
TREE AUTOMATA AND PIGEONHOLE CLASSES OF

MATROIDS – I

DARYL FUNK, DILLON MAYHEW, AND MIKE NEWMAN

Abstract. Hliněný’s Theorem shows that any sentence in the monadic
second-order logic of matroids can be tested in polynomial time, when
the input is limited to a class of F-representable matroids with bounded
branch-width (where F is a finite field). If each matroid in a class can
be decomposed by a ternary tree in such a way that only a bounded
amount of information flows across displayed separations, then the class
has bounded decomposition-width. We introduce the pigeonhole prop-
erty for classes of matroids: if every subclass with bounded branch-width
also has bounded decomposition-width, then the class is pigeonhole.
A computably pigeonhole class has a stronger property, involving an
equivalence relation on subsets of the ground set that we can efficiently
compute. We show that Hliněný’s Theorem extends to any computably
pigeonhole class. Using these ideas, we can extend Hliněný’s Theorem to
the classes of fundamental transversal matroids, lattice path matroids,
bicircular matroids, and H-gain-graphic matroids, where H is any finite
group. We also give a characterisation of the families of hypergraphs
that can be described via tree automata. A family is defined by a tree
automaton if and only if it has bounded decomposition-width. Further-
more, we show that if a class of matroids has the pigeonhole property,
and can be axiomatised in monadic second-order logic, then any sub-
class with bounded branch-width has a decidable monadic second-order
theory.

1. Introduction

The model-checking problem involves a class of structures and a logical
language capable of expressing statements about those structures. We con-
sider a sentence from the language. The goal is then to test whether or
not structures from the class satisfies this sentence. Our starting point is
the model-checking theorem for graphs due to Courcelle [4], and its matroid
sequel by Hliněný [14]. Both theorems allow to us to test monadic-second
order sentences in polynomial time, when the input class has bounded struc-
tural complexity.

The two theorems in fact supply something stronger than polynomial
running time. Both theorems provide fixed-parameter tractable algorithms
(see [7]). This means that the input contains a numerical parameter, λ.
The notion of fixed-parameter tractability captures the distinction between

Date: October 14, 2019.

1

2 FUNK, MAYHEW, AND NEWMAN

running times of order nf(λ) and those of order f(λ)nc, where n is the size
of the input, f(λ) is a value depending only on λ, and c is a constant. When
we restrict to a fixed value of λ, both running times become polynomial in
n, but algorithms of the latter type will typically be feasible for a larger
range of λ-values. An algorithm with a running time of O(f(λ)nc) is said
to be fixed-parameter tractable.

Theorem 1.1 (Courcelle’s Theorem). Let ψ be a sentence in MS 2. There
is a fixed-parameter tractable algorithm for testing whether graphs satisfy ψ,
where the parameter is tree-width.

The monadic second-order logic MS 2 allows us to quantify over variables
representing vertices, edges, sets of vertices, and sets of edges. NP-complete
properties such as Hamiltonicity and 3-colourability can be expressed in
MS 2. The extra structure imposed by bounding the tree-width of input
graphs transforms these properties from being computationally intractable
to tractable.

Theorem 1.2 (Hliněný’s Theorem). Let ψ be a sentence in MS 0 and let F
be a finite field. There is a fixed-parameter tractable algorithm for testing
whether F-representable matroids satisfy ψ, where the parameter is branch-
width.

The monadic second-order language MS 0 is described in Section 3. Our
main theorem identifies the structural properties underlying the proof of
Hliněný’s Theorem.

Theorem 1.3. Let M be a computably pigeonhole class of matroids. Let
ψ be a sentence in MS 0. There is a fixed-parameter tractable algorithm for
testing whether matroids in M satisfy ψ, where the parameter is branch-
width.

This theorem is proved by Proposition 6.1 and Theorem 6.5. In a se-
quel [10], we will prove that we can now extend Hliněný’s Theorem to sev-
eral natural classes of matroids. Fundamental transversal matroids, lattice
path matroids, bicircular matroids, and H-gain-graphic matroids with H
a finite group: all these classes have polynomial-time model-checking for
the language MS 0 when the input is restricted to subclasses with bounded
branch-width.

The pigeonhole property is motivated by matroids representable over fi-
nite fields. Let (U, V) be a separation of order at most λ in M , a simple
matroid representable over a finite field, F. We can consider M as being a
subset of points in the projective space P = PG(r(M)−1,F). The subspaces
of P spanned by U and V intersect in a subspace, P ′, with affine dimension
at most λ − 2. If X and X ′ are subsets of U , and their spans intersect P ′

in the same subspace, then no subset of V can distinguish between them.
By this we mean that both X ∪ Z and X ′ ∪ Z are independent or both
are dependent, for any subset Z ⊆ V . This induces an equivalence relation

TREE AUTOMATA AND MATROIDS 3

on subsets of U . The number of classes under this relation is at most the
number of subspaces of PG(λ− 2,F).

Now we generalise this idea. Let E be a finite set, and let I be a collection
of subsets. If U is a subset of E, then ∼U is the equivalence relation on
subsets of U such that X ∼U X ′ if no subset of E − U can distinguish
between X and X ′; that is, for all Z ⊆ E−U , both X ∪Z and X ′∪Z are in
I, or neither of them is. A set-system, (E, I), has decomposition-width at
most q if there is a ternary tree with leaves in bijection with E, such that
if U is any set displayed by the tree, then ∼U has at most q equivalence
classes. Since every matroid is a set-system, the decomposition-width of a
matroid is a natural specialisation. This notion of decomposition-width is
equivalent to that used by Král [17] and by Strozecki [23, 24], although our
definition is cosmetically quite different.

Theorem 1.3 relies on tree-automata to check whether monadic sentences
are satisfied. (As do the theorems of Courcelle and Hliněný.) Tree automata
also provide further evidence that the notion of decomposition-width is a
natural one, as we see in the next theorem. In our conception, a tree au-
tomaton processes a tree from leaves to root, applying a state to each node.
Each node of the tree is initially labelled with a character from a finite al-
phabet, and the state applied to a node depends on the character written
on that node, as well as the states that have been applied to its children.
The automaton accepts or rejects the tree according to the state it applies
to the root. The characters applied to the leaves can encode a subset of the
leaves, so we can think of the automaton as either accepting or rejecting
each subset of the leaves. Thus each tree automaton gives rise to a family
of set-systems. The ground set of such a set-system is the set of leaves of a
tree, and a subset belongs to the system if it is accepted by the automaton.
We say that a family of set-systems is automatic if there is an automaton
which produces the family in this way (Definition 4.5). It is natural to ask
which families of set-systems are automatic, and we answer this question in
Section 5.

Theorem 1.4. A class of set-systems is automatic if and only if it has
bounded decomposition-width.

This implies something that is not otherwise obvious: a class of matroids
is pigeonhole if and only if the dual class is pigeonhole (Corollary 5.3).

A class of matroids with bounded decomposition-width must have
bounded branch-width (Corollary 2.8). The converse does not hold ([10,
Lemma 4.1]). If M is a class of matroids and every subclass with bounded
branch-width also has bounded decomposition-width, then M is pigeon-
hole (Definition 2.9). The class of lattice path matroids has the pigeonhole
property ([10, Theorem 7.2]). Other natural classes have an even stronger
property. Let M be a class of matroids. Assume there is a value, π(λ), for
every positive integer λ, such that the following holds: We let M be a ma-
troid in M, and we let U be a subset of E(M). If λM (U), the connectivity

4 FUNK, MAYHEW, AND NEWMAN

of U , is at most λ, then ∼U has at most π(λ) equivalence classes. Un-
der these circumstances, we say M is strongly pigeonhole (Definition 2.10).
The matroids representable over a finite field ([10, Theorem 5.1]) and fun-
damental transversal matroids ([10, Theorem 6.3]) are strongly pigeonhole
classes. A computably pigeonhole class is strongly pigeonhole, and has the
additional property that we can efficiently compute a relation that refines
∼U (Definition 6.4).

Now we describe the structure of this article. Section 2 discusses
decomposition-width, pigeonhole classes, and strongly pigeonhole classes.
In Section 3 we describe the monadic form of logic, MS 0. Section 4 develops
the necessary tree-automata ideas. Section 5 is dedicated to the proof of
Theorem 1.4. In Section 6 we prove Theorem 1.3. We also show that The-
orem 1.3 holds under the weaker condition that the 3-connected matroids
in M form a computably pigeonhole class (Theorem 6.11). (However, we
require that we can efficiently compute a description of any minor of the
input matroid, so this is not a true strengthening of Theorem 1.3.) The-
orem 6.11 is necessary because we do not know that bicircular matroids
or H-gain-graphic matroids (with H finite) form a computably pigeonhole
class. However, we do know that the subclasses consisting of 3-connected
matroids are computably pigeonhole ([10, Theorem 8.4]). (And we conjec-
ture that the entire classes are computably pigeonhole [10, Conjecture 9.3].)

In the final section (Section 7), we consider the question of decidability.
A class of set-systems has a decidable monadic second-order theory if there
is a Turing Machine (not time-constrained) which will take any sentence as
input, and decide whether it is satisfied by all systems in the class. Our
main result in this section says that if a class of matroids has the pigeonhole
property and can be axiomatised by a sentence in monadic second-order
logic, then any subclass with bounded branch-width has a decidable theory
(Corollary 7.5). The special case of F-representable matroids (F finite) has
been noted by Hliněný and Seese [15, Corollary 5.3]. On the other hand, the
class of K-representable rank-3 matroids has an undecidable theory when K
is an infinite field (Corollary 7.7).

A good introduction to automata can be found in [9]. For the basic
concepts and notation of matroid theory, we rely on [20]. Recall that if M
is a matroid, and (U, V) is a partition of E(M), then λM (U) is rM (U) +
rM (V)− r(M). Note that λM (U) = λM (V) and λM (U) ≤ r(M). A set, U ,
is k-separating if λM (U) < k, and a k-separation is a partition, (U, V), of
the ground set such that |U |, |V | ≥ k, and both U and V are k-separating.

2. Pigeonhole classes

In this section we introduce one of our principal definitions. A class of
set-systems has bounded decomposition-width if those set-systems can be
decomposed by ternary trees in such a way that only a bounded amount of

TREE AUTOMATA AND MATROIDS 5

information flows across any of the displayed separations. This section is
dedicated to formalising these ideas.

Definition 2.1. A set-system is a pair (E, I) where E is a finite set and I
is a family of subsets of E. We may refer to members of I as independent
sets.

Normally a set-system would be called a hypergraph and the independent
sets would be called hyperedges, but we prefer to use more matroid-oriented
language.

Definition 2.2. Let (E, I) be a set-system, and let U be a subset of E. Let
X and X ′ be subsets of U . We say X and X ′ are equivalent (relative to U),
written X ∼U X ′, if for every subset Z ⊆ E − U , the set X ∪ Z is in I if
and only if X ′ ∪ Z is in I.

Informally, we think of X ∼U X ′ as meaning that no subset of E − U
can ‘distinguish’ between X and X ′. It is clear that ∼U is an equivalence
relation on subsets of U . Note that by taking Z to be the empty set, we can
see that no member of I is equivalent to a subset not in I. Assume that I is
closed under subset containment (as would be the case if I were the family
of independent sets in a matroid). In this special case, all subsets of U that
are not in I are equivalent.

Proposition 2.3. Let (E, I) be a set-system and let (U, V,W) be a partition
of E (into possibly empty sets). If X ∼U X ′ and Y ∼V Y ′, then (X ∪
Y) ∼(U∪V) (X ′ ∪ Y ′). In particular, X ∪ Y belongs to I if and only if
X ′ ∪ Y ′ does.

Proof. Let Z be an arbitrary subset of W , and assume that X ∪ Y ∪Z is in
I. Because Y ∪Z ⊆ E−U and X ∼U X ′, it follows that X ′ ∪Y ∪Z is in I.
Now X ′ ∪Z ⊆ E − V and Y ∼V Y ′, so X ′ ∪ Y ′ ∪Z is in I. By an identical
argument, we see that if X ′ ∪ Y ′ ∪ Z is in I, then so is X ∪ Y ∪ Z. �

Proposition 2.4. Let (E, I) be a set-system, and let (U, V) be a partition
of E. If q is the number of equivalence classes under ∼U , then the number
of equivalence classes under ∼V is at most 2q.

Proof. Let the equivalence classes under ∼U be E1, . . . , Eq, and let Xi be a
member of Ei for each i. Let Z be any subset of V . We define b(Z) to be the
binary string of length q, where the ith character is 1 if and only if Xi∪Z is
in I. It is clear that this string is well-defined, and does not depend on our
choice of the representatives Xi. We complete the proof by showing that
when Z,Z ′ ⊆ Z satisfy b(Z) = b(Z ′), they also satisfy Z ∼V Z ′. Assume
this is not the case, and let X ⊆ U be such that exactly one of X ∪ Z and
X ∪ Z ′ is in I. Without loss of generality, we assume X ∪ Z ∈ I. Assume
that X is a member of Ei. Since b(Z) = b(Z ′), either both of Xi ∪ Z and
Xi ∪Z ′ are in I, or neither is. In the first case, Xi ∪Z ′ ∈ I and X ∪Z ′ /∈ I,
so we contradict Xi ∼U X. In the second case, Xi ∪ Z /∈ I and X ∪ Z ∈ I,
so we reach the same contradiction. �

6 FUNK, MAYHEW, AND NEWMAN

A ternary tree is one in which every vertex has degree three or one. A
degree-one vertex is a leaf. Let M = (E, I) be a set-system. A decomposition
of M is a pair (T, ϕ), where T is a ternary tree, and ϕ is a bijection from
E into the set of leaves of T . Let e be an edge joining vertices u and v in
T . Then e partitions E into sets (Ue, Ve) in the following way: an element
x ∈ E belongs to Ue if and only if the path in T from ϕ(x) to u does not
contain v. We say that the partition (Ue, Ve) and the sets Ue and Ve are
displayed by the edge e. Define dw(M ;T, ϕ) to be the maximum number
of equivalence classes in ∼U , where the maximum is taken over all subsets,
U , displayed by an edge in T . Define dw(M) to be the minimum value of
dw(M ;T, ϕ), where the minimum is taken over all decompositions (T, ϕ)
of M . This minimum is the decomposition-width of M . The notion of
decomposition-width specialises to matroids in the obvious way.

Definition 2.5. Let M be a matroid. Then dw(M) is equal to
dw(E(M), I(M)).

It is an exercise to show that this notion of decomposition-width is equiv-
alent to those used by Král [17] or Strozecki [23, 24]. Král states the next
result without proof.

Proposition 2.6. Let x be an element of the matroid M . Then dw(M\x) ≤
dw(M) and dw(M/x) ≤ dw(M).

Proof. Let (T, ϕ) be a decomposition of M and assume that whenever U is a
displayed set, then ∼U has no more than dw(M) equivalence classes. Let T ′

be the tree obtained from T by deleting ϕ(x) and then contracting an edge
so that every vertex in T ′ has degree one or three. Let U be any subset of
E(M)−x displayed by T ′. Then either U or U ∪x is displayed by T . Let M ′

be either M\x or M/x. We will show that in M ′, the number of equivalence
classes under ∼U is no greater than the number of classes under ∼U or ∼U∪x
in M . Let X and X ′ be representatives of distinct classes under ∼U in M ′.
We will be done if we can show that these representatives correspond to
distinct classes in M . Without loss of generality, we can assume that Z is a
subset of E(M)− (U ∪x) such that X ∪Z is independent in M ′, but X ′∪Z
is dependent. If M ′ = M\x, then X ∪ Z is independent in M and X ′ ∪ Z
is dependent, and thus we are done. So we assume that M ′ = M/x. If U
is displayed by T , then we observe that X ∪ (Z ∪ x) is independent in M ,
while X ′ ∪ (Z ∪ x) is dependent. On the other hand, if U ∪ x is displayed,
then (X ∪ x) ∪ Z is independent in M and (X ′ ∪ x) ∪ Z is dependent. �

Proposition 2.6 shows that the class of matroids with decomposition-width
at most k is minor-closed.

