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Abstract

Dairy is an important dietary component, particularly for young children.
Because of this the dairy industry is especially sensitive to contamination
scares. Dairy is of particular importance to the New Zealand economy, com-
prising a significant portion of the country’s GDP.

This thesis develops a Markov chain model for the flow of value through
the early stages of the dairy supply chain. Using the case of a major New
Zealand dairy company, simulations are run under various product testing
scenarios. Results point to the importance of where and when testing and
interventions take place. Being strict about removing potentially contami-
nated product early on in the supply chain can reduce total losses, improving
overall production output as a result.

Traceability has become an increasingly important research area in recent
years. The initial Markov chain model is extended to incorporate parameters
for product tracing. By analysing the results of simulations under various
scenarios we are able to estimate the value traceability can contribute in the
dairy production chain.

Using an event analysis technique with a multi-factor model, the third part
of this thesis examines how share prices, in a major New Zealand dairy com-
pany, are impacted by shocks. Product recalls, adverse weather events, and
demand shocks are considered. Results suggest that individual event char-
acteristics are important, particularly for global demand shocks. Adverse
weather events in general are associated with an increase in share price re-
turns. A product recall is associated with the greatest drop in share price
returns, emphasising the importance of managing recalls well.
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Chapter 1

Introduction

In order to produce quality products that are safe for consumers, firms need to

have robust testing and quality assurance systems in place. In some situations

a fault may temporarily slip through this system or there is a necessary delay

in obtaining test results that continued production cannot wait for. We need

a traceability system to keep track of where affected product may be at any

point in time.

Traceability is the capability to trace goods throughout the production and

distribution chain (Tamayo et al., 2009). The aim of a traceability system

is to collect information relevant to the location and interaction of products

as they travel through the supply chain (Dabbene & Gay, 2011; Karlsen et

al., 2013), allowing the flow of material to be followed. This has become an

increasingly important research area in recent years. Increasing complexity in

widespread international supply chains, along with varying standards across

countries, means traceability has become even more important in maintaining

reputations and trade. It has always been an important aspect of production,

but recent contamination events have highlighted its significance.

In New Zealand the 2013 botulism scare in particular highlights the need

for fast, accurate testing and traceability (WPC 2013 Response Team). The

amount of time taken in the scare of 2013 to confirm the sources of the

contamination and the location of the contaminated batches, risked not only

Fonterra’s reputation but New Zealand’s reputation as an exporter as well.

Traceability makes selective recalls possible (Tamayo et al., 2009), and is

1



2 CHAPTER 1. INTRODUCTION

crucial to a firm’s ability to limit the size and spread of a recall (Buhr,

2003). How well a traceability system is implemented will influence how

effective it is in a recall situation. The precision of the system will determine

how much product needs to be recalled, affecting the total value lost and

the costs associated with locating and removing affected product (Dabbene

& Gay, 2011). The ability to trace both forwards and backwards through

the distribution chain is key. A firm must be able to trace back to the

source of the contamination, then forwards to identify all of the affected

product (Jansen-Vullers et al., 2003). With poor traceability it is difficult

to determine how far a contamination has gone, necessitating a widespread

recall and the very real possibility of contaminated product being consumed.

An effective traceability system allows the efficient and precise withdrawal

of contaminated product from the distribution chain, mitigating the costs

associated with a contamination, and reducing potential risk to consumers

health (Resende-Filho & Buhr, 2010).

Traceability is a widely used interdisciplinary concept, with various ap-

proaches studied in fields spanning the natural and social sciences over the

last few decades (Karlsen et al., 2013). A good traceability system will also

reduce anonymity throughout the distribution chain, making it easy to iden-

tify who may be liable in the event of a contamination or fault (Resende-Filho

& Buhr, 2010). This can provide further incentive for all parties contributing

to a supply chain to ensure they are providing safe goods. The more account-

ability a firm is held to, the more they seek to improve their own standards

(Carriquiry & Babcock, 2007; Pouliot & Sumner, 2008).

Product recalls occur when a product is found to be unsafe or unsuitable for

consumers. They can be divided into two main types: consumer level recalls

and trade level recalls. A consumer level recall involves the removal of prod-

uct from the distribution chain and extends to product sold to consumers. A

trade level recall, more commonly referred to as a withdrawal, involves the

removal of product from the distribution chain, but does not extend to con-

sumers. Withdrawals do not require public notification at all (MPI, 2017),

as a consequence they often do not receive any media attention.

About 90% of product recalls and withdrawals go through ProductRecallNZ,

a service run by GS1 New Zealand. Figure 1.1 shows the number of recall

and withdrawal notifications they received each quarter from June 2012 to
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March 2017 (GS1 NZ, 2017).

Figure 1.1: The number of recall and withdrawal event notifications received by
ProductRecallNZ each quarter from 2012 to 2017.

The number of consumer level recalls ranges from zero to eleven per quarter,

while the number of trade level withdrawals ranges from four to thirty one.

On average there were five recalls per quarter compared to twenty one with-

drawals. Approximately 80% of these events were trade level withdrawals

the public knew nothing about.

We do not have access to the actual value of products involved in each of

these recalls, or the industry they belong to, however for each of these events

a number of different products are affected. To help get an idea of the

potential size of these recall events Figure 1.2 shows the number of different

individuals products recalled or withdrawn, through ProductRecallNZ, each

quarter from March 2013 to March 2017 (GS1 NZ, 2017).

The number of products recalled each quarter over this period, ranges from

16 to 119, with an average of 63. The number of products withdrawn ranges

from 58 to 221 per quarter, with an average of 147. On average about 70%

of products removed from the distribution chain are withdrawn at the trade

level.

Comparing Figures 1.1 and 1.2, we see the number of products withdrawn or

recalled each quarter is significantly higher than the number of events. The

lowest number of products withdrawn, in the first quarter of 2014 was still
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Figure 1.2: The number of products recalled or withdrawn through Pro-
ductRecallNZ each quarter from 2013 to 2017.

just over fifty. The quarters with the most withdrawal events barely reach

thirty notifications. This suggests that multiple products are often involved

in each recall or withdrawal event. Each product recalled or withdrawn can

result in thousands of items needing to be removed from the distribution

chain. This implies a large amount of substandard items, involving many

businesses and brandnames, essentially hidden from public view.

Figure 1.3 shows the number of business involved in recalls or withdrawals

managed through ProductRecallNZ from 2013 to 2017. There is a steady

Figure 1.3: The number of businesses involved in recalls or withdrawals notified
to ProductRecallNZ.
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increase in the number of businesses involved in recalls and withdrawals over

time. Such a consistent increase was not seen in the number of events in

Figure 1.1, or in the number of products removed in Figure 1.2. This suggests

a growing interconnectedness in New Zealand’s distribution chain, increasing

the importance of efficient product removal systems. The greater number of

suppliers and brand owners involved, compared with retailers, reflects the

higher number of withdrawals compared to recalls. Retailers are not always

affected by withdrawals, as they sell directly to consumers. If retailers are

affected it is more likely a consumer level recall will be necessary. The total

number of businesses involved in these recalls, is presented as a proportion

of the total number of enterprises in New Zealand in Figure 1.4. This figure

shows the number of businesses involved in recalls for every 1000 businesses

registered in New Zealand at February for each year from 2013 to 2017, as

recorded by StatsNZ (2017a). We see a similar pattern of increase in this

Figure 1.4: The number of businesses involved in recalls or withdrawals notified
to ProductRecallNZ, per 1000 enterprises.

figure to what we saw in Figure 1.3. This suggests that the growing number

of business involved in recalls is not just due to an increased number of

businesses operating.

Some firms may be hesitant to adopt a new traceability system because of

its costs. It can be difficult to estimate the benefits of a traceability system

(Dupuy et al., 2005). The main value of a traceability system lies in its ability

to improve the recall process though records management and verification
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(Resende-Filho & Buhr, 2010). The benefits of having such a system are

generally only seen in the losses, both direct and indirect, that it prevents in

the event of a recall (Dupuy et al., 2005). This thesis aims to investigate the

value of traceability in the context of the New Zealand dairy industry.

Following the WPC80 botulism scare, traceability standards in the New

Zealand dairy industry have come under close scrutiny. Current standards

for traceability in New Zealand vary across industries. Food safety standards

do require one step forward and one step back in the supply chain, referred

to as a “one up, one down” system (FSANZ, 2017). All primary processors

of animal material are required to have a risk management program (MPI,

2018). This is registered with the Ministry for Primary Industries (MPI)

and sets how hazards and other risk factors will be identified, controlled and

eliminated. This also involves setting out processes for record-keeping and

product recall. Current traceability requirements explicitly for dairy include:

the identification of products for export including relevant information such

as date of manufacture, quantity, and sub-lot range; as well as keeping records

of raw milk suppliers, their locations and the amount of milk supplied (Dairy

Traceability Working Group, 2014).

Following the New Zealand government’s enquiry into the 2013 whey protein

botulism scare, the Dairy Traceability Working Group was established. This

group soon proposed several extensions to traceability requirements in the

dairy industry. The most significant of these revolves around the sharing of

information. They propose key data elements should be able to be presented

to MPI within 24 hours of a lawful trace back request. This data should

be sufficient to allow the trace back and tracking forward of relevant dairy

products (Dairy Traceability Working Group, 2014). This time limit seems

short in the context of the time Fonterra took to locate affected product

during the botulism scare, but is actually quite generous when we consider

the potential impacts of dairy contaminations reaching consumers.

We develop a model for the flow of value though several stages of a supply

chain. Initially, in Chapter 2 we incorporate product testing only, investi-

gating the impacts of product loss at various stages of the supply chain and

how this affects overall production. In Chapter 3 traceability parameters and

effects are incorporated into the model in order to investigate the potential

value of a good traceability system. By analysing the results of simulations
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under various scenarios we are able to estimate the value or the effect of a

good traceability system on the output of the production chain.

We specifically apply these models to the dairy industry in New Zealand.

Choosing parameter values to simulate value flow through several early stages

of the supply chain for a major New Zealand dairy company. Accounting

for 29% of export dollars coming into the country, the dairy industry is

very important to New Zealand’s economy (Ballingall & Pambudi, 2017).

Analysis of several scenarios, both with and without traceability, allows us

to identify where testing and traceability systems have the greatest impact.

Results of this analysis show there is significant value attributable to a good

traceability system, due to precisely identifying product that needs to be

removed. Separately, traceability has a larger impact when the traceability

system influences the acceptance of milk arriving at the factory. The largest

impact however is seen when a traceability system is active across all the

stages of the supply chain modelled.

In support of this traceability modelling, in Chapter 4 of this thesis, we use

an event study technique to examine how Fonterra is impacted financially

by certain shocks. We analyse the impact of several product recalls as well

as adverse weather events and global demand shocks for comparison. How

the stock market reacts to recalls of varying size, scope and resolution time

has particular importance for designing traceability systems. The response

of share price returns can help to determine what aspects of a recall, and

how it is managed, may have the largest impact, aiding the identification of

particular areas of vulnerability and importance.

Good traceability is about reducing the consequences if a recall or withdrawal

is necessary (Dupuy et al., 2005). Indeed it will aid in making the decision

regarding whether a consumer level recall level is necessary. The results pre-

sented in this thesis highlight the importance of managing the recall process

well, supporting the need for good traceability standards in the New Zealand

dairy industry.
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Chapter 2

Modelling New Zealand Dairy

Production: From the Farm to

the Factory

2.1 Introduction

Dairy products are an important part of the western style diet and are be-

coming increasingly important as part of the Asian diet as well (Tsuda et al.,

2000). Milk is a valuable source of essential nutrients, and often forms a large

part of a young child’s diet. Because of this, the dairy industry is particu-

larly vulnerable to contamination scares. The 2008 melamine contamination

of infant formula in China (Chan et al., 2008), the Fonterra botulism scare

in 2013 (WPC 2013 Response Team) and the 2015 poisoning threat to infant

formula in New Zealand (New Zealand Herald, 2015) are all examples of this.

The 2013 botulism scare in particular, highlights the need for fast accurate

testing and identification of substandard product. New Zealand has a repu-

tation as a world leader when it comes to the production and export of dairy

products (Jiang & Sharp, 2014). The dairy industry currently accounts for

29% of export dollars coming into the country (Ballingall & Pambudi, 2017).

The amount of time taken to confirm the source of the contamination in

the botulism scare of 2013, risked not only Fonterra’s reputation but New

Zealand’s reputation as an exporter as well.

9
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The aim of this chapter is to develop a useful model for the early stages of the

dairy supply chain, which we can use to investigate the overall effect of testing

regimes and failure rates on output value. We develop a model for the flow

of milk from the farm to the factory and incorporate testing to investigate its

effect on product output. We aim to identify points in the supply chain where

loss of product has the biggest impact on overall output value, in order to

better manage and prioritise prevention or intervention schemes. Following

this introduction, Section 2.2 discusses existing literature surrounding supply

chain modelling in the dairy industry. Section 2.3 then gives an overview of

the dairy industry in New Zealand. The section covers aspects of specific

importance to the New Zealand dairy industry and discusses some aspects of

testing dairy products. In Section 2.4 we introduce the stages of the model

and develop a system of differential equations to model the value of milk in

each stage over time. From the equations, we derive a set of Markov chains to

reflect the stochastic nature of dairy production and contamination detection.

Section 2.6 further develops the stochastic model and parameter estimation

to incorporate more aspects of the dairy production process. Finally, we

discuss the results and implications of this work, along with the limitations

and potential for future research. The focus will be on the value of the milk,

from which we can deduct costs associated with testing.

2.2 Dairy Production and Supply Chain

Modelling

Supply chains have been modelled using many different algorithms and tools.

These can be grouped into categories such as stochastic models, mathemat-

ical programming models, heuristic techniques and simulation (Biswas &

Narahari, 2004). Supply chain networks, in dynamic and stochastic environ-

ments are often considered as discrete event dynamic systems. Such systems

include Markov chains, Petri nest and queuing network models (Raghavan,

1998).

Milk is rich in a variety of essential nutrients (Steijns, 2001), and the world-

wide market for dairy and milk based products continues to grow (Huffman

& Harper, 1999). Along with this growth come increasing food safety issues,
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with consumer perception also becoming increasingly important (Etzel et al.,

2012). Most of the existing research done on modelling dairy supply chains

focuses on optimising some aspect of production. A large proportion of these

studies propose some form of mathematical programming model, with an ob-

jective function they aim to minimise or maximise given certain constraints

that must be met.

Doganis & Sarimveis (2007) develop a mixed integer linear programming

(MILP) model with the aim of minimising the variable costs associated with

production in a single yogurt production line. Their model accounts for

standard production scheduling constraints such as inventory limitations an

machinery capacities. However, applicability of the model is limited to one

single production line.

The problem of scheduling in a yogurt production line is addressed in Doganis

& Sarimveis (2008b). This time however a system involving multiple produc-

tion machines in parallel is considered. The methodology incorporates fea-

tures that allow it to tackle industry-specific problems, such as multiple due

dates, job mixing and splitting, machine speeds, batch sizes and changeover

times dependent on production sequences, as well as costs. The model is

applied in a Greek dairy company, where it is found to greatly reduce pro-

duction costs. This model is extended by Doganis & Sarimveis (2008a) to

include product shelf life.

Kopanos et al. (2009) also study a scheduling problem in a yogurt produc-

ing plant. They propose a MILP model, imposing timing and capacity

constraints over several stages of production. Their framework optimises

sequence-dependent setup times and costs, however only the packaging stage

is involved in the problem they consider.

Bilgen & Dogan (2015) develop an optimisation model of multistage produc-

tion planning in the dairy industry. They formulate a MILP model, incorpo-

rating dairy production characteristics such as shelf life, storage, batch size

limitations, production speeds and setups, and conservation of product flow.

The model is applied to a leading dairy company, with the goal of maximis-

ing total profit and defining the quantity of product processed at each stage

in order to achieve this.

One common supply chain modelling method that seems to be missing from
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dairy supply chain literature is simulations using Markov processes. Markov

chains have commonly been used to simulate production and assess the likely

impact of disruptions, interventions, or other changes how the supply chain

is managed.

Song & Zipkin (1996) explore an inventory-control model with periodic re-

view. Assuming that orders progress though the supply chain randomly over

time, they use a Markov chain model that is general enough to accomodate

various disruptions and lead times. Similar to dairy production, they assume

the supply system is exogenous, namely it is independent of demand. For

convenience time and space are modelled as discrete, and all data as station-

ary in time. Their simulations suggest that a base-stock policy is optimal if

there is no fixed cost, while a state dependent policy is optimal otherwise.

Because of the generality of the model their result is applicable to a wide

rage of inventory problems involving disruptions.

Horvath et al. (2005) use a Markov chain approach to investigate the potential

damage retailers may experience as a result of uncertainty, variance and

systemic shock associated with reverse logistics. They provide a useful tool

for retail management, however only a single retailer was used for verification

for the model, which limits how well the utility of the model can be assessed

in context.

Tomlin (2006) analyse optimal dual-sourcing strategies in a single-product

setting, with reliable and unreliable suppliers. Unreliable supply is modelled

using a discrete time Markov chain and the optimal combination of sup-

ply from each source is investigated under various supply chain disruptions.

Their model is not applied to the production of any particular product but

provides a foundation for future research into the potential benefits of volume

flexibility in many contexts.

G. Wang et al. (2008) construct a rotation model for grain storage in ware-

houses in China. They establish a Markov chain model and apply it with

data from seventy national reserved grain depots of Henan Province. Their

model is easily applicable to different kinds of storage warehouse.

Markov chain models and statistical approaches have been widely used in

the study of blood supply chains and inventory systems for years (Beliën &

Forcé, 2012; Osorio et al., 2015). This is particularly interesting given many
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of the issues in collecting, storing and processing dairy products, for example

the limited shelf life and fluid product, are shared by blood products. Blood

products, such as plasma for example, are often mixed during processing.

Brodheim et al. (1976) develop a model to derive regional allocations strate-

gies for blood. They use a finite-state Markov chain to model the number

of retention units in inventory immediately after each delivery. Boppana &

Chalasani (2007) develop Markov chain models to determine the optimal ac-

quisition rate of blood, by hospitals, during emergencies. The model has a

less fine focus than other literature, this makes it more appropriate for larger

picture application however. Their proposed model is relatively simple, but

for its proposed application in emergency planning. Their model is also only

applicable to a single product at a time, meaning a seperate model needs to

be developed for each product desire in each situation.

The stochastic model developed in this chapter fills a gap in the literature

by applying Markov chains in the dairy industry. The similarities with the

blood supply chain suggest this modelling technique could produce useful

and interesting insights.

2.3 Dairy in New Zealand

As mentioned earlier, New Zealand is a world leader in the production and

export of dairy products (Jiang & Sharp, 2014). The New Zealand dairy

industry is unique among major global producers in that the majority of

its production is exported (Hutchinson, 2006). The industry is also mainly

pasture based (Chand, 2006), and has earned a reputation for its low cost,

high quality systems and technological expertise. There is still some room

for improvement however (Jiang & Sharp, 2014).

About 97% of New Zealand dairy farmers sell their milk through Fonterra

Cooperative Group (Jiang & Sharp, 2014). Cows are generally milked twice

per day (Hogeveen & Ouweltjes, 2002), and milk is collected from the farm

in a tanker every one to two days (Jiang & Sharp, 2014). Fonterra operates

a national fleet of 525 tankers collecting from around 11,000 farms (Mason,

2014). The frequency of collection is generally dependent on the time of

year, as milk production is seasonal. The amount of milk a farmer is allowed
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to supply to Fonterra is limited by the number of shares they own in the

cooperative.

Figure 2.1 shows an overview of the flow of dairy products from the farm to

the early processing stages at the factory. In the following paragraphs we

describe relevant details of the New Zealand dairy industry in each stage of

production present in this figure. We also discuss some of the testing that

currently takes place.

Farm

Farm

Tanker

Tanker

Factory Vat

Factory Vat

Processing

Testing Testing Testing

Figure 2.1: The overall picture of the dairy production chain, from the farm to
initial processing at the factory.

2.3.1 Processing In the Factory

Aside from small quantities of on farm sales, the first steps in production

required for all dairy products produced in New Zealand are separation,

standardisation, and pasteurisation (Hudson et al., 2003; Western, 2011).

Typically a factory has a bank of several separators which feed into several

silos for cream and skim milk. The Hautapu site, for example, has eight

separators. This particular factory has the capability to process 4.1 million

litres of milk per day. Each separator bowl has a volume of 50 litres and is

capable of separating 33,000 litres every hour (Centrico, 1994).

For dairy-based infant formula, a typical processing plant has a separator
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capacity of 1,420,000 litres, made up of three separators, feeding into various

product silos. Such a facility also has a standardisation capacity of 1,600,000

litres (Fonterra Co-operative Group, 2016a).

2.3.2 Receiving Milk at the Factory

The factory reception is the area where initial milk delivery takes place. The

reception silos here need to have the capacity to accept the volume of milk

that is potentially collected each day. The pumps used in the transport

system are specifically designed to run at low speeds so as not to damage

whole milk fat particles (Nuphlo Pumps Ltd, 2013).

The reception capacity of a typical processing site is about 675,000 litres

(Fonterra Co-operative Group, 2016a). Keeping in mind that sites differ in

capacity, given that Fonterra operates thirty three processing sites around

the country we estimate a total reception capacity of 22,275,000 litres (=

33× 675, 000).

2.3.3 The Milk Tanker

Fonterra’s tanker fleet operates 24 hours a day, with a ten to twelve hour day

shift involving three to six runs per tanker (McColl, 2011). Each run consists

of, on average, five or six collection stops, taking about twelve minutes per

collection, and a thirty minute turn around delivering to the factory (Dooley

et al., 2005). There is a one to two hour turnover before the night shift starts

with a similar pattern to the day shift (McColl, 2011).

Each milk tanker, truck and trailer unit can hold 28,800 litres of milk; 11,300

litres in the truck unit and 17,500 litres in the trailer (Dooley et al., 2005).

2.3.4 On the Farm

Rather than paying per litre of milk, Fonterra pays farmers based on the

weight of milk solids they supply, measured in kilograms. Milk solids is the

name given to the protein and fat content of milk, and a quantity of milk is

often referred to in terms of kg MS (kilogram Milk Solids).



16 CHAPTER 2. MODELLING NZ DAIRY PRODUCTION

A total of 1,614 million kg MS was collected by Fonterra in the 2014/2015

season ending in May 2015 (Fonterra Co-operative Group, 2015b). This

equates to an average daily production of 4,421,918 kg MS, though this is

skewed by the fact that very little production is taking place for the three

months from June to August.

Milk is collected from suppliers on alternate days, unless daily collections

are deemed appropriate based on milk volumes and vat capacity (Fonterra

Co-operative Group, 2014b).

The capacity of an on-farm silo is based on each cow producing 25 litres

of milk each day at the peak of the season. Fonterra currently requires

their suppliers to have a minimum of 400 litres available at each collection

(Fonterra Co-operative Group, 2014b). We will estimate an average collection

amount per day, during the main season, based on herd size and cow output

data.

Trends in developing high capacity milking parlours and automatic miking

systems, have seen an increase in cow output, along with reduced manual

labour on dairy farms. As these trends continue, further labour based barriers

to farm expansion may be overcome (Hogeveen & Ouweltjes, 2002). The

average herd size has tripled over the last 30 seasons and is still increasing.

For the 2014/2015 season, the average herd size was 419. The average output,

per herd was 1,775,501 litres, containing 157,885 kg MS The number of dairy

herds in New Zealand has been steadily declining since 1980, but has recently

begun to increase again slightly, beginning in the 2007/08 season. This trend

towards larger herd sizes in conjunction with the decreasing number of herds

suggest a growing trend towards large dairy farm businesses. The overall

number of individual cows continues to grow, so we are in no way seeing a

decline in the dairy industry (LIC & DairyNZ, 2015).

The price Fonterra pays farmers, in $/kg MS, is calculated based on the

Global Dairy Trade prices for whole milk powder, skim milk powder, anhy-

drous milk fat, butter and buttermilk powder. Because these prices are in US

dollars, the exchange rate must be taken into account before Fonterra sub-

tracts the lactose cost and the cash and capital cost (NZX Agri et al., 2014).

The farmgate milk price is the basic rate fonterra pays farmer for every kilo-

gram of milk solids they provide. For the 2014/2015 season the farmgate
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milk price was $4.40/kg MS (Fonterra Co-operative Group, 2015a). We will

use the price of $4.40/kg MS as the value for milk in our simulations. This

price takes into account fixed costs such as transport and manufacturing as

well as allowing for appropriate returns on investment (Fonterra Co-operative

Group, 2017a). The 2014/2015 farm gate milk price was also relatively low,

meaning if anything we underestimate the benefits of traceability.

2.3.5 Testing

The Fonterra supplier’s handbook lists at least nine contamination types

to be tested for along with with general quality grading and organoleptic

(sensory) assessment, though only two of these tests are conducted upon

tanker collection every time (Fonterra Co-operative Group, 2014b). Testing

costs are generally less than 10 cents per test (Shitandi & Kihumbu, 2004).

Fonterra milk tankers generally accept 99.99% of milk presented at the farm.

Warm milk is the most common reason for rejection at this point. Temper-

ature affects the quality of the milk and influences the growth of potentially

harmful microorganisms (Akkerman et al., 2010). Fonterra’s milk tankers

are not refrigerated, meaning if the milk is not cold enough at the time of

collection it may not arrive at the factory in an acceptable condition. There

is also the possibility that the milk has not been chilled fast enough following

milking and some quality degradation has already taken place.

Testing of milk upon collection can also improve the quality of the milk

supplied. Gorton et al. (2006) identified a drop in milk rejection rates in

Moldova between 1999 to 2003 from 4% to 1%, following the introduction of

a collection and testing system holding individual suppliers accountable for

the quality of the milk supplied.

2.4 Developing the Model

Identifying the stages of the supply chain where loss of product has the most

impact can help a company prioritise quality control programmes. This aids

in the reduction of overall product loss, both day to day and in the case

of contamination events or where goods are otherwise compromised. We
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aim to develop a useful model for the flow of product in the dairy supply

chain incorporating potential loss of product due to issues detected in quality

control tests. While the overall output value is always reduced by testing, it

is irresponsible and unrealistic for a company not to allow for loss of product

in this manner. Testing is required to detect milk that is not fit for use.

The focus of our modelling simulations is therefore on identifying where such

losses have the largest impact on overall production value.

There are three possible points for testing, each before mixing together milk

from different sources. As shown in Figure 2.1, these are between the farm

vat and the milk tanker, between the tanker and the milk reception silo at the

factory, and between the reception silo and entering processing. Milk may be

declared unfit and therefore rejected for many reasons which differ at each

stage. Each reason for rejection requires specific test methods. Milk being

too warm for collection is one reason it may rejected by a milk tanker. Most

other reasons for rejection involve some form of contamination, though his

may be chemical, biological or larger foreign matter such as metal of plastic.

We keep the concept of ‘bad milk’ fairly broad in this thesis, including all

milk that could be is rejected for any reason. Not all ‘bad milk’ is necessarily

detected however which is another reason to test at multiple stages, aside

from the possibility of new reasons for rejection arising.

The parameters we will use in this model are summarised in Table 2.1. We

make the assumption that any costs associated with the care and milking of

cows is the responsibility of the farmer and do not influence our model.

2.4.1 The Deterministic Model

Initially we will develop a set of differential equations to model the basic

situation. The resulting deterministic model will be a useful starting point

when we construct the stochastic model. It will also assist in validating the

simulation results. Finding the equilibrium values in each stage of production

in the deterministic model will provide us with good initial values from which

to begin our stochastic simulations.

Tanker Collection The flow of milk into and out of the milk tanker stage

is depicted in Figure 2.2. In transferring the milk from the farm’s vat to the
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Parameter Description Units
V Amount of Milk collected from an on-farm vat $
Φ Frequency of collection attempts Collections per day
X Frequency of delivery to factory Deliveries per day
Ψ Frequency with which milk enters processing Silos per day
Ω Frequency of process exit Units per day
ET Cost of testing milk at collection site $
EF Cost of testing milk upon delivery $
DF Cost of disposing of rejected milk $
EP Cost of testing prior to processing $
Dp Cost of disposing of rejected silo milk $
α Probability of acceptance by tanker N/A (Probability)
β Probability of passing all tests upon delivery N/A (Probability)
γ Probability of passing pre-processing tests N/A (Probability)

Table 2.1: A summary of each parameter used in our model and the associated
units. Frequencies are represented by the capital Greek letters Φ,X ,Ψ and Ω.
Probabilities are represented by lowercase Greek letters α, β, and γ. Testing costs
are represented by an E with a subscript for the associated stage. The subscript
T is associated with costs entering the tanker stage, F the factory reception stage,
and P the processing stage. Similar notation is used for the disposal costs using
a D. The vat value, given by V, uses units appropriate to the particular model
simulation.

tanker, it becomes the responsibility of the dairy company and the value of

that milk is added to the value in the tanker stage. This is also when the first

test is applied, before mixing with any milk already in the tanker. The tanker

gains the value of the milk, but loses the cost of any testing performed. If a

test is failed before the milk is added to the tanker, the milk is rejected and

no value is gained, the tanker still loses the cost of testing. After collecting

milk from multiple farms the tanker will deposit its load at a factory, along

with all the value associated with it.

Vat Tanker Factory
αΦV

ΦET

XT (t)

Figure 2.2: The flow of value into and out of the tanker stage. T (t) is the value
in the tanker stage at time t.

In any given period of time the tanker will make a certain number of col-
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lections and certain number of deliveries. In Figure 2.2 the frequency of

collection, that is the number of collections attempts per day, is represented

by Φ while delivery frequency is denoted by X . The probability that the

milk being collected passes all tests on site is denoted by α, meaning 1 − α
is the probability that a test is failed and the milk is rejected. T (t) is the

value contained by the tanker at time t. To avoid unnecessary complication,

we assume that all vats contain the same amount of milk, and therefore the

same value, V , represents the the value of the farm vat that is transferred to

the milk tanker. The cost of the test is incurred independent of its results.

