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Abstract

This thesis consists of an introduction and three substantive chapters. Chap-
ter 2 explores the identification of a small open economy model. Chapter 3
focuses on the business cycle consequences of migration. And chapter 4 inves-
tigates the contribution of investment-specific technology shocks to business
cycle fluctuations in the presence of financial frictions.

Chapter 2 takes a conventional new open economy macro model for a
small open economy and addresses three questions: what data series should
be used to identify the parameters of such a model? Are foreign data im-
portant for the identification of domestic parameters? And lastly, which
structural parameters are interdependent?

The chapter illustrates an applied methodology that enables an investiga-
tor to understand which data series are informative about parameters. The
methodology can also be used to learn about the properties of the model.
In particular, the methodology highlights which parameters are connected to
which data series. Identification of business cycle models matters because our
ability to recover structural parameters is influenced by the data series that
are used to inform the estimation. Structural parameters determine both the
specification of household preferences and the constraints that affect business
cycle volatility, which together determine welfare. Consequently, identifica-
tion analysis can provide insights into household welfare, which in turn has
ramifications for the specification of monetary policy rules.

If parameters are identified then the likelihood will eventually outweigh
any prior beliefs as the sample size becomes large (Gelman et al., 2004, p.
107). The approach discussed here thus shows whether data will eventually
dominate prior beliefs about parameters, determining whether analysis can
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– in the limit – resolve conflicting prior beliefs, and therefore usefully inform
the design of policy rules.

Chapter 3 of this thesis examines the business cycle effects that arise
from an expansion of the population due to migration. In recent years, mi-
gration flows have become a highly politicised topic, both in New Zealand
and abroad. While the debate on migration has become heated, compar-
atively little is known about the business cycle consequences of migration
flows.

This chapter contributes to the macroeconomic literature by illustrating
the contribution that migration shocks make to cyclical fluctuations in New
Zealand, and illustrates their dynamic impact. Using an estimated dynamic
stochastic general equilibrium (DSGE) model of a small open economy and a
structural vector autoregression, the chapter shows that migration shocks ac-
count for a considerable portion of the variability of per capita gross domestic
product (GDP). While migration shocks matter for the capital investment
and consumption components of per capita GDP, other shocks are more im-
portant drivers of cyclical fluctuations in these aggregates. Migration shocks
also make some contribution to residential investment and real house prices,
but other shocks play a more substantial role in driving housing market
volatility.

In the DSGE model, the level of human capital possessed by migrants
relative to that of locals materially affects the business cycle impact of mi-
gration. The impact of migration shocks is larger when migrants have sub-
stantially different – larger or smaller – levels of human capital relative to
locals. When the average migrant has higher levels of human capital than
locals, as seems to be common for migrants into most OECD1 economies,
a migration shock has an expansionary effect on per capita GDP and its
components, which also accords with the evidence from a structural vector
autoregression.

Chapter 4 of this thesis investigates the contribution of investment-specific
technology (IST) shocks in driving cyclical fluctuations in a closed economy
model when a borrowing constraint is introduced à la Kiyotaki and Moore
(1997). IST shocks have been identified as a major driver of the business

1Organisation for Economic Cooperation and Development.
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cycle, eg see Greenwood et al. (2000), and Justiniano et al. (2010, 2011).
These shocks affect the rate at which investment goods are transformed into
capital stock, and have been linked to frictions in financial markets, because
financial intermediation is instrumental in facilitating investment. The third
chapter shows that the importance of these investment shocks is in fact sub-
stantially diminished when collateral constraints on firms are introduced into
an estimated dynamic stochastic general equilibrium model. In the presence
of binding collateral constraints, risk premium shocks, which perturb interest
rates and affect intertemporal substitution, supplant IST shocks as impor-
tant drivers of the business cycle.
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Chapter 1

Introduction

This introduction provides an elementary discussion of the history of macro-
modelling and describe the principles and methodology underlying dynamic
stochastic general equilibrium (DSGE) models. It then summarises the three
chapters that form the substantive contribution of this dissertation. The
three chapters are unified by the application of dynamic stochastic general
equilibrium models to business cycle fluctuations. The first chapter is pri-
marily concerned with a methodological question regarding the choice of data
used to inform estimation, while the latter two chapters focus on the drivers
of business cycles.

1.1 A potted history of macro modelling
Macro modelling took a major step forward with the publication of Keynes’
General Theory in 1936.1 Keynes’ research objective was to explain why
a market-based economy could lead to a significant under-utilisation of re-
sources, as occurred in the Great Depression, and to identify policies that
could ameliorate such an event. Keynes’ theoretical contributions were bol-
stered by the publication of national accounts data for the first time in the
1940s.2 The development of national accounts data meant that economists

1Keynes (1936); see also a shorter summary in Keynes (1937).
2The development of national accounts data was supported in the 1930s by the work

of Colin Clark in the United Kingdom and by Simon Kuznets at the National Bureau of
Economic Research in the United States.

1



2 CHAPTER 1. INTRODUCTION

could begin to explicitly characterise how interest rates, output, employment,
and inflation related to each other.

Keynes posited relationships that directly linked aggregate variables to-
gether.3 Perhaps the most iconic aggregate relationship that Keynes speci-
fied was the consumption function, relating current aggregate consumption
to current income and other variables such as the rate of interest.4 This
relationship between aggregate income and aggregate consumption was not
built from first-principles analysis of individuals’ behaviour, but was seen as
a ‘fundamental psychological law’ that might be ‘relied on with great con-
fidence’. Hicks (1937) formalized Keynes’ General Theory with the IS-LM
model that most of us are familiar with from undergraduate economic de-
grees. The IS-LM model is static and does not fully specify the dynamic
evolution of macroeconomic variables through time.5

Keynes’ consumption function was soon subject to criticism. Under-
pinned by the macroeconomic facts brought to light by national accounts
data, Friedman (1957) and Modigliani and Brumberg (1954) both took is-
sue with the function that Keynes had specified. Rather than focus on a
contemporaneous relationship between income and consumption, Friedman
and Modigliani and Brumberg developed lifetime conceptions of consumer
behaviour. Friedman developed the permanent income hypothesis, noting
that permanent and transitory changes in income likely have differing im-
pacts on consumption, and Modigliani and Brumberg developed the life-cycle
hypothesis. Both theories imply that decision-makers need to take future
circumstances into consideration when making decisions in the present. Ex-
pectations are therefore crucial for consumer decision-making.

The Keynesian orthodoxy broke down over the late 1960s and 1970s.
Mankiw (1990) argues that Keynesian modelling was assailed by both empiri-

3Romer (1996) describes (traditional) Keynesian models as “directly specifying rela-
tionships among aggregate variables”.

4Keynes (1937) asks “what governs the amount of consumption-expenditure?” And
answers that “[i]t depends mainly on the level of income.” Keynes (p. 220) considered
this relationship ‘absolutely fundamental’ to the theory of effective demand set out in the
General Theory.

5A typical theoretical exercise for the IS-LM model would be to specify a change in a
parameter and then employ a comparative statics analysis, describing the new equilibrium
that the economy would ultimately arrive at, though without formally describing how
variables would transition to that new equilibrium, i.e. without specifying the dynamics.
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cal and theoretical challenges, and that the confluence of these two challenges
substantially eroded faith in Keynesian macro modelling. Part of the theo-
retical challenge arose in the late 1960s. Friedman (1968) and Phelps (1968)
both attacked the Phillips curve that had been tacked on to the IS-LM model
to explain price dynamics. They argued that the inflation-output ‘tradeoff’
embodied in the Phillips curve6 was not sustainable in the long run, and
that efforts to maintain low unemployment levels and high levels of output
through monetary stimulus would simply result in higher rates of inflation.
The inflation outcomes of the 1970s seemed to confirm Friedman and Phelps’
hypothesis. Traditional Keynesian models could not explain these high rates
of inflation.

Another theoretical challenge arose with respect to expectations. Lucas,
Sargent, and others introduced rational expectations into macro-models, fol-
lowing on from Muth (1960, 1961). Rational expectations of future outcomes
depend on i) what is known about the current state of the world; and ii) on
the decision-maker’s understanding of the dynamics of the economy. With
rational expectations the ‘understood dynamics’ are consistent with how the
economy actually behaves. Rational expectations does not imply perfect fore-
sight – since shocks will occur in future that cannot be perfectly anticipated –
but it does imply that decision-makers [eventually] understand how the econ-
omy operates, they forecast in a manner consistent with the data, and they
do not make systematic forecasting errors. If expectations of the economy
are at odds with the dynamics of the economy, if expectations are not ratio-
nal, then data should yield surprising outcomes, prompting decision-makers
to alter their forecasting processes and behaviour.

The assumption of rational expectations has important implications for
model dynamics and more particularly for the ability of policy to affect
real macroeconomic outcomes. In an influential paper, Sargent and Wal-
lace (1975) showed that systematic monetary policy was irrelevant for the
cyclical variation of output and unemployment when rational expectations
were introduced into a then-conventional macro model. Sargent and Wal-

6See Phillips (1958). Note that the ‘tradeoff’ perspective is associated with Samuelson
and Solow (1960), and become embedded in Samuelson (1961). See the discussion in
Sleeman (2011) and Leeson (1997).
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lace’s analysis implied that stabilising nominal variables, such as inflation –
with no feedback from the economy to policy settings – was the appropriate
way to implement monetary policy. A more nuanced interpretation of the
paper is that private agents’ ability to infer the structure of the economy and
to alter the way in which they form their expectations can have important
implications for the consequences of public policies.

Subsequently, it was realised that rational expectations can be compatible
with monetary policy affecting output and real variables. Fischer (1977) and
Taylor (1979) showed that monetary policy could have real effects if there
were nominal (e.g. wage or price) contracts that lasted several periods –
even though they assumed expectations were rational. So, there remained,
after all, a role for monetary policy in stabilizing real activity, and nominal
rigidities were found to be central to this role. In such models the way in
which firms set prices is at the heart of monetary policy’s ability to affect the
real economy. A central policy question is: if monetary authorities stimulate
aggregate demand will firms actually choose to produce more and employ
more people? Obviously if supply (quantity) decisions are determined ex ante
then changes in demand will not impact quantity supplied. But if suppliers
set prices and adjust quantities then a change in demand will lead to changes
in the amount produced. (Lester 1946, 1947, Machlup 1947a,b and Stigler
1947 provide an early debate on marginalism and the factors underpinning
changes in prices, output, and labour demand. Christiano et al. 2018 discuss
how DSGE models typically embed acyclical movements in marginal cost so
that firms satisfy movements in demand.)

Taylor and Fischer rehabilitated the traditional Keynesian conclusion
that policy can stabilize the economy.7 But Lucas (1976) nevertheless showed
that the methodology used to assess policy implications was materially af-
fected by the assumption of rational expectations.

“Lucas pointed out that most policy interventions change the
way individuals form expectations about the future. Yet the
proxies for expectations used in the macroeconometric models

7See Mankiw and Romer (1991b,a) for a collection of 1970s and 1980s journal articles
that largely define the New Keynesian research agenda, emphasising nominal and real
rigidities, imperfect competition and coordination failures.
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[of the 1960 and 1970s] failed to take account of this change in
expectation formation. Lucas concluded, therefore, that these
models should not be used to evaluate the impact of alternative
policies.” Mankiw (1990, p. 1647).

Another way of thinking about this issue is to realise that private sector
decisions strategically interact with public policies: optimal choices for pri-
vate individuals depend on what public policies are implemented. If public
policies change then the optimal consumption and investment decisions of
private individuals may also change, altering macro dynamics. Conversely,
people’s preferences – their ranking of different alternatives – are conven-
tionally assumed to be invariant to public policies, and thus provide a robust
starting point from which to build models of human behaviour.

Rational expectations has become pervasive in macroeconomic modelling.
One reason for making this assumption is because it is believed that in the
long run people will understand how the economy behaves and they will not
make systematic errors. If decision-makers’ expectations are not rational
then implicitly – possibly even explicitly – they are making forecasting mis-
takes that imply they are ‘leaving money on the table’ that could be used to
improve their own welfare if they behaved differently.

In an insightful monograph discussing the limits of rational expectations,
Pesaran (1987) argues that it is not obvious that agents can ever learn the
‘true’ model of the economy from their own experience, particularly when dif-
ferent individuals have different information sets. The rational action for a
household or firm depends not only on public policies but also on the private
‘policies’ of private agents. A large literature has subsequently developed
investigating the interplay between learning and expectations and ‘sticky in-
formation’, exemplified by Evans and Honkapohja (2010) and Mankiw and
Reis (2002, 2010). See also the conclusion of Binder and Pesaran (1995).
Notwithstanding this literature, the bulk of macroeconomic models devel-
oped to understand business cycle and monetary phenomena adopt rational
expectations and common knowledge as working assumptions. One prob-
lem with the assumption of rational expectations is that in flexible price
models agents respond promptly to new information. Empirically, however,
adjustment processes appear to be more protracted and prolonged. Various
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modelling devices, such as introducing habit into consumer preferences and
investment adjustment costs, have been introduced to more closely matched
the dynamics observed empirically.

1.1.1 Empirical modelling during the 1960s and 1970s

Empirical macro models seek to explain the joint probability distribution of
variables such as output, inflation, interest rates, and unemployment. But
macro variables are stochastic processes, sequences of random variables or-
dered temporally. Thus, the focus of empirical macro models, particularly
those used for monetary and fiscal policy purposes, is on dynamics: macro
models seek to explain how variables at different points in time relate to each
other.

As Diebold (1998) describes, macro modelling in the 1960s and 1970s
sought to identify and estimate “systems of stochastic difference equations
designed to approximate the postulated decision rules of Keynesian macroe-
conomic theory”. Empirical macro modelling was explicitly focussed on dy-
namics, though theory at the time was largely silent on this issue.

Empirical models in this period were large, complicated beasts, some-
times with hundreds of equations, possibly thousands of parameters, and
huge numbers of restrictions (e.g. many variables were absent from some
of the equations). If you wanted to know about a variable then chances are
these models would contain an equation for it. Fromm et al. (1972), for exam-
ple, report simulations from the Brookings model, which contained equations
for ‘agriculture, forestry and fisheries’ and also ‘farming’, regulated industries
(such as railroad and non-railroad transportation, communications, and pub-
lic utilities), personal consumption on food and beverages, and many more
sectors besides.

But all was not well with these large-scale, empirical macro models. In
particular, three major criticisms developed. First, as new data arrived in
the 1970s the parameters of the equations seemed to be subject to instability
(see for example Fromm et al. 1972, p. 201). There is, for example, a volumi-
nous literature about the instability of just one of these equations – money
demand. Judd and Scadding (1982) and Goldfeld and Sichel (1990) provide
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surveys and Lütkepohl (1994) provides a more recent contribution. Sims
(1980) showed that equations from large-scale macro models were unstable
and argued that the instability related to the ad hoc nature of restrictions
embedded in the equations.

A second problem with these models became evident as econometricians
began to better understand the properties of integrated variables (variables
that need to be differenced to have a stable mean). Econometricians realised
that regressions with unrelated integrated variables would lead to spurious
parameter estimates – one could conclude that two series were strongly re-
lated to each other even though in truth they were not – which would also
adversely affect the predictive content of such relationships. The spurious
regression problem for trending variables was first noted by Granger and
Newbold (1974), with Phillips (1986) developing an asymptotic theory for
the parameters and significance tests of such regressions. A large literature
then developed to test for cointegration relationships, including Engle and
Granger (1987), Stock and Watson (1988), Johansen (1988), Phillips and
Ouliaris (1990), and many others.

The third and equally damaging finding was that simple statistical models
such as univariate autoregressions (where Xt is explained using only Xt−1,
Xt−2, etc.) could provide better forecasts than the complicated large-scale
macro models (see e.g. Nelson 1972). Given the relative costs of constructing
univariate time series models and large-scale macro models, it was no longer
clear that the latter were worth the effort.

This is the jumping off point for the methodological discussion that we
turn to next. The methodology initiated by Kydland and Prescott (1982)
has been the dominant approach to business cycle fluctuations for the last
three decades.

1.1.2 Real business cycle and New Keynesian DSGE
models

Kydland and Prescott sought to explain business cycle fluctuations by tak-
ing a neoclassical growth model and augmenting it with a single (technology)
shock. Methodologically, they argued that models should be built by spec-
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ifying people’s objectives and the constraints they face, and that rational
expectations should be used to characterise people’s views about the future.
(For more discussion see Karagedikli et al. 2010.)

With the addition of maximization, this framework can be used to de-
termine how people behave, by looking at the corresponding first order con-
ditions. When agents maximize their objectives, outcomes are as good as
they can possibly get, and there is no incentive for decision-makers to alter
their behaviour to achieve a better outcome, where ‘better’ is judged in some
expected utility sense. There is in some sense an equilibrium between the
way people form expectations and the dynamics of the economy.

In business cycle analysis we focus on choices associated with multiple
time periods, and agents derive utility or profits in all periods. Because
decision-makers are explicitly looking forward into the future their expecta-
tions are crucial ingredients of their current behaviour. The importance of
stabilizing forward-looking expectations is one of the important insights that
we obtain from DSGE models.

Modern macro models apply Alfred Marshall’s marginalism, equating
marginal benefits and costs, to a dynamic setting with multiple periods.
Euler equations are the dynamic first order conditions that economic agents
must satisfy if they are to maximize lifetime utility. In essence, people opti-
mize their consumption, production, and labour supply decisions at adjacent
points in time. Why consume today when you could save and consume to-
morrow? Why work tomorrow to get a unit of consumption tomorrow if you
could work today and save for tomorrow instead? The marginal costs and
benefits of all these variables, in utility terms, should be equal.

The analysis of New Keynesian DSGE and real business cycle (RBC)
models is quite different to the traditional Keynesian macro models that spec-
ified direct relationships between macroeconomic variables and did not worry
too greatly about articulating agents’ objectives or constraints. Macro vari-
ables within RBC and DSGE models are inter-related, through constraints
and through objective functions, but not necessarily as directly as in Keyne-
sian models. This point is taken up in more detail below.

For a consumer, lifetime income represents a major constraint for con-
sumption decisions. In RBC/DSGE modelling the consumer’s lifetime bud-
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get constraint is broken up into a sequence of constraints that connect wealth
at time t to wealth at time t + 1. (Starting wealth plus income less expen-
diture equals wealth in the next period.) If these constraints are summed
together then we have the property that lifetime expenditure and income
must be equal. While we do not explicitly see lifetime income or Fried-
man’s ‘permanent income’ in DSGE models, the lifetime budget constraint
still binds. For a firm the production function is the major constraint (with-
out the constraint of a production function a firm would maximize profit by
producing an infinite amount). Period-by-period optimisation decisions also
guide firms’ pricing and investment decisions, since both decisions embody
intertemporal tradeoffs.

Consumers’ and firms’ intertemporal optimisation results in a system of
nonlinear Euler equations. These equations connect choice variables at time
t and t + 1, ensuring that marginal benefits (or marginal costs) at adjacent
points in time are equal as per the examples above. Analogous first order
conditions apply at all points in time, e.g. for t + 1 and t + 2. Thus in
these models decision-makers’ choices for consumption and labour supply
are optimized for all pairs of time, time t and t+ 2; time t and t+ 3, time t
and t+ 4; and so on.

Nonlinear Euler equations also implicitly connect our endogenous choice
variables to exogenous variables and to a vector of ‘state’ variables which
summarise the ‘current location’ of the economy. Actual outcomes are subject
to risk/uncertainty because of the shocks that buffet the economy. Stochastic
shocks mean that we cannot know exactly what will occur in future periods.
Decision-makers must optimize their choices now against the expected array
of future outcomes, where these future outcomes are assessed by looking at
utilities and probabilities.

Nonlinear systems of equations are hard to solve and hard to understand.
Typically, we approximate the nonlinear ‘systems of equations’ by linearising
around the steady state (using perturbation methods), because solving linear
systems of equations is more straightforward. Approximating the equations
trades tractability for accuracy. If the non-linearity is important then the
linearised approximation may not do a good job of capturing dynamics. More
particularly, the linearisation is unlikely to be very accurate if we are ‘far’
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from the steady state.
Projection methods provide an alternative approach to characterise global

descriptions of dynamics, as opposed to the local-to-steady-state solutions
provided by perturbation approximations. But projection techniques are
computationally intensive and they place severe constraints on the size of
models that can be explored. And these models are typically too small to be
useful as empirically-oriented models providing forecasting and policy advice.
See Judd (1999), DeJong and Dave (2007) and Heer and Maußner (2009) for
discussions about these computational techniques.

The linearised first order conditions that are obtained from optimizing the
model have expectation terms embedded in them. To be able to use the model
for forecasting we need to determine what the expectations are as functions of
the exogenous variables. We can then transform the ‘expectational difference
equations’ into a reduced form analogous to a vector autoregression. In the
reduced form, future outcomes are solely a function of past, realised variables,
and it is then easy to determine forecasts using the recursive structure of the
model.

Backward looking expectations are directly a function of past, realised ob-
servations and it is therefore easy to ascertain what such expectations should
be conditional on past data. Rational expectations, by way of contrast, imply
that people are forward-looking, and they use the model structure to com-
pute their forward-looking expectations. Any change to the model structure
will also change how expectations are formed.

Rational expectations imply restrictions that we hope will sharpen the
parameter estimates of our models, improving their performance. Parameters
in reduced form models are combinations of the structural parameters from
our first order conditions, where structural parameters are those that ‘par-
ticularise’ preferences or constraints. (In chapter 2 we refer to a particular
parameterisation as an ‘instantiation’, borrowing a label from computer sci-
ence.) The expectational difference equations (the Euler equations) restrict
admissible parameters of the reduced form.

Applying restrictions that are true – such as excluding variables from an
equation that should be excluded – assists in the estimation of parameters.
Because macro models are not estimated on experimental data, regressors
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(the left hand side variables) are typically correlated. If we wrongly include
a variable on the left hand side of an estimated equation then the covariance
of this included variable with other, correctly-included regressors will inflate
uncertainty about parameter values (parameter estimates will have larger
confidence intervals). Conversely, omitting a variable that belongs in the
regression will bias parameter estimates if the regressors are correlated.

It is worth emphasizing this point more starkly: imposing ‘good structure’
(correct restrictions) is good since it will result in more accurate parameter
estimates, but imposing ‘bad structure’ is bad since it will likely bias pa-
rameter estimates. To reiterate: rational expectations introduce restrictions
that we hope will sharpen the parameter estimates of our models, improving
their empirical performance and also enabling modellers to understand how
expectations processes will change as structural features of the model change
– features such as preferences, constraints, and public policies.

1.1.3 An identification detour

At this point it is worth taking a slight detour to discuss parameter iden-
tification, and why parameter restrictions are important for identification.
Parameter identification is about our ability to infer the parameters that
generated the data from the data that are actually observed. A model’s pa-
rameterisation determines all of the properties of the variables in the model,
including any transformations of the variables, and is thus crucial for any
inferences that we might wish to draw from the model.

The simplest econometric example of identification is a situation with
supply and demand curves where we are interested in understanding the
parameters of the two curves. Suppose that we observe prices and quantities,
points 1, 2, and 3 in panel (a) of figure 1.1. What does this price and quantity
information tell us about the shape of the underlying demand and supply
curves?

The answer to this question is that we know nothing about the underlying
supply and demand curves unless we have additional information or make
additional assumptions. If we know that some shift variable has shunted
the demand curve but the supply curve has not changed – a restriction on
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Figure 1.1: Identifying supply and demand curves
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a parameter, the shift-variable has a zero coefficient in the supply curve –
then the three points trace out the supply curve, e.g. panel (b). But if
the shift variable has moved both supply and demand simultaneously, as in
panel (c), then the three points will not trace out either the supply curve
or the demand curve. It is also important to realize that the situation in
panel (b) does not tell us anything about the slope of the demand curve.
Parameter restrictions are crucial to identify the shape of these functions –
if supply is unaffected by some exogenous variable, then it has a coefficient
of zero. This restriction suffices to identify the shape of the supply curve,
but additional restrictions will be required to identify the slope of the de-
mand curve. Systems of simultaneous equations face this same identification
problem, and require restrictions to identify the parameters of the system.
Specifying appropriate restrictions is one of the big challenges of macro mod-
elling. Identification is an issue both for Keynesian models and for the real
business cycle (RBC) and DSGE models that are described shortly.

We provide a figurative description of the identification problem in figure
1.2. A model parameterisation determines the probability distribution and
hence variances and covariances of the data. The identification problem is to
ascertain whether there is an inverse mapping, illustrated with the dashed
(red) line, that correctly and uniquely maps from the data moments back to
the parameter vector that generated the data. The dotted (white) line around
θ3 represents the fact that our identification analysis is ‘local’ to a particular
point. The identification technology determines whether another parameter
vector in the neighbourhood of θ3 could have generated the observed data
moments. It is worth emphasising again that identification is the product of
model specification (theory) and data. Changing either theory or data could
change the identification properties of the model.

1.1.4 Model properties

Modern business cycle analysis is primarily concerned with understanding
the propagation of independent ‘shocks’, and about understanding how these
shocks alter endogenous variables (reflecting people’s decisions) and observed
macroeconomic variables. From a technical perspective, impulse response
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Figure 1.2: Figurative illustration of the identification problem
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functions trace out how individual structural shocks propagate to all of the
observed variables. Naturally, shocks occur at each point in time. The model
and our estimates of parameters enable us to infer or estimate values for these
unobserved shocks.

The first order conditions associated with constrained intertemporal opti-
mization enable us to trace out how endogenous variables evolve in response
to shocks; these shocks are the exogenous variables of the model. The exoge-
nous variables are typically assumed to be uncorrelated, so it is possible to
consider thought experiments where just a single shock is changed at a time.

If two shocks are correlated then it is probabilistically unusual for one
shock to jump without the other doing so simultaneously. If shocks co-
vary it becomes difficult to separately account for the shocks’ relative im-
portance. This difficulty is particularly prominent if we are trying to de-
compose the variance of endogenous variables, since part of the variance
would depend on the shocks’ covariance term – how would we label that co-
variance contribution? Remember from elementary statistics that if ϵ1 and
ϵ2 are random variables and a and b are constants then var(aϵ1 + bϵ2) =

a2×var(ϵ1)+ b
2×var(ϵ2)+2ab×cov(ϵ1, ϵ2). If ϵ1 and ϵ2 have zero covariance

then it is straightforward to decompose the aggregate variation into variance
components from ϵ1 and ϵ2. Ramey (2016), in her Macroeconomics Hand-
book chapter on the propagation of shocks, argues that the shocks should be
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‘primitive exogenous forces that are uncorrelated with each other” (emphasis
in original). Cúrdia and Reis (2010) relax this restriction and allow for con-
temporaneous and dynamic correlation amongst the shocks, which they find
resolves some of the disparities between structural and reduced form models.
For the most part, however, models with cross-correlated ‘structural’ shocks
are a rarity.

In general, it is not straightforward to specify how one endogenous vari-
able affects another. Imagine that we observe a unit increase in the exchange
rate. What will happen to future output growth? The correct answer is “it
depends”. How output evolves depends on the exogenous shock that in-
creased the exchange rate in the first place. Shocks are not created equal.
DSGE models provide a lens that can be used to identify the underlying
exogenous drivers, ascertain their effects, which we represent with impulse
response functions, and determine their contribution to cyclical volatility,
via forecast error variance decompositions. These are the analytical building
blocks that are used intensively in the remainder of this dissertation.

1.1.5 Real business cycle and New Keynesian DSGE
models

The three substantive chapters of this dissertation use dynamic stochastic
general equilibrium models to address various analytical questions. This sec-
tion spends a little time talking about the features of these models. Real
business cycle and New Keynesian DSGE models are methodologically sim-
ilar in that they build models from preferences and constraints. Typically,
these models also assume maximizing behaviour, rational expectations and
market equilibria. Early-generation RBC models assumed that prices were
flexible and focused on the role of technology shocks in driving cyclical fluc-
tuations (see Hartley et al. 1998, ch. 1). In contrast, New Keynesian DSGE
modellers have typically assumed that there are important nominal and real
rigidities, and many types of shocks. The dividing line between these two
approaches is beginning to blur, with some flexible-price RBC models incor-
porating additional shocks and frictions, as in chapter 3.

Keynesians, new and old, tend to believe that fiscal and monetary policy
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can play an important role in stabilising the economy. New Keynesians typi-
cally incorporate features in their models to replicate this property, ensuring
that there is a substantive, welfare-enhancing role for policy.8 But to justify
this position they have to assume that there are nominal rigidities (eg wage
and price stickiness) or other frictions whose effects can be offset with policy.
RBC modellers, on the other hand prefer to start from a very simple model,
to see how much can be explained with as few elements as possible. One
can interpret the RBC agenda as providing a well-understood baseline from
which to consider more complicated DSGE models.

Parsimony is a virtue in modelling, as simple models are easier to un-
derstand. It is also usually harder to estimate parameters for larger models
accurately. If we introduce additional complexity into our models we need
to have a good rationale for doing so. Does the additional complexity change
our understanding of the dynamics of the economy? Does such complexity
help us to fit the data better, forecast better, or enable us to explain addi-
tional data? Does additional complexity change our views on optimal policy?
These are important challenges for more complex models.

1.1.6 The empirical performance of macro models

From a research perspective, RBC and New Keynesian dynamic stochastic
general equilibrium models provide a playing field in which to explore dif-
ferent assumptions. The main dimensions that DSGE researchers explore
are the specification of preferences, the specification of constraints, and the
impact of particular frictions.

If DSGE models are to be credible empirical models that can be used
for forecasting then they need to overcome the earlier criticism of large-scale
macro models. That is, they need to demonstrate that they can forecast as
well as simple time series models, such as univariate autoregressions. Param-
eters must also be stable or at least predictable. If the models do not do a
reasonable job of representing the data it is hard to take their quantitative
policy recommendations seriously. Furthermore, the policy conclusions that

8Minsky (1975, p. 10) observed “the primary policy message of Keynes—that slumps
are unnecessary and a waste of both human and nonhuman resources—has become a
fundamental political axiom guiding economic policy.”
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are provided by DSGE models depend on their exact parameterisation, see
for example De Paoli (2009).

Estimating simultaneous equations models via maximum likelihood has
proved challenging.9 Fortunately, Bayesian techniques have been developed
that are easier to implement, and that enable both prior beliefs and like-
lihoods to influence parameter estimates, thereby increasing their policy
relevance. Software and methods associated with Sims (2002), Schorfheide
(2000), Del Negro and Schorfheide (2004), and Adjemian et al. (2011) have
made the solution and estimation of DSGE models by Bayesian methods
much more accessible.

In a couple of influential papers, Smets and Wouters (2003, 2007) argued
that the forecasting performance of their DSGE models for Europe and the
United States, with multiple shocks and multiple frictions, were competitive
with time series forecasts. Smets and Wouters’ forecasting success for the
Euro Area and the United States, and the prospect of improved policy analy-
sis, encouraged central bank modellers to develop similar models for Britain,
Canada, Sweden, Norway and of course New Zealand. (See e.g. Bayoumi
2004; Murchison and Rennison 2006; Adolfson 2007; Brubakk et al. 2006;
and Beneš et al. 2009.)

It is worth reiterating that RBC and DSGE models imply particular re-
duced forms once we have substituted out for expectations. To improve fit,
however, one does not simply introduce additional regressors into the re-
duced form. Instead, the fit to the data is improved by introducing a variety
of ‘frictions’ into DSGE models, either in the preferences (eg habit forma-
tion) or constraints (such as capital adjustment costs or nominal price rigidi-
ties). Christiano et al. (2005), for example, developed a DSGE model with
staggered wage contracts and variable capital utilisation to improve the per-
sistence of both inflation and output in response to monetary policy shocks.
Additionally, the exogenous shocks are also assumed to have a degree of per-
sistence, and so are typically modelled as being autoregressive processes, ie
et = ρet−1 + ϵt, where et is the exogenous shock, and ϵt is white noise. These
frictions and generalisations to the shock processes are either ‘dirty tricks’ or

9Relatively few macroeconomists estimate DSGE models using maximum likelihood
methods. Though see Ireland (2004a,b) for the exception to this statement.
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‘pragmatic amendments’, depending on your modelling preferences. These
features often make an important contribution to the dynamics of the model.
Consequently, there will always be legitimate questions about the extent to
which DSGE models are genuinely ‘structural’.

1.2 Criticism of the DSGE framework
While this dissertation is based on DSGE models it is worth taking a moment
to dwell on some of the criticisms that have been levelled against them. First,
the models rely on infinitely-lived agents and heterogeneity amongst agents is
usually quite limited. This lack of heterogeneity is problematic when financial
transactions are involved, since borrowers of the same type will not choose
to lend to each other.10 Stiglitz (2018) notes that the housing market was
central to the ‘great recession’ in the United States, 2007-2009, and suggests
that DSGE models of housing and their finance miss important life-cycle
heterogeneity. The lack of heterogeneity also means that agents have the
same information and beliefs about the economy.

Second, the microeconomic foundations of agent decision-making in DSGE
models is also subject to criticism. DSGE models invariably rely on the as-
sumption of rational expectations and assume that agents maximise their
objective functions subject to constraints. Yet a considerable literature on
behavioural economics (see for example Altman 2006 and Cartwright 2011)
and experimental economics (see Kagel and Roth 2016a; Plott and Smith
2008; Kagel and Roth 2016b) argues that there are important cognitive lim-
itations, which call into question a central building block of DSGE models.
Yet another literature focuses on the role of learning (exemplified by Evans
and Honkapohja 2010). In the spirit of the latter, Eusepi and Preston (2011)
consider how learning may disconnect expectations from fundamentals and
thus how shifts in beliefs can result in business cycle fluctuations. Grauwe
(2010) argues that learning can generate endogenous cycles, reflecting bouts
of optimism or pessimism, and that learning provides an intrinsic mechanism
to generate the persistence seen in output and prices. See also Slobodyan and

10We will see in chapter 4 a model with two types of agents to introduce a motive for
lending.
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Wouters (2012), who use the Kalman filter applied to small forecasting mod-
els to generate expectations. Learning of this type reduces the importance
of wage and price mark-up shocks as a source of business cycle fluctuations.

Stiglitz (2018) trenchantly argues that DSGE models have many substan-
tial failings, including the fact that they fail to provide convincing explana-
tions of the large declines in output and employment that occurred during the
global financial crisis, not to mention the slow recoveries that then ensued.
Stiglitz argues that the methodology that is used to estimate models fails to
target these extreme downturns, even though such down-turns are central to
the design of policy. In response to this criticism, Christiano et al. (2018)
note that modern DSGE models are estimated using Bayesian techniques
that maximise marginal posterior densities. Implicitly, these techniques can
be thought of as targeting a weighted average of empirical moments, though
it is true that they do not necessarily target the moments that Stiglitz thinks
are of pre-eminent interest. Another response to this criticism is that mone-
tary and fiscal policies needs to be conducted in good times and in bad, and
thus matching the properties of non-crisis periods is still important if DSGE
models are to inform policy.

Stiglitz also notes that the equilibrium nature of DSGE models rules out
coordination problems – the price mechanism functions miraculously and
comparatively little attention is paid to how transactions are implemented,
including the information asymmetries and cognitive limitations of the agents
that are transacting. The search and matching models of the ‘new monetarist
economics’ take these frictions and market details seriously, and provides a
more deeply micro-founded perspective on the nature of finance. For an
overview, see Williamson and Wright (2010, 2011) and Wright (2018).