Let M be a matroid. The branch-width of M (written bw(M)) is de-
fined as follows. If (T, ϕ) is a decomposition of M = (E(M), I(M)), then
bw(M ;T, ϕ) is the maximum value of

λM (Ue) + 1 = rM (Ue) + rM (Ve)− r(M) + 1,

TREE AUTOMATA AND MATROIDS 7

where the maximum is taken over all partitions (Ue, Ve) displayed by edges of
T . Now bw(M) is the minimum value of bw(M ;T, ϕ), where the minimum
is taken over all decompositions of M . We next show that for classes of
matroids, bounded decomposition-width implies bounded branch-width.

Proposition 2.7. Let M be a matroid, and let U be a subset of E(M).
There are at least λM (U) + 1 equivalence classes under the relation ∼U .

Proof. Let λ stand for λM (U). We will prove that ∼U has at least λ + 1
equivalence classes. Define V to be E(M)− U . Let BV be a basis of M |V ,
and let B be a basis of M that contains BV . Then B ∩U is independent in
M |U , and

r(U)− |B ∩ U | = r(U)− (|B| − |BV |) = r(U)− (r(M)− r(V))

= r(U)− (r(U)− λ) = λ.

Therefore we let (B ∩U)∪{x1, . . . , xλ} be a basis of M |U , where x1, . . . , xλ
are distinct elements of U − B. Next we construct a sequence of distinct
elements, y1, . . . , yλ from BV such that (B − {y1, . . . , yi}) ∪ {x1, . . . , xi} is
a basis of M for each i ∈ {0, . . . , λ}. We do this recursively. Let C be the
unique circuit contained in

(B − {y1, . . . , yi}) ∪ {x1, . . . , xi} ∪ xi+1

and note that xi+1 is in C. If C contains no elements of BV , then it is
contained in (B ∩ U) ∪ {x1, . . . , xλ}, which is impossible. So we simply let
yi+1 be an arbitrary element in C ∩BV .

We complete the proof by showing that

(B ∩ U) ∪ {x1, . . . , xi} and (B ∩ U) ∪ {x1, . . . , xj}

are inequivalent under ∼U whenever 0 ≤ i < j ≤ λ. Indeed, if Z = BV −
{y1, . . . , yi}, then (B ∩U)∪{x1, . . . , xi}∪Z is a basis of M , and is properly
contained in (B ∩U)∪{x1, . . . , xj}∪Z, so the last set is dependent, and we
are done. �

Corollary 2.8. Let M be a matroid. Then dw(M) ≥ bw(M).

Proof. Assume that bw(M) > dw(M). Let (T, ϕ) be a decomposition of
M such that if U is any set displayed by an edge of T , then ∼U has at
most dw(M) equivalence classes. There is some edge e of T displaying a set
Ue such that λM (Ue) + 1 > dw(M), for otherwise this decomposition of M
certifies that bw(M) ≤ dw(M). But ∼Ue has at least λM (Ue)+1 equivalence
classes by Proposition 2.7. As λM (Ue) + 1 > dw(M), this contradicts our
choice of (T, ϕ). �

It is easy to see that the class of rank-3 sparse paving matroids has un-
bounded decomposition width (see [10, Lemma 4.1]), so the converse of
Corollary 2.8 does not hold. Král proved the special case of Corollary 2.8
when M is representable over a finite field [17, Theorem 2].

8 FUNK, MAYHEW, AND NEWMAN

Since we would like to consider natural classes of matroids that have
unbounded branch-width, we are motivated to make the next definition.

Definition 2.9. Let M be a class of matroids. Then M is pigeonhole if,
for every positive integer, λ, there is an integer ρ(λ) such that bw(M) ≤ λ
implies dw(M) ≤ ρ(λ), for every M ∈M.

Thus a class of matroids is pigeonhole if every subclass with bounded
branch-width also has bounded decomposition-width. The class of F-repre-
sentable matroids is pigeonhole when F is a finite field [10, Theorem 5.1].
Note that the class of F-representable matroids certainly has unbounded
decomposition-width, since it has unbounded branch-width. Some natural
classes possess a stronger property than the pigeonhole property:

Definition 2.10. Let M be a class of matroids. Assume that for every
positive integer λ, there is a positive integer π(λ), such that whenever M ∈
M and U ⊆ E(M) satisfies λM (U) ≤ λ, there are at most π(λ) equivalence
classes under ∼U . In this case we say that M is strongly pigeonhole.

Proposition 2.11. If a class of matroids is strongly pigeonhole, then it is
pigeonhole.

Proof. LetM be a strongly pigeonhole class, and let π be the function from
Definition 2.10. We may as well assume that π is non-decreasing. Let λ be
any positive integer, and let M be a matroid in M with branch-width at
most λ. Let (T, ϕ) be a decomposition of M such that λM (U)+1 ≤ λ for any
set U displayed by an edge of T . Then there are at most π(λ−1)-equivalence
classes under ∼U . Thus (T, ϕ) demonstrates that dw(M) ≤ π(λ − 1). So
bw(M) ≤ λ implies dw(M) ≤ π(λ − 1) for each M ∈ M, and the result
follows. �

Remark 2.12. To see that the strong pigeonhole property is strictly
stronger than the pigeonhole property, let M be the class of rank-two ma-
troids. Let M be a member ofM with t parallel pairs (where t ≥ 2). Let U
be a set that contains exactly one element from each of these pairs. Then
λM (U) = 2. However, it is easy to demonstrate that there are at least t
equivalence classes under ∼U , so this number is unbounded. This demon-
strates that M is not strongly pigeonhole. However, if M is in M, then
there is a decomposition of M such that whenever (U, V) is a displayed par-
tition, at most one parallel class contains elements of both U and V . Now
we easily check that ∼U has at most five equivalence classes, so dw(M) ≤ 5
for all M ∈M, implying that M is pigeonhole.

3. Monadic logic

In this section we construct the formal language MS 0. We give ourselves
a countably infinite supply of variables: X1, X2, X3, There is a single
unary predicate: Ind, and one binary predicate: ⊆. We use the standard
connectives ∧ and ¬, and the quantifier ∃. The atomic formulas have the

TREE AUTOMATA AND MATROIDS 9

form Ind(Xi), and Xi ⊆ Xj . The atomic formula Ind(Xi) has Xi as its free
variable, whereas the free variables of Xi ⊆ Xj are Xi and Xj . A formula
is constructed by a finite application of the following rules:

(i) an atomic formula is a formula,
(ii) if ψ is a formula, then ¬ψ is a formula with the same free variables

as ψ,
(iii) if ψ is a formula, and Xi is a free variable in ψ, then ∃Xiψ is a

formula; its free variables are the free variables of ψ except for Xi,
which is a bound variable of ∃Xiψ,

(iv) if ψ and φ are formulas, and no variable is free in one of ψ and φ and
bound in the other, then ψ∧φ is a formula, and its free variables are
exactly those that are free in either ψ or φ. (We can rename bound
variables, so this restriction does not significantly constrain us.)

A formula is a sentence if it has no free variables, and is quantifier-free if
it has no bound variables.

Let (E, I) be a set-system. Let ψ be a formula in MS 0 and let F be
the set of free variables in ψ. An interpretation of ψ in (E, I) is a function
θ from F into the power set of E. So we think of θ as a set of ordered
pairs with the first element being a variable in F and the second being a
subset of E. We define what it means for the pair (E, I) to satisfy ψ under
the interpretation θ. If ψ is Ind(Xi), then (E, I) satisfies ψ if θ(Xi) is in
I. Similarly, Xi ⊆ Xj is satisfied if θ(Xi) ⊆ θ(Xj). Now we extend this
definition to formulas that are not atomic. If ψ = ¬φ, then (E, I) satisfies ψ
if and only if it does not satisfy φ under θ. If ψ = φ1∧φ2, then ψ is satisfied
if (E, I) satisfies both φ1 and φ2 under the interpretations consisting of θ
restricted to the free variables of φ1 and φ2. Finally, if ψ = ∃Xiφ, then
(E, I) satisfies ψ if and only if there is a subset Yi ⊆ E such that (E, I)
satisfies φ under the interpretation θ ∪ {(Xi, Yi)}.

We use ψ ∨ φ as shorthand for ¬((¬ψ) ∧ (¬φ)), and ψ → φ as shorthand
for (¬ψ) ∨ φ. The predicate ψ ↔ φ is shorthand for (ψ → φ) ∧ (φ → ψ).
If Xi is a free variable in ψ, then ∀Xiψ stands for ¬∃Xi¬ψ. The predicate
Empty(Xi) stands for

∀X(X ⊆ Xi → Xi ⊆ X)

and is satisfied exactly when Xi is interpreted as the empty set. (Here X is
a variable not equal to Xi.) Similarly, Sing(Xi) stands for

¬Empty(Xi) ∧ ∀X(X ⊆ Xi → (Empty(X) ∨Xi ⊆ X))

and is satisfied exactly when Xi is interpreted as a singleton set.
As is demonstrated in [18], there are sentences that are satisfied by (E, I)

if and only if I is the family of independent sets of a matroid. Furthermore,
there are MS 0 sentences that characterise any minor-closed class of matroids
having only finitely many excluded minors (see [18] or [13, Lemma 5.1]). On

10 FUNK, MAYHEW, AND NEWMAN

the other hand, the main theorem of [18] shows that no MS 0 sentence char-
acterises the class of representable matroids, or the class of K-representable
matroids when K is an infinite field.

4. Automatic classes

Our second principal definition involves families of set-systems that can be
encoded by a tree, where that tree can be processed by a machine simulating
an independence oracle. We start by introducing tree automata. We use [9]
as a general reference.

Definition 4.1. Let T be a tree with a distinguished root vertex, t. Assume
that every vertex of T other than t has degree one or three, and that if T
has more than one vertex, then t has degree two. The leaves of T are the
degree-one vertices. In the case that t is the only vertex, we also consider
t to be a leaf. Let L(T) be the set of leaves of T . If T has more than one
vertex, and v is a non-leaf, then v is adjacent with two vertices that are not
contained in the path from v to t. These two vertices are the children of v.
We distinguish the left child and the right child of v. Now let Σ be a finite
alphabet of characters. Let σ be a function from V (T) to Σ. Under these
circumstances we say that (T, σ) is a Σ-tree.

Definition 4.2. A tree automaton is a tuple (Σ, Q, F, δ0, δ2), where Σ is a
finite alphabet, and Q is a finite set of states. The set of accepting states is
a subset F ⊆ Q. The functions, δ0 : Σ → 2Q and δ2 : Σ×Q×Q → 2Q, are
known as transition rules.

We think of the automaton as processing the vertices in a Σ-tree, from
leaves to root, applying a set of states to each vertex. The set of states
applied to a leaf, v, is given by the image of δ0, applied to the Σ-label of v.
For a non-leaf vertex, v, we apply δ2 to the tuple consisting of the Σ-label
of v, a state applied to the left child, and a state applied to right child. We
take the union of all such outputs, as we range over all states applied to the
children of v, and this union is the set we apply to v.

More formally, let A = (Σ, Q, F, δ0, δ2) be an automaton. Let (T, σ) be a
Σ-tree with root t. We let r : V (T)→ 2Q be the function recursively defined
as follows:

(i) if v is a leaf of T , then r(v) = δ0(σ(v)),
(ii) if v has left child vL and right child vR, then

r(v) =
⋃

(qL,qR)∈r(vL)×r(vR)

δ2(σ(v), qL, qR).

We say that r is the run of the automaton A on (T, σ). Note that we define
a union taken over an empty collection to be the empty set. Thus if a child
of v has been assigned an empty set of states, then v too will be assigned
an empty set of states. We say that A accepts (T, σ) if r(t) contains an
accepting state.

TREE AUTOMATA AND MATROIDS 11

The automaton, A = (Σ, Q, F, δ0, δ2), is deterministic if all the images
of δ0 and δ2 are singleton sets. Thus a deterministic automaton applies a
(set containing a) single state to each vertex. The next result shows that
non-determinism in fact gives us no extra computing power. The idea here
dates to Rabin and Scott [21] (see [8, Theorem 12.3.1]).

Lemma 4.3. Let A′ = (Σ, Q, F ′, δ′0, δ
′
2) be a tree automaton. There exists a

deterministic tree automaton,

A = (Σ, 2Q, F, δ0, δ2),

such that A′ and A accept exactly the same Σ-trees.

Proof. Note that the states in A are sets of states in A′. Let F be {X ∈
2Q : X ∩F ′ 6= ∅}. Thus a state is accepting in A if and only if it contains an
accepting state of A′. For each σ ∈ Σ, we define δ0(σ) to be {δ′0(σ)}. For
any σ ∈ Σ, and any X,Y ∈ 2Q, we set

δ2(σ,X, Y) =

 ⋃
(qL,qR)∈X×Y

δ′2(σ, qL, qR)

 .

Thus every image of δ0 or δ2 is a singleton set, so A is deterministic, as
desired.

Let (T, σ) be a Σ-tree with root t. Let r′ and r be the runs of A′ and A
on (T, σ). We easily establish that r(v) = {r′(v)}, for each vertex v. If A′

accepts (T, σ), then r′(t) contains a state in F ′. Therefore r′(t) is a member
of F , so r(t) = {r′(t)} contains a member of F . Hence A also accepts (T, σ).
For the converse, assume that A accepts (T, σ). Then r(t) = {r′(t)} contains
an accepting state. This means that r′(t) is not disjoint from F ′, so A′ also
accepts (T, σ), and we are done. �

We would like to use tree automata to decide if a formula in MS 0 is
satisfied by a set-system, (E, I). This formula may have free variables, and
in this case, deciding whether the formula is satisfied only makes sense if we
assign subsets of E to the free variables. So our next job is to formalise a
way to encode this assignment into the leaf labels of a tree.

Let I be a set of positive integers. We use {0, 1}I to denote the set of
functions from I into {0, 1}. If I is empty, then {0, 1}I is the empty set.
Let Σ be a finite alphabet, and let (T, σ) be a Σ-tree. Let ϕ be a bijection
from the finite set E into L(T). We let I ⊆ Z+ be a set of indices, and let
S = {Yi}i∈I be a family of subsets of E. Now we define enc(T, σ, ϕ,S) to be
a (Σ∪Σ×{0, 1}I)-tree with T as its underlying tree. If I is empty, then we
simply set enc(T, σ, ϕ,S) to be (T, σ). Now we assume I is non-empty. If
v is a non-leaf vertex of T , then it receives the label σ(v) in enc(T, σ, ϕ,S).
However, if v is a leaf, then it receives a label (σ(v), s), where s is the function
from I to {0, 1} taking i to 1 if and only if ϕ−1(v) is in Yi. Thus the label
on the leaf v encodes the membership of ϕ−1(v) in the sets belonging to S.

12 FUNK, MAYHEW, AND NEWMAN

We say that a tree automaton is n-ary if its alphabet is Σ ∪ Σ× {0, 1}I ,
where Σ is a finite set, and I is a set of n positive integers.

Definition 4.4. Let Σ be a finite set, and let A be a 1-ary tree automaton
with alphabet Σ∪Σ×{0, 1}{i}. Let (T, σ) be a Σ-tree, and let ϕ be a bijection
from the finite set E into L(T). We define the set-system M(A, T, σ, ϕ) as
follows:

M(A, T, σ, ϕ) = (E, {Yi ⊆ E : A accepts enc(T, σ, ϕ, {Yi})}).

Now we are ready to give our second main definition.

Definition 4.5. Let M be a class of set-systems. Assume that A is a
1-ary tree automaton with alphabet Σ ∪ Σ × {0, 1}{i}. Assume also that
for any M = (E, I) in M, there is a Σ-tree (TM , σM), and a bijection
ϕM : E → L(TM) having the property that M = M(A, TM , σM , ϕM). In
this case we say that M is automatic.

We say that (TM , σM) from Definition 4.5 is a parse tree for M (relative
to the automaton A).

