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Abstract 

 

In 2018 there was educational change in New Zealand with the introduction of new 

curriculum content for digital technologies. A key component of the digital technologies 

curriculum content was computational thinking where all students from Years 1 to 10 

were expected to learn core coding concepts. The reasons for introducing coding into 

schools reflected a range of ideologies including preparing children to contribute 

meaningfully to society in the digital age. This narrative inquiry aimed to explore the 

value of coding in the curriculum through the experiences of students in Years 7 and 8. 

The research questions to meet this aim were; Why do students think coding is taught in 

school? Do students use coding outside of school? Why do students want to learn how 

to code and how do students think coding might help them or be useful?  

Curriculum ideologies underpinned this study as a theoretical framework to evaluate 

student experiences of coding across two case studies. The narratives were derived from 

focus group interviews held at two different schools. Similarities across the case studies 

included students’ beliefs about the benefits of including coding in the curriculum. 

Students’ felt confident that learning coding allowed them to; understand the digital 

world, create digital products, prepare for the future, teach others and fix broken 

technology. They could not comprehend what their lives would be like without 

technology and therefore coding. Some students believed that “without code we would 

probably be like cave people”. 

The main difference between the case studies was the level of teacher direction. This 

reflected a contradiction between competing curriculum ideologies and addressed the 

broader debate in education of 21st century skills versus powerful knowledge. The 

contradictions highlighted how the pedagogical design of coding in the curriculum 

could be effectively structured.  

Traditional knowledge and teacher explanation were found to be important to students 

when learning more complex coding. However, globalisation is a key concept for 

education in a digital age. Therefore, opportunities can be created for students to build 

on knowledge and collaborate in new and challenging ways. Treating coding as a social 

practice by teaching students to connect with the wider community or to use 

programming for social good can engage them with experiences beyond their own. This 
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does not mean abandoning the elements of 21st century learning, such as students’ own 

experiences or active learning. Drawing on the strengths of both traditional knowledge 

and 21st century learning approaches can lead to more powerful knowledge creation. 
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CHAPTER 1  INTRODUCTION 

 

New curriculum content in New Zealand 

 

A curriculum is determined through students’ needs and wants, teachers’ knowledge 

and expertise and/or government policies due to societal issues (Brown, 2006). As a 

curriculum is an end of a series of decisions made by people it is subject to constant 

review and revision. In 2018 there was educational change in New Zealand with the 

introduction of new curriculum content to ensure that students across all year levels 

could access learning aimed at building their digital skills and fluency (Ministry of 

Education [MOE], 2017a). Schools had a transition period of two years and the new 

curriculum is to be fully implemented from the start of 2020. All young people from 

Years 1 to 10 are to take part in digital technologies education and senior students can 

choose digital pathways to develop more specialised skills (MOE, 2017a). It is hoped 

the new curriculum content will prepare children to contribute meaningfully to society 

in the digital age.  

The Ministry of Education invited submissions on the proposed digital technologies 

curriculum content over July and August 2017. A report summarising the consultation 

responses of individuals, businesses and organisations highlighted a concern. Many 

respondents felt that digital technology should not have its own learning area and should 

be integrated across the curriculum (Chen, 2017). It was felt that digital technology 

would become siloed and as the curriculum was already crowded, the new content 

would take away from other learning areas, particularly existing areas of technology. 

However, digital technology was included as a standalone area under technology in the 

New Zealand curriculum and it is anticipated that students will be encouraged to access 

knowledge and skills from other learning areas (MOE, 2017a).  

A key area of digital technologies in the curriculum is computational thinking where 

students are expected to gain an understanding of the computer science principles that 

underlie all digital technologies. This is defined as, “being able to express problems and 

formulate solutions in a way that means a computer can be used to solve them” (MOE, 

2017a, p11). It is envisaged that students will be able to take advantage of the 

capabilities of computers to become creators of digital products, not just the users 

(MOE, 2017a). Although the digital technologies curriculum content intended to be 
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relatively flexible for schools, a set of progress outcomes were identified. For 

computational thinking by the end of Year 10 students should be able to “independently 

decompose a computational problem into an algorithm that they use to create a 

program” (Te Kete Ipurangi [TKI], 2017, p.3). Coding and programming are used 

interchangeably in this study and encompass not necessarily writing code but 

understanding the processes involved in coding such as algorithms and the steps needed 

to get to a solution. Digital technology, computer science and computational thinking 

are referred to throughout this paper and when discussed they are linked or related to 

coding in the curriculum. Digital technology, computer science and computational 

thinking are not just about teaching coding. However, there is an element that should 

expose students to programming, because that is part of their world (TKI, 2017).  

Views and beliefs about what should be taught and why have changed over time due to 

changes in society. Coding was taught in New Zealand in the 1970’s as part of 

mathematics but disappeared within a decade as it lacked relevance to students lives 

(Bell, Andreae, & Robins, 2014). There is also a tendency for curricula to maintain 

some stability with continued links to tradition regardless of any changes incorporated 

in curricular reform (McGuiness Institute, 2016). In the past, education reforms in New 

Zealand have “struggled to achieve a balance between meeting both the needs of the 

individual and the growing demands of a changing economy, largely owing to rapid 

changes in technology and society” (McGuiness Institute, 2016, p.10). Can introducing 

coding into the curriculum achieve this balance? For example, will it provide 

opportunities for students which serve their interests but also support a more 

competitive economy? 

 

The rationale for the research 

 

Studies about what to include in a curriculum should not only focus on the subject itself 

but research should examine conceptions of curriculum (Brown, 2006). Conceptions of 

curriculum are shaped or derived from social ideologies, reinforced by views and beliefs 

about what should be taught and why (Adamson & Morris, 2014). Curriculum change in 

New Zealand has highlighted the importance for teachers to understand the nature of the 

curriculum (Brown, 2006).  Interpreting curriculum through its manifestations of 

ideology and the planned, enacted or experienced curriculum will assist in evaluating 
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the implementation of curriculum change. In pluralistic societies, the curriculum is 

influenced by a combination of conceptions and ideologies which may contradict one 

another. The reasons presented for the introduction of coding also exhibit contention. 

For example, there is the entrepreneurial idea of coding, where students will become the 

producers of technology (MOE, 2017a). Another view is that students can develop a 

range of learning competencies such as thinking and collaborative skills through coding 

tasks (Falloon, Hale & Fenemor, 2016). However, in principle coding is not required to 

develop these skills (Sterling, 2016). Furthermore, the government and market analytics 

firms believe that learning code is important for career opportunities and employability. 

Nikki Kaye, the Minister of Education at the time of curriculum change stated that the 

future workforce will benefit from knowledge and skills relating to software 

development, digital media content and technology design (MOE, 2017a). Burning 

Glass Technologies (2016) analysed jobs from over 26 million online job postings in the 

United States of America [US] and reported the importance of learning to code as a skill 

in the labour market. The report identified 7 million job openings in 2015 which valued 

coding, and these were not just programming jobs. Therefore, including coding in the 

curriculum appears to be multi-factorial.  

If young children are having to learn to code, their opinions on the value and usefulness 

of coding in the curriculum should be considered. During the consultation phase of the 

new curriculum only 1% of respondents were students (Chen, 2017). Students’ 

thoughts, experiences and ideas are also important when the government makes 

decisions (Ministry of Youth Affairs, 2009). In the context of this study, the student 

voice allowed a comparison of curriculum intentions against how young people live 

today. Investigating students’ experiences of coding and how these aligned with the 

ideological intentions of digital technologies in the curriculum may in turn influence the 

way individual educators think about coding in the curriculum. Interpreting the 

manifestations of ideology through students’ experiences of coding will examine the 

variety of beliefs for including coding in the curriculum and identify any contradictions 

of importance to this study.  
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Locating myself within the research 

 

I trained in Business Education in 2003 after completing a BA(Hons) in Business 

Administration. As I was teaching Year 10 to 13 commerce, I felt it was important to 

keep myself informed of technological advancements and how these changed the way 

people conducted their business. I was also keen to apply technological changes to my 

teaching in the classroom. During my experience as a classroom teacher, I witnessed 

more creative and less passive use of the internet. I investigated tools such as Skype in 

the classroom, how to implement ‘Bring Your Own Device’ successfully and using 

online learning such as OneNote. I was intrigued that the school I previously taught at 

had introduced coding into their primary school and students had started using 3D 

printers and robotics. I tried to understand the importance of digital technology in 

education. Including how it could be effectively used to provide knowledge and skills 

for the future, but I often reverted to traditional teaching of concepts, using technology 

as a tool to apply knowledge.  

I am in awe of innovative and creative people and I read success stories of young 

children using coding for personal and social good. One that resonated with me was of 

Maru Nihoniho who was the first Māori female game developer in the world. She used 

her own resources to develop a game for which PlayStation offered a contract for in 

2007. She also collaborated with the University of Auckland to create a game to help 

young people navigate depression which won awards from the United Nations (Kea, 

2017). Nihoniho has been working on social projects to bring attention to mental health 

and to teach coding to New Zealand youth. She isn’t alone in using digital technology 

or coding for social good. Students across the globe are starting to set up social 

enterprises that use coding technology to solve social issues and more organisations are 

providing funding for these projects (Bouwkamp, 2015; Kan & Ongchoco, 2017).  

My daughters are growing up in a digital age and I want to understand ways young 

people are thinking about and using digital technology such as coding. Is it to design or 

create games or apps people can use? Is it for social good? Do school children want to 

learn code and if so, why? Do they know the possibilities coding could bring? I am 

particularly interested in students’ own experiences of coding and the importance of this 

research to inform practice. Examining what students believe they are learning as they 

code and why they think it’s useful or important, assisted in this. 
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Chapter 1 summary 

 

The new digital technologies curriculum content in New Zealand came into effect in 

January 2018. It requires all students from Years 1 to 10 to start learning coding 

concepts by 2020. As students’ must learn how to code, I wanted to understand how 

they use coding in their daily lives and if students think coding would be useful in the 

future. Interpreting how students’ experiences compared with the intentions of the new 

curriculum and examining these through the various conceptions or ideologies aimed to 

determine the overall value of learning coding in schools.  

The order of information in this thesis is; literature review, methodology, findings, 

discussion, and conclusion. The next chapter is in two parts; the first reviews existing 

literature related to curriculum theory and introduces a theoretical framework. The 

second focuses on coding in schools and explores reasons to include coding in the 

curriculum. Therefore, Chapter 2 identifies the current situation, gaps in the research 

thus far, and why further research on this topic is required. Chapter 3 describes the 

methodology and methods, including the research design. Chapters 4 and 5 present the 

findings from two case studies which include student narratives and a cross-case 

analysis. Chapters 6 and 7 include the discussion and conclusions. 
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CHAPTER 2  LITERATURE REVIEW 

 

Introduction 

 

This chapter reviews literature relating to curriculum theory and coding in schools. In 

the first part of this chapter I explain curriculum perspectives and how these reflect 

different emphases of what constitutes a curriculum. Curriculum ideologies underpin 

this study as a theoretical framework to evaluate the introduction of coding in the 

curriculum. Using previous examples from New Zealand I identify how curriculum 

ideologies can be distinguished from students’ experiences of coding. In addition, I 

interpret the ideological intentions of digital technologies in the curriculum so that these 

can be compared against the findings of this study.  

In the second part of this chapter, I consider the literature that investigated coding in 

schools using examples from New Zealand and globally. This provides context for the 

discussion of why coding is being considered as a compulsory part of the New Zealand 

curriculum. The main reasons presented are the development of competencies, or 

knowledge and skills considered useful in society and for work. There is research which 

noted the difficulty found in learning how to code (Webb et al., 2017a; Xia, 2017). This 

was mostly seen amongst undergraduate and high school students in their first year of a 

coding (Mow, 2008). To this extent, studies have examined ways that coding can be 

taught to increase enjoyment, self-efficacy, positive attitudes, and achievement in 

coding (Bishop-Clark, Courte, Evans, & Howard, 2007; Pellas & Peroutseas, 2017; 

Theodoraki & Xingalos, 2014). As this area had already been extensively researched it 

was not the focus of this thesis. However, the pedagogical design is important in 

influencing certain competencies and due to its significance, it is included within the 

literature review.  
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PART 1: CURRICULUM THEORY 

 

In this section I explain curriculum perspectives to provide an insight into the changing 

nature of curriculum. These perspectives reflect different conceptions which are shaped 

by curriculum ideologies. I examine the ideologies to provide a framework by which to 

evaluate curriculum change; the introduction of coding into schools. 

 

Curriculum perspectives 

 

Curriculum is influenced by beliefs and traditions therefore change tends to be 

evolutionary rather than revolutionary (Marsh & Willis, 1995; McGuiness Institute, 

2016). Constructivist theorists believe that to educate people a curriculum should be 

centred on individual and personal development where students’ construct knowledge 

through their own experiences (Brooks, 1986; Dewey, 1916; Von Glaserfeld, 1995). 

Curriculum change in the digital age requires further innovation because of technology 

and globalisation. It means education can be more suited to individual tastes, interests 

and abilities. This is because students are able to collaborate with others and access 

courses and knowledge they may not be able to do so in traditional school settings (L. 

Starkey, personal communication, August 7, 2017). This takes learning beyond the 

students’ own experiences.  

Economists suggested that education in the 21st century, should focus on economic 

knowledge known as the knowledge society rather than academic knowledge (Drucker, 

1989; Sharma, 2004). Academic knowledge encompasses understanding and 

explanation and protects the elite minority, but knowledge-based societies are groups of 

individuals that see knowledge as the primary source of all economic growth (Gilbert, 

2005). Economic knowledge uses knowledge to produce something new. In the 

industrial age this was defined as the production of tangible assets, as most jobs were in 

the manufacturing industries. More recently, jobs are increasingly in the creative, 

technological and service based industries and it is this knowledge that is required for 

economic growth (World Economic Forum [WOE], 2016a). Politicians emphasised this 

utilitarian purpose of education as technology is a part of nearly every industry and 

most careers (Curran, 2018). Although New Zealand’s technology sector is currently the 

third largest contributor to the economy, the government want to increase its stake to the 
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second largest contributor to GDP by 2025. One way to achieve this is by identifying 

opportunities within the game development sector. This is because gaming is the fastest 

growing example of creative technologies in New Zealand (Curran, 2018). Gaming and 

other interactive media can have a range of uses across a variety of sectors from 

economic development to job creation. The new curriculum content exposes students to 

digital technology, including game design (MOE, 2017a). When the goal of education is 

to support innovation, economic wealth and productivity a curriculum should focus on 

the knowledge and skills required to achieve this (Hakala, Uusikylä & Järvinen, 2015).  

The skills required to thrive in society and the workforce today are referred to as 21st 

century skills. The pedagogical focus of a 21st century learning approach is on generic 

competencies (McPhail & Rata, 2016). The 2007 New Zealand curriculum showed full 

commitment to the 21st century skills inter-disciplinary curriculum design (McPhail & 

Rata, 2016). This was in the Ministry of Education’s strategic plan and in the 

development of key competencies in the New Zealand Curriculum (MOE, 2014). The 

key competencies included ‘managing self’ and ‘relating to others’. They correspond to 

the way students should do learning. Soon after implementation there was a shift from 

the content of learning areas being interpreted as a learning end to, “a means for 

teaching how to learn and for fostering lifelong learning” (McDowall & Hipkins, 2018, 

p8). The skills are not only to prepare students for employment but beyond that are 

skills for social life. Despite this, most people in government and education do not fully 

understand how the nature of knowledge is changing (Gilbert, 2005).  

“To be able to interpret the curriculum in a way that values knowledge society rather 

than industrial age ways of thinking about education requires major changes” (Bull, 

2009, p1) not only in what is known but how it is known. 

There was a common misunderstanding when the key competencies were first 

implemented. Schools thought that these skills should replace the learning of 

fundamental pre-determined or prescribed knowledge. This led to a “watering down” of 

the enacted curriculum (McDowall & Hipkins, 2018, p8). There was also a 

misconception that a learner-centred curriculum meant that key learning decisions were 

left to students (Bolstad, Gilbert, McDowall, Bull, Boyd, & Hipkins, 2012; McDowall 

& Hipkins, 2018). The 2007 curriculum intended that teachers would find meaningful 

ways to integrate the key competencies into learning areas so that knowledge was not 
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just about doing or knowing but about doing, knowing and being (Bolstad et al., 2012; 

McDowall & Hipkins, 2018). An example of this is students using academic or 

disciplinary knowledge in new contexts, combinations or innovative ways. This can be 

achieved by creating connections or collaborating online with the wider community, but 

by also drawing on the strengths of both teacher and individual to support and 

personalise learning (Bolstad et al., 2012; McDowall & Hipkins, 2018). 