Stiglitz also criticises the modelling of uncertainty in DSGE models. Typ-
ically uncertainty is represented as quantifiable risk – appropriate probabililty
distributions can be inferred for the stochastic elements of the model, and in
many instances these risks can be diversified using financial markets. Such
assumptions are typically made for reasons of tractability. If households and
firms do not know what they do not know, or cannot characterise the prob-
abilities of uncertain outcomes then it becomes problematic to infer what
actions such agents will undertake given their present circumstances.
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In 2010 five economists presented testimony to the Committee on Sci-
ence and Technology of the US Congress. The hearing of this session of the
committee11 considered ‘building a science of economics for the real world’,
and the allocation of national science foundation awards to macroeconomics.
Expert witness testimony was presented by Professors Solow, Winter, Page,
Chari, and Colander. The expert testimony provides a cross-section of views,
some supportive of DSGE modelling and others considerably more negative.
A common theme was the need for a greater degree of pluralism in the types
of models being funded, developed, and applied (see for example the tes-
timony by Page and Colander and, separately, Wren-Lewis 2018). Some
criticism, such as Solow’s perspective on the modelling of labour markets in
DSGE models, seems mis-placed. Solow asserts that DSGE models have no
place for involuntary unemployment. Yet the DSGE literature now incorpo-
rates, for example, search-and-matching frictions that provide a framework
to analyse unemployment. Returning to information asymmetries, Sidney
Winter in his written testimony emphasised the information asymmetries
and institutional details that were embedded in the securitisation of housing
loans. It is a reasonably fair conclusion that these details are typically omit-
ted from most DSGE models. Conversely, ‘new monetarist’ models often
embody search and matching frictions and pay much greater attention to
such features.

Winter (see p. 24 of the record of the hearing) goes on to claim that
“the DSGE model does not contain even a rudimentary representation of
the financial sector at the level of the “IS-LM” model”. While such a claim
is true of many DSGE models, it was not universally supportable even in
2010 when the claim was made, and is less true eight years later. To note
just a few examples, Bernanke et al. (1996) develop a model of financial
markets that incorporates an external finance premium that arises from a
costly state verification problem, and Galí et al. (2007) investigate consumer
liquidity constraints. Gerali et al. (2010) study the role of credit supply
factors in a model with financial frictions and an imperfectly competitive
banking sector. Gertler and Karadi (2011) examine unconventional monetary
policy in a model with financial intermediaries. Hollmayr and Kuhl (2016)

11One hundred eleventh congress, second session, July 2010, Serial Number 111-106.
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examine imperfect information about financial frictions in a DSGE model
with a banking sector with a limited enforcement problem. And Jacob and
Munro (2018) examine macro-prudential policies in an open economy DSGE
model with a banking sector. Chapter 4 of this dissertation contributes to
this literature, incorporating a simple financial friction and illustrating how
such a friction affects the relative importance of different structural shocks.

Yet another criticism is that DSGE models are often solved using first
order, linear perturbation techniques. The dynamics of the system are only
well-approximated near the steady-state, and cannot be used to describe tail
events. More generally, linear techniques – by definition – cannot capture
non-linearities that again may be important for tail events. The macroeco-
nomics profession is beginning to move on from purely linear approximations
of the equations in structural models. In some cases higher order approx-
imations are required, eg to answer questions about welfare and optimal
policy (see for example Woodford 2003, Heer and Maußner 2009, Schmitt-
Grohé and Uribe 2004, and Kim et al. 2008). Projection methods are also
becoming increasingly popular, but at a computational cost that limits the
complexity of the models.

Christiano et al. (2018) provide additional responses to some of the crit-
icisms levelled by Stiglitz and others. They note that the family of DSGE
models includes efforts to model financial frictions, heterogeneity, deviations
from traditional rational expectations, such as k-level thinking and various
forms of learning, and efforts are now being made to relax the assumption of
common knowledge.

Let me conclude this section with the following observation. DSGE mod-
els, like all models, are imperfect representations of the macroeconomy. How-
ever, they provide a transparent platform that can be used to model impor-
tant macroeconomic issues, they capture important mechanisms and con-
straints, and they continue to evolve and adapt to new empirics and new
theory.
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1.3 Introducing three chapters
Having provided a potted history of macro modelling and the constituent
elements of dynamic stochastic general equilibrium models, let us now turn
to a brief description of the following chapters. The next chapter explores
whether it is possible to identify – in an econometric sense – the parameters of
a DSGE model. Econometric estimates of parameters determine the volatility
and persistence of different shocks and determine the contribution of these
shocks to aggregate variation. Chapter 3 explores the consequences of a
new candidate shock, a migration shock, and quantifies its importance for
business cycle fluctuations. The final chapter investigates the consequence of
a friction for the contribution made by investment-specific technology shocks.
The three chapters are unified by their use of DSGE models. The latter two
chapters identify the contribution of independent exogenous drivers, making
use of impulse responses and forecast error variance decompositions to inform
the analysis. The literature on financial frictions also illustrates that the
choice of data matters for inferences, tying back to the focus of chapter 2.

1.3.1 Foreign data are not necessary for identification

Chapter 2 takes an open economy macro model for a small open economy
and addresses three questions:

1. What data series should be used to identify the parameters of such a
model?

2. Are foreign data important for the identification of domestic parame-
ters? And lastly,

3. Which structural parameters are interdependent?

The chapter illustrates a practical methodology that enables an inves-
tigator to understand which data series are informative about parameters,
based on Iskrev (2010b). When parameterised, models fully determine the
properties of the variables in the model. The problem of identification is to
establish whether an inverse mapping also exists, from observed data back
into the parameter space of the model. We consider a situation in which
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the investigator must choose which series to use to inform data estimation,
where the series will be some subset of the variables contained in the model.
We make use of the inverse function theorem to evaluate whether an inverse
exists. Given suitable conditions, a vector-valued function will have an in-
verse if the vector of partial derivatives with respect to the parameters has
full rank. We evaluate the ranks of derivative matrices that are conditional
on an initial parameter vector and on the data series chosen as observables.
We use these rank matrices to determine combinations of observables that
can be used to identify the model parameters. In principle, this identification
analysis may depend on the underlying parameterisation, and so we explore
identification at different points in the parameter space.

Using this methodology, we find that foreign data are not particularly
useful for identification of domestic parameters. In the context of our model
identification problems arise in the mapping from deep structural parameters
through to the parameters of the expectational equations. Our methodology
can easily ascertain when problems arise in this mapping. While the exact
conclusions of this chapter are specific to the particular model that we ex-
amine, the methodology we illustrate can be easily applied to other models
to ascertain whether they too suffer from similar identification problems.

The methodology deployed and extended in this dissertation can also be
used to learn about the properties of a model. In particular, the methodol-
ogy highlights which parameters are interdependent and which parameters
are informed by observed data. We emphasise that the analysis examines
the importance of foreign data for econometric identification and hence esti-
mation and is not concerned with the contribution that foreign shocks make
to domestic business cycle fluctuations.

Ultimately, identification of business cycle models matters because esti-
mates of structural parameters are materially influenced by the data series
that are used to inform the estimation (Guerron-Quintana, 2010). Since
structural parameters determine both the specification of household prefer-
ences and the constraints that affect business cycle volatility, identification
can be important for our understanding of household welfare. Curvature
parameters in utility functions determine how (un)willing households are to
vary their consumption and labour supply patterns, either across varieties
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of goods or through time. The parameterisation of constraints influences
the degree and types of volatility extant in the economy, that households
may seek to ameliorate. These welfare considerations have ramifications for
the specification of monetary policy rules, and public policy choices more
generally depending on the specification of the model.

Different policy-makers, different researchers or political authorities, may
agree on the structure of a model but have different prior beliefs about how
a model should be parameterised. The analysis presented in chapter 2 shows
whether data will eventually dominate prior beliefs about parameters, deter-
mining whether analysis can – in the limit – resolve conflicting prior beliefs,
usefully informing the design of policy rules.

1.3.2 Skilled migration and business cycle dynamics

Chapter 3 examines the business cycle effects that arise from an expansion
of the population due to migration. Migration flows have become highly
topical, even controversial, in countries such as New Zealand, Britain, the
United States, Germany, and Scandinavia. While the debate on migration
has become heated, comparatively little is known about the business cycle
consequences of migration flows. This chapter contributes to the macroeco-
nomic literature by illustrating the contribution that migration shocks make
to cyclical fluctuations, and illustrates their dynamic impact. This chapter
thus makes use of the archetypal tools of DSGE analysis that were described
above.

The analysis presented here is conducted in per capita terms. Since the
number of people living in a country inherently scales up its productive ca-
pacity and income, aggregate consumption and investment are naturally ex-
pected to increase. A more interesting question is whether these same quan-
tities increase or decrease in per capita terms.

Chapter 3 specifies a dynamic stochastic general equilibrium model to
explore the consequences of migration. Households consume foreign- and
domestically-produced goods, and housing. Domestically produced goods are
produced using effective labour and physical capital, where effective labour
is a composite of physical labour and human capital. The level of human
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capital is particularly important for the dynamics of the migration shock.
Human capital serves to amplify the labour supply impact of a migration
impulse.

The model also embodies other frictions. Physical capital, for example,
has a variable utilisation rate. Variable utilisation and capital adjustment
costs are important for the dynamics of shocks. Variable utilisation pro-
vides an extra margin of adjustment in response to a shock, while capital
adjustment costs serve to slow the propagation of shocks to investment.

The model has three stocks of capital: physical capital; housing; and hu-
man capital. A migration inflow erodes the per capita stock of physical and
housing capital, but the effect on the stock of human capital is ambiguous
because migrants may have more or less human capital than domestic resi-
dents. The stock of migrant human capital relative to local resident human
capital has a material impact on the dynamics of the migration impulse and
on the contribution that migrant shocks make to business cycle fluctuations.
In our baseline, we assume that migrants to New Zealand have 1.85 times as
much human capital as local residents, based on analysis by Boubtane et al.
(2016).

Using the estimated dynamic stochastic general equilibrium model of a
small open economy, the chapter shows that migration shocks account for a
considerable portion of the variability of per capita gross domestic product
(GDP). While migration shocks matter for the capital investment and con-
sumption components of per capita GDP, there are other drivers of cyclical
fluctuations in these aggregates that are even more important.

Migration shocks are also important for residential investment and real
house prices, but other shocks play a larger role in driving housing market
volatility. In the DSGE model, the level of human capital possessed by
migrants relative to that of locals materially affects the business cycle impact
of migration. The impact of migration shocks is larger when migrants have
substantially different – larger or smaller – levels of human capital relative
to locals. When the average migrant has higher levels of human capital than
locals, as seems to be common in most OECD economies, a migration shock
has an expansionary effect on per capita GDP and its components, which also
accords with the evidence from a restricted structural vector autoregression.
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1.3.3 Financial frictions and investment-specific tech-
nology shocks

Chapter 4 rounds out the dissertation. This chapter investigates the con-
tribution of investment-specific technology (IST) shocks in driving cyclical
fluctuations in a closed economy model when a borrowing constraint is in-
troduced into the model, à la Kiyotaki and Moore (1997). The constraint
implies that borrowing must be collateralised by a certain amount of assets
– typically physical assets such as capital goods or housing. Given suitable
assumptions, collateralised debt arises as an optimal contract when the verifi-
cation of the ‘state’ is costly (Townsend, 1979). Debt contracts are extremely
prevalent, relative to what one might expected based on conventional gen-
eral equilibrium theory. Townsend’s paper on costly state verification was
prompted by observations by Arrow (1974) and Radner (1968) that state-
contingent contracts are only feasible if both contracting parties are able to
verify the state.12 Financial frictions have also risen in prominence following
the global financial crisis. The assumption that financial markets operate
(approximately) frictionlessly has become much less tenable over the last
decade. State-contingent verification is the canonical friction that we deploy
in chapter 4.

Investment-specific technology shocks have been identified as a major
driver of the business cycle, motivated by the ongoing decline in the relative
price of investment goods. Greenwood et al. (2000), for example, suggests
that investment-specific technological change is responsible for about 30 per-
cent of the variation in US output. See also Fisher (2006), Justiniano et al.
(2010, 2011), and Khan and Tsoukalas (2011). These shocks affect the rate
at which investment goods are transformed into capital stock, and have been
linked to frictions in financial markets, because financial intermediation is
instrumental in facilitating investment.13 As noted in the chapter, parame-

12While Townsend’s analysis is predicated on the implementation of such constraints by
private lenders, constraints of this ilk have assumed greater prominence in the policy liter-
ature because macro-prudential authorities have co-opted them to employ ‘loan-to-value’
constraints on household borrowers purchasing houses, to try to limit the vulnerability of
financial systems to down-turns in housing markets.

13For example, Justiniano et al. (2011) state that “investment shocks might proxy for
more fundamental disturbances to the intermediation ability of the financial system.”
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ter estimates and the variance contribution of these shocks depend on which
data series are used to estimate the model, illustrating an important link
between chapters 2 and 4.

Chapter 4 asks whether the role of investment-specific technology is ro-
bust to the inclusion of the borrowing constraint. The short answer to this
question is: ‘No.’ The style of analysis is similar to Carlstrom and Fuerst
(1997) who examine the role of agency costs for business cycle dynamics. In
contrast to Carlstrom and Fuerst, we estimate our model using the Bayesian
estimation techniques that have become common over the last two decades.

A key feature of business cycles is the simultaneous co-movement of out-
put, investment, consumption, and hours worked. In our model patient
households fund borrowing by firms owned by impatient entrepreneurs, col-
lateralised against physical capital. Investment-specific technology shocks
increase the efficiency with which investment goods are produced from the
factors of production. Such a shock reduces the price of investment goods.
But the concomitant reduction in the price of existing investment goods
tightens the collateral constraint, making it more difficult for entrepreneurs
to borrow, and instead forcing them to reduce consumption to increase in-
vestment. Thus, the shock generates countervailing movements in consump-
tion and investment, which is at odds with the positive correlation that is
observed in the data. Other shocks must predominate to generate this posi-
tive co-movement. In the context of the model, shocks to the risk premium,
which spontaneously increase interest rates affecting intertemporal substitu-
tion, supplant IST shocks as drivers of the business cycle. This chapter thus
illustrates that the particular friction embedded in the model has a material
impact on the relative importance of the shocks.

Before concluding, it is worth noting that this chapter deploys a partic-
ular financial friction – the collateral constraint – and other constraints or
frictions are also worthy of investigation. Furthermore, the consequences of
the frictions are likely to depend on exactly how the frictions are specified
– just as investment adjustment costs have different implications to capital
adjustment costs. The literature on financial frictions continues to build,
and with it a greater understanding of which frictions fit the data better.
This literature is too extensive to do much justice to here, having expanded
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rapidly since the global financial crisis. Examples include Gu et al. (2013),
who discuss a rationale for bank intermediaries; Hall (2011, 2013), who looks
at the intensification of financial frictions in a crisis; Brzoza-Brzezina et al.
(2013), who compare a DSGE model with collateral constraints to a DSGE
model with an external finance premium; Suh and Walker (2016) who take
models with financial frictions to the data (and suggest that they do not
necessarily improve fit relative to a model without frictions); Kolasa and
Rubaszek (2015), who perform a similar exercise, concluding that a model
with frictions in the housing market out-performs a model with frictions in
the corporate sector; and Fuentes-Albero (2018), who examines the contribu-
tion of financial shocks, financial frictions, ‘good luck’, and ‘good policy’ in
driving the great moderation. Many other papers, too numerous to mention
here, explore related issues.

1.4 Concluding remarks
DSGE models provide a platform that can be used both to forecast the econ-
omy and evaluate the impact of different policies. The ability to evaluate
policies stems from the fact that DSGE models are built up from repre-
sentations of preferences that are assumed to be invariant to policies. Us-
ing DSGE models, it becomes possible to evaluate how people will modify
their behaviour when public policies are changed, and therefore possible to
determine what macro outcomes are likely to arise. Furthermore, because
DSGE models characterise people’s utility functions they can also be used to
evaluate welfare, though any agent heterogeneity makes welfare evaluation
problematic.

This introduction has described how DSGE models are built up from pref-
erences and constraints, and how modellers amend DSGE models to better-fit
the data. DSGE models also delineate the frictions or imperfections that pro-
vide a rationale for policy (such as nominal rigidities), and can be used to
infer the primitive, fundamental drivers behind macroeconomic fluctuations.

All models are approximations to the world. DSGE models, for example,
make use of assumptions that some people will find unpalatable (such as
rational expectations and optimization). One benefit from modelling is that
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these assumptions are made transparently, and their impact can therefore
be explored explicitly. Modelling is an evolutionary process that aims to
identify ‘better’ models than the ones we currently employ. Models should
be continuously tested and evaluated, and new alternatives should be consid-
ered as potential replacements. We should also refrain from discounting new
models too hastily. Mankiw (1990) observes that Copernican helio-centric
astronomy was initially inferior at predicting planet positions, relative to the
Ptolemaic system in which planets circled the earth. But this empirical de-
ficiency was overcome once it was realised that planet orbits were elliptical
and not circular.
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Chapter 2

Foreign data are not necessary
for identification in a small
open economy model

2.1 Introduction
“Identification issues ought to be discussed in more detail in
DSGE models, since they affect the conclusions we get from
them.” Fernández-Villaverde (2010, fn. 10)

“What econometricians can usefully do is to clarify what conclu-
sions can and cannot logically be drawn given empirically relevant
combinations of assumptions and data.” Manski (2003, p. 12)

“A further step consists of preposterior analysis, which is con-
cerned with the design of experiments. By studying the attributes
of the posterior density prior to the observation… it is sometimes
possible to compute the expected value of sample information
and thereby to encompass data collection in the formal analysis.”
Drèze (1972, p. 8), emphasis added.

Which data series should be used to estimate a small open economy
model? More specifically, are foreign data series useful for identification of
domestic parameters? And which structural parameters are interdependent?

31
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In this chapter we apply and extend a simple methodology that answers
these three questions. Our analysis illustrates that identification problems
can creep into the mapping between ‘deep’ structural parameters and the pa-
rameters that specify the expectational equations that represent the model.
The methodology that we develop can diagnose such identification prob-
lems and determine which parameters are subject to identification problems.
While our answers to these questions are specific to our particular model,
the methodology can easily be applied to similar models.

The parameters of business cycle models govern the properties of observed
macroeconomic variables, their moments, impulse responses, forecasts and
variance decompositions. Conversely, parameter estimates are determined
by an inverse mapping from observed data back into the parameter space.
This chapter focuses on this inverse mapping for a small open economy model.

Simulation methods associated with the Bayesian paradigm have become
pre-eminently popular for estimating business cycle models.1 Consequently,
we focus on parameter identification in the context of Bayesian estimation of
a dynamic stochastic general equilibrium (DSGE) model.2 We concentrate
on the full information methods that are commonly used to estimate DSGE
models, though there is also a related literature that focuses on parameter
identification for single equations.3

Identification is an important issue for Bayesians for two distinct reasons.
First, identification analysis can determine which data series can be used to
refine beliefs about parameters, and thus informs estimation. Second, iden-
tification analysis sharpens focus on the prior beliefs governing un-identified
parameters. Identification analysis can show whether posterior inferences
will ultimately be governed by the likelihood or whether prior beliefs will al-
ways play an important role in shaping beliefs. If the model is identified, we
can eventually rely on the data to resolve disparate prior beliefs. In the con-

1An and Schorfheide (2007), Fernández-Villaverde (2010), Herbst and Schorfheide
(2014), Fernández-Villaverde et al. (2016) and Herbst and Schorfheide (2015) discuss these
methods. See also Robert and Casella (2004) for a more statistically-oriented treatment
of simulation methods.

2 Gabrielsen (1978) and Sims (1980, p. 2) provide elegant verbal definitions of identi-
fiability.

3For examples of the latter, see Pesaran (1987), Nason and Smith (2008), Dufour et al.
(2013), and Krogh (2015).
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trary case, other mechanisms will be required to resolve competing beliefs,
such as voting, coin-tossing or paper-scissors-rock.

How forceful are our prior beliefs? Drèze (1972, p. 9) notes that classical
exclusion restrictions are maintained even if they conflict with observations,
while Bayesian priors are balanced against observations – via likelihoods – in
proportion to their relative precisions. However, the balancing act between
prior and likelihood may be somewhat illusory. ‘Pre-posterior’ identifica-
tion analysis can highlight whether some Bayesian prior beliefs will always
influence posterior beliefs. In a complementary approach, Müller (2012) eval-
uates the tradeoff between prior and likelihood by examining the sensitivity
of posterior beliefs to shifts in the means of the prior distributions. However,
Müller’s approach rests on an unarticulated choice – a choice to use particular
data series to estimate the model. More specifically, his analysis conditions
on a specific data sample, determining the sensitivity of the means of the
posterior to the priors. In contrast, we consider which data series might be
useful for estimation before we have observed any particular sample.

In Bayesian analysis data y are used to update prior beliefs about a model.
But data are not manna from heaven that miraculously appear to feed the
econometrician. They are instead the outcome of a mundane choice to collect
and process certain series. In scientific analysis the data y are traditionally
the output of an ‘experiment’. In setting up experiments or in performing
econometric exercises to estimate model parameters, scientists choose which
series are included in the observed data sample y. In designing analysis we
want to ensure that the data used as observables are actually informative.
In short, what data series should we choose to observe?

We focus on parameter inference with an infinite sample of data. An infi-
nite supply of data – the complete population – makes it possible to perfectly
characterise the probability distribution of the observed data. While clearly
hypothetical, an infinite supply of data is the most favourable data context
possible for estimation. If we cannot infer model parameters with an infinite
sample then inference with finite samples can never be definitive about the
parameters of interest. Speaking from a classical perspective, Christ (1966, p.
300) notes “there is little point [in] attempting to estimate structural param-
eters from a finite sample if even an infinite sample could not give the desired
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information about the parameters.” We use this asymptotic perspective to
inform a choice about which data series to use as observables.

One can think of our exercise as one in which the formulation of the
model has preceded the collection of data. We then use the properties of
the model to inform the collection of data. Proceeding ‘as if’ we know the
population of data means there is no need to ‘test’ for identification, because
there is no sampling variability. The approach is thus different to the clas-
sical weak-identification/weak-instrument literature. It is also distinct from
the Bayesian approach suggested by Koop et al. (2013), which considers iden-
tification by examining how the dispersion of posterior distributions collapses
in Monte Carlo experiments as simulated data samples are increased in size.
Our approach can be thought of as highlighting the asymptotic properties of
the model, and is unaffected by specific finite samples, samples that may not
be fully representative of the population as a whole.

Although a somewhat contentious issue in earlier decades,4 Bayesian
econometricians now seem to accept that identification presents as the same
problem in both classical and Bayesian analysis, and depends on the proper-
ties of the likelihood of the data, see Poirier (1998) and Koop (2003, p. 291)
for example.5 The likelihood principle of Bayesian analysis implies that the
likelihood summarizes all the information in the data (Berger and Wolpert,
1988). It thus comes as no surprise that the likelihood takes centre stage
when considering the mapping from data back to estimated parameters. Be-
cause the likelihood depends on the data series that are observed, it is clear
that the choice of observables may, in principle, affect the identification of
a model. We discuss why there is a choice of observables for DSGE models

4Hsiao (1983, p. 272) observed that it was ‘unresolved’ whether Bayesian theory re-
quired a different definition of identification to that used in classical analysis. Qin (1989)
discusses the early history of identification analysis. Discussing likelihoods and identi-
fication in Bayesian analysis, Aldrich (2002) suggests that there was no agreement as
to whether identification applied to priors, posteriors or likelihoods. A 2014 blog-post
by Andrew Gelman, and associated comments, http://andrewgelman.com/2014/02/
12/think-identifiability-bayesian-inference/, indicates that identification still re-
mains a controversial topic in Bayesian statistical analysis.

5The emphasis on the likelihood for Bayesian identification dates back to at least
Kadane (1975, p. 175) and Drèze (1975b, pp. 165, 167). Hsiao (1983), without at-
tribution, associates this perspective with Savage. Aldrich (2002, p. 192) discusses the
influence of Drèze in convincing Bayesians from Louvain that identification was a property
of the likelihood.

http://andrewgelman.com/2014/02/12/think-identifiability-bayesian-inference/
http://andrewgelman.com/2014/02/12/think-identifiability-bayesian-inference/
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below.
The importance of the data for parameter estimates has been taken up for

closed economy models, but this issue has not been pursued systematically
for open economy models. The closed economy literature demonstrates that
inferences can be sensitive to the data used to estimate models. Guerron-
Quintana (2010), for example, shows that the choice of observed data matters
for parameter estimates, and thus impulse responses and out-of-sample fore-
casts. In particular, Guerron-Quintana finds that the parameter estimates
of a Taylor rule and estimates of wage and price stickiness are materially
affected by the choice of observables. Qu and Tkachenko (2012) raise sim-
ilar concerns for the estimation of Taylor rule coefficients and Del Negro
and Schorfheide (2008) show that ‘standard macro time-series’ may not en-
able one to discriminate between different degrees of wage and price rigidity.
Iskrev (2010b) explores identification of the canonical Smets and Wouters
(2007) model of a closed economy. Using the same data set as Smets and
Wouters, Iskrev concludes that only 39 of the 41 parameters can be identified.
In particular, identification issues arise because it is difficult to distinguish
the Calvo price parameter in Smets and Wouters’ model from the Kimball
curvature parameter for goods aggregation; a similar problem arises with re-
spect to the Calvo wage adjustment parameter and the Kimball curvature
parameter for aggregating labour varieties.6 In section 2.4 we provide an
illustration of a similar identification problem.

The choice of observables also affects variance decompositions. Schmitt-
Grohé and Uribe (2012b) estimate a model with and without the relative
price of investment and find that investment specific technology shocks play
no role in generating economic fluctuations if the relative price of investment
is included as an observable but a large role if this relative price is omitted.7

6See Smets and Wouters (2007) and Kimball (1995) for details of such aggregation.
7Greenwood et al. (2000), Fisher (2006), and Justiniano et al. (2010) all argue that

investment-specific technology (IST) shocks are important drivers of cyclical fluctuations.
Smets and Wouters (2007, fig. 1) report that investment shocks explain over twenty-
percent of the forecast error variance of GDP and the federal funds rate at some forecast
horizons. Other estimates are even higher. A conventional IST shock is exactly equal
to the inverse price of investment goods in terms of consumption. Kamber et al. (2015),
see chapter 4 of this dissertation, show that IST shocks are not important drivers if a
simple loan-to-value ratio friction is introduced into the model. Theory also matters for
our interpretation of the underlying drivers of fluctuations.
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Similarly, Christiano et al. (2014, p. 29) find that “[o]ur conclusion that the
risk shock is the most important shock depends crucially on including the
four financial variables in our dataset.” The dependence of these inferences
on the data reflects the fact that variance decompositions are functions of
the underlying structural parameters, and parameter estimates depend on
the observed data. Arguably, the analysis in Guerron-Quintana (2010) and
the other papers cited here raises questions about estimation rather than
identification. The analysis shows that parameter estimates vary with par-
ticular samples of observables, but it is difficult to ascertain whether the
results reflect something specific to the available data or whether they are
fundamentally related to the choice of data series.

In addition to data and theory, the methodology used to estimate param-
eters also matters for identification. Canova and Sala (2009), for example,
examine the use of impulse-response matching to identify parameters for a
closed economy model similar in spirit to Smets and Wouters (2007). Canova
and Sala find that impulse response matching is problematic for identifica-
tion because impulses are nonlinear functions of the underlying structural
parameters, making it difficult to invert the mapping back to the parameter
space.

Identification may seem like an arcane econometric issue, but such issues
are ultimately important for evaluations of welfare and hence also practical,
normative choices about policy rules. Curvature parameters in preferences
and production functions determine, for example, how egregious labour sup-
ply distortions are relative to distortions to the intratemporal or intertempo-
ral composition of consumption. Ideally, the data will pin down these costs
and we will not be forced to rely on purely subjective prior beliefs that may
differ across evaluators, but it is important to understand when the data can
– or cannot – perform this role.

In this paper we focus on identification in the context of a small open
economy model. More specifically, we investigate whether foreign data are
important for identification in our small open economy model. Exogenous
or pre-determined variables are central to identify parameters in traditional
systems of equations. Since small open economy models have additional ex-
ogenous (foreign) variables, there is the tantalising possibility that openness
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may facilitate parameter identification, even when identification is infeasible
for a similar closed economy model. Are these foreign data series important
in practice?

As noted earlier, identification issues in open economy models have not
been investigated in any detail. While methodologically similar, small open
economy (SOE) models can be both simpler and more complex than their
closed economy counter-parts. For example, SOE models often abstract from
the frictions that temper adjustment to shocks in closed economy models,
such as capacity utilisation and possibly even capital, yet incorporate mul-
tiple sectors and multiple assets, such as domestic and foreign goods, and
domestic and foreign bonds. We investigate whether the ‘pathologies’ that af-
fect identification in medium-scale closed economy DSGE models also plague
a generic model of a small open economy. We emphasize that this paper is
about the use of foreign data for identification and estimation purposes, and
is not at all concerned with the contribution of foreign variables for domestic
cyclical fluctuations, which is another issue entirely.

To presage our results, we find that foreign data do not ease identification
problems for the domestic parameters of the small open economy model
that we use in our analysis. This result is of practical importance, as it
implies that the domestic parameters of small open economy models can be
estimated using only domestic data. The immateriality of foreign data for
estimation is a practical boon, as the construction of ‘rest-of-world’ data
is difficult for econometricians analysing open economies that have highly
disaggregated trading patterns. We also illustrate a simple methodology
that highlights some of the interdependencies that exist between structural
parameters, interdependencies that are a feature of the underlying model and
cannot be resolved through data alone.

The rest of the chapter proceeds as follows. In section 2.2 we discuss iden-
tification in the context of Bayesian estimation of a DSGE model. Section 2.3
briefly describes the small open economy that we use as our test-bed for iden-
tification analysis. In section 2.4 we explore identification in our small open
economy dynamic stochastic general equilibrium model using the approach
of Iskrev (2010b). Our primary objective is to understand identification is-
sues in the context of this open economy model, focussing particularly on the
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implications of the data used to inform parameter estimation. We provide a
contrast between identification in closed and open economy models to illus-
trate the role that exogenous foreign variables play for identification. Lastly,
we conclude in section 2.5.

2.2 Identification of a Bayesian DSGE model
In this section we provide the mathematical machinery used to describe a
DSGE model, illustrate the nature of an identification problem in this con-
text, discuss why a ‘data choice’ can arise in the estimation of DSGE models,
and explain why we need to explore identification at multiple points in the
parameter space. At its most basic level, we seek to ascertain whether it is
possible to map uniquely from the ‘data’ back to the structural parameters
that generated that data.

We begin by noting a conventional definition of model identification.8

Like Koopmans (1953), we conceive of a ‘model’ as a system of equations,
and a family of probability distributions that govern the stochastic behaviour
of any latent error terms.9 A model parameterised with a specific parameter
vector θ will be referred to as an ‘instantiation’ of the model, following Chen
(2016).10 A model is thus a set of instantiations.

Definition 1. Let Y be a sample space and P = {Pθ : θ ∈ Θ} a family of
probability distributions for Y indexed by the parameter vector θ belonging
to the parameter space Θ. This model is identifiable if for any θ1, θ2 ∈ Θ,
Pθ1(Y = y) = Pθ2(Y = y) for all y ∈ Y implies θ1 = θ2.

The converse of this definition11 is that two distinct parameterisations
(θ1 ̸= θ2) can be distinguished from each other (identified) if there exists

8Bauwens et al. (1999, p. 41, definition 2.7) develop a definition of model identification
from the identification of individual model parameters.

9See Florens et al. (2007, pp. 395-8) for a more elaborate description of a structural
model.

10Christ (1966) uses the term ‘structure’ in place of instantiation, but this terminology
is rather confusing in a modern context. An instantiation is common terminology in
object-oriented programming.

11For variations on this theme see Koopmans and Reiersøl (1950, p. 169), Bowden
(1973, definition 1), Kadane (1975, pp 176-7), Drèze (1975a, p. 161, definition 2.1),
Pesaran (1987, ch. 6), Bauwens et al. (1999, p. 41, definition 2.7), Koop (2003, p. 291),
Florens et al. (2007, p. 4), Rubio-Ramírez et al. (2010, p. 669), or Wechsler et al. (2013).
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some sample y ∈ Y such that the probabilities implied by the two param-
eterisations differ, Pθ1(y) ̸= Pθ2(y). As Koopmans and Reiersøl (1950) ob-
serve, the study of identification from this traditional simultaneous equations
perspective relies on hypothetical, exact knowledge of the distribution of ob-
servables, as from a notionally infinite sample.12 Any discrepancy between
two distribution functions will become evident as the sample asymptotes
towards the population.

We apply this notion of identification to a dynamic stochastic general
equilibrium model. Following the notation of Iskrev (2010b), a typical lin-
earized DSGE model can be specified as:

Γ0(θ)zt = Γ1(θ) E
t
zt+1 + Γ2(θ)zt−1 + Γ3(θ)ut (2.1)

where zt denotes an n × 1 vector of (possibly unobserved) variables at time
t; Et is a rational expectation formed at time t; and ut is an m × 1 vector
of independent and identically distributed Gaussian shocks with mean zero
and an m × m covariance matrix corresponding to an identity matrix, Im.
Γ0(θ),Γ1(θ) and Γ2(θ) are n × n matrices of parameters, and Γ3(θ) is an
n×m matrix. The elements of these Γ matrices are functions of the under-
lying structural parameters, denoted by θ, which reflect the k × 1 vector of
parameters defining preferences and structural constraints.

If it exists, a unique reduced form solution can be expressed as:13

zt = A(θ)zt−1 +B(θ)ut (2.2)

where A(θ) and B(θ) are parameter matrices that are functions of the struc-
tural parameters in θ. Later we suppress the dependence on θ for the sake of
brevity. When ut are VAR(1) errors then the solution will be a second order
process in zt, see Fukač and Pagan (2007).

Since some elements in zt may not be observed, it is common to cast the
12See also Manski (1993).
13For a general exposition of linear rational expectations models and their solutions see

Binder and Pesaran (1995, 1997).
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model in state space form, appending an observation equation such as:

yt = s(θ) + Czt (2.3)

with yt denoting the observed variables with steady states s(θ). (We will
assume that zt is demeaned relative to its own steady state.) The parameters
A, B and s fully characterise the probability distribution of the variables in
yt. The matrix C will typically be a deterministic selection matrix. In this
paper we provide guidance as to what model variables should be selected
by matrix C. The DSGE model specified in equations (2.1)-(2.3) is only
identified if it is possible to uniquely map back from the parameters that
define the distribution of observables, A, B and s – or from functions of
these parameters – to the structural parameters contained in θ.

The mapping from structural parameters θ to reduced form parameters
can be thought of as proceeding in two steps, from Θ → Γ and thence
from Γ → A, using Γ to represent the space of admissible Γi (i = 0, 1, 2, 3)
matrices and defining A to be the space representing admissible reduced
form parameters, i.e.

(
((vec s)′ vecA)′ (vechB)′ (vecC)′

)′
∈ A. If each

mapping, from the structural parameters to the parameters defined by the
Γ’s, and then from the Γ’s to the reduced form parameters

(
s A B C

)
is

one-to-one and onto (bijective), then there will be a unique inverse mapping
in return.

