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Surtseyan eruptions are an important class of mostly
basaltic volcanic eruptions first identified in the
1960s, where erupting magma at an air–water
interface interacts with large quantities of slurry, a
mixture of previously ejected tephra that re-enters
the crater together with water. During a Surtseyan
eruption, hot magma bombs are ejected that initially
contain pockets of slurry. Despite the formation of
steam and anticipated subsequent high pressures
inside these bombs, many survive to land without
exploding. We seek to explain this by building and
solving a simplified spherical mathematical model
that describes the coupled evolution of pressure and
temperature due to the flashing of liquid to vapour
within a Surtseyan bomb while it is in flight. Analysis
of the model provides a criterion for fragmentation of
the bomb due to steam pressure build-up, and predicts
that if diffusive steam flow through the porous bomb
is sufficiently rapid the bomb will survive the flight
intact. This criterion explicitly relates fragmentation
to bomb properties, and describes how a Surtseyan
bomb can survive in flight despite containing flashing
liquid water, contributing to an ongoing discussion in
volcanology about the origins of the inclusions found
inside bombs.

1. Introduction
Surtseyan eruptions are characterized by significant bulk
interactions of water with ascending magma [1–5], as
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Figure 1. Cartoon of a Surtseyan eruption. Numbers refer to the water vapour cloud (1), ash in cypress tree shapes with bombs
at their tips (2), crater (3), abundant water at crater level (4), layers of lava and ash (5), stratum (6), magma conduit (7), magma
chamber (8), dike (9). Copyright: Creative Commons license, https://commons.wikimedia.org/wiki/File:Surtseyan_Eruption-
numbers.svg, attributed to© Sèmhur/Wikimedia Commons/CC-BY-SA-3.0 (or Free Art License). (Online version in colour.)

exemplified by the volcano off the coast of Iceland that rose above the sea to become the island of
Surtsey in the 1960s [1,6].

Like Hunga Ha’apai in Tonga in 2009 and Copelinhos in the Azores from 1957–1958, volcanoes
that have risen under the sea and have a crater rim that is at sea level may exhibit this style of
eruption. Mount Ruapehu in New Zealand with its crater lake sometimes erupts in this way.

Magma–water interaction plays an important role in determining volcanic eruption styles [3].
The style of interaction can vary greatly, from deep submarine scenarios, where quenching of
magma causes relatively passive thermal granulation, to terrestrial scenarios, where rapid heat
exchange between magma and ground or surface water can enhance magma fragmentation and
explosivity [7]. Surtseyan eruptions, initially thought of as shallow submarine events, are now
understood to involve interaction with any shallow standing water body, including lakes, rivers
and marine waters [5].

Whatever the conditions under which magma and water meet, their interaction is limited in
large part by the extreme difficulty of mixing fluids with such strongly contrasting viscosities
and other physical properties [8]. Surtseyan eruptions, illustrated in figure 1, are unique, in that
the water–magma interaction occurs in near-surface, periodically flooded vents, where there is
re-entry of in-vent water-saturated slurry, a mixture of water and previously erupted ejecta that
has fallen back into the crater [2,4]. Fresh magma that rises to encounter this slurry can more
readily mix with it than with pure water, owing to the slurry’s higher bulk viscosity and lower
heat capacity [9]. The almost silent jets of tephra that are uniquely characteristic of Surtseyan
eruptions have shapes that have been compared to cypress trees and cocks’ tails and are a direct
result of magma–slurry interaction [1].

The component of the ejecta that we model here is the Surtseyan bomb, a lump of magma
which trails a black tail of tephra as it shoots out of an erupting tephra mass, hence appearing
at the tips of the cypress tree tephra shapes illustrated in figure 1. This black tail turns white
within seconds, because of cooling and condensation of superheated water vapour within it
[1,4]. Examination of bombs collected from Surtseyan deposits [4] reveals that they are vesicular
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~2 cm

Figure 2. Composite clasts from Surtsey (Iceland), showing entrained smaller clasts near the outer surface or after breaking off
a piece of bomb. (Online version in colour.)

(bubbly) with porosities ranging from 0.35 to 0.8, and they are hosts for entrained or engulfed
smaller groups of clasts. The vesicularity is due to the usual process of water coming out of
solution in the magma as a result of pressures dropping as the magma rises in the throat of the
volcano. Samples of bombs are shown in figure 2, and there is a video in the repository referenced
in [4] showing multiple inclusions in virtual X-ray sections through a bomb. Each enclosed clast
is usually found to be loosely held in a void space in its host bomb. The first few millimetres of
the material surrounding a void show evidence of compression and densification, suggestive of
high historical pressures [4] and indicative of the magma having been above the glass transition
temperature for some time after slurry entrainment [10]. The bombs are permeable to fluid flow,
owing to their high vesicularity [11].

If a volume of liquid is flashed instantaneously to steam while constrained to that same
volume, the resulting pressure [12] far exceeds the tensile strength of the surrounding vesicular
magma and the bomb is then expected to fragment. However, observations indicate that many
bombs survive intact, suggesting that while steam is created by heat transfer from magma,
raising the pressure inside a bomb, it can also escape through the surrounding vesicular bomb,
relieving the pressure increase. So there is a race between heating that creates steam to raise the
pressure and steam flow that relieves the pressure inside a bomb. Resolving the winner of this race
provides the motivation for the development of a model for the transient behaviour of pressure
and temperature inside Surtseyan bombs while they are in free fall after ejection in order to find
the conditions under which a bomb is expected to survive the development of high pressures
around a flashing slurry inclusion.

Other possible fragmentation mechanisms that we do not address here include impact with
the ground and vesiculation of the interior together with quenching of the outer surface.

The most relevant previous work modelling the flashing of liquid inside vesicular magma is
a relatively simple model [12] that takes a cavalier approach in ignoring temperature transients,
despite their importance in driving up the pressure. By ignoring the possibly very large initial
temperature gradients that drive the flashing of liquid to steam, that work is likely to lead to a
serious underestimate of the maximum pressures that arise. The main purpose of the present
work is to properly include the driving mechanism of transient temperature gradients at the
boiling front surrounding a slurry inclusion, and hence provide more reliable estimates for the
maximum pressures that are developed in the inherently transient interaction between heating
and steam escape.

There is no other directly comparable previous work on modelling pressure increase inside
Surtseyan bombs that we are aware of. The style of modelling here is inspired by that used to
explain shock tube experiments [13] in which volcanic rock samples are fragmented by pressure
differences that propagate into the samples as high-pressure gas escapes from them. However, in
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that modelling and experiments the thermal behaviour is adiabatic, in contrast to the transient
energy conservation principles needed here.

A similar approach can be seen in recent modelling of the flashing of liquid when frying potato
snacks [14]. The flashing of liquid water to steam is central to that modelling, but the development
of high pressures is not of interest because of the relatively large permeabilities of the cooked
snack, so that those authors are able to use a steady-state diffusion equation for vapour flow
outwards from the flashing front.