This cost is assumed to be constant and is represented by ET . If there is

no testing prior to collection by the tanker, α = 1 as the milk cannot be

rejected, and ET = 0 as there is no cost of testing. If milk is rejected, the

co-operative does not pay the farmer for that milk, it is considered as if the

milk was never supplied. The responsibility of disposing of milk rejected at

this stage lies with the farmer (Fonterra Co-operative Group, 2014b).

We can represent the continuous, dynamic change in value of the tanker, T ,

with a differential equation:

dT (t)

dt
= (αV − ET )Φ−XT (t) (2.1)

Note the relationship to Figure 2.2, everything coming into the tanker stage

is positive, while everything leaving is negative.

Delivery to the Factory

The next production stage is the reception silo at the factory, where the

tanker deposits its load of milk. The flow of milk into and out of the factory

reception silo is shown in Figure 2.3

The value in the factory reception stage is increased by T (t) with each suc-

cessful delivery, while the costs of testing, EF , is removed. β is the probability

that milk passes all testing upon arrival at the factory.

Because at this stage the milk is the responsibility of the factory, there is

also some disposal cost, DF , associated with any milk that that is rejected

upon arrival at the factory.
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Tanker Factory Processing

βXT (t)

XEF

(1− β)XDF

ΨF (t)

Figure 2.3: The movement of product into and out of the factory reception stage.

Because milk is being processed almost continuously, milk leaves factory

storage in amounts dependent on how much is in the factory at time t. The

frequency with which milk is sent on to the processing stage is denoted by

Ψ. Equation 2.2 is the differential equation associated with this stage of

production.

dF (t)

dt
= βXT (t)−XEF − (1− β)XDF −ΨF (t) (2.2)

As was the case the tanker stage, this equation mirrors the flow of product

depicted in Figure 2.3. Product coming in from the tanker is positive, as

it adds value to the stage, while product being passed on to the next stage,

testing costs and disposal costs are negative, as they are value being removed

from this stage.

Processing

Here we look at how the value contained in the processing stage is chang-

ing over time. Processing of milk begins with separation, followed by stan-

dardisation. After these steps every dairy product undergoes pasteurisation

(Hudson et al., 2003; Western, 2011). The flow of value into and out of the

production stage is depicted in Figure 2.4

The milk comes in from the factory storage vats at the same rate it leaves

them in Equation 2.2, the value increases by this amount, ΨF (t) minus the

value of testing conducted, EP . The probability of accepting milk into this

stage is denoted by γ. There will also be a disposal cost, DP , for rejected

milk. Value leaves this processing stage at the rate ΩP (t), to go on to the

next stage in production.
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Factory Processing

γΨF (t)

ΨEP

(1− γ)ΨDP

ΩP (t)

Figure 2.4: The rate of value flow into and out of the processing stage.

dP (t)

dt
= γΨF (t)−ΨEP − (1− γ)ΨDP − ΩP (t) (2.3)

Again, note the connection between Figure 2.4 and Equation 2.3. Value

entering the processing stage is represented as positive, while value leaving

is represented as negative.

Equlibrium

Now that we have a system of differential equations, we can solve for the

value contained in each stage at equilibrium. The equilibrium point of the

system occurs when all three first derivatives are zero.

dT (t)

dt
= (αV − ET )Φ−XT (t) = 0

dF (t)

dt
= βXT (t)−XEF − (1− β)XDF −ΨF (t) = 0

dP (t)

dt
= γΨF (t)−ΨEP − (1− γ)ΨDP − ΩP (t) = 0

Solving the tanker stage equation, first presented in Equation 2.1, for T (t)

gives:

XT (t) = (αV − ET )Φ

=⇒ T (t) =
(αV − ET )Φ

X
(2.4)
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This is the value gained with each successful milk collection, minus the cost

of testing, all multiplied by the frequency of collection attempts and divided

by the frequency of deliveries where product leaves this stage.

Solving the next equation, describing the flow of product through the factory

reception stage (as originally presented in Equation 2.2), for F (t) gives:

ΨF (t) = [βT (t)− EF − (1− β)DF ]X

=⇒ F (t) =
[βT (t)− EF − (1− β)DF ]X

Ψ
(2.5)

Substituting in the solution for the value of T (t) at equilibrium, from Equa-

tion 2.4 gives

F (t) =

[
β (αV−ET )Φ

X − EF − (1− β)DF

]
X

Ψ

=⇒ F (t) =
β(αV − ET )Φ− [EF + (1− β)DF ]X

Ψ
(2.6)

To find the equilibrium value in the processing stage we solve the third equa-

tion (originally presented in Equation 2.3) for P (t) giving:

ΩP (t) = [γF (t)− EP − (1− γ)DP ]Ψ

=⇒ P (t) =
[γF (t)− EP − (1− γ)DP ]Ψ

Ω
(2.7)

Substituting in F(t) at equilibrium, as given in Equation 2.6 gives us

P (t) =

[
γ β(αV−ET )Φ−[EF +(1−β)DF ]X

Ψ
− EP − (1− γ)DP

]
Ψ

Ω

=⇒ P (t) =
γβΦ (αV − ET )− γX [EF + (1− β)DF ]−Ψ [EP + (1− γ)DP ]

Ω
(2.8)

This can be interpreted as all the material that is accepted into each stage,
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minus the costs associated with material testing and rejection, all divided by

the rate it is leaving the processing stage.

2.4.2 Product Flow in a Discrete Time Markov Chain

Model

Using Markov chains, we can derive realistic stochastic models based on the

deterministic model developed in Section 2.4.1.

Let X(1) −→ X(2) −→ · · · −→ X(N) be a Markov chain. We move though

each state in the chain over time, with a uniform time step, ∆t, between

each. The value in X(t+1) depends solely on a set of transition probabilities,

p(X), that are functions of X(t) and relevant parameters. When modelling

a production chain each state is a vector containing the various locations of

product throughout the system.

X(t) =


x1(t)

x2(t)
...

xi(t)

 ∆t−−→
p(X)

X(t+ 1) =


x1(t+ 1)

x2(t+ 1)
...

xi(t+ 1)


The transition probabilities that determine the product movement each time

step, will be unique to the specific production system being modelled

In this thesis, we model the flow of milk from the farm to the factory. Figure

2.5 shows the path milk takes from the farm to the factory, and where the

event decisions occur. Milk passes through three locations after leaving the

farm: tanker (T ), factory reception (F ) and processing (P ). The state of the

Markov chain is thus described by a vector of three values:

X(t) =

T (t)

F (t)

P (t)


T (t), F (t), and P (t) represent the value of product in each of the production

stages at time t. The state of the Markov chain at a given time t is the value

of milk in currently each stage. Because the number of values each stage in
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X can take are finite, this is also a finite state Markov chain.

Farm
Milk

Acceptable?

Collection

Rejection

Tanker
Full?

Acceptance

Factory
Milk still

Acceptable?
Rejection

Processing

Milk still
Acceptable?

Rejection

Processed

No

Yes
No

Yes

No

Yes

No

Yes

Figure 2.5: Flow chart showing the path milk takes from the farm to the factory
and the decisions that are made along the way.

One strict requirement we must meet is that each set of transition proba-

bilities adds to one. This is achieved via several modelling restrictions and

techniques. First, the probability that there is no value change in a given
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stage is defined as one t minus the sum of all the probabilities that some

product movement does occur. For example the probability that milk in the

tanker stage is only being transported in a given time step is given by one

minus the probability that milk is being collected, rejected or delivered by a

tanker. This definition is good as long as the probability of any movement

adds to less than one, this we can ensure by choosing an appropriate time

step. The frequency with product enters a stage, even when multiplied by

the probability of acceptance (which is always less than or equal to one), will

still likely result in a value greater than one. By choosing a value of ∆t that

is small enough we can ensure the resulting probability is between zero and

one.

Discrete time Markov chain models are defined on discrete time steps, where

one unit changes state, or in this case location in the supply chain, at each

step. The main issue with this type of model is that we need to be very

careful choosing the size of the time step. Too small a time step and the

computational burden becomes too great, too large a time step and we start

to underestimate the changes. While a Continuous Time Markov Chain was

considered, a discrete time Markov chain was chosen because of the way

transitions, the events where milk moves between stages, are clearly defined

and not instantaneous.

2.5 The Single Event Model

We start with a relatively simple model where only one event can take place

at any point in time. The model operates with one tanker, one factory

reception silo and one representative processing machine. We may lose some

realism, but it provides a good place to start building the model from. The

transition probabilities are given in Equation 2.9. The value of milk in the

tanker, factory reception, and processing stages at time t are represented by

i, u, and g respectively. This is the state of the Markov chain. The variables

j, v, and h denote the value change that takes place in each stage over a time

step ∆t. In this model the transition probabilities are constant; they always

have the same value regardless of the value in each stage or the time of day.
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The Milk Tanker: There are four possible activities that a tanker can

undertake in a given time step: milk collection, milk rejection, milk deliv-

ery, or transporting. Milk collection can only occur if no test results come

back with an unsatisfactory result. The value contained in the tanker stage

increases by the value of the milk collected, V , and is reduced by the cost

of the testing, ET . Milk rejection occurs if a test is failed. In this case the

value contained in the milk tanker is decreased by the cost of the test, ET .

Milk delivery occurs when the tanker empties its load at the factory. The

value contained in the tanker is reduced to zero. The total value currently

contained by the tanker, T (t), is delivered to the factory.

The Factory Reception Stage:

Delivery by the tanker implies either acceptance or rejection at the factory

reception stage. In the case of rejection, the milk is rejected due to tests

done upon the tanker’s arrival at the factory. The cost of the test is lost EF ,

along with the disposal cost DF . The other possible event that can occur in

this stage are passing on product for processing.

Processing:

Product being passed on by the factory reception stage is either accepted

or rejected in the processing stage. Similar to the factory reception stage

other possible activities include passing on product for further processing,

but instead of just holding product, this is time spent in production.

Transporting, Holding and Producing:

Milk being transported by a tanker, held at the factory reception stage, or in

the middle of processing, results in no change in the value of milk in any stage

for that time step. The effect of each of these events is identical, therefore

in this model they are represented as the same event even though they occur

in different stages.
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States of the Markov Chain:

The total number of possible states depends on the amount of product that

is allowed to move between stages in each time step, and the maximum

capacity of each stage. For example, if the maximum capacity vector is given

by (Tmax, Fmax, Pmax) = (130, 200, 880) using a constant movement value of

10 units, the total number of states is given by 130
10
× 200

10
× 880

10
= 22880. In

this case, since we have no lower limit on how much material moves during

each time step and no upper on limit stage capacities, the number of possible

states is theoretically infinite.

2.5.1 Parameter Values

The initial parameter values, which we will discuss in this section, are com-

piled in Table 2.2. Initially we use a scenario where there is no risk of milk

contamination with no testing implemented, and therefore the probability of

acceptance at each stage is one. This scenario gives us a starting point from

which to change parameter values as necessary. Thus we are left with only

five parameters to estimate for now; farm vat collection value V , frequency

of collection Φ, frequency of delivery X , frequency of process entry Ψ and

frequency of process exit Ω.

Parameter Description Value
V Amount of Milk collected from an on-farm vat $3050
Φ Frequency of collection a by tanker 11970
X Frequency of delivery to factory 3990
Ψ Frequency with which milk enters processing 311
Ω Frequency of production 346
ET Costs of testing milk at collection site 0
EF Cost of testing milk upon delivery 0
DF Cost of disposing of unwanted milk 0
EP Cost of testing prior to processing 0
DP Cost of disposing of unwanted milk at factory level 0
α Probability of acceptance by tanker 1
β Probability of passing tests upon arrival at factory 1
γ Probability of passing pre-processing tests 1

Table 2.2: Parameter values in the no risk scenario. All frequencies are the average
number of occurrences per day.
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The proportion of milk solids per litre of milk varies throughout the year.

Table 2.3 shows the average milk production per cow per day, and per herd

per day, by month from June 2014 to May 2015. The average kg MS is also

given for each month. Average production values are calculated for peak

production season between August and October and the whole of the main

production season from August to April. May to July is the off season,

generally only farms with special winter milk contracts are producing during

these months, which may make the data during this period less reliable (LIC

& DairyNZ, 2015)

Production per day kg MS
per cow per herd per litre

Month Litres Milk fat kg Protein kg kg MS Litres kg MS
June 17.26 0.83 0.66 1.49 7231.94 624.31 0.0863
July 18.34 0.87 0.72 1.59 7684.46 666.21 0.0866
Aug 22.01 1.04 0.84 1.88 9222.19 787.72 0.0854
Sep 23.50 1.08 0.89 1.97 9846.50 825.43 0.0838
Oct 23.66 1.08 0.90 1.98 9913.54 829.62 0.0836
Nov 21.33 1.01 0.82 1.83 8937.27 766.77 0.0857
Dec 20.12 0.96 0.78 1.74 8430.28 729.06 0.0864
Jan 17.41 0.86 0.67 1.53 7294.79 641.07 0.0878
Feb 15.30 0.80 0.61 1.41 6410.70 590.79 0.0921
Mar 13.19 0.74 0.56 1.30 5526.61 554.70 0.1003
Apr 12.24 0.72 0.56 1.28 5128.56 536.32 0.1045
May 13.05 0.74 0.59 1.33 5467.95 557.27 0.1019
Peak (Aug - Oct)
Ave 23.05 1.06 0.87 1.94 9660.74 807.59 0.0842
Main Season (Aug - Apr)
Ave 18.75 0.92 0.73 1.65 7856.71 693.49 0.0899
Full Season (Aug - July)
Ave 18.11 0.89 0.71 1.61 7591.23 674.10 0.0903

Table 2.3: Average daily milk production summary of the 2014/2015 season,
based on data obtained from LIC & DairyNZ.

Using the information in Table 2.3 we can estimate daily production values

for the main season when most farms are producing, as well as just the peak

season. Given there were 11970 herds supplying Fonterra in the 2014/2015

season (LIC & DairyNZ, 2015), the average daily production from August to

April can be estimated as 11970× 693.49 = 8, 301, 075 kg MS, equivalent to

92,336,763 litres. The average daily production in just the peak season from

August to October was 11970 × 807.59 = 9, 666, 859 kg MS, the equivalent

of 114,808,222 litres of milk. In determining the parameters for this model
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only the main season, from August to April, when most farms are regularly

producing milk is considered. We use the estimate that best applies to that

time period for conversion between litres and kg MS, 1 Litre ≈ 0.0899kg MS.

Parameter values are estimated as follows below. Note in order to allow

constant flow through the supply chain as necessary we require

Φ ≤ 3X ≤ 33Ψ ≤ 33Ω.

V During the main milking season each farm is producing an average of

693 kg MS per day. Using a price of $4.40 per kg MS, as detailed in

Section 2.3.4, we can estimate the average value of milk produced by

and collected from each farm per day as V = $4.40× 693 = $3050.

Φ is the number of attempted milk collections by tankers each day. If

milk is collected from each herd every day then Φ = 11970 collections

per day.

X Given a milk tanker’s capacity of 28,800 litres, we can estimate the

number of farms a tanker can collect milk from in one run as between
28800

7856.71
= 3.66 and 28800

9660.74
= 2.98, or approximately three farms per

collection run. If the farms are each collected from in one tanker run, we

need 11970
3

= 3990 tanker runs every day. Each run involves delivering

to the factory once every run, so there will be X = 3990 deliveries each

day.

Ψ Fonterra has the capacity to process about seventy million litres of milk

per day during the peak season (Fonterra, 2010). A typical paediatric

processing site, in the infant formula production chain, has 3 silos of

225,000 liters capacity, for a total reception capacity of 675,000 litres.

Given that Fonterra operates thirty three processing sites (Fonterra Co-

operative Group, 2014a), each site would need to process 70000000
33×225000

≈
9.43 silos of raw milk each day, or a total of 311 silos each day. So we

set Ψ = 311.

Ω The typical paediatric processing site, conducting the initial stage of

processing for infant formula, has a bank of three separators feeding

into two cream silos, three skim milk silos and two excess silos. This

gives a total capacity of 2 × 95, 000 + 3 × 350, 000 + 2 × 90, 000 =
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1, 420, 000 litres, and an average silo capacity of 1,420,000
7

= 202, 857. If

the average capacity of a silo is passed on during every passing on event

in the processing stage, we can estimate the frequency of this event as

Ω = 346
(

= 70000000
202,857

)
.

Time Step Size

As discussed in Section 2.4.2, the time step ∆t must be small enough to

ensure that all of the transition probabilities, presented in Equation ?? sum

to one. Each individual probability must also lie between zero and one. This

means we require:

(Φ + X + Ψ + Ω)∆t ≤ 1

=⇒ ∆t ≤ 1

Φ + X + Ψ + Ω

Substituting in the relevant parameter values gives:

∆t ≤ 1

11970 + 3990 + 311 + 346

=⇒ ∆t ≤ 1

16617
= 0.00006018 days or 5.199 seconds

Based on this we choose time step of five seconds for our simulations, giving

∆t = 0.00005787. This means there will likely be a transfer of value between

stages in almost every time step, but events occur frequently enough that

realistic flow of material can happen.

2.5.2 Single-Event Model Simulations

Before we start analysing how testing affects the model, we need to check

that the model gives realistic output in simulations. For each of the plots in

this section, the initial values in each stage at time t = 0 are estimated by

Equations 2.4, 2.6, and 2.7, as developed in Section 2.4.1. These equilibrium

values are where we would expect each stage to settle regardless of what initial
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values are chosen, using these initial values allows us to estimate average

values and produce realistic plots without requiring a long ‘burn-in’ period

(Flegal et al., 2008).

Initially, as we have not yet included any costs we can run our simulations

using kg MS as our units. This is simpler to deal with as it is not subject to

exchange rate and purchasing power fluctuations. Figure 2.6 shows a single

simulation of the cumulative milk produced though our model over ten hours,

along with a cumulative plot of the deterministic model. After ten hours this

stochastic simulation, has produced 3,449,800 kg MS; the deterministic model

reaches 3,456,300 kg MS. These values equate to 8,279,500 kg MS per day

and 8,160,000 kg MS per day respectively. Given the collection rates seen in

Section 2.3.4 and Table 2.3 and the absence of any product rejection, these

values mirror the average production we would expect to see during the main

milking season, from August to April.

Figure 2.6: The amount of milk output after the three stages of processing in
our model. Both a stochastic simulation and the deterministic model solution are
shown over a ten hour period.

The amount of product contained in each stage at each point in time over

a ten hour simulation period is shown in Figure 2.7. Here we can see some

of the interaction between the three stages. The effect the tanker value has

on the factory stage can be seen in the little increases as the tankers feed

into the factory reception. The processing stage shows less frequent but

larger increases as the the factory storage stage empties into it. Note, as
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mentioned in Section 2.5, this model does not account for limited capacities.

The amount of product simulated in the processing stage occasionally exceeds

what a factory can realistically contain at a given point in time.

Figure 2.7: The amount of milk contained in each stage over a ten hour simula-
tion.

Zooming in on an hour near the middle of Figure 2.7, shown in Figure 2.8,

allows us to see the interaction between the tanker stage and the factory

reception stage more clearly. The emptying of the tanker stage coincides

with an increase in the factory stage as expected.

In this simulation the amount of milk in the tanker stage averages 1936.3

kg MS. The factory reception and processing stages each average 22,941 kg

MS and 23,414 kg MS respectively. Using the current parameter values and

Equation 2.4, the deterministic solution for the tanker stage, when in equi-

librium, is 2079 kg MS. The values given by Equations 2.6 and 2.7 are 26,673

kg MS and 23,975 kg MS respectively. In the tanker case the difference is

142.7 kg MS or 6.86% of the expected value, over just this ten hour simula-

tion. In the case of the factory reception stage the difference is 3732 kg MS

or 13.99% while the difference in the processing stage is just 561 kg MS or

2.34%. Keeping in mind that this is just a ten hour simulation there is still

a large difference between how well each stage matches the expected equi-

librium value, though they are all at least in the right order of magnitude.

The tanker stage may match the equilibrium value so well because the value
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Figure 2.8: An hour from the middle of Figure 2.7 focusing on the simulation of
the Milk Tanker and Factory Reception stages.

in the stage is regularly changing by small amounts. The other two stages

change value less often, and change dramatically when they do change. The

average amount of milk contained in each stage over twenty five and fifty

days worth of simulation are given in Table 2.4.

Stage Deterministic Equilibrium 25 day average 50 day average
Tanker 2079 kg MS 2074.89 kg MS 2076.24 kg MS
Factory Reception 26,673 kg MS 26,861.03 kg MS 26,851.49 kg MS
Processing 23,975 kg MS 23,467.68 kg MS 23,689.76 kg MS

Table 2.4: The average value in each stage after simulations of 25 and 50 days
along with the equilibrium values given by the deterministic model given in section
2.4.1.

Over sixty runs, equivalent to six hundred hours or twenty five days, the

average amount of milk contained in the tanker stage is 2074.98 kg MS. This

is much closer to the predicted equilibrium value of 2079 kg MS, a difference

of just 4.02 kg MS or 0.19%. The factory reception and processing stages

average 26,861.03 kg MS and 23,467.68 kg MS. The difference between the

factory simulation average and the deterministic equilibrium has significantly

decreased as well to just 188.03 kg MS or 0.70%. In the case of the processing

stage, the average level is 507.32 kg MS below that of the deterministic

equilibrium or 2.11%. Interestingly this is very similar to the difference after
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a single simulation and may be due to the large volume of product that

is potentially moving in and out of this each time step. Over 120 runs,

or essentially 1200 hours or 50 days the tanker average is 2076.24 kg MS,

the factory reception average is 26,851.49 kg MS, and the processor average

is now 23,689.76 kg MS. The percentage differences from the deterministic

equilibrium are now 0.13%, 0.67%, and 0.12%. All three stages now average

closer to the deterministic equilibrium value as we would expect them to

after more and more runs.

All three stages spend a significant amount of time empty in this model, to

the point where the lower quartile for each stage is 0. This is likely due to

how a stage is totally emptied each time it passes product on to the next

stage.

2.6 Developing The Multi-Event Model

The model in the previous section only allowed for one event to occur in the

whole modelled supply chain in each time step. Also, because the volume of

milk in each stage was changing so much each time material moved between

stages, we had very large, sudden peaks and troughs. This was particularly

noticeable in the factory reception and processing stages, and is something

we improve upon with the model in this section.

In this model the amount of product transferred in each collection, deliv-

ery or passing on event is now a defined constant. We also define limited

capacities for each stage of production and modify the existing transition

probabilities and transition quantities to reflect these capacities. The transi-

tion probabilities are presented individually for three stages in this section.

This means that events occurring at different stages can take place simulta-

neously during the same time step, hence we can can have multiple (up to

three) events occurring in each time step as opposed to only one event in the

previous model. The model remains time invariant, as the transition proba-

bilities and quantities are independent of the time, but the probabilities now

vary with respect to the value in each stage at time t.
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2.6.1 The Milk Tanker

The value in each tanker is still incorporated into one pool, so the value

collected or delivered by one tanker is still added to, or deducted from, the

tanker value pool, but tankers will add to or remove material from that pool

individually. We define the capacity of one milk tanker as CT , and the total

capacity of the tanker stage as NT

In this model we only allow at most one event, out of collection, rejection,

delivery, or transporting, to take place in any given time step. In reality,

as there are many milk tankers, two or more tankers may collect milk from

different farms simultaneously. However in reality, these events also take

time. In our model, it is possible for two events to occur in two adjacent

time steps, and these time steps are necessarily quite small, this means we

can closely mimic simultaneous events for different tankers t.

We describe the transition probabilities for the tanker stage, and their associ-

ated value changes, below. They are summarised in Equation 2.11 in Section

2.6.4 along with the transition probabilities for each of the other stages.

Collection. The probability that a milk tanker will attempt to collect milk

varies with the amount already contained in the tanker stage. If T (t) ≥ NT ,

for some time t, all of the milk tankers are full and milk collection must be

impossible for that time step. The probability of an attempted milk collection

in time step ∆t is given by

NT − T (t)

NT

Φ∆t

=

(
1− T (t)

NT

)
Φ∆t

As T (t) approaches NT the probability of a collection attempt approaches

zero. Recall that Φ is the number of attempted collections per day.

The probability that the tanker accepts the milk presented by a farm for

collection is α, the probability that a milk tanker will collect milk in a time

step ∆t is thus given by:

α

(
1− T (t)

NT

)
Φ∆t
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The change in value in the tanker stage in this event is V −ET , the amount

provided by the farm vat minus the cost of testing it.

Rejection. If the milks fails any tests prior to collection it will be rejected

by the tanker. The probability of the milk tanker rejecting the milk supplied

at a farm is given by

(1− α)

(
1− T (t)

NT

)
Φ∆t

Rejected milk is left at the farm, the cost of disposal is the responsibility of

the farmer, however the tanker stage does not gain any value and still loses

the cost of the tests conducted. This results in a change of −ET .

Delivery. After collecting milk from multiple farms, the tanker will empty

its load at a factory, transferring all of the value associated with it. The

probability that a tanker will deliver to the factory is dependent on the

amount milk in the tanker stage available to deliver. Because of this if there

is no milk in any tankers, i.e. T (t) = 0, the probability of a delivery in that

time step is zero. The probability of delivery also increases proportionally

with the value of milk contained in the tankers. Delivery is also not possible if

the factory reception stage is full. The total capacity of the factory reception

stage is given by NF , thus if F (t) ≥ NF for any given time step, delivery to

the factory is not possible. Otherwise the probability of a tanker delivering

milk to the factory in time step ∆t is be given by

T (t)

NT

(
1− F (t)

NF

)
X∆t (2.10)

Where X is the number of deliveries to the factory attempted each day. We

denote the capacity of one milk tanker as CT , thus the change in tanker value

upon delivery is −CT .

2.6.2 The Factory Reception

The next stage in the supply chain is the factory reception silo, where tankers

deliver their milk. Fonterra has thirty three processing sites around the
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country (Fonterra Co-operative Group, 2014a), as with the tankers we will be

treating these as part of the factory reception pool, but each site receives and

passes product on individually. The capacity of one reception silo is defined

as CF . The possible events in the factory reception stage are collection,

rejection, passing on for processing, or holding.

Each milk tanker has both a trailer and a truck compartment. Because these

two compartments can be kept separate they can be accepted and rejected

separately. Figure 2.9 shows a probability tree for how the probability of

each acceptance and rejection combination is calculated. The rejection of a

tanker compartment is denoted by r, while a denotes its acceptance up to

that point. We end up with three main possibilities; total acceptance, partial

acceptance or total rejection. The probability that a tanker compartment is

contaminated is not totally independent of the other compartment’s status.

There is the possibility that some milk from one of the farms collected from

ends up in each tanker. For example if each tanker is collecting from three

farms, there is a one in three chance that an overlapping collection is from the

contaminated batch. The probability that one tanker compartment passes

all tests, given that the other tanker compartment requires disposal, is given

by ς.

Tank 1

a

r

Tank 2 Probability

r
Total
Rejection
(r r)

(1− β)(1− ς)

a
Partial
(r a)

ς(1− β)

r
Partial
(a r)

β(1− β)

a
Total
Acceptance
(a a)

β2

Outcome/
Rejection Type

β

1− β

1− ς

ς

1− β

β

Figure 2.9: Probability tree showing the possible outcomes when milk is delivered
to the factory. The rejection of a tanker compartment is denoted by r, while a
denotes acceptance.
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Each event and its associated affect on the value contained in the factory re-

ception stage is described below. The transition probabilities are summarised

in Equation 2.11.

Total acceptance. In the case of total acceptance no contamination is

detected in either tanker compartment. Therefore the probability of a milk

delivery being fully accepted is simply the probability of a delivery attempt

multiplied by the probability that both compartments pass. The probability

of a delivery attempt is given in Equation 2.10. If β is the probability of a

tanker compartment passing all tests conducted at this stage, the probability

of total acceptance is given by

=β2T (t)

NT

(
1− F (t)

NF

)
X∆t

The value in the factory reception stage increases by the value that was

delivered by the tanker, CT , while the cost of testing, EF , is subtracted from

this value. The resulting total value change is CT − EF .

Partial acceptance. A partial acceptance implies that just one tanker

compartment is accepted by the factory. This occurs with probability

(1− β)(β + ς)
T (t)

NT

(
1− F (t)

NF

)
X∆t

This is the sum of the probabilities that the rejection occurs in either tank.

The order of rejection has no effect in this model. Because only one tanker

compartment is rejected, half of the milk that was delivered, CT

2
, is added to

that currently contained in the factory reception stage. Half of the disposal

cost, DF

2
, is also incurred due to the compartment that needs to be disposed

of. The full testing costs, EF , still apply. Thus the value change in the

factory stage in the case of of a partial rejection is given by CT−DF

2
− EF .

Total rejection. A total rejection requires both tanks to be rejected due

to the results of testing on arrival at the factory. The probability of this

occurring is given by
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(1− β)(1− ς)T (t)

NT

(
1− F (t)

NF

)
X∆t

In this event the factory reception gains no value, and still loses the cost

of testing, EF , and disposing of, DF , both tanker compartments. The total

value change in this case is then −EF −DF .

Passing on. The other possible value changing event that can occur in this

stage is passing on material to the initial processing stage. The probability

of a ‘passing on’ event is dependent on the value of milk contained in the

factory reception stage. If the factory reception stage is empty, F (t) = 0,

and no product can be passed on. Equivalently milk cannot be passed on to

a full processing stage, defined by P (t) ≥ NP , where NP is the total capacity

of the processing stage.

The probability that milk will be passed on for processing is given by

F (t)

NF

Ψ∆t

It is useful to note that this probability is a model approximation. In re-

ality the rate of movement into the next stage is not so smoothly linear as

many other factors can influence when milk is processed. This approxima-

tion however is adequate for its use in this modelled system. The capacity of

one reception silo, denoted by CF , is the amount that will leave the factory

reception stage and move on for processing. The change in value when milk

is passed on for processing is thus −CF .

