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ABSTRACT 

 

Over the last 50 years freshwater and marine environments have become severely impaired 

due to contamination from pathogens, heavy metals, sediment, industrial chemicals and 

nutrients (MEA 2005b). In many countries, including New Zealand, increased nitrogen (N) 

and phosphorus (P) loading to terrestrial and freshwater environments from diffuse nutrient 

sources are of particular concern (MEA 2005a; PCE 2015b; Steffen et al. 2015) and many 

governments now mandate control of diffuse nutrient loss to water. Water quality models 

are invaluable tools that can assist with decision making around this widespread issue 

through exploration of the current situation and future scenarios.  

Many water quality models exist, functioning at a variety of temporal and spatial scales and 

varying in detail and complexity. However, few, if any, simultaneously represent sub-field to 

catchment scale processes and outcomes, both of which are required to fully address water 

quality issues associated with diffuse nutrient sources. Those that do, likely require 

extensive time and expertise to operate. Water quality models embedded in the Land 

Utilisation and Capability Indicator (LUCI), an ecosystem service decision support 

framework, offer the opportunity to overcome these limitations. Being highly spatially 

explicit, yet straightforward to use, they can inform and assist individual land owners, 

catchment managers and other stakeholders with planning, decision making and 

management of water quality at sub-field to landscape scale.  

To model diffuse nutrient losses LUCI, like many catchment scale water quality models, 

requires some form of estimated nutrient loss, or export coefficient, from land units within 

the catchment of interest. To be representative export coefficients must consider climate, 

soil, topography, and land cover and management variables. A number of methods of 

export coefficient derivation exist, although generally they consider only very limited geo-

climatic, land cover and land management variables.   

The principal aim of this study is development of algorithms capable of calculating New 

Zealand site specific N and P export coefficients from detailed geo-climatic, land cover and 

land management variables, for application in LUCI water quality models. Algorithms for 

pastoral land cover are developed from a large dataset comprising real pastoral farm input 
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and output data from nutrient budgeting model OVERSEER. Algorithms are extended to land 

covers other than pasture, albeit in a limited manner. This is achieved through rescaling of 

the pastoral algorithms to account for relative differences in literature reported N and P 

losses from pasture and a variety of other New Zealand land covers. Application of the 

developed algorithms in LUCI water quality models results in positioning of export 

coefficients at the DEM grid square scale (≤ 15 m x 15 m for New Zealand). In addition, intra-

basin configuration is considered in LUCI, at the same grid square scale, as water and 

nutrient flows are cascaded through the catchment. Application of the export coefficient 

calculating algorithms are applied to two contrasting New Zealand catchments. Tuapaka 

catchment, an 85ha agricultural foothill catchment in Manawatu, North Island, and Lake 

Rotorua catchment, a 502 km2 volcanic, mixed land cover catchment in Bay of Plenty, North 

Island.  

This research is supported by Ravensdown, a farmer owned co-operative, which plans to use 

LUCI extensively to advise and assist farmers with water quality issues. The ability to model 

mitigation strategies in LUCI is an important capability. Therefore, this research also includes 

a review of five particularly important on-farm mitigation strategies, which will later be used 

by the wider LUCI development team to assist with better parameterisation and improved 

performance of mitigation options in LUCI.  

Application of the developed algorithms at farm to catchment scale in LUCI results in 

considerably more nuanced, detailed maps and data showing N and P sources and 

pathways, compared to LUCI’s previously used ‘one export coefficient per land cover’ 

approach. Although results indicate absolute nutrient loss values are not always ‘correct’ 

compared to either OVERSEER predictions or in-stream water quality measurements, these 

differences appear comparable to those seen with similar water quality models. In addition, 

the issue of representativeness of OVERSEER predictions and in-stream water quality 

measurements exists.  

Nevertheless improvement to absolute predictions is always an aim. This research indicates 

further improvements to LUCI water quality predictions could result from refinement of 

both pastoral and other land cover algorithms, and from improved representation of 

attenuation processes in LUCI, including groundwater representation. However, lack of 

measured on-land and in-stream N and P loss data is a major challenge to both algorithm 
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refinement and to evaluation of results. In addition, more detailed spatial data would 

provide more nuanced results from algorithm application. 

Although the algorithm application context in this research is LUCI water quality models 

applied in New Zealand, this does not preclude application of the developed algorithms in 

other export coefficient based, catchment scale water quality models. Using spatial data 

pertaining to climate, soil, topographic and land management variables, land units of 

combined variables can be identified and the algorithms applied, resulting in explicitly 

positioned export coefficients that can be fed into the catchment scale water quality model 

of interest. Therefore, developments made here potentially represent a wider contribution 

to catchment scale modelling using export coefficients.  
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1 INTRODUCTION 

 

 

1.1 NITROGEN, PHOSPHORUS & WATER QUALITY  

Appreciation of the vital nature of ecosystem services provided by the environment is 

increasing, as is recognition of the extent of anthropogenic damage to these services 

(MEA 2005b; Folke et al. 2011). Water purification by the environment is an essential 

regulating ecosystem service. However, over the last 50 years natural fresh water 

provisioning has been severely impaired due to contamination from pathogens, heavy 

metals, sediment, industrial chemicals and nutrients (MEA 2005b). In European and 

North American countries, parts of Asia, Australia and New Zealand, increased nitrogen 

(N) and phosphorus (P) loading to terrestrial and freshwater environments are of 

particular concern (MEA 2005a; Steffen et al. 2015). Nutrient losses to water in these 

areas must be curbed to avoid the risk of threshold related abrupt environmental 

change that could undermine freshwater and marine ecosystem resilience (Rockström et 

al. 2009; Steffen et al. 2015). Such change could impact on humanity’s ability to access 

clean water, and grow or harvest food from terrestrial and aquatic environments.      

In the last century, both the N and P nutrient cycles have become highly altered by 

human activities, especially, but not exclusively, due to modern agricultural practices. It 

is now estimated that the rate of global N cycling has doubled due to human N fixation, 

through both industrial fixation for N fertiliser production and increased use of N fixing 

plants (Fowler et al. 2013). For P, it is estimated that annual release into the 

environment is now three times that of natural P cycling (Bennett and Schipanski 2012). 

Increased agricultural N and P use has enabled agricultural expansion and 

intensification, thereby increasing crop and animal production to feed a growing human 

population, and one with a growing appetite for meat and dairy products (Foley et al. 

2011; Neset and Cordell 2012; Fowler et al. 2013). However, associated negative water 

quality impacts are now a major concern in many countries (Mateo-Sagasta and Burke 

2010) and governments are responding by implementing water quality regulations and 

limits, many of which target agricultural landscapes (MFE 2013; EuropeanCommission 
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2014; NZ Govt 2014; White et al. 2015). In New Zealand decreasing freshwater water 

quality is also the trend (PCE 2013) and concern over the impact of intensified rural land 

management on water quality is increasing, as is frequently highlighted in media reports 

(Buxeda 2017; Mitchell 2017; Radio NZ 2017b; Young 2017).  

1.1.2 Agriculture and Water Quality Regulation in New Zealand  

Although over 85% of New Zealand’s population live in urban areas (StatisticsNZ 2016), 

agricultural and rural landscapes play an important cultural and economic role in New 

Zealand society. Today, the primary sector contributes just over half of New Zealand’s 

total annual export earnings, although it is highly dependent on international 

commodity markets, which are volatile (NZ Govt 2016). A variety of land uses, reflecting 

the variety of products sold, are found in rural New Zealand. Approximately 80.8% of 

rural productive land is pastoral (largely dairy, beef, sheep and deer), 15.5% is in 

commercial forest, 2.8% is in short-rotation crops, and 0.8% is in orchard, vineyard or 

other perennial crops (New Zealand Land Cover Database 2012). These figures reflect 

the enduring pastoral focus of New Zealand agriculture, and dairy farming is deemed 

particularly important economically. However, intensive pastoral land uses in New 

Zealand are linked to declining water quality (PCE 2015b) and the New Zealand 

agricultural sector is under increasing pressure to account more fully for enterprise 

impacts on water quality, and to take action to mitigate impacts. This is largely as a 

result of public pressure and recent reform and regulation of water management by the 

New Zealand Government.  

Fresh water management reform began in New Zealand in 2009 with establishment of 

the Land and Water Forum, a collaborative, consensus-based group of stakeholders 

tasked with advising government. In 2011, the National Policy Statement for Freshwater 

Management (NPS-FM) was introduced, with amendments subsequently released in 

2014. The NPS-FM defines national standards for fresh water quality and requires that 

all regional councils set regional objectives and limits for fresh water management. In 

doing this, local community and tangata whenua values associated with local water 

bodies must be considered (MfE 2016a). Regional councils have recently or are currently 

working through this process, and limits and objectives must be incorporated in regional 

plans and policy statements by 2025 (MfE 2016b). However, the setting of water quality 
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limits and objectives and subsequent implementation of regional plans and policies, has 

proved to be challenging in some cases (Radio NZ 2017a). In particular, identifying 

individual actions required to rectify a collective diffuse water quality problem is a 

challenge.     

1.1.3 The Role of Water Quality Models 

Identifying individual responsibility for diffuse pollution sources and assessing the 

cumulative effect of these at the catchment scale is not straight forward. Nutrient cycles 

involve interconnected physical, chemical and biological processes functioning at a 

variety of temporal and spatial scales. Nutrient pathways from individual source points 

to water bodies are spatially and temporally varied and complex (Heathwaite 2003; 

Meals et al. 2010; Sharpley et al. 2013). Water quality models can assist with 

identification and quantification of nutrient sources, pathways to, and consequences for 

water bodies. Many water quality models exist and they function at a variety of 

temporal and spatial scales and vary in detail and complexity. However, few 

simultaneously represent sub-field to catchment scale processes and outcomes, both of 

which are required to address non-point source water quality issues. The few models 

that do integrate these spatial scales generally require extensive time and expertise to 

operate.  

Water quality models embedded in the Land Utilisation and Capability Indicator (LUCI), 

an ecosystem service decision support framework, offer the opportunity to overcome 

these limitations. Being highly spatially explicit, yet straightforward to use, they inform 

and assist individual land owners, catchment managers and other stakeholders with 

planning, decision making and management of water quality at sub-field to landscape 

scale.  

1.2 THE LAND UTILISATION & CAPABILITY INDICATOR 

1.2.1 General Description 

LUCI, an extension of the Polyscape framework described in Jackson et al. (2013a), aims 

to investigate the cumulative impact of individual sub-field ecosystem service 

interventions within larger catchments. It shares a number of features in common with 

other decision support frameworks, but also has unique features that make it 
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particularly suitable for evaluating the impacts of small-scale management at larger 

scales. This ability to simultaneously consider ecosystem services at site (sub-field) to 

landscape scale is identified as a particular strength of LUCI in comparative studies of 

multiple ecosystem service models (Bagstad et al. 2013; Sharps et al. 2017).   

The LUCI framework considers impacts of land use on multiple ecosystem services in a 

holistic and spatially explicit manner. A number of ecosystem service stocks and 

associated indicators and processes are considered by LUCI and it determines how the 

configuration and placement of landscape features affect each of these. Individual 

ecosystem services (including N and P to water) can be assessed and the 

interrelationships between ecosystem services analysed to identify trade-offs and 

synergies between them (Fig 1.1).  LUCI uses readily available national data and is 

computationally efficient, accomplishing highly spatially explicit catchment-scale 

analyses within minutes to hours. Minimum data requirements for LUCI are a digital 

elevation model (DEM), land cover and soil data. However, applications can be easily 

supplemented with additional national or local data if it is available. Table 1.1 

summarises LUCI default input data for New Zealand applications. Maps and data 

summarising the results of each analysis are generated with each LUCI application to 

assist with analysis and interpretation. 

Figure 1.1 LUCI process diagram 

 



5 
 

LUCI is readily applicable to a number of countries and a wide range of environments, 

and has been extensively applied in New Zealand (Ballinger 2011; Scott 2015; Jackson et 

al. 2016; Marapara, 2016; Trodahl et al. 2016), Wales (Jackson et al. 2013a; Robinson et 

al. 2013; Emmett et al. 2014; Emmett et al. 2015; Emmett et al. 2016), and elsewhere 

(Bhatterei 2009; Jackson et al. 2013b; Benavidez et al. 2016).  

Table 1.1 Summary of LUCI default input data for New Zealand 

Data Type  

(Name) 

Period 

Covered 

Data 

Type 

Resolution Information  

On-line? 

