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Thesis Abstract 
The destructive capability of typhoons affects lives and infrastructure around the 

world. Spatial analysis of historical typhoon records reveal an area of intense storm 

activity within the Southeast Asian (SEA) region. Within SEA is the Philippines, an 

archipelagic tropical country regularly struck by storms that often cause severe 

landslides, erosion and floods. Annually, ~20 cyclones enter the Philippine Area of 

Responsibility, with about nine making landfall, causing high winds and intense 

rainfall. Thus, significant research in the Philippines has focused on increasing the 

resilience of ecosystems and communities through real-time disaster forecasting, 

structural protections, and programmes for sustainable watershed management (e.g. 

rehabilitation and conservation agriculture). This dissertation focused on the third 

aspect through computer modelling and scenario analysis. 

The study area is the Cagayan de Oro (CDO) catchment (~1400km2) located in 

the Southern Philippines. The catchment experienced heavy flooding in 2012 from 

Typhoon Bopha and has major erosion problems due to mountainous slopes and 

heavy rainfall. Communities derive ecosystem services (ES) including agricultural 

production, water supply, recreation, mining resources, flood mitigation, etc. Since 

changes to the supply or distribution of these ES affects livelihoods and the 

hydrological response of the catchment to typhoon events, this research used the 

Land Utilisation and Capability Indicator (LUCI) model to understand the baseline ES 

and potential changes associated with basin management plans. 

This was the first detailed tropical application of LUCI, including parameterising it 

for Philippine soil and land cover datasets in CDO and extending its capability to be 

applied in future tropical areas. Aside from applying LUCI in a new geoclimatic region, 

this research contributed to the general development of LUCI through testing and 

improving its sediment delivery and inundation modelling. The sediment delivery was 

enhanced using the Revised Universal Soil Loss Equation (RUSLE) model that allows 

LUCI for the first time to account for impacts of specific land management such as 

agroforestry and contour cropping on erosion and sediment delivery. Progress was 

made in updating a flatwater inundation model for use with LUCI, including converting 
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it to Python but this requires further development and testing before it is suitable for 

application in the Philippines. 

The development and rehabilitation scenarios showed improved flood 

mitigation, lower surficial soil erosion rates, and lower loads of nutrients compared to 

the baseline scenario. Additionally, ES mapping under different land cover scenarios 

has not been previously accomplished in CDO, and this research provides useful 

information to guide local decision-making and management planning.  

The rainfall-runoff model of LUCI was tested against the Hydrologic Engineering 

Center’s Hydrological Modelling System (HEC-HMS), showing good agreement with 

observed flow. Since the rainfall-runoff model of LUCI has been minimally utilised in 

past applications, this CDO application elucidated directions for future work around 

further testing under extreme rainfall events and climate change. 

Overall, this novel application of LUCI creates a framework to assist decision-

making around land cover changes in the CDO, provides guidance around data 

requirements and parameterisation procedures to guide future international 

applications, and has significantly contributed to development and improvement of 

the LUCI framework to extend its modelling capabilities in the future. 
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1 Introduction 

1.1 Background and context 
This introductory chapter provides the rationale and context of this research 

through presenting the vulnerabilities of the Philippines to extreme events and the 

need for proactive disaster risk mitigation programmes through watershed 

management. The concept of watershed management and ecosystem services to 

increase the resilience of the catchment and communities to disasters are explained 

through a review of the existing literature on such topics in the Philippines. The Land 

Utilisation and Capability Indicator (LUCI) model, which has never previously been 

applied to the Philippines, is presented in this chapter. The aims and objectives section 

outlines the goals for this thesis: mainly to parameterise and apply the LUCI model to a 

catchment in the Philippines, but also contribute to the development of the LUCI 

framework’s related sub-models. LUCI is an ecosystem services model with particular 

strengths in hydrology and trade-off analysis; this thesis contributed to development 

of LUCI through parameterisation for soil and land cover in the Philippines (Chapter 2), 

floodplain inundation mapping (Chapter 7), erosion modelling (Chapter 4), and rainfall-

runoff modelling (Chapter 8). Finally, this chapter concludes with a description of the 

thesis structure of this dissertation. 

Tropical cyclones are defined as “intense cyclonic storms that form over the 

tropical oceans … the most destructive storms on Earth” (Bedient et al., 2013). These 

extreme events are concerning because of their damaging capabilities, affecting lives 

and infrastructure around the world. Since 1980, annual losses from weather and 

climate-related disasters (cyclones, hurricanes, typhoons) have ranged from a few 

billion US dollars up to 200 billion US dollars globally (IPCC, 2012). With the looming 

threat of climate change, the IPCC (2012) noted the following likely (>66% probability) 

changes: 

“It is likely that the frequency of heavy precipitation or the proportion of total 

rainfall from heavy rainfalls will increase in the 21st century over many areas of the 

globe. This is particularly the case in the high latitudes and tropical regions, and in 

winter in the northern mid-latitudes. Heavy rainfalls associated with tropical cyclones 
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are likely to increase with continued warming induced by enhanced greenhouse gas 

concentrations.” (pg. 113) 

An analysis of global disasters that occurred in 2012 revealed the most 

devastating disasters were hydrological (flooding and associated landslides) and 

meteorological (storms), compared to other disasters such as droughts, earthquakes, 

or volcanoes (Guha-sapir et al., 2013). Within Asia, most of the recorded 2012 

disasters were hydrological in nature (49%) followed by meteorological disasters (27%) 

(Guha-sapir et al., 2013). Global mapping of historical tropical storm records reveals 

areas of intense tropical storms, with a large concentration of severe storms in the 

West Pacific region or Southeast/East Asia region (Figure 1). 

The Philippines is located within this area of intense tropical storm activity 

(Figure 1), and is regularly struck by tropical cyclones that can cause severe landslides 

and floods (Yusuf & Francisco, 2009). On average, 20 cyclones enter the Philippine 

Area of Responsibility each year (Figure 2), with about nine making landfall, causing 

strong winds and intense rainfall with the possibility of causing destructive floods 

(Lasco et al., 2009). These cyclones have the capability to endanger lives and 

communities, cause major damage to infrastructure, and result in a costly rebuild 

effort. 

Cyclones in previous years have already had these destructive impacts. In 2009, 

Tropical Storm Ketsana caused major flooding in the capital of Metropolitan Manila, 

resulting in 464 casualties and PHP 11 billion (~USD 234 million in 2009) in damage 

(NDRRMC, 2009). In 2011, Tropical Storm Washi caused heavy flooding and 

destruction in the southern Philippines, causing 1,268 casualties and PHP 2 billion 

(~USD 46 million in 2011) in damage (NDRRMC, 2012a).  In 2013, Typhoon Haiyan hit 

central Philippines and caused 6,300 casualties and almost PHP 90 billion (~USD 2 

billion in 2013) in damage (NDRRMC, 2014b). Haiyan was reported as the strongest 

tropical cyclone to make landfall in recorded history, based on record-breaking 

sustained wind speeds of more than 310 kilometres per hour (Schiermeier, 2013). 
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Figure 1. Map of the world showing the Philippines (green box) and storm tracks from 1842 to 2015, 
using data from all the agencies contributing to the International Best Track Archive for Climate 

Stewardship (IBTrACS) (Knapp et al., 2010). 

 

 

Figure 2. Map of the Philippines and PAR showing the study site Cagayan de Oro (CDO) watershed, the 
capital of Metro Manila, and tracks of the four extreme events of Ketsana, Washi, Bopha, and Haiyan 

(Knapp et al., 2010; World Meteorological Organization, 2016). 
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Given these problems relating to tropical cyclones and their disastrous effects, 

the field of disaster management and risk reduction is important to the Philippines. 

The nationwide disaster risk programme is Project NOAH1 (Nationwide Operational 

Assessment of Hazards), a multi-disciplinary and multi-agency project aimed at real-

time flood forecasting, mapping hazards, and empowering local government and 

communities through early warning systems (Figure 3 and Figure 4) (Lagmay et al., 

2017). The multi-disciplinary approach is important because of the complex 

interactions between the climate, landscape, and communities, which need to be 

understood for effective disaster risk mitigation (DeFries & Eshleman, 2004). Through 

the work done by Project NOAH, at least 18 major river basins in the Philippines have 

the data and infrastructure capacity for real-time flood forecasting and have been 

given flood hazard maps at different return periods for the benefit of the local 

community (Lagmay et al., 2017). This system uses information sent from automated 

gauges (rainfall, water level, etc.) to forecast the possible water level for the next 48 

hours to inform the disaster mitigation operations of the local government (Santillan 

et al., 2013). With an additional 200+ smaller river basins being studied by Project 

NOAH, more flood hazard maps will be distributed to aid in sustainable development 

planning (Lagmay et al., 2017). 

 

 

Figure 3. Screenshot of the Project NOAH website (as of 04/05/2018) showing the Philippines and 
different hazard maps available. 

                                                      
1http://noah.up.edu.ph/#/  

http://noah.up.edu.ph/#/
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Figure 4. Screenshot of the 25-year flood hazard map for the city of Manila (as of 04/05/2018). 

 

Aside from hazard mapping, disaster risk mitigation includes the following 

components: real-time forecasting, structural protections, and non-structural 

measures. Non-structural measures include watershed management, which aims to 

utilise catchment resources sustainably while not sacrificing the landscape’s resilience. 

Watershed management is the focus of this research as it aims to use spatial data and 

ecosystem services (ES) modelling to understand the distribution of ES in a catchment, 

how land use change affects ES and hydrological response, and which areas can be 

managed to improve ES.  

1.2 Watershed management 
Sustainable watershed management is the process of planning the land 

management and resource use within a watershed to balance the production of goods 

and services with the land’s ecological integrity (Cruz, 1999). Essentially, it is a way of 

sustainably using and managing the watershed without adversely affecting or 

degrading the landscape. The process of watershed management involves informed 

decision-making that accounts for the physical, biological, political, and socio-

economic characteristics of a watershed (Voinov & Costanza, 1999). The goal is to 

ensure the continued provision of goods and services (e.g. water supply, agricultural 

productivity) while also minimising the impacts that anthropogenic activities have on 

the natural ecosystem (Wagner et al., 2002). 
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In the Philippines, watersheds are affected by soil erosion, depletion of water 

resources, and land degradation due to anthropogenic activity, thus requiring 

strategies to minimise or reverse these effects to ensure future provision of resources 

(Cruz, 1999). Since watersheds are delineated primarily through physical instead of 

political boundaries, management must consider the needs and plans of different 

administrative levels and communities (Voinov & Costanza, 1999). This is especially 

true for those communities located in the upland areas of the watershed, whose 

resource usage must be balanced with that of the downstream communities, and thus 

requires their participation (Fuentes & Concepcion, 2007). Due to this complexity, 

decision-making processes should be equitable and participatory, and the tools for 

decision-making should facilitate communication between different stakeholders, 

promote understanding of management impacts and recommend suitable 

management strategies (Miller et al., 2004).  

Within the framework of watershed management, Cruz (1999) has three 

examples of management strategies that represent different ways to manage the 

catchment’s existing resources. “Protection” ensures the safety of the current 

resources, measures such as forest reserves and natural parks with strict logging bans. 

“Conservation” promotes the sustainable use of these resources and involve 

programmes such as forest and timber management. Lastly, “Development” is geared 

towards the rehabilitation and improvement of the watershed and utilises 

revegetation of denuded slopes and other soil conservation efforts (Cruz, 1999). 

Rehabilitation or the replanting of trees and vegetation on cleared areas is one 

of the methods used in watershed management to enhance the resilience of the 

watershed to hydrological events. Vegetation also assists in the mitigation of soil 

erosion, which involves soil particles being transported and deposited from one 

location to another. This phenomenon occurs naturally, but is exacerbated by 

anthropogenic activities such as deforestation (Adornado et al., 2009). In the 

Philippines, it is estimated that a third of the country’s land area has been degraded 

due to excessive soil erosion (David, 1988). However, one of the problems of 

rehabilitation is that reforestation activities commonly occur in easily-accessible areas 

where the benefit to ES improvement may be marginal compared to rehabilitation in 

more critical areas (CESM, 2014). Therefore, it is important to guide rehabilitation 
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efforts to areas that have the most potential to benefit from management 

interventions. 

This spatial aspect of watershed management is important to consider within 

comprehensive land use planning (Jose & Cruz, 1999). Such planning requires an 

analysis of different scenarios and situations to identify which ones are suitable for the 

environment, promote societal well-being, and are economically viable (Reddy, 2000). 

Land use planning should be able to delineate the areas of protection and production 

within a watershed, and to examine the impacts of different potential land uses in 

order to decide which plans align with the goal of sustainable watershed management 

(Cruz, 1999). Through spatial visualisation (e.g. maps), the nature of the different land 

use scenarios and their impacts on the watershed can be better communicated to the 

different stakeholders and communities. The success of watershed management is 

dependent on those who are directly involved in its use and protection, thus 

underscoring the importance the participation of these stakeholders in the planning 

and implementation process (Cruz, 1999). 

To summarise the requirements of sustainable watershed management, the 

process should: 

1. Balance the needs of the community with ensuring the sustainable use and 

future development of the landscape 

2. Consider the requirements of managing the watershed at different 

administrative levels 

3. Analyse different scenarios of land use to assess the potential impacts on 

the landscape 

4. Communicate these impacts to the different stakeholders to allow them to 

make decisions informed by science 

5. Put appropriate protocols and resources in place to carry out these 

decisions and assess their effectiveness 

This research primarily focuses on improving our ability to deliver on the third 

aspect through modelling different land cover scenarios and analysing the distribution 

of ecosystem services and how these services are affected by changes in land use. 

Given the benefits of ecosystem services, any changes in their supply and distribution 

has the power to enhance or degrade the resilience of a catchment. The process of 
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watershed management inherently requires the participation of stakeholders and 

communities; hence, consultations and meetings are important to achieving the first 

and second aspects. To improve the fourth aspect, the modelling results should be 

communicated clearly to those same stakeholders and communities in a manner that 

can be easily understood and outlines the main conclusions of the modelling work. 

These results aid in helping stakeholders make decisions that are better informed by 

scientific research. The fifth aspect requires a multi-disciplinary approach through 

combining the results of scientific study of the catchment with economic valuation to 

determine the most cost-effective strategies for watershed management, and to 

consult with decision-making and policy implementation bodies such as local 

government. Overall, the physical science behind the decision-making process is part 

of a larger body of work that requires input from the social and economic spheres of 

research. 

1.3 Ecosystem services 
Ecosystem services (ES) are defined as the benefits, whether tangible or 

intangible, that humans receive from ecosystems (MEA, 2005). It is important to 

manage ecosystems sustainably for the purposes of their conservation and the 

continued delivery of ecosystem services for human well-being. Ecosystem services 

are generally classified into four categories: provisioning (e.g. agricultural production 

and water supply), regulating (e.g. flood mitigation, soil conservation), supporting (e.g. 

soil formation), and cultural services (recreation, spiritual, etc.) (MEA, 2005). 

Understanding ES and their sensitivity to land cover change is important because 

of the risk posed by land degradation, such as decreases in agricultural production or 

increased flood risks (MEA, 2005). Aside from understanding what potential services 

are supplied by a catchment, it is important to identify which specific areas of that 

catchment can supply these services. Hence, the spatially explicit mapping of ES is 

useful for stakeholders to understand their priority areas for conservation and 

rehabilitation, or to understand the consequences of potential changes in land use and 

cover (Burkhard et al., 2015). 

Given the complex interactions within ecosystems and their services, it is 

important to consider the trade-offs between ES (MEA, 2005). These services are not 
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just limited to terrestrial ecosystems, as the marine ecosystem provides food supply 

for coastal communities, and the liminal ecosystem such as tidal swamps and 

mangroves are valued for their carbon sequestration and supporting fisheries (Castillo 

et al., 2017; Thompson et al., 2017). Approaches that address ecosystems holistically, 

such as one that focuses on both the terrestrial and marine ecosystems from 

mountain to coast, are more useful and highly valued compared to efforts that focus 

on terrestrial or marine ecosystems separately (Ureta et al., 2016). 

In the Philippines, ecosystem services research has been done all over the 

country, covering all three of the major island groups (Figure 5). The country has a high 

environmental footprint (i.e. usage of resources and detrimental impacts on the 

environment) due to several anthropogenic activities such as deforestation, habitat 

conversion, water pollution, and carbon emissions (Bradshaw et al., 2010). Due to the 

degrading effects these activities have on ES, research involving mapping, valuing, and 

the sustainable management of landscapes is important for the country. Previous 

research on ES in the Philippines has been done in areas with high agricultural value, 

and in the context of understanding how local communities view and value ecosystem 

services. The involvement of the local community in ES research is important to 

understand how they value and perceive different services, to raise awareness of 

resource conservation, and to encourage community-based strategies to protect 

ecosystems (Macandog, 2016).  

In terms of mapping, Burkhard et al. (2015) used interviews with local experts 

and land use/cover maps to assess local perceptions of ES in agricultural areas in 

Northern Philippines. Forests were recognised for their high capability to supply 

multiple services, which aids in supporting reforestation effects with the potential to 

increase ES supply (Burkhard et al., 2015). A similar study in Central Philippines of 

stakeholder perceptions also valued forests for their regulatory abilities (e.g. flood 

mitigation), as food and income sources, and the ability of trees to increase the 

landscape’s resilience to climate change (Lasco et al., 2016). Spatial mapping of soil 

carbon stock in Palawan showed the capability of mangroves to sequester more 

carbon compared to other non-forest land uses, stressing the importance of knowing 

the location of services and the importance of maintaining beneficial land uses 
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(Castillo et al., 2017). Through ES maps, the critical areas that provide multiple services 

that require protection and areas that can be modified to increase service provision 

are identified. 

One of the ES incentives in the Philippines is the Payments of Ecosystem Services 

(PES) scheme that incentivises stakeholders and local government to implement 

management strategies that conserve or even enhance ES supply (Thompson et al., 

2017). Within the PES framework, those who receive the ecosystem services have a 

responsibility to support the communities that have the capability to maintain the ES 

supply through protection and rehabilitation efforts (Ureta et al., 2016). The aim of 

PES and PES-like programmes is to encourage the adoption of land use practices that 

are socially desirable or environmental, but were previously not profitable (Macandog, 

2016). For example, a PES scheme was established in Southern Philippines involving 

the local indigenous communities for forest rehabilitation/protection and ES selling 

(ILC, 2013). In all these PES and similar schemes, inclusive and transparent decision-

making was important to engage the local communities, and to encourage the 

continuation of these schemes. 

Other studies have used economic models to understand the potential value of 

ES, and how climate change and changes in land use can affect their value (Estoque & 

Murayama, 2016; Langerwisch et al., 2018). A case study involving cost-benefit 

analysis and total economic valuation in Southern Philippines found that preservation 

and rehabilitation of the basin could provide USD 2 to 3 million in annual ecosystem 

services, with additional economic benefits from tourism activities (Baig et al., 2015). 

Although there are complexities in putting financial value on natural resources, 

valuation studies are useful for doing cost-benefit analysis, testing different possible 

scenarios, and for projects that require an economic component. 

Aside from spatial mapping and economic valuation of existing ES, scenario 

analysis is another important aspect of ecosystem services research. Changes in the 

land use, land cover, and climate of a landscape have the capacity to affect the spatial 

distribution of ES, the supply of ES, and the value of ES (Kubiszewski et al., 2016). 

Scenario analysis is useful for testing possible land management plans and futures 

against the baseline, which can provide feedback and lead to the iterative 
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improvement of these plans. A large-scale regional study of ES in Southeast Asia has 

predicted a decrease in ES value in all the countries in the study unless steps are taken 

for policy and land management to focus more on environmental and social well-being 

(Kubiszewski et al., 2016). In rice-producing ecosystems, research by Langerwisch et al. 

(2018) predicted a considerable decrease in ES due to climate change, while the effect 

of land use was dependent on the type of land use changes within the scenario. Trade-

offs were also assessed, with adverse effects of climate change leading to potential 

increase of rice production through converting natural vegetation to rice-growing land, 

which causes a loss of habitat and biodiversity (Langerwisch et al., 2018). 

The extent of all these studies (Figure 5) is indicative of the interest of scientists, 

government, and communities in ecosystem services and their sustainable use. The 

methods and types of research were also summarised to reflect the scope of previous 

ES studies in the Philippines (Table 1). Almost all the studies incorporated local 

knowledge as a formal part of their methodology, usually through surveys and focus 

group discussions with key stakeholders. Valuation and willingness-to-pay studies 

included the PES schemes and other monetary incentives for the protection and 

conservation of ecosystems. The mapping and scenario analysis studies assessed the 

spatial distribution of existing ES provision and possible changes to that 

distribution/quantity in the future. 

Table 1. Summary of ecosystem services papers and reports reviewed for this chapter, with those located 
in or near the CDO catchment shaded. 

Author Location 
Local 
Knowledge 

Mapping Valuation 
Scenario 
analysis 

Willingness 
to pay 

Baig et al. (2013) 
Calapan City, CDO 
watershed 

X  X  X 

Battista et al. (2017) Cantilan X     

Bulayong et al. (2015) 
Sogod Bay, Southern 
Leyte 

X  X X  

Burkhard et al. (2015) 
Laguna, Nueva Ecija, 
Ifugao 

X X    

Carandang et al. (2013) Bohol and Palawan X  X   

Castillo et al. (2017) Honda Bay, Palawan  X    

Castonguay et al. 
(2016) 

Banaue (Ifugao) X     

Cremaschi et al. (2012) 
Bakun WS, Maasin WS, 
Sibuyan WS, Baticulan 
WS 

X    X 

Duncan et al. (2016) Panay Island  X    

Estoque and 
Murayama (2016) 

Baguio   X X  

Floresca et al. (2009) Echague X     
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Table 1. Summary of ecosystem services papers and reports reviewed for this chapter, with those located 
in or near the CDO catchment shaded. (continued) 

Author Location 
Local 
Knowledge 

Mapping 
Valuation 

Scenario 

analysis 
Willingness 
to pay 

Garcia et al. (2009) Coconut ecosystems *  
 

X   

ILC (2013) Cagayan de Oro X    X 

Juarez-Lucas et al. 
(2016) 

Candaba floodplain X  X   

Kubiszewski et al. 
(2016) 

Southeast Asia and 
Pacific * 

 X X X  

Langerwisch et al. 
(2018) 

Laguna, Nueva Ecija, 
Ifugao 

   X  

Lasco et al. (2016) Bohol X     

Macandog (2016) National level *     X 

Paelmo et al. (2015) Makiling Forest Reserve X     

Palao et al. (2013) Layawan watershed  X  X  

Spangenberg et al. 
(2014) 

Ifugao X     

Tamayo et al. (2018) National level * X  X  X 

Tekken et al. (2017) 
Laguna, Nueva Ecija, 
Ifugao 

X     

Thompson et al. (2017) Panay Island X    X 

Tilliger et al. (2015) Ifugao X     

Ureta et al. (2016) Layawan watershed X    X 

 

 

Figure 5. Map of ecosystem services research in the Philippines reviewed for this chapter, with the 
approximate location of the CDO catchment marked by the red star. 

Through this review of ecosystem services research in the Philippines, there is a 

clear interest in evaluating and mapping services, assessing their economic value, and 

encouraging the national and local communities to be involved with sustainable land 
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management. It is also clear that the process of ecosystem services research and 

creation of sustainable development plans is complex, multi-disciplinary, and must be 

inclusive. Through increasing the health of an ecosystem, this ecosystem also becomes 

more resilient and can provide continued benefits to the community (Baig et al., 

2015). This work fits into the broader framework of ecosystem service modelling and 

watershed management in the Philippines through helping local government 

understand the distribution of ecosystem services such as flood mitigation and soil 

erosion across the study catchment. Using visualisation and scenario analysis, a 

greater understanding is gained of the potential impacts of land use change and 

management. Flooding associated with extreme events is a rapid disaster, bringing 

devastating effects in a short amount of time. On the other hand, soil erosion is a 

more prolonged problem, increasing loads of sediment passing through river systems 

and changing flood risk over longer time scales due to changes in river bathymetry. 

These two ecosystem services of flood mitigation and soil conservation are therefore 

two services that are very important to protect communities, and this application of 

an ecosystem services modelling and mapping can be used to provide feedback to 

stakeholders about their plans for land management. 

1.4 The Land Utilisation and Capability Indicator (LUCI) framework 
The LUCI framework is a GIS-based model that uses a digital elevation model 

(DEM), land cover data, and soil data to produce spatially-explicit maps of ecosystem 

services and trade-offs over a landscape that can range from the field scale to national 

scale (Jackson et al., 2013). These services are outlined in Table 2, but this research has 

a specific focus on the flooding, erosion, and flooding inundation risk components. 

Additional modelling was done for the agricultural productivity and water quality 

tools, and future work will require more detailed parameterisation for all these 

services. LUCI produces maps showing locations where land managers can place 

interventions to improve the ecosystem services and locations where any change in 

the land cover or land management may degrade the ecosystem services. The trade-

off tool allows for several services to be analysed at once and produces maps that 

show the locations where changes may enhance or degrade multiple services. 
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Table 2. List of ecosystem services modelled by LUCI (Jackson et al., 2013). 

Service Method 

Agricultural 
production 

Based on slope, fertility, drainage, aspect, climate 

C stock/emissions IPCC Tier 1 compatible – based on soil & vegetation  

CH4/N2O emissions IPCC Tier 1 compatible – soils, veg, stocking rate, fertiliser 

Water supply and 
floods/droughts 

Topographical routing of water accounting for storage and 
infiltration capacity as function of soil & land use. 

Erosion Slope, curvature, contributing area, land use, soil type  

Sediment delivery Erosion combined with detailed topographical routing 

Water quality Export coefficients (land cover, farm type, regional fertiliser, 
stocking rate) combined with water and sediment delivery models  

Habitat Approaches Cost-distance approach: dispersal, fragmentation, connectivity. 
Identification of priority habitat by biophysical requirements e.g. 
wet grassland 
Measures of habitat richness, evenness, patch size etc. 

Coast/floodplain 
inundation risk 

Based on topography and input height of storm surge/long term 
rise etc: surface and groundwater impacts estimated   

Trade-offs/synergy 
identification 

Various layering options with categorised service maps; e.g. 
Boolean, conservative, weighted arithmetic, distribution plots 

 

The LUCI framework has been applied to several different locations: the United 

Kingdom, New Zealand, Ghana, Greece, Bulgaria, and Vanuatu (Bagstad et al., 2013). 

However, it has not yet been applied to the Philippines, making this research the first 

detailed application of LUCI to this tropical country. By default, the LUCI framework 

uses a red-yellow-green colour scheme for its output maps with green areas providing 

good supply of ecosystem services and red areas being areas that could be managed 

to enhance ES (Figure 6). These yellow/red areas are therefore possible areas to place 

flood mitigation, soil conservation, or sediment trapping measures such as riparian 

planting or wetland creation. 

LUCI was chosen for this research because the model is more spatially explicit 

compared to other ecosystem service models by accounting for physical configuration 

of land cover and soils affect ecosystem services (Jackson et al., 2013). The results are 

not only influenced by the type of land cover and soils, but also by the placement of 

these elements within the landscape and their interconnectedness. LUCI was also 

designed with stakeholder engagement in mind, with output maps that are relatively 

simple to interpret, and the capability of producing trade-off maps to show synergies 

within land cover scenarios (Bagstad et al., 2013). 
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Figure 6. Sample flood interception classification output map from LUCI. 

This is the first detailed application of LUCI on a tropical catchment in the 

Philippines, the Cagayan de Oro (CDO) catchment (Section 1.7). Since LUCI has never 

been applied to the Philippines, this novel application allowed testing and 

parameterisation of how LUCI represents hydrological and geomorphological 

processes in a different climate. This application extended the range of datasets that 

LUCI can support since the Philippines uses the United States soil classification system, 

which LUCI did not previously support. The information gathered from this application 

can be used to aid stakeholders in making better decisions regarding land 

management, such as where interventions can be placed. This is another novel aspect 

of this research because this type of ecosystem service modelling and mapping has not 

been previously accomplished in the CDO watershed. 

This study also assessed how LUCI fits into the current management framework 

in the watershed. Currently, an automated real-time flood-forecasting framework 

exists within the catchment to provide hazard maps and warnings for local 

communities and government. This framework is run by the Disaster Risk and 

Exposure Assessment for Mitigation (DREAM) Program and uses two models from the 

United States Hydrologic Engineering Center (HEC): Hydrological Modelling System 

(HMS) for rainfall-runoff modelling and River Analysis System (RAS) for mapping 

floodplain inundation (Disaster Risk and Exposure Assessment for Mitigation Program, 
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2015). Figure 7 shows how LUCI complements the existing modelling framework in the 

study area. The CDO watershed already has an automated flood forecasting system 

that uses HEC-HMS and HEC-RAS, and plans for rehabilitation and development 

(CESM, 2015; Paringit et al., 2015). Therefore, LUCI’s role is to elucidate how changes 

in land cover affect ES supply and distribution, return feedback to stakeholders about 

their management plans, and contribute to the iterative development of such plans. 

 

Figure 7. An illustration of how the LUCI model fits into the current disaster-risk management framework 
in the CDO watershed. 

1.5 Extreme events 
With the increasingly rapid development and land use change in Southeast Asia, 

the sustainability of these activities must be considered (Valentin et al., 2008). In 

particular, the influence of urbanisation and increased upland activity on the land 

cover and its potential consequences on runoff and flooding is an important area of 

research all over the Philippines (Figure 8) (Du et al., 2012). There are three strategies 

outlined by the Government of the Philippines to address flood mitigation: 

construction of structural measures in high-risk areas, include climate change 

adaptation in the design of these structural measures, and to also promote the usage 

of non-structural measures such as watershed management (JICA, 2014). Extreme 

events and flood modelling research has underscored the importance of restoration, 

real-time flood forecasting, and hazard mapping (Pati et al., 2014). Aside from the 

work done by Project NOAH, other researchers have used different watershed models 

and floodplain inundation models to elucidate the effect of changing land cover, 

extreme events, and a combination of both (Table 3). 
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Scenario analysis of different rainfall events helps management to understand 

the potential peak flows and floodplain inundation from events of different return 

periods or past typhoons. Modelling events of different return periods create flood 

hazard maps to help guide future urbanisation and land zoning development. Knowing 

the potential flow and inundation associated with rainfall events of different return 

periods is important to predict future runoff events (Abon et al., 2011; Bien & 

Plopenio, 2017). Although HEC-HMS and HEC-RAS are commonly used in the 

Philippines, other techniques such as Artificial Neutral Networks are also used to relate 

long records of rainfall and water level and are used for prediction (Malaguit et al., 

2017). 

Extreme events modelling also guides the design of different structural measures 

as structures such as dams are ideally designed for 25-year to 100-year events 

(Ternate et al., 2017). The construction and implementation of structural measures 

may be limited by logistical factors (e.g. funding), hence the design must balance the 

capability of the structure to protect infrastructure and communities and the ability to 

implement the flood mitigation project. Within the CDO catchment, the project by 

JICA (2014) used extreme event modelling under different return periods and the 

Washi/Sendong event to guide the design of the retaining wall to protect the CDO 

floodplain. Aside from the construction of structural measures, extreme events 

modelling can guide the operation of weirs and dams (Badilla, 2008). 

Following hazard mapping of the floodplain, the social dimension of flooding can 

be understood through relating the spatial distribution of the flood to the population 

that may be potentially affected. By accounting for both hydrological factors and social 

vulnerability, the high-risk areas are delineated, and management efforts can be 

focused on those communities. These vulnerability indicators are dependent on 

population demographics, socio-economic factors, the dependence of the community 

on natural resources, and the accessibility of public infrastructure such as roads and 

hospitals (Pati et al., 2014). Adding even more complexity, the economic 

consequences of these hazards can be understood through depth-damage functions 

that relate flood depth with potential damage to calculate the potential loss from 

damaged infrastructure or losses in agricultural yield (Shrestha et al., 2016). This multi-
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disciplinary approach of hydrology, social factors, and economics is important for an 

integrated disaster risk management plan and for participatory decision-making. 

Scenario analysis is used in flood modelling to understand the consequences 

associated with past land use change, or the potential consequences of future land use 

change. Using the Soil and Water Assessment Tool (SWAT)2, the potential conversion 

of pasture and grassland to typical agricultural conditions in the Manupali catchment 

is predicted to increase runoff volume and sediment yield (Alibuyog et al., 2009). 

Another SWAT study in the Palico catchment, predicted increases in surface runoff 

associated with a reduction of forest cover and rangelands (Briones et al., 2016). The 

HEC-HMS model was used in the Taguibo catchment to model rehabilitation scenarios, 

predicting a likely reduction of runoff due to the rehabilitation of barren and 

deforested areas (Santillan et al., 2011). A long-term monitoring study of several 

catchments in Southeast Asia showed that conservation efforts such as contour tillage, 

bamboo-planting on slopes, and riparian planting reduced runoff and sediment yield 

(Valentin et al., 2008). 

Modelling work was done in varying land cover scenarios and the rainfall events 

to elucidate the potential combined effect of these two factors. SWAT modelling in the 

Calumpang catchment showed increased streamflow during the monsoon season for 

sub-catchments with more built-up areas and reduced vegetation (Boongaling et al., 

2018). Understanding how the hydrological response of a catchment varies with land 

cover and seasonal rainfall is important for understanding the possible effect on water 

security and sustainability (Briones et al., 2016). 

 

 

 

 

                                                      
2 SWAT is a programme used to model runoff, water resources, sediment yield, and nonpoint-sources of 
pollution at different spatial scales under different environmental conditions (Alibuyog et al., 2009; 
Gassman et al., 2007). 
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Table 3. Extreme events modelling studies in the Philippines, with those in or near the CDO catchment 
shaded. 

Author Study site Model 

Land use 
and land 
cover 

Runoff and 
flow 
modelling Inundation 

Abon et al. 
(2011) Marikina HEC-HMS  X  
Alibuyog et al. 
(2009) Manupali SWAT X X  

Badilla (2008) Marikina 
HBV and 
DUFLOW  X  

Bien & 
Plopenio 
(2017) Albay HEC-HMS  X X 

Boongaling et 
al. (2018) 

Calumpang, 
Marikina SWAT X X  

Briones et al. 
(2016) Palico SWAT X X  

JICA (2014) 
Cagayan de 
Oro Own model  X X 

Mabao & 
Cabahug 
(2014) 

Cagayan de 
Oro 

HEC-HMS 
and HEC-RAS  X X 

Malaguit et al. 
(2017) Pampanga ANN  X  

Otieno (2004) 
Lower Bicol 
floodplain Delft-FLS   X 

Paringit et al. 
(2015) 

Cagayan de 
Oro 

HEC-HMS 
and HEC-RAS  X X 

Pati et al. 
(2014) Laguna 

HEC-HMS 
and HEC-RAS  X X 

Ross et al. 
(2015) 

Compostela 
Valley FLO-2D   X 

Santillan et al. 
(2011) Taguibo WS HEC-HMS X   
Santillan et al. 
(2013) Marikina 

HEC-HMS 
and HEC-RAS  X X 

Shrestha et al. 
(2016) Pampanga Own model  X X 

Ternate et al. 
(2017) 

Malaking-
Ilog, Batangas 

HEC-HMS 
and HEC-RAS  X X 

Valentin et al. 
(2008) Bukidnon Monitoring X 

X 
(monitoring)  
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Figure 8. Map of some extreme events studies in the Philippines. 

1.6 Climate change 
In Southeast Asia, there are strong regional variations in the IPCC projections 

due to terrain. Overall, warming is very likely and there is a medium confidence in the 

increase in rainfall (Christensen et al., 2013). Under the Representative Concentration 

Pathway (RCP) 4.5, a mean temperature increase of 0.5 to 2°C is projected for the 

period of 2081-2100 (IPCC, 2013). RCP4.5 represents a scenario where radiative 

forcing is stabilised at 4.5W m-2 by 2100 through policies aimed at limiting emissions 

(Thomson et al., 2011). Since warming will likely affect future water resources, 

understanding how climate change affects the hydrological cycle is critical for more 

efficient resource management (Ty et al., 2012). The hydrological cycle will also be 

affected by the likely changes in precipitation. Under RCP4.5, the 20-year mean rainfall 

in Southeast Asia is expected to increase, with significant increases in the 75th 

percentile by 2081 that deviate from natural variability (IPCC, 2013). This increase in 
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rainfall is likely to lead to increases in water supply and runoff during the rainy season, 

but to increased water stress during the dry season (Ty et al., 2012). To summarise, dry 

seasons are predicted to be drier and hotter while wet seasons are predicted to have 

more intense rainfall. 

The Philippines is vulnerable to climate change due to its dependence on water 

resources, for which demand is predicted to rise with projected population growth 

(Amadore et al., 1996). Additionally, the country’s exposure to tropical cyclones makes 

it more vulnerable to increases in rainfall associated with extreme events. An analysis 

of the historical typhoon record shows no significant trends in the total number of 

typhoons making landfall in the Philippines, but increases in the intensity of typhoons 

and associated increases in economic damage (Cinco et al., 2016). Previous research 

around climate change modelling in the Philippines has centred around downscaling 

projections from Global Circulation Models (GCMs) for streamflow predictions, crop 

yield modelling, and water balance modelling. Generally, the increases in precipitation 

are projected to lead to increases in streamflow that provide more water for 

agriculture but with higher risks of flooding and soil erosion (Tolentino et al., 2016). 

However, these hydrological fluctuations are not consistent across all the different 

catchments within the Philippines. In the Mount Makiling watershed in Northern 

Philippines, water balance modelling predicted high evaporation losses and decrease 

in streamflow under climate change (Combalicer et al., 2010). Similarly, the Angat 

reservoir (Northern Philippines) and Lake Lanao (Southern Philippines) will be affected 

by changes in temperature and rainfall leading to decreases in runoff and a deficit in 

the water availability for future demand (Jose & Cruz, 1999). In various areas of the 

Philippines, crop modelling for rice and corn showed potential decrease in yields due 

to shorter maturity periods and increases in potential evapotranspiration from warmer 

temperatures (Buan et al., 1996). 

A national-scale report has been previously published that reviews the potential 

physical impacts of climate change on the temperature, seasonal rainfall, precipitation 

extremes, and tropical cyclones that affect the Philippines (Villarin et al., 2016). 

Rainfall during the northeast monsoon (December to February) is expected to 

increase, while rainfall during the southwest monsoon (June to August) is expected to 
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increase in Northern and Central Philippines with potential decreases for Southern 

Philippines (Hilario et al., 2011). A related report reviews the social impacts of climate 

change, the vulnerability of communities, and their potential adaptive capacity (Cruz 

et al., 2017). Given the strong regional variability in the potential effects of climate 

change, more work at the regional and catchment-level is essential to elucidate its 

local effects. Discussion about how climate change may potentially affect the study 

area of this thesis is detailed in the extreme events chapter (Chapter 8). 

1.7 Background of Cagayan de Oro (CDO) 
This study focuses on the Cagayan de Oro watershed, located in Northern 

Mindanao (Figure 9). The river passes through the city of the same name, which has a 

population of 600,000 as of May 1st 2010 (NSO, 2010). This watershed is an important 

source of drinking and irrigation water, area for agricultural production, mining, 

adventure tourism, and home of different indigenous communities (CESM, 2014). The 

watershed is approximately 1400km2, with over 70% of its area devoted to agriculture 

(CESM, 2014; Mabao & Cabahug, 2014). The dominant soil series Kidapawan 

(subgroup: Typic Paleudults) which is characterised by good to excessive external 

drainage, and good internal drainage (Carating et al., 2014). However, unsustainable 

land management in the CDO catchment has led to erosion, loss of forest and habitat, 

decreases in water quality and supply, and flooding (CESM, 2014). Thus, sustainable 

land use management, zoning, and rehabilitation within the CDO catchment are 

important tools for catchment management. 

The vulnerability of CDO to flooding, its problems associated with soil erosion, 

and heavy agricultural use of the catchment make it a good study site for ecosystem 

services modelling. LUCI produces spatially-explicit maps that show the distribution 

and supply of different services such as flood mitigation, agricultural productivity, and 

nutrient delivery. The site was also chosen because of the availability of detailed 

watershed reports that explained the land management options that local government 

is planning to carry out, which were used as input to the LUCI model to investigate 

how these land cover scenarios would affect ecosystem services and soil erosion. 

Given that real-time flood forecasting and structural measures against floods already 
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exist in CDO, this research focused on the non-structural aspect of disaster risk 

management: promoting the sustainable land management within the catchment. 

After Typhoon Washi affected the Cagayan de Oro (CDO) city and catchment in 

2011, there has been more public interest in the rehabilitation of the CDO catchment 

through reforestation and tree-planting activities (CESM, 2014). Within the CDO river 

and floodplain, structural measures such as a flood wall and a retention basin have 

been planned and are being implemented (JICA, 2014). 

Within the CDO catchment and floodplain, the real-time flood forecasting 

system by Project NOAH is operational and is key to providing adequate warning to 

local government and communities (Paringit et al., 2015). Similarly, hazard maps were 

produced under different rainfall events to show that the city of CDO is vulnerable to 

flooding under storms of 2-year and 5-year return periods (Mabao & Cabahug, 2014). 

The work by JICA (2014) on modelling extreme events and structural design has led to 

the construction of a retaining wall to protect riparian communities living on the 

floodplain. In terms of land cover and management, work by Valentin et al. (2008) in 

the nearby Mapawa catchment showed reductions in runoff and sediment yield 

through contour tillage and riparian planting. Aside from using ecosystem services 

modelling to understand the effect of land cover on different ecosystem services 

(Chapter 3) and soil erosion (Chapter 5), this research also did preliminary evaluation 

of the hydrologic response of the CDO catchment to extreme events (Chapter 8). 
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Figure 9. Map of the CDO watershed, river, and city, and their location relative to the rest of the 
Philippines. 

1.8 Aims and objectives 
This research contributes to the body of knowledge regarding ecosystem 

services modelling and watershed modelling in the Philippines. The overall aim of this 

study is to understand the changes to ecosystem services and hydrological responses 

of the CDO catchment associated with changes in land cover from the baseline 

scenario to plans involving catchment development and rehabilitation. The specific 

objectives are outlined below: 

To apply LUCI to the CDO catchment to understand the spatial aspect of its 

ecosystem services and help identify priority areas for land management 

Prior to this research, the LUCI framework has never been applied in the 

Philippines, and the local datasets for the CDO watershed utilise land cover and soil 

classification systems that are different from those already integrated into the LUCI 

framework. Through parameterisation of these datasets, this research tested the 

applicability and coverage of LUCI, allowing it to identify areas in the catchment that 

are providing different ecosystem services (i.e. flood mitigation, agricultural 

productivity, nitrogen and phosphorus delivery). 

To assess how development and rehabilitation plans will affect the ecosystem 

services and soil erosion within the watershed 
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The development master plan for the CDO outlined the plans for basin 

rehabilitation and development, with the objectives of sustainable utilisation and 

decision-making supported by scientific research (CESM, 2014). This plan’s scenario of 

management zoning and the rehabilitation scenario was run through LUCI to assess 

their potential effects on the spatial distribution of areas providing flood mitigation 

and other ES, and areas vulnerable to soil erosion (CESM, 2014; CESM, 2015). 

To contribute to future development of LUCI through developing and testing 

new components of the LUCI framework (i.e. sheet/rill erosion modelling, floodplain 

inundation, and rainfall-runoff modelling) 

First applications of the LUCI framework generally apply spatially explicit but 

temporally lumped GIS-based ES models but includes more detailed but less-applied 

models for rainfall-runoff modelling and floodplain inundation, both of which are 

required for floodplain hazard mapping. This thesis presented preliminary work in 

parameterising the LUCI model for rainfall-runoff modelling in CDO and comparing it 

to the results from HEC-HMS (Chapter 8), and to updating and implementing the 

previous LUCI inundation model into ArcMap (Chapter 7). Future work will involve 

understanding how changes in land use will affect how the CDO watershed will 

respond to extreme events based on the resulting flow hydrograph and floodplain 

inundation. 

The existing sediment delivery model in LUCI uses the Compound Topographic 

Index (CTI) that predicts areas vulnerable to gully erosion but no other types of erosion 

such as sheet or rill erosion. Testing and applying the RUSLE (Chapters 4 to 6) allowed 

for inclusion of more erosion modelling into the LUCI framework and eventual 

implementation into the supported LUCI software. 

Broadly, this pilot application of LUCI to the Philippines lays the groundwork for 

improving the applicability of LUCI in tropical areas through parameterisation of the 

soil and land cover specific to the Philippines, which were not previously supported in 

LUCI. Although the CDO application is starting with flood mitigation and soil erosion, 

preliminary runs for agricultural productivity and nutrient delivery were done. Future 

work revolves around better representing local conditions in CDO through more 

detailed parameterisation. The soil erosion component of this thesis contributes 

through LUCI development by implementing the Revised Universal Soil Loss Equation 
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(RUSLE). The implementation of the RUSLE within LUCI required testing the different 

components of the RUSLE, which resulted in a novel review of the different RUSLE sub-

models and how they were used at varying spatial scales and sites of data availability 

around the world. The floodplain inundation model was also updated for this thesis 

and implemented as a Python script that will be integrated into future versions of 

LUCI. 

1.9 Thesis Structure 
This introductory chapter presented the background and rationale of the study, 

outlining the work previously done in the Philippines around watershed management, 

ecosystem services, and extreme events. The pilot site in the Philippines, the CDO 

catchment, was presented along with the LUCI model to provide context of why ES 

modelling is important in the area. Finally, the chapter outlines the aims and 

objectives of this thesis before concluding with a structure of the manuscript. 

Chapter 2 is the methodology chapter that presents the data and respective 

sources used for this thesis. One of the main objectives of this thesis is to understand 

the effect of changing land cover on ecosystem services; hence, the chapter presents 

three different land cover scenarios (baseline, development, and rehabilitation) that 

were used in the various modelling components of this thesis. This chapter details the 

steps taken to parameterise the model for the kinds of soil and land cover present in 

the CDO catchment based on literature and fieldwork for Philippines-based data and 

characteristics. This parameterisation lays the groundwork for further applications of 

LUCI in the Philippines, further development of the LUCI model with tropical data, and 

serves as guidance for other applications of LUCI in new areas. Another component of 

the parameterisation was to link the soil and land cover to the New Zealand soil and 

land cover since the NZ classification is most supported in the LUCI framework. The 

purpose of correlating PH and NZ classifications was to test the effectiveness of linking 

soil and land cover from a different climate regime to the NZ parameterisation, as it 

can be used by future applications in data-scarce regions to be able to run LUCI. The 

methodology chapter also presents the two main ecosystem services focused on for 

this thesis: flood mitigation and soil erosion, and what models have been used to 

elucidate the distribution and effect of land cover on these services. Following this is 

detail about the preliminary work done on extreme events modelling including 
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modelling the peak flows of LUCI and HEC-HMS under one extreme event, and 

mapping the potential inundation on the CDO floodplain. The methodology then 

concludes with a summary of the different components of this thesis and how they fit 

into the broader aim of this research. 

The next section of this thesis focuses on the application of the LUCI model to 

CDO to run its ecosystem services modelling under different land cover scenarios 

(Chapter 3). The main focus of this work was flood mitigation and how its distribution 

and supply would be expected to change under the land cover scenarios. This was 

accomplished through gathering and incorporating soil and land cover characteristics 

specific to the Philippines, which is the PH-based parameterisation previously not 

supported by LUCI.  Another component of this chapter is testing the NZ-based 

parameterisation outlined in the methodology by comparing the results of the flood 

mitigation maps with the PH-based parameterisation. The NZ-based parameterisation 

also enabled LUCI to produce indicative maps of agricultural productivity and water 

quality (nitrogen and phosphorus). Testing these parameterisations against each other 

is important due to the varying levels of data available in different study sites. In sites 

where soil and land cover characteristics are known, the parameterisation procedures 

outlined in Chapter 2 guides the user to set up LUCI for their study sites. In areas with 

scarcer data, the NZ-based parameterisation can be used to simplify the set up of 

LUCI. 

With the LUCI model parameterised and applied to the CDO catchment, the next 

sections of the thesis focus on the contributions of this research to LUCI development 

through improvements in sediment delivery, inundation mapping, and rainfall-runoff 

modelling. The ES of soil conservation was analysed through soil erosion modelling 

using the Revised Universal Soil Loss Equation (RUSLE) over three chapters: a review of 

RUSLE in Chapter 4, the resulting applications of RUSLE in CDO (Chapter 5), and a case 

study of RUSLE in New Zealand due the availability of high-resolution datasets 

(Chapter 6). The purpose of the review chapter was to explain the RUSLE model and its 

various sub-equations account for rainfall, topography, etc. and to outline some of its 

limitations and the potential future directions to improve RUSLE estimates and 

incorporate the model into the LUCI framework. The CDO application is important in 

understanding the spatial aspect of soil erosion through delineating vulnerable areas 
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as potential targets for soil conservation measures and the potential effects that 

changing land cover can have on these areas and soil erosion rates. The RUSLE was 

applied to the Mangatarere catchment in New Zealand to test the sensitivity of the 

model and its sub-equations, including the effect of different digital elevation model 

(DEM) resolutions. Since the only DEMs available for the CDO catchment had a 

minimum resolution of 30m, the NZ application was needed to elucidate the effect of 

finer DEM resolutions (15m and 5m) on soil erosion estimates. 

Although the scope of this research is mainly modelling and mapping ecosystem 

services under different land cover scenarios, work was also done and presented that 

detailed the capability of the LUCI model to perform rainfall-runoff modelling and 

produce a flow hydrograph comparable to results from the widely-applied HEC-HMS 

(Benavidez et al., 2016). The extreme events chapter (Chapter 8) presented those 

results again but with more detail on the differences between HEC-HMS and LUCI, 

information about other extreme events that have impacted CDO, infilling and 

processing rainfall data, and directions for future work around event modelling. This 

chapter also includes a section discussing the potential impact of climate change on 

the extreme events that produce devastating floods and the possible changes to 

ecosystem services under climate change. The inundation chapter reviews the 

different methods of estimating and modelling floodplain inundation, presents the 

existing LUCI inundation model, and the potential improvements that will be 

incorporated into LUCI in future work (Chapter 7). These two chapters lay the 

groundwork for future comparisons of the LUCI framework to the more widely-applied 

models of HEC-HMS and HEC-RAS, contributing to improvements to future 

development of the LUCI model. 

Lastly, this dissertation concludes with a synthesis chapter about how the 

different land cover scenarios affect flood mitigation and soil erosion. This chapter 

discusses the overarching themes that stemmed from the literature analysis, model 

development, and modelling results of this thesis. Additionally, this chapter outlines 

the key issues and limitations of this research and suggests future work that can be 

accomplished to overcome these issues. The chapter concludes with a discussion of 

the implications of this research for the CDO catchment, the Philippines, and the 

broader scale of global ecosystem services modelling. Overall, this thesis presents 
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novel work regarding ecosystem services and disaster risk management in the 

Philippines through scenario analysis. It contributes to LUCI development by improving 

its applicability to tropical areas, testing a model for the soil erosion component, and 

updating its floodplain inundation modelling code. 
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2 Overview of methodology and data sources 

2.1 Introduction 
This chapter provides an overview of the methodology of this research and the 

different components of this thesis: Land Utilisation and Capability Indicator (LUCI) 

parameterisation (soil and land cover), ecosystem services modelling (soil erosion and 

flood mitigation) and extreme events modelling. Collecting information for the soil and 

land cover parameterisation was accomplished through a combination of using 

national/local GIS datasets, information from external databases, and fieldwork. Three 

different land cover scenarios were assessed for changes in ecosystem services 

(Chapter 3) and areas vulnerable to soil erosion (Chapter 5): baseline, development, 

and rehabilitation, all of which differ in the distribution of land cover types and 

management strategies. Extreme events modelling was achieved for Typhoon Bopha 

under the baseline scenario to test the rainfall-runoff modelling capabilities of LUCI 

against HEC-HMS (Chapter 8). 

2.2 Data sources 

This section summarises the data used for this thesis, which is mainly spatial 

data that was used in ArcMap 10.4.1 (Table 4). At the minimum, the LUCI framework 

needs three input files: a digital elevation model (DEM), land cover shapefile, and soil 

shapefile. The HEC-HMS and HEC-RAS models parameterised for the Cagayan de Oro 

(CDO) catchment were kindly provided by the DREAM programme (Disaster Risk and 

Exposure Assessment for Mitigation Program, 2015). 

 

Table 4. Summary of the data used for this thesis, the source, and the purpose. 

