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ABSTRACT. Let 9 be a sentence in the monadic second-order logic of
matroids. Let F be a finite field, and let M be the class of F-rep-
resentable matroids. Hlinény’s Theorem says that there is a fixed-
parameter tractable algorithm for testing whether matroids in M sat-
isfy 1, with respect to the parameter of branch-width. The main re-
sult of this paper extends Hlinény’s Theorem by showing that such an
algorithm also exists when M is the class of fundamental transversal
matroids, lattice path matroids, bicircular matroids, or H-gain-graphic
matroids, when H is a finite group.

1. INTRODUCTION

In the first paper of the series [6], we proved an extension of Hlinény’s The-
orem [8]. That theorem is concerned with testing sentences in the monadic
second-order logic of matroids. This is the same logical language as used
n [15]. Let ¢ be a sentence in monadic second-order logic. Hlinény’s The-
orem says that there is a fixed-parameter tractable algorithm for testing
whether matroids satisfy 1, as long as the input class consists of matroids
representable over a finite field F. The input to a fized-parameter tractable
algorithm typically includes a numerical parameter, A, and the running time
is bounded by O(f(A)n®), where n is the size of the input, c is a constant,
and f(\) is a value that depends only on A. In the case of Hlinény’s The-
orem, the parameter is the branch-width of the input matroid. Thus the
theorem provides us with a polynomial-time algorithm when the input class
is restricted to F-representable matroids of bounded branch-width.

The main result of [6] is as follows.

Theorem 1.1. Let M be a computably pigeonhole class of matroids. Let
¥ be a sentence in MSy. There is a fized-parameter tractable algorithm for
testing whether matroids in M satisfy ¥, where the parameter is branch-
width.

This sequel paper exploits Theorem and related ideas to show that
there is a fixed-parameter tractable algorithm for testing monadic sentences
in other natural classes of matroids, beyond finite-field representable ma-
troids. In particular, we show that Hlinény’s Theorem can be extended as
follows.
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Theorem 1.2. Let M be any of the following:

(i) the class of fundamental transversal matroids,
(ii) the class of lattice path matroids,
(iii) the class of bicircular matroids, or
(iv) the class of H-gain-graphic matroids, where H is a finite group.

Let i) be a sentence in MSq. There is a fixed-parameter tractable algorithm
for testing whether matroids in M satisfy v, where the parameter is branch-
width.

We now explain computably pigeonhole matroid classes, along with some
other associated concepts. Formal definitions are reserved for Section
Imagine that M is a matroid, and that U is a subset of E(M). Let X and
X' be subsets of U. Assume that X UZ is independent if and only if X'UZ is
independent, for any subset Z C F(M) — U. We think of this as indicating
that no subset of E(M) — U can distinguish between X and X’. In this
case we write X ~y X’. We put the elements of E(M) into correspondence
with the leaves of a ternary tree. If there are at most ¢ equivalence classes
under ~y whenever U is a set displayed by an edge of the tree, then the
decomposition-width of M is at most q. This notion of decomposition-width
is equivalent to that used by Krél [I3] and by Strozecki [I8] [19].

A class of matroids with bounded decomposition-width must have
bounded branch-width [6, Corollary 2.8]. The converse does not hold
(Lemma . Let M be a class of matroids, and assume that every subclass
of M with bounded branch-width also has bounded decomposition-width.
Then we say that M is a pigeonhole class of matroids. This is the case
if and only if the dual class is pigeonhole ([6, Corollary 5.3]). The class
of F-representable matroids forms a pigeonhole class if and only if F is fi-
nite (Theorem and Proposition . Fundamental transversal matroids
(Theorem and lattice path matroids also form pigeonhole classes (The-
orem [7.2).

A stronger property arises quite naturally. Imagine that M is a class
of matroids, that M is an arbitrary matroid in M, and that U is an ar-
bitrary subset of E(M). Assume that whenever \y;(U), the connectivity
value of U, is at most A, there are at most 7(\) equivalence classes under
~u, where m(\) is a value depending only on A. In this case we say that M
is strongly pigeonhole (Definition , and this implies that M is pigeon-
hole [0, Proposition 2.11]. The class of fundamental transversal matroids
is strongly pigeonhole, and so is the class of F-representable matroids when
F is finite (Theorem [5.1). We do not know if any of the other classes in
Theorem are strongly pigeonhole, but we certainly believe this to be the
case (Conjectures and . In fact, we make the broad conjecture that
the class of matroids that are transversal and cotransversal is a strongly
pigeonhole class (Conjecture .

Theorem relies on tree automata to test the sentence 1), as does
Hlinény’s Theorem. These machines are described in Section 2 In order
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to construct a parse tree for the machine to process, we require a further
strengthening of the pigeonhole property. It is not enough that there is a
bound on the number of classes under ~;: we must be able to compute this
equivalence relation efficiently. In fact, we are happy to compute a refine-
ment of ~¢, as long as this refinement does not have too many classes. If we
are able to do this, then we say that the class is computably pigeonhole (Def-
inition . Any computably pigeonhole class is also strongly pigeonhole.
Matroids representable over a finite field (Theorem are computably pi-
geonhole, and this gives us a proof of Hlinény’s Theorem. The class of funda-
mental transversal matroids is also computably pigeonhole (Theorem [6.3)).

In [6, Theorem 6.11] we proved that Theorem (1.1{ holds under the weaker
condition that the 3-connected members of M form a computably pigeon-
hole class. (However, we require that we can efficiently construct descrip-
tions of minors, so the two theorems are independent of each other.) This
was motivated by the fact that we do not know if bicircular matroids or
H-gain-graphic matroids (H finite) form computably pigeonhole classes.
(We conjecture this is the case in Conjecture . We have been able to
show that the 3-connected bicircular matroids and the 3-connected H-gain-
graphic matroids form computably pigeonhole classes (Theorem . This
is then enough to establish cases (iii) and (iv) in Theorem

Knowing that we have efficient model-checking for bicircular matroids
gives us a new, and quite simple, proof of Courcelle’s Theorem (Remark,
which states that there is a fixed-parameter tractable algorithm for testing
monadic second-order sentences in graphs, relative to the parameter of tree-
width.

As well as proving positive results, we establish some negative proposi-
tions. Any class of matroids that contains the rank-3 uniform matroids and is
closed under principal extensions is not pigeonhole (Corollary. Thus ma-
troids representable over an infinite field are a non-pigeonhole class (Propo-
sition [5.2]). The class of transversal matroids is not pigeonhole, (Propo-
sition [6.1) and nor is the class of gammoids (Remark [6.2). A different
argument shows that the class of H-gain-graphic matroids is not pigeonhole
when H is infinite (Proposition [8.8]).

Oxley provides our reference for the basic concepts of matroid theory
[16]. If M is a matroid, and (U, V) is a partition of E (M), then Ay (U) is
ra(U) + (V) — r(M), and we call this the connectivity value of U. A
k-separation is a partition, (U, V'), of the ground set such that |U|, |V | > k,
and Ay (U) < k. A matroid is n-connected if it has no k-separations with
k < n.

2. TREE AUTOMATA

Definition 2.1. Let T be a tree with a distinguished root vertex, t. Assume
that every vertex of T' other than ¢ has degree one or three, and that if T
has more than one vertex, then ¢ has degree two. The leaves of T are the
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degree-one vertices. In the case that ¢ is the only vertex, we also consider
t to be a leaf. Let L(T) be the set of leaves of T'. If T" has more than one
vertex, and v is a non-leaf, then v is adjacent with two vertices that are not
contained in the path from v to t. These two vertices are the children of v.
We distinguish the left child and the right child of v. Now let 3 be a finite
alphabet of characters. Let o be a function from V(T') to X. Under these
circumstances we say that (T, 0) is a X-tree.

Definition 2.2. A tree automaton is a tuple (3, Q, F, dg, d2), where ¥ is a
finite alphabet, and @ is a finite set of states. The set of accepting states is
a subset F' C Q. The functions, do: & — 29 and d2: ¥ x Q x Q — 29, are
transition rules.

Let A= (%,Q, F,dp, d2) be an automaton and let (7, 0) be a X-tree with
root t. We let r: V(T) — 29 be the function recursively defined as follows:
(i) if v is a leaf of T, then r(v) = dp(c(v)),
(i) if v has left child vz, and right child vg, then

r(v) = U d2(0(v), 9L, qR)-

(qr,qr)€r(ve)xr(vR)

We say that r is the run of the automaton A on (7, 0). Note that we define
a union taken over an empty collection to be the empty set. We say that A
accepts (T, o) if r(t) contains an accepting state.

Let i be a positive integer. Then {0, 1}{?} denotes the set of functions from
{i} into {0,1}. Let X be a finite alphabet, and let (T, 0) be a X-tree. Let ¢
be a bijection from the finite set F into L(T'), and let Y; be a subset of E.
We construct the (XU Y x {0, 1}{3)-tree enc(T, o, ¢, {¥;}). The characters
applied to the leaves of this tree will encode the subset Y;. If v is a non-leaf
vertex of T, then it receives the label o(v) in enc(T, o, ¢, {Y;}). However, if
v is a leaf, then it receives a label (o(v), s), where s € {0, 1}{% takes i to 1
if and only if p~!(v) is in Y;.

Definition 2.3. Let X be a finite set, and let A be a tree automaton with XU
> x {0, 1} as its alphabet. Let (T, o) be a X-tree, and let ¢ be a bijection
from the finite set E into L(T"). We define the set-system M (A,T,0,¢) as
follows:

M(A,T,0,¢) = (E,{Y; C E: A accepts enc(T,0,¢,{Yi})}).

Now let X be a finite set, and let A be a tree automaton with alphabet
YUY x {0,1}{%, Let M = (E,Z) be a set-system. Assume there is a
Y-tree (T, 00r), and a bijection pps: E — L(T)y) having the property that
M = M(A,Tar, o0, oar). In this case we say that (T, o) is a parse tree
for M (relative to the automaton A).