DEM 
(NZSoSDEM v1) 

2011 Raster 15mx15m Yes1 

 

Stream network 
(REC) 

2010 Vector 
Polyline 

Variable Yes2 

Rainfall 1960-2004 Raster 1000mx1000m No 
 

Evapotranspiration 1960-2004 Raster 500mx500m No 
 

Land Cover 
(LCDB4) 

2012/13 Vector 
Polygon 

Variable – from 
Spot-5 satellite 

imagery  

Yes3 

Soil  
(NZFSL) 

Based on 
soil surveys 

from 1930’s-
present  

Vector 
Polygon 

Variable 
depending on 

original soil map 
resolution 

Yes4 

Soil 
(S-Map) 

Based best 
available soil 
survey and 

spatial 
information   

Vector 
Polygon 

Variable but 
generally finer 

than NZFSL 

Yes5 

1NZSoSDEM v1 http://www.otago.ac.nz/surveying/research/geospatial/otago040574.html 
2REC https://www.niwa.co.nz/freshwater-and-estuaries/management-tools/river-environment-
classification-0 
3LCDB https://lris.scinfo.org.nz/layer/423-lcdb-v41-land-cover-database-version-41-mainland-new-
zealand/ 
4NZFSL 
https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Ma
ps&menuItem=SoilData 
5S-Map https://smap.landcareresearch.co.nz/about-us 

 

In 2014 collaboration began between LUCI developers and Ravensdown, a New Zealand 

farmer-owned co-operative. The aim of the collaboration is development of a bespoke 

version of LUCI for the co-operative that incorporates detailed farm management 

http://www.otago.ac.nz/surveying/research/geospatial/otago040574.html
https://www.niwa.co.nz/freshwater-and-estuaries/management-tools/river-environment-classification-0
https://www.niwa.co.nz/freshwater-and-estuaries/management-tools/river-environment-classification-0
https://lris.scinfo.org.nz/layer/423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/
https://lris.scinfo.org.nz/layer/423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/
https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&menuItem=SoilData
https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&menuItem=SoilData
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information into the framework to enhance LUCI’s capabilities to support on-farm 

decision making (Jackson et al. 2016; Trodahl et al. 2016). These improvements will 

assist New Zealand farmers and other land managers with decision making around 

ecosystem services, with a particular focus on water quality.  

1.2.3 LUCI Water Quality Models 

Water quality models within LUCI use an enhanced, spatially representative export co-

efficient approach to model total nitrogen (TN) and total phosphorus (TP) exports to 

water.  Export coefficients are defined as the “mass of a [contaminant] per unit area per 

unit time” (White et al. 2015) and are most often quantified in kg ha-1 yr-1. LUCI spatially 

positions export coefficients in association with land cover categories at the DEM scale. 

Particulate and dissolved nutrients are then cascaded through the landscape with water 

and sediment. For every DEM scale grid cell in the landscape and stream network, 

cumulative annual nutrient load and annual average concentration is calculated. The 

model identifies spatially explicit nutrient sources, pathways, and current and potential 

‘sinks’ where nutrients can be intercepted, avoiding entry to the stream network. A 

proportion of water and nutrients is also routed to groundwater reserves. Currently 

these reserves exit back to water bodies via a simple linear reservoir. 

A criticism of models employing an export coefficient approach is that they often 

consider only land cover, but climate, soil, topography, and land management are also 

significant influencing nutrient export variables (Khadam and Kaluarachchi 2006; Shi et 

al. 2006; Ding et al. 2010; Abell et al. 2011; Robinson and Melack 2013; White et al. 

2015). This issue has been addressed using a variety of methods. For example, tailoring 

export coefficients to reflect regional geo-climatic landscape units (Johnes et al. 2007; 

Greene et al. 2015), weighting export coefficients according to variation in precipitation, 

terrain or vegetation (Shi et al. 2006; Ding et al. 2010; Wang et al. 2015), and through 

the development of export coefficients for representative farm types using field/farm 

scale models that consider climate, soil and agricultural management variables (Anthony 

et al. 2012; Semadeni-Davies et al. 2016).  

A key goal of this thesis is the development of algorithms to derive site-specific N and P 

export coefficients to account for important site-specific variables and their 
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combinations. My approach shares some similarities with Anthony et al. (2012) and 

Semadeni-Davies et al. (2016), in that field-scale farm models are used to account for 

farm management in a variety of climate, soil, and topographic settings. However, rather 

than developing representative farms that are then simulated in field/farm scale models 

to derive representative export coefficients, I use a large dataset of real pastoral farm 

input and output data from a field/farm scale model, OVERSEER, which is ‘mined’ to 

derive algorithms capable of calculating N and P losses for any value and combination of 

climate, soil, topography and land management. Spatial climate, soil, topography and 

farm data is used as input to the algorithms to calculate export coefficients unique to a 

particular site. Further, I extend this approach, albeit in a limited manner, to land covers 

other than pasture.  

Application of the developed N and P algorithms in LUCI water quality models results in 

consideration and positioning of export coefficients at the DEM grid square scale. 

However, this does not preclude application of the developed algorithms in other export 

coefficient based, catchment scale water quality models. Using spatial data pertaining to 

climate, soil, topographic and land management variables, land units of combined 

variables can be identified and the algorithms applied, resulting in explicitly positioned 

export coefficients that can be fed into catchment scale water quality models. 

Therefore, developments made here potentially represent a wider contribution to 

catchment scale modelling using export coefficients.  

1.3 AIM AND OBJECTIVES 

1.3.1 Research Aim 

My aim is to develop algorithms to derive N and P export coefficients that account for all 

combinations of influential nutrient loss variables associated with climate, soil, 

topography and land management, and to apply these algorithms in LUCI water quality 

models to improve predictive ability. The algorithms are developed using New Zealand 

data and implementation of these algorithms in LUCI water quality models results in 

consideration and positioning of export coefficients at the DEM grid square scale (≤15 m 

x 15 m for New Zealand).  
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1.3.2 Research Objectives 

The four objectives of my thesis are discussed on the following page. The work flow and 

interconnections between the objectives is illustrated in Figure 1.2. 

Objective 1: Data Review 

I review the New Zealand data required to fulfil the aim of this research. Three 

categories of data are sought for review: 

1. Data detailing N and P losses for a variety of New Zealand climates, soils, 

topography, land cover and land uses for use in Objective 2. 

2. Spatial data (suitable for use in ArcGIS) for identification and positioning 

of important nutrient loss variables and their combinations. 

3. In-stream water quality data against which to assess output from the N 

and P algorithms applied in LUCI.       

 

Objective 2: Algorithm Development and Parameterisation  

Data identified as suitable for algorithm development in Objective 1, Data Category 1, 

are more fully explored and algorithms developed and parameterised in preparation for 

application in LUCI. This involves 3 steps: 

1. Identification of algorithm input variables and algorithm forms  

2. Parameterisation of algorithm constants 

3. Parameterisation of default regional algorithm inputs  

 

Objective 3: Parameterisation of 5 Categories of Mitigations Available in LUCI 

An important aspect of modelling N and P losses at farm to catchment scale is 

assessment of options to reduce nutrient losses. This has been identified as particularly 

important by Ravensdown. I investigate five categories of mitigations, including 

documenting the quantified effect of strategies, where possible. The resulting data will 

be used by the wider LUCI development team to update and improve mitigations 

already featured in LUCI and to develop new ones. Mitigations I explore include: 
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1. Reduced and strategic fertiliser application 

2. Reduced and strategic effluent application 

3. Reduced stocking rate 

4. Wetland and riparian margin development and management 

5. Sediment traps  

 

Objective 4: Algorithm Application in LUCI Water Quality Models 

I apply the developed N and P algorithms, integrated into LUCI water quality models, to 

two New Zealand case study catchments:- Tuapaka catchment in Manawatu and Lake 

Rotorua catchment in Bay of Plenty. Results are explored and model performance 

assessed. 

Figure 1.2 Process diagram illustrating the flow of work and interconnections between 
objectives for this research 
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1.4 THESIS STRUCTURE  

Following this introductory chapter, Chapter 2 provides theoretical context through 

introduction and review of nutrient cycling and water quality modelling literature.  In 

particular, catchment scale water quality models and the export coefficient approach to 

water quality modelling are reviewed and discussed.  

Chapter 3 introduces and summarises the 3 broad categories of data discussed in 

Objective 1 – spatial data identifying important nutrient loss variables, in-stream water 

quality data for New Zealand and data detailing N and P losses for a variety of New 

Zealand climates, soils, topography, land cover and land uses. 

Chapter 4 provides a detailed investigation of data identified as suitable for algorithm 

development including exploration and identification of algorithm inputs and forms. This 

is followed by Chapter 5 where algorithm constants and regional default input data are 

parameterised. 

In Chapter 6 five broad categories of farm-scale nutrient mitigations are explored and, 

where possible, their effects quantified. This data will be used by the wider LUCI 

development team to update and improve current water quality mitigations in LUCI and 

to develop new mitigations.   

Chapter 7 reports output and results from application of the developed N and P 

algorithms in LUCI water quality models. Two New Zealand catchments are featured:  

Tuapaka, an 85ha agricultural foothill catchment in Manawatu, North Island, and Lake 

Rotorua, a 502 km2 volcanic, mixed land cover catchment in Bay of Plenty, North Island.  

Conclusions and recommendations for further development and extension of the work 

reported here are summarised and discussed in Chapter 8.         
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2 LITERATURE REVIEW: WATER QUALITY MODELLING USING 

EXPORT COEFFICIENTS 

 

 

2.1 INTRODUCTION 

There is a clear need to reduce N and P loading to terrestrial and freshwater 

environments, particularly in many developed countries (MEA 2005a; Rockström et al. 

2009). New Zealand is no different in this regard (PCE 2013; PCE 2015b) and recent 

legislative water quality reforms (NZ Govt 2017) hopefully pave the way for action to 

improve water quality outcomes.  

Water quality modelling has a clear role to play assisting and guiding land management 

decision making to improve this issue. LUCI water quality models, in particular, are 

suited for this purpose due their fine spatial scale and ease and speed of application. 

However, improvement to the predictive ability of LUCI N and P models is sought 

through development of an export coefficient approach to water quality modelling that 

better accounts for site-specific climate, soil, topography, and land management, as well 

as land cover or use, and this aim is developed in following chapters. In this chapter 

relevant background literature pertaining to N and P cycling (Section 2.2), water quality 

modelling (Section 2.3) and the export coefficient approach (Section 2.4), is surveyed 

and discussed. Both the unique attributes LUCI brings to water quality modelling and the 

need for a new approach to export coefficient water quality modelling, are highlighted.       

2.2 N AND P NUTRIENT CYCLING 

N and P nutrient cycles are complex and incorporate many of Earth’s biotic and abiotic 

cycles and processes. Both individually, and in combination, N and P are highly 

influential determinants of biomass production in both terrestrial and aquatic 

ecosystems (Li et al. 2016). To discuss these cycles, and their interactions, in full detail is 

beyond the scope of this research. However, a brief review of these cycles, as they relate 

to land use and water quality, is presented. For fuller detail on this broad subject the 

reader is guided to the many books and literature available (Galloway et al. 2003; 
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Marschner and Zdenko 2007; Filippelli 2008; Galloway et al. 2008; Harpole et al. 2011; 

Galloway et al. 2013; Li et al. 2016). 

2.2.1 The Nitrogen Cycle 

Nitrogen is the most abundant element on Earth. It is found in many forms and species, 

transformations occur over short time frames and are often microbially mediated 

(Bottomley and Myrold 2007; Robertson and Groffman 2007). It is a key control of 

productivity in terrestrial, freshwater and marine environments (Vitousek et al. 1997), 

but not necessarily the only limiting factor. Synergistic interactions between N and P 

have also been shown to co-limit biomass production (Harpole et al. 2011; Li et al. 

2016). The majority of N is found in gaseous N2 form, which is unavailable to most 

organisms. Nitrogen fixation, via natural or human methods, begins the cycle of 

transformations from N2, into biologically available forms of N, ultimately ending with 

return to the atmosphere as N2 (Galloway et al. 2003; Groffman and Rosi-Marshall 2012) 

(Figure 2.1).  

Figure 2.1 The Nitrogen Cycle  (University of Delaware 2017) 

http://www.google.co.nz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjGgLaR8_jVAhUMpJQKHbwXCIcQjRwIBw&url=http://extension.udel.edu/factsheets/nitrogen-cycling-in-agriculture/&psig=AFQjCNFc1ZzpZWbLpdihwKrkYx-HWjDE9w&ust=1503974333109468
http://www.google.co.nz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjGgLaR8_jVAhUMpJQKHbwXCIcQjRwIBw&url=http://extension.udel.edu/factsheets/nitrogen-cycling-in-agriculture/&psig=AFQjCNFc1ZzpZWbLpdihwKrkYx-HWjDE9w&ust=1503974333109468
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Under stable natural conditions, N fixation and emissions to the atmosphere, via 

volatilisation and denitrification, are approximately equal. N is fixed predominantly by 

microbes, through biological nitrogen fixation (BNF), which is sometimes associated with 

leguminous plants (Bottomley and Myrold 2007; Groffman and Rosi-Marshall 2012). 

However, to increase food production over the last century, anthropogenic 

manipulation of the N cycle has surged through increased use of the Haber-Bosch 

process (industrial nitrogen fixation) to create N fertilisers, and increased planting of 

legumes in agricultural systems (Vitousek et al. 1997; Galloway et al. 2008).  

Plant available N species include ammonium (NH4
+) and nitrate (NO3

-). Although both 

are highly soluble, in soil positively charged NH4
+ leaches less readily due to attraction to 

soil particles, which are generally negatively charged. In contrast, negatively charged 

NO3
- is easily leached as soil water drains.  NO3

- leaching represents the main avenue by 

which N is lost to water from the terrestrial environment, although particulate and 

dissolved N are also lost in surface runoff (Groffman and Rosi-Marshall 2012). The 

amount of N leaching is determined by soil solution NO3
- concentration and soil 

drainage. A key determinant of soil solution NO3
- is N input to the soil. Soil water 

drainage is determined by water inputs (i.e. precipitation and irrigation) and soil 

permeability. Land management variables such as timing of irrigation and presence of 

drains influence soil water drainage (Dingman 2002; Cameron et al. 2013).  

