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We provide an analytic estimate for the size of the bulbs adjoining the main cardioid of the Mandelbrot 

set. The bulbs are approximate circles, and are associated with the stability regions in the complex pa- 

rameter μ-space of period- q orbits of the underlying map z → z 2 − μ. For the ( p , q ) orbit with winding 

number p / q , the associated stability bulb is an approximate circle with radius 
1 

q 2 
sin 

π p 

q 
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. Introduction 

The Mandelbrot set, as shown in Fig. 1 , is defined as the set of

oints μ in the complex plane for which the origin z = 0 is not

apped to ∞ under iteration of the quadratic map 

 → z 2 − μ. (1.1) 

ne way to compute it is to use the escape time algorithm. For

 point μ in the complex plane, we associate an integer N ( R , μ),

hich is the number of iterates of the map (starting with z = 0 )

hich are required so that | z | > R . The Mandelbrot set is the set

f values for which N = ∞ for sufficiently large R . In practice one

akes R as fixed and large, and presumes N = ∞ if N > N ∞ 

, where

 ∞ 

is suitably large. 

The Mandelbrot set consists of the black points in Fig. 1 . Com-

only one colours each pixel according to its value of N . The

oloured hues in Fig. 1 are thus associated with points which do

iverge to ∞ . For artistic reasons, the colour scale is highly non-

inear. 

The map (1.1) has an infinite number of periodic orbits, and in-

eed these are simply counted. A q -periodic orbit is a fixed point

f the map z → z q , where z q is the q th iterate of (1.1) and is a poly-

omial in z of degree 2 q , thus having 2 q roots; these correspond

o period- r orbits, where the set of r values contains the factors

f q . We can thus count the number of period- q orbits by succes-

ive evaluation for increasing q . For example, there are two fixed

oints ( q = 1 , 2 q = 2 ). For q = 2 , there are 2 2 = 4 roots of z 2 = z,
∗ Corresponding author. 
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ut two of these are the fixed points, and the other two provide

ne period-2 orbit, since a root z of period two implies z 1 is also a

oot corresponding to the same orbit. 

Likewise, we have eight roots of period three, and thus (2 3 −
) / 3 = 2 period-3 orbits. For q = 4 , there are sixteen roots, four

f which are the fixed points and the period-2 orbit, so there are

hree period-4 orbits; for q = 5 , there are six period-5 orbits; and

o on. (When q is prime, the necessary fact that q divides 2 q − 2 is

 consequence of Fermat’s little theorem.) 

Each of these orbits has a region or regions in μ-space where

t is stable, and these regions provide the obvious distinct regions

f the Mandelbrot set: distinct, as it is known that the map has no

ore than one stable periodic orbit. Most of the regions appear to

e approximately circular, except for the largest region, which is a

ardioid, and is the stability region for one of the fixed points. 

In more detail, the fixed points of the map are 

 

± = 

1 
2 

±
(
μ + 

1 
4 

)1 / 2 
. (1.2) 

he stability of the fixed point is given by the criterion that the

odulus of the derivative of the right hand side of (1.1) is less than

ne. If we define the positive square root (1 + 4 μ) 1 / 2 to have pos-

tive real part, then z + is always unstable, and the stability of z −

equires 

 1 − (1 + 4 μ) 1 / 2 | < 1 . (1.3)

olving for the boundary, we obtain μ + 

1 
4 = e iθ cos 2 1 

2 θ, where θ

s the polar angle with respect to μ = − 1 
4 , and thus in the same

olar coordinates, 

 = cos 2 1 
2 
θ, (1.4) 
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Fig. 1. The Mandelbrot set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The Mandelbrot set, overlain with the main cardioid bulbs of periods 2,3,4,5, 

with an approximate circular form (in blue) of radius a q from (1.8) . The number 

pairs by each bulb give the values of p and q at the corresponding tangential reso- 

nance; see (1.7) . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 3. A close-up of the (2,3) bulb, together with its analytic approximate shape as 

in (2.6) . 
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which is the equation of a cardioid . This is the smooth contour of

the large bulb of the figure, with the origin taken at the cusp of

the cardioid. 