These curriculum perspectives reflect various conceptions of curriculum or emphases of 

what constitutes a curriculum. They focus on the goals and content of education. Three 

conceptions of curriculum are evident, these are; 1. developing students’ personally and 

individually, 2. developing skills useful in society and 3. developing subject knowledge 

in new contexts. A fourth conception exists but is not as apparent in the curriculum 

perspectives; that a curriculum should focus on improving society. 

“Making decisions about curriculum, is understood better as an exercise in exploring 

and understanding alternative possibilities, rather than in reaching consensus by 

excluding alternatives” (Marsh & Willis, 1995, p4). Examining all four conceptions of 

the curriculum in the context of coding ensures that all perspectives are taken into 

consideration. Conceptions are derived from ideologies which have distinct 

components. Therefore, these components can be analysed through students’ 

experiences of curriculum (Adamson & Morris, 2014). This research examines the 

ideologies of what should be taught and why and interprets how students’ experiences 

of coding may reflect each of the ideologies. Recognising curriculum ideologies in this 

context aims to assist in understanding the reasons for the curriculum decision to 

introduce computer programming as a compulsory subject into schools. 
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Theoretical framework 

 

Five curriculum ideologies were derived from the conceptions; academic rationalism, 

social and economic efficiency, social reconstructionism, progressivism and cognitive 

pluralism (Adamson & Morris, 2014). Similar ideologies have been identified across 

literature related to curriculum theory. 

Academic rationalism 

 

Academic rationalism underpins the importance for students to gain knowledge of 

academic disciplines and therefore a curriculum should be designed to transmit what is 

already known about these subjects to students (Adamson & Morris, 2014; Eisner & 

Vallance, 1974). It can thereby enhance students’ intellectual capabilities and teach 

students how to learn the concepts associated with the discipline. For example, in the 

New Zealand Curriculum the learning areas; English, the arts, health and physical 

education, learning languages, mathematics and statistics, science, social sciences and 

technology should deliver time-tested knowledge and content based on these 

disciplines. In the context of coding in digital technologies, if students emphasise the 

difference of coding in the curriculum rather than cross-curricular connections we can 

say that coding sits within the academic discipline of computer science or digital 

technology. In the past this view of the curriculum was inherited from the 19th century 

and assumed that knowledge was a given and beyond debate. However, most 

curriculum theorists today reject this fixed view of knowledge and accept that a modern 

academic curriculum can be contestable and subject to change (Erekson, 1992; Young, 

Lambert, Roberts C., & Roberts, M, 2014). Technology is a prime example of a 

discipline that has changed and evolved over time.  Therefore, “academic rationalism 

includes the perspective that knowledge can be created and the systems for disciplined 

inquiry are an integral part of the theoretical rationale” (Erekson, 1992, p8). 

 

  



11 
 

Social and economic efficiency ideology 

 

Social and economic efficiency ideology, like academic rationalism, is focussed on 

knowledge and skills; however, it is concerned with these in terms of importance to 

future employment (Adamson & Morris, 2014; Schiro, 2008). Therefore, emphasis is 

placed on students applying relevant knowledge and skills. Under this ideology a 

curriculum is designed to prepare responsible citizens who have what it takes to 

contribute to the growth of the economy. This was based on the practical abilities of 

students which were taught through schooling. According to social and economic 

efficiency, teaching is a “moulding exercise” (Adamson & Morris, 2014, p268). 

Therefore, teachers enforce what students are supposed to learn, why they are learning it 

and how they are supposed to learn it. This ideology was noticeable in the very early 

20th century. During this time, the New Zealand primary school curriculum consisted of 

a formal syllabus covering morals, forming good habits and manners, patriotism and 

health, which were taught alongside academic subjects (McGuiness Institute, 2016). 

Later this ideology was evident in vocational training. In the 21st century, social and 

economic efficiency ideology means a curriculum could prepare students to use and 

create with digital technology, as this is what is essential for economic growth. 

Therefore, if students believe coding provides the knowledge and skills required by 

society, and learn to apply these skills, we can say the digital technology curriculum is 

underpinned by social and economic efficiency ideology. 

 

Social reconstructionism 

 

Social reconstructionism positions curriculum as an agent for social reform and change. 

With this view of the curriculum teachers would make students aware of social issues 

and use these as the focus. Social reconstructionism is also known as critical theory. 

Paulo Friere was one of the most fervent educational theorists of the critical theory 

approach to education (Darder, 2015). Friere said that education should embrace 

students as, “political and communal beings” who can not only achieve academically 

but “with innate potential to transform the concrete conditions that erode their well-

being” (Darder, 2015, p63). A curriculum influenced by social reconstructionism 

ideology would encourage students to work together and actively go out into the 

community, investigating a problem and identifying solutions. In the mid-20th century, 
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the recognition of Māori who were socially and economically disadvantaged to other 

New Zealanders spread ideas of social reform. Therefore, a more socially relevant 

curriculum was developed (McGuiness Institute, 2016). However, changes in schools 

focused on inclusive education rather than what should be taught.  Technology 

educators have used activities based on social reconstructionism enabling students to 

participate in society essentially by improving it (Zuga, 1992). For this study, students 

would be aware of social issues and use coding for social good. Teachers may 

incorporate cause-related learning and projects into coding activities, for example, 

developing an app that solves a social issue. We could also see students going out into 

the community or teachers bringing the community into the school to demonstrate how 

coding can be used to resolve social issues.  

 

Progressivism 

 

As a more socially relevant curriculum in New Zealand evolved, advocates were 

concurrently in support of constructivist beliefs of learner-centred pedagogy to 

effectively meet individual needs. Learner-centred ideology positions education as 

contributing to the development of every individual so that they might contribute to the 

development of society. Learner-centred ideology is also known as progressivism 

(Adamson & Morris, 2014). A progressive curriculum does not focus on the needs of 

society. Instead the curriculum is focused on the needs, abilities and interests of 

individuals. Educators believe that individuals are actively involved in their own 

learning and teachers are facilitators of this learning. However, it is worth noting that 

the constructivist theory pre-dates the digital era and therefore it may lack relevance to 

the digital age (Starkey, 2010). This is because even though learning is active, it is 

based on students’ individual experiences, not the value of what is being learned. In 

addition, individuals cannot experience everything so other people’s experiences would 

create knowledge (Siemens, 2005). If students see coding as an opportunity to enhance 

their personal and intellectual development then it could be considered learner-centred.  
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Cognitive pluralism 

 

The fifth and final ideology used in this study is cognitive pluralism. Like 

progressivism, this ideology believes students to be active in their own learning. 

However, a curriculum based on this ideology aims to provide a wide range of 

competencies and attitudes focused on the process of learning. The curriculum should 

therefore cater to multiple forms of intelligence like those identified by Gardner (1983). 

These include; linguistic, logical-mathematical, spatial, kinaesthetic, musical, 

interpersonal, intrapersonal and naturalist intelligences. The New Zealand Curriculum 

2007 identified five key competencies; thinking, relating to others, using language, 

symbols, and texts, managing self, and participating and contributing. Providing a 

curriculum based on competencies is believed to be because of rapid change and 

innovation in society – students need to be able to learn in many ways to cope with 

environments that are forever changing. “The key competencies take account of these 

changes – they put today’s students at the centre and bring a future-focused perspective 

to teaching and learning” (MOE, 2017b, para. 3). Therefore, if students view learning 

coding as developing a range of competencies then they would experience a cognitive 

pluralism perspective of coding in the curriculum. 

Previous literature identifies the contradictions between academic knowledge and 

learner-centred ideology (Adamson & Morris, 2014; Eisner & Vallance 1974; Schiro, 

2008). Studies note the pluralist tolerance of multiple perspectives which may be 

incompatible and suggest that a curriculum should be organised using the conceptions. 

This would help educators to understand the conflicting areas and those that are 

important when deciding on what students should learn at school (Brown, 2006).  

Organising students’ experiences of coding in the curriculum with curriculum 

conceptions and ideologies will help to identify conflicting areas and areas of 

importance to form a basis for discussion.  
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The New Zealand curriculum 

 

The New Zealand Curriculum Framework which was published in 1993 and the revised 

New Zealand Curriculum published in 2007, contain many elements of the previously 

outlined conceptions and ideologies (Brown, 2006). The learning areas such as 

technology and English are compulsory and provide academic subject knowledge. 

Principles, values and key competencies express conceptions that provide knowledge 

and skills useful to society such as, sustainability, and skills for personal development, 

like confidence. Throughout the curriculum there are elements of social justice 

including equality in education. The 2007 curriculum therefore supports multiple 

conceptions, and although this can lead to improved instruction, it can also be difficult 

for those involved in education to agree on the nature and purpose of the school 

curriculum. This can cause conflict as there is “not one systematic approach to deciding 

what should be taught” (Brown, 2006, p3). Interpreting the ideological intentions of 

digital technologies in the curriculum for computational thinking identifies why coding 

is included in the prescribed curriculum (interpreted policy perspective). 

Ideological intentions of digital technologies in the curriculum: Prescribed 

curriculum 

 

The summary report of the consultation responses written for the Ministry of Education 

stated that, “the digital technologies curriculum content intended to strengthen the 

digital competencies of learners, so they can participate, create and thrive in this fast-

moving digital world. It is about supporting learners to develop the confidence and skill 

to not only use digital technologies, but to design and build digital systems.” (Chen, 

2017, p10). The consultation document also stated that the intention of the new content 

was “for students to be able to understand and create digital technologies to succeed in 

further education and the world of work. By the end of Year 10, all learners should be 

digitally capable – able to use and create digital technologies to solve problems and 

take advantage of opportunities. They will be equipped to apply their understanding of 

digital technologies to all aspects of their lives and careers, whatever path they follow” 

(MOE, 2017a, p.5). These documents were the basis for interpreting the intentions of 

computational thinking for digital technologies for Years 7 and 8, and therefore coding 

in the curriculum.  
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I interpreted these into three generic conceptualisations;  

1. Understanding and creating digital technology through core programming concepts 

2. Knowledge and skills required to be digital citizens and digitally capable now and, 

in the future 

3. Equipping students to participate in society 

The learning progressions in digital technologies represent “the skills, knowledge and 

attitudes of a digitally capable learner at the end of Year 10” (MOE, 2017a, p18). One 

of the learning progressions for computational thinking includes coding concepts such 

as debugging, algorithms, sequences and loops. It is intended that students understand 

these and use them to create a computer program for example, creating an animated 

character that moves to music. Being able to understand and create digital technology 

would therefore provide the knowledge and skills for students to become digital citizens 

and digitally capable. The purpose of schooling is to educate students to be active 

participants in the society in which they live (Dewey, 1916). The knowledge and skills 

learnt through coding are intended to equip students to participate in society. This is by 

applying what has been learnt in coding to their daily lives and future careers.  

These interpretations distinctly relate the conception of social utility where the digital 

technologies curriculum content is “oriented towards the subjects that are considered 

most useful for life in contemporary society” (Adamson & Morris, 2014, p265), for 

example, coding. Social utility is derived from social and economic efficiency ideology 

where the curriculum is designed to prepare students to contribute to the well-being and 

growth of the economy. The intentions of the prescribed curriculum are compared 

against the enacted and experienced curriculum throughout the discussion chapter to 

evaluate the introduction of coding in the curriculum. 
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PART 2: CODING IN SCHOOLS 

 

In the previous section I focused on literature relating to curriculum theory and the 

curriculum perspectives underpinning the introduction of coding. In this section I focus 

on research that investigated coding in schools to provide context to the introduction of 

coding and identify existing reasons for including coding in the curriculum. 

Coding entered schools in the 1970’s. From 1974 to 1985, programming was taught in 

New Zealand schools through mathematics (Bell, Andreae, & Robins, 2014). Research 

conducted by seminal authors in the 1980’s suggested that coding allowed students to 

become independent learners and develop skills such as problem-solving (Mayer, 1988; 

Papert, 1980). The teaching of coding became less prominent within a decade as it 

lacked relevance to classroom work and students’ lives, therefore computer skills such 

as word processing took over. Coding re-entered curricula globally from 2010 initially 

as part of computer science, an optional subject at senior level. Computer science is 

defined as “the study of computers and algorithmic processes, including their principles, 

their hardware and software designs, their implementation, and their impact on society” 

(Tucker, 2003, p. 6). There are parts of computer science that involve coding. Coding 

has been defined as computing language such as syntax or how to write a set of 

instructions. However, developments in learning to program software such as the visual 

programming language, Scratch (https://scratch.mit.edu) can take the “chore” out of 

coding (Wilson & Moffat, 2010). This means that students no longer need to type in the 

coding instructions and instead can focus on the problem-solving (Buie & Seith, 2012) 

and creating new knowledge (Webb et al., 2017a). 

England was one of the first countries to make computer programming compulsory in 

both primary and secondary public schools (Balanskat & Englehart, 2015). In 2014, 

sixteen EU countries were found to have coding in their curricula at varying levels of 

integration. Denmark made basic coding a compulsory part of the physics, chemistry 

and maths curricula. In contrast, Slovakia integrated compulsory programming at all 

levels of school (Balanskat & Englehart, 2015). US-led initiatives such as Code.org and 

the “Hour of Code” spread worldwide and coding clubs popped up as extra-curricular or 

holiday programmes (Tuomi, Multisilta, Saarikoski, & Suominen, 2018).  

The US states and school districts felt that computer science had driven innovation in 

every field, but the notion of computer science was quite new (Nelson, Sahami, & 

https://scratch.mit.edu/
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Wilson, 2016). In response to parent demand, along with the computer science 

community, a complete school grade framework was developed to provide guidance for 

those looking to implement computer science into their curriculum (Alano et al., 2017; 

Nelson et al., 2016). In 2017, New Zealand planned to make digital technology a 

mandatory part of the school curriculum for Years 1 to 10. Digital technology, which 

included programming, was recognised as a part of the technology learning area from 

the beginning of 2018. 

 

Reasons for including coding in the curriculum 

 

In the early 21st century, perhaps due to the contemporary and politicised view of 

coding, research has been conducted on students learning coding and on integrating 

computer science and coding into school curricula. Research conducted between 2010 

and 2016 provided three key reasons for introducing computer science into a curriculum 

(Webb et al., 2017a). These were; 1. Economic; to produce a workforce that can keep 

up with technological change and support innovation. 2. Social; to encourage less 

passive and more creative use of technology. 3. Cultural; to enable “cultural change 

rather than having change imposed by technological developments” (Webb et al., 2015, 

p61). These all signal towards knowledge and skills required for the human capital 

needs of a society and therefore social and economic efficiency views of education. 

Knowledge of coding is the only way to fully understand the digital world in which we 

live (Bell & Roberts, 2016; Burke, O'Byrne, & Kafai, 2016; Kafai, 2016). This is 

because it takes us beyond what is happening on the screen and allows us to look at 

what is happening behind it. However, much of this discussion appears to be based on 

reflections rather than empirical evidence (Sterling, 2016). Student voice in curriculum 

change is important (Ministry of Youth Affairs, 2009). There is little evidence of 

students’ in-depth views of coding in the curriculum in the academic papers found, but a 

typical manifestation of the experienced curriculum are student’s cognitive processes 

(Adamson & Morris, 2014). A range of cognitive skills or outcomes are identified from 

learning to code. 
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Outcomes of learning to code 

 

Researchers found 21st century skills such as computational thinking, creativity, critical 

thinking and problem-solving to be outcomes from learning coding (Bell & Roberts, 

2017; Hagge, 2017; Moreno-Leon, Robles, & Román-González, 2015; Tuomi et al. 

2007; Webb et al., 2017a). Further learning outcomes included; interdisciplinary 

curricular concepts other than 21st century skills (Falloon et al., 2016; Hagge, 2017; 

Lambic, 2010; Saez-Lopez, 2015) and coding concepts (Bell et al., 2014; Lambic, 2010; 

Lye & Koh, 2014; Theodoraki & Xinogalos, 2014). All three can be encouraged 

through the enacted curriculum and therefore pedagogical design (Popat & Starkey, 

2017, submitted to Computers & Education, under peer review).  

