑
i∈V

[
fi(x

k+1
i)− fi(x?i)− x

k+1,T
i

∑
j∈Ni

ATi|jλ
?
i|j

]
(a)

≥ 2
∑
i∈V

[
− f ∗i

(∑
i∈Ni

AT
i|jλ

?
i|j

)
− fi(x?i)

]
(b)
= 0,

where f ∗i (·) is the conjugate function of fi(·), step (a) uses Fenchel’s in-
equality (see [16]), and step (b) uses (5.8)-(5.9) and the definition of the
conjugate functions {f ∗i |i ∈ V}. The equality in step (a) holds when (5.23)
is satisfied.

A.3 FSQA-PDMM Convergence Inequality

This proof of this lemma is similar to that in Appendix A.2 for QA-PDMM.
Invoking Lemma 5 and 6 with xi = x?i and rearranging the expression, we
obtain

(xk+1
i − x?i)T

∑
j∈Ni

AT
i|jλ

k+1
i|j +

hi
2
‖xki − x?i ‖2

≥ hi
2
‖xk+1

i − x?i ‖2 + fi(x
k+1
i)− fi(x?i) i ∈ U (A.18)

and

(xk+1
i −x?i)T

∑
j∈Ni

AT
i|jλ

k+1
i|j ≥ fi(x

k+1
i)−fi(x?i) i ∈ W (A.19)

A.3. FSQA-PDMM CONVERGENCE INEQUALITY 147

Summing the above two inequalities over i ∈ U ∪W and plugging the
expression for λk+1

i|j produces

∑
i∈V

[
fi(x

k+1
i)− fi(x?i)

]
+
∑
i∈U

hi
2
‖xk+1

i − x?i ‖2

≤
∑
i∈V

∑
j∈Ni

(P ij(Aj|ix
k
j −Ai|jx

k+1
i)− λkj|i)T

·Ai|j(x
k+1
i − x?i) +

∑
i∈U

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(
P ij(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i − λ
k
j|i

)T
·Ai|j(x

k+1
i − x?i) +

∑
i∈U

hi
2
‖xki − x?i ‖2

−
∑
i∈V

∑
j∈Ni

λk+1
j|i Ai|j(x

k+1
i − x?i). (A.20)

Next we derive a different upper bound for the quantity on the left
hand side of (A.20). To do so, we note from (5.2) that Ai|jx

k+1
i can be

represented in terms of λk+1
i|j as

Ai|jx
k+1
i =Aj|ix

k
j −P−1

ij (λkj|i+λ
k+1
i|j) i ∈ V , j ∈ Ni, (A.21)

Similarly to the derivation of (A.20), we sum (A.19) over all i ∈ U ∪W and
plugging the expression (A.21) for Ai|jx

k+1
i where appropriate, which are

given by ∑
i∈V

[
fi(x

k+1
i)− fi(x?i)

]
+
∑
i∈U

hi
2
‖xk+1

i − x?i ‖2

≤
∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|j

(
xk+1
i − x?i

)
+
∑
i∈U

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(λk+1
i|j −λ

?
i|j)

TAi|jx
k+1
i −

∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|jx

?
i

+
∑
i∈V

∑
j∈Ni

λ?,Ti|j Ai|jx
k+1
i +

∑
i∈U

hi
2
‖xki − x?i ‖2

148 APPENDIX A. APPENDIX

=
∑
i∈V

∑
j∈Ni

[
Aj|ix

k
j −P−1

ij (λkj|i+λ
k+1
i|j)

]T
(λk+1

i|j − λ
?
i|j)

−
∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|jx

?
i +

∑
i∈V

∑
j∈Ni

λ?,Ti|j Ai|jx
k+1
i

+
∑
i∈U

hi
2
‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

[
Aj|i(x

k
j − xk+1

j)−P−1
ij (λkj|i+λ

k+1
i|j)

]T
· (λk+1

i|j − λ
?
i|j)+

∑
i∈V

∑
j∈Ni

(Aj|ix
k+1
j)T (λk+1

i|j −λ
?
i|j)

−
∑
i∈V

∑
j∈Ni

λk+1,T
i|j Ai|jx

?
i +

∑
i∈V

∑
j∈Ni

λ?,Ti|j Ai|jx
k+1
i

+
∑
i∈U

hi
2
‖xki − x?i ‖2 (A.22)

Combining (A.20)-(A.22) produces

2
∑
i∈V

[
fi(x

k+1
i)− fi(x?i)− x

k+1,T
i

∑
j∈Ni

ATi|jλ
?
i|j

]
+
∑
i∈U

hi‖xk+1
i − x?i ‖2

≤
∑
i∈V

∑
j∈Ni

(
P ij(Aj|ix

k
j −Ai|jx

k+1
i) + λk+1

j|i − λ
k
j|i

)T
·Ai|j(x

k+1
i − x?i) +

∑
i∈U

hi‖xki − x?i ‖2

+
∑
i∈V

∑
j∈Ni

[
Aj|i(x

k
j − xk+1

j)−P−1
ij (λkj|i+λ

k+1
i|j)

]T
· (λk+1

i|j − λ
?
i|j)