As in the model presented in [12], we make no attempt here to model the development of
vesicularity in rising magma or to consider viscous flow effects or changes in porosity due to
compression. Instead, vesicular molten magma is treated as a competent porous rock matrix of
constant porosity, owing to the high viscosity of the magma at temperatures at and below 1275 K
[10,15,16]. The Deborah number

De = tvis

telas

may be used to separate the time scales on which viscous (flowing) and elastic (brittle) responses
occur in magma under stress. Here tvis is the time required for viscous relaxation of magma and
telas is the time needed to deform magma as a competent solid. Brittle responses occur for De > 1
[16], and viscous flow is more important for relieving stress if De < 0.01. Viscous relaxation times
are strongly dependent on temperature, and at 1275 K tvis ∼ 1 s. Then the assumption of brittle
behaviour is good for

De ∼ 1
telas

> 1,

that is, for times telas < 1 s. It will be seen in the numerical simulations that maximum pressure is
reached in a millisecond or less, consistent with this assumption.

In the remainder of this paper, we present new measurements of porosity and permeability
in intact Surtseyan bombs, and a regression relationship between them. We then build a new
fully transient model from scratch by starting with physically accurate and properly coupled
conservation equations in the vapour and liquid regions, with a moving boiling front between
them. Once we have obtained a consistent set of coupled nonlinear partial differential equations,
we non-dimensionalize, choosing appropriate scalings so that the essential transport mechanisms
are captured in a reduced set of equations. A particular focus in this paper is to then explore
the theoretical consequences for the maximum pressure developed in the model, if the initial
temperature profile is allowed to have a step change at the flashing front. We combine numerical
solutions with asymptotic arguments which suggest that the step change initial temperature case
is mathematically ill-posed. An initial temperature profile that is ramped from cold to hot over
a distance the size of a typical pore provides a criterion for fragmentation in terms of magma
permeability or porosity. The criterion indicates that the permeabilities of the intact bombs are all
high enough that the maximum pressures reached are not expected to fragment the bombs.

2. Fieldwork and data
Porosity and permeability were determined on small (<64 mm diameter) ejecta collected from
the island of Surtsey, Iceland [17]. Deposits formed during typical Surtseyan tephra jetting were
examined in the field in 2015. The deposits consisted of poorly sorted discontinuous beds,
10–20 cm in thickness. They were dominated by the fine ash (less than 2 mm) that typifies the
products of phreatomagmatic eruptions [18], but also included abundant lapilli (2–64 mm) and
strikingly outsized bombs (greater than 64 mm).

Bombs were universally observed to be composites, containing identifiable remnants of slurry
incorporation (figure 2). The slurry inclusions are usually of a relatively large grainsize, but there
is no reason to believe that the overall particle size distribution of the slurry itself should be
any different from that in the preserved deposits. Our porosity and permeability data are from
lapilli within this deposit, as they are the most representative of portions of vesicular magma that
evaded fragmentation and they retain the textural characteristics of the magma as it erupted. Ash
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particles are too small to retain useful information about pore networks, and bombs have greater
potential for post-eruptive expansion that can overprint the syn-eruptive magmatic textures that
are of interest here [19].

The lapilli were examined using X-ray computed microtomography (µ-cT). Each sample
was scanned with a Phoenix Nanotom 180 X-ray µ-cT at l’Université d’Orléans, Orléans,
France. Totals of 2000–2300 scans of each sample were collected during 360◦ rotation, using a
tungsten filament and molybdenum target. Operating voltages were in the range 80–100 keV,
with currents of 50–90 nA. Voxel edge lengths ranged from approximately 2.5 to 6.5 µm. Raw
scans were reconstructed into stacks of greyscale images with an offline PC microcluster running
Phoenix reconstruction software. Quantification of porosity and modelling of permeability were
performed on representative elementary volumes of 500–750 px3 isolated within each µ-cT
scan. Multiple sub-volumes capturing the range of vesicle heterogeneity in natural samples
were isolated and analysed separately, and all isolated sub-volumes were chosen to avoid
any entrapped slurry or other inclusions that were not representative of the magmatic foams
themselves. Vesicles were measured using the three-dimensional object counter plugin for ImageJ
[20], after greyscale thresholding to isolate void space from glass and phenocrysts.

We modelled permeability using a gas flow simulation program [21]. This parallel computing
program measures Darcian permeability by simulating single-phase gas flow with lattice
Boltzmann simulations on the Palabos computational fluid dynamics platform. For each sub-
volume, three calculations were made in three orthogonal directions. Simulations were conducted
using low inlet pressures, ensuring low Reynolds number flow conditions, thus neglecting inertial
contributions to total permeability [22]. The investigated samples are marginally smaller than the
bombs described in this work and shown in figure 2, but have similar matrix porosities, and are
considered to be unfragmented, intact bodies that are representative of Surtseyan magma at the
time of eruption.

These calculations of permeability and porosity of the vesicular network within intact,
unfragmented samples of Surtseyan ejecta are summarized in figure 3, together with the fitted
straight line

log10 k = 6.4φ − 14.1. (2.1)

This relationship between permeability and porosity is similar to that observed in other studies of
vesicular basaltic magma [11], and is used later when analysing model behaviour. Even though
some vesicles adjacent to slurry domains in composite bombs appear modestly compressed,
we consider this to not devalue the use of the porosity–permeability relationship shown in
figure 2, because the compression occurs in a narrow halo around slurry domains and because the
hysteresis effect on permeability in vesicular magmas ensures that modestly compressed bubble
networks will retain significant permeabilities developed during their previously uncompressed
states [22].

3. Mathematical model
We model the boiling of the water at the surface of a single slurry inclusion, due to the
surrounding relatively hot vesicular magma, and the subsequent transport of vapour out of
the magma. We focus on the pressure changes in connected pores consequent on boiling, in an
approach which is simpler than that in [13], positing that an excessive pore pressure will fragment
the surrounding magma and making no attempt to model stress and strain in the magma itself.

We represent both slurry and magma as nested equivalent spheres of solid porous material.
We place the inclusion at the centre of the magma and set this centre to be the origin, giving a
frame of reference that is travelling with the bomb. The entire Surtseyan bomb is ejected from
the volcanic vent and is travelling through the air in free fall for the first several seconds of its
existence, so gravity effects are ignored. We neglect any effects from possible rotation of the bomb
or air friction on the outside of the bomb. The slurry inclusion is modelled as a porous medium
filled with liquid water. The slurry temperature is assumed to be initially near boiling point at
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Figure 3. The log of permeability plotted against porosity, as measured in samples of Surtseyan ejecta, together with a best fit
straight line. (Online version in colour.)

atmospheric pressure. Our simulations indicate that initial slurry temperature has little effect on
pressure development compared with the magma temperature. The enveloping hot magma is
treated as a porous medium with its connected porosity containing only steam. A two-phase
region will develop at the interface between liquid and steam phases. We assume, supported
later by the large size of the Stefan number, that the two-phase region is relatively thin. The entire
bomb is assumed to start at atmospheric pressure.