Definition 4.6. LetM be a class of matroids. We say thatM is automatic
if the class of set-systems {(E(M), I(M)) : M ∈M} is automatic.

Thus a class of matroids is automatic if there is an automaton that acts
as follows: for each matroid M in the class, there is a parse tree (TM , σM),
and a bijection ϕM from the ground set of M to the leaves, such that when
the leaf labels encode the set Yi ⊆ E(M), the automaton accepts if and
only if Yi is independent. In other words, there is an automaton that will
simulate an independence oracle on an appropriately chosen parse tree for
any matroid in the class.

The next lemma says that if there is an automaton that simulates an
independence oracle, then there is an automaton that will test any MS 0

formula. The ideas in the proof appear to have originated with Kleene [16].

Lemma 4.7. Let A′ be a 1-ary tree automaton with alphabet Σ∪Σ×{0, 1}{i}.
Let ψ be a formula in MS 0 with free variables {Xi}i∈I . There is a |I|-ary
tree automaton, A with alphabet Σ ∪ Σ× {0, 1}I , such that for every Σ-tree
(T, σ), every bijection, ϕ, from a finite set E into L(T), and every family
S = {Yi}i∈I of subsets of E, the automaton A accepts enc(T, σ, ϕ,S) if
and only if the set-system M(A′, T, σ, ϕ) satisfies ψ under the interpretation
taking Xi to Yi for each i ∈ I.

When we say that A decides ψ, we mean that A accepts enc(T, σ, ϕ,S) if
and only if M(A′, T, σ, ϕ) satisfies ψ, for any T , σ, and ϕ.

Remark 4.8. IfM is an automatic class, then by definition, for each M ∈
M, we can choose T , σ, and ϕ so that M(A′, T, σ, ϕ) is M . Therefore
Lemma 4.7 will provide us with a way to test whether M satisfies ψ: we
simply run A on the appropriately labelled tree.

TREE AUTOMATA AND MATROIDS 13

Proof of Lemma 4.7. We prove the lemma by induction on the number of
steps used to construct the formula ψ. Start by assuming that ψ is atomic.
Assume that ψ is Ind(Xj). Then the result follows from the definitions by
setting A to be A′.

Next we assume that ψ is the atomic formula Xj ⊆ Xk. We let the state
space of A be {X,×}, and let X be the only accepting state. Define δ0 so

that for any α ∈ Σ and any function s ∈ {0, 1}{j,k}, the image δ0(α, s) is
{×} if (s(i), s(j)) = (1, 0), and otherwise δ0(α, s) is {X}. (We also define
δ0(α) = {×} for each α ∈ Σ, so that the domain of δ2 is the entire alphabet

Σ ∪ Σ× {0, 1}{j,k}.) We define δ2 so that for any α ∈ Σ,

δ2(α,×,×) = δ2(α,×,X) = δ2(α,X,×) = {×}
and δ2(α,X,X) = {X}. (We additionally say that if the input to δ2 includes

a character in Σ × {0, 1}{j,k}, then the output is {×}.) Note that as A
processes the tree, it assigns × to a leaf if and only if the corresponding
element of E is in Yj but not Yk. If any leaf is assigned ×, then this state
is propagated towards the root. Thus A decides the formula Xj ⊆ Xk, as
desired.

We may now assume that ψ is not atomic. First assume that ψ is a
negation, ¬φ. Note that the free variables of φ are {Xi}i∈I . By induction,
there is an automaton, Aφ, that accepts enc(T, σ, ϕ, {Yi}i∈I) if and only if
M(A′, T, σ, ϕ) satisfies φ. By Lemma 4.3, we can assume that Aφ is deter-
ministic. Now we produce A by modifying Aφ so that a state is accepting
in A exactly when it is not accepting in Aφ. Then A decides ¬φ.

Next we assume that ψ is a conjunction, φ1 ∧ φ2. For i = 1, 2, let Ii
be the set of free variables in φi. Thus I = I1 ∪ I2. Inductively, there are
automata A1 and A2 that decide φ1 and φ2. For i = 1, 2, assume that Ai is
the automaton

(Σ ∪ Σ× {0, 1}Ii , Qi, Fi, δ0,i, δ2,i).
The idea of this proof is quite simple: we let A run A1 and A2 in parallel,
and accept if and only if both A1 and A2 accept. To that end, we set Q to
be Q1 ×Q2, and set F to be F1 × F2. If s is a function in {0, 1}I , then s�Ii
is the restriction of s to Ii. Now we define δ0 so that it takes (α, s) to

δ0,1(α, s�I1)× δ0,2(α, s�I2)

for any α ∈ Σ and any s ∈ {0, 1}I . (And any other output of δ0 is the empty
set.) We similarly define δ2 so that δ2(α, (qL,1, qL,2), (qR,1, qR,2)) is

δ2,1(α, qL,1, qR,1)× δ2,2(α, qL,2, qR,2).
(And any other output is the empty set.) It is easy to see that A acts as we
desire, and therefore decides ψ.

Finally, we must assume that ψ is ∃Xiφ, where the free variables of φ
are {Xj}j∈I∪{i} and i is not in I. By induction, we can assume that the
automaton

Aφ = (Σ ∪ Σ× {0, 1}I∪i, Qφ, Fφ, δ0,φ, δ2,φ)

14 FUNK, MAYHEW, AND NEWMAN

decides φ. For each s ∈ {0, 1}I , we set s0 to be the function in {0, 1}I∪i
such that s0 �I= s, and s0(i) = 0. We similarly define s1 ∈ {0, 1}I∪i so that
s1 �I= s and s1(i) = 1. Now for each α ∈ Σ we set

δ0(α, s) = δ0,φ(α, s0) ∪ δ0,φ(α, s1).

We define any other output of δ0 to be the empty set. Thus δ0 sends (α, s)
to the set of states that could be applied by Aφ to a leaf labelled by (α, s′),
where s′ extends the domain of s to include i. We define δ2(α, qL, qR) to
be δ2,φ(α, qL, qR) when α is in Σ. Any output of δ2 that is not yet defined,
we now declare to be the empty set. We define the state space and the
accepting states of A to be exactly those of Aφ. We must now show that
A decides ∃Xiφ. We let (T, σ) be an arbitrary Σ-tree, and we let ϕ be a
bijection from the finite set E into L(T).

Assume that M(A′, T, σ, ϕ) satisfies ∃Xiφ under the interpretation that
takes Xj to Yj ⊆ E for each j ∈ I. Then there is a subset Yi ⊆ E such that
M(A′, T, σ, ϕ) satisfies φ under the interpretation that takes Xj to Yj for all
j ∈ I ∪ i. Let Sφ be {Yj}j∈I∪i. By induction, Aφ accepts enc(T, σ, ϕ,Sφ).
Let rφ be the run of Aφ on enc(T, σ, ϕ,Sφ). Then rφ(t) contains a state
in Fφ, where t is the root of T . Let S = {Yj}j∈I , and let r be the run
of A on enc(T, σ, ϕ,S). It is easy to inductively prove that r(v) ⊇ rφ(v),
for every vertex v. Therefore r(t) contains an accepting state, so A accepts
enc(T, σ, ϕ,S).

For the converse, assume that A accepts enc(T, σ, ϕ,S), where S =
{Yj}j∈I is a family of subsets of E. Let r be the run of A on enc(T, σ, ϕ,S).
We recursively nominate a state q(v) chosen from r(v), for each vertex v.
Since A accepts, there is an accepting state in r(t). We define q(t) to be
this accepting state. Now assume that q(v) is defined, and that the children
of v are vL and vR. Then there are states qL ∈ r(vL) and qR ∈ r(vR) such
that δ2(σ(v), qL, qR) contains q(v). We choose q(vL) to be qL, and q(vR) to
be qR. Thus we have defined q(v) for each vertex v.

We will now define a set Yi ⊆ E. Let v be an arbitrary leaf. We describe
a method for deciding if ϕ−1(v) is in Yi. Let s ∈ {0, 1}I be the function that
records whether ϕ−1(v) is in Yj , for j ∈ I. Thus δ0(σ(v), s) includes q(v).
Now

δ0(σ(v), s) = δ0,φ(σ, s0) ∪ δ0,φ(σ, s1)

If q(v) is in δ0,φ(σ, s0), we declare ϕ−1(v) not to be in Yi. Otherwise we
declare ϕ−1(v) to be in Yi.

Let Sφ be the family {Yj}j∈I∪i. Let rφ be the run of Aφ on enc(T, σ, ϕ,Sφ).
It is easy to prove by induction that rφ(v) contains q(v), for every vertex v.
Therefore rφ(t) contains an accepting state, so Aφ accepts enc(T, σ, ϕ,Sφ).
By induction, this means that M(A′, T, σ, ϕ) satisfies φ under the interpre-
tation taking each Xj to Yj for j ∈ I ∪ i. Hence ∃Xiφ is satisfied by the
interpretation taking Xj to Yj for i ∈ I. This completes the proof that A
decides ψ = ∃Xiφ, and hence the proof of the lemma. �

TREE AUTOMATA AND MATROIDS 15

5. Characterising automatic classes

Now we can prove Theorem 1.4. We split the proof into two lemmas.

Lemma 5.1. Let M be a class of set-systems. If M is automatic, then it
has bounded decomposition-width.

Proof. Let A be a 1-ary tree-automaton with alphabet Σ ∪ Σ × {0, 1}{i}
and state space Q such that for every M = (E, I) in M, there is a Σ-tree
(TM , σM) and a bijection ϕM : E → L(TM) having the property that A
accepts enc(TM , σM , ϕM , {Yi}) if and only if Yi is in I, for any Yi ⊆ E. By
applying Lemma 4.3, we assume that A is deterministic.

Let M = (E, I) be an arbitrary set-system in M. Let e be an arbitrary
edge in TM , and assume e is incident with the vertices u and v. The subgraph
of TM obtained by deleting e contains two components, Tu and Tv, containing
u and v respectively. By relabelling as necessary, we will assume that Tv
contains the root t. We let Ue be the set containing elements z ∈ E(M)
such that the path from ϕM (z) to t contains the edge e. Let Ve be E − Ue.
We will show that the equivalence relation ∼Ue induces at most |Q| classes.
Proposition 2.4 will then imply that M has decomposition-width at most
2|Q|. (Although (TM , ϕM) is not a decomposition of M , it can easily be
turned into one by contracting an edge incident with the root, and then
forgetting the distinction between left and right children.)

Let Y and Y ′ be arbitrary subsets of Ue. Let r1 and r′1 be the runs of A on
enc(TM , σM , ϕM , {Y }) and enc(TM , σM , ϕM , {Y ′}) respectively. We declare
Y and Y ′ to be equivalent if and only if these runs apply the same singleton
set to u; that is, if r1(u) = r′1(u). It is clear that this is an equivalence
relation on subsets of Ue with at most |Q| equivalence classes, so it remains
to show that this equivalence relation refines ∼Ue . Assume that Y and Y ′ are
equivalent subsets, and let Z be an arbitrary subset of Ve. Let r2 and r′2 be
the runs of A on enc(TM , σM , ϕM , {Y ∪Z}) and enc(TM , σM , ϕM , {Y ′∪Z}).
Any leaf in Tu receives the same label in both enc(TM , σM , ϕM , {Y }) and
enc(TM , σM , ϕM , {Y ∪Z}). Now it is easy to prove by induction that r1(w) =
r2(w) for all vertices w in Tu. Similarly, r′1(w) = r′2(w) for all such w. In
particular, r2(u) = r1(u) = r′1(u) = r′2(u), where the middle equality is
because of the equivalence of Y and Y ′. Using the fact that r2(u) = r′2(u),
we can prove by induction that r2(w) = r′2(w) for all vertices w in Tv. In
particular, r2(t) = r′2(t), so A accepts enc(TM , σM , ϕM , {Y ∪Z}) if and only
if it accepts enc(TM , σM , ϕM , {Y ′ ∪ Z}). This implies that Y ∪ Z is in I if
and only if Y ′ ∪ Z is. Thus ∼Ue has at most |Q| classes, as desired. �

The other direction is known to Král [17] and to Strozecki [23, 24].

Lemma 5.2. Let M be a class of set-systems. If M has bounded
decomposition-width, then it is automatic.

Proof. Let K be an integer such that dw(M) ≤ K for all members M ∈M.
Thus, any member M has a decomposition such that each displayed set

16 FUNK, MAYHEW, AND NEWMAN

contains at most K equivalence classes. We construct a tree automa-
ton, A, that decides the formula Ind(Xi). The set of states of A is
Q = {indep, dep, q1, . . . , qK}.

Let M = (E, I) be an arbitrary set-system in M, and let (T, ϕ) be a
decomposition of M , where ∼U has at most K equivalence classes for any
set U displayed by an edge of T . We start by showing how to construct the
parse tree (TM , σM) by modifying T . First, we arbitrarily choose an edge of
T , and subdivide it with the new vertex t, where t will be the root of TM .
For each non-leaf vertex of T , we make an arbitrary decision as to which of
its children is the left child, and which is the right. This describes the tree
TM . The bijection ϕM is set to be identical to ϕ.

For each edge e, let Ue be the set of elements z ∈ E such that the path from
ϕM (z) to t contains the edge e. Then ∼Ue induces at most K equivalence
classes. Let `e be some function from the subsets of Ue into {q1, . . . , qK}
such that `e(X) = `e(X

′) implies X ∼Ue X
′. We think of `e as applying

labels to the equivalence classes of ∼Ue . (Although we allow the possibility
that equivalent subsets under ∼Ue receive different labels under `e. In other
words, the equivalence relation induced by `e refines ∼Ue .) For each qj in the
image Im(`e), we arbitrarily choose a representative subset Repe(qj) ⊆ Ue
such that `e(Repe(qj)) = qj .

Next we describe the function σM , which labels each vertex of TM with a
function. Let u be a leaf of TM . We apply to u a function, f , whose domain
is {0, 1}. In the case that u is also the root of TM , we set f(0) to be the
symbol indep if ∅ is in I, and otherwise we set f(0) to be the symbol dep.
Similarly, f(1) = indep if {ϕ−1M (u)} is in I, and otherwise f(1) = dep. Now
assume that u is a non-root leaf, and let e be the edge incident with u. Then
f(0) is the label `e(∅), and f(1) is `e({ϕ−1M (u)}).

Now let u be a non-leaf vertex. Let eL and eR be the edges joining u
to its children. We apply a function, f , to u whose domain is Im(`eL) ×
Im(`eR). Let (qj , qk) be in Im(`eL) × Im(`eR), and assume Xj ⊆ UeL is the
representative RepeL(qj), while Xk is RepeR(qk). Assume that u is not the
root, and let e be the first edge in the path from u to t. Then f(qj , qk) is
`e(Xj ∪ Xk), for each such (qj , qk). Next assume that u is the root. Then
f(qj , qk) is indep if Xj ∪Xk ∈ I, and otherwise f(qj , qk) = dep.

Now we have completed our description of σM , which labels the vertices of
TM with functions. Therefore (TM , σM) is a Σ-tree, where Σ is the alphabet

of functions whose domain is either {0, 1}, or a member of 2{q1,...,qK} ×
2{q1,...,qK}, and whose codomain is {indep, dep, q1, . . . , qK}.

Our next task is to describe the automaton, A. As we have said, the state
space is Q = {indep, dep, q1, . . . , qK}. The alphabet is Σ∪Σ×{0, 1}{i}, where
Σ is the set of functions that we described in the previous paragraph. The
only accepting state is indep. To define the transition rule δ0, we consider the
input (f, s), where f is a function from {0, 1} into Q, and s is a function in

{0, 1}{i}. Then we define δ0(f, s) to be {f(s(i))}. We set the output of δ0 on

TREE AUTOMATA AND MATROIDS 17

any input not yet described to be {dep}. Now we consider the transition rule

δ2. Let f be a function whose domain is a member of 2{q1,...,qK}×2{q1,...,qK},
Assume that (qi, qj) is in the domain of f . Then δ2(f, qi, qj) is defined to be
{f(qi, qj)}. If (qi, qj) is not in the domain of f , then we define δ2(f, qi, qj)
to be {dep}. Indeed, we let the output of δ2 be {dep} on any input not yet
described. This completes our description of the automaton A. Note that
it is deterministic.