2.6.3 The Processing Stage

This next stage in our model represents the first stages of processing that

every Fonterra dairy product undergoes. Similar to the other stages, the

possible events in this stage are acceptance or rejection of incoming product,

passing on product for further processing and/or packaging or, where no

product value is entering or leaving this stage, producing. We describe each

event and the effect it has on the value in the processing stage below. These
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transition probabilities are summarised in Equation 2.13, in Section 2.6.4.

Acceptance. When milk is passed on from the factory reception stage, it

is accepted by the processing stage with probability γ. Thus the probability

that all of the milk in a reception silo is accepted for processing in any given

time step is

γ
F (t)

NF

Ψ∆t

The value in the processing stage, in the event of acceptance, increases by the

value transferred from the factory reception stage, the capacity of one recep-

tion silo CF , and decreases by the cost of tests conducted prior to acceptance

EP . The total value change in this event is thus CF − EP .

Rejection. Milk passed on by the factory reception stage is rejected by the

processing stage with probability 1 − γ. Thus probability of a rejection at

the processing stage is

(1− γ)
F (t)

NF

Ψ∆t

The processing stage does not gain any value in this case and loses the costs

of any tests that were performed, EP , along with the costs of disposing of

the milk, DP . Thus the total value change in the event of a rejection at this

stage is −EP −DP .

Passing on. The probability that material is passed on from this processing

stage is given by

P (t)

NP

Ω∆t

There are no costs associated with passing material on to the next stage, but

the value of material in the processing stage will decrease by Q, the value of

milk that moves in each passing on event.
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2.6.4 Summary equations and Stage Interactions

The following equations summarise the probabilities and outcomes described

in Sections 2.6.1, 2.6.2 and 2.6.3. The events that happen in each stage can

affect the value in the other stages. For the purposes of this model, the value

changes that occurring in each stage do not come into effect until all events

taking place in a given time step are complete. Each time step begins with

the vector (T (t), F (t), P (t)) = (f, i, u).

Equation 2.11 summarises the new transition probabilities for the milk tanker

stage, the outcomes of which also affect the value in the factory reception

stage, as denoted in the brackets. Any changes in value that happen in the

tanker stage however, do not affect the probability of any events happening

in the other stages within the same time step.

The factory reception transition probabilities are summarised in Equation

2.12 below. An acceptance or rejection of any kind at this stage, implies

that there a delivery from the tanker stage, and the value in the tanker stage

is changed accordingly. In the event the factory reception stage is passing

on product, the processing stage must also be accepting or rejecting that

product. This is denoted in the brackets on the right had side of Equation

2.12, the value in the processing stage changes as appropriate.

The transition probabilities for the processing stage are given below in Equa-

tion 2.13. The events that occur in this stage also affect the value in the

factory reception stage as denoted.

At the beginning of each time step we start with (T (t), F (t), P (t)) = (f, i, u).

Once all of the events in all stages are complete these values are updated to

(T (t), F (t), P (t)) = (f + g + h, i + j + k + s, u + v + w), as defined in the

transition probabilities above.

Time step. To ensure that the probabilities in every stage all add to less

than one we need to choose a small enough value for ∆t. In the case of the

tanker stage this means we require[(
1− T (t)

NT

)
Φ +

T (t)

NT

(
1− F (t)

NF

)
X
]

∆t < 1 (2.14)
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Because T (t) and F (t) change with time, we need to ensure Equation 2.14

holds for all values these can take.

There is no global maximum for the left hand side of Equation 2.14 but

depending on the relative sizes of Φ and X , we can estimate local maximums

and then solve for the maximum allowable value of ∆t. For Φ ≥ X the left

hand side of Equation 2.14 is maximised when T (t) = 0 giving[
(1− 0)Φ + 0

(
1− F (t)

NF

)
X
]

∆t ≤ 1

=⇒ Φ∆t ≤ 1

=⇒ ∆t ≤ 1

Φ

If Φ < X , the left hand side of Equation 2.14 is maximised when T (t) = NT

and F (t) = 0 [(
1− NT

NT

)
Φ +

NT

NT

(1− 0)X
]

∆t ≤ 1

=⇒ 0 + X∆t ≤ 1

=⇒ ∆t ≤ 1

X

Combining the two we can write

∆t ≤ 1

max{Φ,X}
(2.15)

To ensure the transition probabilities in the factory reception stage always

add to less than one we require

[
T (t)

NT

(
1− F (t)

NF

)
X +

F (t)

NF

Ψ

]
∆t < 1

In all of the scenarios presented in this thesis X > Ψ, meaning the left side

of the equation is maximised when (T (t), F (t)) = (NT , 0). Thus the upper

bound for ∆t in the factory reception stage is given by:
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[
NT

NT

(
1− 0

NF

)
X +

0

NF

Ψ

]
∆t < 1

NT

NT

X∆t < 1

=⇒ ∆t <
1

X
(2.16)

In the case of the processing stage, keeping the sum of the transition proba-

bilities less than or equal to one requires[
F (t)

NF

Ψ +
P (t)

NP

Ω

]
∆t < 1

This is maximised when (F (t), P (t)) = (NF , NP ), giving

(
NF

NF

Ψ +
NP

NP

Ω

)
∆t < 1

(Ψ + Ω) ∆t < 1

=⇒ ∆t <
1

Ψ + Ω
(2.17)

Combining the conclusions of Equations 2.15, 2.16, and 2.17 leads to the

requirement

∆t <
1

max{Φ,X , (Ψ + Ω)}
(2.18)

2.7 Multi-event Model Simulation Results

and Discussion

In this section we run simulations of the model developed in Section 2.6. We

explore how the overall output is affected by testing at each stage, in order

to identify the value potentially lost due rejection at each transition. This

knowledge is useful for prioritisation of intervention and system improvement.
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2.7.1 Parameter Values

Some parameters, such as collection frequency, will remain the same through-

out the following model simulations, regardless of scenario. Some of these

parameters remain the same as they were in the previous model, some have

changed slightly and some are new with this model. We will therefore discuss

the estimates for these parameters before continuing with individual testing

scenarios. We base the parameter values on data from Fonterra Co-operative

Group, the dominant dairy company in the New Zealand dairy industry. As

defined in Section 2.3.4, we are using a milk price of $4.40. These parameters

are all summarised in Table 2.7.2.

Milk Tanker Parameters The value collected from the farm vat, V , the

frequency of collection, Φ, and the frequency of delivery, X , all remain the

same as defined in Section 2.5.1.

CT is defined as the average capacity of one milk tanker.

As discussed in Section 2.5.1 each tanker has a capacity of about

28,800 litres = 2433 kg MS, therefore CT = $10, 700.

NT is the capacity of the entire fleet of tankers. In this case, using a fleet

of 525 tankers we have a capacity of 1,277,325kg MS, which gives us

NT = $5, 620, 230.

Factory Reception Parameters

CF Each processing site has multiple reception silos, as mentioned in Sec-

tion 2.5.1, a typical paediatric site, producing infant formula, has si-

los of 225,000 litre capacity. This equates to 20, 228 kg MS, giving

CF = $89, 000.

NF Given the typical paediatric processing site has three reception silos,

with thirty three processing sites around the country this gives a total

reception capacity of NF = $8, 811, 000.

Ψ is the rate at which milk moves into the processing stage from the recep-

tion silos. In Section 2.5.1 we estimated a value of 311 movements per
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day, based on what would be necessary to keep up with production. In

this section however, we add more flexibility to the model by estimating

a realistic capacity for movement instead of just would would theoret-

ically be necessary. Each separator is capable of separating 33,000 L

of raw milk each hour. This gives 33× 3× 33, 000× 24 = 78, 408, 000

litres per day, which is equivalent to 6,923,463 kg MS. Dividing this by

the capacity of one reception silo CF gives us Ψ = 343.

Initial Processing Parameters

NP is the total capacity of the processing stage. As described in Section

2.5.1, the total capacity of separators and silos for separated product

is 1,420,150 litres which equates to 127,670 kg MS = 561, 750. As

Fonterra has thirty three processing sites, we multiply this by thirty

three, giving NP = $18, 537, 750.

Q is the unit of milk leaving the processing stage each time step. We need

to choose Q small enough for the frequency of movement to be realistic

but large enough that enough product can move for a given time step

size. For our initial simulations we use Q = $187, 000.

Ω The rate which product leaves the processing stage and moves on to

further processing remains as Ω = 346

Time Step

Using Equation 2.18 and substituting in the relevant parameter values, we

can calculate the maximum allowable value for the time step as

∆t ≤ 1

max{11970, 3990, (343 + 346)}

=⇒ ∆t ≤ 1

11970
= 0.00008354 days or 7.218 seconds

This suggests we use a time step size of seven seconds, giving ∆t =

0.00008102. This allows for an event to occur in almost every time step,

while leaving some room for the stochastic nature of the model.
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Parameter Description Initial values
V Amount of milk collected from an on-farm vat $3,050
Φ Frequency of collection a by tanker 11,970
ET Costs of testing milk at collection site 0
α Probability of acceptance by tanker 1
X Frequency of delivery to factory 3990
EF Cost of testing milk upon delivery 0
β Probability of passing tests upon arrival at factory 1
DF Cost of disposing of unwanted milk 0
Ψ Frequency with which milk enters processing 343
EP Cost of testing prior to processing 0
γ Probability of passing pre-processing tests 1
DP Cost of disposing of unwanted milk at factory level 0
Ω Frequency of production 346
CT Capacity of one Milk Tanker $10,700
NT Capacity of tanker stage $5,620,230
CF Capacity of one reception silo $89,000
NF Capacity of factory reception stage $8,811,100
Q Process exit amount $187,000
NP Capacity of Processing stage $18,537,700

Table 2.5: Parameter values in the no risk scenario. All frequencies are the average
number of occurrences per day.

2.7.2 The Best of all Possible Worlds Scenario

The initial set of simulations using the model outlined in Section 2.6 involve

no testing cost or possible contamination, a scenario that would exist in a

perfect world. The parameter values for this scenario are all as given in Table

2.5. We simulate this scenario, to check our model is producing as we might

expect the supply chain to under these conditions. This scenario also gives

us a good baseline to compare with simulation results from other scenarios.

A simulation of the total product produced over 24 hours is given in Figure

2.10, along with the deterministic solution discussed in Section 2.4.1. This

particular simulation reaches a value of $26.5 million worth of milk after 24

hours. Given that Fonterra can produce over $26 million of product per day,

this model reflects real world outcomes sufficiently. Over 500 simulations,

each 24 hours in length, the average value of milk produced was $26.52

million. The maximum produced in any of these simulations was $28.05

million and the minimum $25.24 million.

It is possible using this model to see the interaction between the states in Fig-
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Figure 2.10: A simulation and the deterministic solution for the total value of
the milk produced over a 24 hour period. The transition probabilities used are
summarised in Section 2.6.4, and the parameter values are summarised in Table
2.5.

ure 2.11. The changes are not large, due to the size restriction we have placed

on the transitions, but a decreasing trend in the tanker stage is reflected by

an increasing trend in the factory reception stage.

The dashed lines in Figure 2.11 show the deterministic solution for each

stage. These are the values we would expect the simulations to average to

given enough run time in equilibrium. We are using these equilibrium values

as our initial values for these simulations, as we did. These values are given

in Table 2.6 along with the average value after 500 simulations of 24 hours

each.

Stage Initial Value 500 Run Average Minimum Maximum Std Dev
Tanker $1,540,200 $1,542,586 $7,1125 $2,089,800 $110,680
Factory Reception $3,824,300 $3,825,362 $992,620 $5,280,300 $306,480
Processing $184,990 $179,830 $99 $728,990 $77,447

Table 2.6: Simulation results for each production stage after 500 simulation
runs in the perfect world scenario.

The processing stage shows the most variation. While this stage has the

smallest standard deviation of the three stages, this is over half the average
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Figure 2.11: Plots of a simulation and the deterministic solution for the value
of milk contained in each stage of the supply chain over 24 hours. The transition
probabilities used are summarised in Section 2.6.4, and the parameter values are
summarised in Table 2.5.

value of this stage. This is possibly due in part to the large amount of time

the processing stage spends below Q, the minimum value required to pass

product on. This may also explain the slightly larger difference in value we see

between the stochastic simulation average and the deterministic equilibrium

for this stage compared with the other two. Often, as soon as the processing

stage reaches a value higher than Q, it will pass on product, dropping its

value again.

2.7.3 Testing Scenarios

In this section we run simulations under various testing and rejection sce-

narios. Initially we run simulations using parameter values defined by real

world information as discussed below.

Initial Testing parameters

ET is the estimated cost of testing milk when it is collected by the tanker.

Based on information about testing in dairy mentioned in Section 2.3
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we will estimate ET = $0.30 .

α is the probability that the milk passes all testing and is accepted by

the tanker. Information obtained though discussion with Fonterra staff

suggests we set α = 0.9999 (T. Kirk, oral communication, November

2015)

EF is the cost of testing milk as it arrives at the factory. Using test costs

discussed in Section 2.3, we estimate EF = $1.50.

β is the probability that a tanker load is accepted by factory. This is

the stage with the greatest rate of rejection, with 1% of milk being

discarded upon arrival at the factory (T. Kirk, oral communication,

November 2015). Thus we set β = 0.99.

ς is the probability the second tank of a tanker will be accepted, given

that the first tank was rejected. Based on the number of farms vis-

ited by each tanker, there is about a 1 in 4 chance that the contami-

nated load spans both tanks. Taking this into account along with the

possibility there is a second unrelated contamination we can estimate

ς = 0.75β = 0.7425.

DF is the cost associated with disposing of milk when it is rejected at the

factory reception stage. Depending on the reason for rejection, most

rejected milk can be used as calf feed or sprayed on crops as fertiliser.

Fonterra does contract tankers from outside their own fleet to transport

this rejected milk, but the associated costs can generally recouped in

the price paid for this rejected product. Because of this we set DF = 0.

EP is the cost of testing milk when it is passed on to the processing stage.

Assuming the range of tests conducted pre-processing is similar to those

conducted before acceptance into the factory, we set EP = $1.50.

γ is the rate of rejection before entry into the processing stage. This

stage has the lowest rejection rate of the three stages (T. Kirk, oral

communication, November 2015). Once the milk is inside the factory

the environment is much more controlled, the potential for contamina-

tion or spoilage is greatly reduced. We set the chance of rejection at

0.00001%, implying γ = 0.99999.
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DP is the cost associate with disposing of milk when it is rejected at the

processing stage. As discussed in reference to DF , disposal cost is

negligible so we can set DP = 0.

These parameters are summarised in Table 2.7

Parameter Description Initial values
V Amount of milk collected from an on-farm vat $3,050
Φ Frequency of collection a by tanker 11970
ET Costs of testing milk at collection site $0.30
α Probability of acceptance by tanker 0.9999
X Frequency of delivery to factory 3990
EF Cost of testing milk upon delivery $1.50
β Probability of passing tests upon arrival at factory 0.99
ς Conditional 2nd acceptance probability 0.7425
DF Cost of disposing of unwanted milk 0
Ψ Frequency with which milk enters processing 343
EP Cost of testing prior to processing $1.50
γ Probability of passing pre-processing tests 0.99999
DP Cost of disposing of unwanted milk at factory level 0
Ω Frequency of production 346
CT Capacity of one Milk Tanker $10,700
NT Capacity of tanker stage $5,620.230
CF Capacity of one reception silo $89,000
NF Capacity of factory reception stage $8,811,100
Q Process exit amount $22,000
NP Capacity of Processing stage $18,537,700

Table 2.7: Parameter values in the initial testing scenario. All frequencies are the
average number of occurrences per day. Capacities and movement amounts are
measured in NZ dollars worth of milk.

Simulations for initial testing scenario

The total value of milk produced over 24 hours, with ‘everyday’ acceptance

parameters, is shown in Figure 2.12. The total output value reached after 24

hours is $26 million. Over five hundred simulations this averages to $26.16

million with a minimum of $24.68 million and a maximum of $27.67 million.

This brings the average daily output value back close to Fonterra’s actual

daily production, compared with the optimistic value produced in the Section

2.7.2 simulations.
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Figure 2.12: The total value of the milk produced over a 24 hour simulation
period, along with the deterministic solution. The transition probabilities are
those described earlier and summarised in Section 2.6.4. The parameters’ values
are summarised in Table 2.7.

The average values in each stage over time are given in Table 2.8. There is

a slight drop in the level maintained by the tankers and factory receptions,

compared with the previous simulation in Section 2.7.2. The most significant

change however, is in the processing stage. The equilibrium value maintained

in this stage has essentially been halved. Figure 2.13 plots a simulation for

each of the three stages under this testing scenario.

Stage Initial Value 500 Run Average Minimum Maximum Std Dev
Tanker $1,532,700 $1,535,000 $1,019,000 $2,075,600 $110,680
Factory Reception $3,790,700 $3,790,800 $2,128,300 $5,175,200 $306,169
Processing $97,430 $99,100 $267 $551,280 $58,170

Table 2.8: Simulation results for the value contained in each production stage,
averaged over five hundred runs using the initial testing scenario parameters as
stated in Table 2.7.

Simulations with various rejection probabilities

We now investigate how changing the acceptance probabilities affects the

overall output and the equilibrium values in each stage. We vary the accep-
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Figure 2.13: The value of milk in each stage, over 24 hours of simulation, and
the deterministic solution. The parameters’ values are summarised in Table 2.7.

tance probability of one stage while holding the probabilities in the remaining

stages constant.

Milk Tanker acceptance: Figure 2.14 shows a simulation for the total

output when we vary the probability of the milk tanker accepting milk pre-

sented for collection by farmers. We vary the value for α between 1 and 0.75.

Note that there is a lot of variability in a single simulation and, as seen in

Figure 2.14, at certain times the amount of milk processed may be the same

for multiple values of α. Table 2.9 gives the five hundred simulation average

for each of these acceptance values. The output in this case varies between

$26.5 million, in a good run with acceptance probability α = 1, and $22.2

million for a run where α = 0.75. This a potential difference of $4.3 million

over one day of production.

Factory Acceptance Now we will vary the acceptance rate upon arrival

at the factory reception, again keeping the other variables are helt constant

at the values given in Table 2.7. Simulations with various probabilities of

accepting milk as it enters the factory reception stage are shown in Figure

2.15. As noted for Figure 2.14, due to the variability in a single simulation,
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Figure 2.14: The total value of the milk produced over a 24 hour period for
seven different vat acceptance probabilities. All other parameters remain constant
at the values given in Table 2.7

Tanker Acceptance 500 Run Lower Upper
Probability (α) Average Quartile Quartile

1 $26,167,284 $25,806,000 $26,554,000
0.99 $26,050,970 $25,619,000 $26,367,000
0.95 $25,553,176 $25,245,000 $25,993,000
0.9 $24,811,160 $24,497,000 $25,245,000
0.85 $24,112,154 $23,849,000 $24,310,000
0.8 $23,306,932 $23,001,000 $23,375,000
0.75 $22,515,922 $22,253,000 $22,814,000

Table 2.9: Simulation results for the average daily production over 500 simulations
for various milk tanker acceptance probabilities. Factory reception and processing
acceptance probabilities remain constant.

at certain times the amount of milk processed may be the same for multiple

values of β. Comparing these two plots visually however, Figure 2.15 does

show more vertical spread, each line is more distinct from the others in the

plot, when compared to those in Figure 2.14.

As highlighted in Table 2.10 the value of milk produced in a 24 hour period

varies between $26.7 million worth of milk for a high simulation with 100%

acceptance of tanker deliveries, and $19.8 million for a low producing simu-
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Figure 2.15: The total value of the milk produced over a 24 hour period for seven
different milk factory reception acceptance probabilities. All other parameters
remain constant at the values in Table 2.7.

lation with only 75% acceptance. That is a total potential difference of $6.9

million, in just one day of production. Compared with the variation we saw

when varying the acceptance rate of tanker collections in Table 2.9, rejection

of product at this stage shows greater effect on the overall value produced,

implying greater potential loss for similar rejection rates.

Factory Acceptance 500 Run Lower Upper
Probability (β) Average Quartile Quartile

1 $26,413,657 $25,993,000 $26,741,000
0.99 $26,181,496 $25,806,000 $26,180,000
0.95 $25,177,680 $24,824,000 $25,619,000
0.9 $23,933,756 $23,562,000 $24,310,000
0.85 $22,592,592 $22,253,000 $23,001,000
0.8 $21,352,034 $20,944,000 $21,692,000
0.75 $20,144,014 $19,822,000 $20,383,000

Table 2.10: Simulation results for the average daily production over 500 simula-
tions. Values are given for simulations using various values for β between 0.75 and
1, while holding all other parameters constant.
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Processing Acceptance Now keeping all other parameters constant, as

presented in Table 2.7, we vary the rate of acceptance at the processing stage.

Simulations for various probabilities of accepting milk for processing, using

values from γ = 0.75 to γ = 1, are shown in Figure 2.16.

Figure 2.16: The total value of the milk produced over a 24 hour period for seven
different milk tanker acceptance probabilities. The value of γ is varied between
0.75 and 1, while α and β remain the same as in Table 2.7, along with the rest of
the parameters. The step size is ∆t = 8 Seconds.

Visually this plot does not show as much vertical spread as Figure 2.15,

the plot of various factory reception acceptance rates. Comparing this plot

with tankers’ various rates of rejecting farm vats, as shown in Figure 2.14, a

difference in spread is not as discernable.

Table 2.11 Shows the average 24 hour output for various values of γ after

five hundred simulations. Production value in this case varies between $26.5

million for a good run with γ = 1 and $21 million for a simulation with

γ = 0.75. This is a potential difference of $5.5 million over one day of

production. This implies a spread closer to that of varying acceptance rates

at entry to the factory reception than to what is seen when we cary the rate

at which tankers accept farm vats.
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Processing Acceptance 500 Run Lower Upper
Probability (γ) Average Quartile Quartile

1 $26,205,806 $25,993,000 $26,554,000
0.99 $26,050,596 $25,619,000 $26,367,000
0.95 $25,307,084 $24,871,000 $25,806,000
0.9 $24,470,820 $24,123,000 $24,871,000
0.85 $23,463,638 $23,001,000 $23,936,000
0.8 $22,578,380 $22,253,000 $23,188,000
0.75 $21,516,968 $21,084,000 $22,066,000

Table 2.11: Simulation results for various values of γ. The average over 500
simulation runs for selected values of γ between 0.75 and 1.

2.7.4 Discussion

One of the main aims of this model and simulations is to see at which stage

rejection of product has the most impact. Table 2.12 shows the average 24

hour production outcomes for the scenarios simulated in Section 2.7.3. For

each column only the stated acceptance parameter is changed while the other

two remain constant at the values presented in Table 2.7.

Acceptance Parameter Varied
z z
Probability α β γ

1 $26,167,284 $26,413,657 $26,205,806
0.99 $26,050,970 $26,181,496 $26,050,596
0.95 $25,553,176 $25,177,680 $25,307,084
0.9 $24,811,160 $23,933,756 $24,470,820
0.85 $24,112,154 $22,592,592 $23,463,638
0.8 $23,306,932 $21,352,034 $22,578,380
0.75 $22,515,922 $20,144,014 $21,516,968

Table 2.12: Simulation results for the average daily production over five hundred
simulations. Values are given for simulations using various acceptance probabilities
for each stage, while keeping all other parameters the same as in Table 2.7

As was mentioned in Section 2.7.3, variation in the acceptance probability

of milk being delivered to the factory reception stage results in the greatest

variation in total output value. This suggests that the entry to the factory

reception is a point in the supply chain that should be prioritised in terms

of increasing acceptance and probability minimising product loss.
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Suggestions for ixncreasing acceptance rates

One possible method for increasing acceptance rates at the factory reception

could be to improve the accuracy of testing when the tanker collects milk

from the farm. If we were able to remove all contamination before the milk

even enters the tanker then we could theoretically reduce the need to reject

material later. Looking at Table 2.12, reducing the probability that the milk

tanker accepts milk from a farm has less of an impact than reducing the prob-

ability of acceptance at either of the other two stages. This suggests if we

were able to increase the acceptance of tankers delivering milk to the factory

by being more strict with the milk that is accepted from farms, and poten-

tially seeing more product rejected by tankers, we may see greater output

overall. There are obviously costs and other issues involved in implementing

this proposition such as appropriate tests not being available at this point,

or analysis taking too long to wait for, but it warrants further investigation.

If the necessary testing could be implemented at a cost less than the increase

in output it would be a worthwhile investment.

Another possible solution could be investing in refrigerated milk tankers. In

reality Fonterra’s milk tankers are currently unrefrigerated, so accidents and

unforeseen delays can result in good milk being spoilt during transport. This

would essentially increase β, the probability of accepting milk when it it is

first delivered to the factory by the tanker. We do not have access to data

on how often this occurs, but if the loss reduction is large enough this could

be a good option. Especially given that we have identified the loss of milk as

it is delivered to the factory as having the biggest impact on overall output

of the three stages modelled.

A third solution is to improve our knowledge of where contaminated milk

has come from and exactly which products may be influenced. Essentially

this is what we would expect to achieve through a good traceability system.

This would allow us to only discard the substandard product and retain as

much unaffected product as possible for further production stages. This may

or may not include extra testing costs along with the costs of tracking the

product though the supply chain, but could effectively reduce rejection rates

without requiring more intensive testing regimes as might be required in the

first option.
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All three of these suggestions could be valid methods of reducing product

rejection rates and increasing overall output. Further investigation of inten-

sifying testing at one or two stages to reduce rejection rates at others could

easily be done using the model described in this chapter. The effect of re-

ducing losses by knowing more about our supply chain would require a little

more work but again this model provides a good starting point. Investigation

of refrigerated tankers is plausible but obtaining appropriate data may be a

challenge.

2.8 Conclusions

We have developed a working model for the flow of milk from the farm

through the first stage of processing. This model allows for testing costs and

resulting rejection of substandard product. Through various simulations we

have seen the effect of different rejection rates at each stage of production.

Other than including testing costs or not, we have not shown how the cost

parameters impact the total output value. In applying the model to Fonterra

any realistic costs did not show much impact on overall output, likely due

to their small size relative to Fonterra’s daily output value. This may be

an area that requires more investigation however, particularly in the case of

smaller companies where such costs may be more significant.

The results of our simulations suggest the probability of accepting tanker

deliveries to factory reception has the biggest impact on overall production

compared with the other two possible rejection points in our model. This

result suggests further investigation into managing product rejection and

in particular reducing tanker delivery rejection if possible. Some possible

solutions for managing product loss are discussed, but further investigation

is needed in this area.

The model developed here forms a good basis into which other aspects of

production may be incorporated to investigate their potential impacts on

overall dairy production. For example, by manipulating capacities the effects

of various batch sizes on overall output under various conditions could be

analysed.
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Chapter 3

Modelling New Zealand Dairy

Production: The Impact of

Traceability from the Farm to

the Factory

3.1 Introduction

Traceability has become an increasingly important research area in recent

years. It has always been an important aspect of production, but recent con-

tamination events have highlighted its significance. Increasing complexity in

widespread international supply chains, along with varying standards across

countries, means traceability has become even more important in maintain-

ing international reputations and trade. Ideally food safety standards would

be such that contaminations did not occur at all, but this is just not possi-

ble in reality. Traceability is required to manage defects and contaminations

that do occur, reducing their impact, both economically and in regards to

public health.

Milk and dairy products from domestic animals have been used by people

for hundreds of years (Chand, 2006). They have long been an important

part of the western style diet and are increasingly being consumed as part of

Asian diets as well (Tsuda et al., 2000). Dairy products are a valuable source

65
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of essential nutrients, and are often a large component of young children’s

diets. The potential risk to young children means milk and its derivatives

are particularly vulnerable to contamination scares. The 2008 melamine

contamination of infant formula in China, the Fonterra botulism scare in

2013, and the 2015 poisoning threat to baby formula in New Zealand are all

examples of this.

The 2013 Botulism scare in particular highlights the need for efficient, accu-

rate, testing and traceability. The amount of time taken in the scare of 2013

to confirm the sources of the contamination, and the location of the con-

taminated batches, risked not only Fonterra’s reputation but New Zealand’s

reputation as an exporter. New Zealand is a world leader when it comes to

the production and export of dairy products (Jiang & Sharp, 2014). The

dairy industry forms a large part of the country’s exports. Both of these as-

pects make the New Zealand dairy industry a good case to apply and develop

our model.

This chapter builds on a Markov chain model developed in Chapter 2. We

incorporate traceability parameters and effects into this model in order to

investigate the potential value a good traceability system can contribute to

the initial stages of the dairy supply chain.

Following this introduction, Section 3.2 gives an overview of the dairy in-

dustry, with a brief look at the history of dairy production and product

importance. The second half of the section covers aspects of specific im-

portance to the New Zealand dairy industry. We follow this with a review

of traceability in Section 3.3. We cover the definition of traceability, why

it is important and the approaches taken by previous literature. In Section

3.4 we discuss the use of discrete time Markov chains (DTMCs) to model

the flow of value through the dairy supply chain. We introduce the stages

of the model and develop the transition probabilities to include the effects

of a traceability system. Finally, we present simulation results and discuss

implications of this work.



3.2. DAIRY 67

3.2 Dairy

Dairy products have been an important part of the western style diet for cen-

turies. Milk is rich in a variety of essential nutrients (Steijns, 2001), and the

worldwide market for dairy and milk based products continues to grow (Huff-

man & Harper, 1999). Along with this growth comes increasing food safety

issues, with consumer perception becoming increasingly important (Etzel et

al., 2012). Aside from its value as milk, many derived dairy products are

available. In particular, functional foods and health supplements made with

milk proteins have proven to be of considerable value (Tomé & Debabbi,

1998). Steijns (2001) discusses various components of dairy products and

their role in managing a variety of health concerns. Research has also been

done into how certain dairy products may be useful for cancer prevention

(Tsuda et al., 2000; Parodi, 2001).