Note that if (Ths,0n) is a parse tree for M, then we can simulate an
independence oracle for M by running A. We simply label each leaf v with
the function taking i to 1 if ¢} (v) is in ¥;, and the function taking i to 0



TREE AUTOMATA AND MATROIDS 5

if it is not. By then running A on the resulting tree, and testing to see if it
accepts, we can check whether or not Y; is in Z. This is idea is central to
the proofs of Hlinény’s Theorem and of Theorem

3. PIGEONHOLE CLASSES

This section states our central definitions: decomposition-width, pigeon-
hole classes, strongly pigeonhole classes, and computably pigeonhole classes.
A set-system is a pair (F,Z) where E is a finite set and Z is a family of sub-
sets of /. We sometimes call the members of Z the independent sets of the
set-system.

Definition 3.1. Let (E,Z) be a set-system, and let U be a subset of E. Let
X and X' be subsets of U. We say X and X’ are equivalent (relative to U),
written X ~y X', if for every subset Z C E — U, the set X U Z is in Z if
and only if X' U Z is in Z.

Clearly ~y is an equivalence relation on the subsets of U. No member of
7 is equivalent to a subset not in Z. When Z is the set of independent sets
of a matroid (more generally, when Z is closed under subset containment),
all dependent subsets of U are equivalent.

A ternary tree is one in which every vertex has degree three or one. A
degree-one vertex is a leaf. Let M = (E,Z) be a set-system. A decomposition
of M is a pair (T, ), where T is a ternary tree, and ¢ is a bijection from
FE into the set of leaves of T'. Let e be an edge joining vertices u and v in
T. Then e partitions F into sets (Ue, V.) in the following way: an element
x € E belongs to U, if and only if the path in 7" from ¢(x) to u does not
contain v. We say that the partition (Ue, V) and the sets U, and V, are
displayed by the edge e. Define dw(M;T, ) to be the maximum number
of equivalence classes in ~y, where the maximum is taken over all subsets,
U, displayed by an edge in 7. Define dw(M) to be the minimum value of
dw(M; T, ¢), where the minimum is taken over all decompositions (T, ) of
M. This value is then said to be the decomposition-width of M. If M is a
matroid, then dw(M) is defined to be dw(E(M),T). Krél [13] and Strozecki
[18, [19] used an equivalent notion of decomposition-width.

Let M be a matroid. If (T, ¢) is a decomposition of M = (E(M),Z(M)),
then bw(M; T, ) is the maximum value of

)\M(Ue) +1= T‘M(Ue) + TM(VE) — T‘(M) + 1,

where the maximum is taken over all partitions (U, V.) displayed by edges
of T. Now the branch-width of M (written bw(M)) is the minimum value
of bw(M;T,¢), where the minimum is taken over all decompositions of
M. In [6l Corollary 2.8] we show that a class of matroids with bounded
decomposition-width also has bounded branch-width. The converse is not
true (see Lemma . This motivates the following definition.
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Definition 3.2. Let M be a class of matroids. Then M is pigeonhole if,
for every positive integer, A, there is an integer p(\) such that bw(M) < A
implies dw(M) < p(A), for every M € M.

So a class of matroids is pigeonhole if every subclass with bounded branch-
width also has bounded decomposition-width. The next result is [6], Corol-
lary 5.3].

Proposition 3.3. Let M be a class of matroids. Then M is pigeonhole if
and only if {M*: M € M} is pigeonhole.

We often find that natural classes of matroids with the pigeonhole prop-
erty also possess a stronger property.

Definition 3.4. Let M be a class of matroids. Assume that for every
positive integer A, there is a positive integer (), such that whenever M €
M and U C E(M) satisfies Ay (U) < A, there are at most m(\) equivalence
classes under ~g; . In this case we say that M is strongly pigeonhole.

In [6, Proposition 2.11], we give the easy proof that any class with the
strong pigeonhole property also has the pigeonhole property.

Proposition 3.5. The class of uniform matroids is strongly pigeonhole.

Proof. Let M be a rank-r uniform matroid, and let U be a subset of E(M)
such that Ay (U) < A, for some positive integer A. Declare subsets X, X’ C
U to be equivalent if:

(i) 1X], 1X] > rag(U),

(ii) rnu(U) = A < [X] = [X'[ < ry(U), or

(iil) | X[, | X" <rpm(U) = A
Thus there are at most A + 2 equivalence classes, and we will be done if we
can show that this equivalence relation refines ~y. If | X|,|X'| > ry(U)
then both X and X’ are dependent, and hence they are equivalent under
~y. Since M is uniform, any subsets of U with the same cardinality will
be equivalent under ~g;. Therefore we need only consider the case that
| X, | X'| < rp(U)—A. Assume that Z C E(M)—U, and X U Z is indepen-
dent while X’ U Z is dependent. Since X’ U Z is dependent, it follows that
| X'UZ| > r(M). As XUZ is independent, we see that |Z| < rp (E(M)-U).
Therefore

r(M)<|X'UZ| = |X'|+|Z| <rpuU) =X+ ry(E(M) = U).

Hence rp(U) + 7y (E(M)—U) —r(M) > X, and we have a contradiction to
NS 0

Theorem is concerned with matroid algorithms. For the purposes of
measuring the efficiency of these algorithms, we restrict our attention to
matroid classes where there is a succinct representation, such as graphic
matroids or finite-field representable matroids.
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Definition 3.6. Let M be a class of matroids. A succinct representation
of M is a relation, A, from M into the set of finite binary strings. We
write A(M) to indicate any string in the image of M € M. We insist that
there is a polynomial p and a Turing Machine which, when given any input
(A(M),X), where M € M and X is a subset of E(M ), will return an answer
to the question “Is X independent in M?” in time bounded by p(|E(M)]).

Note that the length of the string A(M) is no more than p(|E(M)]). A
graph provides a succinct representation of a graphic matroid, and a matrix
provides a succinct representation of a finite-field representable matroid.

Definition 3.7. Let A be a succinct representation of M, a class of ma-
troids. We say that A is minor-compatible if there is a polynomial-time
algorithm which will accept any tuple (A(M),X,Y) when M € M and
X and Y are disjoint subsets of E(M), and return a string of the form
A(M/X\Y).

The proof of Theorem proceeds by constructing a tree automaton
which tests whether an MS( sentence is satisfied by the input matroid. In
order to construct parse trees for the automaton to process, we need to be
able to efficiently compute the equivalence classes of ~y. In fact, we are
happy to compute an equivalence relation that refines ~¢7, as long as it does
not have too many classes.

Definition 3.8. Let M be a class of matroids with a succinct representation
A. Assume there is a constant, ¢, and that for every integer, A > 0, there is
an integer, m(\), and a Turing Machine, M), with the following properties:
M), takes as input any tuple of the form (A(M),U, X, X’), where M is in
M, U C E(M) satisfies A\py(U) < A, and X and X' are subsets of U. The
machine M), computes an equivalence relation, ~g;, on the subsets of U, so
that My accepts (A(M),U, X, X’) if and only if X ~y X’. Furthermore,
(i) X ~y X’ implies X ~y X,
(ii) the number of equivalence classes under ~; is at most m(\), and
(iii) My runs in time bounded by O(7w(\)|E(M)|[¢).
Under these circumstances, we say that M is computably pigeonhole (relative
to A).

Clearly a computably pigeonhole class of matroids is also strongly pigeon-

hole.

4. NON-PIGEONHOLE CLASSES

Next we develop some tools for proving negative results. We want to
certify that certain classes are not pigeonhole. Let G be a simple graph

with vertex set edge set {e1,...,en} and {vi,...,v,} where n > 3. We
define m(G) to be the rank-3 sparse paving matroid with ground set
{vi,...,vn} U{e1,...,em}. The only non-spanning circuits of m(G) are

the sets {v;, ex, v;}, where ey, is an edge of G joining the vertices v; and v;.
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Lemma 4.1. Let M be a class of matroids. Assume there are arbitrarily
large integers, N, such that M contains a matroid isomorphic to m(Ky).
Then M contains rank-3 matroids with arbitrarily high decomposition-width.
Hence M is not pigeonhole.

Proof. Observe that rank-3 matroids have branch-width at most four, so
if {M € M: r(M) = 3} has unbounded decomposition-width, then M
is certainly not pigeonhole. Assume for a contradiction that every rank-3
matroid in M has decomposition-width at most K.

Let n be a positive integer. Erdés and Rado [5] proved that there is a least
integer ¢(n, k), such that in any collection of distinct n-element sets with
at least ¢(n, k) members, there is a subcollection of k sets having a single
pairwise intersection. Thus if a simple graph has at least ¢(2, k) edges, it
has either a vertex of degree at least k, or a matching containing at least k
edges. Abbott, Hanson, and Sauer [1] proved that ¢(2, k) is k(k —1) when k
is odd, and (k —1)2 + (k — 2)/2 when k is even. Thus we can choose k > K
such that k2 > ¢(2, k).

Next we choose an integer N such that

1 N
N > 7k% 4+ 2k
s (v (5)) =

and M contains a matroid, M, isomorphic to m(Ky). By relabelling, we
assume that the ground set of M is {vy,...,on}U{e;;: 1 <i<j < N}and
the only non-spanning circuits are of the form {v;, e;;,v;}. Let (T, ¢) be a
decomposition of M with the property that if U is any displayed set, then
~y has at most K classes. Using [16, Lemma 14.2.2], we choose an edge e
in T such that each of the displayed sets, U, and V., contains at least

o= v+ ()

elements. Let G be a complete graph with vertex set {v1,...,vn} and edge
set {e;j: 1 < i < j < N}, where e;; joins v; to v;. We colour a vertex or
edge red if it belongs to U, and blue if it belongs to V..