Similarly, the circle to its right is the stability region for the pe-

riod two cycle, and the smaller one to its right is that for a period

four cycle. The process carries on as for the Feigenbaum sequence,

yielding smaller and smaller regions of stability. Further out past

the limiting value of μ∞ 

≈ 1 . 40 . . . , there are other small regions,

the most noticeable of which corresponds to the period three win-

dow at μ≈ 1.75. 

We can assess the stability of the period-2 cycle in the same

way as above. The two values { z + , z −} of the 2-cycle satisfy the

quartic equation 

z = (z 2 − μ) 2 − μ; (1.5)

however, two of the roots of this are the fixed points, so the quar-

tic can be factorised, and we find that 

z ± = − 1 
2 

± (μ − 3 
4 
) 1 / 2 . (1.6)

The stability region of the period-2 cycle is | 4 z + z −| < 1 , and this is

the circle | μ − 1 | < 

1 
4 . This is the bulb to the right of the cardioid

in Fig. 1 . 

Many other bulbs can be seen round the periphery; those

touching the main cardioid correspond to stability regions for pe-

riod q cycles having a rotation number of p 
q (we may take p and q

to be relatively prime), and they touch the cardioid at 

(1 + 4 μ) 1 / 2 − 1 = e iα, α = π
(

2 p 

q 
− 1 

)
. (1.7)

The large period-2 cycle stability bulb to the right of the cardioid

corresponds to p = 1 , q = 2 ; the bulbs at the bottom and top (re-

spectively) of the cardioid represent period-3 cycle stability bound-

aries, p = 1 , 2 , q = 3 ; and so on. It is evident that there is a good

deal of self-similarity in the figure, and exotic features can be

traced down to indefinitely small scales. 

In this paper we are concerned with the shape and size of the

main cardoid bulbs. Evidently they are approximate circles which

are tangent to the cardioid, and Fig. 2 shows that the radius of the

( p , q ) bulb is well approximated by 

a q = 

1 

q 2 
sin 

π p 

q 
. (1.8)

Our intention is to explain this observation. 
The Mandelbrot set has been studied for many years (see for

xample [2,4–7] ), and the geometry of the bulbs has been a sub-

ect of continuing interest, but the estimate in (1.8) appears not to

ave been demonstrated explicitly, other than as a numerical ob-

ervation; see, for example [10] , whose result (the Mandelbrot n 2 

onjecture) is discussed further in Section 5 . There has been some

nterest in computing the area of the Mandelbrot set (e. g., [1] ), but

pparently without concern for the actual bulb shapes or sizes. 

It should be pointed out that the bulbs’ apparent circular shape

s indeed only approximate, as is shown in Fig. 3 , where the 2/3

ulb is shown in close-up. The approximate formula (2.6) which

e derive below describes a circle whose boundary is shown in

lue: it is close but not exact. 
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. Bulb bifurcations 

We begin with some geometry. On the main cardioid 

 = cos 2 1 
2 
θ, μ + 

1 
4 

= re iθ , (2.1)

he angle of the tangent at polar angle θ follows from 

an ψ = 

dy 

dx 
= 

(r(θ ) sin θ ) ′ 
(r(θ ) cos θ ) ′ , (2.2) 

nd evaluating this we find 

 = 

3 
2 
θ − 1 

2 
π. (2.3) 

he two bulbs at the top and bottom of the cardioid have ψ =
 and −π, corresponding to θ = ± 1 

3 π, and thus from (1.7) p 
q =

2 
3 , 

1 
3 : these are the period-3 stability bulbs. Similarly, the period-4

tability bulbs associated with 

p 
q = 

3 
4 , 

1 
4 are located at θ = ± 1 

2 π,

mmediately above and below the cusp of the cardioid. 

Next, we write the map in terms of a perturbation of the fixed

oint z − = z ∗ when μ = μ∗ is on the cardioid and θ = α given in

1.7) . Define 

 = z ∗ + ζ , μ = μ∗ + �, μ∗ = − 1 
4 

+ e iα cos 2 1 
2 
α, (2.4)

o that the map is transformed to 

→ sζ + ζ 2 − �, s = −e iα = exp 

(
2 π ip 

q 

)
. (2.5)

he ( p , q ) bulb sprouts from μ = μ∗, where the fixed point z −

oses stability, and a stable period- q orbit is born. 