As mentioned earlier, New Zealand is a world leader in the production and

export of dairy products (Jiang & Sharp, 2014). The dairy industry in this

country is mainly pasture based (Chand, 2006). The New Zealand dairy

industry has earned a reputation for its low cost, high quality systems and

technological expertise. About 97% of New Zealand dairy farmers sell their

milk through Fonterra Cooperative Group (Jiang & Sharp, 2014). Cows are

generally milked twice per day (Hogeveen & Ouweltjes, 2002), and milk is col-

lected from the farm in a tanker every one to two days (Jiang & Sharp, 2014).

Fonterra operates a national fleet of 525 tankers collecting from around eleven

thousand farms (Mason, 2014). The frequency of collection is generally de-

pendent on the time of year, as milk production is seasonal. The amount

of milk a farmer is allowed to supply to Fonterra is limited by the number

of shares they own in the cooperative. Because of this, output becomes tar-

geted. The cost efficiency of New Zealand dairy farms is examined by Jiang

& Sharp (2014), whose results indicated that there is still room for improve-

ment. Trends in developing high capacity milking parlours and automatic

miking systems have seen an increase in cow throughput, along with reduced

manual labour on dairy farms. As these trends continue, further labour based

barriers to farm expansion may be overcome (Hogeveen & Ouweltjes, 2002).

Because dairy products are such a large part of so many diets, and especially

for young children, they are particularly vulnerable to contamination scares.
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While reliable testing and quality standards are important for all consumable

products, they are particularly important for dairy. The Fonterra supplier’s

handbook lists at least nine contamination types to be tested for along with

general quality grading and organoleptic assessment, though only two of these

tests are conducted upon tanker collection every time (Fonterra Co-operative

Group, 2014b). While New Zealand is known for low cost dairy production,

research by Jiang & Sharp (2014) indicates that there is still room for im-

provement. Traceability can be incorporated into testing and quality control

systems to increase certainty of safe product, as well as potentially improve

efficiency in the production chain.

3.3 Traceability

Traceability is the capability to trace goods throughout the distribution chain

(Tamayo et al., 2009). It is a widely used concept, with various approaches

studied over the last few decades. The study and implementation of traceabil-

ity requires an interdisciplinary approach, spanning the natural and social

sciences(Karlsen et al., 2013). The aim of a traceability system is to col-

lect information relevant to the location of products along the supply chain

(Dabbene & Gay, 2011), allowing the flow of material to be followed (Karlsen

et al., 2013).

In the event of a product contamination or other fault, traceability becomes

very important. Having an appropriate traceability system and an efficient

recall plan in place is critical for the proper management of supply chain risks,

particularly in today’s global market (Kumar & Schmitz, 2011). Traceability

makes selective recalls possible (Tamayo et al., 2009), with no traceability it

is difficult to determine how far a contamination has spread, necessitating a

widespread recall and the very real possibility of contaminated product being

consumed by the public. To be effective in a recall situation, a traceability

system must be able to trace back along the supply chain to the source of the

contamination as well as forward to identify all the affected product (Jansen-

Vullers et al., 2003). An effective traceability system allows the efficient and

precise withdrawal of contaminated product. Such efficient product with-

drawal mitigates costs associated with a contamination scare, and reduces
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the potential risk to consumers health (Resende-Filho & Buhr, 2010). The

precision of a traceability system is also important. This is best understood

as a ratio between the size of identifiable units at two points in the supply

chain (Bollen et al., 2007) and can determine how much product is recalled

and the value lost (Dabbene & Gay, 2011), as well as the time and effort

required to locate all of the faulty product. Efficient location allows for re-

duced spread and therefore a reduced impact on consumer confidence. Good

traceability is not about reducing the probability of a contamination event,

but about reducing the consequences if contamination does occur (Dupuy et

al., 2005). Buhr (2003) identifies traceability as crucial to a firm’s ability to

limit the size and spread of a recall.

Estimating the value of a traceability system can be difficult, as the return is

essentially the loss avoided in the case of a contamination or other production

fault (Dupuy et al., 2005). Resende-Filho & Buhr (2010) develop conceptual

and process simulation models to investigate the value of traceability for food

recalls. Incorporating quality control, they identify key factors affecting the

value of a traceability system. Their focus is on the economic modelling of

traceability as a tool to reduce the extent and size of a recall. A case study

of E. coli in ground beef is presented. It is suggested that the main value of

a traceability system lies in its ability to improve the recall process though

records management and verification.

While traceability is important for food safety and reducing the potential

impact of contamination events, it can also be used to optimise production

planning and scheduling, creating a competitive advantage. X. Wang & Li

(2006) propose frameworks to achieve business benefits through the integra-

tion of traceability and supply chain management processes. They provide

a case study of a British meat processing company as illustration. Canavari

et al. (2010) discuss traceability as part of information management in sup-

ply chains, they suggest traceability can be an important part of a firms

competitive strategy.

Within the American private sector there has been widespread voluntary

adoption of food traceability systems in order to improve efficiency in the

event of a recall, particularly in the grain sector where supply management

and demand for high-value attributes lead firms to differentiate and track pro-

duction (Golan et al., 2004). The food industry as a whole has also responded
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to food safety crises by implementing quality assurance and traceability sys-

tems of their own, beyond what is legislated (Trienekens & Zuurbier, 2008).

Firms’ reputations are an important consideration when providing incentives

for them to deliver safe high-quality goods (Carriquiry & Babcock, 2007).

Good traceability reduces anonymity in the supply chain, hence it can also

be useful in identifying who may be liable in the event of a contamination or

fault (Resende-Filho & Buhr, 2010). This also provides an incentive for firms

to improve their safety and quality standards. As the probability that they

will be held accountable increases, firms seek to improve their own standards

(Pouliot & Sumner, 2008). American firms interviewed by Resende-Filho &

Buhr (2010) did not know the cost of a recall, but did view the resulting loss

of product sales as the primary cost.

Various approaches to the problem of modelling traceability and its effects

in a supply chain are outlined in literature. These mainly include optimisa-

tion using mathematical programming or systems of differential equations.

Dupuy et al. (2005) propose a mathematical mixed integer linear program-

ming (MILP) model for a batch dispersion problem. They aim to optimise

the traceability system such that the impact of a recall is reduced. Their

model is applied to a sausage manufacturing process in a French food com-

pany. Their results confirm the idea that smaller batch sizes result in lower

recall costs. While they conclude that their model is too large for daily

industry use, they suggest their method could be applied to simpler mod-

els. Dabbene & Gay (2011) build on the work done by Dupuy et al. (2005).

They introduce a modelling framework and optimisation strategy and use

recall cost to measure and optimise the performance of traceability systems.

As in Dupuy et al. (2005), they express the optimisation problem in the form

of a MILP model. They model the flow of product batches through the sup-

ply chain via a directed graph. The nodes of this graph represent product

processing-units or storage containers in the supply chain. The capacity of

a given node is bounded by the amount of product that can be processed

or stored by the infrastructure at that node at one time. An improvement

made by this model is the ability to account for the quantities being moved,

not just where and when. They describe an approach to account for either

the worst-case recall cost, or the average recall cost. Numerical examples

are provided based on the same sausage scenario presented in Dupuy et al.
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(2005).

Most current methods for precisely estimating the amount of product that

needs to be discarded in a recall event are only available for products that ex-

ist in discrete units and are made using discrete units of ingredients (Dabbene

& Gay, 2011). Traceability becomes increasingly difficult when fluid ingre-

dients, such as liquids, powders, or even grains, are involved in the supply

chain (Comba et al., 2013). Bollen et al. (2007) considers the case of apples

being processed in a pack house. The apples are supplied in large bulk bins

and transferred via a water dump, mimicking a fluid product, to a grader

where they are sorted and directed into packaging lines. Using experiments

running blue marker balls through the processing system, they collect data

on apple arrival times. This data is then used to develop a stochastic model

that can estimate the probability that an individual apple came from a par-

ticular bin, based on its arrival position. While apples are discrete items,

they flow though this production chain in a very fluid manner, with simi-

lar opportunities for mixing to that of small particles. Skoglund & Dejmek

(2007) use dynamic simulation models to analyse the change over of liquid

lots in a pipe. The partial mixing that occurs in sequential lots leads them to

introduce the concept of fuzzy traceability. Comba et al. (2013) present an

approach to manage traceability of bulk products during production, stor-

age, and delivery. They present a model that combines differential equations

with discrete events, based on the asynchronous opening and closing of valves

and activation of pumps that control the flow of product. Their approach

makes it possible to monitor the mixing of materials, providing the basis for

an efficient recall process in a system that involves fluid components.

The literature outlined above is largely deterministic. This chapter fills a

gap in traceability literature by considering a stochastic model using Markov

chains. It also adds to the limited literature on modelling fluid product supply

chains. A model for the flow of milk from the farm to the factory is developed

in Chapter 2. Markov chains are used to simulate dairy production under

different testing conditions and with various rates of product rejection. The

model in this chapter builds on that developed in Chapter 2, modifying it

in order to assess the value of traceability to the dairy industry in the early

stages of the production chain. Markov chain models have not previously

been used in modelling for assessing traceability. We also use the concept
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of fuzzy traceability (Skoglund & Dejmek, 2007), in relevant areas of the

model. Our model provides a framework for assessing the potential value of

traceability in the dairy and similar industries, filling a need to assign value

to a difficult to quantify aspect of production.

3.4 Markov Chain Model

3.4.1 Problem Statement

Traceability is an important and useful addition to the quality control sys-

tem of any supply chain. It is of particular interest and importance in the

dairy industry, yet its value is difficult to quantify. We aim to develop a use-

ful model for the flow of value though the dairy supply chain, incorporating

traceability in such a way as to allow estimation of its value. While trace-

ability can contribute value to a firm or industry in other ways, our model

focuses on the value contributed through the reduction of product loss in the

event of contamination.

3.4.2 Product Flow DTMC Model

Let X(1) −→ X(2) −→ · · · −→ X(N) be a Markov chain. We move through

each state in the chain over time, with a uniform time step ∆t between each.

The value in X(t + 1) depends solely on a set of transition probabilities

p(X) that are functions of X(t) and relevant parameters. When modelling

a production chain each state is a vector containing the various locations of

product throughout the system.

X(t) =


x1(t)

x2(t)
...

xi(t)

 ∆t−−→
p(X)

X(t+ 1) =


x1(t+ 1)

x2(t+ 1)
...

xi(t+ 1)


The transition probabilities that determine the product movement each time

step will be unique to the specific production system being modelled.c

In this chapter, we model the flow of milk from the farm to the factory.
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Milk passes through three locations after leaving the farm: tanker, factory

reception, and processing. This means we have a vector of three values

X(t) =

T (t)

F (t)

P (t)


where T (t), F (t), and P (t) are the value of product in the milk tanker, factory

reception, and processing stages respectively at time t. Upon arrival at each

location testing can occur. Using a discrete Markov chain, in which the

state of the chain is the value of milk in each stage, we are able to model

the milk flow and assess the value of traceability associated with each stage.

Because the number of values each stage in X(t) can take are finite, this

is also a finite state Markov chain. The total number of possible states

depends on the amount of product that is allowed to move between stages

in each time step and the maximum capacity of each stage. For example, if

the maximum capacity vector is given by (Tmax, Fmax, Pmax) = (130, 200, 880)

using a movement of one unit each time step, the total number of states is

given by 130× 200× 880 = 22, 880, 000. If we increase the movement to ten

units each time step, we have 130
10
× 200

10
× 880

10
= 22, 880 possible states. The

probability for transitioning from state i to state j is Pij. We will explain

the transition probabilities for the tanker, factory reception and processing

stages in Sections 3.4.4, 3.4.5, and 3.4.6 respectively.

We use discrete time Markov chains because the events where milk moves

between stages are clearly defined. Beginning with each equation separately,

we can derive the probability of each event happening in a discrete time

period. Figure 3.1 shows the path milk takes from the farm to the factory,

and where the event decisions occur.

When testing is undertaken, a number of tests are performed. The results of

some of these tests are available instantaneously, however some may not be

available for several hours, or possibly days. Fonterra recently developed a

new milk fingerprinting system that allows them to get most relevant milk

quality information on the same day the milk is collected. Instantaneous re-

sults available at the farm prior to collection are those generally organoleptic

tests, regarding smell appearance and temperature (Rural Delivery, 2016).
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Figure 3.1: Flow chart showing the path milk takes from the farm to the factory
and the decisions that are made along the way.

The results of an “instantaneous” test will determine primary rejection at

whatever stage of the process the test is performed. Long term tests are

those that require testing in a laboratory environment, such as tests for bac-

teria and chemical residues. Because the results of a long term test are not

available immediately, they do not influence primary rejection in the current

stage, rather they may result in a secondary rejection at a future stage.

A discrete time Markov chain models the state of a system (here the value of

milk in different stages of the dairy supply chain) from one time step to the

next, where each time step is the same size. In order to specify the transition

probabilities, the time step must be small enough that in any given time

step at most one event can occur. For example, throughout a day there

are Φ collections made by milk tankers. To ensure that there is at most

one collection or delivery per time step, the length of the time step must

be less than 1
Φ

days. In this model the value of the time step must account

for all events that can occur across the three stages (tanker, factory. and

processing). Possible values for the time step will be discussed in section

3.4.7.

A continuous time Markov chain model was briefly considered for this appli-

cation. The transition probabilities look fairly similar to the DTMC model,

they are still defined for a small time interval ∆t, but are referred to as in-
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finitesimal transition probabilities because they are valid for infinitesimally

small ∆t. By including terms o(∆t) in the definitions of the infinitesimal

transition probabilities, where lim∆t−→0(o(∆t)/∆t) = 0, we are able to vary

the sizes of the time steps in an exponential distribution and simulate con-

tinuous time (Allen et al., 2008). We ultimately decided the DTMC model

was more appropriate in this situation.

3.4.3 Developing the Model with Traceability

Starting with the multi-event model developed in Chapter 2, we will in-

corporate terms and transition probabilities to represent various aspects of

traceability. In this thesis we make the assumption that any costs associated

with the care and milking of the cows are the responsibility of the farmer

and do not influence our model.

Farm

Farm

Tanker

Tanker

Factory Vat

Factory Vat

Processing

Testing Testing Testing

Figure 3.2: The path of milk from the farm to the factory. Each time the milk
enters a new stage testing and potential rejection is depicted by vertical dashed
lines.

The path the milk takes from the farm to the factory is depicted in Figure 3.2.
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There are three possible points for testing, each before milk from different

sources is combined. These are prior to collection by a milk tanker, before a

tanker deposits its load in a vat at the factory, and before entering processing.

Raw milk will not keep for long, so cannot be held in each stage to wait for

the results of any non-instantaneous (long term) test. Therefore there is an

element of traceability required to keep track of where the milk has gone,

should any of the tests come back with a poor result at any stage. Table

3.1 summarises the parameters we will use in this model. Frequencies are

represented by the capital Greek letters Φ,X ,Ψ and Ω. Probabilities are

represented by lowercase Greek letters. Testing costs are represented by an

E with a subscript for the associated stage, similarly for the traceability costs

using an L. The value of the vat on the farm, which the tankers collect from,

is given by V , we assume this to be the same for all farms.

This model extends that presented in Chapter 2 by including terms for the

cost of traceability, and new probabilities for rejecting product based on the

results of previous tests, which we label as secondary rejection probabili-

ties. The effects of traceability on product loss are also incorporated through

‘traceability factors’ and fuzzy traceability ‘mixing errors’ which we will ex-

plain in the relevant sections. As was the case in Chapter 2, the transition

matrix of the Markov chain is time invariant. The probability of material

moving into and out of each stage does vary with the quantity in each stage

at time t, but this is not affected by time. This may be a bit unrealistic,

but it is a modelling convenience that should not have much impact on the

overall model output. Fonterra does collect and process milk 24 hours a day,

but there are still likely to be times of the day that are busier than others.

3.4.4 The Milk Tankers

The tanker stage operates as a pool of value, into which individual collections

by tankers are added and from which individual tanker delivers are removed.

There are four possible events that can occur in the milk tanker stage, one at a

time. They are milk collection, milk rejection, milk delivery, or transporting.

Figure 3.3 is a flow diagram of the value entering and leaving the tanker

stage. This is essentially a close up view of the tanker stage in Figure 3.2

In any given period of time the tanker will make a certain number of col-
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Parameter Description Units
V Amount of milk collected from an on-farm vat $
Φ Frequency of collection attempts Vats per day
X Frequency of delivery to factory Tankers per day
Ψ Frequency with which milk enters processing Silos per day
Ω Frequency of process exit Units per day
ET Cost of testing milk at collection site $
LT Cost of tracing collected milk* $
EF Cost of testing milk upon delivery $
LF Cost of tracing accepted milk* $
DF Cost of disposing of unwanted milk $
EP Cost of testing prior to processing $
LP Cost of tracing milk accepted for processing* $
DP Cost of disposing of unaccepted silo milk $
α Probability of primary vat acceptance N/A (Probability)
β Probability of primary tanker acceptance N/A (Probability)
γ Probability of primary silo acceptance N/A (Probability)
η Probability of secondary vat acceptance* N/A (Probability)
θ Probability of no secondary rejection at processing entry* N/A (Probability)
ς Probability of Partial primary tanker acceptance N/A (Probability)
$ Probability of Partial secondary tanker acceptance* N/A (Probability)
% Probability of Partial silo acceptance* N/A (Probability)
λ Tanker Traceability factor* N/A (0 or 1)
ε Mixing error for a tanker load in a reception silo* $
` Factory reception traceability factor* N/A (0 < ` < 1)
CT Average capacity of one milk tanker $
NT Total capacity of entire milk tanker fleet $
CF Reception silo capacity $
NF Total Factory reception stage capacity $
NP Total Processing capacity $
Q Value leaving Processing each time step $
*denotes parameters we use in this model that were not present in Chapter 2

Table 3.1: A summary of each parameter used in our model and their units.

lections and a certain number of deliveries. In Figure 3.3 the frequency of

collection (the number of collection attempts per day) is represented by Φ,

while delivery frequency is denoted by X . The probability that the milk

being collected passes all ‘instantaneous’ tests on site, and is mixed with the

product already in the tanker is given by α, meaning 1−α is the probability

that an instantaneous test is failed and the milk is rejected. T (t) is the value

contained in all of the tankers at time t. V represents the value of the farm

vat that is transferred to the milk tanker, this is a constant as we assume

that every collection the same amount of material is collected from every

farm. If there is no testing prior to collection by the tanker, α = 1 as the

milk cannot be rejected, and ET = 0 as there is no cost of testing.
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Vat Tanker Factory
αΦV

αΦLT

ΦET

XT (t)

Figure 3.3: The flow of value into and out of the tanker stage. T (t) is the value
in the tanker stage at time t.

The tanker will make its delivery to the factory prior to receiving the results

of some tests, we refer to these tests as ‘long term’ tests. These are the tests

that may lead to secondary rejections upon entry to the factory reception or

processing stages, depending on how long the results take. What happens

to the milk after this point occurs at the factory reception stage, it does not

affect the value in the tanker. The cost of tests is incurred, independent of

the milk being collected or rejected, this cost is assumed to be constant and

is represented by ET . The cost of tracing the milk is represented by LT ,

this cost only applies if the milk passes immediate testing and is collected.

Because this is the first stage, no previous testing has been done, so this

cost is the only modification to the milk tanker stage from the model as it is

presented in Chapter 2. If milk is rejected, the co-operative does not pay the

farmer for that milk, it is considered as if the milk was never supplied. The

responsibility of disposing of milk rejected at this stage lies with the farmer

(Fonterra Co-operative Group, 2014b).

In our model we only allow one event out of collection, rejection, or deliv-

ery, to take place in any given time step. In reality, as there are many milk

tankers, two or more tankers may collect milk from different farms simul-

taneously. These events also take time in reality however. Because, in our

model, it is possible for two events to occur in two adjacent time steps, we

can closely mimic simultaneous events for different tankers.

Collection: The milk becomes the responsibility of the factory when it is

collected by the tanker. This is also when the first test can be applied, before

mixing with any previously acquired milk already in the tanker. For tests

that yield instantaneous results, this is enough, but if any time is required
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to get the results, we need some ability to track where the milk associated

with each test has gone. Because the nature of raw milk does not allow it to

be kept long enough to wait for any ‘long term’ test results, the milk must

be collected, unless any instantaneous tests suggest rejection. The results of

any long term test results (when they come through) now apply to all of the

milk in that tanker. The probability of an attempted milk collection in time

step ∆t is given by (
1− T (t)

NT

)
Φ∆t (3.1)

The probability given in Equation 3.1 is proportional to the unused capacity

of the tanker stage at time t. In the event that all of the milk tankers are

full, Equation 3.1 reduces to zero, reflecting the fact that milk cannot be

collected if there is no capacity to collect it. As the tanker stage gets close to

capacity, Equation 3.1 gets very small. In reality tankers are collecting milk

and delivering it throughout their shift, and it is unlikely that the system

approaches capacity at all. It is however logical that the closer the system

is to capacity, the fewer tankers have any space to collect milk, reducing the

chances of a collection at that point in time.

If all the milk tankers are empty in a given time step t, Equation 3.1 is

reduced to Φ∆t. It is possible ∆t will be such that Φ∆t = 1 or very close.

While this may seem a little unrealistic at first, in the scenario where all

tankers are empty, none will be delivering to the factory as all will be at

some point on their journey from the factory to a farm. It is plausible given

a large fleet of tankers that at least one tanker will be ready to collect milk

in any given time step particularly under the restrictions of this scenario.

Given α is the probability the milk passes all of the instantaneous tests and

is thus is accepted by a tanker, the probability that a milk tanker collects

milk in a given time step ∆t is

α

(
1− T (t)

NT

)
Φ∆t

In transferring the milk from the farm’s vat to the tanker, the value of that

milk is transferred to the tanker. The tanker gains the value of the milk, but

loses the cost of any testing performed as well as the cost associated with



80 CHAPTER 3. TRACEABILITY FROM FARM TO FACTORY

tracing the milk in case of poor test results in the future. The value change

in the tanker stage in the event of collection is thus V − LT − ET .

Rejection. If an ‘instantaneous’ test is failed before the milk is added to

the tanker, the milk is rejected and the tanker incurs the cost of testing, no

value is gained. The probability of a rejection is given by

(1− α)

(
1− T (t)

NT

)
Φ∆t

This results in a value change of −ET . Rejected milk leaves the supply chain,

so there is no need to trace it further meaning there is no traceability cost

associated with this event.

Delivery. After collecting milk from multiple farms, the tanker will de-

posit its load at a factory, along with all the value associated with it. The

probability that a tanker will deliver to the factory in a given time step is

dependent on the amount of milk in the tanker stage T (t), the number of

deliveries to the factory per day X , and the available capacity in the factory

reception stage
(

1− F (t)
NF

)
. The probability of a tanker delivering milk to

the factory in time step ∆t is given by

T (t)

NT

(
1− F (t)

NF

)
X∆t (3.2)

At most one tanker can deliver to the factory in a given time step, so the

value of milk in the tanker stage will reduce by CT , the capacity of one

tanker. We make the assumption that tankers only attempt to deliver milk

to the factory if they are full. Costs associated with testing and traceability

are taken out at the factory reception stage.

Transporting: If a tanker is not collecting, rejecting, or delivering, it is

assumed to be in the process of travelling between farms or back to the

factory. Therefore the probability that all tankers are transporting is

1−
[(

1− T (t)

NT

)
Φ +

T (t)

NT

(
1− F (t)

NF

)
X
]

∆t
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When all milk tankers are transporting there is no value change in the milk

tanker stage.

3.4.5 The Factory Reception Stage

The next stage is the reception silo at the factory where the tankers deposit

their loads. The model allows for multiple dairy processing sites. As with

the tankers we will be treating these as part of the factory reception pool

but only one silo worth of product can be passed on to the processing stage

in any single time step. The possible events in the factory reception stage

are collection, rejection, passing on for processing, or holding. Figure 3.4 is

a flow diagram of the value entering and leaving the factory reception stage.

Once milk is collected by a tanker it become the responsibility of the dairy

company, therefore if milk is rejected at the factory reception stage there is

a disposal cost, DF , that needs to be taken into account.

Tanker Factory Processing

ηβXT (t)

ηβXLF

ηXEF
(1− ηβ)XDF

ΨF (t)

Figure 3.4: The rate of value flow into and out of the factory reception stage.

Including traceability means this stage has two possible rejection scenarios,

which we will refer to as primary and secondary rejections. A primary re-

jection occurs when the milk is rejected due to the results of instantaneous

testing conducted when the tanker arrives at the factory. The cost of the test

EF is incurred along with the disposal cost DF . If milk is rejected due to

previous long term test results, then a secondary rejection occurs. There is

no testing cost associated with a secondary rejection, as this cost has already

been incurred at an earlier stage. Each milk tanker has both a trailer and

a truck compartment. If these two compartments can be kept separate they

can be tested, accepted and rejected separately. If we know which farms

the milk in each compartment came from, then unsatisfactory test results
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that become known between collection and delivery can result in just the

rejection of the affected compartment. We define λ as the traceability factor,

having a value of 1 or 0 depending on the whether we can distinguish between

individual compartments on a tanker or not.

λ =

1, with sufficient traceability

0, without sufficient traceability

Milk that is accepted into the factory reception stage moves on to be pro-

cessed as required. In this model milk leaves the factory reception stage at

a rate of Ψ units per day.

Figure 3.5 shows a probability tree for how the probability of each accep-

tance and rejection combination can be calculated. The rejection of a tanker

compartment is denoted by r, while a denotes its acceptance up to that

point. We end up with three main possibilities; total acceptance, partial

acceptance, or total rejection. Introducing traceability gives us many more

pathways and potential outcomes compared with those presented in Chapter

2. When there is insufficient traceability (λ = 0) as we cannot distinguish

between the individual tanker compartments until instantaneous tests are

conducted upon arrival at the factory reception. In this case milk cannot

be rejected due to previous ‘long term’ tests and the model for the factory

reception stage reverts to that presented in Chapter 2.

The probability that one tanker compartment needs to be rejected is not

totally independent of the other compartment’s status. For example, if each

tanker is collecting from three farms, the first farm’s milk should fit com-

fortably in the first tanker compartment. Milk from the second farm visited

will also be pumped into the first tank as well. It is likely, that there is not

enough room in the first tanker compartment, hence milk from the second

farm will be then pumped into the second tank. Even if the milk from the

second farm fits fully into the first tank, any residue left in the pipe will likely

be from that farm and have the potential to contaminate the next load of

milk pumped through it into the second tank. In the case of an even number

of farms (2n), the farm potentially contaminating both tanks will be the nth

farm. For example, with four farms this will be the second farm. If, after

milk collection is complete, we learn that one of the tanks on the tanker now
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Figure 3.5: Probability tree showing the possible outcomes when milk is delivered
to the factory.

contains contaminated milk, given that only two of the farms contributed

milk to this tank, there is a 50% chance that this was the second farm in the

collection run. There is the possibility that each tanker compartment is con-

taminated independently of the other by a different farm, with probability

η. In figure 3.5, these conditional acceptance probabilities are represented

by ς and $ for primary and secondary rejections respectively. The example

presented above would imply ς = 0.5β and $ = 0.5η.

Total acceptance. In this event both tanker compartments pass all tests

(both instantaneous and long term) up to this point and are accepted. There-
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fore the probability of a milk delivery being accepted at the factory reception

stage is simply the probability of a delivery attempt multiplied by the proba-

bility that the milk is not rejected in either a primary or secondary rejection

scenario. The probability of a delivery attempt is given in Equation 3.2. The

acceptance probabilities are given in Figure 3.5 as λη2β2 and β2(1−λ). Thus

the probability of total acceptance, given that delivery is attempted, is given

by

[
λη2β2 + β2(1− λ)

]
= β2

[
1 + λ(η2 − 1)

]
where β is the probability of a tanker compartment passing all instantaneous

tests conducted at this stage (primary acceptance), and η is the probability

that no previous long term tests have detected any contamination (secondary

acceptance). The resulting value change is

CT − EF − LF

where CT is the average value of milk in a tanker, EF is the cost of conducting

tests at this stage and LF is the traceability cost incurred by accepted milk.

Partial acceptance. This occurs when just one tanker compartment is

accepted by the factory. The other compartment could be rejected in either

the primary or secondary rejection scenario. This will result in a slightly

different value change, due to the testing costs only associated with a primary

rejection.

A Primary partial rejection occurs with probability

[
λη2ς(1− β) + λη2β(1− β) + ς(1− λ)(1− β) + β(1− λ)(1− β)

]
= (1− β)(ς + β)

[
1 + λ(η2 − 1)

]
This is the sum of the probabilities that the rejection occurs in either tank

as given in Figure 3.5. The order of rejection has no effect on the outcome

in this case. Because only one tanker compartment is rejected, half of the

milk that was delivered is added to that currently contained in the factory

reception stage, where as he full testing and tracing costs still apply. The

value change in the Factory reception stage in the case of a primary partial
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rejection is therefore
CT −DF

2
− LF − EF

The probability of a Secondary partial rejection is given by

[λ$β(1− η) + ληβ(1− η)] = λβ(1− η)($ + η)

A secondary partial rejection may occur when the results of a previous long

term test require one tanker compartment to be rejected. Because the milk

has been rejected, no further testing is required for that tank. Testing is still

required for the other tank which incurs a cost of EF

2
. The resulting total

value change is
CT − EF −DF

2
− LF

Total rejection. There are three ways a total rejection could occur. Both

tanks could be rejected by previous long term tests in a total secondary

rejection, both by instantaneous tests in a total primary rejection, or one of

each resulting in a composite rejection.

A Total primary rejection requires both tanks to pass all earlier testing,

then both be rejected due to the results of testing on arrival at the factory.