 

21st century skills 

 

21st century skills are generic competencies such as critical thinking, collaboration and 

creativity and are how things are done. The skills tend to be subjective and have an 

interdisciplinary curriculum focus where they can be used across several learning areas. 

A 21st century learning approach is compatible with constructivist pedagogy (McPhail 

& Rata, 2016); it is learner-centred and relevant to the students’ experiences. For 

example, students take an active role in working with others. Coding is a means for 

practising and developing 21st century skills. I identified two significant 21st century 

skills from the previous studies on the outcomes of learning coding. These were; social 

skills and higher order thinking skills [HOTS]. I thought these would support the 

findings of my thesis. 
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Social skills 

 

The social skills identified in literature included communication and collaboration, 

within and beyond the classroom environment. Communication and collaboration are 

strands in the Australian and Polish computer science curriculum (Webb et al., 2017b) 

and a core concept of the K-12 computer science framework in the US (Alano et al., 

2017). However, it is unclear how these skills were developed through computer 

science or coding. Communication and collaboration can be encouraged through 

pedagogical design. For example, students working in small groups to complete coding 

tasks. They develop collaborative skills through peer feedback which is enabled by 

teachers who model the phrasing of questions to ask peers. (Falloon et al., 2016). 

Sometimes communication and collaboration can be organic skills that students 

demonstrate when learning to code (Fessakis et al., 2013; Kalelioğlu, 2015). An 

example of this type of communication and collaboration is students’ sharing their code 

with others who need help. 

There is yet to be a consensus on the importance of collaborative learning in computer 

science or programming (Webb et al., 2017a) but pedagogy should reflect the use of 

technology that transforms learning. To transform learning, pedagogy should move 

away from what has already been discovered and prescribed as knowledge and focus on 

knowledge creation and learning through connections. Starkey (2011) developed a 

creativity model for the digital age which depicted how learning should be modified to 

include access to information and connections beyond the immediate environment. The 

model showed that if ideas are shared with people online through social networking this 

can allow feedback in the development of an idea thereby creating an original product 

that provides a new reality. 

In coding, students should be provided with the opportunities to share their work. 

Deeper levels of learning occur when ideas are shared and compared with other learners 

and when communication is two-way.  New knowledge is created through this 

interaction and when feedback is considered and analysed (Starkey, 2011). Visual 

programming websites such as Scratch have a creative online learning community 

where students can share their projects. Students can make digital products based on 

their own interests and talent such as digital stories, maths bulletin boards and music 

videos and share these with the online programming community (Fields, Vasudevan, & 
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Kafai, 2010; Hagge, 2017). Learning is personalised and allows students to create, leave 

comments on each other’s work, and to seek and provide help to improve their work. 

The external audience plays a key role in encouraging groups to deepen their media 

designs. School leavers in the digital age should be confident in their ability to make 

connections, create and share knowledge (Starkey, 2012). This view supports a 

connectivist perspective rather than constructivist, where knowledge is debatable and 

develops through connections beyond our own experiences (Siemens, 2005). 

 

Higher order thinking skills [HOTS] 

 

The creation and sharing of knowledge also demonstrate HOTS. These require high 

levels of cognitive processing such as creative and critical thinking (Anderson & 

Krathwohl, 2001).  

Computational and critical thinking both involve problem-solving and use higher level 

cognitive thinking skills such as analysis, synthesis, evaluation and inference (Kules, 

2016). There is a long research history exploring the benefits of learning programming 

to develop problem-solving skills (Webb et al., 2017a). Problem-solving is recognised 

as a crucial part of mathematics and in this context the solutions are completely 

analysable. Students demonstrate enhanced mathematical problem-solving through 

computer programming (Bernardo & Morris, 1994; Kalelioğlu, 2015; Palumbo & Reed, 

1991; Psycharis & Kallia, 2017). This is because schools use coding tasks that offer 

these foundational skills, for example primary school students solving a series of 

problems such as navigating an object through a maze in as few commands as possible 

(Falloon, 2016; Fessakis et al., 2013; Kaleioglu, 2015. These basic skills allow students 

to apply concepts of orientation, angle rotation, counting and measuring to analyse and 

solve a problem. 

People naturally engage in computational thinking and problem-solving processes in 

their daily lives when exploring and interacting with the world around them. 

Computational thinking refers to the thought processes involved in formulating 

problems and their solutions (Cuny, Snyder & Wing, 2010). As such, a computer is not 

needed to demonstrate computational thinking. However, it can be difficult to assess 

this in authentic contexts (Alano et al., 2017; Schoenfeld, 2013; Webb et al., 2017a). 

Therefore, computational thinking is best developed through computer science and 
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programming because students can apply the concepts in a tangible way and can check 

their thinking (Webb et al., 2017a). Programming is no longer exclusively about 

learning how to write code, but more about understanding the fundamentals of why 

instructions need to be written in a certain way (Bell & Roberts, 2016). A computer will 

follow a set of instructions exactly, if the instructions are correct this demonstrates 

sound computational thinking (Bell & Roberts, 2016; Papert, 1980). If students have a 

solid understanding of applying computational thinking through programming one 

could assume that they would be able to use these skills across a variety of examples 

and subjects (Webb et al., 2017a). Transferring certain problem-solving skills to non-

programming domains has only been found when the skills are similar (Bernardo & 

Morris, 1984; Mayer, 1988). The length of time spent on programming may also 

influence this (Mayer, 1988) 

The curriculum intends that students demonstrate increasingly critical, reflective and 

creative thinking as they evaluate and critique technological outcomes (MOE, 2007a). 

This is encouraged through the design of coding activities. For example, students’ 

receiving or giving critique through the online programming community, allows them to 

use this information to evaluate and make changes to their work (Fields et al., 2010; 

Hagge, 2017). Another example, is encouraging students to reflect on and evaluate work 

by finding more efficient solutions than students who had completed the task before 

them (Fessakis et al., 2013). Similarly, instructing students to test, evaluate and modify 

code (Falloon, 2016). Teachers are key in uncovering students reasoning and thought 

processes (Alano et al., 2017) therefore in developing HOTS.  

Interdisciplinary curriculum concepts 

 

Visual programming websites such as Scratch can combine two or more academic 

disciplines, for example, mathematics and coding. Knowledge of mathematics is 

essential in computer programming (Lambic, 2010) and therefore coding can be used to 

teach concepts such as angles and distance (Falloon et al., 2016; Fessakis, Gouli, & 

Mavroudi, 2013; Kaleioglu, 2015). Certain programming activities combine science, 

technology and principles of art and design (Hagge, 2017). Therefore, coding can be 

used in subjects such as English, science and art history (Lye & Koh, 2014; Saez-Lopez, 

2015). In these instances, increased coding ability along with understanding of 
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academic knowledge of the subjects learnt through coding is possible. Students can also 

develop a more positive disposition towards these subjects (Ke, 2014). 

Learning coding concepts 

 

Knowledge and understanding of coding concepts is a key educational outcome of 

teaching programming. There are two reasons why the technical skill of coding is 

important;  

To create tangible computer applications;  

 

Students’ can use their knowledge and skills in programming to create something 

tangible such as games (Haden, 2006; Lye & Koh, 2014; Theodoraki & Xingalos, 

2014). Using programming to make games is a highly motivating way for students to 

learning coding concepts (Theodoraki & Xingalos, 2014). In addition, as the gaming 

industry becomes more profitable, introducing games programming into the curriculum 

intends to set students up for employment in the industry (Haden, 2006). 

For career opportunities; 

 

Understanding coding concepts is not only useful for employment in the games 

industry, but for career opportunities in other technology related fields (Balanskat & 

Englehart, 2015; Bell et al., 2014; Tuomi et al, 2018). Many students will be using 

computer science in their future careers, not just in science, technology, engineering and 

mathematics [STEM] but also in non-STEM related careers (Alano et al., 2017). There 

is a clear link to learning coding for future careers, but this was not necessarily the 

technical skill of coding but how the process of coding develops 21st century skills (Lye 

& Koh, 2014; Saez-Lopez, 2015; Theodoraki & Xinogalos, 2014). For example, the 

technical skill of coding is valuable for careers such as information technology, data 

analysis, art and design; engineering and science (Burning Glass Technologies, 2016). 

However, social skills such as teaching others will be in higher demand and other 21st 

century skills such as; active learning, creativity, mathematical reasoning and critical 

thinking will be core skill requirements for many industries (World Economic Forum, 

2016a).  
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Pedagogical design in coding 

 

Pedagogical design is important to develop the outcomes identified. For example, 

students can gain knowledge and skills in programming when applying these in a 

relevant way (Haden, 2006; Lambic, 2010; Theodoraki & Xinogalos, 2014). Visual 

programming websites connect students to programming as they focus on creating and 

sharing a range of programmable media online, for example games, digital stories and 

interactive art projects rather than just building code. This means that computational 

thinking has shifted to computational participation (Kafai, 2016). Computational 

participation expands on the definition of computational thinking and involves “solving 

problems, designing systems, and understanding human behaviour in the context of 

computing” (Kafai, 2016, p26). However, the costs of digital technologies and online 

services were identified as the biggest barriers to their use by schools (Johnson, Wood 

& Sutton, 2014). To offset the costs of the purchase of digital tools schools often use 

free online resources where possible. Schools that only use the free visual programming 

resources available, may still connect students to programming in a relevant way but 

there could be a limited range of coding concepts learnt. This is because free resources 

tend to be too basic and students’ can only reach a certain point after which there is a 

financial cost (Curran, 2017). 

Another aspect of pedagogical design that is important is the way students work on or 

are encouraged to work on coding tasks. If students do not work in small groups or use 

an online learning community, collaboration and connections may not be evident. On 

the other hand, if students are encouraged to reflect on, test and evaluate their work this 

can encourage deeper levels of thinking. Academic knowledge other than coding can 

also be achieved through pedagogical design. For example, when coding is integrated 

into subject areas such as mathematics or art history (Fessakis et al., 2013; Sáez-López 

et al., 2016).  

A blended learning environment is important in learning coding. A blended learning 

environment enhances communication and interaction with others leading to better 

participation and learning outcomes (Pellas & Peroutseas, 2017). Coding combined with 

teacher guided instruction and group work allows students to apply mathematical 

concepts for problem-solving (Lambic, 2010) and although coding provides 

opportunities for self-directed learning, explicit instruction should be provided when 
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attempting to integrate course content into Scratch experiences (Hagge, 2017). Overall, 

the evidence for learning with digital technologies supports that teacher scaffolding is 

important. Without teacher instruction, time is consumed with learning to manipulate 

new digital tools rather than meeting the intentions of the digital activity (Evans, 2014). 

This is because not all students are skilled technology users as stereotypically believed. 

 

Literature review summary 

The literature review identified two main areas important to this research;  

1. Previous research on coding investigated reasons for, and ways to teach coding 

to students. The main reason presented was to develop 21st century skills important in 

life and the workplace. Skills on their own cannot be an adequate basis for a curriculum 

(Young et al., 2014). Skills tackle how students are doing things rather than what they 

are doing (Rata & McPhail, 2016). It is the what that takes students beyond their own 

experiences and empowers them to challenge their existing ideas. This is “how 

knowledge is theorised in the powerful knowledge curriculum design type” (Rata & 

McPhail, 2016, p59). Powerful knowledge is a synthesis of two competing perspectives 

or ideologies of the school curriculum; progressivism (based on individuals) and 

academic rationalist (a traditional view based on subject disciplines). In addition, 

globalisation and connecting beyond the classroom environment is a key concept for 

education in a digital age (Starkey, 2011). Curriculum ideologies and curriculum 

perspectives are used in this study and form a basis for the discussion. 

2. Because of the issues and challenges associated with coding in schools (Webb et 

al., 2017) we should learn from the past by looking at why students are interested in 

programming, under what circumstances they do it and how (Kafai, 2016). What 

seemed to be lacking from the relevant literature found is, why or if, students thought it 

was important to learn how to code and in the New Zealand context how the 

experienced curriculum aligned with the intentions of the new digital technologies 

content.  
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Examining how students use coding and how it may be useful in the future as well as 

what students believe they learn as they code and why, assists in understanding 

students’ experiences and perspectives of coding. Investigating how these align with the 

intentions of digital technologies in the curriculum aims to assess the overall value of 

coding in the curriculum. The research questions to meet this aim are below. The 

significance of my findings considering the existing literature can be found in the 

discussion chapter. 

 

Research questions 

 

The aim of this research is to explore students’ experiences and perspectives of coding 

and its value in the curriculum. This research uses a narrative inquiry and the research 

questions to meet this aim are;  

1. Why do students think coding is taught in school?  

2. Do students use coding outside of school?  

If so, how, or where? If not, why not? 

3. Why do students want to learn how to code?  

4. How do students think coding might help them or be useful?  

These questions investigate current experiences of coding and look forward to the 

possibilities coding could bring, particularly at a time where coding is becoming a more 

prominent part of the national curriculum (MOE, 2017a). The research questions intend 

to assist in understanding the unique positions, experiences, and perspectives of coding 

through those who have lived it. The answers to the questions, guided by curriculum 

ideologies, intend to explain students’ understanding of computer programming and 

their perceptions of coding in the curriculum.  
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CHAPTER 3  METHODOLOGY AND METHODS 

 

Methodology 

 

Aims and objectives  

 

The aim is to explore students’ experiences of coding and their perspectives of its role 

in the curriculum. There was little in-depth evidence of students’ perceptions of coding 

in the curriculum in existing research. The research focuses tended to be on the 

outcomes of learning to code or ways to teach coding. For example, gaining learning 

outcomes such as problem-solving or using a blended learning approach. The primary 

aim of this thesis is for students to share their overall experiences of coding and their 

perspectives of the importance of these rather than measuring (pre-determined) learning 

outcomes. Curriculum ideologies are imposed on the study as a theoretical framework. 

This approach provides a different context to research found on the topic thus far. 

 

Research paradigm 

 

The primary research follows an interpretivist paradigm. Interpretivism aims to 

understand, whereas other paradigms such as positivist, aim to generalise, predict and 

control. (Johnson & Christensen, 2017). The research endeavours to understand 

students’ experiences of coding and to ascertain how these aligned with curriculum 

ideology. Rather than starting with a theory, the research gathers evidence of student 

experiences and generates a theory. Therefore, meanings of the data emerge at the end 

of the research. An assumption of interpretivism is that, individuals attach their own 

meanings to things and act towards them based on these meanings, these may also be 

influenced by other people (O’Donoghue, 2017; Wilson 2013). Researching students’ 

“meanings” of coding in terms of curriculum ideology provides a different perspective 

of understanding the value of coding in the curriculum. 
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Theoretical perspective 

 

The theoretical perspective, hermeneutic phenomenology is used as the interpretivist 

approach. This is because, hermeneutic phenomenology finds meaning in experiences, 

(O’Donoghue, 2007) and therefore, students real-life experiences of coding in the 

curriculum are studied. Subjective interpretation is the only way to understand the 

phenomena under observation (Wilson, 2013). Subjectivity is sometimes seen as being 

invalid or inadequate because results would more likely to have bias. However, when 

investigating coding in the curriculum through students’ perspectives it is necessary to 

take account the subjective meanings of the students’ experiences. In interpretivist 

research this is relevant, as when trying to understand the social world through personal 

experiences, we are trying to make sense of everyone’s subjectivities when making 

judgements. However, this does not need to be too rigidly followed as some objectivity 

is always good as our own biases are a problem (Wilson, 2013). 

 

Qualitative approach 

 

Qualitative research is used to collect the primary data for this study, as subjective 

understanding is at the core of qualitative research. Using qualitative research seeks 

understanding of coding in the curriculum rather than quantitative data which looks at 

trends or relationships between coding and outcomes. A narrative using case study 

design can be used to inquire into student’s experiences as a storied phenomenon 

(Johnson & Christensen, 2017). Narrative inquiry seemed to be the appropriate 

qualitative research method to portray a group of individuals’ experiences of coding. 