Assume that there are at least 2k red vertices and at least 2k blue vertices.
Without loss of generality we can assume that there is a matching in G
consisting of k red edges, each of which joins a red vertex to a blue vertex.
Thus we can find elements v;,,...,v;, in Ue and elements vj,,...,v;, in V,
such that e; ;, is in U, for each p. If p and ¢ are distinct, then {v;,, €;,j,, v, }
is a circuit of M while {v;,e;;,,vj,} is a basis. Hence {v;,,e;,;,} and
{vi,, €i,j, } are inequivalent under ~,. This means that ~y, has at least &
equivalence classes. As k > K, this is a contradiction, so we assume without
loss of generality that there are fewer than 2k red vertices.

Assume some red vertex is joined to at least k blue vertices by red edges.
Then there is an element v; € U, and elements vj,,...,v;, € V. such that
eij, is in U, for each p. For distinct p and ¢, we see that {v;,e;;,,v;,} is a
circuit while {v;, e;;,,v;,} is a basis. Therefore {v;, e, } and {v;,e;;,} are
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inequivalent under ~¢;,. We again reach the contradiction that there are at
least k equivalence classes under ~y,. Now we can deduce that there are
fewer than 2k2 red edges that join a red vertex to a blue vertex.

There are fewer than 2k red vertices and fewer than

2% )
() <

red edges that join two red vertices. Since the number of red edges and
vertices is at least one third of N + (];[), we see that the number of red edges
joining two blue vertices is at least

é <N+ @7)) — (2k + 2K% + 4K%) > k2 > 6(2, k).
Therefore the subgraph induced by such red edges contains either a vertex
of degree at least k, or a matching containing at least k£ edges.

In the former case, there are elements v;,vj,,...,v;, € Ve such that e;;,
is in U, for each p. Then {v;,e;j,,v;,} is a circuit, and {v;,e;;,,v;,} is a
basis for distinct p and ¢, so {v;,v;,} and {v;,v;,} are inequivalent under
~y.. This leads to a contradiction, so there is a matching of at least k edges.
Therefore we can find elements v;,,...,v;,,vj,,...,v;, in V. such that each
€i,j, is in U,. For distinct p and ¢, we see that {v;,, €;,j,,vj,} is a circuit and
{vi, €ipj,» Vj, + is a basis. Therefore {v;,,v;,} and {v;,,v;, } are inequivalent
under ~v,, so we reach a final contradiction that completes the proof. [

Let F be a flat of the matroid M. Let M’ be a single-element extension of
M, and let e be the element in E(M')— E(M). We say that M’ is a principal
extension of M by F if FUe is a flat of M’ and whenever X C E(M) spans
e in M', it spans F Ue.

Corollary 4.2. Let M be a class of matroids. If M contains all rank-3
uniform matroids, and is closed under principal extensions, then it is not
pigeonhole.

Proof. We note that m(Ky) can be constructed by starting with a rank-3
uniform matroid, the elements of which represent the vertices of K. The
elements representing edges are then added via principal extensions. The
result now follows from Lemma 1] O

5. REPRESENTABLE MATROIDS

The next result is not surprising, and has been utilised by both Hlinény
[8] and Kral [13].
Theorem 5.1. Let F be a finite field. The class of F-representable matroids

is computably pigeonhole.

Proof. Assume that |F| = ¢q. Let M be the class of F-representable matroids.
We consider the succinct representation A that sends each matroid in M to
an F-matrix representing it. Let M be a rank-r matroid in M, and let U
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be a subset of M. We use V to denote E(M) — U. We identify M with a
multiset of points in the projective geometry P = PG(r — 1,¢q) (we lose no
generality in assuming that M is loopless). If X is a subset of E(M), then
(X) will denote its closure in P.

Assume that Ay (U) < A. Grassman’s identity tells us that the rank of
(UyNn (V) is equal to r(U) +r(V) —r(M) < XA. We define the equivalence
relation =y so that if X and X’ are subsets of U, then X =~y X' if both X
and X’ are dependent, or both are independent and (X) N (V) = (X')N (V).
Deciding whether X =~y X’ holds requires only elementary linear algebra,
and it can certainly be accomplished in time bounded by O(|E(M)|¢) for
some constant c¢. Since (U) N (V) is a subspace of P with affine dimen-
sion at most A — 1, it contains at most (¢* — 1)/(¢ — 1) points. Therefore
20" +¢**++1 4 1 5 a crude upper bound on the number of (~y)-classes.
It remains only to show that ~¢ refines ~.

Assume that X =~y X', and yet X U Z is independent while X' U Z is
dependent, where Z is a subset of V. Then X is independent, so X' is
independent also. Let C' be a circuit contained in X’ U Z. As both X’ and
Z are independent, neither X’ N C nor Z N C is empty. Now the rank of
(X'nC)yn{(Zn<C) is

r(X'NC)+r(ZNC) —r(C) = |X'NC|+]ZNC| - (IC] —1) = 1.

Let ¢ be the point of P that is in (X'NC)N(ZNC). Since cis in (X')N(V),
our assumption tells us it is also in (X)) N (V).

Assume c is not in X. Since it is in (X), we can let Cx be a circuit
contained in X Uc that contains c¢. If cis in Z, then X U Z contains Cx, and
we have a contradiction, so c is not in Z. We let C'z be a circuit contained
in ZUc that contains ¢. Circuit elimination between Cx and Cz shows that
X U Z contains a circuit, and again we have a contradiction. Therefore c is
in X. If cis not in Z, then ZUc¢ C X U Z contains a circuit. Therefore ¢
isin Z. As X and Z are disjoint subsets of E(M), but ¢ is identified with
elements of both, we conclude that M contains a parallel pair, with one
element in X, and the other in Z. Again X U Z is dependent, and we have
a final contradiction. O

Hlinény’s Theorem [§] follows immediately from Theorems and
We note that proofs of Hlinény’s Theorem can also be derived from the
works by Kral [I3] and Strozecki [19].

Proposition 5.2. Let K be an infinite field. Then the class of K-repre-
sentable matroids is not pigeonhole.

Proof. This follows almost immediately from Corollary and [14, Lemma
2.1]. O

6. TRANSVERSAL MATROIDS

Proposition 6.1. The class of transversal matroids is not pigeonhole.
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Proof. By Proposition we can prove that the class of transversal ma-
troids is not pigeonhole by proving the same statement for the class of co-
transversal matroids. Certainly this class contains all rank-3 uniform ma-
troids. Recall that the matroid M is cotransversal if and only if it is a strict
gammoid [9]. This means that there is a directed graph G with vertex set
E(M), and a distinguished set, T, of vertices, where X C E(M) is indepen-
dent in M if and only if there are | X| vertex-disjoint directed paths, each
of them starting with a vertex in X and terminating with a vertex in T.
Assume that G is such a directed graph, and that F' is a flat of M. Create
the graph G’ by adding the new vertex e, and arcs directed from e to each
of the vertices in F. It is an easy exercise to verify that if M’ is the strict
gammoid corresponding to G’, then M’ is a principal extension of M by F.
This demonstrates that the class of cotransversal matroids is closed under
principal extensions, so the proposition follows by Corollary ([

Remark 6.2. From Proposition [6.1] we see that any class of matroids con-
taining transversal matroids is not pigeonhole. In particular, the class of
gammoids is not pigeonhole.

In contrast to Proposition in subsequent sections we will show
that three subclasses of transversal matroids are pigeonhole: fundamental
transversal matroids (Theorem [6.3)), lattice path matroids (Theorem ,
and bicircular matroids (Theorem [8.4)).

6.1. Fundamental transversal matroids. Transversal matroids can be
thought of geometrically as those obtained by placing points freely on the
faces of a simplex. A transversal matroid is fundamental if there is a point
placed on each vertex of that simplex. More formally, a transversal matroid
is fundamental if it has a basis, B, such that r(BNZ) = r(Z), for every cyclic
flat Z (see [3]). From this it is easy to see that the dual of a fundamental
transversal matroid is also fundamental.

Let GG be a bipartite graph, with bipartition AUB. There is a fundamental
transversal matroid, M[G], with AU B as its ground set, where X C AU B
is independent if and only if there is a matching, M, of G such that |[M| =
|X N A| and each edge in M joins a vertex in X N A to a vertex in B — X.
In this case we say that M certifies X to be independent. This definition
implies that B is a basis of M[G], and r(BNZ) = r(Z) for any cyclic flat Z.
Moreover, any fundamental transversal matroid can be represented in this
way. The transversal matroid on the ground set A U B represented by this
bipartite graph is equal to M[G]. Note that we can represent M[G] with a
standard bipartite presentation by adding an auxiliary vertex, o', for each
vertex b € B, and making b’ adjacent only to b. We then swap the labels on
b and bv'.

Theorem 6.3. The class of fundamental transversal matroids is computably
pigeonhole.
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Proof. We consider the succinct representation of fundamental transversal
matroids that involves representing such a matroid with a bipartite graph.
Let M[G] be a fundamental transversal matroid, where AUB is a bipartition
of the bipartite graph G, and B is a basis of M[G]. Let (U, V') be a partition
of AU B, and assume that Ay (U) < A. Let H be the subgraph of G
induced by edges that join vertices in B N U to vertices in A NV, and
vertices in BNV to vertices in ANU.

Claim 6.3.1. Any matching of H contains at most A edges.

Proof. Let M be a matching in H. Let Ay and Ay, respectively, be the set
of vertices in ANU (respectively AN V') that are incident with an edge in
M. Therefore |Ay| + |Ay| = |M]. If we restrict M to edges incident with
vertices in ANU, then it certifies that (BNU)U Ay is an independent subset
of U. Similarly, (BN V) U Ay is an independent subset of V. Therefore

A>r(U)+r(V)—r(M[G]) > |BNU|+|Ay|+|BNV|+|Av|—|B| = |M|. O

We can find a maximum matching of H, using one of a number of
polynomial-time algorithms. It follows from Kénig’s Theorem [12] that H
contains a vertex cover, S, such that |S| < A. Furthermore, Kénig’s The-
orem is constructive: given a maximum matching of H, we can find S in
polynomial time. From this point onwards, we regard .S as being fixed.

