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Abstract. A pair (A,B) of square (0, 1)-matrices is called a Lehman
pair if ABT = J + kI for some integer k ∈ {−1, 1, 2, 3, . . .}, and the
matrices A and B are called Lehman matrices. This terminology arises
because Lehman showed that the rows of minimum weight in any non-
degenerate minimally nonideal (mni) matrix M form a square Lehman
submatrix of M . In this paper, we view a Lehman matrix as the bipartite
adjacency matrix of a regular bipartite graph, focussing in particular on
the case where the graph is cubic. From this perspective, we identify two
constructions that generate cubic Lehman graphs from smaller Lehman
graphs. The most prolific of these constructions involves repeatedly re-
placing suitable pairs of edges with a particular 6-vertex subgraph that
we call a 3-rung ladder segment. Two decades ago, Lütolf & Margot
initiated a computational study of mni matrices and constructed a cat-
alogue containing (among other things) a listing of all cubic Lehman
matrices with k = 1 of order up to 17 × 17. We verify their catalogue
(which has just one omission), and extend the computational results
to 20 × 20 matrices. Of the 908 cubic Lehman matrices (with k = 1)
of order up to 20 × 20, only two do not arise from our 3-rung ladder
construction. However these exceptions can be derived from our sec-
ond construction, and so our two constructions cover all known cubic
Lehman matrices with k = 1.

1. Introduction

This paper is concerned with certain square (0, 1)-matrices that we call
Lehman matrices1, which are defined in the following way.

Definition 1.1. A pair (A,B) of square (0, 1)-matrices of the same order is
called a Lehman pair if ABT = J +kI for some integer k ∈ {−1, 1, 2, 3, . . .},
where J is the all-ones matrix. An individual matrix is called a Lehman
matrix if it is in a Lehman pair.

These matrices (at least for k > 0) arise naturally in combinatorial opti-
mization, and were also studied by Bridges & Ryser [1] as a generalization of
the matrix equation defining the incidence matrix of a combinatorial design.
We say that a (0, 1)-matrix is r-regular if each of its rows and columns sum
to r. Bridges & Ryser proved (again for k > 0) that if (A,B) is a Lehman
pair, then there are integers r and s so that A is r-regular, B is s-regular,
and k = rs− n. We show below that the same conclusion holds for k = −1,

1As detailed below, this terminology differs slightly from that of some previous authors.
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and say that A has type (n, r, s) or just that A is an (n, r, s)-Lehman matrix
(and so B is an (n, s, r)-Lehman matrix). If k = −1, then we say that the
Lehman pair is negative and that A and B are negative Lehman matrices,
and analogously the Lehman pair and its matrices are positive if k > 0.
A small Lehman pair is shown in Figure 1; in this case A is the point-line
incidence matrix of the Fano plane and B = A is the same matrix. In this
example, r = s = 3 and k = 2.



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


=



3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3


Figure 1. The Fano plane gives a (7, 3, 3)-Lehman matrix

The connection to combinatorial optimization arises from attempts to
classify minimally nonideal clutters. Here, a clutter (also known as a Sperner
family) is a pair C = (V,E) where V is a finite set and E ⊆ 2V is a set of
subsets of V such that no element of E contains another. The elements of V
are usually called the vertices of the clutter, and those of E the hyperedges
(or just edges) of the clutter. A clutter can be represented by a (0, 1)-matrix,
with rows indexed by E, columns indexed by V , and where each row is the
incidence vector of the corresponding hyperedge. Conversely, any (0, 1)-
matrix with the property that there is no row whose support contains the
support of another row is a clutter matrix (i.e., the matrix of some clutter).
We will often blur the distinction between a clutter and its matrix.

If C is a clutter with an m × n clutter matrix A, then C (and also A) is
called ideal if the polyhedron

Q(A) = {x ∈ Rn : Ax � 1 and x � 0}
has integral vertices. Here 0 and 1 represent the all-0 and all-1 vectors
respectively and � indicates that the inequality holds for each coordinate.
If a clutter matrix A is ideal, then any integer program with coefficient
matrix A has the same solutions as its linear program relaxation (where the
integer requirement is dropped). As integer programs are computationally
hard to solve and linear programs computationally feasible, this is a desirable
situation, and hence one that we wish to better understand.

There are notions of deletion and contraction, and hence minors, for clut-
ters that are reminiscent of the same notions for graphs or matroids. If C is a
clutter and v is a vertex of C, then C\v (C delete v) is the clutter with vertex
set V \{v} whose hyperedges are the hyperedges of C that do not contain v.
The clutter C/v (C contract v) is the clutter with vertex set V \{v} whose
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hyperedges are the minimal sets (under inclusion) of the form H\{v} where
H is a hyperedge of C. In matrix terms, if A is a clutter matrix and c a col-
umn, then A\c is obtained by deleting any row that contains a 1 in column
c, and then deleting the entire column. The contraction A/c is produced
by first deleting column c, and then deleting any rows whose support is no
longer minimal under set inclusion. Any clutter (or clutter matrix) obtained
by a possibly-empty sequence of deletions and contractions is a minor of the
original clutter (or clutter matrix).

Any minor of an ideal clutter is itself ideal, which raises the possibility
of an excluded-minor characterisation of ideal clutters. Thus we define a
clutter, or a clutter matrix, to be minimally nonideal (mni) if it is not ideal,
but every proper minor is ideal. Lehman [9] proved the seminal result that
if A is an mni clutter matrix, then either A belongs to a particular spo-
radic family (the degenerate projective planes) or the rows of A of minimum
weight form a Lehman matrix as defined in Definition 1.1. Therefore we
may assume that the first n rows of any mni clutter matrix of order m× n
form a Lehman matrix. This raises the possibility of a two-stage approach
to understanding mni matrices, namely first characterise Lehman matrices
and then understand how additional rows can be added to a Lehman matrix
to form a larger mni matrix. Unfortunately, this latter step appears to be
extremely difficult because the property of being mni does not behave nicely
under addition of rows. In particular, it is possible that adding a row to an
mni matrix may result in one that is not mni, and conversely. Cornuéjols
and Guenin [5] give a readable and comprehensive treatment of ideal clut-
ters that provides useful additional background and a wider context to this
work than we have given here.

More than 20 years ago, Lütolf & Margot [10] conducted a computational
search based on these observations in order to provide a collection of small
mni matrices. They observed that “we lack a good understanding of the
structure of mni matrices”, and hoped to provide a significant number of
examples of mni matrices in the hope that further study would shed light
on their structure. For particular values of r, they implemented an orderly
algorithm [12] to produce a complete list (up to permutations of rows and
columns) of r-regular (0, 1)-matrices and then extracted the Lehman matri-
ces from this list. They identified the Lehman matrices that are already mni
(without adding any rows) and used a heuristic search to produce non-square
mni matrices by adding additional rows to each Lehman matrix. Their re-
sults mostly cover the cases where r = 3, the matrices have order at most
17× 17, and k = 1. The constraints on size and valency are consequences of
the very rapid increase in the numbers of regular bipartite graphs as the size,
and especially the valency, increases. Lehman matrices with k > 1 appear
to be very rare, with the incidence matrices of projective planes being the
only known infinite family and the adjacency matrices of the Moore graphs
giving a handful of sporadic examples. We note that this takes the usual
adjacency matrix, and then treats it as a clutter matrix.
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In this paper, we consider in detail the structure of Lehman matrices by
taking a graphical perspective. An r-regular (0, 1)-matrix can be viewed as
the bipartite adjacency matrix of an r-regular bipartite graph and vice versa,
so we say that a graph is a Lehman graph if its bipartite adjacency matrix is
a Lehman matrix. A matrix of order n×n corresponds to a bipartite graph
of order 2n with n black and n white vertices. We primarily consider the
case when r = 3, where both the theoretical and computational tools give
us most traction, and we call these graphs cubic Lehman graphs. Figures 2
and 3 show all four cubic Lehman graphs on 22 vertices. It is immediately
apparent that they are qualitatively rather similar and in particular all of
them seem to be very “ladder-like”. The first graph of Figure 2 actually is
the cubic Möbius ladder of order 22, while the others all appear to consist
of ladder segments of varying lengths connected together. We shall see that
this is no accident and that a single construction technique involving the
replacing of suitable pairs of edges by 6-vertex ladder segments accounts for
almost all of the known cubic Lehman graphs.

Figure 2. Two (11, 3, 4)-Lehman graphs

Figure 3. The other two (11, 3, 4)-Lehman graphs

More precisely, we show that if a cubic Lehman graph with k = ±1
contains a ladder segment with 3 rungs, then it can be reduced to a smaller
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cubic Lehman graph with the same k by removing the ladder segment and
adding two edges to repair the regularity. We show that this process can be
reversed, and used to construct huge numbers of cubic Lehman matrices with
k = ±1 starting from the cubic planar ladder on 8 vertices (for k = −1) or
cubic Möbius ladder on 10 vertices (for k = 1), and then repeatedly inserting
3-rung ladder segments.

We repeat, verify, and extend Lütolf & Margot’s computations, in the
process discovering that their catalogue of 17 × 17 Lehman matrices omit-
ted just one matrix — the graph corresponding to this matrix is shown in
Figure 4. The sole omission is a Lehman graph of type (17, 3, 6) that has
no 4-rung ladder segment, but that does have 3-rung ladder segments. It is
unclear as to how this graph/matrix was missed as the search described by
Lütolf & Margot should certainly have constructed it at some stage.

Figure 4. The “missing” Lehman graph on 34 vertices

The computations also give us some sense of how many of the small
cubic Lehman graphs arise from ladder insertions, simply by testing which
of them have a 3-rung ladder. Rather surprisingly, there are only two cubic
Lehman graphs with k = 1 on up to 40 vertices (corresponding to 20 × 20
matrices) that do not have a 3-rung ladder segment (Figure 5 shows the
smaller example). The smallest cubic Lehman graph with k = 1 is the
Möbius ladder on 10 vertices, which is a (5, 3, 2)-Lehman graph. Therefore
all except two cubic Lehman graphs (with k = 1) on up to 40 vertices arise
from the Möbius ladder on 10 vertices by iterated ladder insertion.
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The two exceptional cubic Lehman graphs having no 3-rung ladder are
also highly structured, in that their vertices can be partitioned into 4-cycles.
Motivated by this example, we describe a second reduction operation, which
involves replacing the 4-cycles with edges, thereby “compressing” a cubic
Lehman graph with k = 1 into a smaller cubic Lehman graph, but this
time with k = −1. Unlike ladder insertion and its reverse, this construction
is applicable to Lehman graphs of higher valency. If an r-regular Lehman
graph with k = ±1 can be partitioned into copies of the complete bipar-
tite graph Kr−1,r−1 (which we denote bicliques) then each biclique can be
compressed to a single edge leaving a smaller r-regular graph with k = ∓1
(respectively). We call this operation biclique compression and we deter-
mine the circumstances under which it can be reversed (biclique expansion)
thereby producing a second construction technique for Lehman graphs. The
square mni matrices discovered by Wang [13] have the property that their
vertices can be partitioned into copies of Kr−1,r−1 and so are instances of
this construction.