=
∑
i∈V

∑
j∈Ni

(
P ijAj|i(x

k
j − xk+1

j) + λk+1
j|i − λ

k
j|i

)T
·Ai|j(x

k+1
i − x?i)−

∑
(i,j)∈E

‖Aj|ixk+1
j − Ai|jxk+1

i ‖2
P ij

+
∑
i∈V

∑
j∈Ni

[
Aj|i(x

k
j − xk+1

j)−P−1
ij (λkj|i−λk+1

j|i)
]T

A.3. FSQA-PDMM CONVERGENCE INEQUALITY 149

· (λk+1
i|j − λ

?
i|j)−

∑
(i,j)∈E

‖λk+1
i|j + λk+1

j|i ‖
2
P−1

ij

+
∑
i∈U

hi‖xki − x?i ‖2

=
∑
i∈V

∑
j∈Ni

(
P

1
2
ijAj|i(x

k
j − xk+1

j) + P
− 1

2
ij (λk+1

j|i − λ
k
j|i)
)T

·
(
P

1
2
ijAi|j(x

k+1
i − x?i) + P

− 1
2

ij (λk+1
i|j − λ

?
i|j)
)

−
∑

(i,j)∈E

‖Aj|ixk+1
j −Ai|jxk+1

i ‖2
P ij
−
∑

(i,j)∈E

‖λk+1
i|j +λk+1

j|i ‖
2
P−1

ij

+
∑
i∈V

hi‖xki − x?i ‖2

(a)
=

1

2

∑
i∈V

∑
j∈Ni

[
‖P−1/2

ij (λk+1
i|j +λk+1

j|i)

+P
1/2
ij (Ai|jx

k+1
i −Aj|ix

k+1
j)‖2

− ‖P−1/2
ij (λ∗i|j+λ

k+1
j|i)+P

1/2
ij (Ai|jx

∗
i −Aj|ix

k+1
j)‖2

+ ‖P−1/2
ij (λ∗i|j+λ

k
j|i)+P

1/2
ij (Ai|jx

∗
i −Aj|ix

k
j)‖2

− ‖P−1/2
ij (λk+1

i|j +λkj|i)+P
1/2
ij (Ai|jx

k+1
i −Aj|ix

k
j)‖2

]
−
∑

(i,j)∈E

‖Aj|ixk+1
j −Ai|jxk+1

i ‖2
P ij
−
∑

(i,j)∈E

‖λk+1
i|j +λk+1

j|i ‖
2
P−1

ij

+
∑
i∈U

hi‖xki − x?i ‖2, (A.23)

where step (a) follows from the the identity

(a− b)T (c− d)

=
1

2
(‖a+ c‖2 − ‖a+ d‖2 − ‖b+ c‖2 + ‖b+ d‖2).

Reformulating (A.23) produces (6.23).

Next we prove the lower bound of (6.23).

2
∑
i∈V

[
fi(x

k+1
i)− fi(x?i)− x

k+1,T
i

∑
j∈Vi

ATi|jλ
?
i|j

]

150 APPENDIX A. APPENDIX

(a)

≥ 2
∑
i∈V

[
− f ∗i

(∑
i∈Vi

AT
i|jλ

?
i|j

)
− fi(x?i)

]
(b)
= 0,

where f ∗i (·) is the conjugate function of fi(·), step (a) uses Fenchel’s in-
equality (see [16]), and step (b) uses (6.15)-(6.16) and the definition of the
conjugate functions {f ∗i |i ∈ V}. The equality in step (a) holds when (5.23)
is satisfied.

Bibliography

[1] AGARWALA, A., AGRAWALA, M., COHEN, M., SALESIN, D., AND

SZELISKI, R. Photographing long scenes with multi-viewpoint
panoramas. ACM Trans. Graph. 25, 3 (July 2006), 853–861.

[2] ALDOUS, D., AND STEELE, J. The objective method: Probabilistic
combinatorial optimization and local weak convergence. In Proba-
bility on Discrete Structures, H. Kesten, Ed., vol. 110 of Encyclopaedia
of Mathematical Sciences. Springer Berlin Heidelberg, 2004, pp. 1–72.

[3] ANTONINI, M., BARLAUD, M., MATHIEU, P., AND DAUBECHIES, I.
Image coding using wavelet transform. IEEE Transactions on Image
Processing 1, 2 (Apr 1992), 205–220.

[4] AU, J. K. An ab initio approach to the inverse problem-based design of
photonic bandgap devices. PhD thesis, California Institute of Technol-
ogy, 2007.

[5] BACH, F., JENATTON, R., MAIRAL, J., OBOZINSKI, G., ET AL. Con-
vex optimization with sparsity-inducing norms. Optimization for Ma-
chine Learning (2011), 19–53.

[6] BECK, A., AND TEBOULLE, M. A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imag-
ing Sciences 2, 1 (2009), 183–202.

151

152 BIBLIOGRAPHY

[7] BENESTY, J., C. J. H. Y. Microphone Array Signal Processing, 1 ed.
Springer-Verlag Berlin Heidelberg, 2008.

[8] BERTRAND, A., AND MOONEN, M. Distributed adaptive estima-
tion of node-specific signals in wireless sensor networks with a tree
topology. Signal Processing, IEEE Transactions on 59, 5 (2011), 2196–
2210.

[9] BERTRAND, A., AND MOONEN, M. Distributed node-specific
LCMV beamforming in wireless sensor networks. Signal Processing,
IEEE Transactions on 60, 1 (2012), 233–246.

[10] BERTRAND, A., AND MOONEN, M. Distributed LCMV beamform-
ing in a wireless sensor network with single-channel per-node sig-
nal transmission. Signal Processing, IEEE Transactions on 61, 13 (2013),
3447–3459.

[11] BERTSEKAS, D. P. Constrained Optimization and Lagrange Multiplier
Methods. Academic Press, 1982.