The pointwise conservation of enthalpy equation for a moving fluid (which here may be the
liquid or vapour phase of water) in the absence of sources or sinks takes the form [23]

∂

∂t
(�h) + ∇ · (�hv) = −∇ · q + Dp

Dt
+ τ : ∇v, (3.1)

where � is the fluid density, h is the specific enthalpy, p is the fluid pressure, v is the local fluid
velocity vector, q is the heat flux and D/Dt = ∂/∂t + v · ∇ is the total derivative operator. The
symbol τ is the deviatoric stress tensor in the viscous dissipation term.

As noted in [24] and in appendix D of [25], the pointwise conservation of enthalpy equation
can be written in terms of pressure and temperature T as

�cp
DT
Dt

− βT
Dp
Dt

= ∇ · (κT∇T) + τ : ∇v, (3.2)

where the specific heat at constant pressure is

cp = T
(

∂S
∂T

)
p

,

the specific enthalpy is h = U + p/�, S is the specific entropy and U is the specific internal energy.
We have also used dh = T dS + dp/� and T dS = cp dT − (βT/�) dp to obtain equation (3.2). The
coefficient of isothermal compressibility is

β = �

(
∂(1/�)

∂p

)
T

.

We have also used Fourier’s law for heat conduction q = −κT∇T, where κT is the thermal
conductivity of the fluid, and the mass conservation equation for fluid,

∂�

∂t
+ ∇ · (�v) = 0. (3.3)
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When considering the rock component of the porous medium that we take to comprise both the
slurry inclusion and the surrounding hot magma, we ignore small displacements, velocities and
compressibility, and we consider it to be a competent solid material. We assume our representative
elementary volume is small enough that there are no appreciable local temperature differences
between rock and steam, so that, after averaging as in [23,25] over a representative elementary
volume of porosity φ, we have conservation of energy in the rock component as

�mcpm(1 − φ)
∂T
∂t

= (1 − φ)∇ · (κm∇T), (3.4)

where �m is the rock density in the absence of any porosity, cpm is the specific heat capacity of the
rock and (1 − φ)κm is its effective thermal conductivity.

We now consider separately the liquid-filled slurry region r < s(t) inside the flashing front and
the vapour-filled hot magma region R2 > r > s(t) outside the flashing front. The only distinction
we make between slurry and hot magma is that cool liquid occupies the porosity in the slurry
region and hot vapour occupies the porosity in the magma region. For computational simplicity
here, but also consistent with our observations in §2 that inclusions have similar properties to
surrounding rock, we assume the same (constant) porosity φ in both regions.

(a) Slurry region
Conservation of mass for liquid water in the slurry region 0 < r < s(t) is given by

φ
∂�l

∂t
+ ∇ · (�lul) = 0, (3.5)

and the momentum conservation equation for liquid is given by Darcy’s law, as liquid velocities
arising from the compressibility of liquid water are found to be small,

ul = − k
μl

∇p, (3.6)

where p is the pressure in the fluid, and we do not model pressure in the rock matrix. An equation
of state for liquid density is provided by the expression

�l = �0l + β�(p − pa) − α(T − Tw
0 ), (3.7)

which fits within a 10% accuracy the specific volume data present in [26] for pressures in the range
1–100 bars and temperatures between saturation and 573 K. The terms �0l, pa and Tw

0 are reference
values of liquid density, pressure and temperature, listed with α, β� in table 1. Averaging the
pointwise energy equation (3.2) over a representative elementary volume as in [23,25], the energy
equations for liquid water and solid rock combine to give

�′c′ ∂T
∂t

+ �lcplul · ∇T − φβT
∂p
∂t

− βTul · ∇p = κel∇2T + τ : ∇ul, (3.8)

where the temperature T is assumed to be the same in fluid and adjacent rock, �l is the density of
liquid water, ul = φvl is the Darcy velocity of the liquid water, κel = (1 − φ)κm + φκ l is the average
thermal conductivity of the liquid-filled region, cpl is the specific heat of liquid water and κ l is the
thermal conductivity of liquid water. Typical values for these parameters are given in table 1. The
symbol τ is the deviatoric stress tensor in the averaged viscous dissipation term, accounting for
heat generated in liquid water as a result of visous shear flow within pores.

(b) Magma region
In the region R2 > r > s(t), there is only steam in the pores, mostly above the critical temperature.
Initially, this steam would be magmatic vapour from the vesiculation process that created the
pores, which we are not modelling. It will be displaced by steam generated by flashing the liquid
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Table 1. Physical constants.

constant name typical value units

cpl specific heat of liquid water 4200 J kg−1 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cm specific heat of magma 840 J kg−1 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cps specific heat of steam 2000 J kg−1 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hsl specific heat of vaporization 2.3× 106 J kg−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k permeability 10−12 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ e thermal conductivity [27] 2 W m−1 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ el thermal conductivity [27] 3 W m−1 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M molar mass of water 18× 10−3 kg mol−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pa atmospheric pressure 105 Pa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R universal gas constant 8.314 J K−1 mol−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R1 initial inclusion radius 0.01 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2 magma (bomb) radius 0.1 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ti initial inclusion temperature 373 K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tm initial magma temperature 1275 K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tc critical temperature of water 647 K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tw0 reference temp, Ti
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te0 reference temp, Ti
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α thermal expansion coefficient for liquid water 0.5 kg m−3 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β� isothermal compressibility of liquid water 4.6× 10−10 kg m−3 Pa−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dm thermal diffusivity κ e/(�c) in magma 1.4× 10−6 m2 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μv dynamic viscosity of water vapour 3× 10−5 Pa s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ porosity 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�m density of basalt 2750 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�c (1− φ)�mcm + φ�scps 1.6× 106 J m−3 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�′ c′ (1− φ)�mcm + φ�lcpl 3× 106 J m−3 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�0l reference liquid density 1000 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in the slurry, the process we are modelling here. Mass conservation of steam is given by

φ
∂�s

∂t
+ ∇ · (�su) = 0. (3.9)

The momentum conservation equation for fluid flow is typically given by Darcy’s law for
laminar flow in a porous medium. As it is possible that steam flow might be turbulent, we use the
Forchheimer equation for steam pressure p, which combines Darcy flow with the turbulent Ergun
equation [28],

∇p = −μv

k
u − �scF√

k
u|u|, (3.10)

where cF is an order 1 coefficient and �s is the density of steam.
For an ideal gas, βT = 1. Averaging the pointwise energy equation (3.2) for steam and the rock

energy equation (3.4) over a representative elementary volume of the porous magma gives the
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averaged energy equation for steam and rock,

�c
∂T
∂t

+ �scpsu · ∇T − φ
∂p
∂t

− u · ∇p = κe∇2T + τ : ∇u, (3.11)

where the temperature T in steam is assumed to be equal to that in adjacent rock, u = φv is the
Darcy velocity of steam, κe = (1 − φ)κm + φκs is the effective thermal conductivity of magma with
steam in the pores and κs is the thermal conductivity of steam.