N inputs to land include synthetic fertilisers, organic fertilisers, BNF, crop residues left in 

situ, supplementary animal feed and atmospheric deposition of oxidised N (NOx) 

(Howarth et al. 2012; Cameron et al. 2013). (Although in New Zealand atmospheric NOx 

inputs are considered minor (Price et al. 2003)). Animal excretions also add N to the soil 

system. Some authors suggest these simply represent recycling of fertiliser, BNF, 

supplementary feed etc., so need not be explicitly included in N budgets or models 

(Howarth et al. 2012). However, excretions, particularly dairy cow urine patches, are 

small highly concentrated areas of N that are particularly prone to N leaching (Williams 

and Haynes 1990; Betteridge et al. 2010; Moir et al. 2011; Cameron et al. 2013) and at 

the field scale evidence suggests livestock excrete preferentially in certain spatial zones 

creating N leaching ‘hotspots’ (Haynes and Williams 1993; Betteridge et al. 2010). 

Therefore, a number of authors suggest explicit accounting of animal excretions and 
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excretion patterns is essential when considering N leaching, particularly as spatial 

resolution of investigations increase (McGechan and Topp 2004; Snow et al. 2009; 

Bryant et al. 2011). 

Increased anthropogenic N fixation and input, particularly to agricultural systems, has 

created a net increase of N in the terrestrial environment, which flows on to effect 

aquatic and atmospheric environments. Galloway et al. (2003) term this imbalance and 

movement of excess N ‘the nitrogen cascade’. Pernicious effects of the nitrogen cascade 

are seen in receiving waterbodies where primary productivity may be N limited under 

natural conditions, but flourishes to problematic levels with influx of excess N. This leads 

to eutrophication and creation of hypoxic or anoxic conditions resulting in ‘dead zones’, 

as seen in parts of the North American Great Lakes, the Baltic Sea and Gulf of Mexico 

(Chislock et al. 2013; Rabotyagov et al. 2014). Human health impacts associated with 

elevated levels of nitrate in drinking water are of further concern (Grizzetti et al. 2011).  

Alarmingly, Rockström et al. (2009) suggest anthropogenic N fixation should decrease by 

at least 75% to avoid the risk of crossing N related thresholds that may trigger non-

linear, abrupt environmental change at the planetary scale. Although, reductions are not 

required worldwide because fertilisation rates are highly variable. Over-fertilisation is 

common in North America, Western Europe, China and India, while under-fertilisation 

occurs in Africa, Eurasia and parts of South America (Bindraban et al. 2015).  

2.2.2 The Phosphorus Cycle  

Like N, P is a key primary productivity control in terrestrial, freshwater and marine 

environments. P additions to land can increase food plant productivity, yet also 

negatively affect aquatic systems through increased primary production leading to 

eutrophication and the development of hypoxic or anoxic conditions (McDowell et al. 

2004; Bennett and Schipanski 2012).  

P is weathered from rock over geological timescales and ultimately deposited in marine 

sediments, which are uplifted and subjected to erosion again (Figure 2.2). Within this 

longer P cycle, biogeochemical cycling via sorption, desorption, and plant and microbe 

uptake and expiration, repeatedly occurs at shorter timescales (Bennett and Schipanski 

2012; Sharpley et al. 2013) (Figure 2.2 and 2.3). Plants access P from the soil solution, 
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which is maintained at low P concentrations. P additions to soil (including fertilisers, 

effluents, crop residue left in situ, supplementary animal feed, animal excreta and 

atmospheric deposition of P laden dust) enter the soil solution and excess P is adsorbed 

onto, and in some cases absorbed into, Al and Fe oxide containing soil particles. 

Adsorbed P, is weakly bonded to soil particles and readily moves back into soil solution 

when P concentration drops. As such it is considered plant available (labile). Adsorbed P 

can become absorbed into soil particles over time, after which it is considered plant 

unavailable (non-labile). Soil P sorption, or retention, ability depends on Al and Fe oxide 

presence, which varies according to soil type (Bennett and Schipanski 2012).  

  

 

 

 

 

 

 

 

 

 

Figure 2.2 The phosphorus cycle (Bennett and Schipanski 2012) 

 

Because of close association between P and soil minerals, P loss to water via surface 

runoff and erosion has historically been considered the most important P loss 

mechanism and a focus for P research and management (McDowell et al. 2004; Bennett 

and Schipanski 2012; King et al. 2015). As a result, a dominant surface runoff ‘critical 

source area’ (CSA) approach to managing P loss within a catchment has prevailed, 

whereby CSA’s are spatially identified according to soil, topographic and management 
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factors. However, dissolved and subsurface P losses have been shown to be greater than 

initially thought and management of these losses must be more widely considered (Sims 

et al. 1998; McDowell et al. 2004; Kleinman et al. 2011; King et al. 2015). Temporally P 

loss is highly variable with episodes and pulses of surface and subsurface P movement, 

usually at the beginning of hydrological events (Kleinman et al. 2011; King et al. 2015). 

This makes P particularly challenging to model in terms of water quality. 

Figure 2.3 In-soil P cycling (FLRC 2015) 

Key controls of P loss include meteorological and hydrological events, topography and 

land cover (which influence erosion), soil P reserves and capacity for P retention, the 

presence of subsurface drains or macro-pores, and land management variables such as 

timing and/or type of irrigation and fertiliser application and tillage practices (Sims et al. 

1998; Hart et al. 2004; McDowell et al. 2004; Kleinman et al. 2011; King et al. 2015; 

Kleinman et al. 2015).    

Although policy to control P loss has been in place in some catchments for two to three 

decades (e.g. Chesapeake Bay and Lake Erie basin, USA, and the Baltic Sea), concern is 

developing about a lack of receiving waterbody improvement (Sharpley et al. 2013). This 

may be due to the sporadic nature of P loss as it cycles thorough periods of ‘storage’ and 

movement events, difficulty controlling dissolved P losses, and the inability or lack of 
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enthusiasm of farmers and land managers to implement P controls due to financial or 

policy constraints or due to a lack of evidence that controls will work. Certainly water 

body improvement as a result of best management practice (BMP) at field scale may 

take decades to fully play out at catchment scale – a fact that many people are unaware 

of (Jarvie et al. 2013; Sharpley et al. 2013; Kleinman et al. 2015). In addition, waterbody 

conditions can result in resuspension of stored P in bed sediment, and hypoxic 

conditions can reduce the P retention capacity of sediments (Andersen et al. 2017).     

It is estimated current P loss to the ocean is 8-9 times natural rates of P loss, largely as a 

result of P fertiliser application (Filippelli 2008; Rockström et al. 2009; Bennett and 

Schipanski 2012). Like N, a global decrease in P losses to aquatic environments is highly 

desirable to avoid crossing thresholds that may trigger non-linear, abrupt environmental 

change at the planetary scale (Rockström et al. 2009). However, in under-fertilised 

regions carefully managed increases in agricultural P use would be beneficial by 

increasing food supply to local populations (Bindraban et al. 2015). 

The above summaries identify the urgent need to better control N and P, particularly in 

the agricultural environment. Models and tools, such as those discussed and developed 

in following chapters, are integral to progress towards this goal, although difficulty in 

fully representing nutrient cycling in models must be acknowledged, particularly for P. 

This is due to both temporal and spatial variability at a variety of scales, and thresholds 

associated with nutrient transformation and loss. For example, at small scale local soil 

conditions and microbial activity can be highly heterogeneous (Paul 2007; van Groenigen 

et al. 2015), and nutrient interactions which influence nutrient losses can occur, both 

between N and P and with other macro- and micronutrients (Bindraban et al. 2015). 

Additionally, some small scale interactions and processes are not fully understood, 

including their impact at wider scales (van Groenigen et al. 2015), making their 

representation difficult in catchment scale water quality models.      

Wider societal and cultural barriers to controlling N and P also exist. These largely stem 

from political and social unwillingness to fully account for environmental resources and 

their degradation in our economic models (Wijkman and Rockström 2012; PCE 2015b). 

Water quality models are fundamental to informing and guiding decision making, but 

cannot improve water quality unless subsequent action on the ground is taken. 
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Currently in New Zealand debate around how best to improve water quality is lively and 

LUCI water quality models are particularly well placed to assist.   

2.3 WATER QUALITY MODELLING WITH A FOCUS ON NEW ZEALAND  

A plethora of water quality models estimating nutrient loads to water bodies exist, 

varying in detail, nature, elements of the hydrological cycle included, state (steady or 

dynamic), temporal scale, spatial scale, and data requirements (Tsakiris and Alexakis 

2012). Commonly models are classified according to the extent of process detail 

included. Simple, ‘black box’ empirical approaches may fit observations well, but provide 

little process understanding and should not be applied in situations dissimilar to those 

they have been ‘trained’ on. Process based models can be simple or detailed. Simpler 

models are more spatially and temporally lumped with fewer input requirements. 

Detailed physically-based models simulate hydrological and contaminant processes at 

finer spatial and temporal scales and provide more detailed process understanding. 

However, they have larger data input requirements and take more time and expertise to 

run. It is often assumed that more detail will provide more accurate model results. 

However, the construction and evaluation of complex models is often hampered by a 

lack of available data (Bergström and Graham 1998; Beven 2009; Beven 2012). In reality, 

many water quality models combine aspects of simpler vs. complex approaches, 

occupying an intermediary position between these extremes. A full review of available 

models is beyond the scope of this investigation however, and the reader is guided to 

summaries and comparative literature between individual models and model 

approaches, such as Alexander et al. (2002b), Bouraoui and Grizzetti (2014), 

Pechlivanidis et al. (2011), and Schoumans et al. (2009). 

Here a review of point, farm and catchment scale water quality models is undertaken 

with emphasis on those applied in New Zealand. Review of this range of models at 

variable scales is necessary because this research thesis develops water quality models 

that can be used at sub-field to catchment scale, and the developed models are based 

on OVERSEER, a farm scale nutrient model. In addition, many catchment scale water 

quality models rely on point to farm scale nutrient models to estimate field to farm scale 

nutrient losses. To better understand the catchment scale models discussed in Section 

2.3.2, relevant point to farm scale models are introduced and discussed in Section 2.3.1. 
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This model review also highlights LUCI’s potential to fill gaps in New Zealand’s current 

water quality modelling landscape.      

2.3.1 Point to Farm Scale Models 

SPASMO (Soil Plant Atmosphere System Model) 

Developed in New Zealand by Plant and Food Research, SPASMO models soil profile 

water, microbe, contaminant and nutrient solute movement in a 1 dimensional soil 

profile (Clark et al. 2012).  Water inputs include rainfall and irrigation, and water outputs 

include loss via plant uptake, evaporation, runoff and drainage. Soil profile carbon, 

nitrogen and phosphorus nutrient budgets consider plant growth and uptake, nutrient 

exchanges and transformations, nutrient and organic material recycling via the soil 

biomass, and fertiliser and effluent additions.  Soil water solute concentration and 

nutrient leaching losses are calculated daily and reported at field scale (Clark et al. 2012; 

Envirolink 2015). SPASMO is intended for expert use only and is not freely available. The 

model has been applied in New Zealand to investigate nutrient losses from productive 

land (Rosen et al. 2004; Dominati et al. 2014; Clothier and Green 2017) as well as losses 

of other contaminants and for water footprinting (Clothier et al. 2006; Herath et al. 

2013). Horticultural nutrient losses derived from SPASMO have been incorporated into 

catchment scale water quality models (Woods et al. 2006a; Cichota and Snow 2009; 

Envirolink 2015) and it has potential, in future, to inform the new export coefficient 

approach developed here.   

OVERSEER 

OVERSEER is a freely available annual nutrient budgeting model which considers 

nutrient movement (including N and P) onto, around and off of a farm.  Developed with 

input from AgResearch, Plant & Food, Landcare Research and NIWA, it originally aimed 

to assist pastoral farmers to determine fertiliser requirements. Today OVERSEER also 

models arable and fodder crops and quantifies nutrient losses to water and greenhouse 

gas emissions. It is therefore useful for identifying potential environmental impacts. A 

large body of research pertaining to nutrient movement and loss from the New Zealand 

farm environment is considered in OVERSEER and its underlying databases. However, 

because it is intended for use by “non-experts” (e.g. farmers and farm consultants), the 
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model inputs are minimal and easily obtained (Cichota and Snow 2009; Watkins and 

Selbie 2015; Wheeler 2016c).  

OVERSEER is New Zealand’s most widely known and used nutrient model and it is now 

extensively used by regional authorities to assess farm nutrient losses for regulatory 

purposes. Concern around OVERSEER’s appropriateness for this purpose have been 

expressed (Arbuckle 2015) and OVERSEER developers are responding with guidance and 

explanation of uncertainties and limitations associated with the model (Watkins and 

Selbie 2015). OVERSEER is non-spatial, which is a limitation because in reality nutrient 

loss is highly spatially varied and spatial identification of nutrient sources, pathways and 

sinks is an important step towards identification of appropriate mitigation strategies.  