Data Source Purpose 

Digital Elevation Model ASTER GDEM v2 (NASA 
JPL, 2011) 

• Flood mitigation 
modelling in LUCI 

• Soil erosion modelling 
in RUSLE 

• Extreme events 
modelling in LUCI 
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Table 4. Summary of the data used for this thesis, the source, and the purpose. (continued) 

Data Source Purpose 

Land cover scenarios • Baseline (DREAM, 
2015) 

• Development (CESM, 
2014) 

Rehabilitation (CESM, 
2015) 

• Flood mitigation 
modelling in LUCI 

• Soil erosion modelling 
in RUSLE 

Extreme events modelling 
in LUCI and HEC-HMS 

Soil physical and textural 
characteristics 

• IGBP-PTF database 
(Tempel et al., 1996) 

• NCSS database 
(Reinsch & West, 
2010) 

• Flood mitigation 
modelling in LUCI 

• Soil erosion modelling 
in RUSLE 

• Extreme events 
modelling in LUCI and 
HEC-HMS 

Stream network DREAM (2015) • Flood mitigation 
modelling in LUCI 

• Extreme events 
modelling in LUCI 

Gridded rainfall data at 
annual scale 

WorldClim (Hijmans et al., 
2005) 

• Flood mitigation 
modelling in LUCI 

• Soil erosion modelling 
in RUSLE 

Monthly rainfall data as 
time-series 

• WorldClim (Hijmans et 
al., 2005) 

• CESM (2014) 

• Soil erosion modelling 
in RUSLE 

Event-based rainfall data 
as time-series 

• DREAM (2015) 

• PREDICT framework 

• Extreme events 
modelling in LUCI and 
HEC-HMS 

LiDAR-derived DEM for 
floodplain 

• DREAM (2015) • Inundation mapping in 
LUCI and HEC-RAS 

 

The DEM was extracted from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) 

and clipped to the study area (NASA JPL, 2011). The resolution of this dataset is ~30m 

and it is the highest resolution DEM available that covers the entire catchment (Figure 

10). Steeper slopes occur in the upland areas in the south and southeastern portion of 

the catchment where the peaks of Mount Kalatungan (2,824 masl) and Mount 

Kitanglad (2,899 masl) are located (CESM, 2014). Although LiDAR-derived products 

exist for this region, the LiDAR only covers the floodplain area at the outlet of the 
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catchment and is commonly used for floodplain inundation modelling (DREAM, 2015). 

This DEM was used as input to the soil erosion and the flood mitigation models. The 

DEM represents the topography of the catchment, giving information about slope and 

allowing the models to simulate the susceptibility of areas to soil erosion or the 

routing of surface flow through the landscape. 

 

Figure 10. Digital elevation model of the CDO catchment. 

The baseline land cover scenario was taken from the national land cover map 

produced by the National Mapping and Resource Information Authority (NAMRIA), the 

centralised institution for mapping, storage and distribution of maps (DREAM, 2014). 

The HEC-HMS parameterisation with CDO uses the baseline scenario for the flood 

forecasting model (DREAM, 2015). The development scenario was created using 

information from existing land cover, mapped restricted areas such as forest reserves, 

delineated areas of different ownership (public and private), and topographic 

information such as slope (CESM, 2014). The rehabilitation scenario was based on the 

development scenario, but with additional recommendations for rehabilitation 

strategies such as reforestation, natural regeneration, agroforestry and sustainable 
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farming (CESM, 2015). Three main land use scenarios for the CDO basin were the land 

cover input for the ecosystem service and soil erosion models (Figure 11). 

 

Figure 11. Maps of the different land use scenarios. 

Figure 11 shows the different land cover scenarios as taken from the original 

sources (NAMRIA, CESM, etc.) For consistency, preprocessing was carried out to align 

the spatial coverage of the development and rehabilitation scenario to the coverage of 

the baseline scenario (Figure 12). The development and rehabilitation scenarios were 

made consistent with the baseline scenario and the land cover classes were 

generalised for easier visual comparison. Since development and rehabilitation plans 

have specific land management techniques recommended for different zones, the land 

cover parameterisation uses this further level of detail instead of the generalised land 

cover classes shown in Figure 12. For example, the agricultural areas in the 

development scenario have recommendations for contour farming and agroforestry 

while the rehabilitation plans have similar recommendations for conservation farming. 

More detail on the specific management strategies and land cover parameterisation is 

found in Section 2.4. 

Table 5. Land use percentages for each of the land cover scenarios. 

Land Use Baseline (%) Management (%) Rehabilitation (%) 

Agriculture 16.1671 40.3862 28.7510 

Brushland 34.0080     

Built-up 0.3414   0.0001 

Forest 31.9112 46.5895 60.0879 

Grassland 11.6624     

Tree Plantation 5.9099 13.0242 11.1609 
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Figure 12. Land cover scenarios aggregated to more general land cover classes. 

Brushland and grassland are not classified in the development and rehabilitation 

scenarios, as both scenarios divide the areas originally classified as brush/grassland 

into either forest or agriculture. In the CESM (2014) report, the areas classified in the 

baseline scenario are a mix of brush/grassland and agricultural activities. This mix of 

brush/grassland with agricultural activity would be more accurate due to the CDO 

catchment being heavily utilised for agriculture, with reports identifying 70% of its 

land area devoted to agricultural activity (CESM, 2014). 

The soil shapefile was provided by DREAM (2015) but was originally produced by 

the Bureau of Soils and Water Management (BSWM, 2013). The soil map is classified 

at the local names of soil series level (Figure 13) but these local names have already 

been correlated to the USDA subgroup level (Carating et al., 2014). More detail on the 

soil parameterisation is found in Section 2.3. 

Other data used to inform the hydrology of the catchment are a stream network, 

rainfall data, and evapotranspiration data. The stream network was created by DREAM 

(2015) through digitising river centre lines through Google Earth (Paringit et al., 2015). 

The stream network is used to recondition the DEM to more accurately simulate the 

flow of water through the landscape (Chapter 3) that may be hindered by errors or 

artefacts in the DEM.  

For rainfall data, several types were used for this thesis: gridded rainfall data 

(raster layers), monthly rainfall data (time-series), and event rainfall (time-series). 

Gridded rainfall data was taken from WorldClim, a database of climate surfaces at 30-
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arc second resolution (~1km) that used weather station data from other databases to 

produce gridded datasets of bioclimatic variables (precipitation, temperature, etc.) at 

the global scale (Hijmans et al., 2005). The annual rainfall data from WorldClim ranges 

from 1,700 mm yr-1 to 3,214 mm yr-1, with a mean of 2,550 mm yr-1 for CDO. The 

WorldClim estimate of mean rainfall is higher compared to the historical annual 

precipitation of Cagayan de Oro, which is approximately 2,376 mm yr-1 (CESM, 2014).  

The gridded annual rainfall for the CDO catchment (Figure 15) is an input to the LUCI 

framework for its hydrological calculations. 

The evapotranspiration data was extracted from the Global Potential Evapo-

Transpiration (Global-PET) Geospatial Dataset, which uses the WorldClim climate data 

and the Penman-Monteith equation to create a global evapotranspiration dataset 

(CGIAR-CSI, 2005; Zomer et al., 2008). The evapotranspiration values from Zomer et al. 

(2008) ranged from 1,148 mm yr-1 to 1,673 mm yr-1 with a mean of 1,517 mm yr-1. 

Previous water balance work in CDO estimated an annual evapotranspiration of 1,679 

mm yr-1 using an input rainfall value of 2,855 mm yr-1 (CESM, 2014). This 

evapotranspiration data was used as input to the LUCI framework for its hydrological 

modelling and calculation of the water balance, which influences the resulting flood 

mitigation and risk maps. 
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Figure 13. Soil map within the CDO catchment at 
the soil series classification level. 

 

Figure 14. Stream network within the CDO 
catchment derived by DREAM (2015). 

 

Figure 15. Gridded annual rainfall over the CDO 
catchment from WorldClim. 

 

 

Figure 16. Gridded evapotranspiration over the 
CDO catchment from Zomer et al. (2008). 

 



50 | P a g e  
 

The rainfall data for WorldClim was also compared to the monthly average 

rainfall reported by CESM (2014) for the CDO catchment (Figure 17). These monthly 

rainfall values were used to estimate monthly soil erosion estimates in CDO to observe 

which months and seasons were most prone to soil loss (Chapter 5). When comparing 

WorldClim to the CESM data, the monthly rainfall values were similar, with the rainiest 

months being from June to October for the monsoon season (Figure 17). 

 

Figure 17. Monthly rainfall in the CDO catchment from CESM (2014) and the WorldClim database. 

The extreme events rainfall data was taken from the network of automated 

rainfall gauges operated by the Department of Science and Technology3 through the 

Philippine Real-Time Environment Data Acquisition and Interpretation for Climate-

Related Tragedy Prevention and Mitigation (PREDICT) interface. The event-based 

rainfall data for Typhoon Bopha (Pablo) was provided by DREAM (2015) and shows a 

peak rainfall of 32 mm in 15 minutes for the Bubunawan rain gauge (Figure 18). This 

rainfall data and the baseline scenario were modelled to compare the capability of 

LUCI’s rainfall-runoff model with HEC-HMS and the results of both to the observed 

flow data (Chapter 8). 

                                                      
3 http://fmon.asti.dost.gov.ph/  

http://fmon.asti.dost.gov.ph/
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Figure 18. Time-series for the rainfall of Typhoon Bopha. 

Two other extreme events were also considered for this research: Jangmi 

(Seniang) from 2014 and Tembin (Vinta) from 2017. The rainfall data for Jangmi and 

Tembin were taken directly from PREDICT and underwent data infilling to account for 

gauges that stopped recording over the course of the event. Future work on extreme 

events modelling includes running both LUCI and HEC-HMS for the land cover 

scenarios under Bopha, Jangmi, and Tembin to assess the potential changes in flooding 

events for the CDO catchment. 

The floodplain LiDAR was also provided by DREAM (2015) and is used for their 

floodplain inundation mapping, with the river bathymetry burned into the LiDAR-

derived DEM through river surveys (Paringit et al., 2015) (Figure 19). The LUCI model’s 

capability to do rainfall-runoff modelling was tested against the DREAM (2015) 

parameterisation of HEC-HMS, and the flow hydrographs from both LUCI and HEC-

HMS were used for inundation mapping in HEC-RAS. The HEC-HMS and HEC-RAS 

parameterisation for the CDO catchment was done by DREAM (2015) and was 

provided for use within this thesis. 
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Figure 19. Extent of floodplain LiDAR provided by DREAM (2015) from the outlet to the coast of the 
catchment. 

2.3 Soil parameterisation 
Within LUCI, the soil and land cover classes supported by the model are primarily 

based on data from New Zealand and the United Kingdom (Jackson et al., 2013). 

Hence, applying LUCI to a novel study area requires parameterisation of the soil and 

land cover characteristics to ensure the successful modelling of ES. The soil 

classification used in the CDO catchment is at the soil series level or the local name, 

which was correlated to the USDA subgroup level by Carating et al. (2014). The USDA 

soil classification was not initially supported by LUCI, hence the need for soil 

parameterisation before it was applied to the CDO catchment. The LUCI model 

requires soil information about soil water holding capacity and hydraulic conductivity 

(Jackson et al., 2013). Soil hydraulic characteristics are important for models to 

simulate how water and chemicals move through the soil (Wösten et al., 2001). LUCI 

uses a modified form of soil moisture accounting (SMA) taking into account the 
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permeability of elements within the landscape at the sub-field scale (Jackson et al., 

2013). In order to run its modelling algorithms, it requires several soil hydraulic 

properties that are needed by models to simulate how water and chemicals move 

through different soils. Within the model, water moves through the soil matrix in 

response to gravity and water pressure depending on soil moisture content and 

hydraulic conductivity, while also accounting for plant transpiration (Jackson et al., 

2008). This is similar to the SMA technique of simulating water flow through different 

storage reservoirs (e.g. soil profile, groundwater storage) using rates of infiltration and 

drainage (Feldman, 2000). 

Soil hydraulic parameters are also important for determining the available soil 

water at different pressures: saturation, field capacity, and wilting point (Wösten et 

al., 2001). Any water content above field capacity is drained by gravity. At wilting 

point, the plants are unable to extract water from the soil (Bedient et al., 2013). To use 

the analogy of soil being like a bucket, saturation point would be when the bucket is 

“full” and any additional water becomes surface runoff (N. Romano et al., 2011). LUCI 

requires the following soil hydraulic parameters: 

• Total water content (WC): WC between field capacity and saturation (%) 

• Total plant available water (TPAW): WC between field capacity and wilting 

point (%) 

• Readily plant available water (RPAW): WC between stomata closure or plant 

stress and field capacity, which can be assumed as half of TPAW (%) 

• Depth to root impeding zone (mm) 

• Depth to less permeable layer (mm) 

• Max soil infiltration rate or saturated hydraulic conductivity (mm day-1) 

• Max drainage rate or sat hydraulic conductivity at bottom of soil profile (mm 

day-1) 

The most direct method for determining soil hydraulic properties is through 

conducting field and laboratory tests on soil samples, but this is heavy on time and 

resources (Schaap et al., 2001). Pedotransfer functions (PTFs) are used to relate 

hydraulic properties to soil properties that are more easily measured, such as textural 

information and organic matter (Wösten et al., 2001). 
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Computer models have been developed to facilitate the usage of pedotransfer 

functions. One example of this is the ROSETTA programme which was developed by 

the United States Salinity Laboratory, and uses several PTFs depending on the detail of 

the input soil data (Schaap et al., 2001). The SOILPAR 2.00 programme uses textural 

information, organic carbon, and bulk density with a range of PTFs to estimate 

hydraulic characteristics (Acutis & Donatelli, 2003). The Soil Water Characteristics 

(SWC) model developed PTFs that utilise textural information and organic matter to 

return soil moisture content at different pressures and hydraulic conductivity (Saxton 

& Rawls, 2006). 

PTFs were used with databases to derive the spatial distribution of hydraulic 

properties. The Hydraulic Properties of European Soils (HYPRES) database utilised 

textural information, organic matter, and bulk density of soil samples from 20 

institutions from 12 European countries with the Mualem-van Genuchten model to 

map hydraulic properties at a European scale (Wösten et al., 1999). One important 

note about PTFs is their regional specificity, where PTFs developed in one region may 

not necessarily apply to soils located in a different climate region (Wösten et al., 

1999). 

The Philippines does not have a national quantitative database of soil physical 

and textural characteristics, but soil surveys were previously accomplished to create 

soil maps (Figure 20) and record soil qualitative characteristics. The soil map compiled 

by the Bureau of Soils and Water Management (BSWM) uses the Philippine 

classification system at the soil series level, which has been correlated to the United 

States Department of Agriculture (USDA) taxonomy at the subgroup level (Carating et 

al., 2014). The undifferentiated mountain soil may be dominated by the Kidapawan 

soil series or the Typic Paleudults subgroup. 
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Figure 20. Map of the soils with the Cagayan de Oro catchment using two classifications: Philippine local 
names at the series level, and the USDA subgroup level. 

Given the lack of quantitative data, the soil characteristics information was 

sourced from two databases: National Cooperative Soil Survey (NCSS) Soil 

Characterization Database and the IGBP-DIS Soil dataset for Pedotransfer Function 

Development (IGBP-PTF). Soil records of each subgroup were extracted from these 

databases and used as input to the Soil Water Characteristics model for 

parameterisation into the LUCI framework (Figure 21).  

 

 

Figure 21. Flowchart for soil parameterisation. 

2.3.1 Soil Water Characteristics (SWC) model 

The SWC contains a range of PTFs that were used to estimate soil hydraulic 

properties from the information in the NCSS and IGBP-PTF datasets. SWC was 

developed by Saxton and Rawls (2006) using the USDA-NRSC National Soil 

Characterization Database by correlating soil water retention data with sand and clay 

textural information, bulk density, and organic matter. These soil water characteristics 

equations accessible through an Excel spreadsheet (Saxton & Rawls, 2006). The soil 

equations were recreated in MATLAB R2015a (8.5.0.197613) to batch-process the 
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large amount of soil records. The following inputs are needed by the SWC model: sand 

fraction, clay fraction, organic matter, density factor, and gravel content. In the 

records where the organic matter, density factor, and gravel content were not 

available, the model default values were used: 2.5% (OM), 1.00 (DF), and 0.00 % 

weight (gravel). The output parameters from SWC that were used for LUCI 

parameterisation were water content at: wilting point (% volume), field capacity (% 

volume), and saturation (% volume).  

2.3.2 National Cooperative Soil Survey (NCSS) Soil Characterisation Database 

This database is a compilation of soil survey data from institutions such as the 

USDA National Resources Conservation Service (NRCS) Soil Survey Laboratory and 

university laboratories (Reinsch & West, 2010). This database is accessible online 

through the NCSS Laboratory Data Mart4. Table 6 summarises the number of records 

for each subgroup found in the Cagayan de Oro catchment. The following parameters 

were extracted from the database for input into the model: 

• Total Clay (%) 

• Total Sand (%) 

• Depth to the top and bottom of the sample (cm) 

The model uses the PTFs formulated by Saxton and Rawls (2006) which requires 

textural information, organic matter, density factor, and gravel. Even though the NCSS 

database contains estimated organic matter, many of the records are missing this 

variable. For example, out of 574 records of Typic Paleudults, only three records have 

information about organic matter. Similarly, this database does not contain 

information for density factor and gravel content. Thus, these parameters were held at 

the model’s default values (organic matter: 2.5%, density factor: 1.00, gravel content: 

0.00% weight). 

2.3.3 IGBP-DIS Soil dataset for Pedotransfer Function Development (IGBP-PTF) 

This database was compiled by the International Soil Reference and Information 

Centre (ISRIC) to facilitate developing PTFs and includes ISRIC’s Soil Information 

System and the CD-ROM of the National Resources Conservation Service (Tempel et 

al., 1996). Although the original dataset is no longer accessible online, ISRIC has a 

                                                      
4 http://ncsslabdatamart.sc.egov.usda.gov/ 

http://ncsslabdatamart.sc.egov.usda.gov/
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repository of global soil data available5. The following parameters were extracted from 

the IGBP-PTF database: 

• Clay (% weight) 

• Sand (% weight) 

• Organic carbon (% weight) (Was converted to organic carbon by multiplying by 

1.72 as per Walkley and Black method (Adornado et al., 2009)) 

• Depth to the top and bottom of the sample (cm) 

Table 6. Number of soil records for subgroups present in the CDO river basin. 

Subgroup NCSS Soil 
Characterization 

Database 

IGBP-DIS Soil dataset for 
Pedotransfer Function 

Development 

Fluventic Eutropepts 2 10 

Typic Hapludalfs 902 1039 

Typic Hapludults 574 583 

Typic Paleudults 206 395 

 

2.3.4 Field measurements 

During fieldwork in the Cagayan de Oro watershed during November 2016 and 

January 2017, soil water content and matric potential measurements were taken with 

a Hydrosense and an Infields Tensiometer respectively. Two probe lengths were used 

with the Hydrosense: 12cm and 20cm probes to measure water content at different 

depths. For both probe lengths and the tensiometer, a maximum of three readings 

were taken at each site. The GPS locations were recorded with the Garmin Etrex 10 

and are shown on the map in Figure 22. The soil measurements were taken in the 

southern section of the watershed because of the site’s accessibility by road and 

presence of road cuts where profile observations could be taken. All the measured soil 

hydraulic data were taken for only one soil subgroup: Typic Paleudults, which is the 

most ubiquitous soil group in the CDO watershed. Profile observations of depth, 

colour, texture, structure, and presence of stones or roots were recording, with the 

aim to build a database of soil physical and hydraulic characteristics for future 

implementation into the LUCI framework. 

                                                      
5 http://www.isric.org/index.php/explore  

http://www.isric.org/index.php/explore
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Figure 22. Map of where the soil water content and matric potential measurements (white squares) 
were taken. 

2.3.5 Converting to LUCI Parameterisation 

The volumetric water content was estimated through differences in the water 

content at different pressures: 

𝑊𝐶𝑇𝑜𝑡𝑎𝑙 = 𝑊𝐶𝑆𝑎𝑡 − 𝑊𝐶𝐹𝐶  

𝑊𝐶𝑇𝑃𝐴𝑊 = 𝑊𝐶𝐹𝐶 −  𝑊𝐶𝑊𝑃 

𝑊𝐶𝑅𝑃𝐴𝑊 =
𝑊𝐶𝑇𝑃𝐴𝑊

2
 

Where: 

WCSat Water content at saturation 

WCFC Water content at field capacity 

WCTPAW Total plant available water 

WCWP Water content at wilting point 

WCRPAW Readily plant available water 

 

The relationship between WCTPAW and WCRPAW is an assumption of this 

parameterisation, not a true relationship. The ability of a plant to take up water is 

dependent on its rooting depth and on the hydraulic properties of the soil, especially 
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the water content at different pressures (L. Zhang et al., 2001). WCRPAW is a fraction of 

WCTPAW defined as the water available to plants between field capacity and the point 

where the plants experience water stress and varies between soil types. Hence, future 

improvements to the CDO parameterisation in LUCI include analysing moisture 

retention curves to determine a more accurate relationship between WCTPAW and 

WCRPAW. 

The depths from the NCSS and IGBP-PTF datasets were the depth from the top of 

the sample and depth to the bottom of the sample: 

𝐷𝑒𝑝𝑡ℎ = (𝐷𝑏𝑜𝑡𝑡𝑜𝑚 − 𝐷𝑡𝑜𝑝) × 10 

To get the daily saturated hydraulic conductivity (mm day-1), the hourly 

saturated hydraulic conductivity (mm hr-1) obtained from the SWC model was simply 

multiplied by 24. The drainage rate was estimated to be the minimum daily saturated 

hydraulic conductivity value for that soil subgroup. 

Using the estimates of hydraulic properties, the soil subgroups were classified as 

either very permeable soils or soils that were not as permeable. The very permeable 

soils are those with high daily saturated hydraulic conductivity or infiltration rates, and 

high drainage rates. The less permeable soils had low infiltration rates and low 

drainage rates. As LUCI is continually developed, the permeability classification system 

will be phased out in favour of using the actual values of hydraulic properties to 

determine soil hydrology. 

2.3.6 Soil parameterisation results 

In terms of differences between results from the two databases, the plant 

available water values (total and readily) and depth values were consistently higher for 

the records extracted from the NCSS database compared to the IGBP-PTF database 

(Figure 23, Figure 24 and Figure 25). The NCSS results had a larger variation in the 

plant available water values compared to the results from the IGBP-PTF database, with 

Fluventic Eutropepts having the highest values while Typic Hapludalfs had the lowest. 

In terms of infiltration rates, Typic Hapludults had the highest daily rates while 

Fluventic Eutropepts had the lowest. The differences between the two databases for 

water content were within a few percent, and the patterns of which soil subgroups 

had the highest or lowest water contents were the same. 
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Figure 23. Total water content (%) for all soil subgroups in the CDO catchment from the IGBP and NCSS 
databases. 

 

Figure 24. Total plant available water (%) for all soil subgroups in the CDO catchment from the IGBP and 
NCSS databases. 

 

Figure 25. Readily plant available water (%) for all soil subgroups in the CDO catchment from the IGBP 
and NCSS databases. 
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The estimated values of infiltration rates and drainage rates for the different 

USDA subgroups were not an exact match but were similar in terms of which 

subgroups had the highest and lowest daily infiltration and drainage (Table 7). 

According to Carating et al. (2014), Jasaan soil series (Typic Hapludults) has an 

external drainage of good to excessive while the internal drainage is fair (Carating et 

al., 2014). This subgroup has the highest estimated daily infiltration rate for all the 

subgroups present in the CDO watershed. Generally, all the soils present in the CDO 

catchment are classified as having good drainage (Carating et al., 2014) but the actual 

variation of hydraulic properties between soils has not been published. 

For implementation into the LUCI framework, the Typic Hapludults, Fluventic 

Eutropepts, and Typic Hapludalfs were classified as more permeable soils compared to 

the Typic Paleudults subgroups. As LUCI is further developed, this existing database of 

hydraulic characteristics within the CDO watershed will have more influence on the 

hydrological operations of the model. 

Table 7. Infiltration and drainage rate estimates for the different subgroups for both databases. 

USDA Subgroup Max infiltration rate (mm day-1) Max drainage rate (mm day-1) 

IGBP NCSS IGBP NCSS 

Typic Hapludults 1605.71 1046.97 2.06 0.31 

Fluventic Eutropepts 80.42 145.14 20.88 144.63 

Typic Paleudults 435.58 441.86 1.47 4.08 

Typic Hapludalfs 951.06 614.31 4.55 7.7 

 

Due to the similarity of the water content information and hydraulic data for the 

soil subgroups obtained from the two different databases, both sets of values were 

used to inform the permeability of the soil, and the values from the IGBP-PTF database 

were coded into the LUCI framework. The NCSS database contains information mostly 

from the United States, while the IGBP-PTF database contains more global data and 

has more records for all the soil subgroups (Table 6). 

Since the soil water content and matric potential values obtained during 

fieldwork were only obtained for one soil subgroup and within one small region of the 

catchment, these values were not coded into LUCI at this stage. However, the 

observational data was used to understand the physical characteristics of the soils 

present in the CDO watershed, with rooting information that will be useful in later 
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versions of LUCI where rooting depth will be used. Future fieldwork can be done to 

obtain soil hydraulic characteristics over more soil subgroups and locations within CDO 

to compare the values to the ones obtained from the databases and water content 

model. Within the LUCI framework, the Generate Scenario User Specified Land Use 

tool is used with the soil linking code “SOILCODE” and input data source as 32. These 

two parameters are used by LUCI to link the information in the soil shapefile with the 

tabular information present within LUCI. 

In future applications of LUCI, a soil map may be available to an area of interest 

but have limited information about the soil textural and hydraulic characteristics. 

Testing the hydraulic characteristics derived from external databases will help extend 

the application of LUCI to similarly data-sparse regions. The hydraulic characteristics 

needed by LUCI include information about soil water content, soil water available to 

vegetation, and rates of infiltration and drainage. At this current stage, the LUCI 

framework uses classifications of permeability for data-sparse regions, but future 

development of LUCI will phase out this classification-based system in favour of using 

the actual values for hydraulic characteristics that were compiled during this research. 

2.4 Land cover parameterisation 
Although LUCI already supports many land cover types, this research tested two 

methods of incorporating Philippines-specific land cover into LUCI: correlation and 

custom coding and then running it through the ecosystem service models (Figure 26). 

Correlation involves cross-referencing the existing LUCI database of supported land 

cover types and matching them with the land cover present in the CDO catchment. 

This is a straightforward way to parameterise LUCI for a new study site, allowing 

applications where information about the specific land cover characteristics is scarce 

or not practically possible to obtain. Custom coding involves collecting data about 

more specific characteristics of the land cover in the CDO catchment to classify the 

land cover’s ability to perform certain ecosystem services. This is more time-

consuming but can account for site-specific characteristics, such as types of agriculture 

(e.g. rice paddies) or types of forests not included in previous versions of LUCI. 
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Figure 26. Flowchart for land cover parameterisation experiments. 

As noted in Section 2.2, for comparison the shapefiles for the development and 

rehabilitation scenarios were modified to match the shape of the baseline scenario. 

For visual comparison, the land cover types were aggregated into more general land 

cover classes (Figure 12). The development and rehabilitation scenario are very 

similar, but with the rehabilitation scenario focusing on tree re-planting in the 

southern part of the watershed where the development scenario proposes agricultural 

and tree plantation use. Additional information from CESM (2014) classifies 

brush/grassland areas in the baseline scenario as a mixture of brush/grass and arable 

land.  

Although the land cover classes have been aggregated for visualisation purposes, 

the LUCI land cover parameterisation was based on the original land cover 

classification proposed by the different scenarios (Table 8). This is due to the fact that 

the management practices suggested by the development and rehabilitation scenario 

are more detailed (e.g. agricultural zones being recommended to use contour farming 

and other soil conservation techniques (CESM, 2014)). 

Table 8. Aggregated and individual land cover classes for the different scenarios. 

Aggregated Baseline Development Rehabilitation 

Agriculture Other land, 
cultivated, annual 
crop 
Other land, 
cultivated, 
perennial 

Agriculture Sub-
zone 
Agricultural zone1 
Agricultural zone2 
Agricultural zone3 

Practice 
Conservation 
Farming 
Recommend 
Conservation 
Farming 

Brushland Other wooded 
land, shrubs 

None None 
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Table 8. Aggregated and individual land cover classes for the different scenarios. (continued) 

Aggregated Baseline Development Rehabilitation 

Forest Closed forest, 
broadleaved 
Open forest, 
broadleaved 

Forest Restoration 
Sub-zone 
National Park 
Natural Park 
Private Forest Sub-
zone 
Strict Protection 
Zone 

Assisted Natural 
Regeneration 
Protection 
Recommend 
Reforestation 
Reforestation 

Grassland Other land, 
natural, grassland 
Other wooded 
land, wooded 
grassland 

None None 

Tree Plantation Forest plantation, 
broadleaved 

Agroforesty Sub-
zone 
Private 
Agroforestry Sub-
zone 
Timber Production 
Sub-zone 
Timber 
Regeneration Sub-
zone 

Agroforestry 
Recommend 
Agroforestry 

Water Inland water Coastal zone Engineering for 
Erosion Control 

 

For the correlation method, each of the land cover classes in the proposed 

scenarios were compared to the master list of LUCI land cover classes that were 

already supported. For all the land cover classes present in the CDO catchment and 

potential scenarios, there were similar land cover classes already supported in the 

LUCI framework. The descriptions of all the land cover classes in CDO were compared 

to the descriptions of the classes in LUCI and were matched based on their similarity 

(Table 9). This type of parameterisation is a good initial method of setting up LUCI to 

support a new site because the relatively low data requirements. However, it excludes 

information about the types of land cover management that could potentially occur in 

later land management plans, such as the use of soil conservation practices (e.g. 

contour farming). Within the LUCI framework, the Generate Scenario User Specified 

Land Use tool uses the “myLCid” field in the scenario shapefile and compares it to the 
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land cover classes already supported within LUCI. This comparison is done through a 

user-defined land cover linking table that matches the “myLCid” field to a matching 

“LUCIid” field. 

Table 9. Correlation of the original land cover scenarios for CDO with the LUCI master land cover classes. 

Original LC 
ID 

Original LC Description LUCI 
ID 

LUCI Description 

Baseline Scenario 

Sh Other wooded land, shrubs 201 Scrub/shrub generic 

GL Other land, natural, grassland 401 Improved grassland not fertilised 

AC Other land, cultivated, annual 
crop 

301 Annual generic 

PC other land, cultivated, 
perennial 

391 Tree plantation and perennial crops 
(tropical) 

BUA Other land, built-up area 801 Urban generic 

PINE Pineapple plantation 322 Pineapples 

NF4F Closed forest, broadleaved 101 Broadleaved, deciduous 

NF2B Open forest, broadleaved 101 Broadleaved, deciduous 

IW Inland water 906 Water river 

FPB Forest plantation, broadleaved 391 Tree plantation and perennial crops 
(tropical) 

WGL Other wooded land, wooded 
grassland 

391 Tree plantation and perennial crops 
(tropical) 

Development Scenario 

Ag Agricultural Sub-zone 301 Arable generic 

Ag1 Agricultural Zone 1 301 Arable generic 

Ag2 Agricultural Zone 2 391 Tree plantation and perennial crops 
(tropical) 

Ag3 Agricultural Zone 3 391 Tree plantation and perennial crops 
(tropical) 

AgFor Agroforestry Sub-zone 391 Tree plantation and perennial crops 
(tropical) 

AgForPriv Private Agroforestry Sub-zone 391 Tree plantation and perennial crops 
(tropical) 

ForPriv Private Forest Sub-zone 105 Mixed forest 

ForRest Forest Restoration Sub-zone 101 Broadleaved, deciduous 

NatioPark National Park 101 Broadleaved, deciduous 

NatuPark Natural Park 101 Broadleaved, deciduous 

Prot Strict Protection Zone 101 Broadleaved, deciduous 

TimProd Timber Production Sub-zone 106 Plantation forest generic 

TimReg Timber Regeneration Sub-zone 106 Plantation forest generic 
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Table 9. Correlation of the original land cover scenarios for CDO with the LUCI master land cover classes. 
(continued) 

Rehabilitation Scenario 

Bu City 801 Urban generic 

AgFor Agroforestry 391 Tree plantation and perennial crops 
(tropical) 

Ref Reforestation 105 Mixed forest 

RecAgFor Recommend Agroforestry 391 Tree plantation and perennial crops 
(tropical) 

RecRef Recommend Reforestation 101 Broadleaved, deciduous 

AgCons Practice Conservation Farming 301 Arable generic 

Prot Protection 102 Broadleaved evergreen 

NatReg Assisted Natural Regeneration 105 Mixed forest 

RecAgCo
ns 

Recommend Conservation 
Farming 

301 Arable generic 

 

For the custom coding approach, the types of crops and trees present in the 

watershed were based on fieldwork observations (Table 10). The growth stages, 

rooting depth, and water needs for these crops and trees were sourced from literature 

and agriculture models. One such model is CROPWAT, a decision support tool used to 

calculate crop water requirements under particular of climate and growth conditions 

(FAO, 2018). Based on fieldwork observations, the crops that had the largest fields 

were pineapple, mango, rubber trees, banana, and papaya. 

Table 10. Crops and trees observed in the CDO watershed through fieldwork. 

Common name Frequency Scientific name 

Acacia 4 Acacia crassicarpa 

Alim 1 Melanolepis multiglandulosa 

Bamboo 14 Dendrocalamus asper 

Banana 19 Musa acuminata 

Cacao 1 Theobroma cacao 

Camote 1 Ipomoea batatas 

Cassava 8 Manihot esculenta 

Coconut 16 Cocos nucifera 

Corn 10 Zea mays 

Fire trees 1 Delonix regia 

Fruit trees 1 Unidentified fruit trees 

Fortune plant 1 Dracaena fragrans 

Gemelina 9 Gmelina arborea 

Hanabdong 1   

Ipil-ipil 7 Leucaena glauca 

Jackfruit 3 Artocarpus heterophyllus 
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Table 10. Crops and trees observed in the CDO watershed through fieldwork. (continued) 

Common name Frequency Scientific name 

Mahogany 3 Toona calantas 

Makahiya 4 Mimosa pudica 

Malunggay 1 Moringa oleifera 

Mango 9 Mangifera indica 

Narra 1 Pterocarpus indicus 

Palcata 5 Acacia falcata 

Papaya 5 Carica papaya 

Pine 2 Pinus kesiya 

Pineapple 5 Ananas comosus 

Rice 2 Oryza sativa 

Rubber 7 Hevea brasiliensis 

Saluyot 1 Corchorus olitorius 

Santol 2 Sandoricum koetjape 

Star apple 3 Chrysophyllum cainito 

Talahib (wild grass) 10   

Talisay 2 Terminalia catappa 

 

To code custom land cover classes for LUCI and create a more detailed 

parameterisation, the physical characteristics (rooting depth) and water requirements 

for the different crops and trees must be compiled. These values influence the way the 

water balance of the catchment is calculated, which influences the way that the 

catchment can respond to rainfall events. The rooting depth of the crops in the CDO 

catchment ranged from 0.10m (rice) up to 6m (acacia) based on the values from 

literature (Table 11). In a global study of maximum rooting depths, tropical deciduous 

forests had a depth of 3.7m while tropical evergreen forests had a depth of 7.3m 

(Canadell et al., 1996). In terms of water needs, a study on tropical trees found 

maximum transpiration rates to range from 0.4 to 4.9 mm day-1 (Dierick et al., 2010). 

The CDO catchment receives almost 3000mm of rainfall annually, which can support 

the water needs of the crops and even trees with high water consumption such as 

acacia trees (CESM, 2014; Morris et al., 2011). Fieldwork showed the crops as 

commonly rainfed rather than irrigated. This information about crop water needs and 

changes in rooting depth is important to further parameterise the tropical soil 

hydraulic properties in LUCI to better represent different combinations of soil and land 

cover. 
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Through the literature review and fieldwork observations, the different land 

cover types were classified into several types of flood mitigation land: flood-

generating, flood-mitigating, and water bodies. Flood-generating lands are those that 

have low permeability and low storage of water, while flood-mitigating lands have 

high permeability and can store more water. Water bodies included the river and any 

inland lakes or reservoirs. By compiling all the crop and tree information through 

literature review and fieldwork, the CDO catchment is ready for the next stage of LUCI 

development where these values will have a greater influence on the hydrological 

operations of LUCI.  Like the soil parameterisation process, this classification-based 

land cover parameterisation approach will be phased out in future versions of LUCI in 

favour of utilising the specific land cover characteristics such as rooting depths and 

water needs to give more detailed hydrological information of any point in the 

landscape. Since these factors also change with crop growth, future work can include a 

crop model to handle dynamic rooting depth and water needs. 

Table 11. Physical characteristics of the different crops and trees observed in the CDO catchment. 

Crop name and 
scientific name 

Growth 
stages 

Rooting 
depth 

Rooting 
depth for 
LUCI 

Water 
management 
needs 

Source 

Agricultural section 

Camote 
(Ipomoea 
batatas) 

~ 150 days 
Planting to 
tubers: 40 to 
60 days 
Tubers to 
maximum 
leaf 
development: 
60 to 120 
days 
Maximum 
leaf 
development 
to harvest: 45 
to 90 days 

~ 0.20 to 
0.25m 

0.25m 360 to 800mm for 
growing season 
 
Optimal rainfall of 
750mm to 
1,000mm annually  
 

(Alvim & 
Kozlowski, 
1977; Atu, 
2013; 
Ramirez, 
1992) 

Cassava (Manihot 
esculenta) 

Harvest at 12 
months 

Up to 2m 2m Can tolerate 
~600mm of annual 
precipitation 
 
Optimal rainfall of 
1,000mm to 
1,500mm annually 

(Alvim & 
Kozlowski, 
1977; El-
Sharkawy, 
2006) 
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Table 11. Physical characteristics of the different crops and trees observed in the CDO catchment. 
(continued) 

Crop name and 
scientific name 

Growth stages Rooting depth Rooting 
depth for 
LUCI 

Water management 
needs 

Source 

Corn or maize 
(Zea mays) 

~ 125 days 
Initial and 
development: 
55 days 
Mid-season: 40 
days 
Late season: 30 
days 

Initial and 
development: 
0.3m 
Mid and late 
season: 1.00m 

1.00m 500 to 800mm 
annually 

CROPWAT 

Pineapple (Ananas 
comosus) 

~ 790 days Up to 0.85m 
depth, lateral 
spread of 1 to 
2m 

0.85m 650 to 3,800mm 
annual precipitation 
(Ideally 1,000 to 
1,500mm annually) 
 
Maximum ET: 700 to 
1000mm year-1 

CROPWAT and 
Morton (1987) 

Rice (Oryza sativa) ~ 150 days 
Nursery to 
transplant: 55 
days 
Growth: 120 
days 

Transplant: 
0.10m 
Mid/late 
growth: 0.60m 

0.60m In standing water, 
levels: 
Transplant: 0.10m 
Vegetative: 0.02 to 
0.05m 
Mid-season: 0.10m 
Late: none 

CROPWAT 

Agroforestry section 

Banana (Musa 
acuminata) 

~ 330 days for 
1st year 
Initial: 90 days 
Development: 
165 
Mid/late 
season: 75 days 
 
~ 240 days for 
2nd year 
Initial: 60 days 
Development: 
60 days 
Mid/late 
season: 120 
days 

1st year: 
Initial and 
development: 
0.3m 
Mid/late 
season: 0.90m 
 

0.90m  
Annual rainfall of at 
least 1,000mm 
(monthly rainfall of 
200 to 300mm) 
 
ET: 1.5 to 9.8mm 
day-1 
 

CROPWAT 

Cacao 
(Theobroma 
cacao) 

Produces 
pods at ~ 4 
years, 
maximum 
productivity 
at ~8 to 10 
years 

1.0m to 1.3m 1.3m 1,400mm to 
2,000mm annual 
rainfall 
 
Affected when 
water content is 
below 60% to 70% 
of maximum 
available soil water 
capacity 

(Alvim & 
Kozlowski, 
1977; De 
Almeida & 
Valle, 2007) 
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Table 11. Physical characteristics of the different crops and trees observed in the CDO catchment. 
(continued) 

Crop name and 
scientific name 

Growth 
stages 

Rooting 
depth 

Rooting 
depth for 
LUCI 

Water 
management 
needs 

Source 

Coconut (Cocos 
nucifera) 

Rapid growth 
from 2 to 5 
years, 
flowering at 4 
to 5 years 

Adventitious 
root system, 
2000 to 4000 
fibrous roots  
that can go 
down to 5m 
but mostly 
found within 
1.5m of 
surface 

1.5m 1,500 to 2,500mm 
annual rainfall 

(Chan & 
Elevitch, 
2006) 

Jackfruit 
(Artocarpus 
heterophyllus) 

Fruiting 
between 4 to 
14 years 

0.3 to 0.9m 0.6m Sensitive to 
drought, similar to 
kamansi/breadfruit 

(Jamaludheen 
et al., 1997; 
Morton, 
1987) 

Kamansi 
/breadfruit 
(Artocarpus 
altilis) 

Fruiting at ~5 
years, 
productive 
for up to 50 
years 

0.3 to 0.9m 0.6m ~ 2,500mm annual 
rainfall 

(Jamaludheen 
et al., 1997; 
Morton, 
1987) 

Malunggay 
(Moringa 
oleifera) 

Bearing pods 
at 6 to 8 
months, 
regular 
bearing after 
2 years 

Tough fibrous 
roots 

 480 to 4,000 mm 
annual rainfall 

(Duke, 1998) 

Mango 
(Mangifera 
indica) 

Fruiting at 6 
years, 
maximum 
productivity 
at 15 years 
 
Initial and 
development: 
180 days 
Mid/late 
season: 185 
days 

Usually 2m, 
can be up to 
6m; finer 
roots found 
at the 0.25 to 
0.5m depth 

2m ~750 to 2,500mm 
annual rainfall 

(Alvim & 
Kozlowski, 
1977; 
Morton, 
1987) 

Papaya (Carica 
papaya) 

Up to 20 
years 

Up to 2m, but 
usually found 
in within 
0.5m of 
surface with 
0.25m depth 
having most 
concentration 
of roots 

2m Stress occurs when 
readily available 
water goes below 
75% 

(Campostrini 
& Glenn, 
2007; DAFF, 
2009) 
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Table 11. Physical characteristics of the different crops and trees observed in the CDO catchment. 
(continued) 

Crop name and 
scientific name 

Growth 
stages 

Rooting 
depth 

Rooting 
depth for 
LUCI 

Water 
management 
needs 

Source 

Rubber (Hevea 
brasiliensis) 

~ 5 to 6 years 
to maturity 

2 to 5m after 
3 years, up to 
10m 

5m Rainfall best 
between 1800 to 
2500mm 

(Verheye, 
2010) 

Santol 
(Sandoricum 
koetjape) 

   Can flourish in dry 
and wet areas 

(Morton, 
1987) 
 
Fruit tree, 
ornamental 
evergreen 

Star apple 
(Chrysophyllum 
cainito) 

Fruiting at 5 
to 10 years 

  Tropical (Morton, 
1987) 

Forest 

Acacia (Acacia 
crassicarpa) 

Deep roots 
after 4 years, 
can be ~20 
years 

~6m after 4 
years, can be 
up to 16m 

6m 500 to 3000mm 
rainfall 

(Eyles et al., 
2015; Morris 
et al., 2011) 

Alim 
(Melanolepis 
multiglandulosa) 

     

Bamboo 
(Dendrocalamus 
asper) 

Harvest after 
3 years 

Usually down 
to 0.4m, most 
roots found 
near surface 

0.4m Frequent rainfall; 
grows 
continuously in 
humid and tropical 
environments 

(Kittur, 2011) 

Fire trees 
(Delonix regia) 

5 years to 
maturity 

  High tolerance for 
drought, needs 
well-drained soil 

(Barwick, 
2004) 

Fortune plant 
(Dracaena 
fragrans) 

Ornamental, observed infrequently 

Gemelina 
(Gmelina 
arborea) 

10 to 12 years 
to harvest 

Taproot 
system; Most 
roots within 
0.4m of soil 
profile with 
lateral root 
spread 

0.4m 750 to 4,500mm 
annual 
precipitation 

(Mayavel et 
al., 2014; 
Swamy et al., 
2003) 

Ipil-ipil 
(Leucaena 
glauca) or wild 
tamarind 
(Leucaena 
leucocephala) 

20 to 40 years Taproot 
system; 2m 
depth at 1 
year and over 
5m depth at 
5 years 

2.5m High tolerance for 
drought, needs 
well-drained soil; 
annual rainfall of 
500mm to 
3,500mm 

Nitrogen-
fixing plant 
 
(Barwick, 
2004; Global 
Invasive 
Species 
Database, 
2010a) 
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Table 11. Physical characteristics of the different crops and trees observed in the CDO catchment. 
(continued) 

Crop name and 
scientific name 

Growth 
stages 

Rooting 
depth 

Rooting 
depth for 
LUCI 

Water 
management 
needs 

Source 

Philippine 
mahogany 
(Toona calantas) 

30 to 40 years 
before 
harvest 

0.20m to 
0.7m (mean 
of ~0.5m) 
with lateral 
spread of the 
roots 
(buttressing) 

0.5m Possibly like narra, 
another Philippine 
hardwood 

Wang et al. 
(2002) but 
their study 
was about 
redcedar, 
which is 
another 
name for the 
Toona genus 

Narra 
(Pterocarpus 
indicus) 

30 to 40-year 
rotations 

Near surface 
lateral 
rooting; 80% 
of root matrix 
found within 
0.6m of 
surface 

0.6m 1300 to 1400mm 
annual rainfall 

(Saifuddin & 
Normaniza, 
2016; 
Thomson, 
2006) 

Palcata 
(Acacia falcata) 
which is the 
same family as 
the acacia 

Deep roots 
after 4 years, 
can be ~20 
years 

~6m after 4 
years, can be 
up to 16m 

6m 500 to 3000mm 
rainfall 

(Eyles et al., 
2015; Morris 
et al., 2011) 

Pine (Pinus 
kesiya) 

Cone-bearing 
at 12-18 years 

Tap root 
system 
 
1 to 1.5 
years: Up to 
2.75m 
3 years: 
almost equal 
to height of 
tree 

2.75m ~1,300mm annual 
rainfall 
 
ET: 
1 mm day-1 for 
seedings 

(Armitage & 
Burley, 1980) 

Talisay 
(Terminalia 
catappa) 

Fast-growing 
perennial, 
agroforestry 
rotations at 
10 to 15 years 

Lateral root 
system, 
buttressed 
roots 

 1,500mm to 
3,400mm annual 
rainfall 

(FAO, 2007) 

Grassland and brushland 

Makahiya 
(Mimosa pudica) 

Seedling 
stage of 2 to 
3 months; live 
up to 1 to 2 
years 

Creeping 
plant/weed 

 Annual rainfall of 
1,000mm to 
2,000mm 

(Global 
Invasive 
Species 
Database, 
2010b) 
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Table 11. Physical characteristics of the different crops and trees observed in the CDO catchment. 
(continued) 

Crop name and 
scientific name 

Growth 
stages 

Rooting 
depth 

Rooting 
depth for 
LUCI 

Water 
management 
needs 

Source 

Grassland and brushland 

Talahib and 
other wild 
grasses (Pasture 
grass from 
CROPWAT) 

Initial and 
development: 
200 days 
Mid/late 
season: 165 
days 

0.80m, can go 
down to 1.6m 
depth 

0.80m At least 150mm to 
250mm available 
water capacity 

CROPWAT for 
pasture grass 
information; 
Australian 
wild tropical 
pasture 
grasses 
(Murphy, 
2010) 

Saluyot 
(Corchorus 
olitorius) 

~ 120 days 0.15 to 
0.20m, can 
be up to 
0.60m 

0.20m Rain-fed, sensitive 
to water stress 

(Mahapatra 
et al., 2009) 

 

2.5 Correlation to New Zealand databases 
The LUCI framework has been applied to several sites within New Zealand: 

including the Wairarapa, Rotorua, and Canterbury at various spatial scales (Easton, 

2015; Marapara, 2016). The parameterisation information for New Zealand soils and 

land cover types is therefore the most supported and detailed within LUCI. The 

Philippine soils and land cover types were correlated to the New Zealand Soil 

Classification (NZSC) at the order level (Hewitt, 2010) and the New Zealand Land Cover 

Database6 respectively, and then re-run within LUCI to test the relatively general 

Philippine parameterisation against the more detailed NZ-based parameterisation. In 

addition to correlating to the NZ databases, information about the stocking rates and 

fertiliser applications were taken from CountryStat so that LUCI was able to apply the 

nitrogen and phosphorus transport models to CDO (PSA, 2018). The purpose of testing 

the NZ-based parameterisation is to benefit future applications of LUCI in areas with 

limited information about specific soil and land cover characteristics.  

 The Philippine soils were correlated to the NZSC through comparing the general 

properties of the soil subgroups and their highest-level order classification to the 

highest level of the NZSC. The USDA subgroups were matched to the NZSC order level 

                                                      
6 http://www.lcdb.scinfo.org.nz/  

http://www.lcdb.scinfo.org.nz/
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based on comparison between Hewitt et al. (2010), the work of Carating et al. (2014) 

on the Philippine soils, the USDA Keys to Soil Taxonomy (USDA, 2014), and to 

previously published correlation tables (NZ Soils, 2011). Most of the soils in the CDO 

catchment were classified as Ultic soils, with Pallic and Brown soils also present. The 

correlation between the subgroups of Typic Hapludults, Typic Paleudults, and Typic 

Hapludalfs was straightforward as there was a direct correlation between these 

subgroups and orders with the NZSC (NZ Soils, 2011). For the Fluventic Eutropepts (San 

Manuel series), the information from Carating et al. (2014) was compared to Hewitt et 

al. (2010) and the soil subgroup was matched to the Brown soils due to the similarities 

in typical colour properties. For actual use in the LUCI framework’s General Landcover 

Scenario tool, the soil input data must have a field called “SOIORDER” as the linking 

code and the soil data source as 24. 

Table 12. Correlation of the USDA subgroups present in the CDO catchment with the New Zealand Soil 
Classification at the order level. 

USDA Subgroup NZSC Order 

Typic Hapludults Ultic 

Fluventic Eutropepts Brown 

Typic Paleudults Ultic 

Typic Hapludalfs Pallic 

 

The land cover types in the CDO catchment and potential scenarios were 

compared to the New Zealand Land Cover Database (NZLCDB) v4.0 through comparing 

the descriptions of the land cover classes present in the documentation. The shrubs, 

grassland, and forest plantations were classified as exotic vegetation classes in LCDB4 

because they are types of plants common to the Philippines. The open forest was 

classified as deciduous hardwoods because of their tropical nature, while the closed 

forest and areas of protection were classified as indigenous forest because of their 

relatively good condition and presence of trees such as pines and other Philippine 

hardwoods. For use in the LUCI framework’s Generate Landcover Scenario tool, the 

input data file must have the “LCBD4CLASS” field as its linking code and the land cover 

data source set to 24. 
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Table 13. Correlation of the original land cover scenarios for CDO with the New Zealand Land Cover 
Database version 4.0. 