Claim 5.2.1. Let Yi be a subset of E. Let u be a non-root vertex of TM ,
and let e be the first edge on the path from u to t. Let q be the state applied
to u by the run of A on enc(TM , σM , ϕM , {Yi}). Then (Yi∩Ue) ∼Ue Repe(q).

Proof. Assume that u has been chosen so that it is as far away from t as
possible, subject to the constraint that the claim fails for u. Let f be the
function applied to u by the labelling σM .

First assume that u is a leaf, so that Ue = {ϕ−1M (u)}. Then u receives the

label (f, s) in enc(TM , σM , ϕM , {Yi}), where s(i) is 1 if ϕ−1M (u) ∈ Yi, and is
0 otherwise. The construction of A means that q = f(s(i)). If Yi ∩ Ue = ∅,
then q = f(0) = `e(∅). Now `e(Repe(q)) = q, by definition, so Repe(q) ∼Ue

∅, by the nature of the function `e. Therefore (Yi ∩ Ue) ∼Ue Repe(q), as
desired. The other possibility is that Yi ∩Ue = Ue = {ϕ−1M (u)}. In this case
q = f(1) = `e(Ue). Again Repe(q) ∼Ue Ue, and hence (Yi∩Ue) ∼Ue Repe(q).

Now we must assume that u is not a leaf, so that u is joined to its children,
uL and uR, by the edges eL and eR. Assume that u receives the label f in
enc(TM , σM , ϕM , {Yi}). Let qL and qR be the states applied to uL and uR
by the run of A on enc(TM , σM , ϕM , {Yi}). Our inductive assumption on
u means that (Yi ∩ UeL) ∼UeL

RepeL(qL) and (Yi ∩ UeR) ∼UeR
RepeR(qR).

Let Xj be RepeL(qL) and use Xk to denote RepeR(qR). Now Proposition 2.3
implies that (Yi∩Ue) = (Yi∩UeL)∪(Yi∩UeR) is equivalent to Xj∪Xk under
∼Ue . The construction of f and A means that q = `e(Xj ∪Xk). Obviously
`e(Repe(q)) = q, so the nature of the function `e implies (Xj ∪ Xk) ∼Ue

Repe(q). Now we see that (Yi ∩ Ue) ∼Ue Repe(q), so u fails to provide a
counterexample after all. �

If the root, t, is a leaf, then A applies indep to t if and only if Yi ∩
{ϕ−1M (t)} = Yi is in I. Assume that t is not a leaf, and that the edges
eL and eR join t to its children, uL and uR. Let qL and qR be the states
applied to uL and uR. Let Xj be RepeL(qL), and let Xk be RepeR(qR). Then
(Yi ∩ UeL) ∼UeL

Xj and (Yi ∩ UeR) ∼UeR
Xk, by Claim 5.2.1. If we apply

Proposition 2.3 with U = UeL , V = UeR , and W = ∅, we see that both of
Yi = (Yi∩UeL)∪ (Yi∩UeR) and Xj ∪Xk belong to I, or neither does. In the
former case, A applies indep to t during its run on enc(TM , σM , ϕM , {Yi}),
and hence accepts. In the latter case, A applies dep, and does not accept.
Therefore A decides Ind(Yi), exactly as we want. �

18 FUNK, MAYHEW, AND NEWMAN

Recall that a class of matroids is pigeonhole if every subclass with bounded
branch-width also has bounded decomposition-width. Now we can deduce
the following (perhaps not obvious) fact.

Corollary 5.3. Let M be a pigeonhole class of matroids. Then {M∗ : M ∈
M} is pigeonhole.

Proof. Assume that M is pigeonhole. For every positive integer, λ, there is
an integer ρ(λ) such that any matroid in M with branch-width at most λ
has decomposition-width at most ρ(λ).

Let λ be an arbitrary positive integer. LetMλ be the class of matroid in
M with branch-width at most λ. AsMλ has bounded decomposition-width,
Lemma 5.2 implies that it is an automatic class. Let A′ be a 1-ary automaton
such that for every matroid M ∈Mλ, there is a parse tree (TM , σM) and a
bijection ϕM : E(M)→ L(TM) such that M = M(A′, TM , σM , ϕM).

The predicate

Basis(X2) = Ind(X2) ∧ ∀X3((Ind(X3) ∧X2 ⊆ X3)→ X3 ⊆ X2)

is satisfied exactly by interpretations that take X2 to a basis of a matroid.
Similarly,

Coind(X1) = ∃X2(Basis(X2) ∧ ¬∃X4(Sing(X4) ∧X4 ⊆ X1 ∧X4 ⊆ X2)

is satisfied exactly by the interpretations that take X1 to coindependent
sets. Now Lemma 4.7 implies that there is an automaton, A, that accepts
enc(TM , σM , ϕM , {Yi}) if and only if Yi is coindependent in M , for each
M ∈ Mλ. Therefore M(A, TM , σM , ϕM) = M∗, so this establishes that
{M∗ : M ∈ Mλ} is an automatic class of matroids. Lemma 5.1 implies
there is an integer ρ∗(λ) such that dw(M∗) ≤ ρ∗(λ) whenever M is in Mλ.

The branch-width of a matroid is equal to the branch-width of its dual
[20, Proposition 14.2.3]. Hence

{M∗ : M ∈M, bw(M∗) ≤ λ} = {M∗ : M ∈Mλ}.

We have just shown that any matroid in this class has decomposition-width
at most ρ∗(λ), and this establishes the result. �

We do not know if we can prove Corollary 5.3 without relying on Theo-
rem 1.4. Nor do we know if the dual of a strongly pigeonhole class must be
strongly pigeonhole, but we conjecture that this is the case.

Conjecture 5.4. Let M be a strongly pigeonhole class of matroids. Then
{M∗ : M ∈M} is strongly pigeonhole.

6. Complexity theory

In this section, we discuss complexity theoretical applications of tree au-
tomata. We start with a simple observation.

TREE AUTOMATA AND MATROIDS 19

Proposition 6.1. Let ψ be any sentence in MS 0. Let M be an automatic
class of set-systems. There exists a Turing Machine which will take as input
a parse tree for any set system M = (E, I) ∈M (relative to an automaton)
and then test whether or not M satisfies ψ. The running time is O(n),
where n = |E|.

Proof. Since M is automatic, we can assume that A′ is a 1-ary tree au-
tomaton with alphabet Σ ∪ Σ× {0, 1}{i}, and for any M = (E, I) ∈ M we
let (TM , σM) be a parse tree of M relative to A′. So there is a bijection
ϕM : E → L(TM) such that A′ accepts enc(TM , σM , ϕM , {Yi}) if and only
if Yi ∈ I. The proof of Lemma 4.7 is constructive, and shows us how to
build an automaton, A, which will accept enc(TM , σM , ϕM , ∅) if and only
if M satisfies ψ. This construction is done during pre-processing, so it has
no impact on the running time. While A processes enc(TM , σM , ϕM , ∅), the
computation that occurs at each node takes a constant amount of time. So
the running time of A is proportional to the number of nodes. This number
is 2n− 1, so the result follows. �

Various models of matroid computation have been studied. Here, we will
concentrate on classes of matroids that have compact descriptions.

Definition 6.2. Let M be a class of matroids. A succinct representation
of M is a relation, ∆, from M into the set of finite binary strings. We
write ∆(M) to indicate any string in the image of M ∈ M. We insist that
there is a polynomial p and a Turing Machine which, when given any input
(∆(M), X), where M ∈M and X is a subset of E(M), will return an answer
to the question “Is X independent in M?” in time bounded by p(|E(M)|).

Thus we insist that an independence oracle can be efficiently simulated
using the output of a succinct representation. Note that the length |∆(M)|
can be no longer than p(|E(M)|). Descriptions of graphic or finite-field rep-
resentable matroids as graphs or matrices provide succinct representations.

Proposition 6.3. Let M be a class of matroids with succinct represen-
tation ∆. There is a Turing Machine which, for any integer λ > 0, will
take as input any ∆(M) for M ∈ M satisfying bw(M) ≤ λ, and return a
branch-decomposition of M with width at most 3λ+ 1. The running time is
O(8λn3.5p(n)), where n = |E(M)| and p is as in Definition 6.2.

Proof. The proof of this proposition requires nothing more than an analysis
of the proof of [19, Corollary 7.2], so we provide a sketch only. Let M =
(E, I) be a matroid in M with bw(M) ≤ λ. A partial decomposition of M
consists of a ternary tree, along with a partition of E and a bijection from the
blocks of this partition into the leaf-set of T . Each edge, e, of T partitions E
into two sets, Ue and Ve, and the width of e is rM (Ue)+rM (Ve)−r(M)+1. We
start with a partial decomposition containing a single block, and successively
partition blocks into two parts, until every block is a singleton set. This
process therefore takes n− 1 steps. At each step, we ensure that each edge

20 FUNK, MAYHEW, AND NEWMAN

has width at most 3λ+1, so at the end of the process, we will have the desired
decomposition. Assume that U is a block in the partition with |U | > 1. Let
l be the leaf corresponding to U , and let e be the edge incident with l (if T
is not a single vertex). Let V be E − U . We inductively assume that the
weight of e is at most 3λ + 1. If it is less than 3λ + 1, then we arbitrarily
choose an element u ∈ U , subdivide e and join a new leaf to this new vertex.
We label the new leaf with {u}, and relabel the leaf corresponding to U with
U −{u}. Therefore we can assume that the width of e is exactly 3λ+1, and
hence λM (U) = 3λ (assuming T has more than one vertex).

We use the greedy algorithm to find an arbitrary basis, B, of M in
O(np(n)) steps. For any subset X ⊆ U , define λB(X) to be

rM (X ∪ (B − V)) + rM (V ∪ (B −X))− |B −X| − |B − V |+ 1.

Then λB(X) is the rank function of a matroid on the ground set U [19,
Propositions 4.1 and 7.1]. Let this matroid be MB. The rank of MB is
3λ + 1. Finding the rank of X ∪ (B − V) takes O(np(n)) steps, using the
greedy algorithm, and similarly for V ∪ (B −X) in M . By again using the
greedy algorithm, we can find a basis, D, of MB, in O(np(n)+n2p(n)) steps.

Now we loop over all partitions of D into an ordered pair of two sets,
(D1, D2). This takes 23λ+1 steps. We let M1 and M2 be M/D1\D2 and
M\D1/D2 respectively. The ranks of M1 and M2 can be found in O(np(n))
time, and it then takes p(n) steps to test whether a subset is a basis of M1

or M2. Now it follows from [5, Theorem 4.1] that we can use an equivalent
form of the matroid intersection algorithm to find a set, Z, satisfying D1 ⊆
Z ⊆ E − D2 that minimises λM (Z). Furthermore, this can be done in
O(np(n) + n2.5p(n)) steps. If λM (Z) + 1 ≥ min{|D1|, |D2|}, then bw(M) ≥
|D|/3 = λ + 1/3 and we have a contradiction [19, Theorem 5.1]. Therefore
λM (Z) + 1 < min{|D1|, |D2|}. We subdivide e and attach a leaf to the new
vertex. This leaf corresponds to the set U ∩Z, and we relabel l with the set
U −Z. (If T has only one vertex, we simply create a tree with two vertices,
and label these with U ∩ Z and U − Z.)

The proof of [19, Theorem 5.2] shows that the width of every edge in the
new decomposition is at most 3λ+ 1, so we can reiterate this process until
we have a branch decomposition. �

We wish to develop efficient model-checking algorithms for strongly pi-
geonhole matroid classes. We have to strengthen this condition somewhat,
by insisting not only that there is a bound on the number of equivalence
classes, but that we can efficiently compute a finer equivalence relation.

Definition 6.4. LetM be a class of matroids with a succinct representation
∆. Assume there is a constant, c, and that for every integer, λ > 0, there is
an integer, π(λ), and a Turing Machine, Mλ, with the following properties:
Mλ takes as input any tuple of the form (∆(M), U,X,X ′), where M is in
M, U ⊆ E(M) satisfies λM (U) ≤ λ, and X and X ′ are subsets of U . The

TREE AUTOMATA AND MATROIDS 21

machine Mλ computes an equivalence relation, ≈U , on the subsets of U , so
that Mλ accepts (∆(M), U,X,X ′) if and only if X ≈U X ′. Furthermore,

(i) X ≈U X ′ implies X ∼U X ′,
(ii) the number of equivalence classes under ≈U is at most π(λ), and
(iii) Mλ runs in time bounded by O(π(λ)|E(M)|c).

Under these circumstances, we say thatM is computably pigeonhole (relative
to ∆).

It follows immediately that if a class of matroids is computably pigeonhole,
then it is strongly pigeonhole. We will later see that many natural classes
are computably pigeonhole.

Theorem 6.5. Let M be a class of matroids with a succinct representation
∆. Assume that M is computably pigeonhole. Let λ be a positive integer.
There is a Turing Machine which accepts as input any ∆(M) when M ∈M
satisfies bw(M) ≤ λ, and returns a parse tree for M (relative to an automa-
ton). The running time is O((8λn3.5 + π(3λ)2)p(n) + π(3λ)4nc+1), where
n = |E(M)|, p is as in Definition 6.2, and π and c are as in Definition 6.4.

Proof. We start by applying Proposition 6.3 to obtain a branch-
decomposition with width at most 3λ + 1. Let T be the tree underlying
this branch-decomposition, and let ϕ be the bijection from E(M) to the
leaves of T . We construct TM by subdividing an edge of T with a root
vertex, t, and distinguishing between left and right children. We let ϕM be
ϕ. If U is a set displayed by an edge of TM , then λM (U) ≤ 3λ. We let K
be π(3λ), where π is the function provided by Definition 6.4.

From this point we closely follow the proof of Lemma 5.2. For each
edge, e, in TM , we perform the following procedure. Let u be the end-
vertex of e that is further from t in TM , and define Ue as in the proof of
Lemma 5.2. We construct representative subsets, Repe(q), of Ue, where q is
a label in {q1, . . . , qK}, in such a way that distinct representative states are
inequivalent under ≈Ue . At the same time, we will construct a function, f ,
which will be applied to u by the labelling function σM .

First assume that u is a leaf, so that Ue = {ϕ−1M (u)}. The domain of f
will be {0, 1}. As in Lemma 5.2, we must consider the case that u is also the
root of TM . In this case, we set f(0) to be indep, and set f(1) to be indep or
dep depending on whether {ϕ−1M (u)} is independent. Now assume that u is
a non-root leaf. Let ∅ be Repe(q1), and set f(0) to be q1. In O(Knc) steps,
we test whether {ϕ−1M (u)} ≈Ue ∅. If so, then we set f(1) to be q1. Assuming

that {ϕ−1M (u)} 6≈Ue ∅, we define Repe(q2) to be Ue = {ϕ−1M (u)}, and we set
f(1) to be q2.

Now assume that u is not a leaf. Let eL and eR be the edges joining
u to its children. Recursively, we assume that RepeL(q) is defined when
q is in {q1, . . . , qsL}, and RepeR(q) is defined when q is in {q1, . . . , qsR}.
The function f will have domain {q1, . . . , qsL} × {q1, . . . , qsR}. For each of
the O(K2) pairs, (qj , qk), with qj ∈ {q1, . . . , qsL} and qk ∈ {q1, . . . , qsR},

22 FUNK, MAYHEW, AND NEWMAN

we perform the following steps. Let Xj stand for RepeL(qj) and Xk stand

for RepeR(qk). In time bounded by O(K2nc), we check whether Xj ∪Xk is
equivalent under ≈Ue to any of the representative subsets of Ue that we have
already constructed. If not, then we define Repe(ql) to be Xj ∪Xk, where
ql is the first label in {q1, . . . , qK} that has not already been assigned to a
representative subset of Ue. In this case, we set f(qj , qk) to be ql. However,
if Xj ∪Xk is equivalent under ≈Ue to a previously chosen representative, say
Repe(qm), then we set f(qj , qk) to be qm. Note that the number of edges in
TM is 2n− 2, so this entire procedure takes O(n(K4nc)) steps.