The second mapping, Γ → A, is similar to that required for the simul-
taneous equations models (SEMs) common in the 1940s-1960s, though the
equations of a DSGE model differ from a traditional SEM in four major
respects:

i. The elements within DSGE Γ’s are functions of the underlying struc-
tural parameters, i.e. there are many ‘cross-equation restrictions’;14

ii. DSGE models typically contain expectations of some variables;

iii. DSGE models are dynamic and contain lagged regressors; and

iv. Some variables are unobserved in DSGE models.
14Aldrich (1989, p. 15), quoting Haavelmo, argues that these equations are not therefore

‘autonomous’.
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Let us make some observations about i), ii), iii) and iv) in turn.
With regards to i), the cross-equation restrictions implied by the DSGE

model mean that individual elements in the Γ matrices are determined by
the smaller subset of underlying structural parameters, and consequently the
elements of the Γ’s are not strictly independent of each other. For example
the Γ elements may be (positively or negatively) correlated if the underlying
structural parameters are perturbed. Consequently, some individual elements
in the Γ’s – and possibly entire equations – may not be necessary to identify
the underlying structural parameters since the structural parameters may
feature in multiple Γ elements and hence be identifiable from other equations.

The inclusion of expectations, noted in ii), also distinguishes DSGE mod-
els from SEMs. Expectations can be treated as additional endogenous ran-
dom variables, with variability that depends on the conditioning information
set. In a traditional SEM the inclusion of an additional endogenous vari-
able results in novel information, i.e. the additional population moments of
the data series – which may or may not be helpful for identification. In-
corporating rational expectations into a model is similarly ambiguous for
the identification properties of the model. On one hand, rational expec-
tations provides parameter restrictions that could assist identification, but
on the other hand it may be difficult to disentangle coefficients on expec-
tations from those associated with exogenous variables. The identification
implications of expectations also relates to the lag specification of the model
(issue iii). Pesaran (1987, ch. 6) and Koop et al. (2013, sn. 2) emphasize
the importance of higher order dynamics in exogenous variables to achieve
identification in linear rational expectations models and DSGE models re-
spectively. These higher order dynamics serve to provide lagged instruments
for the endogenous regressors in the model.15

The unobservability of some variables in DSGE models, issue iv) above,
15Sims (1980) argued that restrictions on lag lengths may be ‘incredible’, making them

a weak foundation for identification, but his remark preceded the intensive use of Euler
equations in RBC/DSGE models prompted by Kydland and Prescott (1982). Hatanaka
(1975) explores identification of simultaneous equations models when there is uncertainty
about lag lengths, and highlights the importance of exogenous variables whose lags are
entirely excluded from the equation whose parameters we seek to identify. Here we as-
sume that theory truly is informative about the lag lengths of endogenous and exogenous
variables.
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is central to identification. In some cases ‘observability’ is dictated by cir-
cumstance since some variables may be intrinsically unobservable. Manski
(1995, 2007), for example, considers identification when data are ‘missing’, as
occurs when data are censored and so forth. Often the econometrician cannot
control the censoring or ‘missingness’ of the data. In other cases, however,
the econometrician may be able to choose which variables are members of
the observed data set, y.16

Identification analysis can be thought of as a component of experimen-
tal design (Kadane, 1975, p. 180). In Bayesian analysis an experiment is a
triplet of data, parameters, and model, respectively {y, θj, p(y|θj, J)}, where
J is an index distinguishing a given model (Geweke, 2005, p. 98). By study-
ing identification we learn, a priori, which data series we should observe and
can develop theoretical insight into interdependencies between different pa-
rameters (Drèze, 1975a). What to observe, however, depends on the given
the context of our theoretical restrictions. In the classic supply and demand
example of Working (1927), identification is achieved by theoretical knowl-
edge that there are exogenous or predetermined variables that perturb some
equations and not others. For example, exogenous changes in supply help to
trace out the demand curve with respect to price. Identification is provided
by observing these exogenous or predetermined variables, in conjunction with
a theory that says these variables enter the right-hand side of some equations
and not others.

Observability is of especial interest in DSGE modelling. As Canova (2007,
p. 440) and Canova et al. (2014) point out, the number of endogenous vari-
ables typically exceeds the number of shocks entering DSGE models. Conse-
quently, as noted by Kim and Pagan (1995, p. 368) for example, the ‘extra’
observables may be written as deterministic functions of the others, implying
that the variance-covariance matrix of errors is singular and the likelihood
is hence undefined. Linear models with fewer shocks than observables must
result in stochastic singularities, but Komunjer and Ng (2011, p. 2001) and
Christiano (2012, fn. 9) note that singularities are the exception rather than

16Once a particular data sample y = y0 is observed, the traditional Bayesian modes of
analysis can be deployed: an experiment provides ‘evidence’ that enables the experimenter
to make or update an inference regarding the parameter vector θj , which in turn determines
all other inferences that might be drawn from the model.



2.2. IDENTIFICATION OF A BAYESIAN DSGE MODEL 43

the rule in the data, implying that there should be at least as many shocks
as observable variables.

There are four methods commonly used to resolve stochastic singulari-
ties:17

i. Include additional structural shocks;18

ii. Include measurement errors;19

iii. Solve out variables from the optimality conditions until the number of
shocks equals the number of variables; or

iv. Use a subset of observables less than or equal to the number of shocks
entering the model.20

Chari et al. (2009) criticise the first strategy, suggesting that some of the
newly-introduced shocks are ‘dubiously structural’. Canova et al. (2014)
caution that the first and second strategies “may distort parameter estimates
and jeopardize inference”, while Fernández-Villaverde et al. (2010) suggest
that the introduction of measurement errors may complicate identification.
Canova et al. (2014, p. 1099-1100) remark that the third strategy is prob-
lematic since “the convenient state-space structure of the decision rules is
lost” and “the likelihood is an even more nonlinear function of the structural
parameters and cannot necessarily be computed with standard Kalman filter
recursions.”

We focus on the fourth strategy, selecting a subset of variables as observ-
ables, which is arguably the most common. Ideally, one will select the subset
of observables that is most informative for the estimation of the structural
parameters. Komunjer and Ng (2011, p. 1997) comment on this difficulty,
saying “[a]lthough we can drop some variables so that the system is full rank,
the results will not be robust unless we know which variables are ancillary

17Bierens (2007) discusses a fifth method, which involves convoluting the model distri-
bution with a non-singular distribution to match – by optimizing the structural parameters
– an empirical model that has been convoluted similarly. See also Canova et al. (2014).
Lai (2008) provides a variation on this theme.

18See for example Smets and Wouters (2007).
19As per Sargent (1989), Altug (1989) and Ireland (2004a).
20See Kim and Pagan (1995, p. 368).
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for the parameters of interest.” See also Canova et al. (2014, p. 1100). Ex-
actly which data series to retain, to estimate parameters in an open economy
model, is the question we take up below.21

Now we turn to the methods used to determine model identification.
Methodologically, identification is the study of simple conditions that im-
ply model identifiability. Identification can be established in different ways
because it is possible to distinguish ‘the data’ using different statistics. For
example, conditions to ensure that parameterisations are distinct could be
expressed in terms of the probability distributions, in terms of the data mo-
ments or moment generating functions, spectral properties, or even the cu-
mulants (which can be obtained from the logarithm of the moment generat-
ing function). Modelling practitioners can then check that their models are
identified by establishing that the required characteristics are present prior
to estimation.

In a classic reference, Rothenberg (1971) demonstrates that, subject to
a few technical conditions, a simultaneous equations model evaluated at a
parameter vector θ0 will be locally identified provided that the information
matrix evaluated at θ0 is non-singular, where the information matrix is the
expectation of the matrix of second derivatives of the log-likelihood with
respect to the parameter vector, with the expectation taken across all pos-
sible data. See also Bowden (1973). Iskrev (2010b) takes a different tack
to Rothenberg and Bowden and uses the first and second order moments
of observables implied by the model to establish identification. Mutschler
(2015a) extends the conditions of Iskrev to higher order (nonlinear) approx-
imations to the model, using the recursive framework outlined in Andreasen
et al. (2018). Mutschler provides identification conditions for non-Gaussian
models using the first four cumulants. For Gaussian models only the first two
cumulants are non-zero and the higher order cumulants are therefore uninfor-
mative. Thus for Gaussian processes Mutschler’s proposition ensuring local
identification reverts to theorem 2 of Iskrev (2010b), which we replicate in
appendix 2.A for convenience. Qu and Tkachenko (2012) specify conditions
in the frequency domain and Komunjer and Ng (2011) specify identification

21Komunjer and Ng (2011) develop separate identification conditions for stochastically
singular and non-singular models.
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conditions based on the parameter matrices of the state-space of the model.
Canova et al. (2014) adopt the approach of Komunjer and Ng and apply it
to the same data-choice question that we consider here. Canova et al. also
apply the approach of Bierens (2007), computing an information measure
that compares the conditional distribution of the singular theoretical model
to the conditional distribution of the theoretical model; the singularity in
the theoretical model is resolved by convoluting both distributions with a
non-singular distribution. In an unpublished paper, Iskrev and Ritto (2016)
apply a criterion based on the Fisher information matrix and cast doubt on
the selection criteria of Canova et al.

The conditions applied to ensure identifiability are typically ‘local’ to
a given parameter value θ0, as per definition 2; see also Iskrev (2010b, p.
192). A typical condition ensures that within some local neighbourhood of
a candidate parameterisation there is no alternative parameterisation that
has the same probabilistic implications for the data. Conditions that ensure
global identifiability are more difficult to establish (Komunjer and Ng 2011,
Iskrev 2010b, p. 192).

Definition 2. Let Y be a sample space and P = {Pθ : θ ∈ Θ} a family of
probability distributions for Y indexed by the parameter vector θ belonging to
the parameter space Θ. The parameter vector θ0 ∈ Θ is locally identifiable
if there exists an open neighbourhood N(θ0) around θ0 such that for any
θ1 ∈ N(θ0), Pθ0(Y = y) = Pθ1(Y = y) for all y ∈ Y implies θ0 = θ1.

A number of the approaches discussed here are implementations of the
inverse function theorem (see Rudin 1976, p. 221, replicated in appendix
2.B). To paraphrase, this theorem implies that a continuous vector-valued
function will have a well-defined inverse, local to a particular point in its
domain, if the matrix of partial derivatives evaluated at that point is in-
vertible. Iskrev (2010b), for example, specifies a function mapping from the
parameter space to the data moments and then evaluates the rank of the
Jacobian matrix. Provided the Jacobian of this mapping has full rank, and
is thus invertible, the inverse mapping from data moments to structural pa-
rameters will be bijective in a neighbourhood of the point being evaluated.
Rothenberg’s emphasis on the rank of the information matrix can be inter-
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preted in a similar light: the vector-valued function for Rothenberg (1971)
is the score. As noted above, various authors have used the reduced form
parameters, the spectrum, the Fisher information matrix, and cumulants, as
the base function for identification.

At this point it is worth revisiting Lemma 1 of Kadane (1975, p. 177).
This lemma and several definitions are reported in appendix 2.C for conve-
nience. The lemma implies the following. If two functions are both identi-
fying, if they can be used to distinguish points in the parameter space, then
there must be a mapping from one function to the other. In principle, there-
fore, it does not matter which identifying function is used. Of course, as
Canova and Sala (2009) show, it is possible to choose functions that are not
identifying, so some caution is required. Which identifying function should
then be chosen? In unpublished notes on identification, Canova suggests
using the likelihood, since it contains all the information in the data. One
might add that the Fisher information matrix, the negative of the expected
value of the Hessian matrix of second derivatives of the log-likelihood, is a
natural measure of the information contained in the data series.

Following Iskrev (2010b), we use the autocovariance function to charac-
terise the data to explore the identification of a small open economy model
across both data and parameter spaces. For a Gaussian vector autoregressive
process the part of the score associated with the autoregressive coefficients
(cf. the standard deviation parameters for the shocks) is a weighted av-
erage of the data variances and of the p autocovariance matrices, where p
corresponds to the order of the vector autoregression. Thus, focussing on
variances and autocorrelations provides an approximation to the score of a
Gaussian likelihood.22 DSGE models are typically estimated with first or-
der perturbation methods specified with Gaussian innovations, so that the
machinery of the state-space can be used to compute the model likelihood,
again supporting the case for the use of moments to identify the model.

We use a limited number of vector autocovariances to test for identifi-
cation. In principle, the number of autocovariances might need to be large,
but in practice we do not find this to be so. Given usual assumptions, the
reduced form of the DSGE model is represented by a state-space model. In

22See appendix 2.C on page 90 for a brief note.
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turn, Hannan and Deistler (1988) note that state-space models have VARMA
representations. As discussed by Kapetanios et al. (2007), a vector stochastic
process {yt : t ∈ Z} (Z the set of integers) that follows a VAR will typically
result in a VARMA process for some subset y1t of the vector yt, as would
occur if some elements of yt are unobserved. Ravenna (2007) discusses condi-
tions under which the reduced form of a DSGE model will have a finite order
VAR. More generally, Ravenna’s proposition 2.1 implies that the state-space
model has a VARMA(n+m, n+m-1) representation, where m is the number
of elements in the state vector and n is the number of observables. Proposi-
tion 1 of Morris (2016) provides for a more parsimonious characterisation of
the VARMA process, with fewer autoregressive and moving average terms.
Nonetheless, autocovariance functions for VARMA processes are well defined.
If our parameters uniquely change the low order autocovariances of our data
then identification can still be achieved even though the reduced form has a
more complicated lag structure.

It should be noted that identification is specific to a given model, and
other competing theories and models could result in the same reduced form
and hence be observationally equivalent. This observation is made both by
Preston (1978) and Pesaran (1987). For example, one could baldly assert
that the data generating process is a VARMA process with the same non-
zero parameters as a structural model, and the data then cannot distinguish
between the structural model and the alternative.

The data that are useful for identification may depend on the ‘true’ model,
including its precise parameterisation, and the particular parameters of in-
terest, which could be some sub-vector of the parameter vector θ. Like most
approaches in this literature, Iskrev’s approach relies on properties local to
a particular parameter vector, e.g. θ0. We use priors to guide the set of
parameter values whose identification properties we explore. We think of
the identification analysis that we are conducting here as a ‘pre-posterior’
analysis, just as one might simulate the model from priors to check that they
do indeed result in plausible model properties before taking the model to the
data. We evaluate the identification of the model across a carefully chosen
set of points (vectors) drawn from the parameter space.

A complete identification analysis across the parameter space poses a
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substantial numerical challenge because of the curse of dimensionality. Sup-
pose that the structural parameter vector has two elements and that each
parameter is evaluated for identification at just five possible values. Then
the number of parameter vectors that needs to be checked for identification
is 5× 5 = 25. Suppose instead that the structural parameter vector has ten
elements, and suppose that each structural parameter is evaluated at eight
different values. In this latter case the total number of distinct parameter
vectors is 810 ≈ 1.07 billion. Obviously, considering only eight distinct val-
ues for any single parameter is quite limited, since most DSGE priors for
parameters are continuous rather than discrete.

Rather than focusing on a discrete lattice of points in the parameter space,
we use Sobol’ sequences to generate variates from the prior distributions.23

Sobol’ sequences are a quasi-Monte Carlo method used to generate vector val-
ued sequences whose domain is a unit hyper-cube. Quasi-random sequences
produce faster rates of convergence to the integrals of interest than do con-
ventional estimates derived from averaging ‘actual’ pseudo-random variates.
Figure 2.1 illustrates bivariate Sobol’ sequences (top pane) and pseudo ran-
dom uniform variates (bottom pane), together with marginal distributions
to the bottom and side. The bivariate plot clearly illustrates that the Sobol’
sequences are not random, but the marginals and the plot of the distribution
of points illustrate better coverage in this two dimensional hypercube, rela-
tive to pseudo random variates chosen ‘at random’. The lack of randomness
in the Sobol’ sequences is immaterial for the analysis, as would also be the
case for a lattice if it were practical.

Sobol’ sequences can be used directly to sample uniformly from the finite
support of random variables or can be used indirectly to sample from prior
distributions, using inverse distribution functions where available. The goal
with these sequences is to ensure that the proportion of points ‘sampled’ in a
given subset of the (hyper) unit cube is as close to the volume of the subset
as possible. One pitfall is that Sobol’ sequences explore the edges of the
hypercube, which is inconvenient when trying to map to a parameter space
with an infinite support, such as the normal distribution for example. To
avoid the extreme tails of the distribution, we truncate the exploration near

23Ratto (2008) uses Sobol’ sequences in his sensitivity analysis.
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Figure 2.1: Two dimensional Sobol sequences and pseudo random uniform
variates

Panel A illustrates a bivariate (quasi-random) Sobol’ sequence of 500 points.
Panel B illustrates 500 pseudo random variates drawn from a bivariate uni-
form distribution. The histograms below and to the right of panels A and B
illustrate the corresponding marginal distributions. The bins of the Sobol’ se-
quence histograms exhibit much better coverage. Each of the ten bin should
contain 50 values.



50 CHAPTER 2. IDENTIFICATION OF AN SOE MODEL

the edges of the unit hyper-cube, at 0.001 and 0.999. We sample from the
prior distributions, to inform our pre-posterior efforts to determine which
variables should be used as observables.

In the next section, we outline the model which forms the test-bed of
our open economy analysis. We then turn to the results of our identification
analysis in section 2.4.

2.3 Model
In this section we briefly describe the log linearised equations of the open
economy model used in our analysis. We use this model for illustrative
purposes, and the approach described here could be applied to other DSGE
models. As we use the model outlined in Justiniano and Preston (2010),
we keep the description of the model fairly brief. The model has traditional
New Keynesian elements of imperfect competition and sticky prices à la Calvo
(1983).24 The linearized equations are presented in table 2.1 and 2.2; variable
definitions are provided in table 2.3; and parameters are defined in tables 2.4
and 2.5.

As discussed by Justiniano and Preston, a variety of frictions are in-
troduced from the closed economy literature, including exogenous habit in
consumption, Calvo pricing for domestic goods, imports and wage-setting,
and indexation of prices and wages. These features originated in papers such
as Erceg et al. (2000), Fuhrer (2000), Woodford (2003), Smets and Wouters
(2003, 2007), Christiano et al. (2005), and Monacelli (2005). We allow Calvo
pricing for imports, which results in a ‘law of one price gap’ between the
domestic currency price of imported goods and their foreign price (adjusting
for the currency of denomination). Implicitly, we assume that it is possi-
ble to segment foreign and domestic markets, one of the three mechanisms
considered by Benigno and Thoenissen (2003) to generate deviations from
purchasing power parity. There are multiple distortions in the model, which
are not perfectly correlated. Monetary policy, therefore, cannot simultane-

24Closely related predecessors in the open economy literature include Galí and Monacelli
(2005) and Monacelli (2005). Kirsanova et al. (2006) is similar in spirit, but is a complete-
markets version.
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ously eliminate all distortions, and policy-makers must trade off the various
distortions when optimizing policy.

Foreign shocks affect domestic intertemporal substitution, via foreign
bonds and trade in foreign and domestic goods. World prices affect the
real exchange rate, which affects uncovered interest parity given incomplete
financial markets;25 foreign interest rates influence the domestic economy
through the same channel. The general equilibrium character of the model
means that foreign distortions, such as price stickiness for imports for exam-
ple, affect the terms of trade and therefore have domestic welfare implications
by affecting domestic consumption and labour supply, which are the argu-
ments of the utility function of domestic agents and are thus the proximate
drivers of welfare.

There is a limited array of financial assets in the economy. This open
economy model is ‘closed’ by assuming a debt elastic interest rate premium
(see Schmitt-Grohé and Uribe 2003), ensuring that transitory shocks do not
have a permanent effect on the steady state of the model. For the pur-
pose of this premium, debt is measured relative to the fraction of steady
state consumption of the imported good. Foreign output (income) propa-
gates through to demand for domestically-produced goods. The exchange
rate and interest rates are the key prices that connect domestic and foreign
resource allocations, and their macroeconomic dynamics. Taxes are assumed
to match the subsidy needed to offset the markup stemming from imperfect
competition, offsetting the steady-state distortion that would otherwise arise.
Independent and identically distributed cost push shocks are introduced per-
turbing both domestic and import prices; these shocks can be thought of as
exogenous variations in mark-ups, perhaps generated by stochastic changes
in competitive pressures.

The equations governing foreign dynamics are akin to the equations for
the domestic economy with a modest number of exceptions. First, con-
sumption of domestically-produced imports by foreigners is negligible and is
disregarded since the domestic economy is ‘small’. Relatedly, there are no
import cost push shocks for the foreign economy, and the terms of trade ef-

25Implicitly, complete risk-sharing is assumed within each country, but not between
countries.
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fect on the foreign price level is negligible and hence dispensed with. Second,
the law of one price is assumed to hold continuously in the foreign economy.
Third, in the foreign monetary policy rule θ∆e∗ = 0, there is no response to
the exchange rate. Fourth, foreigners are assumed to be net creditors and
there is no interest elasticity with respect to the level of foreigners’ debt.
Note that η∗ is the foreign counterpart to η, the intratemporal substitution
elasticity.26 We use et to denote the nominal exchange rate and st to denote
the terms of trade, following the notation of Justiniano and Preston (2006)
rather than the notation of Justiniano and Preston (2008) or (2010).27

Tables 2.1 and 2.2 report the linearised equations of the model for the
domestic and foreign parts of the model, respectively. Definitions of the
variables of the model can be found in table 2.3. Definitions of parameters
can be found in 2.4 and 2.5. The prior distributions of the endogenous and
exogenous parameters are reported in tables 2.6 and 2.7. We sample 10, 000

vectors from these prior distributions (using Sobol’ sequences and inverse
probability transforms) and then examine local identification at each vector
given different sets of observables.

As we describe in equation (2.4), all exogenous shocks are stationary
AR(1) processes, except domestic and foreign monetary policy shocks, which
are independent and identically distributed (IID). The subscript · in the
equation is replaced with a, g, cH, cF, w,m, a∗, g∗, c∗, w∗,m∗ as appropriate.
ϵ̌·,t is an IID innovation.

ϵ·,t = ρ·ϵ·,t−1 + ϵ̌·,t (2.4)

26Justiniano and Preston denote the foreign intratemporal substitution elasticity using
λ in place of η∗.

27We have amended the notation for the linearised risk premium shock from ϕt to ϵrp,t for
greater consistency with the notation of other exogenous shocks. We use θ’s with subscripts
to denote parameters of monetary policy rules, with asterisks for foreign parameters and
variables. The substitution elasticities for goods varieties have been changed from θ to ϵ
and the substitution elasticity for labour varieties has been changed from θw to εw. θ with
no subscript or a numerical subscript refers to the vector of parameters estimated using
Bayesian methods. Exogenous technological progress is denoted ϵa,t, ensuring greater
notational consistency with the remaining exogenous variables.
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Table 2.1: Domestic linearised equations

1. Consumption Euler equation (with external habit)
ct − hct−1 = Et (ct+1 − hct)− σ(1− h) (rt − Etπt+1) + σ(1− h) (ϵg,t − Etϵg,t+1)

2. Goods market clearing
yt = (1− τ)ct + (τη∗ + τη(1− τ)) st + τη∗ψF,t + τy∗t

3. Law of one price (LOOP) gap
ψF,t ≡ et + p∗t − pF,t

4. Terms of trade
∆st = πF,t − πH,t

5. Real exchange rate†
qt = et + p∗t − pt = ψF,t + (1− τ)st

6. Domestic Phillips curve
πH,t − γHπH,t−1 = βEt (πH,t+1 − γHπH,t) + ξH(wt + τst − ϵa,t) + ϵcH,t

7. Import Phillips curve
πF,t − γFπF,t−1 = βEt (πF,t+1 − γFπF,t) + ξFψF,t + ϵcF,t

8. Wage Phillips curve
πW
t − γWπt−1 = βEt

(
πW
t+1 − γWπt

)
+ ξw (vt − wt)

9. Production function
yt = ϵa,t + nt

10. Uncovered interest parity
rt − Etπt+1 −

(
r∗t − Etπ

∗
t+1

)
= Et∆qt+1 − χBt − ϵrp,t

11. Flow budget constraint
ct + bt = β−1bt−1 − τ (st + ψF,t) + yt

12. Monetary policy rule
rt = θrrt−1 + (1− θr) (θππt + θyyt + θ∆y∆yt + θ∆et∆et) + ϵm,t

13. Consumer price inflation
πt = πH,t + τ∆st

Notes: † Note that et can be substituted out of the model using the LOOP definition.
There are three departures from Justiniano and Preston’s priors: Indexation is introduced
for imported goods; and both domestic and foreign cost push shocks here are AR(1)
processes.
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Table 2.2: Foreign equations

25. Foreign Euler equation
y∗t − h∗y∗t−1 = Et

(
y∗t+1 − h∗y∗t

)
− (1− h∗)σ∗(r∗t − Etπ

∗
t+1)

+(1− h∗)σ∗(Etϵg∗,t+1 − ϵg∗,t)

26. Foreign Phillips curve
π∗
t − γ∗π∗

t−1 = β∗Et

(
π∗
t+1 − γ∗π∗

t

)
+ ξ∗(w∗

t − ϵa∗,t) + ϵπ∗,t

27. Foreign wage Phillips curve
π∗
w,t − γw∗π∗

w,t−1 = β∗Et (πw∗,t+1 − γw∗π∗
t ) + ξ∗w(v

∗
t − w∗

t ) + ϵw∗,t

28. Foreign marginal rate of substitution
v∗t = φ∗(y∗t − ϵa∗,t) +

1
(σ∗(1−h∗))

(y∗t − h∗y∗t−1)

29. Foreign production
y∗t = ϵa∗,t + n∗

t

30. Foreign real wage
w∗

t = w∗
t−1 + π∗

w,t − π∗
t

31. Foreign Monetary Policy
r∗t = θ∗rr

∗
t−1 + (1− θ∗r)

(
θπ∗π∗

t+1 + θy∗,t ∗ y∗t + θ∆y∗(y
∗
t − y∗t−1)

)
+ ϵm∗,t

32. Change in exchange rate
∆qt ≡ qt − qt−1

33. Change in terms of trade
∆st ≡ st − st−1

34. Foreign goods market clearing
y∗t = c∗t
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Table 2.3: Variable definitions

Endogenous variables
ct Consumption (real)
bt Foreign bonds
yt Output (real)
rt Interest rate (nominal)
qt Exchange rate (real)
st Terms of trade
πt Headline inflation
πH,t Home inflation
πF,t Import inflation
πW,t Wage inflation
ψF,t Deviation from law of one price
vt Marginal rate of substitution
pt Domestic price level
pF,t Import price level
et Nominal exchange rate
wt Wages (real)
nt Labour supply
∆yt = yt − yt−1; ∆et = et − et−1; ∆st = st − st−1

Foreign variables
y∗t Foreign income (real)
p∗t Foreign price level
π∗
t Foreign inflation
π∗
w,t Foreign wage inflation (nominal)
r∗t Foreign interest rate (nominal)
v∗t Foreign marginal rate of substitution
w∗

t Foreign wages (real)

Exogenous shocks
ϵa,t Technology shock
ϵg,t Demand shock
ϵw,t Labour supply shock
ϵcH,t Domestic cost push shock
ϵcF,t Import cost push shock
ϵrp,t Risk premium shock
ϵm,t Monetary policy shock
ϵa∗,t Foreign technology shock
ϵg∗,t Foreign demand shock
ϵw∗,t Foreign labour supply shock
ϵc∗,t Foreign cost push shock
ϵm∗,t Foreign monetary policy shock
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Table 2.4: Domestic parameter definitions

Preference & structural parameters
β Discount factor
ε Substitution elasticity between goods varieties
εw Substitution elasticity between labour varieties
φ Inverse Frisch (labour supply) elasticity
σ Intertemporal substitution elasticity
αH Calvo domestic prices
αF Calvo import prices
αW Calvo wages
γH Indexation domestic prices
γW Indexation wages
h Consumption habit
τ Degree of openness (inverse of home bias)
η Domestic intratemporal subst. elasticity home/foreign goods
χ Interest elasticity w.r.t. debt
Domestic policy parameters
θπ Response to inflation
θy Response to output gap
θ∆y Response to output growth
θ∆e Response to exchange rate change
θr Interest rate smoothing
Auxiliary parameter definitions
ξH ≡ (1− αH)(1− αHβ)/αH

ξF ≡ (1− αF )(1− αFβ)/αF

ξw ≡ (1− αW )(1− αWβ)/(αW (1 + φεw))
ξ∗ ≡ (1− α∗)(1− β∗α∗)/α∗

ξ∗w ≡ (1− αW ∗)(1− αW ∗β∗)/(αW ∗(1 + φ∗ε∗w))

Exogenous shock persistences & standard deviations
ρa AR(1) persistence technology shock
ρg AR(1) persistence exogenous demand shock
ρcH AR(1) persistence domestic cost push shock
ρcF AR(1) persistence import cost push shock
ρw AR(1) persistence labour supply shock
ρrp AR(1) persistence risk premium shock
σa Standard deviation technology shock
σg Standard deviation consumption preference shock
σcH Standard deviation domestic cost push shock
σcF Standard deviation import cost push shock
σw Standard deviation labour supply shock
σrp Standard deviation risk premium shock
σm Standard deviation monetary policy shock
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Table 2.5: Foreign parameter definitions

Preference & structural parameters
β∗ Foreign discount factor
ε∗ Foreign substitution elasticity between varieties
ε∗w Foreign substitution elasticity between labour varieties
φ∗ Foreign inverse Frisch (labour supply) elasticity
σ∗ Foreign intertemporal substitution elasticity
αH∗ Foreign Calvo domestic prices
αW ∗ Foreign Calvo import prices
γH∗ Foreign indexation domestic prices
γw∗ Foreign indexation wages
h∗ Foreign consumption habit
η∗ Foreign price elasticity of foreign demand for domestic goods

Foreign policy parameters
θπ∗ Foreign response to inflation
θy∗ Foreign response to output gap
θ∆y∗ Foreign response to output growth
θr∗ Foreign interest rate smoothing
Foreign exogenous shock persistences & standard deviations
ρa∗ AR(1) persistence foreign technology shock
ρg∗ AR(1) persistence foreign consumption preference shock
ρl∗ AR(1) persistence foreign labour supply shock
ρπ∗ AR(1) persistence foreign cost push shock
σa∗ Standard deviation foreign technology shock
σg∗ Standard deviation foreign consumption preference shock
σw∗ Standard deviation foreign labour supply shock
σπ∗ Standard deviation foreign cosh push shock
σm∗ Standard deviation foreign monetary policy shock
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Table 2.6: Prior distributions domestic parameters
Symbol Description Prior Mean Std-Dev.

Preference & structural parameters
β Discount factor C 0.99 –
ε Substitution elasticity between goods varieties C 8.00 –
εw Substitution elasticity between labour varieties C 8.00 –
χ Interest elasticity to debt C 0.01 –
φ Inverse Frisch (labour supply) elasticity N 1.00 0.30
σ Intertemporal substitution elasticity N 1.00 0.40
αH Calvo domestic prices β 0.60 0.10
αF Calvo import prices β 0.50 0.20
αW Calvo wages β 0.60 0.10
γH Indexation domestic prices β 0.50 0.20
γW Indexation wages β 0.50 0.20
h Consumption habit β 0.50 0.10
(1− τ) Degree of home bias β 0.71 0.02
η Intratemporal subst. elasticity home/foreign goods N 0.90 0.10
θπ Response to inflation N 1.80 0.30
θy Response to output gap G 0.25 0.13
θ∆y Response to output growth N 0.30 0.20
θ∆e Response to exchange rate change G 0.30 0.20
θr Interest rate smoothing β 0.60 0.20

Foreign structural parameters
β∗ Discount factor C 0.99 –
ε∗ Substitution elasticity between goods varieties C 8.00 –
ε∗w Substitution elasticity between labour varieties C 8.00 –
φ∗ Inverse Frisch (labour supply) elasticity N 1 0.3
σ∗ Intertemporal substitution elasticity N 1 0.3
α∗
H Calvo prices β 0.6 0.1
α∗
W Calvo wages β 0.6 0.1
γ∗H Indexation prices β 0.5 0.15
γ∗W Indexation wages β 0.5 0.15
h∗ Consumption habit β 0.50 0.1
η∗ Intratemporal subst. elasticity home/foreign goods N 1.5 0.50
θ∗π Response to inflation N 1.80 0.30
θ∗y Response to output gap G 0.25 0.13
θ∗∆y Response to output growth N 0.30 0.20
θ∗r Interest rate smoothing β 0.60 0.20

Note: Prior distributions: C = Calibrated; β = Beta; N = Normal; G = Gamma; G−1 =
Inverse Gamma. For symmetry with the domestic economy we have included θ∗∆y in the
rest-of-world policy rule. Prior parameter values largely follow Justiniano and Preston
(2010, p. 67).
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Table 2.7: Prior distributions exogenous parameters
Exogenous shock persistences & standard deviations
Symbol Description Prior Mean Std-Dev.
ρa AR(1) persistence technology β 0.60 0.20
ρg AR(1) persistence exogenous demand β 0.60 0.20
ρw AR(1) persistence labour supply β 0.60 0.20
ρcH AR(1) persistence domestic cost push β 0.60 0.20
ρcF AR(1) persistence import cost push β 0.60 0.20
ρrp AR(1) persistence risk premium β 0.60 0.20
ρm No persistence in monetary C 0 –
ρ∗a AR(1) persistence foreign technology β 0.80 0.15
ρ∗g AR(1) persistence foreign preference β 0.80 0.15
ρ∗w AR(1) persistence labour supply β 0.80 0.15
ρ∗cH AR(1) persistence in foreign cost-push β 0.8 0.15
ρ∗m No persistence in foreign monetary C 0 –

Shock standard deviations
σa Technology G−1 0.50 1.00
σg Consumption preference G−1 1.00 1.00
σw Labour supply G−1 2.00 1.00
σcH Domestic cost push G−1 0.15 1.00
σcF Import cost push G−1 1.00 1.00
σrp Risk premium G−1 1.00 1.00
σm Monetary policy G−1 0.15 1.00
σ∗
a Technology G−1 1.00 2.00
σ∗
g Foreign consumption preference G−1 2.00 2.00
σ∗
w Labour supply G−1 4.00 2.00
σ∗
cH Foreign cost push G−1 0.25 2.00
σ∗
m Foreign monetary G−1 0.25 2.00

Note: Prior distributions: C = Calibrated; β = Beta; N = Normal; G = Gamma; G−1 =
Inverse Gamma The prior parameter values follow Justiniano and Preston (2010, p. 67).
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2.4 Results

2.4.1 Identification of foreign parameters

Before beginning our open economy analysis, we first consider the identifi-
cation of a closed economy counterpart to this small open economy model.
This exercise allows us to ascertain the features of the model – independent
of openness – that are subject to identification problems. Conveniently, the
foreign block of the model represents just such a counterpart. We strip off
the domestic economy and examine how the choice of foreign (i.e. closed
economy) data series influence identification of the foreign structural param-
eters.

Mapping from Θ to Γ

The linearised equations in section 2.3 above are a specific model correspond-
ing to the expectational equations (2.1). As noted in section 2.2, we can think
of the mapping from structural parameters to the reduced form as occurring
in two steps – from θ’s to Γ’s and then from Γ’s to s, A,B,C, and thence
to the moments of the data, whose space we will denote M. Define the first
mapping to be f : Θ → Γ and the second mapping g : Γ → M. We assume
that Γ is the range of f and M is the range of g, so that each space is onto
with respect to the two functions. Like the bulk of the DSGE literature, we
assume that the model has a unique, determinate equilibrium.28 Thus, the
admissible space Γ is restricted to ensure that the mapping g(Γ) for Γ ∈ Γ

is single-valued. The space Γ serves as a bridge between Θ and M: all roads
pass through this bridge.29

A function that is one-to-one and onto has a well-defined inverse. We
make use of this observation to focus attention on these two mappings sepa-
rately. Theorem 1 illustrates the importance of the mapping f : Θ → Γ.