Let X be an independent subset of U, and let M be a matching that cer-
tifies its independence. We will construct a signature, C(X, M). Signatures
of subsets of V' will be defined symmetrically, so in fact we let {P,Q} be
{U,V}, and we let X be an independent subset of P, with M a matching
certifying the independence of X. Recall that this means that |M| = | X NA|
and each edge of M joins a vertex in X N A to a vertex in B— X. The signa-
ture C(X, M) is a sequence (51, S2, S3,.54), where S1, S3, and Sy are subsets
of BNPNS, ANPNS,and BNQ NS, respectively, and Sy is a collection
of subsets of ANQNS. We define C(X, M) as follows.

(i) S; is the set of vertices in BN P NS that are either in X or incident
with an edge in M.

(ii) A subset Z C ANQNS is in Sy if and only if there is a matching M’
satisfying M C M’ and |M' — M| = |Z|, where each edge in M'— M
joins a vertex in Z to a vertex in (BN P) — (SUX). Note that Sy
is closed under subset inclusion.

(iii) Ss is the set of vertices in AN P NS that are joined by an edge of
M to a vertex in (BNQ)—S.

(iv) Sy is the set of vertices in BN @ NS that are joined by an edge in
M to a vertex in AN P.

We illustrate these definitions in Figure This shows a graph, G, with
bipartition A U B, and a partition, (P,Q), of AU B. The edges not in H
cross the diagram diagonally, and are drawn with dashed lines, while the
unbroken edges are the edges of H. In this example the vertex cover, S,
contains nine vertices, which are marked with squares. Observe that every
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edge of H is incident with a vertex in S. The set X C P is marked by filled
vertices. Its independence is certified by the matching M, which is drawn
with heavy lines. Vertices in the sets 51, Ss3, and S4 are marked. The family
Sy contains the empty set, and the singleton set that contains the vertex

marked Ss.

ANP

FIGURE 1. Defining a signature.

Claim 6.3.2. Let X be an independent subset of P. Let (S, Z,Ss,S4) be
a sequence of sets from BNPNS, ANQNS, ANPNS,and BNRNS. We
can test in polynomial time whether there is a matching M, certifying the
independence of X, such that C(X, M) = (S1,S2, Ss,S1) where Z is in So.

Proof. To start with, we check that S; contains X " BN PN.S and that S5 is
contained in X. If this is not the case, then we halt and return the answer
NO, so now we assume that X N BN P NS CS; and S3 C X.

Our strategy involves constructing an auxiliary graph, G’, by deleting
vertices and edges from G. The construction of G’ is best described by the
diagram in Figure[2l Any vertex not shown in this diagram is deleted in the
construction of G’. Thus from B N P we delete any vertex in X, and any
vertex in (BN PNS)—.S;. From ANQ we delete any vertex not in Z. From
AN P we delete those vertices not in X. Note that the assumption in the
first paragraph of this proof means that we have not deleted any vertex in
S3. In BN @, we delete those vertices in (BN Q N.S) — Sy.

Next we delete any edge of G that is not represented by an edge in Fig-
ure 2] For example, we delete any edge joining a vertex in S3 to a vertex
outside of (BN Q) — S. This completes the description of G’, which can
obviously be constructed in polynomial time.

6.3.2.1. The following statements are equivalent:
(i) There is a matching, M, of G, such that M certifies the independence
of X and C(X, M) = (51,52, 33,54) with Z € Ss.
(ii) G’ has a matching incident with every vertex in (X U Z) N A and
(S1—X)U Sy
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not in S

ANQ ANP

FiGURE 2. The construction of G.

Proof. Assume (i) holds. Then |[M| = |X N A, and every vertex in X N A
is incident with an edge of M. Let M’ be a matching such that M C M’,
|M'— M| = |Z|, and each edge of M’ — M joins a vertex in Z to a vertex in
(BNP)—(SUX). Then every edge in M’ — M is an edge of G'. Let ab € M
be an edge joining a € A to b € B. Then a is in X. Note b is not in X, for
no edge of M is incident with a vertex in X N B. If bisin BN PN S, then it
is in S1, by definition. So bisnot in (BN PNS)—S;. If bisin BNQNS,
then it is in Sy, so b is not in (BN QN S) — S4. Therefore b is a vertex of
G’. This is enough to show that if @ is in X — S, then ab is an edge of G'.
Now assume a is in (X NS N A) — S3. The previous discussion shows that
the only way ab can fail to be an edge of G' is if bis in (BN Q) —S. But in
this case, a would be in S5, a contradiction. Finally, assume that a is in Ss.
Then the definition of S5 means that b is in (BN Q) — S, and again ab is an
edge of G’. Thus we have shown that M’ is a matching of G’. Every vertex
in (X UZ)N A is incident with an edge in M’, and the same statement is
true for vertices in (S1 — X) U Sy, as C(X, M) = (S1,S2, S3,S1). Therefore
(ii) holds.

Now assume (ii) holds. Let M’ be a matching of G’ such that each vertex
in (XUZ)nAor (S;—X)US, is incident with an edge of M’. Let M be
the set of edges in M’ incident with vertices in X N A. There is no vertex
in X N B contained in G’, so it immediately follows that in G, M certifies
the independence of X. Every vertex in S; — X is incident with an edge
of M, and no vertex of (BN P N.S)—S; is (since these vertices are not in
G). Therefore in C(X, M), the first entry is Si, as desired. Every edge of
M’ — M joins a vertex in Z to a vertex in (BN P)— (SUX), so M’ certifies
that Z belongs to the second entry of C(X, M). Any vertex in S5 is matched
by M to a vertex in (BN Q) — S, and no vertex in (X N.SNA) —S; is, by
the construction of G’. Finally, every vertex in S4 is matched by M to a
vertex in A N P, and no vertex of (BN QN S) — Sy is (since these vertices
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are not in G’). Therefore C(X, M) = (51,82, 53,54), where Z is in Sg, so
(i) holds. O

Now we complete the proof of Claim [6.3.2 To test whether M exists,
we find a maximum-sized matching of G’, using standard methods. If this
matching is incident with all the vertices in (X U Z) N A (and is thus com-
plete), then we continue, otherwise we return NO. So now assume that the
vertices in (X U Z) N A are all matched. It is easy to see that we can use
alternating-path methods to test whether there is a matching that matches
all the vertices in (57 — X) U Sy as well as those in (X U Z) N A. We return
YES if such a complete matching exists, and NO otherwise, observing that
justifies the correctness of this algorithm. O

For any independent subset X C P, let C(X) be the set
{C(X,M): M is a matching certifying that X is independent}.

Now we define the equivalence relation ~y. If X and X’ are subsets of
U, then say that X ~y X’ if both X and X’ are dependent, or both are
independent and C(X) = C(X’). Note that the number of certificates is

at most the number of families of subsets of S, namely 22" Therefore the

number of (= )-classes is no more than 92% +1. To test whether X ~y X',
we first test whether X and X’ are independent. We can certainly test
this in polynomial-time via a standard matching algorithm. Assuming both
X and X’ are independent, we simply go through each possible certificate,
and check that each certificate belongs to C(X) if and only if it belongs to
C(X’). According to Claim we can accomplish this in time bounded
by O(22"|A(M)|%), for some constant c.

Now our final task in the proof of Theorem [6.3]is to show that = refines
~g. To this end, we assume that X C U and Y C V are independent
subsets of M[G]. Let Sx = (S1,S2,53,54) be a signature in C(X), and let
Ty = (Th, T2, T5,T4) be a member of C(Y). We declare Sx and Ty to be
compatible if the following conditions hold:

(i) SiNTy =0,
(ii) T3 € So,
(i) Sy € 7T, and
(iv) S4nNTy = 0.
The remainder of the proof will follow immediately from Claim [6.3.3] and
its converse (Claim [6.3.4).

Claim 6.3.3. Let X C U and Y C V be independent subsets of M[G]. If
X UY is independent in M[G] then there are signatures Sx € C(X) and
Ty € C(Y) such that Sx and Ty are compatible.

Proof. Let M be a matching certifying that X UY is independent. Then no
edge of M is incident with a vertex in (X UY)N B. Let Mx and My be the
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subsets of M consisting of edges incident with vertices in X (respectively
Y). We assert that the signatures C(X, Mx) and C(Y, My) are compatible.

Let C(X, Mx) be (51, So, S3, 54) and let C(Y, My) be (Tl, T2, T3, T4).
Then S7 is the set of vertices in BN U N S that are either in X, or in-
cident with an edge of Mx. On other hand, Ty is the set of vertices in
BNUNS that are joined by an edge of My to a vertex in ANV. No edge in
My is incident with an edge in Mx, or with a vertex in BN X, so it is clear
that S; and Ty are disjoint. Similarly, Sy is the set of vertices in BNV N.S
that are joined by an edge of Mx to a vertex in ANU, and T} is the set of
vertices in BNV NS that are either in Y, or incident with a vertex in My-.
This implies that Sy N1} = 0.

Note that T3 is the set of vertices in ANV NS that are joined by an edge
of My to a vertex in (BNU) — S. Let M’ be the union of Mx along with
the set of edges in My that are incident with a vertex in T5. Clearly M’ is
a matching as it is a subset of M. Also, Mx C M’ and |M' — Mx| = |T3|.
Each edge in M’ — My is incident with a vertex in T3, and with a vertex in
(BNU)—S. Furthermore, no such edge is incident with a vertex in X, since
edges of M join vertices in (X UY)N A to vertices in B— (X UY'). Therefore
each edge in M’ — Mx joins a vertex of T3 to one in (BNU) — (S U X).
We have established that T3 is contained in Sy. A similar argument shows
that S3 is in 72. Therefore C(X, M) and C(Y, My) are compatible, as we
claimed. O

Claim 6.3.4. Let X C U and Y C V be independent subsets of M[G]. If
there are signatures Sx € C(X) and 7y € C(Y) such that Sx and Ty are
compatible, then X UY is independent in M[G].