[12] BISHOP, C. M. Pattern Recognition and Machine Learning, 1 ed.
Springer, 2006.

[13] BOYD, S., GHOSH, A., PRABHAKAR, B., AND SHAH, D. Analy-
sis and optimization of randomized gossip algorithms. In Decision
and Control, 2004. CDC. 43rd IEEE Conference on (Dec 2004), vol. 5,
pp. 5310–5315 Vol.5.

[14] BOYD, S., GHOSH, A., PRABHAKAR, B., AND SHAH, D. Random-
ized Gossip Algorithms. IEEE Trans. Information Theory 52, 6 (2006),
2508–2530.

[15] BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN, J.
Distributed Optimization and Statistical Learning via the Alternat-
ing Direction Method of Multipliers. In Foundations and Trends in
Machine Learning 3, 1 (2011), 1–122.

BIBLIOGRAPHY 153

[16] BOYD, S., AND VANDENBERGHE, L. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.

[17] BRANDSTEIN, M., AND WARD, D. E. Microphone Arrays: Signal Pro-
cessing Techniques and Applications, 1 ed. Springer-Verlag Berlin Hei-
delberg, 2001.

[18] BRANDWOOD, D. A complex gradient operator and its application
in adaptive array theory. Microwaves, Optics and Antennas, IEE Pro-
ceedings H 130, 1 (February 1983), 11–16.

[19] CAMPBELL, M. E., AND AHMED, N. R. Distributed data fusion:
Neighbors, rumors, and the art of collective knowledge. IEEE Con-
trol Systems 36, 4 (Aug 2016), 83–109.

[20] CAPON, J. High-resolution frequency-wavenumber spectrum anal-
ysis. Proceedings of the IEEE 57, 8 (Aug 1969), 1408–1418.

[21] CEVHER, V., BECKER, S., AND SCHMIDT, M. Convex optimization
for big data: Scalable, randomized, and parallel algorithms for big
data analytics. Signal Processing Magazine, IEEE 31, 5 (2014), 32–43.

[22] CHANG, N. B., BAI, K., IMEN, S., CHEN, C. F., AND GAO, W. Mul-
tisensor satellite image fusion and networking for all-weather envi-
ronmental monitoring. IEEE Systems Journal PP, 99 (2016), 1–17.

[23] CHANG, T.-H., HONG, M., AND WANG, X. Multi-agent distributed
optimization via inexact consensus ADMM. IEEE Transactions on
Signal Processing 63, 2 (2015), 482–497.

[24] CHARALAMBOUS, T., YUAN, Y., YANG, T., PAN, W., HADJICOSTIS,
C. N., AND JOHANSSON, M. Distributed Finite-Time Average Con-
sensus in Digraphs in the Presence of Time Delays. IEEE Trans. Con-
trol of Network Systems 2, 4 (2015), 370–381.

154 BIBLIOGRAPHY

[25] CHEN, G., AND TEBOULLE, M. A proximal-based decomposition
method for convex minimization problems. Mathematical Program-
ming 64 (1994), 81–101.

[26] CHEN, J., AND SAYED, A. Diffusion Adaptation Strategies for Dis-
tributed Optimization and Learning Over Networks. IEEE Trans.
Signal Processing 60, 8 (2012), 4289–4305.

[27] CHOI, H. C., AND AHN, B. H. Image alignment by parameter hy-
persurface learning. Electronics Letters 52, 18 (2016), 1526–1528.

[28] CIANCIO, A., PATTEM, S., ORTEGA, A., AND KRISHNAMACHARI,
B. Energy-efficient data representation and routing for wireless
sensor networks based on a distributed wavelet compression algo-
rithm. In Proc. IEEE/ACM Symp. Inf. Process. Sensor Networks (2006),
pp. 309–316.

[29] COMBETTES, P. L., AND PESQUET, J.-C. Proximal splitting methods
in signal processing. In Fixed-point algorithms for inverse problems in
science and engineering. Springer, 2011, pp. 185–212.

[30] CROCCO, M., BUE, A. D., AND MURINO, V. A bilinear approach
to the position self-calibration of multiple sensors. IEEE Trans Signal
Process. 60, 2 (2012), 660–673.

[31] DIMAKIS, A. G., KAR, S., MOURA, J. M. F., RABBAT, M. G., AND

SCAGLIONE, A. Gossip Algorithms for Distributed Signal Process-
ing. Proceedings of the IEEE 98, 11 (2010), 1847–1864.

[32] DUCHI, J., AGARWAL, A., AND WAINWRIGHT, M. J. Dual Av-
eraging for Distributed Optimization: Convergence Analysis and
Network Scaling. In IEEE Trans. Automatic Control (2012), vol. 57,
pp. 592–606.

BIBLIOGRAPHY 155

[33] ECKSTEIN, J., AND FERRIS, M. C. Some reformulations and applica-
tions of the alternating direction method of multipliers. Large Scale
Optimization: State of the Art (1993), 119–138.

[34] ERSEGHE, T. Distributed optimal power flow using ADMM. IEEE
transactions on power systems 29, 5 (2014), 2370–2380.

[35] EVERETT, H. Generalized lagrange multiplier method for solving
problems of optimum allocation of resources. Operations Research 11
(1963).

[36] FORTIN, M., AND GLOWINSKI, R. On decomposition-coordination
methods using an augmented lagrangian. Augmented Lagrangian
Methods: Applications to the Solution of Boundary-Value Problems
(1983).