We will show that the stability region for this period- q orbit is

he approximate circle 

�e −iψ − ia q 
∣∣ < a q , a q = 

1 

q 2 
sin 

π p 

q 
. (2.6)

ote that the complex variable �e −iψ has its real axis along the

angent to the cardioid, so that the circles are external and tangent

o it, as can be seen in Fig. 1 . 

. A failed approximation method 

The period- q orbits of (2.5) exchange stability with the fixed

oint when � = 0 . For � = 0 and ζ � 1, the linearised map ζ → s ζ
as a (degenerate) family of q -periodic solutions, so it is natural

o seek perturbation methods when �� 1. In this section we at-

empt to do this; the method is non-standard, both because we

re attempting to analyse a weakly non-linear difference equation,

nd also because the result (2.6) suggests that the small value of

should be related to large values of q . As we shall see, we are

nable to provide a satisfactory solution method, partly on this ac-

ount. 

Let the r th iterate of (2.5) be ζ r , so that 

r+1 = sζr + ζ 2 
r − �, s = exp 

(
2 π ip 

q 

)
, ζ0 = ζ , (3.1)

nd assume that ζ r and � are small. If we define 

 ±(ζ ) = ζ 2 ± (1 − s ) ζ − �, (3.2)

hen the fixed points of the map correspond to the solutions of

 − = 0 . We assume ζ is not a fixed point of the map, and by defin-

ng 

r = ζ + D −A r , (3.3)

t follows that 

 r+1 = 1 + sA r + 2 ζA r + D −A 

2 
r , A 0 = 0 , (3.4)
nd q -periodic orbits have A q = 0 . The approximate solution (with

, D − � 1 ) is 

 r = 

1 − s r 

1 − s 
, (3.5) 

nd this represents a (neutrally stable) period- q orbit. 

Next we define 

 r = 

1 − s r u r 

1 − s 
, (3.6) 

rom which it follows that 

 r+1 = u r − D + 
s (1 − s ) 

1 

s r 
+ 

2(ζ 2 − �) u r 

s (1 − s ) 
− D −u 

2 
r 

s (1 − s ) 
s r , u 0 = 1 , 

(3.7) 

nd a period- q ( q > 1) orbit corresponds to having u q = 1 . 

In a naïve approximation, we may note that for small ζ and �,

 r ≈ 1, so that 

 r+1 ≈ u r − D + 
s (1 − s ) 

1 

s r 
+ 

2(ζ 2 − �) 

s (1 − s ) 
− D −

s (1 − s ) 
s r , u 0 = 1 , 

(3.8) 

f which the solution is 

 r ≈ 1 − D + 
s (1 − s ) 

(
1 − s −r 

1 − s −1 

)
+ 

2(ζ 2 − �) r 

s (1 − s ) 
− D −

s (1 − s ) 

(
1 − s r 

1 − s 

)
. 

(3.9) 

t follows that 

 q ≈ 1 + 

2 q (ζ 2 − �) 

s (1 − s ) 
, (3.10) 

nd thus that there is a period- q orbit through ζ ≈ ±
√ 

�. The re-

ulting region of stability is the bulb defined approximately by

 ζ ′ 
q (ζ ) | < 1 , and using (3.3), (3.6) and (3.10) , this leads to the defi-

ition 

�e −iψ − ia 
∣∣ < a, a = 

1 

2 q 
sin 

π p 

q 
, (3.11)

here we use the fact that 

 (1 − s ) = −2 ie iψ sin 

π p 

q 
. (3.12)

his result is exact for q = 2 , but incorrect for q > 2. Indeed the fact

hat there are two fixed points for ζ tells us we are only dealing

ith period-2 orbits, as period- q orbits would have q fixed points.

hat is wrong? The approximation (3.9) can only be applicable if

 �� 1, but the result in (3.11) suggests that q �∼ 1, so that the

pproximation breaks down. 