28There are exceptions to this generalisation. See, for example, Lubik and Schorfheide
(2004a,b), Farmer et al. (2015) and Tchatoka et al. (2017).

29For those fond of Nordic noir television or massive engineering projects, it might be
helpful to think of Γ as the Peberholm island in the middle of (the) Øresund (Sound),
between Copenhagen in Denmark and Malmö in Sweden. The functions f and g can be
thought of as the Øresund bridge and the Drogden tunnel that map to the island.
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Theorem 1. Let f : Θ → Γ and g : Γ → M be functions. If g ◦ f(θ) is
one-to-one then f must be one-to-one.

For a simple proof, see appendix 2.E.
We argue here that it is useful to consider each mapping f and g in turn.

Traditional identification techniques define the properties of the model using
its reduced form, by its parameters, spectrum, or autocovariances. But it is
also true that the properties of the model are defined by the expectational
equations. Fortunately, the same techniques to locally identify a bijection can
be considered in each case. To examine the vector mapping f : Θ → Γ, we
estimate the Jacobian matrix of f , which is the matrix of partial derivatives
of all functions in f with respect to each parameter θi, where subscript i
indexes the ith element of θ. The rank of this Jacobian matrix specifies the
number of elements of θ that can be uniquely identified. Given that the
function f is explicitly defined, the Jacobian can be computed symbolically.

We take each of the parameters in the expectational equations, excluding
deterministic coefficients,30 and collate them into a vector. We then compute
the matrix of partial derivatives with respect to the elements in the vector
θ. Consider the case where each structural parameter maps uniquely to just
a single element in the Γ’s. Then the Jacobian is simply an identity matrix.
A structural parameter θi that maps uniquely to just a single element Γj

poses no identification difficulty, and so we can simplify the multivariate
mapping, eliminating both the parameter θi and the associated equation.
In our model, we eliminate the standard errors of the variance terms and
the AR(1) coefficients of the structural errors. We also eliminate duplicate
‘equations’; when an element Γi is a scalar multiple of Γj, for i ̸= j, we
eliminate one of these equations.

30We exclude these deterministic parameters because the derivative vector associated
with them would consist solely of zeros.
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We are left with the following system of equations:31

f =



h∗

(1− h∗)σ∗

β∗/(1 + β∗γ∗)

γ∗/(1 + β∗γ∗)

(1− β∗α∗)(1− α∗)/(α∗(1 + β∗γ∗))

γ∗w

β∗

−β∗(γ∗w)

(1− β∗α∗
w)(1− α∗

w)/(α
∗
w(1 + (1 + ε∗w)/ε

∗
wφ

∗))

φ∗

1/(σ∗(1− h∗))

−1/(σ∗(1− h∗))Sh∗

θ∗r

(1− θ∗r)θ
∗
π

(1− θ∗r)θ
∗
y

(1− θ∗r)θ
∗
dy



(2.5)

and we take derivatives with respect to the following vector of foreign struc-
tural parameters: β∗, ϵ∗W , φ∗, σ

∗, α∗, α∗
w, γ

∗, γ∗w, h
∗, η∗, θ∗π, θ

∗
y, θ

∗
dy, θ

∗
r . For the

sake of brevity we omit reporting this Jacobian matrix.
By computing a basis for the null-space32 of the Jacobian matrix of f , we

can ascertain which, if any, parameters are either not locally identified or are
under-identified.33 As Iskrev (2010a) notes, a lack of identification arises in
two ways: i) a parameter may not feature in the likelihood; and/or ii) two
or more parameters may not be separately identifiable. The first possibility
presents itself as a column of zeroes in the Jacobian and can be ascertained
directly. If the second alternative arises then two or more columns of the
Jacobian are linearly dependent. In this second case we determine which

31See the parameters in table 2.2.
32Remember that the null space of a matrix A is the set of vectors x such that Ax = 0.

If A has full rank then the only vector in the null space is the vector 0.
33Bonaldi (2010) also makes use of ranks to determine how many parameters can be

identified, and the null spaces of these Jacobian matrices to determine which parameters
are dependent and therefore unidentified.
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columns are interdependent by computing the null space of the Jacobian
matrix. The non-zero elements of each vector in the basis of the null space
determines a combination of columns of f ′(θ) that maps to the null vector,
thus illustrating which columns are dependent.

To understand local identification problems in this context note that for
any arbitrary θ0 in the domain of the parameter space we can specify the
following first order approximation:

f(θ0 + δ) ≈ f(θ0) + f ′(θ0)δ (2.6)

But if δ is in the null space of f ′(θ), then the second term on the right hand
side equals zero. Thus, by moving certain parameters by carefully calibrated
amounts we can generate the same Γ parameters, implying that both θ0 and
θ0 + δ could have generated the same expectational equations and hence the
same data. If the parameter vector is locally identified at θ0 then the only
element in the null space of f ′(θ0) will be the null vector, δ = 0.

The system of equations f specified here can be expressed symbolically,
and both the Jacobian and null space can be computed symbolically, using
the jacobian and null commands from the Symbolic Math Toolbox. For the
particular case here, Matlab’s Symbolic toolbox indicates that the following
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two vectors form a basis for the null space of f ′(θ).

0 0
−(ϵ∗W (β∗(α∗

w)2−1)(ϵ∗W+φ∗+ϵ∗Wφ∗))

(α∗
wφ∗(α∗

wβ∗−1)(α∗
w−1))

0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0



(2.7)

The first column indicates that the second and sixth parameters, ε∗w and α∗
w

are not separately identifiable. The effect of changing ε∗w on the Γ parame-
ters can be perfectly offset by a suitably-sized amendment to the parameter
α∗
w. Conversely, the second column of the basis illustrates that the tenth

parameter η∗ has no effect on any of the Γ’s and hence cannot be identified
at all. (This is a quirk of the model; the relative price affects foreign demand
for domestic goods, but the domestic economy is negligible in size for total
demand from the foreign economy’s perspective. Thus, η∗ only features in
the domestic equations.)

Looking directly at the expectational equations in table 2.2, we see that
the Phillips curve equations for foreign inflation and foreign wage inflation
have parameters ξ∗ and ξ∗w that are functions of Calvo parameters, discount
rates, and in the case of wages the foreign Frisch elasticity. The discount
factor β∗ enters both the wage and price Phillips curve. In simple models
β∗ is traditionally tied down by the steady-state interest rate, calibrated
≈ 0.99. Given a value for β∗ the ξ∗ parameter is a monotonic function of the
structural Calvo parameter α∗, and therefore the Calvo parameter can be
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recovered if this ξ∗ parameter is identifiable. The wage Phillips curve is more
complex. The parameters ε∗w and α∗

w only enter ξ∗w and these parameters are
only separately identifiable because ε∗w is calibrated.

With a multiplicity of equations, it can be difficult to track down which
structural parameters are subject to such identification problems. The ap-
proach here provides a straightforward and easily implementable method
to determine which parameters are subject to these types of identification
problems. As models grow in complexity, evaluations of this kind will be
particularly valuable in providing insight into the interdependencies that ex-
ist between new, unfamiliar parameters and the more-familiar parameters
that govern simpler models.

Identification of Γ

We now turn to the second mapping, from the expectational equations to the
reduced form. Instead of explicitly identifying the underlying structural pa-
rameters, θ, we consider whether it is possible to map from the data moments
back to the Γ matrices, ignoring the cross-equation restrictions that link dif-
ferent elements in Γ together. Implicitly, the priors for the elements in θ de-
fine priors for the elements in the Γ matrices. We have 18 non-deterministic
elements in the Γ matrices, which we denote Γi for i = 1, . . . , 18. We use
these priors to consider local identification at different points in the space
Γ, together with 5 parameters for the standard deviations and 5 persistence
parameters from the autoregressive shock terms, 28 parameters in all.

For each set of observables (which defines a set of moments), and for each
parameter vector drawn from our sample of 10, 000, we evaluate the ranks
of the Jacobians of the moments with respect to parameters to see whether
different observables affect the identification of the model. In principle, dif-
ferent parameter vectors may have different ‘local’ identification characteris-
tics even for the same set of observables, but as we detail below, the analysis
indicates the identification patterns in our model are largely unrelated to the
exact parameterisation of the model. In other words, changing the parame-
terisation of the model does not change the rank of the Jacobian matrix.

We draw observables from the following set: foreign output y∗; foreign
inflation π∗; foreign wage inflation π∗

W ; the foreign interest rate r∗; foreign
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wages w∗; and hours worked n∗, and examine how identification is affected
by the choice of observables. There are five foreign/closed-economy shocks
(technology, ‘demand’, wage and price markup, and monetary policy shocks),
thus to avoid stochastic singularity we can have no more than five observables.

When we use all six observables, we find that there is only one identifica-
tion issue that arises when ignoring the cross-equation restrictions. Namely
the Γ5 attached to Etϵg∗,t+1 − ϵg∗,t is not separately identifiable from the
standard deviation of the aggregate demand shock σg∗ .34 This identification
problem is not problematic for the estimation of θ because the cross-equation
restrictions imply that Γ4 = Γ5.

Table 2.8 illustrates that, across the 10, 000 parameter draws, at most
27 of 28 Γ parameters can be identified when the non-zero parameters of
the expectational equations are treated as independent parameters to be
estimated. Which parameters cannot be identified and why?

Looking at the bases of the null spaces for different parameterisations of
the model, we find that the recurrent identification problem is that Γ5 is not
separately identifiable relative to σg∗ . The last two columns of table 2.8 illus-
trates that the null space here usually only has one dimension, irrespective
of the precise parameterisation.35

To avoid stochastic singularities we require the number of shocks to be
greater than or equal to the number of observables. To be able to identify
all 28 parameters of the foreign equations we require at least 4 observables
(since 3 observables results in only 24 moments). If we match the number
of observables to the number of shocks (5), then we have to exclude one
observable out of our set of six. For the most part, excluding a single ob-
servable has no impact on the identification of the parameters. However, we
find that excluding the foreign interest rate is problematic for identification,
as it results in a loss of identification for one additional Γ parameter.

We will examine which parameter(s) are dependent in a moment. First,
34The attentive reader will realise that we have not fully ignored the cross-equation

restrictions in this case. In the ‘model file’ (see Schmitt-Grohé and Uribe 2012a) we have
replaced combinations of structural parameters with Γ parameters, but we have attached
Γ5 to Etϵg∗,t+1 − ϵg∗,t.

35This result stems from the fundamental theorem of linear algebra / the rank-nullity
theorem. For an m×n matrix the rank of the matrix plus the dimension of the null space
will sum to n.
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Table 2.8: Identifying Γ parameters for foreign equations: Minimum and
maximum ranks for different observables

Ranks
Observables Min Max # Ranks < Max
π∗ π∗

w w∗ 13 13 0
π∗
w r∗ w∗ n∗ 26 27 4
π∗ r∗ w∗ n∗ 26 27 4
π∗ π∗

w w∗ n∗ 23 26 45
π∗ π∗

w r∗ n∗ 25 27 7
π∗ π∗

w r∗ w∗ 24 26 53
y∗ r∗ w∗ n∗ 26 27 12
y∗ π∗

w w∗ n∗ 24 26 23
y∗ π∗

w r∗ n∗ 25 27 13
y∗ π∗

w r∗ w∗ 25 27 27
y∗ π∗ w∗ n∗ 24 26 24
y∗ π∗ r∗ n∗ 24 26 22
y∗ π∗ r∗ w∗ 25 27 30
y∗ π∗ π∗

w n∗ 23 26 23
y∗ π∗ π∗

w w∗ 23 26 70
y∗ π∗ π∗

w r∗ 24 27 34
π∗ π∗

w r∗ w∗ n∗ 26 27 5
y∗ π∗

w r∗ w∗ n∗ 26 27 4
y∗ π∗ r∗ w∗ n∗ 26 27 5
y∗ π∗ π∗

w w∗ n∗ 24 26 19
y∗ π∗ π∗

w r∗ n∗ 25 27 7
y∗ π∗ π∗

w r∗ w∗ 25 27 28
y∗ π∗ π∗

w r∗ w∗ n∗ 26 27 5

Note: This table presents ranks for a model that focuses on the elements of the Γ param-
eters of the expectational equations. The ranks were computed at 10, 000 points in the
parameter space. The first column specifies the variables used as observables. The second
and third columns indicate the minimum and the maximum rank found across the 10, 000
parameter vectors. The ranks determine the number of elements that can be identified in
the Γ parameters. If the model were fully identified the ranks would be 28. At least one
Γ parameter cannot be identified irrespective of the data set and the parameterisation.
The last column counts the number of parameter vectors that result in sub-maximal ranks
relative to the maximum ranks reported in the third column. This last column indicates
that the vast majority of ranks coincide with the maximum rank reported in the third
column. (In addition, 40 parameter vectors resulted in an indeterminate model.)
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however, it is worth dwelling on the computation of the rank of an arbitrary
m × n matrix A. Trefethen and Bau (1997, ch. 5) suggest that the best
numerical method for computing the rank of a matrix is to compute the
reduced (thin) singular value decomposition, A = ÛΣ̂V ∗, where Û is m× n,
V ∗ is n × n,36 and Σ̂ is an n × n matrix with a diagonal matrix of r ≤
min(n,m) singular values ordered from largest to smallest. If the matrix A

has rank r, then Σ̂ will have r non-zero values. To compute the rank of A one
simply counts the number of singular values greater than some “judiciously
chosen tolerance” (p. 36). Golub and Loan (1996, pp. 260-261) argue that
numerically computed singular values are well-approximated, subject to some
machine error ϵ, though computed Û and V ∗ matrices are not necessarily close
to their exact counterparts.37 Computational inaccuracies related to V ∗ are
inconvenient since the r + 1 to n columns of V correspond to a basis of the
null space. Thus, while we will be able to determine the number of dependent
columns reasonably accurately, it will be more difficult to compute the exact
nature of the dependency.

The solution of a rational expectations model is obtained using computa-
tional methods and also results in a computational estimate of the Jacobian
matrix. In principle it is possible to convert this numeric matrix into a sym-
bolic matrix, though there is a substantial computational cost to doing so.
To avoid this overhead, we employ computational estimates of the null space,
using the Matlab null(j,′r′) to compute the null-space. The ′r′ switch spec-
ifies the ‘rational’ basis associated with the reduced row echelon form. While
computationally deprecated in favour of an orthonormal basis (as produced
by the singular value decomposition), the rational basis makes it clear which
columns of the Jacobian, and hence which parameters, are dependent (since
the rows in the basis have non-zero coefficients). Because numerical errors
can creep in from the digital approximation of numbers, we consider a value
in the null space basis to be non-zero if its absolute value is greater than a
threshold of 10−10.

We apply these computational techniques to compute null spaces for the
36V ∗ is the adjoint, the Hermitian conjugate of a complex matrix and the transpose of

a real matrix. V ∗ and Û are unitary matrices with orthonormal columns.
37Note that Golub and Van Loan use ‘hats’ to denote computed values rather than the

matrices of the reduced/thin singular value decomposition as done by Trefethen and Bau.
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sample y∗, π∗, π∗
w, w∗, n∗ (omitting r∗) for each of the 10, 000 parameteri-

sations. Although the null space computations are a bit variable across the
parameter space, the additional identification problem are primarily associ-
ated with the coefficient on output in the Euler equation (which is associated
with habit) and the coefficients on output and the growth rate of output in
the monetary policy rule. As we note below, the cross-equation restrictions
in the model ensure that these identification issues do not propagate through
to the structural parameters in θ.

Identification of θ

We now examine whether the same identification problems arise when we
directly focus on estimation of θ from the moments. To repeat, we simulate
10, 000 parameter draws from the parameter space, drawing from the prior
distributions reported in tables 2.6 and 2.7 using Sobol’ sequences in con-
junction with inverse probability integral transforms. It would be nice to
increase the fineness with which the parameter space is explored, but this
benefit is offset by the computational cost of increasing the number of pa-
rameter vectors in the analysis. Adapting Matlab code from Schmitt-Grohé
and Uribe (2004), which uses the symbolic toolbox of Matlab, we solve the
rational expectations model for its reduced form and compute the Jacobian of
the variance-covariance matrix and first auto-covariance matrix of different
samples of data. (See appendix 2.D.) Computing the derivatives symbol-
ically mitigates a problem noted by Fernández-Villaverde et al. (2016, p.
654), namely it reduces the risk that numerical errors adversely affect the
computation of the rank of the matrix.

Let us return now to the parameter draws for the DSGE model. If there
is no unique solution to the rational expectations model – either because
there is no solution at all or there is a multiplicity of solutions – we discard
the parameter vector from the analysis. In practice, for the foreign/closed
economy model, there are very few parameter draws that do not result in
unique solutions (40 vectors out of 10, 000).

We check identification using the variance matrix of observables and the
first two autocovariance matrices. Let ñ be the number of observables.
Since the variance-covariance matrix is symmetric it has ñ(ñ + 2)/2 dis-
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tinct elements, while the two auto-covariance matrices need not be sym-
metric and thus each have ñ2 distinct elements. Given that there are 23
parameters that we wish to estimate, we require at least ñ = 3 observables
(⇒ 2ñ2 + ñ(ñ + 1)/2 = 24 moments) to fully identify the model, given that
we are not using steady-states to contribute to identification. In other words,
yt in equation (2.3) has to be at least a 3× 1 vector.

Using each possible combination of observable and each parameter vector
drawn from the prior distributions, we compute the Jacobian matrix of the
variance-covariance matrix and the first autocorrelation matrix. We then
compute the ranks of these Jacobian matrices.

The identification analysis of the θ vector for the foreign block, reported
in table 2.9 confirms the results that we have already found from looking
at the two mappings Θ → Γ and Γ → M. Using the null space, we find
that η∗ cannot be identified and α∗

w and ε∗w are not separately identified.
As there are fewer structural θ parameters than there are Γ parameters, as
few as 3 observables might suffice to identify the model parameters, but as
usual it makes most sense for the number of observables to coincide with
the number of shocks (5 in the foreign block). Once again, the rank of the
Jacobian matrices is largely independent of the exact parameterisation of the
model, confirmed by the last column of the table, which counts the number
of instantiations of the model that result in sub-maximal ranks.

In contrast to the situation above where we considered the identification
of the Γ parameters, eliminating interest rates from our set of observables
has no impact on the rank of the Jacobian computed with respect to θ.
The cross equation restrictions materially contribute to the identification of
the underlying structural model, because the habit coefficient crops up in
multiple Γ elements.

2.4.2 Identification of domestic parameters

In this section we replicate the approach of the previous section but apply
it to the domestic equations. To start, we consider again the mapping from
the structural parameters in θ to the parameters in the Γ matrices of the
expectational equations. We specify the mapping using Matlab’s Symbolic
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Table 2.9: Identifying θ parameters for foreign equations: Minimum and
maximum ranks for different observables

Ranks
Observables Min Max # Ranks < Max
π∗
w r∗ w∗ n∗ 21 21 0
π∗ r∗ w∗ n∗ 21 21 0
π∗ π∗

w w∗ n∗ 20 21 6
π∗ π∗

w r∗ n∗ 21 21 0
π∗ π∗

w r∗ w∗ 20 21 4
y∗ r∗ w∗ n∗ 21 21 0
y∗ π∗

w w∗ n∗ 20 21 6
y∗ π∗

w r∗ n∗ 21 21 0
y∗ π∗

w r∗ w∗ 21 21 0
y∗ π∗ w∗ n∗ 20 21 6
y∗ π∗ r∗ n∗ 21 21 0
y∗ π∗ r∗ w∗ 21 21 0
y∗ π∗ π∗

w n∗ 20 21 7
y∗ π∗ π∗

w w∗ 20 21 6
y∗ π∗ π∗

w r∗ 21 21 0
π∗ π∗

w r∗ w∗ n∗ 21 21 0
y∗ π∗

w r∗ w∗ n∗ 21 21 0
y∗ π∗ r∗ w∗ n∗ 21 21 0
y∗ π∗ π∗

w w∗ n∗ 20 21 6
y∗ π∗ π∗

w r∗ n∗ 21 21 0
y∗ π∗ π∗

w r∗ w∗ 21 21 0
y∗ π∗ π∗

w r∗ w∗ n∗ 21 21 0
Note: The first column specifies the variables used as observables. The
second and third columns indicate the minimum and the maximum rank
computed across the 10, 000 parameter vectors. The ranks determine the
number of elements that can be identified in the vector θ. If the model
were fully identified the ranks would be 23. Thus, at least two parameters
cannot be identified irrespective of the data set and the parameterisation.
The last column counts the number of parameterisations with ranks that
are less than that reported in the third column. (In addition, 40 parameter
vectors resulted in an indeterminate model.)
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Toolbox and then compute the Jacobian with respect to the elements of
θ. We then compute a basis for the null space of this Jacobian matrix,
illustrating which columns of the Jacobian are dependent. We find that
the basis is two-dimensional. One of the domestic identification problems
mirrors that of the foreign economy: εw cannot be separately identified from
αw. The second identification problem does not relate to η∗, which features
in the domestic equations, but relates instead to ε, which is the elasticity of
substitution between goods varieties. This ε parameter does not affect any of
the parameters in the expectational equations. This identification problem
is commonly recognized. Justiniano and Preston (2010), for example, resolve
it by calibrating ε = 8.

We now explore whether domestic or foreign variables are more useful
to achieve identification of the domestic parameters. Computationally, the
analysis faces a similar problem to that of variable selection in Bayesian
model averaging of linear regressions. Suppose that there are n series that
can be used as observables, then there are (2n)−1 different ways of sampling
from this set of data series (where the −1 means that we ignore the data
sample that has zero columns). Intuitively, suppose that X is a T ×n matrix
of data and specify an n×1 row vector of ones and zeros, where a 1 indicates
that a column is included as an observable and a 0 indicates that it is not.
For example [01011] indicates that the second, fourth and fifth columns are
treated as observables, and the remaining two columns are not. This 5-
element vector can take binary values between 0 and 11111, where the latter
number corresponds to 32 in base-10 terms. However, the model has 25
variables that could – theoretically at least – be used as observables. Since 225

corresponds to roughly 33.5 million combinations it is infeasible to consider
all such alternatives.

To reduce the dimensionality of the analysis we consider situations where
the number of observables exactly equals the number of shocks. We also
assume that some of the domestic and foreign variables are inherently un-
observable, and thus exclude them from our analysis. In the open economy
version of the model there are 12 shocks (seven domestic and five foreign),
and we therefore select 12 observables.

We draw domestic observables from the following set:
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1. Gross domestic product
2. Consumer price inflation
3. Interest rates
4. The real exchange rate
5. Domestic consumption
6. Domestic consumption of home-produced goods
7. Domestic consumption of imports
8. The inflation rate for home-produced goods
9. The inflation rate for imported goods

10. The inflation rate for domestic wages
11. The terms of trade, and
12. Domestic hours worked.

And draw foreign observables from amongst the following:

1. Foreign output
2. Foreign inflation
3. Foreign wages
4. Foreign wage inflation
5. Foreign interest rates, and
6. Foreign hours worked.

Unfortunately, this number of combinations is still impractically large.
The binomial coefficient for 18 choose 12 is 18!/(12!6!) = 18, 564. To sim-
plify the problem further, we assume that gross domestic product, consumer
price inflation, interest rates and the exchange rate are always included as
observables. That leaves us with 8 observable variables to choose from 14,
which results in a mere 3, 003 possible samples. Given that there are 12 do-
mestic variables there is exactly one combination of observables that omits
all foreign observables.

Space constraints preclude us from replicating table 2.9, reporting the
ranks for each of these 3, 003 samples, but we provide a small excerpt in
table 2.10 as an illustration of some of the ranks from different samples.
This excerpt shows that most samples result in the identification of all 29
parameters, but there is a reasonable degree of variation in the number of
sub-maximal ranks that arise for different sets of observables.
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Table 2.10: Identifying Γ parameters for foreign equations: Minimum and
maximum ranks for different observables

Ranks
Observables Min Max #Ranks < Max
... ... ... ...
c cf πh πf πw y∗ w∗ n∗ 29 29 0
c cf πh πf πw s y∗ n∗ 29 29 0
c cf πh πf πw s w∗ n∗ 29 29 0
c cf πh πf πw y∗ r∗ n∗ 29 29 0
c cf πh πf πw r∗ w∗ n∗ 29 29 0
c cf πh πf πw s r∗ n∗ 29 29 0
c cf πh πf πw y∗ π∗

w n∗ 29 29 0
c cf πh πf πw π∗

w w∗ n∗ 29 29 0
c cf πh πf πw s π∗

w n∗ 29 29 0
c cf πh πf πw π∗

w r∗ n∗ 29 29 0
c cf πh πf y

∗ π∗ w∗ n∗ 27 29 217
c cf πh πf s y∗ π∗ n∗ 27 29 249
c cf πh πf s π∗ w∗ n∗ 27 29 235
c cf πh πf y

∗ π∗ r∗ n∗ 27 29 227
c cf πh πf π

∗ r∗ w∗ n∗ 27 29 216
c cf πh πf s π∗ r∗ n∗ 27 29 249
c cf πh πf y

∗ π∗ π∗
w n∗ 27 29 211

c cf πh πf π
∗ π∗

w w∗ n∗ 27 29 208
c cf πh πf s π∗ π∗

w n∗ 27 29 232
c cf πh πf π

∗ π∗
w r∗ n∗ 27 29 213

... ... ... ...
Note: The first column specifies additional the variables used as observables. The four
baseline variables, y, r, π and q, are included in all combinations. The second and third
columns indicate the minimum and the maximum rank computed across the 10, 000 pa-
rameter vectors. The ranks determine the number of elements that can be identified in
the vector θ. The model is fully identified if the ranks are 29. The last column counts
the number of parameterisations with ranks that are less than that reported in the third
column. (In addition, 40 parameter vectors resulted in an indeterminate model.)
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We can make a few over-arching observations about these different sets
of observables. First, however, we should note that we examine the identi-
fiability of the following 29 domestic parameters: ϕ, σ, αH , αF , αw, γH , γF ,
γw, h, τ , η, θπ, θy, θδy, θδe, θr, ρa, ρg, ρw, ρcH , ρcF , ρrp, σa, σg, σcH , σcF , σw,
σrp, σm. We exclude β, ε, εw, χ and ρm from the identification analysis since
all of these parameters are calibrated in Justiniano and Preston’s priors.

When we examine the 3, 003 combinations each with twelve observables,
we find that each combination can identify all 29 of the elements of θ for the
vast majority of the 10, 000 instantiations (parameterisations) considered.
We also find that there are many (924) combinations of observables that
are impervious to the exact parameterisation of the model, identifying all 29
parameters across all instantiations, see figure 2.2. We find that 2, 508/3, 003
combinations result in identification problems at 14 or fewer instantiations.
In contrast, some combinations of observables suffer additional identification
problems for 200 − 300 of our 10, 000 instantiations, as is evident from the
sub-maximal ranks. According to the numerical ranks being computed, nine
of the combinations of observables face some instantiations in which only
26/29 parameters can be identified.

Is the number of sub-maximal ranks correlated with the number of for-
eign variables included amongst the observables? figure 2.3 illustrates that a
very low number of foreign variables (either zero or one) results in a very low
number of additional identification problems. The figure plots a point for
each combination of observables. The horizontal axis records the number of
foreign variables in the combination and the vertical axis counts the number
of times one or more parameters are unidentified across the 10, 000 instantia-
tions. Each dimension (count) maps to the set of integers. When the number
of foreign observables is 2 or more, there are 200 − 300 instantiations that
result in additional identification problems.

We determine which data have better identification properties by exam-
ining models with and without particular observable variables. We specify
samples that contain the ith observable yi and identify the number of sub-
maximal ranks for such samples and we contrast that number with the num-
ber of sub-maximal ranks when yi is not an observable. We undertake these
contrasts for both the domestic and foreign variables. The results clearly
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Figure 2.2: Sub-maximal ranks by sample

Note: This figure illustrates how many samples have sub-maximal ranks. The figure
illustrates that roughly 2, 500 of 3, 003 combinations of observables successfully identify
all 29 parameters with the exception of 14 or fewer instantiations. However, a non-trivial
number of samples suffer from additional identification problems for around 2− 3 percent
of instantiations (more exactly, 199− 283 instantiations out of 10, 0000).
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Figure 2.3: Sub-maximal ranks vs the number of foreign variables included
in the observables: Domestic parameters

Note: This figure plots the number of sub-maximal ranks against the number
of foreign variables included in the observables. There are 3, 003 points, one
for each combination. There is a single sample consisting solely of domestic
variables.
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indicate that there is no single foreign variable that has a material impact
on the frequency of sub-maximal ranks. Whether a foreign is included or
excluded has little impact on the number of ‘problem’ instantiations.

The outlook is different for domestic variables. We find that including
domestic labour market variables, either πw or n, is particularly valuable for
eliminating these additional identification problems. In particular, we show
that combinations that include domestic wage inflation or the number of
hours worked have much better properties than combinations of observables
that exclude both variables.

The benefit of labour market variables was not evident in our closed
economy analysis of the foreign equations, reported in table 2.8, because the
observable combinations we reported there always had labour market vari-
ables. In our examination of identification for closed economy parameters,
three variables provided sufficient moments to estimate the structural pa-
rameters, at least in principle. For the sake of brevity we report only one
3-observable combination in that table, with price inflation, wage inflation
and wages as observables. Those observables have very poor identification
properties for the foreign parameters: only 13 structural parameters could
be identified as compared to the more usual 21. Some data choices clearly
matter for identification.

2.4.3 Identification of foreign parameters from domes-
tic data

We look at the same combinations of 12 observables and consider whether the
foreign parameters can also be locally identified. Figure 2.4 illustrates that
many of the combinations of observables result in identification of 21 foreign
parameters. (Each shade/colour corresponds to a particular combination
of observables.) While many combinations enable the identification of 21

parameters, the figure also illustrates that a substantial number of instanti-
ations have additional identification problems, with an additional one or two
parameters no longer identified. These additional identification problems
are much more common across the parameterisations than in our previous
discussions.
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Table 2.11: Sub-maximal ranks across different combinations of observables
Number of instantiations with ranks < maximum

Minimum 0.00
Maximum 278.00
Mean 43.78

Domestic variables
Include c 50.47
Exclude c 34.85
Include cH 50.29
Exclude cH 35.10
Include cF 50.92
Exclude cF 34.25
Include πH 50.20
Exclude πH 35.20
Include πF 49.66
Exclude πF 35.94
Include πw 0.92
Exclude πw 100.91
Include s 52.15
Exclude s 32.61
Include n 6.46
Exclude n 93.53
Include πw or n 5.05
Exclude πw and n 239.97

Foreign variables
Include y∗ 50.56
Exclude y∗ 34.73
Include π∗ 50.66
Exclude π∗ 34.60
Include π∗

w 49.65
Exclude π∗

w 35.94
Include r∗ 50.70
Exclude r∗ 34.55
Include w∗ 49.83
Exclude w∗ 35.70
Include n∗ 50.39
Exclude n∗ 34.96

Note: The table indicates the average number of ‘problematic’ instantiations associated
with identification problems when a variable is included/excluded as an observable. The
table indicates that observing wage inflation and/or hours worked decreases the number of
instantiations with identification problems. Conversely, including foreign variables some-
what increases the number of problematic instantiations, presumably because it increases
the probability of excluding domestic labour market variables.
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Figure 2.4: Histogram of ranks given 12 observables

Note: This figure plots a histogram of ranks for each combination of 12 observables. The
combinations were sorted to illustrate the differences in histograms more clearly. Each
combination corresponds to a specific colour/shade. While many combinations identify
21/23 parameters, many combinations of observables result in additional identification
problems. For some parameterisations of the model, in conjunction with particular ob-
servables, as few as 17 parameters are identified.
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Figure 2.5: Sub-maximal ranks vs the number of foreign variables included
in the observables: Foreign parameters

Note: This figure plots the number of sub-maximal ranks against the number of foreign
variables included in the observables. There are thus 3, 003 points, one for each combina-
tion of observables. There is a single sample consisting solely of domestic variables (zero
foreign variables).

Figure 2.5 illustrates the counts of sub-maximal ranks against the num-
ber of foreign variables included in the combination of observables. This
figure clearly illustrates that samples that have more foreign variables are
more useful for identifying the foreign parameters. The figure also shows
that domestic variables provide some degree of identification, because the
dynamics and impulses from foreign variables still propagate to the domestic
economy, at least to some degree.

Figure 2.6 demonstrates that the additional identification problems are
much alleviated if n∗, the number of foreign hours worked, is included as an
observable. A similar picture arises if we compare combinations of observ-
ables that include foreign wages, w∗. Including labour market data in the
form of quantities or prices thus seems particularly valuable for the iden-
tification of foreign parameters. This figure reinforces the insight provided
by table 2.11, that including labour market data is particularly useful for
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identification.

2.4.4 What impact do autocorrelated errors have on
identification?

Pesaran (1987) and others note the importance of the dynamics of exogenous
variables for identification in rational expectations models. In the context of
our DSGE model a natural avenue to explore is the impact of autocorrelated
shocks. The exogenous shocks that underpin business cycle fluctuations are
typically modelled as autoregressive (or less commonly autoregressive-moving
average) processes. Modelling the shocks as persistent processes is a prag-
matic response to the fact that the intrinsic structure of our DSGE models
fail to match the persistence of the data. What happens to identification
when we turn off shock persistence? We take our baseline model but cali-
brate all of our autocorrelation terms, ρa, ρg, ρw, etc., to zero. We are then
left with 23 domestic parameters to identify. Computing histograms across
ranks we find that some combinations of observables identify 23 parameters
and other combinations only identify 22 parameters. For a given combination
of observables the same rank is achieved across all 10, 000 points explored in
the parameter space. To ascertain which observables influence identification
we undertake the same contrast between combinations of observables that
include variable i and combinations that exclude variable i. The results are
starkly illustrated in figure 2.7. Including n, the number of hours worked,
enables the identification of 23 parameters, but only 22 parameters can be
identified if n is absent from the set of observables. In contrast, comparable
figures for other inclusions/exclusions exhibit a mix of ranks in both cases.
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Figure 2.6: Histogram of ranks for foreign parameter identification
with/without foreign hours worked

Note: This figure plots the histogram of ranks for different combinations of observables.
The top panel illustrates histograms of ranks when n∗, foreign hours worked, is included
as an observable. The bottom panel illustrates histograms of ranks when n∗ is excluded
from the observables. The figure illustrates that observing n∗ results in markedly fewer
identification problems.
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Figure 2.7: Histogram of ranks with/without labour market variables - IID
shocks

Note: This figure plots the histogram of ranks for different combinations of observables.
The top panel illustrates histograms of ranks when domestic hours worked, n, is included
as an observable. The bottom panel illustrates histograms of ranks when n is excluded
from the observables. The figure illustrates that observing n is materially important for
identifying one of the domestic parameters.
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2.5 Conclusion
In this chapter we explored whether the parameters of a small open economy
DSGE model are identified. That is, can we correctly infer which parame-
terisation of the model generated the data if we know the properties of the
data exactly?