The last (drag) term is the viscous dissipation in the steam flow, averaged over a representative
elementary volume. This is the heat generated by viscosity in shearing flow for steam as it moves
through porous magma. This term is often neglected [25, E.4]. We estimate its size here using eqn
10.7.24 in [29] (see also [30]) and Darcy’s law,

τ : ∇u = −μ

k
u2 = − k

μ
(∇p)2.

The pressure gradient is estimated using a maximum pressure difference that equals a tensile
strength of 1 MPa for magma over a length scale of 0.1 m to give a magnitude for averaged viscous
dissipation of the order of 106. This is a factor of 103 smaller than the sensible heating rate �c
(∂T/∂t) ∼ 109, using a time scale of 1 s, and a factor of 102 smaller (on a length scale of one pore)
than the diffusion term, κe∇2T ∼ 108. So we neglect viscous dissipative heating due to steam drag
in the magma region, compared with heating due to diffusion from nearby hot magma.

The variation of �c due solely to changes in steam temperature of 1200◦C and changes in steam
pressure of 20 bars (typical tensile strength of volcanic rock) is less than 0.5%. It is dominated by
the thermal capacity of the magma, which typically varies from values near 800 J kg−1 K−1 at
400 K, rising rapidly to values near 1300 J kg−1 K−1 at glass temperatures near 900–1000 K [31].
We have assumed a constant value for �c, neglecting variations of ±30%.

The ideal gas law is used in the vapour region, so that, for r > s(t),

�s = pM
RT

. (3.12)

(c) Flashing front
We assume that boiling occurs in a thin moving region located at r = s(t) that separates the liquid
and vapour regions. We acknowledge the spherical symmetry of our model by taking all variables
to depend only on r and t. Then vapour and liquid velocities have only a radial component u = φv,
ul = φvl, respectively. We write the energy equations in enthalpy form, and integrate them and the
mass conservation equations with respect to volume across the moving flashing front, to obtain

φ�shsl(v − ṡ) = φ�lhsl(vl − ṡ) = [κ∇T]+− + φ(v − vl)p, (3.13)

where hsl = hs − hl is the specific heat of vaporization and

[κ∇T]+− = κe∇T(0+) − κel∇T(0−).

At the flashing front, pressure and temperature are related by the Clausius–Clapeyron equation,

p = pe
0e[Mhsl/(RTe

0)][(T−Te
0)/T], (3.14)

where Te
0 and pe

0 are the reference temperature and pressure values for the liquid and vapour
phases of water at equilibrium.

These equations (3.5)–(3.14) form our dimensional model equations. Boundary conditions are

T(R2) = 300 K, p(R2) = pa,
∂T
∂r

= ∂p
∂r

= 0 at r = 0.

Temperature and pressure are assumed to be continuous across the flashing front. Initial
conditions are that the temperature of the magma is Tm and the temperature of the inclusion
is at boiling point for atmospheric pressure, Ti. Initial pressures are taken to be pa everywhere.
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(d) Fragmentation criterion
We use the criterion for fragmentation that steam pressure exceeds the critical value

pc = (1 − φ)σY, (3.15)

where σY = 2 MPa is a typical value for tensile strength of magmatic rock. This criterion arises out
of the use of a soil mechanics approach in shock tube fragmentation research and is presented in
[13], which is also based in part on Biot’s work on wave propagation in fluid-filled porous media
[32]. The factor (1 − φ) accounts for the fraction of the magma that is load-bearing. A similar
criterion is recommended in other studies of shock tube fragmentation of volcanic rock, including
[33, eqn 11] and [34].

4. Model reduction
We rescale (see also table 1) using

r = r̃R2, s = s̃R2, T = T̃Tm, p = p̃pa, t = t̃t0,

vl = v0lṽl, v = v0sṽ, �l = �0l�̃l, �s = �0s�̃s.

Noting that flashing of liquid to vapour is the driving force for pressure change inside the bomb,
the time scale t0 is chosen to be the time required to flash all of the liquid in the slurry inclusion
to steam. A balance between the energy required to do this and the heat provided by conduction
across the slurry surface at r = R1 gives the estimate t0 = φ�0lhslR2

1/(3κe(Tm − Ti)) ≈ 17.
We use the ideal gas law to provide �0s = paM/(RTm), and since the source of steam is the

flashing front we balance ṡ�l with vs�s, giving

v0s = R2�0l

t0�0s
. (4.1)

In the following equations, we drop the tilde on dimensionless variables for simplicity of notation.
The critical pressure for fragmentation is rescaled to give the non-dimensional value

pc = 20(1 − φ). (4.2)

(a) In the liquid region
In the slurry, the equation of state (3.7) non-dimensionalizes to

�l = 1 + δ1(p − 1) − λ1(T − T0). (4.3)

Owing to the symmetry of the problem the only mechanisms that can cause liquid to move in
the slurry are liquid density changes. The relatively small size of δ1 (table 2) means that thermal
expansion is the main factor. We over-estimate the velocity scale v0l by calculating the change in
dimensional radius due to thermal expansion as the slurry is heated to near-critical temperature
Tcrit, and the time to heat the ball to this temperature by conduction. Ignoring losses of liquid
from the slurry, the slurry mass is the volume multiplied by the density, so that if the slurry
starts at radius R1, density �0l and temperature Tw

0 , and expands to a new radius R1 + R1, then
(R1 + R1)3[�0l − α(Tcrit − Tw

0 )] = R3
1�0l. For small R1 this gives R1 ≈ R1α(Tcrit − Tw

0 )(3(�0l −
α(Tcrit − Tw

0 ))). Estimating the time ts required to heat the slurry by conduction gives ts ≈ R2
1�c/κel,

so that the liquid velocity scale is approximated by

v0l ≈ R1

ts
= ακel(Tcrit − Tw

0 )
3(�0l − α(Tcrit − Tw

0 ))R1�c
≈ 10−5 m s−1.