.1. Multiple scales 

The method described above is somewhat simple, but can be

ade more methodical using the method of multiple scales for dif-

erence equations (see, for example, Hoppensteadt and Miranker

9] ). Specifically, if we write 

= ε 2 , ζ = εZ, R = εr, u r = U(r, R ) ≡ U r (R ) , (3.13)

nd presume that the dependence on R is continuous, so that 

 r+1 = U r (R ) + εU 

′ 
r (R ) + . . . , (3.14)

here the prime denotes differentiation with respect to R , then

ith 

 ∼ U 

(0) + εU 

(1) + . . . , (3.15)

ne can show by equating successive powers of ε that 

 

(0) 
r = U 0 (R ) , U 

(1) 
r = U 1 (R ) + 

Z 

s 

[
1 − s r 

1 − s 
− 1 − s −r 

1 − s −1 

]
, (3.16)
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and the functions U 0 and U 1 are determined by the requirement

that secular terms be suppressed (so that the solutions are q -

periodic). It then follows that U 0 ≡ 1 and, by removing secular

terms at O ( ε2 ), that 

 1 = 

−2 R 

s (1 − s ) 
, (3.17)

but this does not seem to lead anywhere. Part of the problem is

that it is unclear how ζ should be related to �, and as we shall

see, the assumption in (3.13) that ζ ∼�1/2 is in fact only appropri-

ate if q = 2 . 

4. Derivation of the bulb radius 

To elucidate the issue, we look at explicit iterates of the map

(3.1) , using (3.4) . We find 

A 0 = 0 , A 1 = 1 , A 2 = D − + (1 + s + 2 ζ ) , 

A 3 = D 

3 
− + 2(1 + s + 2 ζ ) D 

2 
− + { s + 2 ζ + (1 + s + 2 ζ ) 2 } D −

+ (s + 2 ζ )(1 + s + 2 ζ ) + 1 , (4.1)

and so on. Since D − = 0 at the fixed points of the map, a period q

orbit is one for which A q = 0 (and A r � = 0 for 1 ≤ r < q ). 

Consider first the p = 1 , q = 2 resonance for which s = −1 and

a period 2 orbit bifurcates at � = 0 . In this case D − = ζ 2 − 2 ζ − �,

and thus A 2 = ζ 2 − �; this is exact, and is in fact identical to the

approximate result in (3.10) (given that s = −1 ). Thus the stability

result in (2.6) is exact for q = 2 . 

Now let us see what happens for q = 3 . In this case we take

s = exp (±2 π i/ 3) , and thus s 3 = 1 , 1 + s + s 2 = 0 . Using these, we

find 

A 3 (D −, ζ ) = D 

3 
− + 2(1 + s + 2 ζ ) D 

2 
− + 2 { s + (3 + 2 s ) ζ

+ 2 ζ 2 } D − + 2 ζ (1 + 2 s + 2 ζ ) . (4.2)

We define 

D (ζ ) = ζ 2 − (1 − s ) ζ , (4.3)

so that D − = D − �, and we want to find the roots of A 3 = 0 for

small �. Evidently these are close to the roots of P 3 ( ζ ) ≡ A 3 [ D ( ζ ),

ζ ], and simplifying this using (4.2) , we find 

P 3 (ζ ) = ζ 3 [ ζ 3 + (1 + 3 s ) ζ 2 − (2 − s ) ζ − (3 + 2 s )] . (4.4)

For small �, we then have 

A 3 (D −, ζ ) = P 3 (ζ ) − �
∂ A 3 

∂D 

+ . . . . (4.5)

The map ζ → ζ 3 is an eighth-degree polynomial. It has two fixed

points corresponding to the fixed points of the map (2.5) , and the

other six roots, which are those of A 3 , correspond to the two pe-

riod 3 orbits. It is evident from (4.4) that the period 3 orbit of

concern in the bifurcation is that corresponding to the three roots

near zero. From (4.2) , 

∂ A 3 

∂D 

= 2 s + O (ζ ) , (4.6)

and thus (4.5) gives 

A 3 = c 3 ζ
3 − b 3 � + . . . , c 3 = −(3 + 2 s ) , b 3 = 2 s, (4.7)

so that the correct approximation for the roots has ζ ∼�1/3 , in dis-

tinction to (3.13) . 