A DSGE model is a system of expectational equations that arises from
the optimising decisions of households, firms, and policy-makers. Once lin-
earised, the system of equations is very similar to a system of simultaneous
linear equations in the Cowles Commission tradition. DSGE models differ
to simultaneous equations models in three main respects: i) Γ parameters
in the DSGE system are functions of underlying structural parameters θ;
ii) a DSGE model typically includes expectations of future variables; and
iii) some DSGE variables are unobserved. Identification problems can arise
because of each of these differences. We show that identification problems
can arise in the mapping from the deep structural parameters θ that govern
objectives and constraints to the Γ parameters that instantiate the system
of expectational equations.

One of the main contributions of the chapter is the development of a
straightforward, easy-to-implement methodology that can be used to antic-
ipate identification problems in the mapping from structural parameters θ
to the Γ parameters. By focusing explicitly on this mapping, we highlight
identification problems and determine which structural parameters are inter-
dependent and not separately identifiable.

Mechanically, we use the inverse function theorem and compute null
spaces for the Jacobian matrix of a multivariate function to determine which,
if any, parameters are interdependent. Since the mapping from a parameter
vector θ to the Γ matrices of the expectational equations is known, the Jaco-
bian and null-space and ranks can be computed symbolically. For Bayesians,
understanding these identification problems is important so that due care and
attention can be directed to the priors for unidentified parameters, since data
will not be fully informative about such parameters.

When the number of observed variables in a DSGE model is greater
than the number of shocks a stochastic singularity arises in linear models,
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which results in an undefined likelihood. Undefined likelihoods arising from
stochastic singularity pose a material problem for parameter estimation, both
classically and for Bayesians optimising posterior beliefs about parameters.
To avoid this problem, it is common to ensure that the number of observed
variables is less than or equal to the number of shocks, by arbitrarily re-
stricting the variables that are used as observables. We use the approach of
Iskrev (2010b) to shed light on which variables should be used to estimate
the model. We examine whether observed data moments change given lo-
cal perturbations in the structural parameters. In particular, we examine
whether changing the set of observables has material implications for local
identification. In principle, identification may also depend on the parame-
terisation of the model. Thus, we examine identification at 10, 000 points in
the parameter space.

Our particular focus is on the use of foreign data. We examine whether
foreign data are more useful than domestic variables in achieving model iden-
tification. Our results show that foreign data are not pre-eminently useful for
the identification of domestic parameters. We start from a baseline of four
domestic observables, y, π, r and q,38 and then add 8 additional observables
selected from a set of 8 domestic variables and 6 foreign variables, so that the
number of observables coincides with the number of shocks. We find that at
most points in the parameter space, all combinations of observables success-
fully identify the domestic parameters that we analyse (bar those subject to
identification problems that arise in the mapping from θ to Γ).

We find that all feasible combinations of 12 variables are successful in
locally identifying the parameters for the vast majority of parameterisations
that we examine. However, some combinations of observables exhibit do-
mestic identification problems for 2 − 3 percent of the parameterisations,
while other combinations of observables do not. We find that labour market
variables – either hours worked or wage inflation – usefully augment the four
benchmark variables in our analysis.

For countries with heavily diversified and/or idiosyncratic trade and fi-
nancial relationships, constructing foreign data can be a challenging task,
fraught with mis-measurement. Our results indicate that, if anything, do-

38Domestic output, inflation, interest rates, and the real exchange rate.
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mestic variables are more useful than foreign variables for achieving identi-
fication of the domestic parameters. For modellers in many small economies
this finding will come as a relief, because it implies that one does not need to
‘construct’ foreign data to estimate small open economy models. However,
it should be noted that foreign data make a constructive contribution to the
identification of foreign parameters.

Our results provide modest support for a conclusion drawn by Iskrev and
Ritto (2016), namely that identification can depend on the precise parame-
terisation of the model. However, our evidence suggests that identification
properties are largely invariant to the parameterisation of the model. While
it is possible for identification problems to crop up if too few observables are
used or if the observables are too closely related to each, for the most part
the identification properties of our model are the same across different com-
binations of observables. A mix of activity data, labour market data, and
interest rates solves most identification problems, except those associated
with mapping θ to Γ.

While the ranks of Jacobian matrices and the associated null spaces pro-
vide fundamental insight into the parameterisation of our models, they do not
provide particularly sharp guidance as to which data series should be used
as observables – many combinations of observables will identify the model.
Thus, like Iskrev and Ritto (2016) and Canova et al. (2014), one needs to
develop alternative criteria to guide the choice of observables. These criteria
should reflect i) preferences (which moments are important to explain?); ii)
beliefs about the accuracy or measurement quality of the data; and iii) beliefs
about the veracity of our model for the data.

We began this chapter by quoting Fernandez-Villaverde: “Identification
issues ought to be discussed in more detail in DSGE models, since they affect
the conclusions we get from them.” With the benefit of this chapter behind
us, we think this claim should be amended. For the most part, we find that
model parameters are identified irrespective of which data series are used
to estimate the model. However, it may well be the case that the choice
of the data affects the conclusions we draw from our models, reflecting the
fact that our models are imperfect representations of the data. To challenge
theory as much as possible, it makes eminent sense to condition our prior
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estimates with as much data as possible, preferably with series that relate
to the underlying elements in our structural theories. Lastly, we should dive
into the individual dimensions of the model to understand which additional
data series are poorly captured by the model so that we may improve the
accord of our models with the data.



Appendix

2.A Iskrev theorem 2
The following theorem from Iskrev (2010b) provides a condition for local
identification.

Theorem 2. Suppose that mT [A vectorized summary of T autocovariance
moments] is a continuously differentiable function of θ [a vector of structural
parameters]. Then θ0 is locally identifiable if the Jacobian matrix J(q) :=

∂mq/∂θ
′ has a full column rank at θ0 for q ≤ T . This condition is both

necessary and sufficient when q = T if ut is normally distributed.

2.B Inverse function theorem
The following theorem is paraphrased from Rudin (1976, pp. 219-221), see
particularly definition 9.20 and theorem 9.24.

Theorem 3 (Inverse function theorem). Suppose f is a continuously differ-
entiable mapping of an open set E ⊂ Rn into Rn, f ′(a) is invertible for some
a ∈ E and b = f(a). Then

(a) there exist open sets U and V in Rn such that a ∈ U , b ∈ V , f is
one-to-one on U and f(U) = V ;

(b) if g is the inverse of f [which exists by (a)], defined in V by g(f(x)) = x

for x ∈ U , then g is a continuously differentiable mapping on the set
V .

89



90 CHAPTER 2. IDENTIFICATION OF AN SOE MODEL

2.C Identification of real-valued functions

2.C.1 Identifying function

We replicate some of the definitions and lemmas of Kadane (1975, pp 176-
178) to note that there are mappings between ‘identifying functions’ (defined
below). Kadane notes “[i]ntuitively such an identifying function carries with
it all information about the identification of such functions.” A natural im-
plication is that the exact function used to identify the underlying parameter
vector of a model is not material.

Definition 3 (Observational equivalence). Let (X ,C ) be a measurable space
(X is a set and C is σ-Algebra on X ) and let Pθ, θ ∈ Θ be a family of
probability distributions on (X ,C ). Two parameter vectors θ, θ′ are obser-
vationally equivalent if Pθ(A) = Pθ′(A) for all A ∈ C .

Definition 4 (Identifying functions). An identifying function T : Θ → T

is a function satisfying ∀θ, θ′, such that θ is observationally equivalent to
θ′ ⇐⇒ T (θ) = T (θ′).

Given the above definitions, Kadane specifies the following lemma.

Lemma 1 (Identifying functions map). Let f : Θ → S and suppose T :

Θ → T is an identifying function. Then f is identified ⇐⇒ ∃ a function
g : T → S satisfying f(θ) = g(T (θ)).

To understand this result note that if the two functions are identifying
then the structural parameter space Θ can be used as a bridge uniquely
connecting elements s ∈ S to elements t ∈ T and vice-versa.

2.C.2 Score of a Gaussian vector autoregression

As noted in the text, the score – the vector of derivatives of the log-likelihood
with respect to the parameters – is an obvious choice to use as an identifying
function. Here we note that the score for a Gaussian process is a weighted
function of the underlying variances and covariances of the data, the moments
that we use to estimate the model.
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Let Y =
(
y1 y2 . . . yT

)′
, where yt is an n × 1 vector. Let Ωt be the

information set available at time t, consisting of yt, yt−1, yt−2, . . . Suppose that
Y is a VAR(p) process. The prediction error decomposition of the likelihood
of a vector is:

Pr(Y ) = Pr(y0) · Pr(y1|Ω0) · . . . · Pr(yt|Ωt−1) (2.8)

Taking logs to form the log-likelihood, we have

log Pr(Y ) = log Pr(y0) +
T∑
t=1

log Pr(yt|Ωt−1) (2.9)

Define Xt−1 =
(
1 y′t−1 . . . y′t−p−1

)′
, a 1+pk×1 vector. Then the VAR(p)

can be represented as:

yt = BXt−1 + ut (2.10)

with B a n× 1 + pk matrix. We assume that the vector of errors, also with
dimension n × 1, is multivariate Gaussian, ut ∼ N(0,Σ). Then, given a
suitable change-of-variable,

log Pr(yt|Ωt−1) = log Pr(yt|Xt−1) (2.11)

= (2π)−
n
2 + |Σ|−

1
2 − 1

2
(ut)

′Σ−1(ut)
′ (2.12)

given that ut has zero mean. Solving (2.10) for ut and substituting the answer
into equation (2.11) and eliminating terms that are unrelated to B we have:

log Pr(yt|Ωt−1) = log Pr(yt|Xt−1) (2.13)

=− 1

2
(yt −BXt)

′Σ−1(yt −BXt) (2.14)

+ unrelated terms

Noting that Σ is symmetric and taking the derivative of (2.13) with respect
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to B results in

∂ log Pr(yt|Ωt−1)

∂B
= (Xt)

′Σ−1(yt −BXt) (2.15)

Given the definition of Xt and yt, the score of the likelihood with respect to
the parameters in B can be represented as a weighted average of variances
and autocovariances of the data (summing across all t = 1, . . . , T , and scaling
by T ). See Lütkepohl (2006, sn. 3.4) for a rendition of the score using
vec operators and Kronecker products. (The system of equations can be
augmented with first order conditions with respect to the variance-covariance
matrix of the error terms.)

2.D DSGE solutions and identification
We specify the DSGE model in the form used by Schmitt-Grohé and Uribe
(2004), which uses policy function approximations. We closely follow Schmitt-
Grohé and Uribe’s notation and make no claim to originality in this section
of the appendix. See Judd (1999) for a generic introduction to perturba-
tion techniques, and Heer and Maußner (2009, ch. 2) for an introduction to
perturbation techniques explicitly focused on DSGE models. We note that
the notation in the following differs from that in the main text, which more
closely follows Iskrev (2010b).

Suppose the system of equations from the DSGE model can be repre-
sented in the following form:

E
t
f(yt+1, yt, xt+1, xt) = 0 (2.16)

where Et is the expectation operator, conditional on the information available
at time t, yt is the vector of non-predetermined variables at time t, and xt is
the vector of predetermined variables. The system of equations is a mapping
f : Rny × Rny × Rnx × Rnx → Rn, where ny is the dimension of the vector
yt; nx is the dimension of the vector xt; and n = ny + nx. All vectors are
assumed to be column vectors. The vector of predetermined (state) variables
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xt =
(
x′1t x′2t

)′
, where x2t is a completely exogenous process

x2t+1 = Λx2t + η̃σεt+1 (2.17)

where ϵt is an nε × 1 vector of zero mean IID shocks with bounded support,
and covariance matrix σ ≥ 0 is a scalar and η̃ is an nε × nε matrix of
parameters.

The first sub-component of the state vector, x1t is a function of the entire
state vector xt. The solution to the model consists of two functions:

yt = g(xt, σ) (2.18)

xt+1 = h(xt, σ) + ησεt+1 (2.19)

And η =
(
0′ η̃′

)′
, with dimensions nx × nϵ.

We seek a solution to the system equations via first (or second) order
approximations of the policy function (see equations 2.18 and 2.19). Let y
and x denote steady-state values. We compute a first order approximation
around the non-stochastic steady-state (i.e. σ = 0). Substituting (2.18) and
(2.19) into (2.16), we have a function

F (x, σ) = E
t
f(g(h(x, σ) + ησε′, σ), g(x, σ), h(x, σ) + ησε′, x) = 0 (2.20)

where a prime now indicates variables dated one period ahead. Since the
function equals a constant, all the derivatives must leave the function un-
changed: Fxkσj(x, σ) = 0 ∀x, σ, j, k, where this is the derivative of F with
respect to x taken k times and with respect to σ taken j times.

A first order approximation of the solution to the model provides two
linear functions

g(x, σ) = g(x, 0) + gx(x, 0)(x− x) + gσ(x, 0)σ (2.21)

h(x, σ) = h(x, 0) + hx(x, 0)(x− x) + hσ(x, 0)σ (2.22)

These linear functions can be inferred by taking the derivatives of F , as
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defined in equation (2.20), with respect to the elements of the vector x and
σ. Let [fy′ ]

i
α denote the derivative of the i-th equation with respect to the

α-th coefficient of y′. (Again, remember that primes refer to periods one-
step-ahead.) Then

[Fx(x, 0)]
i
j = [fy′ ]

i
α[gx]

α
β [hx]

β
j + [fy]

i
α[gx]

α
j + [fx′ ]iβ[hx]

β
j + [fx]

i
j (2.23)

= 0, i = 1, . . . , n; j, β = 1, . . . , nx; α = 1, . . . , ny

for i = 1, . . . , n; j, β = 1, . . . , nx, and α = 1, . . . , ny. In (2.23), the derivatives
of F with respect to y′, x′, x, y are evaluated at the steady state

(
y y x x

)
and can be computed directly from the system of equations.

Equation (2.23) provides a set of quadratic equations, implicitly defining
hx and gx. The solution for gx and hx can be computed from (2.23) using
the Schur decomposition of the system of equations. The matrices −[fx′ ]iβ
and −[fy′ ]

i
α are concatenated together to form a matrix A and [fx]

i
j and

[fy]
i
α are concatenated to form matrix B. We then compute the complex

Schur decomposition of A and B and split the system into a set of equations
with eigenvalues greater than one, which are recursed into the future, and
equations that have eigenvalues less than one, which are ‘solved backward’.
The use of the Schur decomposition follows Klein (2000). See also Sims
(2002) and DeJong and Dave (2007, ch. 2) for an accessible discussion.
Analogous expressions can be derived by taking the derivative with respect
to σ. Schmitt-Grohé and Uribe (2004) show that hσ = 0 and gσ = 0, so to
first order the functions are unrelated to the size of the shock variances.

The solution to the reduced from can be used to compute the variances
and autocovariances of the ‘observed’ variables. These moments can be
thought of as a system of equations. Following Iskrev (2010b) we compute
Hessians of these moments with respect to the structural parameters, which
are derived from the partial derivatives of f with respect to y′, y, x′, x. See
Schmitt-Grohé and Uribe (2012a) for more explicit details.
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2.E Composition of one-to-one functions is
one-to-one

Consider the following propositions.
Proposition A: g ◦ f is one-to-one
Proposition B: f is one-to-one

We prove that A⇒ B by contradiction.

Proof. Suppose that f is not one-to-one. Then there exists θ1 ̸= θ2 such
that f(θ1) = f(θ2). But by the composition function that implies gof(θ1) =
gof(θ2), and thus the composition is not one-to-one in contradiction to propo-
sition A.

Consequently, if the DSGE model is to be identified then the mapping
f : Θ → Γ must be one-to-one.
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Chapter 3

Skilled migration and business
cycle dynamics

3.1 Introduction
In recent years, migration flows have been large. Very large. These flows have
been large in absolute numbers and large relative to non-migrant populations
in destination countries. According to the United Nations, the world-wide
stock of migrants increased by 17 percent between 2010 and 2017.1 In West-
ern Europe migrant stocks rose by 18 percent, in the United States by 13
percent, in Canada by 16 percent and by 18 percent in Oceania.2 In contrast,
overall population growth in high-income countries has been a paltry 3.8 per-
cent, much slower than the growth of migrant populations. Even looking at
the world as a whole, population growth has only been around 8.5 percent.

The economic causes and consequences of migration are complex and
multi-dimensional, affecting both origin and destination countries. Kerr and
Kerr (2011) and Nathan (2014) provide surveys that discuss various facets
of migration, while Constant and Zimmermann (2013) and Chiswick and
Miller (2015) provide handbooks on the topic. A particular focus of the
literature has been on the effect of migration on the labour market (Borjas,
1999a; Dustmann et al., 2005; Borjas, 2014; Burstein et al., 2017). Much

1www.un.org/en/development/desa/population/migration/data/index.shtml,
accessed 9 May 2018.

2See Peri (2016) for more cross-country detail, though for a slightly earlier period.
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of this analysis has a strong microeconometric focus,3 sometimes based on
partial equilibrium models or models that exploit cross-country or regional
variation. The macroeconomic consequences of migration, and in particular
the general equilibrium business cycle consequences, are less well understood
and have not been researched in much depth in the international literature.
One notable exception is the work by Mandelman and Zlate (2012), which
focuses on international risk sharing via migrants’ remittances.

In this paper, we focus on the role of skilled migrants as a driver of the
business cycle in countries-of-destination. How does migration affect the per
capita level of gross domestic product (GDP) and its components? How
does skilled migration affect the real exchange rate, and finally, do shocks to
skilled migration drive the business cycle?

To address these questions, we develop and estimate a dynamic stochas-
tic general equilibrium model for a small open economy that experiences net
migration flows. We fit this model to the New Zealand economy, because of
the availability of excellent migration data. All arrivals and departures in
New Zealand are subject to reporting requirements and virtually all migrants
arrive or depart by air, which provides a natural bottleneck for data collec-
tion. Migration flows into New Zealand have also been substantial in recent
years, providing much-needed variation for econometric analysis. For exam-
ple, net migration has increased working-age population in New Zealand by
1 percent in each of the three years from 2015-2017, and continues at a fast
pace in 2018.

The key difference between migration flows and natural population in-
crease is that migrants have pre-existing accumulations of financial and hu-
man capital, while babies enter the world with no capital balances. In our
analysis we model migration allowing for human capital, but for simplicity
we do not model stocks of financial capital.4

Our analysis enables us to determine the contribution of migration shocks
to the business cycle. We illustrate that the skill level of migrants relative

3See, for example, the discussion paper series of the Centre for Research and Analysis
of Migration.

4Skilled and other migrants entering New Zealand in 2004 and 2005 had on average
about NZD36,000 worth of gross assets DOL (2009). Investor migrants, unsurprisingly,
are required to bring in a larger stock of assets.
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to locals materially influences the dynamic impact of migration on the host
economy. Borjas (1999a) notes that “the labour market impact of immi-
gration hinges crucially on how the skills of migrants compare to those of
natives in the host country”. We show that relative skill levels also mat-
ter for variables such as consumption and investment, in addition to labour
market variables such as hours worked and wages.

Migration shocks account for more of the volatility of the business cycle
if migrants’ level of human capital differs from that of locals. If migrants
have a higher level of human capital than locals, the effects of migration are
expansionary on a per capita basis and migration shocks can account for a
large fraction of the volatility of GDP and its components. When migrants
have the same human capital as locals, migration shocks account for only a
small fraction of the overall volatility of GDP. While still expansionary on
a per capita basis, this kind of migration causes much less volatility for the
host economy.

The literature on the business cycle effects of migration can be traced
back to Jerome (1926), who explored the implications of immigration into
the United States in the early twentieth century. However, the modern
literature on the macroeconomic effects of migration, using time series and
structural macroeconomic models, is relatively sparse. Our work is related to
Weiske (2017a,b), who looks at the macroeconomic effects of migration and
population growth in the United States (US). Using constructed working-age
net migration data for the United States in a vector autoregression, Weiske
(2017a) finds that the short-run effects of migration are consistent with stan-
dard growth theory, i.e. real wages fall and investment increases. However,
Weiske also finds that migration shocks make only a modest contribution
to US business cycle dynamics. The latter result is not entirely surprising,
since data from the Department of Homeland Security and the US Census
Bureau suggest that the per annum migration rate for the United States has
been below 1 percent since 1915 and, with two exceptions, has been below
0.4 percent since 1925.5

5See https://www.dhs.gov/immigration-statistics/yearbook/2016/table1 and
the Haver population series A111POPG10. These percentages are indicative since the
immigration series are for fiscal years, and do not align perfectly with the Census num-
bers.

https://www.dhs.gov/immigration-statistics/yearbook/2016/table1
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Localised waves of migrants have been used as exogenous shocks to un-
derstand the effect of migration on wages, unemployment rates and house
prices. Card (1990), for example, uses the 1980 Mariel boatlift of refugees
from Cuba to Florida to examine the effects of migration on labour mar-
kets. The Mariel immigrants, relatively unskilled, increased the population
of Miami by seven percent. Yet, according to Card, the influx had little
effect on wages and unemployment rates overall. Borjas (2017), however, ar-
gues that the wage effects were substantial for the high school dropouts that
were directly competing with the influx of unskilled migrants. The analytical
framework developed below focuses on the average per capita effects of skilled
migrant flows, not on the effect on specific types of labour grouped by skill.
We will see, however, that relative skill-levels are particularly important for
the macroeconomic consequences of migration shocks.

For some countries, the effects of migration shocks are substantial. Furlan-
etto and Robstad (2016), for example, use Norwegian data and find that
positive migration shocks are expansionary and are a major driver of the
dynamics of unemployment, though they are unimportant for house prices.6

Barrell et al. (2010) examine a particular facet of migration, namely the
migration that occurred following the accession of ten Eastern European
countries into the European Union, highlighting large flows into Ireland and
the United Kingdom. In a Bundesbank working paper, Stähler (2017) exam-
ines the macro impact of refugees in Germany. In Stähler’s model, refugees
from the rest-of-the-world are absorbed only gradually into the labour force.
Refugees initially increase output, via a demand channel, but the later dy-
namics depend on whether refugees accumulate more or less qualifications
than locals.

In New Zealand, much of the macro literature on migration focuses on
the housing market.7 Using a structural vector autoregression, Coleman and
Landon-Lane (2007) find that migration has an extremely large impact on
house prices, unlike the result reported for Norway by Furlanetto and Rob-

6Likewise, Saiz (2003) finds that the Mariel boatlift had little impact on house prices
in Miami, though rents increased by substantially more than other metropolitan areas.

7Hodgson and Poot (2011) provide a summary of New Zealand research on migration
between 2005 and 2010. Their synthesis focuses on labour market adjustment, but also
discusses literature on housing, trade and tourism, fiscal impacts, and innovation.
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stad (2016). Stillman and Maré (2008) apply microeconometric techniques
to New Zealand census and house sales data to examine the impact of popu-
lation and migration on house prices at a local, disaggregated level; they find
no impact of foreign-born migrants on local house prices, though returning
New Zealanders seem to have a statistically significant impact. In contrast,
McDonald (2013) investigates the composition of New Zealand migration
and finds that constituent parts of net migration have different macro conse-
quences: migrant arrivals are found to have more substantial impact on house
prices than migrant departures and the citizenship of migrants also appears
to have implications for the domestic (New Zealand) impact of migration.
In a similar vein, Vehbi (2016) finds that the age-composition of migrants
matters, with (presumably wealthier) 30-49 year old migrants having more
substantial effects on consumption, house prices, rents, and residential in-
vestment than 17-29 year old migrants.

Having briefly described the literature we now turn to the specification
of the structural model that we use to investigate the impact of migration
flows on the business cycle.

3.2 A model of migration in a small open
economy

We analyse the effects of migration shocks on business cycle dynamics us-
ing a dynamic stochastic general equilibrium (DSGE) model of a small open
economy. The standard small open economy model is augmented with two
features that have non-trivial implications for the economy’s dynamic re-
sponse to migration shocks. First, we allow for human capital accumulation,
such that migration can affect not just the physical capital stock per head,
but also the stock of human capital per capita. Importantly, the two forms
of capital need not be affected by a migration shock in the same way. Sec-
ond, we introduce a residential housing sector into the model. This addition
allows us to analyse the effect of migration on residential real estate prices,
and also sectoral labour flows. In other words, does migration cause labour
to flow from the production of goods into the production of houses? We
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briefly discuss these two modelling choices in relation to the macroeconomic
environment in New Zealand.

New Zealand’s Immigration Act 2009 provides the current framework for
migration into New Zealand. This legislation is augmented with regulations
that specify application requirements for different visa categories. Visas are
available for entrepreneurs, investors, skilled migrants, refugees, Pacific Is-
landers, and others. Of most note, in the context of our analysis, is the use
of points-based criteria to rank applicants for many visa categories. Com-
paratively little use is made of visa ballots,8 such as those used to allocate
‘Diversity Immigrant Visas’ in the United States – green cards. In the ten and
a half years from fiscal year 2007/8, roughly 463 thousand migrants have had
visa applications approved by New Zealand immigration authorities.9 Some
263 thousand successful applicants (circa 57 percent of successful applicants)
entered New Zealand as ‘Skilled Migrants’ or via investor, entrepreneur or
other skill-related categories. A further 163 thousand migrants (35 percent)
were approved for family-related reasons, around 15 thousand visas (3.2 per-
cent) were granted for refugees, 16 thousand visas were approved for people
from the Pacific (3.5 percent); and a little over 5 thousand people were pro-
vided visas for various other reasons (primarily by ministerial direction).
While the measurement of human capital is clearly fraught, the importance
of skilled, investor, and entrepreneurial migrants provides some support for
the view that the ‘average’ migrant might have more human capital than the
average domestic resident.

As mentioned above, we also explicitly model the housing sector. We
incorporate housing into our analysis because housing is an important com-
ponent of the capital stock, and demand for houses is directly and imme-
diately affected by an increase in population – from migrants and residents
alike. Residential investment is also one of the most volatile components of
gross domestic product, contributing to business cycle fluctuations. Further-
more, construction is an important sector of the New Zealand labour market.
According to the Quarterly Employment Survey, the proportion of full-time

8There are exceptions to this generalisation: Gibson et al. (2018) discuss the effects of
Tongan migrants who enter into New Zealand via a lottery.

9See https://www.immigration.govt.nz/documents/statistics/
r1residencedecisionsbyfy.zip, downloaded 8 February 2018.

https://www.immigration.govt.nz/documents/statistics/r1residencedecisionsbyfy.zip
https://www.immigration.govt.nz/documents/statistics/r1residencedecisionsbyfy.zip
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equivalents employed in construction has increased from below 5 percent in
the early 1990s to around 9 percent in the most recent data in 2017. The
links between house values and consumption, and therefore aggregate de-
mand, also receives continued emphasis in the monetary policy statements
of the Reserve Bank of New Zealand, in part reflecting the fact that a sub-
stantial proportion of New Zealanders’ domestic wealth is tied up in home
ownership.

3.2.1 Households

In our model, households maximise expected utility defined over consump-
tion, housing services, labour effort, and skill accumulation. The period
utility function is

Ut =

(
jct ln ct + jt lnht −

ϕ0

1 + η
(nt + st)

1+η

)
(3.1)

where ct is consumption per capita, ht are housing services per capita, jct
and jt are shocks that affects the utility agents derive from consumption and
housing services, respectively. nt denotes working hours, and st is training
hours per capita. The final consumption good, ct, consists of a domestically
produced good, cht , and an imported good, cft . More precisely, the final good
is defined as a constant elasticity of substitution (CES) aggregate:

ct =

[
v

1
θ

(
cht
) θ−1

θ + (1− v)
1
θ

(
cft

) θ−1
θ

] θ
θ−1

. (3.2)

Here θ denotes the elasticity of substitution between the two types of goods
and v is the share of the domestically produced good in final consumption.
The price index of the final good, Pt, is chosen to be the numeraire. Conse-
quently, all other prices are expressed relative to the home final good. For
example, the relative price of domestically produced goods, pht , denotes the
ratio Ph

t

Pt
.

Households maximise expected utility subject to the flow budget con-



104 CHAPTER 3. SKILLED MIGRATION & BUSINESS CYCLES

straint:

ct + pft bt + qHt ht + pltlt =(1 + rt−1)p
f
t

Nt−1

Nt

bt−1 + qHt (1− δh)
Nt−1

Nt

ht−1

+ wtnt
Nt−1

Nt

dt−1 + (plt +Rl
t)
Nt−1

Nt

lt−1 + πt (3.3)

Let us first note that the size of the working-age population at time t is
denoted by Nt. Expressing all variables in the model on a per capita basis
implies that all carried-over stocks, such as housing, bonds, human capital
and land in equation (3.3), are deflated by the term Nt−1

Nt
, which is the inverse

of the gross growth rate of working-age population. We implicitly assume
that there is a great deal of risk sharing once migrants are assimilated into
the local population.

In the budget constraint above, households consume goods, ct, buy bonds
that pay out in units of foreign-produced goods, bt, buy housing services, ht at
price qHt , and buy land, lt at price plt. Households finance these expenditures
through wage income, wtntdt (reflecting both hours nt and human capital
dt); the return they receive from the bonds purchased in the previous period,
(1 + rt−1)bt−1; from the rental returns to their land holdings, Rl

tlt−1; from
selling the un-depreciated housing services purchased last period, (1−δh)ht−1;
and through dividend income, πt that accrues to households as owners of the
production sector. The stock of human capital, denoted dt, evolves according
to the following law of motion:

dt = (
Nt−1

Nt

dt−1st)
ϕsN2ϕs−1

t + (1− δd)
Nt−1

Nt

dt−1 (3.4)

where (dt−1st)
ϕs denotes the production technology that turns effective time

investment into human capital and δd denotes the depreciation rate of human
capital. In modelling the accumulation of human capital we largely follow
Kim and Lee (2007).10 Setting the parameter ϕs < 1 ensures that growth is
exogenous. In our case with exogenous population growth we set ϕs =

1
2

to
10Kim and Lee introduce human capital accumulation to explain why macro estimates

of the intertemporal elasticity of substitution for labour supply are at odds with estimates
from micro data. The macro elasticities are large to explain why labour supply fluctuations
are large even though real wage variations are relatively small over the business cycle. The
presence of human capital results in an implicit mis-measurement of real wages.
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rule out a scale effect from population growth.

3.2.2 Household’s first order conditions

Equations (3.5) - (3.11) are the optimality conditions for consumption, hours
worked, hours spent training, the accumulation of human capital, bonds,
housing, and land. The marginal utility of consumption at time t in these
equations is denoted µt and the multiplier on the accumulation constraint
for human capital is denoted λt.

jct /ct − µt = 0 (3.5)

−ϕ0(nt + st)
η + µtwt

Nt−1

Nt

dt−1 = 0 (3.6)

−ϕ0(nt + st)
η + λtϕs

(Nt−1

Nt
dt−1st)

ϕs

st
= 0 (3.7)

−λt + µtwtnt + β E
t
λt+1

[
ϕs

(st+1
Nt

Nt+1
dt)

ϕs

dt
+ (1− δd)

Nt

Nt+1

]
= 0 (3.8)

−µt + β E
t
µt+1

pft+1

pft

Nt

Nt+1

(1 + rt) = 0 (3.9)

−qHt + jt
1

(htµt)
+ β E

t

Nt

Nt+1

µt+1

µt

(
(1− δh)q

H
t+1

)
= 0 (3.10)

−plt + β E
t

Nt

Nt+1

µt+1

µt

(
plt+1 +Rl

t+1

)
= 0 (3.11)

3.2.3 Firms

Households supply firms with effective labour, defined as ntdt−1
Nt−1

Nt
= ent,

which is remunerated with the real wage wt. Note that the opportunity cost
of investing in human capital is borne exclusively by the household and not
the firm. Households divide total effective labour, ent, between the goods
producing sector, supplying eny

t units of labour, and the construction sector,
supplying enH

t units of labour.

ent = eny
t + enH

t (3.12)
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Goods sector

Goods-producing firms produce a tradable good yt whose price in terms of
the numeraire good is pht . Firms maximise cash-flow defined as the difference
between the value of output and expenditure on wages and investment, xt:

πy
t = pht yt − wten

y
t − xt (3.13)

subject to a production technology that combines effective labour and utilised
capital:

yt = at(ut
Nt−1

Nt

kt−1)
α(eny

t )
1−α. (3.14)

The usual law of motion of the capital stock is defined as:

kt = (1− δ(ut))kt−1
Nt−1

Nt

+ aitι(xt/xt−1). (3.15)

where the depreciation rate δ() is a function of the utilisation rate, ut. The
function ι(xt/xt−1) represents investment adjustment costs, as per Christiano
et al. (2005), and ai denotes a shock to the marginal efficiency of investment
(MEI). Investment xt is denominated in terms of the final good, with the nu-
meraire price of 1. The standard optimality condition for capital, investment,
and utilisation are:

qt = E
t
β
Nt

Nt+1

µt+1

µt

(
pht+1

∂yt+1

∂kt
+ qt+1(1− δ(ut+1))

)
(3.16)

1/ait = qt
∂ι(xt, xt−1)

∂xt
+ β E

t

(
µt+1

µt

qt+1
∂ι(xt+1, xt)

∂xt

)
(3.17)

.
αpht

yt
ut

= qtδ
′(ut)kt (3.18)

Construction sector

Our housing and construction sector is based on Iacoviello (2005). Housing
stock is built using effective labour, land and home-produced intermediate
goods, mt. Profits in the construction sector at time t are defined as πH

t ,
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with
πH
t = qHt Ht − wten

H
t −Rl

tlt−1 − phtmt (3.19)

where qHt denotes the price of newly built housing stock. Labour mobility
across sectors ensures that builders face the same wage costs as do goods
producing firms, wt. The rental rate of land faced by the construction sector
is denoted by Rl

t. Profits are maximised subject to the following production
technology for new housing:

Ht = aHt

(
Nt−1

Nt

lt−1

)ξl (
enH

t

)1−ξl−ξm
mξm

t (3.20)

The production of houses is, like the production of goods, subject to an AR(1)
technology shock, aHt . The construction firm maximises profits by choosing
effective labour, land and intermediate inputs optimally:

(1− ξl − ξm)q
H
t

Ht

enH
t

= wt (3.21)

ξlq
H
t

Ht

lt−1

= Rl
t (3.22)

ξmq
H
t

Ht

mt

= pht (3.23)

Every period, households sell their un-depreciated housing stock and pur-
chase new homes with the proceeds. Market clearing implies that the supply
of new houses equals the net increase in the housing stock.