OVERSEER is used extensively to develop models in this study and further description of 

OVERSEER pastoral model functioning is found in Section 4.2. Additional information is 

also available from OVERSEER’s website (OVERSEER 2017a) and Watkins and Selbie 

(2015). 

MitAgator 

MitAgator, developed by Ballance Agri-nutrients, couples OVERSEER, national databases 

and GIS software to produce maps of N, P, sediment and microbial (E. coli) farm losses. A 

map package, combining and spatially positioning OVERSEER farm files and national 

spatial data, is used as input to the MitAgator engine, which contains algorithms to 

estimate losses of contaminants to surface waterways. The N and P algorithms are 

modified, “spatially relevant” versions of those used in OVERSEER and described in 

McDowell et al (2005; 2008), Rutherford and Wheeler (2011) and Wheeler et al (2011). 

Output consists of maps categorising predicted loss into five 20% categories. The highest 

loss category represents critical source areas (CSA), which are particularly targeted for 

mitigations. Mitigation options can then be applied and reductions in loss investigated. 

Mitigations are assessed in terms of effectiveness and cost (Stafford and Peyroux 2013; 

McDowell et al. 2015; Risk et al. 2015; McDowell et al. 2016b). N and P model results 

have been assessed against plot to catchment scale losses for a range of 6 soil orders 

and 5 land uses. Results indicate MitAgator predictions are less accurate as rainfall and 

scale increase (McDowell et al. 2016b).  
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MitAgator aims to assist Ballance customers with land management decisions. In this 

respect it will play a similar role as that envisaged for LUCI by Ravensdown. Once fully 

operational, MitAgator is expected to initially only be available to Ballance customers, 

but more widely available in in the future. Key differences between MitAgator and LUCI 

include fine spatial representation and the ability to model water and nutrient pathways 

and sinks within the landscape. 

2.3.2 Catchment Scale Models      

Many catchment scale water quality models exist and are in use around the world. Here 

the focus is largely on catchment scale models used in New Zealand, although a brief 

description of a further few catchment scale water quality models is provided for 

additional breadth. These descriptions highlight both LUCI’s highly spatially detailed 

nature, compared to other catchment scale water quality models, and that some form of 

diffuse nutrient loss estimation, or export coefficient, is required for many catchment 

scale water quality models.    

Commonly referenced catchment scale water quality models in comparative summaries 

include SWAT, SPARROW, MONERIS, HBV-NP and INCA (Alexander et al. 2002b; Breuer 

et al. 2008; Schoumans et al. 2009; Bouraoui and Grizzetti 2014; Wellen et al. 2015) - 

although this is far from an exhaustive list. SWAT and SPARROW are US developed, have 

been applied in New Zealand and are described in more detail below. MONERIS is a 

German developed, semi-empirical, conceptual model that quantifies point source and 

diffuse nutrient emissions to river catchments and has been applied to over 450 river 

systems, largely in Europe (MONERIS 2017). Spatially it functions at the ‘analytical unit’ 

(validated at 50 km2, but in theory could be as small as 1 km2), which are aggregated to 

represent the catchment. Diffuse nutrient losses are determined for each analytical unit 

by multiplying estimated losses from various sources e.g. crops, pasture, urban etc., by 

the area of those sources within the analytical unit. Temporally results can be reported 

at monthly, yearly or long-term scale (Venohr et al. 2011). MONERIS is freely available 

(MONERIS 2017). 

HBV-NP is based on Swedish hydrological model HBV, a semi-distributed surface-

groundwater model which functions at sub-basin scale with intra-basin sub-units 
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defined according to elevation and vegetation (but not geographic position) and a daily 

time step (Lindström et al. 1997). The nutrient sub-model determines soil water nutrient 

concentration according to combinations of land use and soil and routes these to the 

hydrological model. Erosional losses are also considered for P and point source nutrient 

losses from wastewater treatment plants and industry are included (Arheimer et al. 

2005). HBV-NP has been superseded by HYPE (Jackson-Blake et al. 2016), which offers 

more detailed soil processing, but like HBV-NP does not define intra-basin geographic 

position of sub-units (SMHI 2017).  

INCA is a UK developed, dynamic process-based model that predicts water quality 

(including N and P) and quantity in rivers and catchments. INCA has been applied largely 

in the UK and  Europe, with applications also in the Americas, Australia and Asia (INCA 

2017). The model functions at a daily time step (Wade et al. 2002; Whitehead et al. 

2011) and Whitehead et al. (2011) state users can choose semi- or fully-distributed 

spatial representation. However, further description of the fully distributed version of 

the model only appears for INCA-P (Whitehead et al. 2011; Jackson-Blake et al. 2016), 

making it somewhat unclear if this capability is actually available in INCA-N. Further 

detail around the ‘fully-distributed’ version of the model indicates sub-catchments are 

broken in to landscape classes or functional units where nutrient inputs, plant uptake, 

soils and flow pathways are similar. In reality, land use and/or soil type are all that is 

considered. Nutrient output from each landscape class is derived by determining output 

for a 1 km2 class cell (based on estimated nutrient inputs and plant/soil processes) and 

multiplying that by the class area within the sub-catchment. Total sub-catchment 

nutrient losses are the sum of losses from each landscape class within the catchment 

and are routed to the stream network (Wade et al. 2002; Whitehead et al. 2011; 

Jackson-Blake et al. 2016). INCA is freely available for non-commercial use, but requires 

considerable inputs and expertise to operate (Jackson-Blake et al. 2016).      

SWAT (Soil and Water Assessment Tool)  

SWAT is a widely used model developed over 30 years by the US Department of 

Agriculture (USDA). It is an example of a more physically-based model and is described 

as a ‘continuous-time dynamic model based on mathematical descriptions of physical, 

biogeochemical and hydro-chemical processes, combining elements of both physical and 
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semi-empirical processes’ (Krysanova and White 2015). It aims to quantify the impact of 

land management on water, sediment and contaminants (including N and P) in complex 

landscapes with variable soil, land use and management. SWAT’s smallest spatial unit is 

the hydrological response unit (HRU), defined as a non-contiguous area within a sub-

basin consisting of similar land use, soil type and slope class. HRU’s are not spatially 

identified and do not interact at the sub-basin level. Rather nutrient loading from each 

HRU is calculated separately, then summed to determine total sub-basin loading to the 

river network (SWAT 2017). Temporally SWAT functions at a daily time step. 

Hydrological flows and processes represented in the model include precipitation, surface 

runoff, percolation, evapotranspiration and groundwater flow (Krysanova and White 

2015; SWAT 2017). SWAT is freely available, but requires expert knowledge to apply. 

Global applications of the model in a wide range of environments have been made and a 

wide body of literature is available from SWAT’s website (SWAT 2017).  

In New Zealand it has been applied in a mixed land use sub-catchment of Lake Rotorua. 

Results of this study indicate measured monthly TN and TP concentrations were not well 

replicated by SWAT. However, simulated mean daily concentrations during a high 

rainfall event compared to concentrations derived from high frequency (1-2 hour) 

sampling during the event, showed TN was comparable, although TP concentration was 

considerably under predicted.  The authors found parameter sensitivity between base 

flow and quick flow conditions were problematic, highlighting the uncertainty that can 

be associated with parameterising water quality models, particularly as model 

complexity increases (Me et al. 2015). SWAT was also applied to the Motueka catchment 

to assess the likely effects of land use change on hydrological flows, but nutrient losses 

were not considered (Cao et al. 2009).   

SPARROW (Spatially Referenced Regressions on Watershed Attributes) 

SPARROW is designed to predict long term average values of water quality 

characteristics using statistical non-linear regression methods that relate in-stream 

water measurements (contaminant concentration and water flow) to upstream sources. 

The smallest spatial unit in the model is the river reach linked to contributing 

catchments (unlikely to be less than 1-10’s km2). Temporally SPARROW predicts annual 

average water quality values. Nutrient output from various land covers and uses within 
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the river reach are estimated, and land to water delivery is based on reach 

characteristics such as soil permeability, slope, rainfall etc. (Schwarz et al. 2006; USGS 

2009). SPARROW does not model specific physical, chemical or hydrological processes. It 

is reasonably easy to apply, although expert knowledge is an advantage and a precursor 

to application is access to input databases detailing water measurements, soil, land use 

and precipitation for the area of interest.  

In New Zealand SPARROW was applied to the Waikato catchment where predicted TN 

and TP stream yields were ‘typically’ within 30% or less of measured yields (Alexander et 

al. 2002a). Elliott et al. (2005) applied SPARROW nationally and state the model predicts 

TN loads well (R2 of 0.956 and RMSE of 0.33) with TP load less well predicted (R2 of 0.9 

and RMSE of 0.58). These studies appear to have been groundwork for development of 

the Catchment Land Use for Environmental Sustainability model (CLUES), which links a 

number of models to SPARROW and is discussed below.  

ROTAN (Rotorua and Taupo Nitrogen Model)  

Developed by NIWA, ROTAN (Rotorua and Taupo Nitrogen Model) models N loss from 

the Lake Rotorua catchment. It is GIS-based and estimates the effects of land use change 

and N mitigations on N export to waterbodies (Rutherford et al. 2009). The model is 

based on Swedish hydrology model HBV (Envirolink 2015).     

Temporally ROTAN runs on a daily time-step and ‘functional units’ (areas of similar 

topography, land cover, land use, soil drainage and rainfall within the catchment) are 

defined and assigned an OVERSEER derived nitrogen export rate (kg N ha-1yr-1). This is 

then routed through the landscape to groundwater, rivers and the lake (Rutherford et al. 

2009).  Rutherford et al. (2009; 2011) used ROTAN to assess historical, current and 

future N loads to Lake Rotorua, aiming to determine the magnitude of land use change 

required to significantly decrease future N loads to the lake. They estimated it would 

take 35 years to reduce N loads to Lake Rotorua to a target of 405 tN/yr, but note that 

this assumes required land use changes occurred all at the same time (Rutherford et al. 

2011). ROTAN is not generally available, requires expert application and aims to inform 

catchment managers.   
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CLUES (Catchment Land Use for Environmental Sustainability)     

CLUES, developed by NIWA, is a nationally applicable, GIS based, catchment scale model 

that aims to assess the impact of land use change and land management on stream 

water quality (TN, TP, sediment and E. coli) and a range of socio-economic indicators. 

CLUES water quality component links SPARROW, SPASMO, and OVERSEER with spatial 

data pertaining to land cover and use, and physiographic characteristics. The model 

functions at the reach scale (typical reach length is between 500-1500m) with an annual 

time step and land uses within each reach are accounted for by total area, but not 

spatially identified or positioned (Woods et al. 2004; Elliott et al. 2008; Semadeni-Davies 

et al. 2016). Nineteen land uses are defined by CLUES including 8 pastoral land uses, 6 

crops (3 short-rotation and 3 perennial), exotic forest, native forest, scrubland, urban 

and ‘other’.  

N and P losses for pastoral land uses within a reach are estimated by a simplified version 

of OVERSEER and are a function of stocking rate, fertiliser, rainfall, soil order and 

topography (Semadeni-Davies et al. 2016). Default regional farm stocking rates and 

fertiliser inputs are derived from Ministry of Agriculture and Forestry (MAF) regional 

model farm data and Livestock Improvement Corporation data (Woods et al. 2006a). 

Dominant soil order and average slope for each reach are determined from the New 

Zealand Land Resources Inventory (LRI) (Semadeni-Davies et al. 2016). Although not 

explicitly stated, it appears that only one dominant soil order and slope value is 

identified for each reach.  

N leaching losses from crop and horticultural land uses were derived from SPASMO 

based on the relevant crop types and a range of rainfall and soil types. The results are 

collated in lookup tables and combined with continuous rainfall functions in CLUES to 

derive estimates of crop and horticultural losses within any specific reach (Semadeni-

Davies et al. 2016). P losses from crop and horticultural land uses are not mentioned in 

CLUES latest user manual suggesting they may not be included in the model. 

Nutrient losses from OVERSEER and SPASMO are fed into SPARROW, which determines 

nutrient loads from all land uses, other than pasture and crop, and routes nutrient loads 

downstream where they accumulate and decay (Semadeni-Davies et al. 2016). It is not 

clear how SPARROW estimates nutrient loads from other land uses. Presumably 
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estimates of regional or national nutrient losses for forested, scrub, urban and other 

land uses for New Zealand have been collated from literature or other data sources.  

CLUES is intended for use by water and land managers and policy makers. It has been 

applied nationally and in Auckland, Manawatu, Waikato, Bay of Islands, Lake Rotorua, 

Hurunui, Oreti and Mataura catchments (Elliott et al. 2005; Elliott et al. 2011; Semadeni-

Davies and Elliot 2014; Envirolink 2015; NIWA 2015; Semadeni-Davies et al. 2015; Elliott 

et al. 2016).   

Where CLUES predicted and measured N and P concentrations and loads are compared, 

results are variable (Monaghan et al. 2010b; Elliott et al. 2011; Semadeni-Davies et al. 