This provides a clue as to what we should predict: for period q

orbits, we expect that if s q = 1 , 1 + s + s 2 + . . . + s q −1 = 0 , then 

A q = c q ζ
q − b q � + . . . ; (4.8)

substituting this into (3.3) and calculating the approximate value

of ζ ′ 
q (ζ ) , we find the stability condition as in (2.6) , with the value

of a q for period q orbits being 

a q = 

1 

Q 

sin 

π p 

q 
, Q = − 1 

2 
qb q s (1 − s ) 2 , (4.9)
here we again make use of the formula s (1 − s ) = −2 ie iψ sin 

π p 
q .

or q = 2 and q = 3 , we regain (2.6) . The task is now to demon-

trate that (4.8) applies for any q , and that Q = q 2 in (4.9) . A simi-

ar result to (4.8) is present in the work of [3] , (proposition 8). 

.1. Expansion for A q 

We write the map (3.4) in the form 

 r+1 = 1 + λA r + (D − �) A 

2 
r , A 0 = 0 , (4.10)

here 

(ζ ) = s + 2 ζ , D (ζ ) = ζ 2 − (1 − s ) ζ . (4.11)

he solution of (4.10) is a function A r (D − �, λ) , and a period- q

rbit corresponds to a value of ζ for which A q [ D (ζ ) − �, λ(ζ )] = 0 .

hen �� 1, we have 

 q [ D (ζ ) − �, λ(ζ )] = A q [ D (ζ ) , λ(ζ )] − �
∂ A q 

∂D 

[ D (ζ ) , λ(ζ )] + . . . ,

(4.12)

n analogy to (4.5) , and we aim to calculate these two coefficients.

Putting � = 0 , (4.10) becomes 

 r+1 = 1 + λA r + DA 

2 
r , A 0 = 0 , (4.13)

nd we expand as a power series 

 r = a (r) 
0 

(λ) + a (r) 
1 

(λ) D + a (r) 
2 

(λ) D 

2 + . . . , (4.14)

hose form can be ascertained by induction. Substituting into

4.13) and equating powers of D , we find 

a (r+1) 
0 

= 1 + λa (r) 
0 

, a (0) 
0 

= 0 , 

 

(r+1) 
1 

= λa (r) 
1 

+ a (r)2 
0 

, a (0) 
1 

= 0 , (4.15)

tc., for which the solutions are 

 

(r) 
0 

= 

1 − λr 

1 − λ
, a (r) 

1 
= 

λ + (1 − λ)(1 − 2 r) λr − λ2 r 

λ(1 − λ) 3 
. (4.16)

utting r = q and expanding for small ζ , we find 

∂ A q 

∂D 

[ D (ζ ) , λ(ζ )] = b q + O (ζ ) , b q = − 2 q 

s (1 − s ) 2 
. (4.17)

ote that with Q defined as in (4.9) , this gives Q = q 2 . 

.1.1. Calculation of A q [ D ( ζ ), λ( ζ )] 

Next we wish to calculate A q [ D ( ζ ), λ( ζ )] in (4.12) . This is a little

ore complicated. For this we return to the original map (3.1) , but

ith � = 0 : 

r+1 = sζr + ζ 2 
r , ζ0 = ζ ; (4.18)

ote that the solution is 

r = ζ + D (ζ ) A r [ D (ζ ) , λ(ζ )] . (4.19)

e write the solution of (4.18) as a power series: 

r = a 1 ,r ζ + . . . + a j,r ζ
j + . . . , (4.20)

hose form is confirmed by induction. Computations of low order

olynomials of this type have been constructed by Stephenson [11] ,

2 ] and Stephenson and Ridgway [13] . The initial conditions are 

 1 , 0 = 1 , a j, 0 = 0 , j > 1 . (4.21)

xpanding (4.18) and equating powers of ζ , we obtain 

 1 ,r+1 = sa 1 ,r , a 1 , 0 = 1 , 

 2 ,r+1 = sa 2 ,r + a 2 1 ,r , a 2 , 0 = 0 , 

 3 ,r+1 = sa 3 ,r + 2 a 1 ,r a 2 ,r , a 3 , 0 = 0 , 
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. . . 