Ht = ht − (1− δh)
Nt−1

Nt

ht−1 (3.24)

The total amount of land in the economy is fixed, but as the population
grows the supply of land per household diminishes. A temporary increase
in migration, or indeed just natural population growth, would imply an ever
decreasing amount of land per household. From a modelling perspective,
the steady state around which we are linearising the model would therefore
not be deterministic. We get around this problem by assuming that land
is re-zoned for building purposes as the population grows. As the supply
of building land grows along with the population, the supply of land per
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household remains constant:
lt = 1. (3.25)

3.2.4 Current account

Having described the household and production sectors above, this section
presents the final equations needed to close the model. Market clearing in
the home-produced goods market is described by equation (3.26):

yt −mt = v
(
pht
)−θ

(ct + xt) + exht . (3.26)

The home-produced good is used in the production of the domestically con-
sumed final good and the final investment good, which is used in domestic
production, and is also exported and used as an intermediate input in con-
struction. Export demand from abroad is assumed to be of the form:

exht = v∗
(
rert
pht

)θ∗

y∗t (3.27)

with y∗t denoting total foreign demand for the domestic good. Substitut-
ing the market clearing conditions from the goods and labour markets into
the household budget constraints yields the economy-wide current account
equation:

yt = ct + xt +mt + pft bt − pft (1 + rt−1)
Nt−1

Nt

bt−1 (3.28)

Finally, we close the model by introducing a debt elastic interest rate pre-
mium that allows for small deviations of the domestic real interest rate from
the world rate when the domestic net foreign asset position deviates from its
steady state level. This eliminates the unit-root in bond holdings:

1 + rt = (1 + r∗t )e
−ϕb(bt−b̄) (3.29)

Details of the steady state can be found in section 3.A of the appendix to
this chapter.
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3.2.5 Driving processes

The model economy is driven by seven shocks each of which is an AR(1)
process:

at = ρaat−1 + ϵat (3.30)

aHt = ρha
H
t−1 + ϵht (3.31)

jt = ρjjt−1 + ϵjt (3.32)

jct = ρjcj
c
t−1 + ϵjct (3.33)

ait = ρia
i
t−1 + ϵit (3.34)

y∗t = ρy∗y
∗
t−1 + ϵy∗t (3.35)

vt = ρvvt−1 + ϵvt (3.36)

Equations (3.30) and (3.31) are total factor productivity processes in goods
production and construction, respectively. Equations (3.32) and (3.33) rep-
resent preference shocks for housing and consumption, while (3.34) denotes
the MEI shock process. World output and net migration follow the processes
denoted in (3.35) and (3.36). Specifically, the migration process is defined
as vt ≡ ln (Nt/Nt−1).

Modelling migration as an exogenous process is a simplifying assumption,
with some empirical support in our reduced form analysis, depending on how
the model is specified. The literature also provides a degree of support for
this assumption. Mitchell et al. (2011) find that simple autoregressive models
can provide more accurate forecasts of migration in the United Kingdom
than models that include economic or policy factors – in part because policy
factors are hard to forecast.11

11Conversely, theory emphasizes that migration should be endogenous to domestic and
foreign conditions, see for example Borjas (1999a). Alternative empirical methodologies
do uncover endogenous effects at some frequencies: Mayda (2010), for example, conducts
a panel data analysis based on annual data from 14 developed countries and finds that
‘pull’ factors in destination economies, such as relative income levels, do affect migration
flows, though ‘push’ factors have only small effects.
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Table 3.1: Variables – summary
Domestic Domestic continued

yt Output (tradable) pht Price of tradables
ht Flow of housing services pft Price of imports
Nt Total population wt Wages
nt Hours worked qt Price of capital
ent Effective hours qHt Price of housing
eny

t Effective hours tradables plt Price of land
enH

t Effective hours housing Rl
t Rental return on land

st Training hours rert Real exchange rate
dt Stock of human capital
ct

†CES-aggregate of consumption Exogenous processes
cht Consumption of tradables at Technology shock
cft Consumption of foreign goods aHt Housing technology shock
bt Bond holdings (assets) jt Housing preference shock
lt Land per capita jct Consumption preference shock
rt Interest rate ait

‡MEI shock
ut Utilisation y∗t Foreign income
kt Capital vt Migration shock
xt Investment
mt Intermediate goods Foreign
πt Dividend income r∗t Foreign interest rate
exht Exports y∗t Foreign income (see also above)

Notes: † CES = Constant elasticity of substitution. ‡ MEI = Marginal
efficiency of investment.

3.2.6 Model description in brief

To round out the presentation of the model we briefly summarise the notation
for our variables in table 3.1. The parameters, collated with their priors and
posteriors, can be found in table 3.5.

3.3 Migration versus population growth
What is the key difference between migration and population growth? In the
model, the main effect of both migration and population growth is to dilute
existing stocks of capital, housing, human capital, and net foreign assets on
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a per capita basis. What differentiates migration from population growth
is that for human capital, at the very least, migration need not reduce the
per capita level of the relevant stock. Indeed, migration may even raise the
average human capital in the economy.

To illustrate the effect of migrants on the stock of human capital consider
the log-linearised evolution of dt over time when migrants arrive with no
human capital:

d̂t = ϕsδd

[
d̂t−1 − vt + ŝt

]
+ (1− δd)

[
d̂t−1 − vt

]
(3.37)

Unskilled migration reduces the per capita stock of human capital in the
economy. Skilled migration in the model would imply that the evolution of
human capital per head is not affected by migration. We thus amend the
equation above as:

d̂t = ϕsδd

[
d̂t−1 − (1− χ)vt + ŝt

]
+ (1− δd)

[
d̂t−1 − (1− χ)vt

]
(3.38)

where χ is strictly positive and takes the value of 1 when migrants possess
the same level of human capital as natives, or greater than 1 when migrants
have a higher average level of human capital.

3.4 Estimation strategy
The principal aim of our model is to shed light on the short-run macroeco-
nomic effects of migration shocks and assess their contribution to the dy-
namics of the business cycle. To this end, we implement a Bayesian estima-
tion procedure. We estimate the model using macroeconomic data for New
Zealand, an economy that has experienced both large and volatile migration
flows in recent decades. In addition, New Zealand is one of the very few
countries for which reliable data on working-age net migration is available.

We focus our analysis on ‘permanent and long-term’ (PLT) arrivals and
departures. PLT arrivals are people arriving for a stay of 12 months or more,
including New Zealanders returning after an absence overseas of 12 months
or more. Conversely, PLT departures are New Zealanders departing for 12
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months or more and migrants leaving after a stay of 12 months or more in
New Zealand. Net migration figures in New Zealand are often decomposed
into net migration between New Zealand and Australia and net migration
relative to the rest of the world. Australian and New Zealand citizens largely
have freedom of movement between the two countries, including the right
to work. In Figure 3.1, net migration between New Zealand and Australia
is summarised by the chequered (blue) bars and that between New Zealand
and the rest of the world by the solid (red) bars.12 Over the sample, there
was negative net migration between New Zealand and Australia, offset by
positive migration between the rest of the world and New Zealand. Since
about 2014, net emigration to Australia has dried up, while net migration
into New Zealand from the rest of the world has increased. As a result,
annual net migration has risen to about 1.5 percent of the total resident
population, while working-age migration has increased by a slightly larger
percentage. In the four years 2014-2017, working age population increased
by over 5.5 percent from net migration alone.

3.4.1 Data

We use national accounts data, migration data, house price data, and a trade-
weighted aggregate of world gross domestic product (GDP) to estimate the
model. The national account and migration data are sourced from Statis-
tics New Zealand, while the house price data are from Quotable Value New
Zealand. The trade-weighted world GDP data are compiled by the Reserve
Bank of New Zealand. The data sample runs from 1992Q1-2017Q2.

GDP, residential investment, gross fixed capital formation (investment),
and private consumption are sourced from the national accounts. We also
use a trade-weighted measure of world GDP and working age net migration.
All series are seasonally adjusted. The national accounts and migration data
are transformed into per capita terms by dividing by seasonally-adjusted
working age (15-65 year old) population. We take the natural logarithm
of trending series and then apply the local linear projections of Hamilton

12These numbers are based on the destination country and country of origin, rather
than country of citizenship.
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Figure 3.1: Net working-age migration flows into and out of New Zealand
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Note: The solid (black) line denotes non-seasonally adjusted working-age net migration
into New Zealand. This figure is split into net migration into New Zealand from Australia
(chequered blue bars; predominantly an out-flow) and net migration into New Zealand
from all countries other than Australia (solid red bars).
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(2017) to compute the trends, and hence cycles, of the data series.13 This
de-trending method is particularly straightforward to implement and con-
sists of regressing the representative data series xt+h against a constant and
the data xt, xt−1, xt−2, and xt−3, where h = 8 quarters. This filter is one-
sided and thus avoids the so-called ‘end-point’ problem commonly associated
with the Hodrick-Prescott filter. The filter has the added advantage that,
given that four lags are used, it simultaneously strips out seasonality. Cy-
cles derived from seasonally adjusted data and unadjusted data are virtually
indistinguishable. Furthermore, the detrended series also has a mean of zero
provided that a constant is included in the local linear projection. (See
Hamilton 2017 for a thorough discussion of the virtues of this detrending
method.) As the filter is not yet widely used, and as our migration data are
not well-known, we illustrate the detrended data in figure 3.2. As can be see
in the figure, the cycles obtained from a seasonally adjusted series and from
an unadjusted migration series are virtually identical.

Over the course of our sample working age population has increased
rapidly, from around 2.66 million people in 1992 to 3.84 million in 2017Q2,
making it difficult to translate percentage changes into the number of mi-
grants entering the country. The largest quarterly migrant impulse in the
raw data in percentage terms corresponded to an increase in working age
population of 0.4 percent in a single quarter, in 2015Q4. In this quarter (in
unofficially seasonally adjusted terms) a little more than 15, 100 working age
PLT migrants entered the country in raw terms.

The standard deviation of the detrended migration series is 0.00125 in
quarter-on-quarter percent terms. Thus, in an ordinary year a one standard
deviation increase in population from migration corresponds to roughly a 1

2

percent of working age population. The largest detrended seasonally adjusted
migration inflow in a quarter, 0.0031 percent, occurred in 2003Q1, and was
nearly 21

2
times as large as the standard deviation of the detrended series.

Approximately 10, 500 working age migrants entered New Zealand in that
particular quarter in the raw data.

The rest-of-world gross domestic product series is a trade-weighted av-
erage of the GDPs from 17 countries. We have backcast the series 2 quar-

13The migration series is not logged as it takes both positive and negative values.
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Figure 3.2: Net working-age migration flows detrended via local linear pro-
jections
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Note: The dash-dot (blue) line is the net migration working age impulse relative to the
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de-trended. The solid and dotted (red) lines are the cycles derived from applying the
Hamilton local linear projection to the dash-dot series and to an equivalent series that
has not been seasonally adjusted. These cyclically adjusted series have means of zero by
construction. The latter two lines illustrate that the Hamilton local projection can be used
to eliminate both trends and seasonality simultaneously.
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Table 3.2: Raw data

Symbol Description RBNZ identifiers
GDP Production GDP seasonally adjusted ngdpp_z
Ires Private residential investment seasonally adjusted nipd_z
X Gross fixed capita formation seasonally adjusted ni_z
C Private consumption seasonally adjusted ncp_z
popwa Working age (15-65 year old) population lhpwa_z
M Net perm./long-term migration 15-65 year old –†

qh Quotable Value House price index pqhpi
CPI Consumer price index pcpis‡
GDP ∗ Trade-weighted rest-of-world GDP IWGDP_Z

† Arrivals less departures. ‡ The CPI series used here slightly deviates from headline CPI
in the early 1990s, as it excludes interest charges, which were incorporated in headline
CPI at that time. The data are available from the authors upon request.

ters using an earlier vintage of this trade-weighted GDP, based on slightly
fewer countries. Working age net migration is computed from Statistics
New Zealand’s permanent and long-term arrivals and departures data. The
working-age data are assembled from age cohort data. We seasonally adjust
the per capita working-age net migration data using a default implementa-
tion of X12.14 Table 3.2 defines the raw data, while table 3.3 describes the
transformations applied to the raw data.

Table 3.4 reports the standard deviations, the standard deviation of vari-
able i relative to that of GDP and first-order autocorrelation to the observ-
ables. New Zealand GDP per capita is considerably more volatile than our
measure of World GDP. Residential investment is 5.67 times as volatile as
GDP and more volatile than gross fixed capital formation (investment). Real
house prices are 3.8 times as volatile as GDP. Unlike most other developed
economies, New Zealand consumption is somewhat more volatile than GDP.
Net migration per capita in New Zealand is volatile by OECD standards, but
is still only about 5 percent as volatile as real GDP.

14The executable file for X12 is available from the United States Census Bureau. We use
an X12 implementation embedded in IRIS, https://github.com/IRIS-Solutions-Team.

https://github.com/IRIS-Solutions-Team
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Table 3.3: Data transformations

Description Symbol
Log per capita income y = HAM(log(GDP/popWA))
Log per capita residential investment H = HAM(log(Ires/popWA))
Log per capita gross fixed capital formation x = HAM(log(X/popWA))
Log per capita private consumption c = HAM(log(C/popWA))
Log real house prices qh = HAM(log(P h · 1000/CPI))
Detrended migration per capita v = HAM(M/popWA)
Log trade-weighted foreign GDP y∗ = HAM(log(GDP ∗))

HAM() represents the Hamilton filter used to detrend all series. log() is the natural
logarithm. Migration is not logged because it can assume negative values. A Matlab file
implementing these transformations is available upon request.

Table 3.4: Observables and model moments

Std Dev (σ) σi/σy Corr(Yt, Yt−1)
GDP per capita 0.0264 1 0.8453
Residential Investment per capita 0.1496 5.67 0.8694
Investment per capita 0.1134 4.30 0.8297
Consumption per capita 0.0275 1.04 0.8408
Real House Prices 0.1006 3.81 0.8715
World GDP 0.0164 0.62 0.8864
Migration per capita 0.0013 0.05 0.8904

Note: All data, except for net migration per capita, are in logs and and all are
de-trended using the Hamilton filter.



118 CHAPTER 3. SKILLED MIGRATION & BUSINESS CYCLES

3.4.2 Calibration and priors

Columns 3 - 5 of Table 3.5 report the priors, means and the standard de-
viations of the parameters to be estimated. Most of our priors are fairly
standard, see for instance Kamber et al. (2015). We do however, differ from
the literature along several dimensions. Specifically, we attach a very tight
prior to the share of capital, α, with a prior mean of 0.33, as is standard in
the real business cycle literature. Likewise, the AR(1) coefficients for world
GDP and net migration, ρy∗ and ρv respectively, have a prior that corre-
sponds to estimates of these coefficients from single equation methods, as do
the standard errors of the these two shocks, ϵy∗ and ϵv. In each case, we
estimate the parameter, but choose a relatively small standard error for our
prior. These tight priors are implemented to prevent biases in the domestic
equations from contaminating our estimates of these foreign impulses via the
systems estimation of the model.

Preliminary efforts to estimate the ratio of human capital for migrants
relative to domestic residents, χ proved problematic, so we calibrate this pa-
rameter and later report a sensitivity analysis in section 3.6 to illustrate how
the dynamics of the model are affected by this parameter. The bottom half
of Table 3.5 reports the calibrated parameters. Most of these are standard
and only two parameters merit a special mention: the ratio of residential in-
vestment to consumption, which we set at 0.12 to match New Zealand data,
and the above mentioned parameter χ, which we set at 1.85. The latter
value is the relative level of human capital of migrants into New Zealand as
reported in Boubtane et al. (2016).

3.4.3 Estimation results

Columns 6 - 8 of Table 3.5 report the posterior mean and lower and upper
limits of 90 percent Bayesian confidence intervals from the posterior distri-
bution. The share of capital in the production of goods has a posterior mean
of 0.33 and the share of land in the housing sector has a posterior mean of
0.61. Capital depreciates 2.7 percent per quarter. The inverse of the labour
supply elasticity, η, has a posterior mean of 3.7. The trade elasticity, the
intra-temporal elasticity of substitution between home and foreign produced
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goods, is estimated to be 2.55, which implies that home and foreign-produced
goods are highly substitutable for one another. The openness parameter, γ,
also has a tight prior informed by the ratios of exports and imports to GDP.
For New Zealand, this value is around 0.33. Parameters acu and ac are the
capacity utilisation elasticity and the investment adjustment cost parameter,
respectively. ϕb measures the bond holding costs. The data suggests a low
mean value 0.2 of one percent.

Total factor productivity (TFP) in goods production and housing is per-
sistent, with estimated AR(1) coefficients of 0.76 and 0.72, respectively. The
corresponding standard deviations of the innovations are 0.03 and 0.04, re-
spectively. The shocks to preferences for housing and consumption have
AR(1) coefficients of 0.86 and 0.83, respectively. Whereas these two shocks
have a similar persistence, the housing preference shock is more volatile than
the consumption shock. The investment specific technology shock has a low
autocorrelation coefficient and large standard deviation. The magnitude of
this shock process is similar to estimates from Kamber et al. (2015). Working
age migration per capita, estimated with a tight prior, is persistent with an
associated AR(1) coefficient of 0.89 and a standard deviation of the migration
impulse of 0.001.

Trace-plot diagnostics of deciles are presented in appendix 3.B illustrating
the convergence of the Markov chains that are used to sample from the pos-
terior distribution. See Robert and Casella (2004) for a textbook treatment
of the Monte Carlo methods used to estimate Bayesian models.
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Table 3.5: Estimated parameters values: χ = 1.85

Prior Posterior
Symbol Description Mean Std Dev Mean (5% 95%)
α Share of capital N 0.330 0.010 0.330 0.314 0.346
ξh Share of land in housing N 0.700 0.050 0.614 0.561 0.667
δ Depreciation rate capital N 2.500 0.500 2.748 1.944 3.538
η Frisch elasticity Γ 2.000 0.750 3.733 2.211 5.251
θ Intratemp. subst. elasticity N 1.000 0.250 2.550 2.498 2.590
γ Openness β 0.300 0.010 0.337 0.321 0.353
acu Capacity-U curvature β 0.500 0.150 0.669 0.479 0.865
ac Investment adjustment costs N 4.000 1.500 6.313 4.433 8.131
100 · ϕb Bond adjustment costs Γ−1 1.000 5.000 0.205 0.152 0.256
ρa Persistence tech. β 0.500 0.200 0.762 0.710 0.814
ρah Persistence housing tech. β 0.500 0.200 0.718 0.613 0.826
ρy Persistence foreign demand. β 0.886 0.010 0.887 0.871 0.903
ρj Persistence housing pref. β 0.500 0.200 0.860 0.806 0.917
ρjc Persistence consumption pref. β 0.500 0.200 0.830 0.780 0.879
ρi Persistence investment-specific β 0.500 0.150 0.272 0.145 0.397
ρv Persistence migration β 0.890 0.010 0.890 0.874 0.906
σϵa Std dev. tech. Γ−1 0.004 1.500 0.030 0.026 0.034
σϵh Std dev. housing tech. Γ−1 0.005 1.500 0.038 0.032 0.043
σϵy∗ Std dev. foreign demand Γ−1 0.007 1.500 0.007 0.006 0.008
σϵj Std dev. housing pref. Γ−1 0.005 0.500 0.535 0.335 0.728
σϵi Std dev. investment-specific Γ−1 0.005 1.500 0.366 0.244 0.483
σϵjc Std dev. consumption pref. Γ−1 0.004 1.500 0.034 0.030 0.039
σϵv Std dev. migration Γ−1 0.001 1.500 0.001 0.001 0.001

Calibrated

χ Relative human cap of migrants 1.85
100 · δh Depreciation rate housing 1
β Discount rate 1/1.01
δd Depreciation rate human cap. 0.01
ϕs Skill accumulation 0.5
j̄ Steady-state j 0.7
n+ s Hours worked + training 1/3
ξm Share of traded goods in housing 0.1
H/c H - C ratio 0.12
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3.5 A migration shock
Migration increases a country’s population and its labour supply. As a result,
a positive migration shock, initially at least, reduces the per capita value
of stocks such as capital, housing and bond holdings. As our calibration
assumes that migrants have a higher stock of human capital than locals,
the per capita stock of human capital rises in response to a migration shock.
Much of the transitional dynamics of the model economy are therefore driven
by the reversion of these stocks to their steady-state values following a shock
to migration.

Another key driver of the model’s dynamics following a migration shock
is the response of the real exchange rate or (near-synonymously) the terms of
trade. Figures 3.3-3.4, which show the impulse responses of the model using
the mean of the estimated parameters, suggest that the terms of trade, de-
fined as the price of foreign to home-produced goods, appreciate following an
unexpected increase in migration. The reason the terms of trade appreciate
is that a migration shock raises absorption of home-produced goods. The es-
timation results suggest that agents have a significant degree of home-bias in
both consumption and investment expenditure (the smaller is the openness
parameter γ, the greater is home bias), which raises demand for domestically
produced goods by more than the demand for imports, and hence leads to
an appreciation of the terms of trade. An appreciation of the terms of trade
raises the return to domestic factors of production and increases the pur-
chasing power of domestic consumers. The real appreciation, caused by the
positive migration shock, thus has a positive wealth effect on consumption.

An increase in migration lowers the per capita physical capital stock. This
reduction in capital per capita, along with the appreciation in the terms of
trade, has the effect of raising the marginal product of capital. Thus owners
of installed capital unambiguously benefit from an increase in migration. The
increased return on capital stock raises investment. At the same time, an
increase in migration raises the utilisation rate of capital. As Brunow et al.
(2015, p. 1030) note, a constant returns to scale technology implies that
per capita income growth rates decline when labour supply increases are not
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Figure 3.3: A migration shock (Panel A)
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10-3 Consumption
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10-3 Terms of trade

Note: An increase in migration in a small open economy. In the ‘output’ panel, the
solid (blue) line denotes GDP, while the dash-dot (black) line denotes the home-produced
traded goods. In the ‘Total effective hours’ panel, the solid thin (blue) line denotes total
effective hours supplied by households, the dashed (black) line denotes effective hours
devoted to goods production, while the dashed-dotted (red) line denotes effective hours in
construction.



3.5. A MIGRATION SHOCK 123

Figure 3.4: A migration shock (Panel B)
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10-3 Wage
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10-4 Migration
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10-3 Marginal product of capital
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10-3 Housing per capita
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10-3 Price of housing
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10-3 Construction
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10-3 Skill acquisition
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10-3 Human capital

Note: An increase in migration in a small open economy.
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accompanied by corresponding increases in capital. In our model, however,
changes in capacity utilisation partially offset the movements in capital per
capita that arise with migration inflows and outflows.

Boubtane et al. (2016) estimate that the relative stock of human capital
for migrants into New Zealand is 1.85 times that of the average domestic
resident for the 1986-2006 period. Only the United States, with an estimated
ratio of 0.97, has a ratio below 1.15 The remaining countries examined by
Boubtane et al. have ratios from 1.01−2.87 (delimited by Greece and Ireland
respectively). Using census data, Poot and Stillman (2016) find that migrants
into New Zealand have 12.81 years of education on average, whereas New
Zealand born individuals average a little less at 12.44 years of education.
In 2006, 34 percent of migrants had bachelor degrees, while only 18 percent
of New Zealand-born residents had such degrees.16 The mapping between
different measures of schooling and human capital is difficult to resolve, so
later we explore the sensitivity of our results to this key ratio.

As the empirical evidence suggests that migrants have a higher stock
of human capital than New Zealand locals, we observe an increase in the
per capita human capital stock following an increase in migration. As the
transitional dynamics are characterised by a reversion to the pre-migration
mean, the representative household reduces investment in skill acquisition.
Less time spent training, means more time spent on hours worked. As a
result, effective hours per capita increase following a rise in migration. The
combination of a lower capital stock and an increased supply of effective
labour, pushes down the wage rate. On impact, this effect is offset by the
appreciation of the terms of trade. After a couple of quarters, the wage rate
falls, before reverting back to the initial steady state in the medium run.
The increase in effective hours plus the increase in capacity utilisation allow
output per head to rise in response to a positive migration shock.

In the housing market, the per capita stock of housing is reduced by a
sudden increase in migration. Given that migrants have the same preferences
over housing and consumption as locals, the demand for new houses as well

15Borjas (1994, 1999b) confirms that the skill level of US immigrants is less than locals.
16See DOL (2009) and the 2006 New Zealand Census data, http://archive.stats.

govt.nz/Census.aspx?.

http://archive.stats.govt.nz/Census.aspx?
http://archive.stats.govt.nz/Census.aspx?
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as the price of housing rises and the return on land increases. The increase
in demand for new housing stock stimulates construction activity. Building
houses requires land, labour and intermediate goods. Although total effective
hours per worker increase, there is some reallocation of labour effort from the
goods sector into the construction sector. Effective hours in the construction
sector increase by more than in the goods producing sector. As noted earlier,
we assume that the supply of building land is allowed to grow with the
population to ensure that the post-migration steady-state is the same as the
pre-migration steady state.

GDP is the sum of goods production and construction denoted by the
solid (blue) line in the top left panel of figure 3.3. In the estimated model,
goods production initially grows faster than overall GDP, though construc-
tion in the housing market overtakes around the three year mark. In sum-
mary, an increase in skilled migrants is expansionary for a small open econ-
omy. Even though the wage rate falls, per capita consumption, investment
and GDP rises. Migration raises the return to stocks of physical capital and
land and can temporarily reduce the return to human capital if migrants
bring with them higher stocks of human capital. Our baseline business cycle
results contrast with the cross-country panel data analysis of Brunow et al.
(2015), who find that decadal averages of per capita GDP growth are un-
related to decadal movements in net migration rates. However, it should
be noted that our conclusion is sensitive to the relative human capital of
migrants to locals.

3.5.1 Does migration drive the business cycle?

Having analysed the dynamics of a migration shock in the model, we now
consider whether migration is an important driver of the business cycle. Ta-
ble 3.6 presents the variance decomposition at the posterior mean of our
estimated model, with the lower and upper limit of the 90 percent Bayesian
confidence intervals in square brackets underneath. Over our sample, the
median contribution of the migration shock is 19 percent of the variance
of observed GDP per capita. The rest of the variance is accounted for, in
roughly equal parts, by the TFP shock and the preference for housing shock.
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Table 3.6: Variance decomposition at the posterior mean: χ = 1.85

Shocks
Observables ϵa ϵh ϵy∗ ϵj ϵi ϵjc ϵv
GDP 0.36 0.04 0.00 0.35 0.04 0.02 0.19

[0.22, 0.49] [0.02, 0.06] [0.00, 0.00] [0.12, 0.56] [0.01, 0.07] [0.01, 0.02] [0.11, 0.27]

Investment 0.12 0.00 0.00 0.01 0.70 0.00 0.17
[0.05, 0.18] [0.00, 0.00] [0.00, 0.00] [0.00, 0.01] [0.55, 0.85] [0.00, 0.00] [0.07, 0.27]

Residential 0.00 0.46 0.00 0.50 0.00 0.01 0.03
investment [0.00, 0.00] [0.23, 0.72] [0.00, 0.00] [0.25, 0.76] [0.00, 0.00] [0.00, 0.01] [0.01, 0.04]

Consumption 0.24 0.00 0.00 0.02 0.07 0.56 0.12
[0.18, 0.29] [0.00, 0.00] [0.00, 0.00] [0.00, 0.04] [0.04, 0.10] [0.48, 0.62] [0.09, 0.15]

Real house 0.05 0.00 0.00 0.88 0.01 0.02 0.04
prices [0.01, 0.08] [0.00, 0.01] [0.00, 0.00] [0.79, 0.98] [0.00, 0.02] [0.00, 0.03] [0.01, 0.07]
The table reports the theoretical variance decomposition at the posterior mean in percent
for the baseline model with migrant human capital in excess of local χ = 1.85. The
numbers in brackets are are the 5% and 95% confidence intervals. All observables are
defined as per data transformations.

Recall that GDP consists of output of goods as well as housing. Migration
is thus one of the main drivers of the variance of New Zealand GDP. For per
capita consumption, migration is the third most important driver accounting
for on average 12 percent of the variance, behind the consumption prefer-
ence shock and the productivity shock. For investment, the migration shock
accounts for on average 17 percent, which makes it the second most impor-
tant driver behind the MEI (marginal efficiency of investment) shock. The
role of migration shocks for the volatility of the housing market variables is
modest, between 4 percent for real house prices and 3 percent for residential
investment. The variance of residential investment is split relatively evenly
between the housing sector productivity shock and the demand for housing
shock, with a further 3 percent accounted for by migration. The variance
of house prices is largely accounted for by the housing demand shock, which
contributes 88 percent to the variability of real house prices. Migration ac-
counts for 4 percent, which is more than is accounted for by the housing
supply shock.

Given the relatively low degree of trade openness and the ability of the
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terms of trade to insulate the economy against foreign shocks, it is not sur-
prising that the shock to world GDP has virtually no effect on the variances
of our observables.

3.5.2 Non-migration properties of the model

The appendix to this chapter provides the impulse responses, historical shock
decompositions, and the estimates of the (smoothed) shocks obtained from
the Kalman filter. Section 3.C reports the IRFs, section 3.D illustrates the
contributions of all shocks to the historical evolution of the observables, and
3.E depicts the seven primitive structural shocks that underpin these contri-
butions.

The impulse responses for the non-migration shocks are broadly as one
would expect. The generic technology shock induces co-movement in per
capita GDP, consumption, investment, wages, residential investment and real
house prices, with the terms of trade depreciating, reflecting the relative
abundance of domestic goods.

A positive housing technology shock increases residential investment, and
GDP more generally, but consumption and capital investment fall. Residen-
tial investment increases taking advantage of the positive technology shock
for housing, but houses are now relatively cheaper to build so the price of
houses falls. Labour supply is reallocated to build houses while residential
investment is particularly productive, and wages increase, contributing an-
other margin of labour adjustment. The terms of trade appreciate easing the
decline in domestic goods production.

The foreign output shock in the model has a conventional effect, appreci-
ating the terms of trade, increasing wages, but inducing substitution between
housing and domestic goods. GDP and investment increase; an initial fall in
consumption is offset by a longer-lived increase.

The preference shock for housing induces substitution between goods and
housing. Increased demand for housing increases the relative price of houses
and also stimulates residential investment. GDP increases but consumption
of goods and capital investment falls. Like the housing technology shock, the
terms of trade appreciates and wages increase.
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In this model, the investment-specific technology shock induces co-movement
between GDP, consumption, house prices and capital investment. Residen-
tial investment dips on impact before recovering, with the terms of trade
following a similar pattern. Wages, on the other hand are unambiguously
above steady-state.

The consumption demand shock boosts output and consumption, but
induces a relative shift away from housing: the relative price of housing
falls as does residential investment. The terms of trade appreciates enabling
substitution towards domestic goods. Capital investment declines on impact
but eventually increases above steady-state. The increase in consumption
outweighs the transitory decline in residential investment and GDP increases.
However, wages are predominantly below steady-state.

The migration shock has been described in the main text, and is not
addressed further here in this appendix.

The historical shock decompositions provide a sample-specific illustration
of the variance decompositions reported in table 3.6. Per capita GDP, for
example, is predominantly driven by the technology and housing preference
shocks. Consumption is driven by the technology and consumption prefer-
ence shocks, with the investment-specific technology shock making a small
contribution too. Per capita investment is driven by this same investment-
specific technology shock, with a surprisingly large contribution coming from
the standard technology shock and a small contribution from migration in
this sample. The contribution of migration is particularly strong at the end
of the sample, when migration is of course at an historic high. Residential
investment per capita is driven by the housing demand technology shock
and the housing preference shock, while the real house price is driven by the
housing demand shock and technology.

Interestingly, only the migration shock causes a simultaneous increase in
hours worked in both the housing and goods sectors. All other shocks induce
movements in opposite directions.
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3.6 Sensitivity analysis: The relative human
capital of migrants

One of the key assumptions of our DSGE model is that, on average, migrants
have higher human capital levels than locals. As our data is not informative
about this parameter, we calibrated this parameter χ to a baseline value of
1.85, which is the value estimated by Boubtane et al. (2016) for New Zealand
for the period from 1986 to 2006. We justified this claim by noting that skilled
and entrepreneurial migrants are a large proportion of total migration into
New Zealand. Here we re-estimate the model under the assumption that
migrants’ human capital stock does not differ from that of locals, and explore
the contribution that migration shocks then make to the variability of our
observables.

Tables 3.7 and 3.8 reports the parameter estimates and the variance de-
composition for a model where χ has been set to 1. Cancelling out the effects
of migration on the stock of human capital does not significantly alter the
model’s parameter estimates, see table 3.7, but does significantly reduce the
contribution of the migration shock to the variance of our observables. For
per capita GDP, the contribution falls from around 19 percent to 0.2 per-
cent, for residential investment the figure drops from 3 percent to 0 percent.
For consumption per capita the migration shock’s contribution of the total
variance falls from 12 percent to just 3 percent and for house prices from
4 percent down to 1 percent. Our results thus imply that migration has
less of an effect on the business cycle when migrants are closer to the local
population in terms of their human capital. Our business cycle results thus
cohere with an observation by Dustmann et al. (2005, p. F324), namely that
“labour market effects of immigration depend most importantly on the struc-
ture of the receiving economy, as well as the skill mix of immigrants, relative
to the resident population.” Figure 3.5 illustrates how the contribution of
migration shocks varies with the parameter χ. The relationship is U-shaped,
with minima for χ ∈ (0.5, 1), i.e., where migrants have lower or equivalent
levels of human capital relative to locals.
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Table 3.7: Estimated parameter values: χ = 1

Prior Posterior
Symbol Description Mean Std Dev Mean (5% 95%)
α Share of capital N 0.330 0.010 0.330 0.313 0.346
αh Share of land in housing N 0.700 0.050 0.612 0.560 0.665
100 · δ Depreciation rate capital N 2.500 0.500 2.791 2.011 3.577
η Frisch elasticity Γ 2.000 0.750 3.778 2.223 5.294
ces Intratemp. subst. elasticity N 1.000 0.250 2.551 2.501 2.590
γ Openness β 0.300 0.010 0.338 0.322 0.354
acu Capacity-U curvature β 0.500 0.150 0.667 0.477 0.863
ac Investment adjustment costs N 4.000 1.500 6.348 4.525 8.173
100 · ϕb Bond adjustment costs Γ−1 1.000 5.000 0.204 0.152 0.253
ρa Persistence tech. β 0.500 0.200 0.756 0.703 0.808
ρah Persistence housing tech. β 0.500 0.200 0.714 0.609 0.823
ρy Persistence foreign demand. β 0.886 0.010 0.887 0.871 0.903
ρj Persistence housing pref. β 0.500 0.200 0.861 0.806 0.917
ρjc Persistence consumption pref. β 0.500 0.200 0.833 0.785 0.881
ρi Persistence investment-specific β 0.500 0.150 0.272 0.145 0.397
ρv Persistence migration β 0.890 0.010 0.890 0.874 0.907
ϵa Std dev. tech. Γ−1 0.004 1.500 0.030 0.026 0.034
ϵh Std dev. housing tech. Γ−1 0.005 1.500 0.037 0.032 0.043
ϵy∗ Std dev. foreign demand Γ−1 0.007 1.500 0.007 0.006 0.008
ϵj Std dev. housing pref. Γ−1 0.005 0.500 0.533 0.337 0.728
ϵi Std dev. investment-specific Γ−1 0.005 1.500 0.367 0.247 0.485
ϵjc Std dev. consumption pref. Γ−1 0.004 1.500 0.034 0.030 0.039
ϵv Std dev. migration Γ−1 0.001 1.500 0.001 0.001 0.001

Calibrated

χ Relative human cap of migrants 1
100 · δh Depreciation rate housing 1
β Discount rate 1/1.01
δd Depreciation rate human cap. 0.01
ϕs Skill accumulation 0.5
j̄ Steady-state j 0.7
n+ s Hours worked + training 1/3
ξm Share of traded goods in housing 0.1
H/c H - C ratio 0.12
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Figure 3.5: The role of migration shocks as a function of χ
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Note: This figure reports the variance contributions of the migration shock for different
values of the relative human capital parameter χ, migrant capital to local, with all other
parameters held constant at the mean posterior values.
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Table 3.8: Variance decomposition at the posterior mean: χ = 1

Shocks
Observables ϵa ϵh ϵy∗ ϵj ϵi ϵjc ϵv
GDP 0.46 0.06 0.00 0.35 0.10 0.03 0.00

[0.28, 0.62] [0.03, 0.09] [0.00, 0.00] [0.13, 0.56] [0.03, 0.16] [0.02, 0.04] [0.00, 0.00]

Investment 0.08 0.00 0.00 0.00 0.88 0.00 0.03
[0.03, 0.14] [0.00, 0.00] [0.00, 0.00] [0.00, 0.01] [0.81, 0.95] [0.00, 0.00] [0.01, 0.05]

Residential 0.00 0.56 0.00 0.42 0.00 0.01 0.00
investment [0.00, 0.00] [0.32, 0.81] [0.00, 0.00] [0.16, 0.66] [0.00, 0.01] [0.00, 0.02] [0.00, 0.01]

Consumption 0.20 0.00 0.00 0.01 0.11 0.66 0.03
[0.15, 0.25] [0.00, 0.00] [0.00, 0.00] [0.00, 0.02] [0.06, 0.15] [0.59, 0.73] [0.02, 0.04]

Real house 0.06 0.01 0.00 0.87 0.03 0.03 0.01
prices [0.01, 0.10] [0.00, 0.01] [0.00, 0.00] [0.77, 0.98] [0.00, 0.05] [0.00, 0.06] [0.00, 0.01]
The table reports the theoretical variance decomposition at the posterior mean in percent
for the baseline model with migrant human capital in excess of local χ = 1. The numbers
in brackets are the 5% and 95% confidence intervals. All observables are defined as per
data transformations.