Finally, let the children of the root, t, be uL and uR, and assume that t
is joined to these children by eL and eR. Assume RepeL(q) is defined when
q is in {q1, . . . , qsL}, and RepeR(q) is defined when q is in {q1, . . . , qsR}.
Again, f has domain {q1, . . . , qsL}× {q1, . . . , qsR}. We define f(qj , qk) to be
indep if RepeL(qj) ∪ RepeR(qk) is independent, and we let f(qj , qk) be dep

otherwise. Constructing this function takes O(K2p(n)) steps. Now we have
completed the construction of the parse tree (TM , σM), and we have done
so in O((8λn3.5 +K2)p(n) +K4nc+1) steps.

To complete the proof, we must check that (TM , σM) genuinely behaves as
a parse tree should. The automaton A is exactly as in Lemma 5.2. But the
statement of Claim 5.2.1 still holds in this case, and can be proved by the
same argument. There is one point which deserves some attention: with the
notation as in the proof of Claim 5.2.1, the fact that the state q is applied
to u means that (Xj ∪ Xk) ≈Ue Repe(q). But the definition of ≈Ue then
implies (Xj ∪Xk) ∼Ue Repe(q), and hence (Yi ∩Ue) ∼Ue Repe(q), exactly as
in Claim 5.2.1. The rest of the proof follows exactly as in Lemma 5.2. �

Now Theorem 1.3 follows immediately from Proposition 6.1 and Theo-
rem 6.5.

6.1. Automata and 2-sums. In [10], we extend Hliněný’s Theorem to
the classes of bicircular matroids and H-gain-graphic matroids (where H
is a finite group). In this section, we show that it suffices to show that
the 3-connected H-gain-graphic (or bicircular) matroids form a computably
pigeonhole class. Because our arguments here do not depend on the nature
of bicircular or H-gain-graphic matroids, we operate at a greater level of
generality.

Let M1 and M2 be matroids on the ground sets E1 and E2. Assume that
E1 ∩ E2 = {e}, where e is neither a loop nor a coloop in M1 or in M2. The
parallel connection, P (M1,M2), along the basepoint e, has E1 ∪ E2 as its
ground set. Let Ci be the family of circuits of Mi for i = 1, 2. The family of
circuits of P (M1,M2) is

C1 ∪ C2 ∪ {(C1 − e) ∪ (C2 − e) : C1 ∈ C1, C2 ∈ C2, e ∈ C1 ∩ C2}.

Note that P (M1,M2)|Ei = Mi, for i = 1, 2. The 2-sum of M1 and M2,
written M1 ⊕2 M2, is defined to be P (M1,M2)\e.

TREE AUTOMATA AND MATROIDS 23

Let T be a tree, where each node, x, is labelled with a matroid, Mx.
Let the edges of T be labelled with distinct elements, e1, . . . , em. Let x
and y be distinct nodes. We insist that if x and y are not adjacent, then
E(Mx) and E(My) are disjoint. If x and y are joined by the edge ei, then
E(Mx) ∩ E(My) = {ei}, where ei is neither a loop nor a coloop in Mx or
My. Such a tree describes a matroid, as we now show. If ei is an edge
joining x to y, then contract ei from T , and label the resulting identified
node with P (Mx,My). Repeat this procedure until there is only one node
remaining. We use P (T) to denote the matroid labelling this one node.
It is an easy exercise to see that P (T) is well-defined, so that it does not
depend on the order in which we contract the edges of T . We define ⊕2(T)
to be P (T)\{e1, . . . , em}. If M is a connected matroid, there exists a (not
necessarily unique) tree T satisfying M = ⊕2(T) where every node of the
tree is labelled with a 3-connected matroid.

Definition 6.6. Let ∆ be a succinct representation of M, a class of ma-
troids. We say that ∆ is minor-compatible if there is a polynomial-time
algorithm which will accept any tuple (∆(M), X, Y) when M ∈ M and
X and Y are disjoint subsets of E(M), and return a string of the form
∆(M/X\Y).

Theorem 6.7. Let M be a minor-closed class of matroids with a minor-
compatible representation, ∆. Assume that {M ∈M : M is 3-connected} is
computably pigeonhole. There is a fixed-parameter tractable algorithm (with
respect to the parameter of branch-width) which accepts as input any ∆(M)
when M ∈M and returns a parse tree for M .

Remark 6.8. Theorems 6.5 and 6.7 are independent of each other, as we
now discuss. Since any subclass of a computably pigeonhole class is com-
putably pigeonhole, we can easily construct a computably pigeonhole class
that is not minor-closed, and this class will therefore not be covered by The-
orem 6.7. On the other hand, we can construct a minor-closed classM such
that {M ∈ M : M is 3-connected} is computably pigeonhole, and yet M is
not even strongly pigeonhole. Such a class will be covered by Theorem 6.7,
but not Theorem 6.5. For an example, let n ≥ 3 be an integer, and let U+

2,n

be the rank-2 matroid obtained from U2,n by replacing each element with
a parallel pair. If U contains exactly one element from each parallel pair,
then it is 3-separating, and yet ∼U has at least n equivalence classes. So if
M is the smallest minor-closed class containing {U+

2,n : n ≥ 3}, then M is
not strongly pigeonhole. However, every 3-connected member of M is uni-
form. It is therefore not difficult to show that {M ∈M : M is 3-connected}
is computably pigeonhole with respect to any minor-compatible representa-
tion. (See the proof of [10, Proposition 3.5].)

Proof of Theorem 6.7. The ideas here are very similar to those in the proof
of Theorem 6.5, but there are several technical complications introduced by
the fact that we have to deal with non-3-connected matroids as a separate

24 FUNK, MAYHEW, AND NEWMAN

case. Let M ∈M be a matroid with ground set E and branch-width λ. We
assume that we are given the description ∆(M). The algorithm we describe
in this proof runs in polynomial-time, and to ensure that it is fixed-parameter
tractable with respect to λ, we will be careful to observe that whenever we
call upon a polynomial-time subroutine, λ does not appear in the exponent
of the running time.

To start with we consider the case that M is connected, and at the end of
the proof we will show that this is sufficient to establish the entire theorem.

Discussion in [1] shows that we can use a ‘shifting’ algorithm to find a
2-separation of M , if it exists. This takes O(|E|3) oracle calls. Therefore we
can test whether M is 3-connected in polynomial time. If M is 3-connected,
then we use Theorem 6.5 to construct a parse tree for M . So henceforth we
assume that M is connected but not 3-connected.

Constructing TM . We have noted that it takes O(|E|3) oracle calls
to find a 2-separation of M . Assume that (U1, U2) is such a separation.
Then M can be expressed as the 2-sum of matroids M1 and M2, where
the ground set of Mi is Ui ∪ e, and e is an element not in E. Both M1

and M2 are isomorphic to minors of M , and hence are in M. If B1 is a
basis of M |U1, and B is a basis of M containing B1, then B ∩ U2 does not
span U2, so we can let x be an element in U2 − clM (B ∩ U2). Now M1 can
be produced from M by contracting B ∩ U2 and deleting all elements in
U2 − (B ∪ x). We then relabel x as e. From this discussion, and the fact
that ∆ is minor-compatible, it follows that we can construct ∆(M1) and
∆(M2) in polynomial time. By reiterating this procedure, we can construct
a labelled tree, T ′, such that M = ⊕2(T

′). Each node, x, of T ′ is labelled
by a 3-connected matroid, Mx, with at least three elements, and for each
such node we have an associated string ∆(Mx). Let the edge labels of T ′ be
e1, . . . , em. We arbitrarily select em. Say that it joins xL to xR in T ′. We
delete em, add a new node, t, and edges em,L and em,R joining t to xL and
xR. At the same time, we relabel em as em,L in MxL and as em,R in MxR .
Let T be the tree that we obtain in this way. We think of t as being the
root of T . We associate t with the matroid Mt, which is a copy of U1,2 with
ground set {em,L, em,R}. Note that ⊕2(T) = ⊕2(T

′) = M .
For each non-root node, x, of T , the labelling matroid Mx is isomorphic

to a minor of M . Therefore bw(Mx) ≤ λ [20, Proposition 14.2.3]. We use
Proposition 6.3 to construct a branch-decomposition of Mx with width at
most 3λ + 1. Let Tx be the tree underlying the branch-decomposition of
Mx, and let ϕx be the bijection from E(Mx) to the leaves of Tx. We define
the tree Tt to be a path of two edges, and we define ϕt so that it applies the
labels em,L and em,R to the leaves and t to the middle vertex. We say that
ϕt(em,L) is the left child of t and ϕt(em,R) is the right child.

Let x be a non-root node in T and consider the path in T from x to t.
Let eα be the first edge in this path. Then we say that eα is the parent
basepoint of Tx. For each internal vertex, u, of Tx, note that u is adjacent
to two vertices that are not in the path from u to ϕx(eα), where eα is the

TREE AUTOMATA AND MATROIDS 25

parent basepoint of Tx. We say that these two vertices are the children of
u, and we make an arbitrary distinction between the left child and the right
child.

The collection ∪{Tx}, where x ranges over all nodes of T , forms a for-
est that we now assemble into a single tree, TM . For each edge, eα, in
{e1, . . . , em−1, em,L, em,R}, we perform the following operation. Let the node
x of T be chosen so that eα is the parent basepoint of Tx, and let y be the
other end-vertex of eα in T . Let u be the vertex of Tx that is adjacent to
the leaf ϕx(eα). We delete ϕx(eα) from Tx and then identify u with the leaf
ϕy(eα) in Ty. We say that the edge in Ty that is now incident with u is a
basepoint edge in TM . If u is a non-leaf vertex of Tx, we allow u to carry its
children over from Tx to TM . In the case that a child of u in Tx represents a
basepoint element, eα, then that child of u in TM will be an internal vertex
of another tree, Ty. Now TM is a rooted tree where every non-leaf vertex has
a left child and a right child. Figure 1 illustrates this construction by show-
ing the tree T ′, along with the collection of decompositions ∪{Tx}. In these
diagrams, the basepoints of the parallel connections are coded via colour.
In Figure 2, we have assembled these trees together into the tree TM .

a b
e

Figure 1. The decomposition tree, T ′, and the decomposi-
tions ∪{Tx}.

e

Figure 2. The tree TM .

Every edge of TM is an edge of exactly one tree Tx, where x is a node
of T . Our method of construction means that if u is a non-leaf vertex of
TM , then both the edges joining u to its children are edges of the same tree
Tx. Moreover, if x is a non-root node of T , then the only edge of Tx not
contained in TM is the one incident with ϕx(eα), where eα is the parent
basepoint of Tx. Let e be any edge of TM , and let u be the end-vertex of e

26 FUNK, MAYHEW, AND NEWMAN

that is further away from t in TM . Then we say that u is the bottom vertex
of e.

Note that there is a bijection, ϕM , from E to the leaves of TM . In partic-
ular, ϕM restricted to E(Mx) ∩E is equal to ϕx restricted to the same set,
for any node x. It is easy to check that if the set U is displayed by an edge
of TM , then λM (U) ≤ 3λ. This is obvious when U is a subset of E(Mx),
where x is a non-root node of T , for then U is also displayed by the tree Tx.
It is only a little more difficult to verify when U is not contained in E(Mx)
for any x.

Defining three pieces of notation. Next we describe three related
notations for subsets of E and E(Mx). Let e be any edge of TM , and let
desc(e) be the set of elements z ∈ E such that the path in TM from ϕM (z) to
t passes through e. In Figure 2, when e is the dashed edge, the set desc(e)
is indicated by the hollow vertices. Note that desc(e) is not necessarily
contained in E(Mx) for any node x of T , but that it is contained in E.

Next, we let e be any edge of TM and let x be the node of T such that e
is an edge of the tree Tx. If x is a non-root node of T , then we can assume
that eα is the parent basepoint of Tx. We let Ue be the set of elements
z ∈ E(Mx) such that the path in Tx from ϕx(z) to ϕx(eα) contains e. If x
is the root t, and e joins t to ϕt(em,L) then we define Ue to be {em,L}, and
if e joins t to ϕt(em,R), then we define Ue to be {em,R}. In Figure 1, the
righthand diagram contains a dashed edge e, and the set Ue is indicated by
hollow vertices. Unlike desc(e), the set Ue may not be contained in E, as it
may contain basepoint elements. As Ue is displayed by the edge e in Tx, we
have that λMx(Ue) ≤ 3λ.

Finally, we let Yi be any subset of E, and we let x be a node of T . We
recursively describe a subset, 〈Yi〉x ⊆ E(Mx). First, assume that x is a leaf
of T . Then 〈Yi〉x is simply Yi ∩E(Mx). Now we assume that x is not a leaf.
Let eα1 , . . . , eαs be the labels of edges in T that are incident with x but not on
the path from x to t. Now define 〈Yi〉x so that it contains Yi∩E(Mx), along
with any basepoint eαj such that if y labels the other node incident with
eαj , then eαj ∈ clMy(〈Yi〉y). Note that this means that any element of 〈Yi〉x
is contained in either Yi ∩ E(Mx) or is a basepoint element. For example,
in Figure 1, we let x be the top-left node in the lefthand diagram, and we
let Yi be the set indicated by the hollow vertices. Then 〈Yi〉x contains the
single hollow vertex in E(Mx), as well as the element a, but not the element
b. Note that by construction, (Yi ∩ E(Mx)) ⊆ 〈Yi〉x ⊆ E(Mx).

With these definitions established, we can proceed.
Constructing representative subsets. Let e be any edge of TM , and

let Ue ⊆ E(Mx) be as defined above. Recall that λMx(Ue) ≤ 3λ. Noting
that {M ∈ M : M is 3-connected} is computably pigeonhole and Mx is 3-
connected, we refer to Definition 6.4, and we let π be the function from that
definition. Let K be π(3λ), and note that K is constant with respect to the
size of E. Let ≈Ue be the equivalence relation from Definition 6.4. Then
we can decide whether two subsets of Ue are equivalent under ≈Ue in time

TREE AUTOMATA AND MATROIDS 27

bounded by O(K|E(M)|c). Furthermore, ≈Ue has at most K equivalence
classes.

Note that TM has exactly 2|E| − 2 edges. For each such edge, e, we will
construct, in polynomial time, a set of representatives such that each repre-
sentative is a subset of Ue. Each representative will be an independent subset
of Ue, and distinct representatives will represent different (≈Ue)-classes. We
will apply the labels q1, . . . , qK to representative subsets, and use Repe(q)
to denote the representative with label q, assuming that it exists. We
do not claim that our set of representatives is complete, so there may be
(≈Ue)-classes that do not have a representative.

Let x be the node of T such that e is an edge of Tx. If x 6= t, then Tx has
a parent basepoint, eα, and we let u be the end-vertex of e that is further
from ϕx(eα) in Tx. If x = t, then let u be the end-vertex of e that is not the
root.

First assume that u is a leaf in Tx. Then Ue = {ϕ−1x (u)}. In this
case, we choose ∅ as a representative, and apply the label q1 to it, so that
∅ = Repe(q1). Because M has a succinct representation, we can check in
polynomial time whether Ue is dependent. If so, we take no further action,
so assume that Ue is independent in Mx. In polynomial time we can check
whether Ue ≈Ue ∅ holds. If so, then we are done. If Ue 6≈Ue ∅, then we
choose Ue as the representative with label q2, so that Ue = Repe(q2).