2015), (as is commonly found with catchment scale water quality models (Alexander et 

al. 2002b; Letcher et al. 2002; Baginska et al. 2003; Schoumans et al. 2009) – a point 

returned to in Chapter 7). However, the focus of a number of CLUES based studies is 

comparison between current and future land use scenarios and predicted and measured 

water quality comparisons are not made because relative differences between scenarios 

is the more important focus (Monaghan et al. 2010b; Elliott et al. 2011; Parshotam et al. 

2013).  

Three Important Points Highlighted by this Summary: 

In this section a range of catchment scale water quality models are described ranging 

from simpler models with little process representation, such as MONERIS and 

SPARROW, to increasingly detailed and complex models such as INCA and SWAT. These 

descriptions highlight three standout points in relation to my thesis: 

1. Spatial Resolution 

None of the catchment scale models described above function at anywhere near the 

same fine spatial scale as LUCI (15 m x15 m or less for New Zealand) and none 

simultaneously model sub-field to catchment area at that scale.  

2. Spatial Configuration 

Due to lack of spatial detail, none of the models explicitly consider landscape 

configuration within sub-basins and therefore, do not consider intra-basin water and 

nutrient flow between landscape units. However, landscape configuration at this scale 
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clearly influences water quality (Lee et al. 2009; Jackson et al. 2013a). For example, a 

forested area below agricultural land on a hillslope will receive water and nutrients from 

the agricultural land and will likely provide some mitigation against nutrient losses. In 

contrast, a forested area above agricultural land on a hillslope cannot mitigate nutrient 

losses from the agricultural land. Landscape configuration is very important and, unlike 

most other catchment scale water quality models, LUCI explicitly considers this.  

3. Most Catchment Scale Water Quality Models Require Export Coefficients 

All, but the most detailed, catchment scale water quality models, require some form of 

estimated diffuse nutrient loss, or export coefficient, from land units within the 

catchment of interest. Therefore, the method and models developed for LUCI water 

quality models in proceeding chapters, have wider applicability and relevance to 

catchment scale water quality modelling.  

Points 1 and 2 highlight the real contribution LUCI can make to the water quality 

modelling ‘landscape’. Not only does it function at fine spatial resolution and explicitly 

consider spatial relationships and configuration at fine scale, but it is also comparatively 

quick to run, making it ideal for sub-field to catchment modelling and decision making. 

In addition, Point 3 highlights the ubiquity of the export coefficient approach (even if 

many do not term it this), making it clear the new approach developed here is of 

potential use to many catchment scale water quality models.  

The following section explores the export coefficient concept further including defining 

what export coefficients are, how they are derived and used, and assumptions 

associated with their use. This section highlights how and why development of a new 

export coefficient approach is worthwhile.    

2.4 THE EXPORT COEFFICIENT APPROACH 

2.4.1 Export Coefficients Defined 

Water quality modelling using export coefficients stems from investigations into 

connections between phosphorus loading and lake eutrophication in Europe and the US 

by Vollenweider (1968). Export coefficients are variously described as the rate at which a 

contaminant is exported from a particular source (Johnes 1996; Hanrahan et al. 2001; 
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Uncles et al. 2002), the expected annual contaminant input to a waterbody per unit of 

source (Reckhow et al. 1980), and the mass of a contaminant per unit area per unit time 

(Ierodiaconou et al. 2005; Zobrist and Reichert 2006; Ongley et al. 2010; Lu et al. 2013; 

Robinson and Melack 2013; White et al. 2015). The terms ‘specific yield’ and ‘generation 

rate’ are also used to describe these losses (Cooke 1979; Baginska et al. 2003). Export 

coefficients are most commonly reported for total nitrogen (TN) and total phosphorus 

(TP), but are also found for various N and P species, total suspended solids (TSS), 

chloride and potassium (Lin 2004; Zobrist and Reichert 2006; White et al. 2015). While 

TSS is certainly an important factor in P losses, the focus of this thesis is N and P export 

coefficients only.   

The vast majority of export coefficients in literature are reported in kg contaminant ha-1 

yr-1.  However, the export coefficients in Johnes’ (1996) model are multiplied by land use 

area, animal population or human population, and nutrient inputs to that land use or by 

the livestock/human population (Eqn 1).  Accordingly, the export coefficient is a 

dimensionless proportion of inputs per unit area. Later, however, Johnes (1996) uses 

two forms of export coefficient – the proportional of inputs form and the mass of 

contaminant per unit area per unit time form. 

𝐿 = ∑ 𝐸𝑖[𝐴𝑖(𝐼𝑖)] + 𝑝

𝑛

𝑖=1

 

Where, L= loss of nutrients; E = export coefficient for nutrient source 

I; A = area of catchment occupied by land use type I, or number of 

livestock type I, or number of people; I=input of nutrients to source I; 

p=input of nutrients from precipitation.    

 Eqn. 1. 

Zobrist and Reichart (2006), distinguish between these two types of coefficients. They 

describe the dimensionless proportion of contaminant input as a “transfer coefficient”, 

which represents transfer and transformation processes only. In contrast, “export 

coefficients” describe mass contaminant discharged per area and time, which includes 

contaminant input as well as transfer and transformation processes. Transfer 

coefficients are useful when modelling the effects of changes in contaminant input, but 
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they are difficult to determine and rarely found in the literature.  In contrast, export 

coefficients must be changed to model changes in contaminant input, but are reported 

much more frequently in the literature. Additionally, Robinson and Melack (2013) found 

export coefficients to be better predictors of catchment exports than transfer 

coefficients. In what follows ‘export coefficient’ refers to the mass of contaminant 

discharged per area and time.   

2.4.2 Export Coefficient Use in Catchment Scale Models 

Following on from Vollenweider’s (1968) initial lake modelling,  interest in the export 

coefficient approach, commonly also referred to as the unit-area load approach, appears 

to have become particularly popular in North America (Dillon and Kirchner 1975; Rast 

and Lee 1983; Clesceri et al. 1986; Frink 1991; Chambers and Dale 1997; Winter and 

Duthie 2000; Ongley et al. 2010) and several compilations and reviews of N and P export 

coefficients from North American literature were developed (Uttormark et al. 1974; 

Reckhow et al. 1980; Beaulac and Reckhow 1982; Lin 2004).       

In 1989 Johnes and O’Sullivan applied Jørgensen’s (1980) ‘export coefficient approach’ in 

the UK. Shortly thereafter, Johnes (1996) presented her modified export coefficient 

model (ECM) - an extension of the original Vollenweider and Jørgensen models taking 

more detailed account of variable nutrient sources from agricultural land uses and 

livestock production systems. Johnes’ work appears to have popularized the ECM 

outside of North America with a number of authors in a variety of countries referencing 

her work as influential (Worrall and Burt 1999; Hanrahan et al. 2001; Uncles et al. 2002; 

Ierodiaconou et al. 2005; Ding et al. 2010; Wang et al. 2015). However, Australia’s 

Catchment Management Support System (CMSS), a unit-area load model with the 

addition of an in-stream attenuation function, was developed at around the same time 

(Marston et al. 1995; Baginska et al. 2003; Broad and Corkrey 2011), and may have also 

contributed to the popularisation of the EC approach.   

Described as a simple, empirically based, ‘black box’, catchment scale water quality 

model (Sharpley et al. 2002; Cherry et al. 2008; Radcliffe et al. 2009; Bouraoui and 

Grizzetti 2014), the ECM aims to predict nutrient load at any point in the stream 

network, as a function of nutrient exports from each source within the contributing 



30 
 

catchment, using Equation 1 (Johnes 1996). The model assumes N and P losses are 

directly and linearly linked to N and P inputs associated with land use. Losses occur 

between N and P inputs and outputs, but how, why and where these losses occur is 

never elucidated. The approach also assumes losses do not vary with soil, topography, 

land management etc., that climate events are unimportant, and that lagged, stored, or 

legacy N and P do not exist. As such, variability with time is not well represented and 

model output represents annual average losses only.        

The main benefits of the ECM are its simplicity, ease of use and comparatively low data 

requirements, which make it an attractive catchment scale modelling option 

(Heathwaite 2003; Drewry et al. 2006; Cherry et al. 2008; Broad and Corkrey 2011; Shen 

et al. 2012). However, while the use of simpler models is advocated, particularly where 

little local data is available for model parameterisation or calibration (Addiscott and 

Mirza 1998; Letcher et al. 1999), a lack of explicit consideration of influential nutrient 

export variables (eg. climate, soil, topography, and hydrology) and transfer and 

transformation functions and processes particularly associated with lagged, stored and 

legacy N and P, are identified as ECM weaknesses (Khadam and Kaluarachchi 2006; 

Cherry et al. 2008; Ding et al. 2010; Robinson and Melack 2013).   

Consequently, ‘enhanced’ ECMs have been developed by a number of authors to 

address some of the assumptions and simplifications inherent in the model. Johnes and 

Heathwaite (1997) account for variable delivery to the stream network with a distance 

decay parameter. Endreny and Wood (2003) weight export coefficients based on 

identified contributing and dispersal areas. Shi et al. (2006) weight export coefficients 

based on slope to account for run-off risk. Khadam and Kaluarachchi (2006) model 

hydrologic variability with an erosion-scaled approach to predict P export. Robinson and 

Melack (2013) augment the ECM approach with a watershed response function, which 

scales nutrient export by considering antecedent soil moisture conditions. Johnes et al. 

(2007) and Greene et al. (2015) developed regional geo-climatic landscape units to 

further enhance regional to national scale ECM applications in the UK. Ding et al. (2010) 

developed the Improved Export Coefficient Model (IECM) which includes a precipitation 

impact factor and a terrain impact factor which weight ECs. This was further improved 

by the addition of a vegetation factor (Wang et al. 2015).  
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While the above models are described as modified ECMs, it is clear from Section 2.3 that 

many catchment scale water quality models rely on some form of estimated diffuse 

nutrient loss or export coefficient – a point also made by other authors (Grimvall and 

Stalnacke 1996; Alexander et al. 2002b; Shrestha et al. 2008; Lu et al. 2013). These 

models could be described as taking an export coefficient approach (ECA). The term 

‘ECA’ is already found in literature and usually refers to ECM (Johnes 1996; Wilson 

2005). However, a differentiation between these terms is suggested whereby ECM 

refers to a simpler Johnes (1996) type model and ECA refers to more complex models, 

that never-the-less use some form of nutrient export assumption to model diffuse 

pollution from specified land units. 

2.4.3 Export Coefficient Derivation 

A number of methods to derive export coefficients exist.  The most commonly used 

method involves actual measurement of contaminant loss from a single land use plot, 

field or small catchment e.g. Mishra et al. (2006), Monaghan et al. (2002), Owens et al. 

(2003), Udawatta et al. (2002) and Vervoort et al. (1998).   These studies do not 

routinely define calculated losses as ‘export coefficients’, yet the data they report are 

used as export coefficients (Uttormark et al. 1974; Reckhow et al. 1980; Baginska et al. 

2003; Harmel et al. 2006). These investigations are typically constrained by a limited 

range and combination of climate, soil, topographic, land use and management types 

because the time and expense of instrumenting and monitoring many plots, fields 

and/or catchments is prohibitive. Studies are therefore frequently conducted on 

established research sites (White et al. 2015). Additionally, measurements occur at a 

variety of spatial and temporal scales using different measurement and analysis 

techniques, making it difficult to compare results between studies or to determine 

appropriate export coefficients for use (Uttormark et al. 1974; Beaulac and Reckhow 

1982; Khadam and Kaluarachchi 2006).   

To assist with identification of appropriate export coefficients, summaries of 

measurements are available for North America. Uttormark et al (1974) compiled the first 

thorough summary for a variety of North American forest, urban, agriculture and 

wetland land uses, concluding that export coefficients for only these four broad land use 

categories should be used. Reckhow and Beauleac (1980) updated the compilation and 
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discussed and examined uncertainty associated with the variability and range of export 

data for a variety of land uses. Lin (2004) published a review of both export coefficient 

and event mean concentration data. More recently, the MANAGE (Measured Annual 

Nutrient loads from Agricultural Environments) on-line database was established. It 

summarises site characteristics and nutrient export data from many North American 

field-scale agricultural and forest measurement studies (Harmel et al. 2006; Harmel et 

al. 2008).  

A second method of deriving export coefficients involves statistical analysis of in-stream 

water quality data for multi-land use catchments (McFarland and Hauck 2001; Zobrist 

and Reichert 2006; Shrestha et al. 2008; Vassiljev et al. 2008; Lu et al. 2013). Most 

commonly multiple regression analysis is used whereby measured in-stream nutrient 

load is apportioned to upstream land cover or uses based on the fractional land 

cover/use area of the total catchment (Omernik 1976; McFarland and Hauck 2001; 

Shrestha et al. 2008; Vassiljev et al. 2008) as presented in Equation 2. 

𝐿𝑖 = 𝛽1𝑋𝑖,1 + 𝛽2𝑋𝑖,2 + ⋯ + 𝛽𝑛𝑋𝑖,𝑛 + 𝜀𝑖 

Where, i= the individual sites used in the regression model; Li= the 

average time period (usually annual) loading at site i per hectare per 

time period; 𝛽1 to 𝛽n = the export coefficient for n types land uses 

(kg/ha/time period); Xi,1 to Xi,n = the fraction of land area above site i 

represented by n types of land uses and 𝜀I = the random error 

associated with the difference between the measured and predicted 

loadings that is not explained by the model for site i (Shrestha et al. 