Figure 5. A (14, 3, 5)-Lehman graph with no 3-rung ladder segment

We note that it is always possible to insert enough 3-rung ladder seg-
ments into a cubic Lehman graph with k = 1 to ensure that the vertices of
the resulting graph can be partitioned into 4-cycles. Therefore every cubic
Lehman graph with k = 1 can be obtained from a negative cubic Lehman
graph by a combination of biclique expansion followed by 3-rung ladder re-
duction. In principle then, it suffices to characterise cubic negative Lehman
graphs.

The paper is structured as follows: Section 2 contains all necessary back-
ground, definitions and notation for what follows. Section 3 gives a detailed
analysis of the ladder reduction and insertion operations, while Section 4
does the same for biclique compression and expansion. Section 5 gives the
results of a computer search for cubic Lehman graphs (with k = ±1) of
order up to 20×20. Subsequent analysis of the data reveals that all of these
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Lehman graphs arise from the repeated application of our constructions
(mostly ladder insertion) from a tiny number of base graphs.

Section 6 addresses the question of when the square submatrix formed by
the minimum weight rows of a minimally nonideal matrix is the point-line
incidence matrix of a projective plane. It is known that the point-line inci-
dence matrix of the Fano plane (with no added rows) is mni. We conjecture
that no other mni matrices, square or otherwise, can be obtained by adding
(zero or more) rows to the point-line incidence matrix of a projective plane.
We prove that the conjecture holds if the projective plane is the Fano plane
PG(2, 2) or the ternary plane PG(2, 3).

2. Preliminaries

The following theorem is mostly due to Bridges & Ryser [1]. We present
a proof, even though it is directly modelled on theirs, because they do not
consider the case k = −1 in either their theorem or proof.

Theorem 2.1. Let A and B be n × n non-negative integral matrices with
n > 1 such that ABT = J + kI, where k is in {−1, 1, 2, 3, . . .}. Then
BTA = ABT and there are integers r, s such that A is r-regular, B is
s-regular and rs = n + k.

Proof. Let X be J + kI. It is straightforward to verify that

(1) X−1 =
1

k
I − 1

k(n + k)
J.

From the hypotheses, we see that I = (ABT )X−1 = A(BTX−1), and there-
fore (BTX−1)A = I. We substitute (1) into this last equation, multiply out,
and deduce that

(2) BTA = kI +
1

n + k
BTJA = kI +

1

n + k
[fiej ]1≤i,j≤n,

where fi is the sum of row i in BT , and ej is the sum of column j in A.
Since the trace of ABT is equal to the trace of BTA, it follows that

n(k + 1) = tr(ABT ) = tr(BTA) = nk +
1

n + k

n∑
i=1

fiei,

where the first equality is read off from the hypotheses, and the last comes
from (2). We can now deduce that

(3)

n∑
i=1

fiei = n(n + k).

As ABT = J + kI is non-singular, we see that fi, ej > 0 for each i and j.
Because BTA is integral, we can deduce from (2) that n + k divides each
fiej . Therefore fiej ≥ n + k. Now (3) implies that fiei = n + k for each
i. For distinct integers i and j, we therefore have fiei = n + k ≤ fiej ,
which implies ei ≤ ej . As i and j were arbitrary, this in turn implies that
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e1 = · · · = en, and hence f1 = · · · = fn. Let r be the common column sum
of A, and let s be the common row sum of BT . Thus rs = n+k, as asserted
in the statement of the theorem, and by substituting n + k for fiei in (2) it
follows immediately that BTA = kI + J = ABT .

By repeating the arguments with A and BT exchanged, we see that A has
constant row sum, and BT has constant column sum. Since the total sum
of the entries in A is nr, each row sums to r. The same argument shows
that each row or column of BT sums to s and we are done. �

Thus, if A is a Lehman matrix, then A has constant row- and column-
sum, and moreover, the matrix B that satisfies ABT = J + kI is also a
Lehman matrix. Given a non-singular (0, 1)-matrix A and an integer k, the
only possible matrix that might form a Lehman pair with A is

B =
(
A−1(J + kI)

)T
so (A,B) is a Lehman pair if and only if B is a (0, 1)-matrix. However a
matrix can belong to two different Lehman pairs — the bipartite adjacency
matrix of the 6-cycle is a (3, 2, 1) Lehman matrix and also a (3, 2, 2) Lehman
matrix.

Corollary 2.2. Let A be a Lehman matrix satisfying ABT = J + kI. Then
ATB = J + kI.

Proof. Assume that ABT = J + kI. Theorem 2.1 says that BTA = J + kI.
Therefore J + kI = (J + kI)T = (BTA)T = ATB. �

Let G be a connected bipartite graph whose vertices are partitioned into
two independent sets GB = {b1, b2, . . . , } and GW = {w1, w2, . . . , }, which we
refer to as the black vertices and the white vertices of G, respectively. Then
the bipartite adjacency matrix of G is the matrix M with rows indexed by
GB and columns indexed by GW where Mbw = 1 if and only if b is adjacent
to w. Conversely, any (0, 1)-matrix corresponds to a bipartite graph in
the obvious fashion. If the matrix is a Lehman matrix, then its associated
bipartite graph is regular. A bipartite graph is called a Lehman graph if its
bipartite adjacency matrix is a Lehman matrix.

If v is a vertex in a loopless graph, let N(v) stand for its open neighbour-
hood : that is, the set of vertices adjacent to v. The following proposition just
reinterprets the definition of a Lehman matrix in graph-theoretical terms.

Proposition 2.3. Let G be a regular bipartite graph with bipartition
{GB, GW }. Then G is a Lehman graph if and only if there is some in-
teger k ∈ {−1, 1, 2, . . . , } such that for every black vertex b, there is a set
ΓG(b) ⊆ GW of white vertices such that, for all b′ ∈ GB

|ΓG(b) ∩N(b′)| =

{
k + 1, b′ = b;

1, b′ 6= b.
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Proof. If G is a Lehman graph with bipartite adjacency matrix A, then it
belongs to a Lehman pair (A,B) and we can take the rows of B to be the
(incidence vectors of the) sets ΓG(b). The Lehman condition for the matrix
is then identical to the intersection conditions for the sets. The converse is
very similar – if a collection of suitable sets {ΓG(b)}b∈GB

exists, then the
matrix B with the incidence vectors of these sets as its rows will form a
Lehman pair with A. �

We will call the set ΓG(b) the mate of b, and will drop the subscript G if
the graph is uniquely determined by context. For both positive and negative
Lehman graphs, each set Γ(b) is a set of white vertices that dominates every
black vertex other than b exactly once, while dominating b exactly k + 1
times. Figure 6 shows the mate of a vertex in the Desargues graph, which
is a (10, 3, 4)-Lehman graph. As k = 3× 4− 10 = 2, the Desargues graph is
one of the rare Lehman graphs with k 6= ±1. The set of four circled white
vertices dominates the marked black vertex b three times, and all other black
vertices exactly once each.

If G is a Lehman graph with bipartite adjacency matrix A, then the
incidence vector x of the mate of the vertex bi is the unique solution to
Ax = 1+kei (where ei is the standard basis vector with a single 1 in the ith
position). Therefore if any black vertex of a regular bipartite graph G has
no mates or more than one mate, then G is not a Lehman graph. If every
black vertex of G has at least one mate, then every black vertex must have
exactly one mate, and the graph is a Lehman graph. By Corollary 2.2, we
can swap the words “black” and “white” wherever they occur, and so every
white vertex of a Lehman graph also has a unique mate. Our arguments
in subsequent sections will largely be based around showing that a vertex
in a candidate Lehman graph has too few, too many, or exactly the right
number of mates.

b

Figure 6. A mate in the unique (10, 3, 4)-Lehman graph

Proposition 2.4. Let G be a Lehman graph and suppose that b is a black
vertex, and w is a white vertex. Then w is in the mate of b if and only if b
is in the mate of w.
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Proof. Let A be the Lehman matrix associated with G, and let B be the
matrix satisfying ABT = J + kI. The rows of B are the incidence vectors
of the mates of the black vertices, and so w is in the mate of b if and only
if Bbw = 1. Now ATB = J + kI, by Corollary 2.2, and so the rows of
BT are the incidence vectors of the mates of the white vertices. Thus b is
in the mate of w if and only if (BT )wb = 1, which happens if and only if
Bbw = 1. �

The Hadamard product of two square matrices X and Y , written X ◦ Y ,
is component-wise product of X and Y ; that is, [X ◦ Y ]i,j = [X]i,j [Y ]i,j for
all i and j. Let (A,B) be a Lehman pair satisfying ABT = J + kI. Then
A ◦ B is a (k + 1)-regular matrix. Thus the bipartite graph corresponding
to A ◦ B is (k + 1)-regular. We call this the auxiliary graph of A (or B)
and denote it aux(A). If G is a cubic Lehman matrix with k = 1, then its
auxiliary graph is 2-regular, and so the edges not in the auxiliary graph form
a perfect matching of G. We will call the edges of this distinguished perfect
matching the rungs of G. This terminology arises from the observation that
if the graph actually is a ladder, either a cubic planar ladder or a cubic
Möbius ladder, then the rungs of the Lehman graph are actually the rungs
of the ladder in the normal graph-theoretical sense.

Figure 7 shows a (14, 3, 5)-Lehman graph, with the diagram on the left
highlighting the auxiliary graph and the diagram on the right highlighting
the rungs.