Now we assume that u is not a leaf of Tx. Let eL and eR be the edges
joining u to its children in Tx. Recursively, we assume that we have chosen
a representative subset RepeL(q) ⊆ UeL whenever q is in {q1, . . . , qsL}, and
that RepeR(q) is defined when q is in {q1, . . . , qsR}. For each pair (qj , qk) in
{q1, . . . , qsL} × {q1, . . . , qsR}, we let Xj stand for RepeL(qj) and Xk stand
for RepeR(qk). If Xj ∪ Xk is dependent in Mx, then we move to the next
pair. Assuming that Xj ∪Xk is independent, we check in polynomial time
whether Xj∪Xk is equivalent under ≈Ue to any of the representative subsets
of Ue that we have already constructed. If so, we are done. If not, then we
let ql be the first label in {q1, . . . , qK} not already assigned to a subset of
Ue, and we define Repe(ql) to be Xj ∪Xk.

Labelling the vertices. The alphabet of our automaton is going to
contain a set of functions. Our next job is show how we apply, in polynomial
time, functions in the alphabet to the vertices of TM . Let u be a vertex of
TM , and assume that u is the bottom vertex of the edge e. Let x be the
node of T such that e is an edge in the tree Tx.

First, we assume that u is a leaf of TM . Then Ue = ϕ−1M (u). We label u
with a function, f , with the domain {0, 1}. Set f(0) to be q1, recalling that
∅ is the representative Repe(q1). If Ue is dependent in Mx, then we set f(1)
to be the symbol dep. Assume that Ue is independent. If Ue ≈Ue ∅, then we
set f(1) to be q1. Otherwise we set f(1) to be q2, recalling that in this case
Ue = Repe(q2). Henceforth we assume that u is not a leaf of TM . Let eL
and eR be the edges joining u to its children in TM .

28 FUNK, MAYHEW, AND NEWMAN

Assume that e is not a basepoint edge. This implies that Ue is the
disjoint union of UeL and UeR . (If e were a basepoint edge, then Ue
would be a singleton subset of E(Mx), whereas UeL and UeR would be
subsets of E(My) for some other node y of T .) Assume that RepeL(q)
is defined when q is in {q1, . . . , qsL}, and that RepeR(q) is defined when
q is in {q1, . . . , qsR}. In this case, we label u with a function, f , having
{dep, q1, . . . , qsL} × {dep, q1, . . . , qsR} as its domain. We define the output
of f to be dep on any input that includes the symbol dep. Now assume
that Xj is RepeL(qj) and Xk is RepeR(qk), for some 1 ≤ j ≤ sL and some
1 ≤ k ≤ sR. If Xj ∪Xk is dependent in Mx, then define f(qj , qk) to be dep.
Otherwise, Xj ∪Xk is equivalent under ≈e to some representative subset of
Ue. We find this representative, say Repe(ql), in polynomial time, and we
set f(qj , qk) to be ql.

Now we assume that e is a basepoint edge. Assume that in Tx, e is inci-
dent with the leaf ϕx(eα), where eα is in {e1, . . . , em−1, em,L, em,R}. There-
fore Ue = {eα}. Note that eL and eR are edges of Ty, where y is the
node of T joined to x by eα. Assume that RepeL(q) has been chosen when
q ∈ {q1, . . . , qsL}, and RepeR(q) is defined when q ∈ {q1, . . . , qsR}. We
will apply to u a function, f , whose domain is again {dep, q1, . . . , qsL} ×
{dep, q1, . . . , qsR}, and whose codomain is {dep, q1, q2}. The output of f is
dep on any input including dep. Consider the input (qj , qk). Let Xj and
Xk be RepeL(qj) and RepeR(qk) respectively. If Xj ∪Xk is dependent, then
we set f(qj , qk) to be dep. Now we assume that Xj ∪Xk is independent. If
Xj ∪ Xk ∪ {eα} is independent in My then we set f(qj , qk) to be q1. Oth-
erwise, Xj ∪Xk ∪ {eα} is dependent in My, and we set f(qj , qk) to be q1 if
Ue ≈Ue ∅ holds, and q2 if Ue 6≈Ue ∅.

Finally, the root t is labelled with a function, f , that takes {dep, q1, q2}2 as
input. Any ordered pair that contains dep produces dep as output. Similarly,
f(q2, q2) = dep. Any other ordered pair produces the symbol indep as output.

Now we have described the function that we apply to each vertex of TM .
Let σM be the labelling that applies these functions. Thus (TM , σM) is a
Σ-tree, where Σ contains functions whose domain is either {0, 1} or sets
of the form {dep, q1, . . . , qsL} × {dep, q1, . . . , qsR}, and whose codomain is
{dep, indep, q1, . . . , qK}.

Constructing the automaton. Now that we have shown how
to efficiently construct the Σ-tree (TM , σM), it is time to consider the
workings of the automaton, A. The state space, Q, of A is the set
{dep, indep, q1, . . . , qK}. The alphabet is Σ∪Σ×{0, 1}{i}, where Σ is the set
of functions into Q that we have previously described. The only accepting
state is indep. The transition rule, δ0, acts as follows. If f is a function
from {0, 1} into Q, and s is a function in {0, 1}{i}, then δ0(f, s) = {f(s(i))}.
Similarly, δ2 is defined so that if f is a function in Σ, and (α, β) is in the
domain of f , then δ2(f, α, β) = {f(α, β)}. If (α, β) is not in the domain of f ,
then we set δ2(f, α, β) to be {dep}. Indeed, any output of δ0 or δ2 that has

TREE AUTOMATA AND MATROIDS 29

not now been defined, we set to be {dep}. This completes the description of
A. Note that it is a deterministic automaton.

Proof of correctness. We must now prove that (TM , σM) truly is a
parse tree relative to the automaton A. That is, we must prove that A
accepts a subset of the leaves of TM if and only if the corresponding set is
independent in M .

Lemma 6.9. Let Yi be a subset of E, and let u be a non-leaf vertex of TM .
Let eL and eR be the edges of TM joining u to its children. Let y be the node
of T such that eL and eR are edges of Ty.

(i) If 〈Yi〉y ∩ (UeL ∪ UeR) is dependent in My, then Yi ∩ (desc(eL) ∪
desc(eR)) is dependent in M .

(ii) If Yi ∩ desc(eL) and Yi ∩ desc(eR) are independent in M , but
Yi ∩ (desc(eL) ∪ desc(eR)) is dependent, then 〈Yi〉y ∩ (UeL ∪ UeR)
is dependent in My.

Proof. We start by defining D, a set of nodes in T . Let y′ be a node in T .
If there exists d ∈ desc(eL)∪desc(eR) such that the path in TM from ϕM (d)
to u uses an edge in the tree Ty′ , then y′ is in D, and otherwise y′ /∈ D. If
y′ 6= y and d is in desc(eL), we say y′ is a left vertex, if d is in desc(eR), then
y′ is a right vertex. We say that y is both a left and a right vertex of D,
and note that any vertex in D − y is either left or right, but not both. Let
y0, . . . , ys be an ordering of the vertices in D such that y0 = y, and whenever
yk is on the path from yj to y in T , k ≤ j.

To prove (i), we let C be a circuit of My contained in 〈Yi〉y ∩ (UeL ∪UeR).
We will construct a sequence of circuits, C0, . . . , Cs, of P (T) such that:

(a) Cj is contained in

(〈Yi〉y ∩ (UeL ∪ UeR)) ∪
j⋃

k=1

〈Yi〉yk

for each j, and
(b) if 0 ≤ k ≤ j, and e′ is an basepoint edge on the path from yk to y in

T , then e′ /∈ Cj .
Assume we succeed in constructing this sequence. Then Cs does not
contain any element in {e1, . . . , em−1, em,L, em,R}, so it is a circuit of
P (T)\{e1, . . . , em−1, em,L, em,R} = M , and is contained in Yi ∩ (desc(eL) ∪
desc(eR)).

For C0, we can just use C. Assume we have constructed Cj−1. Let eα be
the parent basepoint of Tyj , so that eα is the first edge on the path in T from
yj to y. Assume that eα joins yj to yk, where k < j. If eα /∈ Cj−1, then we
set Cj to be Cj−1 and we are done. Therefore we assume that eα is in Cj−1,
and hence eα is in 〈Yi〉yk , by the inductive assumption. By the definition
of 〈Yi〉yk , this means that eα is in clMyj

(〈Yi〉yj). Let C ′ be a circuit of Myj

such that eα ∈ C ′ ⊆ (〈Yi〉yj ∪ eα). The definition of the parallel connection

30 FUNK, MAYHEW, AND NEWMAN

means that (Cj−1 − eα) ∪ (C ′ − eα) is a circuit of P (T), so we set Cj to be
this circuit, and we are done.

Now we prove (ii). Assume that Yi ∩ desc(eL) and Yi ∩ desc(eR) are
independent in M , but that C is a circuit contained in Yi ∩ (desc(eL) ∪
desc(eR)). We construct a sequence Cs, Cs−1, . . . , C0 of circuits of P (T)
such that:

(a) Cj is contained in

(〈Yi〉y ∩ (UeL ∪ UeR)) ∪
j⋃

k=1

〈Yi〉yk

for each j, and
(b) for each j, there is a left vertex yL and a right vertex yR such that

Cj contains elements of both 〈Yi〉yL and 〈Yi〉yR .

Assuming we succeed in constructing this sequence, C0 will certify that
〈Yi〉y ∩ (UeL ∪ UeR) is dependent.

Note that C is contained in neither Yi ∩desc(eL) nor Yi ∩desc(eR). From
this it follows that we can take Cs to be C. Now assume that we have
constructed Cj . If Cj contains no elements of 〈Yi〉yj , then we set Cj−1 to
be Cj . So assume that Cj ∩ 〈Yi〉yj 6= ∅. Let eα be the parent basepoint of
Tyj , and assume that eα joins yj to yk in T , where j > k. It cannot be the
case that Cj is a circuit of 〈Yi〉yj , or else condition (b) would be violated.
Therefore Cj can be expressed as (C ′ − eα) ∪ (Cj−1 − eα), where C ′ and
Cj−1 are circuits of P (T) containing eα, and C ′ is a circuit of Myj , while
Cj−1 intersects E(Myj) only in eα. Note that the circuit C ′ implies that eα
is in 〈Yi〉yk . If yj is a left vertex, then so is yk, so Cj−1 must also contain an
element from 〈Yi〉yR , where yR is some right vertex. Therefore Cj−1 is the
desired next circuit in the sequence. The symmetric argument applies when
yj and yk are both right vertices. �

Lemma 6.10. Let Yi be a subset of E(M). Assume that u is the bottom
vertex of the edge e in TM . Let x be the node of T such that e is an edge of
Tx. Let q be the state applied to u by the run of A on enc(TM , σM , ϕM , {Yi}).
Then q = dep if and only if Yi ∩ desc(e) is dependent in M . If Yi ∩ desc(e)
is independent, then q = ql for some value l, and (〈Yi〉x ∩Ue) ∼Ue Repe(ql).

Proof. We assume that the Lemma 6.10 fails for the vertex u, and that
subject to this constraint, u has been chosen so that it is as far away from
t as is possible in TM . Let f be the function applied to u by the labelling
σM .

Claim 6.10.1. u is not a leaf of TM .

Proof. Let us assume that u is a leaf. Note that desc(e) = Ue = {ϕ−1x (u)}.
The label applied to u in the Σ-tree enc(TM , σM , ϕM , {Yi}) is (f, s), where

s ∈ {0, 1}{i} is the function such that s(i) = 1 if ϕ−1x (u) is in Yi, and
otherwise s(i) = 0. We have defined A in such a way that q = f(s(i)).

TREE AUTOMATA AND MATROIDS 31

Assume that Yi ∩ desc(e) is dependent. The only way this can occur
is if ϕ−1x (u) is a loop contained in Yi. In this case q = f(s(i)) = f(1),
and f(1) = dep, by the construction of f . Therefore u does not provide a
counterexample to Lemma 6.10. Next we assume that q = dep. But q is
f(s(i)), and this takes the value dep only if s(i) = 1 and Yi ∩ desc(e) =
Ue, and furthermore, this set is dependent. Again, u does not provide a
counterexample.

Now we assume that Yi ∩ desc(e) is independent. Observe that e is not
a basepoint edge, as this would imply | desc(e)| ≥ 2, and this is not the
case when u is a leaf. From this we deduce that 〈Yi〉x ∩ Ue = Yi ∩ Ue.
Assume that Yi ∩ Ue = ∅. Then q = f(s(i)) = f(0) = q1, where Repe(q1)
is the empty set. Thus 〈Yi〉e ∩ Ue and Repe(q) are actually equal, and thus
certainly equivalent under ∼Ue , as desired. Now we assume that Ue ⊆ Yi,
so 〈Yi〉x ∩ Ue = Ue. Then q = f(s(i)) = f(1), and this value is either
q1 or q2. In the former case, Ue ≈Ue ∅, so (〈Yi〉x ∩ Ue) ≈Ue ∅. As ∅ is
Repe(q1), we are done. Therefore we consider the case that q = q2. In this
case Repe(q2) = Ue = 〈Yi〉x ∩ Ue, so Lemma 6.10 holds. This contradiction
means that Claim 6.10.1 is proved. �

Now we let uL and uR be the children of u in TM , and we assume that
these are the bottom vertices of the edges eL and eR. Note that desc(e) is
the disjoint union of desc(eL) and desc(eR). Observe also that eL and eR
are edges of the same tree, Ty, where y is a node of T that may or may not
be equal to x. If y 6= x, then e is a basepoint edge. Let qL and qR be the
states applied to uL and uR by the run of A on enc(TM , σM , ϕM , {Yi}). Our
inductive assumption on u means that Lemma 6.10 holds for uL and uR.

Claim 6.10.2. Yi ∩ desc(eL) and Yi ∩ desc(eR) are independent in M , and
〈Yi〉y ∩ UeL and 〈Yi〉y ∩ UeR are independent in My.

Proof. If Yi ∩ desc(eL) is dependent, then so is Yi ∩ desc(e). In this case the
inductive assumption tells us that qL = dep. Now the construction of f and
A means that q = dep. But this means that u does not provide us with a
counterexample. Hence Yi ∩ desc(eL), and symmetrically Yi ∩ desc(eR), is
independent in M .

Assume that 〈Yi〉y ∩ UeL is dependent in My. If uL is not a leaf of TM
and eL is not a basepoint edge, then we can apply Lemma 6.9 (i) to the two
edges connecting uL to its children. This then implies that 〈Yi〉y ∩ desc(eL)
is dependent in M , contradicting the conclusion of the previous paragraph.
Therefore uL is a leaf or eL is a basepoint edge. In either case, UeL is a
singleton set, and this set must contain a loop, as 〈Yi〉y ∩ UeL is dependent.
A basepoint cannot be a loop, so uL is a leaf of TM . Thus UeL = desc(eL).
Now the dependence of 〈Yi〉y ∩UeL implies the dependence of Yi ∩ desc(eL),
a contradiction. The claim follows by a symmetrical argument for 〈Yi〉y ∩
UeR . �

32 FUNK, MAYHEW, AND NEWMAN

Claim 6.10.2 and the inductive assumption now mean that qL = qj and
qR = qk, for some values of j and k. Let Xj and Xk stand for RepeL(qj)
and RepeR(qk). Then (〈Yi〉y ∩ UeL) ∼UeL

Xj and (〈Yi〉y ∩ UeR) ∼UeR
Xk.

Claim 6.10.3. 〈Yi〉y ∩ (UeL ∪ UeR) is independent in My, Yi ∩ desc(e) is
independent in M , and 〈Yi〉x ∩ Ue is independent in Mx.

Proof. Assume that

〈Yi〉y ∩ (UeL ∪ UeR) = (〈Yi〉y ∩ UeL) ∪ (〈Yi〉y ∩ UeR)

is dependent in My. Then Proposition 2.3 implies that Xj∪Xk is dependent
in My. The construction of f and A now means that q = dep. Lemma 6.9 (i)
implies that Yi∩desc(e) is dependent, so u fails to provide a counterexample.
Therefore 〈Yi〉y ∩ (UeL ∪ UeR) is independent in My.