2008).  Eqn. 2.  

Some studies extend this approach by estimating export coefficient probability based on 

the distribution of literature based export coefficients or fractional area of individual 

land uses over multiple catchments (Zobrist and Reichert 2006; Broad and Corkrey 2011; 

Lu et al. 2013). A first attempt at export coefficient derivation using this method was 

made by Omernik (1976) in US catchments. His success was variable. In particular, 

definition of export coefficients was difficult for more than two very broad categories: - 

forest and agriculture plus urban. More recent studies define four broad land use 



33 
 

categories including forest, urban, intensive agriculture and extensive agriculture 

(Zobrist and Reichert 2006; Shrestha et al. 2008; Lu et al. 2013).  

The statistical derivation method is useful in regions with few single land use/cover field 

or small catchment studies. However, validating derived export coefficients and defining 

their uncertainty is problematic (McFarland and Hauck 2001; Lu et al. 2013). 

Additionally, this method relies on appropriate long-term in-stream water quality data, 

preferably from multiple measurement locations within a catchment (Shrestha et al. 

2008), and this is rarely available.  

A third method of export coefficient derivation uses existing models to generate plot to 

field to farm scale export coefficients. This method is useful where catchment specific 

data is unavailable due to lack of measurement or due to data restrictions (Anthony et 

al. 2009).  For example, SPASMO and OVERSEER are used to develop nutrient loss 

coefficients from New Zealand ‘model’ or regionally representative farms for use in 

catchment scale water quality modelling (Wilcock et al. 2006; Monaghan et al. 2007b; 

Elliott et al. 2008; Monaghan et al. 2009; Rutherford et al. 2009; Wilcock et al. 2009; 

Rutherford et al. 2011; Rutherford 2012; Wilcock et al. 2013; Semadeni-Davies et al. 

2016). Section 2.3.2 describes how this approach is specifically applied in the CLUES 

catchment scale model.   

Similarly, field scale models NCYCLE, NITCAT, MANNER and PSYCHIC are applied to a 

range of ‘typical’ farm types, combined with area specific climate and soil data, to derive 

nitrate-N and P loss coefficients for grassland and crop systems in catchment to national 

scale modelling in the UK (Lord and Anthony 2000; Anthony et al. 2009; Lord et al. 2009; 

Anthony et al. 2012). In the US, SWAT is used to develop agricultural export coefficients 

for broad ecoregions (White et al. 2015).  

Validation of such modelled export coefficients can be difficult because plot to field 

scale measurements covering the full complement of climate, soil, topographic and 

management variables rarely exist for comparison. However, White et al (2015; 2016) 

report SWAT simulated export coefficients compare favourably with plot, field and small 

catchment based measurements. Although their approach explained only 0.45 and 0.33 

of the variation in TN and TP exports (White et al. 2015).    
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Table 2.1 summarises literature reported, land cover linked export coefficients from a 

variety of regions and climates including the US (Loehr 1974; Reckhow et al. 1980; 

McFarland and Hauck 2001; White et al. 2015), UK (Johnes 1996; Shi et al. 2006), Europe 

(Loehr 1974) and Australia (Baginska et al. 2003; Broad and Corkrey 2011). Export 

coefficients featured are reported measured losses (Loehr 1974; Reckhow et al. 1980), 

derived from statistical analysis of land use area and in-stream measurements 

(McFarland and Hauck 2001; Broad and Corkrey 2011), and derived from SWAT (White 

et al. 2015). This table does not represent a complete survey of all export coefficient 

literature (much of which does not tabulate specific export coefficients used anyway), 

but it is presented to highlight the wide variety of export coefficients reported for a 

range land covers. Only broad land cover categories are used here because specific land 

covers identified in literature are very difficult to reconcile between studies.  

Table 2.1 Summary of export coefficients reported in a selection of international 
literature for 8 broad land cover categories 

Land Cover Nitrogen Loss 
(kg TN ha-1 yr-

1) 

N References Phosphorus 
Loss  

(kg TP ha-1 yr-1) 

P References 

Intensive/Improved 
Grassland 

0.13 - 30.85 1, 2, 5, 6, 8, 9 0 – 11.1 1, 2, 3, 4, 5, 6, 7, 8, 9 

Extensive/Unimproved 
Grassland 

0.1 - 13 3, 5, 6, 8 0 – 0.25 3, 5, 6, 7, 8 

Cropland 0.04 – 91.4 1, 2, 5, 6, 8, 9 0 – 18.6 1, 2, 3, 5, 6, 7, 8, 9 

Orchard 4.7 – 5.49 5, 8 0.02 – 0.3 5, 7, 8 

Feedlot and Manure 
Storage 

4 – 7979.9 1, 2 0.8 – 795.2 1, 2 

Urban 1.48 - 63 1, 2, 4, 5, 8, 9 0.065 - 20 1, 2, 4, 5, 7, 8, 9 

Forest 0.12 – 6.3 1, 2, 3, 4, 5, 6, 8, 9 0 – 0.88 1, 2, 3, 4, 5, 6, 7, 8, 9 

Scrub, Shrub and 
“Unused” 

0.5 - 6 2, 8 0.02 – 0.7 2, 7, 8 

1 Reckhow et al (1980) 
2 Loehr (1974)  
3 Johnes (1996) 

4 McFarland & Hauck (2001) 
5 Baginska et al (2003) 
6 Shi et al (2006) 

7 White & Hammond (2009) 
8 Broad & Corkrey (2011) 
9 White et a (2015) 

 

2.4.4 Choosing and Using Export Coefficients 

Baginska et al. (2003) found modelled in-stream nutrient losses were highly dependent 

on export coefficient choice. The main issue around choosing and using export 

coefficients concerns whether export coefficients derived for one area are appropriate 

for use elsewhere (Broad and Corkrey 2011). When searching for export coefficients 
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variables associated with climate, soil, topography, land use and management, and 

temporal and spatial measurement scale should be considered (Reckhow et al. 1980; 

Young et al. 1996; Baginska et al. 2003; White et al. 2015).  

Of these variables measurement scale is important and must fit with the catchment 

model scale and process representation (Drewry et al. 2006; Soranno et al. 2014). 

Temporally, measurements over periods of less than a year (even if reported as kg 

nutrient ha-1 yr-1) may not account for seasonal climate and land management variability 

(Reckhow et al. 1980). Spatially, as derivation area increases, export coefficients 

decrease because more terrestrial and in-stream attenuation processes are included 

(Grimvall and Stalnacke 1996; Drewry et al. 2006).   

Early use of export coefficients described the contaminant load delivered from the 

source to the edge of the stream (Reckhow et al. 1980; Johnes 1996; Ongley et al. 2010) 

and implicitly included storage and transformation losses along source to sink pathways. 

In more recent literature the term ‘export coefficient’ is often used when referring to 

contaminant loss to edge of field and/or root zone only (Harmel et al. 2006; White et al. 

2015). These export coefficients are appropriate for use in models that include more 

explicit representation of nutrient storage and transformation along source to sink 

pathways.  

This evolution of export coefficients is indicative of the easiest scale at which single land 

use nutrient export data is collected and reflects catchment scale modelling changes, 

tending towards more complex and physically based models as computing power 

increased. However, it also highlights that export coefficients with a variety of 

underlying scale, process and transport assumptions, as well as variable climate, soil, 

topography, and land use and management, are found in literature. Care should be 

taken to make the appropriate choice of export coefficients for use in the catchment 

scale water quality model of interest.   

However, whether such care is taken is uncertain. In addition, limited data, limits the 

range of export coefficients to choose from. A survey of export coefficient literature 

suggests that land use or cover is the most commonly matched variable, or in some 

cases, the only matched variable, when choosing export coefficients. For example, ECM 
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studies for the UK clearly replicate land use export coefficients from a common few 

previous studies e.g. May et al. (2001), Hanrahan et al. (2001), Mattikalli and Richard 

(1996). Common export coefficient references include Cooke (1976), Gostick (1982) and 

Johnes (1996), who herself references export coefficients from the original studies in 

North America and continental Europe e.g. Vollenweider (1968) and Reckhow et al. 

(1980). It is unlikely that these few studies can supply appropriate export coefficients for 

such a range of locations with variable climate, soil, topography and land management.   

Accordingly, authors in regions outside North America and Europe note difficulty 

sourcing appropriate export coefficients from literature. Young et al. (1996) state little 

export coefficient data is available for Australia and, what is available, is almost 

exclusively derived from south-eastern Australia with little to no crop system data. Using 

European or North American data is possible, but differences in land and crop 

management as well as climatic conditions make this an unattractive option. Similarly, 

Ongley et al. (2010) note using North American or European based export coefficients 

introduces considerable uncertainty to ECM in China due to radically different 

agricultural management. Likewise, Jeje (2006) provides a review of export coefficients 

for use in Alberta, Canada and notes, although data is available for North America, little 

is available for cold climate prairie regions.  

Methods of overcoming these issues, include modifying literature based export 

coefficients to account for different catchment attributes using ‘expert knowledge’ or 

meta-analysis of reported export coefficients to determine likely coefficients and 

uncertainty ranges. This second option is less subjective, but can be difficult due to a 

lack of sufficient literature based export coefficients for certain land cover/use 

categories and the uneven geographic coverage of published studies (Reckhow et al. 

1980; Marston et al. 1995; Baginska et al. 2003; Broad and Corkrey 2011).  

Indeed, it is likely difficulties sourcing appropriate export coefficients from literature has 

been a key motivator towards use of plot, field and farm scale nutrient models to derive 

nutrient losses. To date this approach has commonly involved plot/field/farm scale 

model runs for a variety of broadly representative land uses with broad geo-climatic 

characteristics e.g. dominant climate, soil, slope, within a sub-basin.  Resulting export 

coefficients are then used as input to a catchment model. Typically export coefficients 
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are associated with land use area within a reach or sub-basin and intra-basin 

configuration and flows are not considered, although this depends on the catchment 

model in question.  

However, detailed spatial data around climate, soil, topography and land cover or use is 

now generally available at sub-national to global scale. This data facilitates spatially 

explicit identification of land units comprising of site-specific combinations of variables 

within the reach or sub-basin. In other words, detailed intra-reach or sub-basin 

variability can be considered, rather than only the dominant variables within a reach or 

sub-basin. Positioning of export coefficients that consider site specific variability at this 

scale could improve catchment scale modelling of diffuse pollution. However, sourcing 

export coefficients for each specific land unit is problematic because literature reported 

data is unlikely to cover the full gamut of variables and variable combinations, and 

running plot/field/farm scale models for all possible scenarios is also difficult.   

Therefore, this research aims to develop algorithms that can be applied to specific land 

units of combined variables and can calculate export coefficients unique to that 

particular site. The developed algorithms can potentially be applied to any export 

coefficient based catchment scale water quality model. However, here they are applied 

in LUCI, which means climate, soil, topography and land management characteristics are 

considered and export coefficients positioned at the DEM grid square scale (≤15 m x 15 

m for New Zealand). In addition, LUCI explicitly considers spatial configuration of these 

gridded land units as nutrients and water are cascaded through the catchment. These 

qualities, coupled with the new algorithmic export coefficient approach, make LUCI 

water quality models particularly valuable decision support tools in the current struggle 

to reduce nutrient loss to water. However, export coefficient algorithm development, 

application and assessment of results is highly reliant on availability of suitable data. In 

Chapter 3 potential New Zealand data for these purposes are reviewed. 
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3 DEVELOPMENT OF A NEW EXPORT COEFFICIENT APPROACH 

FOR NEW ZEALAND USING LUCI – A DATA REVIEW 

 

 

3.1 INTRODUCTION 

Theoretically the application of an export coefficient based water quality model is 

straightforward. However, as is clear from Section 2.4, locating appropriate export 

coefficient data is a confounding factor, particularly outside of North America and 

Europe. When choosing export coefficients from literature, land cover or use is generally 

considered with little to no reference to climate, soil, topography, and land 

management variables. Export coefficients derived from plot, field or farm models may 

consider these variables, but when applied at catchment scale, usually only a limited 

number of ‘reference’ plots, fields or farms are considered rather than specific, 

individual plots, field or farms. To better account for these highly spatially varied factors, 

a new approach to export coefficient derivation is proposed that uses spatial data to 

identify each and all combinations of important variables and derives export coefficients 

specific to spatial locations. 

Here the aim is development of an algorithmic export coefficient approach that 

considers spatial variation in climate, soil, topography, land cover, land use and land 

management to calculate site specific export coefficients. The scale of export coefficient 

derivation will vary among catchment models, depending on scale of input data as well 

as the catchment model minimum spatial unit. In LUCI export coefficients are positioned 

at the DEM grid square scale (≤15 m x 15 m in New Zealand) and cascaded through the 

catchment, accounting for intra-basin configuration and flows.     