Original 
LC ID Original LC Description 

LCDB4 
Class 

LCDB4 Name 

Baseline Scenario 

Sh Other wooded land, shrubs 56 Mixed Exotic Shrubland 

GL Other land, natural, grassland 40 High Producing Exotic Grassland 

AC 
Other land, cultivated, annual 
crop 30 Short-rotation Cropland 

PC 
other land, cultivated, 
perennial 33 

Orchards, Vineyards or Other 
Perennial Crops 

BUA Other land, built-up area 1 Built-up Area (settlement) 

PINE Pineapple plantation 33 
Orchards, Vineyards or Other 
Perennial Crops 

NF4F Closed forest, broadleaved 69 Indigenous Forest 

NF2B Open forest, broadleaved 68 Deciduous Hardwoods 

IW Inland water 21 River 

FPB 
Forest plantation, 
broadleaved 71 Exotic Forest 

WGL 
Other wooded land, wooded 
grassland 54 

Broadleaved Indigenous 
Hardwoods 

Development Scenario 

Ag Agricultural Sub-zone 30 Short-rotation Cropland 

Ag1 Agricultural Zone 1 30 Short-rotation Cropland 

Ag2 Agricultural Zone 2 33 
Orchards, Vineyards or Other 
Perennial Crops 

Ag3 Agricultural Zone 3 33 
Orchards, Vineyards or Other 
Perennial Crops 

AgFor Agroforestry Sub-zone 33 
Orchards, Vineyards or Other 
Perennial Crops 

AgForPriv 
Private Agroforestry Sub-
zone 33 

Orchards, Vineyards or Other 
Perennial Crops 

ForPriv Private Forest Sub-zone 71 Exotic Forest 

ForRest Forest Restoration Sub-zone 69 Indigenous Forest 

NatioPark National Park 69 Indigenous Forest 

NatuPark Natural Park 69 Indigenous Forest 

Prot Strict Protection Zone 69 Indigenous Forest 

TimProd Timber Production Sub-zone 71 Exotic Forest 

TimReg 
Timber Regeneration Sub-
zone 71 Exotic Forest 
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Table 13. Correlation of the original land cover scenarios for CDO with the New Zealand Land Cover 
Database version 4.0. (continued) 

Original LC 
ID 

Original LC Description 
LCDB4 

Class 
LCDB4 Name 

Rehabilitation Scenario 

Bu City 1 Built-up Area (settlement) 

AgFor Agroforestry 33 
Orchards, Vineyards or Other 
Perennial Crops 

Ref Reforestation 71 Exotic Forest 

RecAgFor Recommend Agroforestry 33 
Orchards, Vineyards or Other 
Perennial Crops 

RecRef Recommend Reforestation 71 Exotic Forest 

AgCons 
Practice Conservation 
Farming 30 Short-rotation Cropland 

Prot Protection 69 Indigenous Forest 

NatReg 
Assisted Natural 
Regeneration 69 Indigenous Forest 

RecAgCon
s 

Recommend Conservation 
Farming 30 Short-rotation Cropland 

 

2.6 Ecosystem services modelling 
For this thesis, two ecosystem services were assessed through modelling and 

spatial analysis: soil conservation (ability to mitigate erosion) and flood mitigation. The 

soil erosion modelling was done using the RUSLE (Chapter 4) to identify the annual soil 

erosion rates and the areas of the catchment vulnerable to soil erosion under the 

three different land cover scenarios. The flood mitigation modelling was done in the 

LUCI framework to identify areas that are already providing mitigation and those that 

can be managed differently to improve mitigation services. 

2.6.1 Flood mitigation 

The flood mitigation module is already implemented in LUCI so the modelling for 

this ecosystem service was completed within the actual LUCI model in ArcMap. The 

aim is to answer the following questions: 

• Which areas are providing the ecosystem service of flood mitigation? 

• Which areas have the potential to be developed and provide flood mitigation? 

• How will different land cover scenarios affect the hydrological response of the 

watershed? 

Figure 27 shows the general flowchart of this ecosystem services modelling 

component. Since an NZ-based parameterisation was also set up for CDO, more 
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ecosystem service models were run using that NZ-based parameterisation to produce 

initial ecosystem services maps for agricultural productivity, and transport of nitrogen 

and phosphorus.  

By running the baseline, development, and rehabilitation scenarios through 

LUCI’s flood mitigation module, it not only shows how much of the CDO watershed is 

critical to mitigating floods, but which areas can be targeted for future management 

interventions. The comparison of the PH-based parameterisation and the NZ-based 

parameterisation is also useful to test the effect of various levels of parameterisation 

detail on the ecosystem services results. In future applications of LUCI in new 

countries, the steps outlined in this research guide future users to more easily 

parameterise their site’s land cover scenarios. 

 

Figure 27. Flowchart for the LUCI ecosystem services runs. 

2.6.2 Soil conservation 

To understand soil conservation, soil erosion runs were done independently to 

the LUCI software to test the RUSLE before it will be fully implemented into LUCI in 

future work (Figure 28). The parameterisation data and equations were taken from an 

extensive literature review of RUSLE applications in tropical locations, specifically in 

Southeast Asia. Several equations were tested to assess their applicability to the CDO 

watershed because of the regional specificity of some sub-factors, making sensitivity 

analysis important in RUSLE applications. The different RUSLE layers were created as 

raster layers in ArcMap and run through different scenarios and combinations to 

assess how changes in components affect the final soil loss estimates. More detail 

about the RUSLE application the CDO is in Chapter 5, and the RUSLE model was also 

tested and applied in the Mangatarere catchment, New Zealand (Chapter 6). 
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Figure 28. Methodology for soil erosion runs. 

2.7 Extreme events and inundation 
In December 2011, Typhoon Washi caused heavy flooding and destruction in the 

region. Typhoon Washi caused a total of 1,268 casualties, half of whom were located 

in CDO City, and damages amounting to PHP 2 billion (~USD 46 million in 2011) 

(NDRRMC, 2012a). In December 2012, Typhoon Bopha (local name: Pablo) caused a 

total of 1,067 casualties and estimated PHP 36 billion in damages (~USD 870 million in 

2012) (NDRRMC, 2012b).  In December 2014, Tropical Storm Jangmi (local name: 

Seniang) caused a total of 66 casualties and estimated PHP 1 billion in damages (~USD 

28 million in 2014) (NDRRMC, 2014a). In December 2017, Typhoon Tembin (local 

name: Vinta) caused 1 confirmed death, 160+ missing or presumed dead, and 

estimated PHP 1.5 billion in damages (~USD 31 million in 2017) (NDRRMC, 2017). 

Since flooding associated with extreme events is a major issue in CDO, this 

research also tested the rainfall-runoff modelling and inundation mapping capabilities 

of the LUCI framework (Figure 29). Both LUCI and HEC-HMS have the capability to 

perform watershed modelling but have different ways of modelling runoff. LUCI does 

this through a cascade of form of soil moisture accounting units, taking into account 

permeability of different elements in the landscape (Jackson et al., 2013). The current 

configuration of the HEC-HMS model used by DREAM (2015) utilises the Soil 

Conservation Service Curve Number method, which assigns a parameter to each sub-

basin based on soil type, land use, hydrologic condition, and antecedent runoff 

conditions (USDA NRSC, 1986). More detail on the differences between the two 

rainfall-runoff models is found in the extreme events chapter (Chapter 8). 

Under the baseline land cover scenario, the rainfall data from Typhoon Bopha 

was run through both LUCI and HEC-HMS to produce flood hydrographs. These 

hydrographs were then compared to the observed flow at the outlet of the catchment. 

To map inundation, the flood hydrographs were run through HEC-RAS. 
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Future work for extreme events modelling in CDO includes running the LUCI 

rainfall-runoff model for the other rainfall events under the different land cover 

scenarios to assess how land cover changes affect peak flows. Structural measures 

such as a new retaining wall are being implemented in the floodplain of the CDO 

watershed to protect the city (JICA, 2014). These structural measures are built to cope 

with a 25-year flood event (159.7mm in 1 day) having a peak discharge of 3,257 m3 s-1. 

The peak flow of the hydrographs was compared to this exceedance probability to 

check the possible effectiveness of the retaining wall. 

 

 

Figure 29. Flowchart for the extreme events modelling, items emphasised are presented in this thesis. 

2.8 Summary of methodology 
The overview of the different components of this research are shown in Figure 

30. The land cover and soil parameterisation produce values that were tested by 

running the ecosystem services modelling capabilities within the LUCI framework. The 

ecosystem services runs had three main land cover scenarios: baseline, development, 

and rehabilitation. These scenarios were also run through the RUSLE to assess how 

land cover changes would affect soil erosion in CDO. The results from these ecosystem 

services and soil erosion modelling runs can help inform land management of the 

potential impact of changing land cover in the CDO catchment. 

The extreme events component of this thesis tested the capability of the LUCI 

model to do rainfall-runoff modelling compared to HEC-HMS and to flow observations 

under one typhoon event. To include the effect of climate change, a brief review of 

climate change studies in the Philippines and the region where CDO is located was 

accomplished and included a commentary on the possible effects of changing climate 

on the ecosystem services and hydrological response of the catchment to extreme 

rainfall events. 
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Figure 30. Simplified flowchart of the different modelling groups that composed this research. 

The main outputs of this dissertation are as follows: 

• LUCI parameters for the soil present in the Cagayan de Oro watershed, which in 

turn will guide how to parameterise for soils present in the rest of the Philippines 

• LUCI parameters for the land cover present in the Cagayan de Oro watershed, 

which included crops commonly found in the Philippines, which can be used for 

future research in the country 

• RUSLE soil erosion vulnerability maps for the different land use scenarios 

• LUCI ecosystem services maps showing how ecosystem services are distributed 

under the different land use scenarios for flood mitigation, and where are the 

areas recommended for management interventions 

• Hydrographs at the watershed outlet and inundation maps generated by LUCI, 

HEC-HMS and HEC-RAS for the baseline scenario under Typhoon Bopha 

This research also contributed the following for LUCI development: 

• Calculating weighted curve numbers for subwatersheds within the Cagayan de 

Oro watershed 

• Estimating the soil loss using the Revised Universal Soil Loss Equation (RUSLE) 

• Mapping inundation extent for LUCI’s flatwater inundation module 
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3 Application of the LUCI framework to the CDO catchment for 

flood mitigation and other ecosystem services 

3.1 Introduction 

As detailed in Chapter 1, the vulnerability of the Philippines to tropical cyclones 

and climate change underscores the need for more proactive disaster risk 

management, which to date is carried out mainly through flood-forecasting and 

structural flood protection projects to protect communities and infrastructures. The 

official programme of disaster prevention and mitigation in the Philippines is Project 

NOAH (Nationwide Operational Assessment of Hazards). This programme mainly uses 

two hydrological models from the Hydrologic Engineering Center (HEC) to assist in 

flood forecasting and making flood hazard maps: the Hydrologic Modeling System 

(HMS) for watershed modelling, and the River Analysis System (RAS) for inundation 

modelling (Brunner, 2010b; Scharffenberg, 2013). These models have been calibrated 

to local conditions in order to generate flood extent maps using real-time rainfall data 

that can be viewed through a public website (Santillan et al., 2013). The current real-

time flood-forecasting framework in the Philippines is shown in Figure 31. This 

framework is also present in the Cagayan de Oro (CDO) catchment to provide early 

warnings to communities and government to prompt evacuation efforts (Paringit et 

al., 2015). Aside from warning systems, flood prevention in CDO is also achieved 

through the use of structural measures such as retaining walls on the floodplain (JICA, 

2014). 

 

 

Figure 31. The current real-time flood-forecasting framework in the Philippines. 

As also established in Chapter 1, watershed management through ecosystem 

services modelling is another option in the toolbox of disaster risk mitigation for more 

sustainable land management. Although ecosystem service studies have been done in 

CDO, these have focused on communicating with the local community to understand 

how they value ecosystem services and their willingness-to-pay for the maintenance 

and protection of these services (Baig et al., 2015; ILC, 2013). To date, there is no 
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published scientific literature regarding the mapping of ecosystem services in the CDO 

catchment under different scenarios of land cover. 

The aim of this chapter is the scientific evaluation and mapping of ecosystem 

services, particularly flood mitigation, in the CDO catchment. The specific objectives 

are as follows: 

• Apply the Land Utilisation and Capability Indicator (LUCI) model to the CDO 

catchment to identify the areas that are already providing flood mitigating 

services, and the areas that can be targeted for management strategies; 

• Run the three land cover scenarios (Chapter 2) to assess how future catchment 

management plans will affect flood mitigation; and 

• Using the New Zealand-based parameterisation, run the three land cover 

scenarios to assess how future catchment management plans will affect 

agricultural productivity, nitrogen delivery, and phosphorus delivery. 

In terms of soil erosion and its mitigation, the Revised Universal Soil Loss 

Equation (RUSLE) application was applied to CDO and detailed in Chapter 5. Further 

development of LUCI will incorporate the RUSLE in its framework and as an option for 

soil erosion modelling. Since the CDO soil and land cover datasets were also correlated 

to the New Zealand soils and land cover, three other ecosystem services were run in 

LUCI for the CDO catchment. These services are agricultural productivity, which is 

important for the CDO catchment since it is heavily-utilised for agriculture, and 

nitrogen and phosphorus transport to assess effects on water quality. 

3.2 Methodology 
The methodology chapter (Chapter 2) outlines the DEM, soil information, land 

cover information, rainfall, and evapotranspiration datasets that were used to run 

LUCI in the CDO catchment. The DEM influences the topographical routing of flow 

through the landscape, the rainfall and evapotranspiration influences the water 

balance of the catchment, and the soil and land cover give information about the 

permeability and flood mitigation capacity of different areas of the catchment. 

This chapter utilises the LUCI model that was explained in the introduction of this 

thesis (Figure 32). The three main tools used are: 
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1. Generate HydTopo Inputs: to produce the hydrological information needed for 

ecosystem services runs; 

2. Generate Scenario User Specified Land Use: to produce the land management 

and soil information needed for ecosystem services runs; and 

3. Flood Mitigation Tool: to identify the areas providing flood mitigation services 

and those that can be modified to enhance that service. 

Since this is the first application of LUCI to CDO, the model was parameterised 

for local soil and land cover. Two kinds of parameterisation were done to set up LUCI 

for the CDO catchment: a Philippine-based parameterisation and a New Zealand-based 

parameterisation. More detail about how this parameterisation was carried out is in 

the methodology (Chapter 2). The flood mitigation tool was run for both the PH-based 

and NZ-based parameterisation to test how differing levels of parameterisation detail 

changed the ecosystem services maps since the NZ classification system is more 

detailed within LUCI. This comparison illustrated the differences in output between 

the correlation to the default LUCI land cover classes and to the more detailed 

parameterisation information within LUCI for New Zealand soils and land cover. The 

NZ-based parameterisation also allowed the following tools to be run: agricultural 

productivity, nitrogen delivery, and phosphorous delivery. 

 

Figure 32. Overview of the methodology of this chapter with each of the LUCI tools used. 

3.2.1 LUCI preprocessing 

Before running any of the ecosystem services modules within LUCI, the 

preprocessing step of generating the hydrological and topographical information must 
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first be done (Jackson et al., 2013). This step requires a digital elevation model (DEM) 

and climate information such as annual rainfall and annual evapotranspiration in mm 

day-1. The raw DEM may contain depressions, flat areas, and artefacts that may hinder 

flow algorithms from accurately representing the stream network within the 

catchment, hence the need for DEM reconditioning (Lindsay, 2016). 

The LUCI HydTopo tool fills sinks within the DEM and uses the AGREE 

reconditioning approach to “burn” river networks into the DEM. The AGREE approach 

adjusts the elevation information of a DEM based on the known stream network 

through decreasing the elevation of the raster cells in the stream network and 

“smoothing” the path where water flows downwards towards the streams (Hellweger, 

1997). This approach reconciles the DEM information with the mapped stream 

network and, through subsequent flow algorithms and runoff modelling, directs the 

flow towards the stream network more effectively (Figure 33). 

 

Figure 33. Sketch showing the effect of stream reconditioning on the raw DEM (a) and the subsequent 
reconditoned DEM (b). 

Within LUCI, there are default values for the buffer distance (75m), stream drop 

(3m), and buffer drop (2m) (Figure 34). The values of these parameters will depend on 

the characteristics of DEM such as resolution and accuracy (Hellweger, 1997). Within 

this chapter, the different values of these parameters were used to test the accuracy 

of the stream network predicted from the reconditioned DEM with the mapped 

stream network. 
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Figure 34. Sketch showing the stream and what the different AGREE reconditioning parameters 
represent. 

3.2.2 Flood mitigation module 

The LUCI flood mitigation module uses information about the topography 

generated from the previous step, soil and land cover to map the areas where water 

may accumulate and which areas are “mitigating features”. Mitigating features are 

those with high storage and/or infiltration capacity that act as sinks for overland and 

near-surface flow, thus mitigating the flood risk (Jackson et al., 2013). Other studies 

that map flood mitigating areas use similar approaches that take into account the 

topography, soil, and land cover of a landscape to identify which areas have the 

capability to regulate flow (Bellu et al., 2016; Nedkov & Burkhard, 2012; Stürck et al., 

2014). However, the LUCI model is more spatially explicit due to its capability to 

perform calculations at the sub-field scale compared to the coarser applications of 

modelling at the sub-catchment or catchment scale. 

Sensitivity testing was also done for the flood mitigation tool to analyse possible 

changes in results. Within the flood mitigation tool, two parameters can be modified: 

lower threshold for flood mitigation opportunity and lower threshold for very high 

flood mitigation opportunity. These values relate to the amount of flow accumulating 

to any given cell to its potential to become a significant flow pathway to a stream or 

river network (Jackson et al., 2013). For example, Scenario 1 uses the values of 5 and 

20 as the parameters (Table 14). With a value of 5, LUCI identifies the cells where 

accumulation exceeds five times their area of flow and has no significant mitigation 

potential (i.e. has low permeability and limited water storage capacity) and considers 

those areas targets for potential mitigation. If the upstream contributing area to a cell 

is sufficiently large and that cell is mitigating that flow, it comes a target for potential 
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mitigation. The threshold parameter for very high flood mitigation opportunity uses 

similar operations to identify cells where accumulation exceeds twenty times their 

area of flow and are thus more critical target areas for mitigation. 

Table 14. Mitigation threshold parameters for sensitivity testing. 

Threshold 

Lower threshold for: 

Flood mitigation opportunity  Very high flood mitigation opportunity  

1 5 20 

2 2 10 

3 10 40 

4 15 60 

5 20 80 

6 25 100 

7 30 120 

8 35 140 

9 40 160 

10 45 180 

 

 

Figure 35. An example map of the output from the flood mitigation module. 
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3.3 Results and discussion 
The main scope of this section is the flood mitigation mapping done through 

LUCI, but also presents some results from the preprocessing and stream burning steps 

in LUCI. 

3.3.1 LUCI preprocessing 

Within the HydTopo tool (Section 3.2.1), there are three parameters that 

influence the stream network generated from the DEM and three parameters that 

influence the stream burning operations. The upstream contributing area to a cell is 

based on the flow direction and flow accumulation, which is a digital representation of 

the amount of water flowing through the landscape and to that cell. If these 

accumulation thresholds are exceeded, those cells are identified as part of the stream 

network, whether small ephemeral streams, normal streams, or major rivers. These 

parameters, combined with the ones that influence stream burning, derive a stream 

network from the DEM. The derived stream network should be consistent with the 

actual stream network present in the catchment; parameter values require testing as 

they can differ between catchments. The resolution of the DEM is also important, as 

coarse-resolution DEMS may not be able to identify the smaller streams present in the 

catchment. 

Table 15. LUCI HydTopo parameters that influence the stream network and stream burning. 

Parameters that influence the stream network 

Accumulation threshold for stream 
initiation (ha) 

Identifies a cell as part of the stream 
network 

Accumulation threshold for major rivers 
(ha) 

Identifies a cell as part of a major river 

Accumulation threshold for ephemeral 
streams (ha) 

Identifies a cell as part of an ephemeral 
stream 

Parameters that influence stream burning 

Buffer distance (m) Horizontal distance from stream that will 
be reconditioned 

Stream drop (m) Increase in vertical depth of the 
reconditioned stream 

Buffer drop (m) Vertical depth from top of the buffer 
distance to the top of the stream 
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Table 16. HydTopo input parameters tested. 

HydTopo Accumulation threshold (ha) Stream burning (m) 

Stream 
initiation 

Major rivers Ephemeral 
streams 

Buffer 
distance 

Stream 
drop 

Buffer 
drop 

Default 
(1) 

10 200 5 75 3 2 

2    60 3 2 

3    90 3 2 

4    120 30 20 

5    150 30 20 

6    180 30 20 

7    210 30 20 

8    240 30 20 

9    270 30 20 

10    300 30 20 

11 20 400 10 300 30 20 

12 200 7200 (based 
on FAC of 

headwaters) 

100 300 30 20 

 

 

Figure 36. Stream network within the CDO catchment derived by DREAM (2015). 
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The different parameters for the HydTopo tool were tested with differing values, 

starting with the default LUCI values, then increasing the stream burning parameters 

and accumulation thresholds (Table 16). The DEM-derived stream network was then 

compared to the network derived by DREAM (2015) to check the efficacy of the 

reconditioning. For the default value (HydTopo 1), the generated stream network was 

inconsistent with the known stream network, especially at the outlet of the catchment 

(Figure 37). For a relatively coarse-resolution DEM (~30m), the default LUCI values for 

reconditioning were too low to direct the flow of water towards the outlet of the 

catchment. 

In HydTopo 4, where the buffer distance was 120m, the stream drop was 30m, 

and the buffer drop was 20m, the generated stream network became more consistent 

with the actual stream network. The generated stream network had the river going 

towards the outlet of the catchment (Figure 38). This completes the main stem of the 

river, which is very important for later modelling of ecosystem services. 

To test the effect of increasing buffer distance, this parameter was increased by 

30m increments until the distance of 300m was reached. This accounts for ten pixels 

on either side of the stream pixel. When compared to the buffer distance of 120, there 

were minor differences in terms of smaller streams being different, but the main 

stream network was still consistent each other and with the reference network (Figure 

39).  
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Figure 37. Stream network generated from default LUCI values (HydTopo1) at the catchment scale (left) 
and at the outlet (right). 

 

Figure 38. Comparison of the stream network at the outlet using the default HydTopo 1 (left) and 
HydTopo 4 (right). 
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Figure 39. Comparison of HydTopo 4 and HydTopo 10 at the outlet of the catchment showing HydTopo 4 
streams (green), HydTopo 10 streams (blue) and streams present in both HydTopo 4 and HydTopo 10 

(green with blue outline). 

Next, the accumulation thresholds were tested to check their effect on the 

derived stream network. With higher accumulation thresholds for stream initiation, 

the number of streams over the watershed decreased. HydTopo 10 used the default 

values for stream initiation, major rivers, and ephemeral streams. In HydTopo 11, 

those values were doubled and caused a decrease in the amount and density of 

streams in the generated stream network (Figure 40). Visual inspection at the outlet of 

the catchment confirms that the amount and density of streams decreased, but the 

major rivers in the generated stream network were still consistent with the known 

river network (Figure 41 and Figure 42). 
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Figure 40. Comparison of HydTopo 10 (left) and HydTopo 11 (right) showing effect of increasing 
accumulation threshold. 

 

Figure 41. Comparison of HydTopo 10 (left) and HydTopo 11 (right) at the outlet to show the effect of 
increasing accumulation threshold. 
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Figure 42. Comparison of HydTopo 10 (left) and HydTopo 11 (right) on the mountainous area on the 
eastern side of the catchment to show the effect of increasing accumulation threshold. 

In HydTopo 12, the values for stream initiation and ephemeral streams were 

increased by 20 times from the default values to become 200 and 100 ha respectively. 

The accumulation threshold was determined through checking the flow accumulation 

at the channel heads of the derived river network. The average value of the flow 

accumulations at the channel heads was converted to hectares and used as the 

accumulation threshold for major rivers (7200 ha). The resulting river network had less 

streams compared to HydTopo 11, and like Figure 41, the major rivers in the 

generated network were consistent with those in the reference network at the outlet, 

mountainous areas, and flat areas (Figure 43 to Figure 46). 
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Figure 43. Comparison of HydTopo 11 (left) and HydTopo 12 (right) showing effect of increasing 
accumulation threshold. 

 

Figure 44. Comparison of HydTopo 11 (left) and HydTopo 12 (right) at the outlet to show the effect of 
increasing accumulation threshold. 
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Figure 45. Comparison of HydTopo 11 (left) and HydTopo 12 (right) on the mountainous area on the 
eastern side of the catchment to show the effect of increasing accumulation threshold. 

 

Figure 46. Comparison of HydTopo 11 (left) and HydTopo 12 (right) on the flat area on the western side 
of the catchment to show the effect of increasing accumulation threshold. 
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There are techniques for comparing the DEM-derived stream network with a 

reference network: comparing the drainage densities, lumped basin characteristics, 

delineated watersheds, prediction of channel heads, and visual inspection (Sousa & 

Paz, 2017). To compare the derived stream network with the reference network in 

CDO, the percentage within buffer (PWB) comparison was used: a buffer is added to 

the reference stream network and the percentage of DEM-derived stream cells that 

fall within that buffer is counted (Davies & Bell, 2009). The reference network was 

generated through digitising and primarily identifies the major rivers and streams 

within CDO but may exclude the smaller and ephemeral streams predicted by the DEM 

and LUCI. As the buffer distance for the stream burning increased, the PWB also 

increased by small amounts (Table 17). With the greater buffer distance for stream 

burning, more flow is being diverted towards the reference stream network, hence the 

increase in PWB. Once the buffer distance of 300m (~10 pixels on either side) was 

reached and the accumulation thresholds were changed raised, the PWB values 

further increased. Increased accumulation thresholds led to a decrease of the number 

of cells classified as streams because the smaller streams identified in the previous 

runs were excluded, leading to an increase in the PWB. 

Table 17. Number of stream cells, cells within the buffer, and PWB values for the different DEM-derived 
networks compared to the reference network. 

HydTopo Number of 
stream cells 

Cells within 
buffer 

Percentage of derived stream cells 
within the buffer (PWB) 

Reference 
Network 13,855 13,855 100 

1 174,643 12,991 7.44 

2 174,715 13,081 7.49 

3 174,604 12,965 7.43 

4 172,862 14,089 8.15 

5 172,696 14,210 8.23 

6 172,514 14,191 8.23 

7 172,341 14,153 8.21 

8 172,453 14,270 8.27 

9 172,583 14,377 8.33 

10 172,723 14,416 8.35 

11 123,204 12,644 10.26 

12 53,151 12,200 22.95 
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Finding the balance of stream burning parameters and accumulation thresholds 

is important to make the DEM-derived stream network become consistent with the 

reference network to simulate the actual flow of water through the landscape. Using 

the DEM to identify smaller streams not present in the reference network is also 

important for the same reason, to simulate the flow of water through the landscape 

through smaller pathways that may not be present in the major river network (Figure 

47 and Figure 48). After running with the default LUCI parameters, the user must 

check the derived stream network to ensure that it is consistent with the reference 

stream network, and then against satellite observations due to possible uncertainties 

in how the reference network was derived. If the main stem of the derived stream 

network is significantly different compared to the observations, the user can increase 

the stream burning parameters to direct more flow towards the known streams. 

During each iteration, checking against the observed stream work and satellite 

imagery is important for the main stem and any smaller streams. The accumulation 

thresholds can be raised if the drainage density is high or there are too many small 

streams to optimise the computational efficiency of the model. 

 

Figure 47. Reference network (green) showing the major stem of the CDO river and a possible smaller 
stream leading into it (blue box). 
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Figure 48. Comparison of the reference network (green) and the DEM-derived network for HydTopo 12 
(blue) showing the identification of the smaller stream. 

For this chapter, the DEM-derived stream network for HydTopo 12 was chosen 

as the HydTopo input for further modelling within LUCI. A component of future work 

with LUCI could be testing the sensitivity of the ecosystem services results to the 

different parameters used for stream reconditioning and network delineation.  

3.3.2 Results of Philippine-based parameterisation 

This section presents the results of the flood mitigation maps that used the 

Philippine-based land cover and soil parameterisation. The sensitivity testing results of 

the thresholds for flood mitigation opportunity under the baseline scenario are also 

presented. At the catchment level, the difference in the results generated from 

Threshold 01 (default parameters) and Threshold 10 (45 and 180 threshold values) are 

not immediately obvious (Table 14 and Figure 49). The same areas of land are 

identified as already providing flood mitigation services and those with low flood 

concentration. However, the differences become more obvious at the finer spatial 

scales (Figure 50). There are fewer cells identified as areas of moderate and high flood 

classification in Scenario 10 that used higher mitigation threshold values. At higher 

thresholds, only the very significant water pathways where the cells’ accumulation 

exceeds at least 45 times their flow is considered target areas of mitigation. By 

lowering the mitigation threshold values, more areas for mitigation opportunities can 
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be identified and this can be used as the initial broad identification of possible target 

areas. By raising the mitigation threshold values, only the most critical target areas are 

identified. This is useful for several types of planning situations, whether land 

management would need identification of all possible target areas or only the critical 

target areas. Logistical limitations such as funding make it necessary to reduce the 

number of targeted areas to those that are more critical/vulnerable, or those whose 

rehabilitation would provide the most benefit (EPA, 2013). In future work, testing 

these mitigation thresholds would be useful for cost-benefit analysis where applying 

management interventions must be done with logistical or monetary constraints as 

higher mitigation thresholds would only identify the most critical target areas. 

 

Figure 49. Catchment-scale comparison of mitigation threshold testing for Threshold 1 (5 and 20) and 
Threshold 10 (45 and 180). 
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Figure 50. Zoomed-in comparison of mitigation threshold testing for Threshold 1 and Threshold 10. 

Across all the three land cover scenarios, the areas of flood mitigating land were 

areas classified as forest: protected forest zones, national parks, areas marked as 

potential rehabilitation sites, and areas of agroforestry. Forests have the capacity to 

absorb and intercept rainfall, which reduces surface runoff and discharge to the 

stream network (Nedkov & Burkhard, 2012). LUCI’s identification of forested, 

agroforestry, and rehabilitated areas as zones of flood mitigating fits with existing 

knowledge of ecosystem services. The areas not providing flood mitigation services 

were those classified as built-up areas, grassland, and agricultural areas. One of the 

main differences between the development and rehabilitation scenarios is in the 

southern area of the watershed (Figure 51) where the area planned for agriculture in 

the development scenario is classified an area of low flood concentration instead of 

possible flood mitigating land under forest (rehabilitation). In terms of flood 

interception classification, the development scenario has a lower proportion of the 

watershed classified as flood mitigating but higher proportions classified as having 

negligible, moderate, and high flood concentration (Table 18).  

One of the limitations of the current parameterisation is that it does not account 

for the specific land management support practises outlined in the plans for 

development and rehabilitation. These practices are mostly soil conservation practices 
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such as contour-cropping, inter-cropping, promotion of agroforestry, and adoption of 

Sloping Agricultural Land Technology (CESM, 2014; CESM, 2015). More information 

about these practices and their possible effect on soil erosion are found in the chapter 

about the RUSLE application in CDO (Chapter 5). The restoration practices such as 

stream rehabilitation can also mitigate soil erosion through streambank stabilisation, 

suggesting possible synergies between rehabilitation for flood mitigation and soil 

conservation measures (EPA, 2013). Therefore, potential future parameterisation work 

should involve options to delineate areas where specific support practices are planned 

and compare these to conventional agricultural techniques to improve future LUCI 

applications. 

 

Figure 51. Flood mitigation maps at the catchment scale for baseline (left), development (centre), and 
rehabilitation (right) using the Philippine-based parameterisation. 

Table 18. Flood interception classification percentages for the different scenarios for the Philippine-
based parameterisation. 

Description 

Philippine-based Parameterisation 

Baseline (%) Development (%) Rehabilitation (%) 

Flood Mitigating Land 69 58 69 

Negligible Flood Concentration 23 32 23 

Moderate Flood Concentration 3 4 3 

High Flood Concentration 2 3 2 

Water Bodies 3 3 3 
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At the finer scale (Figure 52 and Figure 53), the areas classified as agriculture 

have areas of moderate and high flood concentration that are in very close proximity 

to streams. These results suggest the possible target areas for mitigation should be 

riverbanks or steep slopes that cause more water to be diverted towards the streams 

more quickly. In the plan for development, one of the recommendations is to use 

bamboo as stabilising vegetation for riverbanks and valley slopes, which agrees with 

the results suggested by LUCI. Such riparian planting has a reducing effect on the peak 

discharges of floods and subsequent inundation due to the capacity of that landscape 

to absorb and intercept water prior to entering the stream network (Barth & Döll, 

2016). There is also a relatively large area of moderate and high flood concentration at 

the southern section of the current agricultural extent that could be targeted for flood 

mitigation (Figure 52). 

 

Figure 52. Zoomed-in map of area defined as agriculture for baseline (left), development (centre), and 
rehabilitation (right). 
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Figure 53. Zoomed-in map of areas classified as agriculture and in close proximity to streams for baseline 
(left), development (centre), and rehabilitation (right). 

The results of the LUCI application to CDO have broadly identified the forested 

areas as flood mitigating land, requiring protection or monitoring to prevent 

degradation of that ecosystem service, and agricultural areas as having low flood 

concentration. Within the latter, mitigation efforts are directed towards areas near 

streams, suggesting riparian planting efforts or bank rehabilitation. This identification 

of areas to conserve or rehabilitate is important to the broader context of mapping 

ecosystem services in CDO and in the Philippines. Through ecosystem services 

mapping, large areas for protection can be identified. Another possible component of 

mapping is to map the demand for ecosystem services to understand how a service 

can change as it moves through the landscape and the demands of the end-user are 

being met (Bagstad et al., 2014). In terms of flood mitigation, the “demand” is either 

the reduction of flow during periods of extreme events or the maintenance of flow 

needed to support agricultural activities, anthropogenic usage, and biological needs. 

This thesis touched on the reduction of flow during extreme events, but future 

applications can also consider flow maintenance or water supply as a potential 

ecosystem service. The benefits of an ecosystem service is more clearly understood in 

terms of supply, demand, and their spatial interactions with the landscape (Stürck et 
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al., 2014). This application of LUCI to CDO identified areas of flood mitigation (supply), 

areas that require flood mitigation (partial demand), and was spatially explicit in 

mapping the ES of flood mitigation. Under the baseline scenario, these maps are good 

indicators of areas with high existing ES provision and potential areas to improve that 

provision. Through running the development and rehabilitation scenarios, these maps 

can show the potential improvements or consequences before any large-scale 

management interventions are carried out. 

3.3.3 Results of New Zealand-based parameterisation 

The purpose of the New Zealand-based parameterisation was to test differences 

between the new Philippine-based parameterisation of LUCI (presented in this 

chapter) and the already existing New Zealand-based parameterisation that has been 

coded into the LUCI model. One thing to keep in mind is that the climate regimes and 

vegetation types differ between New Zealand and Philippines, thus future work 

requires more detailed parameterisation for the conditions specific to the Philippines 

and more broadly for tropical areas. This section summarises the results of the 

following tools: flood mitigation, agricultural productivity, nitrogen loading, and 

phosphorus loading. 

At the catchment scale, the areas identified as low flood concentration are those 

classified as short-rotation cropland, built-up areas, and high-producing exotic 

grassland. The differences between the scenarios are clearer compared to the 

watershed scale, with the development scenario having more areas of flood mitigating 

land compared to the baseline and rehabilitation scenario (Figure 54). The tabular 

information confirms this, showing that the development scenario has the highest 

proportion of flood mitigating land among all the three scenarios, and the 

rehabilitation scenario having the lowest (Table 19). This is because some of the 

agricultural areas in the development scenario are recommended for agroforestry and 

classified in the NZ land cover as orchards and vineyards, thus contributing to their 

flood mitigating capacity. This shows that a more detailed parameterisation for the 

Philippines, to account for several types of land management practices, extends LUCI’s 

utility and can make the differences in scenarios clearer. For example, management 

may choose to zone one area as forestry but has different potential plans of support 
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practices (e.g. intercropping or contour cropping) and adding a support practice layer 

to LUCI’s modelling can help in that decision-making. At a finer spatial scale (Figure 

55), the areas identified as possible targets for mitigation are like the areas identified 

in the Philippine-based parameterisation. The areas that are near the streams are 

potential target areas, underscoring the importance of riparian planting and 

streambank restoration in flood mitigation strategies. 

 

Figure 54. Flood mitigation maps at the catchment scale for baseline (left), development (centre), and 
rehabilitation (right) using the New Zealand-based parameterisation 

Table 19. Flood interception classification percentages for the different scenarios for the New Zealand-
based parameterisation. 

Description 

New Zealand-based Parameterisation 

Baseline 
(%) 

Development 
(%) 

Rehabilitation 
(%) 

Flood Mitigating Land 70 76 69 

Negligible Flood 
Concentration 23 17 23 

Moderate Flood 
Concentration 2 2 3 

High Flood Concentration 2 2 2 

Water Bodies 3 3 3 
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Figure 55. Zoomed in map showing the proximity of priority areas to streams for baseline (left), 
development (centre), and rehabilitation (right). 

The agricultural productivity tool uses information about slope, aspect, 

hydrology (e.g. freely draining or waterlogged) and fertility to determine the 

agricultural value of the landscape (Jackson et al., 2013). Since the majority of the CDO 

catchment is utilised for agriculture, applying the agricultural productivity tool was 

useful to check the optimal usage between the three land cover scenarios. The rules 

around agricultural productivity were based on consultation with farmers and rural 

industries in temperate upland regions, and future work would include consultation 

with farmers located in tropical areas that may have different farming practices. The 

agricultural utilisation status delineates the areas receiving optimum and near-

optimum utilisation that are being used appropriately while the non-optimum 

utilisation and production potential not realised are the areas that may require more 

management interventions before becoming more productive land (Jackson et al., 

2013). Across all three scenarios, the red areas of production potential are the steeper 

areas associated with streams and river valleys (Figure 56). The development and 

rehabilitation scenarios differ mainly in the area at the southern area of the 

catchment, which was classified as agricultural land in the development scenario and 

as reforestation area in the rehabilitation scenario. According to LUCI, utilising this 
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area for agriculture in the development scenario would require management 

interventions to achieve optimum utilisation compared to the rehabilitation scenario. 

Future work in the Philippines can include parameterisation for the management 

practices associated with steep slopes (e.g. terracing) that is common in the 

Philippines to test if this agricultural practice can potentially improve productivity. 

 

Figure 56. The agricultural utilisation status maps in the baseline (left), development (centre), and 
rehabilitation (right) scenarios. 

Both the nitrogen and phosphorus tools utilise the export coefficient approach 

to predict the potential loads from different combinations of land use, fertiliser 

application, livestock, other nutrient inputs, soil type, and geology (Johnes, 1996). 

These export coefficients are reported in the literature based on reviews and field 

experiments and influence the potential nitrogen or phosphorus exported at each grid 

cell, and LUCI uses its hydrological routing functions to determine the flow from 

source cell to streams (Jackson et al., 2013). The export coefficients used for this 

modelling run were based on New Zealand, and future work around compiling export 

coefficients for the Philippines and tropical areas is crucial for broadening LUCI 

applicability. Nitrogen and phosphorus loads are affected by changes in fertiliser input 

(e.g. decreases for compliance to standards) or conversions of land cover (e.g. 
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agriculture to grassland) (Johnes, 1996). Through understanding which areas have the 

potential to produce the highest nitrogen and phosphorus loads, management 

interventions can be carried out in those areas to benefit the resulting water quality. 

Across all three scenarios, the areas with the highest potential nitrogen loads are 

those associated with grassland or agricultural activity while the lowest nitrogen loads 

are associated with forested areas (Figure 57). With standardised symbology (Figure 

58), the differences in maximum potential nitrogen load between the baseline and the 

other two scenarios are clearer. The agricultural management interventions of 

agroforestry and forest restoration efforts led to lower nitrogen loads in areas that 

were formerly using standard agricultural practices and grassland. 

In terms of statistics, the baseline scenario had the highest minimum, maximum, 

and mean nitrogen load of all the scenarios, while the development and rehabilitation 

scenarios had similar values of nitrogen load (Table 20). The average of nitrogen loads 

from tropical catchments is ~3.10 kg ha-1 yr-1 (Saunders & Lewis, 1988). The mean 

nitrogen load in the baseline exceeds this value, while the development and 

rehabilitation values are similar or lower compared to this value. 

Table 20. Minimum, maximum, and mean values for nitrogen load (kg ha-1 yr-1) for the three land cover 
scenarios. 

Scenario 

Nitrogen load (kg ha-1 yr-1) 

Minimum Maximum Mean 

Baseline 0.95 15.3 4.29 

Development 0.82 7.41 3.32 

Rehabilitation 0.76 7.41 2.89 
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Figure 57. Nitrogen load (kg ha-1 yr-1) for baseline (left), development (center), and rehabilitation (right) 
scenarios with individual symbology. 

 

Figure 58. Nitrogen load (kg ha-1 yr-1) for baseline (left), development (center), and rehabilitation (right) 
scenarios with symbology standardised across scenarios. 
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Some of the phosphorus tool results are similar to the nitrogen tool output, in 

that the baseline scenario produced the highest minimum, maximum, and mean 

phosphorus load values (Table 21). However, the development scenario had the 

lowest phosphorus loads while the rehabilitation scenario that had the lowest nitrogen 

loads, instead of one scenario having the lowest loads for both elements. This is due to 

the difference in the mechanisms of nitrogen and phosphorus transport. Although 

both are affected by landscape characteristics, nitrogen is more commonly associated 

with organic material and affected by runoff while phosphorus is more commonly 

associated with mineral material and is less mobile (Saunders & Lewis, 1988). The 

agroforestry interventions in the development scenario affected phosphorus loads 

more than the interventions in the rehabilitation scenario. One reason for this is the 

current parameterisation does not include detailed information about soil 

conservation measures recommended by CESM (2014) and future work around the 

Philippine-based parameterisation will include such measures to test their 

effectiveness in reducing nutrient loads. The average phosphorus loads from tropical 

catchments is reported as 1,850 g ha-1 yr-1 (Saunders & Lewis, 1988). The modelled 

phosphorus results fall below this average, but since phosphorus is associated with 

mineral materials, future work will include parameterisation for rock types in the 

Philippines to test the difference in results compared to this New Zealand-based 

parameterisation 

Table 21. Minimum, maximum, and mean values for phosphorus load (g ha-1 yr-1) for the three land 
cover scenarios. 

Scenario 

Phosphorus load (g ha-1 yr-1) 

Minimum Maximum Mean 

Baseline 19.38 959 386 

Development 8.31 958 276 

Rehabilitation 19.38 954 345 
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Figure 59. Phosphorus load (g ha-1 yr-1) for baseline (left), development (center), and rehabilitation 
(right) scenarios with symbology standardised across scenarios. 

3.3.4 Comparison of Philippine-based and New Zealand-based parameterisation 

The differences between the Philippine-based and New Zealand-based 

parameterisation were briefly mentioned in the previous section but are discussed 

further here by comparing the flood mitigation maps by scenario. For the baseline 

scenario, the flood interception classification is almost the same, apart from one small 

area near the outlet of the catchment (Figure 60). In the Philippine-based 

parameterisation, that area is classified as an agricultural area with perennial crops, 

while the NZ-based parameterisation has included it in the “orchards, vineyards, or 

other perennial crops” land cover classification. This small difference can be seen in 

the catchment-scale flood interception classification where the values differ by 1% 

(Table 22). The development scenario is where the two parameterisation sets produce 

different results (Figure 61). The New Zealand-based parameterisation has a higher 

proportion of flood mitigating land, which was explained in Chapter 2, due to that area 

being classified as “orchards, vineyards, or other perennial crops”. In the original 

scenario, this area is zoned as “Agricultural Sub-zone 3” where orchards and 

agroforestry were recommended; the New Zealand-based parameterisation is unable 
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to fully account for that difference in land management. In the rehabilitation scenario, 

the spatial results and the tabular results are the same (Figure 62). In the original 

rehabilitation scenario, the different zones have accompanying land management 

strategies. Accounting for these within LUCI would help capture some of the complex 

interactions between rainfall, soil, land use, and support practices. 

Table 22. Flood interception classification for all scenarios for both parameterisation sets. 

Description 

Baseline (%) Development (%) Rehabilitation (%) 

PH NZ PH NZ PH NZ 

Flood Mitigating Land 69 70 58 76 69 69 

Negligible Flood Concentration 23 23 32 17 23 23 

Moderate Flood Concentration 3 2 4 2 3 3 

High Flood Concentration 2 2 3 2 2 2 

Water Bodies 3 3 3 3 3 3 

 

 

Figure 60. Flood mitigation maps at the catchment scale for the baseline scenario using the Philippine 
(left) and New Zealand (right) parameterisations. 
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Figure 61. Flood mitigation maps at the catchment scale for the development scenario using the 
Philippine (left) and New Zealand (right) parameterisations. 

 

Figure 62. Flood mitigation maps at the catchment scale for the rehabilitation scenario using the 
Philippine (left) and New Zealand (right) parameterisations. 
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With more data relating to specific agricultural practices and fertiliser 

applications in the Philippines, the agricultural productivity, nitrogen delivery, and 

phosphorus delivery tools can be re-run for CDO and compared to the results of the 

New Zealand-based parameterisation. This will show how detailed parameterisation 

sets from different climatic regions can affect the modelled ecosystem services of the 

same study area. In other study areas where LUCI has not yet been applied, two 

options for parameterisation are presented. The user can utilise the correlation 

parameterisation, like the Philippine-based parameterisation undertaken in this study, 

with information about the types of agricultural practices, crops, and vegetation in the 

study area. In an area with less information about their agricultural practices and 

vegetation, but with general descriptions of the land cover classes, a technique like the 

New Zealand-based parameterisation can be applied.  

3.4 Future work 
The future work of flood mitigation in the CDO watershed include improvements 

in representing the vegetation and the different agricultural and management 

practices included in the current management plans. Work has already been achieved 

compiling the possible crops and trees present within CDO, their physical 

characteristics and water needs, which will be replacing the classification-based 

parameterisation in future versions of LUCI. This more detailed parameterisation can 

also represent changing characteristics with growth. In the rehabilitation scenario, 

areas are marked for reforestation and having a crop growth model would be useful to 

model changes in flood mitigation provision at distinct stages of restoration. Since 

different tree species have different characteristics and water use, an economic 

valuation component could be added that uses cost-benefit analysis to determine the 

suitable trees to be planted for a particular landscape (Camacho et al., 2007). Inclusion 

of planned management practices could refine the ecosystem services maps with 

broad classifications such as agroforestry or more specific classifications that include 

the type of stabilising vegetation that will be planted (e.g. bamboo on riverbanks). 

Parameterising for riparian planting in the Philippines is important as this has the 

potential to mitigate floods, erosion, and nutrient delivery. Aside from vegetation, 

assembling a database of export coefficients specific to tropical areas and the 



115 | P a g e  
 

Philippines improves the nitrogen and phosphorus tools’ applicability in tropical 

catchments. Through creating a more robust parameterisation dataset for the CDO 

catchment, the LUCI framework is more applicable to other areas of the Philippines 

and to broader tropical areas. 

This chapter included some sensitivity testing on the DEM reconditioning, but 

those parameters will vary between catchments and more extensive testing is needed 

to compare the generated stream network with the actual stream network. The 

sensitivity testing can also go further into the flood mitigation modelling to understand 

how much the flood mitigation results can vary between different parameters used for 

DEM reconditioning. Going further than mapping potential supply, it is important to 

quantify the demand or value of a particular ecosystem service (Bagstad et al., 2014). 

In terms of disaster risk reduction for urban systems, the “value” of flood mitigation 

can be estimated from the avoided costs of infrastructural damage under different 

extreme events and land cover scenarios (Pappalardo et al., 2017). 

Lastly, it is important to do more engagement with the local stakeholders, such 

as government units and local indigenous communities. This social aspect of 

ecosystem services mapping helps elucidate how the community itself perceives 

ecosystem services to know which service to prioritise, to share knowledge gained 

from modelling and local expert knowledge, and feed into more participatory decision-

making in the future. 

3.5 Summary and conclusion 
The main aims of this chapter were to apply the LUCI model to the CDO 

catchment to identify the areas that are already providing flood mitigating services 

and the areas that can be targeted for management strategies through different land 

cover scenarios. Both those aims were achieved through running the flood mitigation 

tool in LUCI for the CDO under the three different land cover scenarios, and more 

ecosystem services maps were also produced for agricultural productivity, nitrogen 

delivery, and phosphorus delivery. The areas providing flood mitigating services are 

the forested areas such as the national parks, agroforestry areas, and areas planned 

for restoration. This supports the efforts of protecting and monitoring these areas, as 

deforestation or illegal logging would lead to a degradation in the flood mitigating 
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services provided by the landscape. The areas that are classified as possible targets for 

mitigation are those areas within the agricultural lands that were close to the streams, 

suggesting restoration measures such as riparian planting and streambank 

stabilisation, would be beneficial for flood mitigation. Based on the results, forested 

areas can provide the most flood mitigation benefits, underscoring the importance of 

rehabilitation activities within the CDO catchment. 

The New Zealand-based parameterisation was useful in testing additional 

ecosystem services available in LUCI: agricultural productivity, nitrogen loads, and 

phosphorus loads. The agricultural productivity tool delineated areas that are being 

underutilised and can be targeted to improve agricultural yields. These areas were 

steep slopes associated with streams and future work that parameterises for upland 

agricultural practices in the Philippines is needed. The nitrogen and phosphorus tools 

showed a decrease in both nutrient loads under the development and rehabilitation 

scenario, suggesting that conservation farming (e.g. agroforestry) and reforestation 

has the potential to improve water quality in the CDO catchment. In future LUCI 

applications, specific land cover and soil characteristics may be unavailable and thus 

correlation to the detailed NZ classification is an option to set up LUCI for an area of 

interest. 

Some of the key future directions of this research are: more detailed land cover 

parameterisation, ecosystem services modelling for other services within LUCI, adding 

an economic valuation component, and more engagement with local stakeholders. A 

database of detailed land cover and vegetation characteristics was compiled for this 

research that will be used in future versions of LUCI that can account for different 

stages of growth and water use characteristics. An extensive literature review of 

export coefficients in the Philippines and tropical catchments can be carried out to 

construct an export coefficient database for similar areas that will be used as input to 

the nitrogen and phosphorus tools. Through a more detailed parameterisation, the 

other ecosystem service models within LUCI can be run for the CDO catchment and 

compared with the New Zealand-based parameterisation. By running LUCI for multiple 

ecosystem services, trade-offs and synergies can be identified. These trade-offs aid the 

economic valuation in cost-benefit analysis and larger-scale planning where logistical 



117 | P a g e  
 

limitations such as funding must be considered for management interventions. 

Through engaging the local community, LUCI can be used in more participatory 

decision-making. 

This first application of LUCI for CDO lays the groundwork for future applications 

within the Philippines, especially as the database of Philippine-specific land cover and 

soil grows and is implemented into future LUCI versions. At the broader scale, this 

application can serve as a guide for future study areas in countries where LUCI has 

never been applied, especially in other tropical areas. 
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4 A review of the (Revised) Universal Soil Loss Equation 

(R/USLE): with a view to increasing its global applicability and 

improving soil loss estimates 

4.1 Introduction 
Soil erosion involves many processes but one effect is particles being 

transported and deposited from one location to another. Although it occurs naturally, 

it is often exacerbated by anthropogenic activities (Adornado et al., 2009). Soil erosion 

is affected by wind, rainfall and associated runoff processes, vulnerability of soil to 

erosion, and the characteristics of land cover and management (Aksoy & Kavvas, 2005; 

Bagherzadeh, 2014; Panagos et al., 2015c). Managing and understanding erosion and 

associated degradation is critical because of its possible effects: nutrient loss, river and 

reservoir siltation, water quality degradation, and decreases in soil productivity 

(Bagherzadeh, 2014). Pimentel et al. (1995) reported soil erosion rates for regions 

around the world: Asia, South America, and Africa with an average of 30 to 40 ton ha-1 

yr-1 and an average of 17 ton ha-1 yr-1 for the United States of America and Europe. For 

comparison, the soil erosion rate for undisturbed forests was reported to range from 

0.004 ton ha-1 yr-1 to 0.05 ton ha-1 yr-1 globally (Pimentel et al., 1995). Within a 

landscape, erosion due to water can be caused by unconcentrated flow (sheet), flow 

within small channels (rills), raindrop impact and overland flow (inter-rill), and larger 

channels of concentrated flow (gullies) (Aksoy & Kavvas, 2005; Morgan, 2005). Land 

management can be improved through understanding how these erosion processes 

occur and what areas are vulnerable to soil loss. Advances in technology such as the 

development of soil erosion models and increases in computing power for spatial 

analysis have assisted in making this process faster and more accurate. 

Soil erosion models aid land management by helping understand sediment 

transport and its effects on a landscape. They range from relatively simple empirical 

models, and conceptual models, to more complicated physics-based models (Merritt 

et al., 2003). Extensive reviews of soil erosion models of varying complexity have been 

done before, but tend to focus on input requirements and applications (Aksoy & 

Kavvas, 2005; Merritt et al., 2003). A review by de Vente & Posen (2005) differs by 

focusing on semi-quantitative models that include several types of soil erosion to 
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estimate basin sediment yield. Other reviews have focused on the use of several soil 

erosion models applied to one geographic area, such as Brazilian watersheds for de 

Mello et al. (2016). 