Several studies that use hermeneutic phenomenology in education use narrative as their 

method of research (Friesen, Henriksson, & Saevi, 2012). Through students’ 

experienced descriptions and narratives, this research can highlight some of the aspects 

of coding which may be overlooked in previous research. Hermeneutic phenomenology 

can provide teachers and others interested in coding in the curriculum, different 

knowledge and deeper understanding of what coding means to students.  
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Research Method 

 

Participants 

 

Existing studies particularly in New Zealand schools, predominantly focus on students 

in Year 1 and 2 or senior school students (Years 11 and 12). Some schools in New 

Zealand introduced coding into the curriculum at Years 7 and 8 so the participants in 

this study were students in Years 7 and 8. Schools were selected through purposeful 

sampling. This included; those geographically accessible to the researcher, schools 

willing to take part in the research and schools that included coding as part of the 

curriculum at Year 7 and/or Year 8. The sample did not only consider convenience but 

sources that were expected to yield the depth of information required to meet the overall 

aim. A search was completed using site: school.nz “coding” to identify schools that 

potentially taught coding. Reviewing these websites identified schools where students 

had learnt coding at Year 7 and/or Year 8. Eight schools in the region were identified 

from this search.  

Ethical considerations 

 

The research conformed to the Human Ethics Policy of Victoria University Wellington 

[VUW] and the VUW Human Ethics Committee approved this research [Reference 

number: 0000025436]. Principals were contacted after ethics approval had been gained. 

Two schools agreed to take part. The Principals consented to the study and put me in 

touch with the relevant teachers to discuss the research. These schools were both co-

educational but quite different in their demographics and curriculum design. The 

teachers also agreed to take part and distributed information on my behalf to the 

students who they thought would be suitable for the research. Six students from each 

school returned consent forms signed by themselves and a parent. Therefore, one focus 

group of six participants was held at each school. Six participants were deemed enough 

to generate conversation, engage and give all students the time to speak. Using case 

studies employing narrative methods means that only a small number of participants in 

each case is required to identify the theoretical concepts of the curriculum and for 

intricate analysis (Wells, 2011).  
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Data gathering 

 

Within the interpretivist paradigm, the researcher can use guided semi-structured or 

open-ended questions with people in their own surroundings, aimed at understanding a 

phenomenon (O’Donoghue, 2007). Therefore, in this study a focus group was held in 

the students’ school setting. Focus groups were chosen due to the age of the students of 

interest as it was seen to be less intimidating than an individual interview. A focus 

group was also thought to allow experiences of coding to unfold naturally. The focus 

groups were guided by questions (Appendix 1). The questions were piloted on a student, 

who was not part of either focus group. The pilot testing helped to confirm that some 

questions were unnecessary, and some words needed changing or questions rephrasing 

to be better understood. The guided questions were amended accordingly. The focus 

groups were recorded using two digital audio recorders.  In addition, I took notes so 

there were points where I could clarify what the participants said and where I checked 

the accuracy of my understanding. Additional questions to the interview guide were 

asked in a flexible manner, for example, to build on a comment made. There were 

points during the focus groups where I asked students to break into smaller groups of 

two or three to discuss and write down or draw ideas. This was to engage the students 

further. I retained these pieces of paper which were used to support the findings. Each 

focus group lasted approximately 60 minutes. I transcribed the narrative data shortly 

after the focus group was held. I also collected data to verify the enacted curriculum. 

Although teachers were not interviewed, I asked if they would like to share any relevant 

documentation about the teaching programme for coding, and they did. One teacher sent 

an email regarding the resources used and the other provided worksheets and discussed 

the resources they used.  I also found information about the coding programme for 

Years 7 and 8 on their school website however this may not have been as reliable and 

up-to-date as the information received first-hand, therefore it was only used if it 

supported the information provided by teachers. 
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Data analysis 

 

Students narratives were first arranged to answer each of the four research questions. 

This was to convert the students’ experiences into condensed, displayed analysable text 

that could be used to draw and verify conclusions (Miles, Huberman, & Saldaña, 2014). 

The research information was combined within focus groups rather than individual 

interviews and confidentiality was protected throughout the process. In vivo coding 

identifies short phrases from transcripts (Miles et al., 2014). This was the first stage of 

data analysis where phrases were identified to answer each of the research questions. 

Then evaluation coding was used. Evaluation coding “assigns judgements to the merit, 

worth or significance of programs” (Miles et al., 2014, p101). For the second stage, I 

evaluated the students’ experiences of coding in the curriculum to identify areas of 

importance. For example, their reasons for including coding in the curriculum. 

Abductive reasoning was used as it adopts an interpretivist ontology therefore it was 

approached from the viewpoint of its participants. There are two common ways to 

approach interpretive research (Chamberlain, 2006). One approach is for the researcher 

to have an open mind and reactively obtain raw data from the participants. This 

however runs the risk of failing to generate useful data as the information may not be 

able to be related to any situation but the one being described. Due to this risk, this 

research adopted the second approach which uses a theoretical framework, in this 

instance curriculum ideologies, and imposes it on the research, for example, students’ 

experiences of coding. This means that once data is coded it can be approached in a 

logically coherent way (Chamberlain, 2006). I used pattern coding for the cross-case 

analysis to summarise the data into themes of each type of curriculum ideology. I 

aligned students’ experiences and perceptions of coding in the curriculum with 

curriculum ideologies to identify and understand the contradictions and areas of 

importance. These formed a basis for the discussion. As the scope of this study was 

small I coded data into themes manually rather than using CAQDAS (Computer 

Assisted Qualitative Data Analysis Software).  

The process of abduction begins from the data then seeks to explain what is found by 

using theory and existing literature (Flick, 2013). This means that abduction occurs and 

then deduction and induction come after (Chamberlain, 2006; Flick, 2013). In this 
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research, first new ideas were generated (abduction), these were evaluated (deduction) 

and then justified (induction) to form a most likely reason or explanation. 

Research validity 

 

Verbatim the students’ language, known as a low-inference descriptor, used in findings 

improves the interpretive validity (Johnson & Christensen, 2017). I checked the 

understanding of what was said during the focus groups and I used verbatim when 

transcribing to ensure the accurate portrayal of what was meant. This research was 

conducted with twelve different participants in two different schools, over two focus 

groups, therefore the data gathering and analysis process could be replicated in different 

contexts. The methodology was transparent and interview questions included in the 

appendix. Although additional questions were asked to explore areas further when 

required, another researcher would be able to repeat the research method. Subjectivity 

was inevitable in this research as implicated by hermeneutic phenomenology (Frieson et 

al., 2012). Researchers of hermeneutic sensibility would not want to set aside their 

experience and understanding. Instead they would want to recognise their pre-existing 

beliefs and how these might impact the research process and findings. This is termed 

researcher reflexivity, where there should be continual self-awareness and reflection of 

your own assumptions and biases and recognition of any limitations (Johnson & 

Christensen, 2017). A final strategy to improve the validity was peer review of evidence 

which provided useful challenges and insights. Three reviewers read the thesis in its 

entirety and made their own notes of questions and some suggestions for improvements. 

I went through each of these and made amendments as necessary. 
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Limitations 

 

Generalisation is not in the nature of qualitative research but a greater insight into 

student understanding would be gained with a bigger sample. In addition, multiple-cases 

can improve the validity and trustworthiness of the research. However, in qualitative 

research “an underlying theory is being matched rather than the larger universe” (Miles 

et al., 2014, p58). Therefore, using two different schools allowed for similarities or 

differences in aspects of coding to be identified but these could not be generalised to the 

entire population. Facilitating focus groups in two schools with twelve participants 

meant multiple data sources and some diversity of experience to improve the validity of 

the research. Ideally more than one researcher should conduct the primary research to 

further improve validity by replicating the method in a different context, I was the only 

researcher and I was a novice. However, I did consult and seek advice from my 

supervisor who was able to mentor me through the process. There is the potential to 

mismatch the researcher’s reality and that of the participants by forcing a theoretical 

framework on to a social situation (Chamberlain, 2006). This could lead to bias and 

inaccurate data coding; however, it does eliminate the risk of findings that do not relate 

to anything. Thoroughly examining information aimed to rule out alternative 

explanations than the ones provided.  

The students were selected by teachers therefore it is likely to be a biased sample as all 

participants are enthusiastic and have a considerable interest in computers and/or 

coding. In addition, the “group effect” could impact the findings. This is if participants 

are influenced by what others in the focus group said before them. However, the 

opinions of “enthusiastic” students are still important and provide in-depth information. 

There are also benefits of the group effect which observe consensus and diversity 

amongst participants views. The methodology is based on hermeneutic phenomenology, 

data gathering through narrative inquiry and data analysis using abductive reasoning. 

However, partly due to using a theoretical framework and the qualitative nature of the 

research, it could be argued that the approaches used are not in their purest form. It is 

only natural in qualitative research to no longer adhere solely to the boundaries of one 

philosophical approach and that this makes for more deliberate and diligent analysis 

(Miles et al., 2014).  
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Chapter 3 summary 

 

I conducted a qualitative narrative inquiry to provide an insight into students’ 

experiences and perceptions of coding in the curriculum. I held two focus groups 

consisting of six purposefully selected participants from Years 7 and 8. Students were 

asked open, semi-structured questions and narratives were constructed for each case 

study to answer the research questions. A cross-case analysis was used to summarise the 

findings into themes of curriculum ideology. Every effort was taken to ensure the 

validity of the research by using the students’ own language and checking the accuracy 

of my interpretations when possible. The methodology was transparent.  
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CHAPTER 4 FINDINGS: NARRATIVES 

 

In this chapter, student narratives were pooled together for each case study and provided 

insights into students’ perspectives and experiences of coding in the curriculum. Each 

case starts with a description of the school profile, the participants and details of the 

enacted curriculum. Next, student narratives are used to answer each of the four 

research questions. In the second findings chapter there is a cross-case analysis applied 

to the theoretical framework. I took care in ensuring the confidentiality of the school, 

the teacher of coding and the participants.  

 

CASE STUDY 1 

 

Introduction 

 

Case study 1 is a full primary school, with students from Years 1 – 8. It is in a rural 

town and has a total school population of between 150 and 200 students. The school is 

classified as a decile 2 school. Decile is a measure of the socio-economic position of a 

school's student community relative to other schools throughout the country. Decile 1 

schools are those with the highest proportion of students from low socio-economic 

communities. The students are predominantly Pākehā and around a third of the students 

identify as Māori.  

The school curriculum has a major focus on reading, writing and maths. Other learning 

emphases include Te reo Māori, inquiry and PE/Health. Students are organised into year 

group learning hubs with two teachers across Years 6, 7 and 8. Each child has access to 

a Chromebook for learning in class. There are no specialist teachers for classes, this 

means the students’ own class teachers deliver the school curriculum. Students have 

visited the local College for technology. During Term 4 2017 the learning hub focused 

on digital technology and science. This included video/movie editing, green screen 

recording technology, coding, physics and friction. In Term 1 2018, if students had 

finished their reading or writing work, they could complete 10- 15 minutes of online 

coding activities or tutorials at the end of class as a “treat”. Focus groups were 

conducted near the end of Term 1 2018. 
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There were six participants in the focus group interview, three female and three male 

students and an equal number of Year 7s and Year 8s. Students talked about their past 

experiences of coding in the curriculum which included experiences from Year 6. 

Students in case study 1 seemed excited to share their thoughts and experiences of 

coding with me. They were asked to speak one at a time and therefore raised their hand 

when they had something to add. Students were also called upon if they had not had an 

opportunity to speak. This meant that each student participated equally in most parts. 

Narratives 

 

Students views on why coding is taught in school 

 

Students first learnt coding at school using the free online programming language 

Scratch which was used to create games and animations. After Scratch, students used 

other visual programming websites including; Tynker, Hour of Code and 

madewithcode.com. These provided introductory coding activities and involved “drag 

and drop” blocks which manipulated the way things looked and/or sounded, showing 

the written code along the way. Students used these to create a variety of digital 

products, including making music or icons that were used on a phone. There were some 

more advanced projects that students completed where they learnt how to program a 

character to navigate through a game. Coding was a separate learning focus and a cross-

curricular approach was not used; “we haven’t used (coding) in maths, science or 

English, we don’t do it every day”  

There were three main reasons why students in case study 1 thought coding was taught 

in school. These were; to provide a basic understanding of coding and therefore how 

digital technologies work, to enable them to create games or apps and to prepare them 

for future employment prospects. 

Students saw coding as what made technology work and everything that required a 

computer required some level of coding. 

I think coding is pretty much a source of life for computers. So, you have to code 

a computer to work, with numbers and symbols or letters otherwise it wouldn’t 

work, and you wouldn’t be able to use a computer or the system itself.  



36 
 

Students were conscious that technology was constantly evolving and updating; it was a 

big part of their lives. Because of this they felt that coding was taught so that they 

understood the basic concepts. Students were asked to split into pairs and write down or 

draw on paper what they had created using coding in school (Figure 1). They included 

making games or other digital products such as emojis, neon dresses or Snapchat filters. 

Students felt that learning coding meant that they could make digital technology work, 

“say there was a game, you have to code something to make it do something”  

 

Figure 1. Students drawings of what they have created in school using coding 

The discussion then moved to the importance of coding for employment as being a 

reason that it was taught in school. Students felt that most jobs required coding or that 

knowledge of coding would be helpful or useful for jobs and therefore being taught the 

concepts now would mean “you are prepared for when you are older”. When I probed 

further about the types of jobs coding would be useful for they were able to relate this to 

designing games (Figure 1), graphic design or other examples of creating technology 

related products. 

There’s tons of jobs in the future that aren’t there yet, that could include coding 

and stuff. Jobs are upgrading… sometimes computers seem like they are taking 

over humans’ jobs, it’s kind of like scary, they make cars, what they are doing 

now, with robots and stuff, computers can drive cars. 
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There was a consensus that knowledge of coding would provide more job opportunities. 

This included the opportunity to change jobs. They all saw coding as fun and said 

knowing how to code would allow people to change their profession to one which 

included programming if they wanted. Students were also aware that if coding wasn’t 

taught in school they may have little or no knowledge of it or find it harder to learn 

later. 

Overall, students felt that coding was taught in school so that they could gain an 

understanding of the basic concepts of how digital products work. This would allow 

them to create digital products which would provide a solid foundation for employment 

in the future.  

How do students use coding outside of school? 

 

Four out of six students in case study 1 used coding outside of school. One student who 

did not use coding outside of school said; 

I like doing it and I enjoy it, but it’s not something I sit and home and always do.  

This student perceived learning to code as important for future employment but despite 

this they did not see coding as a school subject, they saw it as something fun they got to 

do in their time outside of what they considered to be more academic disciplines such as 

reading, writing and maths, “it’s like a game, you get to code”. This was because coding 

was used as “a treat” when they had finished their reading or writing. 

Those students who did use, or even talked about coding outside of school, were often 

encouraged to do so by family members. Students said that their parents explained 

coding or supported them at home to create video games or animations instead of just 

playing or watching them. One student would watch videos on how to build robots and 

their mum bought them a kit so that they could make a robot which they programmed to 

bring it to life. Another student who was a keen gamer was urged by a family member 

to create a game outside of class; 

My mum and I did a little activity, we cut the screen in half or something like 

that and we made two little games and we each had, I don’t know how long it 

was, but maybe fifteen minutes to make a game or animation and she did one 

first, showing me how to do it. Eventually when I finished I made this rocket 
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game where we had to dodge all these little white meteors and stuff. I normally 

use it to make games.  

Four of the students wanted to learn more about coding. They thought that coding at 

school provided basic knowledge, but wanted to take this further and would therefore 

learn more complex coding at home; 

For me personally, I’ve been trying to learn how to do written code which is a 

bit more confusing than the drag and drop code, so I was learning that for a bit. 

I first found coding just playing games…So, I was like I want to learn how to do 

this instead of just the simple Scratch or just that.  

Therefore, students were mainly using coding outside of school for gaming however 

instead of just playing games they were making their own. This was supported by 

family who would encourage their children or create digital products with them.  

Why students want to learn how to code 

 

The main reason that students wanted to learn how to code was because they saw other 

people making digital products such as games or animations on YouTube and they were 

inspired to try and make these themselves. Students agreed that programming could be 

used to create anything when using technology which empowered them to be creative. 

Four of the students had a genuine interest in how digital technologies work, 

particularly how to make characters move in a game and would therefore seek 

information on the internet that would help them learn more. Coding in school was 

limited to specific tasks and therefore students would find information, mainly online 

but sometimes from other students, that were more suited to their needs and interests; 

I learnt movement through watching YouTube videos. Because I was like “how 

do I do this thing?” so I watched a YouTube video and learnt that and also 

physics, it’s not just you can press the space bar and jump up, if it were to be in 

a game you would stay there in mid-air and not drop down, so you have to 

figure out so they make it so they can drop down onto the ground again. 