Figure 7. Auxiliary graph and rungs of a (14, 3, 5)-Lehman graph

3. Ladder reduction and insertion

In this section, we describe the first of the two ways in which certain
Lehman graphs can be reduced to smaller Lehman graphs, and when this
operation can be reversed. This operation applies only to cubic Lehman
graphs with k ∈ {−1, 1}.
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A 3-rung ladder segment is a 6-vertex induced subgraph isomorphic to the
graph obtained from the cube Q3 by deleting two adjacent vertices, along
with their incident edges. Except for two small base cases, we show that it
is always possible to delete a 3-rung ladder segment from a cubic Lehman
graph and then add two edges to repair the regularity in such a way that the
resulting graph is also a Lehman graph. This reduction produces Lehman
graphs with six fewer vertices than the original graph, but with the same
“sign” (i.e. positive or negative).

3.1. Ladder Reduction For Cubic Lehman Graphs. We define a re-
duction operation, which we denote 3-rung ladder reduction, that preserves
the property of being a cubic Lehman graph. More precisely, suppose that
L is a 3-rung ladder segment in a cubic graph G, that there are four distinct
vertices {wL, bL, wR, bR} that are adjacent to, but outside, L (as shown in
Figure 8), and that the pairs (bL, wR) and (wL, bR) are not edges of G. The
dotted lines in the figure represent edges that may or may not be present.
Then the 3-rung ladder reduction of G with respect to L is the graph G↓L
obtained from G by deleting the six vertices of L and then restoring 3-
regularity by adding the edges (bL, wR) and (bL, wR).

w0 w1

w2

wL

wR

b0 b1

bL

b2

bR wL

wRbL

bR

Figure 8. A 3-rung ladder reduction

The constraints on L and its vertices of attachment are simply the con-
ditions required to ensure that G↓L is actually cubic. These conditions are
necessary because there are two small Lehman graphs that each contain
a 3-rung ladder, but which cannot be reduced with this operation. These
graphs, illustrated in Figure 9 are the cubic planar ladder on 8 vertices (i.e.
the cube) and the cubic Möbius ladder on 10 vertices. The cube cannot
be reduced because the vertices {bL, wL, bR, wR} are not distinct while the
10-vertex ladder cannot be reduced because bL is already adjacent to wR

(similarly for wL and bR).
Our first lemma shows that for all larger cubic Lehman graphs, any 3-

rung ladder segment automatically meets these additional constraints, and
so is suitable for ladder reduction.
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Figure 9. Lehman graphs of type (4, 3, 1) and (5, 3, 2)

Lemma 3.1. Suppose that G is a Lehman graph of type (n, 3, s) where
k = 3s − n ∈ {1,−1} containing a 3-rung ladder L. If k = −1 and s > 1,
or if k = 1 and s > 2, then the vertices {bL, wL, bR, wR} are distinct, wL is
not adjacent to bR, and wR is not adjacent to bL.

Proof. First consider the case where k = 1 and suppose, for a contradiction,
that G contains a 3-rung ladder segment L where bL = bR, as shown in
Figure 10. (Here wL and wR may be the same or distinct.) The mate Γ(b1)
contains two vertices from {w0, w1, w2}. However any pair of vertices from
that set dominates two vertices twice, and so cannot be contained in the
mate of any black vertex. Therefore the four vertices {bL, wL, bR, wR} are
indeed distinct.

w0 w1 w2

wL wR

b0 b1

bL = bR

b2

w0 w1

w2

wL

wR

b0 b1

bL

b2

bR

Figure 10. Configurations in a cubic Lehman graph

Next we will show that bL is not adjacent to wR. Again we proceed by
contradiction starting from the second diagram of Figure 10. Suppose that
b 6= b1 and that Γ(b) contains w0. Then w1, w2 /∈ Γ(b) and so to dominate
b2 it is forced that wR ∈ Γ(b) and as bL is now twice-dominated, it follows
that b = bL. Thus w0 is in at most two mates, hence it follows that s ≤ 2,
contradicting our assumptions. (We note that this configuration can occur
when s = 2, as it is a subgraph of the cubic Möbius ladder on 10 vertices,
which is a Lehman graph of type (5, 3, 2).)
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Next consider the case where k = −1 and suppose, again for a contradic-
tion that G contains the configuration of Figure 10. Now we will consider
the mates of the white vertices, which are sets of black vertices dominating
each white vertex bar one exactly once each. The exceptional white vertex
is not dominated at all. If a mate contains one vertex from {b0, b1, b2} then
it cannot contain bL for then we would have a vertex dominated twice. As
w1 is the only vertex whose mate contains no vertices from {b0, b1, b2} this
means bL is only in one mate. Therefore s = 1, wL = wR and the entire
graph is the cube.

Next we will show that bL is not adjacent to wR and again proceed by
contradiction starting from the second diagram of Figure 10. Let b be an
arbitrary black vertex and suppose that w0 ∈ Γ(b). Then w1, w2, wR /∈ Γ(b)
because that would cause either b0, b1 or bL to be twice dominated. As Γ(b)
misses the entire neighbourhood of b2, it follows that b = b2 and s = 1,
contradicting our assumptions. �

The main purpose of Lemma 3.1 is to ensure that for any Lehman graph
other than the cube and the cubic Möbius ladder on 10 vertices, a 3-rung
ladder reduction will at least give a cubic graph. Next we show that reducing
3-rung ladders also preserves the Lehman property.

Proposition 3.2. Suppose that G is a Lehman graph of type (n, 3, s) where
k = 3s − n ∈ {1,−1}. Furthermore, assume that s > 2 if k = 1 and s > 1
if k = −1. If G contains a 3-rung ladder L, then G↓L is a Lehman graph
of type (n− 3, 3, s− 1).

Proof. From Lemma 3.1, any 3-rung ladder L in G has the form depicted
in Figure 8 where {wL, wR, bL, bR} are distinct vertices and (wL, bL) and
(wR, bR) are the only possible edges between vertices in this set. Therefore
G↓L is at least a cubic graph.

To show that it is a Lehman graph, we show that each black vertex
b ∈ V (G↓L) has a mate, and in fact we claim that

ΓG↓L(b) = ΓG(b)\{w0, w1, w2}.
In other words, take the mates of all the vertices in G, completely throw
away the mates of b0, b1 and b2 and then just delete w0, w1 and w2 from
the remainder.

First we show that in both the positive and negative cases, the mate in
G of any black vertex b /∈ {b0, b1, b2} contains the vertex w0 if and only if
it contains wR. This follows because if w0 ∈ ΓG(b) then w1, w2 /∈ ΓG(b)
(as this would result in either b0 or b1 being twice-dominated). As b 6= b2,
the mate of b must dominate b2 exactly once and so wR ∈ ΓG(b). For the
converse, note that if wR ∈ ΓG(b), then w1, w2 /∈ ΓG(b) because that would
cause b2 to be twice-dominated. In order to dominate b1, it must be the
case that w0 ∈ ΓG(b). Symmetrically, w2 ∈ ΓG(b) if and only if wL ∈ ΓG(b).

Next we will use this fact to show that for any b /∈ {b0, b1, b2}, the set
ΓG(b)\{w0, w1, w2} is a mate for the vertex b in G↓L. First observe that
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ΓG(b) contains exactly one vertex in {w0, w1, w2}. This follows because
b1 must be dominated at least once, and only ΓG(b) can contain either
zero or two of these vertices (in the negative, positive case respectively).
If ΓG(b) contains w0 (the case w2 is equivalent), then it also contains wR,
and although bL is no longer dominated in G↓L by the deleted vertex w0,
it is now dominated by wR via the added edge. Hence ΓG(b)\{w0, w1, w2}
dominates the black vertices in G↓L exactly the same number of times as
ΓG(b) dominates the same vertices in G. If ΓG(b) contains w1, then it does
not contain any of w0, w2, wL, or wR, for otherwise b0 or b2 is dominated
twice, and b 6= b0, b2. Therefore every black vertex of G↓L is dominated by
ΓG(b)\{w0, w1, w2} exactly the same number of times as the same vertex
was dominated by ΓG(b) in G.

So we have shown that each black vertex has a mate, and therefore there is
a solution to the defining (matrix) equation of a Lehman matrix and so G↓L
is a Lehman graph. As G↓L has six fewer vertices than G, and each mate in
G↓L has cardinality s−1, we see that its parameters are (n−3, 3, s−1). �

The consequence of this result is that any cubic Lehman graph on more
than 10 vertices with k = 1 and with a 3-rung ladder segment can be reduced
to a smaller cubic Lehman graph with k = 1. If the reduced graph itself
has a 3-rung ladder segment, then the process can be iterated, ending with
either the cubic Möbius ladder on 10 vertices or an “irreducible” Lehman
graph with no 3-rung ladder segment. Our exhaustive computer search for
cubic Lehman graphs with k = 1 on up to 40 vertices show that there are
just two irreducible graphs in this range, the smaller of which is shown in
Figure 5.

3.2. Ladder Insertion For Cubic Lehman Graphs. Now we consider
when the reverse operation of a 3-rung ladder reduction can be performed.
The reverse operation consists of removing a non-incident pair of edges
e = (wL, bR) and f = (wR, bL), adding a new 3-rung ladder segment L
(again labelled as in Figure 8), and finally adding the edges (w0, bL), (w2, bR)
(wL, b0) and (w2, bR). We denote the resulting graph by G↑{e, f} and call
the pair of edges expandable if G↑{e, f} is a Lehman graph.

For a cubic Lehman graph with k = 1, the partition of the edge set
into the 2-regular auxiliary graph and its complementary perfect matching
play a major role in determining when a 3-ladder expansion yields a larger
Lehman graph. The next proposition gives some simple conditions sufficient
to guarantee that {e, f} is an expandable pair of edges. In this proof, we
will frequently need to refer to the rows, columns and individual entries of
several different matrices, so to avoid cramped subscripts we temporarily use
more prominent notation. More precisely, if a matrix X has rows indexed
by black vertices and columns by white vertices then X(b, w) will refer to
the (b, w)-entry of the matrix, X(b) will refer to the row indexed by b and
X(w) will refer to the column indexed by w.
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Proposition 3.3. Let G be a (3s−1, 3, s)-Lehman graph and let e = (wL, bR)
and f = (wR, bL) be non-incident edges of G. If e and f are in the auxiliary
graph of G, the mates of bL and bR are disjoint, and the mates of wL and
wR are disjoint, then G↑{e, f} is a (3(s + 1)− 1, 3, s + 1)-Lehman graph.