One family of empirical soil loss models is the Universal Soil Loss Equation (USLE) 

models including the original USLE, the Revised Universal Soil Loss Equation (RUSLE), 

the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Modified 

Universal Soil Loss Equation (MUSLE). The USLE is an empirical model used to estimate 

the average rate of soil erosion (tons per unit area) for a given combination of crop 

system, management practice, soil type, rainfall pattern, and topography. It was 

originally developed at the plot-scale for agricultural plots in the United States of 

America (Wischmeier & Smith, 1978). An updated form of USLE (RUSLE) was published 

to include new rainfall erosivity maps for the United States of America and 

improvements to the method of calculating the different USLE factors (Renard et al., 

1997). RUSLE accounted for changes in soil erodibility due to freeze-thaw and soil 

moisture, a method for calculating cover and management factors, changes to how 

the influence of topography is incorporated into the model, and updated values for 

conservation practices (Renard & Freimund, 1994). The RUSLE2 framework is a 

computer interface to handle more complex field situations, including an updated 

database of factors (Foster et al., 2003). These three variations of R/USLE measure soil 

loss per unit area at an annual time scale, but the MUSLE uses runoff and peak flow 

rate to estimate event-based soil loss (Sadeghi et al., 2014). These models have been 

used around the world due to their relative simplicity and seemingly low data 

requirements (Appendix 1).  

This simplicity of the R/USLE has been integrated into more complex soil erosion 

models to help with management and decision-making, including the Agricultural Non-

Point Source model (AGNPS), the Chemical Runoff and Erosion from Agricultural 

Management Systems model (CREAMS), and the Sediment River Network model 

(SedNet) (Aksoy & Kavvas, 2005; de Vente & Poesen, 2005; Merritt et al., 2003). The 

AGNPS estimates upland erosion using the USLE and then uses sediment transport 

algorithms to simulate runoff, sediment and nutrient transport within watersheds 

(Aksoy & Kavvas, 2005). The usage of RUSLE in large models is mainly for the purpose 
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of assisting with decision-making, such as prioritising land use objectives in the 

Philippines (Bantayan & Bishop, 1998), scenario analysis for water quality in 

catchments in New Zealand (Rodda et al., 2001), or delineating unique soil landscapes 

in Australia (X. Yang et al., 2007). 

This review addresses the complexity of the different factors, and the issues for 

researchers to consider before applying R/USLE to their study area. These issues range 

from equation choices, DEM resolution, granularity in land cover characteristics, scale, 

etc. The MUSLE is not included in this review because Sadeghi et al. (2014) have 

already done an extensive review of the model and event-scale estimates are beyond 

the scope of this paper. Annual estimates of soil loss are useful for understanding the 

baseline erosion in a catchment, but intra-annual and event-based soil loss estimates 

are useful to elucidate temporal variations in erosion. The seasonal estimation of soil 

loss is discussed in Section 4.4.2 and in the two case studies (Chapter 5 and 6). 

Performing event-based soil loss modelling is important for areas that frequently 

experience extreme events as these can cause large-scale sediment transport and 

mass wasting. Future work will include improvements to seasonal soil loss modelling 

and application of the MUSLE to CDO to understand the catchment’s issues of event-

based sedimentation. 

The main aim of this chapter is to review the (Revised) Universal Soil Loss 

Equation through the following objectives: 

• Review the USLE and RUSLE literature to compile equations for the different 

sub-factors within the R/USLE; 

• Provide guidance as to which datasets and equations are appropriate over a 

range of geoclimatic regions with varying levels of data availability; 

• Outline the limitations and caveats of the R/USLE that future users must 

consider; and 

• Outline potential future directions to overcome these limitations and to 

improve R/USLE applications 

This chapter discusses the influences on the subsequent applications in CDO 

(Chapter 5) and the Mangatarere catchment in New Zealand (Chapter 6). These 
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chapters tested different equations for R/USLE subfactors and produced output maps 

showing the differences in soil loss estimates. Although this work is primarly 

concerned with increasing LUCI applicability in tropical environments, specifically the 

Philippines, the Mangatarere application was carried out due to the availability of 

high-resolution DEMs (15m and 5m) and daily rainfall data that allowed for further 

testing of RUSLE factor equations. 

4.2 Universal Soil Loss Equation (USLE) 
The principal equation for the USLE model family is below: 

𝐴 = 𝑅 ×  𝐾 ×  𝐿 ×  𝑆 ×  𝐶 ×   𝑃 

Where: 

A Mean annual soil loss (metric tons hectare-1 year-1) 
R Rainfall and runoff factor or rainfall erosivity factor (megajoules millimetre 

hectare-1 hour-1 year-1) 
K7 Soil erodibility factor (metric tons hour megajoules-1 millimetre-1) 
L Slope-length factor (unitless) 
S Slope-steepness factor (unitless) 
C Cover and management factor (unitless) 
P Support practice factor (unitless) 

 

The USLE was originally developed at the farm-plot scale for agricultural land in 

the United States of America, but has seen use in many other countries, scales, and 

geoclimatic regions. In the original development of the model, this farm plot is called 

the “unit plot” and is defined as a plot that is 22.1m long, 1.83m wide, and has a slope 

of 9% (Wischmeier & Smith, 1978). Although the model accounts for rill and inter-rill 

erosion, it does not account for soil loss from gullies or mass wasting events such as 

landslides (Thorne et al., 1985). The appendix of this dissertation compiles a non-

exhaustive list of studies that have applied the USLE and RUSLE models to watersheds 

around the world.  The uncertainties in soil erosion modelling stem from the 

availability of long-term reliable data, which includes issues of temporal resolution 

(e.g. <30-minute resolution required for R/USLE) and the availability of spatial data 

over a catchment. This issue is not unique to R/USLE applications and is more pressing 

                                                      
7 The RUSLE handbook by Renard et al. (1997) indicates that the K-factor metric units are metric tons 
hectare hour megajoules-1 hectare-1 millimetre-1, but for mathematical correctness, the hectare units 
cancel out. 
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for more complex models that have a large amount of variables that require detailed 

data (de Vente & Poesen, 2005; Hernandez et al., 2012). Hence, the ubiquitous usage 

of the R/USLE can be attributed to its relatively low data requirements compared to 

more complex soil loss models, making it potentially easier to apply in areas with 

scarce data. Another limitation of the R/USLE and arguably many erosion model 

applications is the lack of validation data to verify model outputs, which is discussed 

further in Section 4.3. 

Although the application of the R/USLE seems to be a simple linear equation at 

first glance, this review addresses the complex equations that go into calculating its 

factors, such as rainfall erosivity which requires detailed pluviographic data. Although 

alternative equations are presented, we also discuss questions of suitability that future 

users should consider before applying these equations to their study area. 

4.2.1 Rainfall erosivity factor (R) 

The R-factor represents the effect that rainfall has on soil erosion and was 

included after observing sediment deposits after an intense storm (Wischmeier & 

Smith, 1978). The annual R-factor is a function of the mean annual EI30 that is 

calculated from detailed and long-term records of storm kinetic energy (E) and 

maximum thirty-minute intensity (I30) (Morgan, 2005; Renard et al., 1997). Due to the 

detailed data requirements for the standard R/USLE calculation of rainfall erositivity, 

studies in areas with less detailed data have used alternative equations depending on 

the temporal resolution and availability of the rainfall data. These compiled studies 

have used long-term datasets with at least daily temporal resolution to construct their 

R-factor equation. Extensive work by Naipal et al. (2015) attempted to apply the 

R/USLE at a coarse global scale (30 arcsecond) by using USA and European databases 

to derive rainfall erosivity equations. These equations use a combination of annual 

precipitation (mm), mean elevation (m), and simple precipitation intensity index (mm 

day-1) to calculate the R-factor for different Köppen-Geiger climate classifications 

(Naipal et al., 2015).  Loureiro and Coutinho (2001) used 27 years of daily rainfall data 

from Portugal and the R/USLE method of calculating EI30 to construct an equation that 

uses the number of days that received over 10.0 mm of rainfall and the amount of 

rainfall per month when the day’s rainfall exceeded 10.0 mm. The Loureiro and 
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Coutinho (2001) equation was modified by Shamshad et al. (2008) using long-term 

rainfall data in Malaysia and used to construct a regression equation relating monthly 

rainfall and annual rainfall with the R-factor. The equation was modified because the 

original Loureiro and Coutinho (2001) equation was developed in Portugal, and the 

aim of Shamshad et al. (2008) was to modify it to suit the climatic conditions of 

tropical Malaysia. Similarly, Sholagberu et al. (2016) used 23 years of daily rainfall data 

to create a regression equation relating annual rainfall and the R-factor for the 

highlands of Malaysia. These equations that use monthly or annual rainfall are 

valuable in study areas that do not have long-term detailed rainfall data, but have a 

similar climate. The imperial units of erosivity are in hundreds of foot tonf inch acre-1 

hour-1 year-1, and multiplying by 17.02 will give the SI units of megajoule millimetre 

hectare-1 hour-1 year-1 (Renard et al., 1997). 

With the body of work that has been done in rainfall erosivity, some studies have 

managed to construct rainfall erosivity maps over large countries and regions. Panagos 

et al. (2017) have used pluviographic data from 63 countries to calculate rainfall 

erosivity and spatially interpolated the results to construct a global rainfall erosivity 

map at 30 arcsecond resolution. Despite its coarse resolution, this global dataset can 

be used as a resource for rainfall erosivity in data-sparse regions. For the United 

States, Renard et al. (1997) details the procedure for obtaining rainfall erosivity values 

from their large national database. Renard et al. (1997) would be the recommended 

reference for study areas in the United States because of the extensive database that 

already exists for that country. For the European Union, Panagos et al. (2015a) 

constructed a rainfall erosivity map at 1km resolution and published descriptive 

statistics for R-values in each of the member countries. The interpolated map showed 

good agreement through cross-validation and to previous studies, but areas that had 

less rainfall stations and more diverse terrain caused higher prediction uncertainty 

(Panagos et al., 2015a). A review of rainfall erosivity in Brazil used a large rainfall 

dataset with R-factors from different locations to a spatially interpolated map of 

rainfall erosivity, and the observed trends in the map agreed with previous work on 

rainfall erosivity the country (da Silva, 2004).  
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In areas that only have annual precipitation available, several equations and 

their studies are used as a reference. In their global application, Naipal et al. (2015) 

published different R-factor equations depending on a study area’s climate 

classification. One caveat is that the data for these equations had a large percentage 

of USA and European records, so resulting accuracy of R-factors might be better for 

those locations (Naipal et al., 2015). In tropical areas such as Southeast Asia, the R-

factor by El-Swaify et al. (1987) as cited in Post & Hartcher (2006) was used extensively 

in Thailand, the Philippines, and Sri Lanka. However, the units for the R-factor in this 

equation are given as tons hectare-1 year-1, which do not correspond to the original 

units used by R/USLE (Merritt et al., 2004). This lack of consistency regarding units is 

not uncommon in the reviewed literature, which sometimes fails to explicitly report 

the units used for the different factors. For example, Renard & Freimund (1994) report 

that the units of R-factor equations by Arnoldus (1977) were presumed to be in metric 

units. By being clear and consistent about units in R/USLE literature, future 

researchers can be more certain about the accuracy of their borrowed R-factor 

equations instead of presuming the units to be the same as the original R/USLE. Work 

by Bonilla & Vidal (2011) produced an R-factor equation for Chile and published 

erosivity values similar to those produced by work in areas of similar geography and 

geology. For New Zealand, Klik et al. (2015) proposed equations for calculating the 

annual R-factor and seasonal R-factor with coefficients that change depending on the 

study area’s location within the country. 

The usage of monthly precipitation data to determine the R-factor is due to 

monthly data being more readily available compared to detailed storm records 

(Renard & Freimund, 1994). Renard & Freimund (1994) used data from 155 stations 

with known R-factors based on the original USLE approach and related their R-factors 

to observed annual and monthly precipitation. These equations developed by Renard 

& Freimund (1994) in the west coast of USA were used in Ecuador (Ochoa-Cueva et al., 

2015), and Honduras and El Salvador (Kim et al., 2005). Work by Arnoldus (1980) 

developed R-factor equations in West Africa that use monthly and annual 

precipitation. However, these equations present a problem in terms of consistent 

units, as reported by Renard & Freimund (1994) in their review of previous R-factor 
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work. In Southeast Asia, Shamsad et al. (2008) developed an R-factor equation in 

Malaysia that was used in the Philippines by Delgado & Canters (2012). In New 

Zealand, the monthly precipitation can be aggregated to seasonal precipitation and 

used in the equation for seasonal R-factor derived by Klik et al. (2015) 

Monthly or better precipitation records are very useful in R/USLE applications 

because of the option of estimating soil loss at a monthly or seasonal scale, which can 

be useful in countries with high temporal variation of rainfall throughout the year. 

Monthly and seasonal erosion has been estimated by varying the R-factor depending 

on the monthly precipitation while leaving all the other factors constant (Ferreira & 

Panagopoulos, 2014; Kavian et al., 2011). Klik et al. (2015) emphasised the need to 

understand the drivers of soil erosion, including whether rainfall intensity had a 

stronger effect compared to mean annual rainfall. In an assessment of spatial and 

temporal variations in rainfall erosivity over New Zealand, December and January were 

associated with higher erosivities while August was associated with lowest erosivity 

(Klik et al., 2015). Similar work by Diodato (2004) has cited the use of monthly erosivity 

data to be more useful with respect to managing crop growing cycles and tillage 

practices, especially during seasons where high rainfall erosivity is expected. In 

locations where there is a large temporal variation in rainfall throughout the year, the 

seasonal approach of estimating soil erosion is more important for sustainable land 

management (Ferreira & Panagopoulos, 2014). 

As an example of how R-factor equations can give different estimates of rainfall 

erosivity, the equations by Klik et al. (2015) developed in New Zealand, Loureiro and 

Coutinho (2001) developed in Portugal, and Ferreira and Panagopolous (2014) also 

developed in Portugal were used to estimate annual and seasonal erosivity in the 

Mangatarere watershed (Table 23, Table 24, and Figure 63). For the same set of 

rainfall data, the three equations predicted different annual and seasonal values of 

erosivity. Regarding seasonal patterns of erosivity, Klik et al. (2015) predicted highest 

erosivity occurring during summer but lowest in winter and spring. This trend matches 

the national observations of the most erosive storms occur during summer, and the 

lowest occurring during winter (Klik et al., 2015). By contrast, both Loureiro & 

Coutinho (2001) and Ferreira & Panagopolous (2014) predicted highest erosivity 
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during spring and lowest during summer. The soil loss results were affected by these 

differences in erosivity and more detail is found in the Mangatarere chapter (Chapter 

6). 

These differences highlight the importance of understanding the regional 

applicability of rainfall erosivity equations. In the reviewed R/USLE studies for this 

chapter, a common occurrence was using equations derived in different countries and 

regions without much justification why those equations were chosen with little 

consideration for their suitability. These studies also did not publish any testing of how 

different R-factors produce different erosivity values from the same input dataset. The 

purpose of testing the different R-factors is to illustrate this variation and encourages 

future users of R/USLE to do the same sensitivity testing in their area. 

Table 23. Annual estimates of erosivity in the Mangatarere (MJ mm ha-1 h-1 yr-1). 

Equation 
Source 

Klik et al. 
(2015) 

Loureiro & Coutinho 
(2001) 

Ferreira & Panagopolous 
(2014) 

Annual 
erosivity 2607 1391 1715 

 

Table 24. Seasonal rainfall and estimates of erosivity in the Mangatarere (MJ mm ha-1 h-1 yr-1). 

Season Rainfall Klik et al. (2015) Loureiro & Coutinho (2001) Ferreira & Panagopolous (2014) 

Spring 322 317 656 733 

Summer 553 1283 72 208 

Autumn 386 611 288 360 

Winter 541 288 375 494 
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Figure 63. Graph of seasonal rainfall and estimates of erosivity in the Mangatarere. 

In summary, there are many rainfall erosivity datasets and equations in the 

R/USLE literature that can be used by new researchers applying the RUSLE to their 

study area. The erosivity dataset produced by Panagos et al. (2017) is recommended 

for areas with no rainfall data or in ungauged catchments since this is a raster dataset 

with a global coverage (~30 arcsecond resolution) and is freely available. For areas in 

the European Union, work by Panagos et al. (2015a) and related papers has produced 

a rainfall erosivity map with regional coverage at ~1km resolution. These datasets can 

also be used to validate the erosivity factors calculated at the national or catchment 

scale. If annual precipitation and the study area’s Köppen-Geiger classification are 

known, Naipal et al. (2015) has published rainfall erosivity equations and values for 17 

different climate zones. Several studies have published erosivity equations for tropical 

areas: da Silva (2004) for Brazil, Shamshad et al. (2008) for Malaysia, and Jain & Das 

(2010) for India. For arid areas, Arnoldus (1980) as cited in Renard & Freimund has 

derived erosivity equations for Morocco and other locations in West Africa. Many 

other equations are found in Table 25, and choosing several for sensitivity testing is 

recommended for future R/USLE applications. It is also important to test against 

observed data or R-factors derived by previous applications in the same study area or 

in study areas with similar climatic regimes. 
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Table 25. Summary of different studies that developed rainfall erosivity equations, original locations, and 
other studies that used their equations. 

# Author Original 
Location 

Resolution Equation and requirements Other studies 

1 Wischmeier 
and Smith 
(1978) and 
Renard et al. 
(1997) 

United 
States of 
America 

Sub-daily 
𝑅 =  

∑ (𝐸𝐼30)𝑖
𝑗
𝑖=1

𝑁
 

𝐸𝐼30  =  𝐸 × 𝐼30 
𝐸 = 916 + 331 ×  𝑙𝑜𝑔10 I 

 
I = intensity (in hr-1) 
EI30i = EI30 for storm i 
j = number of storms in an N-year 
period 
 
Units 
Imperial: 
Hundreds of foot • tonf • inch • acre-1 • 
hour-1 • year-1 
 
Metric (multiply by 17.02): 
Megajoule •millimetre • hectare-1 • 
hour-1 • year-1 

Applied around 
USA 

2 Mihara (1951) 
and Hudson 
(1971) as cited 
in 
David (1988) 

USA Daily 
𝑅 = 𝐴 ×  ∑ 𝑃𝑖

𝑚

𝑛

1

 

A = 0.002 
M = 2 
Pi = Precipitation total for day i when P 
exceeds 25mm 
 
Units: Not specified, likely to be original 
USLE imperial units 

Watersheds 
around the 
Philippines 
(David, 1988) 

3 Arnoldus 
(1980) as cited 
in Renard and 
Freimund 
(1994) 

Morocco 
and other 
locations in 
West Africa 

Monthly 
and annual 

West Africa 
𝑅 = 4.79𝑀𝐹𝐼 − 142 
𝑅 = 5.44𝑀𝐹𝐼 − 416 

Eastern USA 
𝑅 = 6.86𝑀𝐹𝐼 − 420 

Western USA 
𝑅 = 4.79𝑀𝐹𝐼 − 143 

Northwest USA 
𝑅 = 0.66𝑀𝐹𝐼 − 3 

 

𝑀𝐹𝐼 =  ∑
𝑃𝑖

2

𝑃

12

𝑖=1

 

MFI = Modified Fournier’s Index 
Pi = monthly precipitation 
P = annual precipitation 
 
Units:  
Ton-metre • centimetre • hectare-1 • 
hour-1 • year-1 (Renard and Freimund, 
1994) 

Turkey (Demirci 
& Karaburun, 
2012); Morocco 
(Raissouni et al., 
2016) 
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Table 25. Summary of different studies that developed rainfall erosivity equations, original locations, and 
other studies that used their equations. (continued) 

# Author Original 
Location 

Resolution Equation and requirements Other studies 

4 Renard and 
Freimund 
(1994) 

West coast 
of USA 

Monthly 
and annual 

𝑅 = 0.0483 × 𝑃1.610 
𝑅 = 587.8 − 1.219𝑃 + 0.004105𝑃2 

 
Using MFI (Arnoldus, 1980): 

𝑅 = 0.07397 × 𝑀𝐹𝐼1.847 
𝑅 = 95.77 − 6.081𝑀𝐹𝐼 + 0.4770𝑀𝐹𝐼2 
Pi = monthly precipitation 
P = annual precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Central America 
(Kim et al., 
2005); Iran 
(Zakerinejad & 
Maerker, 2015); 
Ecuador 
(Ochoa-Cueva 
et al., 2015) 

5 Zhou et al. 
(1995) as cited 
in Li et al. 
(2014) 

Southern 
China 

Monthly 
𝑅 =  ∑ −1.15527 + 1.792𝑃𝑖

12

𝑖=1

 

Pi = monthly precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

China (L. Li et 
al., 2014) 

6 Roose (1975) 
and Morgan 
(1974) as cited 
in Morgan 
(2005) 

Peninsular 
Malaysia 
and Africa 

Annual Africa (Roose, 1975): 
𝑅 = 0.5 × 𝑃 × 17.3 

Peninsular Malaysia: 

𝑅 = (9.28 × 𝑃 − 8838) (
75

1000
) 

P = mean annual precipitation (mm) 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Malaysia 
(Roslee et al., 
2017); Vanuatu 
(Dumas & 
Fossey, 2009); 
Iran 
(Zakerinejad & 
Maerker, 2015) 

7 El-Swaify et al. 
(1987) as cited 
in Post & 
Hartcher 
(2006) 

Possibly 
Thailand 

Annual 𝑅 = 38.5 + 0.35𝑃 
P = mean annual precipitation 
 
Units: Tons • hectare-1 • year-1 (All the 
other factors must have been 
developed to have no units so that the 
final soil loss is in tons/ha/year) 

Thailand 
(Eiumnoh, 2000; 
Merritt et al., 
2004); 
Philippines 
(Adornado et 
al., 2009; 
Adornado & 
Yoshida, 2010; 
Hernandez et 
al., 2012); Sri 
Lanka 
(Jayasinghe et 
al., 2010) 

8 Land 
Development  
Department 
(2000), as cited 
in 
Nontananandh 
and Changnoi 
(2012) 

Thailand Annual 𝑅 = 0.04669𝑃 − 12.1415 
P = mean annual rainfall 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Thailand 
(Nontananandh 
& Changnoi, 
2012) 
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Table 25. Summary of different studies that developed rainfall erosivity equations, original locations, and 
other studies that used their equations. (continued) 

# Author Original 
Location 

Resolution Equation and requirements Other studies 

9 Loureiro and 
Coutinho 
(2001) 

Portugal Daily 
𝑅 =  

1

𝑁
∑ ∑ 𝐸𝐼30(𝑚𝑜𝑛𝑡ℎ𝑙𝑦)

12

𝑚=1

𝑁

𝑖=1

 

𝐸𝐼30 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦) = 7.05𝑟𝑎𝑖𝑛10

− 88.92𝑑𝑎𝑦𝑠10 
Rain10 = monthly rainfall for days with > 
10.0mm of rain 
Days10 = monthly number of days with 
rainfall > 10.0mm of rain 
N = number of years 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Spain (López-
Vicente et al., 
2008) 

10 Fernandez et 
al. (2003), 
originally 
developed by 
the USDA-ARS 
(2002) 

USA Annual 𝑅 =  −823.8 + 5.213𝑃 
P = annual precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

USA (C. 
Fernandez et 
al., 2003); 
Greece (Jahun 
et al., 2015) 

11 Ram et al. 
(2004), as cited 
in Jain and Das 
(2010) 

India Annual 𝑅 = 81.5 + 0.38𝑃 
 
P = annual precipitation for areas where 
annual precipitation ranges between 
340mm to 3500mm 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

India (Jain & 
Das, 2010) 

12 Shamshad et 
al. (2008)  

Malaysia Monthly 
and annual 

Based on Loureiro and Coutinho (2001) 
but for Malaysia: 

𝑅 =  ∑ 6.97𝑟𝑎𝑖𝑛10 − 11.23𝑑𝑎𝑦𝑠10

12

𝑖=1

 

𝑅 =  ∑ 0.266 × 𝑟𝑎𝑖𝑛10
2.071

12

𝑖=1

× 𝑑𝑎𝑦𝑠10
−1.367 

𝑅 =  ∑ 227 × (
𝑃𝑖

2

𝑃
)

0.54812

𝑖=1

 

Rain10 = monthly rainfall for days with > 
10.0mm of rain 
Days10 = monthly number of days with 
rainfall > 10.0mm of rain 
Pi = monthly precipitation 
P = annual precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Philippines 
(Delgado & 
Canters, 2012) 

13 Irvem et al. 
(2007) 

Turkey Monthly 
and annual 

𝑅 = 0.1215 × 𝑀𝐹𝐼2.2421 

𝑀𝐹𝐼 =  ∑
𝑃𝑖

2

𝑃

12

𝑖=1

 

Pi = monthly precipitation 
P = annual precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Turkey (Ozsoy 
et al., 2012) 
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Table 25. Summary of different studies that developed rainfall erosivity equations, original locations, and 
other studies that used their equations. (continued) 

# Author Original 
Location 

Resolution Equation and requirements Other studies 

14 Ferreira and 
Panagopolous 
(2014), similar 
to Loureiro and 
Coutinho 
(2001) 

Portugal Daily 
𝑅 =  ∑ 6.56𝑟𝑎𝑖𝑛10 − 75.09𝑑𝑎𝑦𝑠10

12

𝑖=1

 

Rain10 = monthly rainfall for days with > 
10.0mm of rain 
Days10 = monthly number of days with 
rainfall > 10.0mm of rain 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

Portugal 
(Ferreira & 
Panagopoulos, 
2014) 

15 Nakil (2014) as 
cited in Nakil 
and Khire 
(2016) 

India Annual 𝑅 = 839.15 ×  𝑒0.0008𝑃  
P = annual precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

India (Nakil & 
Khire, 2016) 

18 Naipal et al. 
(2015) 

Global 
application, 
but original 
data from 
USA and 
Europe 

Annual Various equations depending on 
Köppen climate classification, including 
alternate equations if SDII is not 
available 
 
P = annual precipitation (mm) 
Z = mean elevation (m) 
SDII = simple precipitation intensity 
index (mm day-1) 

 

19 Klik et al. 
(2015) 

New 
Zealand 

Annual or 
seasonal 

Annual or seasonal: 

𝑅 = 𝑎𝑃𝑏 
𝑅 = 𝑎𝑃 + 𝑏 

 
P = annual precipitation (mm) or 
seasonal precipitation (mm) 
a & b = constants depending on region 
of New Zealand 
 
The equation used will depend on the 
region of New Zealand, and the season. 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 

 

20 Sholagberu et 
al. (2016) 

Malaysia Annual 𝑅 = 0.0003𝑃1.771 
P = annual precipitation 
 
Units: Megajoule •millimetre • hectare-

1 • hour-1 • year-1 

 

 

4.2.2 Slope length (L) and steepness (S) factor 

The LS-factor represents the effect that the slope’s length and steepness affect 

sheet, rill, and inter-rill erosion by water, and is the ratio of expected soil loss from a 

field slope relative to the original USLE unit plot (Wischmeier & Smith, 1978). The USLE 

method of calculating the slope length and steepness factor was originally applied at 

the unit plot and field scale, and the RUSLE extended this to the one-dimensional 

hillslope scale, with different equations depending on whether the slope had a 
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gradient of more than 9% (Renard et al., 1997; Wischmeier & Smith, 1978). Further 

research extends the LS-factor to topographically complex units using a method that 

incorporates contributing area and flow accumulation (Desmet & Govers, 1996). The 

USLE and RUSLE method of calculating the LS-factor uses slope length, angle, and a 

parameter that depends on the steepness of the slope in percent (Wischmeier & 

Smith, 1978).  

However, one of the criticisms of the original USLE method of calculating LS-

factor is its applicability to more complex topography. With advances in GIS 

technology, the method of determining the LS-factor as a function of upslope 

contributing area or flow accumulation and slope has risen in popularity (26). The use 

of digital elevation models (DEMs) to calculate upslope contributing area and the 

resulting LS-factor allows researchers to account for more topographically complex 

landscapes (Desmet & Govers, 1996; Moore & Burch, 1986). Desmet and Govers 

(1996) have also built on this method through showing its application in a GIS 

environment over topographically complex terrain when compared to the original 

method proposed by Wischmeier and Smith (1978). This method of using flow 

accumulation for slope length and steepness explicitly accounts for convergence and 

divergence of flow, which is important when considering soil erosion over a complex 

landscape (Wilson & Gallant, 2000). It is possible to use this method to calculate the 

LS-factor over a large extent, but a high-resolution DEM is needed for accurate 

representation of the topography. The resolution required depends on the study 

area’s scale. Coarse DEMs (~30m) are less suited to field and sub-catchment scale 

studies where it may be important to capture effects of micro-topography. At DEMs 

larger than ~100m resolution, there is significant loss of detail regarding the flow 

network (Panagos et al., 2015b). 

The original equations for LS-factor assume that slopes have uniform gradients 

and any irregular slopes would have to be divided into smaller segments of uniform 

gradients for the equations to be more accurate (Wischmeier & Smith, 1978). At the 

plot or small field scale, this manual measurement of slopes and dividing into 

segments may be manageable, but less useful at larger scales. In terms of practicality, 

Desmet & Govers (1996) have reported studies of this method applied at a watershed 
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scale with the disadvantages of it being time-consuming. Studies in Iran and the 

Philippines have implemented the R/USLE methods within a GIS environment by 

calculating the LS-factor for each raster cell in a DEM, essentially treating each pixel as 

its own segment of uniform slope (Bagherzadeh, 2014; Schmitt, 2009). Applications 

using these methods must be mindful of the appropriate DEM resolution of their study 

area, as using DEMs that are too coarse can lead to loss of detail associated with flow 

patterns. 

As explained above, the method of using flow accumulation, upslope 

contributing area, and slope in a GIS environment has gained popularity due to its 

ability to explicitly account for convergence and divergence of flow, thus capturing 

more complex topography (Wilson & Gallant, 2000). In the New Zealand application 

using high-resolution DEMs (~15m and 5m), this method is appropriate at the sub-

catchment or field scale while the original RUSLE method can still be applied at the 

national, regional, or catchment scale if limited by computing resources. This flow 

accumulation method was applied at the scales of watersheds and regions (26) and 

has even been applied by Panagos et al. (2015b) at the scale of the European Union 

using a 25m DEM. The factors that limit users is the availability of high-resolution 

DEMs and the trade-off between processing time and accuracy. The original R/USLE 

methods require only slope angle and length, operates over a single cell in a DEM by 

treating it as a uniform slope, and would take less processing time compared to the 

method using flow accumulation. However, the user must remember that this cannot 

capture the convergence and divergence of flow and thus can sacrifice accuracy for 

time at the sub-catchment or field scale. 
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Table 26. Summary of methods of calculating LS-factor, original locations, and other studies that used 
these methods. 

# Author Original 
Location 

Data 
requirements 

Equation Other studies 
that utilised 
similar 
methods 

1 Wischmeier 
and Smith 
(1978) 

USA Slope length 
and angle 𝐿𝑆 =  (

𝜆

72.6
)

𝑚

×  [(65.41 

×  sin2 𝜃)
+ (4.56 
× sin 𝜃)
+ 0.065] 

 
λ = Slope length in feet 
ϴ = Angle of slope 
m = Dependent on the slope 

• 0.5 if slope > 5% 

• 0.4 if slope is between 
3.5% and 4.5% 

• 0.3 if slope is between 
1% and 3% 

• 0.2 if slope is less than 
1% 

 

Thailand 
(Eiumnoh, 
2000; Merritt 
et al., 2004); 
Vanuatu 
(Dumas & 
Fossey, 2009); 
Iran 
(Bagherzadeh, 
2014) 

2 Renard et 
al. (1997) 

USA Slope length 
and angle 𝐿 =  (

𝜆

72.6
)

𝑚

 

𝑚 =  
𝛽

1 +  𝛽
 

𝛽 =  
(

sin 𝜃
0.0896

)

[3.0 × (sin 𝜃)0.8 + 0.56]
 

 
If slope is less than 9%: 

𝑆 = 10.8 ×  sin 𝜃 + 0.03 
 
If slope is greater or equal to 9%: 

𝑆 = 16.8 ×  sin 𝜃 − 0.50 
 
But if the slope is shorter than 15 
feet: 

𝑆 = 3.0 × (sin 𝜃)0.8 + 0.56 
 
λ = Slope length in feet 
ϴ = Angle of slope 
m = Dependent on the slope 

• 0.5 if slope > 5% 

• 0.4 if slope is between 
3.5% and 4.5% 

• 0.3 if slope is between 
1% and 3% 

• 0.2 if slope is less than 
1% 

Philippines 
(Schmitt, 
2009); China (L. 
Li et al., 2014); 
Thailand 
(Nontananandh 
& Changnoi, 
2012); Turkey 
(Ozsoy et al., 
2012) 
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Table 26. Summary of methods of calculating LS-factor, original locations, and other studies that used 
these methods. (continued) 

# Author Original 
Location 

Data 
requirements 

Equation Other studies that 
utilised similar 
methods 

3 David 
(1988), 
based on 
work by 
Madarcos 
(1985) and 
Smith & 
Whitt (1947) 

Philippines, 
but based 
on work 
from the 
USA 

Slope rise in 
percent 

𝐿𝑆 = 𝑎 + 𝑏 ×  𝑆𝐿

4
3⁄

 

 
a = 0.1 
b = 0.21 
SL = Slope in percent 

Philippines (David, 
1988) 

4 Morgan 
(2005) but 
previously 
published in 
earlier 
editions 

Britain Slope length 
and gradient in 
percent 

𝐿𝑆 = (
𝑙

22
)

0.5

× (0.065

+ 0.045𝑠
+ 0.0065𝑠2) 

 
l = slope length (m) 
s = slope steepness (%) 

India (Nakil & Khire, 
2016; Sinha & Joshi, 
2012); Greece (Rozos 
et al., 2013)  

5 Moore & 
Burch 
(1986) as 
cited in 
Mitasova et 
al. (1996); 
Desmet & 
Govers 
(1996); 
Mitasova et 
al. (2013); 

USA Upslope 
contributing 
area per unit 
width, which 
can be 
approximated 
through flow 
accumulation, 
cell size, slope 

𝐿𝑆 = (𝑚 + 1) (
𝑈

𝐿0
)

𝑚

(
sin 𝛽

𝑆0
)

𝑛

 

 
U (m2m-1) = upslope contributing 
area per unit width as a proxy for 
discharge 
 
𝑈 = 𝐹𝑙𝑜𝑤 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

× 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒 
 
L0 = length of the unit plot (22.1) 
S0 = slope of unit plot (0.09) 
β = slope 
m (sheet) and n (rill) depend on 

the prevailing type of erosion 
(m= 0.4 to 0.6) and n (1.0 to 1.3) 

Philippines 
(Adornado et al., 
2009; Adornado & 
Yoshida, 2010); Sri 
Lanka (Jayasinghe et 
al., 2010); China (L. 
Chen et al., 2011); 
Iran (Zakerinejad & 
Maerker, 2015); 
Jordan (Farhan & 
Nawaiseh, 2015); 
Morocco (Raissouni 
et al., 2016); New 
Zealand (M. A. 
Fernandez & 
Daigneault, 2016) 
 
 
Similar methods from 
Moore & Burch 
(1986): 
India (Jain & Das, 
2010); Portugal 
(Ferreira & 
Panagopoulos, 2014); 
Greece (Jahun et al., 
2015); India (Nakil & 
Khire, 2016) 
 
Similar methods from 
Desmet & Govers 
(1996): 
USA (Boyle et al., 
2011); Turkey 
(Demirci & 
Karaburun, 2012); 
Philippines (Delgado 
& Canters, 2012) 
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4.2.3 Soil erodibility factor (K) 

The K-factor represents the influence of different soil properties on the slope’s 

susceptibility to erosion (Renard et al., 1997). It is defined as the “mean annual soil 

loss per unit of rainfall erosivity for a standard condition of bare soil, recently tilled up-

and-down slope with no conservation practice” (Morgan, 2005). The K-factor 

essentially represents the soil loss that would occur on the R/USLE unit plot, which is a 

plot that is 22.1m long, 1.83m wide, and has a slope of 9% (López-Vicente et al., 2008). 

Higher K-factor values indicate the soil’s higher susceptibility to soil erosion 

(Adornado et al., 2009). In the R/USLE, Wischmeier and Smith (1978) and Renard et al. 

(1997) use an equation that relates textural information, organic matter, information 

about the soil structure and profile-permeability with the K-factor or soil erodibility 

factor. However, other soil classifications might not include soil structure and profile-

permeability information that matches the information required by R/USLE 

nomograph. Hence, alternative equations were developed that exclude the soil 

structure and profile-permeability (Table 27). The question of which equation to use 

depends on the availability of soil data. Where only the textural class and organic 

matter content is known, Stewart et al. (1975) have approximated K-factor values 

based on these inputs. Similar to the R-factor, the imperial units of soil erodibility are 

in ton acre hour hundreds of acre-1 foot-1 tonf-1 inch-1, and multiplying by 0.1317 gives 

the erodibility in SI units of metric ton hectare hour hectare-1 megajoule-1 millimetre-1 

(Renard et al., 1997). 

Although seemingly relatively straightforward, the K-factor equation proposed 

by Wischmeier and Smith (1978) comes with a few limitations regarding soil type. This 

equation was developed using data from medium-textured surface soils in the 

Midwestern USA, with an upper silt fraction limit of 70% (Renard et al., 1997). An 

equation for volcanic soils in Hawaii was proposed by El-Swaify & Dangler (1976) as 

cited in Renard et al. (1997) but is only appropriate for soils similar to Hawaiian soils 

and not for all tropical soils. Despite these limitations, many studies outside the USA 

have used the original Wischmeier & Smith (1978) K-factor equation (Table 27). Being 

aware of the regional specificity of K-factor equations is important and using different 
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K-factor equations in one study area to find a range of soil erodibility could be a way of 

testing their applicability. 

Similar to the sensitivity analysis of the R-factor equations, testing different K-

factor equations to see the variation in erodibility values, and then comparing these K-

factors with published values from similar soils would be a good way to test 

applicability. For the spatial coverage of European Union, a soil erodibility raster 

dataset (~500m resolution) is available for validation (Panagos et al., 2014). David 

(1988) and Dymond (2010) have published K-factor values for soils of different textural 

classes (e.g. clay, loam, etc.) that can be used if only soil texture is known. Like the R-

factor, it is important to check the derived K-factor values for the site-specific soil 

against previously published K-factor values for comparable sites and soil types. 

Table 27. Summary of different studies with soil erodibility equations, original locations, and other 
studies that used their equations. All of the equations in Table 27 use imperial units of soil erodibility: ton 
• acre • hour • hundreds of acre-1 • foot-1 • tonf-1 • inch-1. Multiply by 0.1317 to give in SI units of metric 
ton • hectare • hour • hectare-1 • megajoule-1 • millimetre-1. 

# Author Original 
Location 

Data 
requirements 

Equation Other studies 

1 Wischmeier 
and Smith 
(1978) and 
Renard et 
al. (1997) 

USA Very fine 
sand (%), clay 
(%), silt (%), 
organic 
matter (%), 
soil structure, 
profile-
permeability 

𝑀 = 𝑆𝑖𝑙𝑡 × (100 − 𝐶𝑙𝑎𝑦) 

𝐾 =

{

[2.1 ×  𝑀1.14 × (10−4) × (12 − 𝑎)] +
[3.25 × (𝑏 − 2)] +

[2.5 × (𝑐 − 3)]
}

100
 

 
M = Particle-size parameter 
Silt = Silt (%) but also includes the percentage 
of very fine said (0.1 to 0.05mm) 
Clay = Clay (%) 
a = Organic matter (%) 
b = Soil-structure code used in soil 
classification: 

• 1: Very fine granular 

• 2: Fine granular 

• 3: Medium or coarse granular 

• 4: Blocky, platy, or massive 
c = Profile-permeability class 

• 1: Rapid 

• 2: Moderate to rapid 

• 3: Moderate 

• 4: Slow to moderate 

• 5: Slow 

• 6: Very slow 

Thailand 
(Eiumnoh, 
2000); 
Vanuatu 
(Dumas & 
Fossey, 2009); 
Philippines 
(Schmitt, 
2009); India 
(Jain & Das, 
2010); Turkey 
(Ozsoy et al., 
2012); Iran 
(Bagherzadeh, 
2014); 
Portugal 
(Ferreira & 
Panagopoulos, 
2014); China 
(L. Li et al., 
2014); 
European 
Union 
(Panagos et 
al., 2014) 
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Table 27. Summary of different studies with soil erodibility equations, original locations, and other 
studies that used their equations. All of the equations in Table 27 use imperial units of soil erodibility: ton 
• acre • hour • hundreds of acre-1 • foot-1 • tonf-1 • inch-1. Multiply by 0.1317 to give in SI units of 
metric ton • hectare • hour • hectare-1 • megajoule-1 • millimetre-1. (continued) 

# Author Original 
Location 

Data 
requirements 

Equation Other studies 

2 Williams 
and Renard 
(1983) as 
cited in 
Chen et al. 
(2011) 

USA Sand (%), silt 
(%), clay (%), 
organic 
carbon (%) 

𝐾

= 0.2

+  0.3 exp (0.0256 × 𝑆𝑎 × (1 −
𝑆𝑖

100
))

×  (
𝑆𝑖

𝐶𝑙 + 𝑆𝑖
)

0.3

×  (1.0 −  
0.25 × 𝐶

𝐶 + exp(3.72 − 2.95𝐶)
)

×  (1.0 −
0.7 × 𝑆𝑁

𝑆𝑁 + exp(−5.51 + 22.9𝑆𝑁)
) 

 
Sa = Sand % 
Si = Silt % 
Cl = Clay % 
SN = 1-(Sa/100) 
C = Organic Carbon 

China (L. Chen 
et al., 2011) 

3 David 
(1988), a 
simplified 
version of 
Wischmeier 
and 
Mannering 
(1969) 

USA Sand (%), clay 
(%), silt (%), 
organic 
matter (%), 
pH 

𝐾 = [

(0.043 ×  𝑝𝐻) +
(0.62 ÷  𝑂𝑀) +

(0.0082 ×  𝑆) − (0.0062 ×  𝐶)
]  ×  𝑆𝑖 

 
pH = pH of the soil 
OM = Organic matter in percent 
S = Sand content in percent 
C = Clay ratio = % clay / (% sand + % silt) 
Si = Silt content = % silt / 100 

Philippines 
(David, 1988; 
Hernandez et 
al., 2012)  
 

4 El-Swaify & 
Dangler 
(1976) as 
cited in 
Renard et 
al. (1997) 

Hawaii, 
USA 

Textural 
information, 
base 
saturation 

K =  −0.03970 +  0.00311x1  
+ 0.00043x2  +  0.00185x3  
+ 0.00258x4  −  0.00823x5 

 
x1 = unstable aggregate size fraction 
(<0.250mm) (%) 
x2 = modified silt (0.002 - 0.1mm) (%) * 
modified sand (0.1 - 2mm) (%) 
x3 = % base saturation 
x4 = silt fraction (0.002 - 0.050mm) (%) 
x5 = modified sand fraction (0.1 - 2mm) (%) 

 

 

4.2.4 Cover and management factor (C)  

The cover and management factor (C) is defined as the ratio of soil loss from a 

field with a particular cover and management compared to a field under “clean-tilled 

continuous fallow” (Wischmeier & Smith, 1978). The R/USLE uses a combination of 

sub-factors such as impacts of previous management, canopy cover, surface cover and 

roughness, and soil moisture on potential erosion to produce a value for soil loss ratio, 

which is used with R-factor to produce a value for C-factor (Renard et al., 1997). This 

method requires extensive knowledge of the study area’s cover characteristics 
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including agricultural management and may be suitable at field or farm scale but 

monitoring all these characteristics at the watershed scale may not be feasible.  

A simpler method of determining the C-factor is referencing studies that have 

reported values for similar land cover, or from studies done in the same area or 

region. Table 28 and Table 29 give a broad overview of C-factors for different cover 

types and common crops. Wischmeier & Smith (1987) also include the effect of 

percent ground cover, reporting C-factor values for the same cover type over a range 

of cover percentage and condition. Morgan (2005) and David (1988) have reported 

values for the different growth stages of the same types of trees. A simple method of 

creating a C-factor layer by using lookup tables to assign C-factor values to the land 

cover classes present in the study area. When using C-factors from literature, it is 

important to note the definition of land cover type between two countries may vary. 

For example, land classified as forest in one country may be different in terms of 

vegetation cover or type compared to forest in another country (e.g. differences in 

pine forests and tropical forests). Therefore, it is crucial to understand the differences 

between land cover classifications before applying C-factor values from literature. Van 

der Knijff et al. (2000) cites the large spatial and temporal variations in cover and crop 

over a large region such as the European Union as another reason why using the 

lookup table-based approach is inadequate and tedious. 

To address this, another method of determining the C-factor is through the 

Normalized Difference Vegetation Index (NDVI) estimated from satellite imagery. 

Although there are NDVI layers available, these are limited by geographical coverage, 

date of acquisition, and resolution. The MODIS NDVI dataset made by Caroll et al. 

(2004) at 250m resolution covers the USA and South America8. NASA produced a 

global dataset of NDVI values at 1-degree resolution for the timespan of July 1983 to 

June 1984, making it suitable for studying historical soil erosion but not necessarily for 

the current state of land cover9. 

                                                      
8 http://glcf.umd.edu/data/ndvi/ 
9 https://data.giss.nasa.gov/landuse/ndvi.html 

http://glcf.umd.edu/data/ndvi/
https://data.giss.nasa.gov/landuse/ndvi.html
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In areas where ready-made NDVI products are unavailable, authors used satellite 

imagery to obtain NDVI such as AVHRR or Landsat ETM (de Asis & Omasa, 2007; van 

der Knijff et al., 2000). De Asis & Omasa (2007) related C-factor and NDVI through 

fieldwork and image classification; determining C-factor at several points within the 

study area using the R/USLE approach and relating it to the NDVI through regression 

correlation analysis. For larger study areas, this may not be feasible such as in the 

European Union where Van der Knijff et al. (2000) determined NDVI from satellite 

imagery, and since NDVI is positively correlated with green vegetation, they created 

this equation: 

𝐶 = exp [−∝ (
𝑁𝐷𝑉𝐼

𝛽 − 𝑁𝐷𝑉𝐼
)] 

Where α and β are parameters that determine the shape of the NDVI-C curve, 

and van der Knijff et al. (2000) used values of 2 and 1, respectively. This approach 

enabled them to create a C-factor map over the European Union. However, C-factors 

were unrealistically high in some areas such as woodland and grassland, so values for 

those areas were taken from literature to limit a maximum of 0.01 for woodland and 

0.05 for grassland. This verification of C-factors is important to keep in mind when 

using satellite imagery and NDVI, and the resulting C-factor values should be tested 

against literature to check if they exceed the maximum values for land cover types. In 

China, Ma et al. (2001) as cited in Li et al. (2014) uses the following relationship 

between NDVI and C: 

𝑓𝑔 =  
𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 

𝐶 =  {

1 𝑓𝑔 = 0

0.6508 − 0.343 × log (𝑓𝑔) 0 <  𝑓𝑔 < 78.3%

0 𝑓𝑔 ≥ 78.3%

 

An advantage of using is NDVI that researchers can determine sub-annual C-

factors if there is satellite imagery available, which can lead to understanding the 

contribution of cover to seasonal soil erosion and identifying critical periods within the 

year were soil erosion is a risk (Ferreira & Panagopoulos, 2014). Similar methods have 

been applied in Brazil by Durigon et al. (2014), Greece by Alexandridis et al. (2015), 

and Kyrgyzstan by Kulikov et al. (2016). Determining C-factors at the seasonal scale is 
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important because vegetation cover can change throughout the year due to 

agricultural and forestry practices. In study areas with a high temporal variation of 

rainfall throughout the year, seasonal vegetation can play a big part in exacerbating or 

mitigating soil erosion. 

To summarise, the choice of which method to use depends on the scale of the 

study area, reported C-factors for similar cover, and availability of high-resolution 

imagery. For small-scale studies, it is more feasible to determine the C-factors through 

fieldwork. If previous R/USLE studies have reported C-factors for cover like the study 

area, those values can be used for the table-based approach. Lastly, high-resolution 

imagery can be used to determine the study area’s NDVI. At small scales and with a 

good understanding of differences in land cover classifications, pulling values from 

literature may be the most efficient choice but at larger regional scales, this may 

become tedious. At larger scales, high-resolution satellite imagery may be available to 

determine NDVI but authors must be mindful of its acquisition date in relation to their 

study period, and requires pre-processing such as masking cloud cover and creating 

aggregates from these masked images (Kulikov et al., 2016; van der Knijff et al., 2000). 

Table 28. C-factors for aggregated types of land cover compiled from various sources. 

Cover 

Dymond 
(2010) (New 
Zealand) 

David (1988) 
(Philippines) 

Morgan 
(2005) 
(Various) 

Fernandez et 
al. (2003) 
(USA) 

Dumas & 
Fossey (2009) 
(Vanuatu) 

LDD (2002) as 
cited in 
Nontananand
h & Changnoi 
(2012) 

Bare 
ground 1 1 1       
Built-
up 
areas   0.2   0.03 0 0 

Crop       0.128 0.01 0.255 to 0.525 

Forest 0.005 0.001 to 0.006 0.001 0.001 0.001 0.003 to 0.048 

Pasture 0.01   0.1       

Scrub 0.005 0.007 to 0.9 0.01 0.003 0.16 0.01 to 0.1 
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Table 29. C-factors for general types of land cover compiled from various sources. 

Cover 
Panagos et al. 

(2015d) (Europe) 
David (1988) 
(Philippines) 

Morgan (2005) 
(Various) 

Bananas   0.1 to 0.3   

Barley 0.21     

Chili     0.33 

Cocoa     0.1 to 0.3 

Coffee     0.1 to 0.3 

Common wheat 
and spelt 0.2   0.1 to 0.4 

Cotton seed 0.5 0.4 to 0.6 0.4 to 0.7 

Dried pulses 
(legumes) and 
protein crop 0.32 0.3 to 0.5 0.04 to 0.7 

Durum wheat 0.2     

Fallow land 0.5     

Grain maize-corn 0.38 0.3 to 0.6 0.02 to 0.9 

Groundnuts     0.3 to 0.8 

Linseed 0.25   0.1 to 0.2 

Oilseeds 0.28     

Palm with cover 
crops   0.05 to 0.3 0.1 to 0.3 

Pineapple   0.2 to 0.5 0.01 to 0.4 

Potatoes 0.34   0.1 to 0.4 

Rape and turnip 
rape 0.3     

Rice 0.15 0.1 to 0.2 0.1 to 0.2 

Rye 0.2     

Soya 0.28   0.2 to 0.5 

Sugar beet 0.34     

Sugarcane     0.13 to 0.4 

Sunflower seed 0.32     

Tobacco 0.49 0.4 to 0.6   

Yams     0.4 to 0.5 

 

4.2.5 Support practice factor (P) 

The support practice factor (P) is defined as the ratio of soil loss under a specific 

soil conservation practice (e.g. contouring, terracing) compared to a field with upslope 

and downslope tillage (Renard et al., 1997). The P-factor accounts for management 

practices that affect soil erosion through modifying the flow pattern, such as 

contouring, strip-cropping, or terracing (Renard et al., 1997). The more effective the 

conservation practice is at mitigating soil erosion, the lower the P-factor (Bagherzadeh, 
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2014). Like the C-factor, values for P-factors can be taken from literature and if there 

are no support practices observed, the P-factor is 1.0 (Adornado et al., 2009). The P-

factor can also be estimated using subfactors, but the difficulty of accurately mapping 

support practice factors or not observing support practices leads to many studies 

ignoring it by giving their P-factor a value of 1.0 as seen in Appendix 1 (Adornado et al., 

2009; Renard et al., 1997; Schmitt, 2009). 

Another likely reason why studies may ignore P-factor is due to the nature of 

their chosen C-factors. Some C-factors already account for the presence of a support 

factor such as intercropping or contouring. For example, Morgan (2005) and David 

(1988) give C-factors for one type of crop, but with distinct types of management. 

Table 30. Examples of where C-factor accounts for crop management from Morgan (2005) and David 
(1988). 