The conservation of mass equation in the slurry becomes, after rescaling and dropping the tildes,

φ
∂�l

∂t
+ vdl

∂

∂r
(�lul) = 0. (4.4)
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Table 2. Parameters.

parameter definition typical value units

δ1 β�pa/�0l 4.6× 10−8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ2 t0v0sφ�0scps/(R2�c) 0.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ3 φpa/(�c Tm) 1.5× 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ4 φv0spat0/(R2�c Tm) 0.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ5 κet0/(�cR22) 2× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε� �0s/�0l 1.7× 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε1 v0l/v0s 2× 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε2 φβ� pa/(�′ c′) 5× 10−12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε3 κelt0/(�′c′R22) 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε4 k pa/(μvR2φv0s) 2× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε5 kpat0/(φμvR22) 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε6
√
k�0scFφv0s/μv 0.08

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1 αTm/�0l 0.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2 pa/(�0shsl) 0.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�0s paM/(R Tm) 0.17 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�0l reference value of�l 1000 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H Mhsl/(RTe0 ) 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

St hslφ�0sR2v0s/(Tmκ e) 212
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t0 φ�0lhslR21/(3κe(Tm − Ti)) 13 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T0 Ti/Tm 0.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v0s R2�0l/(t0�0s) 46 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v0l ακel(Tc − Tw0 )/(3R1�c(�0l − α(Tc − Tw0 ))) 10−5 m s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vdl v0lt0/R2 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Because vdl ∼ 10−3 � 1 and ul = 0 at the origin, equation (4.4) implies that, to leading order in vdl,
�l ∼ 1 and ul = 0. Then pressures in the slurry do not vary appreciably with radius and can be
taken to be the same as the time-varying pressure value at the flash front. It follows also that �′ c′,
which depends mainly on �l, can now be treated as a constant.

The conservation of energy equation (3.8) in the slurry rescales to give, after dropping the
tildes and neglecting terms involving liquid velocity,

∂T
∂t

− ε2T
∂p
∂t

= ε3

r2
∂

∂r

(
r2 ∂T

∂r

)
, (4.5)

where the parameters ε2, ε3 are given in table 2. The parameter ε2 ∼ 10−11 is eight orders of
magnitude smaller than ε3 ∼ 10−3, indicating that this pressure–work term may be neglected.
However, we retain for now the term with the small parameter ε3, anticipating that the net
temperature gradient in the thermal boundary layer at the flashing front is what drives changes
in pressure. Hence in the slurry, we reduce to the energy equation

∂T
∂t

= ε3

r2
∂

∂r

(
r2 ∂T

∂r

)
, r < s(t). (4.6)
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(b) In the vapour region
In the hot magma vapour transport region r > s(t), Forchheimer’s equation (3.10) non-
dimensionalizes to ε4∇p = −v − ε6�sv|v|. Since ε6 ≈ 0.008 � 1 (table 2), the Ergun term is not
required,1 and Forchheimer’s equation reduces to Darcy’s law,

v = −ε4∇p. (4.7)

The mass equation (3.9) becomes, after non-dimensionalising and substituting for v,

∂�s

∂t
= ε5∇ · (�s∇p). (4.8)

The energy equation (3.11) takes the non-dimensional form

∂T
∂t

+ δ2�sv
∂T
∂r

− δ3
∂p
∂t

− δ4v
∂p
∂r

= δ5

r2
∂

∂r

(
r2 ∂T

∂r

)
, (4.9)

where the meanings and values of the parameters are given in table 2.
Using Darcy’s law (4.7) to replace v gives

∂T
∂t

− ε4δ2�s
∂p
∂r

∂T
∂r

− δ3
∂p
∂t

+ δ4ε4

(
∂p
∂r

)2
= δ5

r2
∂

∂r

(
r2 ∂T

∂r

)
. (4.10)

The most significant terms in the above equation give a diffusion equation for temperature,

∂T
∂t

= δ5

r2
∂

∂r

(
r2 ∂T

∂r

)
, r > s(t). (4.11)

We retain the diffusion term containing the small parameter δ5 ∼ 1.7 × 10−3, as we need the
temperature gradients in the thermal boundary layers at the flashing front to calculate the speed
of the flashing front. We have neglected the heat advection term involving ε4δ2 ∼ 7.4 × 10−4,
which is nearly half the size of the diffusion term. We have also neglected the pressure–work
terms involving δ3 and δ4ε4, which are 10−2 times δ5. We have checked a posteriori that they remain
relatively small despite pressure increases of order 10 simulated later in this paper.

The ideal gas law takes the non-dimensional form

p = �sT. (4.12)

(c) At the flashing front
Conservation of mass and energy across the flashing front r = s(t) as expressed in equations (3.13)
give

ṡ(�l − ε��s) = −�sv + vdl�lvl (4.13)

and

�s(v − ε� ṡ) = 1
St

[∇T]+− + λ2(v − ε1vl)p, (4.14)

where constants are defined in table 2. We have neglected the small relative difference between
κe = 2 and κel = 3 to obtain equation (4.14). The Stefan number St ∼ 200 is relatively large,
consistent with the assumption of a narrow two-phase region at the flashing front.

1Note that the pore Reynolds number Rep = ρf
√

kφ|u|/μv , with simulations giving v ≈ 10 m s−1, leading to Rep ≈ 0.01. Hence
the flow is laminar.
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Noting the small size of ε� ∼ 10−4 and ε1 ∼ 10−7, we drop the advective mass and heat
transport terms in equations (4.13) and (4.14) and use Darcy’s law (4.7) to obtain

ṡ = ε4�s
∂p
∂r

= − 1
St

[
∂T
∂r

]+

−
+ λ2ε4p

∂p
∂r

.

The parameter combination λ2ε4 ∼ 5 × 10−4 is 10 times smaller than 1/St ∼ 5 × 10−3, so we discard
the pressure–work term involving λ2ε4 to give the reduced jump conditions

ṡ = ε4�s
∂p
∂r

= − 1
St

[
∂T
∂r

]+

−
. (4.15)

The Clausius–Clapeyron condition becomes, in dimensionless terms, if we choose the reference
values to be pe

0 = pa and Te
0 = Ti = 373 K,

p = exp
[

H
(

T − T0

T

)]
. (4.16)

This condition, giving the pressure dependence of the vaporization temperature of water, is only
valid for the two-phase conditions that apply at the flashing front r = s(t), and require that T ∈ [T0,
0.5] approximately.

Our reduced system then consists of equation (4.6) for temperature diffusion in the slurry,
where pressures and densities are spatially constant, equation (4.8) for nonlinear pressure
diffusion (coupled with temperature) in the surrounding vapour region, equation (4.11) for
temperature diffusion in the vapour region, the ideal gas law (4.12) relating density, pressure
and temperature in the vapour region, with boundary conditions (4.15) and (4.16) at the moving
flashing front r = s(t) providing the temperature, pressure and speed ṡ there, and boundary
conditions at the origin and at the surface of the bomb

p = 1, r = 1;
∂T
∂r

= 0, r = 0; T = T0, r = 1.

The temperature gradients at the flashing front provide a vapour flux boundary condition,
dominated by the gradient on the hot magma side that drives pressure up at the flashing front
and forces vapour outwards into the bomb. Typical initial conditions would be

T = T0, r < s(0); T = 1, r > s(0); p = 1; s(0) = R1

R2
,

with a step change in temperature at the flashing front.