Proof. We assume that C(X,Mx) = (51,852,53,51) and C(Y,My) =
(Th,T2,T5,T4) are compatible signatures. We will construct a matching
that certifies the independence of X UY'.

Recall that Ss is the subset of A NU NS containing vertices that are
joined by edges of Mx to vertices in (BNV) —S. Let M¥ be the subset
of Mx containing edges that are incident with vertices in S3. Since S3 is in
T2, there is a matching, My, such that My C My, |My, — My| = |Ss3|, and
each edge of My, — My joins a vertex in S3 to one in (BNV) — (SUY).
Similarly, we let Mj- be the subset of My containing edges that are incident
with vertices in T3. Thus each edge in Mj. joins a vertex in T3 to a vertex
in (BNU)—S. As T3 is in Sy, we can let M) be a matching such that
Mx C MY, |M% — Mx| = |T3|, and each edge of M’ — Mx joins a vertex
in T3 to a vertex in (BNU) — (S U X). We now make the definition

M = (Mx — My) U (My — My).
We will prove that M is a matching certifying the independence of X UY.
6.3.4.1. M is a matching.

Proof. If not then, there is a vertex w, and distinct edges wx € M4 — MY
and wy € M{, — My. In the first case, we assume that w is in A. Assume
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also that w is in U. No edge of My is incident with a vertex in AN U.
Therefore wy is in My, — My. This means that wy joins a vertex of S3 to a
vertex in (BNV)—(SUY). In particular this means that w is in S3. No edge
in M’ — Mx is incident with a vertex in ANU, so wx is not in M5 — My.
Therefore it is in Mx, so wx is an edge of Mx that is incident with a vertex
in S3. But this means that wz is in M, so we have a contradiction. If w is
in V, then we reach the similar contradiction that wy is in Mj.. Therefore
we must now assume that w is in B.

We assume that w is in BN U. Any edge in M, that is incident with a
vertex in BN U is also incident with a vertex in ANV. Therefore y belongs
to ANV. If wis not in S, then y is in S, for otherwise wy is an edge of H
that is not incident with the vertex cover S. But in this case, y is in T3, so
wy belongs to M-, and we have a contradiction. Thus w is in S. If wz is in
MY — Mx, then wz joins a vertex in T3 to a vertex in (BNU) — (S U X).
This is impossible, as we have already confirmed that w is in S. Hence wzx
isin Mx, so w is in S and is incident with an edge of Mx, meaning that it
is in S7. Furthermore, the edge wy means that w is in Ty. Thus S NTy # 0,
and we have a contradiction to the fact that C(X, Mx) and C(Y, My) are
compatible. If w is in V', then we reach the symmetric contradiction that
either wx is in M%, or w is in S4 N T}. This completes the proof that M is
a matching. O

Let ab be an edge of M — MY with a € A and b € B. We wish to
demonstrate that b is not in X UY. If ab is in M% — Mx, then ab joins a
vertex in T3 to a vertex in (BNU) — (S U X). In this case, b is certainly
not in X. Since b isin BNU, and Y C V, it follows that b is also not in
Y. Therefore we will now assume that ab is not in M5 — My, and thus ab
is in Mx. Each edge of Mx joins a vertex of AN X to a vertex of B — X,
so b is not in X. Since X C U, it follows that a is in A NU. Assume that
b is in Y, so that it belongs to BN V. If b is not in S, then a is in 5, for
otherwise ab is an edge of H that is not incident with the vertex cover S.
In this case ab is an edge of Mx joining a vertex in ANU N S to a vertex
in (BNV)—5,s0aisin S3, and ab is in MY, a contradiction. Therefore b
isin S. As bisin Y N.S, it follows that it is in T7. But the edge ab certifies
that b is in S4. Therefore Sy N1y # (), and we have a contradiction to the
fact that C(X, Mx) and C(Y, My ) are compatible. We have shown that b is
not in X UY', and a symmetrical argument shows that no edge of My, — My
is incident with a vertex in B N (X UY'). Hence every edge of M joins a
vertex of AN (X UY) to a vertexin B— (X UY).

Let w be a vertex in ANX. If w is not incident with an edge of M} — MY,
then it is incident with an edge of M¥%, and hence w is in S3. But in this
case w is incident with an edge of My, — My . By symmetry, we now see that
every vertex in AN (X UY) is incident with an edge in M, so M certifies
the independence of X UY', exactly as we desired. (|
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Let X and X’ be two independent subsets of U such that X ~y X'.
Then C(X) = C(X’). Let Y C V be an independent set such that X UY is
independent. Claim shows that there are compatible signatures Sx €
C(X) and Ty € C(Y). As Sx is also in C(X') it follows from Claim [6.3.4]
that X’ UY is independent. This implies that X ~y X', so ~y refines ~,
as desired. Now the proof of Theorem [6.3]is complete. U

Case (i) in Theorem |1.2] follows immediately from Theorem |6.3] and The-
orem [I.11

Remark 6.4. Theorem shows that although a class of matroids may
be strongly pigeonhole, its minor-closure may not even be pigeonhole. We
can deduce this from Remark [6.2] because the smallest minor-closed class
containing the fundamental transversal matroids is the class of gammoids.

7. LATTICE PATH MATROIDS

The class of lattice path matroids was introduced by Bonin, de Mier,
and Noy [2]. It is closed under duality and minors |2, Theorems 3.1 and
3.5]. Although we have not succeeded in proving the class to be computably
pigeonhole, we do show that it is pigeonhole (Theorem, and we describe
an algorithm that constructs a parse tree for a given lattice path matroid
(Theorem [7.3). Combined with results from [6], this shows that there is
a fixed-parameter tractable algorithm for testing MS( sentences in lattice
path matroids.

Let m and r be integers, and let P and () be strings composed of r copies
of N and m copies of E. Any such string is identified with a path in the
integer lattice from (0,0) to (m,r) using North and East steps. We insist
that P never goes above (7, so that for any initial substring in P, the number
of N steps does not exceed the number of N steps in the corresponding
substring of (). The matroid M [P, Q] has {1,...,m + r} as its ground set.
An intermediate path is a string composed of r copies of N and m copies
of E that does not go above @) or below P. Note that P and @ are both
intermediate paths. Let L = ljls---l4,r be an intermediate path, where
each [; is either N or E, and let N(L) be {i: [; = N}. Then the family of
bases of M[P,Q] is {N(L): L is an intermediate path}.

Let G[P,Q] be the graph whose vertices are those lattice points in Z2
that appear in an intermediate path. If (i, j) and (i, j') are two such lattice
points, then they are adjacent in G[P, Q)] if and only if |i —i'| + |7 — j/| = 1.
Let e be an edge in G[P, )], and assume that e joins (7, j) to either (i +1, j)
or (i,j + 1). In this case we define d(e) to be i + j + 1. A staircase is a
set {e € E(G[P,Q)): d(e) = k}, where 1 < k < m + r. Figure 3 shows the
staircase of edges with d(e) = 7. We identify the elements in {1,...,m+r}
with the staircases of G[P, Q).
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FIGURE 3. A staircase in a lattice path presentation.

Proposition 7.1. Let M = M[P, Q] be a lattice path matroid, and assume
that bw(M) < A. No staircase of G| P, Q)] is incident with more than 3\ — 1
vertices.

Proof. Assume otherwise. Then there is an odd number o such that o >
3\ —2 and there is a staircase with at least o vertices. So let ¢ be an integer
such that 2g + 1 > 3\ — 2 and there is a staircase with at least 2q + 1
vertices. It is straightforward to see that this implies the existence of a g x g
square of the integer lattice contained in the region bounded by P and Q.
This in turn implies that M[P, Q] has a U, 2,-minor, by [10, Lemma 4.1].
The branch-width of this minor is [2¢/3] + 1 by [16], Exercise 14.2.5]. Since
bw(M) < A, we deduce that [2¢/3] +1 < X by [16, Proposition 14.2.3].
From this it follows that

2¢/3] < A-1
= 2¢/3 < A-1
= 2q+1 < 3X-2
and we have a contradiction. O

Theorem 7.2. The class of lattice path matroids is pigeonhole.

Proof. Let X be a positive integer. We must show that the class of lattice
path matroids with branch-width at most A has bounded decomposition-
width. Let M = M[P, Q] be a lattice path matroid, where P and @ are
paths from (0,0) to (m,r), and assume that bw(M) < A\. We construct a
decomposition of M by starting with path of m + r — 2 vertices, adjoining a
leaf to each internal vertex, and two leaves to each end-vertex of the path.
This describes the tree T'. Let ¢ be the bijection from {1,...,m + r} that
labels the leaves of T in a linear way, so that the only sets displayed by the
decomposition are singleton sets, complements of singleton sets, and sets of
the form {1,...,i} or {i +1,...,m+r}.

Let (U, V) be a partition displayed by an edge e in T. If |U,| = 1 or
|[Ve| = 1, then it is clear that ~p, has at most two equivalence classes.
Therefore we will assume that U, = {1,...,i}, and show that ~_ has at
most 23271 4+ 1 equivalence classes. This will complete the proof. (The case
where Uo = {i+1,...,m + r} is essentially identical.)