[37] FRAMPTON, K. Acoustic self-localization in a distributed sensor net-
work. Sensors Journal, IEEE 6, 1 (Feb 2006), 166–172.

[38] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. A note on the
group lasso and a sparse group lasso. arXiv preprint arXiv:1001.0736
(2010).

[39] FUKUSHIMA, M. Application of the alternating direction method of
multipliers to separable convex programming problems. Computa-
tional Optimization and Applications 1 (1992), 93–111.

[40] GABAY, D. Applications of the method of multipliers to variational
inequalities. Augmented Lagrangian Methods: Applications to the Solu-
tion of Boundary-Value Problems (1983).

[41] GABAY, D., AND MERCIER, B. A dual algorithm for the solution of
nonlinear variational problems via finite element approximations.
Computers and Mathematics with Applications 2 (1976), 17–40.

[42] GALLAGER, R. G. Low Density Parity Check Codes. M.I.T. Press, 1963.

156 BIBLIOGRAPHY

[43] GANNOT, S., BURSHTEIN, D., AND WEINSTEN, E. Signal Enhance-
ment using Beamforming and Nonstationarity with Applications to
Speech. IEEE Transactions on Signal Processing (2001).

[44] GARRETT, M. A. Radio astronomy transformed: Aperture arrays;
past, present and future. In AFRICON, 2013 (Sept 2013), pp. 1–5.

[45] GAUBITCH, N., KLEIJN, W. B., AND HEUSDENS, R. Auto-
localization in ad-hoc microphone arrays. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on
(May 2013), pp. 106–110.

[46] GEOFFRION, A. M. Generalized benders decomposition. Journal of
Optimization Theory and Applications 10 (1972).

[47] GERSHMAN, A. Robust adaptive beamforming: an overview of re-
cent trends and advances in the field. In Antenna Theory and Tech-
niques, 2003. 4th International Conference on (Sept 2003), vol. 1, pp. 30–
35 vol.1.

[48] GLOWINSKI, R., AND MARROCCO, A. Sur l’approximation, par el-
ements finis d’ordre un, et la resolution, par penalisation-dualit’e,
d’une classe de problems de dirichlet non lineares. Revue Fran¸caise
d’Automatique, Informatique, et Recherche Op’erationelle 9 (1975), 41–76.

[49] GOLUB, G. H., HANSEN, P. C., AND O’LEARY, D. P. Tikhonov reg-
ularization and total least squares. SIAM Journal on Matrix Analysis
and Applications 21, 1 (1999), 185–194.

[50] GOLUB, G. H., AND VAN LOAN, C. F. Matrix computations, vol. 3.
JHU Press, 2012.

[51] GULREZ, T., AND KAVAKLI, M. Precision position tracking in vir-
tual reality environments using sensor networks. In 2007 IEEE In-
ternational Symposium on Industrial Electronics (June 2007), pp. 1997–
2003.

BIBLIOGRAPHY 157

[52] HAGHIGHAT, M. B. A., AGHAGOLZADEH, A., AND SEYEDARABI,
H. A non-reference image fusion metric based on mutual informa-
tion of image features. Computers and Electrical Engineering 37 (2011).

[53] HAJINEZHAD, D., AND HONG, M. Nonconvex alternating direction
method of multipliers for distributed sparse principal component
analysis. In IEEE Global Conference on Signal and Information Process-
ing (GlobalSIP) (2015).

[54] HARARY, F. Graph Theory. Addison-Wesley, Reading, MA, 1994.

[55] HAYKIN, S. Adaptive Filter Theory. Prentice Hall, NJ, 1996.

[56] HENDRIKS, R. C., HEUSDENS, R., AND JENSEN, J. MMSE Based
Noise PSD Tracking with Low Complexity. IEEE International Con-
ference on Acoustics, Speech and Signal Processing (2010).

[57] HESTENES, M. R. Multiplier and gradient methods. Journal of Opti-
mization Theory and Applications 4 (1969), 302–320.

[58] HESTENES, M. R. Multiplier and gradient methods. Computing
Methods in Optimization Problems (1969).

[59] HEUSDENS, R., ZHANG, G., HENDRIKS, R. C., ZENG, Y., AND

KLEIJN, W. B. Distributed MVDR beamforming for (wireless) mi-
crophone networks using message passing. In Acoustic Signal En-
hancement; Proceedings of IWAENC 2012; International Workshop on
(Sept 2012), pp. 1–4.

[60] HOLLINGER, G. A., YERRAMALLI, S., SINGH, S., MITRA, U., AND

SUKHATME, G. S. Distributed data fusion for multirobot search.
IEEE Transactions on Robotics 31, 1 (Feb 2015), 55–66.

[61] HONG, M., HAJINEZHAD, D., AND ZHAO, M.-M. Prox-PDA: The
Proximal Primal-Dual Algorithm for Fast Distributed Nonconvex

158 BIBLIOGRAPHY

Optimization and Learning Over Networks. In International Con-
ference on Machine Learning (ICML) (2017).

[62] HSU, K.-J., LIN, Y.-Y., AND CHUANG, Y.-Y. Robust image align-
ment with multiple feature descriptors and matching-guided neigh-
borhoods. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2015), pp. 1921–1930.

[63] HUNTER, A., OWENS, J., AND CARPENTER, M. A neural system
for automated cctv surveillance. In Intelligence Distributed Surveil-
lance Systems, IEE Symposium on (Ref. No. 2003/10062) (Feb 2003),
pp. 14/1–14/5.