(d) Thermal boundary layers
In the magma and in the slurry, thermal diffusivities are approximately 0.002 in value, which is
small compared with the nonlinear diffusivity of pressure given by ε5 p ∼ 70. So we note that
temperature changes are expected to propagate more slowly than pressure changes, and we seek
approximations to the temperatures in the thermal boundary layers near the flashing front, which
drive steam production via equation (4.15), which specifies the flux at the moving flash boundary
for equation (4.8).

In the magma, we consider an inner region described by a radial coordinate σ given by r = ε +√
δ5σ , which is close to the flashing front that starts at ε = R2/R1, at times that are early enough to

ignore movement of the flashing front. Then the temperature equation in the magma in this inner
region becomes

Tt = 1(
ε + √

δ5σ
)2

∂

∂σ

[
(ε +

√
δ5σ )2 ∂T

∂σ

]
.

Considering the limit δ5 → 0, and taking the inner solution valid for
√

δ5σ � ε, we have the
boundary layer equation (with subscripts t and σ indicating partial derivatives)

Tt = Tσσ , (4.17)
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with boundary conditions T(0, t) = Tf and T → 1 as σ → ∞. The temperature at the flashing front
Tf ∼ 0.4 varies with time, but only by about 5%, being limited by the critical temperature. The
outer solution is T = 1 in the rest of the magma, away from the boundary layer. We take advantage
of the relatively small variation in Tf, by taking it to be a constant value.

The boundary layer equation (4.17) then admits a similarity solution. Considering the
similarity variable η = σ 2/t, the partial differential equation (4.17) becomes an ordinary
differential equation 4Tηη + (2/η)Tη + Tη = 0. This is first order in Tη ≡ dT/dη, and may be
integrated twice to obtain the solution

T = (1 − Tf ) erf
(

σ

2
√

t

)
+ Tf , (4.18)

where erf(x) = (2/
√

π)
∫x

0 e−u2
du, and the constants have been chosen to match the flash

temperature Tf when σ = 0 and the outer solution T = 1 as t → 0. This inner solution provides
the value of the temperature gradient at the flashing front, on the magma side, as

∂T
∂r

= 1 − Tf√
πδ5t

≈ 0.6√
πδ5t

. (4.19)

The same approach with σ2 = ε−r√
ε3

provides the temperature in the boundary layer in the slurry,

T = Tf + (T0 − Tf ) erf
(

σ2

2
√

t

)
. (4.20)

Then the temperature gradient on the slurry side of the flashing front is estimated as

∂T
∂r

= Tf − T0√
πε3t

≈ 0.04√
πε3t

. (4.21)

Noting that ε3 ≈ δ5, we see that the contribution of the temperature gradient in the slurry is about
one-fifteenth that of the temperature gradient in the magma, owing to the smaller temperature
differences between the flash temperature and the slurry temperature, and to the similar thermal
diffusivities.

5. Numerical solutions
Our reduced system is solved using the method of lines, and coded in Matlab. The moving
boundary at the flashing front is fixed in place using Landau transformations, which lead to
advective terms depending on the speed of the boundary in the partial differential equations
describing the reduced model. The thermal boundary layers are resolved by transforming the
spatial variable adjacent to the flashing front, which is now fixed in place, in both the slurry and
hot magma regions, so as to obtain greater resolution at the flashing front. Spatial derivatives
are then replaced by equispaced differences in the new spatial variable. The resulting system of
coupled ordinary differential equations is stiff. We found consistent results using 1200 spatial
mesh points and the stiff solver ode15s in Matlab.

Typical results are plotted in figure 4, from simulations run using the parameter values listed
in table 1. Pressures rise rapidly to a global maximum at the flashing front, diffusing out into the
hot magma region, then slowly decaying as the liquid in the slurry boils away to nothing.

The smallest mesh size used in these simulations corresponds to 10 µm adjacent to the flashing
front, a typical value for pore size in Surtseyan bombs and pumice. Initial temperatures ramp
from boiling point in the slurry to magma temperatures over one pore size. Figure 4f shows
the maximum pressure reached at the flashing front versus permeability. The initial temperature
profile used for this plot matches the similarity solution, ramping from flash temperature to
close to magma values over a distance of 10 µm, with a smallest computational mesh size
corresponding to 1 µm.

In the time taken for pressures to reach their maximum value, the flashing front has moved
less than 10−4 times its original position. Nevertheless, turning off the advective terms in
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Figure 4. Simulation of flashing to steam inside a Surtseyan bomb. All variables are non-dimensional. Physical constant values
are as listed in table 1, except in (f ), where permeability values are taken to depend on porosity, as does the fit (2.1) tomeasured
values for Surtseyan bombs. Eleven porosity values were chosen evenly spaced in the range [0.1, 0.95], providing the indicated
values of permeability k (unitsm2). The subhorizontal dashed line in (f ) is the critical pressure (4.2), abovewhich fragmentation
occurs. The vertical dashed line indicates the smallest permeability measured in our data from intact bombs. (Online version in
colour.)

the conservation equations solved numerically gives a much closer match than that shown
in figure 4 to the similarity solutions for temperatures in slurry and in magma, which were
derived by ignoring movement of the flashing front. The multiple temperatures plotted at η = 0 in
figure 4, especially noticeable in the slurry temperature plot, correspond to the changing boiling
temperature at the flashing front at early times, owing to pressure changes there.
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Figure 5. Maximum dimensionless pressure reached (a) and the log of the dimensionless time taken to reach it (b) versus the
log of the dimensionless size of the smallest mesh used in computer simulations of the reduced model. Logs are to the base 10.
Initial temperatures are a step function, effectively a ramp over the smallest mesh size. Parameter values used are as listed in
table 1. (Online version in colour.)

Pressure rises rapidly at the flashing front because of the influx of steam there, driven mainly
by the temperature gradient on the hot magma side. The initial temperature profile is at present
theoretically a step function, with a gradient that is in theory infinite. In the computer code, this
step change is approximated by a ramp with a steepness that depends on the smallest mesh size.
The results plotted in figure 5 show how the maximum pressure at the flashing front and the time
taken to reach it vary with the steepness of the initial temperature profile. The largest of these
sizes used in figure 5 corresponds to a dimensional value of a few micrometres. Ten micrometres
would be a typical pore size, and might be taken to be the smallest mesh size in terms of the
present application. It is clear that the maximum pressure increases as the ramp tends towards
a step, and that the time taken decreases roughly proportionately to the distance over which the
ramp operates.

If the initial temperature profile ramps over a (dimensional) distance that is fixed at a
representative pore size of 10 µm, simulated maximum pressures converge rapidly as the smallest
mesh reduces through 1 µm, so that the pressures we present in figure 4 are accurate to within 0.1
bar. We note that the size of one pore is less than the size of a representative elementary volume,
so that we are technically exploring beyond the limits of the continuum approach used here.