Proof. Suppose that A and A′ are the bipartite adjacency matrices of G
and G↑{e, f} respectively. Simply translating the insertion operation into
matrix terms, we see that A′ is obtained from A by adding three additional
rows and columns, and has the block form

A′ =

[
A′11 A′12
A′21 A′22

]
,

where A′11 is equal to A except that A′11(bL, wR) and A′11(bR, wL) have been
changed from 1 to 0 (the dashed arrows in Figures 11 and 12 indicate that
the original 1 has been “moved” leaving behind a 0 entry). Then A′12 is a
(3s−1)×3 matrix with just two non-zero entries in the (bL, w0) and (bR, w2)
positions, and A′21 is a 3× (3s− 1) matrix with just two non-zero entries in
the (b0, wL) and (b2, wR) positions. Finally A′22 is the 3 × 3 matrix shown
in Figure 11.

A

wL wR w0w1w2

bR

bL

b0
b1
b2

0

0

1

1

1

1

0 1 1

1 1 1

1 1 0

B

wL wR w0w1w2

bR

bL

b0
b1
b2

1

10

0

0 1 0

1 0 1

0 1 0

B
(w

R
)

1
−

B
(w

R
)−

B
(w

L
)

B
(w

L
)

B(bL)

1−B(bR)−B(bL)

B(bR)

Figure 11. A′ and B′ after a 3-ladder insertion in a positive
Lehman graph

Now we will define a matrix B′, and then prove that A′B′ = J + I as
required. This is constructed from B (the partner of A in the Lehman pair
(A,B)) by adding three additional rows and columns, and is illustrated in
the second diagram of Figure 11. The upper left submatrix of B′ is simply
equal to B, while the new rows and columns of B′ are defined in the following
way: B′(b0) is obtained by duplicating B(bR) and extending it by adding
three more coordinates equal to (0, 1, 0). Thus, using block vector notation,
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and with 1 being the all-ones vector, we have

B′(b0) = (B(bR) | 0, 1, 0),

B′(b1) = (1−B(bL)−B(bR) | 1, 0, 1),

B′(b2) = (B(bL) | 0, 1, 0).

The new columns are defined analogously using vectors B(wR), 1−B(wR)−
B(wL), and B(wL), and extending them as shown in Figure 11. The condi-
tion that the mates of bL and bR are disjoint ensures that 1−B(bR)−B(bL)
is a (0, 1)-vector and that every column of B′21 sums to one, and analogously
for the rows of B′12. Note that because e and f are in the auxiliary graph,
we know that wR is in the mate of bL, and wL is in the mate of bR. Thus
B(bL, wR) = B(bR, wL) = 1. Since these mates are disjoint, we also see that
B(bL, wL) = B(bR, wR) = 0.

Now we must show that for every pair of black vertices b, b∗ ∈ V (G) ∪
{b0, b1, b2} we have

A′(b) ·B′(b∗) =

{
1, b 6= b∗;

2, b = b∗.

We break into cases according to whether b ∈ {b0, b1, b2}, b ∈ {bL, bR}, or
b ∈ V (G)\{bL, bR}.
Case 1: b ∈ {b0, b1, b2}.

It is easy to check directly that when both b, b∗ ∈ {b0, b1, b2} the dot
products have the correct values, so we may take b∗ ∈ V (G). First assume
that b = b1, in which case the dot product A′(b) · B′(b∗) = B′(b∗, w0) +
B′(b∗, w1) + B′(b∗, w2) which is equal to one, as it is simply the row-sum of
B′12(b

∗). Next assume b = b0, in which case the dot product A′(b) ·B′(b∗) =
B′(b∗, wL) + B′(b∗, w0) + B′(b∗, w1). If B′(b∗, wL) = 1, then B′(b∗, w0) = 0,
because the mates of bL and bR are disjoint. Similarly B′(b∗, w1) = 0, so
A′(b) · B′(b∗) = 1. If B′(b∗, wL) = 0, then exactly one of B′(b∗, w0) and
B′(b∗, w1) is equal to one, so again the dot product takes the value one. By
symmetry the same holds when b = b2.
Case 2: b ∈ {bL, bR}.

Without loss of generality we assume that b = bL. If b∗ ∈ V (G), then the
dot product A′(b)·B′(b∗) will be equal to the dot product A(b)·B(b∗), except
in the cases where the (b∗, wR)-entry of B′ is one (when the dot product will
be reduced by one), and where the (b∗, w0)-entry of B′ is one (where it will
be increased by one). By construction, either both or neither of these occur
and so the net result is that A′(b)·B′(b∗) = A(b)·B(b∗). If b∗ = b0, then A′(b)
and B′(b∗) do not share a non-zero entry in the last three columns, or the
wL or wR columns. It now follows that A′(b) · B′(b∗) = A(bL) · B(bR) = 1.
Assume that b∗ = b1. Note that there is a single column from the last
three columns in which A′(b) and B′(b∗) are both non-zero. In all columns
other than the last three, A′(b) contains two non-zeroes. One of these non-
zeroes is in the same column as a non-zero of B(bR), and the other is in
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the same column as a non-zero of B(bL). From these facts we see that
A′(b) · B′(b∗) = 1. Finally, if b∗ = b2, then the zero in A′(bL, wR) means
that A′(bL) ·B′(b∗) = A(bL) ·B(bL)− 1 = 1. So now we have completed the
analysis when b = bL.
Case 3: b ∈ V (G)\{bL, bR}.

The last three coordinates of A′(b) are all zero and so any dot products
involving A′(b) can be rewritten using only A(b). If b∗ ∈ V (G), then A′(b) ·
B′(b∗) = A(b) · B(b∗), and because (A,B) is a Lehman pair, these dot
products have the required values. If b∗ = b0, then A′(b) · B′(b∗) = A(b) ·
B(bR) which again has the required value because (A,B) is a Lehman pair.
A symmetrical argument holds when b∗ = b2. Finally if b∗ = b1 then A′(b) ·
B′(b∗) = A(b) · (1 − B(bR) − B(bL)) which is equal to 3 − 1 − 1 using the
fact that A is cubic, and that the dot-products with the two rows of B are
each equal to 1. �

There is one simple situation where the conditions for inserting a 3-ladder
are automatically satisfied, namely when there is a rung connecting a vertex
of e to a vertex of f . To show this, we start with a lemma outlining how
the mates of two vertices intersect.

Lemma 3.4. Suppose that A is the matrix associated with a cubic Lehman
graph, and that B is the (0, 1)-matrix satisfying ABT = J+I. Let b1 6= b2 be
distinct black vertices, let w be a white vertex and suppose that A(b1, w) =
A(b2, w) = 1 (in other words, w is adjacent to b1 and b2). Then for all
w′ 6= w, either B(b1, w

′) = 0 or B(b2, w
′) = 0.

Proof. If there is some w′ such that B(b1, w
′) = B(b2, w

′) = 1, then the
(w′, w)-entry of BTA is at least 2 contradicting Theorem 2.1. �

Corollary 3.5. Let G be a (3s− 1, 3, s) Lehman graph and let e = (wL, bR)
and f = (wR, bL) be edges of G. If (wL, bL) is a rung of G, then G↑{e, f}
is a (3(s + 1)− 1, 3, s + 1) Lehman graph.

Proof. By definition, the edges of G incident with (but not equal to) a
rung are in the auxiliary graph, and so satisfy the first condition of Propo-
sition 3.3. Now we show that the mates of bL and bR are disjoint. As
A(bL, wL) = A(bR, wL) = 1 it follows from Lemma 3.4 that for any white
vertex w 6= wL, at least one of {B(bL, w), B(bR, w)} is zero. As (bL, wL) is
a rung, B(bL, wL) is zero. This covers all white vertices and so no white
vertex is in the mate of both bL and bR. A symmetric argument shows that
the mates of wL and wR are disjoint. �

The situation for negative cubic Lehman graphs is slightly different in
that certain matrix entries must be 0 rather than 1, but it is very similar in
style.

Proposition 3.6. Let G be a (3s+1, 3, s)-Lehman graph and let e = (wL, bR)
and f = (wR, bL) be edges of G. If wL is not in the mate of bR and wR is
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not in the mate of bL and the mates of bL and bR are disjoint, then G↑{e, f}
is a (3(s + 1) + 1, 3, s + 1)-Lehman graph.

Proof. As previously, let A, B and A′, B′ denote the matrices associated
with G and G↑{e, f}. Figure 12 shows how A′ is related to A (which is
the same as in positive case), and how B′ is related to B (which is slightly
different to the positive case). The arguments showing that the rows of A′

and B′ have the “right” dot product are entirely analogous to those given
in Proposition 3.3 for the positive case. �

A

wL wR w0w1w2

bR

bL

b0
b1
b2

0

0

1

1

1

1

0 1 1

1 1 1

1 1 0

B

wL wR w0w1w2

bR

bL

b0
b1
b2

0

0

1 0 0

0 0 0

0 0 1

B
(w

R
)

1
−

B
(w

R
)−

B
(w

L
)

B
(w

L
)

B(bL)

1−B(bR)−B(bL)

B(bR)

Figure 12. A′ and B′ after a 3-ladder insertion in a negative
Lehman graph

4. Biclique compression and expansion

In this section we consider r-regular Lehman graphs whose vertex set can
be partitioned into copies of Kr−1,r−1. By a slight abuse of notation, we will
refer to these copies of Kr−1,r−1 as the bicliques of the graph. (Normally,
‘biclique’ refers to any maximal induced complete bipartite subgraph not
just those of a particular valency.) We start by showing that any r-regular
Lehman graph with a partition into bicliques must have k ∈ {−1, 1}, and
moreover must have r = 3 if k = −1. Then each biclique can be com-
pressed to an edge, yielding a smaller Lehman graph that is still r-regular,
but of the opposite sign. The edges of the smaller graph corresponding to
the compressed bicliques form a perfect matching. We then consider the
reverse “expansion” operation, whereby the edges of a perfect matching are
expanded into copies of Kr−1,r−1. We show that any perfect matching in
a negative Lehman graph can be expanded to yield a larger Lehman graph
with k = 1. In contrast, if G is a cubic Lehman graph with k = 1, then
the only perfect matching that can be expanded to yield a Lehman graph is
the perfect matching of rungs (that is, the set of edges not in the auxiliary
graph of G).
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4.1. Biclique compression. First we describe the process of biclique com-
pression: Let G be an r-regular bipartite graph, and let P be a partition
of V (G) into blocks each of which induces a copy of Kr−1,r−1. Each black
vertex, b, of G is adjacent to the r − 1 white vertices in its own block, and
exactly one additional vertex in a different block; we call this vertex the out-
neighbour of b. Only Lehman graphs with certain parameters may possibly
admit a partition into bicliques.