[64] IUTZELER, F., BIANCHI, P., CIBLAT, P., AND HACHEM, W. Asyn-
chronous distributed optimization using a randomized alternating
direction method of multipliers. In Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on (Dec 2013), pp. 3671–3676.

[65] IUTZELER, F., BIANCHI, P., CIBLAT, P., AND HACHEM, W. Linear
convergence rate for distributed optimization with the alternating
direction method of multipliers. In Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on (Dec 2014), pp. 5046–5051.

[66] JAKOVETIC, D., XAVIER, J., AND MOURA, J. Convergence rate anal-
ysis of distributed gradient methods for smooth optimization. In
Telecommunications Forum (TELFOR), 2012 20th (Nov 2012), pp. 867–
870.

[67] JAKOVETIC, D., XAVIER, J., AND MOURA, J. M. Fast distributed gra-
dient methods. IEEE Transactions on Automatic Control 59, 5 (2014),
1131–1146.

[68] JIANG, F., KUANG, Y., AND ASTROM, K. Time delay estimation for
TDOA self-calibration using truncated nuclear norm regularization.

BIBLIOGRAPHY 159

In Proc. IEEE Intl. Conf. on Acoust., Speech, Signal Process. (ICASSP)
(2013), pp. 3885–3889.

[69] JONES, D. L. Technology challenges for the square kilometer array.
IEEE Aerospace and Electronic Systems Magazine 28, 2 (Feb 2013), 18–
23.

[70] JONES, G., HARDING, C., AND LEUNG, V. Fusion of data from vi-
sual and low-resolution thermal cameras for surveillance. In Intel-
ligence Distributed Surveillance Systems, IEE Symposium on (Ref. No.
2003/10062) (Feb 2003), pp. 17/1–17/5.

[71] JOSHI, S., CODREANU, M., AND LATVA-AHO, M. Distributed SINR
balancing for MISO downlink systems via the alternating direction
method of multipliers. In Proceedings of 11th International Symposium
on Modeling & Optimization in Mobile, Ad Hoc & Wireless Networks
(WiOpt) (May 2013), pp. 318–325.

[72] KANTAS, N., SINGH, S., AND DOUCET, A. Distributed maximum
likelihood for simultaneous self-localization and tracking in sensor
networks. Signal Processing, IEEE Transactions on 60, 10 (Oct 2012),
5038–5047.

[73] KAR, S., TANDON, R., POOR, H. V., AND CUI, S. Distributed de-
tection in noisy sensor networks. In Information Theory Proceedings
(ISIT), 2011 IEEE International Symposium on (2011), IEEE, pp. 2856–
2860.

[74] KLUCKNER, S., POCK, T., AND BISCHOF, H. Exploiting Redundancy
for Aerial Image Fusion Using Convex Optimization. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 303–312.

[75] KSCHISCHANG, F., FREY, B., AND LOELIGER, H.-A. Factor graphs
and the sum-product algorithm. Information Theory, IEEE Transac-
tions on 47, 2 (Feb 2001), 498–519.

160 BIBLIOGRAPHY

[76] LANG, S. Complex Analysis, 3 ed. New York: Springer-Verlag, 1993.

[77] LASDON, L. S. Optimization Theory for Large Systems. MacMillan,
1970.

[78] LEE, H., BATTLE, A., RAINA, R., AND NG, A. Y. Efficient sparse
coding algorithms. In Advances in neural information processing sys-
tems (2006), pp. 801–808.

[79] LEE, S., KWON, H., AND SHIN, V. Distributed fusion filter on
images with time delays. In Computer Graphics, Imaging and Visu-
alization (CGIV), 2011 Eighth International Conference on (Aug 2011),
pp. 98–102.

[80] LEVINSON, N. The wiener rms (root-mean-square) error criterion in
filter design and prediction. Journal of Mathematical Physics 25 (Jan-
uary 1947), 261–278.

[81] LI, M., ZHENG, G., AND LI, J. Clock self-synchronization protocol
based on distributed diffusion for wireless sensor networks. Inter-
national Journal of Future Generation Communication and Networking 7
(2014).

[82] LING, Q., SHI, W., WU, G., AND RIBEIRO, A. DLM: Decentralized
linearized alternating direction method of multipliers. Signal Pro-
cessing, IEEE Transactions on PP, 99 (2015), 1–1.

[83] LIU, D. C., AND NOCEDAL, J. On the limited memory bfgs method
for large scale optimization. Mathematical programming 45, 1 (1989),
503–528.

[84] LIU, Y., HU, Y. H., AND PAN, Q. Distributed, robust acoustic source
localization in a wireless sensor network. Signal Processing, IEEE
Transactions on 60, 8 (Aug 2012), 4350–4359.

BIBLIOGRAPHY 161

[85] LORENZO, P. D., AND SCUTARI, G. NEXT: In-Network Nonconvex
Optimization. IEEE Transactions on Signal and Information Processing
over Networks 2, 2 (2016), 120–136.

[86] LUTZELER, F., CIBLAT, P., AND HACHEM, W. Analysis of Sum-
Weight-Like Algorithms for Averaging in Wireless Sensor Net-
works. IEEE Trans. Signal Processing 61, 11 (2013), 2802–2814.

[87] MARKOVICH-GOLAN, S., BERTRAND, A., MOONEN, M., AND

GANNOT, S. Optimal distributed minimum-variance beamforming
approaches for speech enhancement in wireless acoustic sensor net-
works. Signal Processing 107 (2015), 4–20.