In some instances, the reason students wanted to refine and develop their skills was 

because they envisaged a career that involved programming. Half of the students in 

focus group 1 recognised that they wanted a career where they would need coding 

knowledge. One student wanted to use coding to create an app, or software or social 
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media websites like Facebook or Instagram. However, mostly the students wanted to 

make games for other people and considered this to be “pretty cool”.  

Technically nearly half of my life I’ve been interested in video games and how 

they work and all of that sort of stuff, so I’ve always wanted to be a game 

designer and stuff like that but the only way I am going to learn how to do that is 

to learn at least the basics of coding. Making games would be a good job.  

The students who did not see a career in coding still wanted to learn to code as they 

found it enjoyable. Students liked that the products they created were individual. They 

could make them based on their own interests and no one would have the same design.  

 

 

 

 

 

 

 

 

 

Figure 2. Student drawing of a personalised emoji 

A student explains Figure 2; 

We did this Made with Code thing and you had to make your own emoji and you 

could customise it to what colour hair. If it was up or down and then you could 

also add some of your interests, like I had music. I added, because I want to be 

like a doctor, I added the thing that they have around their necks and then I also 

want to be an artist so I want to do that stuff, so in my hand I had like an artist 

pallet and you can do some writing and stuff like that too, it’s really cool. 

Students also enjoyed the problem-solving challenge of making code work. From the 

discussion it was evident that students didn’t necessarily use instructions or code that 
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worked the first-time around, but they would eventually get it to work through 

experimentation. I explored how students learnt to code. Students felt that they learnt it 

themselves or through watching others and on occasion would ask other students for 

help. They agreed; “we work individually but help each other”. 

We kind of just had to experiment because the teacher told us to go on it and 

have some fun, so we kind of experimented with everything to do, and we watch 

videos of other people doing it.  

However, there were also limitations of learning through experimentation as more 

complex processes were too difficult for students to learn on their own or with the 

resources available. A student said that they looked at other peoples’ games thinking it 

would be easy to reproduce but found that this was too hard to complete on their own. 

Students wanted to learn how to code because they were interested in how games or 

animations worked. They saw others creating these which inspired them to do the same. 

For some students this is because they envisaged a career that would require knowledge 

of coding, for others, it was because they enjoyed coding and the challenge of getting 

code to work. Students worked individually and used online resources or help from 

others. They did not acknowledge teacher guided instruction. 

How students think coding might help them or be useful 

 

It’s kind of a skill you can pass on to other people and teach them to do it so that they 

don’t have to go through all the stuff you have, when you can just teach them. 

Whilst students said they taught themselves to code through online resources, they felt 

this was a time-consuming process. They were confident that once they knew the basics 

they could easily teach others what they knew about how to code. They thought this 

useful because other students wouldn’t have to go through the trial and error or time 

spent looking for how to do things that they went through. Learning individually 

through experimentation and personally finding the most suitable resources was 

regarded as a challenging process. One student commented, “I tried to learn how to do 

written code, but I couldn’t find any apps to just learn how to do the coding”.  

Students also recognised that having learnt coding at school it was now easier for them 

to understand how apps or games worked. Therefore, they were better at using them or 

found them easier to use. Students also felt that knowing generic coding would make 



41 
 

them more confident to fix problems with computers if required and that coding was 

useful for coming up with new ideas and creating them (Figure 3). 

 

 Figure 3. Student drawing of how coding could be useful 

However, there were times where the lines between learning code to create, and 

generally using technology (that perhaps wouldn’t exist without code) were blurred. 

Some of the comments from the focus group demonstrated that students couldn’t always 

distinguish between learning coding and using a computer application.  

We use an app called Seesaw and we record our writing to say what we made 

and post it back to our parents who can listen to it, because I don’t like talking 

in crowds, so I can do that instead. 

Another student referred to an activity completed when using madewithcode.com 

(Figure 4). They used blocks to design a dress and wrote down that this meant coding 

could help in a designing job, when asked to clarify they referred to becoming a fashion 

designer. 
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Figure 4. A student view of coding to design clothes 

When you create dresses and coding and that, this could help you be a designer 

like designing clothes and stuff. 

Despite this, some students recognised that the skills learnt in coding could be used or 

applied in other areas. “I’ve just been adjusting a lot of the skills you need since I’ve 

started learning graphic design”. 

Student views of how coding may be helpful or useful to them were mainly to 

understand how technology worked. This allowed them to use it more efficiently and 

pass on what they had learnt so that others could also learn from or use this knowledge. 
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The essence of case study 1 

 

Students saw coding as a way of understanding how digital technology worked. They 

believed this to be useful so that they could create their own games or other digital 

products or maybe even fix broken technology. In the future students felt that 

knowledge of coding would be beneficial for job opportunities as most jobs would 

require people to code. Students genuinely enjoyed learning coding and wanted to learn 

more about it to create products.  

I would like to be able to do that written code stuff and I would like to make 

games and make things for other people, like make games other people can play 

Some students actively sought out other online resources suited to their needs and 

interests to independently learn more. However, they found more complex coding hard 

to learn without help.  

Games are way easy to make unless you are making them yourself.  

Students were encouraged or inspired to learn more about coding by peers, people 

online and family members. They were also confident that they could teach others to 

code.  
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CASE STUDY 2 

Introduction 

 

Case study 2 is an intermediate school comprising of students in Years 7 and 8. It is in 

an urban area with a multicultural population of between 600 and 700 students. As a 

decile 8 school it has a much lower proportion of students that live in low socio-

economic households when compared to case study 1.  

The school curriculum encompasses eight learning areas defined as prescribed by the 

New Zealand Curriculum (English, the arts, health and physical education, learning 

languages, mathematics and statistics, science, social sciences and technology). 

Technology is a specialist subject and all Year 7 students take part in all areas including 

computer technology. In Year 8, students opt whether to take computer technology or 

an alternative subject within technology or the arts. For the purpose of this study, it was 

assumed that computer or “digital technology” learning would be a compulsory subject 

for Years 7 and 8 when the prescribed curriculum is fully implemented by 2020.  

There is a specialist teacher for computer technology and coding is taught as part of this 

course. For those who take computer technology at Year 8, coding and STEM (science, 

technology, engineering and mathematics) are a major part of the programme for 2018. 

There is also a voluntary coding club which was held at lunchtime for those students 

who want to participate. Students have access to computer suites and a range of tablets 

including iPads and iMacs. 

There were six students in the focus group discussion, which included one female and 

five male students, all in Year 8. All six participants had elected computer technology 

as one of their specialist subjects in Year 8.  The specialist teacher of computer 

technology had mentioned the group included some who love coding and others who 

love computers and everything computer related but were not fans of coding, these 

students were not identified individually. The focus group was conducted near the end 

of Term 1, 2018. All students had first learnt about coding in their previous school in 

Year 6 but during the focus group they mostly talked about their experiences of coding 

in Year 7. It was clear from the start that students were all keen to contribute to the 

discussion as they all raised their hand to answer the first few questions. To ensure all 
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students contributed equally the focus group was conducted on a round table basis. On 

occasion students would provide further insight at a point where they felt they had more 

to add or when asked for clarification. 

Narratives 

 

Students views on why coding is taught in school 

 

In case study 2, free websites were used for coding (Hour of Code, Studio Code, Code 

Combat and Khan Academy). Students used these to learn how to make games and 

navigate characters to make specific patterns on the screen. However, before students 

could use computers to apply coding concepts they were given worksheet tasks to 

manually demonstrate computational thinking. An example of such a task was where a 

machine that served juice had some cups coming out the wrong way around. Students 

had to use a set of instructions provided to turn all the cups the right way up in as few 

steps as possible, for example, one step only swapped the position of the 1st and 4th cups 

whereas another turned the 1st and 5th cups over. Students manually turned the cups and 

then wrote down the steps taken. This worksheet was used to test problem-solving 

strategies, another explored prime numbers and algorithms (encryption).  

Students in case study 2 thought that coding should be taught at school because they 

believed that everything required a computer or the internet, which required coding to 

operate. The students seemed to feel strongly that without code they would not have a 

lot of the resources they used at school and at home. Therefore, due to the perceived 

enormity of coding they felt it was important to learn how to do it; 

Coding is in our everyday lives like in the recording thing (referring to the voice 

recorder), there is code in it. And without code we would probably be like cave 

people…like so maybe get a worksheet and its printed out, that printer needs 

code to work and the website where we printed that educational paper needed 

code to actually create it so that’s why I think code is quite big. 

Two students felt that coding might be taught in school because future jobs would 

require coding. However, most of the other students thought that learning to code at 

school was not necessarily for jobs. For example, although they said it was used in 

many areas such as programming aircrafts to developing a webpage, they did not 
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associate coding (in these areas) as a profession. Instead students thought that they were 

learning more of a skill that they could use if required (Figure 5).  

Coding can be used in many different ways because it’s not just like for jobs, it can also 

be used on maybe you can use it for stuff like with aircrafts or something. It can be used 

in many different ways. It’s really hard if you don’t know what you are doing so that’s 

why we have to learn. 

 

Figure 5. Student views on how they could use coding 

Students also agreed that they should have some knowledge of coding; 

It gives you a good understanding of how things work and that all these things 

that people make they are all made by coding and you think wow cool. 

In case study 2, coding was not only a skill that could be used in future careers. 

Students’ thought coding was a skill they should learn because they were dependent on 

technology that was coded, therefore they should have some knowledge of how to make 

this technology work.  
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How do students use coding outside of school? 

 

All six students had used coding outside of school. They did this by going on the visual 

programming websites that they knew from school. For example, Scratch and code.org 

to “have a play” on the resources available and to learn more about coding. In 

particular, Code.org allowed students to make animations and games with characters 

that move and to make simple web pages. Students enjoyed using the game lab or 

making a sprite move on the visual programming websites and as in case study 1, two 

students said they were encouraged by family members; 

I was addicted to it when I was at home and I literally got home and had my 

snacks, did my homework and then I was straight on it, on Scratch and my mum 

and dad liked to see what I came up with so basically I was on it 24/7 if I was 

able to I probably would be but I’m not exactly allowed up past half past eight. 

Another student said that their parents got them into coding on Khan Academy because 

of the demand for coding in the labour market, “because basically everything is made 

out of code”. This generated a discussion on how relevant coding was now; 

What’s the percentage of people, all the population, in the world, it’s like 1 

billion out of 7 billion, 1 billion only do code when we need half the population 

doing it…we learnt that in computer tech. 

However, students felt that more people were using coding than in the past and getting a 

feel for what it was. The consensus was that people used coding every day when they 

went onto websites. Although people aren’t specifically writing code, they were using 

webpages which were made using code. Students said that if they learnt more about 

how to code they would be able to make a webpage that people would use because 

everyone uses websites.  

Students used coding outside of school by going on the visual programming websites 

that they were aware of and played around with these to get a feel for coding and learn 

more but also because they found it fun. Some students were encouraged by their 

parents. 
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Why students want to learn how to code 

 

Students wanted to learn coding as they enjoyed the process of writing code and found 

it interesting. They also saw coding as educational in that it allowed them to learn new 

things and that it was challenging.  

Students in case study 2 liked that learning coding gave them the freedom to be 

independent in their own learning and that it was “not like writing, reading or any other 

subject you do at school, it’s something different”. The notion that coding was 

“something different” was a common theme in the student discussion; 

I enjoy doing coding because it’s something else, who knew that today we would 

have WIFI and stuff because my house it’s a real tech house, without WIFI I 

don’t know what we would do, and so we are pretty much all on technology and 

stuff and yeah so it was something new rather than like Instagram and Snapchat 

and social media and stuff, yeah and it’s fun. 

Despite enjoying being able to choose their own activities and independently play 

around and understand concepts themselves, they recognised that there were times 

where they needed help; 

So we had to choose a game and I chose the Frozen game and if we needed help 

we could go to somebody who knew how to code and all that and we could ask 

them but if we don’t have anyone there, we could go to a teacher and they could 

guide us to solve the pattern and then once you’ve got it you just keep going 

until you have finished. 

Students mentioned that sometimes the teacher explained new concepts to them. One 

student in case study 2 thought coding was better being taught rather than learning how 

to do it on your own because if you got stuck you would be able to ask a peer or the 

teacher.  

There was another student who wanted to become a computer programmer in the future, 

and this was the reason that they wanted to learn how to code. 

The main reasons that students wanted to learn how to code was that they found it 

interesting and they could learn new things, students also enjoyed being able to figure 
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things out themselves but recognised that they also needed help from other students or 

the teacher.  

How students think coding might help them or be useful 

 

Students felt that coding was a useful skill as it gave them some understanding of how 

digital technology worked. They felt that as a skill it could help them in the future if 

they needed to use it or in employment; 

It’s useful for our future like what’s going to happen, it may come up, like some 

of it may not but it’s there just in case when we need it, say if I worked 

somewhere and I had to programme a computer, if I didn’t know what the heck I 

was doing but if we learnt that at school and then we could use that knowledge 

in the future, so what we learn now has a big impact on our lives. 

Although most students did not believe coding was taught in school because of future 

employment. There was a sense that students believed that most, if not all jobs, in the 

future would be technology related and that every job would need code. Students 

imagined that there would be robots serving as waitresses and self-driving cars coming 

out soon, so knowledge of coding now would be useful in the future. For example, if 

these innovations broke down or needed reprogramming. Students had found 

information about technological advancements online and in some instances, students 

questioned the authority of the information they had found. 

One student was concerned why most of the people in the focus group were “worrying 

about using coding in their jobs which is still a long time away”. They felt that coding 

as a skill would be useful next year, in high school; 

Like if the teachers’ computers broken down they don’t know how to turn it on. 

We can also use it if we want to study coding in Uni then we have a bit of 

knowledge or an idea of what we are doing 

As students saw coding as a skill, they felt it would be useful if they needed to 

programme something in the future. Similarly, to case study 1, students wanted to learn 

more about coding so that they would be able to help others to learn it. Students also felt 

that if they didn’t get their dream job, knowledge of coding would mean that they could 

go into computer programming because they knew how to do it from learning it in 
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school. Students also explored ideas they thought would be possible for computers but 

were unrealistic;  

Like imagine computers that don’t need WIFI or phones that don’t need WIFI 

like that would be the best thing in the world because it would have been 

someone that programmed the computer that when you ask a specific question it 

would come up as a file instead of just a website.  

Students wrote down and explained in more detail some of the projects they had made 

with code (Figure 6) 

 

 

 Figure 6. What students had created in coding that they couldn’t before 

Students had made games that used maths concepts. They had not used coding in maths 

or any other subject areas apart from computer technology however they recognised that 

mathematics and coding went hand in hand; 

When you are coding, you need to like know how to do maths, like if you want to 

extend the sun by 3.5% or something, or maybe you want to move the character 

30 pixels so you can move the character like 30 pixels but maybe the screen isn’t 

big enough to move it so you have to know maths to know how much the screen 

can hold and the pixels and stuff. 

One student also mentioned that coding and the way of thinking could be used to 

understand how things not controlled by technology worked; 
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You can even think about things that are made with fuel because you kind of use 

cogs and you think okay if that’s going to move around, then this is also going to 

move around until it can go somewhere specific. 

Most students in case study 2 felt that they were hindered in how much they could learn 

in school and wanted to spend a lot more time learning code. They felt that as there 

were a lot of subjects at school, they spent their time rotating around and would perhaps 

only spend 30 minutes each day on a specific area. They recognised that computer 

science was an option in high school but did not see the time spent in the subject 

increasing in Years 9 or 10; 

I don’t think we will be doing much coding, as I don’t think teachers focus on 

coding as much as maths, English and science. 

Overall, students felt like coding was a useful skill if they wanted or needed to program 

something, particularly if they needed to fix technology that wasn’t working. They also 

believed that most jobs in the future would need code. Coding helped students to 

understand how things worked but they wanted more time on it so that they could learn 

more and help others to learn. 

The essence of case study 2 

 

Students in case study 2 saw coding as a skill they needed. They were dependent on 

technology that used coding. Therefore, students felt they should understand and know 

how the technology worked. They thought this knowledge may be useful in the future 

should they need to programme something. For example, if technology was broken. 

Students also thought most jobs in the future would require code.  