3.7 An SVAR look at the data
Having investigated the business cycle effects of migration via a DSGE model,
we now look at the data using a structural vector autoregression (SVAR). As
SVARs embody fewer restrictions, we do not necessarily expect to find the
exact same dynamics as in the DSGE model. Instead, our focus is on the
qualitative effects of a migration shock on the variables in our data set. In this
section, we ask whether or not a migration shock in an SVAR is expansionary
for the components of GDP, whether it raises residential investment and
house prices, and whether it causes the real exchange rate to appreciate. In
other words, are the qualitative dynamics of an SVAR comparable with those
generated by the estimated DSGE model?

We develop an SVAR from the same observable variables that were used
to estimate the DSGE model, but augmented with the real wage and the
real exchange rate, both logged and detrended as previously described. We
specify the VAR as follows

A0yt = A(L)yt−1 + ut. (3.39)
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where A0 is a k + 1× k + 1 matrix; yt is a k + 1 column vector of variables,
including a 1 to account for constants, and A(L) ≡ A1L+A2L

2+. . . ApL
p de-

notes a lag polynomial where L is the lag operator, such that Lyt = yt−1. The
vector ut represents the mean-zero, serially uncorrelated exogenous shocks
with diagonal variance-covariance matrix Σu. The reduced form errors thus
have a variance covariance matrix A−1

0 Σu(A
−1
0 )′.

Migration shocks are identified through a recursive identification scheme.
We treat world GDP as an exogenous variable, ordered first in the causal or-
dering, followed by per capita migration.17 Migration shocks are assumed to
be uncorrelated with contemporaneous shocks to domestic variables. While
we employ a Cholesky decomposition to identify the world GDP and mi-
gration shocks, we disregard the exact ordering of the subsequent domestic
shocks, since they are not of material importance to our migration analysis.
The lack of contemporaneous correlation seems a reasonable identifying as-
sumption given that obtaining a visa or going through the logistics of leaving
a job and moving from one country to another can be a lengthy process.

We use a multivariate Bayesian information criterion (MBIC) to deter-
mine the lag structure of the model. Unsurprisingly, given the comparatively
strong penalty on the number of parameters and hence the preference for par-
simony, the MBIC implies that the reduced form VAR has a single lag.18

In our DSGE model we assume that the migration impulse is exogenous
to the domestic economy. This assumption may seem a little implausible,
since the propensity to migrate should reflect the relative costs and benefits
in home and foreign countries (see for example Clark et al. 2007, Mayda 2010,
and Hatton 1995). To explore whether domestic pull factors are material ex-
planators of our migration series we conduct a simple Granger-causality test.
We focus on the migration equation alone, and consider simple autoregres-
sive processes against single equations that have lags of domestic variables
as additional regressors.

When the migration equation from a VAR(1) is compared to an AR(1)
process for migration, a likelihood ratio test cannot reject the restrictions

17The migration process is equivalent to what one would obtain from a VARX model
with contemporaneous and lagged world GDP included as exogenous regressors.

18The Hannan-Quinn information criterion also implies a VAR model with one lag, while
the Akaike information criterion implies that four lags should be included.
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embedded in the AR(1). The dynamics of the migration equation are pre-
dominantly affected by its own lags. This block exogeneity assumption is
not material to our qualitative results. The impulse responses are virtually
identical if one specifies the migration equation as an autoregressive process
or as an unrestricted equation from a VAR(1), with feedback from lagged
domestic variables. Specifying migration as an exogenous process does, how-
ever, have the benefit of making our SVAR model broadly comparable with
the reduced form of the DSGE model.19

In Figure 3.6 we report the impulse response shock to migration. The in-
dependent and identically distributed migration shock has the same standard
deviation as in the DSGE model (0.00059), which of course is propagated via
the AR(1) process used to model the migration series. In the long-run this
shock corresponds to a cumulative impulse of roughly 0.0053 percent of work-
ing age population. This is larger than the simple standard deviation of the
working age migration series, but reflects the fact that migration impulses
exhibit a strong degree of autocorrelation. The migration shock is associated
with a statistically significant increase in consumption, investment, residen-
tial investment, and house prices. GDP per capita also increases, but is not
significantly different from zero. The VAR impulse response also confirms
one of the key transmission mechanisms of a migration shock, namely the
appreciation of the real exchange rate associated with a migration shock.

19Given that the exogenous shocks in the DSGE model are AR(1) processes the reduced
form of the DSGE model corresponds to a VAR(2).
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Figure 3.6: A migration shock in a VAR

68%CI     IRF

−.002

0

.002

.004

−.001

0

.001

.002

.003

0

.01

.02

.03

−.01

0

.01

.02

0

.0002

.0004

.0006

−.02

−.01

0

.01

−.01

0
.01
.02
.03

−.001

0

.001

.002

0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

Consumption GDP Real House Prices

Investment Migration Real Exchange Rate

Residential Investment Real Wages

Notes: An increase in migration in a small open economy. Migration shock in the VAR(1)
is identified by a Cholesky decomposition where the filtered world GDP series is ordered
first followed by the migration per capita series which is ordered second. All data series
are logged and de-trended using the Hamilton (2017) filter, as in the Bayesian estimation.
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denotes a real appreciation.
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3.8 Conclusion
Migration shocks matter for the business cycle. Using a dynamic stochastic
general equilibrium model of a small open economy estimated on data for New
Zealand, we find that migration shocks account for a considerable proportion
of the variability of per capita GDP. For the components of per capita GDP,
migration shocks matter, but are not the key drivers. Even for residential
investment and real house prices, migration shocks make some contribution,
though other shocks – housing technology and housing preference shocks –
are far more important.

An unexpected positive migration shock is found to be expansionary in
terms of per capita real GDP and its components and is associated with an
initial appreciation of the terms of trade. As expected, migration benefits
the owners of fixed assets such as capital or housing: the returns on these
assets rise with an influx of migrants. The return on human capital is also
affected by the relative human capital of migrants versus locals. If, as in our
case, migrants have an initially higher level of human capital than locals, the
real wage, or the return on effective labour falls.

The relative level of human capital of migrants also affects the extent
to which migration shocks contribute to the volatility of per capita GDP.
We conduct a sensitivity analysis on the relative level of human capital.
We find that the impact of migration shocks for the business cycle is much
diminished if new migrants and locals have similar levels of human capital.
When we assume that migrants have the same level of human capital as
locals, migration shocks make only a minor contribution to the variances of
per capita GDP and other macro variables.



Appendix

3.A Steady state
µ = 1/c (3.40)

0 = ϕ0(n+ s)η + (1/c)wd (3.41)

0 = −ϕ0(n+ s)η + λϕs
(ds)ϕs

s
(3.42)

λ = (1/c)wn+ βλ

[
ϕs

(sd)ϕs

d
+ (1− δd)

]
(3.43)

1 =
(ds)ϕs

d
+ (1− δd) (3.44)

1 = β(1 + r) (3.45)
qHh

c
=

j

(1− β(1− δh))
(3.46)

pl = β
(
pl +Rl

)
(3.47)
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n

s
=

(1− β(δd(ϕs − 1) + 1)

ϕsδd
(3.48)

n+ s = 1/3 (3.49)

n =
(n+ s)n

s
n
s
+ 1

(3.50)

s = (n+ s)− s (3.51)
y

k
=

1/β − (1− δ)

α
(3.52)

c

k
=

y

k
− δ (3.53)

k

n
= (

y

k
)1/(α−1) (3.54)

ny

nh
=

y

k

k

c

c

h

1

δhqH
(3.55)

n

nh
= 1 +

ny

nh
(3.56)

3.B MCMC convergence
This appendix illustrates diagnostics to assess whether the Markov chains
have converged to the posterior distributions of interest. Two Markov chains
were iterated 2,000,000 times to estimate the posterior distribution of the
vector of parameter. As noted by Brooks and Roberts (1998) and others,
no diagnostic can guarantee convergence. Nevertheless, these figures provide
some reassurance that the chains have indeed converged to their station-
ary distributions. The figures below illustrate the deciles for each chain,
computed recursively as the chains are iterated forward (following a 100,000
burn-in period to reduce bias from initial conditions). Convergence implies
that like-deciles from the two chain should asymptote to the same values,
which should remain constant as the sample is extended. The variability evi-
dent in some deciles for some parameters seems fairly modest and is unlikely
to be of economic significance.
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Figure 3.B.1: MCMC convergence – deciles (Panel A)
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Figure 3.B.2: MCMC convergence – deciles (Panel B)
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Figure 3.B.3: MCMC convergence – deciles (Panel C)
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Figure 3.B.4: MCMC convergence – deciles (Panel D)
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Figure 3.B.5: MCMC convergence – deciles (Panel E)
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Figure 3.B.6: MCMC convergence – deciles (Panel F)
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3.C Impulse response functions

Figure 3.C.1: Impulse responses
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Note: The horizontal axes is measured in quarters. Variables as defined in table 3.1 and
structural shocks as in equations (3.30)-(3.36).
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3.D Historical shock decompositions

Figure 3.D.1: Shock decomposition – Log GDP per capita

Figure 3.D.2: Shock decomposition – Log consumption per capita
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Figure 3.D.3: Shock decomposition – Log investment per capita

Figure 3.D.4: Shock decomposition – Log residential investment per capita
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Figure 3.D.5: Shock decomposition – Real house price

Note: The foreign demand shock and the migration shock explain all of world GDP and
migration respectively, and hence are not depicted.
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3.E Smoothed shocks

Figure 3.E.1: Smoothed shocks
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Note: These are the smoothed structural shocks obtained from the Kalman filter.
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Chapter 4

Financial frictions and
investment-specific technology
shocks∗

4.1 Introduction
Do shocks to investment drive the business cycle? A number of papers over
the last decade suggest that investment shocks account for the majority of
the variation in key macroeconomic aggregates.1 The role of investment
shocks has also come into renewed focus following the recent financial crisis.
Financial intermediation affects the transformation of savings into usable,
installed capital. Likewise, investment shocks affect the economy’s ability to
transform consumption goods into productive capital and thus play a parallel
role to the process of financial intermediation. Justiniano et al. (2011), for
example, draw an explicit link between shocks to the marginal efficiency of
investment and credit risk spreads. Credit spreads imply the existence of a
material financial friction, yet the model in Justiniano et al. (2011) has no
such friction.

∗This chapter was published as Kamber G., C. Smith and C. Thoenissen (2015) Finan-
cial frictions and the role of investment-specific technology shocks in the business cycle,
Economic Modelling, 51, 571–582.

1See for example Fisher (2006) and Altig et al. (2011) for evidence from structural
vector autoregressions and Justiniano et al. (2010, 2011) for DSGE based evidence. For
an emerging market context see Araújo (2012).
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Our principal aim in this chapter is to investigate the role and transmis-
sion mechanism of investment shocks in the presence of financial frictions.
More specifically, we introduce a collateral constraint, similar to that of Kiy-
otaki and Moore (1997) and Gerali et al. (2010), into the model of Smets
and Wouters (2007). We introduce patient households and impatient en-
trepreneurs into the model, as per Iacoviello (2005) and Iacoviello and Neri
(2010). Agents with differential levels of patience also featured in Kiyotaki
and Moore (1997). This heterogeneity provides a role for credit, with the
impatient entrepreneurs borrowing from the patient households, and ensures
that the collateral constraint binds.

Using a data set from the United States (US) that extends from 1954Q3
through to 2011Q4, we estimate our amended model and compute the con-
tribution of structural shocks to the cyclical variation of output, investment,
consumption, and so on. We demonstrate that the introduction of a financial
friction in the form of a collateral constraint materially alters which shocks
are thought to be the most important drivers of the business cycle. The
intuition behind our result is simple: a positive investment shock lowers the
relative price of capital goods, Tobin’s q, and leads to an investment boom.
However, when entrepreneurs are subject to binding collateral constraints,
a reduction in the value of installed capital reduces the value of collateral
and thus reduces the amount an entrepreneur can borrow. As a result, the
initial response of investment to a positive investment shock is attenuated
by the decline in available credit. In the presence of a collateral constraint
the increase in investment cannot be financed via increased borrowing and is
therefore accompanied by a decline in entrepreneurial consumption. Conse-
quently, investment shocks do not generate the positive correlation between
consumption and investment that is observed in the data.

In our model, the shock affecting the cost of borrowing – the risk premium
or consumption shock – is a major driver of cyclical fluctuations in output
and other macroeconomic variables. This risk premium shock accounts for
around half of the variation in output and consumption, and 40 percent of the
variation in investment and interest rates. There is also a striking conformity
between the estimated risk premium shock and the US business cycle.2 The

2See Figure 4.2.
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collateral constraint also has a material effect on the transmission of risk
premium shocks. Contrary to the transmission mechanism of investment
shocks described above, a stimulatory risk premium shock causes demand
to rise and Tobin’s q to increase. This implies that entrepreneurs face a
looser borrowing constraint, and thus the impact of the risk premium shock
is amplified for both consumption and investment.

As in this chapter, Christiano et al. (2011) and Christiano et al. (2012)
observe that the contribution of IST shocks to the variance of GDP is dimin-
ished when a financial friction is introduced into the model. Our work differs
from those papers in two main respects. First, we have a collateral constraint
rather than an external finance premium as our financial friction. Second,
in the above papers the IST shock remains an important driver of GDP dy-
namics except when financial variables are included as observables, whereas
in our model – even with just the standard Smets-Wouters observables – the
contribution of the IST shock to cyclical dynamics is largely annihilated.

The remainder of this chapter is structured as follows. Section 4.2 out-
lines the model used in the analysis. The model closely follows that of Smets
and Wouters (2007) and Justiniano et al. (2010), but we add impatient en-
trepreneurs who are collateral constrained. Section 4.3 discusses the esti-
mation of the model. Section 4.4 looks at the role of investment specific
technology (IST) and risk premium shocks as cyclical drivers.3 In section 4.5
and section 4.6, we discuss our results and their robustness.

4.2 Model
Our model is based on the familiar New Keynesian model put forward by
Smets and Wouters (2007). Households consume (and save) and supply
labour. The household income that underpins consumption and saving is
obtained from wages, and from dividend streams from owning the firms that
produce final goods. Households smooth consumption over time by investing

3We refer to investment specific technology shocks in the spirit of Smets and Wouters
(2007). Other authors (such as Justiniano et al. 2011) make a distinction between IST
shocks, which affect the transformation of consumption goods into investment, and shocks
to the marginal efficiency of investment (MEI shocks), which affect the transformation of
investment into productive capital.
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in deposits issued by competitive financial intermediaries. The model has
various nominal and real frictions including price and wage rigidities (with
backward inflation indexation), habit formation in consumption, and adjust-
ment costs for investment. The model also has variable capital utilization
and fixed costs.

We modify the baseline Smets-Wouters model by introducing entrepreneur-
ial agents who are subject to a borrowing constraint.4 Introducing an ad-
ditional agent into the model provides scope for borrowing and lending in
the steady state. We assume that borrowing is limited to a fraction χ of the
present value of the future capital stock owned by the entrepreneur. Men-
doza (2006) provides a general specification for collateral constraints nesting
the one employed here. Our approach is similar to the ‘margin constraint’
in Aiyagari and Gertler (1999), which hinges on the value of capital owned.
Debt is one-period, so the stock of capital financed by household lending to
the entrepreneurs needs to to be re-financed each period.

We adopt a borrowing constraint because it is a parsimonious financial
friction, and has a pedigree in theoretical models dating back to at least
Kiyotaki and Moore (1997). Furthermore, empirical evidence indicates that
collateralization of debt is ubiquitous (see for example Berger and Udell 1990,
Harhoff and Korting 1998 and Jimenez et al. 2006); collateral requirements
are consistent with the notion that entrepreneurs’ borrowing capacity is con-
strained by the value of their assets.

Entrepreneurs are responsible for all investment. We assume that en-
trepreneurs have a higher rate of time preference than households and are
therefore more impatient. The entrepreneurs’ impatience causes the collat-
eral constraint to be binding even in steady state, unlike Mendoza (2008). En-
trepreneurial impatience means that entrepreneurs can beneficially exchange
current consumption for future consumption by borrowing from households.
This intertemporal substitution is enabled by investment in capital goods.
All agents, both households and entrepreneurs, are subject to the same
stochastic shocks, and thus there is no idiosyncratic risk to insure away.

4Lombardo and McAdam (2012) also introduce borrowing constraints into the Smets-
Wouters model, but in their model, the constraint binds for households, while firms are
subject to costly state verification.
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As discussed by Iacoviello (2005), the return to investment exceeds the re-
turn to savings so that the collateral constraint is binding, but we do not
want entrepreneurs to postpone consumption to self-fund all of the desired
investment, which is prevented by the entrepreneur’s impatience.

Entrepreneurs are the agents who own the capital stock. They finance
consumption and investment expenditure by renting out capital goods to final
goods producers and by borrowing from households, via notional financial
intermediaries.

In our description of the model below, we limit our discussion to those
parts of the model that differ from Smets and Wouters (2007), focusing on the
decision problems of households and entrepreneurs. A full set of linearized
model equations is presented in Appendix 4.A.

4.2.1 Households

The representative household maximizes the following utility function:

Et

∞∑
s=0

βs

[
1

1− σc
(Cj,t+s − hCt−1+s)

1−σc exp

(
σc − 1

1 + σl
L1+σl
j,t+s

)]
(4.1)

subject to

Cj,t +
Bj,t

Pt

= Πj,t +Wj,tLj,t +
Rf

t−1

πt

Bj,t−1

Pt−1

(4.2)

The jth household maximizes utility by choosing consumption at time t, Cj,t,
and hours worked Lj,t. β is the discount factor; h dictates the degree of
habit persistence; σl is the elasticity of substitution with respect to the real
wage; and σc in conjunction with the habit term determines the intertemporal
substitution elasticity for households. The flow constraint has consumption
and real deposits (Bj,t/Pt) equal to profits, Πj,t, labour income (real wages
Wj,t multiplied by hours worked) and the value of real deposits from last
period scaled up by the gross effective nominal interest rate Rf

t−1 divided
by the gross inflation rate, πt. The gross effective nominal interest rate is
defined as Rf

t ≡ Rtεc,t where εc,t is a risk premium shock, as in Smets and
Wouters (2007), and Rt is the gross risk free policy rate.

The household’s first order conditions for consumption and deposits are
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summarized by the following set of equations. The marginal utility of con-
sumption at time t, denoted λt, is:

λj,t = exp

(
σc − 1

1 + σl
L1+σl
j,t

)
(Cj,t − hCt−1)

−σc . (4.3)

The Euler equation for households can then be represented as:

λj,t = βEt

(
λj,t+1

Rf
t

πt+1

)
(4.4)

The savings, or deposits of the household, Bt/Pt, are lent to entrepreneurs,
who use these funds to purchase capital goods. These capital goods are
rented out to final goods-producing firms (which are in turn owned by the
households).

4.2.2 Entrepreneurs

The representative entrepreneur maximizes the expected utility:

E
t

∞∑
s=0

βs
e

[
1

1− σe
(Ce

j,t+s − heC
e
t−1+s)

1−σe

]
(4.5)

where Ce denotes entrepreneurial consumption. Entrepreneurs are subject
to the following budget constraint:

Ce
j,t+QtKj,t =

Bj,t

Pt

−
Rf

t−1

πt

Bj,t−1

Pt−1

+Rk
tZtKj,t−1−a(Zt)Kj,t−1+Qt(1−δ)Kj,t−1+Πe

t

(4.6)
In each period, the entrepreneur purchases consumption goods Ce

j,t and new
capital stock, Kj,t, at price Qt. These purchases are financed by: net bor-
rowing from households (Bj,t

Pt
− Rf

t−1

πt

Bj,t−1

Pt−1
); rental income on capital goods

net of capital utilization costs (Rk
tZtKj,t−1 − a(Zt)Kj,t−1), where zt is the

utilization rate; the proceeds from selling last period’s capital stock net of
depreciation (Qt(1 − δ)Kj,t−1); and profit from the intermediate production
of capital (Πe

t ). Because entrepreneurs are more impatient than households,
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they face the following borrowing constraint on their degree of leverage:

Rf
t

πt+1

Bj,t

Pt

= χE
t
Qt+1Kj,t (4.7)

where χ is the loan-to-value ratio (LVR), which dictates the maximum per-
missible leverage ratio. This constraint is on the future value of capital,
hence EtQt+1, because any default and required loan recovery will occur in
the future. Because of the assumption that β > βe, the constraint is always
binding in the neighborhood of the steady state.

The optimality conditions for the entrepreneur’s consumption, borrowing,
capital purchases, and capital utilization are as follows:

(Ce
j,t − heC

e
t−1)

−σe − λej,t = 0 (4.8)

λej,t − βeEtλ
e
j,t+1

Rf
t

πt+1

− λBj,t
Rf

t

πt+1

= 0 (4.9)

Qt =
λBj,t
λej,t

χQt+1 + βe E
t

λej,t+1

λej,t

[
Rk

t+1Zt+1 − a(Zt+1) +Qt+1(1− δ)
]

(4.10)

Rk
t = a′(Zt) (4.11)

where λe and λB are the Lagrange multipliers on the flow and borrowing
constraints respectively, Rk

t is the return on capital and, as before, Zt is
capital utilization.

The presence of λB in the first order conditions represents the effects of
the borrowing constraint on entrepreneurs’ allocation of consumption and
capital purchases. Consider, for example, a case where the borrowing con-
straint is exogenously relaxed. This results in a decline in the shadow value
of the constraint, λB. For constant real interest rates, the Euler equation
suggests that a looser borrowing constraint would be associated with higher
consumption. Likewise, for a constant path of the effective interest rate, a
looser borrowing constraint implies a higher value of installed capital, Q, and
thus higher investment.
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Capital producers

The capital stock is produced by firms, wholly owned by the entrepreneurs.
The jth representative capital-producing firm maximizes the following profit
function:

E
t

∞∑
s=0

Λe
t+s [Qt+s∆xj,t+s − Ij,t+s] (4.12)

where Λe
t is the stochastic discount factor of the owner, in this case the

entrepreneur, and net capital accumulation is defined as:

∆xj,t = Kj,t − (1− δ)Kj,t−1 = εµ,t(1− S(Ij,t, Ij,t−1))Ij,t (4.13)

where δ is the depreciation rate, εµ,t is an investment-specific shock, and
the function S(Ij,t, Ij,t−1))Ij,t captures investment adjustment costs. The
investment adjustment cost function is quadratic in the ratio of investment
to its lag. Substituting (4.13) into (4.12) yields:

E
t

∞∑
s=0

Λe
t+s [Qt+sεµ,t+s(1− S(Ij,t+s, Ij,t+s−1))Ij,t+s − Ij,t+s] (4.14)

Assuming that the adjustment cost function S(Ij,t, Ij,t−1) takes the form
κ
2

(
Ij,t

Ij,t−1
− γ
)2

, where γ is the gross steady state growth rate of the econ-
omy, the optimality condition for investment is given by:

1 = Qtεµ,t

[(
1− κ

2

(
Ij,t
Ij,t−1

− γ

)2
)

− κ

(
Ij,t
Ij,t−1

− γ

)
Ij,t
Ij,t−1

]
(4.15)

+ βe E
t

λet+1

λet
Qt+1εµ,t+1

[
κ

(
Ij,t+1

Ij,t
− γ

)(
Ij,t+1

Ij,t

)2
]

Adjustment costs dampen the response of investment to various shocks and
play an important role in the dynamics of Tobin’s q – the relative price of
firms’ collateral in our model.
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4.2.3 The rest of the model

The rest of the model directly follows Smets and Wouters (2007) and thus
we only provide a very brief description. A complete set of linearized model
equations is presented in Table 4.A.1 in Appendix 4.A.

Output of final goods is a function of effective capital, labour and tech-
nology. Final goods producers rent capital services with a given degree of
utilization from entrepreneurs, and labour services from household unions.

Goods and labour markets are monopolistically competitive with both
prices and wages being set in a time-dependent manner as put forward by
Calvo (1983), albeit with partial indexation to past inflation for those price
and wage setters not called upon to re-price in a given time period.

Government spending is simply modeled as a stochastic share of GDP.
Monetary policy is modeled by a generalized Taylor-type interest rate rule
that links the current period policy rate to its lag, to deviations of the current
period inflation rate from target, to deviations in the output gap, and to
changes in the growth rate of the output gap.

The output gap is defined as the difference between output in the sticky
price allocation of the model and output corresponding to a flexible price
allocation. In the flexible price allocation there are no nominal rigidities in
either price or wage setting, and hence there is no role for monetary policy.

4.2.4 Shocks

There are seven shocks perturbing the economy. The risk premium (εc,t) and
investment specific technology shock (εµ,t), discussed above, are augmented
with shocks to total factor productivity (εa,t), the share of government spend-
ing in GDP (εg,t), the interest rate rule (εr,t), and shocks to the price and
wage Phillips curves (εp,t and εw,t).5 These shocks all exhibit some degree of

5The flexible price allocation used to construct the output gap is not affected by either
εr,t, εp,t or εw,t.
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persistence, as described in the following equations:

εc,t = ρcεc,t−1 + ζc,t (4.16)

εµ,t = ρµεµ,t−1 + ζµ,t (4.17)

εa,t = ρaεa,t−1 + ζa,t (4.18)

εg,t = ρgεg,t−1 + ζg,t + ρ(g,a)ζa,t (4.19)

εr,t = ρrεr,t−1 + ζr,t (4.20)

εp,t = ρpεp,t−1 + ζp,t − ρ(p,ζ)ζp,t−1 (4.21)

εw,t = ρwεw,t−1 + ζw,t − ρ(w,ζ)ζw,t−1 (4.22)

The various autoregressive and moving average (MA) coefficients are repre-
sented by ρ. Following Smets and Wouters (2007), we include a feedback
term between the innovation in technology and government spending, ρ(g,a),
in the shock term for exogenous government spending, as well as MA terms in
the price and wage shocks to capture high frequency fluctuations in price and
wage dynamics. The innovations ζj,t are normal, independent and identically
distributed.

4.2.5 An alternative model

To isolate the effects of borrowing constraints on the business cycle, we es-
timate two versions of our model: the model presented above, and an al-
ternative model where entrepreneurs are identical to households in terms
of their rate of time preference and thus do not face borrowing constraints.
This alternative is essentially the model put forward by Smets and Wouters
(2007).

4.3 Bayesian estimation
The following seven observables are used to estimate the two versions of the
model: the growth rates of GDP, aggregate consumption, and investment;
real wages; inflation; the short-term nominal interest rate; and hours worked.
Given that we have seven stochastic shocks in the model, we avoid stochastic
singularity. The data used to estimate the models are described in Appendix
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4.B. We denote ‘aggregate’ consumption as Ca since it corresponds to the
sum of household and entrepreneurial consumption in our model. As in Jus-
tiniano et al. (2010), consumption corresponds to private consumption of
non-durable goods, while investment is defined as the sum of gross domes-
tic private investment and consumption of durable goods. The models are
estimated using standard Bayesian techniques. For the most part the priors
for the model are the same as those employed by Smets and Wouters. There
are two innocuous caveats to this statement. First, we use a Gamma prior
instead of a Normal prior for the labour-disutility parameter, σl, though with
the same mean and variance used in Smets and Wouters.6 Second, we esti-
mate the household’s discount rate using a Gamma prior with a mean of 0.25
and a standard deviation of 0.1, though the data are found to be somewhat
uninformative for these priors. Other authors such as Iacoviello (2005) and
Iacoviello and Neri (2010) calibrate this parameter directly.

The model with borrowing constraints has two parameters without ana-
logues in the original Smets-Wouters model: (i) the loan-to-value ratio,
χ, and (ii) the gap between the discount rates of the households and en-
trepreneurs, β̃. Given that the LVR is a device to ensure that entrepreneur’s
have equity in their investment ventures, the LVR is assumed to fall within
(0,1). More specifically the prior for the LVR is a Beta distribution with
mean 0.5 and standard deviation of 0.15. Iacoviello and Neri (2010) cali-
brate the LVR to be 0.85, suggesting that it is difficult to estimate without
data on debt and housing holdings of credit-constrained households. Our
mean posterior parameter estimates for the LVR are close to our prior value
of 0.5, but the data are somewhat informative, indicating that the probability
mass should be more tightly grouped around the mean value. Indeed, when
taking the model to a shortened data sample, starting in the post-Volcker
period, we obtain a posterior mean of 0.7 for the same prior.

The prior distribution for the discount rate gap, β̃, is a Gamma distribu-
tion with a mean of 1 and a standard deviation of 0.5. This prior distribution
implicitly encompasses the calibrated discount factors for impatient borrow-
ers used in Iacoviello (2005) and Iacoviello and Neri (2010), which range

6In estimation over a smaller sub-sample, positive probability mass was assigned to
negative parameter values, which we rule out on a priori theoretical grounds.
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from 0.98 to 0.97. Gerali et al. (2010) estimate a similar model, but do not
attempt to estimate either χ or β̃. Iacoviello provides greater discussion of
plausible discount factors, and cites a number of papers on cross-sectional
variation in discount factors (Carroll and Samwick 1997, for example, sug-
gest that the plausible range for discount factors is between 0.91 and 0.99).
While our prior range does not fully encompass this cross-sectional variation
we think it provides a sufficiently broad range for what one might assume is
the average impatient entrepreneur.

Finally, we calibrate the depreciation rate to 0.025 and the share of gov-
ernment spending in GDP to 0.22. Following Smets and Wouters (2007), we
set the Kimball aggregator parameters, ϵp and ϵw, to 10 and calibrate the
steady state wage mark-up to 1.5.

Table 4.1: Estimation results for parameters and shock
processes of model with borrowing constraints: 1954Q3 -
2011Q4

Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
α Share of capital N 0.300 0.050 0.275 0.212 0.340
ϕ Investment adjustment cost N 4.000 1.500 2.579 1.612 3.516
σc Household’s intertemp. elasticity N 1.500 0.375 1.033 0.979 1.087
σcE Entrepreneur’s intertemp. elasticity N 1.500 0.375 1.322 0.779 1.845
h Habit parameter of consumers β 0.700 0.100 0.905 0.875 0.937
hE Habit parameter of entrepreneurs β 0.700 0.100 0.811 0.750 0.873
θw Calvo wage parameter β 0.500 0.100 0.875 0.819 0.937
σl Labour disutility parameter Γ 2.000 0.750 0.821 0.382 1.214
θp Calvo price parameter β 0.500 0.100 0.872 0.833 0.909
ξ Capacity utilization parameter β 0.500 0.150 0.304 0.192 0.411
ϕp Markup (goods) N 1.250 0.125 1.297 1.202 1.393
δw Wage indexation β 0.500 0.150 0.391 0.213 0.567
δp Price indexation β 0.500 0.150 0.193 0.082 0.298
ϕπ Taylor rule inflation N 1.500 0.250 1.899 1.619 2.187
ϕr Taylor rule lagged interest rate β 0.750 0.100 0.853 0.818 0.889
(Continued on next page.)
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Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
ϕx Taylor rule output gap N 0.125 0.050 0.074 0.044 0.106
ϕ∆x Taylor rule output gap growth rate N 0.125 0.050 0.245 0.210 0.282
π Steady state inflation Γ 0.625 0.100 0.835 0.734 0.943
100(1−β)

β Discount rate (percent) Γ 0.250 0.100 0.250 0.092 0.398
ltv Loan to value ratio β 0.500 0.150 0.510 0.322 0.709
β̃ Entrepreneurs discount less H’hlds Γ 1.000 0.500 0.985 0.222 1.717
lss Log steady state hours N 0.000 2.000 -0.580 -2.628 1.504
γ Steady state growth rate (percent) N 0.400 0.100 0.470 0.443 0.495
ρa AR parameter technology β 0.500 0.200 0.970 0.960 0.982
ρc AR parameter risk premium β 0.500 0.200 0.866 0.827 0.904
ρg AR parameter exog. demand β 0.500 0.200 0.990 0.982 0.997
ρi AR parameter investment β 0.500 0.200 0.192 0.123 0.264
ρr AR parameter interest rate β 0.500 0.200 0.134 0.051 0.212
ρp AR parameter price markup β 0.500 0.200 0.945 0.906 0.982
ρw AR parameter wage markup β 0.500 0.200 0.957 0.928 0.988
ρep MA parameter price markup β 0.500 0.200 0.888 0.818 0.954
ρew MA parameter wage markup β 0.500 0.200 0.934 0.897 0.972
ρga Effect of tech shock on exog. Dd. N 0.500 0.200 0.359 0.280 0.434
σc Std dev. of risk premium shock Γ−10.100 2.000 0.387 0.341 0.430
σw Std dev. of wage markup shock Γ−10.100 2.000 0.258 0.230 0.285
σp Std dev. of price markup shock Γ−10.100 2.000 0.141 0.122 0.160
σr Std dev. of interest rate shock Γ−10.100 2.000 0.216 0.197 0.236
σa Std dev. of technology shock Γ−10.100 2.000 0.548 0.501 0.592
σi Std dev. of investment shock Γ−10.100 2.000 2.199 1.807 2.610
σg Std dev. of exog. demand shock Γ−10.100 2.000 0.344 0.315 0.373

Notes: The prior for a parameter is a Normal (N), Beta (β), Gamma (Γ), or inverse-

Gamma (Γ−1) distribution. Columns 4 and 5 indicate the mean and standard deviation of

the prior distribution, and the final three columns report the posterior mean and lower and

upper limits of 90 percent Bayesian confidence intervals from the posterior distribution.

Tables 4.1 and 4.2 report the posterior mean and 90 percent posterior
probability intervals for the structural parameters and the standard devi-
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ations of the shocks for the model with and without collateral constraints.
The reported parameter estimates for the models are based on 900,000 draws
of Markov chains. Appendix 4.C illustrates (recursive) ‘trace-plots’ of deciles
from two Markov chains, to provide some degree of confidence that the chains
have converged to their stationary (posterior) distributions.