Assume that Yi ∩ desc(e) is dependent in M . As Yi ∩ desc(eL) and
Yi ∩ desc(eR) are independent by Claim 6.10.2, Lemma 6.9 (ii) implies that
〈Yi〉y∩(UeL∪UeR) is dependent in My, contradicting the previous paragraph.

Finally, assume that 〈Yi〉x ∩ Ue is dependent in Mx. Then x 6= y, or else
Ue is the disjoint union of UeL and UeR , and we have a contradiction to the
first paragraph. Hence e is a basepoint edge, meaning that Ue is a single
element, and this element must be a loop. A basepoint cannot be a loop, so
we have a contradiction. �

Assume that x = y, so that e, eL, and eR are all edges of Tx. In this
case Ue is the disjoint union of UeL and UeR . Claim 6.10.3 says that 〈Yi〉x ∩
Ue = (〈Yi〉x ∩ UeL) ∪ (〈Yi〉x ∩ UeR) is independent in Mx, so Proposition 2.3
implies that Xj ∪ Xk is independent. Therefore q = ql for some ql such
that (Xj ∪ Xk) ≈Ue Repe(ql). Hence (Xj ∪ Xk) ∼Ue Repe(ql). We also
know from Proposition 2.3 that (〈Yi〉x ∩ Ue) ∼Ue (Xj ∪ Xk). Therefore
(〈Yi〉x ∩ Ue) ∼Ue Repe(ql) and Lemma 6.10 holds for u, a contradiction.

Now we must assume that y 6= x, so that e is a basepoint edge. This
means that e is incident with a leaf, ϕx(eα), in Tx, and eα is the parent
basepoint of Ty. Therefore Ue = {eα}, and eα is in 〈Yi〉x if and only if eα
is in clMy(〈Yi〉y) = clMy((〈Yi〉y ∩ UeL) ∪ (〈Yi〉y ∩ UeR)). Note that (〈Yi〉y ∩
UeL) ∪ (〈Yi〉y ∩ UeR) is independent in My, by Claim 6.10.3.

Assume that eα is in 〈Yi〉x, so that 〈Yi〉x ∩ Ue = Ue = {eα}. In this case

(〈Yi〉y ∩ UeL) ∪ (〈Yi〉y ∩ UeR) ∪ {eα}

is dependent in My. From Proposition 2.3, we have that Xj∪Xk is indepen-
dent in My, and equivalent under ∼(UeL

∪UeR
) to (〈Yi〉y∩UeL)∪(〈Yi〉y∩UeR).

Therefore Xj ∪Xk ∪ {eα} is also dependent in My. The construction of the
function f now means that q is either q1 or q2. In the first case, Ue ≈Ue ∅.
Hence (〈Yi〉x ∩ Ue) ∼Ue ∅, and as ∅ = Repe(q1), we see that u satisfies the
lemma. Therefore q = q2, and Repe(q2) = Ue. In this case 〈Yi〉x ∩ Ue and
Repe(q2) are equal, so (〈Yi〉x ∩ Ue) ∼Ue Repe(q2) certainly holds, and we
have a contradiction.

TREE AUTOMATA AND MATROIDS 33

Now we must assume that eα is not in 〈Yi〉x. Hence 〈Yi〉x ∩ Ue = ∅. But
in this case

(〈Yi〉y ∩ UeL) ∪ (〈Yi〉y ∩ UeR) ∪ {eα}

is independent in My. Using the arguments from the previous paragraph,
we show that Xj ∪Xk ∪ {eα} is also independent in My, so q = q1, where
Repe(q1) = ∅. Now ∅ = 〈Yi〉x ∩ Ue, so (〈Yi〉x ∩ Ue) ∼Ue Repe(q1) holds, and
this contradiction completes the proof of Lemma 6.10. �

Now we can prove that (TM , σM) is a parse tree for A. Let the left child of
the root t be uL, and let the right child be uR. We let eL and eR be the edges
joining t to these children. Recall UeL = {em,L} and UeR = {em,R}, and Mt

is a copy of U1,2 on the ground set {em,L, em,R}. Let Yi be a subset of E(M),
and let q be the state applied to t by the run of A on enc(TM , σM , ϕM , {Yi}).
We let qL and qR be the states applied to uL and uR.

In the first case, we assume that q = dep, and we aim to show that Yi
is dependent. Our construction of the function labelling t means (qL, qR)
either contains the symbol dep, or is (q2, q2). If qL = dep, then Yi∩desc(em,L)
is dependent in M by Lemma 6.10, and hence Yi is dependent in M . By
symmetry, we assume that neither qL nor qR is dep, so (qL, qR) = (q2, q2).
From this we see that RepeL(q2) = UeL = {em,L}, and moreover (〈Yi〉t ∩
UeL) ∼UeL

UeL . Because RepeL(q2) is defined, UeL 6≈UeL
∅, so 〈Yi〉t ∩ UeL is

not empty. Therefore 〈Yi〉t contains em,L. By symmetry, 〈Yi〉t contains em,R.
Now 〈Yi〉t ∩ (UeL ∪ UeR) = {em,L, em,R} is dependent in Mt. Lemma 6.9 (i)
implies that Yi ∩ (desc(eL) ∪ desc(eR)) = Yi is dependent in M , exactly as
we wanted.

In the second case, we assume that Yi is dependent in M . If Yi∩desc(eL)
is dependent, then qL = dep by Lemma 6.10. In this case, q = dep, which
is what we want. Therefore we assume by symmetry that Yi ∩ desc(eL) and
Yi ∩ desc(eR) are independent in M . As Yi is dependent, Lemma 6.9 (ii)
implies that 〈Yi〉t ∩ (UeL ∪ UeR) = 〈Yi〉t ∩ {em,L, em,R} is dependent in Mt.
Therefore 〈Yi〉t = {em,L, em,R}. Let xL be the node of T joined to t by
em,L, and define xR similarly. Then em,L ∈ 〈Yi〉t implies that em,L is in
clMxL

(〈Yi〉xL).
Since every node of T other than t corresponds to a matroid with at

least three elements, it follows that neither uL nor uR is a leaf in TM .
Let eLL and eLR be the edges that join uL to its children: uLL and uLR.
Then Yi ∩ desc(eLL) and Yi ∩ desc(eLR) are independent in M , as they are
subsets of Yi ∩ desc(eL). Therefore A applies states qj and qk to uLL and
uLR. Let Xj and Xk be RepeLL

(qj) and RepeLR
(qj) respectively. Then

(〈Yi〉xL ∩ UeLL) ∼UeLL
Xj and (〈Yi〉xL ∩ UeLR) ∼UeLR

Xk by Lemma 6.10.

Proposition 2.3 implies that 〈Yi〉xL ∩ (UeLL ∪ UeLR) = 〈Yi〉xL is equivalent
to Xj ∪ Xk under ∼(UeLL

∪UeLR
). From em,L ∈ clMxL

(〈Yi〉xL), we see that

〈Yi〉xL ∪ {em,L} is dependent in MxL . Therefore Xj ∪ Xk ∪ {em,L} is also
dependent. Because UeL = {em,L} is certainly not equivalent to ∅ under

34 FUNK, MAYHEW, AND NEWMAN

∼UeL
, we see that A applies the state q2 to uL. By symmetry it applies q2

to uR. Thus q = f(q2, q2) = dep, where f is the function applied to t by σM .
We have shown that A accepts enc(TM , σM , ϕM , {Yi}) if and only if Yi is

independent in M , exactly as we wanted.
Reducing to the connected case. Our final task is to show that we

can construct a parse tree for M when M is not connected. In the first part
of the proof, we have established that there is a fixed-parameter tractable
algorithm for constructing a parse tree relative to the automaton A, when
M is connected.

We augment A to obtain the automaton A′. We add a new character, κ,
to the alphabet of A, and we add new states, dep′ and indep′, to its state
space. We augment the transition rules so that δ2(κ, α, β) is {indep′} when
both α and β are indep′ or accepting states of A, and set δ2(κ, α, β) to be
{dep′} otherwise. Any output of δ0 or δ2 that has now not been defined is set
to be {dep′}. The accepting states of A′ are the accepting states of A, along
with indep′. We can identify the connected components, M1, . . . ,Mn, of M
in polynomial time [1]. We assume that n > 1. Each Mj is in M, as M is
minor-closed, and we can construct a description ∆(Mj) in polynomial time,
as ∆ is minor-compatible. Moreover, bw(Mj) ≤ λ [20, Proposition 14.2.3],
Therefore we have a fixed-parameter tractable algorithm for constructing
the parse trees, (TMj , σMj). Now we construct a rooted tree with n leaves,
where each non-leaf has a left child and a right child, and we apply the label
κ to each non-leaf vertex. We then identify the n leaves with the n roots
in TM1 , . . . , TMn . Now it is straightforward to verify that A′ will use A to
check independence in each connected component of M , and accept if and
only if A accepts in each of those components. Therefore A′ decides Ind(Xi)
for any matroid in M. Thus we have constructed a parse tree for M . This
completes the proof of Theorem 6.7. �

Proposition 6.1 and Theorem 6.7 immediately lead to the following result.

Theorem 6.11. Let M be a minor-closed class of matroids with a minor-
compatible representation, ∆. Assume that {M ∈ M : M is 3-connected}
is computably pigeonhole. Let ψ be any sentence in MS 0. There is a fixed-
parameter tractable algorithm which will test whether ψ holds for matroids
in M, where the parameter is branch-width.

7. Decidability and axiomatisability

The theorems of Courcelle and Hliněný have as their goal efficient model-
checking: given a sentence and a graph/matroid, we test whether the sen-
tence is satisfied by that object. Decidability is orthogonal to this problem:
given a class of objects and a sentence, we want to decide (in finite time,
but not necessarily efficiently) if that sentence is a theorem for the class.

Definition 7.1. LetM be a class of set-systems. The MS 0 theory ofM is
the collection of MS 0 sentences that are satisfied by all set-systems in M.

TREE AUTOMATA AND MATROIDS 35

We say that the MS 0 theory of M is decidable if there is a Turing Machine
which takes as input any sentence in MS 0, and after a finite amount of time
decides whether or not the sentence is in the theory of M.

The key idea in the forthcoming decidability proofs is that, given a tree
automaton, there is a finite procedure which will decide if there is a tree
that the automaton will accept. (See, for example, [9, Theorem 3.74].)

Lemma 7.2. Let A = (Σ, Q, F, δ0, δ2) be a tree automaton. Let Z be a
subset of Q, and let q be a state in Q − Z. There is a finite procedure for
deciding the following question: does there exist a Σ-tree, (T, σ), with root t
such that if r is the run of A on (T, σ), then q ∈ r(t), and r(v) ∩ Z = ∅ for
every vertex v of T .

Proof. Note that if r(v) contains q, where v is a non-root vertex, then we
may as well consider the subtree of (T, σ) that has v as its root. This
means that we lose no generality in searching only for Σ-trees such that q is
contained in r(t), but not in r(v) when v is a non-root vertex. Our search
will construct the desired tree, T , or establish that it does not exist.

Now we proceed by induction on |Q−Z|. Assume Q−Z contains only q.
If δ0(α) = {q} for some α ∈ Σ, then we return YES: we simply consider the
Σ-tree consisting of a single leaf labelled with α. If no such α exists, then
we return NO. This completes the proof of the base case, so now we make
the obvious inductive assumption.

If δ0(α)∩Z = ∅ and q ∈ δ0(α) for some α ∈ Σ, then we can construct the
Σ-tree with a single leaf labelled with α, and the answer is YES. Therefore
we assume that no such α exists.

We search for tuples (α, qL, qR) ∈ Σ × Q × Q such that q ∈ δ2(α, qL, qR)
and δ2(α, qL, qR) ∩ Z = ∅. If no such tuple exists, then we halt and return
NO. Otherwise, for each such tuple, we search for Σ-trees, (TL, σL) and
(TR, σR), with the following properties: If rL and rR are the runs on these
trees, then rL(v) ∩ (Z ∪ {q}) = ∅ for each vertex v of TL, and similarly
rR(v) ∩ (Z ∪ {q}) = ∅. Furthermore, qL is in rL(tL), and qR is in rR(tR),
where tL and tR are the roots of TL and TR. By induction, we can construct
such trees, if they exist. If they do exist, then we construct T from the
disjoint union of TL and TR by adding a root t, and making its children tL
and tR. We then apply the label α to t. This justifies returning the answer
YES. If we find that no such trees exist for each tuple (α, qL, qR), then we
return NO. �

Corollary 7.3. Let A = (Σ, Q, F, δ0, δ2) be a tree automaton. There is a
finite procedure to decide whether there exists a Σ-tree that A accepts.

Proof. We repeatedly apply Lemma 7.2 with Z set to be the empty set, and
q set to be a state in F . �

When we say that a class of set-systems is axiomatisable we mean there
is an MS 0 sentence, τ , such that a set-system satisfies τ if and only if it is

36 FUNK, MAYHEW, AND NEWMAN

in the class. The matroid independence axioms can be stated in MS 0. If N
is a fixed matroid, there is an MS 0 sentence that characterises the matroids
having a minor isomorphic to N [13, Lemma 5.1]. From this it follows that
a minor-closed of matroids is axiomatisable if it has a finite number of ex-
cluded minors. There are also axiomatisable minor-closed classes that have
infinitely many excluded minors (Remark 7.8). The class of K-representable
matroids is not axiomatisable when K is an infinite field [18].

Theorem 7.4. Let M be a axiomatisable class of set-systems with bounded
decomposition-width. The MS 0 theory of M is decidable.

Proof. Let ψ be an arbitrary sentence in MS 0. We wish to decide whether
all set-systems inM satisfy ψ. This is equivalent to deciding whether there
exists a set-system inM satisfying ¬ψ. Let τ be an MS 0 sentence such that
a set-system belongs to M if and only if it satisfies τ .

Lemma 5.2 implies that there is a 1-ary automaton A′ such that for every
M = (E, I) in M, there is a Σ-tree (TM , σM) and a bijection ϕM : E →
L(TM) where A′ accepts enc(TM , σM , ϕM , {Yi}) if and only if Yi is in I,
for any Yi ⊆ E(M). We use (the proof of) Lemma 4.7 to construct an
automaton, A, such that A accepts enc(T, σ, ϕ, ∅) if and only ifM(A′, T, σ, ϕ)
satisfies τ ∧¬ψ, for each Σ-tree (T, σ) and each bijection ϕ from a finite set
to the leaves of T .

According to Corollary 7.3, we can decide in finite time whether or not
there is a Σ-tree that is accepted by A. If (T, σ) is such a tree, then let
ϕ be the identity function on L(T). The set-system M(A′, T, σ, ϕ) satisfies
τ ∧ ¬ψ, so it is a set-system in M (as it satisfies τ) that does not satisfy
ψ. Therefore ψ is not in the theory of M. On the other hand, if M ∈ M
does not satisfy ψ, then M = M(A′, TM , σM , ϕM) satisfies τ ∧¬ψ, so A will
accept at least one tree, namely enc(TM , σM , ϕM , ∅). �

Corollary 7.5. Let M be an axiomatisable pigeonhole class of matroids.
Let λ be a positive integer. The MS 0 theory of {M ∈ M : bw(M) ≤ λ} is
decidable.

Proof. The family of matroids with branch-width at most λ is minor-closed,
and it has finitely many excluded minors [12]. Therefore we can let τ be
an MS 0 sentence encoding the independence axioms for matroids, member-
ship of M, and branch-width of at most λ. Thus a set-system satisfies τ
if and only if it is in {M ∈ M : bw(M) ≤ λ}. This class has bounded
decomposition-width, so we apply Theorem 7.4. �

The resolution of Rota’s conjecture [11] means that the class of F-repre-
sentable matroids is axiomatisable when F is a finite field. Corollary 7.5 now
implies that the MS 0 theory of F-representable matroids with branch-width
at most λ is decidable. This was previously proved by Hliněný and Seese
[15, Corollary 5.3], who did not rely on Rota’s conjecture. Let M be any
minor-closed class of F-representable matroids, where F is a finite field. Gee-
len, Gerards, and Whittle have also announced that M has finitely many

TREE AUTOMATA AND MATROIDS 37

excluded minors [11, Theorem 6]. ThereforeM is axiomatisable, and hence
the MS 0 theory of {M ∈ M : bw(M) ≤ λ} is decidable, for any positive
integer λ.