Such an algorithmic export coefficient approach relies on three categories of data:  

1. Spatial input data on variables influencing N and P loss  

2. In-stream water quality data for catchment scale model evaluation  

3. Data for algorithm development and parameterization  
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Data limitations in these three categories hamper full development, implementation and 

assessment of the export coefficient approach proposed here. However, an initial 

framework for the new approach is provided in following chapters, enabling further 

future development of the method as appropriate data become available.  

This chapter summarises and evaluates New Zealand spatial input data (Section 3.2), 

measured in-stream water quality data (Section 3.3), and literature based data of 

potential use for algorithm development and parameterisation (Section 3.4). Figure 3.1 

illustrates how the data reviewed in this chapter is used or will be used in LUCI’s N and P 

water quality models. 

Figure 3.1 Diagram illustrating how the data reviewed in this chapter is used or will be 

used in LUCI’s N and P water quality models   

3.2 NEW ZEALAND SPATIAL DATA FOR MODEL INPUT 

In Section 2.2 on nutrient cycling, important influences on nutrient loss to water were 

highlighted. These included precipitation, soil variables such as permeability and P 

retention, topography particularly slope, land cover, and land management including 

nutrient inputs, stocking rate, timing of fertiliser and irrigation application etc.   

National spatial data pertaining to precipitation, soil, topography and land cover are 

available and specific layers are discussed below. Many of these layers are already 
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general input to the LUCI framework, as specified in Section 1.2 and Table 1.1. Spatial 

land use data for New Zealand (Land Use New Zealand (LUNZ)) does exist and was 

created by Landcare Research for use in the CLUES model (Landcare Research 2003). The 

most recent version is based on 2012 land use statistics gathered from land owners for 

Agribase, a commercially created and owned ‘national’ (not all farms are included as 

inclusion is voluntary) spatial farm database (Timar 2016; Asurequality 2017). LUNZ is 

not permitted for general use in LUCI and there are potential issues around landowner 

privacy if results using LUNZ were published.  

Rutledge et al. (2009) argue that New Zealand lacks a nationally consistent and 

comprehensive geospatial land use database and they investigated developing one. At 

this stage nothing has eventuated. Certainly usable national geospatial land use data 

would be a desirable model input because more specific management information could 

then be tied to specific spatial locations. For example, current pastoral land cover could 

be identified as sheep, beef, deer or dairy, all of which have quite different nutrient 

input and management profiles.    

3.2.1 Digital Elevation Models (DEM) 

Digital elevation models facilitate terrain analysis and in LUCI a DEM is essential. It 

determines the minimum spatial unit, slope and pathways of water and nutrient routing 

through the catchment. To-date DEM grid square resolution of 5 m x 5 m has proven 

suitable for use in LUCI because detail is discerned, yet processing times are not onerous 

(Jackson et al. 2013a; Trodahl et al. 2017b). Unfortunately in New Zealand national DEM 

coverage at this scale is unavailable. However, many regional authorities hold LiDAR 

coverage of some or all areas within their jurisdictions and DEMs of fine resolution (e.g. 

1 m x 1 m) can be built from these data. Generally regional authorities are generous with 

data sharing, but some restrictions on application and publication of data may exist. 

Land Information New Zealand (LINZ) also hold a number of freely available regional 

LiDAR derived DEM (LINZ 2017). Two lower resolution freely available national DEMs 

exist and are described below.    
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NZSosDEM 

The National School of Surveying, Otago University, created this 15 m x 15 m DEM in 

2011. It is interpolated from contour line and height point data held in the LINZ 

topographic database using the ANUDEM method. This method and associated software 

was developed at Australian National University with a particular focus on ensuring a 

good shape and drainage structure in calculated DEMs (ANU 2017). Compared with 

other interpolation methods ANUDEM was found to represent hilly terrain particularly 

well (Arun 2013), making it an appropriate choice for New Zealand’s terrain. Further 

information about the dataset, derivation and accuracy is available from Columbus et al 

(2011). 

NZ 8m DEM 

New Zealand map design studio, Geographix, created the NZ 8m DEM in 2012 and it is 

now freely available through the LINZ Data Service. The base contour line and height 

point data described above, were also used to generate this DEM. However, DEM 

development was primarily for cartographic visualisation and it is considered unsuitable 

for terrain analysis (LINZ 2016). Despite this, the 8m DEM has been used in Case Study 1 

(Section 7.3), primarily because colleagues at Massey University provided location 

specific data based on this DEM. Additionally, LUCI hydrologically corrects input DEMs 

prior to analysis, which should correct terrain errors.  

3.2.2 Rainfall & Evapotranspiration 

Climate point data are freely available through NIWA’s national climate database, CliFlo, 

and could be used to develop spatial climate surfaces. However, LUCI developers are 

permitted to use NIWA developed national rainfall and evapotranspiration surfaces, 

which are unfortunately not freely available. These surfaces are used in this research.  

The rainfall raster was developed from the national climate database annual rainfall 

point data from 1960-2004, using a second order derivative tri-variate thin plate 

smoothing spline interpolation model. Its resolution is 1000 m x 1000 m and it was 

specifically developed for hydrological modelling in New Zealand. Tait et al (2006) 

provide further detail.  
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The evapotranspiration surface was developed using potential evapotranspiration point 

data from the national climate database and the precipitation surface discussed above. 

Ratios between potential evapotranspiration and rainfall were calculated, and a water 

balance parameter applied, to estimate actual evapotranspiration (Woods et al. 2006b). 

The surface is based on 1960-2004 data and is 500 m x 500 m resolution.   

3.2.3 Land Cover Data 

The New Zealand Land Cover Database (LCDB) provides freely available, multi-temporal, 

national coverage. The latest version (LCDB 4.1) features four time steps: - summer 

1996/97, summer 2001/02, summer 2008-09 and summer 2012/13. Generated from 

ortho-rectified multi-spectral SPOT5 satellite imagery, 33 land cover classes are 

identified, ranging from urban to agricultural to productive and natural forests (New 

Zealand Land Cover Database 2012). These data provide good land cover information, 

but do not differentiate between land uses and this would be particularly beneficial for 

agricultural land uses. For example, LCDB identifies four agricultural land covers: short-

rotation cropland, perennial crops, high producing grassland and low producing 

grassland. Within each of these, a wide variety of land uses and hence management 

practices are represented. Nutrient loss analysis would be enhanced if land use could be 

identified, as discussed at the beginning of this section. 

3.2.4 Soil Data 

New Zealand Fundamental Soil Layer (NZFSL) 

The NZFSL contains information on soils throughout New Zealand. It is based on soil 

surveys conducted since the 1930’s, as stored in the National Soils Database, which was 

combined by soil experts with polygon boundaries from the New Zealand Land Resource 

Inventory. Concern exists around the variety of survey methods and lack of expertise 

used to conduct the original soil surveys. Sixteen soil attributes are associated with each 

database polygon including soil water, drainage and P retention. However, in most cases 

only 3-5 broad categories are specified for each attribute and within each category 

minimum, mid and maximum values are quantified. Lilburne et al. (2014) are critical of 

the database because it lacks specific pedo-transfer functions and estimates of error, 

both of which are useful for environmental modelling purposes.    
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S-Map 

The above NZFSL concerns were the motivation to develop S-Map, a new soil database 

for New Zealand that better supports environmental and production modelling (Lilburne 

et al. 2014). Currently, S-Map does not provide national coverage and the full database 

including an attribute table with all soil properties is not freely available. As well as 

better quantifying soil properties and confidence of information accuracy, S-Map 

associates multiple soil types with each polygon. While this better reflects the highly 

heterogeneous nature of soil, it is an additional complication with using S-Map in models 

such as LUCI. A project is currently underway investigating how best to consider this 

issue in LUCI.  

However, for the purposes of this research the NZFSL is used to spatially reference soil 

order categories only. Fifteen broad soil orders for New Zealand are described and 

defined in the New Zealand Soil Classification (Hewitt 2010). 

Overall national spatial data available to the wider public and the LUCI project provides 

sufficient input for initial model development. However, a finer national DEM, national 

land use data, and S-Map with national coverage and a full attribute table, would likely 

enhance model capability and results.  

3.3 IN-STREAM WATER QUALITY DATA FOR CATCHMENT SCALE MODEL 

EVALUATION  

To assess water quality models at catchment scale, in-stream predictions are compared 

with measured in-stream water quality data. This section reviews and evaluates 

available in-stream water quality data for New Zealand.  

3.3.1 The National River Water Quality Network (NRWQN) 

The NRWQN aims to monitor water quality trends throughout New Zealand. Monitoring 

began in January 1989 at 77 sites on 35 major river systems. Most river systems have 

two sampling sites, a lightly impacted, baseline site in the upper catchment and a more 

heavily impacted site in the lower catchment. Sites are visited monthly and a variety of 

physical, chemical and microbial variables tested including instantaneous flow and 

concentrations of ammoniacal nitrogen, nitrate, total nitrogen, dissolved reactive 
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phosphorus and total phosphorus. Access to this data is freely available upon application 

to NIWA (Davies-Colley et al. 2011; NIWA 2017). 

3.3.2 Regional Authorities and Other Institutions 

Regional councils in New Zealand are tasked with managing water quality and allocation 

within their region. They generally also collect monthly water quality data and similar 

measurements to those listed above, although this can vary from council to council. At 

some sites on larger rivers, flow may be automatically monitored more frequently (e.g. 

every 5-15 mins).  Regular water quality data held by regional councils generally covers a 

period of around 2 decades. Authorities are usually happy for this data to be used for 

research purposes, although some restrictions may apply.  

Water quality data is also held by various other institutions e.g. local councils, research 

institutes and universities. These largely apply to limited areas and/or timeframes, but 

may be useful as comparative data for catchment scale models.  

While this data is useful, uncertainties pertaining to representativeness of water quality 

measurements exist. Low frequency data collection and lack of collection during storm 

and flood events, which can account for a large proportion of annual load, are of 

particular concern (Letcher et al. 2002). For example, in Australia it is estimated that 

such events may be responsible for more than 60% of annual nutrient load (Baginska et 

al. 2003). 

This is particularly the case for P which moves sporadically, often with long periods of in-

catchment storage (Jarvie et al. 2013; Sharpley et al. 2013). Comparing daily, weekly, 

and monthly P sampling strategies, Johnes et al. (2007) found monthly sampling was the 

least representative, with P concentration error ranging from more than twice, to less 

than half of ‘actual’ concentrations. Baginska (2003) suggests using ‘routine’ water 

quality sampling may overestimate P loads by 12-43%.  

Likewise, Sebestyen et al. (2014) found in-stream NO3
- concentrations increased 25 fold 

during an autumn storm event following a dry summer period. During subsequent, 

closely spaced, similar magnitude storm events, NO3
- concentration decreased with each 

event as stored N was flushed from the system.  Conversely, Abel et al. (2013) found 

storm events in a groundwater dominated catchment resulted in reductions in NO3
- 
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concentration, which they attribute to rainfall dilution of NO3
- in groundwater entering 

streams. Again, monthly in-stream sampling can miss such events or, in cases where 

samples are taken by hand, these events may be purposefully avoided (Johnes 2007; 

Krueger et al. 2012; Lloyd et al. 2016).  

Harmel et al. (2010) found considerable temporal and spatial differences in N and P 

concentrations in small streams during storm events. They reiterate the importance of 

testing during these events, and suggest multiple temporal and spatial in-storm samples 

are collected to improve representativeness.   

Nutrient loads, derived from collected concentration and flow data, are calculated in a 

variety of ways, which introduces further uncertainty. Letcher et al. (2002) evaluated 

averaging, ratio and regression load estimation methods and found substantial 

differences, but decline to recommend a ‘best method’ because there is no way to 

determine the ‘true’ load. Abell et al. (2013) also compared averaging, ratio and 

regression load estimation methods using high-frequency sampling data and concluded 

regression techniques are most accurate.  

Predictions from water quality models suffer from considerable absolute error when 

compared with instream measurements (Drewry et al. 2006). This may be due to model 

and input data short comings, but is also likely due to unrepresentative in-stream 

measurements. Indeed, Letcher et al. (2002) suggest improving water quality data 

collection is the next step to improving catchment scale water quality modelling. 

Specifically, they recommend better temporal coverage through more frequent long-

term sampling, including during events, and better spatial coverage with multiple nested 

sampling sites within catchments. This would greatly assist with calibration and 

validation of catchment scale water quality models. 

Despite evidence suggesting monthly in-stream sampling is less than optimal, this data is 

all that is currently available for catchment scale assessment of the water quality models 

developed and tested here. Suffice to say, in-stream measurement uncertainty, as 

discussed above, must be considered when comparing predicted and measured data in 

Chapter 7.  
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3.4 A REVIEW OF NEW ZEALAND DATA WITH POTENTIAL FOR USE IN 

EXPORT COEFFICIENT ALGORITHM DEVELOPMENT AND 

PARAMETERISATION  

In order to develop algorithms that can derive export coefficients for the full variety of 

possible climate, soil, topography, land cover and land management combinations, data 

pertaining to N and P area-specific losses to water for all variable combinations is 

required. In this section New Zealand literature reported N and P losses are reviewed 

and considered in terms of suitability for algorithm development.  