a j,r+1 = sa j,r + 

j−1 ∑ 

m =1 

a m,r a j−m,r , a j, 0 = 0 . (4.22) 

olving these, we find sequentially that 

 1 ,r = s r , a 2 ,r = 

s r − s 2 r 

s − s 2 
, a 3 ,r = 

2 

s − s 2 

[
s r − s 2 r 

s − s 2 
−

(
s r − s 3 r 

s − s 3 

)]
.

(4.23) 

his suggests an ansatz that 

 j,r = 

j ∑ 

k =2 

b jk 

(
s r − s kr 

s − s k 

)
, j ≥ 2 . (4.24)

omparing this with (4.23) , we see that 

 22 = 1 , b 32 = 

2 

s − s 2 
, b 33 = − 2 

s − s 2 
. (4.25)

upposing (4.23) is true up to j − 1 , then for j ≥ 3, (4.22) implies 

 j,r+1 = sa j,r + 2 s r 
j−1 ∑ 

k =2 

b j−1 ,k 

(
s r − s kr 

s − s k 

)

+ 

j−2 ∑ 

m =2 

m ∑ 

k =2 

j−m ∑ 

l=2 

b mk b j−m,l 

(
s r − s kr 

s − s k 

)(
s r − s lr 

s − s l 

)
. (4.26) 

n the right hand side of this expression the maximal value of n

n terms s nr is n = j, and therefore if s q = 1 , the inductive step to

 will work providing j ≤ q , since then there are no resonant terms

 s r on the right hand side. Thus putting r = q in (4.23) and (4.24) ,

e find 

 1 ,q = 1 , a j,q = 0 , j = 2 , . . . , q, (4.27)

nd thus 

q = ζ + a q +1 ,q ζ
q +1 + O (ζ q +2 ) . (4.28)

ote that due to (4.19) , this implies that as ζ → 0, 

 q [ D (ζ ) , λ(ζ )] = c q ζ
q + O (ζ q +1 ) , c q = −a q +1 ,q 

1 − s 
. (4.29)

ow although the ansatz (4.24) does not apply for j = q + 1 , the

q. (4.26) still determines a q +1 ,r . In particular, determination of

 q +1 ,q only requires the particular solution of (4.26) for the reso-

ant terms ∝ s r on the right hand side. Including these, we have

 q +1 ,r+1 = sa q +1 ,r + s r 

[ 

2 b qq 

1 − s 
+ 

q −1 ∑ 

m =2 

b mm 

b q +1 −m,q +1 −m 

(s − s m )(s − s q +1 −m ) 

] 

+ . . . , 

(4.30) 

here the non-resonant terms are omitted, the point being that

hen r = q, their contributions all vanish. Solving this and putting

 = q, we obtain 

 q +1 ,q = 

[ 

2 b qq 

1 − s 
+ 

q −1 ∑ 

m =2 

b mm 

b q +1 −m,q +1 −m 

(s − s m )(s − s q +1 −m ) 

] 

q 

s 
. (4.31) 

ow we return to the difference Eq. (4.26) . Focussing on the co-

fficient b jj , and noting that the solution of a r+1 = sa r + s kr with

 0 = 0 is just a r = 

s r − s kr 

s − s k 
, it follows that 

 j j = −2 b j −1 , j −1 

s − s j−1 
+ 

j−2 ∑ 

m =2 

b mm 

b j −m, j −m 

(s − s m )(s − s j−m ) 
, 3 ≤ j ≤ q. (4.32)
efining 

 j = 

b j j 

s − s j 
, (4.33) 

e thus have 

 q +1 ,q = 

[ 

−2 C q + 

q −1 ∑ 

m =2 

C m 

C q +1 −m 

] 

q 

s 
, (4.34) 

here 

(s − s j ) C j = −2 C j−1 + 

j−2 ∑ 

m =2 

C m 

C j−m 

, 3 ≤ j ≤ q, C 2 = 

1 

s − s 2 
. 