Students in case study 2 would visit the websites they knew to get more of a feel for 

coding and the different ways to code (game versus webpage). They enjoyed being able 

to solve problems themselves but recognised they also needed help from other students 

or the teacher at times. Students wanted to learn more so that they could help others to 

code. Some students were encouraged to learn more about coding by their parents. They 

found coding interesting and liked learning new things. They considered coding to be 

different from any other subject. “It’s good to learn heaps of things in school so that you 

know heaps of stuff”. This variety in their learning meant students felt they could 
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change their career or study path in the future. However, they also recognised that 

limited time was spent on coding at school and wanted extra time to learn more.  

 

Summary narrative description 

 

I found similarities and differences between the two case studies. Digital technology 

and therefore coding was taught as a separate subject in both contexts and students said 

that a cross-curricular approach was not used in either school. Students in both case 

studies believed coding was essential for future employment as most jobs would require 

the ability to code. They felt they could apply their knowledge of coding now but even 

more so in the future. Students in both focus groups said they would be able to fix 

computers if they were broken or create digital products others could use. The main 

difference between the two case studies seemed to be the approach of the teacher. In 

case study 1 students said they were told to experiment with various online resources 

and could choose the activities they found fun and interesting. In case study 2 however 

the teacher explained coding concepts such as algorithms and students applied these 

both with and without the use of a computer. In some instances, students in case study 2 

worked individually or with the guidance of their teacher. Students in both case studies 

said that they would turn to other students for help if required. However, they also felt 

confident that they would be able to teach other students coding or help others learn to 

code once they had learnt the concepts themselves. In both case studies, parents had a 

role in supporting or encouraging programming at home, overall, five out of the twelve 

participants discussed parental involvement. From these discussions their parents had 

some experience or an interest in IT or coding. Their involvement included, explaining 

coding, the demand for coding jobs and urging students to create using code. 
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CHAPTER 5 FINDINGS: CROSS-CASE ANALYSIS 

 

Introduction 

 

This chapter applies a theoretical framework to examine and compare the findings of 

both case studies. I adapted the components of the five curriculum ideologies from 

Adamson & Morris, (2014) to place them in the context of coding (Table 1). These 

components include elements of the pedagogical design which are integral to the 

curriculum perspectives. I read through the transcripts again and when I found evidence 

of a component, I highlighted the relevant words and added a comment (Figure 7). I 

summarised the findings in Table 1. 

Table 1: A summary of the findings applied to curriculum ideologies and their 

components 

Curriculum ideologies and their components in the context of coding 

(Adapted from Adamson & Morris, 2014) 

 

Case 

Study 1 

Case 

Study 2 

Academic rationalism; 

Coding is part of the technology learning area only 

Knowledge of coding 

Teacher explanation of coding 

Passive learning of coding 

Generate knowledge through inquiry 

 

X 

X 

 

 

X 

 

X 

X 

X 

 

 

Social and economic efficiency; 

Knowledge and skills relevant to future employment 

Apply coding skills 

 

X 

X 

 

X 

X 

Social reconstructionism; 

Coding for social good 

Awareness of social issues 

Interaction and group work 

Community activities 

 

 

 

X 

 

 

 

X 

X 

Progressivism; 

Learner centred (focused on individual needs, interests, abilities) 

Personal and intellectual development 

Teacher as facilitator 

 

X 

X 

X 

 

 

X 

X 

Cognitive pluralism; 

Learn coding in different ways 

Diversity of outcomes 

Teacher as facilitator 

 

X 

X 

X 

 

X 

 

X 
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Figure 7. Coding transcripts into components of the curriculum ideologies 

 

Although there was evidence of components of each type of ideology from the student 

conversations I could see varying levels of significance of each of these by the number 

of times students mentioned them within their discussions. I synthesised the number of 

times components within an ideology were talked about (Table 2). Students discussions 

placed more emphasis on components under social and economic efficiency and 

progressivism ideologies (Table 2). In this chapter I explain the components of each 

ideology in terms of the students’ comments and identify the similarities and differences 

between the case studies. 

Table 2: Enumeration of students’ views aligned with curriculum ideologies 

 Number of times a component under each ideology 

was discussed and represented as a percentage 

 Case Study 1 Case Study 2 

Curriculum Ideology No. % No. % 

Academic rationalism 5 8 10 13 

Social and economic efficiency 22 33 33 42 

Social reconstructionism 2 3 4 5 

Progressivism 20 30 20 26 

Cognitive pluralism 17 26 11 14 
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Evidence of academic rationalism 

 

A key component of academic rationalism is a view that the subject area is a separate 

discipline in the curriculum. Students in both case studies recognised digital/computer 

technology and coding as a different or separate discipline to other subjects. Students in 

both case studies said that they had not used or learnt coding or coding concepts in other 

subject areas and referred to maths, English and science when discussing this. Students 

did say that knowledge of maths was essential for coding but rather than developing 

mathematical knowledge students referred to using existing knowledge. There was a 

slight difference in the way that students in each case viewed coding. This was 

attributable to the differences in the enacted curriculum. A student in case study 1 said, 

“with coding, I don’t see it as a school subject, we do it for like fun, it’s like a game, 

you get to code”. This contrasts with students in case study 2 who saw coding as an 

“educational” subject.  

Academic rationalists believe that the curriculum should develop knowledge. Students 

discussions on the types of activities they completed showed that they gained 

knowledge of coding concepts. There were some similarities and differences in what 

was learnt and the way they learnt it. Students in case study 1 felt that they had learnt 

some basic coding concepts in school as they referred to ideas such as adjusting values 

(variables) and the order of instructions (sequences). Students in case study 1 did not 

refer to coding specific terminology and most of the activities completed in school 

involved “drag and drop blocks”. Students in case study 2 however said what they do 

“is a lot harder” than using block-based Scratch programming which most had tried in 

Year 6. Students felt they had “learnt lots of different ways to code” at intermediate 

school. Students in case study 2 said that their teacher would explain new coding 

concepts to them first, whereas students in case study 1 did not mention teacher 

explanation. Instead they were asked to go on specific websites and work through 

online tutorials. Students in case study 2 did not refer to specific coding related 

terminology either. Both ways of learning could be passive ways of learning. For 

example, a student watching or listening to an explanation and demonstration. However, 

they put what they had learnt or been taught into action. Therefore, it was not 

considered to be passive learning. 
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Academic rationalists do not limit their view of the curriculum to the transmission of 

existing knowledge. Furthermore, academic rationalism can also include the perspective 

that knowledge can be created through inquiry. Students in case study 1 discussed 

learning through inquiry, where they sought out new information about how to complete 

coding activities or ways to code. However, in some instances this was not in school 

and was at home. Students in case study 1 would find new understandings about coding 

through additional online resources or other students. In case study 2, the tasks provided 

by the teacher promoted inquiry. Students had to answer questions, however it wasn’t 

clear from the student discussion whether they learnt coding concepts through inquiry. 

Regardless of how knowledge was generated both case studies showed some evidence 

of academic rationalists’ views of coding in the curriculum. Academic rationalism in 

case study 2 was conceived as a separate and different subject to any others. Students in 

case study 2 referred to tasks completed in “computer tech” when talking about their 

experiences of coding in the curriculum. Students in case study 1 also discussed coding 

being different to other subjects but referred to seeking out more knowledge about 

coding. However, this was mostly discussed as an independent task or learners’ activity 

rather than promoted through the teacher. Students in both case studies gained 

knowledge of coding, for example, variables, sequences and how to write coding 

instructions but did not refer to coding specific terminology. In most instances, students 

gained knowledge about “doing” coding not just knowing about coding and the coding 

knowledge was applied. This can be linked to social and economic efficiency ideology. 

Evidence of social and economic efficiency 

 

In social and economic efficiency ideology it is the curriculum that determines what 

skills are essential for society’s needs and it is designed to prepare students to contribute 

to the growth of the economy. Students in both case studies deemed coding as relevant 

for future employment and that coding would be required in most jobs in the future. 

Students in case study 1 saw this as a reason why coding was taught in schools and 

associated coding mainly with careers in creating digital products. What students said 

about the utilitarian value was derived from what they had learnt, for example, how to 

make games. Students in case study 2 saw coding more as a skill that should be taught 

and that could be applied across many different areas or be useful in any profession that 
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required a computer. Students in both case studies were able “to code something to 

make it do something” (Student, Focus Group 1). 

In case study 1, students were responsible for their own decisions when it came to 

learning coding rather than being provided with set tasks to master and apply specific 

skills. Students in case study 2 were directed by the teacher to complete a worksheet on 

a coding concept and apply the skill manually before being allowed to code on a 

computer. Students in case study 2 also talked about how their teacher had told them 

there was a shortage of people who could code in the world which is why it was 

important to learn.  

Components under social and economic efficiency were brought up the most regardless 

of what the guided questions in the focus group asked. Students in both case studies 

could apply coding skills, mainly through making games. Students also viewed that 

people needed to code as we live in a society controlled by technology, even more so in 

the future. Students in case study 1 referred to knowledge of coding being important for 

future employment. Students in case study 2 shared this view but mostly commented on 

coding as a necessary skill, with one student stating, “basically because if you don’t 

have code in the future you’re going to get nowhere probably”. 

Evidence of social reconstructionism 

 

Students in case study 2 recognised the lack of people who knew how to code in the 

economy as an issue, and therefore to learn coding was important. However, there was 

no discussion on the use of coding for social good. Students in case study 2 seemed 

keen to make a webpage or an app that they could sell for money but there were no 

suggestions on what the content of this would be. Students in case study 1 focused on 

ideas of making games or social media websites. Students in both case studies did not 

mention apps that others have created that could help people.  

There was some evidence of interaction and group work however not in the view of 

social reconstructionism. Students in case study 1 visited their local college for 

technology classes. A student commented on Bee-Bot robots at the college which 

students programmed to move in different directions. However, when discussing robots’ 

students in both case studies referred to making jobs easier such as self-driving cars 

rather than helping with societal problems. A student in case study 1 said; “but they 
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can’t do that (referring to robots driving cars), because, just take everything, because 

we would just become lazy people that just sit down all day”, therefore not seeing the 

use of technology for social good such as reducing speeding related deaths.   

Students in both case studies interacted with other students and worked in groups, either 

at the local college (case study 1) or on more complex coding projects (case study 2). 

However, social reconstructionism views the curriculum as promoting social change 

and as students in both case studies did not comment on using coding to solve societal 

problems there is very little evidence to support this ideology. Therefore, it could be 

said that using coding for social reform was not experienced in either case study. 

Evidence of progressivism and cognitive pluralism 

 

This section has grouped evidence of progressivism and cognitive pluralism as both 

placed emphasis on students being active in their own learning and the teacher as 

facilitator. Both case studies showed evidence of progressivism and cognitive pluralism 

ideology. Case study 1 presented slightly stronger views as students said that they could 

work on whatever they wanted when they were coding and felt that they could focus on 

their own needs, interests and abilities. Therefore, one student would focus on making 

characters move where another would work on drag and drop blocks to create dresses, 

emojis or Snapchat filters. This also meant that there was diversity in their learning 

outcomes. Students in case study 1 discussed how they would explore and develop 

coding knowledge independently by looking at further resources and although the 

teacher was present they did not seem to rely on them for help. In case study 2, although 

students said they had the opportunity to choose certain computer-based coding 

activities in school, they were working towards the same or similar outcomes. For 

example, understanding algorithms or writing instructions to solve problems.  

Students in both case studies learnt coding in different ways including; number, 

symbols, text, online tutorials, watching others, websites, creating games, puzzles, 

music and in case study 2 also creating apps, webpages and coding manually using 

worksheets. Some of this was at home rather than part of coding in class. Both case 

studies supported teacher facilitation. In case study 2 students discussed having to work 

through problems themselves first and then they would ask another student for help. If 

they still couldn’t complete the task they would ask the teacher who would “guide us to 

solve the pattern”. Students in case study 1 said that the teacher told them to go on to 
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visual programming websites and have fun playing around. They said several times that 

they had the flexibility to work on coding activities of their own choice. There was an 

overall feeling in both case studies that students thought they developed personally by 

being able to help others and intellectually through their knowledge of coding and 

thought processes.  

In focus group 1, students placed a lot of emphasis on the diversity of the learning 

outcomes between each student hence supporting cognitive pluralism ideology. 

Students in case study 2 were however often working towards the same outcomes and 

mostly commented on learning in different ways. Components under progressivism 

were revealed an equal number of times in case study 1 and 2, calculated as 30% and 

26% of the interview transcripts respectively. In case study 1, students pointed out that 

they independently worked through tasks and saw themselves as being autonomous in 

their own learning. Students in case study 2 referred to this also but most of their 

comments centred around developing personally and intellectually through coding in 

the curriculum. There is a connection between progressivism and cognitive pluralism 

which is synergistic. For example, when students focused on their own needs and 

interests this often led to diversity of outcomes.  

Chapter 5 summary 

 

There was evidence of components of each type of ideology from the student 

conversations but this to varying degrees based on the number or percentage of times 

students mentioned them. There was almost an even balance between students’ remarks 

that were applied to progressivism and social and economic efficiency ideologies in 

case study 1. These two ideologies have one main contradiction. Social and economic 

efficiency, like academic rationalism, views the curriculum to be more teacher-directed, 

whereas progressivism, like cognitive pluralism sees the curriculum as learner-centred. 

This is also true of the broader debate in education between powerful knowledge and 

21st century skills. Powerful knowledge views learning as a teacher supported process 

(McPhail & Rata, 2016) and 21st century learning means students drive their own 

learning (Bolstad et al., 2012). I discovered other elements of competing ideologies that 

contradicted one another which are of importance to this study. These are summarised 

in Figure 8.  
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Figure 8. Summary: Prescribed, enacted and experienced curriculum 

  

 

 

Prescribed curriculum  

(fully implemented by  

2020) 

 

 

 

 

Enacted  

curriculum  

(2017 -2018) 

 

 

 

 

 

 

 

Experienced  

curriculum  

(2017-2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interpreted intentions of digital technologies for computational thinking  

at Year 7 & 8 

• Understanding and creating digital technology through core programming 

concepts 

• Knowledge and skills required to be digital citizens and digitally capable now 

and, in the future, 

• Equipping students to participate in society 

Case study one 

• Digital technology learning 

included a coding focus 

• Used free visual programming 

websites 

Case study two 

• Digital Technology was a specialist 

subject compulsory at Year 7 

• Coding focus particularly in Year 8 

as an elective subject 

• Worksheets to demonstrate coding 

concepts 

• Python and Java Script 

• Used free visual programming 

websites 

Case study one 

• Knowledge and understanding of 

coding and how digital technology 

worked/could fix if broken 

• Separate discipline (digital 

technology) 

• Recognised using maths 

• Basic coding concepts 

• Learnt through inquiry – mainly 

watching online videos 

• Saw coding as relevant for future 

employment 

• Applied coding concepts to make 

games or navigate objects 

• Learner-centred but asked peers for 

help if required rather than the 

teacher 

• Personalised learning, chose tasks 

they wanted to complete 

• Enjoyed learning coding 

• Developed personally by being able 

to teach others and intellectually by 

learning how to code 

• No recognition of coding for social 

good, only economic 

Case study two 

• Knowledge and understanding of 

coding and how digital technology 

worked/could fix if broken 

• Separate discipline (digital 

technology) 

• Recognised importance of maths 

• “More” complex coding concepts 

• Learnt through teacher explanation 

and then applying coding concept 

manually and on visual 

programming websites 

• Saw coding as relevant for future 

employment 

• Applied coding concepts to make 

games, webpages and apps 

• Teacher facilitation but also asked 

peers for help if required 

• Worked in groups on larger projects 

• Found coding interesting and 

enjoyed learning new things 

• Developed personally and 

intellectually by learning how to 

code 

• No recognition of coding for social 

good, only economic 

Similarities (reasons for including coding 

in the curriculum) 

1. Knowledge and understanding of the 

digital world in which we live 

2. Creating games, animations, digital 

design, apps, websites or other digital 

products 

3. Preparing for the future 

4. Teaching others coding 

5. Fix or upgrade technology to make it 

work more efficiently 

Differences/contradictions 

• Teacher-directed vs learner-centred 

• Discipline-based vs interdisciplinary 

• Economic participation vs social 

change 
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I also learnt from the findings that some components of competing ideological 

perspectives can be interrelated to one another. For example, students felt that they 

developed both personally and intellectually from learning new things such as coding, 

this included knowledge and skills. Therefore, elements of progressivism connected to 

academic rationalism and social academic efficiency.  

Figure 8. summarises the findings of the experienced curriculum from Chapters 4 and 5. 