The probability of this occurring is given by

[
λη2(1− β)(1− ς) + (1− λ)(1− β)(1− ς)

]
= (1− β)(1− ς)

(
1 + λ(η2 − 1)

)
The value change in this case is the cost of testing and disposing of both

tanker compartments

−EF −DF

In a Total secondary rejection both compartments are rejected due to

earlier long term testing. The resulting value change consists solely of the

disposal cost −DF . The probability of this scenario occurring is given by

λ(1− η)(1−$)
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There is also the chance that one tanker compartment will be rejected based

on earlier long term tests, while the other is rejected by instantaneous tests

conducted upon arrival at the factory, resulting in a Composite rejection

scenario. The probability of this happening in a given time step is

[λ$(1− η)(1− β) + λη(1− η)(1− β)]

=λ(1− η)(1− β)($ + η)

The change in the factory reception stage in this case is

−EF
2
−DF

In this scenario there are no traceability costs incurred as no milk is accepted.

Because of the within compartment mixing that will take place during tanker

transport, the main contribution made by traceability at the factory recep-

tion stage is reduced testing costs. The traceability implemented up to and

at this stage will have an impact on the precision possible in later stages.

Passing on. Passing material on to the initial processing stage is the other

possible event that can occur in a given time step. The probability that milk

will leave the factory reception stage and move on for processing is dependent

on the value of milk contained in the factory reception stage. and is given by

F (t)

NF

Ψ∆t

There is now an upper limit on the movement each time step based on the

capacity of a reception silo, CF . The change in value in the factory reception

stage when milk is passed on for processing is −CF , the average capacity of

a reception silo.

3.4.6 The Processing Stage

Here we look at how the value contained in the processing stage is chang-

ing over time. Processing of milk begins with separation, followed by stan-

dardisation. After these steps every dairy product undergoes pasteurisation

(Hudson et al., 2003; Western, 2011). The possible events include collection,
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rejection, passing on, and production. In this part of the model we also have

both primary and secondary rejection and both result in a disposal cost. Only

primary rejection incurs any testing cost, as secondary rejection is dependent

on previous tests. After milk has undergone the initial processing stages of

separation, standardisation and pasteurisation, it is passed on to different

production processes depending on the intended end product. These further

steps of processing are not included in our model.

Factory Processing

γΨF (t)

γθΨLP

ΨEP

(1− γ)ΨDP

ΩP (t)

Figure 3.6: The rate of value flow into and out of the processing stage.

At this stage of the production chain, the level of traceability can deter-

mine how much product is lost in the case of a contamination. With perfect

traceability we will know which tanker, and which tank on this tanker, the

unsatisfactory material came from. We will also know what time it entered

the reception silo and how much milk went in before and after it. A certain

degree of mixing will occur, so we must allow for this, but it should be possi-

ble to reject only the unsatisfactory tank load along with a mixing allowance

either side of this. Figure 3.7 shows a probability tree for the possible out-

comes when milk enters this stage. Primary rejection via ‘instantaneous’ test

results occurs with probability γ. The probability that a contamination is

detected via a ‘long term’ test from a previous stage is given by θ. Depend-

ing on how much of the silo may be salvageable, and if this is worth more

than the costs associated with accepting it, µ takes the value zero or one.

Retesting of the remaining product is necessary in this case to ensure any

contamination has been successfully removed. The probability that a test of

salvaged product detects contamination is given by %.
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Figure 3.7: Probability tree for the outcomes when passing product from
the factory reception stage to processing.

Acceptance. The probability that all of the milk in a reception silo is

accepted for processing is

θγF (t)

NF

Ψ∆t

The value change, now limited by the capacity of a reception silo, becomes

CF − EP − LP

where EP is the cost associated with testing at this stage and LP is the

traceability cost.

Partial Acceptance. This occurs when some milk is able to be salvaged

following a secondary rejection. This is the event in the processing stage

where, we apply the concept of fuzzy traceability (Skoglund & Dejmek, 2007)

and the impact of traceability implemented in the previous stages is seen We

allow that some milk may occupy the same reception silo as contaminated

milk without becoming contaminated itself. This can be due to timing in the

entry and exit of product into the silo, or the nature of the contamination
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may mean it is easily removable or able to be diluted to levels where it is no

longer harmful.

In the secondary rejection scenario, we are dealing with test results that have

come from either the tanker collection or the factory reception stage. For a

secondary rejection to be possible in the processing stage θ must be less than

one. The closer θ is to zero, the more likely we are to reject product via

secondary rejection. The value change in this scenario largely depends on

the traceability in previous stages. If a secondary rejection occurs it means

some of the milk in this silo has come from a tanker identified as containing

contaminated milk after it delivered its load. If we have sufficient traceability

at the tanker level (λ = 1) we will be able to identify which compartment of

the affected tanker contained the contaminated milk. Remember λ = 0 when

traceability is insufficient to distinguish between individual tanks on a milk

tanker. The level of traceability at the factory reception level, `, determines

how precisely we can locate the contaminated tank load within the silo, `

must be between zero and one. If ` = 1, we have perfect traceability and can

identify the contaminated load exactly. Obviously, since milk is liquid some

mixing will occur. We model this mixing error using the parameter ε. This

can take any value from zero, implying no mixing error, to CF (1 + λ)− CT ,

where one contaminated tank load contaminates the whole silo. Once the

contaminated milk is removed from the silo, the remaining product left in

the silo is given by

`

(
CF −

CT + ε

1 + λ

)
(3.3)

The 1+λ in the denominator becomes either two or one depending on whether

we can just reject one tank, or must reject the whole tanker load. Equation

3.3 assumes that only one contaminated taker load may be identified in a

reception silo. While it is theoretically possible that there may be more

than one contaminated load in a single silo, for the sake of simplicity in

our model we only allow for one to be the cause of a partial rejection. The

actual incidence of contamination will generally be low enough that we can

safely deal with any potential multiple contaminations through the composite

rejection scenario described in Equation 3.5.

The value contained in the processing stage will increase by the amount of
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milk accepted and decrease by the costs of retesting, tracing and disposal. We

also assume the test cost EP , and the tracing cost LP are the same regardless

of the volume being tested. The probability of a partial acceptance is given

by

µ%(1− θ)F (t)

NF

Ψ∆t

A disposal cost of DP is incurred for each unit of milk that must be discarded.

The total value change to the processing stage, in the event of a partial

secondary rejection is

`

(
CF −

CT + ε

1 + λ

)
−
(
CF − `

(
CF −

CT + ε

1 + λ

))
DP − EP − LP

= `

(
CF −

CT + ε

1 + λ

)
(1 +DP )− CFDP − EP − LP (3.4)

In order for the partial acceptance to be cost effective, Equation 3.4 must be

greater that 0. Therefore

µ =

0, for `
(
CF − CT +ε

1+λ

)
≤ CFDP +EP +LP

1+DP

1, for `
(
CF − CT +ε

1+λ

)
> CFDP +EP +LP

1+DP

This value that is salvaged must still undergo instantaneous testing before

entry into the processing stage and may potentially be rejected, resulting in

a composite rejection.

Total rejection

There are three different scenarios in this stage that could lead to total

rejection; primary rejection, secondary rejection (where any salvageable milk

is not worth the cost), or a composite rejection where some milk is salvaged

following a secondary rejection but fails subsequent testing.

The probability of a Primary rejection is given by

θ(1− γ)F (t)

NF

Ψ∆t

In the case of a primary rejection, it is not known when the unsatisfactory
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material entered the silo as no previous tests have picked it up. The whole

reception silo is lost and the value change becomes −EP −DP .

In a Secondary rejection, traceability will determine what proportion of

the reception silo must be disposed of. If the value of milk to be accepted

following a partial rejection is less than the costs associated with accepting

it, the whole silo will be rejected. The probability of this occurring is

(1− θ)(1− µ)F (t)

NF

Ψ∆t

The value change in this scenario is −DP .

The probability of the retest detecting a problem is (1−%), thus a Composite

rejection will occur with probability

µ(1− θ)(1− %)F (t)

NF

Ψ∆t (3.5)

In this case we lose both the costs of testing and disposal, −EP −DP .

Passing on:

The probability that material is passed on from this processing stage is given

by

Ω∆t

There are no costs associated with passing material on to the next stage, but

the value of material in the processing stage will decrease by Q, the value of

milk that moves in each passing on event.

Producing

If no milk is coming into or leaving the processing stage, we assume that

all factories are busy producing processed milk ready to pass on to the next

stage. The probability that all the factories are producing is the probability
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that none of them are doing anything else, that is

1−
[
F (t)Ψ

NF

+ Ω

]
∆t

When all factories are producing only, there is no value change in the pro-

cessing stage.

3.4.7 Summary equations and Stage Interactions:

The following equations in this section summarise the probabilities of the

outcomes described in Sections 3.4.4, 3.4.5, and 3.4.6 and how the events in

each stage impact the value contain in all of the stages.

Equation 3.6 summarises the transition probabilities, and resulting value

changes, for the tanker stage, where T (t) = f is the value of milk in the

stage at time t and g is the value change due to the event that takes place

in this stage during the time step t+ ∆t.

Here m represents the value change that takes place in the factory reception

stage given delivery. The value in the factory reception stage is also influenced

by what happens in this stage, and changes by the value of j. When the

tanker delivers to the factory reception stage, the milk still needs to accepted

or rejected in some combination. This is referred to as a value change of m

in Equation 3.6, the values for which are defined in Equation 3.7. The sum

of these four transition probabilities equals one, because these transitions

represent all possible changes in the tanker stage over the time interval ∆t.

Equation 3.8 summarises the transition probabilities for the factory reception

stage. The event that takes place in this stage during a given time step will

also influence the value in either the tanker stage or the processing stage. The

probability of accepting or rejecting a delivery is dependent on there being a

delivery in the first place, which occurs with probability T (t)
NT

(
1− F (t)

NF

)
X∆t

and implies value has left the tanker stage.

Where n represents the value change that takes place in the processing stage

given that the factory reception stage is passing on. When the factory re-

ception stage passes material on the the processing stage, the milk is either

accepted or rejected in some combination. This is referred to as a value
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change of n, the possible values for which are defined in Equation 3.9.

In the processing stage, u is the amount of product in this stage at time t

while w is the value change that occurs due to the event that takes place in

time step ∆t. Equation 3.10 shows the probability of each possible value of

w given the starting value u. The value in the factory reception stage also

changes, as acceptance or rejection by the processing stage requires value to

have left the factory reception stage.

At the beginning of each time step we start with (T (t), F (t), P (t)) = (f, i, u).

Once all of the events in all stages are complete these values are updated to

(T (t), F (t), P (t)) = (f + g + h, i + j + k + s, u + v + w), as defined in the

transition probabilities above.

Time Step Size

The time step is chosen to ensure that all of the transition probabilities,

within each stage add to one. Individually each probability must be between

zero and one in any given time step. In the case of the tanker stage this

means we require:[(
1− T (t)

NT

)
Φ +

T (t)

NT

(
1− F (t)

NF

)
X
]

∆t ≤ 1 (3.11)

There is no global maximum for the left hand side of Equation 3.11 but

depending on the relative sizes of Φ and X we can estimate local maximums

and then solve for the maximum allowable value of ∆t. For Φ ≥ X the left

hand side of Equation 3.11 is maximised when T (t) = 0 giving[
(1− 0)Φ + 0

(
1− F (t)

NF

)
X
]

∆t ≤ 1

=⇒ Φ∆t ≤ 1

=⇒ ∆t ≤ 1

Φ

If Φ < X , the left hand side of Equation 3.11 is maximised when T (t) = NT
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and F (t) = 0 giving[(
1− NT

NT

)
Φ +

NT

NT

(1− 0)X
]

∆t ≤ 1

=⇒ 0 + X∆t ≤ 1

=⇒ ∆t ≤ 1

X

Combining the two we can write

∆t ≤ 1

max{Φ,X}
(3.12)

For the factory reception stage, the time step size must be small enough that

the transition probabilities in Equation 3.8 are each less than one, and all

sum to one, allowing only one event to take place in each time step. This

means we need to choose ∆t such that:[
T (t)

NT

(
1− F (t)

NF

)
X +

F (t)

NF

Ψ

]
∆t ≤ 1 (3.13)

Again there is no global maximum for the left hand side of Equation 3.13 but

depending on the relative values of X and Ψ we can estimate local maximums

and then solve for the maximum allowable value of ∆t.

For Ψ ≥ X the left hand side of Equation 3.13 is maximised when T (t) = 0,

and X = NF giving [
0

(
1− NF

NF

)
X +

NF

NF

Ψ

]
∆t ≤ 1

=⇒ Ψ∆t ≤ 1

=⇒ ∆t ≤ 1

Ψ

If Ψ < X , the left hand side of Equation 3.13 is maximised when T (t) = NT

and F (t) = 0 giving [
NT

NT

(1− 0)X + 0Ψ

]
∆t ≤ 1

=⇒ 0 + X∆t ≤ 1
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=⇒ ∆t ≤ 1

X

Combining the two we can write

∆t ≤ 1

max{Ψ,X}
(3.14)

As in both the tanker and factory reception stages, ∆t must be small enough

that only one event can take place in the processing stage in any time step.

The transition probabilities in Equation 3.10 must all sum to one, and in-

dividually have a value between zero and one. In the case of the processing

stage this reduces to [
F (t)Ψ

NF

+ Ω

]
∆t ≤ 1 (3.15)

The left hand side of Equation 3.15 is maximised when F (t) = NF , giving(
NFΨ

NF

+ Ω

)
∆t ≤ 1

=⇒ ∆t ≤ 1

Ψ + Ω
(3.16)

The final time step value chosen must fit the restrictions derived in all three

stages, given in Equations 3.12, 3.14 and 3.16. This means ∆t will be such

that

∆t ≤ 1

max{Φ,X , (Ψ + Ω)}
(3.17)

3.5 Model Simulation Results and Discussion

We have developed and described the model in three separate stages. While

each stage has its own set of transition probabilities, the stages all inter-

act with each other and affect how each other’s transition probability val-

ues change from time step to time step. The state vector for time t is

(T (t), F (t), P (t)) = (i, u, g), this becomes (j, v, h) over the time step ∆t.

In this section we simulate the model developed in Section 3.4 to investi-

gate the effects of traceability. It is assumed that the dairy producer wants

to minimise product loss due to contamination, and thus maximise overall

product output. Chapter 2 explores the value of milk flow from the farm
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to the factory. This chapter extends this model by modifying it to include

traceability parameters. Throughout this section we compare the results ob-

tained with the additional feature of traceability to those obtained in the

milk flow model in Chapter 2. When we consider the value output by the

model, we will be looking at the value coming out the end of the supply

chain which is the result of all three stages working together. In assessing

the value of traceability we will be analysing the value it contributes across

all three stages of the supply chain, regardless of what stage the traceability

parameters and effects are directly influencing.

In comparing the simulations we will obtain a value for certain levels of

traceability, given that the desired affect is achieved. If traceability is perfect,

then the location of any unit of product is always known perfectly at any point

in time. This means in the event of product rejection, only product likely to

be contaminated is rejected. For our simulations in this section, if we invest

in traceability, it is perfect traceability. If we are able to predict rejection in

later stages based on tests done when the milk is collected from the farm,

then we can shift the rejection on arrival at the factory from primary to

secondary. We will estimate how much such a preemptive rejection is worth

based on how much it reduces loss via primary rejections.

Product loss due to contamination could occur at either of the factory re-

ception or processing stages, or both. The loss could also be due to con-

tamination occurring at any stage prior to detection. If a contamination can

be identified earlier in the supply chain, product loss can be reduced. If we

increase surveillance and traceability, we will increase the rate of secondary

rejection but in the process, the number of primary rejections will be reduced.

In this section we explore the impact of using traceability to reduce loss at

each of these stages.

3.5.1 Parameter Values for Dairy in New Zealand

In order to explore the impact of traceability, we use the model developed in

Section 3.4 to simulate a variety of different scenarios. To ensure the simula-

tions reflect reality, we base the parameter values for the model on data from

Fonterra, the largest dairy company in the New Zealand industry. Some pa-

rameter values, such as collection frequency, will remain the same throughout
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the simulations, however some will be varied in order to explore the impact

of traceability in different scenarios. The parameters are all summarised in

Table 3.2.

Parameter Description Initial values

V Amount of milk collected from an on-farm vat $3050

Φ Frequency of collection a by tanker 11,970

X Frequency of delivery to factory 3990

Ψ Frequency with which milk enters processing 343

Ω Frequency of production 346

ET Costs of testing milk at collection site $1.90

LT Cost of tracing collected milk 0

EF Cost of testing milk upon delivery $1.90

LF Cost of tracing accepted milk 0

DF Cost of disposing of unwanted milk 0

EP Cost of testing prior to processing $1.90

LP Cost of tracing milk accepted for processing 0

DP Cost of disposing of unwanted milk at factory level 0

α Probability of acceptance by tanker 0.9999

β Probability of passing tests upon arrival at factory 0.99

γ Probability of passing pre-processing tests 0.99999

η Probability there is no secondary rejection 0.9999

θ Probability of no secondary rejection 0.9899

ς Type 1 conditional 2nd tank acceptance probability 0.495

$ Secondary conditional 2nd tank acceptance probability 0.49995

% Partial silo acceptance probability 0.99999

λ Factory Traceability Factor 1

ε Silo mixing error $42,820.80

` Processing traceability factor 1

CT Capacity of one milk tanker $10,705.20

NT Capacity of tanker stage $5,620,230

CF Capacity of one reception silo $89.000

NF Capacity of factory reception stage $8,811,100

Q Process exit amount $187,230

NP Capacity of Processing stage $18,537,830

∆t Time step (days) 0.00008102

Table 3.2: Parameter values in the perfect traceability scenario. All frequencies
are the average number of occurrences per day.

Milk Tanker Parameters

The number of dairy herds in New Zealand has been steadily declining since

1980, but has recently begun to increase again slightly, beginning in the

2007/08 season. The number of herds increased by forty three in the 2014/15
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season to 11970 (LIC & DairyNZ, 2015). The capacity of an on-farm silo is

based on each cow producing twenty five litres of milk per day at the peak of

the season. Fonterra currently requires their suppliers to have a minimum of

four hundred litres available at each collection (Fonterra Co-operative Group,

2014b). We estimate an average collection amount per day, during the main

season, based on herd size and cow output data. The details of this are given

in Table 2.3.

Fonterra’s tanker fleet operates 24 hours a day, with a ten to twelve hour day

shift involving three to six runs per tanker in Darfield, one of Fonterra’s key

factories. There is a one to two hour turnover before the night shift starts

with a similar pattern to the day shift (McColl, 2011). We assume that a

similar structure applies to tanker operation throughout New Zealand. Each

run involves delivering to the factory once every run, a tanker completes an

average of 7.6 deliveries per day.

The price Fonterra pays farmers in $ per kilogram of milk solids (kg MS),

is calculated based on the global dairy trade prices for whole milk powder,

skim milk powder, anhydrous milk fat, butter, and buttermilk powder. Be-

cause these prices are in US dollars, the exchange rate must be taken into

account before Fonterra subtracts the lactose cost and the cash and capital

cost (NZX Agri et al., 2014). The farm gate milk price for the 2014/2015

season was $4.40 (Fonterra Co-operative Group, 2015a). This price takes into

account fixed costs such as transport and manufacturing as well as allowing

for appropriate returns on investment (Fonterra Co-operative Group, 2017a).

V is the average amount of milk collected from a farm vat. Based on the

information in Table 2.3, during the main milking season each farm is

producing an average of 693 kg MS per day, during the peak months of

the year this jumps to 808 kg MS. Using a price of $4.40 per kg MS we

can estimate V , the average value of milk produced by and collected

from each farm per day. V = $4.40× 693 = $3049.20.

Φ is the frequency of collection attempts. We can estimate this as the

number of on farm vats that are collected from each day. There

were 11,970 herds supplying Fonterra in the 2014/2015 season (LIC

& DairyNZ, 2015). If we assume all herds are being collected from

every day during the main production season then Φ = 11, 970.
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ET is the estimated cost of testing milk when it is collected by the tanker.

Livestock improvement incorporation (LIC) charges a rate of $1.99 per

animal to conduct a suite of tests for milk quality (LIC New Zealand,

2012). We base our test price off this rate, reducing the value slightly

to account for the amount of testing being requested or conducted by

Fonterra we estimate ET = $1.90.

LT is the cost associated with traceability implemented at the tanker stage.

While we have included this term in our model, in the following simu-

lations we are trying to estimate the overall value of traceability, from

which this would be a direct subtraction. It is simpler in this case to

estimate the total value, to which the cost of the whole traceability

system can be compared. Therefore we set LT = 0.

α is the probability that the milk passes all testing and is accepted by

the tanker. Information obtained though discussion with Fonterra staff

suggests we set α = 0.9999 (T. Kirk, oral communication, November

2015). This translates to an everyday rejection rate of 0.01%, or ap-

proximately 1.2 vats each day.

CT is defined as the average capacity of one milk tanker. Each milk tanker,

truck and trailer unit can hold 28,800 L of milk (Dooley et al., 2005),

this is equivalent to 2433kg MS, therefore CT = $10705.20.

NT is the capacity of the entire fleet of tankers. Fonterra operates a fleet

of 525 tankers (Mason, 2014) so NT = $10705.20× 525 = $5620230.

X is the frequency with which milk tankers deliver milk to the factory. If

each tanker collects from an average of threee farms during each run,

then we need 11970
3

= 3990 tanker runs every day. Given there is one

delivery at the end of each run X = 3990.

Factory Reception Parameters

Fonterra has the capacity to process about seventy million litres of milk per

day during the peak season (Fonterra, 2010). Milk reception silos range in

size from 225,000 to 500,000 litres.
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EF is the cost of testing milk as it arrives at the factory. Similar to ET in

Section 3.5.1, we estimate EF = $1.90.

LF is the cost associated with traceability implemented at the factory re-

ception stage. For the reasons outlined in Section 3.5.1 regarding LT

we set LF = 0.

β is the probability that a tanker load is accepted by factory. This is the

stage with the greatest rate of rejection. Based on conversations with

Fonterra personnel, an average of 1% of milk is discarded upon arrival

at the factory (T. Kirk, oral communication, November 2015). This

gives us β = 0.99.

ς is the probability the second tank of a tanker will be accepted, given

that the first tank was rejected. Because each tanker visits an aver-

age of three farms, there is about a 50% chance that the contaminated

load spans both tanks, as explained in Section 3.4.5. Taking this into

account along with the possibility there is a second unrelated contam-

ination we can estimate ς = 0.5β = 0.495

λ is the traceability factor. It represents whether we have sufficient trace-

ability to distinguish between tanks on a tanker or not. In this scenario

we can distinguish between tanks, therefore λ = 1.

η is the probability that a tank load of milk is not rejected by a secondary

rejection upon delivery to the factory. This is essentially a delayed

rejection of farm vats and the rejection rate reflects that. We use

η = α = 0.9999

$ represents the conditional probability that the second tank is accepted

given the first tank of the tanker is rejected by a secondary rejection.

Because we have perfect traceability, the second tank will only be re-

jected if milk from contaminated farm vat was loaded into both tanks.

As outlined in Section 3.4.5 with perfect traceability the second tank

can be accepted in 50% of situations. So we let $ = 0.5η = 0.49995.

DF is the cost associated with disposing of rejected milk at the factory

reception level. Most rejected milk can be used as calf feed or sprayed

on crops as fertiliser. Fonterra does contract tankers from outside their
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own fleet to transport this rejected milk, but the associated costs can

generally be recouped in the price paid for this rejected product. Be-

cause of this we set DF = 0.

CF Each processing site has multiple reception silos, as mentioned above,

a typical paediatric site has silos of 225,000 litre capacity. This equates

to 20, 228 kg MS therefore CF = $89,000.

NF The typical paediatric processing site has three reception silos, with

thirty three processing sites around the country this gives a total ca-

pacity of 33× 3CF = 2,002,572 kg MS leading to NF = $ 8,811,100.

Ψ is the rate at which milk moves into the processing stage from the

reception silos. Each separator is capable of separating 33,000 litres of

raw milk each hour. This gives 33×3×33, 000×24 = 78,408,000 litres

per day, which is equivalent to 6,923,463 kg MS per day. Dividing this

by the capacity of one reception silo CF gives us Ψ = 343

Processing Parameters

Aside from small quantities of on farm sales, the first steps in production

required for all dairy products produced in New Zealand are separation,

standardisation, and pasteurisation (Hudson et al., 2003; Western, 2011).

In this model we will focus on the first two of these stages, separation and

standardisation. Typically a factory has a bank of several separators which

feed into several silos for cream and skim milk. Each separator bowl has a

volume of fifty litres and is capable of separating 33,000 litres every hour

(Centrico, 1994).

EP is the cost of testing conducted upon delivery to the factory. Assuming

the range of tests conducted pre-processing is similar to those con-

ducted before acceptance into the factory, we set EP = $1.90

LP is the cost associated with traceability implemented at the processing

stage. Because any impact of traceability implemented at this stage

would not be seen until later stages that are not currently modelled, and

we are assessing the value contributed by traceability, we set LP = 0.
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γ is the rate of rejection before entry into the processing stage. This was

also discussed with staff at Fonterra, and has the lowest rejection rate of

the three stages (T. Kirk, oral communication, November 2015). Once

the milk is inside the factory the environment is much more controlled,

the potential for contamination or spoilage is greatly reduced. We set

the chance of rejection at 0.001%, implying γ = 0.99999.

θ is the probability that a factory reception silo does not have any of its

contents rejected by a secondary rejection. This probability reflects the

value of β and that of α, the probabilities that material is not rejected

instantly at the tanker and factory reception stages. Therefore we have

θ = 0.9999× 0.99 = 0.9899.

% is the probability that product leftover following a partial rejection is

accepted following retesting. A partial acceptance can only take place

in a secondary rejection situation. Therefore in a perfect traceability

scenario % = γ = 0.99999.

` determines what portion of a contaminated silo can potentially be ac-

cepted based on the level of traceability employed in the factory re-

ception stage. Because we have perfect traceability in this scenario

` = 1.

ε represents the mixing of milk in the reception silo, and the amount

either side of a contamination that must be rejected along with the

contaminated tank volume. This is where we bring in a bit of fuzzy

traceability (Skoglund & Dejmek, 2007). Because milk is liquid this

value is relatively large, we set this at ε = 4CT = $42820.80.

DP is the cost of disposing of product when it it rejected at the processing

stage. As discussed in reference to DF , disposal cost is negligible so we

can set DP = 0.

NP is the total capacity of the processing stage. The typical paediatric

processing site has a bank of Three separators feeding into two cream

silos, three skim milk silos and two excess silos. This gives a total

capacity of 3× 50 + 2× 95000 + 3× 350000 + 2× 90000 = 1, 420, 150

litres (Fonterra Co-operative Group, 2016a), equivalent to 127, 670 kg
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MS. As there are thirty three processing sites around the country NP =

127, 670× 4.40× 33 = $18, 537, 830.

Q is the value of milk leaving the processing stage each time step. In real-

ity there is continuous flow through this stage we have some freedom in

the value we choose for Q. We really just require that Q is large enough

to keep up with Fonterra’s rate of production. For our simulations we

use the sum of the silo capacity in NP divided by 33 × 3 = 99, the

number of silos feeding in. This is equivalent to Q = $187, 230.

Ω is the rate at which product leaves the initial processing stage and

moves on to further processing. To allow for enough product flow each

day we require that Ω×Q is greater than $27,689,200, the value of milk

produced by Fonterra every day in peak season (Fonterra, 2010). We

use Ω = 346 for consistency with the model in the previous chapter.

Time Step

Using Equation 3.17, we can calculate the maximum allowable value for the

time step as

∆t ≤ 1

max{11970, 3990, (343 + 346)}

=⇒ ∆t ≤ 1

11970
= 0.00008354 days or 7.218 seconds

This suggests we use a time step size of 7 seconds, giving ∆t = 0.00008102.

This will allow a tanker to be delivering or collecting milk almost every time

step.

3.5.2 Reducing Factory Reception Rejection

The first point in the supply chain where the effect of traceability may be

seen is the factory reception stage. Initially we will analyse the effect of

traceability on total output when it effects this stage alone. Figure 3.8 shows

the 24 hour production output value in a scenario where β = 0.75, λ = 0, and

η = 1. In this scenario 25% of product needs to be rejected upon arrival at

the factory, due to some previously undetected contamination or issue with
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the milk. The difference in production when we transfer this rejection from

primary to secondary via traceability (where λ = 1, β = 1, and η = 0.75) is

also shown. In this simulation we eliminate primary rejection upon arrival

at the factory reception stage, by increasing the secondary rejection rate

(due to tests conducted prior to collection by the tanker) to 25%. That is,

through increased traceability we allow for more contaminated product to be

detected before testing, resulting in a higher secondary rejection rate, but

a lower primary rejection rate, meaning less product is discarded overall.

This secondary rejection ability comes from implementing good traceability

protocols when the tanker collects the milk from the farm. This results in us

retaining $1.8 million of product per day that would otherwise be disposed

of. In each of these simulations the acceptance rate of milk from farm vats

is held constant at α = 0.9999.

Figure 3.8: Simulations of milk produced over a 24 hour period with a 25%
rejection rate of product entering the factory reception. One simulation of each
scenario is shown.

Table 3.3 summarises the results of five hundred simulations, transferring

primary rejection to secondary, for a variety of β values. The new minimum

β is the rate of primary acceptance required to ensure a positive traceability

impact. For example, if we start with a primary acceptance rate of β = 0.85,

when we introduce traceability to the effect that the secondary acceptance

probability is reduced to η = 0.85, the primary acceptance probability must
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be increased to at least β = 0.96 to have a positive impact on output value.

The potential gain if we are able to eliminate primary rejection altogether is

given in the last two columns of Table 3.3 as a total dollar value and as a

percentage increase from the no traceability scenario. Each value given is the

average total 24 hour output over five hundred simulation runs. For all of the

simulations we hold the collection acceptance rate constant at α = 0.9999.