Lemma 4.1. Let G be an r-regular Lehman graph with r ≥ 3. If G has a
partition into copies of Kr−1,r−1, then either k = −1 and r = 3, or k = 1.

Proof. Suppose first that k > 0, and consider the mate of a black vertex
b. As b has a unique out-neighbour, its mate Γ(b) contains at least k white
vertices from the block containing b. But now all the black vertices in this
block (of which there are at least two) are dominated at least k times by
Γ(b) and so k = 1.

Now suppose that k = −1 and that r > 3. Let X be a block of P, and let
b1, b2, and b3 be distinct black vertices in X. Let w1 be the out-neighbour
of b1. Consider the mate, Γ(b2), of b2. It cannot contain any white vertex
of X, since b2 is not adjacent with a vertex in its mate. But b1 is adjacent
with a vertex in Γ(b2), so w1 ∈ Γ(b2). Exactly the same argument shows
that w1 is in Γ(b3).

Now Proposition 2.4 says that b2 and b3 are both in the mate of w1.
Therefore any white vertex in X is adjacent to two vertices in this mate,
and this is a contradiction. �

We now define a bipartite graph, c(G,P), that will be the graph obtained
by compressing each biclique to an edge. More formally, for each block X ∈
P, the graph c(G,P) contains a black vertex, bX , and a white vertex, wX .
A black vertex bX is adjacent to a white vertex wY if and only if X = Y , or
there is a black vertex in X adjacent to a white vertex in Y . (Alternatively,
we can see this as the image of G under the graph homomorphism that, for
each block X, maps the white vertices of X to wX and the black vertices
of X to bX .) The edges {{bX , wX} : X ∈ P} form a perfect matching in
c(G,P).

Proposition 4.2. Let G be an r-regular Lehman graph with k = 1 and
r ≥ 3, and let P be a partition of G into copies of Kr−1,r−1. Then c(G,P)
is r-regular.

Proof. Certainly c(G,P) is a bipartite graph with maximum degree at most
r, and the number of white vertices is equal to the number of black vertices.
Now it is easy to see that if c(G,P) is not r-regular, then there is a block
X ∈ P, and distinct black vertices, b1, b2 ∈ X, such that b1 and b2 are
adjacent with white vertices in the same block, Y . Assume that bi is adjacent
with wi ∈ Y for i = 1, 2, and note that w1 6= w2.

Let n be the number of black vertices of G. Then Theorem 2.1 says
that rs = n + 1, where s is the number of white vertices in each mate
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Γ(b). Moreover, each white vertex is in exactly s mates of black vertices. If
s = 1, then each black vertex is adjacent with n + 1 white vertices, which
is clearly impossible. Therefore s > 1. Hence we can choose a set Γ(b) such
that w1 ∈ Γ(b) and b 6= b1. Now Γ(b) does not contain a vertex in X, for
otherwise b1 would be adjacent with both that vertex, and with w1, which is
impossible as b1 is not b. Now b2 must be adjacent with at least one vertex
in Γ(b), so it follows that w2 is in Γ(b). We choose a black vertex b′ ∈ Y
that is not b. Now b′ is adjacent with both w1 and w2, and these vertices
are in Γ(b), so we have a contradiction. �

Lemma 4.1 shows that only cubic graphs can occur in the analogous result
for negative Lehman graphs.

Proposition 4.3. Let G be a cubic negative Lehman graph, and let P be a
partition of G into copies of K2,2. If G is not the graph produced from K4,4

by removing a perfect matching, then c(G,P) is cubic.

Proof. We again assume that there is a block X ∈ P, and distinct black
vertices, b1, b2 ∈ X, such that the out-neighbours of b1 and b2 are in the
same block, Y . Let wi be the out-neighbour of bi, for i = 1, 2. Let n be
the number of black vertices in G. Then 3s = n − 1, where s = |Γ(b)| for
any black vertex b. If s > 1, then we choose a set Γ(b) such that w1 ∈ Γ(b)
and b 6= b2. Then X ∩ Γ(b) = ∅, for otherwise b1 is adjacent with two
vertices in Γ(b). Because b2 6= b, we see that b2 is adjacent with exactly
one vertex in Γ(b), so w2 is in Γ(b). Then any black vertex in Y is adjacent
with two vertices in Γ(b). This contradiction means that s = 1 and hence
n = 4. Thus G is a cubic bipartite graph with eight vertices. It immediately
follows that G is isomorphic to the graph produced from K4,4 by removing
a perfect matching. �

Our next two lemmas, one for the positive case, and one for the nega-
tive case, show that biclique compression preserves the property of being a
Lehman graph, but reverses the sign.

Lemma 4.4. Let G be an r-regular Lehman graph with k = 1 and r ≥ 3,
and let P be a partition of G into copies of Kr−1,r−1. Then c(G,P) is an
r-regular negative Lehman graph.

Proof. Let bX be an arbitrary black vertex in c(G,P). We will prove the
existence of a mate for bX , namely a set of white vertices containing no
neighbours of bX and exactly one neighbour of every other black vertex.

Let b be a black vertex of G in the block X, and w be the out-neighbour
of b which (by definition) is contained in a block Y distinct from X. Let
ΓG(w) be the mate of w in G; this is well-defined by Corollary 2.2. So
ΓG(w) is a set of black vertices containing two neighbours of w and exactly
one neighbour of every other white vertex in G. Note that no block of P
contains more than one vertex of ΓG(w), for otherwise that block would
contain a white vertex, not equal to w, that is dominated by two vertices in
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ΓG(w). In particular, Y does not contain two vertices in ΓG(w). Therefore
b is in ΓG(w), along with exactly one vertex in Y .

We now describe a set of vertices Γ in c(G,P), and then show that it is a
mate for bX . The set Γ is defined as follows:

Γ = {wZ : Z ∈ P, Z ∩ ΓG(w) = ∅}.
In other words, Γ contains the white vertices of c(G,P) corresponding to
the blocks that contain no vertices of ΓG(w).

Now let Z be a block of P and suppose that its black vertices are
b1, b2, . . . , br−1 with out-neighbours w1, w2, . . . , wr−1 that lie in blocks
Z1, Z2, . . . , Zr−1 respectively (see Figure 13). The key observation is that
unless {bi, wi} = {b, w},
(4) Zi ∩ ΓG(w) = ∅ if and only if bi ∈ ΓG(w).

This follows from the fact that each white vertex other than w is dominated
by a unique black vertex in ΓG(w). Assume that {bi, wi} 6= {b, w}. In this
case, if bi ∈ ΓG(w) then wi is dominated by bi so none of the black vertices
in Zi are in ΓG(w). On the other hand, if bi /∈ ΓG(w) then the vertex
dominating wi must lie in Zi and so Zi does contain a vertex of ΓG(w).
Note that when {bi, wi} = {b, w}, we have Z = X and Zi = Y . In this case,
Zi contains an element of ΓG(w), since Y contains a single vertex of ΓG(w),
even though b = bi is also in ΓG(w).

b3

b2

b1

Z1

Z2

Z3

Z

w1

w2

w3

Figure 13. Configuration in biclique compression

In the compressed graph c(G,P), the neighbours of bZ are
wZ1 , wZ2 , . . . , wZr−1 along with wZ , so we must count how many of these
vertices are in Γ. First consider the case where Z 6= X. In this case, (4)
implies that if Z∩ΓG(w) = ∅, then wZ ∈ Γ, but none of wZ1 , wZ2 , . . . , wZr−1

are in Γ and so bZ is adjacent to exactly one vertex in Γ. On the other hand,
if Z ∩ ΓG(w) = {bi}, then wZ is not in Γ. On the other hand, Zi contains
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no vertex in ΓG(w) by (4). Therefore wZi is in Γ. Because Z contains ex-
actly one vertex in ΓG(w), no vertex bj is in ΓG(w) when j 6= i. Therefore
Zj ∩ ΓG(w) is non-empty by (4), so wZj is not in Γ. Therefore exactly one
neighbour of bZ is in Γ.

Finally we consider the case that Z = X. We assume bi = b, in which
case Zi = Y . As both X and Y contain a vertex of ΓG(w), it follows that
wX , wY /∈ Γ. Since Z contains a unique vertex of ΓG(w), we see that bj is
not in ΓG(w) when j 6= i. Therefore (4) implies that Zj contains an vertex
of ΓG(w). This means that none of the white vertices wZ1 , wZ2 , . . . , wZr−1

are in Γ. Therefore Γ dominates every black vertex of c(G,P) other than
bX exactly once each and does not dominate bX at all, and so is a mate for
bX . As every black vertex of c(G,P) has a mate, and as each mate fails
to dominate a unique vertex, it follows that c(G,P) is a negative Lehman
graph. �

Lemma 4.5. Let G be a cubic negative Lehman graph, and let P be a
partition of G into copies of K2,2. Then c(G,P) is a cubic Lehman graph
with k = 1.

Proof. This proof is almost identical to that of Lemma 4.4. Once again, we
select a block X, and then construct a set of vertices that will be a mate
for bX . As before, fix a vertex b ∈ X, and consider its out-neighbour w in
a block Y . Then take the mate ΓG(w). Note that no block contains more
than one vertex of ΓG(w). Define a set Γ of vertices of c(G,P) by

Γ = {wZ : Z ∈ P, Z ∩ ΓG(w) = ∅}.

As ΓG(w) does not contain any neighbours of w, it does not contain
b nor any of the vertices of Y . We need an analogue of (4), so suppose
that Z is a block containing black vertices b1, b2 with out-neighbours, w1

and w2 respectively, that lie in blocks Z1 and Z2 respectively. Then unless
{bi, wi} = {b, w},

(5) Zi ∩ ΓG(w) = ∅ if and only if bi ∈ ΓG(w).

In the exceptional case, when Z = X and Zi = Y , neither X nor Y contain
any vertices of ΓG(w).

Now we determine which neighbours of bZ are in Γ, considering first the
case that Z 6= X. If Z ∩ ΓG(w) = ∅, then wZ ∈ Γ, but neither of wZ1 ,
wZ2 ∈ Γ, and so bZ has a unique neighbour. If Z ∩ ΓG(w) = {bi} for some
i, then wZi is the unique neighbour of bZ in Γ.