(4.35) 

s a curiosity, we derive a formal functional equation for the de-

ermination of C m 

. If we define 

f (x ) = 

∞ ∑ 

2 

C m 

x m , (4.36)

t follows from summing (4.35) that 

f (x ) − f (sx ) = [ f (x ) − x ] 2 ; (4.37)

f we then define 

(x ) = f (x ) − x = 

∞ ∑ 

1 

C m 

x m , (4.38)

here we choose C 1 = −1 , it follows that 

g(x ) − g(sx ) = g(x ) 2 . (4.39)

t should be noted that if s q = 1 for any q , then the infinite series

4.36) does not exist. Considered as a function g ( x , s ), g is singular

in s ) at any q th root of one, and thus in fact anywhere on the

nit circle | s | = 1 ; we might surmise that it is analytic for | s | < 1,

owever. Luckily, explicit calculation of a q +1 ,q is not necessary for

alculation of the bulb geometry. 

.1.2. The size of the bulbs 

We now revert to the problem at hand. From (4.12), (4.17) and

4.29) , the q th iterate for A q is 

 q = c q ζ
q − b q � + O (ζ q +1 , �ζ ) , (4.40)

o that (4.9) is validated, and the value of b q from (4.17) vindi-

ates the value of a q in (1.8) . The only other item of interest is

he calculation of the period- q orbits themselves. This requires the

alculation of c q , and thus (from (4.29) ) a q +1 ,q . Specifically, 

 q = − q 

s (1 − s ) 

[ 

−2 C q + 

q −1 ∑ 

m =2 

C m 

C q +1 −m 

] 

, (4.41) 

here the coefficients C j are calculated from (4.35) ; thus from

4.17) and (4.40) , the bifurcating period- q orbit is approximately

iven by the q roots 

≈
{ 

2�

(1 − s ) 
[
−2 C q + 

∑ q −1 
m =2 

C m 

C q +1 −m 

]
} 1 /q 

. (4.42) 

. Conclusions 

To our knowledge, an estimate of the bulb radius of 

 q = 

1 

q 2 
sin 

π p 

q 
(5.1) 

s given in (1.8) , has not been directly demonstrated before, al-

hough its value can be found strewn across the internet, presum-

bly based on numerical estimates. Here we have shown that it can
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Fig. 4. A close-up of the (1,100) bulb. 

Table 1 

Analytic and computed values of the bulb radius for various values of 

p and q . Since the analytic value for 1,2 is exact, its numerical value 

provides an accuracy check on the numerical algorithm used. 

p q Analytic Numerical Relative error 

1 2 0.25 0.250 0.001 

1 3 0.0962 0.094 0.02 

2 3 0.0962 0.094 0.02 

1 11 0 . 2328 × 10 −2 0 . 242 × 10 −2 0.04 

5 11 0 . 8180 × 10 −2 0 . 87 × 10 −2 0.06 

1 32 0 . 9572 × 10 −4 0 . 996 × 10 −4 0.04 

17 32 0 . 9719 × 10 −3 1 . 08 × 10 −3 0.10 

1 256 0 . 1872 × 10 −6 0 . 194 × 10 −6 0.03 

129 256 0 . 1526 × 10 −4 0 . 168 × 10 −4 0.09 

1 1,024 0 . 2926 × 10 −8 0 . 300 × 10 −8 0.02 

513 1,024 0 . 9537 × 10 −6 1 . 039 × 10 −6 0.08 

t  
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p
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b  

T  

m  

c  

‘  

a  

e  

t  

W  

i  
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h
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be predicted on a simple analytical basis in the limit that �� 1,

which is to say that the bulb radius is small. 

A referee draws our attention to a result of [10] , known as the

Mandelbrot n 2 conjecture, and considers that our result is equiv-

alent. The conjecture was proved by Guckenheimer and McGehee

[8] , but its relation to the present result is at the least opaque.