Crop Management C-factor 

Maize, sorghum or millet High productivity; 
conventional tillage 

0.20 to 0.55 

Low productivity; 
conventional tillage 

0.50 to 0.90 

High productivity; chisel 
ploughing into residue 

0.12 to 0.20 

Low productivity; chisel 
ploughing into residue 

0.30 to 0.45 

High productivity; no or 
minimum tillage 

0.02 to 0.10 

Coconuts 
 

Tree intercrops 0.05 to 0.1 

Annual crops as intercrop 0.1 to 0.30 

 

Despite the P-factor being commonly ignored, a few studies have reported 

possible P-factors for different kinds of tillage, terracing, contouring, and strip-

cropping (Table 31). The P-factor has a significant impact on the estimation of soil loss. 

For example, a P-factor of 0.25 for zoned tillage reflects the potential for this 

management factor to reduce soil by 75% loss compared to conventional tillage (P-

factor: 1.00).  At suitably detailed scales and with enough knowledge of farming 

practices, using these P-factors may lead to a more accurate estimation of soil loss. 

Additionally, these P-factors can be used in scenario analysis to understand how 

changing farming practices may mitigate or exacerbate soil loss. In the CDO application 
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(Chapter 5), the P-factor was included, and it was seen that soil conservation 

strategies such as agroforestry and line-planting can lead to reductions in mean annual 

soil loss. 

Table 31. P-factors for several types of agricultural management practices. 

David (1988) 

Tillage and Residue Management P-factor 

Conventional tillage 1.00 

Zoned tillage 0.25 

Mulch tillage 0.26 

Minimum tillage 0.52 

Slope (%) Terracing Contouring Contour Strip 
Cropping Bench Broad-based 

1 – 2 0.10 0.12 0.60 0.30 

3 – 8 0.10 0.10 0.50 0.15 

9 – 12 0.10 0.12 0.60 0.30 

13 – 16 0.10 0.14 0.70 0.35 

17 – 20 0.12 0.16 0.80 0.40 

21 – 25 0.12 0.18 0.90 0.45 

> 25 0.14 0.20 0.95 0.50 

Panagos et al. (2015e) 

Slope (%) Contouring P-factor 

9 – 12 0.6 

13 – 16 0.7 

17 – 20 0.8 

21 – 25 0.9 

> 25 0.95 

 

4.3 Limitations of R/USLE 
The most commonly cited limitation of the R/USLE models is their applicability to 

regions outside of the United States of America (Aksoy & Kavvas, 2005; Naipal et al., 

2015; Sadeghi et al., 2014). The original USLE was formulated based on soil erosion 

studies on agricultural land in the USA and when applied to different climate regimes 

and land cover conditions may lead to uncertainties associated with estimates of 

average annual soil loss (Kinnell, 2010). For example, the original equation for soil 

erodibility is less accurate for soils with high clay content, sandy loams, and soils with 

high organic matter (Stewart et al., 1975). Since the R/USLE parameters were 

developed based on studies of agricultural plots, there are uncertainties associated 

with using the original USLE at the catchment or regional scale (Nagle et al., 1999; 
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Naipal et al., 2015). Improvements and modifications to the R/USLE, especially to the 

LS-factor as detailed in the corresponding section, have made it applicable to larger 

scales, including a coarse resolution at the global scale (Naipal et al., 2015). The 

regional applicability is not the only issue of R/USLE, as the simplified empirical model 

does not capture the complexities associated with soil loss such as delivery to streams, 

streambank erosion, or mass wasting events. 

The uncertainties from soil erosion modelling also stem from the low availability 

of long-term reliable data for modelling, which is a problem not unique to R/USLE 

applications and is more pressing for more complex models that have high data inputs 

(de Vente & Poesen, 2005; Hernandez et al., 2012). Its application in data-scarce 

regions leads to uncertainty in actual soil loss quantities, and such applications have 

reported erosion vulnerability as categories (low to extreme) rather than annual 

average amounts (Adornado et al., 2009; Schmitt, 2009). Even so, the R/USLE is seen 

as the preliminary attempt at estimating soil loss for a landscape due to its relative 

simplicity and less data requirements (Aksoy & Kavvas, 2005). Future work in soil 

erosion modelling could include assembling a comprehensive database of global, 

regional, and national soil erosion rates to allow comparison between soil erosion 

modelling methods, not just R/USLE results. Another proxy for understanding soil 

erosion is water quality data such as total suspended solids (TSS) that includes 

sediment delivery and organic sources (CESM, 2014). However, TSS usually excludes 

the larger and heavier bedload sediments that could be resulting from mass wasting 

events or erosion (Nagle et al., 1999). Related to this, assembling published estimates 

of R/USLE sub-factors from different climatic regions and soil types would help in 

sensitivity testing R/USLE equations, deciding the most appropriate equation to use, 

and verifying the derived R/USLE sub-factor values. 

Another frequently-cited limitation is that the R/USLE estimates soil loss through 

sheet and rill erosion, but not from other types of erosion such as gully erosion, 

channel erosion, bank erosion, or from mass wasting events such as landslides (Nagle 

et al., 1999; Wischmeier & Smith, 1978). By excluding these types of erosion, the 

R/USLE may underestimate the actual soil loss (Thorne et al., 1985). The model also 

does not account for deposition, leading to overestimation, or sediment routing 
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(Desmet & Govers, 1996; Wischmeier & Smith, 1978). Since it does not predict the 

sediment pathways from hillslopes to water bodies, it is difficult to analyse possible 

effects on downstream areas, such as pollution or sedimentation (Jahun et al., 2015). 

One of the possible methods to link the R/USLE results to sediment delivery to streams 

is using the stream delivery ratio (SDR) defined as “the ratio of the sediment delivered 

at a location in the stream system to the gross erosion from the drainage area above 

that point” (Yoon et al., 2009). This parameter varies depending on the gradient, slope 

shape, and length and can also be influenced by land cover, roughness, etc. (Wu et al., 

2005). Given that it is influenced by similar characteristics as the R/USLE, future work 

can include combining the R/USLE with the SDR to estimate sediment delivery to 

streams, but also avoiding possible double-counting. These two limitations of 

deposition and routing are linked to the model’s representation of more 

topographically complex terrain, and previous studies have attempted to address it by 

improving on the LS-factor by incorporating upstream contributing area (Desmet & 

Govers, 1996; Moore et al., 1991). 

Despite these drawbacks, the USLE family of models is still widely used because 

of is relative simplicity and low data requirements compared to more complex 

physically based models. Studies around the world continue to improve R/USLE 

parameterisation and application in different climate regimes and locations.  

4.4 Future directions 
Since the R/USLE and its family of models are used over different geographic 

locations and climate types, it is important for future research to build on them and 

improve their representation of real-world soil loss. Some of the future directions 

include incorporating soil loss from other types of erosion, estimating soil loss at 

seasonal or sub-annual temporal scales, and improving the consistency of formulae 

and units in the scientific literature. 

4.4.1 Representing other types of erosion 

The R/USLE accounts for rill and inter-rill erosion, but not for soil losses due to 

ephemeral gullies, which can lead to under-prediction of soil loss estimates (Thorne et 

al., 1985). In their research on improving the topographic factor in R/USLE, Desmet & 

Grovers (1996) recommended that delineation of ephemeral gullies combined with 
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R/USLE could improve the identification of vulnerable areas within a watershed. These 

ephemeral gullies are small channels that form due to the erosive action of overland 

flow during a rainfall event (Momm et al., 2012). One of the studies referenced by 

Desmet & Govers (1996) was work by Thorne et al. (1985) and the compound 

topographic index (CTI). This CTI is not to be confused with the CTI formulated by 

Beven and Kirkby (1979), which is used within TOPMODEL (a watershed model) to 

identify source areas for saturation overland flow and runoff that may cause soil 

erosion (Aksoy & Kavvas, 2005; Beven & Kirkby, 1979). Both indices utilise contributing 

area and slope, but the objective of Beven and Kirkby (1979) was to use topographic 

analysis to derive a relationship between basin storage and contributing area in order 

to predict basin response. On the other hand, the objective of Thorne et al. (1985) was 

to use topographic analysis to predict locations of ephemeral gullies based on 

upstream drainage area, slope, and the planform curvature. 

Topography has a large influence on watershed hydrology due to its effects on 

soil moisture distribution and flow (Sørensen et al., 2006). In the USLE, the topography 

is accounted for in the LS-factor which is a function of slope length and steepness, 

which affects the rate of soil erosion due to water (Wischmeier & Mannering, 1968). 

Since the USLE was originally designed at the plot scale, its use causes issues when 

used at larger scales with more complex topography. R/USLE compensates for this by 

using a Geographic Information System (GIS) method of determining runoff 

contribution from upstream areas to downstream locations (de Mello et al., 2016). A 

common criticism of R/USLE is the exclusion of sediment yields from gully, 

streambank, and streambed erosion. Gully erosion can contribute a significant amount 

of sediment loss, such as 11,000 t km-2 yr-1 in the Waipaoa catchment in New Zealand 

(Basher, 2013). By only considering rill and inter-rill erosion through R/USLE, potential 

soil loss may be underestimated, hence the importance of adding gully erosion to the 

model (Thorne et al., 1985). 

Similar work combining the effect of rill and sheet erosion with gully erosion was 

done by Momm et al. (2012) in Kansas, and by Zakerinejad and Maeker (2015) in the 

Mazayjan watershed in Iran. Momm et al. (2012) combined several types of erosion: 

sheet and rill, gully, and bed and bank erosion, with the sheet and rill erosion 
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estimated using the R/USLE model. They used varying critical CTI thresholds to 

iteratively generate potential locations of ephemeral gullies, identify sub-watersheds 

prone to gully erosion, and use scenario analysis to estimate reductions in sediment 

yields under conservation practices (Momm et al., 2012). One of the limitations 

Momm et al. (2012) identified was of DEM size; since ephemeral gullies are small 

features (few metres wide, ~25cm deep), higher-resolution DEMs and LiDAR data 

would be better for topographic analysis. Another limitation was that topography is 

only one contributing factor to gully formation, and being able to include the effects of 

vegetation cover and soil properties could help improve the procedure (Momm et al., 

2012). The Unit Stream Power Erosion Deposition Model (USPED), which is similar to 

the R/USLE model, has also been used to estimate rill and sheet erosion rates with a 

stream power index (SPI) approach to estimate gully erosion rates (Zakerinejad & 

Maerker, 2015). Zakerinejad & Maerker (2015) estimated gully erosion in tons hectare-

1 year-1 and combined it with the estimates from the USPED model to produce a map 

showing potential erosion and deposition within their study area. Hence, there is 

indeed a precedent and a need to combine erosion estimates from R/USLE with a 

procedure that accounts for gully erosion for more effective land management. 

4.4.2 Seasonal erosion vulnerability 

R/USLE applications usually estimate soil loss at the annual timescale, while the 

MUSLE estimates soil loss from a single storm event (Renard et al., 1997; Sadeghi et 

al., 2014). As seen in the review of methods to calculate rainfall erosivity, many 

different studies have attempted to estimate the R-factor, underscoring its importance 

to soil erosion research. However, estimating the R-factor at the annual timescale 

does not account for seasonal variations in rainfall. It is useful for land management to 

understand seasonal variations in soil erosion vulnerability because of the dual effect 

of rainfall and land cover on soil loss, and the effect of rainfall on land cover (Kulikov et 

al., 2016). For example, when a season of heavy rainfall coincides with low vegetation 

cover, the risk of soil erosion increases considerably (Ferreira & Panagopoulos, 2014). 

Thus, most of the studies around seasonal estimations of soil loss revolve around 

changes in land cover and rainfall. The soil erodibility (K-factor) can vary too due to 

changes in permeability and the effects of freezing and thawing, but it is less 
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frequently studied compared to variations in land cover and rainfall (López-Vicente et 

al., 2008). 

Studies that incorporate seasonality in the R/USLE commonly compute R-factors 

and C-factors at monthly or seasonal time scales. Lu & Yu (2002) computed monthly R-

factors in Australia, which was then used in a later study that computed C-factors 

based on satellite imagery and the NDVI, to produce monthly maps of soil erosion 

vulnerability over the entire Australian continent (Lu et al., 2003; Lu & Yu, 2002). The 

method of estimating C-factors using NDVI is popular due to the available of remotely-

sensed imagery, and the capability of processing datasets with relative expedience 

compared to time-consuming fieldwork. Other studies have used the NDVI and similar 

characteristics to estimate monthly and seasonal C-factors in Brazil, Greece, and 

Kyrgyzstan (Alexandridis et al., 2015; Durigon et al., 2014; Ferreira & Panagopoulos, 

2014; Kulikov et al., 2016; Panagos et al., 2012). The C-factors can also be estimated 

monthly through the method recommended by R/USLE, but requires knowledge of 

prior land use, canopy cover, surface roughness, and soil moisture (López-Vicente et 

al., 2008). 

Monthly or seasonal estimations of rainfall factors are more useful to land 

management planning around crop growth cycles and tillage practices (Diodato, 2004). 

Studies have used different methods to calculate R-factors, with data requirements 

ranging from per-storm basis to annual averages. To estimate monthly and seasonal 

estimations, the required rainfall data can be as fine as individual storm intensity to 

use the R/USLE method, or be as coarse as average monthly rainfall. Diodato (2004) in 

Italy and Kavian et al. (2011) used the R/USLE method to calculate storm energy and 

summed these up per month and season to obtain R-factors. Other studies used daily 

and monthly rainfall to calculate monthly R-factors and combine them for seasonal R-

factors (Alexandridis et al., 2015; Kavian et al., 2011; López-Vicente et al., 2008; Lu et 

al., 2003; Panagos et al., 2015a; Shamshad et al., 2008). The results of these studies 

focused on identifying high and low periods of the landscape’s vulnerability to soil 

erosion, depending on combinations of rainfall intensity and land cover. 

At the baseline scenario, applying the R/USLE can give management an idea of 

which areas are vulnerable to soil erosion. Previous work by Alexandridis et al. (2015) 
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and Ferreira & Panagopoulos (2014) have looked at seasonal variations in soil loss due 

to land cover using satellite imagery from different times of the year. These 

approaches are useful in determining soil loss based on previous or existing land cover, 

but the next step is using scenario analysis to help land management. Scenario analysis 

can include a myriad of options: expanded urban areas or development, changing crop 

rotation cycles, or applying support practices in steep or upland areas. By adding 

seasonal effects, it gives additional knowledge of when these vulnerable areas may be 

even more vulnerable. Thus, by using scenario analysis, management can test several 

types of crop and support practices to see their possible effect on soil erosion 

mitigation. Soil erosion also affects water quality because of sediment delivery to 

streams and rivers, which raises concerns about access to clean water for drinking and 

for recreational use. Therefore, understanding seasonal soil erosion is beneficial to 

local government who can address potential sources of sediment delivery before the 

problem occurs and be more proactive in their land management. 

4.4.3 Consistency in units 

The USLE was originally developed using imperial units. Although the handbook 

provides conversion factors to convert to metric, there are still issues within the 

scientific literature regarding units. In the process of this review, it was noted that 

although most studies used the metric units for R-factor and K-factor, there were 

other studies that did not report their units or had units that were not the imperial or 

metric units of R/USLE. The problem of unclear or inconsistent units causes problems 

for future researchers in terms of adapting the rainfall erosivity or soil erodibility 

equations for their own study sites. To convert from imperial to metric units, Renard 

et al. (1997) recommends a conversion factor of 17.02 for R-factor and 0.1317 for K-

factor. Since the original R/USLE was formulated with US customary units, researchers 

must be careful to use the correct units and conversions to metric (Renard & 

Freimund, 1994). 

4.5 Summary and conclusion 
This chapter reviewed the different components of the Universal Soil Loss 

Equation (USLE) and its updated form, the Revised Universal Soil Loss Equation 

(RUSLE). Different studies around the world were collected and analysed to compile 
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how they adapted R/USLE to their unique conditions, how they had calculated rainfall 

erosivity with only the data available in their study site, and how these methods have 

been used by subsequent soil erosion studies. At the end of each factor section, a brief 

summary is given outlining which datasets and equations would be useful for new 

users depending on their location and data availability. Each factor section also 

clarifies some of the assumptions and limitations associated with the original R/USLE 

models. 

This chapter also presented some of the model’s limitations and outlined a few 

future directions: incorporating soil loss from other types of soil erosion, importance 

of estimating soil loss at sub-annual scales and recommended equations, and 

consistency in reporting units in future literature. At first glance, the USLE and its 

family of models seems like a relatively straightforward linear model. However, this 

review shows the difficulty in finding the most appropriate method of calculating its 

factors depending on location, availability of data, and previous studies done in nearby 

or similar regions. It is important for future researchers to consider which equations 

they adapt to their study area and consider testing multiple methods of calculating 

one factor to see how the results affect soil loss estimates. The main purpose of this 

chapter was to provide a reference point for future soil researchers by compiling 

equations for the R/USLE factors, references for C-factors and P-factors, and finding 

previous studies that may be relevant to their own work for their further investigation 

and literature review. In the end, the choices made regarding applications of the 

R/USLE depend on the kind of data that is available for a study area, and how they can 

adapt or change information from other studies to suit their area’s climate, soil type, 

topography, typical land cover, and support practices. The studies reviewed for this 

chapter influenced the equations and methodology of the RUSLE applications in the 

CDO catchment and in the Mangatarere catchment to identify regions vulnerable to 

soil loss. 
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5 Estimating soil erosion losses in the Cagayan de Oro 

catchment (Philippines) using the RUSLE under different land 

cover scenarios 

5.1 Introduction 

The previous chapter reviewed the Revised Universal Soil Loss Equation (RUSLE) 

and its family of models, and their global application. This chapter focuses on soil 

erosion in the Philippines, specifically testing the RUSLE under three different land 

cover scenarios. Of the hilly lands of the Philippines, almost half are used for 

cultivation and the combination of high rainfall, reduced vegetation cover and steep 

slopes has led to severe problems in soil erosion and agricultural productivity 

(Paningbatan et al., 1995). The average soil erosion rate in the Philippines was 

reported to be 80 tons hectare-1 year-1 (Francisco & Angeles, 1998), with large 

variation depending on region and land use ranging from 3 tons hectare-1 year-1 in 

secondary forest to almost 300 tons hectare-1 year-1 in grassland and pastureland. Due 

to the magnitude and gravity of this problem, it is important for land management to 

identify the area most vulnerable to soil erosion for mitigation options (David, 1988). 

Previous RUSLE studies in the Philippines had several common conclusions. The 

agricultural areas were consistently identified as being vulnerable to soil erosion, 

especially in areas of upland agriculture. Through scenario analysis, models predicted 

lower soil loss rates in areas of reforestation and areas that implement conservation 

measures such as line planting and agroforestry. The limitations across RUSLE studies 

were also similar: availability of high-resolution temporal and spatial data to calculate 

RUSLE factors, lack of validation data, and a lack of understanding the sediment 

transport from typhoons. 

David (1988) did an extensive review of soil and water conservation studies in 

the Philippines, including recommendations on how to calculate the different 

components of USLE. Previous RUSLE studies in the Philippines have applied the model 

in watersheds and islands that have large agricultural areas for identifying vulnerable 

areas, and for scenario analysis (Figure 64). Adornado et al. (2009) used the RUSLE to 

assess erosion vulnerability in the Quezon Province and to produce a hazard map, 

citing the dense vegetation as mitigating factors and the existing eroded areas and 
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high rainfall as exacerbating factors for soil erosion in the area. Building on that work, 

Adornado & Yoshida (2010) applied the RUSLE to the Bukidnon province, which 

includes parts of the CDO watershed, and identified the steep mountain slopes and 

agricultural areas as more vulnerable. However, their quantification of soil loss rates in 

the mountainous region may have been overestimated due to a lack of a robust soil 

erodibility factor. The areas mapped as undifferentiated mountain soil were given an 

erodibility factor of 1, the highest possible erodibility value for any given soil within 

RUSLE (Adornado & Yoshida, 2010). 

In terms of scenario analysis, Schmitt (2009) applied the RUSLE over Negros 

Island and found that the estimated soil erosion rates were lower in the scenario of 

coconut cultivation adopted on all steep lands compared to conventional farming 

practices. This study also highlighted limitations of applying RUSLE to a data-poor 

location: lack of historical field data to validate the model, and the uncertainties in the 

model results, suggesting that a categorical representation of vulnerability may be 

more useful (Schmitt, 2009). 

The RUSLE was integrated into more complex models and frameworks in the 

Philippines. Delgado & Canters (2012) applied the WaTEM/SEDEM model, a spatially 

distributed soil erosion model that utilises a form of RUSLE for its estimates, to three 

catchments in Claveria. Similar to those of Adornado et al. (2009) and Adornado & 

Yoshida (2010), they conclude that intense agricultural activity, especially on steep 

slopes, make the area more vulnerable to soil erosion and they stress the need for 

conservation practices such as agroforestry. Hernandez et al. (2012) used a 

combination of RUSLE, SedNet, and a proxy for gully density and erosion to predict soil 

loss in the Pagsanjan-Lumban catchment. Their research predicted reduced sediment 

export through reforestation of existing coconut plantations and agriculture areas on 

steep slopes (Hernandez et al., 2012). Hernandez et al. (2012) also noted that these 

estimates could contain considerable uncertainty due to data availability, possible 

underestimation of sediment transport rates, and the inability to account for the 

effect of sediment transport from typhoons. 

An application of Bantayan & Bishop (1998) to the Makiling Forest Reserve 

integrated RUSLE into a model for ranking land use options and priorities, such as 
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recreation, food production, water sources and soil stability. This application shows 

the utility of RUSLE in a larger decision-making context when deciding between 

different priorities, such as analysing trade-offs between ecosystem services. 

Table 32. Previous USLE and RUSLE studies in the Philippines, their location, and sources of factors. 

Author Location R-factor K-factor LS-factor C-factor P-factor 

David (1988) Various 
watersheds in the 
Philippines 

Mihara (1951) 
and Hudson 
(1971) as 
cited in 
David (1988) 

Wischmeier 
and 
Mannering 
(1969) 

Madarcos 
(1985) and 
Smith & 
Whitt 
(1947) 

Literature Literature 

Adornado et 
al. (2009) 

REINA 
(Philippines) 

El-Swaify et 
al. (1987) as 
cited in Post 
& Hartcher 
(2006) 

Table by 
Stewart et al. 
(1975) 

Upslope 
contributing 
area 
method 

Literature None 
observed 
(P=1) 

Schmitt 
(2009) 

Negros Island 
(Philippines) 

RUSLE 
method 

USLE method RUSLE 
method at 
pixel level 

Literature Previous 
studies 

Adornado and 
Yoshida 
(2010) 

Bukidnon 
(Philippines) and 
also REINA 
(Philippines) 

El-Swaify et 
al. (1987) as 
cited in Post 
& Hartcher 
(2006) 

Table by 
Stewart et al. 
(1975) 

Upslope 
contributing 
area 
method 

Literature None 
observed 
(P=1) 

Delgado & 
Canters 
(2012) 

Claveria 
(Philippines) 

Shamshad et 
al. (2008)  

USLE method RUSLE2 
programme, 
using the 
upslope 
contributing 
area 
method 

Literature Literature 

Hernandez et 
al. (2012) 
(used SedNet, 
which has an 
USLE 
component) 

Pagsanjan 
(Philippines) 

El-Swaify et 
al. (1987) as 
cited in Post 
& Hartcher 
(2006) 

Wischmeier 
and 
Mannering 
(1969) 

Algorithm 
within 
SedNet 

Literature  
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Figure 64. Map of previous RUSLE studies in the Philippines, with the CDO catchment in red. 

5.2 Aim and objectives 
The research in this chapter builds on the existing work of soil erosion in the 

Philippines by applying the RUSLE to the CDO catchment. One of the goals of this 

research is to develop a more robust method of estimating soil erosion and sediment 

transport within a GIS environment, and to eventually create a Python-based toolbox 

that can be used within the LUCI framework for its sediment transport operations. 

Originally, the Compound Topographic Index was intended to be applied to the CDO 

catchment. The CTI is used to identify areas susceptible to ephemeral gully erosion. 

However, the application of CTI in CDO would be inappropriate due to a lack of a high-

resolution DEM. Ephemeral gullies can be less than a few metres wide, and since the 

DEM has a spatial resolution of ~30m, it is too coarse to delineate the 

microtopography and curvature that causes ephemeral gullies to form. Therefore, the 

focus of this chapter will be on testing RUSLE components in CDO and analysing 

changes in soil loss over three different land cover scenarios of baseline land cover, 
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and future river basin development plans outlined by the local government. Scenario 

analysis of changes in land cover and management practices was previously done in 

the Philippines by Schmitt (2009) and Hernandez et al. (2012), but their research was 

not in the CDO catchment. 

The specific objectives are as follows: 

• Assess the sensitivity of different methods for calculating RUSLE factors. 

• Use the RUSLE to estimate soil erosion losses for different land use scenarios. 

5.3 Methodology 
This study was undertaken in CDO catchment in the Philippines, which was 

described in the introductory chapter (Chapter 1) and whose data sources and land 

cover scenarios are outlined in the methodology chapter (Chapter 2). After collecting 

input data and land cover scenarios, equations for calculating the RUSLE factors were 

gathered from literature, focusing on sources that applied the RUSLE to a tropical 

climate like Cagayan de Oro. These sources included studies previously undertaken in 

the Philippines, Malaysia, and Thailand (Table 33). For the land cover and support 

practice factors, the values were taken from David (1988) or from other studies that 

focus on specific conservation measures such as line planting or alley cropping. All 

these combinations were run in ArcMap 10.4.1 to estimate soil loss in tons hectare-1 

year-1. In addition to these annual runs, monthly RUSLE runs were done for the 

baseline scenario to assess seasonal variations in soil loss, producing soil loss estimates 

in tons hectare-1 month-1. 

 

Figure 65. Basic methodology of the modelling runs in this chapter. 
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5.3.1 USLE equations and sensitivity analysis 

5.3.1.1 Rainfall erosivity (R-factor) 

The original calculation for the rainfall erosivity factor involves analysing the 

energy of storm events (EI30) that occurred within the study area, requiring detailed 

rainfall data that was unavailable for CDO study area due to gauges stopping recording 

over the course of the study. Instead, multiple equations from other studies were used 

to calculate a range of possible R-factors from annual or monthly precipitation data. 

Table 33. Rainfall erosivity factor equations used in this research. 

# Source Original 
Location 

Equation Previous 
applications in 
Philippines 

1 Shamshad 
et al. (2008) 

Malaysia 
𝑅 =  ∑ 227 × (

𝑃𝑖
2

𝑃
)

0.54812

𝑖=1

 

Pi = Monthly rainfall 
P = Annual rainfall 
 
Units: Megajoule •millimetre • 
hectare-1 • hour-1 • year-1 

Delgado and 
Canters (2012) 

2 El-Swaify et 
al. (1987) as 
cited in 
Merritt et 
al. (2004) 

Thailand 𝑅 = 38.5 + 0.35𝑃 
 
P = Annual rainfall 
 
Units: tons • hectare-1 • year-1 

Adornado et al. 
(2009); 
Adornado and 
Yoshida (2010); 
Hernandez et 
al. (2012) 

3 Sholagberu 
et al. (2016) 

Malaysia 𝑅 = 0.0003𝑃1.771 
 
P = Annual rainfall 
 
Units: Megajoule •millimetre • 
hectare-1 • hour-1 • year-1 

 

4 Roose 
(1975) as 
cited in 
Morgan 
(2005) 

Malaysia 
𝑅 = (9.28 × 𝑃 − 8838) (

75

1000
) 

 
P = Annual rainfall 
 
Units: Megajoule •millimetre • 
hectare-1 • hour-1 • year-1 

 

 

These equations were chosen due to the location of their original study: Thailand 

and Malaysia are two tropical countries also located in Southeast Asia. The equation 

by El-Swaify et al. (1987) was chosen because it has been used in several studies in the 
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Philippines. The equation by Shamshad et al. (2008) was applied in the Philippines by 

Delgado & Canters (2012) and utilises monthly precipitation. This allows the equation 

to be used for monthly estimates of soil loss which are useful in a catchment that has 

high temporal variation of rainfall throughout the year. 

Panagos et al. (2017) has produced a global rainfall erosivity map at a resolution 

of ~1km and uses rainfall data from 3,625 stations in 63 countries. This map was also 

included in this analysis because it gives an idea of the spatial variation of rainfall 

erosivity within the CDO catchment (Figure 66). The map shows mostly higher rainfall 

erosivity over most of the catchment, with lower erosivity around the coastal urban 

area (north) and mountain slopes (southeast).  

 

Figure 66. Subset of the Panagos et al. (2017) rainfall erosivity map (R-factor) over the Cagayan de Oro 
catchment. 
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5.3.1.2 Soil erodibility (K-factor) 

The equation below by David (1988) was chosen due to its relative simplicity of 

requiring only textural information, organic matter, and pH. By contrast, the original 

RUSLE K-factor equation also requires information on soil-structure code and profile-

permeability that was not available for the soils in the CDO catchment. 

𝐾 = [(0.043 ×  𝑝𝐻) + (0.62 ÷  𝑂𝑀) + (0.0082 ×  𝑆) − (0.0062 ×  𝐶)]  ×  𝑆𝑖 × 0.1317 

Where: 

pH pH of the soil 
OM Organic matter in percent 
S Sand content in percent 
C Clay ratio = % clay / (% sand + % silt) 
Si Silt content = % silt / 100 

 

To calculate the soil erodibility, the following information was taken from the 

IGBP-PTF dataset for each of the subgroups present in the watershed: 

• Textural information (sand, silt, clay, very fine sand) 

• pH 

• Organic carbon (converted to organic matter by multiplying by 1.72 (Pribyl, 

2010)) 

• Texture class 

This alternative method of estimating K-factors based on the relationship 

between K-factor, textural information, organic matter, and pH proposed by 

Wischmeier and Mannering (1968). The original imperial units for K-factor are ton × 

acre × hour × hundreds of acre-1 × foot-1 × tonf-1 × inch-1. Multiplying by 0.1317 gives SI 

units of metric ton × hectare × hour × hectare-1 × megajoule-1 × millimetre-1. This 

equation was used to calculate representative K-factors of Philippine soils based on 

textural class, ranging from 0.07 to 0.63 (SI: 0.009 to 0.08) (David, 1988). 

5.3.1.3 Slope length and steepness (LS-factor) 

The equations in Table 34 were chosen for testing due to several reasons. The 

equation by David (1988) is relatively simple, but only uses slope in percent as an input 

to account for steepness but does not seem to account for slope length. The equation 

for Morgan (2005) accounts for slope length and steepness and is very similar to the 



160 | P a g e  
 

original method used by RUSLE to calculate the LS-factor. The equation by Desmet & 

Govers (1996) used slope length, steepness, and flow accumulation to calculate LS-

factor and has risen in popularity due to its capability to account for the convergence 

and divergence of flow, thus allowing for application in more complex terrain. 

Table 34. Slope length and steepness factors used in this research. 

# Source Equation Previous 
applications in 
Philippines 

1 David (1988) 𝐿𝑆 = 𝑎 + 𝑏𝑆𝐿
𝑚 

 
a = 0.1 
b = 0.21 
m = 4/3 
SL = slope in percent 

 

2 Desmet and 
Govers 
(1996), 
similar to 
equations by 
Moore & 
Burch (1986) 
as cited in 
Mitasova et 
al. (1996) and 
Mitasova et 
al. (2013) 

𝐿𝑆 = (𝑚 + 1) (
𝑈

𝐿0
)

𝑚

(
sin 𝛽

𝑆0
)

𝑛

 

 
U (m2m-1) = upslope contributing area per 
unit width as a proxy for discharge 
 

𝑈 = 𝐹𝑙𝑜𝑤 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒 
 
L0 = length of the unit plot (22.1) 
S0 = slope of unit plot (0.09) 
β = slope 
m (sheet) and n (rill) depend on the 
prevailing type of erosion (m= 0.4 to 0.6) 
and n (1.0 to 1.3) 

Adornado et al. 
(2009); Adornado 
and Yoshida 
(2010); Delgado 
and Canters 
(2012) 

3 Morgan 
(2005) but 
previously 
published in 
earlier 
editions 

𝐿𝑆 = (
𝑙

22
)

0.5

(0.065 + 0.045𝑠

+ 0.0065𝑠2) 
 
l = slope length (m) 
s = slope steepness (%) 

 

 

5.3.1.4 Cover factor (C-factor) and support practice factor (P-factor) 

The values for land cover factors were taken from David (1988) because the 

paper reports approximate C-factors for land cover typically found in the Philippines. 

Using cover factors from the original RUSLE sources is common, but a limitation is that 

the original RUSLE was formulated in the United States and does not have values for 

crops that are specific to tropical countries. 
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Table 35. Cover factors from David (1988) for the baseline scenario. 

Land cover class C-factor (David, 
1988) Description (David, 1988) 

Other wooded land, 
shrubs 0.15 

Shrubs with patches of open, 
disturbed grasslands 

Other land, natural, 
grassland 0.3 

Grassland, moderately grazed, 
burned occasionally 

Other land, cultivated, 
annual crop 0.3 Diversified crops 

Other land, cultivated, 
perennial 0.08 Mixed stand of agroforestry species 

Other land, built-up area 0.2 
Built-up rural areas, with home 
gardens 

Closed forest, 
broadleaved 0.001 

Primary forest with dense 
undergrowth 

Open forest, broadleaved 0.003 
Second growth forest with good 
undergrowth 

Inland water 0.001 Same as closed forest 

Forest plantation, 
broadleaved 0.07 

Mixed stand of industrial tree 
plantation (ITP) plant species, 8 
years or more 

Other wooded land, 
wooded grassland 0.007 

Grasslands, well established and 
undisturbed 

Pineapple 0.35 Annual cash crops, pineapple 

 

 Since there is information regarding potential conservation practices in the river 

basin management report, this research accounts for these practices through the P-

factor instead of ignoring it, as was common in previous studies (CESM, 2014). 

Agricultural Zone 2 has a P-factor of 0.55 because of the planned practice of contour 

farming in that zone, and Agricultural Zone 3 has a lower C-factor of 0.25 due to the 

recommendation of fruit orchards within that zone. Similarly, the agroforestry sub-

zone has a P-factor of 0.4 due to the recommendation of line planting, while the 

private agroforestry sub-zone has a P-factor of 0.01 due to the recommendation of 

Sloping Agricultural Land Technology (SALT). SALT is an agroforestry scheme where 

crops are planted between hedgerows to reduce soil erosion and increase crop yields 

through diverse perennial crops and nitrogen-fixing tree species (Tacio, 1993). The P-

factor for SALT was estimated from a soil loss study in the Philippines since it is a ratio 

of soil loss under a particular management practice compared to no management 

practices occurring (Laquihon & Pagbilao, 1998).  
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Table 36. Cover and support factors from David (1988) for the management scenario. 

Management Land Cover C-factor (David, 1988) P-factor (David, 1988) 

Agricultural Sub-zone 0.3  

Agricultural Zone 1 0.3  

Agricultural Zone 2 0.3 0.55 

Agricultural Zone 3 0.25  

Agroforestry Sub-zone 0.16 0.4 

Forest Restoration Sub-zone 0.003  

National Park 0.001  

Natural Park 0.001  

Private Forest Sub-zone 0.003  

Private Agroforestry Sub-zone 0.16 0.01 

Private Forest Sub-zone 0.003  

Strict Protection Zone 0.003  

Timber Production Sub-zone 0.03  

Timber Regeneration Sub-zone 0.075  

 

Similar to the management scenario, the cover and support factors (Table 37) for 

the rehabilitation scenario were chosen based on information about the 

recommended conservation strategies in those areas (CESM, 2015). The agroforestry 

zones have a P-factor of 0.4 based on David (1988), and the conservation farming 

zones have a P-factor of 0.05 due to the recommendation of using alley cropping in 

those zones. This P-factor was estimated from a study in the Philippines that published 

soil loss rates for plots that had conventional and alley cropping treatments 

(Paningbatan et al., 1995). 

Table 37. Cover and support factors from David (1988) for the rehabilitation scenario. 

Rehabilitation Land Cover C-factor (David, 1988) P-factor 

City 0.2  

Agroforestry 0.08 0.4 

Reforestation 0.003  

Recommend Agroforestry 0.08 0.4 

Recommend Reforestation 0.003  

Practice Conservation Farming 0.3 0.05 

Protection 0.001  

Assisted Natural Regeneration 0.003  

Recommend Conservation Farming 0.3 0.05 
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5.3.2 Estimating soil erosion losses 

After all the RUSLE factors were calculated, they were converted to raster layers 

and multiplied together in the Raster Calculator to obtain an estimate of annual soil 

loss using only the RUSLE equation over several different combinations. For the 

monthly RUSLE runs, the Shamshad et al. (2008) equation was used to calculate 

rainfall erosivity for each month using CESM and WorldClim data. At the monthly time-

step, only the baseline scenario was used as cover input. 

Table 38. Summary of RUSLE factors used for in this research. 

Rainfall Erosivity Factor Soil 
Erodibility 
Factor 

Slope Length and 
Steepness Factor 

Cover and Support 
Practice Factor 

• Panagos et al. 
(2017) 

• Shamshad et al. 
(2008) using 
CESM Data 

• Shamshad et al. 
(2008) using 
WorldClim Data 

• Sholagberu et al. 
(2016) using 
CESM Data 

• Sholagberu et al. 
(2016) using 
WorldClim Data 

• El-Swaify et al. 
(1987) using 
CESM Data 

• El-Swaify et al. 
(1987) using 
WorldClim Data 

• Roose (1975) 
using CESM Data 

• Roose (1975) 
using WorldClim 
Data 

• David 
(1988) 

• David 
(1988) 

• Desmet 
and 
Govers 
(1996) 

• Morgan 
(2005) 

• Baseline 

• Management 

• Rehabilitation 

 

Previous RUSLE studies in the Philippines have highlighted the considerable 

uncertainties associated with soil erosion modelling, since the RUSLE’s relative 

simplicity cannot capture all the processes associated with soil erosion and sediment 
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transport. Hence, work by Adornado et al. (2009) and Adornado & Yoshida (2010) has 

recommended a focus on making maps showing risk categories of soil erosion may be 

more useful than a graduated map of soil loss estimates. Their categorisation (Table 

39) is used in the maps of soil loss risk produced by this research. 

Table 39. Erosion risk classes and ranges as recommended by Adornado et al. (2009) and Adornado & 
Yoshida (2010). 

Erosion Risk Class Erosion Range (ton hectare-1 year-1) 

None to slight 0 to 5 

Moderate 5 to 15 

High 15 to 50 

Very high 50 to 150 

Severe 150 to 300 

Very severe > 300 

 

5.4 Results & Discussion 
This section is divided into two parts: the results of using different equations for 

RUSLE components and how they differ between equations, and the actual soil loss 

estimates under the different combinations of factors and scenarios (Table 38). 

5.4.1 USLE factors and sensitivity analysis 

5.4.1.1 Rainfall erosivity (R-factor) 

The estimated R-factors across the different equations have a wide range, 

between 286 MJ mm ha-1 hr-1 yr-1 for the lowest and 13,251 MJ mm ha-1 hr-1 yr-1 for 

the highest estimated value (Table 40). The rainfall erosivity in the CDO catchment 

from Panagos et al. (2017) ranges from 5,026 to 11,489 with a mean of 10,252. 

Table 40. Estimated rainfall erosivity from the different R-factor equations and rainfall data. 

Equation Source R-factor from 
CESM Data 

R-factor from 
WorldClim Data 

Shamshad et al. (2008) 12,777 13,251 

Sholagberu et al. (2016) 286 324 

El-Swaify et al. (1987) as cited in 
Merritt et al. (2004) 

870 931 

Roose (1975) as cited in Morgan 
(2005) 

991 1,112 

 

By comparison, the range of R-factors for different watersheds in the Philippines 

reported by David (1988) ranged from 1,821 and 5,600. Shamshad et al. (2008) and 
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Panagos et al. (2017) provided estimates above this range, while the other erosivity 

equations provided estimates below this range. The rainfall erosivity estimates of 

David (1988) use an equation that requires daily rainfall, but also ignores any days that 

have less than 25mm of precipitation. This means that areas that experience intense 

storms over short periods are treated differently in the equation compared to areas 

that experience lighter rain over a longer period. In the CDO catchment, the climate is 

characterised by a dry season lasting between one to three months, with the rainy 

season not as pronounced as the other climate types in the Philippines (CESM, 2015). 

In terms of intense rainfall, the area experiences less tropical cyclones compared to 

the northern part of the Philippines, meaning that the way that rainfall affects soil 

erosion in CDO may be driven by lighter but frequent rainfall events compared to 

more intense one-off storm events. This difference of short-intense rainfall events or 

long-light rainfall events being more frequent in an area is important when applying R-

factor equations from a different study site.  

The results from the Shamshad et al. (2008) equation are high within the CDO 

catchment, but their study area in Malaysia had a mean annual rainfall of 2,500mm 

and runs over multiple years produced R-factors ranging from 9,000 to 14,000. This is 

similar to the annual rainfall that occurs in CDO and the estimated R-factors from the 

Shamshad et al. (2008) equation still fall within the expected range of R-factors for a 

location similar to Malaysia (Chapter 4). 

In terms of the results from the Panagos et al. (2017) dataset, the lowest R-

factor predicted for CDO is in the upper range of R-factors reported by David (1988). 

The erosivity map was generated through relating R-factors calculated from high-

resolution rainfall data and climatic covariates from the global WorldClim dataset 

regarding rates of precipitation and seasonality (Panagos et al., 2017). One drawback 

is that the Panagos et al. (2017) analysis did not include rainfall data from the 

Philippines, but the closest weather stations used were in Peninsular Malaysia. In 

terms of tropical locations around the world, Panagos et al. (2017) reported a mean of 

7,105 with a range of ~5,000 to ~11,000. Given the similarities and overlapping values, 

and the fact that the Panagos et al. (2017) map relates R-factors with local climate 

variables that have spatial and temporal variation, the Panagos et al. (2017) results 
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may be more suitable for RUSLE modelling in CDO but will require further testing and 

comparison with R-factors calculated in the Philippines. 

The other three equations (Sholagberu et al. (2016), El-Swaify et al. (1987), 

Roose (1975)) all produce R-factors for CDO that are very low compared to the range 

of R-factors reported by David (1988). The Sholagberu et al. (2016) equation was 

derived from time-series analysis that ignores days below 10mm of rainfall, bringing 

back the original question of whether short-intense rainfall events or long-light rainfall 

events are the driving factor of erosion in a particular area. The estimated R-factor for 

CDO (286 and 324) was much lower than the estimated R-factor range for the 

Malaysian study site (690 to 1,924) even though the annual precipitation rates were 

similar (Sholagberu et al., 2016). When compared to global R-factors of Panagos et al. 

(2017), these values of 286 and 324 for CDO are similar to values for arid areas in the 

Middle East and Northern Africa. The El-Swaify et al. (1987) equation was used by 

previous studies in the Philippines, which is why it was chosen for analysis in this 

research, and again produced R-factors that were low compared to the ranges 

reported by David (1988) and global range of tropical R-factors reported by Panagos et 

al. (2017). Another oddity of this equation is the reporting of units: previous studies 

that used it do not report the units and the English source of Merritt et al. (2004) 

reports the units for this equation to be in tons hectare-1 year-1. This inconsistency 

with the original RUSLE units causes problems when plugged into the RUSLE model. 

Lastly, the Roose (1975) equations predicts similar results to the El-Swaify et al. (1987) 

equation, far below estimated ranges of R-factors in the Philippines and in tropical 

areas (David, 1988; Panagos et al., 2017). 

Monthly rainfall erosivity followed the same pattern of highs and lows as the 

rainfall (Figure 67). The most vulnerable months were when the monsoon season 

occurs in the Philippines, while the drier periods had lower rainfall erosivity. The dry 

season in the CDO catchment occurs during December to April, with rainfall being 

evenly distributed during the rest of the year (CESM, 2014). Despite this, the typhoons  

Washi (2011), Bopha (2012), Jangmi (2014) and Tembin (2017) all occurred in 

December during the drier season. The occurrence of these extreme events is an 

important component of soil erosion research due to event-based erosion. Hence, one 
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of the components of future work is to model the event-based erosion in CDO which 

can cause landslides and issues with water quality. 

 

Figure 67. Monthly rainfall and erosivity in the CDO catchment. 

It is difficult to compare these R-factor estimates with previous RUSLE studies in 

the Philippines because they tend to report overall soil loss estimates rather than the 

results for each factor. Therefore, the points of reference for R-factors obtained in this 

study are the R-factors reported by David (1988), and the resulting soil loss estimates 

compared to published rates of soil loss in the Philippines. 

5.4.1.2 Soil (K-factor) 

The equation proposed by David (1988) produced some K-factors that exceeded 

1.0, which is beyond the range of the K-factor. This may be due to some limitations of 

the original equation involving the textural characteristics, pH, and organic matter. 

These values were excluded before converting them to SI units, and the mean K-factor 

for each group was taken as the K-factor used in this analysis (Table 41). The range of 

K-factors for Philippine soils reported by David (1988) was from 0.009 to 0.083 while 

the range used by Adornado et al. (2009) was from 0.013 to 0.036 in SI units. The K-

factors used in CDO fall within the range specified by David (1988) but is above the 

range reported by Adornado et al. (2009). 
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Table 41. Estimated K-factors for the different soils present in the CDO watershed. 

USDA Subgroup Local Soil Name K-factor (David, 1988) 

Fluventic Eutropepts San Manuel loam 0.048 

Typic Hapludalfs Bolinao clay 
Alimodian clay 

0.044 

Typic Hapludults Jasaan silt loam 
Jasaan clay loam 

0.047 

Typic Paleudults Adtuyan clay 
Mountain soil (undifferentiated) 

0.038 

 

Over the soils present in the CDO watershed, the K-factors were quite similar to 

each other. San Manuel loam, Jasaan silt loam, and Jasaan clay loam have higher 

values compared to the other soil types. Loams and silt loams are more vulnerable to 

detachment compared to the other soil types, and these results are consistent with 

that: San Manuel loam and Jasaan silt loam having a slightly higher K-factor compared 

to the clays (Morgan, 2005). The clay soils have lower K-factors, also consistent with 

the principle that finer soils are more resistant to detachment (Morgan, 2005). 

 

Figure 68. Soil erodibility over the CDO watershed. 
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5.4.1.3 Topography (LS-factor) 

Across the three LS-factor equations, the mean values were 19 for David (1988), 

11 for Morgan (2005), and 23 for Desmet & Govers (1996). By comparison, the mean 

LS-factors for countries in the EU using the Desmet & Govers (1996) method ranged 

from 0.32 to 5.20 (Panagos et al., 2015b). These LS-factors for the EU were limited to 

slopes less than 50%, hence the lower LS-factor values compared to the CDO 

estimates. Although the means do not differ by large amounts, the maximum LS-factor 

produced by the method of Desmet & Govers (1996) is higher than the other two 

methods by two orders of magnitude (Figure 69). This is due to the fact that Desmet & 

Govers (1996) uses flow accumulation as one of the variables in its equation, leading 

to high maximum values of LS-factors in large watersheds. 

 

Figure 69. LS-factor maps for the three different methods of calculating LS-factor. 

Although the actual values produced by the David (1988) and Morgan (2005) 

techniques are different, a visual analysis of the maps shows they are identifying 

similar areas of high and low LS-factors. These areas are steep slopes associated with 

river valleys and mountainous areas in the eastern part of the CDO catchment. The 

highest LS-factor values produced by Desmet & Govers (1996) are also associated with 

the stream network that are the areas of high flow accumulation. This method, and 

similar methods incorporating flow accumulation, are popular in the RUSLE literature 

because of their ability to account for complex terrain. However, at the watershed 

level with high flow accumulation, the large LS-factors may skew the estimated soil 

loss and lead to over-prediction of soil loss estimates. At smaller scales such as the 
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sub-watershed level and with a finer resolution DEM, the Desmet & Govers (1996) 

technique allows pixel-level assessment of soil loss vulnerability. At the watershed 

level with a coarse resolution DEM, the Morgan (2005) technique is more suitable for 

outlining large areas that can be targeted for management interventions. 

5.4.1.4 Land cover and support practice (C-factor and P-factor) 

Based on the C-factor maps (Figure 70), the development and rehabilitation 

scenarios look very similar in terms of how the watershed is going to be divided into 

zones of different land use. The main exception is the area at the south of the 

watershed, which is zoned for agricultural use in the management scenario but for 

reforestation in the rehabilitation scenario. Across all scenarios, the highest C-factor 

values correspond to agricultural activities while the lowest values correspond to 

forested areas. In the management and rehabilitation scenario, since conservation 

measures were recommended, P-factor maps (Figure 71) were produced with 

appropriate values relating to alley-cropping, contour-farming, and line-planting. 

Although the P-factor is ignored in much of the RUSLE literature, it is important in 

research involving scenario analysis when considering different support practice 

factors over the same land cover. 

One of the limitations in the rehabilitation scenario relates to areas where forest 

rehabilitation is currently taking place or planned to take place in the future. The 

rehabilitation scenario assumes that the trees have already been planted and 

established, which gives them a lower C-factor compared to newly-planted trees or a 

reforested area that is still being established. This can be addressed in the future 

through approximating values for tree growth that range between the value for newly-

planted/young trees and the value for mature and well-established trees. David (1988) 

has some approximate values for Philippine hardwood trees between 3 to 8 years 

(0.05 to 0.10) and the same species of trees older than 8 years (0.01 to 0.05). 
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Figure 70. C-factor maps for baseline, development, and rehabilitation scenarios. 

 

Figure 71. P-factor maps for the development and rehabilitation scenarios. 

5.4.2 Soil loss 

According to previous studies on soil erosion in the Philippines, the national 

average soil erosion rate is 80 ton ha-1 yr-1 (Francisco & Angeles, 1998). In the review 

by David (1988), some reported soil loss estimates are 308 to 414 ton ha-1 yr-1 over 

different types of grassland and crops, and estimates of 50 ton ha-1 yr-1 and 108 ton ha-

1 yr-1 in different watersheds that used the USLE model. In-situ soil erosion work in 

areas close to the CDO watershed have found erosion rates of 185 ton ha-1 yr-1 in 

cropland and grazing areas (Marin & Jamis, 2013). 
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The mean soil loss of the CDO watershed depending on the approach used for 

each factor, especially the R-factor and LS-factor. In the baseline scenario, the 

estimated soil loss ranged between 11 ton ha-1 yr-1 to 1,462 ton ha-1 yr-1 (Figure 72). In 

the development scenario, the lowest estimate was 7 ton ha-1 yr-1 while the highest 

was 965 ton ha-1 yr-1 (Figure 73). In the rehabilitation scenario, the range of soil loss 

was 1 ton ha-1 yr-1 to 77 ton ha-1 yr-1 (Figure 74). 

The R-factor equation that constantly produced the highest estimates of soil loss 

across all three scenarios was using the Shamshad et al. (2008) equation on WorldClim 

data. Similarly, the LS-factor equation that constantly produced the highest estimates 

of soil loss across all three scenarios was using the method by Desmet & Govers 

(1996). This method produces large estimates of the LS-factor because it uses flow 

accumulation as one of its inputs, and given the size and topography of the CDO 

watershed, some cells have very large LS-factor values. One of the suggested methods 

to prevent the LS-factor from becoming too large is to assign a cut-off value for slope 

percentage to deal with slopes that are very steep, such as in the case of constructing 

LS-factors for continental Europe (Panagos et al., 2015b). Conversely, the R-factor that 

produced the lowest soil loss estimates was the equation by Sholagberu et al. (2016) 

that excluded days below 10mm of rainfall. The LS-factor that produced the lowest soil 

loss estimates was the equation by Morgan (2005). 

The mean soil losses that used the factors from Panagos et al. (2015a) and 

Shamshad et al. (2008) are much higher than the other soil losses, showing that the 

rainfall factor is one of the more crucial factors in the RUSLE equation. The R-factor 

from Panagos et al. (2015a) was based on rainfall data from thousands of rainfall 

gauges all over the globe and was interpolated using rainfall data from the WorldClim 

climate surfaces. This extensive dataset of rainfall gauges and actual R-factors could 

point to the dataset by Panagos et al. (2015a) as the more reliable rainfall factor 

dataset compared to the other methods of deriving rainfall erosivity. The Shamshad et 

al. (2008) method predicts a larger soil loss, but a value that is close to that given by 

Panagos et al. (2015a). The El-Swaify et al. (1987) also uses an equation that has the R-

factor in units of tons hectare-1 year-1, which is not consistent with the other rainfall 

factor equations in the RUSLE literature. 



173 | P a g e  
 

 

 

Figure 72. Mean soil loss for the CDO watershed in the baseline scenario across different methods for 
calculating R-factors and LS-factors. 