Finally, both X and Y contain no vertices of ΓG(w) and hence bX is
adjacent to both wX and wY , thereby being twice dominated as required. �

4.2. Biclique expansion. Next, we show how to reverse the construction
discussed in the previous results in this section, that is, we determine when
it is possible to replace each edge in a perfect matching with a biclique while
preserving the property of being a Lehman graph.
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Let G be an r-regular bipartite graph with black vertices b1, . . . , bn, and
white vertices w1, . . . , wn. Assume that M = {biwi : 1 ≤ i ≤ n} is a perfect
matching of G. Now we define the bipartite graph e(G,M), which will be
the biclique-expansion of G. For each black vertex bi of G there is a set Bi

of r− 1 black vertices, and for each white vertex wj , a set Wj of r− 1 white
vertices. For each i, join every vertex of Bi to every vertex of Wi so that
the subgraphs induced by Bi ∪Wi are all bicliques. Now, for every edge not
in M, say {bi, wj} where i 6= j, we add a single edge between Bi and Wj in
such a way that e(G,M) is r-regular. To see that this can always be done,
consider the following procedure: for each black vertex b, arbitrarily order
the edges of G that are incident with b, but not inM. Similarly, arbitrarily
order the non-matching edges incident with each white vertex. Now consider
an edge e = {b, w} which is a non-matching edge of G, with corresponding
blocks B, W . If e is the ith edge in the ordering for b and the jth edge in the
ordering for w, then join the ith vertex of B to the jth vertex of W . Then
e(G,M) is r-regular as the r − 1 edges of G incident with a given vertex
b correspond to r − 1 edges of e(G,M) each using a different vertex of B.
Moreover, as the vertices of each colour within a biclique can be permuted
arbitrarily without altering the isomorphism class of the whole graph, every
choice of the edge-ordering at each vertex gives an isomorphic graph.

This construction is illustrated in Figure 14. The orderings of the edges at
each vertex are given in the natural left-to-right order; for example, the two
non-matching edges incident with b2 are ordered ({b2, w1}, {b2, w4}), while
the two non-matching edges incident with w4 are ordered ({b2, w4}, {b3, w4}).
So the edge between B2 and W4 connects the second vertex of B2 to the
first vertex of W4.

b1 b2 b3 b4

w1 w2 w3 w4

W1 W2 W3 W4

B1 B2 B3 B4

Figure 14. The r-regular bipartite graph, G, and e(G,M).

Lemma 4.6. LetM be a perfect matching of the r-regular negative Lehman
graph G. Then e(G,M) is an r-regular Lehman graph with k = 1.

Proof. Assume that G has black vertices b1, b2, . . . , bn and white vertices
w1, w2, . . . , wn and that M = {biwi : 1 ≤ i ≤ n}. As above, for each i, let



24 MAYHEW, PIVOTTO, AND GORDON ROYLE

Bi denote the set of (r− 1) black vertices associated with bi and Wi the set
of white vertices associated with wi. This is illustrated in Figure 15, where
the complete connection between Bi and Wi is represented by a zigzag line.

B1 B2 B3 B4 B5 B6 B7

W1 W2 W3 W4 W5 W6 W7

b

w

Figure 15. Finding the mate of b in e(G,M) when G is negative

Now let b be an arbitrary black vertex of e(G,M). We will show that
there is a set Γ of white vertices of e(G,M) that is a mate for b. Let w be
the out-neighbour of b and assume that b ∈ Bi and w ∈Wj , for some i 6= j.
In Figure 15 we have taken i = 1 and j = 2 but this is purely for illustrative
purposes, and the argument only requires that i 6= j.

The vertex wj in G has a mate ΓG(wj), which is a set of black vertices of
G that dominates every white vertex exactly once, except for wj , which is
not dominated at all. Now from this mate, define a set Γ of white vertices of
e(G,M) by taking the out-neighbours of the vertices in any set B` such that
b` ∈ ΓG(wj) and adding the vertex w. In Figure 15, the marked sets B3 and
B6 correspond to the vertices in ΓG(wj), and so it is their out-neighbours,
together with w, that form the purported mate of b. Note that no white
vertex of G is dominated twice by ΓG(wj), which means that no set W`

contains more than one vertex of Γ.
There are three types of black set, namely the set Bi containing b, the sets

corresponding to the vertices in ΓG(wj) (that is, B3 and B6 in Figure 15)
and the remaining sets. Note that wi 6= wj , so wi is adjacent to exactly one
vertex in ΓG(wj), say b`. Furthermore, ` 6= i, for otherwise wj is dominated
by a vertex in ΓG(wj), which is impossible. Therefore Wi contains an out-
neighbour of a vertex in B`, so Wi contains a vertex in Γ. All of the black
vertices in Bi are dominated by the vertex in Wi∩Γ. In addition, b (alone) is
dominated a second time by w. Let ` be different from i. Assume that b` is in
ΓG(wj). If W` contains a vertex in Γ, then that vertex is an out-neighbour
of a set that corresponds to a member of ΓG(wj). But this would mean
that w` is dominated by two vertices in ΓG(wj), an impossibility. Therefore
W`∩Γ = ∅, but each vertex of B` is dominated by its unique out-neighbour.
On the other hand, if b` /∈ ΓG(wj), then Γ does contain exactly one vertex
of W`, but does not contain the out-neighbour of any of the vertices in B`,
so every vertex of B` is dominated exactly once by the sole vertex in Wi∩Γ.
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Therefore, every black vertex of e(G,M) is dominated once except for b,
which is dominated twice, and so Γ is a mate for b. As a mate can be found
for every black vertex of e(G,M), it follows that it is a Lehman graph with
k = 1. �

When we expand a Lehman graph satisfying k = 1, we must restrict to the
cubic case, by Proposition 4.1. In addition, not every perfect matching can
be expanded, but only the one formed from the edges not in the auxiliary
graph, which we previously termed the rungs.

Lemma 4.7. Let G be a cubic Lehman graph with k = 1, and let R be the
perfect matching of rungs. Then e(G,R) is a cubic negative Lehman graph.

Proof. We use the notation from Lemma 4.6, and use Figure 16 as an anal-
ogous figure to Figure 15. As before, let b be an arbitrary black vertex lying
in a set Bi and let w be its out-neighbour lying in block Wj . In Figure 16,
b ∈ B2 while w ∈W3, but the argument only requires that i 6= j.

B1 B2 B3 B4 B5 B6 B7 B8

W1 W2 W3 W4 W5 W6 W7 W8

b

w

Figure 16. Finding the mate of b in e(G,M) when G is positive

As G is a Lehman graph with k = 1, the vertex wj has a mate ΓG(wj)
which is a set of black vertices dominating wj twice and every other black
vertex once. As {bj , wj} is a rung of G, it follows that bj /∈ ΓG(wj) and
hence bi ∈ ΓG(wj). From this mate, we define a set Γ of white vertices of
e(G,M) by taking the out-neighbours of the vertices in the sets B` provided
b` ∈ ΓG(wj) and then removing the vertex w.

Then arguments essentially identical to those in Lemma 4.6 apply un-
changed, except for the special status of b and w. In summary, for ` 6= i, the
vertices of B` are either all dominated by a single vertex in W`, or each ver-
tex in B` is dominated by its out-neighbour. Which case occurs depends on
whether b` ∈ ΓG(wj) or not. As bi ∈ ΓG(wj) this general rule indicates that
b ∈ Bi should be dominated by its out-neighbour, which is w, but as this
has been explicitly excluded from Γ, the vertex b is the unique undominated
black vertex, as required for the mate of b in a negative Lehman graph. �

We note, without proof, that if N is any perfect matching of G other than
the rungs, then although e(G,N ) is a well-defined r-regular graph, it is not
a Lehman graph.
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Let G be the graph obtained from Kr+1,r+1 by deleting a perfect match-
ing. Then the bipartite adjacency matrix A of this graph is equal to J−Ir+1.
If B = Ir+1, then ABT = J − Ir+1 and so G is a negative Lehman graph of
type (r + 1, r, 1). Up to isomorphism, G has a unique perfect matching M
and the expanded graph e(G,M) is a Lehman graph of type (r2 − 1, r, r).
The clutter matrices of these graphs are those found by Wang [13], who also
showed that these matrices are minimally nonideal.

5. A catalogue of cubic Lehman matrices

In this section we describe the computation of a catalogue of cubic
Lehman matrices with k = ±1 thereby partially extending, verifying, and
in one instance correcting, the catalogue of Lütolf & Margot. Here we recall
that our Lehman matrices are square but may have k = −1, while their
Lehman matrices need not be square, but must have k > 0. In addition,
they were primarily focussed on (not-necessarily square) mni matrices and
so the two catalogues overlap, but are not directly comparable.

We used Gunnar Brinkmann’s cubic graph generator minibaum [2] to
generate cubic bipartite graphs on up to 40 vertices from which to extract
the Lehman graphs. Although this is a huge computation, it is possible to
prune the generation tree to some extent. For example, if two vertices of
degree three in a partially-constructed graph have the same neighbourhood,
then any cubic graph constructed by adding additional vertices will have a
singular bipartite adjacency matrix, so there is no point in further extending
that graph. It is certainly possible to do more sophisticated pruning, but
there is a complicated trade-off between computer time, programming time,
and the chance of introducing subtle bugs. In the end we opted to modify
minibaum by the smallest amount required to make the computation feasible,
in the end spending about two months on four 12-core computers.

There are two natural notions of equivalence for Lehman graphs/matrices
one of which is a refinement of the other. In the graph context, we may
view two Lehman graphs as being equivalent if and only if there is a colour-
preserving isomorphism between them. However it is equally natural to just
take graph isomorphism (ignoring the vertex colours) as the appropriate
concept of equivalence, which we denote colour-blind isomorphism. In ma-
trix terms, this corresponds to viewing two matrices as equivalent if one can
be obtained from the other by using only row- and column-permutations,
or whether matrix transposition is also permitted. The relationship be-
tween the two notions of equivalence is straightforward. Each Lehman graph
(counted up to graph isomorphism) contributes either 1 or 2 to the count of
Lehman graphs up to colour-preserving graph isomorphism, depending on
whether it has a colour-reversing automorphism or not, respectively. In Ta-
bles 1 and 2 the columns `(n) and `′(n) give the numbers of Lehman graphs
up to colour-blind and colour-preserving isomorphism respectively.
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(n, r, s) 2n `(n) `′(n)
(5, 3, 2) 10 1 1
(8, 3, 3) 16 2 2
(11, 3, 4) 22 4 4
(14, 3, 5) 28 17 18
(17, 3, 6) 34 71 98
(20, 3, 7) 40 491 785

Table 1. Cubic Lehman matrices (with k = 1) of order at
most 20

(n, r, s) 2n `(n) `′(n)
(4, 3, 1) 8 1 1
(7, 3, 2) 14 1 1
(10, 3, 3) 20 2 2
(13, 3, 4) 26 5 5
(16, 3, 5) 32 19 21
(19, 3, 6) 38 105 154

Table 2. Negative cubic Lehman matrices of order at most 19

The numbers given in Table 1 differ in only one place from the corre-
sponding numbers found by Lütolf & Margot [10] — we find 98 Lehman
graphs (up to colour-preserving isomorphism) of type (17, 3, 6) compared
to the 97 that they found. By downloading the files associated with their
paper, we have confirmed that this is a genuine omission and that our cat-
alogues correspond in all other respects. This omitted graph is shown in
Figure 4.