The dimensionless time range within which maximum pressure is realized is 10−8 to 10−6,
corresponding to a dimensional range of about 10−7 to 10−5 s, indicating consistency with the
assumption that viscous flow effects can be neglected, since viscous flow effects take more than a
second to be significant.

These results raise mathematical questions, irrespective of any geophysical (textural)
indications of a practical smallest mesh size or representative elementary volume, about what
determines the time taken to reach the maximum pressure at the flashing front, and whether
the maximum pressure value seen in figure 5 is approaching some limit as the ramp approaches a
step (as the smallest mesh size approaches zero). We now derive an upper bound on the maximum
pressure. We find that our bound diverges as the initial temperature gradient diverges, suggesting
that the pressure maximum may be theoretically unbounded in this limit.

6. Maximum pressure
We seek an approximation to the maximum pressure, in the form of a formula that relates it
to the material properties of the magma and the enclosed slurry. Such a formula was obtained
previously [12] by using the steady-state pressure behaviour to obtain an upper bound, and
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was possible only because the temperature field was approximated as constant. The present
model makes it clear that temperature gradient changes are significant, and drive boiling, so it
is important to properly account for the effect of early high-temperature gradients at the flashing
front on the maximum pressure developed by heating.

(a) Upper bound
We begin by deriving an upper bound on the maximum pressure developed at early times at
the flashing front. We consider the reduced equation (4.8) for steam pressure or density, driven
by the gradient of the temperature on the magma side of flash. We ignore the relatively small
contribution from the temperature gradient on the slurry side, and movement of the flashing
front is ignored.

Initial temperature in the magma is taken to be a similarity solution that starts at an earlier
time t = −te < 0, so that equation (4.21) is modified to read

∂T
∂r

= Tf − T0√
πε3(t + te)

, r = ε. (6.1)

This is the flux from an initial temperature profile that is ramped, and a step function initial
profile is recovered in the limit te → 0. Noting that the error function is close to 1 in value when
its argument is 2, the distance re over which the initial temperature ramps from the flash value
to the value 1 is given by re ≈ 4

√
δ5te.

Early pressure behaviour is governed by equation (4.8), which close to the flashing front can
be written in the form

∂

∂t

( p
T

)
= ε5

∂

∂r

(
p
T

∂p
∂r

)
. (6.2)

At early times, pressure changes due to the influx of vapour at the flashing front propagate a
distance r ≈ √

ε5t into the magma, which, together with the spatially constant initial pressures
in the magma, suggests the approximation at the flashing front

∂

∂r

(
p
T

∂p
∂r

)
≈ − p

Tr
∂p
∂r

.

We put these together and take advantage of the relatively slow time rate of change of temperature
to write equation (6.2) as

∂p
∂t

≈ −
√

ε5

t
p
∂p
∂r

. (6.3)

At the flashing front, we can then approximate the early time pressure behaviour by using the
reduced jump conditions (4.15) and ignoring heat flow into the slurry to set

p
∂p
∂r

≈ − T(1 − T)

ε4St
√

πδ5(t + te)
. (6.4)

Substituting this into equation (6.3) gives the following approximation for early pressure changes
at the flash point:

∂p
∂t

≈ B1√
t2 + tte

, (6.5)

where B1 = T(1 − T)/(ε4St)
√

ε5/(πδ5) and T ≈ 0.4. The solution is

pe ≈ p0 + B1

[
ln

(
2
√

t2 + tet + 2t + te

)
− ln(te)

]
. (6.6)

The timescale t∗ for reaching a maximum flash pressure is estimated by calculating when pe

crosses the pressure null surface at flash, where ∂p/∂t = 0. We estimate this by considering the
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Figure 6. Log–log plots of simulated maximum pressures and theoretical upper bounds. Pressures are dimensionless, but are
effectively in bars. Permeability values (m2) depend on porosity as in the fit (2.1) to measured values for Surtseyan bombs,
with 11 porosity values chosen evenly spaced in the range [0.2, 0.8], providing the indicated values of permeability k. Units of
permeability are m2. All logarithms are to the base 10. (Online version in colour.)

density null surface, where ∂�/∂t = 0, since temperatures remain of order 1. Then equation (4.8)
becomes the quasi-steady-state equation

∂

∂r

(
r2 p

T
∂p
∂r

)
= 0, r > s(t), (6.7)

with solution

p2
q = 2C1

∫
T
r2 dr.

Since T�1, pq has an upper bound given by (pu
q )2 = 2C1

∫
r−2 dr = −2C1/r + C2. The

boundary conditions p(1) = 1 and the flux condition (6.4) give C2 = 1 + 2C1, C1 = −ε2(1 −
T)/(ε4St

√
πδ5(t + te)). At r = ε, this upper bound is closely approximated by

pu
q = B2

(t + te)
1
4

, B2
2 = 2ε(1 − ε)(1 − T)

ε4St
√

πδ5
. (6.8)

Dropping the term p0 in equation (6.6) and equating just the leading terms in equations (6.6) and
(6.8) as t → 0, the time t∗ at which flash pressure reaches a maximum is estimated as the solution
to 2B1

√
t∗/te = B2/((te)(1/4)), which is t∗ = B2

2
√

te/(4B2
1). The maximum pressure at the flashing

front has an upper bound estimate of pmax = B2t−1/4
e , and replacing te with its equivalent length

scale re gives p2
max = 8ε(1 − ε)(1 − Tf )/(ε4St

√
πre), where Tf ≈ 0.4 is the non-dimensional flash

temperature.
This can be rewritten as

p2
max = 8ε(1 − ε)(1 − Tf )Tmμvκe√

πrekpahslρ0s
, (6.9)

providing an estimate of an upper bound on the maximum pressure that develops at the flashing
front, and indicating its dependence on key properties of the magma bomb.

This estimate is compared with simulated maximum pressures in figure 6, and we see that the
estimated pressures are about three times the simulated values. So the estimate provides a weak
upper bound for simulated maximum pressures.