Mandelbrot calls the bulbs ‘atoms’ with ‘nuclei’, and the bulb ra-

dius is the distance from the ‘root’ (in our case the point of tan-

gency with the main cardioid) to the nucleus. The nucleus is de-

fined as a point where ‘the attractor of the corresponding [map]

contains the critical point [ z = 0 ]’; that is to say, where the period-

q orbit is superstable. Why this should be at the centre of the

approximately circular bulb is not clear, but supposing it to be

the case, Mandelbrot then suggests (p. 222) that the radius of the

bulbs in his set M λ is numerically observed to be approximately

1/ q 2 (using our notation for the ( p , q ) bulb). 

Mandelbrot considers his Mandelbrot set in two forms: as M μ,

associated with the mapping z → z 2 − μ, or as M λ, associated with

the mapping 

Z → F (Z) ≡ λZ(1 − Z) , (5.2)

which can be obtained from the first map by writing z = 

1 
2 λ − λZ,

and 

μ = 

1 
4 
λ2 − 1 

2 
λ. (5.3)

Thus to compare his numerical observation with our prediction

(2.6) , we need to write our result in terms of λ. Doing this, we

find 

�e −iψ = e −
3 iπ p 

q 

[ (
λ − 1 

2 

)2 

+ e 
2 iπ p 

q sin 

2 π p 

q 

] 

, (5.4)

thus the root of an M λ bulb is at ( � = 0 ) 

λ − 1 

2 

= ±e 
iπ p 

q sin 

π p 

q 
. (5.5)

M λ is symmetric about λ = 1 , both horizontally and vertically, and

the main cardioid of M μ becomes the two primary bulbs | λ| < 1

and | λ − 2 | < 1 . In (5.5) , the upper sign corresponds to the left pri-

mary bulb, and the lower sign corresponds to the right primary

bulb. We define 

λ = 1 ± 2 ie 
iπ p 

q sin 

π p 

q 
± δe 

2 iπ p 
q , (5.6)

and thus (2.6) can be written in the form ∣∣∣δ + O (δ2 q ) − 1 

q 2 

∣∣∣ = 

1 

q 2 
, (5.7)

which confirms Mandelbrot’s numerical observation (since δ2 q �
1 

q 2 
when δ ∼ 1 

q 2 
). 

Next, Mandelbrot introduces his n 2 conjecture ( n is the

same as q ). This states, in our notation, that for the map F

given by (5.2) , the derivative with respect to λ along the ray

λ ∝ λp , q ≡ exp (2 π ip / q ) (thus in the left primary bulb) of the q th

iterate gradient F ′ q ≡ d F q 
dZ 

, evaluated on the period q orbit which bi-

furcates at λp , q , is equal to −q 2 . Here F q is the q th iterate of F . More

plainly, in the vicinity of the bulb root λp , q , 

F ′ q ≈ 1 − q 2 
(

λ

λp,q 
− 1 

)
, (5.8)

and this is in fact equivalent to (5.7) , since the stability boundary

is just | F ′ q | = 1 . 

As noted above, Mandelbrot was unable to prove his conjec-

ture, but this was done by Guckenheimer and McGehee [8] . The

question then is how their proof relates to our method. There are

some points of similarity (for example our result (4.28) is similar
o an old result of Fatou), but the tone is quite distinct. In par-

icular, the present calculations give explicit results which are not

resent in Guckenheimer and McGehee’s paper and, although we

ave not attempted to do so, they provide an entry point for com-

uting higher order approximations. 

omparison of the prediction with numerical estimates 

The prediction in (5.1) is only an approximation, and as can

e seen in Fig. 4 , while the estimate is good it is not perfect. In

able 1 we compare analytic estimates given by (5.1) with nu-

erically computed estimates. Since the bulbs are not exact cir-

les, there is some flexibility in defining what an appropriate bulb

radius’ actually is. The method used to here is to estimate bulb

rea by counting pixels (of size 0.001 relative to the bulb diam-

ter, which is thus the inherent numerical error in estimation of

he radius), and computing the equivalent circle radius from that.

hile we would hope that the relative error would decrease as q

ncreases, it is clear that any such trend, if present at all, is very

ild. Improving the approximation provides an intriguing, if per-

aps fruitless, direction for future work. 
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