5.1. Cubic mni matrices. Recall that a clutter matrix is minimally non-
ideal (mni) if it is not ideal, but all of its proper minors are ideal. A (not-
necessarily square) mni matrix A consists of a (necessarily square) Lehman
submatrix containing all the rows of minimum weight, say r, along with zero
or more additional rows of strictly greater weight. It is easy to see that the
polyhedron Q(A) has a vertex at 1

r1 (the point with all coordinates equal to
1
r ) and [9] showed that if A is mni then this is the unique fractional vertex
of Q(A).

There are two common ways to represent a polyhedron computationally
— the H-representation is a list of inequalities defining half-spaces whose
intersection is the polyhedron, and the V -representation is a list of the ver-
tices. In our situation, if A is an m×n clutter matrix, then Q(A) is defined
by m + n inequalities. The first m inequalities, one per row of A, are all of
the form

ai,0x0 + ai,1x1 + · · ·+ ai,nxn ≥ 1,
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Parameters Number
(5, 3, 2) 1
(8, 3, 3) 2
(11, 3, 4) 4
(14, 3, 5) 9
(17, 3, 6) 4
(20, 3, 7) 0

Table 3. Numbers of cubic mni Lehman matrices

while the remaining n inequalities, one per column of A, are simple non-
negativity constraints of the form xj ≥ 0. Software is readily available (e.g.
in SageMath) to convert the H-representation of a polyhedron to the V -
representation (and vice versa if desired). For the sizes we are considering
(matrices with around 20 rows and columns), the process takes no more than
a second or so, and as the coordinates of the vertices of Q(A) are rational,
it is easy to check how many are fractional.

In this fashion, we can determine which of the Lehman matrices we have
constructed are mni themselves (i.e. with no additional rows), and these
numbers are shown in Table 3 (all these are equivalent to their transpose).
This data is consistent with the view that only a small cubic Lehman graph
can be mni, and that in general more constraints tend to create more frac-
tional vertices. This seems convincing enough that we are willing to make
the following conjecture.

Conjecture 5.1. There are no n× n cubic mni matrices for n > 17.

As difficult as it seems to understand square mni matrices, even just cubic
ones, the situation is far worse when considering non-square mni matrices.
Adding a row to a clutter matrix alters the polyhedron by intersecting it with
a new halfspace, thereby both cutting off some existing vertices and adding
some new ones. If the new halfspace cuts off more fractional vertices than
it creates then (in some sense) the matrix is getting “closer” to being mni.
Lütolf & Margot used a heuristic based on this general idea to add collections
of rows to the (17, 3, 6) Lehman matrices that they had constructed, and
succeeded in extending them to an mni matrix about 30% of the time. We
have not attempted to extend this part of their project.

6. Projective planes

The general problem of deciding when a Lehman matrix can be extended
to an mni matrix by adding rows seems very difficult. In this section, we
consider a very special sub-case of this problem, namely when the Lehman
matrix in question is the point-line incidence matrix of a non-degenerate
projective plane.

To do this, we need some more notation and background results about
clutters and mni matrices. A transversal of the clutter C = (V,E) is a
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subset of V having non-empty intersection with every element of E. The
blocker of C, written b(C), is the clutter having V as its vertex set, and the
set of all minimal transversals of C as hyperedges. Edwards and Fulkerson
made the observation that b(b(C)) = C [7]. The blocker involution exchanges
deletion and contraction: b(C\v) = b(C)/v for all v ∈ V . The blocker of an
ideal clutter is also ideal [8] (see also [4, Theorem 1.17]). Therefore the
blocker of an mni clutter is also mni. Let A be an mni clutter matrix.
We say that the core of A, written core(A), is the submatrix consisting
of the minimum weight rows of A. For an integer t ≥ 2, let Jt be the
clutter ({0, 1, . . . , t}, {{1, . . . , t}, {0, 1}, {0, 2}, . . . , {0, t}}). Then Jt is mni
[4, Exercise 4.2]. We call any clutter isomorphic to Jt a degenerate projective
plane. We can now state the fundamental theorem of minimally nonideal
matrices, which is due to Lehman ([9], see also [4, Theorem 4.3 and Corollary
4.5]).

Theorem 6.1 (Lehman). Let C be a minimally nonideal clutter. Let A be
the clutter matrix corresponding to C, and let B be the matrix corresponding
to b(C). If C is not a degenerate projective plane, then we can permute rows
as necessary so that (core(A), core(B)) is a Lehman pair.

Any non-degenerate projective plane can be considered as a clutter, where
the vertex set is the set of points, and the hyperedges are the lines. These
clutters are heavily-studied and highly-structured, so we might hope that it
would be possible to classify mni matrices whose core is such a clutter. We
make the following conjecture:

Conjecture 6.2. If A is a minimally nonideal matrix whose core is a non-
degenerate projective plane, then A is square and equal to the point-line
incidence matrix of the Fano plane.

Novick [11] showed that the Fano plane is the only non-degenerate pro-
jective plane whose point-line incidence matrix is mni, thus proving Conjec-
ture 6.2 under the assumption that A is square. Her proof was not phrased
in geometric terms, so we give an alternative proof that rehearses some of
the terminology and ideas we will use later. A triangle in a projective plane
is the union of three lines that do not share a common point. The corners
of the triangle are the points in two of the lines.

Proposition 6.3 (Novick [11]). Let A be the point-line incidence matrix of
a non-degenerate projective plane P. Then A is an mni matrix if and only
if P is the Fano plane.

Proof. One direction of the proof is well known. Suppose that P is a pro-
jective plane of order k > 2, and let T be a triangle of P. Form a minor of
P (now viewed as a clutter) by first deleting all points not in T , and then
contracting all the points in T except for the corners. As each line of P con-
tains at least four points, the only lines contained in T are the three lines of
the triangle. This means that after deleting the points not in T , we obtain
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a clutter with exactly three hyperedges. After subsequently contracting the
non-corner points, we have a minor isomorphic to the degenerate projective
plane J2. As P has a proper minor that is mni, it is not mni itself. �

Our next results show that no counterexample to Conjecture 6.2 can
have a core that is the point-line incidence matrix of either the Fano plane
PG(2, 2) or the ternary plane PG(2, 3). (In [10], Lütolf & Margot denote
PG(2, 3) as L4

13(1). In a footnote to that paper, they assert without proof
the result stated in Theorem 6.5.)

Theorem 6.4. If A is a minimally nonideal clutter matrix whose core is
the point-line incidence matrix of the Fano plane PG(2, 2), then A is square.

Theorem 6.5. There is no minimally nonideal clutter matrix whose core is
the point-line incidence matrix of PG(2, 3).

The proofs of these results rely on the following lemmas. We are hopeful
that the geometric approach underlying these lemmas may be further devel-
oped. A blocking set of a projective plane P is a minimal set of points that
meets every line of P, but does not completely contain any of the lines (see
Bruen [3]).

Lemma 6.6. Let A be a minimally nonideal clutter matrix for a clutter C
whose core is a non-degenerate projective plane P. Then

(i) The blocker b(C) also has P as its core.
(ii) Every hyperedge of C is either a line of P, or contains a blocking set,

but not a line, of P.

Proof. Let the order of P be k. From the properties of projective planes, we
know that core(A) core(A)T = J + kI. Furthermore, Theorem 6.1 says that
core(A) core(b(A))T = J + k′I, for some positive integer k′. Assume that
core(b(A)) 6= core(A), so that k′ 6= k. The dot product of any row in core(A)
with the corresponding column of core(b(A))T is k′+1, but the row of core(A)
has weight k+1. Therefore k′ < k. Theorem 2.1 says that (k+1)s′ = n+k′,
where each row or column sum of core(b(A)) is s′. The same theorem says
that (k+ 1)2 = n+k. This implies that (k+ 1)(k+ 1− s′) = k−k′. But the
right side of this equation is positive and less than k, and if the left side is
positive, it is at least k + 1. This contradiction proves (i). As b(C) contains
the lines of P, and b(b(C)) = C, it follows that every hyperedge of C is a
transversal to P. Therefore each hyperedge of C is a line of P or a blocking
set of P. As C is a clutter, no hyperedge of C can properly contain a line of
P. �

For the remainder of this section, we fix some notation as follows.
Throughout, A is a minimally nonideal clutter matrix for a clutter C whose
core is a projective plane P. Let C denote the vertices of C (and hence
P), although we will usually call them points in our geometric arguments.
Through an abuse of notation, we also use C to refer to the set of hyper-
edges in C. We frequently argue with respect to an arbitrary triangle T
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which, unless otherwise stated, is the union of three lines Lx, Ly and Lz

that pairwise meet in three distinct corner points x = Ly ∩Lz, y = Lx ∩Lz

and z = Lx ∩ Ly. The non-corner points of the three lines are partitioned
into the sets X = Lx − {y, z}, Y = Ly − {x, z}, and Z = Lz − {x, y}. (For
convenience, this notation is illustrated in Figure 17.)

x

y z

LyLz

Lx

X

Figure 17. A triangle in a projective plane

Lemma 6.7. Let T be a triangle of P, and let R ∈ C − P be such that
R ⊆ T . Then one of the following statements holds.

(i) R = X ∪ Y ∪ Z.
(ii) R has the form {x}∪Y ∪Z∪X ′, {y}∪X∪Z∪Y ′, or {z}∪X∪Y ∪Z ′,

where X ′, Y ′, and Z ′ are, respectively, non-empty subsets of X, Y ,
and Z.

(iii) R = {x, y, z} ∪X ′ ∪ Y ′ ∪ Z ′, where X ′, Y ′, and Z ′ are, respectively,
proper subsets of X, Y , and Z.