These are aligned with the interpretations of the computational thinking for digital 

technologies (prescribed curriculum) from the literature review and the enacted 

curriculum derived from the teachers’ resources and school website. The similarities of 

students’ views of coding across the case studies support multiple perspectives of 

curriculum ideologies and provide the students’ overall reasons for including coding in 

the curriculum (Figure 8). These match with the intentions of digital technologies in the 

curriculum. The differences between case studies and contradictions between competing 

curriculum ideologies suggest how the teaching of coding could be effectively 

structured. I explain these ideas in the discussion chapter with reference to previous 

research literature. 
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CHAPTER 6 DISCUSSION 

 

Introduction 

 

The digital technologies curriculum content was recognised as part of the technology 

learning area from the beginning of 2018 with an expectation that New Zealand schools 

should have it fully implemented by 2020. Some schools had already introduced digital 

technology and coding into their school curriculum. As such, this study aims to 

determine the value of coding in the curriculum through the experiences of students. In 

chapter 4, I answered each of the research questions from the students’ experiences of 

coding in the curriculum. In chapter 5, I identified the similarities and differences across 

the case studies linked to a theoretical framework. The findings were summarised in 

Figure 8 along with the prescribed and enacted curriculum. In this chapter, I take an 

interpretive perspective, also known as the hermeneutic perspective to analyse and 

explain the findings. I evaluate the interpretive outcomes of this study against previous 

research on coding, curriculum perspectives and curriculum ideology. This chapter is 

structured into two areas of importance to assist with the discussion of the research. The 

first of these addresses the main aim of the research which was to explore students’ 

experiences and perspectives of coding and its value in the curriculum. The similarities 

across the case studies included students’ beliefs about the benefits of including coding 

in the curriculum. Therefore, highlighting the reasons for and perceived value of coding 

in the curriculum. The second area focuses on the contradictions between the competing 

curriculum ideologies distinguished from students’ experiences of coding in the 

curriculum. Pedagogical design was found to be important in the literature review. The 

contradictions identified in this research suggest how experiences of coding in the 

curriculum could be effectively structured and link to broader debate in education of 

21st century skills versus powerful knowledge. This provides schools with the basis of 

an action plan that could be adopted when considering the new curriculum content and 

it may influence the way educators think about coding in the curriculum. 
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Reasons for including coding in the curriculum: Students’ perspectives 

 

Previous literature which explored coding claimed that coding skills are important 21st 

century skills and referred to a range of competencies including; problem-solving, 

critical thinking, creativity, collaboration, and communication (Balanskat & Englehart, 

2015; Lye & Koh, 2014; Tuomi et al., 2017). In this study, students did indicate they 

were developing these skills. For example, I asked what was useful about learning to 

code, a student in case study 2 said coding had allowed them to think more logically 

about how things in general worked. Students in both case studies also commented on 

problem-solving. For example, being able to “figure things out” and if they didn’t get 

things right the first time they could go back and correct their mistakes.  

Another area of discussion that related to 21st century skills was being creative. 

Although students used existing resources on visual programming websites when 

creating games, puzzles or emojis, they still changed and customised these to meet their 

own needs, interests and capabilities. Students also discussed helping each other out and 

working in groups which demonstrated effective communication and collaboration. 

These skills may have been put into practice or even developed during coding, however, 

it is argued that teachers can create opportunities for students to acquire these skills in 

ways other than coding (Hayes & Stewart, 2016). These competencies were not the 

focus of students group discussions. The skill that students felt was important was the 

technical skill of being able to code. Previous studies have not recognised that the aim 

has been to bring programming back after it disappeared from classrooms in the mid-

80’s (Kafai, 2016). The computer science community has learnt from the past and 

programming came back worldwide because of the visual programming languages such 

as Scratch where students could create applications without learning complex syntax 

(Moreno-León et al., 2015; Wilson & Moffat, 2010). This chapter discusses the 

opportunities that students felt learning coding could bring and therefore their perceived 

value of coding in the curriculum. 
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Five reasons for including coding in the curriculum were identified from the findings 

which were aligned with the interpreted intentions of digital technologies in the 

curriculum; 

1. Knowledge and understanding of the digital world 

2. Creating digital products 

3. Preparing for the future 

4. Teaching others coding 

5. Fixing or upgrading technology 

 

Knowledge and understanding of the digital world 

 

Students in both case studies felt that learning to code meant that they understood how 

digital technology worked and because they lived in a world that was reliant on digital 

technology it was important for them to learn. Getting students to look at what is 

happening behind the screen empowers them to understand the world in which they 

live, and coding is the most powerful way to work on a computer and establish a 

presence in the digital world (Bell & Roberts, 2016; Burke et al., 2016; Kafai, 2016). 

Students felt learning coding meant that they knew that they could influence what was 

on the screen or even create things behind the screen themselves.  

When I first thought about understanding how digital technology worked and “core 

programming concepts” (MOE, 2017a) I envisaged students learning technical 

programming language and algorithms. In the new curriculum content, core 

programming concepts are referred to as debugging, sequences, loops, algorithms and 

binary digits. However, computational thinking has shifted to computational 

participation (Kafai 2016). An example of this shift was reflected in the focus group 

discussions where students in each of the case studies did not refer to specific coding 

concepts or use programming language but demonstrated them. For example, students 

said they went back to instructions when they went wrong and corrected their mistakes 

(debugging). Computer participation is explained by coding in the curriculum moving 

away from writing or building code and to creating applications such as games (Burke 

et al., 2016). Students used coding skills in a relevant way which means it is not an 
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academic learned discipline; not academic rationalism. Coding in the curriculum 

focuses on the interests of the individual, supporting progressive views. Creating using 

coding concepts allowed students to participate in digital activities by interacting with 

the content and taking advantage of motion and animation. When aligning this with the 

prescribed curriculum the interrelationship between progressivism and social and 

economic ideology is demonstrated. The prescribed curriculum intends that students 

understand and create through core programming concepts and apply this to their lives 

and careers. Therefore, taking account of individual interests relevant to students’ lives 

but also societies needs in terms of knowledge and skills relevant to future employment.  

Students in case study 1 found that the free visual programming websites such as 

Scratch, Tynker and Made with Code they used in class only provided them with basic 

knowledge of coding. Creating games was only a starting point for them. Most students 

in case study 1 wanted to learn the technicalities of programming language that were not 

seen to be possible through drag and drop blocks. One of the main limitations of using 

free visual programming software was the resources were too basic and students could 

only reach a certain point with coding. This was an obstacle to more meaningful and 

enriching participation. Some students would therefore try to learn more complex 

coding at home but struggled without the help of a teacher. Teacher explanation is 

discussed further under conflicting ideologies. However, there is another way to 

broaden and deepen computational participation. This is by treating the use of digital 

tools, in this case coding, as a social practice by engaging with communities and sharing 

work for others to comment on and/or change (Kafai, 2016; Starkey, 2012). In a digital 

age, due to globalisation, this interaction can be beyond the classroom or even the town, 

city or country. Students in the case studies worked with others in their class and helped 

each other out with coding. However, apart from sharing work with parents, they did 

not discuss communicating with the wider community or beyond. This is discussed 

further when considering conflicting ideologies.  
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Creating digital products 

 

Students in both case studies said that they had created things that they could not make 

before learning coding in school. Creating digital products was combined with 

understanding digital technology in the prescribed curriculum. For example, students 

should understand and create digital technologies to succeed in further education and 

the world of work (MOE, 2017a). In the case studies, students understood how digital 

technology worked and discussed this mainly through using visual programming 

languages and creating applications. The enacted curriculum in both case studies 

consisted of free visual programming websites which provided the resources for 

students to create games, animations, digital designs, apps and webpages.  To help 

educators understand the computational thinking progress outcomes, MOE (2017a) 

provided sample exemplars illustrating the learning described. The examples show how 

coding concepts which have been taught in class can be applied by using Scratch block-

based resources to create a computer program. This is similar to what was experienced 

by students in case study 2.  

Students’ in both case studies were excited to talk about the games they had made and 

wanted to make more complex animations using code and apps or websites that other 

people could use. Students played games in their daily lives. Through creating games or 

animations students learn coding knowledge and skills in a relevant way (Haden, 2006; 

Lambic, 2010). Students agreed that it was important to learn about coding in school 

now so that they had an idea about what it was. Some students said they would not 

know what coding was if they had not learnt it in school. This supports the view that 

learning coding at a young age breaks down the stereotypes that it is just for those who 

want to go into programming. In addition, coding could be an intimidating subject if 

learnt later in life (Gardiner, 2014). One student in case study 2 recognised that the 

knowledge they had now would be useful if they wanted to study coding at University.  

The findings of this study suggest that students enjoyed making games and did not 

regard coding as something that was just for people who wanted to go into 

programming. Learning coding was fun, interesting and enjoyable for students. In 

addition, it is a way for them to make and be in the digital world (Kafai, 2016). Some 

students felt that game design would be a good job and learning to code would allow 

them to pursue this as a career.  



67 
 

Preparing for the future 

 

Students felt that jobs in the future would require knowledge of coding. Some students 

also believed coding was a skill that would be useful not only in jobs but in life when 

needed. Students referred to technological advances being part of the reason, for 

example, robots and self-driving cars. Therefore, they seemed to recognise that the 

world is rapidly changing due to technology and so were jobs. This aligns with the 

political agenda of introducing coding into the prescribed curriculum. Nikki Kaye who 

was the Minster of Education when the change was introduced said that students need to 

be prepared to adapt to technology and jobs that have not yet been invented such as 

those involving robotics and artificial intelligence (MOE, 2017a). Teaching coding 

means having a generation of students who know how to code and can take these skills 

into the workforce. However, students brought in the idea that with a basic level of 

coding they would be able to change their career to a programming related job or code 

“things” if required. Is this realistic or is it likely to be problematic in the future? 

Students wanted to learn more complex coding and the prescribed curriculum intends 

that they will continue to take part in digital technologies learning until Year 10. 

However, the new curriculum content is considered to be too limited and “not enough 

focus on components, frameworks and high-level tools” (Chen, 2017, p12). Students 

demonstrated awareness of what is possible with computers, but mostly related these to 

their own experiences.  

They recognised that technology could take over some peoples’ jobs, therefore it would 

be useful for them to know how to code. Burning Glass Technologies (2016) found that 

although programming jobs were growing faster than the job market, coding skills were 

not just for programmers. Creating and developing digital technology through coding 

was interpreted as an intention of the prescribed curriculum and is said to be a key 

requirement for innovation and success in several industries (Alano et al., 2017; MOE, 

2017a). Coding is without doubt useful for career opportunities in the technology sector 

(Alano et al., 2017; Balanskat & Englehart, 2015; Bell et al., 2014; Tuomi et al., 2018). 

The view is that coding can be useful in areas other than STEM fields (Alano, 2017). 

Despite this, most research links the usefulness of coding to developing 21st century 

skills (Balanskat & Englehart, 2015; Lye & Koh, 2014; Tuomi et al., 2017). Rather than 

problem-solving or creativity, how would technical coding be useful for health workers 
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or chefs? Students in case study 2 believed that coding could be useful in many areas 

for example, in the aviation industry by programming a plane or any website as it could 

be created and updated.  

What students said about the social utilitarian value of coding was derived from what 

they were taught or what they had learnt or read. For example, they provided examples 

of how coding can be useful when using computers or applications in general and 

creating games, apps, websites or innovations that were being developed or that did not 

exist yet. Students were aware that coding allowed them to have an understanding how 

digital technology worked and that items they used at home and at school required 

coding. They said they were able to understand applications better, including the 

capabilities and limitations of the technology.  

Teaching others coding 

 

Students in both case studies said that it was useful to learn coding in school so that they 

could teach others how to code. I did not find this reasoning in any previous studies. 

Teaching others is a social skill and previous studies noted that 21st century skills such 

as these were core concepts in computer science and/or coding (Alano et al, 2017; 

Falloon et al, 2016; Fessakis, 2013; Kaleglioglu, 2015; Webb et al, 2017b). Researchers 

found that students would help other students with coding concepts by sharing what 

they had completed (Fessakis, 2013; Kalelioğlu, 2015). This was also evident in the 

focus groups discussions where students helped other students or were encouraged to 

ask peers for help. However, students in both case studies specifically said they would 

be able to teach others how to code or they wanted to help other people to learn how to 

code. This is learner-centred and meant that students believed that they were confident 

and capable in coding and could pass this knowledge on to others. For these students, 

coding supported them to develop confidence and skill, therefore to some extent, to 

practice digital capability and digital citizenship, as intended by the prescribed 

curriculum. 
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Fixing or upgrading technology 

 

Students had an awareness that digital technology was run by software which could be 

replaced with better software so there was a requirement for people to know how to fix 

it or update it. Students in both case studies felt that because of coding, they had 

knowledge of how digital technology worked. Therefore, they believed they would be 

able to fix issues with computers or upgrade software to make it work more efficiently. 

A student in case study 2 even said that if a teacher had trouble with a computer they 

would be able to fix it, implying that a teacher would need their help. No previous 

research was found on this as an outcome of learning how to code at school. Students 

felt confident and capable but does their expectation match reality? Students in case 

study 1, were only learning basic coding concepts from free resources on visual 

programming websites. Students searched for more complex coding activities and were 

aware that they could find most things they were looking for online. This could be the 

same for fixing technology related issues. Students can follow what other people have 

tried or ask people within the wider community. Students particularly in case study 1 

have some experience in finding information online. However, the approach of the 

teacher would be important to support and encourage. This is because students in case 

study 1 commented on not being able to find what they were looking for online all the 

time and students in case study 2 only used resources they were aware of. Teacher 

direction is discussed further in the competing ideologies section. 

 

The reasons presented for including coding in the curriculum demonstrate the value of 

coding in the curriculum from the students’ perspectives. The reasons support the 

interpreted intentions of digital technologies in the curriculum which is underpinned by 

social and economic efficiency ideology. However, the findings reveal aspects of 

learner-centred or progressivism ideology. This is because students are learning 

knowledge and skills that they believe to be useful in employment but which they can 

also apply to their daily lives. In addition, students felt that they were developing 

personally and intellectually through learning the technical skill of coding and knowing 

how digital technology worked. Coding was something they believed they could teach 

others. This suggests that the introduction of coding into the curriculum provides a 
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balance between supporting a more competitive economy and the needs and interests’ 

students.  

Contradicting areas of competing ideologies 

 

Education also has a role in creating an equitable society through the curriculum which 

prescribes what students should learn and be taught. However, there are conflicting 

perspectives that exist particularly between an academic focus and generic skills or 

competencies. This highlighted some inequities in students’ experiences of coding. The 

main contradicting areas or areas of disagreement identified were; 

1. Level of teacher direction against how actively students were involved in their 

own learning (learner-centred). This difference existed between case study 1 and 

case study 2 and the competing curriculum ideologies. 

2. Discipline-based and interdisciplinary which was identified as a conflict 

between competing curriculum ideologies. There was little evidence of 

interdisciplinary knowledge or skills in the enacted curriculum. 

3. Students recognised being able to participate economically but is tackling social 

issues not important? Social change was not evident in students’ experiences or 

curriculum documents 

Each of the contradicting areas related to how learning could be structured and therefore 

the pedagogical design of coding in the curriculum. I discussed these individually in 

consideration of the findings and literature. This led to an explanation of the 

relationship between coding, the wider academic discipline, curriculum perspectives 

and powerful knowledge. I was then able to connect these three contradicting areas to 

form a theory. 
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Teacher-directed versus learner-centred 

 

One of the main differences between case study 1 and 2 was students’ discussions 

regarding teacher explanation. Students in case study 1 said their teacher told them to go 

on to visual programming websites and experiment with the activities and did not 

mention teacher explanation. Students in case study 2 said that their teacher would 

explain new coding concepts first and then they would apply these independently. This 

was also a contradiction between the competing curriculum ideologies. Academic 

rationalism and social and economic efficiency view teachers as responsible for 

delivering the curriculum whereas progressivism and cognitive pluralism view students 

as responsible for their own learning. This reflects the broader debate in education of 

21st century skills versus powerful knowledge. It was originally envisaged that 

programming would allow students to learn by discovery (Papert, 1980). Although there 

is an element of active learning which students enjoyed, much of the research states that 

teacher explanation in a blended-learning environment was key in ensuring learning in 

coding (Hagge, 2017; Lambic, 2015; Saez-Lopez, 2015). Students in both case studies 

said they needed teacher help or explanation to carry out more complex coding.  