 

Figure 73. Mean soil loss for the CDO watershed in the development scenario across different methods 
for calculating R-factors and LS-factors. 

 

Figure 74. Mean soil loss for the CDO watershed in the rehabilitation scenario across different methods 
for calculating R-factors and LS-factors. 
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Given that the CDO watershed is heavily utilised for agriculture and is very 

mountainous, the estimated soil loss rates are expected to be high. Although it is 

difficult to verify these soil loss estimates because of the relatively low number of 

previously published soil erosion rates in the Philippines, areas utilised for agriculture 

or grassland have estimates ranging from 185 to 414 ton ha-1 yr-1 (David, 1988; Marin 

& Jamis, 2013). In the baseline scenario, even across different LS-factors, the 

equations by Sholagberu et al. (2016), El-Swaify et al. (1987), and Roose (1975) 

produced soil loss estimates that fell below this range. Conversely, the R-factors 

produced by Panagos et al. (2017) and Shamshad et al. (2008) produced soil loss 

estimates either in the upper bound of this range or beyond it. Because the RUSLE only 

accounts for sheet and rill erosion, ignoring gully erosion or mass wasting, these 

overestimates of soil loss are more useful for management because it more clearly 

shows the priority areas for rehabilitation or intervention measures. Conservative 

estimates of soil loss using the RUSLE can lead to vulnerable areas being classified as 

low-risk areas. Despite this large uncertainty in what might be an accurate R-factor, 

testing these different equations was useful to see any changes in the resulting soil 

vulnerability maps for the baseline scenario (Figure 75). All the runs identified the 

areas classified as agriculture and grassland as vulnerable to soil erosion, with the 

actual magnitude of the soil loss varying across R-factors. 
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Figure 75. Soil vulnerability map over the CDO catchment in the baseline scenario using different 
methods of calculating the R-factor. 

Even the most conservative estimates of soil loss identified the steep river 

valleys within the agricultural areas as priority areas of management. At the national, 

regional, or catchment scale, these extreme estimates are useful for identifying which 

broad classifications of land use are vulnerable to soil erosion. At the sub-watershed or 

field scale, using a lower estimate of R-factor can help management narrow down the 

smaller but still critical areas of soil vulnerability. 

Regarding the spatial distribution of vulnerable areas across different LS-factors, 

the agricultural and grassland areas were consistently identified as at-risk areas, with 

the Morgan (2005) method classifying fewer areas as extremely (>300 tons ha-1 yr-1) 

vulnerable compared to the David (1988) method (Figure 76). At the catchment scale, 
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the maps produced by the Desmet & Govers (1996) method are more difficult to 

interpret due to the high granularity of soil loss. Hence, to make the visual 

interpretation of differences between scenarios easier, the maps presented in the 

scenario comparisons will be utilising the Morgan (2005) method for LS-factor. 

 

 

Figure 76. Soil loss maps under the baseline scenario across different methods of calculating LS-factors. 

In comparing the management and rehabilitation scenarios with the baseline 

scenario, there is always a decrease in the estimated mean soil loss across all the 

combinations of R-factors and LS-factors (Table 42). The mean relative difference 

between the baseline and management scenario is 31% while the difference between 

the baseline and rehabilitation scenario is 95%. This suggests a potential decrease in 

the mean annual soil loss in the CDO catchment if these scenarios were pursued by 

management and with a larger decrease if the rehabilitation scenario occurred. 
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Table 42. Differences in mean soil loss over between baseline and management, and baseline and 
rehabilitation scenarios over different combinations of R-factor and LS-factor. 

  
Differences in 

Mean 

Relative 
Differences in 

Mean 

ton/ha/yr % 

R-factor LS-factor Base vs 
Mgmt 

Base vs 
Rehab 

Base vs 
Mgmt 

Base vs 
Rehab 

Panagos et al. (2017) David (1988) 193 735 25 95 

Desmet & 
Govers (1996) 388 1,086 34 95 

Morgan 
(2005) 118 365 31 95 

Shamshad et al. (2008) 
with CESM data 

David (1988) 247 903 26 95 

Desmet & 
Govers (1996) 480 1,336 34 95 

Morgan 
(2005) 151 449 32 95 

Shamshad et al. (2008) 
with WorldClim data 

David (1988) 257 936 26 95 

Desmet & 
Govers (1996) 497 1,385 34 95 

Morgan 
(2005) 157 466 32 95 

Sholagberu et al. (2016) 
with CESM data 

David (1988) 6 20 26 95 

Desmet & 
Govers (1996) 11 30 34 95 

Morgan 
(2005) 3 10 32 95 

Sholagberu et al. (2016) 
with WorldClim data 

David (1988) 6 23 26 95 

Desmet & 
Govers (1996) 12 34 34 95 

Morgan 
(2005) 4 11 32 95 

El-Swaify et al. (1987) 
with CESM data 

David (1988) 17 61 26 95 

Desmet & 
Govers (1996) 33 91 34 95 

Morgan 
(2005) 10 31 32 95 

El-Swaify et al. (1987) 
with WorldClim data 

David (1988) 18 66 26 95 

Desmet & 
Govers (1996) 35 97 34 95 

Morgan 
(2005) 11 33 32 95 
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Table 42. Differences in mean soil loss over between baseline and management, and baseline and 
rehabilitation scenarios over different combinations of R-factor and LS-factor. (continued) 

 
 

Differences in 
Mean 

Rel. Differences in 
Mean 

ton/ha/yr % 

R-factor LS-factor Base vs 
Mgmt 

Base vs 
Rehab 

Base vs 
Mgmt 

Base vs 
Rehab 

Roose (1975) with 
CESM data 

David (1988) 19 70 26 95 

Desmet & 
Govers (1996) 37 104 34 95 

Morgan (2005) 12 35 32 95 

Roose (1975) with 
WorldClim data 

David (1988) 22 79 26 95 

Desmet & 
Govers (1996) 42 116 34 95 

Morgan (2005) 13 39 32 95 

  Mean 31 95 

 

The areas classified as at-risk to soil erosion changed between the baseline and 

the two scenarios (Figure 77). The southern part of the watershed is classified in the 

baseline scenario as forest but is classified as agricultural area in the management 

scenario. In both the development and rehabilitation scenarios, the western part of 

the watershed is planned to be used as a protection zone for regenerating forest, 

hence its change to a less vulnerable area of soil erosion. The steep river valleys have 

also been classified as less vulnerable because of the management plans of practicing 

conservation farming such as alley-cropping, agroforestry, line-planting, and contour 

farming. 

 

Figure 77. Soil loss under different scenarios. 
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In terms of intra-annual soil loss, the monthly soil loss follows the pattern of 

rainfall throughout the year (Figure 78). Higher soil loss rates are expected over the 

course of June to September, which corresponds with the monsoon season in the 

Philippines. 

 

Figure 78. Estimated monthly soil loss in the CDO catchment. 

5.5 Limitations and future work 
One of the main limitations of this study, and arguably all RUSLE studies in the 

Philippines, is the availability of data as input and as validation. Without long-term soil 

erosion records around the country, it is difficult to truly assess the accuracy of the 

RUSLE in the Philippines. Even so, the model is useful for identifying areas that are 

vulnerable to soil erosion, which is a suitable start for catchment management plans. 

The model is also useful for performing scenario analysis with future catchment 

development plans, showing potential decreases in the mean soil loss under different 

conditions of land cover and conservation measures. Building on to the soil loss 

estimates, sediment delivery can be added to the model to assess the impact on water 

quality, a critical issue in the Philippines. The global rainfall erosivity dataset developed 

by Panagos et al. (2017) was identified as a reliable resource for future RUSLE 

applications, but analysis of long-term rainfall records available in the Philippines 

would be a good first step in creating a similar raster layer at the national scale. This 

could then be verified against Panagos et al. (2017) to check for differences and to 

elucidate the effect of using local-scale rainfall against global rainfall datasets. 
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Given that the Philippines is vulnerable to typhoons, event-based erosion is a 

potential future direction. By estimating the sediment loss associated with typhoons, 

and determining the quantity of sediment delivered to waterways, there are potential 

applications in assessing river siltation and water quality post-disasters. The Modified 

Universal Soil Loss Equation (MUSLE) uses the same factors as the RUSLE except the 

rainfall factor which is replaced by an equation that uses the peak flow rate (cumecs), 

flow volume (m3), and location coefficients to predict event-based soil loss (Sadeghi et 

al., 2014). The hydrological modelling capability of LUCI (Chapter 8) produces flow 

hydrographs (cumecs) that can be used to derive peak flow rate and flow volume. 

Further work can be done to calibrate the location coefficients needed by MUSLE by 

reviewing previous MUSLE studies in areas similar to CDO. 

Another limitation of this study was the inability to include the Compound 

Topographic Index (CTI), in order to assess gully erosion in CDO. The coarse resolution 

of the DEM and the relatively small widths of ephemeral gullies meant the CTI was not 

able to be applied in CDO. In the future, with higher resolution DEMs such as those 

available through LiDAR, it is possible that the CTI can be used with RUSLE to estimate 

the combined soil loss from sheet/rill and gully erosion. 

5.6 Summary and conclusion 
This chapter showed the utility and difficulty of applying the RUSLE to the 

Cagayan de Oro catchment where the agricultural activity, steep slopes, and heavy 

rainfall make it vulnerable to soil erosion. Different methods of calculating the RUSLE 

factors were tested to see how the resulting annual soil loss estimates were affected. 

For the rainfall factors, using the higher rainfall factors were useful in identifying broad 

categories of land use that were vulnerable to soil erosion while using the lower 

rainfall factors were useful in pinpointing smaller areas for more targeted 

management. Similarly, deciding which slope length and steepness factors to use was 

dependent on scale. Methods involving only slope length and steepness were more 

useful at the catchment scale compared to the method involving flow accumulation, 

because of the high granularity associated with the latter. At the sub-watershed or 

field scale, the method involving flow accumulation was more useful to pinpoint areas 

for management. Even though the accuracy of the RUSLE could not be compared with 
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actual soil erosion records, it was also useful to see how changing land cover would 

affect mean soil loss through scenario analysis. In all scenarios, those areas classified 

as agriculture and areas with steep slopes were considered the most vulnerable to soil 

erosion. However, conservation practices outlined in the management and 

rehabilitation scenarios have the potential to mitigate soil erosion, especially on 

steeper slopes. 

Priority future directions for RUSLE work in the Philippines include sediment 

delivery for water quality analysis, assessing the erosion associated with extreme 

events such as typhoons, and including the Compound Topographic Index (CTI) for 

gully erosion in areas were high-resolution elevation data is available. Sediment 

delivery to streams can affect water quality, and thus is a principal issue for a heavily 

populated city like Cagayan de Oro. Although typhoons are rarer in CDO compared to 

the northern areas of the Philippines, analysing the siltation associated with typhoons 

is important for post-disaster water quality and to analysing the effectiveness of 

downstream flood inundation defences. Lastly, RUSLE specifically considers sheet and 

rill erosion but ignores gully erosion Future development of RUSLE in LUCI could allow 

the inclusion of the CTI which would explicitly account for gully erosion. However as 

stated in Chapter 6, CTI and RUSLE both use slope and flow accumulation and care 

must be taken to avoid double-counting. 
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6 Improving the estimation of soil loss using a combination of 

the Revised Universal Soil Loss Equation (RUSLE) and the 

Compound Topographic Index (CTI) in the Mangatarere 

watershed 

6.1 Introduction 
Although the main scope of this thesis is ecosystem services modelling in the 

Cagayan de Oro catchment in the Philippines, this section applies the RUSLE to the 

Mangatere catchment in New Zealand. This is due to the availability of more detailed 

data to test different sub-factors within the RUSLE, such as high-resolution DEMs and a 

daily rainfall time-series. The highest resolution DEM publicly available for the CDO is 

the 30m ASTER DEM, while the Mangatarere catchment has two high-resolution DEMs 

at 15m and 5m. Having these DEMs allowed for testing of how spatial resolution 

affected different approaches to estimating the slope length and steepness factor 

within the RUSLE, which was not possible for the CDO. The availability of a daily rainfall 

time-series in the Mangatarere was used to test different rainfall erosivity equations 

from those used in the CDO catchment. In the CDO, only annual and monthly rainfall 

were used to estimate soil erosion. Additionally, the relatively coarse ASTER DEM in 

CDO is not sufficient to apply the Compound Topographic Index (CTI) accurately due to 

dependence on accurately representing slope curvature. CTI uses upstream drainage 

area, slope, and planform curvature to identify areas susceptible to gully erosion and 

to calculate soil loss rates (Thorne et al., 1985). It was originally applied at the field 

scale, but was applied in a GIS environment within LUCI to calculate areas susceptible 

to erosion (Jackson et al., 2013). Using a high-resolution DEM is important for 

identifying gully-prone areas due to the size of ephemeral gullies, commonly 0.5 to 

50cm in depth (Momm et al., 2012). The predictive ability of the CTI is affected by 

DEM resolution, with analysis finding its ability degrading at ~10m resolution (Parker 

et al., 2007).  

Due to the mountainous topography, erodible volcanic soils, and high rainfall 

activity in New Zealand, the country experiences high rates of soil erosion (Rodda et 

al., 2001). Anthropogenic activity has exacerbated the problem, especially in pastoral 

and agricultural hill country (Basher, 2013). Previous studies on soil erosion have used 
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modelling to understand the extent of the problem in hopes of finding ways to 

mitigate erosion (Cogle et al., 2003; Elliott et al., 2012; Rodda et al., 2001). As of 2012, 

the highest total estimated soil loss was in the West Coast region (50 million tons year-

1) while the highest estimated soil loss rate was in the Gisborne region (4,844 tons km-

2 year-1) (Stats NZ, 2015). 

The Revised Universal Soil Loss Equation (RUSLE), or slightly modified versions of 

it, have been applied to New Zealand. Work by Rodda et al. (2001) used the RUSLE as 

part of a decision support system in the Ngongotaha catchment to assess potential 

sediment yields under different land use scenarios, highlighting the utility of riparian 

planting to reduce sediment load. Similarly, work by Fernandez & Diagneault (2016) 

used the RUSLE and the New Zealand Empirical Erosion Model to estimate soil loss, 

which were used in an economic model to assess the potential implications of erosion 

control in the Waikato region. Their results underscored the highly spatial nature of 

soil erosion, indicating that targeting the critical areas for erosion would maximise the 

cost-effectiveness of measures such as shelter belts, riparian planting (M. A. 

Fernandez & Daigneault, 2016).  

At the national scale, work by Klik et al. (2015) on the rainfall erosivity factor 

produced a New Zealand-wide map of R-factor and equations to estimate the R-factor 

from annual and seasonal precipitation. The R-factor ranged from less than 550 MJ 

mm ha-1 h-1 in locations such as Central Otago to above 16,000 MJ mm ha-1 h-1 in the 

Southern Alps, highlighting the large potential influence of precipitation on sediment 

yield (Klik et al., 2015). Using nationally available data, work by Dymond (2010) 

produced the NZUSLE which considers an area’s rainfall, slope, soil, land cover, and 

management factors (Dymond et al., 2010). This approach uses broad classifications of 

land cover and soil texture, but at the catchment scale, more detailed 

parameterisation accounting for several types of land cover and structural integrity of 

the soil may provide more accurate soil loss estimates. 
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The NZUSLE by Dymond (2010) is shown below: 

ē𝑠(𝑥, 𝑦) = 𝛼𝑃2(𝑥, 𝑦)𝐾(𝑥, 𝑦)𝐿(𝑥, 𝑦)𝑍(𝑥, 𝑦)𝑈(𝑥, 𝑦) 

Where: 

ēs Mean annual erosion rate due to surficial processes (t km-2 yr-1) 

Α Constant calibrated with published surficial erosion rates (1.2 × 10-3) 

P Mean annual rainfall (mm) 

K Soil erodibility factor depending on texture (Sand: 0.05; Silt: 0.35; Clay: 0.20; 
Loam: 0.25) 

L Slope length factor where λ is slope length (m) in 

𝐿 =  (
𝜆

22
)

0.5

 

U Vegetation cover factor (Bare ground: 1.0; Pasture: 0.01; Scrub: 0.005; 
Forest: 0.005) 

Z 
𝑍 = 0.065 + 4.56

𝑑𝑧

𝑑𝑥
+ 65.41 (

𝑑𝑧

𝑑𝑥
)

2

 

Where dz/dx is the slope gradient 

 

The NZUSLE uses broad classifications of soil and land cover, and mean annual 

rainfall to determine its rainfall erosivity, which makes it a relatively simple model to 

apply.  However, the influence of land cover is dependent on more than just the broad 

categories proposed in the NZUSLE, as factors such as type of forest, crop growth, or 

tillage practice can influence soil erosion (Panagos et al., 2015d). The soil erodibility 

factor of the NZUSLE is also unclear about how to handle soils of mixed textures (e.g. 

clay loam) which can affect how susceptible the soil is to erosion. Part of this research 

is to parameterise the RUSLE for more specific cover and crop types, and eventually 

lead to farm-scale applications that can take crop growth and stage into account. 

One of the limitations of RUSLE is that it estimates soil loss through sheet and rill 

erosion (through the length-slope and steepness factor), but not from other types of 

erosion such as gully erosion, channel erosion, or from mass wasting events such as 

landslides (Nagle et al., 1999; Wischmeier & Smith, 1978). By not including ephemeral 

gully erosion, soil loss estimates can be under-estimated (Thorne et al., 1985). The 

model also does not account for deposition or sediment routing (Desmet & Govers, 

1996; Wischmeier & Smith, 1978). Since it does not predict the sediment pathways 

from hillslopes to water bodies, it is difficult to analyse possible effects on 

downstream areas, such as pollution or sedimentation (Jahun et al., 2015). These two 
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limitations have implications for being able to adequately identify areas vulnerable to 

erosion and more accurately estimate soil loss in more topographically complex 

terrain, like many areas of New Zealand. 

6.2 Aim and objectives 
The main aim of this chapter is to further parameterise the RUSLE approach for 

application to New Zealand conditions and data, and to allow monthly or seasonal 

estimates of erosion to be determined. The specific objectives are as follows: 

• Apply the RUSLE to the Mangatarere catchment using different equations for 

the rainfall erosivity factor and the slope length and steepness factor. 

Given there are several methods for calculating RUSLE factors (Chapter 4), this 

research will also test the sensitivity of these equations to produce a range of RUSLE 

factors for the Mangatarere. 

6.3 Methodology 
The Mangatarere catchment (~157km2) is located in the central Wairarapa 

region of New Zealand and is covered by forest in the northern area (Tararua Forest 

Park) and agricultural activity such as dairy and drystock farming in the plains (Milne et 

al., 2010) (Figure 80). This catchment was chosen as the study site due to the high 

rainfall in the forested part of the catchment, and the extensive anthropogenic activity 

in the plains area. The rainfall data was extracted from the OVERSEER nutrient budget 

model which uses rainfall data representative of the typical daily rainfall over one year 

for the region wherein the Mangatarere is located (Wheeler, 2016b). Using rainfall at a 

daily resolution would allow for monthly and seasonal estimates of soil loss. The soil 

shapefile was taken from the Fundamental Soils layer10 and uses the New Zealand Soil 

Classification at the highest level (order) (Hewitt, 2010). Soil physicochemical 

characteristics at the order level were taken from the OVERSEER nutrient budget 

model (Wheeler, 2016a). 

Two DEMs of differing resolution were chosen for this study to test differences 

in slope-length and steepness factor and resulting soil loss estimates. The Wellington 

15m DEM (NZSoSDEM v1.0) is part of a larger DEM dataset with national coverage that 

                                                      
10 http://lris.scinfo.org.nz/layer/48079-fsl-new-zealand-soil-classification/ 

http://lris.scinfo.org.nz/layer/48079-fsl-new-zealand-soil-classification/
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was produced from topographic vector data (Columbus et al., 2011). The 5m DEM was 

created from interpolating the Wellington LiDAR 1m DEM (2013) from Land 

Information New Zealand11. Lastly, the land cover for the study area was taken from 

the Land Cover Database version 4.112 which is a national-scale map of land cover and 

land use that was produced by Landcare Research and is updated at ~5 year intervals 

(Landcare Research, 2013). 

 

Figure 79. Location of the Mangatarere catchment in red relative to New Zealand, and the Mangatarere 
catchment showing the forested and agricultural areas. 

                                                      
11 http://data.linz.govt.nz/layer/53621-wellington-lidar-1m-dem-2013/ 
12 http://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-mainland-new-
zealand/ 

http://data.linz.govt.nz/layer/53621-wellington-lidar-1m-dem-2013/
http://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/
http://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/
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Figure 80. Land cover map for the Mangatarere using the LCDB 4.1 classification. 

 

Figure 81. Methodology of the study. 

Different parameterisation equations were gathered for the different RUSLE 

factors, focusing on sources in New Zealand and using daily or monthly rainfall data. 

For more detail on the RUSLE factors and methods to calculate them, refer to the 

review chapter (Chapter 4). The high temporal resolution allows for monthly and 

seasonal soil erosion estimates instead of the annual soil erosion commonly estimated 

with RUSLE. The K-factor was estimated using an equation by David (1988) which uses 

textural information and organic material to estimate soil erodibility. Two different LS-

factor equations were taken from Desmet & Govers (1996) and Morgan (2005) to test 

their applicability at the watershed scale. The values for C-factors were taken from 
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literature and are more detailed compared to the vegetation cover factor proposed by 

Dymond et al. (2010). The support practice factor was not included due to the lack of 

information regarding management practices or future plans for management 

interventions. 

After the RUSLE parameterisation, these layers were used to estimate mean 

annual soil loss in tons hectare-1 year-1 and seasonal soil loss in tons hectare-1 season-1. 

For easier comparison to previous soil loss estimates in New Zealand, the maps were 

also converted to tons km-2.  

6.3.1 RUSLE equations 

6.3.1.1 Rainfall erosivity (R-factor) 

The high rainfall in New Zealand has been cited as one of the main drivers of soil 

erosion (Basher, 2013). In the Mangatarere, mean annual rainfall varies between 

~900mm on the Wairarapa Plains up to ~3,000mm on the forested part of the 

catchment in the foothills of the Tararua Ranges (Milne et al., 2010). Given the 

availability of daily rainfall data, the equations from Loureiro & Coutinho (2001) and 

Ferreira & Panagopolous (2014) were chosen (Table 43). The annual and seasonal R-

factor equations by Klik et al. (2015) were chosen due to their application in New 

Zealand, being derived from New Zealand rainfall data, and because of the objective of 

doing seasonal soil loss estimates.  

Table 43. Rainfall erosivity factor equations used in this research. 

# Source Original 
Location 

Equation 

1 Loureiro & 
Coutinho 
(2001) 

Portugal 𝐸𝐼30 (𝑚𝑜𝑛𝑡ℎ𝑙𝑦) = 7.05𝑟𝑎𝑖𝑛10 − 88.92𝑑𝑎𝑦𝑠10 

𝑅 =  
1

𝑁
∑ ∑ 𝐸𝐼30(𝑚𝑜𝑛𝑡ℎ𝑙𝑦)

12

𝑚=1

𝑁

𝑖=1

 

Rain10 = Monthly rainfall for days with > 
10.0mm of rain 
Days10 = Monthly number of days with 
rainfall > 10.0mm of rain 
N = Number of years 
 
Units: Megajoule •millimetre • hectare-1 • 
hour-1 • year-1 
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Table 43. Rainfall erosivity factor equations used in this research. (continued) 

# Source Original 
Location 

Equation 

2 Ferreira & 
Panagopolous 
(2014) 

Portugal 
𝑅 =  ∑ 6.56𝑟𝑎𝑖𝑛10 − 75.09𝑑𝑎𝑦𝑠10

12

𝑖=1

 

Rain10 = Monthly rainfall for days with > 
10.0mm of rain 
Days10 = Monthly number of days with 
rainfall > 10.0mm of rain 
 
Units: Megajoule •millimetre • hectare-1 • 
hour-1 • year-1 

3 Klik et al. 
(2015) 

New Zealand Equation 1: 𝑅 = 𝑎𝑃𝑏 
Equation 2: 𝑅 = 𝑎𝑃 + 𝑏 

 
P = Annual or seasonal precipitation 
a & b = Constants depending on location 
defined by Klik et al. (2015) 

• Mangatarere located in Region 2 

• Annual a & b: 0.026 & 1.536 (eq 1) 

• Spring a & b: 0.08 & 1.435 (eq 1) 

• Summer a & b: 0.078 & 1.537 (eq 1) 

• Fall a & b: 2.508 & -284.4 (eq 2) 

• Winter a & b: 0.021 & 1.633 (eq 1) 

 

6.3.1.2 Soil erosivity (K-factor) 

The equation below by David (1988) was chosen due to its relative simplicity of 

requiring only textural information, organic matter, and pH. By contrast, the original 

RUSLE K-factor equation also requires information on soil structure and profile-

permeability that was not available for the soils in the Mangatarere catchment. 

𝐾 = [(0.043 ×  𝑝𝐻) + (0.62 ÷  𝑂𝑀) + (0.0082 ×  𝑆) − (0.0062 ×  𝐶)]  ×  𝑆𝑖
× 0.1317 

Where: 

pH pH of the soil 
OM Organic matter in percent 
S Sand content in percent 
C Clay ratio = % clay / (% sand + % silt) 
Si Silt content = % silt / 100 
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6.3.1.3 Slope length and steepness factor (LS-factor) 

The equations in Table 44 were chosen because of their ubiquity in RUSLE 

literature and to test the strengths and weaknesses of each method. The method by 

Desmet & Govers (1996) is widely used because of its capability to account for the 

convergence and divergence of flow, thus allowing for application in more complex 

terrain. The method by Morgan (2005) is like the original RUSLE calculation for LS-

factor and was chosen because of its relative simplicity.  

Table 44. Slope length and steepness factors used in this research. 

# Source Equation 

1 Desmet and 
Govers (1996), like 
equations by 
Moore & Burch 
(1986) as cited in 
Mitasova et al. 
(1996) and 
Mitasova et al. 
(2013) 

𝐿𝑆 = (𝑚 + 1) (
𝑈

𝐿0
)

𝑚

(
sin 𝛽

𝑆0
)

𝑛

 

 
U (m2m-1) = upslope contributing area per unit width as a 
proxy for discharge 
 

𝑈 = 𝐹𝑙𝑜𝑤 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒 
 
L0 = length of the unit plot (22.1) 
S0 = slope of unit plot (0.09) 
β = slope 
m (sheet) and n (rill) depend on the prevailing type of 
erosion (m= 0.4 to 0.6) and n (1.0 to 1.3) 

2 Morgan (2005) but 
previously 
published in 
earlier editions 

𝐿𝑆 = (
𝑙

22
)

0.5

(0.065 + 0.045𝑠 + 0.0065𝑠2) 

 
l = slope length (m) 
s = slope steepness (%) 

 

6.3.1.4 Cover factor (C-factor) and support practice factor (P-factor) 

To determine the C-factor, the land cover classification of the LCDB 4.1 was 

compared to the land cover classes reported by Morgan (2005), Dymond (2010), and 

Panagos et al. (2015d). The values taken for C-factor were based on the average 

reported C-factor for similar land cover classes found in these studies. The areas 

classified as harvested forest and landslide were given the value for bare soils (1.0), 

although the classification did not specify if the harvested forest left any debris 

behind, which could influence soil erosion. The land cover classifications from 1996, 

2001, and 2008 were also used as land cover scenarios to determine any changes in 

soil erosion compared to 2012. 
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The support practice factor (P-factor) is included in the original RUSLE to account 

for the effect of diverse types of land management. However, detailed information 

about specific land management (e.g. mulching, contour cropping, etc.) was not 

available for this application of RUSLE to the Mangatarere catchment. Thus, the P-

factor was excluded but can be included for more detailed farm-scale applications 

where information on management is more easily accessible. 

Table 45. C-factor values for the land cover classifications present in the Mangatarere catchment. 

LCDB4 Land Classification C-factor Notes 

Broadleaved Indigenous 
Hardwoods 0.002 Average for forest classes 

Built-up Area (Settlement) 0.015 Average for built-up areas 

Deciduous Hardwoods 0.002 Erosion control trees, large trees 

Exotic Forest 0.002 Average for forest classes 

Forest - Harvested 1 Described as predominantly bare ground 

Gorse and/or Broom 0.0445 Scrubby weeds 

Gravel or Rock 0 No soil to erode 

Herbaceous Freshwater 
Vegetation 0.0445 Reed-like 

High Producing Exotic 
Grassland 0.055 Grazing activity, pasture 

Indigenous Forest 0.002 Average for forest classes 

Lake or Pond 0 No soil to erode 

Landslide 1 Same as bare soil 

Low Producing Grassland 0.055 Also associated with grazing 

Manuka and/or Kanuka 0.002 Large trees with smaller scrub beneath 

Orchard, Vineyard or Other 
Perennial Crop 0.002 Average for forest classes 

River 0 No soil to erode 

Short-rotation Cropland 0.25 Agriculture, used average of wheat and maize 

Sub Alpine Shrubland 0.0445 Shrubland 

Tall Tussock Grassland 0.0445 Brush, grassland 

Urban Parkland/Open Space 0.0445 
Like scrub, described as grassed and “sparsely-
treed” 

 

6.3.2 Annual and seasonal estimates of soil loss 

After all the RUSLE factors were calculated, they were converted to raster layers 

and multiplied together in the Raster Calculator of ArcMap 10.4.1 to obtain an 

estimate of annual soil loss over several different combinations. Annual and seasonal 

estimates of soil loss were done for each of the R-factors and C-factors, giving soil loss 
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in tons hectare-1 year-1, but the maps were converted to tons kilometre-2 year-1 for 

easier comparison to national estimates of soil loss. 

𝑡𝑜𝑛

ℎ𝑎 𝑦𝑟
×

1 ℎ𝑎

0.01 𝑘𝑚2
 

The maps were then classified into the following categories following the work 

of Dymond (2010) (tons kilometre-2 year-1). The estimated average soil erosion in the 

Wellington region is approximately 729 tons km-2 yr-1 (Stats NZ, 2015), and the erosion 

rates above 501 tons km-2 yr-1 are considered vulnerable to extreme regions of soil 

erosion. 

• 0 to 50 

• 51 to 200 

• 201 to 500 

• 501 to 2,000 

• 2,001 to 5,000 

• 5,001 to 20,000 

• > 20,000 

 

Table 46. Summary of the equations used in this application of RUSLE to the Mangatarere. 

Rainfall Erosivity Factor Soil 
Erodibility 
Factor 

Slope Length and 
Steepness Factor 
(on 15m and 5m 
DEMs) 

Cover and Support 
Practice Factor 

• Klik et al. (2015) 

• Loureiro & 
Coutinho (2001) 

• Ferreira & 
Panagopolous 
(2014) 

• Panagos et al. 
(2017) 

• David 
(1988) 

• Desmet 
and Govers 
(1996) 

• Morgan 
(2005) 

• 2012 

• 2008 

• 2001 

• 1996 
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6.4 Results and discussion 
The more detailed parameterisation of RUSLE allows more representative 

estimates of soil loss and can be used to examine monthly or seasonal variability in soil 

erosion vulnerability. Due to use of monthly rainfall and land cover scenarios 

depending on agricultural activity, we highlight the utility of RUSLE at a finer temporal 

scale. The addition of the temporal aspect can aid in identifying which months in the 

year erosion management would be more useful. 

6.4.1 Differences in RUSLE factors 

6.4.1.1 Rainfall erosivity (R-factor) 

Of the different R-factor equations, the one by Klik et al. (2015) produced the 

largest estimate of rainfall erosivity while Loureiro & Coutinho (2001) produced the 

lowest (Table 47). The Panagos et al. (2017) erosivity map was clipped to the study 

area and shows the spatial variability of rainfall erosivity between the agricultural 

plains and the foothills of the mountain range where the rainfall erosivity is higher 

(Figure 82). 

The work by Klik et al. (2015) used pluviographic data from rainfall stations 

across New Zealand at sub-hourly (10min) temporal resolution to calculate R-factor 

values, creating a national dataset by relating these to annual precipitation. The 

rainfall erosivity produced by this equation was the highest at 2607 MJ mm ha-1 hr-1 

for the Mangatarere catchment, higher than the average for that region (~1900 MJ 

mm ha-1 hr-1). This could be due to the influence of the high rainfall associated with 

the mountain ranges in the north of the catchment. Meanwhile, Loureiro & Coutinho 

(2001) and Ferreira & Panagopolous (2014) produced lower estimates of the R-factor 

compared to Klik et al. (2015), likely due to their equations excluding days that had 

less than 10mm of rainfall. In the dataset used for this research, 310 out of 365 days 

(85%) recorded less than 10mm of rainfall. The dataset by Panagos et al. (2017) had a 

range of 266 to 2,277 (mean: 1,221) MJ mm ha-1 hr-1 for the Mangatarere catchment 

due to the difference in rainfall between the plains and hilly areas. The dataset by 

Panagos et al. (2017) is important to capture that spatial variation and was produced 

by relating other climate variables to R-factors, not just precipitation amount. 

 



194 | P a g e  
 

Table 47. R-factors calculated from the different equations and the average of Panagos et al. (2017) (MJ 
mm ha-1 hr-1). 

Source Klik et al. 

(2015) 

Loureiro & 

Coutinho (2001) 

Ferreira & 

Panagopolous 

(2014) 

Panagos et al. 

(2017) 

Annual 

R 

2607 1391 1715 1221 

 

Figure 82. R-factor map from Panagos et al. (2017) for the Mangatarere. 

The equations by Klik et al. (2015), Loureiro & Coutinho (2001), and Ferreira & 

Panagopolous (2014) were used to produce seasonal R-factor estimates for the 

catchment (Figure 83). The trend produced by Klik et al. (2015) was completely 

different from the trend predicted by the other two equations. For Klik et al. (2015), 

the highest erosivity occurs in summer and the lowest in winter/spring. For the other 

two, the opposite is true with the highest erosivity occurring in winter/spring and the 

lowest in summer. In the region where the Mangatarere is located, Klik et al. (2015) 
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reports that although there is high rainfall in both winter and summer, there are more 

storms occurring in summer. This stark difference in seasonal R-factor trends shows 

the importance of testing R-factor equations from multiple sources instead of using 

only one. Aside from testing different equations, another way of refining R-factor for 

the Mangatarere is to test those equations on more years of rainfall data to see if the 

monthly and seasonal trends still hold. These monthly and seasonal estimates can 

then be aggregated to produce annual soil estimates that can be compared to the 

annual soil estimates that were produced using only annual precipitation data. 

 

Figure 83. Seasonal rainfall and erosivity estimates. 

6.4.1.2 Soil erodibility (K-factor) 

For the areas classified as urban and gravel, soil erodibility is assumed to be zero. 

Outside of these areas, K-factors ranged from 0.0277 (Gley) up to 0.0379 (Pallic) (Table 

48). The gley soils have the lowest estimated K-factor, which is consistent with their 

characteristics of minimal erosion due to ponding and higher possibility of deposition 

in areas where gley soils are found (Hewitt, 2010). The other three soil orders in the 

study area of brown, pallic, and recent, all have similar soil erodibility factors. These 

soils have relatively stable topsoils, but can be subject to erosion and sedimentation 

after periods of tillage or usage of heavy machinery (Hewitt, 2010). 

The classification at the soil order level is useful at large scales such as national, 

regional, and for larger catchments. At smaller scales such as sub-watershed or field 

scale, more specific soil classification levels such as groups and sub-groups would be 

more useful to observe differences in the spatial distribution of soil erodibility. 
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Another method of refining the K-factor parameterisation in future work is to 

incorporate the structural integrity characteristic that uses top soil clay content, top 

soil carbon content, and the anion storage capacity as a measure of soil strength 

(Wheeler, 2016a). Structural integrity is a modified form of the structural vulnerability 

characteristics for New Zealand soils, which was formulated through reviewing and 

analysing physical information about NZ soils to assess their erodibility against 

commonly measured soil attributes (Hewitt & Shepherd, 1997). 

Table 48. K-factor values for different soils in the Mangatarere (ton hr MJ-1 mm-1). 

Soil Order K-factor 

Brown 0.0324 

Gley 0.0277 

Pallic 0.0379 

Recent 0.0356 

 

 

Figure 84. K-factor map for the Mangatarere. 
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6.4.1.3 Slope length and steepness factor (LS-factor) 

For the 15m DEM, the mean values of LS-factor are 10 for Morgan (2005) and 12 

for Desmet & Govers (1996). For the 5m DEM, the mean values of LS-factor are 6 for 

Morgan (2005) and 9 for Desmet & Govers (1996). Although the mean values are 

similar, the spatial distribution of LS-factors across both methods are slightly different 

(Figure 85 and Figure 86). The main similarities in the spatial distribution are the high 

values in the hilly areas while the lower areas are in the plains area, due to the hilly 

areas having steeper slope gradients. The main difference is that Desmet & Govers 

(1996) predict the highest LS-factors predicted by Desmet & Govers (1996) along the 

stream network due to the high flow accumulation whereas Morgan (2005) predicts 

the highest LS-factors on steep mountainous slopes. 

 

Figure 85. LS-factor maps for the 15m DEM using Morgan (2005) and Desmet & Govers (1996) methods. 
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Figure 86. LS-factor maps for the 5m DEM using Morgan (2005) and Desmet & Govers (1996) methods. 

 

6.4.2 Annual estimates of soil loss 

The Mangatarere catchment is located within the Wellington region, whose 

long-term soil erosion rate is estimated to be 792 t km-2 yr-1 (Stats NZ, 2015). In the 

nearby Manawatu catchment, the measured sediment yield ranged from 137 to 978 t 

km-2 yr-1 and the modelled sediment yield ranged from 368 to 978 t km-2 yr-1 (Dymond, 

2010). The Manawatu is like the Mangatarere catchment in terms of having hilly 

topography in the Tararua mountain ranges and pasture farming in the flat areas. 

The mean soil loss of the Mangatarere watershed varied between the various 

factors, especially between different values for R-factor and LS-factor. For the R-factor, 

the equation that produced the highest mean soil loss estimate was Klik et al. (2015) 

(2,877 ton km-2 yr-1) while Panagos et al. (2017) produced the lowest mean soil loss 

estimate (775 ton km-2 yr-1) (Figure 87). This follows the expected trend of higher 

rainfall erosivities leading to higher estimates of mean soil loss, as Klik et al. (2015) 

produced the highest R-factor values.  
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Figure 87. Soil estimates of the different combinations of R-factor, LS-factor, and DEM resolution. 

 

Although mean soil loss values are very different (775 to 2,877 ton km-2 yr-1), the 

distribution of the areas considered extremely vulnerable to soil loss are similar across 

the different R-factor equations (Figure 88 and Figure 89). The areas classified as 

harvested forest are described as predominantly bare ground and have the highest 

estimated soil loss due to lack of vegetation cover and the other vulnerable areas are 

exotic grassland, and gorse/broom. Exotic grassland areas are commonly used for 

pasture grazing and are dominated by short vegetation. In general, the hilly areas are 

classified as more vulnerable to soil loss compared to the plains areas due to the 

presence of steep slopes. 

 

Morgan
(2005): 15m

Morgan
(2005): 5m

Desmet &
Govers

(1996): 15m

Desmet &
Govers

(1996): 5m

Klik et al. (2015) 2353.18926 1497.44217 2877.36843 2539.65012

Loureiro & Coutinho (2001) 1254.66639 798.40491 1534.16013 1354.08672

Ferreira & Panagopolous (2014) 1548.02814 985.08966 1892.85825 1670.69352

Panagos et al. (2017) 1241.2 774.5 1454.1 1182.4

0

500

1000

1500

2000

2500

3000

3500

Es
ti

m
at

ed
 m

ea
n

 a
n

n
u

al
 s

o
il 

lo
ss

(t
o

n
s/

km
2 /

ye
ar

)



200 | P a g e  
 

 

Figure 88. Soil loss maps for R-factor estimated with Klik et al. (2015) and Loureiro & Coutinho (2001). 

 

Figure 89. Soil loss maps for R-factor estimated with Ferreira & Panagopolous (2014) and Panagos et al. 
(2017). 

In terms of absolute and relative differences, the difference between Klik et al. 

(2015) and the other two equations is similar. Klik et al. (2015) predicts higher soil loss 

in all areas of the catchment, specially the area classified as harvested forest which is 

the most vulnerable to soil erosion. This is because of the R-factor estimated by Klik et 
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al. (2015) is higher compared to the one estimated by Loureiro & Coutinho (2001) and 

Ferreira & Panagopoulous (2014). In terms of relative differences, there is a mean 

difference of ~47% between the Klik et al. (2015) predictions and the Loureiro & 

Coutinho (2001) predictions. Similarly, the mean relative difference between the Klik 

et al. (2015) predictions and the Ferreira & Panagopoulous (2014) predictions is 34%. 

Loureiro & Coutinho (2001) estimated a lower R-factor, hence the lower soil erosion 

estimates produced. The mean relative difference between Loureiro & Coutinho 

(2001) and Ferreira & Panagopoulous (2014) soil loss estimates was -23%. 

The rainfall factor is a key component of the RUSLE because of the driving force 

of precipitation to trigger soil erosion and related events. In the RUSLE literature, a 

common method of calculating R-factor in data-sparse areas is to utilise equations 

from other study areas. However, researchers must be mindful of the differences in 

soil loss estimates produced by different R-factor equations. Through testing multiple 

R-factor equations, researchers are then able to compare the estimates of soil loss to 

previous work and data to pick the most appropriate equation. 

In terms of the LS-factor, the areas classified as extremely vulnerable to soil 

erosion are the same for the two different LS-factor equations. These are the areas 

classified as harvested forest or exotic grassland. However, the inclusion of flow 

accumulation causes the areas with very low/no flow accumulation to appear more 

clearly on the map while the areas of high flow accumulation, such as the flow 

pathways on the plains area are classified as more vulnerable. This difference is seen 

clearly in the 15m DEM (Figure 90), where the plains areas show more areas 

vulnerable to soil loss using the Desmet & Govers (1996) method. 
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Figure 90. Soil loss maps for LS-factor estimated with Morgan (2005) and Desmet & Govers (1996) on 
the 15m DEM with R-factor equation Klik et al. (2015). 

 

For the 5m DEM, the difference between the LS-factor of Morgan (2005) and 

Desmet & Govers (1996) at the watershed scale are more difficult to see (Figure 91). 

There is more granularity in the flat plains area, but the model is still identifying the 

same areas as most vulnerable to soil erosion: harvested forest and exotic grasslands. 

At a smaller scale (Figure 92), the differences of the two LS-factors for the 5m DEM are 

clearer. The inclusion of flow accumulation allows the RUSLE to identify finer areas to 

target, using information about the movement of water and its erosive force to 

delineate the areas that are most vulnerable to soil erosion. At the watershed scale, 

the slope gradient approach by Morgan (2005) is useful for targeting areas of land for 

large-scale interventions or future management planning. At the sub-watershed and 

field scale, the method by Desmet & Govers (1996) is more useful to identify the areas 

that are vulnerable to soil erosion based on land cover and flow pathways. 

In terms of differences between DEM resolutions, the higher-resolution can 

identify areas on the flat plains area as vulnerable to soil erosion that the 15m DEM 

could not. The 5m DEM can pick up on the microtopography of the plains areas, which 

could be important in study areas that have seemingly flat topography but whose 
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smaller topographic features could contribute to soil erosion. This is due to the 

improvements in vertical resolution associated with using LiDAR over coarse DEMS, 

which affects how slope and the subsequent hydrological attributes are represented in 

the DEM. 

 

Figure 91. Soil loss maps for LS-factor estimated with Morgan (2005) and Desmet & Govers (1996) on 
the 5m DEM at the watershed scale. 
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Figure 92. Soil loss maps for LS-factor estimated with Morgan (2005) and Desmet & Govers (1996) on 
the 5m DEM at a closer scale. 

Like the difference maps for the R-factors, the main difference for the LS-factor 

maps manifested in the areas vulnerable to soil erosion. The values for total soil loss 

(Table 49) differ by 18% in the 15m DEM and 41% in the 5m DEM. As shown by the 

maps (Figure 93 and Figure 94), this difference is due to the equation by Morgan 

(2005) using slope steepness as one of the main drivers of soil erosion by the equation 

by Desmet & Govers (1996) uses both steepness and flow accumulation. The areas 

with the smallest differences are the flat areas while the areas with the largest 

differences are the areas with either steep slopes or high flow accumulation. This 

difference in predicted soil loss between the methods by Morgan (2005) and Desmet 

& Govers (1996) underscores the importance of further comparing these results not 

only to previous soil loss modelling work but also relating model predictions to 

observational values. Such validation work includes comparing the estimated to 

measured surficial erosion rates (Dymond, 2010), using water quality records to 

elucidate sediment loads as detailed in Section 4.3, or ground-truthing the areas 

identified as vulnerable to soil erosion to check for physical evidence of erosion. 

One suggested method of generating arguably more realistic LS-factor estimates 

is to assign a maximum value for slope steepness due to shallow soils or absence of 
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soil on slopes beyond a certain threshold, such as above 26.6 degrees for soils in the 

European Union (Panagos et al., 2015b). The resulting sediment supply and soil loss 

predictions are likely to be significantly lower than predictions that used an equation 

for LS-factor with no maximum slope steepness threshold. 

 Given the influence on slope on soil loss, future work can include an in-depth 

review focusing on the LS-factor, the different methods used to calculate it, and the 

common values and thresholds used by other studies. As outlined in the review 

(Chapter 4), the LS-factor and the Compound Topographic Index (CTI) both account for 

slope steepness and flow accumulation. Thus, a more thorough review of LS-factor and 

CTI and how they would be combined to prevent double-counting would greatly 

contribute to understanding how to account for both sheet/rill erosion and gully 

erosion. 

Table 49. Comparisons of total estimated soil loss in tons/yr produced by RUSLE when using LS-factor 
equations from Morgan (2005) or Desmet & Govers (1996). 

  Total soil loss (ton/yr)   

LS-factor used Morgan (2005) Desmet and Govers (1996) Difference (%) 

15m DEM 357,101 436,646 18 

5m DEM 280,225 475,260 41 

 

 

Figure 93. Absolute and relative difference maps of soil loss comparing Morgan (2005) and Desmet & 
Govers (1996) on the 15m DEM. 
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Figure 94. Absolute and relative difference maps of soil loss comparing Morgan (2005) and Desmet & 
Govers (1996) on the 5m DEM. 

Within the LCDB are classifications of the same area over different years: 1996, 

2001, 2008 and 2012. Over those changes in land cover, the areas consistently 

identified as vulnerable to soil erosion are the exotic grassland areas in the hilly 

regions (Figure 95). However, the most vulnerable area changes because of the area 

classified as harvested forest changed between surveys. In 2001, there were no areas 

within the Mangatarere classified as harvested forest, hence leading to 2001 having 

the lowest estimates of soil loss across the four land cover scenarios. 

 

Figure 95. Estimates of soil loss under different years of land cover using different LS-factor methods 
(15m and 5m DEM) with the R-factor of Klik et al. (2015). 

1996 2001 2008 2012

Morgan (2005) 15m 2,612 776 1,808 2,353

Morgan (2005) 5m 1,555 536 1,167 1,497

Desmet & Govers (1996): 15m 3,499 1,323 2,928 2,877

Desmet & Govers (1996): 5m 2,965 1,378 2,502 2,540
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Figure 96. Soil loss maps under Klik et al. (2015) using LCDB1 (1996) and LCDB2 (2001). 

 

Figure 97. Soil loss maps under Klik et al. (2015) for LCDB3 (2008) and LCDB4 (2012). 

 

6.4.3 Seasonal estimates of soil loss 

Like the rainfall erosivity factor estimates, the seasonal soil loss estimates follow 

the same pattern. The soil loss predicted by Klik et al. (2015) was highest in the 

summer while the lowest occurred during spring. The opposite trend is seen in the 
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seasonal soil loss estimates produced by the other two equations (Figure 98). Since 

more erosive storms occur during summer for the Mangatarere, the Klik et al. (2015) 

equation is the most appropriate to use for estimating seasonal soil loss. In terms of 

spatial variation, a larger proportion of the catchment is classified as vulnerable during 

the summer season (Figure 99). At the catchment scale, this inclusion of seasonal soil 

loss is useful because it allows management to see which seasons are more likely to 

bring erosion events and possibly exacerbate sediment delivery to streams, and 

impacts water quality. These seasonal results can be aggregated to annual soil loss, 

allowing for comparison between using monthly precipitation and annual precipitation 

to produce soil loss estimates. 

At the farm scale, these seasonal estimates of soil loss have more utility. With 

changes in crops and agricultural practices, it is important for land management to 

understand which areas of their farm are vulnerable to soil erosion in each season. By 

refining the parameterisation of land cover (C-factor) and support practice (P-factor), 

the monthly estimates of soil loss can be improved, and more extensive scenario 

analysis can be undertaken to test which combinations of crop and practices will 

produce the most or least amount of soil loss. As stated in the review of R/USLE 

(Chapter 4), verifying the seasonal soil loss estimates could be done through observing 

variations in recorded water quality data in order to attain information about realistic 

patterns of seasonal soil loss. 

 

Figure 98. Seasonal estimates of soil loss using the three different R-factor equations. 
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Figure 99. Soil loss maps under Klik et al. (2015) for Spring and Summer. 

 

Figure 100. Soil loss maps under Klik et al. (2015) for Autumn and Winter. 

 

6.4.4 Utility of the Compound Topographic Index (CTI) 

At the catchment scale, the RUSLE is useful for identifying large areas vulnerable 

to soil erosion but does not yet account for erosion at much smaller scales, such as 

ephemeral gullying at the field scale. Gully erosion can be estimated through analysing 

aerial photographs and satellite imagery to observe temporal changes in gully size and 
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thus estimate volume, but this technique requires pre-existing knowledge about 

gullies in the area of interest and may be tedious at larger scales (Daba et al., 2003; 

Gomez et al., 2003). The Ephemeral Gully Erosion Model (EGEM) uses rainfall-runoff 

and soil erosion modelling to estimate gully width, volume, and rates but requires 

detailed parameterisation data (Capra et al., 2005; Woodward, 1999). 

As stated in Chapter 4, the Compound Topographic Index (CTI) uses three 

characteristics to identify areas susceptible to gully erosion: upstream drainage area, 

slope, and planform curvature (Thorne et al., 1985). These characteristics can be 

estimated from the DEM alone, making it a relatively simple model that has already 

been included in the LUCI model and to easier coupling with another empirical models, 

like RUSLE. 

There are several ideas of how to include the CTI into the soil erosion estimates. 

One of these is to calculate sheet and rill erosion through the RUSLE, calculate gully 

erosion through the CTI, and add these two together. This can be the first step in 

including the CTI as it allows for comparison of soil eroded by sheet and rill erosion 

and soil eroded by gully erosion. However, it is important to note that this can lead to 

overestimation of soil loss or “double-counting” because of the interactions between 

the different mechanisms of soil erosion, such as sheet and rill erosion contributing to 

gully erosion (Lentz et al., 1993). Additionally, the CTI already includes slope and flow 

accumulation, which is included in the LS-factor method proposed by Desmet & 

Govers (1996). This means that simply adding the results of RUSLE and CTI will lead to 

the model account for slope and flow accumulation twice, which will affect soil erosion 

estimates. 

The key to combining the CTI and the RUSLE may lie in the planform curvature, 

which is present in the CTI but not in the LS-factor. In an analysis of different 

topographic characteristics, the planform curvature was one of the most useful 

characteristics to predict ephemeral gullying, as channel cross-sectional area was 

positively correlated with planform curvature (Lentz et al., 1993). Since the LS-factor 

already accounts for slope and flow accumulation, combining it with the planform 

curvature could be an effective way of predicting ephemeral gully erosion. However, 

like the critical value for CTI that was proposed by Thorne et al. (1985), there must be 
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a threshold for the LS-factor over which ephemeral gullying is likely. This threshold 

factor will depend not just on the topography of the site but can also account for the 

site’s climate and erodibility. Further testing of the CTI and various combinations with 

the LS-factor are beyond the scope of this thesis and are recommended for future 

work. 

The initial application of CTI to the Mangatarere identified more spots of 

erosion-prone land using the 5m DEM (Figure 101). The areas identified were those 

associated with the stream network and thus high values for flow accumulation. A 

user-defined threshold value can be used to identify the areas critical for gully erosion 

mitigation depending on the statistical distribution of CTI values (Momm et al., 2012). 