Consider the graph G[P, @], and let R be the path consisting of the edges,
x, satisfying d(x) = i. Let wy,...,w; be the vertices in R, starting from the
top-left corner of the path. Proposition implies that t < 3\ — 1. Let
X be an independent subset of U.. Let C(X) be the subset of {wy,...,w:}
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such that w; is in C(X) if and only if there is an intermediate path, L, such
that X C N(L), and the last vertex of L in the path R is w;. We declare
X, X' C U, to be equivalent if they are both dependent, or if they are both
independent and C(X) = C(X’). There are at most 23271 + 1 classes in
this relation, so we will be done if we can show that this equivalence refines
~y,. Let X and X’ be equivalent subsets of U.. If both are dependent
then obviously X ~p. X', so assume that X and X’ are independent and
C(X) =C(X"). Let XUZ be independent for some subset Z C V.. Let L be
an intermediate path such that XUZ C N(L). Let w; be the last vertex of L
to appear in R. We can let L’ be an intermediate path such that X’ C N (L),
and the last vertex of L' to appear in R is wj. If we concatenate the first
segment of L’ up to w;, and the segment of L appearing after w;, then we
obtain an intermediate path that certifies the independence of X’ U Z. This
shows that X ~y_ X', so the proof is complete. O

Theorem 7.3. There is a fived-parameter tractable algorithm (with respect
to the parameter of branch-width) which takes as input any lattice path ma-
troid and produces a parse tree for that matroid.

Proof. We consider the succinct representation of lattice path matroids via
the paths P and Q. Let M = M[P, Q] be a lattice path matroid, where P
and @ are paths from (0,0) to (m,r), and assume that bw(M) = A\. We
construct the tree Th; as shown in Figure Il The bijection ¢,, takes the
element ¢ € {1,...,m+ r} to the leaf v,.

= Umtr—1

Um+r—2 v
. m-+r
2o Um+r—1
Uy
U3
U1 V2

FIGURE 4. The parse tree for a lattice path matroid.

The labelling op; applies a function to each node of Tj;. The function
applied to any leaf is the identity function on {0,1}. Next consider the
function, f, applied to us. Let R and R’, respectively, be the paths in G[P, Q]
consisting of edges, x, satisfying d(x) = £ in the first case, and d(x) = ¢+ 1
in the second. Let the vertices in R and R’ be wy,...,ws and w,...,wy,
starting in the top-left corners of these paths. Note that s, < 3\ — 1 by
Proposition The domain of f will be {1,...,s,dep}x{0,1}. If the input
includes dep, then the output is also dep. Otherwise, we consider the input
(4,1). The output of f is k, where wj is the vertex of R’ reached from wj
by one north step, assuming this vertex exists. If it does not, then a north
step from w; takes us out of the region bounded by P and @), and in this
case we define f(j,1) = dep. The output of f on (4,0) is k, where wj, is
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reached from w; via an east step, assuming that wj exists. If it does not,
then there must be a vertex wj one step north of w;, and we define f(j,0)
to be k. Now we have completed the description of the tree (Tas, oar).

Define the set ¥ to contain the identity function on {0,1}, and all func-
tions from {1,...,s,dep} x {0,1} into {1,...,¢,dep}, where s, < 3\ — 1.
The automaton A has ¥ U Y x {0,1}{% as its alphabet. The state space
of Ais {1,...,3\ — 1,dep}, and the only non-accepting state is dep. The
transition rule dy operates on (f,s) by taking it to {f(s(¢))}, whenever f is
the identity function on {0,1} and s is in {0,1}{2. Any other input is taken
to dep by d¢. If f is a function from {1,...,s,dep} x {0,1} to {1,...,t,dep},
then do(f, j,k) is {f(j,k)} whenever (j, k) is in the domain of f. Any other
output of do is dep. This completes the description of A.

Let Y; be a subset of {1,....,m + r}. The run of A on
enc(Thr, onr, o, {Yi}) is very easy to understand. As it processes the tree,
A constructs a path starting at (0,0), considering each staircase in turn. If
the current staircase is in Y;, then A appends a north step to the path. If the
staircase is not in Y;, it appends an east step when it is able to do so with-
out going outside the region bounded by P and @), and otherwise appends a
north step. If the constructed path goes outside this region, the automaton
switches to the state dep and remains there. Otherwise, the state applied to
a node records the last vertex in the constructed path by giving its position
in the current staircase. Thus the states applied by the run of A either tell
us that Y; is dependent, or record an intermediate path, L, such that Y; is
contained in N(L). Thus (Tas, o) is a parse tree relative to A. O

The next result follows immediately from [0, Proposition 6.1] and Theo-
rem It establishes case (ii) in Theorem

Theorem 7.4. Let i) be any sentence in MSy. There is a fived-parameter
tractable algorithm for testing whether lattice path matroids satisfy 1, where
the parameter is branch-width.

8. FRAME MATROIDS

Let G be a graph with edge set . We allow G to contain loops and
parallel edges. If X is a subset of E, we use G[X] to denote the subgraph
with edge set X, containing exactly those vertices that are incident with
an edge in X. Similarly, if N is a set of vertices, then G[N] is the induced
subgraph of G with N as its vertex set. A theta subgraph consists of two
distinct vertices joined by three internally-disjoint paths. A linear class of
cycles in G is a family, B, of cycles such that no theta subgraph of G contains
exactly two cycles in B. Let B be a linear class of cycles in G. A cycle in B is
balanced, and a cycle not in B is unbalanced. A subgraph of G is unbalanced
if it contains an unbalanced cycle, and is otherwise balanced.

Frame matroids were introduced by Zaslavsky [2I]. The frame matroid,
M (G, B), has E as its ground set. The circuits of M (G, B) are the edge
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sets of balanced cycles, and the edge sets of minimal connected subgraphs
containing at least two unbalanced cycles, and no balanced cycles. Such a
subgraph is either a theta subgraph or a handcuff. A tight handcuff contains
two edge-disjoint cycles that have exactly one vertex in common. A loose
handcuff consists of two vertex-disjoint cycles and a path having exactly one
vertex in common with each of the two cycles. Note that if B contains every
cycle, then M (G, B) is a graphic matroid. The set X C F is independent in
M (G, B) if and only if G[X] contains no balanced cycle, and each connected
component of G[X] contains at most one cycle. The rank of X in M (G, B) is
the number of vertices in G[X], minus the number of balanced components
of G[X].

Proposition 8.1. Let M = M(G,B) be a 3-connected frame matroid, and
let (U,V) be a partition of the edge set of G such that A\py(U) < X. There
are at most 14\ — 12 vertices that are incident with edges in both U and V.

Proof. Let n be the number of vertices in G. Let ny and ny be the number of
vertices in G[U] and G[V], respectively. Let N be the set of vertices that are
in both G[U] and G[V], so n+ |N| = ny +ny. Each vertex in N is incident
with a connected component of G[U], and with a connected component of
G[V]. Since G is connected, each component of G[U] or G[V'| contain at least
one vertex of N. Thus the connected components of G[U] induce a partition
of N. There are no coloops in M, and it follows that if a component of G[U]
contains only a single, non-loop, edge, then that edge joins two vertices of
N. Let a be the number of such components. Next we claim that if X is a
connected component of G[U] such that X is balanced and contains at least
two edges, then X contains at least three vertices of N. If this is not true,
then we can easily verify that M has a 1- or 2-separation, contradicting the
hypotheses of the theorem. Assume that there are b balanced components
of G[U] with more than one edge, and let «;,...,a; be the numbers of
vertices these components share with N. Our claim shows that «; > 3
for each . Finally, assume there are ¢ unbalanced components in G[U],
and these components intersect N in f1,..., 8. vertices, respectively. Thus
IN|=2a+> a; + > 6, and ry(U) = ny — (a +b).

Let  be the number of components of G[V] consisting of a single non-loop
edge. Assume there are y balanced components of G[V] with more than one
edge, and that these intersect NV in 71, ...,~, vertices. Let z be the number
of unbalanced components of G[V], and assume that they intersect N in
d1,...,0, vertices, respectively. So we have |v;| > 3, |[N| =2z +> v+,
and ry (V) = ny — (z + y). Because G is connected, (M) > n — 1, and
r(M)=n —1if and only if G is balanced. Now we observe that

A>ry(U)+ry(V)—r(M)>ny+ny —(a+b+z+y)—(n—1)
=|N|—(a+b+z+y)+1

This last quantity is equal to a + > a; + > 5 — (b+x+y) + 1, and also to
x+> v+, 0i—(a+b+y)+1, so both are at most A\. By adding the two
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inequalities together, we obtain

2)\2Zai+25i+27i+z5i—2(b+y)+2-

But because each «; is at least three, we also have b < % > @, and symmet-
rically y < % > 7. Therefore

(1) 6(A—=1) =D i +3> B+ 7i+3> 6

The edges counted by a form a matching. Therefore they are an inde-
pendent set in M. As ry(U) +ra(V) — (M) < A, submodularity tells us
that the intersection of clj/(U) and clps (V') has rank at most A\. Thus there
are at least a — A components of G[U] that consist of a single, non-loop,
edge that is not in clp/ (V). No such edge can be incident with one of the
components of G[V] counted by x, for this would mean that a vertex of
G has degree equal to two, implying that M contains a series pair. This is
impossible, since M is 3-connected (and we can obviously assume that it has
more than three elements). Nor can such an edge join two vertices counted
by the variables 41, ...,0d,, for then the edge joins two components of G[V]
that contain unbalanced cycles. This means that the edge is in a handcuff,
and hence in cly/ (V). Now we conclude that each of the (at least) a — A
edges is incident with at least one vertex counted by the variables v, ..., 7y.
As the edges counted by a form a matching, we now see that a — A < > ;.
We conclude that

IN| =20+ i+ Bi<2) %+22+) i+ B
<2> i +6) Bi+2) yi+2\

But (1)) implies that 2> a; +6 Y 5;+2 > v < 12X —12, so we are done. [J

Remark 8.2. If we remove the constraint of 3-connectivity from Proposi-
tion then no bound on the number of vertices in both G[U] and G[V]
is possible. To see this, consider a cycle with an even number of edges, and
alternately colour the edges blue and red. To each red edge attach a red
clique, and to each blue edge attach a blue clique. The partition into blue
and red edges is a 2-separation in the resulting graphic matroid, but the
number of vertices incident with both blue and red edges is not bounded
by any function of 2. It is possible to construct similar examples of frame
matroids that are not graphic.