Traceability Affecting Factory Reception Acceptance Only
No traceability With traceability

Initial 24 Hour Minimum Potential Gain
β Output Value New β 24 Hour Value % Gain

0.75 $20,144,014 0.93 $1,902,164 9.4%
0.80 $21,352,034 0.94 $1,561,426 7.3%
0.85 $22,592,592 0.96 $1,377,442 6.1%
0.90 $23,933,756 0.97 $908,446 3.8%
0.95 $25,177,680 0.99 $576,708 2.3%
0.99 $26,181,496 1.00 $200,090 0.8%

Table 3.3: Simulation outcomes for various rejection and traceability scenarios,
where only the probability of product being accepted at the factory reception β is
improved by the traceability system.

We can see that as the initial primary acceptance rate increases, the po-

tential for improvement is reduced. Even so the overall output value still

increases. The improvement in primary acceptance rates is also reduced as

the initial primary acceptance rate increases. The last row of Table 3.3 shows

the outcome if we are able to eliminate all primary rejection. The total out-

put value becomes $26,181,496 +$200,090 = $26,381,586. Given that, while

paying for testing and current traceability standards, Fonterra can produce

over $26,000,000 of product per day (Fonterra, 2010), this model produces

the output we would expect.

Figure 3.9 summarises the results from the five hundred simulation runs with

box plots for each primary rejection scenario, and for each scenario where all

of the rejection is managed through traceability and secondary rejections. All

of the plots are fairly symmetrical, they each have quite a large spread overall

but the interquartile ranges are relatively small. In each case there is overlap

between the value processed in the with and without traceability scenarios,
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but as the acceptance rate decreases, and the potential for improvement

increases, the plots become more distinct. If we are able to mostly remove

primary rejection, without increasing secondary rejection to the same rate, we

can have scenarios with no overlap at all. For example in a scenario where we

are rejecting 20% of product as it arrives at the factory via primary rejection,

if we are able to eliminate this primary rejection by improving traceability

and product identification such that 10% of product is rejected in secondary

rejections, we will improve total production value every day. Even if there

is some overlap between scenarios, remembering that these are simulations

of one day’s production, the 95% confidence interval for the mean in each

traceability versus no traceability comparison is distinct, meaning on average

traceability is an improvement in each case.

No Traceability
β = 0.99, η = 1 -

Max Traceability
β = 1, η = 0.99 -

No Traceability
β = 0.95, η = 1 -

Max Traceability
β = 1, η = 0.95 -

No Traceability
β = 0.9, η = 1 -

Max Traceability
β = 1, η = 0.9 -

No Traceability
β = 0.85, η = 1 -

Max Traceability
β = 1, η = 0.85 -

No Traceability
β = 0.8, η = 1 -

Max Traceability
β = 1, η = 0.8 -

No Traceability
β = 0.75, η = 1 -

Max Traceability
β = 1, η = 0.75 -

Value of Milk Processed (Million NZD)
19 20 21 22 23 24 25 26 27

Figure 3.9: Box plots for the value of milk processed over a 24 hour period in
various scenarios, with and without traceability, over five hunderd simulations.
The confidence interval of the mean is also shown as a small green box within each
plot.
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3.5.3 Reducing Product Loss at Processing Entry

When milk enters the processing stage it can be rejected via either primary

or secondary rejection. The earlier in the supply chain a contamination is

detected, the less product that is potentially contaminated and necessarily

disposed of. With a good traceability system, even if the contamination is

not known until the product is ready to enter the processing stage, we can

identify the original contaminated product and any product that contamina-

tion may have spread too. This allows us to dispose of only product likely

to be contaminated, thus reducing losses. For the scenarios simulated in

this section, information relevant to traceability is collected at the tanker

and factory reception stages, but this information is only applied as mate-

rial enters the processing stage. We run simulations for various values of γ,

the rate of primary rejections at the point of processing entry. We compare

these results to scenarios including traceability to investigate how much of

an impact it will have on loss reduction and thus, overall production. Figure

3.10 shows one simulation each of before and after the implementation of

traceability effects, using an acceptance rate of γ = 0.75 and η = 1. In this

scenario, 25% of product entering the processing stage needs to be rejected,

due to some previously undetected contamination. If we can identify more of

this product for secondary rejection, as in the simulation with traceability,

where γ = 1 and η = 0.75, less will need to be rejected via primary rejection,

meaning we reduce losses overall. The potential value of traceability in this

scenario, is $3,600,000. Table 3.4 shows the simulation results for various

rejection rates γ. Each value given is the average 24 hour production value

over 500 simulations. The outcome with no traceability, is given along with

the potential gain if we are able to use traceability to eliminate primary re-

jections. The minimum primary acceptance rate needed to make an output

improvement when we increase secondary rejection rates (the minimum new

γ) is also given. Again the biggest potential gain is seen with the smallest

acceptance rate, as this is logically where we will have the most room to

improve.

Comparing the implementation of traceability at the factory reception stage

with the processing entry stage, overall we see more potential value retention.
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Figure 3.10: A single simulation of milk produced over a 24 hour period, with a
25% rejection rate of product entering the processing stage.

As the initial acceptance rate increases, the gap between these values closes.

The new value for the primary acceptance rate after the implementation of

traceability also does not need to be as high in the processing entry in order

to see an improvement.

Figure 3.11 shows box plots summarising the results from five hundred sim-

ulation runs for each of the primary rejection scenarios given in Table 3.4,

along with plots for the scenarios where all primary rejection is eliminated

via traceability and secondary rejection. Again most of the plots are fairly

symmetrical. The plots for scenarios with traceability get more distinct from

the no traceability plots as rejection rates increase in this stage, particularly

compared with the plots in Figure 3.9. In fact the overall production value

is consistently better in a scenario where we are rejecting 25% of product in

secondary rejections (θ = 0.75), with no primary rejection, than in the sce-

nario where only 15% of product is rejected in primary rejections (γ = 0.85)

with θ = 1. The difference is still quite small with larger acceptance rates,

however the 95% confidence interval for the mean is still distinct in each case.
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Traceability Affecting Processing Entry Acceptance Only
No traceability With traceability

Initial 24 Hour Minimum Potential Gain
γ Output Value New γ 24 Hour Value % Gain

0.75 $21,567,212 0.86 $2,575,236 11.9%
0.80 $22,568,772 0.9 $2,012,378 8.9%
0.85 $23,600,896 0.93 $1,435,786 6.1%
0.90 $24,516,822 0.95 $979,506 4.0%
0.95 $25,426,016 0.98 $566,984 2.2%
0.99 $26,069,670 1.00 $126,786 0.5%

Table 3.4: Simulation results (average of five hundred simulation runs) for sce-
narios where the traceability system only affects product acceptance rates at the
entry to the processing stage.

3.5.4 Reducing Product Loss Throughout the Supply

Chain

As mentioned in the previous sections, the earlier a contamination is detected,

the more it can be contained and losses limited. In this section, we allow

that some contaminations may still take time to show up, and thus not

be detected until the processing entry stage, but we also allow that other

contamination will be detected earlier, and thus be able to be dealt with

earlier. For simplicity we set the initial primary rejection rates β and γ

equal to each other in the following simulations. We then investigate the

impact that introducing traceability through secondary rejection can have,

when applied at both the factory reception and processing stages.

Figure 3.12 shows a pair of simulations where the rejection rate of 25% is

affecting both the factory reception and processing stages. One simulation

without traceability and one simulation with traceability effects is shown,

over a 24 hour production period. In the scenario without traceability, β =

γ = 0.75. In this particular set of simulations including traceability increases

total output by $4,960,000. Table 3.5 shows the potential value of traceability

over the whole model for various initial primary rejection rates β and γ. In

each case the value given is the average of five hundred simulation results.

The minimum primary acceptance rate required for traceability to have a

positive effect (the minimum new β = γ) is given, along with the potential

value of loss reduction if primary rejection is able to be eliminated altogether.
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Figure 3.11: Box plots for five hundred simulations of each scenario given in Table
3.4. The 95% confidence interval for the mean is also shown as a green small box
within each plot.

Each value shown in Table 3.5 is the total value of milk passing through all

three stages and moving out to the next stage over a 24 hour period.

Factory Reception and Processing Entry Implementation
No traceability With traceability

Initial 24 Hour Minimum Potential Gain
β and γ Output Value New β and γ 24 Hour Value % Gain

0.75 $15,969,426 0.88 $4,322,318 27.1 %
0.8 $17,924,698 0.91 $3,603,116 20.1 %
0.85 $19,980,202 0.94 $2,805,000 14%
0.9 $22,052,910 0.96 $2,019,974 9.2%
0.95 $24,299,154 0.98 $1,037,102 4.3%
0.99 $26,091,175 1 $1,778,3705 0.7%

Table 3.5: Average simulation results over five hundred runs for rejection and
traceability scenarios allowing rejection upon entry to both the factory reception
stage and the processing stage.
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Figure 3.12: A simulation of milk produced over a 24 hour period with a 25%
rejection rate of product entering the factory reception and processing stages.

While we see large improvements in production value with the introduction

of traceability effects in cases where the rejection rate would have been high,

such rejection rates are not typical of everyday dairy production. Milk tanker

deliveries are generally accepted 99% of the time, while processing entry has

a higher acceptance rate of 99.999%. The traceability system that is used

needs to react to contamination scares and minimise their impact, while

not influencing day to day production negatively. As seen in the simulation

results above there is potential for even day to day production to be improved

through traceability.

We see also a larger improvement due to traceability when we apply it across

multiple stages of the supply chain. As shown in Table 3.5 the effect of trace-

ability applied at both the factory reception and processing stages is greater

than the sum of their effects individually. The potential for improvement

still drops off quite steeply as the initial acceptance rate increases, though

this is to be expected. Figure 3.13 shows box plots for each row in Table 3.5.

The larger potential improvement with traceability is noticeable even for the

95% acceptance rate scenarios.
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Figure 3.13: Box plots produced after five hundred simulations for the rejection
scenarios given in Table 3.5. Both traceability and non-traceability scenarios are
shown. The small green box within each plot shows the 95% confidence interval
for the mean.

3.6 Conclusion

We have extended the model developed in Chapter 2 to include traceabil-

ity effects. Using this model, we investigated the impact of traceability in

several different scenarios. We have shown there is significant value to be

gained when we allow increased secondary rejection via traceability if this

means we can reduce primary rejection rates. Separately, traceability has a

larger impact when implemented at tanker collection, resulting in reduced

primary rejections at the factory reception stage. The probability of pri-

mary or secondary rejection at the entry to processing is individually less

important. The largest impact, however, is seen when traceability effects are

applied across all the stages of the model.

The model we have developed is a useful tool for theoretically assessing the

value of traceability in the early stages of the supply chain. It is still just

a model however and limited by the information that was accessible dur-

ing development. We model all of the tankers as one value pool, similarly

the factory reception silos and processing sites, which may limit accuracy to

some extent. This model also does not account for inter-site transfers that
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may happen between the factory reception and processing stages. We only

model the first few stages in the dairy supply chain in this thesis, the net-

work of product flow becomes more complicated as we progress through the

supply chain and more ingredients and products begin to interact. The costs

associated with testing and traceability are kept constant in the simulation

presented. Some analysis was done on the impacts of different costs, however

anything realistic did not have any significant impact on Fonterra’s overall

production. This may be worth further investigation in the case of applying

the model to the other industries or smaller companies, but was not helpful

in achieving the aims of this chapter. We briefly mentioned the possibility

of using a continuous time model, it would be interesting to compare the re-

sults of similar simulations using each type of model. This would also make

choosing the time step size unnecessary. This model also does not include

the costs of lost “goodwill” and reputation, focusing solely on the cost of

product loss and reducing this. If we were to include reputation effects, the

value of traceability may in fact be higher.

This chapter fills a gap in traceability literature by using a stochastic model

to investigate the value of traceability to a supply chain. There is still plenty

of scope for future research into the effects of traceability throughout the

supply chain, possibly extending the model to follow products to comple-

tion, retail, and potentially all the way to the customer. Increasing the

resolution of the model to follow individual product locations more closely,

for example modelling each tanker individually, is another direction future

research could take. This model serves as a good starting point to further

investigate traceability in dairy, extending this research in either direction.



Chapter 4

Recalls, Storms and Import

Bans: The Impact of Shocks on

Share Prices in The New

Zealand Dairy Industry

4.1 Introduction

Information regarding how the stock market reacts to shocks has many uses.

One such use is in influencing decisions around safety and quality control sys-

tems (Salin & Hooker, 2001). Assessing the economic impact of food recalls,

for example, necessitates a thorough understanding of the costs incurred for

the firms involved. This however requires access to firm-level data that is

generally not available (Pozo & Schroeder, 2015). How the stock market

reacts to recalls of varying size, scope, and resolution time has particular

importance for designing traceability systems. Such data can inform on the

value of maintaining traceability standards. The reason behind the recall,

and how different types of recalls influence stock price are also useful for

determining what aspects of products companies should seek to control and

mitigate most (through traceability or other means). In this chapter we in-

vestigate the behaviour of Fonterra’s share price returns surrounding various

shocks, including recalls, adverse weather events, and global demand shocks.

In the remainder of this introduction we discuss previous literature in assess-
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ing the impact of shocks on shares prices in production companies.We follow

this with an introduction to the New Zealand dairy industry and how it fits

into the stock market. In Section 4.2 we introduce each of the events we

will be investigating. These include product recalls, adverse weather events,

and events that affect global dairy supply and demand. We are interested

in how the stock market might react differently to different types of shocks.

In Section 4.3 we discuss the method for conducting this analysis and the

data we use. The analysis and results are presented for each group of events

in Section 4.4. We briefly discuss the implications of these results as they

arise. Finally, we discuss the limitations of this research and our conclusions

in Section 4.5.

4.1.1 Assessing the Impact of Shocks on Share Prices

In this section we discuss some of the existing literature assessing the im-

pact of shocks on share prices and the methodology they use. Brown &

Warner (1985) state that the most efficient indicator of changes in financial

performance, due to an event, is the reaction of stock prices.

Though there are many studies assessing the impact of recalls on consumer

demand and shareholder wealth, these primarily consider the automobile

and pharmaceutical industries. Krieger & Chen (2015) analyse the impact of

aircraft accidents on their manufacturer’s stocks. They find a significant neg-

ative impact immediately follows each accident, however whether the stocks

continue to fall or recover quickly over the next few weeks shows strong cor-

relation with whether the manufacturer is judged to have a potential link to

the incident.

Previous research on consumer food safety preferences has generally occurred

at the market level, focussing on reactions to risk for commodity groups,

rather than for particular companies. Salin & Hooker (2001) use a partial

event analysis technique to examine the cost of food recalls from the per-

spective of capital markets. They specifically investigate the firm-specific

repercussions of microbiological contamination incidents. They conduct an

event study of stock returns to examine the reactions of shareholders. In

some cases they saw a drop in returns to shareholders, but found no dis-

cernible market reaction in others. The smaller firms appeared to be the
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most affected, they saw a steep drop in market values immediately following

a food recall. The methodology used is relatively straight forward, however

the simplicity of the models they use and the resulting low R2 values may

lead to underestimation of the market reaction. Pozo & Schroeder (2015)

investigate how certain characteristics of meat and poultry recalls affect the

magnitude of stock price reactions. They initially use an event study to esti-

mate the cumulative average abnormal returns, then assess the relationship

between these and relevant recall characteristics. They find that larger recalls

have a greater negative impact on stock price, but interestingly, recurrent re-

calls have a lesser effect. It appears experience in dealing with recalls has a

positive impact. Each subsequent recall may also have less individual influ-

ence, as the likelihood of recalls is already incorporated into the share price.

The volume of media coverage surrounding the recall was also found to have

a proportionally negative impact on stock price. Their work highlights the

advantage of estimating pooled models, as opposed to cross-sectional. The

study is limited to short term price reactions, which means any longterm

effects of the recalls may not be seen. A different approach would be needed

to measure these effects accurately.

Gao (2011) investigates the stock market response to the 2008 China

melamine milk scandal. They use an event approach and a generalised

autoregressive conditional heteroskedasticity (GARCH) model to examine

asymmetric impacts of the scandal on the level and volatility of dairy com-

pany stock prices. Their results suggest that overseas stock markets were

more responsive to the contamination announcement compared to those

traded in China. These foreign markets were slower to respond when posi-

tive information regarding product safety was released. All of the companies

experienced a drop in stock prices while waiting for test results. Following

verification of contaminated products, those companies involved saw a fur-

ther drop, while those with no contaminations rebounded to pre-event levels.

Despite being the core foreign partner to the first dairy company in China

found to have contamination, Fonterra was not included in this analysis.

Fonterra’s trading structure has changed since this study was done however,

becoming more relevant to this style of investigation.

Production delays can also cause a reaction in the share markets, particularly

in perishable food supply chains. Hendricks & Singhal (2003) estimate the
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effect of supply chain glitches on shareholder wealth. Focusing on glitches

that result in production or shipment delays, they find significant decreases

in shareholder value following glitch announcements, regardless of who is re-

sponsible for the glitch. Alves et al. (2015) use structural equation modelling

to examine the effect of governance rules on share price and liquidity. They

construct a voluntary disclosure index, which they use to analyse indirect

relations through voluntary disclosure of information and organisational per-

formance. They conclude that ownership structure directly influences share

price and liquidity. Firms with high levels of disclosure tend to have a lower

bid-ask spread, while firms with high ownership concentration have less trad-

ing, increased bid-ask spread and reduced liquidity.

Hanson et al. (1993) use an input-output model to analyse cost linkages

between energy and other sectors. then, using United States Department

of Agriculture/Economic Research Service computable general equilibrium

model, they to analyse the sectoral effects of a world oil price shock under

different scenarios. Their costs analysis suggests there is a negative effect on

agricultural sectors when there is an oil price shock. Dairy and livestock in

particular experience a decline in output, they do show a rise in price, but a

decline in value added and sectoral income is observed alongside this.

Share prices may also be affected by adverse weather conditions. The impact

of hurricanes on the stock returns of large American energy companies is

measured by Liu et al. (2015). They found very different results depending

on how the company in question produced energy. In the case of renewable

energy, an increase in cumulative average abnormal stock returns was seen in

the days right after the event, before beginning to decrease, where as other

energy sources saw a decrease beginning immediately after the event.

4.1.2 The New Zealand Dairy Industry

Dairy is an important industry in New Zealand. Dairy production contributes

$7.8 billion to New Zealand’s total gross domestic product (GDP), approx-

imately 3.5%. In terms of exports, it currently accounts for 29% of export

dollars coming into the country (Ballingall & Pambudi, 2017). Around 97%

of dairy farmers in New Zealand sell their milk through Fonterra Cooperative

Group (Jiang & Sharp, 2014). Any significant financial impact on Fonterra
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will impact the whole country.

Fonterra was formed in 2001, from the merger between Kiwi Cooperative

Dairies Limited, the New Zealand Cooperative Dairy Company Limited, and

the New Zealand Dairy Board. It is a farmer owned cooperative, all holders

of Fonterra Cooperative Group shares (FCG) are dairy farmers supplying

Fonterra (Ballingall & Pambudi, 2017). Farmers can choose to convert shares

to freely traded units in the Fonterra Shareholders Fund (FSF), traded on the

New Zealand Stock Exchange (NZX) and Australian Stock Exchange (ASX).

The price of New Zealand traded FSF units is highly correlated with the price

of FCG shares. The FSF units traded on the ASX are not considered in this

thesis. Farmers are required to hold at least one share for every kilogram of

milk solids supplied (Jiang & Sharp, 2014). Initially these shares were set

at a nominal value, as they had been in the previous cooperatives. Shares

were only exchanged vertically, between farmers and Fonterra. Increasing

challenges for Fonterra from 2007, together with shares being strictly linked

to production, led to farmers being required to sell shares and Fonterra to

purchase them under the less than favourable conditions associated with the

global financial crisis. These challenges pushed Fonterra to change their

capital structure. In 2009 ‘dry shares’ were introduced, allowing farmers to

hold shares in excess of their production. This required the unbundling of

payment for milk supply from dividend on shares. Next, by allowing farmers

to trade shares amongst themselves, the obligation for Fonterra to issue and

redeem shares was removed. From December 2012 farmers have been able

to trade FCG shares amongst themselves, and convert these shares to FSF

units for public trading.

China is consistently the largest importer of New Zealand dairy products.

Table 4.1 shows the value exported to specific countries from 2013 to 2016.

Years run from 1 July to 30 June (MFAT & Statistics New Zealand, 2016).

Only countries that were in the top five in terms of export value in at least

one of these years are shown.

The United States are consistently second in terms of export value, but re-

ceive a very different mix of products compared to China. The top dairy

exports to China are milk, cream, and concentrated products, followed by

butter products. The United States receive mostly casein and caseinate prod-

ucts; these are used in a variety of applications, including but not limited to
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food products. Table 4.2 shows the value exported by product type. The av-

erage value exported per year from 2013 to 2016 in Millions of New Zealand

dollars, is given for the top three export destinations for each product cate-

gory.

The largest export category is milk, cream, and concentrated products, which

is dominated by China. China is the only country that remains in the top 3

for export value in all four product categories.

4.2 Events

Here we provide a brief introduction and some background, for each event

investigated. We analyse the impact of three product recalls, three adverse

weather events and two external events that affected the global dairy market.

We are limited in our choice of events, by the time Fonterra’s current share

trading system has been operating. This is not an exhaustive list of all the

potential shocks occurring over this time period; we have selected events

based on duration, spread, infrastructure damage, and media coverage. The

potential for overlap in estimation or event windows was also considered in

the final selection of events.

4.2.1 Product Recalls

We investigate three product recalls of varying scope. Ranging from affect-

ing New Zealand sold product only in the Anchor and Pams cream recall,

through to the broadly exported product involved in the 80% whey protein

concentrate (WPC80) contamination incident. These were Fonterra’s only

product recall events to have taken place since the current share trading

system came into effect.

Mainland cheese recall

This recall involved Mainland tasty cheese slices. Mainland is one of

Fonterra’s major brand names in New Zealand, specialising in cheese and

butter. The announcement regarding a packaging defect was made on the



126 CHAPTER 4. RECALLS, STORMS AND IMPORT BANS

M
ilk

,
C
re
a
m

&
B
u
tte

r
C
h
e
e
se

&
C
a
se
in

&
C
o
n
ce

n
tra

te
s

P
ro

d
u
cts

C
u
rd

P
ro

d
u
cts

C
a
se
in
a
te
s

C
o
u
n
try

V
a
lu
e
(%

)
R
a
n
k

V
a
lu
e
(%

)
R
a
n
k

V
a
lu
e
(%

)
R
a
n
k

V
a
lu
e
(%

)
R
a
n
k

C
h
in
a

2,789(36%
)

1
295(13%

)
1

176(11%
)

3
128(13%

)
2

J
a
p
a
n

44(0.6%
)

16
30(1.3%

)
19

303(20%
)

1
111(11%

)
3

U
S
A

13(0.2%
)

19
95(4.1%

)
7

57(3.7%
)

8
349(34%

)
1

U
A
E

470(6.0%
)

2
69(3.0%

)
13

19(1.2%
)

14
0(0.0%

)
23

E
g
y
p
t

128(1.6%
)

14
162(7.0%

)
2

39(2.5%
)

10
4(0.4%

)
15

A
u
stra

lia
57(0.7%

)
15

91(3.9%
)

8
241(16%

)
2

14(1.4%
)

12
M

a
la
y
sia

378(4.8%
)

3
61(2.6%

)
16

38(2.5%
)

11
18(1.8%

)
11

Ira
n

11(0.1%
)

21
129(5.6%

)
3

0(0.0%
)

−
0(0.0%

)
−

T
o
ta
l
V
a
lu
e

7,852
2,302

1,550
1,015

T
ab

le
4.2:

A
vera

g
e

valu
e

of
d

airy
ex

p
orts

b
y

p
ro

d
u

ct
ty

p
e

(N
Z

$(M
illion

))
from

2013
to

2016



4.2. EVENTS 127

22nd of May 2013 (MPI, 2016). This was the second recall involving Main-

land cheese slices in two years (Fox, 2013). The recall was precautionary

due to a packaging defect (MPI, 2016). Just one batch of cheese slices was

affected. The affected product was mainly restricted to the North Island

of New Zealand, though some was exported to Fiji (Fox, 2013). This re-

call received some media coverage, but this was mostly just repeating the

information released in the recall announcement made by the Ministry for

Primary industries.

Whey protein contamination incident

On August 3rd 2013, Fonterra released a statement concerning three batches

of (WPC80). They were concerned the product may be contaminated with a

botulism causing bacterium, Clostridium botulinum. This was a precaution-

ary recall, but Fonterra was uncertain about the exact location of affected

product, and where it may have been used as an ingredient.

In May 2012, a torch was sucked into a processing machine at Fonterra’s

Hautapu plant. The plant was manufacturing WPC80 at the time. Late in

2012 a customer rejected some product due to high levels of sulphite reducing

clostridia. In March 2013 Fonterra launched a technical investigation, follow-

ing advice that the contaminant may be a botulism causing bacteria. Results

of testing were inconclusive. Intermittent discussions were held throughout

May and June 2013 regarding the rejected product and other affected product

that had been sold. Some limited effort to trace the product were made. On

June 26th 2013, AgResearch at Massey University was commissioned to test

explicitly for Clostridium botulinum, despite not being accredited for these

tests. On July 31st 2013 AgResearch ‘confirmed’ Clostridium botulinum was

present in the affected product. Fonterra initiated a precautionary recall

on August 3rd 2013. Finally, twenty five days later on August 28th 2013,

Fonterra announced that the affected product had never been contaminated

with Clostridium botulinum, but instead with Clostridium sporogenes, which

does not cause botulism in humans (Stojkov et al., 2016).

Affected product was manufactured into a bulk ingredient powder and used

in infant formula, follow on formula, and grow up milk products, for Nutricia.

These products were confirmed as distributed to several countries, including
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Australia, China, and Hong Kong, as well as within New Zealand (WPC

2013 Response Team, 2013).

Anchor and Pams Cream Recall

Anchor is a major Fonterra brand in New Zealand. Pams is a budget brand

who source their dairy products from Fonterra. This recall was announced on

the 13th of January 2014 due to the presence of E. coli discovered in product

tests. Four batches of cream were affected, packaged in both 300ml and 500ml

bottles. A total of 8,700 bottles were recalled, though distribution was limited

to the upper North Island of New Zealand. There was a relatively large

amount of media coverage surrounding this recall, particularly considering

the limited volume of product involved. Occurring only a few months after

the whey protein incident, there was a lot of discussion regarding potential

loss of consumer confidence in Fonterra.

4.2.2 Adverse Weather Events

In this section we describe three storms that affected different regions of New

Zealand. We considered all of the adverse weather events listed in the New

Zealand historic weather events catalogue between 1 March 2013 and 7 April

2017. This is a catalogue of major weather events in New Zealand (NIWA,

2016). Based on conversations with Fonterra personnel, and the nature of an

event study, we decided to exclude long term events such as droughts from

our analysis. The weather events were then ranked based on the damage they

caused in significant dairying regions. The three storms that impacted the

most on pasture and farm infrastructure were chosen for this analysis. In each

case flooding was a major issue, causing damage to pasture, infrastructure

and limiting access. Loss of power is another significant issue, making it

difficult to keep milk at an acceptable temperature for collection, leading to

loss of product.

September 2013 Storm

From September 10 to September 12, 2013, an active front crossed New

Zealand, bringing strong winds, heavy rain, and thunderstorms. Over forty
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thousand lightning strikes were recorded over the South Island on the 10th

of September (NIWA, 2016). Farms in the Canterbury area were hardest hit,

with widespread damage to property and powerlines between Darfield and

Hororata (Radio New Zealand, 2013). More than eight hundred irrigators

were blown over and severely damaged by the strong winds. This damage

had serious consequences for farm irrigation and effluent disposal, taking

several months to repair. Insurance claims totalled $74.5 million, over half of

which was for damage to commercial materials, including farm irrigators and

silos (NIWA, 2016). Many farms were left without power for days, struggling

to milk their cows and to keep the milk cold enough for collection. One

farm working with a generator reported having $30,000 of milk rejected by

a tanker because it was too warm (Anderson, 2013).

July 2014 Northland Storm

Over four days from 8 July 2014, Northland was subject to severe gales and

prolonged heavy rain. Roofs were blown off houses, and over thirteen thou-

sand households were without power, with the rural areas around Kaipara

and Whangarei the worst hit. There was heavy rainfall throughout the re-

gion; 159mm of rain fell in Kaitaia and 117mm in Kerikeri. DairyNZ esti-

mated five thousand hectares of grass on dairy farms was under water for up

to ten days, taking three months to become productive again (NIWA, 2016).

March 2016 Storm

Extreme weather affected much of the country on 24 March 2016. The West

Coast and Nelson areas in the South Island were affected by flooding. A local

state of emergency was declared on the West Coast after nearly two hundred

people were evacuated (Radio New Zealand, 2016). Auckland and Northland

were subjected to strong winds. The worst hit areas were in Northland, hit

by high winds and heavy rain (NIWA, 2016). At one point 24,000 people

in the Auckland and Northland regions were without power. Many of these

affected regions are strong dairy farming communities, particularly the West

Coast and Northland, where many farmers were affected by the power cuts.
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4.2.3 Global Supply and Demand Shocks

International events that impact the global supply of milk have the potential

to affect Fonterra’s share price. particularly as so much of Fonterra’s pro-

duction contributes to the global supply. Fonterra exports 95% of the dairy

goods they produce (MPI, 2014), making up over 18% of global milk exports

(Workman, 2017). We describe in this section two such events. Both events

resulted in an increase in global milk supply, but for very different reasons.

The circumstances surrounding each of these events occurring was also very

different.