[88] MEIER, L., VAN DE GEER, S., AND BÜHLMANN, P. The group lasso
for logistic regression. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 70, 1 (2008), 53–71.

[89] MESSERSCHMITT, D. G. Stationary points of a real-valued function
of a complex variable. Tech. Rep. UCB/EECS-2006-93, EECS Depart-
ment, University of California, Berkeley, Jun 2006.

[90] MOALLEMI, C. C., AND ROY, B. V. Convergence of Min-Sum Mes-
sage Passing for Quadratic Optimization. IEEE Trans. Inf. Theory 55,
5 (2009), 2413–2423.

[91] MOALLEMI, C. C., AND ROY, B. V. Convergence of Min-Sum Mes-
sage Passing for Convex Optimization. IEEE Trans. Inf. Theory 56, 4
(2010), 2041–2050.

[92] MOKHTARI, A., SHI, W., LING, Q., AND RIBEIRO, A. DQM: Decen-
tralized quadratically approximated alternating direction method of
multipliers. IEEE Transactions on Signal Processing 64, 19 (Oct 2016),
5158–5173.

162 BIBLIOGRAPHY

[93] MONTANARI, A., PRABHAKAR, B., AND TSE, D. Belief Propagation
Based Multi-User Detection. In Proc. 43rd Allerton Conf. on Commu-
nications, Control and Computing (2005).

[94] MOREAU, J.-J. Fonctions convexes duales et points proximaux dans
un espace hilbertien. CR Acad. Sci. Paris Sér. A Math 255 (1962), 2897–
2899.

[95] MÉZARD, M., AND MONTANARI, A. Information, Physics, and Com-
putation. OUP Oxford, 2009.

[96] NEDIĆ, A., AND OZDAGLAR, A. Distributed Subgradient Methods
for Multi-agent Optimization. IEEE Transactions on Automatic Control
(2008).

[97] O’CONNOR, M., AND KLEIJN, W. B. Diffusion-Based Distributed
MVDR Beamformer. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on (May 2014), pp. 810–
814.

[98] O’CONNOR, M., KLEIJN, W. B., AND ABHAYAPALA, T. Dis-
tributed sparse MVDR beamforming using the bi-alternating di-
rection method of multipliers. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (2016), IEEE,
pp. 106–110.

[99] O’CONNOR, M., KLEIJN, W. B., AND ABHAYAPALA, T. Distributed
TV-L1 Image Fusion Using PDMM. In Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2017),
pp. 3326–3330.

[100] O’CONNOR, M., ZHANG, G., KLEIJN, W. B., AND ABHAYAPALA, T.
Function Splitting and Quadratic Approximation of the Primal-Dual
Method of Multipliers for Distributed Optimization over Graphs.

BIBLIOGRAPHY 163

submitted to IEEE. Trans. Signal and Information Processing over
Networks, 2017.

[101] OMAR, Z., AND STATHAKI, T. Image fusion: An overview. Inter-
national Conference on Intelligent Systems, Modelling and Simulations 5
(2014).

[102] PALOMAR, D. P., AND CHIANG, M. Alternative distributed algo-
rithms for network utility maximization: Framework and applica-
tions. IEEE Transactions on Automatic Control 52, 12 (2007), 2254–2269.

[103] PARIKH, N., AND BOYD, S. P. Proximal algorithms. Foundations and
Trends in optimization 1, 3 (2014), 127–239.

[104] PEARL, J. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[105] PURE, A. A., GUPTA, N., AND SHRIVASTAVA, M. An overview of
different image fusion methods for medical applications. Interna-
tional Journal of Scientific and Engineering Research 4 (2013).

[106] QIU, W., HAO, P., AND SKAFIDAS, E. Distributed source local-
ization in wireless sensor networks. In Communications, Circuits
and Systems (ICCCAS), 2010 International Conference on (July 2010),
pp. 90–94.

[107] RABBAT, M., AND NOWAK, R. Distributed optimization in sensor
networks. In Proceedings of the 3rd international symposium on Infor-
mation processing in sensor networks (2004), ACM, pp. 20–27.

[108] RATNASAMY, S., KARP, B., SHENKER, S., ESTRIN, D., GOVINDAN,
R., YIN, L., AND YU, F. Data-centric storage in sensornets with
GHT, a geographic hash table. Mobile Networks and Applications 8, 4
(2003), 427–442.

164 BIBLIOGRAPHY

[109] RICHTÁRIK, P., AND TAKÁČ, M. Distributed coordinate descent
method for learning with big data. arXiv preprint arXiv:1310.2059
(2013).

[110] RUSMEVICHIENTONG, P., AND ROY, B. B. An analysis of Belief
Propagation on the Turbo Decoding Graph with Gaussian Densities.
IEEE Trans. Inf. Theory 47, 2 (2001), 745–765.

[111] S. BARMAN AND X. LIU AND S. DRAPER AND B. RECHT. Decompo-
sition Methods for Large Scale LP Decoding. arXiv:1204.0556 [cs.IT],
2012.

[112] SAFAVI, S., AND KHAN, U. A. Revisiting Finite-Time Distributed
Algorithms via Successive Nulling of Eigenvalue. IEEE Signal Pro-
cessing Letters 22, 1 (2015), 54–57.

[113] SANDRYHAILA, A., KAR, S., AND MOURA, J. M. F. Finite-Time Dis-
tributed Consensus Through Graph Filters. In Proc. of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(2014), pp. 1080–1084.