Table 4.2: Estimation results for parameters and
shock processes of model without borrowing constraints:
1954Q3 - 2011Q4

Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
α Share of capital N 0.300 0.050 0.126 0.055 0.198
ϕ Investment adjustment cost N 4.000 1.500 4.882 3.235 6.548
σc Household’s intertemp. elasticity N 1.500 0.375 1.358 1.205 1.499
h Habit parameter of consumers β 0.700 0.100 0.759 0.686 0.826
θw Calvo wage parameter β 0.500 0.100 0.811 0.751 0.876
σl Labour disutility parameter Γ 2.000 0.750 1.363 0.644 2.125
θp Calvo price parameter β 0.500 0.100 0.765 0.716 0.818
ξ Capacity utilization parameter β 0.500 0.150 0.711 0.567 0.840
ϕp Markup (goods) N 1.250 0.125 1.291 1.195 1.381
δw Wage indexation β 0.500 0.150 0.576 0.385 0.765
δp Price indexation β 0.500 0.150 0.225 0.111 0.334
ϕπ Taylor rule inflation N 1.500 0.250 1.896 1.660 2.124
ϕr Taylor rule lagged interest rate β 0.750 0.100 0.797 0.759 0.836
ϕx Taylor rule output gap N 0.125 0.050 0.076 0.049 0.103
ϕ∆x Taylor rule output gap growth rate N 0.125 0.050 0.211 0.171 0.251
π Steady state inflation Γ 0.625 0.100 0.871 0.768 0.975
100(1−β)

β
Discount rate (percent) Γ 0.250 0.100 0.245 0.090 0.380

lss Log steady state hours N 0.000 2.000 -0.538 -2.400 1.327
γ Steady state growth rate (percent) N 0.400 0.100 0.450 0.420 0.482
ρa AR parameter technology β 0.500 0.200 0.981 0.971 0.989
ρc AR parameter risk premium β 0.500 0.200 0.507 0.365 0.647
ρg AR parameter exog. demand β 0.500 0.200 0.986 0.978 0.994
(Continued on next page.)
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Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
ρi AR parameter investment β 0.500 0.200 0.695 0.611 0.783
ρr AR parameter interest rate β 0.500 0.200 0.256 0.152 0.367
ρp AR parameter price markup β 0.500 0.200 0.964 0.942 0.985
ρw AR parameter wage markup β 0.500 0.200 0.962 0.941 0.986
ρep MA parameter price markup β 0.500 0.200 0.820 0.744 0.910
ρew MA parameter wage markup β 0.500 0.200 0.921 0.882 0.962
ρga Effect of tech shock on exog. Dd. N 0.500 0.200 0.256 0.192 0.323
σc Std dev. of risk premium shock Γ−10.100 2.000 1.427 0.801 1.974
σw Std dev. of wage markup shock Γ−10.100 2.000 0.261 0.234 0.289
σp Std dev. of price markup shock Γ−10.100 2.000 0.121 0.100 0.142
σr Std dev. of interest rate shock Γ−10.100 2.000 0.210 0.192 0.228
σa Std dev. of technology shock Γ−10.100 2.000 0.565 0.518 0.615
σi Std dev. of investment shock Γ−10.100 2.000 0.967 0.836 1.109
σg Std dev. of exog. demand shock Γ−10.100 2.000 0.320 0.294 0.344

Notes: The prior for a parameter is a Normal (N), Beta (β), Gamma (Γ), or inverse-

Gamma (Γ−1) distribution. Columns 4 and 5 indicate the mean and standard deviation of

the prior distribution, and the final three columns report the posterior mean and lower and

upper limits of 90 percent Bayesian confidence intervals from the posterior distribution.

The posterior estimates for the common structural parameters in the two
models are broadly similar. They suggest a high degree of nominal price and
wage rigidity, a significant degree of habit persistence and sluggish investment
adjustment. Differences between the two models arise primarily in the size
and persistence of investment and risk premium shocks. In the presence
of borrowing constraints, investment shocks become more volatile but less
persistent. Risk premium shocks, however, are estimated to be less volatile
but more persistent. Introducing borrowing constraints also lowers the mean
of the posterior estimates of the capital utilization and investment adjustment
cost parameters, relative to the model without borrowing constraints.

The additional structure that we have introduced with the two agent
types and the borrowing constraint has come at a cost. Like Brzoza-Brzezina
and Kolasa (2013), we find that empirical fit is adversely affected by the in-
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Table 4.3: Log marginal data densities

Models
No borrowing Borrowing

constraint constraint
Modified Harmonic Mean -1342.001 -1413.831
Laplace Approximation -1340.979 -1413.943

troduction of the borrowing constraint. Estimates of the (log) marginal data
densities of the models with and without the borrowing constraint are re-
ported in Table 4.3.7 The modified harmonic mean estimate is based on an
average of the draws from the Markov chains, and the Laplace estimate is
based on a second order approximation of that log marginal data density
(which approximates the data density using a Normal distribution). Bayes
factors can be computed from these log marginal data densities, which can
then be used to compare the two models (Kass and Raftery, 1995). Kass
and Raftery’s guidelines to assess the log Bayes factor imply that the data
strongly support the model without the borrowing constraint.8 What we
demonstrate below is that IST shocks are incompatible with borrowing con-
straints, as implemented in the model. However, to explain financial frictions
empirically, alternative structural assumptions are needed, or additional fea-
tures are required to rehabilitate the model with borrowing constraints.

4.4 IST and risk premium shocks and the busi-
ness cycle

This section analyzes the key drivers of the business cycle by looking at the
variance decomposition of the observables in both version of the model. Table
4.4 reports the contribution of each structural shock to the volatility of the
observables for the version of the model without the borrowing constraint.

7See also Brzoza-Brzezina et al. (2013).
8If 2 loge(B01) > 10 then the evidence is considered to be ‘very strong’ in favour of

model 0, where B01 is the marginal data density of model zero divided by the marginal
data density of model one.
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Table 4.4: Variance decomposition of model without borrowing constraints:
1954Q3 - 2011Q4

Risk Wage Price Monetary Neutral IST Govt.
premium markup markup policy Technology

Output 0.10 0.04 0.05 0.06 0.09 0.55 0.11
growth [0.03, 0.18] [0.01, 0.06] [0.02, 0.07] [0.04, 0.08] [0.06, 0.12] [0.43, 0.65] [0.09, 0.14]

Consump. 0.38 0.13 0.07 0.16 0.11 0.12 0.01
growth [0.22, 0.56] [0.06, 0.21] [0.02, 0.11] [0.11, 0.21] [0.07, 0.16] [0.03, 0.21] [0.00, 0.02]

Investmt. 0.02 0.01 0.03 0.01 0.03 0.91 0.00
growth [0.00, 0.03] [0.00, 0.02] [0.01, 0.04] [0.01, 0.02] [0.02, 0.04] [0.87, 0.95] [0.00, 0.00]

Real wage 0.01 0.60 0.28 0.01 0.06 0.04 0.00
growth [0.00, 0.01] [0.51, 0.70] [0.20, 0.39] [0.00, 0.01] [0.04, 0.09] [0.02, 0.07] [0.00, 0.00]

Total hours 0.03 0.32 0.18 0.04 0.03 0.31 0.09
growth [0.01, 0.07] [0.16, 0.47] [0.07, 0.27] [0.02, 0.06] [0.02, 0.05] [0.17, 0.44] [0.03, 0.13]

Inflation 0.01 0.40 0.38 0.04 0.06 0.09 0.01
[0.00, 0.03] [0.25, 0.55] [0.22, 0.52] [0.02, 0.07] [0.04, 0.09] [0.02, 0.16] [0.00, 0.01]

Interest 0.08 0.17 0.09 0.12 0.09 0.43 0.01
rate [0.01, 0.17] [0.08, 0.26] [0.03, 0.15] [0.07, 0.17] [0.06, 0.13] [0.27, 0.62] [0.01, 0.02]

Notes: Each column corresponds to the contribution of a particular structural shock to the
variance of observables. The values in square brackets are 90 percent Bayesian confidence
intervals.

The dominant role of IST shocks highlighted by Justiniano et al. (2010) is
replicated in this version of the model as 55 percent of the variance of output
growth is accounted for by IST shocks. Risk premium, neutral technology
and government spending shocks jointly make up another 30 percent of the
variance of output growth. IST shocks also account for almost all (91 percent)
of the variance of investment growth and a large part of the variance of the
nominal interest rate (43 percent).

In this model IST shocks are particularly important in capturing the
decline in output that occurred during the Great Recession. Figure 4.1 shows
the path of output growth when the model is driven solely by IST shocks.
Here, IST shocks account for over half of the drop in output growth during
the last recession. The premise of this chapter is that this result is not robust
to the introduction of financial frictions in the form of borrowing constraints.
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Figure 4.1: Role of IST shock in the Great Recession in the model without
borrowing constraints
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Notes: The solid line labelled Data shows the year-on-year growth rate of GDP. The solid-
crossed line, labelled IST shock contribution, shows the growth rate of GDP that would
have occurred if only the estimated IST shocks assume non-zero values. The estimated
shocks are obtained via the Kalman smoother on the estimated posterior mean of the
Smets-Wouters model with no borrowing constraints.
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Table 4.5: Variance decomposition of model with borrowing constraints:
1954Q3 - 2011Q4

Risk Wage Price Monetary Neutral IST Govt.
premium markup markup policy Technology

Output 0.47 0.05 0.04 0.20 0.06 0.04 0.14
growth [0.43, 0.53] [0.03, 0.07] [0.02, 0.06] [0.18, 0.23] [0.03, 0.09] [0.01, 0.06] [0.12, 0.15]

Consump. 0.46 0.05 0.04 0.20 0.05 0.20 0.00
growth [0.40, 0.52] [0.03, 0.08] [0.02, 0.06] [0.16, 0.23] [0.02, 0.06] [0.14, 0.25] [0.00, 0.01]

Investmt. 0.39 0.02 0.04 0.17 0.01 0.37 0.00
growth [0.31, 0.48] [0.01, 0.04] [0.01, 0.06] [0.13, 0.21] [0.00, 0.02] [0.23, 0.50] [0.00, 0.00]

Real wage 0.01 0.81 0.15 0.00 0.02 0.00 0.00
growth [0.00, 0.02] [0.76, 0.87] [0.11, 0.19] [0.00, 0.01] [0.01, 0.03] [0.00, 0.00] [0.00, 0.00]

Total hours 0.23 0.32 0.06 0.10 0.06 0.01 0.23
growth [0.12, 0.35] [0.14, 0.49] [0.01, 0.10] [0.04, 0.14] [0.02, 0.09] [0.00, 0.02] [0.10, 0.36]

Inflation 0.02 0.43 0.50 0.01 0.04 0.00 0.00
[0.00, 0.05] [0.28, 0.58] [0.35, 0.65] [0.00, 0.01] [0.01, 0.07] [0.00, 0.00] [0.00, 0.00]

Interest 0.40 0.25 0.14 0.10 0.11 0.00 0.00
rate [0.25, 0.55] [0.14, 0.37] [0.07, 0.22] [0.06, 0.13] [0.07, 0.15] [0.00, 0.01] [0.00, 0.01]

Notes: Each column corresponds to the contribution of a particular structural shock to the
variance of observables. The values in square brackets are 90 percent Bayesian confidence
intervals.

Introducing a borrowing constraint on entrepreneurs affects the trans-
mission mechanism of IST shocks and thus their relative contribution to the
volatility of GDP. The variance decomposition of the observables in Table
4.5 illustrates that in the model with borrowing constraints, the role of IST
shocks is greatly reduced. Apart from consumption and investment, IST
shocks account for less than 5 percent of the volatility of the observable
variables. Their contribution to the dynamics of investment remains signif-
icant but almost two thirds less than in the model without the borrowing
constraint. The higher share of IST shocks in the volatility of consumption
reflects these shocks’ role in the dynamics of entrepreneurial consumption.
In section 4.4.1, we examine this channel in more detail.

In the model with borrowing constraint, the main driver of business cycle
fluctuations appears to be the risk premium, contributing between 39 per-
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cent and 47 percent to the variance of the components of GDP. Adding a
borrowing constraint also increases the share of risk premium shocks in the
variance of total hours and nominal interest rates.

Given its importance in shaping business cycle dynamics, we now exam-
ine how the risk premium shock evolves over the business cycle. Figure 4.2
plots the posterior mean of our estimated risk premium shock and the NBER
recession dates which start at the peak of a business cycle and end at the
trough. The sample includes every recession from the late 1950s onwards.
There is a striking conformity of the risk premium shock with these reces-
sions. At the beginning of each recession the estimated risk premium shock
rises sharply, implying that the effective interest rate in the model is highly
countercyclical. Moreover, the risk premium and the effective interest rate
start to rise before the peak of the boom, in almost every recession in our
sample.

The increase in our measure of the risk premium shock is most pronounced
during the last recession. Figure 4.3 illustrates the role of risk premium
shocks over the last decade and a half by simulating the path of output
assuming that the model is only driven by the estimated risk premium shock.
Most of the drop in output growth in the last recession is due to the variation
in the risk premium shock. This is in line with the observation that the last
recession was driven by sharp disruptions in the financial system resulting in
higher interest rate spreads.

4.4.1 IST shocks and collateral constraints

The following two sections flesh out the intuition behind our results starting
with the role of IST shocks. In a real business cycle type model, investment
rises but consumption falls following a positive IST shock (see for example
Barro and King 1984). A shock that increases the marginal efficiency of
investment raises the incentive to invest by more than can be accommodated
by an increase in labour effort. As a result, investment can only increase
sufficiently if consumption falls. This GDP-consumption co-movement puzzle
precludes IST shocks from being a key driver of the business cycle in this type
of model. Justiniano et al. (2010) show how this co-movement puzzle can be
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Figure 4.2: The risk-premium shock and NBER recession intervals in the
model with borrowing constraints
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Notes: The solid line shows the estimated risk premium shocks for the model with the
borrowing constraint. The estimated shocks are obtained via the Kalman smoother on the
estimated posterior mean. The shaded areas correspond to the NBER recession intervals.

overcome through a combination of nominal and real rigidities plus variable
capital utilization.9 As a result, their model is able to generate a dominant
role for IST shocks over the business cycle, although these shocks have a
limited role in accounting for consumption movements. All the features that
account for the co-movement puzzle in Justiniano et al. are also present in
our model, in addition to the binding borrowing constraint on entrepreneurs.

Figure 4.4 shows the impulse response functions following an IST shock
9Greenwood et al. (2000) and more recently Furlanetto and Seneca (2014) and Khan

and Tsoukalas (2011), discuss a number of ways in which the positive co-movement of
consumption and investment can be derived, including non-separable preferences, habit
persistence and factor immobility, intratemporal adjustment costs on investment, and
intermediate inputs.
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Figure 4.3: Role of Risk Premium shock in the Great Recession in the model
with borrowing constraints
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Notes: The solid line labelled Data shows the year-on-year growth rate of GDP. The solid-
crossed line, labelled Risk premium shock contribution, shows the growth rate of GDP that
would have occurred if only the estimated Risk premium shocks assume non-zero values.
The estimated shocks are obtained via the Kalman smoother on the estimated posterior
mean of the model with the borrowing constraint.
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in our estimated model. The solid lines show the median response and the
shaded areas the 90 percent confidence intervals. As Figure 4.4 makes clear,
there is no co-movement puzzle between GDP and household consumption.
However, aggregate consumption declines because of a sharp adjustment to
entrepreneurs’ consumption in the wake of a positive IST shock. A positive
IST shock reduces the value of Tobin’s q (this is true even in a simple RBC
model without adjustment costs where 1 = Qtεµ,t) and thus the value of the
capital stock used for collateral. The decline in the value of collateral, other
things equal, reduces firms’ ability to borrow just when the demand for bor-
rowing coming from investment is high. As a result, investment is reduced
relative to the case without borrowing constraints, and entrepreneurs’ con-
sumption falls. In terms of the entrepreneurs’ Euler equation, (4.9), a decline
in Tobin’s q tightens the borrowing constraint causing λet to rise, which, other
things equal, causes entrepreneurial consumption to fall. In the estimated
model entrepreneurs’ consumption falls by enough to lead to a decline in
aggregate consumption.

4.4.2 Risk premium shocks and borrowing constraints

The volatilities of observed variables ultimately stem from some underlying
structural shocks. In the context of the model with borrowing constraints,
the risk premium shocks supplant investment shocks. The same channel that
reduces the impact of IST shocks contributes to the increase in the impor-
tance of risk premium shocks. Figure 4.5 shows the transmission mechanism
of a risk premium shock. A negative risk premium shock lowers the effective
interest rates faced by household and entrepreneurs. This results in higher
consumption and output, generating an increased demand for investment and
a higher price of capital. From the perspective of entrepreneurs, even in the
absence of any borrowing constraint, the lower cost of servicing their debt
allows them to increase both their consumption and capital purchases. The
additional asset price channel (higher Tobin’s q) implies that they also face a
looser borrowing constraint (both λet and εc,t decline in equation (4.9) caus-
ing entrepreneurial consumption to rise). This engenders an amplification
of the impact of risk premium shocks for both consumption and investment.
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Figure 4.4: Impulse response to an IST shock in the model with borrowing
constraints
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Notes: The solid lines are impulse response functions to a one standard deviation shock.
The solid line is the posterior median, the shaded areas correspond to the 90 percent
Bayesian confidence intervals. Responses are measured as the percentage deviations from
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Figure 4.5: Impulse response to a risk premium shock in the model with
borrowing constraints
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As the response of interest rates and inflation are positive, our model gen-
erates positive co-movement between macroeconomic aggregates following a
risk premium shock.

Our analysis shows that the introduction of the borrowing constraint
alters the transmission mechanisms of both IST and risk premium shocks.
The borrowing constraint attenuates the expansionary effects of IST shocks
on output, whereas the impact of risk premium shocks is amplified.

4.5 Discussion
Our analysis suggests that risk premium shocks, or shocks to the effective
interest rate faced by households and firms, are the main driver of the busi-
ness cycle. This result is attributable to the role played by simple financial
frictions in the form of borrowing constraints. An expansionary risk premium
shock loosens the borrowing constraint faced by entrepreneurs and thus re-
duces the cost of transforming household savings into productive capital.

Justiniano et al. (2011), in a model without explicit financial frictions,
attribute this role to IST shocks. A positive IST shock raises the marginal
efficiency of investment and thus the rate with which household savings are
transformed into productive capital. As a supply type shock, a positive IST
shock also yields a decline in the price of capital. In the presence of borrowing
constraints, the counter-cyclical asset price movement tends to tighten the
borrowing constraint and this mechanism reduces the contribution of IST
shocks.

Christensen and Dib (2008), and more recently Merola (2015), compare
models with and without a financial accelerator mechanism, where firms’ net
worth affects the ‘external finance premium’ and thus the firms’ costs of bor-
rowing. Even though there are significant differences between their approach
and ours (in terms of sample period, model and estimation technique), they
too find that the role of IST shocks in the forecast variance of GDP dimin-
ishes in the presence of financial frictions, albeit to a much lesser extent.
The financial friction in Christensen and Dib (2008) has a mild effect on the
transmission mechanism quantitatively, but the dynamics are qualitatively
unchanged. In our model, financial frictions reverse the short term impact of
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IST shocks on aggregate consumption, and thus have both quantitative and
qualitative effects on the response of output.

A number of recent papers in the literature view the financial sector
as a source of shocks driving the business cycle. For example, Nolan and
Thoenissen (2009) show in a Bernanke et al. (1999) type model that shocks
to entrepreneurial net worth play a key role in the dynamics of GDP. Chris-
tiano et al. (2012) estimates a modified financial accelerator model where
the volatility of idiosyncratic shocks in the financial accelerator mechanism
is treated as a stochastic process. This risk shock is shown to account for
a large proportion of the volatility of GDP when the model is estimated on
financial data. As in our analysis, the contribution of investment shocks
declines, once risk shocks are introduced. Hirakata et al. (2011) also in-
troduce shocks to financial intermediation in a BGG-type model and find
shocks to financial intermediation play an important role in the dynamics
of investment, in particular accounting for the collapse of investment during
the financial crisis. Jermann and Quadrini (2012) investigate the importance
of shocks originating in the financial sector when firms face borrowing con-
straints. As in the previous literature, these financial shocks are found to be
quantitatively important.

In relation to this literature, our results highlight the importance of risk
premium shocks. Although this type of shock is present in canonical DSGE
models such as Smets and Wouters (2007), its role as a driver of the business
cycle only comes to the fore once we introduce the borrowing constraint.
In contrast to Christiano et al. (2012), our risk premium shock becomes
important in the presence of financial frictions, without using financial data
in the estimation of the model.

Our results share some similarities with Iacoviello (2005), who points
out that, in a model with real estate investments, the effects of borrowing
constraints on the amplification of shocks depend on the response of asset
prices and consumer price inflation. In his framework, where household debt
is denominated in nominal terms, shocks that generate a negative correlation
between inflation and output (such as supply shocks), are decelerated while
the impact of demand shocks are amplified. Our contribution extends this
channel to the case of investment shocks.
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4.6 Robustness over the sample
This section analyzes the robustness of our results to alternative sample pe-
riods. Our baseline estimation period runs from 1954Q3 through to 2011Q4
and therefore encompasses the estimation periods of, amongst others, Jus-
tiniano et al. (2010, 2011) and Smets and Wouters (2007). This estimation
period spans two recent episodes that have the potential to affect our results:
the Great Moderation, from the Volcker disinflation up to the Financial Cri-
sis; and the post 2009Q1 period where the zero lower bound for the federal
funds rate becomes binding. To check for the robustness of our results, we
re-estimate the model for the 1984Q1 to 2009Q1 period.

Tables 4.6 and 4.7 present the estimation results and variance decom-
position for this alternative sample. Our parameter estimates are broadly
consistent with those obtained in the baseline estimation. The main changes
relate to the dynamics of investment. As the volatility of investment is
lower during that period, the model requires a higher investment adjustment
cost parameter as well as a lower volatility for the IST shock. The poste-
rior mean of the investment adjustment cost parameter is about three times
larger, while the posterior mean of the standard deviation of the IST shock
is halved.

Table 4.6: Estimation results for parameters and shock
processes of model with borrowing constraints: 1984Q1 -
2009Q1

Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
α Share of capital N 0.300 0.050 0.298 0.234 0.369
ϕ Investment adjustment cost N 4.000 1.500 7.107 5.011 9.185
σc Household’s intertemporal elasticityN 1.500 0.375 1.332 1.007 1.629
σcE Entrepreneur’s intertemp. elasticityN 1.500 0.375 0.974 0.336 1.560
h Habit parameter of consumers β 0.700 0.100 0.782 0.690 0.880
hE Habit parameter of entrepreneurs β 0.700 0.100 0.911 0.873 0.956
θw Calvo wage parameter β 0.500 0.100 0.785 0.648 0.904
σl Labour disutility parameter Γ 2.000 0.750 1.132 0.394 1.866
(Continued on next page.)
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Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
θp Calvo price parameter β 0.500 0.100 0.780 0.687 0.899
ξ Capacity utilization parameter β 0.500 0.150 0.667 0.516 0.819
ϕp Markup (goods) N 1.250 0.125 1.329 1.201 1.467
δw Wage indexation β 0.500 0.150 0.384 0.162 0.602
δp Price indexation β 0.500 0.150 0.268 0.104 0.442
ϕπ Taylor rule inflation N 1.500 0.250 2.194 1.804 2.580
ϕr Taylor rule lagged interest rate β 0.750 0.100 0.825 0.786 0.866
ϕx Taylor rule output gap N 0.125 0.050 0.064 0.019 0.107
ϕ∆x Taylor rule output gap growth rate N 0.125 0.050 0.154 0.115 0.193
π Steady state inflation Γ 0.625 0.100 0.773 0.683 0.856
100(1−β)

β
Discount rate (percent) Γ 0.250 0.100 0.248 0.099 0.390

ltv Loan to value ratio β 0.500 0.150 0.572 0.328 0.811
β̃ Entrepreneurs discount less h’hlds Γ 1.000 0.500 0.989 0.235 1.690
lss Log steady state hours N 0.000 2.000 0.313 -1.601 2.240
γ Steady state growth rate (percent) N 0.400 0.100 0.362 0.269 0.447
(Continued on next page.)
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Prior Posterior
Parameter & Description Mean StdDev Mean (5%, 95%)
ρa AR parameter technology β 0.500 0.200 0.959 0.932 0.986
ρc AR parameter risk premium β 0.500 0.200 0.632 0.380 0.870
ρg AR parameter exog. Dd. β 0.500 0.200 0.952 0.911 0.991
ρi AR parameter investment β 0.500 0.200 0.389 0.276 0.503
ρr AR parameter interest rate β 0.500 0.200 0.278 0.149 0.403
ρp AR parameter price markup β 0.500 0.200 0.900 0.820 0.979
ρw AR parameter wage markup β 0.500 0.200 0.861 0.760 0.985
ρep MA parameter price markup β 0.500 0.200 0.745 0.586 0.943
ρew MA parameter wage markup β 0.500 0.200 0.800 0.680 0.940
ρga Effect of tech shock on exog. Dd. N 0.500 0.200 0.285 0.165 0.400
σc Std dev. of risk premium shock Γ−1 0.100 2.000 0.355 0.205 0.513
σw Std dev. of wage markup shock Γ−1 0.100 2.000 0.323 0.267 0.378
σp Std dev. of price markup shock Γ−1 0.100 2.000 0.109 0.076 0.135
σr Std dev. of interest rate shock Γ−1 0.100 2.000 0.126 0.108 0.145
σa Std dev. of technology shock Γ−1 0.100 2.000 0.450 0.385 0.502
σi Std dev. of investment shock Γ−1 0.100 2.000 1.075 0.816 1.305
σg Std dev. of exog. demand shock Γ−1 0.100 2.000 0.272 0.239 0.307

Notes: The prior for a parameter is a Normal (N), Beta (β), Gamma (Γ), or inverse-

Gamma (Γ−1) distribution. Columns 4 and 5 indicate the mean and standard deviation of

the prior distribution, and the final three columns report the posterior mean and lower and

upper limits of 90 percent Bayesian confidence intervals from the posterior distribution.

The main conclusion regarding the drivers of the business cycle remains
unchanged. In the context of the model with borrowing constraints, the risk
premium shock remains the dominant driver of the volatility in the compo-
nents of GDP.
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Table 4.7: Variance decomposition of model with borrowing constraints:
1984Q1 - 2009Q1

Risk Wage Price Monetary Neutral IST Govt.
premium markup markup policy Technology

Output 0.40 0.09 0.07 0.20 0.06 0.07 0.11
growth [0.18, 0.61] [0.04, 0.13] [0.00, 0.13] [0.11, 0.28] [0.02, 0.11] [0.02, 0.13] [0.06, 0.15]
Consump. 0.48 0.08 0.06 0.25 0.04 0.09 0.00
growth [0.25, 0.70] [0.03, 0.13] [0.00, 0.12] [0.12, 0.36] [0.01, 0.06] [0.01, 0.16] [0.00, 0.00]
Invest. 0.24 0.04 0.04 0.12 0.01 0.55 0.00
growth [0.04, 0.43] [0.01, 0.07] [0.00, 0.08] [0.05, 0.18] [0.00, 0.02] [0.28, 0.78] [0.00, 0.00]
Real wage 0.01 0.85 0.11 0.01 0.02 0.01 0.00
growth [0.00, 0.03] [0.74, 0.94] [0.01, 0.18] [0.00, 0.02] [0.00, 0.03] [0.00, 0.02] [0.00, 0.00]
Total 0.18 0.30 0.19 0.13 0.07 0.05 0.08
hours [0.03, 0.36] [0.07, 0.52] [0.00, 0.36] [0.04, 0.23] [0.01, 0.14] [0.01, 0.09] [0.02, 0.13]
Inflation 0.05 0.37 0.43 0.05 0.08 0.02 0.01

[0.00, 0.12] [0.16, 0.54] [0.22, 0.65] [0.01, 0.09] [0.02, 0.13] [0.00, 0.03] [0.00, 0.02]
Interest 0.25 0.29 0.12 0.06 0.18 0.06 0.04
rate [0.04, 0.53] [0.12, 0.45] [0.01, 0.21] [0.02, 0.10] [0.06, 0.29] [0.00, 0.12] [0.00, 0.06]

Notes: Each column corresponds to the contribution of a particular structural shock to
the variance of observables. The values in square brackets are 90% Bayesian confidence
intervals.

4.7 Conclusion
At the heart of this chapter is an identification problem that affects the inter-
pretation of the key drivers of the business cycle. We demonstrate that the in-
troduction of financial frictions materially alters which shocks are thought to
be the most important drivers of the business cycle. When entrepreneurs are
subject to binding collateral constraints, a reduction in the value of installed
capital reduces the value of collateral and thus the amount an entrepreneur
can borrow. We find that the dynamic responses of output and consumption
to a positive investment shock are materially altered by such collateral con-
straints. While an investment shock prompts more investment and positive
output growth, the behaviour of consumption is completely altered, since
the impact effect is for consumption to fall. The investment shock causes
collateral values to decline, which reduces entrepreneurs’ ability to obtain
external finance. Thus, to increase investment entrepreneurs are forced to
reduce their consumption. Investment shocks can then no longer generate
the positive co-movement that is evident between consumption and invest-
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ment. Instead, in the model with collateral constraints, risk premium shocks
increase markedly in importance, whereas shocks to investment have a much
diminished role, contributing only 4 percent of the variation in output.
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4.A Linearized model

Table 4.A.1: Linearized model equations
GDP yt =

ca

y
cat +

i
y
it +

z
y
zt + εg,t

Marginal utility c λt = −σc 1
1−h

γ

(ct − h
γ
ct−1) +

σc−1
1−h

γ

(WLC)lt

Euler λt = Et (λt+1 + rt + εc,t − πt+1)
Marginal utility ce λet = −σe 1

1−he

γ

(cet − h
γ
cet−1)

Entrepreneur’s Euler λet = λet+1 + υ (rt + εc,t − πt+1) + (υ − 1)∆t

Borrowing constraint bt + rt + εc,t − πt+1 = qt+1 + kt
Entrep. flow constr. ce

y
cet +

i
y
it =

b
y
bt +

b
y
RR
γπ

(πt − bt−1 − rt−1 − εc,t−1)

+(rkt + kt−1)rk
k
y
1
γ

Consumption agg. ca

y
cat =

c
y
ct +

ce

y
cet

Investment it =
1

1+βeγ1−σe it−1 +
(
1− 1

1+βeγ1−σe

)
it+1

+ 1
1+βeγ1−σeγ2ϕ

qt + εµ,t
Tobin’s q qt = ((1− δ)βeγ−σe

+∆χ)qt+1

+(1− (1− δ)βeγ−σe −∆χ)rkt+1

+∆χ∆t + λet+1 − λet
Production fn. yt = ϕF

(
αkt + (1− α)lt + εa,t

)
Effective capital kt = kt−1 + zt
Capital utilization zt =

1−ξ
ξ
rkt

Capital accumulation kt =
1−δ
γ
kt−1 +

(
1− 1−δ

γ

)
it

+
(
1− 1−δ

γ

)
(1 + βeγ1−σe

γ2ϕ)εµ,t

Marginal cost mct = (α)rkt + (1− α)wt − εa,t
Wage mark up µw

t = wt − (σllt +
1

1−h
γ

(ct − h
γ
ct−1)

Cost minimization rkt = −(kt − lt) + wt

Price inflation πt =
δp

1+βγ1−σcδp
πt−1 +

βγ1−σc

1+βγ1−σcδp
πt+1

+
(

1−βγ1−σc
θp

1+βγ1−σcδp

)
1−θp

(θp((ϕp−1)ϵp+1))
mct + εp,t

Wage inflation wt =
1

1+βγ1−σcwt−1 +
(
1− 1

1+βγ1−σc

)
(wt+1 + πt+1)

−1+βγ1−σc
δw

1+βγ1−σc πt +
δw

1+βγ1−σc πt−1

−1−βγ1−σc
θw

1+βγ1−σc
1−θw

θw((ϕw−1)ϵw+1
µw
t + εw,t

Interest rate rule rt = ϕrrt−1 + (1− ϕr)(ϕππt + ϕx(yt − yflext ))

+ϕdx(yt − yt−1 − (yflext − yflext−1 )) + εr,t
Note that ∆ is the steady state value of the shadow price on the borrowing
constraint; υ = βγ−σc/(βEγ

−σcE); and ∆t is the multiplier on the borrowing
constraint.
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4.B.2 Data transformations

We transform the data as described in Justiniano et al.’s Investment shocks
and business cycles: technical appendix and additional results, with a minor
exception relating to nonfarm labour hours (discussed below). The mnemon-
ics from table 4.B.1 are used in the right hand side of table 4.B.2.

For per capita labour hours we use the LXNFH series instead of the
HNFBN series reported by Justiniano et al. because the latter series no
longer seems to be available in Haver. LXNFH is an index with a base year
in 2005. We normalize our series to replicate the properties of the series in
Justiniano et al..10 In their sample ln(HNFBN/(LF+LH)) appears to have
has been normalized to zero. The Federal Funds rate is divided by 4 because
the model represents quarterly data. No other demeaning or de-trending is
performed on the data.

10The choice of parameters is very slightly modified to those found from regressing the
data from Justiniano et al. on ln(LXNFH/(LF + LH)).
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4.B Data
4.B.1 Data sources

Table 4.B.1: Raw data

Mnemonic Description
GDP Gross Domestic Product (SAAR, Bil.$)
JGDP Gross Domestic Product: Chain Price Index (SA, 2005=100)
CN Personal Consump. Expend.: Nondurable Goods (SAAR, Bil.$)
CS Personal Consump. Expend.: Services (SAAR, Bil.$)
CD Personal Consump. Expend.: Durable Goods (SAAR, Bil.$)
I Gross Private Domestic Investment (SAAR, Bil.$)
LF Civilian Labor Force: 16 yr + (SA, Thous)
LH Not in the Labor Force: 16 yr + (SA, Thous)
LXNFC Nonfarm Business Sector: Compensation/Hour (SA, 2005=100)
LXNFH Nonfarm Business Sector: Hours of All Persons (SA, 2005=100)
FFED Federal Funds [effective] Rate (% p.a.)

Note: All data are sourced from Haver. The Haver mnemonics in the first
column should be suffixed with @USECON to call the series from the Haver
Excel add-in.

Table 4.B.2: Data transformations

Real GDP per capita = GDP/((LH + LF )× JGDP )
Real Consumption per capita = (CN + CS)/((LH + LF )× JGDP )
Investment per capita = (CD + I)/((LH + LF )× JGDP )
Real wages = ln(LXNFC/JGDP )
Inflation at time t = 100× ln(JGDPt/JGDPt−1)
Interest rate = FFED/4
Labour hours per capita = ln(LXNFH/(LF + LH))× 100

Notes: The observables for Real GDP per capita, real consumption per
capita, real investment per capita, and real wages are computed as 100 times
the log difference of each of the series described above, ie the log approxima-
tion of quarterly percent changes.



4.C. MCMC CONVERGENCE 187

4.C MCMC convergence
This appendix illustrates diagnostics to assess whether the Markov chains
have converged to the posterior distributions of interest. Two Markov chains
were iterated 900,000 times to estimate the posterior distribution of the vec-
tor of parameter. As noted by Brooks and Roberts (1998) and others, no
diagnostic can guarantee convergence. Nevertheless, these figures provide
some reassurance that the chains have indeed converged to their station-
ary distributions. The figures below illustrate the deciles for each chain,
computed recursively as the chains are iterated forward (following a 100,000
burn-in period to reduce bias from initial conditions). Convergence implies
that like-deciles from the two chain should asymptote to the same values,
which should remain constant as the sample is extended. The variability evi-
dent in some deciles for some parameters seems fairly modest and is unlikely
to be of economic significance.
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Figure 4.C.1: MCMC convergence – deciles (Panel A)
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Figure 4.C.2: MCMC convergence – deciles (Panel B)
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Figure 4.C.3: MCMC convergence – deciles (Panel C)
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