Russian Ban on Farm Imports

On 6 August 2014, Moscow announced a ban on agricultural imports. Start-

ing on 7 August 2014, the Russian Federation introduced import restrictions

on a range of agricultural products (European Commission, 2017b), including

cheese and milk. Following sanctions placed on Russia for their support of

pro-Russian separatists fighting the Ukraine government forces (Gray, 2014),

imports from Australia, Canada, the European Union, America and Norway

were banned (Boulanger et al., 2015). New Zealand was, and still is, exempt

from the ban. The ban on European Union imports has been extended sev-

eral times and is currently in place until the end of 2017. In January 2017,

The Russian Deputy Prime Minister suggested the sanctions might be lifted

in 2018. Product produced by the banned countries, that would normally

have gone to Russia, suddenly became surplus in the global dairy market.

Russia is the second largest global importer of dairy products after China.

The equivalent of 2 billion litres of milk was now looking for alternative

markets. The negative impacts of the food import ban on Russian domestic

markets have forced the Russian government to seek out new trading partners

(Khachaturyan et al., 2017).

The next international dairy auction saw prices drop by 6%. In their August

2014 forecast release, Fonterra maintained their farmgate milk price at $6 per

kg MS for 2014/15. This was labelled as optimistic by some commentators.

ASB and Westpac put their $5.80 forecasts under review, while ANZ dropped

their forecast to $5.25 per kg MS (Gray, 2014). In their September 2014

forecast, Fonterra dropped their forecast milk price to $5.30 per kg MS, level
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with Westpac. The forecast farmgate milk price continued to drop after this,

it did not increase again at all until May 2015 (Dowson, 2017). The final

total payout for the 2014/2015 season was $4.65 per kg MS, the lowest payout

since the 2006/2007 season (Interest, 2017).

End of European Union Milk Quotas

Over the thirty years from 1984, dairy farmers in the European Union oper-

ated under the milk quota regime, restricting their production (Hunt, 2015).

On 31 March 2015, these quota restrictions were removed (European Com-

mission, 2017a). Farming groups in Ireland were celebrating (Healy, 2015),

welcoming the news along with Germany (Hunt, 2015), the Netherlands, and

Denmark (Boland, 2015). Not all farmers were so happy however, many were

worried expansion of European milk production would flood the market and

drop prices (Alltech, 2017). Globally there were similar concerns. The world-

wide dairy industry expected the increase in European dairy production to

affect dairy farmers in every corner of the globe (International Dairy Foods

Association, 2010; Kharpal, 2013). Given that the removal of production

caps in the European Union was known about well in advance, this event is

likely not a good candidate for an event study. It was not a sudden unex-

pected event like the other events we consider in this chapter. We have still

chosen to conduct this analysis in this case however, to determine if there

are any distinguishable reaction in the share price above what was already

priced in as shareholders prepared for the cap removal.

4.3 Methodology and Data

Event studies have been used extensively for research in accounting, finance,

and economics (Gao, 2011). The approach uses financial market data to mea-

sure the impact of specific events on the value of a specific firm (MacKinlay,

1997). In this case we are interested in the value of Fonterra. The impact

of an event on firm productivity will be immediately reflected in their stock

prices. Therefore, we can construct a measure for the economic impact of

product recalls using stock prices observed over a relatively short timeframe

(MacKinlay, 1997). The events we investigate are described in Section 4.2.
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4.3.1 Data

We use several sources of data with an ordinary least squares (OLS) regres-

sion to estimate our ‘normal’ returns model. FCG share prices were obtained

from NZX Company Research. Prices are only reported for the days the mar-

ket was open. Daily returns were calculated as the proportional change in

closing share prices between days. For example the return for day t is given

by

Rt =
Closet − Closet−1

Closet−1

Table 4.3 shows the descriptive statistics on daily returns before each shock.

Where possible we have used a period of 150 days before each shock; in

the case of the Mainland cheese recall and the WPC80 contamination event

however, a smaller period of time was necessary due to their occurrence

relative to the start of the current share trading system.

Unit Root Tests

To ensure that our estimation method is meaningful we must first conduct

tests for the presence of a unit route in our daily returns series. We use

both the augmented Dickey-Fuller (ADF) test (Said & Dickey, 1984) and the

Kwiatowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992).

The ADF test is an augmented version of the Dickey-Fuller test for larger,

more complex, time series models. The null hypothesis tested assumes there

is a unit root present and the data series is not stationary (Said & Dickey,

1984). The KPSS test is used to assess a null hypothesis that a time series

is stationary around a deterministic trend, meaning no unit root is present

(Kwiatkowski et al., 1992). The results of these unit root tests are presented

in Table 4.4. The p-values for each of the ADF tests are very small, and each

such test shows a test statistic much more negative than the relevant critical

value. This means in each case we can reject the null hypothesis that the

series has a unit root. The KPSS tests all report the maximum p-value of

0.1 and a test statistic below the critical value of 0.146. Thus in each case

we fail to reject the null hypothesis that the series is stationary.

The results of these tests imply we can consider all the data used in the

estimation windows as stationary, with no unit root present. Therefore OLS
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regression is suitable in this case and will not be subject to spurious regression

problems.

Regression Data

The variables used in the OLS regression models throughout the rest of this

chapter are described as follows:

∆NZX50 The S&P/NZX 50 index is a measure of the 50 largest eligible1

stocks listed on the main board of the New Zealand stock exchange.

Fonterra’s stocks are not eligible (NZX, 2017b). We use the daily re-

turns for this index in our model estimation. The NZX50 index was

obtained from NZX company research (NZX, 2017a).

∆Production Because Fonterra’s suppliers are required to hold shares pro-

portional to their milk production each season (Fonterra Co-operative

Group, 2016b), we consider production as a potential predictor of share

price. Monthly data2 is obtained from the Dairy Companies Associa-

tion of New Zealand. We calculate the proportional change from the

previous year for a given month to use in the model estimation.

GDT The Global Dairy Trade (GDT) price index provides a reference for

the movement of global dairy prices between GDT trading events.

While each individual product traded at GDT events has its own in-

dex, the GDT Price index3 measures the overall price movement for all

of them (GDT, 2016b). Auctions, referred to as GDT trading events,

operate twice a month (GDT, 2016a).

WMP Whole milk powder (WMP) is a major product traded at GDT

events. We consider the WMP price index3 as a variable in our model

estimation in place of GDT depending on which fits the data better.

1Only stocks listed on the NZX Main Board are eligible, Fonterra shares are listed
in a seperate market. A full explanation of stock eligibility for NZX indices is avail-
able here http://us.spindices.com/documents/methodologies/methodology-sp-nzx

-index.pdf
2The relevant production value for a given month is used for every day in that month,

to work in with the daily nature of the other data being used.

http://us.spindices.com/documents/methodologies/methodology-sp-nzx-index.pdf
http://us.spindices.com/documents/methodologies/methodology-sp-nzx-index.pdf
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AMF Anhydrous milk fat (AMF) is another major product traded at GDT

trading events. The AMF price index3 is considered in place of the GDT

price index or the WMP price index depending on how significantly the

model fit is affected.

∆Brent Oil Oil price is used as a prediction variable because of its effect

on milk demand. When the price of oil drops below a certain level

more oil is used for fuel in place of that derived from grain. This grain,

originally intended as fuel, is then fed to cows resulting in higher milk

production, creating a surplus global milk supply and a drop in global

milk prices (Newman & Mounsey, 2015). Brent oil serves as a major

benchmark price for oil worldwide as its value is used to price two thirds

of internationally traded crude oil (One Financial Markets, 2017). We

use the daily returns on this price as an estimator in our models.

∆USD A lot of trade is conducted in American dollars (USD), including

GDT trade events. America is also consistently the destination for the

second highest value of New Zealand dairy exports. We use the daily

returns for the USD exchange rate with the New Zealand dollar (NZD)

as a variable in our models.

∆CNY China is New Zealand’s second largest trading partner for exports.

Milk powder has been the largest export commodity since 2008 (Statis-

tics New Zealand, 2016). We therefore use the returns on the Chinese

yuan (CNY) exchange rate with the New Zealand dollar as a variable

in our models.

∆EUR Fonterra does not have a large dairy trade with Europe, however

the European Union is another major exporter of dairy and has been

projected to surpass NZ as the largest by 2026 (Holloway, 2016). Being

such a large exporter we use for the daily returns in the Euro exchange

rate with NZD as a variable in our models.

∆LKR The returns for the exchange rate between the Sri Lankan Rupee

(LKR) with the NZD is considered as they are a long standing major

market for Fonterra. Dairy exports to Sri Lanka are worth $300 million

to New Zealand annually (Draper, 2016). The Sri Lankan rupee is

3An explanation of how the GDT price indices are calculated is given in appendix 4.A.
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periodically pegged to the USD, so there may be some association. It

is however allowed to float freely between pegging and is a significant

variable in many regressions where the USD is not. We have therefore

chosen to keep the Sri Lankan rupee daily returns as a variable in our

regression analyses.

∆CLP The proportional change in the Chilean peso (CLP) is considered

in our analyses. Fonterra owns 99.4% of Chile’s main dairy brand,

Soprole (Fonterra Co-operative Group, 2017b). While Chile is not a

consistently high value destination for New Zealand Dairy exports, they

did receive the fifth highest value of cheese and curd products exported

in the year ending June 2014.

∆MYR Fonterra is the leading supplier of dairy ingredients to Malaysian

food and beverage manufacturers (Fonterra Co-operative Group,

2017b). Malaysia received the third largest value in New Zealand ex-

ports of milk, cream, and concentrated products through the years 2013

to 2016. During the same period Malaysia averaged the fifth highest

value of total dairy exports from New Zealand. We therefore consider

the proportional change in the Malaysian ringgit (MYR) in our models.

∆JPY Japan was the destination for the third greatest value of total New

Zealand dairy product exports over the years 2013 to 2016. Japan

consistently receives the largest value of cheese and curd products. Be-

cause of this we consider daily returns for the the Japanese yen (JPY)

in our regression analyses.

∆AUD Australia is Fonterra’s largest milk pool outside of New Zealand and

also the recipient of the second largest value of New Zealand cheese and

curd exports. The proportional daily change in the exchange rate with

the Australian dollar (AUD) is thus considered as a variable in our

regression analyses.

∆PHP The Phillipines received the fourth greatest value of total New

Zealand dairy exports in the years ending June 2013 and 2014. Be-

cause of this we consider the daily returns on the exchange rate with

the Philippine peso (PHP) as a variable in our models.
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Month Dairy is a very seasonal industry, with huge variation in production

throughout the year. Therefore we use a dummy variable for each

month of the year. We also allow for interaction terms between month

and several relevant variable such as production, oil price, and currency

exchange rates.

Several other predictor variables were considered but not found significant.

These include the forecast farmgate milk price, the skim milk price index,

and the West Texas intermediate oil price. Several other currency exchange

rates for markets important for Fonterra were also considered.

4.3.2 Model Construction

We use two types of model for comparison in our event analysis, an ‘over-

arching’ model estimated over the whole length of the data, and a specific

‘individual event’ model, estimated over fifty to seventy five days preceding

the relevant event.

It is critical to isolate the day on which the stock market became aware of the

shock, in order to correctly estimate any effects. An efficient market will re-

act to news quickly, so a window that begins too late will miss any immediate

effects. Depending on the type of shock, it is also possible that information

will leak through to the stock market before any official announcement. We

can allow for this by starting the event window an appropriate number of

days before the shock announcement (MacKinlay, 1997). This is particu-

larly applicable for storms, which are normally forecast. Among the recalls

we investigate, none appear to have been leaked, though the WPC80 con-

tamination incident involved several different parties outside of Fonterra in

detecting the problem.4 This increased the potential for rumours to get out

before the official announcement (WPC 2013 Response Team, 2013). The

removal of production caps in the European Union was known about well

ahead of time, but there was potentially doubt around whether it would ac-

tually happen. We do not know of any leak regarding the Russian ban on

4An analysis of the WPC80 contamination incident by Stojkov et al. (2016) suggests
a decline in exports that started sometime before the contamination and recall were an-
nounced.
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farm imports, however it was largely a response to sanctions, to which some

retaliation was likely expected.

In the case of the overarching model, a twenty five day period surround each

event is excluded from the model estimation, five days before to twenty days

following, (t−5, t+ 20), to allow for valid comparison, where t is the the day

of the event. The estimation period for the seventy five day model would be

(t−81, t−6), accounting for a five day pre-event window. The model is then

extended over the event window, in this case (t−5, t+20), and the estimated

returns are compared with the actual returns. In the case where other events

may occur within an estimation window, the entire event window associated

with the ’interrupting’ event is excluded from the model estimation. We

use an OLS regression to estimate these models. We mentioned in Section

4.1.1, the use of a GARCH model by Gao (2011). For most of our models

however, White’s test does not detect the presence of heteroskedasticity, thus

OLS regression was deemed sufficient in this case (White, 1980). The general

model specification for the estimated normal returns R̂t is

R̂t = α +

j∑
i

βixit + εt

where α is the intercept value, xit is the value of a given variable i on day t

with βi describing its relationship to the daily returns, and εt is the residual

value for the model at time t.

Each model is built using a bottom up approach. Each variable was re-

gressed against the share price return data in the appropriate estimation

window, the variable that best fit the share price data was then included as

the first variable in the model. The square of each variable is also considered.

Subsequent variables were then added to the model in order of how well they

fit in the individual regressions and either confirmed or rejected based on

how much they improved the existing model. The model is deemed complete

when no other variable improves the model to an extent that is worth the loss

of degrees of freedom. To avoid issues with significant correlation between

variables, specific variable are excluded from being used in the same model,

this applies particularly the GDT price and its components.
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4.3.3 Event Study Methodology

Event-study methodology is outlined in Campbell et al. (1997). For each

event we estimate the cumulative abnormal returns relative to each of the two

models. We estimate the abnormal rate of returns (ÂRit) as the difference

between the ‘normal’ rate of returns, as predicted by the model, and the

actual rate of returns, for time t, in the event window (Gao, 2011), as in

Equation 4.1, where i denotes the specific event effect we are analysing and

t is the day.

ÂRit = Rit − R̂it (4.1)

CÂRi =

t2∑
t1

ÂRit (4.2)

The cumulative abnormal returns is given by CÂRi in Equation 4.2. It is the

sum of the abnormal returns from day t1 to day t2. The opening of the event

window is denoted by t1, and the closing by t2. The statistical precision of

these abnormal returns is strongly dependent on the fit of the normal returns

model, and the length of the post-event window.

The variance of the cumulative abnormal return is given by

Var[CARi] = Var

(
t2∑
t1

ARit

)

=

t2∑
t1

Var(ARit)

= (t2 − t1 + 1)σ2
εi

where σ2
εi

is the variance of the residuals εit from the normal returns regression

model (Salinger, 1992). We use the value for the cumulative normal returns,

as obtained from Equation 4.2, to test the null hypothesis that the abnormal

returns are not statistically distinguishable from zero (MacKinlay, 1997), as

stated in Equation 4.3.

H0 : CARi = 0 H1 : CARi 6= 0 (4.3)
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We estimate the cumulative abnormal returns over several time spans pre-

ceding and following each event and test them for statistical significance.

Pre-event windows of five days, three days, and one day are analysed along

with post-event windows of three days, five days, ten days fifteen days, twenty

days, and twenty five days. The significance of these cumulative abnormal

returns is calculated using the test statistic in Equation 4.4. This significance

is dependent on the fit of the model in the estimation window. The formula

used for the test statistic θi, is

θi =
CÂRi√

Var(CÂRi)

=
CÂRi√

(t2 − t1 + 1)σ2
εi

(4.4)

Under the null hypothesis, θi has the Student’s t distribution with T − 2

degrees of freedom, where T is the length of the pre-event estimation window

(MacKinlay, 1997).

4.4 Analysis and Results

In this section we analyse the impact of each shock on FCG share price

returns. For each shock we compare the actual returns to normal returns as

predicted by an ‘overarching’ model and an ‘individual event’ model in order

to estimate the abnormal returns. Each model is estimated using an OLS

regression.

4.4.1 Overarching model

We first fit a model to the whole daily returns on FCG share price data set,

between 1 March 2013 and 7 April 2017. While Fonterra’s current stock trad-

ing system came into effect in December 2012, there was rather intermittent

trading initially. Of the 62 trading days up to 1 March 2013, only 26 days saw

any movement of stock. Therefore we choose to start estimating our models

once trading appeared more settled. We exclude the days surrounding each

event in this regression, specifically the five days before each event and the

twenty days following. Using the predictor variables described in Section 4.3



142 CHAPTER 4. RECALLS, STORMS AND IMPORT BANS

we specify the overarching model below

R̂t = α+ β1∆NZX50t + β2(∆Production)2 + β3(WMP)2 + β4(∆CNY)2 + β5(∆LKR)2

+

12∑
i=2

(γ1iProductionit + γ2i∆Brent Oilit + γ3i∆USDit + γ4i∆EURit) + εt

(4.5)

where i = 2, ..., 12 corresponds to the months February through December.

We allow some interactions with the month of the year as dairy production

and exports are very seasonal. It is logical that production and exchange

rates will matter more at the times of the year when the most product is

being produced and exported to relevant regions. The parameter values and

standard errors resulting from the OLS regression on are given in Table 4.5.

Parameter Standard
Variable βi Error
∆NZX50 −0.10517∗ 0.06528

(∆Production)2 0.04313∗∗ 0.02331

(WMP)2 −0.00142∗∗ 0.00070

(∆CNY)2 12.14775∗ 6.37328

(∆LKR)2 −19.39685∗∗∗ 7.28947
∆Production×Month − −
∆Brent Oil×Month − −
∆USD×Month − −
∆EUR×Month − −
Intercept 0.00193∗∗ 0.00078
R2 0.095
n = 801
∗ statistically significant at the 10% level
∗∗ statistically significant at the 5% level
∗∗∗ statistically significant at the 1% level

Table 4.5: Parameters of the normal returns model for the overarching model. In
the case of the month interaction terms, see Appendix 4.B for the full model.

White’s test indicates the presence of heteroskedasticity, therefore we use

heteroskedasticity and autocorrelation consistent (HAC) standard errors in

this model (White, 1980).

We will use this model, along with models derived for the time period im-

mediately preceding each event, to estimate the impact these shocks have on
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FCG share returns. The explanatory power of this model is relatively low

(R2 < 0.1) meaning less than 10% of the variation in the data is explained

by this model. The test statistic we use however (Equation 4.4), takes into

account the fit in the estimation window. This reduces the likelihood of type

I errors where we might see significant abnormal returns that are not actually

significant. The potential for type II errors is increased however, meaning

if we see significant abnormal returns it is likely that they actually are sig-

nificant, however some significant abnormal returns that would be detected

with a better fitting model may be missed.

4.4.2 Product Contamination and Recalls

In this section we analyse the cumulative abnormal returns surrounding each

of the recall incidents we have chosen to investigate. We estimate individual

event models for the 2013 Mainland cheese recall, the WPC80 contamination

incident in 2013, and the Pams/Anchor Cream Recall in 2014. These mod-

els, along with the overarching model from Section 4.4.1, are then used to

estimate the abnormal returns surrounding each event and their significance.

Individual Recall Event Models

The mode specification for the individual recall events is

R̂t = α + β1∆USDt + β2∆JPYt + β3GDTt

+ β4(∆Brent Oil)2 + β5(EUR)2 + εt

The parameter values are estimated for each individual recall event model

separately. Table 4.6 shows the parameter values and standard errors for

each individual recall event. A seventy five day estimation window is used

where possible, though in the case of the Mainland cheese recall, only fifty

days of data is suitable for use in the estimating the model. Because of the

seasonal nature of dairy, we cannot use too long an estimation period without

accounting for the time of year. Unless the estimation period is longer than a

year however including seasonal parameters means we will likely be applying

the seasonal model to a time we have not estimated seasonal parameters for.
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This length of estimation window also appears to be one of several standard

estimation windows for food related events and their effect on share prices. In

particular, seventy five days is the estimation period used by Salin & Hooker

(2001).

The Mainland cheese recall was relatively small, though there was some in-

ternational distribution of product. The parameters for this model were

estimated based on the fifty days preceding the five day pre-event window

before the recall announcement. This takes us back the earliest of the FCG

returns data we are able to use. The square of the Brent oil price is the only

variable statistically significant at the 1% level for this section of the data.

Oil prices can have a large influence on global surplus milk, so it is reasonable

that the proportional change in oil price could affect Fonterra’s share price

returns. The proportional change in the Japanese Yen is significant at the

5% level in this case; interestingly Japan consistently receives the the largest

value of New Zealand cheese and curd products. While the Chinese yuan is

not significant in the case, the proportional change in the American dollar is

significant at the 10% level. White’s test does not indicate the presence of

heteroskedasticity in this case, therefore we do not use HAC standard errors

(White, 1980).

The WPC80 contamination incident was a much larger event than the Main-

land cheese recall in terms of publicity, spread, and the value recalled. The

product was widely distributed internationally and involved bacteria with

the potential to cause serious illness. This was also an ingredient in many

other products. In order to estimate the model for the FCG returns around

this event we use an estimation window finishing five days before the contam-

ination announcement, we omit the post-event window from the May 2013

cheese recall, and continue back for a total of seventy five days. The square

of the proportional change in Brent oil price is still significant at the 1%

level in estimating the returns around the WPC80 contamination incident.

The proportional change in the Japanese yen and the American dollar are

now both significant at the 10% level. Again White’s test does not detect

the presence of heteroskedasticity, so we do not use HAC standard errors

(White, 1980).

The model for the returns around the Pams and Anchor cream recall involves

the relative change in the Euro exchange rate and the GDT price index. The
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GDT price index contains all of the AMF, butter, SMP and WMP price

indices, and in this regression is more significant as a whole than as some

combination of its parts. We use a seventy five day estimation window that

ends five days before the recall announcement. The estimation window in

this case has no overlap with either of the earlier events, therefore we do not

need to omit any days.

Recall Event Plots

We plot the actual returns along with the normal returns, as predicted by

the ‘overarching’ model and the relevant ‘individual event’ model for each

recall or contamination event.

Figure 4.1 shows the normal returns around the Mainland cheese recall, as

estimated by the model in Table 4.6 and the overarching model from Table

4.5, along with the actual FCG returns.

Figure 4.1: Actual FCG returns plotted along with the normal returns as es-
timated by the fifty day individual event model and the overarching model. The
vertical black line marks 22 May 2013, the day the Mainland cheese recall was
announced.

A visual analysis of this plot suggests there may be significant drop in returns

in the days following the recall announcement. The returns predicted by both

models hold fairly steady above the actual returns for a time following the

Mainland cheese recall announcement. In the case of the overarching model,

these higher predicted returns appear to start a few days before the recall
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announcement. This is not the case of the individual event model, which

does not show any significant deviation from the predicted normal until after

the recall announcement. This model does sit higher then the actual returns

for some time following the recall announcement. The actual returns show a

drop immediately after the recall that is not reflected in either model.

Figure 4.2 shows the normal returns predicted by each model, for the days

around the WPC80 contamination announcement plotted alongside the ac-

tual returns.

Figure 4.2: Actual FCG returns plotted along with the predicted normal returns
using the seventy five day individual event model and the overarching model.
The vertical black line marks 3 August 2013, the day the WPC80 contamination
incident was announced.

Looking at this this plot, there appears to be a significant drop in returns

in the first few days following the contamination announcement, particularly

compared to the individual event model, but things return to normal fairly

quickly. It also appears that the drop may have begun before the announce-

ment. This drop is also partially mirrored by the overarching model. There is

a series of small positive spikes in actual returns about fifteen to twenty days

after the contamination announcement, though cumulatively the abnormal

returns are not statistically significant. This incidentally starts on August

28 2013, the date the contamination was declared a false alarm. The over-

arching model seems to underestimate returns for quite some time following

the announcement.

Figure 4.3 shows the actual returns around the Pams/Anchor cream recall
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in January 2014, plotted alongside the normal returns predicted using the

relevant model presented in Table 4.6.

Figure 4.3: Actual FCG returns plotted along with the normal returns as pre-
dicted by the seventy five day individual event model from Table 4.6. The vertical
black line marks 13 January 2014, the day the cream recall was announced.

Visually there do not appear to be any significant differences between the

actual returns and the predicted normal returns, either before or after the day

the cream recall was announced regardless of whether we use the overarching

model or the individual event model.

Recall Event Cumulative Abnormal Returns

We analyse the significance of the cumulative returns around each event in

Table 4.7. Analysis is shown for five, three, and one day pre-event windows,

before the event occurred in order to asses any anticipatory response. The

event day itself is also shown along with one, three, five, ten, fifteen, and

twenty day post-event windows. The null hypothesis in each case in each

case being that cumulative abnormal returns are equivalent to zero, as stated

in Equation 4.3. ‘Over’ refers to the overarching model, we have shortened

this term for use in this and later tables.

We do not see any significant cumulative abnormal returns in the lead up to

the Mainland cheese recall compared to either model. Following the recall

we start to see abnormal cumulative returns significantly different from zero

after five days. This coincides with the bottom of the first drop in returns
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seen in Figure 4.1. These cumulative abnormal returns are significant and

negative for both models, however only at the 5% level for the fifty day

individual event model versus 1% for the overarching model. The drop is

counteracted briefly by the peak seven days after the recall announcement,

but the subsequent drops in returns on post-event days nine and twelve,

mean we see significant cumulative abnormal returns over the rest of the

twenty day post-event window. From day ten to day twenty both models

show significant cumulative abnormal returns.

As it appeared in Figure 4.2, comparison with the overarching model shows

no significant cumulative abnormal returns in the days surrounding the

WPC80 contamination announcement. Using the seventy five day individual

event model from Table 4.6 we do not see any significantly abnormal returns

before the contamination was announced. We do not see any significant

abnormal returns the day after the announcement, however the three day

post-event window shows negative cumulative abnormal returns significant

at the 1% level. This along with what we observe in Figure 4.2 suggests most

of the abnormality is due to the negative spike in returns on August 7 2013,

three business days after the contamination announcement. We did not see

this significance in comparison with ‘overarching’ model in Table 4.7, we did

see an increase in cumulative abnormal returns for the three day post-event

window, however it was not enough to be significant. We do see significant

cumulative abnormal returns at the 10% level on post-event days five and

ten, but nothing after this. Such a small share price reaction, to an event

that involved several countries and high publicity, is rather puzzling. It is

beyond the scope of this thesis, however an investigation into why we see

such a small response could prove interesting.

There is no significant departure from the predicted normal returns in the

five days prior to the Pams/Anchor cream recall announcement for either

normal returns model, meaning we are not seeing the effects of any infor-

mation leakage. The overarching model shows a negative abnormal return,

significant at the 5% level on the day of the recall announcement, while a

similar reaction is seen the day after the announcement in comparison with

the individual event model. Cumulatively both models show significant re-

turns over these two days, the overarching model at the 5% level and the

individual event model at the 10% level. The overarching model shows sig-
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nificant positive cumulative abnormal returns for the fifteen and twenty day

post-event windows. While the individual event model also shows positive

cumulative abnormal returns at this time, they are not significant at all.

If we average the cumulative abnormal returns across the recall events, we do

not see significance for any of the pre-event or post-event windows, for either

of the models. This suggests there is no consistent reaction to this type of

event.

4.4.3 Adverse Weather Events

In this section we assess the financial impact of three adverse weather events.

Each event is a storm that resulted in sustained flooding and/or significant

damage to farm infrastructure, affecting areas of New Zealand important to

dairy production.

Individual Adverse Weather Event Models

The mode specification for the individual adverse weather events is

R̂t = α+ β1∆USDt + β2∆MYRt + β3∆LKRt + β4AMFt

+ β5(∆EUR)2 + β6(∆LKR)2 + β7(∆CLP)2 + εt

The parameters, as estimated for each individual event using OLS regression,

are given in Table 4.8. A seventy five day estimation window is used in each

case.

Occurring over three days from 10 to 12 September 2013, this storm caused

significant damage to property and power lines. Canterbury farms were the

hardest hit. Being a weather event we also allow for some forecast regarding

the event as well. A five day pre-event window is used in this case. The

first column in Table 4.8 shows the linear regression model leading up to this

weather event.

The American dollar, the Malaysian ringgit, and the Sri Lankan rupee are

all significant at the 5% level for this section of the FCG returns data. The

United States is consistently the second top destination for New Zealand

dairy exports and a lot of international sales are conducted in American
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dollars. Over the 2013 to 2016 trading seasons Malaysia averages fifth in

terms of New Zealand dairy export value. Sri Lanka is a significant, though

not top five, destination for New Zealand dairy products. This market was

heavily affected by product bans in August 2013 after Sri Lanka’s ministry of

health said two batches of milk powder had tested positive for dicyandiamide,

a nitrification inhibitor used in fertilisers (Reuters, 2013). This may partially

explain the negative parameter value in this model. This also increases the

need for caution in interpreting the abnormal returns estimated using this

model. White’s test does not detect any heteroskedasticity for this model,

therefore we do not need to use HAC standard errors (White, 1980).

The July 2014 storm arrived on 8 July and lasted until 11 July 2014. Signifi-

cant damage including loss of power and flooded pasture resulted. The model

fitted to the estimation window for this event is given in Table 4.8. The sev-

enty five day estimation window leading up to the arrival of this storm gives

a model with several significant parameters. The most significant parame-

ters are the daily returns on the Euro and the Sri Lankan rupee, squared.

The AMF price index, another component of the GDT price index, is also

significant in this model. White’s test does not detect any heteroskedasticity

for this model, therefore we do not need to use HAC standard errors (White,

1980).

The third storm we analyse arrived in New Zealand on 24 March 2016. While

this storm only lasted for one day, much of the country was affected. North-

land however was the most affected region. The seventy five day model used

for this event is given in the last column of Table 4.8. In this case the square of

the Sri Lankan rupee is the most significant parameter, significant at the 1%

level. The Chilean peso is a significant estimator at the 95 % level. The year

ending June 2016 was particularly good for exports to Sri Lanka, compris-

ing fifth greatest value of milk, cream, and concentrated products exported.