[114] SAYED, A. H. Diffusion Adaptation over Networks. E-Reference
Signal Processing (2013).

[115] SCHMALENSTROEER, J., JEBRAMCIK, P., AND HAEB-UMBACH, R.
A gossiping approach to sampling clock synchronization in wire-
less acoustic sensor networks. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Conference on (May 2014),
pp. 7575–7579.

[116] SCHMIDT, M., FUNG, G., AND ROSALES, R. Fast optimization meth-
ods for l1 regularization: A comparative study and two new ap-
proaches. In Machine Learning: ECML 2007. Springer, 2007, pp. 286–
297.

BIBLIOGRAPHY 165

[117] SCHMIDT, M., FUNG, G., AND ROSALES, R. Optimization methods
for l1-regularization. University of British Columbia, Technical Report
TR-2009 19 (2009).

[118] SEDGEWICK, R., AND WAYNE, K. Algorithms, 4th ed. Addison-
Wesley Professional, 2011.

[119] SHEN, C., CHANG, T.-H., WANG, K.-Y., QIU, Z., AND CHI, C.-Y.
Distributed robust multicell coordinated beamforming with imper-
fect CSI: An ADMM approach. IEEE Transactions on signal processing
60, 6 (2012), 2988–3003.

[120] SHENTAL, O., SIEGEL, P., WOLF, J., BICKSON, D., AND DOLEV, D.
Gaussian belief propagation solver for systems of linear equations.
In Information Theory, 2008. ISIT 2008. IEEE International Symposium
on (July 2008), pp. 1863–1867.

[121] SHERSON, T., KLEIJN, W. B., AND HEUSDENS, R. A Distributed
Algorithm for Robust LCMV Beamforming. In Proc. of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(2016), pp. 101–105.

[122] SHI, H., TIAN, B., AND WANG, Y. Fusion of multispectral and
panchromatic satellite images using principal component analysis
and nonsubsampled contourlet transform. In Fuzzy Systems and
Knowledge Discovery (FSKD), 2010 Seventh International Conference on
(Aug 2010), vol. 5, pp. 2312–2315.

[123] SHI, W., LING, Q., WU, G., AND YIN, W. Extra: An exact first-order
algorithm for decentralized consensus optimization. SIAM Journal
on Optimization 25 (2014), 944–966.

[124] SIPSER, M. Introduction to the Theory of Computation. Course Tech-
nology Inc., 2006.

166 BIBLIOGRAPHY

[125] SORBER, L., VAN BAREL, M., AND DE LATHAUWER, L. Uncon-
strained optimization of real functions in complex variables. Society
for Industrial and Applied Mathematics 22 (2012).

[126] SRIVASTAVA, R., PRAKASH, O., AND KHARE, A. Local energy-
based multimodal medical image fusion in curvelet domain. IET
Computer Vision 10, 6 (2016), 513–527.

[127] T. SHERSON AND R. HEUSDENS, W. B. KLEIJN. Derivation and anal-
ysis of the primal-dual method of multipliers based on monotone
operator theory. arXiv:1706.02654 [math.OC], 2017.

[128] TASESKA, M., MARKOVICH-GOLAN, S., HABETS, E., AND GAN-
NOT, S. Near-field source extraction using speech presence proba-
bilities for ad hoc microphone arrays. In Acoustic Signal Enhancement
(IWAENC), 2014 14th International Workshop on (Sept 2014), pp. 169–
173.

[129] TAVAKOLI, V., JENSEN, J., CHRISTENSEN, M., AND BENESTY, J.
Pseudo-coherence-based mvdr beamformer for speech enhance-
ment with ad hoc microphone arrays. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International Conference on (April
2015), pp. 2659–2663.

[130] TAVAKOLI, V. M., JENSEN, J. R., HEUSDENS, R., BENESTY, J., AND

CHRISTENSEN, M. G. Ad hoc microphone array beamforming using
the primal-dual method of multipliers. In Proc. Euro- pean Signal
Processing Conf. (2016), pp. 1088–1092.

[131] TAVAKOLI, V. M., JENSEN, J. R., HEUSDENS, R., BENESTY, J., AND

CHRISTENSEN, M. G. Distributed max-SINR speech enhancement
with ad hoc microphone arrays. In ICASSP (2017), pp. 151–155.

BIBLIOGRAPHY 167

[132] UHER, J., WYSOCKI, T. A., AND WYSOCKI, B. J. Review of Dis-
tributed Beamforming. University of Nebraska-Lincoln, Omaha, USA
(2011).

[133] VEEN, B. D. V., AND BUCKLEY, K. M. Beamforming: A Versatile
Approach to Spatial Filtering. IEEE ASSP Magazine (1988).

[134] WAINWRIGHT, M., AND JORDAN, M. Graphical models, exponen-
tial families, and variational inference. Foundations and Trends in Ma-
chine Learning 1(1-2) (2008), 1–305.

[135] WANG, Q., HEMPSTEAD, M., AND YANG, W. A realistic power
consumption model for wireless sensor network devices. In 2006
3rd Annual IEEE Communications Society on Sensor and Ad Hoc Com-
munications and Networks (Sept 2006), vol. 1, pp. 286–295.

[136] WANG, Q., YU, D., AND SHEN, Y. An overview of image fusion
metrics. In Instrumentation and Measurement Technology Conference,
2009. I2MTC ’09. IEEE (May 2009), pp. 918–923.