We will concentrate on two subclasses of frame matroids. Bicircular ma-
troids are those that arise from empty linear classes. Thus every cycle is
unbalanced. For any graph, G, we define B(G) to be the bicircular matroid
M (G,0). Bicircular matroids can also be characterised as the transversal
matroids represented by systems of the form (Aj,..., A,), where each ele-
ment of the ground set is in at most two of the sets Aq,..., A,.

Next we define gain-graphic matroids. Again, we let G be an undirected
graph with edge set E and (possibly) loops and multiple edges. Define A(G)
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to be

{(e,u,v): e is a non-loop edge joining vertices v and v}
U {(e,u,u): e is a loop incident with the vertex u}.

A gain function, o, takes A(G) to a group H, and satisfies o(e,u,v) =
o(e,v,u)~! for any non-loop edge e with end-vertices v and v. If P =
voeguie] - - ey is a path of G, then the gain wvalue of P is o(P) =
o(eg,vo,v1) - o(es, vy, ve41). Now let C' = wpeguier - - - epvpq1 be a cycle
of G, where vg = v;11, and the other vertices are pairwise distinct. Then
o(C) is also defined to be o(eg, v, v1) - - - o(et, v¢, ve41). Note that o(C) may
depend on the choice of orientation of C', and if H is nonabelian, it may
also depend on the choice of starting vertex. However, if o(C) is equal to
the identity, then this equality will hold no matter which starting vertex
and orientation we choose. We declare a cycle to be balanced exactly when
o(C) is equal to the identity, and this gives rise to a linear class. If B is such
a linear class, then M (G, B) is an H-gain-graphic matroid. Gain-graphic
matroids play an important role in the works by Kahn and Kung [11], and
Geelen, Gerards, and Whittle [7]. We artificially close the classes of bicir-
cular and H-gain-graphic matroids under the addition of matroid loops, in
order to make the classes minor-closed.

Let u be a vertex of G, and let o be an element of H. The gain function
Ou,o is defined to be identical to o on any edge not incident with u and
on any loop. Furthermore o, (e, u,v) = ao(e,u,v) when e is a non-loop
edge joining u to a vertex v, and in this case oy (e, v,u) is defined to be
o(e,v,u)a~t. The operation that produces Ou,o from o is called switching.
Two gain functions that are related by switching have exactly the same
balanced cycles [20, Lemma 5.2].

Proposition 8.3. Let o: A(G) — H be a gain function on the graph G,
and let X be a subset of edges such that G[X] is balanced. If u and v are
distinct vertices of G[X], and P and P’ are paths in G[X] from u to v, then
o(P) =o(P).

Proof. Because G[X] is balanced, we can repeatedly apply switching opera-
tions to produce a gain function that takes any edge in G[X] to the identity
of H |20, Lemma 5.3]. Therefore, after applying these switching operations,
the gain value of any path from u to v is the identity of H. We can apply
switching operations again to recover the original gain function, o. We eas-
ily check that after applying these switching operations any two paths from
u to v still have identical gain values. ([

The next theorem treats bicircular matroids and gain-graphic matroids
simultaneously, since the arguments are essentially identical.

Theorem 8.4. The class of 3-connected bicircular matroids is computably
pigeonhole. If H 1is a finite group, then the class of 3-connected H-gain-
graphic matroids is computably pigeonhole.
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Proof. The succinct representation of a bicircular matroid, M (G, ), is just
a description of the graph, G. An H-gain-graphic matroid is described via
a graph, and a labelling that assigns an element of H to each orientation of
an edge. We assume that M is a 3-connected matroid with ground set F,
and that M is either bicircular, or H-gain-graphic. Let G be the graph that
represents M, so that G is unlabelled if M is bicircular, and labelled if M
is H-gain-graphic. We can assume that G has no isolated vertices. Because
M is 3-connected, this means that G is connected.

Let (U,V) be a partition of E such that Ay (U) < X for some positive
integer A\. Let N be the set of vertices that are in both G[U] and G[V], so
that |N| < 14\ — 12 by Proposition

Let X be an independent subset of U. We define the signature of X. This
will contain a partition of the set of vertices in N that are also in G[X]. For
each connected component, D, of G[X], such that D contains vertices of
N, we let the set of vertices in both N and D be a block of the partition.
In addition, we record whether D is unbalanced or balanced. Furthermore,
if M is H-gain-graphic and D is balanced, then for every pair of distinct
vertices in both N and D, we record the gain value of a path in D that joins
the pair. Proposition tells us that this gain value is well-defined, and
does not depend on the choice of path. To decide whether D is balanced,
we let F' be a spanning tree of D. We apply switching operations in such a
way that each edge in F' is labelled with the identity element of H. Now D
is balanced if and only if every edge in D is labelled by the identity element
in the new gain function |20, Lemma 5.3]. This procedure can clearly be
accomplished in polynomial time, so it is clear that the signature of X can
be computed in polynomial time.

Let X and X’ be subsets of U. We declare X and X’ to be equivalent
under = if both are dependent, or both are independent and they have
identical signatures. Since we regard the number of elements in H as being
fixed, Proposition tells us that the number of (/y)-classes is a function
of A, and does not depend on the choice of M, U, and V. Hence we can
complete the proof of Theorem by proving that =y refines ~y;.

To this end, assume that X and X’ are independent subsets of U, and
that X ~p X’. Assume that X’ U Z is dependent for some Z C V. Let C’
be a circuit of M contained in X’ U Z, where we assume that C’ contains
edges from both X’ and Z. We will replace edges in C' N X’ with edges
from X and obtain another dependent set. This will establish that X U Z
is dependent, and we will be done.

For each connected component, D', of G[X'] such that D’ contains edges
of €', we do the following. Let Cf,...,C} be subsets of X’ such that
G[C1],...,G[C}] are exactly the connected components of G[C' N X’] that
are contained in D’. First assume that D’ is unbalanced. Then there is a
unbalanced connected component of G[X], call it D, such that D and D’
intersect IV in exactly the same vertices. Therefore for each i, there is a
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set of edges, C; C X, such that G[C;] is an unbalanced connected subgraph
contained in D, and C; contains all the vertices of N that are in G[CY].

Now assume that D’ is balanced. Let D be the balanced connected com-
ponent of G[X] such that D and D’ intersect N in exactly the same vertices,
and furthermore if G is a gain-graph, then paths in D and D’ between the
same vertices of N have the same gain values. For each ¢, we let C; C X be
chosen so that G[C}] is a balanced connected subgraph contained in D such
that every vertex of C] in N is also in C;.

Now we remove each C] from C’, and replace it with the set C;. We
perform this operation for each connected component, D’ of G[X'] that
contains edges of C’. Let C be the set of edges that we obtain in this way,
so that C' is contained in X U Z. It is clear that G[C] is connected. We will
show that C' is dependent in M, and this will complete the proof.

For any graph, I, let v(I') be |E(I')| — |[V(T')|. If I' is connected, then
v(I') > —1. If ' is connected and contains exactly one cycle, then v(I') = 0.
Let (L, R) be a partition of E(I'), and assume that 7 vertices are incident
with edges in both L and R. It is easy to confirm that
(2) v(I) = v(T[L]) + v(T[R]) + .

If X is a subset of E, then X is dependent in M if and only if G[X]
contains a balanced cycle, or v(G[X]) > 1. Note that since each G[C!] and
G|C;] is connected, v(G[CY]), v(G[C;]) > —1. If G[C!] contains no cycle, then
v(G[Cj]) > v(G[C]]) = —1. If G[C]] contains a cycle, then that cycle must
be unbalanced, for we have assumed that the circuit C’ is not contained
in X’. As C/ is independent, it follows that C/ contains exactly one cycle,
so v(G[C]]) = 0. In this case, our choice of a substitute component G[C;]
also contains an unbalanced cycle, so v(G[C;]) > v(G[C]]) = 0. In any
case, G[C}] shares at least as many vertices with G[Z] as G[C]] does. Now
it follows from that removing C/ from G[C'] and replacing it with C;
produces a subgraph with at least the same value of v. In other words,
v(G[C)) > v(G[C']). If v(G[C]) > 1, then G[C] is a connected subgraph
containing at least two cycles, so C' is dependent, and we are done.

Therefore we assume that v(G[C]) < 1. As G[C’] contains at least one
cycle, we see that v(G[C]) = v(G[C']) = 0. Therefore G[C'] is a cycle,
and it must be a balanced cycle. Now each component G[C!] is a path. If
any component G[C;] contains an unbalanced cycle, then v(G[C]) will be
greater than v(G[C']), a contradiction. Therefore each component D must
be a balanced component. This means that each G[C};] contains a path
joining the end-vertices of G[C/], and these paths have the same gain value.
Now we can easily see that G[C] also contains a balanced cycle, and again
we conclude that C' is dependent. [l

Corollary 8.5. Let M be the class of bicircular or H-gain-graphic matroids
(with H a finite group). Let 1) be any sentence in MSy. There is a fized-
parameter tractable algorithm for testing whether matroids in M satisfy 1,
where the parameter is branch-width.
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Proof. This will follow immediately from [6, Theorem 6.7] and Theorem
if we show that the succinct representations of bicircular and H-gain-graphic
matroids are minor-compatible. We rely on [20, Corollary 5.5] and [2I], The-
orem 2.5]. Let M be a bicircular or H-gain-graphic matroid corresponding
to the graph G, and let e be an edge of G. Then M \e is bicircular or H-gain-
graphic, and corresponds to G\e. (In the case that M is H-gain-graphic,
the edge-labels in G'\e are inherited from G.)