Figure 102 shows the spots within the Mangatarere where the CTI values were in the 

90th percentile of all non-zero positive values for the catchment. Defining this 

threshold value is difficult and is dependent on the catchment’s characteristics (e.g. 

flatter terrain requires higher threshold values), thus underscoring the need for 

further testing of the CTI within the Mangatarere. As stated previously, more research 

must be done to understand how the RUSLE and CTI can be combined to identify areas 

of soil erosion in the Mangatarere. 

 

Figure 101. Sample map of erosion-prone locations in the Mangatarere based on all non-zero positive 
CTI values using the 15m DEM (left) and the 5m DEM (right). 
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Figure 102.  Sample map of erosion-prone locations in the Mangatarere showing the 90th percentile of 
non-zero positive CTI values using the 15m DEM (left) and the 5m DEM (right). 

6.5 Limitations and future work 
One of the objectives of this case study was to study the spatial variation of 

rainfall over the catchment using local rainfall data and how it affected the spatial 

variability of the rainfall erosivity factor. Although the work by Panagos et al. (2017) 

did produce a map that accounted for spatial variability, data from more local rain 

gauges can have be tested in future work with the other three R-factor equations to 

see if their pattern of spatial variability is similar. Aside from spatial variability, another 

direction for future work regarding the R-factor is to test all the equations on more 

years of rainfall data to get a range of possible R-factors for the Mangatarere, and to 

analyse the seasonal trends from year to year. Regarding the land cover, more specific 

parameterisation at the crop level and farm support practice scale can lead to more 

nuanced estimates of soil loss. Combining this with seasonal and monthly rainfall 

erosivity would allow farm management to estimate which areas of the farm would be 

at risk of soil erosion over different seasons, allowing them to time their management 

interventions accordingly. Going even finer with crop parameterisation would include 

accounting for the growing stages of plants, through analysing their rooting depth and 

how their ability to stabilise the soil changes over their growth cycle. Lastly, an 

important limitation of the RUSLE is its exclusion of other types of soil erosion such as 

gully erosion and mass wasting. Section 6.4.4 outlined some key ideas for 
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incorporating gully erosion, and mass wasting can be included through a of threshold 

factor where landslides are triggered should it be exceeded. 

6.6 Summary and conclusion 
In this case study of the Mangatarere catchment and the RUSLE, the regional 

specificity of R-factor equations was outlined and tested by using several different 

equations. At the annual scale, the R-factor ranged from 1,221 to 2,607 MJ mm ha-1 hr-

1. At the seasonal scale, the trends in rainfall erosivity were completely different for 

the equation by Klik et al. (2015) and the equations by Loureiro & Coutinho (2001) and 

Ferreira & Panagopolous (2014). This underscores the importance of testing different 

equations for one study site to ascertain which equation is most appropriate. In terms 

of DEM resolution and the LS-factor, the slope gradient approach by Morgan (2005) on 

the 15m DEM was more useful at the catchment scale for identifying large areas of 

vulnerability. At the sub-watershed or farm scale, the approach by Desmet & Govers 

(1996) on the 5m DEM that includes flow accumulation is more useful because it 

delineates those vulnerable areas even further. In terms of land cover, those areas in 

the Mangatarere that are most vulnerable to soil loss are the ones classified as 

harvested forest and exotic grassland. This chapter shows the results of testing those 

different equations and outlines potential future work regarding the RUSLE and its 

parameterisation for New Zealand conditions. 
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7 Incorporating and extending a flatwater inundation model for 

the Land Utilisation and Capability Indicator (LUCI) Framework 

7.1 Introduction 
As established in Chapter 1, mapping flood hazards from extreme typhoon 

events is a critical component of the disaster risk mitigation programmes in the 

Philippines. This process estimates inundation extent and depths depending on the 

relationship between river water level, terrain elevation, and the influence of land 

cover roughness (Alaghmand et al., 2010). This process elucidates the connections 

between river level, flood volume and flood extent, thus allowing urban planners to 

identify areas that are vulnerable to flooding under different rainfall extremes. Since a 

component of this thesis is to create inundation maps of the CDO floodplain under 

different land cover and rainfall scenarios, it is important to understand the different 

kinds of methods used to estimate inundation under different conditions. The aim of 

this chapter is to extend and document the raster-based algorithm described in 

Ballinger et al. (2011) used for flood inundation within the Land Utilisation and 

Capability Indicator (LUCI) framework. The LUCI framework assists decision-making 

regarding sustainable land use management through its ecosystem services modelling 

capabilities, and identifying potential areas where management interventions can 

enhance ecosystem services (Jackson et al., 2013). One of the ecosystem services 

included in the LUCI framework is flood mitigation, and a more detailed hydrological 

and hydraulic modelling module is in development. 

The possible applications of inundation modelling have led to the development 

of different types of computer models for estimating flood inundation, depending on 

the availability of data (Teng et al., 2017). These flood inundation models (FIMs) 

generally use discharge data, among other inputs, to estimate water depth and spatial 

extent of inundation on a floodplain (Castro-Bolinaga & Diplas, 2014). Since FIMs are 

used in scenario analysis under different flood scenarios, running a large number of 

different scenarios requires the FIM to be computationally efficient (Bernini & 

Franchini, 2013). There are several types of FIMs available, and Teng et al. (2017) 

identified three main approaches to flood inundation modelling: empirical methods, 
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hydrodynamic models of varying complexity, and the emerging approach of simplified 

conceptual models. 

The main aim of this chapter is to review the different methods of flood 

inundation modelling and to explain the inundation approach used by LUCI that was 

originally coded within MATLAB. This first iteration of the LUCI FIM was developed to 

test the utility of a new computationally efficient parsimonious flatwater inundation 

model that can be used in data-sparse regions (Ballinger et al., 2011). This flatwater 

inundation approach falls under the purview of simplified conceptual models which 

are explained in Section 7.1.3. 

Although this thesis mainly focuses on the Philippines, this chapter uses the 

Lower Hutt floodplain to test the FIM Python code to replicate the results produced by 

the FIM MATLAB code presented by Ballinger et al. (2011). This site was chosen 

because of the availability of a high-resolution DEM (5m) and information about the 

areas along the river where water is expected to breach when the flow exceeds 

channel capacity. In the CDO, this information about breach locations and overtopping 

flow is not available. However, this chapter is included in this thesis because flatwater 

inundation model is planned to be coupled with the rainfall-runoff model within LUCI 

that has compared well with the HEC-HMS model already within CDO (Chapter 8). 

To help improve the applicability of the LUCI FIM, it was translated into Python 

to allow for implementation into ArcMap 10.4.1 and the LUCI framework. The LUCI 

FIM complements the existing LUCI framework by using flow data to estimate 

inundation depths and extent, which has applications for testing the effect of land 

cover changes, response to extreme events and potential inundation under climate 

change. 

7.1.1 Empirical methods 

Empirical methods use satellite imagery to derive flood inundation maps from 

previous flooding events, which can be compared to recorded gauge heights to build a 

library of maps for a range of events (Bhatt et al., 2016). With the advent of cloud-

computing technology such as Google Earth Engine, satellite data from different 

sources can be more easily accessed and processed to map historical floods (Schwarz 
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et al., 2018). The utility of this method is to give an estimation of flood extent based 

on past flood events, which can assist in city planning. Rating curves that relate flood 

extent and stage or discharge measurements can be created for scenario analysis, but 

their accuracy is dependent on the type of satellite imagery used (Smith, 1997). Bhatt 

et al. (2016) used satellite Radarsat-1 and Radarsat-2 satellite imagery to map 

historical floods in India while Schwarz et al. (2018) used the resources of Google Earth 

Engine to do the same in Senegal. These satellite observations may be insufficient to 

predict future flood events, especially those that are larger than previous floods (Teng 

et al., 2017). Thus, empirical methods may be useful in areas where only satellite 

imagery and historical flood data are available. However, in the presence of more 

detailed data, hydrodynamic models can be applied to give a more accurate 

representation of flood inundation. 

7.1.2 Inundation models 

To predict the response of a watershed to rainfall and the resulting floodplain 

inundation, two types of models are usually used in combination: hydrological models 

and hydraulic/hydrodynamic models. Hydrological models are used to simulate the 

response of a watershed to a given pattern of rainfall intensity in order to produce a 

hydrograph of discharge against time (Bedient et al., 2013). Hydrodynamic models 

approximate fluid dynamics through solving equations based on the physics of flow 

(Teng et al., 2017). These approximations of fluid dynamics are used in hydraulic 

models, which use discharge information (along with cross-sectional geometry and 

roughness information) from hydrological models to compute water surface depths 

and spatial extent (Castro-Bolinaga & Diplas, 2014). This combination of models can 

then be used for flood forecasting, scenario analysis and hazard mapping (Teng et al., 

2017). 

Hydrodynamic and hydraulic models are usually classified based on the 

dimensions they are capable of representing: one-dimensional, two-dimensional, and 

three-dimensional (Hunter et al., 2007). Although increasing dimensionality of these 

models allows for more in-depth and detailed analysis of flood inundation, the trade-

offs are high computational costs for large floodplains and detailed data requirements 

that may not be available or are costly to obtain (Bernini & Franchini, 2013). As the 
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model complexity increases, factors of computational cost, input data collection costs 

and the requirements of the user influence the type of model that is most suitable for 

the modelling application (Hunter et al., 2007). This chapter presents an overview of 

several types of inundation models: hydrodynamic models and simplified conceptual 

models. 

7.1.2.1 One-dimensional 

One-dimensional models represent flow processes within the river channel going 

in the direction of flow, and have some functions to roughly represent the floodplain 

(Falter et al., 2013). The river and floodplain are represented as a series of cross-

sections that require information about floodplain topography, the location of the 

riverbank and the shape of the river bed. At each time step, the model solves the one-

dimensional Saint-Venant equations to estimate flow discharge and water depth 

between each cross-section (Teng et al., 2017). These models can be used in locations 

where the available information consists of floodplain topography, river bathymetry 

and land cover. 

Due to their efficiency and relative simplicity, these models are widely-used in 

tandem with hydrologic models for scenario analysis. For example, the Hydrologic 

Engineering Center’s River Analysis System (HEC-RAS) has been applied with HEC’s 

Hydrologic Modeling System (HEC-HMS) to assess the effect of changing land use on 

flood peak and inundation in places such as Malaysia, China and the United States of 

America (Alaghmand et al., 2010; Du et al., 2012; McColl & Aggett, 2007). HEC-HMS is 

a rainfall-runoff model that uses mathematical representations of infiltration, runoff, 

flow and routing to produce a flow hydrograph (Scharffenberg, 2013). The hydrograph 

from the HEC-HMS model can then be used as input to HEC-RAS to produce inundation 

maps. HEC-RAS estimates water surface profiles by calculating the water surface 

elevation and flow characteristics at each cross-section, then interpolating between 

cross-sections, and extracting final water depth by comparing it to the original digital 

elevation model (DEM) (Tayefi et al., 2007). HEC-RAS solves several equations that 

represent steady flow, unsteady flow, routing and land cover roughness to produce its 

inundation maps (Brunner, 2010a). Another one-dimensional hydraulic model is MIKE 

11 from DHI which can use three different flow descriptions: dynamic wave approach 
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that solves the full momentum equation to simulate fast flows; diffusive wave 

approach that accounts for downstream boundary conditions and backwater effects; 

and the kinematic wave approach based on balancing friction and gravity effects (DHI, 

2009). 

One-dimensional models are advantageous for study sites with relatively sparse 

data (DEM, river cross-sections, and land cover) and are more computationally 

efficient compared to two- and three-dimensional models. However, an assumption of 

these models is that flow moves in one direction which is parallel to the main channel, 

which may not always be true (Pender, 2006). Although these models can capture 

one-dimensional flow within a river channel and the resulting floodplain inundation, 

modelling inundation over more complex and wide terrain necessitates the use of a 

two-dimensional model. 

7.1.2.2 Two-dimensional 

Two-dimensional models generally use simplified shallow water equations to 

better represent flood inundation over wide floodplains by estimating water level and 

depth-average velocity in two perpendicular directions (Pender, 2006; Falter et al., 

2013). These models may use the 1D St. Venant equations for computing in-channel 

flow, but then solve the full 2D shallow water equations for estimating floodplain flow 

(K
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compared to simpler models, making them suitable for small-scale applications with 

fine DEM resolution or large-scale applications with coarse DEM resolution (Bates et 

al., 2013; Falter et al., 2013). 

Two-dimensional models have an advantage over one-dimensional models due 

to their capability to model varying flows within a channel and not just at each cross-

section. Another advantage is their more robust representation of lateral flow over a 

floodplain. However, they are more computationally intensive. In a comparison 

between the one-dimensional MIKE11 and the coupled 1D/2D MIKEFLOOD model over 

a 17km2 floodplain, the computational time for MIKE11 was 2 minutes while the 

MIKEFLOOD model at the coarsest DEM resolution took 3 hours and 43 minutes 

(Chatterjee et al., 2008). They found that the storage space required by MIKE11 was 

significantly less compared to the storage space required by MIKEFLOOD for its 

computations, with 22MB for MIKE11 and 1.1 GB for MIKEFLOOD. 

For applications that require an even more detailed representation of flow, 

particularly around structures such as bridges or dams, three-dimensional models are 

required. 

7.1.2.3 Three-dimensional 

Applications that utilise three-dimensional models require complex modelling of 

detailed flow dynamics, usually to assess the integrity of dams and other structural 

measures against flash floods or tsunamis (Teng et al., 2017). Three-dimensional 

models solve the 3D Reynolds-averaged Navier-Stokes (RANS) equations for steady 

incompressible turbulent flows to estimate water levels and velocity fields within the 

channel and on the floodplains (Lai et al., 2003; Néelz et al., 2009). This approach goes 

beyond two-dimensional modelling because it can simulate vertical flow patterns, 

which has applications in testing structural integrity and sediment transport. 

Lai et al. (2003) used three-dimensional flow simulation to assess flow in a 

hydroturbine draft tube and a fish passage facility. Work by Kheiashy et al. (2010) used 

three different 3D models for one application in a large alluvial river: ECOMSED which 

simulates both flow and sediment transport, MIKE 3 which solves continuity and 
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momentum conservation equations in three dimensions, and H3D which solves the 3D 

RANS equations. 

Three-dimensional models can represent more complex flow dynamics, but at 

the cost of computational efficiency. In large areas with sparse data, there is an 

emerging method: simplified conceptual models that represent physical processes 

through simplified hydraulic concepts (Teng et al., 2017). 

7.1.3 Simplified conceptual models 

Simplified conceptual models do not fall under the previous categories of one-

dimensional, two-dimensional, and three-dimensional hydraulic models because their 

algorithms do not solve physics-based equations such as the Saint-Venant or RANS 

equations. These are raster-based models which represent the floodplain DEM as a 

series of grid cells or topographic depressions where water can accumulate, and 

where the flood behaviour and exchange between these grid cells is governed by mass 

conservation equations (Bernini & Franchini, 2013). These are used for large-scale 

assessment of flood spatial extent and depth due to their relative computational 

efficiency and low data requirements (Pender, 2006). 

One technique in simplified conceptual modelling is the Rapid Flood Spreading 

Model (RFSM), which represents the floodplain as a system of storage reservoirs which 

are natural depressions in the ground where water accumulates, defined as impact 

zones (IZs) or accumulation zones (AZs) (Bernini & Franchini, 2013; Gouldby et al., 

2012; Lhomme et al., 2009). GIS pre-processing is achieved on a DEM of the floodplain 

to divide it into AZs, and each AZ has an associated volume and volume-level curve, 

which determines the amount of water the AZ can hold before it spills into adjacent 

AZs. The cells in-between AZs are called boundary cells, and the one with the lowest 

elevation is defined as the “communication point”, where water will spill into the 

adjacent AZ once the initial AZ has been filled up (Bernini & Franchini, 2013; Lhomme 

et al., 2009). Although not called RFSM, a similar approach was used by Krupka & 

Wallis (2007) to represent the floodplain as a series of flood storage cells, which spill 

into neighbouring cells when the water level reaches the elevation of the adjacent 

cells. Similar approaches of delineating depressions or accumulation zones to 
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represent the floodplain have also been applied in urban floodplains in China (Z. Li et 

al., 2014; Shen et al., 2016; Zhang & Pan, 2014). 

Another technique in simplified conceptual modelling is flatwater inundation, 

which represents the floodplain as a series of regular grid cells instead of topographic 

depressions, and is suitable for study sites where detailed data on floodplain 

characteristics is unavailable (Ballinger et al., 2011). This method requires a high-

resolution DEM and knowledge of locations along the river where water is likely to 

spill when the flow reaches a certain discharge rate, called “breach points”. DEM cells 

adjacent to these breach points are defined as “wet cells,” and water is iteratively 

added to these wet cells and to the surrounding cells which have a lower elevation and 

are considered “dry cells” (Chen et al., 2009). Unlike RFSM, flatwater inundation 

models do not require extensive pre-processing of the floodplain DEM because it does 

not need to divide the floodplain into accumulation zones. Pre-processing can involve 

identifying the cells with the lowest elevation, or the highest contributing area, and 

creating a sorted list of cells based on those two characteristics to increase the 

computational efficiency of the inundation model (Yang et al., 2015). 

This technique has been applied to the Lower Hutt floodplain in New Zealand, 

and is being developed for use in the Land Utilisation and Capability Indicator (LUCI) 

model as its inundation routine (Ballinger et al., 2011). The algorithm runs within the 

MATLAB R2015a. Starting with the breach points, iteratively spill water from wet cells 

to dry cells and end once all the water has spilled from all the breach points. Work by 

Chen et al. (2009) has applied a similar algorithm to the University of Memphis, 

Tennessee, using elevation data in the form of contour maps and sewer system data to 

estimate inundation using runoff from a storm-runoff model. 

Although the utility of these simplified conceptual models is clear, there are 

some criticisms of these techniques. The main drawback is that these models lack the 

representation of flow dynamics represented in hydrodynamic models, making them 

unsuitable for applications such as determining velocity within the channel (1D), in the 

lateral flow over the floodplain (2D) and against structures such as dams or bridges 

(3D) (Teng et al., 2017). For applications that require velocity, hydrodynamic models 

are a more suitable choice of inundation model. Simplified conceptual models are also 



222 | P a g e  
 

unable to represent the temporal evolution of a flood event, making them more 

suitable for applications where the final or maximum flood inundation is required, 

such as hazard zoning or extreme flood scenario analysis (Zhang & Pan, 2014). 

Another criticism of simplified conceptual models is that they are unable to 

approximate the temporal evolution of a flood, because applications have mostly been 

concerned with final inundation extent. Bernini & Franchini (2013) were able to 

approximate the temporal evolution by a gradual “spilling” of total flood volume into 

AZs instead of instantaneously filling AZs. This was done by splitting the volume into a 

large number of fractions and gave results that were in better agreement with the 

reference inundation produced by the FLO-2D model compared to instantaneous 

filling (Bernini & Franchini, 2013). 

Since mass conservation is the governing equation of simplified conceptual 

models, they do not explicitly account for the effects of gravity and friction. Surface 

friction causes a time lag before reaching maximum inundation depth, which may 

allow flood water to infiltrate into the ground or be carried away by sewer systems (J. 

Chen et al., 2009). Lhomme et al. (2009) represents the effect of friction on inundation 

using the Manning coefficient of friction to raise the threshold before water spreads, 

because friction can affect flood wave movement. Future developments of the LUCI 

FIM can include coefficients to account for the effect of friction and infiltration under 

several types of land cover, as the infiltration capacity of of different land covers could 

affect the flood wave differently. 

The criticisms of simplified conceptual models can be addressed by extending 

the existing algorithm to approximate temporal evolution based on dividing spill 

volumes, and accounting for friction based on coefficients of friction. Algorithms can 

also account for the effect of storm drains, where in the study by Chen et al. (2009), 

water was removed from the floodplain based on a function that includes the 

permanent conveyable flow rate of the sewer system (cumecs hr-1), the time (s), and 

the drainage area of the study site (ha). 

The first iteration of the LUCI FIM ran mainly in the MATLAB environment and 

calls several ArcMap functions. Conversion to Python allows the code to be more 
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widely-utilised by potential users that do not have access to MATLAB. By using Python 

instead of MATLAB, the FIM can then be integrated into the existing LUCI toolbox so 

that users perform their own scenario analysis for creating hazard maps. This chapter 

builds on the work by Ballinger et al. (2011) in Lower Hutt, New Zealand, and 

contributes to the growing body of research surrounding more simplified inundation 

models. 

7.2 The LUCI Floodplain Inundation Model 
This inundation model was originally developed for a study investigating flooding 

in the Lower Hutt floodplain in New Zealand and is being developed for inclusion in the 

Land Utilisation and Capability Indicator (LUCI) framework. The LUCI FIM is a raster-

based algorithm that requires elevation data, and flood runoff or sea level rise data 

(Ballinger et al., 2011).  

At the base level, the LUCI FIM requires the following datasets: a digital elevation 

model (DEM) of the floodplain, a polygon shapefile of the river, and a polyline 

shapefile of the breaches. The shapefile of the breaches must contain the following 

information for each of the breaches: 

• ID (unique for each breach); 

• Overtop volumes (in cumecs); 

• Reachcode (for breaches that are associated with each other, such as those on 

opposite sides of the river); and 

• Length of breach (in metres). 
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Figure 103. Screenshot of the breach shapefile and attribute table for Lower Hutt floodplain inundation. 

The shapefile for the breaches is important in order to estimate the volume of 

water that will be spilled from a reach. Each breach should have an associated Id, 

Reach Code, and overtopping volume. The overtopping volume is the flow volume 

where the water is expected to go over the breach and spill into the floodplain. This 

information can be taken from previous observations of the breach during flooding or 

from the technical specifications of constructed stopbanks. The preprocessing to 

calculate the volume spilled is as follows: 

First, multipliers were calculated for each breach. Since some breaches are 

associated with each other (e.g. on opposite river banks), these multipliers are used to 

predict the proportion of flood volume expected to spill from that breach. For breach 

with Id A associated with Reach Code B: 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑟𝑒𝑎𝑐ℎ 𝐼𝑑 𝐴

(𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 𝐶𝑜𝑑𝑒 𝐵)
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Next, the potential volume that will be spilled was calculated on a per-scenario 

basis. For the initial testing of the LUCI FIM in the Lower Hutt floodplain, 17 scenarios 

of different flood volumes were defined ranging from 1500 cumecs to 3200 cumecs. 

For each of the flood scenarios (Flood): 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑡𝑜 𝑠𝑝𝑖𝑙𝑙 = (𝐹𝑙𝑜𝑜𝑑 − 𝑜𝑣𝑒𝑟𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒) × 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 60 × 60 

From a flow volume in cubic metres per second, the volume of spill is converted 

into cubic metres depending on the appropriate flow from the hydrograph or design 

flood. If the resulting volume is negative, the volume to spill is set to zero. In addition 

to the input data, there are several boundary conditions and parameters that can be 

set in the LUCI FIM (Table 50). The programme is capable of batch-running over 

several different scenarios (Scenario). The flood defences (Flooddef) can be either the 

flood defences as of 2011 or the flood defences after the proposed upgrades (Ballinger 

et al., 2011). 

Table 50. LUCI FIM inputs, boundary conditions, and parameters. 

Input Definition Default value 

inputDir Pathway to where the files are located  

DEM Filename of the digital elevation model  

River Filename of the shapefile of the river  

Breach Filename of the shapefile of the breach points  

Inundation_opt Inundation scenarios from TopNet (1) or 
reference (2) 

2 

Scenario Pulls the flood volumes from the inundation 
scenarios 

From 1 to 17 

Seaheight Height of the sea 0 

Flooddef Whether the flood defences are not upgraded 
(1) or upgraded (2) 

1 

Breach_link_opt Whether to allow water exchange across river 0 

Sea_tolerance Tolerance to water building on boundary 
between the river and the sea 

0.01 

Parameters Definition Default value 

output_type ESRI grid (1) or ASCII file (2) 1 

incrmRate Amount of water depth added to each of the 
wet cells on each iteration (m) 

0.005 

 

7.2.1 Simplified Description of the LUCI FIM (MATLAB) 

In the first version of the LUCI FIM, the code was primarily used in MATLAB 

R2015a with ArcPy functions to import and export the results. Starting from each 
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breach, water is iteratively “spilled” into the cells adjacent to the breaches and cells 

that are already “wet”. The programme finishes “spilling” once the maximum volume 

that can be spilled is reached, or the inundated area reaches the sea. 

A simplified flowchart of the LUCI FIM is shown in Figure 104. The final water 

depths are estimated by the difference between the final water surface elevations and 

the elevation of the original DEM and exported by default as ESRI grid files. 

 

Figure 104. Simplified flowchart of the LUCI FIM. 

7.2.2 Detailed Description of the LUCI FIM (MATLAB) 

The input files of DEM, river shapefile and breaches shapefile are converted to 

ASCII format, with the spatial reference being that of the DEM. These ASCII files are 

then imported into MATLAB as an array of values, with all three arrays having the 

same number of rows and columns as the DEM.  

The DEM data is copied into another variable (DDEM). Within DDEM, any cells 

where the river is located are assigned a high value (9999) to prevent spillage into the 

river. The FIM keeps track of the indices of cells that are considered “wet” and their 

corresponding elevation. The breach cells are classified as “wet” and are where the 

water begins to spread. 

The FIM begins spilling from one breach at a time, if the breach is considered 

“active” because it has been overtopped by the flood water. The FIM keeps track of 
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the maximum amount of water that can be spilled by that breach, and how much 

water has already been spilled by that breach. 

During each iteration, the volume of water already spilled on the floodplain is 

checked against the maximum amount of water expected to spill from that breach. If 

the floodwater has not yet reached the sea, the programme also checks that the 

volume of water expected to spill in the next iteration will not be above the maximum 

amount expected to spill. If more water can be spilled, an increment rate (default: 

5mm) of water is added to each of the “wet” cells. The algorithm then looks for the 

cells adjacent to the “wet” cells and spills water into the cells that have a lower 

elevation. If the volume of water to be spilled in the next iteration will cause 

exceedance of the maximum volume of water, the algorithm moves into the final 

increment. The amount of water added to each “wet” cell is the difference between 

the maximum and spilled volume of water divided by the number of wet cells. 

After the last increment for that breach is complete, the DEM including water 

depths (the “wet DEM”) is updated and the algorithm moves on to spilling from the 

next active breach. Once the spilling is complete for all the active breaches, the final 

water depths are calculated by getting the difference between the final “wet DEM” 

and the original DEM. The resulting matrix is rewritten as an ASCII file and then 

exported as an ESRI grid file to allow for visualisation in ArcMap. 

7.2.3 Differences between the MATLAB version (FIM MATLAB) and Python version 

(FIM Python) of the LUCI FIM 

The main difference between FIM MATLAB and FIM Python is that the latter can 

run as a Python script within the ArcGIS environment. The FIM MATLAB code ran 

mainly within the MATLAB programme but also used ArcGIS commands to import and 

export the results. This is useful because FIM MATLAB required the user to have access 

to both MATLAB and ArcGIS, but since FIM Python runs solely within the ArcGIS 

environment, ArcGIS would be the only software required. Additionally, the LUCI 

framework runs as a toolbox solely within the ArcGIS environment, so FIM Python can 

be fully integrated into the LUCI framework and distributed to its users that already 

use ArcGIS. Future work on the FIM Python will include a user interface within ArcMap 

that will allow users to enter their own input and flood scenarios. This makes the LUCI 
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FIM more accessible to users who are familiar with ArcMap but not necessarily with 

MATLAB or Python coding script. Since the LUCI FIM was originally applied to Lower 

Hutt (New Zealand), the novelty of this work through updating and converting it from 

MATLAB to Python allows it to be tested and applied in new study areas. Although the 

scope of this thesis is mainly the CDO catchment in the Philippines, the LUCI FIM has 

not been fully parameterised for the CDO floodplain and comparing it to the already 

established HEC-RAS model is a key component of future work (Chapter 8). 

7.3 Application: Lower Hutt, New Zealand 
As stated previously, the FIM MATLAB was developed and applied to the Lower 

Hutt floodplain in New Zealand. The purpose of applying the FIM Python to the same 

floodplain is to validate it against the original FIM MATLAB results. The Hutt River 

catchment (~655km2) is located at the southern part of the North Island of New 

Zealand (Figure 105) with the main Hutt River running for 54km through the mainly 

forested headwaters and through the heavily urbanised valley and floodplain (GWRC, 

2001). With its long history of destructive flood events and the potential of climate 

change to exacerbate these floods, local government has made it a priority to use 

structural measures such as stopbanks to protect communities and infrastructure 

(GWRC, 2001; Lawrence et al., 2013). Previous inundation work in Lower Hutt has 

contributed to the development of the Lower Hutt Floodplain Management plan that 

produced flood extent maps to guide decision-making, and to the development of the 

LUCI flatwater inundation method detailed in the previous sections (Ballinger et al., 

2011; GWRC, 2001). 
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Figure 105. Map of the Hutt catchment (red) showing its location within New Zealand and the extent of 
the LiDAR-derived DEM on the floodplain (green) (Catchment shapefiles taken from the GWRC Open 

Data Portal: http://data-gwrc.opendata.arcgis.com/). 

The DEM (5m resolution) was derived from LiDAR information and covers the 

mainly urbanised area of the Lower Hutt floodplain (Figure 106). Although an updated 

LiDAR-derived DEM is available for the entire Greater Wellington Region, this study 

was limited to the floodplain to replicate the geographical extent used by Ballinger et 

al. (2011). Modelling the urbanised area of the Lower Hutt floodplain is important to 

disaster risk management because of the river’s proximity to populated areas and the 

estimated cost of NZD 1 billion in damages from an extreme flood event (GWRC, 

2001). The breach points were compiled by Ballinger et al. (2011) using information 

about the sections of the Hutt River vulnerable to overtopping, and the scenarios 

tested ranged from a flood event of 1,500 m3 sec-1 to 3,200 m3 sec-1 (cumecs) of water. 

Risk modelling has indicated that a flood event exceeding 2,300 cumecs would lead to 

a significant increase in physical and financial damage compared to a 2,100 cumecs 

flood event (Lawrence et al., 2011). 

 

http://data-gwrc.opendata.arcgis.com/
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Figure 106. Extent of LiDAR-derived DEM (black) over the Lower Hutt floodplain and modelling extent. 

This section briefly presents results of flood inundation modelling from the LUCI 

FIM MATLAB and Python versions. Seven scenarios were compared between the 

MATLAB and Python code. For scenarios 1 to 7 (Table 51), the programme ran 

successfully and produced similar inundation results. However, the Python code ran 

slower compared to the MATLAB code. At larger flows (>2,100 cumecs), the first draft 

of the Python code experienced much longer computation times compared to the 

MATLAB code and requires more improvements to the computational efficiency. The 

scope of this thesis is to update the existing LUCI FIM code from 2010 to be run within 

MATLAB, and future work will include improving the new Python version to run more 

efficiently for larger flood volumes. 
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Table 51. Inundation depths for different scenarios using the LUCI FIM in MATLAB and Python. 

Scenario 
# 

Peak flow 
(cumecs or m3 
sec-1) 

Inundation depth from 
FIM MATLAB (m) 

Inundation depth from 
Python (m) 

Min Mean Max Min Mean Max 

1 1,500 0.001 0.444 0.862 0.020 0.468 0.891 

2 1,600 0.001 0.444 0.862 0.020 0.468 0.891 

3 1,700 0.023 0.485 1.367 0.023 0.485 1.367 

4 1,800 0.015 0.389 1.974 0.015 0.572 1.974 

5 1,900 0.003 0.566 2.143 0.002 0.579 2.043 

6 2,000 0.001 0.275 2.143 0.002 0.281 2.043 

7 2,100 0.001 0.477 2.143 0.001 0.477 2.143 

8 2,200 0.001 0.640 3.233    

9 2,300 0.001 0.872 3.233    

10 2,400 0.002 0.546 3.233    

11 2,500 0.001 0.563 3.233    

12 2,600 0.005 0.579 3.233    

13 2,800 0.005 0.579 3.233    

14 2,900 0.005 0.579 3.233    

15 3,000 0.005 0.579 3.233    

16 3,100 0.005 0.579 3.233    

17 3,200 0.005 0.579 3.233    

 

For Scenario 1 at 1,500 cumecs, flooding occurred near Melling where the 

overtopping volume of that breach is 1,200 cumecs (Figure 107). This section of the 

Hutt River was proposed for upgrades in flood protection against a peak flow of 2,800 

cumecs (Ballinger et al., 2011). Scenario 2 (1,600 cumecs) shows the same amount of 

flooding to Scenario 1 where only the area near the Melling Link experiences any 

breaching (Figure 108). Comparing the inundation extent, the results produced by FIM 

MATLAB and FIM Python are almost the same. Flooding occurs in the same area for 

both versions of the FIM code, with an extra cell of flooding in the FIM Python code 

(Figure 107). In terms of differences in flooding depths, the FIM MATLAB predicted a 

lower minimum flood depth (0.001m) compared to the FIM Python depth of 0.020m. 

The mean flood depth and maximum depths were similar between FIM MATLAB 

(0.444 mean and 0.862 max) and FIM Python (0.468 mean and 0.891 max).  
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Figure 107. Comparison of the Scenario 1 (1,500 cumecs) showing flooding near Melling Road. 

 

 

Figure 108. Comparison of the Scenario 2 (1,600 cumecs) showing flooding near Melling Road similar to 
Scenario 1. 
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In Scenario 3 (1,700 cumecs), the inundation results from FIM MATLAB and FIM 

Python are the same, showing flooding near Melling and near the mouth of the Hutt 

River (Figure 109). This area at the mouth of the river has an overtopping volume of 

1,600 cumecs, hence inundation occurring at 1,700 cumecs. In terms of inundation 

extent, the areas predicted by FIM MATLAB and FIM Python to be flooded are similar. 

The minimum, mean, and maximum flood depths are also the same between the two 

codes: 0.023m (min), 0.485m (mean), and 1.367m (max) (Table 51). 

 

 

Figure 109. Comparison of the Scenario 3 (1,700 cumecs) showing flooding near Melling Road similar 
and at the mouth of the Hutt River. 

 

In Scenario 4, the areas inundated are similar to Scenario 3, but with more 

flooding occurring at the mouth of the Hutt River (Figure 110). On closer inspection, 

there is little difference in the area around the mouth of the Hutt River; the inundation 

extent predicted by FIM MATLAB and FIM Python is the same (Figure 111). In terms of 

flooding depths, the minimum and maximum values predicted by both codes is the 

same: 0.015m (min) and 1.974 (max). However, the estimated mean flooding depth is 

higher in the FIM Python code (0.572m) compared to the FIM MATLAB code (0.389m). 
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Figure 110. Comparison of the Scenario 4 (1,800 cumecs) showing flooding near Melling Road similar 
and at the mouth of the Hutt River. 

 

 

Figure 111. A zoom in on the mouth of the Hutt River where flooding occurs in Scenario 4. 
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Scenario 5 (1,900 cumecs) shows inundation similar to Scenario 3 and 4, but with 

a larger inundation extent at the mouth of the Hutt River (Figure 113). The FIM 

MATLAB and FIM Python produced comparable results for inundation extent but 

differences in depths (Table 51). 

 

Figure 112. Comparison of the Scenario 5 (1,900 cumecs) showing flooding near Melling Road similar 
and at the mouth of the Hutt River. 

 

Figure 113. A zoom in on the mouth of the Hutt River where flooding occurs in Scenario 5. 
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Scenario 6 shows greater inundation predicted at the river mouth than previous 

scenarios, including a section of Marine Parade as flooded (Figure 114). Overall, the 

inundation extent is similar between MATLAB FIM and MATLAB Python. When 

zooming in to the inundated area of the river mouth (Marine Parade), the two codes 

are predicting the same inundation extent. In terms of flooding depths, the minimum, 

mean, and maximum flooding depths differ between codes. The FIM MATLAB 

predicted a lower minimum and mean flooding depth (0.001m and 0.275m) compared 

to the FIM Python (0.002m and 0.281m). Conversely, the FIM MATLAB predicted a 

higher maximum flooding depth (2.143m) compared to the FIM Python (2.043m). 

 

 

Figure 114. Comparison of the Scenario 6 (2,000 cumecs) showing flooding near Melling Road similar 
and at the mouth of the Hutt River. 
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Figure 115. A zoom in on the mouth of the Hutt River and Marine Parade where flooding occurs in 
Scenario 6. 

 

For Scenario 7 (2,100 cumecs), the inundation extent was the same for FIM 

MATLAB and FIM Python but the depth of the inundated area halfway up the river 

(Woburn) is different between the two codes (Figure 116 and Figure 117). In FIM 

MATLAB, the inundation depth of that small area ranged from 0.07m to over 1m, 

while FIM Python had an average depth of 0.03m. In terms of flooding depth statistics, 

the minimum, mean and maximum values are the same between the FIM MATLAB and 

the FIM Python for Scenario 7. This difference in spatial distribution of flood volume is 

an indication of further testing needing to be done on the FIM Python. 
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Figure 116. Comparison of the Scenario 7 (2,100 cumecs) showing additional inundation at Woburn. 

 

 

Figure 117. A zoom in on the area of Woburn where flooding occurs in Scenario 7. 
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Table 52. Summary of the absolute and relative differences between the FIM MATLAB and FIM Python 
results for flooding depth. 

Scenario # Peak flow 
(cumecs) 

Absolute difference (m) Relative difference (%) 

Min Mean Max Min Mean Max 

1 1,500 -0.019 -0.024 -0.029 -1,900.000 -5.405 -3.364 

2 1,600 -0.019 -0.024 -0.029 -1,900.000 -5.405 -3.364 

3 1,700 0.000 0.000 0.000 0.000 0.000 0.000 

4 1,800 0.000 -0.183 0.000 0.000 -47.044 0.000 

5 1,900 0.001 -0.013 0.100 33.333 -2.297 4.666 

6 2,000 -0.001 -0.006 0.100 -100.000 -2.182 4.666 

7 2,100 0.000 0.000 0.000 0.000 0.000 0.000 

Mean differences -0.005 -0.036 0.020 -552.381 -8.905 0.372 

 

When comparing the FIM MATLAB and the FIM Python, the inundated area 

produced by both versions of the LUCI FIM is the same. However, in terms of flood 

depth statistics, the FIM Python produced slightly different values compared to FIM 

MATLAB (Table 52). On average, the minimum flood depth predicted by FIM Python 

was 0.005m higher compared to FIM MATLAB. The larger differences are in the mean 

and maximum flood depths. FIM Python predicted mean flood depths higher by 

0.036m and maximum flood depths lower by 0.020m compared to FIM MATLAB. 

Overall, the differences in flood depth statistics are only slight numerical differences 

that may be due to how the two programmes handle mathematical arrays. 

Given that future LUCI FIM development includes coefficients to estimate 

roughness and infiltration, reconciling the values between FIM MATLAB and FIM 

Python is less important than improving the efficiency of the code since the estimates 

of flooding depth may change due to these physical representations of land cover. In 

terms of real-world consequences, at relatively low flows where the areas inundated 

are mostly riverbanks and low-lying non-urbanised areas, these differences in 

predicted flood depth may not be very significant for management. However, when 

protecting infrastructure and communities, it is important for management to what 

level of flood protection is the difference between virtually no flooding or even 

shallow flood occurring in urbanised and residential areas.  

For larger flows, the computational time required for FIM Python was longer 

compared to the time required for FIM MATLAB. With larger arrays of wet cells, the 
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Python code takes longer to run because it iterates through all the wet cells and 

checks the adjacent cells to determine whether water spills into these cells. For large 

arrays, this process leads to longer computation times and thus the comparisons 

between the FIM MATLAB and FIM Python could not be done for the larger flow 

volumes. Future work on the LUCI FIM will be to use more efficient methods of 

processing large arrays and comparing the computation requirements of array to loop 

processing. 

At 2,200 and 2,300 cumecs, flood inundation extends to large areas by the river 

(Figure 118). Beyond 2,400 cumecs, the flood flows into the highly urbanised area of 

Lower Hutt and causes damage to communities and infrastructure (Figure 119). As the 

flow peak moves higher than 2,400 cumecs, the area inundated remains largely the 

same and even the estimated flood depths flatten out at 2,600 cumecs (Table 51). 

Based on the modelling results, the stopbanks and structural flood protection 

measures are sufficient for up to a peak flow of 2,300 cumecs (1 in 440 year flood). 

Beyond this flood peak, there is considerable risk to the Lower Hutt floodplain. To 

compound this problem, climate change could lead to an increased risk of inundation 

due to changes in flood frequency and extreme events (Lawrence et al., 2011). These 

future risks to the Lower Hutt floodplain are important to consider, especially for 

management to protect communities and infrastructure, and shows the utility of using 

floodplain inundation models. 
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Figure 118. At Scenario 8 (2,200 cumecs) and Scenario 9 (2,300 cumecs), additional flooding occurs at 
Ava and Moera. 

 

Figure 119. Beyond 2,300 cumecs, flooding occurs in the urbanised area of the Lower Hutt floodplain. 
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7.4 Summary, conclusion, and future work 
The purpose of creating the LUCI FIM was to create a programme capable of 

estimating floodplain inundation with relatively low data requirements. Instead of 

detailed hydraulic information about stopbanks and structures, the LUCI FIM requires 

a digital elevation model (DEM) of high resolution (~5m), a polygon shapefile of the 

river, and a polyline shapefile of the breach points. These breach points are the banks 

of the river where the water is known to overtop if the peak flow goes above a certain 

volume. The original LUCI FIM was created in 2010 and the purpose of this work was 

to update the LUCI FIM for compatibility with later versions of MATLAB and ArcMap, 

and to test the code with the Hutt River as a case study. Going further, the LUCI FIM 

was recoded to work in the Python script. The purpose of converting it to Python is for 

implementation solely within ArcMap 10.4.1 and integrate it as part of the LUCI 

framework. Between the FIM MATLAB and FIM Python, the inundation extents and 

flooding depths were similar for most of the compared scenarios. For the scenarios 

where flood depths differed, more testing and improvements to efficiency will be 

carried out. At larger flood volumes, the computational time for the FIM Python was 

longer compared to the FIM MATLAB. This computational inefficiency can be improved 

through future work regarding more efficient handling of larger arrays. This work with 

the LUCI FIM links into the broader scope of this thesis by continuing the development 

of LUCI in the following ways: 

• Updated the FIM MATLAB code to be compatible with ArcMap 10.4.1: The 

FIM MATLAB was parameterised for the CDO floodplain and tested against 

HEC-RAS, the inundation programme currently used for disaster risk 

management in CDO 

• Converted the MATLAB code to Python: Although more improvements to 

efficiency are required, the initial results of the new Python version are 

promising and future implementation of the LUCI FIM into the LUCI framework 

will expand LUCI’s utility for testing the effects of changing land cover and 

rainfall events. 

Beyond the scope of this thesis, the relative simplicity of the LUCI FIM will allow 

implementation in other places that have high-resolution DEMs and information about 
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the breach points along a river. In addition to improvements in efficiency, future work 

on the LUCI FIM could include accounting how different land cover (e.g. vegetation 

versus concrete) and urban storm drainage networks can affect flood extent.
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8 Extreme events modelling in the Cagayan de Oro catchment 

8.1 Introduction 
The vulnerability of the Philippines to extreme events and their devastating 

effects on communities and infrastructure has driven more research regarding real-

time forecasting, and predictions of runoff and flow under different land cover 

scenarios and rainfall events. Simulation models have two main aims: exploring the 

implications of the assumptions around how a real-world system is represented in 

models, and to predict the behaviour of that system under naturally-occurring 

circumstances (Beven, 1989). This chapter focuses on testing the LUCI model against 

the HEC-HMS through simulating the catchment hydrology of Cagayan de Oro (CDO) 

under the baseline land cover scenario during Typhoon Bopha. The specific objectives 

of this chapter are: 

• Use HEC-HMS and LUCI to model the flood hydrograph of the CDO catchment 

under the baseline land cover scenario with Typhoon Bopha rainfall; and 

• Use the resulting flood hydrographs from LUCI and HEC-HMS as input to HEC-

RAS to map floodplain inundation 

Both HEC models are well-used and established for watershed and inundation 

modelling applications, while LUCI is a more recent ecosystem services model with 

strong but novel and less-tested rainfall-runoff capabilities. The LUCI model is highly 

spatially resolved, working at the sub-field scale (Jackson et al., 2013). The LUCI model 

can perform event-based rainfall-runoff modelling, and this application allowed that 

aspect of LUCI to be tested against HEC-HMS. An emerging development within LUCI is 

the flatwater inundation model (Chapter 7) and the testing of the LUCI FIM against 

HEC-RAS is a key component of future work. This comparison of LUCI and the HEC 

models allows for further development of the LUCI framework, especially for the 

inundation model which will be implemented into the ArcMap model of LUCI in future 

work. By understanding LUCI’s performance against more established models, the 

framework can be further developed to account for more complex components of 

rainfall-runoff modelling and inundation mapping. An important part of model 

development is to find a balance between accurately representing real-world 
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processes and making it simple/computationally efficient to run on standard 

computing resources (Carlaw, 2000). 

The HEC-HMS and HEC-RAS models were briefly described in the introduction 

(Chapter 1) and the inundation chapter (Chapter 7). The HEC-HMS model simulates 

the precipitation-runoff processes of a catchment through representing the 

infiltration, runoff, flow and routing with mathematical models that the user can select 

based on their data and catchment characteristics (Scharffenberg, 2013). This high 

level of flexibility allows for the use of HEC-HMS in many applications with differing 

levels of data and information of the catchment’s physical characteristics (McColl & 

Aggett, 2007). The limitations of HEC-HMS arise from the simplified formulation of the 

models and simplified representation of flow, as all the mathematical models are 

deterministic in order to keep the programme’s computation time relatively expedient 

(Scharffenberg, 2013). HEC-RAS is a one-dimensional inundation model used to 

simulate steady flow, unsteady flow, sediment transport, and water temperature 

(Brunner, 2010a). The HEC-RAS model was also used by Project NOAH for its floodplain 

modelling, but has been replaced by the FLO-2D and ISIS-2D models for inundation 

(Lagmay et al., 2017). It is a one-dimensional model that mainly simulates in-stream 

channel flow and can approximate floodplain inundation through roughness 

coefficients (Paringit et al., 2015). FLO-2D and ISIS-2D are used for one-dimensional 

channel flow simulation and two-dimensional floodplain inundation simulation 

(Lagmay et al., 2017). Two-dimensional models are more complex and can represent 

physical processes in a more robust manner compared to one-dimensional models, 

and more information about these differences in found in the inundation review 

(Chapter 7). Since HEC-HMS does watershed modelling and HEC-HMS does floodplain 

inundation modelling, these two are commonly paired for rainfall-runoff and 

inundation applications. 

In order to simulate the response of the catchment to extreme events, two 

things are required at the minimum: a loss function and a routing function (Beven, 

1989). The DREAM (2015) parameterisation of HEC-HMS for the CDO catchment uses 

the Soil Conservation Service Curve Number method to simulate loss and Muskingum-

Cunge method for routing (UP TCAGP, 2015). The LUCI model uses a form of soil 
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moisture accounting (soil as a bucket) to account for water going in/out of the system 

with spatially-explicit routing between hydrological response units (HRUs) at the sub-

field scale (Jackson et al., 2013). 

The Soil Conservation Service Curve Number method (SCS CN) is one of the ways 

that HEC-HMS can simulate infiltration loss, whether at the sub-watershed level or 

through a gridded approach (Scharffenberg, 2013). The SCS CN method converts 

precipitation into runoff based on the influence of soils, vegetation, impervious areas, 

interception, and storage (USDA NRSC, 1986). The SCS CN method is mainly used for 

simulating the associated runoff of storm events, such as the framework of Project 

NOAH for real-time flood forecasting (Kannan et al., 2008; Paringit et al., 2015). The 

SCS CN method has also been previously used to perform scenario analysis of the 

effect of changing land cover on runoff (Du et al., 2012; McColl & Aggett, 2007). 

However, this method has several limitations: it does not account for rainfall intensity 

or duration because it does not contain an expression for time, and applies only to 

direct surface runoff without considering subsurface flow or ground water 

contributions (USDA NRSC, 1986).  

The Soil Moisture Accounting method (SMA) represents soil as a storage unit (or 

several units) and tracks the amount of water that flows in (e.g. precipitation) and out 

(e.g. evapotranspiration) of that unit (Alley, 1984). SMA is also available in HEC-HMS as 

a method for simulating loss/water movement by representing the soil as several 

layers through which water can move or be stored (Scharffenberg, 2013). Other 

methods of estimating the soil’s water balance are the use of empirical models that 

are heavily-reliant on field observations and through hydrodynamic models that 

require detailed soil hydraulic information and plant properties (Ma et al., 2013). Soil 

moisture accounting is a lumped conceptual model based on the mass balance of soil 

water, making it relatively simple compared to mathematically-based complex models 

that solve Richard’s equation for soil moisture dynamics at a point scale (Ma et al., 

2013; Nunzio Romano, 2014). However, this simplicity does not account for more 

complex soil dynamics such as the vertical movement of water through the soil matrix, 

which affects the plant available water and would help in irrigation scheduling (Laio et 

al., 2001; Ma et al., 2013). 
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HEC-RAS is a one-dimensional inundation model that estimates channel flow and 

inundation, while the LUCI FIM is a conceptual model that uses flatwater inundation to 

estimate flood extent. More detail about these two types of models, their strengths 

and weaknesses, and differences can be found in the inundation review (Chapter 7). 

8.2 Methodology 
Figure 120 summarises the methodology specific to this chapter. The three 

different land cover scenarios are the baseline, development, and rehabilitation 

scenarios that were detailed in Chapter 2. To parameterise the HEC-HMS model for 

the scenarios, the curve numbers of the sub-watersheds were calculated and changed 

under different scenarios, similar to work by McColl & Aggett (2007). The HEC-HMS 

and HEC-RAS models were parameterised and calibrated by the Project NOAH team 

(Disaster Risk and Exposure Assessment for Mitigation Program, 2015). 

 

Figure 120. Overview of the methodology of this chapter, items emphasised are presented in this thesis. 

The main rainfall scenario considered for this thesis is Typhoon Bopha (local 

name: Pablo) which hit CDO in 2012 causing the city to be declared under a state of 

calamity and affected over 50,000 people (NDRRMC, 2012b). Over December 4 and 5 

2012, Typhoon Bopha brought 139.5mm of rainfall to Cagayan de Oro City, 

corresponding to a 1 in 14-year rainfall event (JICA, 2014). The other extreme events 

that are potential scenarios for future research are Jangmi (Seniang) in 2014 and 

Tembin (Vinta) in 2017. In 2014, Jangmi caused 66 casualties in all affected regions 

and, within CDO city, over 2,000 families were affected by evacuation operations 

(NDRRMC, 2014a). Over 51 hours, the total rainfall recorded for all affected regions 

was ~500 mm (Wiltgen, 2014). In 2017, the warnings associated with Tembin 

prompted the evacuation of communities living along the CDO river (NDRRMC, 2017). 

All of these typhoons had devastating effects that reached further than the CDO 

catchment and the city. 
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The rainfall data for Bopha was verified by DREAM (2015) while the rainfall data 

for Jangmi and Tembin required infilling to account for gauges that had gone down 

during these events. Infilling missing values from nearby gauges is achieved through 

several methods: station-average, normal-ratio, inverse-distance weighting, 

regression, and isohyetal methods (Dingman, 2008; Maxwell, 2013). The normal-ratio 

estimates missing values at the target gauge through the ratio of annual precipitation 

of the target gauge to the donor gauges as follows (Dingman, 2008): 

�̂�0 =  
1

𝐺
× ∑

𝑃0

𝑃𝑔
× 𝑝𝑔

𝐺

𝑔=1

 

Where: 

�̂�0 Missing precipitation value at target gauge for a point in time (t) 

G Nearby “donor” gauges 

𝑃0 Annual average precipitation at target gauge 

𝑃𝑔 Annual average precipitation at donor gauge 

𝑝𝑔 Observed precipitation value at donor gauge for a point in time (t) 

 

This infilling was done with the different rainfall gauges within and around the 

CDO catchment (Figure 121). Infilling was required to create a continuous set of 

rainfall data over the time of the different rainfall events, and to create a gridded 

raster layer for use within LUCI. Although the rainfall for Jangmi and Tembin was not 

modelled in this research, the infilled rainfall datasets can be used for additional 

modelling runs to compare LUCI to the HEC models in the future. 
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Figure 121. Map of gauges within and around the CDO catchment, and their activity during the three 
extreme events. 