[137] WANG, Z., ZIOU, D., ARMENAKIS, C., LI, D., AND LI, Q. A com-
parative analysis of image fusion methods. IEEE Trans. Geosci. Re-
mote Sens (2005).

[138] WEI, E., AND OZDAGLAR, A. On the O (1/k) convergence of asyn-
chronous distributed alternating direction method of multipliers.
In Global Conference on Signal and Information Processing (GlobalSIP),
2013 IEEE (2013), IEEE, pp. 551–554.

[139] WEISS, Y., AND FREEMAN, W. T. Correctness of belief propagation
in gaussian graphical models of arbitrary topology. Neural Computa-
tion 13 (2001), 2173–2200.

[140] WIENER, N. Extrapolation, Interpolation and Smoothing of Stationary
Time Series. New York: John Wiley and Sons, 1949.

168 BIBLIOGRAPHY

[141] WIENER, N., AND HOPF, E. On a class of singular integral equa-
tions. Proc. Prussian Acad., Math.-Phys. Ser. (1931), 696.

[142] WIESEL, A., AND HERO, A. Distributed covariance estimation in
gaussian graphical models. Signal Processing, IEEE Transactions on
60, 1 (Jan 2012), 211–220.

[143] WU, Z. Y., AND KHALIEFA, M. Cloud Computing for High Performance
Optimization of Water Distribution Systems. ch. 71, pp. 679–686.

[144] XIE, Q. W., HE, J. C., QIAN, L., MITA, S., CHEN, X., AND JIANG, A.
Image fusion based on tv-l1 function. In 2013 International Conference
on Wavelet Analysis and Pattern Recognition (July 2013), pp. 173–177.

[145] YEDIDIA, J., FREEMAN, W., AND WEISS, Y. Understanding belief
propagation and its generalizations. In Exploring Artificial Intelligence
in the New Millennium, G. Lakemeyer and B. Nebel, Eds. Morgan
Kaufmann Publishers, Jan. 2003, ch. 8, pp. 239–236.

[146] YUAN, D., XU, S., AND ZHAO, H. Distributed primal-dual subgra-
dient method for multiagent optimization via consensus algorithms.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on 41, 6 (Dec 2011), 1715–1724.

[147] YUAN, J., MILES, B., GARVIN, G., TAI, X.-C., AND FENSTER, A. Ef-
ficient convex optimization approaches to variational image fusion.
Numerical Mathematics: Theory, Methods and Applications 7, 2 (May
2015), 234–250.

[148] YUAN, K., LING, Q., AND YIN, W. On the convergence of decen-
tralized gradient descent. SIAM Journal on Optimization 26, 3 (2016),
1835–1854.

[149] ZENG, Y., AND HENDRIKS, R. C. Distributed delay and sum beam-
former for speech enhancement in wireless sensor networks via ran-

BIBLIOGRAPHY 169

domized gossip. In Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on (2012), IEEE, pp. 4037–4040.

[150] ZENG, Y., AND HENDRIKS, R. C. Distributed Delay and Sum
Beamformer for Speech Enhancement via Randomized Gossip.
IEEE/ACM Trans. Audio, Speech and Language Processing 22, 1 (2014),
260–273.

[151] ZENG, Y., AND HENDRIKS, R. C. Distributed estimation of the in-
verse of the correlation matrix for privacy preserving beamforming.
Signal Processing 107 (2015), 109–122.

[152] ZHANG, G., AND HEUSDENS, R. Generalized linear coordinate-
descent message-passing for convex optimization. In Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International Con-
ference on (March 2012), pp. 2009–2012.

[153] ZHANG, G., AND HEUSDENS, R. Bi-alternating direction method of
multipliers. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on (2013), IEEE, pp. 3317–3321.

[154] ZHANG, G., AND HEUSDENS, R. Bi-alternating direction method of
multipliers. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on (May 2013), pp. 3317–3321.

[155] ZHANG, G., AND HEUSDENS, R. Bi-alternating direction method
of multipliers over graphs. Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on (April 2015).

[156] ZHANG, G., AND HEUSDENS, R. On Simplifying the Primal-Dual
Method of Multipliers. In Proc. of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP) (March 2016),
pp. 4826–4830.

170 BIBLIOGRAPHY

[157] ZHANG, G., AND HEUSDENS, R. Distributed Optimization using
the Primal-Dual Method of Multipliers. accepted by IEEE Trans.
Signal and Information Processing over Networks, 2017.

[158] ZHANG, G., AND HEUSDENS, R. Distributed optimization using the
primal-dual method of multipliers. IEEE Transactions on Signal and
Information Processing over Networks (2017).

[159] ZHANG, G., HEUSDENS, R., AND KLEIJN, W. On the convergence
rate of the bi-alternating direction method of multipliers. In Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on (May 2014), pp. 3869–3873.

[160] ZHANG, G., HEUSDENS, R., AND KLEIJN, W. B. Large Scale LP
Decoding with Low Complexity. IEEE Communications Letters 17, 11
(2013), 2152–2155.

[161] ZHANG, G., KLEIJN, W. B., AND HEUSDENS, R. On Relation-
ship between Primal-Dual Method of Multipliers and Kalman Filter.
arXiv:1708.06881 [math.OC], 2017.

[162] ZHANG, H. M. Distributed Convex Optimization: A Study on the
Primal-Dual Method of Multipliers. Master’s thesis, Delft Univer-
sity of Technology, 2015.

[163] ZOU, H., AND HASTIE, T. Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology) 67, 2 (2005), 301–320.