Proof. This argument falls into cases according to how many of the corners
of the triangle are contained in R.

If R contains all three corners of T then because R does not contain a
line of P, statement (iii) holds.

Now suppose that R avoids at least one corner, say x /∈ R. If R avoids
some point x′ ∈ X, then R does not intersect the line through x and x′, a
contradiction to Lemma 6.6 (ii). Thus X ⊆ R. Similarly, if R avoids y it
contains Y and if it avoids z it contains Z. Thus, if x, y, z /∈ R, statement
(i) holds.

Now R cannot contain exactly two of x, y, and z, because if it contains,
say, {x, y} and avoids z, then Z∪{x, y} = Lz is contained in R, contradicting
Lemma 6.6. Up to symmetry, the last case we must consider is when x ∈ R
and y, z /∈ R. Then Y ∪Z ⊆ R. Moreover, R must contain a non-empty set
of points in X, or it avoids Lx. Thus statement (ii) holds. �

Let T be a triangle in P, and let R ⊆ T . If R has the form indicated in
(i), (ii), or (iii) in Lemma 6.7, then we refer to R as, respectively, a 0-corner,
1-corner, or 3-corner of T . If R is a 1-corner containing x, then we call R an
x-based 1-corner (or a 1-corner based at x). The terms y-based and z-based
are defined similarly.



32 MAYHEW, PIVOTTO, AND GORDON ROYLE

Lemma 6.8. Let T be a triangle of P. Then C contains the 0-corner of T .

Proof. First suppose that C does not contain any 0-corner or 1-corner of T .
As in the proof of Lemma 6.3, let H be the clutter obtained by deleting
all points outside T , and contracting X ∪ Y ∪ Z. Then the hyperedges of
H are the minimal sets of the form R − (X ∪ Y ∪ Z), for some R ∈ C
contained in T . By Lemma 6.7, the only hyperedges of C contained in T
are the lines of T and possibly some 3-corners. The lines of T give rise to
the sets {x, y}, {y, z}, and {x, z}, while every 3-corner becomes {x, y, z} and
therefore cannot be minimal. It follows that H is isomorphic to J2. Since C
contains a proper J2-minor, it cannot be mni, and we have a contradiction.
Therefore C contains a 0-corner or a 1-corner of T .

Now suppose that C does not contain the 0-corner of T , in which case C
at least one 1-corner of T . Without loss of generality, we can assume that
C contains one or more x-based 1-corners of T , say R1, . . . , Rd. Now let
Xi = X ∩Ri for i = 1, . . . , d, and let W be a minimal subset of X such that
W ∩ Xi 6= ∅ for i = 1, . . . , d. Since W is minimal, for every w ∈ W there
exists an i ∈ {1, . . . , d} such that Xi ∩W = {w}.

Now consider two cases, depending on whether all the 1-corners of T
contained in C are based at x or not. In both cases we show that C has a
proper minor isomorphic to a degenerate projective plane, contradicting the
fact that A is minimally nonideal.

First suppose that all the 1-corners of T are based at x. Define the minor
H = C\(C − T )/(Y ∪ Z ∪ (X −W )). The sets in H are the minimal sets of
the form R − (Y ∪ Z ∪ (X −W )) for some R ∈ C such that R ⊆ T . The
only members of C contained in T are the lines of T (which produce the sets
{x, y}, {x, z} and W ), the x-based 1-corners and possibly some 3-corners
(which all contain {x, y} and will therefore not be minimal). The 1-corners
that have exactly one vertex in W produce sets {x,w} for every w ∈W ; the
other 1-corners are not minimal. Thus the sets in H are {x, y}, {x, z}, and
{{x,w}}w∈W . Thus H is isomorphic to J|W |+2.

Now suppose that C contains a y-based 1-corner, as well as an x-based 1-
corner. Define H = C\((C−T )∪{z})/(Y ∪Z∪(X−W )). The sets in H arise
from members of C contained in T−z. These are Lz and the 1-corners based
at x and y. The line Lz becomes {x, y}, all the y-based 1-corners become
the set {y}∪W and, as before, the x-based 1-corners produce {{x,w}}w∈W .
Therefore H is isomorphic to J|W |+1, and the proof is complete. �

Lemma 6.9. Assume that the order of P is greater than two. Then C is
not the clutter obtained from P by adding all the 0-corners of triangles of
P.

Proof. Assume the lemma fails, so that C contains the lines of P, the 0-
corners of triangles, and no other hyperedges. Consider three copunctual
lines L1, L2, and L3, through the point x, and a fourth line, L4, such that
x /∈ L4. Let X be union of these four lines. For i = 1, 2, 3, let yi be the point
of intersection of Li with L4. This configuration contains three triangles
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T1 = L2 ∪ L3 ∪ L4, T2 = L1 ∪ L3 ∪ L4, and T3 = L1 ∪ L2 ∪ L4. Let R1, R2,
and R3 be the 0-corners of T1, T2, and T3 respectively. For i = 1, 2, 3 pick a
point ai ∈ Li − {x, yi}. The clutter obtained from C by deleting all points
not in X and contracting all points in X other than {x, y1, y2, y3, a1, a2, a3}
is the Fano plane. Therefore C has a proper minor isomorphic to an mni
clutter, implying that C is not mni, which contradicts our assumption. �

Now we can prove Theorems 6.4 and 6.5.

Proof of Theorem 6.4. By Lemma 6.6, any set in C −P contains a blocking
set of the Fano plane. As the Fano plane has no blocking sets (see Bruen
[3]), it follows that C − P is empty and A is the point-line incidence matrix
of the Fano plane. �

Proof of Theorem 6.5. In this case, C contains at least the lines and the 0-
corners of the ternary plane PG(2, 3). The only blocking sets of PG(2, 3)
are the 0-corners of the triangles (Di Paola [6]), and as C is a clutter, it now
follows that it contains exactly the lines and the 0-corner of every triangle
and no other sets, contradicting Lemma 6.9. �

7. Open Problems

In the cubic Lehman graphs described in this paper, 4-cycles play a major
role, either as part of a ladder segment or as part of a biclique partition.
While there is nothing in the definition of Lehman graph that immediately
implies the existence of 4-cycles, it seems difficult to find Lehman graphs
without them.

Question 7.1. Are there any cubic Lehman graphs (with k = 1) of girth at
least 6?

The restriction of this question to k = 1 is necessary because the Heawood
graph and the Desargues graph, which are Lehman graphs of type (7, 3, 3)
and (10, 3, 4) respectively, both have girth 6 and k = 2.

Given any cubic bipartite graph with 2n vertices, we can count the number
of vertices of one colour that have a valid mate, knowing that the graph is
a Lehman graph if and only if this number is n. In a Lehman graph every
vertex, black or white, has a mate, but if the graph is not Lehman then
there may be a different number of black vertices with mates than white
ones with mates. None of the cubic bipartite graphs on 17+17 vertices with
girth 6 have more than six vertices with mates, far short of the 17 required
for a Lehman graph. So if we regard the number of vertices with mates as
a measure of how “Lehman-like” a graph is, then these small girth 6 graphs
are not all close to being a Lehman graph.

Question 7.2. Are there any cubic mni Lehman matrices (with k = 1) of
order greater than 17× 17?



34 MAYHEW, PIVOTTO, AND GORDON ROYLE

Table 3 shows that as s increases, the number of (3s − 1, 3, s) Lehman
matrices that are mni first increases, reaching a maximum at s = 5, and
then decreases, actually reaching zero when s = 7. Given that the average
number of fractional points in the polytopes Q(A) increases rapidly as the
order of A increases, it would not be surprising if square cubic mni ma-
trices only occurred for small orders. Indeed we conjecture that this is so
(Conjecture 5.1).

Question 7.3. Are there any mni matrices whose core is the point-line
incidence matrix of a non-degenerate projective plane of order greater than
two?

If an mni matrix has a non-degenerate projective plane as a core, then
the hyperedges all have geometric interpretations as lines or blocking sets,
enabling the use of geometric arguments. It would be interesting if such ar-
guments can be pushed further to eliminate more non-degenerate projective
planes as potential cores of mni matrices.

Question 7.4. Are there more infinite families of Lehman matrices with
k > 1?

The only known infinite family of Lehman matrices with k > 1 is the
family of point-line incidence matrices of non-degenerate projective planes,
which are extremal structures in many ways. We can make a heuristic
argument that we expect Lehman matrices with k > 1 to be far rarer,
perhaps vanishingly rare. If (A,B) is a Lehman pair of type (n, r, s) with
k = rs − n, then det(A) det(B) = kn−1(n + k) = kn−1rs. If k = 1, then
| det(A)| = r and | det(B)| = s. These are the smallest possible non-zero
values for the absolute value of the determinant of an r-regular (resp. s-
regular) matrix, and so there are many such r-regular matrices each of which
is a candidate to be a Lehman matrix. However if k > 1, then there is
an extra factor of kn−1 in det(AB), which must be allocated between the
determinants of A and B. With far far fewer potential Lehman matrices,
we are not surprised that the known examples are either small, very highly-
structured or both.

Question 7.5. Are there more infinite families of mni Lehman matrices?

For any odd n, the circulant matrix with first row (1, 1, 0, · · · , 0), and its
blocker are mni Lehman matrices. Apart from these, Wang’s [13] ingenious
construction provides the only known infinite family of mni Lehman matrices
where both r, s > 2. On one hand, the very existence of such a family makes
it seem plausible that there are more, but on the other hand, our structural
results make it clear that this family really is very special. It would be
interesting to find any new square mni Lehman matrix.

Question 7.6. Can similar construction results be developed for higher va-
lency Lehman graphs?
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With respect to this question, it would be interesting to know all the
(15, 4, 4)-Lehman graphs. Due to the sheer numbers of bipartite quartic
graphs on 30 vertices, any exhaustive computational approach is likely to
require significantly stronger techniques for early pruning of the search, or
much stronger constraints on the graph structure. With a heuristic local
search based on finding edge-exchanges that increase the number of vertices-
with-mates, we have found 58 Lehman graphs of type (15, 4, 4) to date.
Although we have no good reason to believe that we have covered even a
minuscule fraction of the search space, the fact that our searches repeatedly
find the same 58 matrices starting from numerous randomly-chosen bipartite
quartic graphs supports the view that this list may be few others. None of
the 58 matrices are mni.
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[4] G. Cornuéjols. Combinatorial optimization, volume 74 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, PA (2001). Packing and covering.
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