8.2.1 Watershed modelling in HEC-HMS 

Within the HEC-HMS model, there are different mathematical model options for 

representing catchment characteristics, infiltration losses, transformation of 

precipitation to runoff, baseflow contribution, routing, and water diversion 

(Scharffenberg, 2013). For the DREAM (2015) programme parameterisation of HEC-

HMS the SCS Curve Number method is used to simulate infiltration losses. Each sub-

basin is assigned one composite number to represent its different combinations of soil 

and land cover (Scharffenberg, 2013). 

The curve numbers of the different scenarios were assigned based on land use 

type and hydrologic soil group (HSG). The HSG of a soil is determined by its minimum 

infiltration rate, which will influence its response to different rainfall intensities (USDA 
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NRSC, 1986).  Lower curve numbers are associated with forests and vegetation while 

higher curve numbers are associated with agricultural and built-up areas. 

Table 53. Curve number lookup table used in assigning curve numbers (Paringit et al., 2015). 

Land Use Code Land Use Description 

Hydrologic Soil Group 

A B C D 

1 Closed Canopy 17 40 59 68 

2 Open Canopy Forest 50 68 80 84 

3 Mangrove 98 98 98 98 

4 Tree Plantation and Perennial 30 53 68 77 

5 Brushland 17 33 52 63 

6 Grassland 17 44 60 70 

7 Cultivated Area 55 70 80 85 

8 Built-up 85 90 93 94 

9 Marshland 61 74 84 88 

10 Fishpond 99 99 99 99 

11 Inland Water 99 99 99 99 

13 Open Areas 63 77 85 88 

 

The baseline land cover was previously parameterised in HEC-HMS by DREAM 

(2015) and is currently used for real-time flood forecasting in CDO (Paringit et al., 

2015). To parameterise the development and rehabilitation scenarios for future 

modelling work, their land use types were correlated with the land use descriptions 

used by DREAM (2015) and Paringit et al. (2015) for curve number assignment. Under 

the development and rehabilitation scenarios, each of the zones has distinct types of 

land management specified in the development plans such as contour farming, Sloping 

Agricultural Land Technology (SALT), or agroforestry. These land management 

practices were parameterised in the RUSLE application to CDO (Chapter 5) but are not 

specifically present in Table 53. Therefore, the areas in the rehabilitation scenario of 

conservation farming and recommend conservation farming are parameterised as tree 

plantation and perennial instead of agricultural areas in HEC-HMS. The original SCS 

Curve Number method accounts for distinct types of land management and 

hydrological conditions, but since this chapter focuses on testing the existing HEC-HMS 

parameterisation against LUCI, the DREAM (2015) curve number table was used in the 

extreme events modelling. 
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Table 54. Correlation table between the different scenarios and the USGS land cover classifications. 

Original land cover classification USGS land cover classification 

Baseline 

Other wooded land, shrubs 
Brushland 

Other wooded land, wooded grassland 

Other land, natural, grassland Grassland 

Other land, cultivated, annual crop 
Cultivated area 

Pineapple plantation 

Other land, cultivated, perennial 
Tree Plantation and Perennial 

Forest plantation, broadleaved 

Other land, built-up area Built-up 

Closed forest, broadleaved Closed canopy 

Open forest, broadleaved Open canopy forest 

Inland water Inland water 

Development 

Agricultural Sub-zone 
Cultivated Area 

Agricultural zone1 

Agricultural zone2 

Tree Plantation and Perennial 

Agricultural zone3 

Agroforestry Sub-zone 

Private Agroforestry Sub-zone 

Timber Production Sub-zone 

Timber Regeneration Sub-zone 

Forest Restoration Sub-zone Open Canopy Forest 

National Park 

Closed Canopy 
Natural Park 

Private Forest Sub-zone 

Strict Protection Zone 

Rehabilitation 

Agroforestry 
Tree Plantation and Perennial 

Recommend Agroforestry 

Assisted Natural Regeneration Open Canopy Forest 

City Built-up 

Practice Conservation Farming 
Tree Plantation and Perennial 

Recommend Conservation Farming 

Protection 

Closed Canopy Recommend Reforestation 

Reforestation 

 

The land use and soil shapefiles were then combined using the Union (Analysis) 

tool in ArcMap 10.4.1 to produce polygons that have information about both the land 

use and the soil hydrologic properties. Each of these polygons were compared with 
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the lookup table that assigned curve numbers based on land use and soil hydrologic 

group (Table 53). After each polygon was assigned a curve number, the next step was 

to assign weighted curve numbers to each sub-catchment within CDO. Using the sub-

catchment file supplied by DREAM (2015), the Split (Analysis) function was used to 

separate the soil and land use polygons into the sub-watersheds. 

𝑊𝐶𝑁𝑠𝑢𝑏 =
∑ 𝐶𝑁𝑖 ∗ 𝐴𝑟𝑒𝑎𝑖

𝐴𝑟𝑒𝑎𝑠𝑢𝑏
 

Where: 

WCNsub Weighted curve number for the sub-watershed 

CNi Curve number for soil/land use polygon i 

Areai Area for soil/land use polygon i 

Areasub Total area of the subwatershed 

 

The weighted curve number is essentially a method of accounting for different 

combinations of soil and land use present in the sub-watershed. The more area a 

particular polygon has within the sub-watershed, the more influence it has on the 

weighted curve number. The WCN influences the initial retention after runoff begins 

(S) and the initial abstraction (Ia), which were calculated for the CDO catchment 

scenarios following the methodology of Paringit et al. (2015): 

𝑆𝑠𝑢𝑏 =  
25400

𝑊𝐶𝑁𝑠𝑢𝑏
− 254 

𝐼𝑎 = 0.05 × 𝑆 

Given the rainfall (P), HEC-HMS calculates the runoff (Q) for the sub-watershed 

through the following formula: 

𝑄 =  
(𝑃 − 𝐼𝑎)2

(𝑃 −  𝐼𝑎) + 𝑆
 

8.2.2 Watershed modelling in LUCI 

To perform watershed modelling in LUCI, rainfall rasters were created within 

ArcMap 10.4.1 using the Inverse Distance Weighting (IDW) tool with 15-minute 

temporal resolution and ~1 km spatial resolution. The 15-minute temporal resolution 

was chosen to capture the variation of rainfall over the time of the event, while the 

~1km spatial resolution was chosen for computational efficiency. 
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8.2.3 Inundation modelling 

The flow hydrographs from HEC-HMS and LUCI were used as input into HEC-RAS 

to estimate the inundation extent under the baseline scenario for Typhoon Bopha. 

This parameterisation of HEC-RAS was set up and calibrated by DREAM (2015) for 

Project NOAH. 

The LUCI FIM requires a floodplain DEM (raster), a river polygon (shapefile) and 

polylines showing the potential breach points (shapefile). The LiDAR-based floodplain 

DEM was detailed in the methodology (Chapter 2) while the river polygon was derived 

from the HEC-RAS parameterisation provided by DREAM (2015). The breach points and 

associated overtopping volumes were based on previous studies that analysed the 

vulnerability of the CDO floodplain to floods of different peak flows (JICA, 2014; 

Mabao & Cabahug, 2014).  Future work to parameterise the LUCI FIM in CDO would be 

through analysing the historical flood record and determining the breach points based 

on those floods of known peak flow. Another way to improve the LUCI FIM application 

in CDO would be building on the future directions outlined in the inundation review 

(Chapter 7) and adding the influence of land cover in the model. After further testing 

and parameterisation of the LUCI FIM in CDO, the model can then be compared to 

HEC-RAS in future modelling runs. 

8.3 Results and Discussion 
This section presents the results of the different curve numbers, flood 

hydrographs, and flood inundation maps for the baseline scenario under Typhoon 

Bopha. 

8.3.1 Curve number parameterisation 

The baseline scenario had the lowest minimum, maximum, and mean WCN 

compared to the development and rehabilitation scenarios (Table 55). The 

rehabilitation and development scenarios had higher mean and maximum WCN values 

compared to the baseline scenario. In the baseline scenario, a large part of the 

catchment is defined as brushland/grassland, which has a lower curve number 

compared to agricultural land. However, these areas are more likely to be a mixture of 

agriculture and brushland/grassland, which would result in a higher curve number, 

hence the WCN values for the development and rehabilitation scenarios are generally 
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higher than the baseline scenario. As outlined in the methodology (Section 8.2), more 

detailed curve number parameterisation of these practices can be done in the future 

to account for the effect of specific practices such as SALT or line-planting. There are 

more detailed curve number parameterisations available for urban areas, different 

types of management (e.g. contouring vs straight row crops), and hydrological 

conditions (USDA NRSC, 1986). Future testing of HEC-HMS against LUCI under all the 

land cover scenarios should use the curve number tables from USDA NRSC (1986) for 

more detailed land cover management scenarios. 

Table 55. Minimum, maximum, and mean weighted curve numbers for the different land cover 
scenarios. 

Weighted Curve Numbers (WCN) Baseline Development Rehabilitation 

Min 23.90 49.80 45.11 

Max 71.89 85.00 84.00 

Mean 36.62 69.75 66.99 

 

8.3.2 Watershed modelling 

The modelled flow hydrographs of HEC-HMS and LUCI compare well with the 

observed flow at the CDO outlet (Figure 122 and Table 56). Both hydrographs from 

HEC-HMS and LUCI show similar peak flow volumes and occurrence times, as well as a 

smaller peak occurring after the event during December 5 after the main flood event. 

The hydrograph produced by LUCI had a flashier catchment response and a later peak 

flow occurrence compared to the hydrograph produced by HEC-HMS on December 4 

2012 by 10 minutes. However, the falling limb of the LUCI hydrograph is more like the 

observed flow compared to the HEC-HMS hydrograph. LUCI can better capture the 

abrupt rise and fall of the flood peak. 
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Figure 122. The modelled (HEC-HMS in red, LUCI in orange) and observed (blue) flow hydrographs at 
CDO bridge for Typhoon Bopha under the baseline land cover scenario. 

Table 56. Peak flows and total flow volumes for Typhoon Bopha under the baseline land cover scenario. 

  Peak flow (cumecs) Total flow volumes (m3) 

HEC-HMS 864.7 55,280 

LUCI 884 45,418 

Observed 858.3 44,366 

 

This test of LUCI against HEC-HMS shows promising results from the rainfall-

runoff model within the LUCI framework for Typhoon Bopha. However, this is only for 

one event and the rainfall-runoff model has not been properly validated against other 

events or a longer time-series. Further testing of the LUCI rainfall-runoff model with a 

longer time-series would be useful to further calibrate the model to the flow regime of 

the CDO catchment. Additionally, testing under different extreme events at the 

baseline scenario using both LUCI and HEC-HMS will allow for further calibration of the 

LUCI rainfall-runoff model. To run the different land cover scenarios, the curve 

numbers within the HEC-HMS model should be calculated using the USDA NRSC (1986) 

guidelines to allow parameterisation of specific land management practices such as 



256 | P a g e  
 

contouring or agroforestry. Previous land cover scenario analyses in the Philippines 

have predicted increased runoff with decreased forest area and increased agricultural 

areas (Alibuyog et al., 2009; Santillan et al., 2011). This agrees with a long-term 

monitoring study in the nearby Mapawa catchment where increased runoff was 

observed with increased maize areas (Valentin et al., 2008). 

The inclusion of specific land management practices in the HEC-HMS and LUCI 

parameterisation is important because of their potential impacts on runoff. In Valentin 

et al. (2008), conservation technologies such as riparian planting and bamboo 

cultivation had soil conservation and runoff reduction outcomes compared to 

traditional up-and-down tillage. As stated in the ecosystem services chapter (Chapter 

3), parameterising for these conservation technologies is important due to the future 

plans of the catchment management to promote riparian planting and bamboo 

cultivation on riverbank slopes (CESM, 2014). In the RUSLE application (Chapter 5), 

including the conservation technologies showed decreases in the potential soil loss 

over the entire catchment. 

Aside from looking at the flow hydrograph at the catchment outlet, 

understanding which sub-catchments had the biggest contribution to runoff is another 

potential direction for future work (Amini et al., 2011). Through determining the 

individual contributions of sub-catchments to peak flow, it would help land 

management decide which sub-catchments to focus mitigation efforts. 

8.3.3 Inundation modelling 

Both hydrographs from HEC-HMS and LUCI were used as input in the unsteady 

flow simulation of HEC-RAS to produce floodplain inundation maps. The flooding 

within the river was removed to show only the water that encroached on the 

floodplain. The flooding extents were similar but LUCI hydrograph predicted less 

coverage compared to the HEC-HMS hydrograph (Figure 123). The maximum 

inundation depths were 4.82m (HEC-HMS) and 4.63m (LUCI). Both hydrographs 

produced inundation occurrences at similar areas: at the mouth of the river (Figure 

124), and locations where the river meanders (Figure 125 and Figure 126). The likely 

reason for this difference is the larger flood peak and volume predicted by HEC-HMS 
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compared LUCI (Table 56). The resulting maps from HEC-HMS hydrograph were less 

patchy compared to the LUCI hydrograph because of this larger peak and volume. 

 

Figure 123. Inundation maps produced by HEC-RAS using the flood hydrographs from HEC-HMS (left) and 
LUCI (right) with the river and inundation below one centimetre excluded. 
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Figure 124. Inundation maps at the mouth of the river produced by HEC-RAS using the flood hydrographs 
from HEC-HMS (left) and LUCI (right) with the river and inundation below one centimetre excluded. 

 

Figure 125. Inundation maps at a river meander produced by HEC-RAS using the flood hydrographs from 
HEC-HMS (left) and LUCI (right) with the river and inundation below one centimetre excluded. 
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Figure 126. Inundation maps at another river meander produced by HEC-RAS using the flood 
hydrographs from HEC-HMS (left) and LUCI (right) with the river and inundation below one centimetre 

excluded. 

One of the limitations of this research was the verification of the flooding extent. 

Although disaster reports and anecdotal evidence are available, there is a lack of the 

satellite imagery associated with these events. The disaster reports and anecdotal 

evidence (e.g. news reports, surveys) are important sources of information to pinpoint 

which specific areas within the CDO floodplain were impacted by flooding. By cross-

referencing the location of reported incidents with the inundation extent, the 

modelled hazard maps can be verified. Anecdotal evidence and surveys were also 

important in verifying the flooding extent of Typhoon Washi in 2011 (JICA, 2014). 

Increased availability of satellite imagery and emerging technologies such as 

Google Earth Engine are a potential priority for future research to verify flooding 

extent (Gorelick et al., 2017). Google Earth Engine has been previously utilised to map 

rice paddies, small reservoirs, and seasonal inundation of wetlands (Dong et al., 2016; 

Jones et al., 2017; Tang et al., 2016). Hence, future work around hazard mapping in 

CDO can use past satellite imagery to verify model results if there is appropriate 

imagery captured during the time of the event. 
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8.4 Future work 
For the development of the LUCI rainfall-runoff model, one of the future 

developments common to this chapter, the ES chapter (Chapter 3), and the soil 

erosion chapter (Chapter 5) is more detailed parameterisation for the different land 

cover and vegetation types common in the CDO catchment. The LUCI rainfall-runoff 

model would benefit from more detailed parameterisation that accounts for distinct 

types of land management practises, such as those used by the RUSLE. The 

development of a crop water production model combined with the soil moisture 

accounting method accounts for the effect of crop water usage and can elucidate the 

effect of water surplus or deficits on crop yields (Ma et al., 2013). The robustness of 

the CDO crop water model can be increased through analysing soil moisture records 

within/near the CDO catchment to get a broad understanding of intra-annual changes 

in catchment water balance. For further comparison with the SCS CN method, the 

original curve number handbook has values for varying types of hydrological 

conditions and support practices that can be used to re-parameterise the land cover 

scenarios in HEC-HMS. This re-parameterisation can then be tested against the less 

detailed HEC-HMS parameterisation used in this chapter, the classification-based LUCI 

parameterisation, and the future more detailed LUCI parameterisation that also 

accounts for vegetation effects. 

Some of the future directions for the LUCI inundation model were outlined in the 

inundation review (Chapter 7), mainly the addition of factors to account for the effect 

of land cover roughness and friction. This would elucidate the possible effects of green 

infrastructure such as riparian planting on floodplain inundation compared to grey 

infrastructure such as retaining walls. 

Another aspect of future work for extreme events modelling in CDO is to 

understand and quantify the flood risk based on the social dimensions of the CDO 

floodplain. The risks to communities are not purely spatial and are affected by the 

community’s socioeconomic status, demographics, dependence on natural resources, 

and access to public infrastructure (Pati et al., 2014). By understanding the complex 

interactions between communities, the river, and potential disasters, these 
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communities can be more involved in the decision-making processes around creating 

disaster risk mitigation programmes before, during, and after disaster events. 

8.4.1 Extreme events under climate change 

As established in the introduction (Chapter 1), there is strong regional variability 

in the potential effects of climate change, underscoring the need for downscaling and 

testing climate change at the regional or catchment level. CDO is located within Region 

10 where projections show temperature increase for all seasons, increases to rainfall 

during the northeast monsoon (December to February), but decreases in rainfall for 

the other seasons (Hilario et al., 2011). This seasonal variation in climate change 

effects is important because of the occurrence of typhoons in CDO during the 

northeast monsoon season. Washi, Bopha, Jangmi, and Vinta all hit the CDO 

catchment during the month of December. Hence, an important future direction is 

perturbing the existing event rainfall under different scenarios of climate change to 

test the potential effects on the flow hydrograph and inundation. The rainfall under 

climate change should be modelled under the different land cover scenarios to 

elucidate the potential interactions between climate, ecosystems and resulting floods. 

The peak flows under climate change and different land cover scenarios can then be 

checked against the capacity of the existing structural measures within the CDO 

floodplain. This increases the adaptive capacity of management and better decisions 

can be made around the long-term resilience of the ecosystem and city (Ty et al., 

2012). 

8.5 Summary and conclusions 
The LUCI model is commonly used for ecosystem service analysis and has already 

been used to model the distribution of ES in CDO under different land cover scenarios. 

LUCI is highly spatially resolved as it can be applied at the sub-field scale with strong 

but novel and less-tested rainfall-runoff capabilities. Since the HEC-HMS and HEC-RAS 

models are widely used and applied in the Philippines, this chapter aimed to test 

LUCI’s rainfall-runoff modelling to that of HEC-HMS and to use the flood hydrographs 

as input into HEC-RAS for floodplain mapping. Under the baseline land cover scenario 

with Typhoon Bopha rainfall, the LUCI and HEC-HMS hydrographs showed good 

agreement with each other and with the observed flow during the event. The 
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inundation maps produced by HEC-RAS also showed similar areas of inundation from 

the hydrographs from both rainfall-runoff models. Since LUCI predicted a slightly lower 

peak flow and flood volume, the resulting HEC-RAS inundation map had a smaller 

inundation extent compared to the hydrograph produced by HEC-HMS. Although the 

LUCI inundation model is operational (Chapter 7), more testing and parameterisation 

must be achieved for CDO before comparing it to HEC-RAS. 

Future work involves comparing LUCI against HEC-HMS for additional extreme 

events: Jangmi (2014) and Tembin (2017). The rainfall for these two events has already 

been obtained and undergone infilling to correct for gaps in the data. The weighted 

curve number for the other two land cover scenarios have also been calculated at the 

sub-catchment level, but the parameterisation must be improved through using the 

original USDA NRCS (1986) curve number table that accounts for different land 

management and hydrological conditions. This is a more detailed parameterisation 

that can account for the specific mitigation interventions (e.g. riparian planting and 

bamboo cultivation) detailed in the development and rehabilitation scenarios that 

impacted the results of the ES (Chapter 3) and soil erosion modelling (Chapter 5). After 

parameterising the different land cover scenarios, downscaling climate change 

predictions and perturbing the extreme event rainfall allows for testing the combined 

effect of land cover and climate changes in CDO. 

Given the reasonable comparison between the LUCI and HEC-HMS, this chapter 

also lays the groundwork for predicting soil erosion at the event scale through its 

development and parameterisation of the LUCI rainfall-runoff model. Through 

combining the capability of the LUCI rainfall-runoff model with the RUSLE application 

in CDO, this chapter also lays the groundwork for event-based soil erosion modelling in 

the future. 
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9 Synthesis of understanding the effect of changing land use on 

floods and soil erosion in the Cagayan de Oro catchment 

9.1 Summary of the rationale and aims 
As discussed in detail in Chapter 1, the destructive capability of natural disasters 

such as tropical storms, earthquakes, droughts, volcanoes, etc. have had a significant 

impact on communities and infrastructure all over the world (Guha-sapir et al., 2014). 

Of these disasters, the most devastating were those associated with tropical storms, 

flooding, and landslides (Guha-sapir et al., 2014). Due to the destruction associated 

with flooding and extreme events in the Philippines, considerable attention is given to 

increasing the resilience of communities and ecosystems through real-time flood 

warnings, construction of structural flood protection, and promoting sustainable land 

use management. This thesis fits into the broader context of disaster risk management 

and resilience through understanding how different types of land cover affect the CDO 

catchment, specifically regarding the spatial distribution of ecosystem services and the 

catchment’s response to extreme rainfall events. The CDO catchment has experienced 

extreme flooding as a result of typhoons (Sendong in 2011, Bopha in 2012, Jangmi in 

2014, and Tembin in 2017), and the current disaster-risk framework in CDO includes a 

real-time flood forecasting and warning system, and the construction of a retaining 

wall on the floodplain (JICA, 2014; Paringit et al., 2015). This mitigation framework 

includes rehabilitation, protection, and comprehensive land use planning through 

proper zoning of the CDO catchment (CESM, 2014). This research applied the Land 

Utilisation and Capability Indicator (LUCI) framework and the Revised Universal Soil 

Loss Equation (RUSLE) to the CDO catchment for the following objectives: 

• Understand the spatial distribution of ecosystem services and help identify 

priority areas for management 

• Assess the effect of development and rehabilitation plans on ecosystem 

services (soil conservation and flood mitigation) and on flooding regimes under 

extreme rainfall 

• To contribute to future development of LUCI through developing and testing 

new components of the LUCI framework (i.e. sediment delivery, floodplain 

inundation, and rainfall-runoff modelling) 
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The main ecosystem services chosen for this research were soil conservation and 

flood mitigation, although LUCI runs were also achieved for agricultural productivity 

and nutrient delivery. Future work includes further parameterisation for the CDO 

catchment to run the additional services within LUCI: carbon sequestration, habitat 

connectivity, and habitat suitability. Soil conservation was assessed through the 

RUSLE, which delineates the areas of the catchment most vulnerable to soil erosion, 

hence marking those areas as priority for management to apply soil conservation 

measures. Flood mitigation modelling used LUCI to delineate the areas that were 

providing good mitigating services, but also the areas where management such as 

rehabilitation can be applied to enhance flood mitigation. Through scenario analysis, 

the effect of changing land cover on the potential soil erosion and flood mitigation was 

also analysed. Finally, extreme events modelling was carried out to elucidate the effect 

of changing land cover on peak flows and floodplain inundation. Aside from modelling 

results, this thesis contributed to the development of the LUCI model through the 

testing and addition of RUSLE and updates to the existing floodplain inundation code. 

9.2 Ecosystem services and extreme events 
There were several overarching results common to both the soil erosion 

modelling and the flood mitigation modelling. The rehabilitation of the CDO catchment 

led to decreases in estimates of soil erosion rates and to increases in the ability of the 

catchment to provide flood mitigation services. The steep slopes of the CDO 

catchment, combined with agricultural activity with no conservation measures, cause 

these areas to be more vulnerable to soil erosion and making them targets for 

potential management interventions to increase flood mitigation. In the RUSLE 

scenario analysis, conservation measures such as agroforestry and contour farming 

showed potential for decreasing the annual soil erosion rate compared with the 

baseline scenario. The LUCI model results also indicate these steep slopes and valleys 

as areas of high flood accumulation, but with high opportunity to enhance flood 

mitigation through different management strategies. One of the recommendations in 

the catchment management plan is to rehabilitate these slopes with bamboo, thus 

increasing the capacity to absorb and intercept the water before entering the stream 

network (Barth & Döll, 2016; CESM, 2014). The results of both RUSLE and LUCI align 
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with that of the basin management, showing synergistic opportunities to enhance 

both soil conservation and flood mitigation services within CDO. Identifying synergies 

and trade-offs in ecosystem services is important because of the complex interactions 

between services, such as where enhancing one service may lead to a degradation of a 

different service provided by the same area. Future parameterisation and coding work 

with LUCI will lead to an eventual incorporation of RUSLE into the framework and 

ability to run the other ecosystem services (agricultural productivity, nutrient 

transport, carbon sequestration) for the CDO catchment, creating maps to help land 

zoning and deciding management strategies. 

Aside from spatial variations in soil erosion, temporal variations in soil erosion 

were also analysed. Using monthly rainfall data in the RUSLE, monthly estimates of soil 

loss showed higher likelihood of soil loss occurring during the months of June to 

November, which fall within the southwest monsoon season for CDO. The months 

with the lowest likelihood of soil loss were December to May, which have lower 

monthly rainfall and fall within the weaker northeast monsoon season. The intra-

annual variations in soil erosion help guide management in determining when 

intervention strategies are likely to have the most benefit, as well as when there may 

be water quality issues associated with sediment transport. Aside from soil erosion, 

future work can incorporate running the nutrient delivery tools within LUCI at the 

monthly or seasonal scale to elucidate temporal variations in the presence of nitrogen 

and phosphorus in the stream network. 

Although the December to May months have the lowest estimated sediment 

transport, extreme rainfall events have struck the CDO catchment in December most 

notably in recent years: Washi (2011), Bopha (2012), Jangmi (2014), and Tembin 

(2017). These typhoons have the ability to cause flooding that exacerbates sediment 

transport through the CDO catchment and increases the possibility of mass movement 

events such as landslides. Event-based sediment transport underscores those complex 

interactions between ecosystem services, and shows the benefit of synergistic 

approaches to land management. By using soil conservation measures in tandem with 

flood mitigation strategies, the long-term problem of soil erosion and the short-term 

problem of event floods is addressed. 
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The extreme events modelling was done under Typhoon Bopha for the baseline 

land cover scenario to compare LUCI’s novel rainfall-runoff model with the more 

established curve number method used by the DREAM (2015) parameterisation of 

HEC-HMS. Both models had good agreement with each other and with the observed 

flow, showing the strengths of LUCI’s model working at the sub-field scale. The next 

steps for extreme event modelling in LUCI is to run a greater number of extreme 

events (Jangmi and Tembin), a wider range of land cover scenarios (development and 

rehabilitation), and under rainfall affected by climate change. The application of the 

LUCI rainfall-runoff model at the event scale also lays the groundwork for future 

coupling with the MUSLE to produce sediment delivery estimates during typhoon 

events. 

The looming threat of climate change is also prevalent in the Philippines, as 

there are projected rainfall increases in both the southwest monsoon season (June to 

August) and the weaker monsoon season (December to January) (CESM, 2014; Hilario 

et al., 2011). Downscaling climate change predictions and modelling the potential 

effect on the ecosystem services of CDO is an important direction for future work, 

especially under different scenarios of land use and land cover, to elucidate the 

complex interactions between the ecosystem and climate (Villarin et al., 2016).  This 

increase in rainfall can lead to increased sediment transport and flooding; modelling 

the potential effects of climate change on erosion and flooding is one of the future 

recommendations for the CDO catchment. By understanding the effect rainfall 

increases can have on ecosystem services and flood events, the adaptive capacity 

increases as management can plan to place more management interventions in the 

most vulnerable areas or design structural measures that account for increased peak 

flows under climate change. 

With further improvements to the parameterisation details for the CDO 

catchment, running the carbon tool would elucidate potential carbon storage in 

catchment and any fluxes associated with changing land cover. There have been 

previous studies within and near the CDO catchment that have tested the carbon stock 

potential of different types of agroforestry systems (Canencia et al., 2015; Labata et 

al., 2012). As shown by the scenario-based soil erosion and ecosystem services 
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modelling (Chapter 5 and 3), agroforestry techniques increase soil conservation and 

provide flood mitigation over traditional agricultural methods. Field-based tests 

showed the utility of agroforestry systems for climate change mitigation by 

sequestering more carbon compared to grassland or pastureland systems (Canencia et 

al., 2015; Labata et al., 2012). Agroforestry can potentially provide livelihood for 

upland communities where agricultural productivity is hampered by soil degradation 

or erosion (Canencia et al., 2015). 

The ability to identify synergies and trade-offs to understand the links between 

ecosystem services and how they are affected by climate change is clearly a critical 

area of study. One of the services within the LUCI framework is modelling carbon 

sequestration and future work to parameterise specific tree species would allow this 

model to be run for CDO and potentially the rest of the Philippines. As shown by 

Labata et al. (2012) and Canencia et al. (2015), the carbon sequestered by different 

tree species and agroforestry systems varies, and using their work as parameterisation 

for LUCI, scenario analysis can be used to determine which species or systems provide 

larger carbon stock benefits. “Climate-smart reforestation” requires an understanding 

of how both the spatial distribution of trees and tree species will affect the 

hydrological cycle and provision of related services such as flood mitigation, soil 

erosion, and habitat refugia (Locatelli et al., 2015). LUCI is already spatially explicit and 

can explore scenarios around spatial distribution of trees, and parameterising the 

carbon sequestration ability and water needs of different tree species will be useful for 

the model’s role in climate-smart reforestation (Dierick & Hölscher, 2009; Jackson et 

al., 2013). 

The human interactions with climate change, the ecosystem, and its services are 

another crucial area of future study (Cruz et al., 2017). Working with stakeholders to 

promote sustainable land use management and education around the potential effects 

of climate change can increase their resilience and disaster preparedness (Eugenio et 

al., 2016; Japos & Lubos, 2014). The work already contributed by this thesis around 

ecosystem services can be further enhanced to include the effect of climate 

perturbations on ES and the hydrological cycle under different land cover scenarios, 

increasing the utility of the LUCI framework for decision-making. 
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The habitat connectivity and suitability tools would link the landscape and 

vegetation with the protection of the fauna and biodiversity of the CDO catchment. 

More future work would revolve around collecting information about the habitat 

requirements of the various animals present in the catchment, thus outlining possible 

areas that can be managed specifically for their protection and conservation. 

9.3 Model development 
Aside from understanding the effect of land cover on ecosystem services and 

floods, this thesis also contributed to the testing and development of the LUCI 

framework. This section summarises the work around the RUSLE and its eventual 

incorporation into LUCI, identification of limitations in the land cover parameterisation 

and potential solutions, and improvements in the LUCI inundation model. As climate 

change can severely affect the hydrology of the CDO catchment, this thesis also 

outlined some ways forward to better incorporate spatial detail in climate drivers such 

as rainfall and potential evapotranspiration. 

Since the RUSLE is used around the world, there are many possible sub-

equations to use within the model to estimate the effects of rainfall, topography, soil 

erodibility, etc. but not as much guidance as to which equations are appropriate to use 

depending on regional specificity or data availability. The RUSLE review (Chapter 4) 

compiled many of these sub-equations and their sources, including the availability of 

national and global datasets for future applications of RUSLE. Out of this review came 

the case studies of the CDO catchment and in the Mangatarere catchment (New 

Zealand), which analysed the different sub-equations to test their effect on the 

resulting soil erosion estimates. These case studies identified biases in the equations, 

such as rainfall erosivity equations that ignored days where rainfall was below a 

certain amount. These equations and the RUSLE account for high-intensity erosive 

storms, but may not account for periods of lighter rainfall with longer durations. In the 

Mangatarere application, using DEMs of different resolutions and different methods to 

account for topography showed the utility of each equation at different scales. At the 

catchment scale, topography equations based on slope length and steepness were 

useful for delineating large areas vulnerable to soil erosion. At the sub-catchment or 

field scale, topography equations that used flow accumulation on high-resolution 
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DEMs identified only the most critical areas for soil erosion due to their micro-

topography. The temporal variability of soil erosion due to rainfall variation was 

already discussed (Section 9.2), but the temporal variability of soil erosion due to 

differences in vegetation growth stages could also be investigated. At the catchment 

scale, there may be plans for rehabilitation and tree-planting, but more detailed 

information about the ability of vegetation to mitigate soil erosion at the sapling or 

mature stage would be useful to land management. By understanding the relationship 

of soil erosion to tree growth and stage, the model can indicate at what timeframes 

the trees are still vulnerable and require monitoring, and when the trees could 

mitigate soil erosion. At the field scale, a crop growth and stage model would be useful 

for the farmer to know what stages in the crop development cycle would have 

increases in the potential soil loss and where to put management interventions. 

This inclusion of a tree/crop development model is also a future direction for 

more detailed land cover parameterisation within LUCI. As the plant rooting depth and 

water needs change with stage, so does its ability to mitigate floods or sequester 

carbon. Similar to how this detailed parameterisation would benefit soil loss and 

sediment delivery modelling, adding a plant development model elucidates the 

timeframes of when rehabilitated areas are still vulnerable, and when the area’s ability 

to mitigate floods increases due to changes in rooting depth and water needs. 

Although the broad classification used in this research was appropriate to produce 

ecosystem service maps for CDO (Chapter 3), using more specific crop characteristics 

helps to more robustly represent the complexity of the landscape. For example, rice 

paddies were observed in CDO and their use of standing water at different crop stages 

can affect the hydrological response of the landscape to rainfall events. Other tropical 

vegetation to be included in future parameters are palm trees, coconuts, and 

mangroves. Mangroves are of particular importance due to their ability to sequester 

carbon and the future plans of the CDO management to establish mangrove 

plantations along the coastal areas (Castillo et al., 2017; CESM, 2014). 

The LUCI inundation model was first developed in 2011 and was updated in this 

thesis to run through MATLAB R2015a by calling functions from ArcMap 10.4.1. The 

code was also converted to Python for future direct integration into the LUCI software 
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that solely requires ArcMap 10.x, although requires more improvements to 

computational efficiency. One possible method of increasing computation efficiency is 

through preprocessing the DEM and dividing the floodplain into depression zones of 

known volume and stage, thus allowing the flood to spread to adjacent zones ones a 

threshold value of volume is reached (Chapter 7). Since the current version of the LUCI 

inundation model relies on mass conservation, future versions can incorporate the 

effect of land cover through roughness and friction coefficients to test the effect of 

non-structural measures such as riparian planting. 

9.4 Limitations and future work 
One of the biggest limitations of this thesis was the lack of validation data to 

quantitatively test the accuracy of the soil erosion and flood modelling. Previous work 

included water quality monitoring that was previously recorded for the CDO river from 

2001 to 2006 with the total suspended solids (TSS) seen as an indicator for the amount 

of sediment transported into the waterways from erosive activities (CESM, 2014). 

Since the RUSLE models the potential soil erosion per unit area (tons hectare-1 year-1), 

more work is needed to convert these rates into water quality indicators to compare 

against water quality records. Long-term water quality records are needed to 

understand the monthly and seasonal variations in water quality and the potential link 

to soil erosion. Another way to validate soil erosion data would be to compare 

modelled soil loss with data from other studies that were done in similar geoclimatic 

regions or on similar land covers. One of the future contributions to soil erosion 

research is to review published soil erosion literature to compile a database of 

potential soil loss categorised by climate type, land cover, and region. 

The flow hydrographs produced by LUCI and HEC-HMS were compared with the 

observed flow data, which was based on a rating curve relating flow and stage height 

of a station at the outlet of the catchment. Validating the inundation extent was more 

difficult and required relying on soft data such as recorded incidents of flooding in 

disaster reports and news articles. With the availability of satellite imagery, future 

work to validate inundation extent could involve the usage of Google Earth Engine to 

process imagery and produce inundation maps from observations (Gorelick et al., 

2017). 
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Another limitation of the RUSLE was the inability to account for gully erosion, 

hence the discussion of how to incorporate RUSLE and CTI together into an enhanced 

soil erosion model used by the LUCI framework (Chapter 6). Currently, the LUCI 

framework uses the CTI to delineate areas vulnerable to soil erosion by using 

information about slope steepness, contributing area, and planform curvature (Thorne 

et al., 1985). This approach does not account for the different effects of land cover or 

management practices. The RUSLE accounts for land cover, slope steepness, and 

contributing area. This overlap in what both models account for would mean the 

danger of double counting or overestimation if their resulting erosion rates were 

added together. Hence, developing a method to balance the factors accounted for by 

RUSLE and those accounted for by CTI is a good future direction and can lead to more 

robust representation of complex soil erosion processes. From the case studies in this 

thesis, the manual steps required to apply RUSLE are being converted to automated 

Python toolboxes that can be used by future users of LUCI. 

In terms of ecosystem service modelling, the areas providing flood mitigation in 

CDO were identified in this research. However, it is also important to delineate the 

flow of a service (e.g. water supply) from the source to the sink in order to understand 

if the demand for that service is being met (Bagstad et al., 2014). Studies involving the 

valuation and willingness-to-pay for ecosystem services have been accomplished 

previously in the CDO catchment (Baig et al., 2015; ILC, 2013), but incorporating an 

economic valuation model into LUCI would be useful for cost-benefit-analysis as land 

managers may have to work within a certain budget. In the LUCI application, using 

different thresholds of flood mitigation was useful in identifying which areas are the 

most critical for management interventions. Depending on budgetary constraints, land 

managers may want to prioritise those critical areas for interventions. 

9.5 Implications 
This thesis mainly contributed to the field of ecosystem services modelling in the 

Philippines through LUCI application in the Cagayan de Oro catchment, and to the 

technical development of the LUCI model through improvements in the soil erosion 

model and through parameterising the model for a tropical catchment. Although 

ecosystem services have been previously studied in CDO (Chapter 1), these studies 
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have focused on the stakeholder perception and economic valuation of ecosystem 

services. The novel contribution of this research is the use of the LUCI framework to 

delineate the areas in the catchment providing flood mitigation services, areas 

vulnerable to soil erosion, areas to improve for agricultural productivity, and areas 

contributing to high nutrient delivery. This study also used scenario analysis to 

understand the potential changes of these services under different land cover plans of 

development and rehabilitation. This information assists stakeholders and local 

government in understanding the potential consequences of their land management 

plans as compared to the current or baseline land cover. Understanding soil erosion 

and flood mitigation are important in the CDO catchment because it is heavily utilised 

for agriculture and experiences flooding brought on by extreme events, hence the 

need to perform ecosystem services modelling. Future work around improving the soil 

and land cover parameterisation in CDO will add more detail to the unique vegetation 

of tropical areas (e.g. rice paddies, mangroves) and allow for more Philippines-based 

detail in the LUCI framework to run its models of agricultural productivity and 

sediment delivery. 

This application in the CDO catchment was the first application of the LUCI 

framework to the Philippines and was used as a stepping stone to understand the data 

availability and limitations associated with applying the model to a new country. A 

database has been built with soil, land cover, and vegetation characteristics of the 

CDO catchment, which is a stepping stone for a larger database for more study areas 

in the Philippines. Soil erosion is a problem in the Philippines due to its mountainous 

topography, anthropogenic activities in upland areas, and high annual rainfall 

(Paningbatan et al., 1995). Flooding is a devastating problem, as established in Chapter 

1. Understanding the agricultural productivity and nutrient delivery ecosystem services 

in the Philippines would contribute to potentially more optimal agricultural strategies 

and improves to the associated water quality issues. As established in Section 9.2, 

parameterising the carbon stock model using information on vegetation in the 

Philippines would contribute to “climate-smart reforestation” where the benefits of 

trees are for flood mitigation, soil conservation, and carbon sequestration. 
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National-scale LUCI applications have been previously achieved in Wales 

(Emmett et al., 2017), and with a large parameterisation database and high computing 

power, a national-scale LUCI application is possible for the Philippines in the future. 

LUCI could potentially be used to produce ecosystem services maps, synergy maps, 

and trade-off maps at the national scale, helping land managers and regional 

authorities understand the services provided by their local region. 

Expanding beyond the Philippines, this research outlines the challenges of 

applying the LUCI framework to tropical areas and other geoclimatic regions as pilot 

sites. This thesis showed what type of data is needed in terms of fieldwork, plans from 

local government, the availability of global databases for soil characteristics, etc. 

Correlating to the New Zealand parameterisation is possible for study areas with 

scarce data due to the New Zealand soil and land cover types having the most detail 

within the LUCI framework. Tropical areas were begun through this study, and both 

hot and cold arid areas have interesting challenges around evapotranspiration and the 

resilience of arid plants. This research identified freely available global datasets of 

rainfall, evapotranspiration, and rainfall erosivity, and future work around building a 

database of datasets with global coverage will lead to a global-scale LUCI application 

given sufficient computational power. 

Although this research is primarily focused on physical sciences, it can be part of 

a larger cross-disciplinary study. As established in Chapter 1, ecosystem services 

research includes economic components through valuation, cost-benefit analysis, and 

willingness-to-pay. This is important for drafting management interventions that fit 

within a budget, and for understanding how stakeholders value services to elucidate 

priority management directions. The social dimension of ecosystem services research 

shows that the importance of participatory decision-making through engaging directly 

with stakeholders such as local and indigenous communities. These stakeholders are 

the most likely beneficiary of services and whose local actions directly affect the 

distribution and supply of services, hence the need for their participation. 

9.6 Summary and conclusion 
The overall aim of this study was to understand the changes to ecosystem 

services and hydrological responses of the CDO catchment associated with changes in 
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land cover from the baseline scenario to plans involving catchment development and 

rehabilitation. The specific objectives were as follows: 

1. To apply LUCI to the CDO catchment to understand the spatial aspect of its 

ecosystem services and help identify priority areas for land management; 

2. To assess how development and rehabilitation plans will affect the soil erosion 

and flood mitigation within the watershed; and 

3. To contribute to future development of LUCI through developing and testing 

new components of the LUCI framework (i.e. sheet/rill erosion modelling, 

floodplain inundation, and rainfall-runoff modelling) 

The aims and objectives were achieved through applying the LUCI framework the 

CDO catchment to delineate areas providing flood mitigation, agricultural productivity, 

and nutrient delivery services. The priority areas for management to improve flood 

mitigation were on steeper slopes associated with agricultural land use and river 

valleys. These steep agricultural slopes were also identified as vulnerable erosion areas 

by RUSLE, which could be mitigated also by riparian planting. The provision of flood 

mitigation services was better in the rehabilitation scenario compared to the 

development scenario. In terms of nutrient delivery, the development and 

rehabilitation scenarios had lower loads of nitrogen and phosphorous compared to the 

baseline. The identification of areas vulnerable to soil erosion was accomplished using 

the RUSLE model, which was tested to find the best factor equations for the CDO 

catchment and will be converted into a Python toolbox to be used by future LUCI 

users. 

This research also contributed to the technical development of the LUCI 

framework through developing the floodplain inundation model from MATLAB into 

Python, building a database of parameterisation information for CDO which can be 

expanded to the Philippines and eventually to other tropical areas, through testing the 

RUSLE model for future integration into LUCI, and through testing LUCI’s rainfall-runoff 

modelling capabilities against HEC-HMS. 

The potential land cover changes caused significant differences in the areas 

providing ecosystem services, areas vulnerable to soil erosion, and the hydrological 
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response of the catchment to extreme events. This research showed that it is 

important to understand these potential changes to prevent degradation of these 

services and to increase the resilience of ecosystems, communities, and infrastructure 

to extreme events. By providing and enhancing tools to engage with stakeholders, 

local government, and local communities, this research contributes to the 

participatory decision-making necessary for the continued maintenance of ecosystem 

services, well-being of communities, and sustainable management of catchments. 

In summary, this research contributed to the field of ecosystem services 

modelling by producing spatially-explicit maps showing the existing distribution of 

services in the CDO catchment, and the areas where these services can be improved 

through management strategies. Additionally, modelling the potential land cover 

change and showing the resulting effect on ecosystem services and soil erosion is of 

use to land management and policy-makers. This type of ecosystem services modelling 

has never been previously accomplished in CDO, thus underscoring the novelty of this 

research. Through parameterising the model for CDO, the LUCI model’s applicability is 

extended to tropical areas such as other areas in the Philippines, Southeast Asia, and 

other islands. In terms of model development, this research also contributed to the 

field of soil erosion through a thorough review of the RUSLE and its applications in the 

Philippines and New Zealand, and to inundation modelling through the continued 

development on the flatwater inundation model. 
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Appendix 1. Summary of previous studies that have applied the 

USLE and RUSLE 
Author Location R-factor K-factor LS-factor C-factor P-factor 

David (1988) Various 
watersheds in the 
Philippines 

Mihara (1951) 
and Hudson 
(1971) as 
cited in 
David (1988) 

Wischmeier 
and 
Mannering 
(1969) 

Madarcos 
(1985) and 
Smith & 
Whitt 
(1947) 

Literature Literature 

Eiumnoh 
(2000) 

Sakae Krang 
watershed 
(Thailand) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

USLE method USLE 
method 

Literature None 
observed 
(P=1) 

Fernandez et 
al. (2003) 

Lawyers Creek 
Watershed (USA) 

USDA-ARS 
(2002) 

From the 
SSURGO 
database 
(USDA) 

Upslope 
contributin
g area 
method 
 

 

Database 
from RUSLE 
software 

Database 
from 
RUSLE 
software 

Merritt et al. 
(2004) 

Mae Chem 
watershed 
(Thailand) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

Previous 
studies in 
area 

USLE 
method 

Previous 
studies in 
area 

Previous 
studies in 
area 

Post and 
Hartcher 
(2005) 

Mae Chem 
watershed 
(Thailand) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

Previous 
studies in 
area 

L = 1 
S = derived 
from DEM 

Previous 
studies in 
area 

None 
observed 
(P=1) 

Dumas and 
Fossey (2009) 

Efate Island 
(Vanuatu) 

Roose (1975) 
and Morgan 
(1994) as 
cited in 
Morgan 
(2005) 

USLE method RUSLE 
method at 
pixel level 

Literature None 
observed 
(P=1) 

Adornado et 
al. (2009) 

REINA 
(Philippines) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

Table by 
Stewart et al. 
(1975) 

Upslope 
contributin
g area 
method 

Literature None 
observed 
(P=1) 

Schmitt 
(2009) 

Negros Island 
(Philippines) 

RUSLE 
method 

USLE method RUSLE 
method at 
pixel level 

Literature Previous 
studies 

Jayasinghe et 
al. (2010) 

Nuwaraeliya (Sri 
Lanka) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

Table by 
Stewart et al. 
(1975) 

Upslope 
contributin
g area 
method 

Literature None 
observed 
(P=1) 

Jain and Das 
(2010) 

Jharkhand (India) Ram et al. 
(2004), as 
cited in Jain 
and Das 
(2010) 

USLE method 
and previous 
studies 

Upslope 
contributin
g area 
method 

Literature None 
observed 
(P=1) 

Adornado and 
Yoshida 
(2010) 

Bukidnon 
(Philippines) and 
also REINA 
(Philippines) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

Table by 
Stewart et al. 
(1975) 

Upslope 
contributin
g area 
method 

Literature None 
observed 
(P=1) 



277 | P a g e  
 

Boyle et al. 
(2011) 

California (USA) From previous 
studies 

From 
previous 
studies 

Upslope 
contributin
g area 
method 

Literature N/A 

Chen et al. 
(2011) 

Xiangxi watershed 
(China) 

Wischmeier 
and Smith 
(1978) 

Williams and 
Renard 
(1983) 
nomograph 

Upslope 
contributin
g area 
method 

Using NDVI N/A 

Demirci & 
Karaburun 
(2012) 

Buyukcekmece 
Lake watershed 
(Turkey) 

Arnoldus 
(1980) 

Torri et al. 
(1997) 
equation 

Upslope 
contributin
g area 
method 

Using NDVI None 
observed 
(P=1) 

Nontananand
h and 
Changnoi 
(2012) 

Songkhran 
watershed 
(Thailand) 

LDD (2000) Values from 
LDD (2000) 

Modified 
RUSLE 
method 

Literature None 
observed 
(P=1) 

Ozsoy et al. 
(2012) 

Mustafakemalpas
a River Basin 
(Turkey) 

From previous 
studies 

USLE method RUSLE 
method, 
using a 3rd 
party 
programme 

Literature None 
observed 
(P=1) 

Delgado & 
Canters 
(2012) 

Claveria 
(Philippines) 

Shamshad et 
al. (2008)  

USLE method RUSLE2 
programme
, using the 
upslope 
contributin
g area 
method 

Literature David 
(1988) 

Hernandez et 
al. (2012) 
(used SedNet, 
which has an 
USLE 
component) 

Pagsanjan 
(Philippines) 

El-Swaify et al. 
(1987) as 
cited in Post & 
Hartcher 
(2006) 

Wischmeier 
and 
Mannering 
(1969) 

Algorithm 
within 
SedNet 

Literature N/A 

Sinha & Joshi 
(2012) 

Maharashtra 
(India) 

Roose (1975) USLE method Morgan 
(1986) 

Literature Literature 

Nigel & 
Rughooputh 
(2012) 

Mauritius Arnoldus 
(1980), as 
cited in Le 
Roux et al. 
(2005) 

From 
previous 
studies 

Upslope 
contributin
g area 
method 

Literature Literature 

Životić et al. 
(2012) 

Nisava river basin 
(Serbia) 

Wischmeier 
and Smith 
(1978) 

USLE method RUSLE 
method 

Using NDVI None 
observed 
(P=1) 

Rozos et al. 
(2013) 

Euboea Island 
(Greece) 

Flabouris 
(2008)  

Based on 
geological 
characteristic
s 

Morgan 
(1986) 

Literature None 
observed 
(P=1) 

Bagherzadeh 
(2014) 

Masshad plain 
(Iran) 

Wischmeier 
and Smith 
(1978) 

USLE method USLE 
method 

 None 
observed 
(P=1) 

Ferreira and 
Panagopoulos 
(2014) 

Alqueva 
(Portugal) 

Similar to 
Loureiro and 
Coutinho 
(2001) 

USLE method Upslope 
contributin
g area 
method 

Using NDVI None 
observed 
(P=1) 

Li et al. (2014) Guangdong 
(China) 

Zhou et al. 
(1995) 

USLE method Similar to 
RUSLE 
method 

Using NDVI 1 for 
wastelan
d and 
built-up 
0.5 for 
forested 
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0.2 for 
orchard 
land 
0.35 for 
cropland 

Zakerinejad 
and Maerker 
(2015) (used 
USPED, which 
has USLE 
components) 

Mazayjan (Iran) Ferro et al. 
(1991); 
Renard & 
Freimund 
(1994); 
Sadeghifard et 
al. (2004) 

RUSLE 
method 

Algorithm 
within 
USPED 

Literature None 
observed 
(P=1) 

Jahun et al. 
(2015) 

Crete (Greece) Fu et al. 
(2006) 

RUSLE 
method 

Upslope 
contributin
g area 
method 

Using NDVI Previous 
studies 

Farhan and 
Nawaiseh 
(2015) 

Wadi Kerak 
catchment 
(Jordan) 

Eltaif et al. 
(2010) 
 

Similar to 
USLE 
nomograph 

Upslope 
contributin
g area 
method 

Literature Literature 

Panagos et al. 
(2015c) and 
related 
papers 

Europe Rainfall 
Intensity 
Summarisatio
n Tool (RIST) 

USLE method 3rd party 
programme 

Literature Literature 

Russo (2015) Brunei 
Darussalam 

Rosewell & 
Turner (1992) 

Rosewell 
(1997) 

RUSLE 
method 

Based on 
ground 
covered 

None 
observed 
(P=1) 

Nakil and 
Khire (2016) 

Gangapur (India) Nakil (2014) USLE method RUSLE 
method 

Literature Literature 

Raissouni et 
al. (2016) 

Smir Dam 
(Morocco) 

Similar to 
Arnoldus 
(1980) 
methods 

Merzouk 
(1985) 

Upslope 
contributin
g area 
method 

Literature None 
observed 
(P=1) 

Fernandez 
and 
Daigneault 
(2016) 

Waikato (New 
Zealand) 

Institute of 
Water 
Research 
(2015) 

Dymond et 
al. (2010) 

Upslope 
contributin
g area 
method 

Range 
between 1 
(wood 
vegetation) 
and 10 
(herbaceou
s 
vegetation 
or bare 
ground) 

 

Duarte et al. 
(2016) 

Montalegre 
(Portugal) 

Loureiro and 
Coutinho 
(2001) 

USLE method USLE 
method 

Literature Literature 

Gaubi et al. 
(2017) 

Lebna watershed 
(Tunisia) 

Rango and 
Arnoldus 
(1987) 

USLE method Upslope 
contributin
g area 
method 

Literature None 
observed 
(P=1) 
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