A basis, B, of the matroid M is fundamental if B ∩ Z spans Z whenever
Z is a cyclic flat. A matroid with a fundamental basis is a fundamental
transversal matroid (see [3]). It is an exercise to prove that B is fundamen-
tal if and only if x is freely placed in the flat spanned by the fundamental
circuit, C(x,B), for every x /∈ B. This is equivalent to saying that if Z is a
cyclic flat containing x, then Z contains C(x,B). This property can clearly
be expressed in MS 0. In [10, Theorem 6.3], we prove that the class of fun-
damental transversal matroids is pigeonhole. Therefore the MS 0 theory of
fundamental transversal matroids with branch-width at most λ is decidable
by Corollary 7.5.

The class of bicircular matroids has finitely many excluded minors [deVos
and Goddyn, personal communication], which implies that it can be charac-
terised by an MS 0 sentence. The class is also pigeonhole, as we prove in [10,
Theorem 8.4], so the MS 0 theory of bicircular matroids with branch-width
at most λ is decidable.

7.1. Undecidable theories. We also have some results that allow us to
prove results in the negative direction, by showing that certain classes have
undecidable theories.

Assume that F is a flat of the matroid M , and let M ′ be a single-element
extension of M . Let e be the element in E(M ′) − E(M). We say that M ′

is a principal extension of M by F if F ∪ e is a flat of M ′ and whenever
X ⊆ E(M) spans e in M ′, it spans F ∪ e.

Let G be a simple graph with vertex set {v1, . . . , vn} and edge set
{e1, . . . , em}. Let m(G) be the rank-3 sparse paving matroid with ground
set {v1, . . . , vn} ∪ {e1, . . . , em}. The only non-spanning circuits of m(G) are
the sets {vi, ek, vj}, where ek is an edge of G joining the vertices vi and vj .

Theorem 7.6. Let M be a class of matroids that contains all rank-3 uni-
form matroids, and is closed under principal extensions. The MS 0 theory of
M is undecidable.

Proof. We let G be a simple graph, and we let m+(G) be the matroid ob-
tained from m(G) by placing a new element parallel to each ‘vertex’ element
vi. It is easy to check that m+(G) is contained inM for every simple graph
G. Moreover, we can characterise the matroids that are equal to m+(G) for
some graph G in the following way. Let M be a matroid. Then M is equal
to m+(G) for some graph G (with at least three vertices) if and only if the
following properties hold:

(i) r(M) = 3,
(ii) M is loopless, and any rank-1 flat has cardinality one or two,

38 FUNK, MAYHEW, AND NEWMAN

(iii) any rank-2 flat that contains at least three rank-1 flats contains
exactly three such flats, one of cardinality one, and two of cardinality
two,

(iv) if x is an element that is not in a parallel pair, then x is in exactly
one rank-2 flat that contains three rank-1 flats.

From this it is clear that there is an MS 0 sentence, τ , such that a matroid
satisfies τ if and only if it is isomorphic to m+(G) for some simple graph G.

Now we consider the logical language, MS 1, for graphs. In this language,
we can quantify over variables that represent vertices, and variables that
represent subsets of vertices. We have a binary predicate that expresses
when a vertex is in a set of vertices, and another that expresses when two
vertices are adjacent. Let ψ be a sentence in MS 1. There is a corresponding
sentence, ψ′, in MS 0 such that a simple graph, G, satisfies ψ if and only if
m+(G) satisfies ψ′. Let Vert(X) stand for a MS 0 formula expressing the
fact that X is a 2-element circuit. To construct ψ′, we make the following
interpretations:

(i) we replace Qv with QXv Vert(Xv), where Q is a quantifier, and v is
a vertex variable,

(ii) we replace QV with

QX∀X1(Sing(X1) ∧X1 ⊆ X)→
∃X2(X1 ⊆ X2 ∧X2 ⊆ X ∧Vert(X2)),

where Q is a quantifier, and V is a set variable,
(iii) we replace v ∼ v′ (the adjacency predicate) with a MS 0 formula

saying that Xv ∪Xv′ is not a flat.

Seese has shown that the MS 1 theory of simple graphs is undecidable ([22,
Theorem 4], see also [15, Theorem 4.8]). Imagine that the MS 0 theory of
M is decidable. Then for any MS 1 sentence, ψ, we could decide if τ → ψ′

is a theorem for M. This is equivalent to deciding whether ψ is a theorem
for all simple graphs, so we have contradicted Seese’s result. �

The argument in [10, Proposition 6.1] shows that the class of (strict)
gammoids is closed under principal extensions. The next result follows easily.

Corollary 7.7. Let K be an infinite field. The MS 0 theory of rank-3 K-rep-
resentable matroids is undecidable. The MS 0 theories of rank-3 cotransver-
sal matroids and gammoids are undecidable. Therefore the MS 0 theory of
corank-3 transversal matroids is undecidable.

Corollary 7.7 is complementary to a result by Hliněný and Seese [15,
Theorem 7.2], who have shown that the MS 0 theory of spikes is undecidable.
Although every spike has branch-width three, spikes have unbounded rank,
and are not representable over a common field.

TREE AUTOMATA AND MATROIDS 39

7.2. Axiomatisability and pigeonhole classes. We will now show that
axiomatisability and the pigeonhole property are independent of each other
by exhibiting classes that have exactly one of these properties. One case is
easy: the class of sparse paving matroids can be axiomatised by insisting
that every non-spanning circuit is a hyperplane. But [10, Lemma 4.1] implies
this class is not pigeonhole.

For the other case, we consider polygon matroids. Let Cn be the rank-3
sparse paving matroid with ground set {e1, . . . , e2n} and non-spanning cir-
cuits

{e1, e2, e3}, {e3, e4, e5}, . . . , {e2n−3, e2n−2, e2n−1}, {e2n−1, e2n, e1}.

The polygon matroids form a well-known infinite antichain [20, Example
14.1.2]. Next we consider path matroids. They too are rank-3 sparse paving
matroids. The ground set of a path matroid can be ordered e1, . . . , en in
such a way that any non-spanning circuit is a set of three consecutive ele-
ments in the ordering. Note that the sparse paving property implies that if
{ei, ei+1, ei+2} is a non-spanning circuit, then {ei+1, ei+2, ei+3} is not. Every
rank-3 proper minor of a polygon matroid is a path matroid, and every path
matroid is a minor of a polygon matroid.

Remark 7.8. Path matroids can be characterised as follows: they are rank-
three matroids where every non-spanning circuit contains exactly three el-
ements, and no element is in more than two non-spanning circuits. More-
over, any non-spanning circuit contains an element that is in exactly one
non-spanning circuit. Finally, if {u, v, w} is a non-spanning circuit, and w
is in exactly one non-spanning circuit, then there is a partition, (U, V), of
E(M)−w with u ∈ U and v ∈ V , where {u, v, w} is the only non-spanning
circuit containing elements of both U and V . This characterisation shows
that the class of path matroids is axiomatisable. Furthermore, matroids
with rank at most two can be characterised by saying that any subset con-
taining three pairwise disjoint singleton sets is dependent. Therefore the
minor-closed class consisting of path matroids and all matroids with rank at
most two is axiomatisable. However, it has an infinite number of excluded
minors, since every polygon matroid is an excluded minor.

Proposition 7.9. Let M be the class containing all polygon and path
matroids, and all matroids of rank at most two. Then M has bounded
decomposition-width.

Proof. It is easy to see that if M is a matroid with rank zero or one, then
dw(M) ≤ 3. Now assume that M is a rank-2 matroid. Let (T, ϕ) be a
decomposition of M such that if (U, V) is a displayed partition, then no
more than one parallel class of M intersects both U and V . It is clear that
such a decomposition exists. Now we can easily verify that dw(M) ≤ 5.

Let M be a rank-3 matroid in M. It is easy to see that there is
an ordering e1, . . . , en of E(M) such that for any partition (U, V) =

40 FUNK, MAYHEW, AND NEWMAN

({e1, . . . , et}, {et+1, . . . , en}), at most two non-spanning circuits contain ele-
ments from both U and V . We let (T, ϕ) be a decomposition that displays
only partitions of this type. It is straightforward to verify that this type of
decomposition leads to an upper bound on the decomposition-width of all
rank-3 matroids in M. �

Now we can prove the existence of a minor-closed class that is pigeonhole
without being axiomatisable.

Lemma 7.10. There is a minor-closed class, M, of matroids with the fol-
lowing properties. Each matroid inM has rank (and therefore branch-width)
at most three. Furthermore M has bounded decomposition-width, and is
therefore pigeonhole. However, M has an undecidable MS 0 theory, so M is
not axiomatisable.

Proof. We consider the classes consisting of all matroids with rank at most
two, all path matroids, and some subset of the polygon matroids. The fact
that these classes have bounded decomposition-width follows from Proposi-
tion 7.9. The number of such classes is the cardinality of the power set of
the natural numbers, so there are uncountably many such classes. Assume
that every such class has a decidable theory. There are countably many
Turing Machines, so we let M1 and M2 be two distinct such classes, such
that exactly the same Turing Machine decides the theories of M1 and M2.
Therefore M1 and M2 satisfy exactly the same MS 0 sentences. Without
loss of generality, we can let P be a polygon matroid inM1 but not inM2.
It is easy to express the statement ‘this matroid is not isomorphic to P ’ in
MS 0. This sentence is a theorem for M2, but not for M1, so we have a
contradiction. �

7.3. Open problems. The class of lattice path matroids has infinitely
many excluded minors [2]. Despite this, we make the following conjecture.

Conjecture 7.11. The class of lattice path matroids can be characterised
by a sentence in MS 0.

We have proved that the class of lattice path matroids is pigeonhole [10,
Theorem 7.2], so Conjecture 7.11, along with Corollary 7.5, would imply
the decidability of the MS 0 theory of lattice path matroids with bounded
branch-width.

The following conjecture would imply that any minor-closed class of
H-gain-graphic matroids can be characterised with a sentence in MS 0, when
H is a finite group.

Conjecture 7.12. Let H be a finite group, and let M be a minor-closed
class of H-gain-graphic matroids. Then M has only finitely many excluded
minors.

We also conjecture that the class of H-gain-graphic matroids is (com-
putably) pigeonhole ([10, Conjecture 9.3]). This conjecture, combined with

TREE AUTOMATA AND MATROIDS 41

Conjecture 7.12, would imply decidability for any minor-closed of H-gain-
graphic matroids with bounded branch-width.

DeVos, Funk, and Pivotto have proved that if H is an infinite group, then
the class of H-gain-graphic matroids has infinitely many excluded minors
[6, Corollary 1.3]. We conjecture a stronger property.

Conjecture 7.13. Let H be an infinite group. The class of H-gain-graphic
matroids cannot be characterised with a sentence in MS 0.

It is not too difficult to see that the techniques of [18] settle this conjecture
when H contains elements of arbitrarily high order. Thus it is open only in
the case that H is an infinite group with finite exponent. An easy example

of such a group is the infinite direct product (Z/2Z)Z
+

, but there exist more
sophisticated examples, such as Tarski monster groups.

We also believe the following.

Conjecture 7.14. Let H be an infinite group. The class of rank-3 H-gain-
graphic matroids has an undecidable MS 0 theory.

8. Acknowledgements

We thank Geoff Whittle for several important conversations. Funk and
Mayhew were supported by a Rutherford Discovery Fellowship, managed by
Royal Society Te Apārangi.

References

[1] R. E. Bixby and W. H. Cunningham. Matroid optimization and algorithms. In Hand-
book of combinatorics, Vol. 1, 2, pp. 551–609. Elsevier, Amsterdam (1995).

[2] J. E. Bonin. Lattice path matroids: the excluded minors. J. Combin. Theory Ser. B
100 (2010), no. 6, 585–599.

[3] J. E. Bonin, J. P. S. Kung, and A. de Mier. Characterizations of transversal and
fundamental transversal matroids. Electron. J. Combin. 18 (2011), no. 1, Paper 106,
16.

[4] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inform. and Comput. 85 (1990), no. 1, 12–75.

[5] W. H. Cunningham. Improved bounds for matroid partition and intersection algo-
rithms. SIAM J. Comput. 15 (1986), no. 4, 948–957.

[6] M. DeVos, D. Funk, and I. Pivotto. When does a biased graph come from a group
labelling? Adv. in Appl. Math. 61 (2014), 1–18.

[7] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Com-
puter Science. Springer-Verlag, New York (1999).

[8] R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Texts
in Computer Science. Springer, London (2013).

[9] J. Engelfriet. Tree automata and tree grammars. arXiv e-prints (2015),
arXiv:1510.02036.

[10] D. Funk, D. Mayhew, and M. Newman. Tree automata and pigeonhole classes of
matroids – II. arXiv e-prints (2019), arXiv:1910.04361.

[11] J. Geelen, B. Gerards, and G. Whittle. Solving Rota’s conjecture. Notices Amer.
Math. Soc. 61 (2014), no. 7, 736–743.

42 FUNK, MAYHEW, AND NEWMAN

[12] J. F. Geelen, A. M. H. Gerards, N. Robertson, and G. P. Whittle. On the excluded
minors for the matroids of branch-width k. J. Combin. Theory Ser. B 88 (2003),
no. 2, 261–265.

[13] P. Hliněný. On matroid properties definable in the MSO logic. In Mathematical foun-
dations of computer science 2003, volume 2747 of Lecture Notes in Comput. Sci., pp.
470–479. Springer, Berlin (2003).

[14] P. Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids.
J. Combin. Theory Ser. B 96 (2006), no. 3, 325–351.

[15] P. Hliněný and D. Seese. Trees, grids, and MSO decidability: from graphs to matroids.
Theoret. Comput. Sci. 351 (2006), no. 3, 372–393.

[16] S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata
studies, Annals of mathematics studies, no. 34, pp. 3–41. Princeton University Press,
Princeton, N. J. (1956).

[17] D. Král. Decomposition width of matroids. Discrete Appl. Math. 160 (2012), no. 6,
913–923.

[18] D. Mayhew, M. Newman, and G. Whittle. Yes, the “missing axiom” of matroid theory
is lost forever. Trans. Amer. Math. Soc. 370 (2018), no. 8, 5907–5929.

[19] S.-i. Oum and P. Seymour. Approximating clique-width and branch-width. J. Com-
bin. Theory Ser. B 96 (2006), no. 4, 514–528.

[20] J. Oxley. Matroid theory. Oxford University Press, New York, second edition (2011).
[21] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. Res.

Develop. 3 (1959), 114–125.
[22] D. Seese. The structure of the models of decidable monadic theories of graphs. Ann.

Pure Appl. Logic 53 (1991), no. 2, 169–195.
[23] Y. Strozecki. Enumeration complexity and matroid decomposition. Ph.D. thesis, Uni-

versité Paris Diderot (2010).
[24] Y. Strozecki. Monadic second-order model-checking on decomposable matroids. Dis-

crete Appl. Math. 159 (2011), no. 10, 1022–1039.

Faculty of Science and Technology, Douglas College, Vancouver, Canada
Email address: funkd@douglascollege.ca

School of Mathematics and Statistics, Victoria University of Wellington,
New Zealand

Email address: dillon.mayhew@vuw.ac.nz

Department of Mathematics and Statistics, University of Ottawa, Ottawa,
Canada

Email address: mnewman@uottawa.ca

	1. Introduction
	2. Pigeonhole classes
	3. Monadic logic
	4. Automatic classes
	5. Characterising automatic classes
	6. Complexity theory
	6.1. Automata and 2-sums

	7. Decidability and axiomatisability
	7.1. Undecidable theories
	7.2. Axiomatisability and pigeonhole classes
	7.3. Open problems

	8. Acknowledgements
	References