(b) Fragmentation criterion
While the upper bound illustrated in figure 6 is correct, and it is in the form of a formula,
it is too weak to provide a useful fragmentation criterion for Surtseyan bombs. The log–log
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Figure 7. Log–log plot of simulated maximum non-dimensional pressure (line with red symbols) and the simple fitted
theoretical estimate Pest

max (equation (6.10; black line) for various permeabilities with porosities matching our data. The dashed
subhorizontal black line is a representative value 20(1− φ) bars for the tensile strength of the magmatic rock when cooled.
The blue vertical dashed line indicates the smallest permeability measured for intact samples of Surtseyan ejecta. Units of
permeability are m2. Logs are to the base 10. Other parameter values are as listed in table 1. (Online version in colour.)

graph of the upper bound in figure 6 indicates that it would be improved as an estimate of the
numerical solutions by simply shifting it in log–log space. This suggests trying a simple linear
approximation over the relevant range of porosities and permeabilities to relate the upper bound
more closely to the more accurate numerical results. The average of numerical maximum pressure
values is compared with the average of upper bound values over the range illustrated, and gives
the following approximation Pest

max to simulated pressures:

Pest
max = 0.29pmax, (6.10)

where pmax is given by equation (6.9).
This approximation Pest

max is compared with numerical values in figure 7, and with the smallest
permeability k = 0.3 darcys observed in data from intact Surtseyan bombs. Fragmentation of a
bomb corresponds to a maximum pressure that exceeds the tensile strength approximated by
the dashed line in figure 7. The numerical simulations (red circles) predict fragmentation when
k < 0.6 darcys, while the approximate formula Pest

max (solid black line) predicts fragmentation
when k < 3 darcys. The data in figure 3 indicate variability in measured permeability, with the
smallest measured value for permeability of intact bombs in the confidence range 0.1–1.0 darcys.
This contains the value k = 0.6 darcys, that is, the numerically predicted smallest permeability
value is inside the confidence range for smallest measured permeability of intact bombs. This
provides some support from field measurements for the theoretical modelling described here.
There is significant uncertainty in the assumed value of tensile strength, which also affects the
minimum permeability predictions for intact bombs. Note that no model fitting to data has been
conducted here.

7. Discussion
The estimate Pest

max is a simple formula that approximates the numerical values of maximum
pressure in a Surtseyan bomb. This provides us with a fragmentation criterion that a Surtseyan
bomb should fragment if the non-dimensional pressure exceeds the non-dimensional tensile
strength 20(1 − φ), that is, combining equations (6.10) and (6.9), if

Pest
max =

√
0.7ε(1 − ε)(1 − Tf )Tmμvκe√

πrek pahslρ0s
> 20(1 − φ). (7.1)
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We can compare our fragmentation criterion (7.1) with the dimensional estimate for maximum
pressure pold

max = √
(7(1 − ε)(Tm − T0)μvκe/khsl)(RTm/M) obtained in earlier work [12] by writing

our result in equation (7.1) in terms of the dimensional value for pressure

pest
max =

√
0.7(1 − ε)(1 − Tf )Tmμvκe√

πkhsl

(
RTm

M

)( ε

r

)
Pa ≈

√
0.1ε

r
pold

max. (7.2)

The form of pold
max differs from pest

max most significantly in that our new result has an extra factor
≈ √

0.1ε/r, involving the ratio of the inclusion size to the ramping distance for the assumed
initial temperature profile. This extra factor means that our present estimate of minimum
permeability of 0.6 darcys for a bomb to survive in flight is significantly higher than the estimate of
0.02 darcys in [12]. This previous estimate is well below the smallest permeability (0.1–1.0 darcys)
measured in intact bombs, while our new result lies inside this range. In this sense, our present
model is more consistent with the data from intact bombs, since the previous result says that
some intact bombs would be expected to have permeabilities below the measured smallest values
0.1–1.0 darcys.

The term r is a measure of the size of the region over which initial temperature ramps from
boiling values at the flashing front up to magma values. In the limit as it goes to zero, and the
initial temperature profile approaches a step function, our upper bound tends to infinity. Our
approximate early time solution (6.6) also grows without bound in this limit, suggesting our
model may be mathematically ill-posed if it is assumed that the initial temperature profile is a step
function. Such an assumption is common for the initial temperature profiles in heat conduction
problems, where, owing to the stable behaviour of solutions to diffusion equations, it does not
cause any problems. The ill-posedness might be regularized by re-scaling pressure to include
previously neglected small parameters such as the pressure–work term in the ṡ equation just
before equation (4.15), or by recognizing the small distance over which initial flash pressures
change and hence including viscous dissipation terms.

However, a step function initial temperature profile is not physically realistic, and a ramped
profile already provides us with a mathematically better behaved model. In a volcanological
context, the length scale r might be considered to be the size of a representative elementary
volume, which would be several times the mean pore size.

The measurements made on intact bombs shown in figure 3 suggest minimum permeabilities
in the range 0.1–1.0 darcys. This is broadly consistent with our model results. We note that this is
a one-sided view of all ejected bombs, applying only to intact bombs. While it is consistent with
the hypothesis that bombs with smaller permeability will fragment, there are no measurements
available for fragmented bombs to confirm this. Even if there were such measurements, we would
have no assurance of the cause of fragmentation. Fragmentation due to impact with the ground
is not modelled here—we consider only the mechanism of steam generation and the associated
steam pressures. Given the highly vesicular nature of the ejected magma, it is possible that all
ejected bombs have higher permeabilities than the critical value for fragmentation. If so, our
model then provides a physical explanation for why typical Surtseyan ejecta are not expected
to fragment as a result of steam pressure build-up from flashing of slurry inclusions after ejection,
in that the vapour typically escapes before pressures reach fragmentation values.

8. Conclusion
We have developed and simplified a fully transient sphere-within-a-sphere model for the pressure
increase expected to occur inside Surtseyan bombs after ejection, owing to flashing to steam of
liquid in slurry inclusions. We reduced our results to a single formula (7.2) for the maximum
pressure developed at the flashing front, revealing how that pressure depends on permeability
and relative size of the inclusion. This formula, when compared with the tensile strength of the
bomb, provides a new fragmentation criterion for Surstseyan bombs.
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Our model neglects the effect of rotation, which we expect to assist steam transport and
reduce the maximum pressure if included in the model. The thermal capacity of magma has been
approximated as a constant value, ignoring its variation of ±30% over the temperature range
modelled. The geometry of bombs is not spherical, and multiple inclusions are found inside each
one at varying distances from the surface of the bomb. The deformation of the porous matrix
near slurry inclusions that is observed in samples suggests that a more sophisticated approach
like that in [13] might be useful, explicitly considering stress and strain in the rock matrix. Our
work already shows that pressure changes due to flashing will propagate more rapidly than
temperature changes, relevant to questions about compression effects near inclusions. A region of
reduced permeability in the matrix next to an inclusion may also be a useful future modification
of our model.

The mechanism for insertion of slurry into the hot magma immediately prior to ejection is
important for initial temperature profiles, and is a more complicated flow and heat transport
problem that may lead to estimates of r that better reflect the volcanology of Surtseyan
eruptions.

Our results highlight the importance of the initial temperature gradient in the hot magma
adjacent to the flashing front, driving boiling and hence pressure increases there. Numerical
simulations illustrated in figure 4 using a ramping distance for the initial temperature that is
given by a typical pore size indicate that fragmentation is expected to occur for any bombs
with permeabilities less that about 1 darcy. For these relatively low-permeability bombs, steam
pressure build-up due to heating by surrounding hot magma is not adequately relieved by
steam escape through the porous magma. This, together with the observation that all measured
permeabilities of intact ejecta are greater than 1 darcy, provides an explanation for why most
Surtseyan bombs survive steam pressures developed inside as a result of flashing of slurry
inclusions.
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