Contraction is somewhat more difficult. If e is a non-loop, then we first
perform a switching (in the H-gain-graphic case) so that the gain-value on
e is the identity. We then simply contract e from G. The resulting graph
represents M /e. Now assume e is a loop of G incident with the vertex u. If e
is a balanced loop, we simply delete e, so now assume that e is an unbalanced
loop. In the H-gain-graphic case, this implies that H is non-trivial. We
obtain the graph G’ by deleting u and replacing each non-loop edge, €,
incident with u with a loop incident with the other end-vertex of €’. In the
H-gain-graphic case, the loop €’ is labelled with any non-identity element.
Any other loops of G that are incident with u are added as matroid loops
after contracting e (remembering that we closed the classes of bicircular and
H-gain-graphic matroids under the addition of such elements).

It is clear that the operations of deletion and contraction can be performed
in polynomial time, so the classes of bicircular and H-gain-graphic matroids
have minor-compatible succinct representations as desired. ([l

Now the proof of Theorem is complete, by Corollary

Remark 8.6. Hlinény has shown [8, p. 348] that his work provides an
alternative proof of Courcelle’s Theorem. We can provide a simple new
proof by relying on Corollary as we now briefly explain.

Let ¢ be a sentence in the monadic second-order logic, MSy of graphs.
This means that we can quantify over variables representing vertices, edges,
sets of vertices and set of edges. We have binary predicates for set mem-
bership, and also an incidence predicate, which allows us to express that
an edge is incident with a vertex. We need to show that there is a fixed-
parameter tractable algorithm for testing 1 in graphs, with respect to the
parameter of tree-width.

Let G be a graph, and let G° be the graph obtained from G by adding two
loops at every vertex. We need to interpret ¢ as a sentence about bicircular
matroids of the form G°. We let Vert(X;) be the MS formula stating that
X is a 2-element circuit. Similarly, we let Edge(X;) be a formula expressing
that X; is a singleton set not contained in a 2-element circuit. Now we
make the following interpretations in 1: if ) is a quantifier and v is a vertex
variable, we replace Qu with QX, Vert(X,). If e is an edge variable, we
replace Qe with QX,.Edge(X.). If V is a variable representing a set of
vertices, we replace QV with

QXVX1(Sing(X1) A X1 C X) = 3X2(X; € Xo A Xy C X A Vert(Xy)).
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Similarly, if E is a variable representing a set of edges, then we replace QF
with QXVX;(Sing(X1) A X3 € X — Edge(X;)). Finally, we replace any
occurrence of the predicate stating that e is incident with v with an MS
formula saying that there is a 3-element circuit that contains X, and one of
the elements in X,,. We let ¢/ be the sentence we obtain by making these
substitutions. It is clear that a graph, G, satisfies ¢ if and only if B(G®)
satisfies 1)’. Therefore Corollary implies that there is a fixed-parameter
tractable algorithm for testing whether 1)’ holds in matroids of the form
B(G®), with respect to the parameter of branch-width.

To find the branch-width of a graph with edge set E, we consider a ternary
tree, T', and a bijection from E to the leaves of T'. If (U,V) is a partition
of E displayed by an edge, e, of T, then we count the vertices incident with
edges in both U and V. This gives us the width of e, and the maximum
width of an edge of T is the width of the decomposition. The lowest width
across all such decompositions is the branch-width of the graph. It is not
difficult to see that the branch-width of the matroid B(G°) is bounded by a
function of the branch-width of the graph G, and similarly the branch-width
of G is bounded by a function of the branch-width of B(G®). But exactly the
same relation holds between the branch-width and the tree-width of G [17,
(5.1)]. Now it follows that there is a fixed-parameter tractable algorithm for
testing whether ¢ holds in graphs, where the parameter is tree-width. This
proves Courcelle’s Theorem [4].

When H is not finite, the class of H-gain-graphic matroids is not even
pigeonhole, as we now show. First we require the following proposition.

Proposition 8.7. Let H be an infinite group, and let m and n be positive
integers. There are disjoint subsets A, B C H such that |A| = m, |B| = n,
and {ab: (a,b) € A x B} is disjoint from AU B and has cardinality mn.

Proof. Assume that m = 1. Choose B, an arbitrary subset of n elements that
does not include the identity. The cancellation rule implies the result if we
let A be a singleton set containing an element not in BU {blbgl : b1, be € B}.
The result similarly holds if n = 1. Now we let m and n be chosen so that
m + n is as small as possible with respect to the proposition failing. Let A’
and B be disjoint subsets such that |A’| =m — 1, |B| = n, and {ab: (a,b) €
A" x B} has cardinality (m — 1)n and is disjoint from A’ and B. We choose
an element z not in A’U B that does not belong to {ab~': a € A,b € B}, nor
to {blbglz b1,be € B}, nor to {ablbglz a € A,b,by € B}. Now we simply
let A be AU {x}. O

Proposition 8.8. Let H be an infinite group. There are rank-3 H-gain-
graphic matroids with arbitrarily high decomposition-width. Hence the class
of H-gain-graphic matroids is not pigeonhole.

Proof. Assume otherwise, and let K be an integer such that dw(M) < K
whenever M is a rank-3 H-gain-graphic matroid.
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Znam proved that if a bipartite graph with n vertices in each side of its
bipartition has more than (d — 1)%/%n?~1/4 4 n(d — 1)/2 edges, then it has
a subgraph isomorphic to K44 [22]. Choose an integer d such that d* > K.
Choose the integer p so that

1 a1
gP° > (A= DYy op(d — 1),

Finally, choose the integer ¢ such that ¢ —p > ¢/2 > p and

S +20) = p(20 = p+2) > (d = DYg = pP 4 (- p)(d 1),

Using Proposition we choose disjoint subsets A = {a1,...,a,} and
B = {b1,...,bg} of H such that a;b; # apb, whenever (i,j) # (p,q). Let
AB be {a;b;: 1 <i,j < q}. We also assume that AB is disjoint from AU B.
Let G be a graph on vertex set {v1,ve,vs}, where there are ¢ parallel edges
between v; and vy and between vy and vs, and ¢ parallel edges between
v1 and v3. We let ¢ be the gain function applying the elements in A to
the ¢ arcs from vy to ve, the elements in B to the arcs from ve to vz, and
the elements in AB to those arcs from vy to v3. We identify these group
elements with the ground set of the H-gain-graphic matroid M = M (G, o).
Therefore M is a rank-3 matroid with ground set AU B U AB. Its non-
spanning circuits are the 3-element subsets of A, B, or AB, along with any
set of the form {a;, bj, a;b;}.

Let (T,¢) be a decomposition of M with the property that if U is any
displayed set, then ~y has at most K equivalence classes. As in the proof of
Lemma [4.1] we let e be an edge of T' such that each of the displayed sets, U,
and V,, contains at least |E(M)|/3 = (¢*> + 2¢)/3 elements. We construct a
complete bipartite graph with vertex set AU B and edge set AB, where a;b;
joins a; to b;. We colour a vertex or edge red if it belongs to U,, and blue
otherwise. Without loss of generality, we will assume that at least ¢/2 > p
vertices in A are red.

Assume that B contains at least p blue vertices. We choose p such vertices,
and p red vertices from A, and let G’ be the graph induced by these 2p
vertices. There are p? edges in G’. Assume that at least p?/2 of them are red
(the case that at least p?/2 of them are blue is almost identical). Our choice
of p means that G’ contains a subgraph isomorphic to K4 consisting of red
edges. Thus there are elements a;,,...,a;, € ANU, and bj,,...,b;, € BNV,
such that every element a;,b;, is in U.. For (I,k) # (p,q), we see that
{as,, a;,bj, } is not equivalent to {a;,, a;,b;, }, since {a;,, a;bj, ,b;, } is a circuit
of M, and {a;,,ai,b;,,b;,} is a basis. Therefore ~y, has at least d*> > K
equivalence classes, and we have a contradiction. We must now assume that
B contains fewer than p blue vertices, and hence at least ¢ — p > ¢/2 red
vertices. Thus a symmetrical argument shows that A contains fewer than p
blue vertices.

We choose g — p red vertices from each of A and B, and let G be the
subgraph induced by these vertices. Let g stand for the number of blue edges
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in G”. The number of edges not in G is equal to ¢> — (¢ — p)? = 2pq — p°.
As there are g blue edges in G”, at most 2pq — p? blue edges not in G”, and
fewer than 2p blue vertices, it follows that |V.| < g + 2pg — p® + 2p. Since
(q® +2q)/3 < |Ve|, we deduce that

%( 2+2¢) —p2g—p+2) <y
Our choice of ¢ now means that G” has a subgraph isomorphic to Kgq
consisting of blue edges. Thus we have elements a;,,...,a;;, € AN U, and
bj,,.-.,bj, € BNU, such that a;,b;, is in V. for each p and q. For (I, k) #
(p,q), we see that {a;,,bj,,a;b;, } is a circuit of M, while {a;,, bj,, a;b;, } is
a basis. This implies there are at least d? equivalence classes under ~y,, so
we again have a contradiction. ([

9. OPEN PROBLEMS

We have proved that the class of lattice path matroids is pigeonhole, but
we have been unable to prove that it is strongly pigeonhole. Nevertheless,
we believe this to be the case.

Conjecture 9.1. The class of lattice path matroids is computably pigeon-
hole.

The classes of fundamental transversal matroids and lattice path matroids
are both closed under duality ([I6, Proposition 11.2.28] and [2, Theorem
3.5]). Thus they belong to the intersection of transversal and cotransversal
matroids. We suspect that Theorem (and Conjecture exemplify a
more general result.

Conjecture 9.2. The class of matroids that are both transversal and co-
transversal is strongly pigeonhole.

Despite the existence of examples as in Remark [8:2] we firmly believe the
next conjecture.

Conjecture 9.3. The class of bicircular matroids is computably pigeonhole.
Let H be a finite group. The class of H-gain-graphic matroids is computably
pigeonhole.
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