When considering skills for a curriculum in the digital age, the evidence also suggests 

we need to teach capability and therefore it cannot be assumed that children can learn 

the skills themselves (Evans, 2014). By being born in the digital age, our students are 

assumed to be digital natives therefore competent speakers of digital language and 

teachers are assumed to be digital immigrants. If this was true students would know 

more about digital technologies than teachers and therefore do not need to be taught. In 

the case studies most of the students also had support from their parents who were not 

born into the digital world but at some later point have adopted many aspects of 

technology. Therefore, growing up in a digital age does not mean that students are 

taught about technology or that all children learn independently. Most young children 

do not naturally migrate online. For example, asking students to share work through 

online programming communities may not meet the intended purpose of deep and 

meaningful computer participation if students are not taught the strategies to cope with 

the vulnerability of sharing their work for others to comment on or change (Kafai, 

2016).   
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Good pedagogy uses a range of methods, therefore can include students’ everyday 

experiences (a learner-centred approach) to link them to coding in the curriculum 

(Young et al., 2014). However, students cannot experience everything, therefore 

learning should also take them beyond their own experiences (Young et al., 2015; 

Siemens, 2005). This means that learning should be a teacher-supported process. This is 

because if learning to code is focused on the student it limits them from accessing more 

powerful knowledge as there is better knowledge beyond their own experiences. It 

should be the role of the school to allow this. The digital technologies consultation 

document said, “a curriculum is effective only if we equip skilled teachers to deliver it” 

(MOE 2017a, p3). Teachers are expected to help students to develop generic 

understandings in Years 1-10 and then students should be able to work more 

independently during their senior years with the teacher as facilitator. However, with 

advances in digital technology and more specialised areas it may not be possible for 

subject teachers to know all innovations in a developing field of study. In addition, in 

the context of a new subject in schools, professional development for teachers had not 

been launched at the time of this study (MOE, 2018). In case study 1, students had a 

generalist teacher, whereas in case study 2 students had a specialist teacher. Will 

students have equitable access to teachers with the specialist knowledge of coding? The 

areas that cannot be adequately addressed by the subject teacher would require a range 

of people with the different types of expertise to be accessible to students. 

When comparing the experienced curriculum of both case studies, although the enacted 

curriculum was different, the other experiences were not too dissimilar. The main 

difference was connected to the approach of the teacher. Students from case study 2 felt 

they knew more complex coding than the Scratch-based drag and drop boxes and 

understood concepts because of the teacher. Students in case study 1 however had a 

greater diversity of outcomes as their learning was driven by their own interests and 

capabilities. One outcome is not necessarily better than the other, but we should draw 

on the strengths and knowledge of each approach to support learning. This would then 

give all the students the access to the foundations of powerful knowledge (Young et al., 

2014). 
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Discipline-based versus interdisciplinary 

 

All students have the right to access all learning areas of the New Zealand curriculum 

(McDowall & Hipkins, 2018) and powerful knowledge starts with the idea of equality. 

Therefore, students should not be limited on their own interests, assumed capabilities or 

any other factor (Young et al., 2014). The intention of the digital technologies 

curriculum content is for all students from Years 1 -10 to learn coding concepts (MOE, 

2017a). Therefore, digital technology was introduced as a compulsory subject as 

prescribed by the New Zealand curriculum. Students in both case studies experienced 

coding in the curriculum as a discipline-based area of digital technology as intended. 

However, this highlights another contradiction between the competing ideologies. 

Academic rationalism ideology views curriculum content as derived from the academic 

discipline whereas progressivism focuses on knowledge as being holistic and therefore 

interdisciplinary (Adamson & Morris, 2014). Although students said a cross-curricular 

approach was not used, they said maths was important in coding and saw mathematical 

competence as essential. Coding allows students to apply mathematical concepts in a 

relevant way (Falloon, 2016; Fessakis, 2013; Haden, 2006; Lambic, 2010). Combining 

coding with other learning areas not only improves programming ability but also 

academic knowledge of these learning areas (Falloon, 2016; Hagge, 2017; Lye & Koh, 

2014; Saez-Lopez, 2015). Some students in case study 1, mentioned physics and design 

when discussing the activities which they had completed. For example, making a 

character drop to the ground after jumping up. These students learnt about both digital 

technology and physics in Term 4, 2017, which could be why they were able to discuss 

gravity in relation to coding a character. They did not say that their academic subject 

knowledge of physics or maths improved, just that they used their existing knowledge. 

The digital technology curriculum had said that; “students should be encouraged to 

access relevant knowledge and skills from other learning areas” (MOE, 2017a, p13). 

There was little evidence of this deliberately occurring in either case study. However, 

activities on visual programming websites tend to combine coding with other subject 

areas.  

Powerful knowledge is often associated with a disciplinary approach as it is concept 

specific and objective (McPhail & Rata, 2016). However, interdisciplinary enquiry is 

not ruled out by the powerful learning approach as long as it does not take for granted 
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substantial subject-based knowledge. Based on the literature review, focus group 

findings and discussion thus far, substantial subject-based knowledge of coding would 

involve the technicalities of programming language or engaging in two-way 

communication with the wider community. However, visual programming websites 

have removed complicated syntax from coding activities (Moreno-León et al., 2015; 

Wilson & Moffat, 2010). The enacted curriculum for students in case study 1 only used 

visual programming language, whereas in case study 2 the Year 8 course includes 

Python and Java Script. This again highlights the inequities between having a generalist 

teacher versus a specialist teacher or a learner-centred approach versus teacher 

direction. In addition, students in case study 2 said there are a lot of subjects which they 

must rotate around, therefore they do not get as much time on the things they are really 

interested in, such as coding. If coding is used across existing learning areas this could 

alleviate the risk of digital technologies being siloed and allow students to spend more 

time on coding (Chen, 2017). It could also assist in encouraging students to make 

connections across the curriculum not only with what they are doing but how they are 

doing it. 

Combining two or more learning areas is not the only way for interdisciplinary learning 

to occur. 21st century skills are interdisciplinary concepts that can be applied across 

subjects. This was an area of contention between powerful knowledge and a 21st century 

learning approach because substantive knowledge was often separated from skills such 

as problem-solving and communication (McDowall & Hipkins, 2018). It was common 

practice in New Zealand education to detach objective or intellectually powerful 

knowledge from socially advantageous knowledge which led to using either a 

disciplinary or interdisciplinary approach (Bolstad et al., 2012). Many of the 

respondents during the consultation phase of the new curriculum content discussed, “the 

extent to which there should be more focus on the underlying capabilities rather than 

content knowledge. That is, creativity, collaboration, resilience, problem solving, 

critical thinking, communication and self-management, rather than coding” (Chen, 

2017, p2). However, coding does not only involve the technical skill but also generic 

skills such as creativity rather than one or the other. It is however difficult to assess the 

transferability of these skills as they are dependent other factors, such as the length of 

time of study and the similarity of the skills to non-programming domains (Mayer, 

1988).  
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Economic participation versus social change 

 

Being able to participate in society economically was a seen as an important reason for 

including coding in the curriculum both by students in the case studies and the 

prescribed curriculum. However, participating in society also means learning values and 

attitudes beneficial to society (Adamson & Morrison, 2014). If the focus of learning 

these is on economic growth it still comes from a social and economic efficiency 

perspective, however if the focus is on social issues and social change this is at the core 

of social reconstructionism (Schiro, 2008). Students in the case studies did not discuss 

social reconstructionist views of coding in the curriculum. Students perceptions of 

coding were derived from their experiences. Therefore, they may encounter social 

issues when they are a little older and have more life experience, for example, when 

students learn how to drive. However, a powerful knowledge approach would take 

students beyond their own experiences. This provides an example of how ideology and 

the ideals around the purpose of education come into play when delivering a curriculum. 

If students are not aware of social issues and the purpose of education is not to elicit 

social change then students will not experience social reconstructionism. When 

developing a curriculum, it is beneficial to look at all possibilities than exclude these 

completely (Marsh & Willis, 1995). Therefore, this study will look at coding from a 

social reconstructionism perspective rather than omit it because it was not experienced. 

When coding began in the 1970’s in schools the focus was on theory, mathematics, 

logical thinking and practical use of computers (Bell et al., 2014). For example, 

breaking instructions down into the smallest logical steps for a computer to follow.  The 

same processes are required by programmers today but there is a lot more creativity 

involved for example by designing apps to use in daily life. Technology educators have 

used activities motivated by social reconstructionism (Zuga, 1992) and there are many 

examples of people creating apps or games for social good in press releases and coding 

for social good initiatives (Bouwkamp, 2015; Kan & Ongchoco, 2017). Although there 

is little evidence of social reconstructionism in the curriculum, todays coders are some 

of the first who can use coding for social good, to solve social issues (Bouwkamp, 

2015). In a pure social reconstructionist curriculum, teachers would only teach the 

technical skills required to solve the social issue and ideally the social purpose should 

be left to the choice of the students (Zuga, 1992). However, a combination of ideologies 
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may form a curriculum and there are few schools or learning areas that are singular in 

curriculum perspective or ideology. Students in case study 1 said that they were inspired 

by others to seek out more information about coding. The experience of solving a 

problem such as making a game to navigate depression could inspire students to seek 

out the knowledge and skills needed to take on additional problems. This would involve 

using what has been learnt in new contexts, combinations or innovative ways. 

Chapter 6 summary 

  

Students in the case studies understood how digital technology worked. They had 

confidence in their coding capability and they applied these skills to create digital 

products. However, they brought in the idea that with their little knowledge of coding 

they would be able to get a job or to fix technology. Students also felt confident they 

could pass on what they had learnt about coding to others. 

The aim of the digital technologies curriculum content is that all students have access to 

learning that builds their digital skills and fluency (MOE, 2017). This supports the idea 

of equal citizens and that students have an equal entitlement to knowledge (Young et 

al., 2014). Introducing digital technology as a standalone compulsory subject was a way 

of ensuring all students have access to it. However, the contradictions highlighted an 

inequity in the enacted and experienced curriculum between the case studies. The 

approach of the teachers and parental involvement impacted the students’ experiences 

and therefore their perceptions of coding in the curriculum. The different curriculum 

perspectives and ideologies also identified a conflict between the ideological intention 

of digital technologies in the curriculum and education in a digital age. Globalisation is 

a key concept for education in a digital age. For example, social participation should 

increase contact and connections between people (Kafai, 2016; Starkey, 2011). It also 

allows students to get involved with communities both nationally and globally. This 

reinforces that New Zealand education should not only look at what is known but how it 

is known (Bull, 2009). The digital technologies curriculum content intends for students 

to become digital citizens who can participate in society. However, coding was not 

taught as a social practice in either case study. 
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Curriculum perspectives and powerful knowledge 

 

I summarised the areas of competing ideologies and perspectives in Figure 9. The 

findings suggest that rather than a single curriculum perspective that is teacher-directed 

or learner-centred, drawing on the strengths of each would bring the concepts that 

students understand into a new abstraction. This explained the relationship between the 

curriculum perspectives and powerful knowledge. I used an example of creating a 

digital product for social good to explore the possibility and related this to examples 

from the findings of this research which provided a way of how coding in the 

curriculum could be effectively structured. 

 

Figure 9. Curriculum perspectives and powerful knowledge 

 

The students in both case studies said that they found it difficult to learn complex 

coding on their own. Teaching the technical skills involved in coding does not mean 

that students would be following directions all the time. In addition, learner-centred 

does not mean students have to make all the decisions regarding their learning. It would 

be a teacher-supported process where students can learn the concepts and objective 

knowledge required, for example, how to create a game, app or website.  

Students could still be actively involved in choosing the social problem relevant to their 

own experiences. They may even determine how they would like to approach this issue 

and solve it using digital technology. Students would use generic skills and 

competencies such as creativity and problem-solving. They could be encouraged to 

draw on skills from learning areas other than digital technology such as science, 

English, maths or art and design. The teacher could connect students with experts in the 

field or those who have experienced the issue or tackling issues in a similar way. This 
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would link students to the wider community and rather than finding information online 

from anywhere is the world, students would be supported in two-way communication 

and feedback to deepen their designs and broaden their computational participation. 

Academic knowledge of concepts and ideas are still important for students to 

understand core programming concepts. However, in this example opportunities are 

created for students to build knowledge and collaborate in new and challenging ways. 

Engaging students with different experiences, perspectives and ideas will draw on the 

strengths of both traditional knowledge and 21st century learning approaches which can 

lead to more powerful knowledge creation. 
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CHAPTER 7 CONCLUSION 

 

Interpreting the new curriculum content in New Zealand through its manifestations of 

ideology and the enacted and experienced curriculum allowed me to evaluate the 

implementation of this curriculum change. The focus of this study was on coding, which 

was an important part of digital technologies in the curriculum.  

 

In this narrative inquiry twelve Year 7 and 8 students who had already experienced 

coding in the curriculum shared their experiences. They provided examples of why they 

believed coding was important to learn and how they found it useful. The reasons and 

experiences across both case studies were similar. Students felt that coding allowed 

them to understand the digital world in which they lived, and that coding was useful for 

the future, including employment. Their reasons aligned with the interpreted intentions 

of digital technologies in the curriculum which supported economic participation and 

social and economic efficiency ideology. However, this study also found coding 

supports learner-centred ideology. Students believed coding was a useful skill, they 

were able to create digital products, wanted to teach others coding and believed they 

could fix problems with computers if required. This meant that students felt they 

developed personally and intellectually through learning new things through coding. 

 

There was a significant difference between the two case studies which reflected a 

contradiction between competing ideologies. The main difference was the approach of 

the teacher. This difference at classroom level corresponded with the broader debate in 

education of 21st century skills versus powerful knowledge. The debate between the two 

approaches and the contention between teacher-directed or learner-centred methods 

need not exist. Students in both case studies said that they needed help from others to 

learn more complex coding. Drawing on the strengths of academic knowledge, for 

example learning coding concepts through teacher instruction, and using 21st century 

skills, students can use information produced by others to actively build new 

knowledge. Globalisation is a key concept for education in a digital age. Treating 

coding as a social practice by teaching students to use the online learning communities, 

to connect with the wider community or to use programming for social good are 

examples of how coding in the curriculum could be effectively structured.   
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The students in this study were born in a digital age and cannot comprehend what their 

lives would be like without technology. They appreciate what a computer does and want 

to learn more about how it does it. Most students want to be able to use and control 

technology as intended by the prescribed curriculum. Students in the case studies 

enjoyed learning coding and found it interesting, this is because they saw it as relevant 

to their lives. Coding is part of the world they know; therefore, “without code we would 

probably be like cave people”. 
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Appendix 

 

Appendix 1. Interview guide and questions 

 

1. Contact principals regarding research and approval to work with a teacher of 

coding at Year 7/8. (Provide information sheet and consent form) 

2. Discuss research with the teacher (provide information sheet and consent form) 

and collect relevant/available school documentation on coding. Teacher to 

identify a range of students to invite to participate 

3. Teacher to issue information sheet and consent form to students to take home 

and discuss with parents. Student and parent signature required for consent 

4. Once signed consent forms have been obtained, hold focus group at a venue at 

school as agreed by with the school/teacher with food and drink available. 

5. Place voice recorders in a suitable place to record audio. 

6. Introduction and confidentiality/voluntary aspect discussed. 

 

The following is an outline of the focus group questions however there was further 

promoting and probing throughout to obtain the best data; 

Whole group discussion focused on: 

When did you first hear about or start learning coding at school? 

What do you think coding is all about? 

What types of activities do you work on in coding during class? 

What do you enjoy about these activities? 

How do you think completing these activities has been useful for you?/ How do you 

think coding helps you? (further probing) 

• Students in pairs asked to brainstorm on paper (could draw these or take photos 

of their work if available): What have you made when learning coding at school 

that you couldn’t before? Whole group discussion: 
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Sharing what has been put on their paper, students can add to theirs if others remind 

them of something they have done. How did you learn how to do this?  

How have you used coding outside of class? If you haven’t, why not? Or how do you 

think you could you use coding outside of class? How do you see yourself using coding 

outside of class? (further probing) 

• Draw arrows from school activities that have/could inform outside school 

activities 

• Discussion about what has been drawn: 

What else do you want to learn about coding? 

• Discuss summary of two or three key points before participants leave the focus 

group or the main points after each question to see if they agree 