The proportional change in the Sri Lankan rupee is the only other significant

parameter. Again the presence of heteroskedasticity is not detected.

Adverse Weather Event Daily Return Plots

The ‘normal’ returns, as predicted by the ‘overarching model’ and the rel-

evant individual event model, are plotted along with the actual returns for
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each adverse weather event. The returns around the September 2013 storm,

as predicted by the model in Table 4.8, are plotted in Figure 4.4 along with

the actual returns for this time period. Looking at this plot, there do not

Figure 4.4: Actual FCG returns plotted along with the returns predicted by
seventy five day event model. The first vertical black line marks 10 September
2013, the day the storm hit. The second line marks 12 September 2013, the end
of the storm.

seem to be any negative effects on FCG returns surrounding the September

2013 storm, in comparison with either the overarching or the specific indi-

vidual event model. There actually appears to be a positive effect due to

the storm in the first twelve days after it ended . These positive abnormal

returns are even more apparent in comparison with the overarching model.

After this it does not look like there was any significant impact, either posi-

tive or negative, due to this storm.

Figure 4.5 shows the returns predicted using the model presented in Table

4.8 for the July 2014 storm, plotted against the actual returns. There do

not appear to be any significant abnormal returns in the five days before

the storm or during the storm in comparison to the individual event model,

though there does appear to be a slight negative effect compared to the over-

arching model. There do appear to be sustained positive abnormal returns

in the days following the storm compared to both models. This is more

pronounced in comparison with the individual event model.

Figure 4.6 shows the normal returns for the March 2016 storm, as predicted

by the individual event model presented in Table 4.8 and the overarching
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Figure 4.5: Actual FCG returns plotted along with the seventy five day normal
returns model. The first vertical black line marks 8 July 2014, the first day of the
storm. The second line marks 11 July 2014, the end of the storm

model from Table 4.5, plotted alongside the actual returns for this time

period. Apart from a couple of spikes seen in the model prediction, the

actual returns do not seem to show any significant departure from from what

either model predicts would be normal in either the pre-event or the post-

event period.

Adverse Weather Event Cumulative Abnormal Returns

The cumulative abnormal returns from adverse weather events, for various

pre- and post-event windows, are given in Table 4.9. As stated in Equation

4.3, statistically significant cumulative abnormal returns means we can re-

ject the null hypotheses that they are zero. Again the ‘Over’ refers to the

‘overarching’ model.

Looking at the ‘overarching’ normal returns model around the September

2013 storm in the first column of Table 4.9, we see cumulative abnormal

returns significant at the 10% level for all post-event windows from three to

twenty days. For the eight and ten day windows these abnormal returns are

significant at the 5% level. This matches with the end of the two positive

spikes we see in the actual returns in Figure 4.4. Neither of the two spikes

are significant on their own however, but in aggregate they become so. In

comparison the individual event model only shows significant cumulative ab-
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Figure 4.6: Actual FCG returns plotted along with the normal returns model.
The vertical black line marks 21 March 2016, the day of the storm.

normal returns (at 5% significance) for the eight day post-event window. In-

terestingly the abnormal returns are all positive. The damage was not evenly

spread around all dairy farms in the country however. Loss of production in

Canterbury may have resulted in increased value for milk that was able to be

collected, due to perceived product shortage and demand pressures. Neither

of the models showed any significant abnormal returns in the days before the

storm arrived, suggesting there was no significant negative reaction to the

approaching storm.

We see no significant negative financial impact due to the July 2014 storm,

in fact we again see significant positive cumulative abnormal returns in the

post-event windows of length eight to twenty days, for both models. For this

storm we see larger abnormalities and higher significance with the individual

event model. Again we see two large positive spikes following the end of the

storm. In this case both spikes show individual significance. The cumulative

abnormal returns remain significant to the twenty day post-event window.

Again the storms damage was focussed on one area of the country, Northland

in this case, but with some farms needing months to recover.5 We may be

seeing such a significant positive reaction in share price again because of

restricted production increasing product value. There are also no significant

abnormal returns in the five days before the storm, suggesting no preemption

5July is still off season in terms of milk production, but production is beginning to pick
up.
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of any damage it might bring.

As suggested by the plot in Figure 4.6, there are no significant cumulative

abnormal returns for any of the event windows up to twenty days after the

March 2016 storm for either the overarching model or the individual event

model. We do see positive cumulative abnormal returns, significant at the

10% level, for three days before the storm hit when using the individual event

model. This aligns with a spike seen in Figure 4.6. It is possible there was

some sort of preemptive reaction to the storm coming, but the low significance

of the reaction and the lack of reaction following the storm suggest the storm

did not have much financial affect overall. This storm only lasted one day,

potentially reducing the effect. Also while Northland was worst hit in this

event, most of the country and dairy producing regions were affected. The

shorter length of the storm, together with its relatively even impact across

dairying regions may explain why we see little to no impact on share price

around this event.

When we look at the average cumulative normal returns over all three ad-

verse weather events we see 5% significance in the 8 day post-event window,

when using the overarching model. This coincides with the beginning of sig-

nificant cumulative abnormal returns following the September 2013 storm

and July 2014 storm. We also see 10% significance for the cumulative abnor-

mal returns in the 15 and 20 day post-event windows. This suggests we may

see some consistent positive reaction building following an adverse weather

event, particularly when resulting damage and production loss is confined to

specific regions. The loss of production in one area of the country is poten-

tially creating a supply shortage and increasing product value and therefore

increasing share price as well. Storms that bring flooding and damage to one

part of the country will also likely provide some less intense rainfall to other

areas, increasing pasture growth and production in these areas.

4.4.4 Russian Ban of European Union Farm imports

The Russian ban on farm imports, from Europe, America and other countries,

came into effect on 7 August 2014. The model specification for this event is

R̂t = α + β1∆PHPt + β2∆ASDt + β3(∆USD)2
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+ β4(∆JPY)2 + β5(∆CLP)2 + εt

The individual event model parameters, estimated using the seventy five days

preceding the pre-event window are shown in Table 4.10. The proportional

Parameter Standard
Variable βi Error
∆PHP −0.29871∗∗ 0.14367
∆ASD −0.29112∗ 0.16797

(∆USD)2 −66.67156∗∗ 29.48191

(∆JPY)2 116.92242∗∗ 45.86996

(∆CLP)2 −14.74997∗ 8.25960
Intercept −0.00051 0.00079
R2 0.202
n = 75
∗ statistically significant at the 10% level
∗∗ statistically significant at the 5% level

Table 4.10: The individual event normal returns model for the Russian ban on
European farm imports

change in the Philippine peso, along with the square of the proportional,

changes in the American dollar and Japanese yen are all significant estimators

at the 5% level. As seen in Table 4.1, the Philippines received the fourth

highest value of New Zealand dairy exports for the years ending June 2013

and 2014. The proportional change in the Australian dollar is significant

at the 10% level. Australia consistently receives a large proportion of the

cheese and curd products exported from New Zealand, second in value only

to Japan. The square of the proportional change in the Chilean peso is also

significant at the 10% level in the model. The year ending June 2014 saw the

highest annual value of New Zealand dairy exports to Chile for the period

cover in our data. Chile also received the fifth highest value of the cheese

and curd products exported in that year. Because this was a different type

of shock, we have not accounted for the storm that affected New Zealand

in July 2014. There is potential this may affect the fit of the model. The

presence of heteroskedasticity is not detected by White’s test, therefore we

do not use HAC standard errors White (1980).
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Figure 4.7 plots the predicted normal returns, as estimated by the model in

Table 4.10 and by the ‘overarching’ model from Table 4.5, for the Russian

ban on European farm imports alongside the actual returns. There does not

Figure 4.7: Actual FCG returns plotted along with the normal returns model.
The vertical black line marks 7 August 2014, the day the import ban came into
effect.

appear to be any negative impact on share price returns, in comparison with

either model, around the date the Russian farm import ban came into effect,

though there may potentially be a small positive effect cumulatively.

The value of cumulative abnormal returns for specific time windows are given

in Table 4.11. For statistically significant cumulative abnormal returns we

can reject the null hypothesis and accept that they are statistically distin-

guishable from zero. Both models show significant abnormal returns of about

2% the day before the Russian ban on European farm imports came into ef-

fect, at 5% and 1% significance for the overarching and individual event

models respectively. In the case of the individual event model, the cumula-

tive abnormal returns are significant at the 5% level from three days before

the ban. Following the ban we begin to see a positive effect of share price

returns. For the overarching model this begins the day after the ban with a

2% increase (5% significance), reaching a 9% cumulative increase in returns

for the twenty day post-event window, significant at the 1% level. In the case

of the individual event model we see significant cumulative abnormal returns

from the day after the beginning of the ban. We observe an increase in FCG

returns of almost 2% one day after the ban was implemented. This increases
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Russia Ban
i Over(%) 75 day(%)

-5 day 2.175 1.150
-3 day −0.968 −2.011∗∗

-1 day −1.716∗∗ −2.211∗∗∗

Event Window 0.999 0.710
1 day 1.732∗∗ 1.832∗∗∗

3 day 1.892 1.615∗

5 days 3.242∗ 2.484∗∗

10 days 6.802∗∗∗ 4.934∗∗∗

15 days 8.580∗∗∗ 5.281∗∗

20 days 9.673∗∗∗ 6.272∗∗
∗ statistically significant at the 10% level
∗∗ statistically significant at the 5% level
∗∗∗ statistically significant at the 1% level

Table 4.11: Cumulative abnormal returns surrounding the implementation of the
Russian Ban on farm imports.

to a 6.2% increase, cumulative over twenty days, following the implemen-

tation of the ban. It appears that there may have been negative effects in

anticipation of the ban, followed by a positive impacts, potentially due to

New Zealand not being part of the ban. The ban was announced with one

days’s notice, which coincides with when we see the most significant nega-

tive abnormal returns. It was initially expected that this ban would have a

negative effect due to an excess of European product in the global dairy mar-

ket, we see only a positive reaction however. While the overarching model

does control for global dairy price, through the WMP price index, though a

surplus in other products could have had an effect. Potentially what we saw

instead was expansion into a new market. In 2014, New Zealand exported $94

million worth of butter and dairy spreads to Russia (Hutching, 2015), down

from $119 million in 2013, but up from $84 million 2012. Exports to Russia

were negatively affected by bans following the whey protein contamination

incident in August 2013, potentially explaining why we see a drop in exports

in 2014. Exports to Russia continued dropping to $31 million in 2015, but

increased back to $104 million in 2016 after these bans were partially lifted

(Holloway, 2017).
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The cumulative abnormal returns surrounding Russia’s ban on European

farm imports, using the ‘overarching’ model are shown in Table 4.11. We

see significant negative abnormal returns on the day before the ban came

into effect, followed by significant positive abnormal returns the day after.

The cumulative abnormal returns then remain insignificant until the ten day

post-event window, where we see significant positive cumulative abnormal

returns for the reminder of the analysed event windows.

4.4.5 End of European Union Milk Quotas

Milk quotas, restricting the production of dairy farmers in the European

Union, were removed on March 31 2015. This event was known about well

in advance. Because of this it is not an ideal candidate for an event study.

Keeping this caveat in mind we analyse it here regardless. Useful insights

still arise from this investigation, but caution is necessary. The specification

for this model is

R̂t = α + β1∆CNYt + β2∆LKRt + β3(∆NZX50)2

+ β4(∆Brent Oil)2 + β5(∆EUR)2 + εt

Table 4.12 shows the linear regression model parameters estimated from the

data in the seventy five days leading up to the removal of the production caps

in the European Union. For this portion of the data the relative change in the

Chinese yuan and the Sri Lankan rupee exchange rate are significant at the

5% level. We also see significance in the squares of the NZX50 returns and

the proportional change in the Brent oil price at the 10% significance level.

The square of the change in the exchange rate with the Euro is significant

at the 1% level for this section of the data. White’s test does not detect the

presence of heteroskedasticity, so we do not use HAC standard errors (White,

1980).

The returns, as estimated by this individual event model and the overarching

model from Section 4.4.1, are plotted along with the actual returns in Figure

4.8. There is a large drop in the actual returns several days before the removal

of the production caps. This drop coincides with a disappointing farm-gate

milk price and dividend announcement on March 25 2015. The milk price
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Parameter Standard
Variable βi Error
∆CNY −0.92407∗∗ 0.43583
∆LKR 1.08685∗∗ 0.43100
(∆NZX50)2 27.23450∗ 13.66703
(∆Brent oil)2 1.10237∗ 0.55762
(∆EUR)2 −18.32402∗∗∗ 6.59461
Intercept −0.00037 0.00103
R2 0.25
n = 75
∗ statistically significant at the 10% level
∗∗ statistically significant at the 5% level
∗∗∗ statistically significant at the 1% level

Table 4.12: Parameters of the seventy five day normal returns model leading up
tot the removal of milk quotas in the European Union

forecast remained at $4.70 per kg MS, but the interim dividend of ten cents

was lower than expected. The forecast dividend of just twenty - thirty cents

per share was a five cent drop from the previous forecast (Rotherham, 2015).

Kilsby (2015) suggests the sudden drop in share price was a response to the

reduced dividend forecast. In the days following the end of the quota system

it appears there may be a drop in returns overall. For approximately two

weeks following the removal of the production caps, the actual returns sit

either on or below the returns as predicted by the overarching model. This

drop does not affect the estimation or either of the models as it is within the

five days preceding the cap removal. Neither of our models predict this large

drop in share price either. It appears there may be a slightly delayed drop

in returns from about a week after the event.

The cumulative abnormal returns surrounding the end of the dairy produc-

tion quota system, using both the overarching model and the individual event

model, are presented in Table 4.13. Again, significant abnormal returns are

statistically distinguishable from zero. We see significant cumulative abnor-

mal returns in the each of the pre-event window lengths, likely due to the

large drop as discussed previously. The link to disappointing process and div-

idends means we cannot accurately conclude any affect from the European

Union cap removal here. On the day the caps were removed we see significant

abnormal returns, at the 5% level, for the overarching model, but only at the
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Figure 4.8: Actual FCG returns plotted along with the returns predicted by each
model. The vertical black line marks 31 March 2015, the date the quota system
ended.

EU Quotas
i Over(%) 75 day(%)

-5 days −5.557∗∗∗ −8.421∗∗∗

-3 days −6.960∗∗∗ −10.505∗∗∗

-1 day −1.322∗∗ −1.284∗∗

Event Window 1.417∗∗ 1.115∗

1 day 0.474 0.254
3 days −0.909 0.158
5 days −1.199 −0.054
10 days −4.689∗∗ −2.344
15 days −5.324∗∗ −1.683
20 days −4.904∗ −1.220
∗ statistically significant at the 10% level
∗∗ statistically significant at the 5% level
∗∗∗ statistically significant at the 1% level

Table 4.13: Cumulative abnormal returns surrounding the removal of dairy pro-
duction quotas in the EU.

10% level for the individual event model. The day after the removal of the

production caps we see no significant abnormal returns. For up to five days

following the cap removals the cumulative abnormal returns are not signif-

icantly different from zero for either model. We do not see any significant

cumulative abnormal returns for any of the post-event windows when using

the individual event model. From ten days after the cap removal however,
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and for the fifteen day post-event window, we see reduced cumulative abnor-

mal returns significant at the 5% level, using the overarching model. This

is potentially a delayed reaction, possibly due to surplus production taking

time to build up and have an effect on global demand for dairy. This what

we expected to see, but the lack of significance for the individual event model

suggests the parameters in this model may be affected by the same event.

This model does have a significant negative relationship with the squared

change in the Euro exchange rate.

4.5 Discussion and Conclusions

In this chapter we have explored the financial impact of several shocks to

the New Zealand dairy industry. Each shock is unique and causes a unique

reaction in the share price returns. We are able to identify some patterns in

these reactions however.

Though it is not always significant, the first five days following each recall

show negative cumulative abnormal returns. Greater media coverage has

been associated with a larger negative reaction in share price following a

recall (Pozo & Schroeder, 2015), however out of the recalls we analysed, the

largest impact was seen following the Mainland cheese recall, that with the

least coverage. This recall did involve exported product, though only to Fiji,

which is a relatively small market for Fonterra. Annual dairy exports to

Fiji typically comprise around 0.3% of total dairy exports. Dairy exports to

Fiji in June 2013 were unusually low however. Only $1.4 million in dairy

exports we sent to Fiji June 2013, compared to an average of $3.5 million

for June over the other years in our time frame (Statistics New Zealand,

2017b). This was the first recall by Fonterra following the implementation

of the new financial structure in December 2012, so this recall reaction may

reflect a lack of experience from Fonterra and its shareholders regarding how

share price returns may now be vulnerable to such events. Both the WPC80

contamination incident and the Pams/Anchor recall showed relatively small

negative reactions, these were also not consistent between the models used

in each case. This is consistent with the finding in Pozo & Schroeder (2015),

that recurrent recalls have less impact the a firm’s first recall.
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In analysing the impacts of adverse weather events, we found a somewhat

unexpected positive impact on share price returns. From the events analysed

it appears that this positive effect is diminished as more areas are affected.

The July 2014 storm, which showed the largest impact, affected the smallest

area, causing significant damage in the Northland region only. This storm

also lasted the longest of the three. It is possible that loss of production in

one area of the country only is increasing perceived value of what is produced.

Rain also usually comes with storms, and in each of these storms most of the

country saw some rain, so there may be an effect of anticipated production

due to improved pasture growth.

The Russian ban on farm imports from selected countries showed a negative

impact on share price in the days before it came into effect, particularly

for the day it was announced. In the days after the ban was implemented

however we start to see a positive financial impact. A surplus of global supply

may have been anticipated, particularly due to a large amount of European

product no long being exported to Russia and needing somewhere else to

go. The positive reaction following the ban may reflect that the surplus was

perhaps not as large as anticipated. At the next GDT auction, the SMP

price index dropped 12%. None of the other product indices dropped at all

and overall the GDT price index dropped by just 0.6%. All of the price

indices did drop at the next auction, resulting in a drop of 6% for the GDT

price index. Prices started to come back up from the auction on 15 October

2014, and the AMF and butter price indices were back to pre event levels by

November 2014. The SMP price index has remained relatively low, but the

GDT price index was back to pre-event levels by February 2015. A potential

space in the market, due to New Zealand being exempt from the ban, may

also have been perceived by share holders, as Russia was forced to seek out

new trading partners (Khachaturyan et al., 2017).

We found a significant negative impact on share price returns in the days

before the end of the European Union dairy production quota system. In-

creasing dairy production in Europe meant an increase in global supply, not

matched by an increase in demand, causing a surplus in the global market.

The initial surplus may not have been as large as anticipated, resulting in

the lack of significance in cumulative abnormal returns in the post-event win-

dows. We do see some significance in comparison with the full overarching
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model for the ten and fifteen day post-event windows.

Because of the limited time Fonterra has been operating under the current

financial structure, we are limited in the number of events available for anal-

ysis. A broader study of each event type would help to identify patterns and

important characteristics of each event with more certainty. As mentioned

in Section 4.1.2, we have not looked at FSF units traded on the Australian

stock exchange, nor specifically used the price of any FSF units in our anal-

ysis. The correlation coefficient between the Australian traded units and the

FCG shares is only 0.5863. Conducting similar analyses on these events us-

ing these related stocks therefore may help to strengthen results and provide

clearer insights. We also briefly discuss the potential for using a Fonterra

specific GDT index in Section 4.A, this is something that could be a useful

variable for future research in this area.

There are some limitations in finding significant impact due to the generally

low R-squared values suggesting poor fit of the models. As mentioned in

Sections 4.3.3 and 4.4.1, this is taken into account in the calculation of the

test statistic, but may mean some significant impacts go undetected. Care

is needed to avoid over fitting models, however an investigation into the use

of other types of models, such as GARCH (mentioned in Section 4.1.1), may

help to improve the analysis.

Overall the greatest potential for a negative financial impact comes from food

contamination and recall events. Weather events and international events

impacting global supply are seen as outside of a company’s control. In the

case of a recall someone can be held accountable. A recall event is a negative

reflection on a firm’s quality and safety assurance systems. An error has

been made somewhere in the production process, and for some unknown

reason was not rectified before product could reach consumers. There is

a sense of hidden information in the circumstances leading to the recall.

This leads to an added reputation effect in the case of contamination and

recalls that may not be applicable to with other type of shocks. A study

looking particularly at recall type events and how reputation may have been

affected along with share price reactions could provide more insight into the

importance of handling recalls well.
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Appendix 4.A GDT Price Index

The GDT price index is a weighted average of the percentage change in

prices. Specifically it is a chain-linked Fisher index (GDT, 2016b), that

is the geometric mean of the Laspenyres and Paasche indices (Statistical

Office of the European Communities, 2009). The weights are determined by

the quantity of product sold in each contract at each trading event (GDT,

2016b). Let P be a 2 × n matrix of the prices at two consecutive trading

events, with Row one representing the prices at the first event, and row two

the prices at the second. Similarly let W be a 2 × n matrix of the quantity

of product sold for each of the prices in P . Now let M = PW T , the 2 × 2

matrix of weighted prices. The Laspenyres, Paasche and Fisher price indices

are then given by:

Laspeyres =
m21

m11

Paasche =
m22

m12

Fisher =

√
m21

m11

× m22

m12

Constructing a Fonterra specific GDT index was considered, while some

traded volumes are freely available from AgriHQ (2016), the contract prices

were not obtainable for this thesis. There are also many sub products for

each product type that make estimating such an index impractical within

the scope of this thesis.

Appendix 4.B Complete Overarching Model

The complete overarching model from Section 4.4.1 is presented in Table 4.14
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Variables Month Parameter Std Error

∆NZX50 − −0.10517∗ 0.06528

(∆Production)
2 − 0.04313∗∗ 0.02331

(WMP)
2 − −0.00142∗∗ 0.00070

(∆CNY)
2 − 12.14775∗ 6.37328

(∆LKR)
2 − −19.39685∗∗∗ 7.28947

February 0.00387 0.01495
March −0.00373 0.01085
April −0.00508 0.00754
May −0.02314∗∗ 0.01010
June −0.01157 0.01538

∆Production July −0.02919∗∗∗ 0.00699
August −0.05758 0.06086
September −0.05144∗ 0.03924
October 0.01092 0.01341
November −0.01812 0.01228
December −0.07980∗∗ 0.04096
February 0.00963 0.01869
March −0.01089 0.04631
April 0.05346 0.22217
May −0.01815 0.04920
June 0.09484 0.07101

∆Brent Oil July −0.06542 0.06438
August −0.10258∗∗ 0.04886
September 0.01222 0.04669
October 0.00502 0.05578
November 0.00575 0.03055
December −0.06658 0.04150
February −0.09369 0.09436
March 0.19015 0.13891
April 0.41861∗ 0.27447
May −0.11577 0.13685
June −0.04781 0.10063

∆USD July 0.06349 0.10248
August −0.00981 0.12186
September 0.03655 0.14783
October 0.01450 0.11233
November −0.18502∗∗ 0.08468
December 0.26360∗∗ 0.12272
February 0.20723 0.14554
March −0.08567 0.13413
April 0.03667 0.50992
May 0.11538 0.12539
June 0.11668 0.16994

∆EUR July 0.18263 0.11329
August 0.27136 0.44667
September 0.09790 0.15047
October 0.00370 0.13763
November 0.17323∗ 0.09956
December 0.39557∗∗ 0.17299

Intercept − 0.00193∗∗ 0.00083
R2 0.095
n = 801
∗ statistically significant at the 10% level
∗∗ statistically significant at the 5% level
∗∗∗ statistically significant at the 1% level

Table 4.14: All parameter values for the normal returns for the overarching model.
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Chapter 5

Summary and Conclusions

This thesis covers various aspects of the dairy industry in New Zealand,

highlighting areas where improvements might be made to increase overall

output and reduce the impact of shocks.

In Chapter 2 of this thesis we develop a discrete time Markov chain model for

several stages of a dairy supply chain. We model the flow of milk, in terms of

its value, from the farm through to the first stage of processing common to

all dairy products. This model is applied specifically to the case of Fonterra,

New Zealand’s dominant dairy co-operative, allowing for costs associated

with testing and resulting product rejections. By running simulations under

various testing scenarios, we are able to identify where and when rejection

of product can cause the greatest reduction in the overall value produced.

We find the probability of rejecting product as milk tankers deliver to the

factory has the greatest effect on production rates. Overall output value

ranged between over $26 million with no rejection at the factory reception

stage, down to $20 million with a 75% acceptance rate. The rate of rejection

at the tanker collection stage was shown to have the least impact, out of the

three stages modelled, with overall output value ranging between $26 million

with no rejection and $22.5 million when acceptance rates for this stage were

only 75%. If by being more strict about removing contaminated product at

the point of tanker collection, product loss at the factory reception stage is

able to be significantly reduced, this is an approach that would be useful in

increasing the overall output value of the supply chain.

The model developed in Chapter 2 is extended to include elements of trace-

171
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ability in Chapter 3. Simulations under various scenarios, including different

levels of traceability at different stages of the supply chain, allow us to gain

an understanding of where and when traceability has the greatest impact.

For each of these scenarios we are able to estimate the value traceability con-

tributes to the supply chain. There is significant value to be gained through

using traceability insights to precisely identify faulty product for removal

when it results in less primary rejections than via test results alone. The

largest reduction in value lost is seen when traceability is applied across all

stages of the supply chain. Upon exclusive application in individual stages

however, the greatest benefit is seen when traceability information is collected

as the tanker collects milk from the farm, resulting in reduced primary rejec-

tion upon application of that information when the tanker delivers milk to

the factory reception stage. The potential for improvement in output value

decreases as the initial acceptance rate analysed increases. For example, with

an initial 75% acceptance rate, when traceability information is not applied

until the processing stage, we see a potential improvement in overall output

value of 9.4%. If traceability information can be applied only at the factory

reception stage we see a potential improvement of 11.9%. When traceability

is applied in both of these stages though, we see an average improvement of

27% in overall production value. We this see an effect here where the whole

is greater the the sum of the parts. The potential value to be gained in the

application of a good traceability system is greater when applied over all of

the supply chain than just the sum of the individual potential gains we see

at each stage.

The are some limitations to be aware of regarding the modelling done in

Chapters 2 and 3. Firstly we must remember that the models developed are

still just that. No model can perfectly replicate reality, to quote the statis-

tician George Box “All models are wrong; but some are useful” (Box, 1979).

We model the individual compartments in each stage of production as a pool,

which value enters and exits at appropriate rates in appropriate volumes. A

more accurate model may be achievable by modelling individual compart-

ments separately, however this would make it more challenging to apply the

model to other industries and supply chains as desired. Because of this, our

models also do not take into account inter-site transfers that may take place

within the same stage of processing. Another area to be investigated is po-
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tential extra costs associated with more testing and traceability happening

earlier on in the supply chain. Our model has identified a value for traceabil-

ity, but for a given industry or company, the costs of implementation may

outweigh the benefits. In the case of Fonterra, these costs are relatively small

compared to the value of milk the company processes and distributes, how-

ever this may not be the case for smaller companies. The model, presented

through these chapters, also does not include the costs of lost goodwill and

reputation, focusing solely on the cost of product loss and reducing this. If

we were to include reputation effects, the value of traceability may in fact be

even greater.

The model we have developed through Chapters 2 and 3, is also a useful

tool for theoretically assessing the value of traceability in a supply chain.

While the model is applied specifically to dairy production for the purposes

of this research, the method is also applicable to other production industries.

By choosing parameters appropriate to the industry in question many ap-

plications are possible. While traceability is important for food safety and

reducing the potential impact of contamination events, it can also aid in the

optimisation of production planning and schedules, creating a competitive

advantage. This model could be used to assess the impact of processing

with different batch sizes. With accurate information regarding the cost as-

sociated with each batch processed at each stage, a cost benefit approach

could be used to find the optimal batch size under given conditions. Better

knowledge about the path product and ingredients take can help to identify

redundancies and streamline the supply chain.

A different aspect of the dairy industry is investigated in Chapter 4, specifi-

cally how share prices react to various supply and demand shocks. An event

study technique is used to analyse how share price returns behave around var-

ious event types, including recalls, adverse weather events and global supply

shocks. We see limited consistency in reactions to recalls, though the re-

action is generally negative and the largest negative reaction out of all the

events analysed followed a recall event. The adverse weather events consis-

tently followed abnormally positive share price returns, potentially reflecting

Fonterra’s influence in the global dairy market. If there is a shortage in milk

production the milk that is available becomes worth more, mitigating any

negative effects on share prices. The ban on farm imports implemented by
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Russia in response to the sanctions placed on their exports was also followed

by abnormally positive share prices returns. The expected global surplus

due to European dairy product having lost a major market drove down milk

price, thus a negative reaction in share price was expected. The fact that

Russia still needed to import dairy products potentially made New Zealand

milk valuable enough to counteract the surplus effect. Annual dairy exports

to Russia did drop in value from 2013 to 2014 but remained higher than

in 2012. It is difficult to conclude that this may be the reason for positive

abnormal returns however. The removal of dairy production caps in the Eu-

ropean Union, while not an ideal occurrence for an event study, was followed

by abnormally negative share price returns as expected, potentially due to

an increased surplus in global milk supply.

The conclusions we can draw are limited by the nature of event studies.

Again we are using models to imitate reality, though in this case our models

generally have low R2 values, indicating poor fit. The fit of the model is taken

into account in the test statistics, reducing the likelihood of any type I errors,

where we attribute significance to abnormal returns that in reality are not.

Poor fit will however increase the potential for Type II errors, meaning we

might dismiss some significant reactions as insignificant. An event study is

also really an analysis of what is happening to the share price around the time

of the event, we cannot with certainty attribute the movements in the share

price to the specific event. The fact the the largest negative reaction in share

price returns followed a recall event does however highlight the importance of

managing recalls well. All of the results in this thesis suggest product recalls

are something to be taken seriously, particularly in the dairy industry. Firms

should be well prepared to react swiftly and efficiently to minimise the impact

when such events do occur.
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