As discussed in Section 2.4.3 there are three general methods of deriving export 

coefficients: actual measurement from single land use plot, field or small catchments, 

statistical derivation from multi-land use catchments, and derivation from existing plot, 

field or farm scale models. Here the aim is identification of literature reporting actual 

measured losses, in kg total nutrient ha-1 yr-1, from single land cover isolated plot, field 

or small catchments for 6 broad land cover categories. The land cover categories are 

based on LCDB4 land cover groups (into which specific land cover classes fit) and on 

commonly identified export coefficient categories e.g. Table 2.1. They include pasture 

(intensive and extensive), exotic forest, indigenous forest, crops (short-rotation and 

perennial), urban and scrub. 

However, problems with this approach are evident. As discussed in Section 2.4, 

traditionally export coefficients refer to nutrient export via surface and sub-surface 

pathways to the stream network and implicitly include any interim attenuation. This 

suggests in-stream nutrient loss measurements from single land cover or use 

catchments are most appropriate. However, New Zealand literature reporting TN and TP 

losses from single land cover or use catchments largely only include pasture and forest 

covers. Literature citing nutrient losses from short-rotation crops are available, but 

generally focus on point scale N leaching (particularly nitrate with concentration only 

reported) and often cover periods of less than a year due to crop management practices. 

Reported perennial crop losses tend to be based on a combination of modelled losses, in 

some cases validated with point scale measurements, and ‘educated’ estimates. Little 

literature reporting measured losses from urban land covers is available and what is 
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available covers limited loss pathways. Losses from scrub are reported, but their exact 

provenance is not clear. 

Consideration of catchment water quality model scale adds further complication. Many 

models, such as LUCI, function at finer than catchment or sub-basin scale and/or include 

separate attenuation terms. This suggests that small scale measurement of nutrient loss 

might be most appropriate to consider. However, again, New Zealand literature is 

limited in this respect. Most small scale measured losses reported in New Zealand 

literature cover pasture and crop land covers only and tend to include limited pathways 

and nutrient species or type. Most commonly leached concentrations of nitrate are 

reported.  

As discussed in Section 2.4.4 scale is an important consideration. As spatial scale 

increases area-specific nutrient losses tend to decrease because more terrestrial and in-

stream attenuation processes are included (Grimvall and Stalnacke 1996; Drewry et al. 

2006). Identifying appropriate smaller spatial scale nutrient loss measurements for use 

in predictive catchment scale water quality models, is a perennial problem (Drewry et al. 

2006) and cannot be resolved here. Due to limited data within land cover categories, 

this review takes a somewhat mixed scale/nutrient pathway/nutrient species approach. 

It is acknowledged that some uncertainty and a lack of comparability between land 

cover category losses may be an issue. Clearly, more comprehensive measurement data 

covering a wider variety of spatial scales, land covers and other variables, would be 

useful, but is unlikely due to the considerable time and money that would be required.   

Here literature reported losses at a variety of spatial scales are included, but temporally 

only reported annual area-specific losses are considered. Reported losses from single 

land cover isolated plot/field/catchments are preferred and, for land covers where this 

data is available, only this data is reported. Where no other data is available for a 

particular land cover, point scale measurements, and in some cases ‘estimates’ and 

modelled losses, are included. In addition, some studies only include nitrate or nitrate 

plus ammonium. These differences are highlighted and discussed where they occur.  
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3.4.1 Literature Providing Export Coefficient Summaries for Multiple Land Covers 

Interest in quantifying diffuse nutrient losses from a variety of land covers in New 

Zealand appears to have begun in the late 1970’s, in tandem with similar interest 

overseas, and since this time a number of papers summarising New Zealand export 

coefficients have been published. Cooke (1979) provides the first collation and 

estimation of NO3
--N and TP specific yield for 4 land cover categories (improved pasture, 

exotic forest, native forest and scrub) based on measured losses from 13 New Zealand 

catchments. Wilcock (1986) summarises export coefficients, referencing Cooke (1979) 

and others, to determine if agricultural runoff is a source of water pollution in New 

Zealand. Rutherford et al. (1987) provide a short summary table in wider discussion of 

river water quality and reference Cooke (1979) as the source. Elliott and Sorrell (2002) 

summarise export coefficients for 5 land uses (3 pasture based and 2 forested), which 

they state are updates since Cooke’s (1979) and Wilcock’s (1986) work. They do not 

state exactly which studies they use, but note that most are North Island based. Davies-

Colley and Wilcock (2004) provide a table of specific yields for 6 land use categories 

referenced to 3 studies (including Wilcock (1986)) in a general discussion of water 

quality in running waters. McDowell and Wilcock (2008) collate, discuss and reference 

New Zealand single land use isolated plot to catchment studies quantifying N and P 

losses. In particular, they quantify losses from different pasture grazing animals and 

forested areas. Their results indicate median N losses are, greatest to least, dairy > deer 

& mixed > sheep > non-agricultural. Median P losses are, greatest to least, deer & mixed 

> dairy > sheep > non-agricultural. Davis (2014) collates results of in-stream N losses 

from forested catchments. Export coefficients from these studies are further discussed 

and quantified in the following sections.  

3.4.2 Pastoral Land Covers   

High producing grassland (or improved pasture) is one of the more studied land covers 

in New Zealand nutrient loss literature, reflecting both its economic importance and 

concern with associated environmental impacts. New Zealand field to catchment studies 

of nutrient losses from high producing pasture are summarised in Tables 3.1-3.3. Table 

3.1 details losses from dairy pasture, Table 3.2 details losses from sheep and beef 

pasture and Table 3.3 details losses from deer pasture. All tables give indications of a 
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range of site variables. Overall N losses from pasture range from 0.8-50 kg N ha-1 yr-1. N 

losses from dairy pasture range from 13-56 kg N ha-1 yr-1, N losses from sheep and beef 

pasture range from 0.8-12.1 kg N ha-1 yr-1, and N losses from deer range from 0.42-4.16 

kg N ha-1 yr-1. (It should be noted that most studies report TN losses, but three studies 

report nitrate only or nitrate plus ammonium. Here results are simply summarised, 

without any attempt to estimate TN from results that only report N species). Overall P 

losses from pasture range from 0.1-10.5 kg P ha-1 yr-1. P losses from dairy pasture range 

from 0.1-10.5 kg P ha-1 yr-1, P losses from sheep and beef pasture range from 0.2-1.6 kg 

P ha-1 yr-1 and P losses from deer range from 0.18-2.99 kg P ha-1 yr-1. 

In order to develop algorithms based on important variables and their combinations, 

Tables 3.1-3.3 need to include a full range of variables and variable combinations. 

Looking only at soil order, it is clear a limited range is covered. Five soils orders are 

identified in Table 3.1 for dairy pasture, 5 soil orders in Table 3.2 for sheep and beef, and 

only 2 soil orders in Table 3.3 for deer. Overall, of the total 15 soil order classifications 

found in the New Zealand Soil Classification (NZSC), only 7 are featured here. (See 

Section 4.2.2 for more information about the NZSC). In addition, some studies feature 

multiple soil orders within the catchment, but measurement is at the catchment outlet 

only and exports from specific soils are not elucidated e.g. Davies-Colley and Nagels 

(2002), Lambert et al. (1985) and Wilcock et al. (1999; 2006).  

In Table 3.1, there is a wide rainfall range from 1000-4800mm yr-1. However, this range 

is not evident for all of 5 individual soil orders. Rather each soil order has only one 

annual average rainfall, or a narrow range of rainfall, associated with it.  Table 3.2 has an 

overall rainfall range of only 1000-1600mm yr-1 and it is also very limited within soil 

orders. Table 3.3 is limited to only 2 soil orders and 2 annual average rainfall amounts. 

Topography is also limited within each of the tables, but reflects where these pasture 

types are generally found. For example, Table 3.1 for dairy only features flat to rolling 

topography, Table 3.2 for sheep and beef only features easy to steep hill and Table 3.3 is 

limited to rolling to easy hill. Although these pasture types are typically found on the 

identified slopes,    they are not exclusively found in these areas and any developed 

algorithms would need to consider the full slope range.   
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Further limitation exists regarding regional location. Only 6 regions are included in Table 

3.1-3.3 and within regions several studies cover the same location. For example, in 

Waikato, Toenepi catchment is featured in Wilcock (1999), Davies-Colley and Nagels 

(2002), and Wilcock (2006), both Wellington references are from the former Taita 

Experimental Station in Lower Hutt, and both McDowell (2007; 2008) references in 

Otago feature the same catchment within AgResearch’s Invermay farm. Additionally, a 

number of important pastoral regions are not covered e.g. Taranaki and Canterbury. 

Studies pertaining to these areas are available, but either do not report specific yield 

(Wilcock et al. 2009) or report losses from mixed land cover catchments (Monaghan et 

al. 2007b).  

Figure 3.2 depicts all soil order and topography combinations and indicates which 

combinations are addressed in the literature summarised in Tables 3.1-3.3. This figure 

graphically highlights the lack of literature based evidence. Seven soil orders are not 

covered at all representing 14.5% of total high producing grassland (2012), only dairy 

studies are available for flat topography, no more than 3 studies are found for 

combinations where data is available, and some of the most prevalent soil orders have 

significant omissions of data. For example, no data is available for brown soils on flat 

land. While brown soils are often found on rolling to easy hill, there are significant areas 

on flat land in high producing grassland e.g. on some areas of the Canterbury Plains. A 

further example is the lack of literature pertaining to flat to rolling recent soils under a 

variety of rainfall regimes. Recent soils are found all over New Zealand including in drier 

eastern areas, yet the only data for flat to rolling recent soil losses relates to dairy farms 

in very high rainfall areas. 

Table 3.4 reports N and P losses for pastoral land cover from the export coefficient 

summaries discussed in Section 3.4.1. These fit reasonably well with overall results from 

Tables 3.1-3.3. This is not surprising given many of the individual studies listed here are 

also included in the summaries. In general these losses also compare reasonably well 

with losses from international literature for intensive pasture of 0.13-30.85 kg TN ha-1 yr-

1 and 0-11.1 kg TP ha-1 yr-1, as reported in Table 2.1.  However, stand out areas of 

difference are evident from Table 3.1. Reported N losses of up to 50 kg N ha-1 yr-1 in 

Westland are clearly the result of an intensive land use (dairying) in an area of very high 
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rainfall. Particularly high N losses are also reported by Houlbrooke et al. (2008) and 

Monaghan et al. (2000). Both studies feature dairy cattle with added fertiliser or effluent 

and are smaller field scale studies. Therefore, less uptake or storage of nutrients can 

occur between the nutrient source and the sampling location. This illustrates the effect 

of spatial scale as discussed above.       

Literature featuring low producing grassland (unimproved or extensive pasture) is 

limited (Table 3.5), reflecting a greater focus on intensive grassland. Additionally, the 

one study found does not include N losses. Elliott and Sorrell (2002) provide N and P 

losses for ‘low-intensity pasture’. Notably, Caruso’s (2000) reported P loss is much lower 

than Elliott and Sorrell’s (2002). 

This brings in to question exactly what is categorised as low producing grassland. While 

it is well defined for New Zealand’s LCDB (Thompson et al. 2003), low producing 

grassland is difficult to distinguish from high producing grassland through site 

descriptions in the literature. Elliott and Sorrell (2002) report extensive grassland losses 

that are similar to those reported in the international literature (Table 2.1) suggesting 

that their definition is aligned with wider international literature. Although they do not 

explicitly define what they mean by ‘low-intensity pasture’ or state where the data is 

from. Clearly low producing grassland in New Zealand requires both more study and 

better definition within the literature. 
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Table 3.1 Reported dairy pasture losses of N and P from fields and small catchments in New Zealand, grouped according to soil order  

Land Use Soil Order Rainfall  
(mm yr-1) 

Topography Region N Loss  
(kg N ha-1 yr-1) 

P Loss  
(kg P ha-1 yr-1) 

References 

 
 
 
 
 

Dairy 
Pasture 

 
Allophanic 

 
1132 

 
Flat 

 
Waikato 

 
13-35.3 

 
0.4-1.16 

Wilcock et al 
(1999; 2006); 

Davies-Colley & 
Nagels (2002) 

 
Gley 

 
1132 

 
Flat 

 
Waikato 

 
13-35.3 

 
0.4-1.16 

Wilcock et al 
(1999; 2006); 

Davies-Colley & 
Nagels (2002) 

 
Melanic 

 
1132 

 
Flat 

 
Waikato 

 
13-35.3 

 
0.4-1.16 

Wilcock et al 
(1999; 2006); 

Davies-Colley & 
Nagels (2002) 

 
Pallic 

 
1000 

 
Flat 

Manawatu 
 

28-37 0.3-2.6 Houlbrooke et al 
(2003; 2008)  

Southland  30-56 0.1-0.4 Monaghan et al 
(2000) 

Rolling Manawatu 28-37 0.3-2.6 Houlbrooke et al 
(2003; 2008) 

 
Recent 

3000 Flat Westland 13-48 1.5-10 Davies-Colley & 
Nagels (2002) 

3000-4800 Rolling Westland 45-50 7-10.5 Davies-Colley & 
Nagels (2002); 
Wilcock et al 

(2013) 
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Table 3.2 Reported sheep and beef pasture losses of N and P from fields and small catchments in New Zealand, grouped according to soil order 

Land Use Soil Order Rainfall  
(mm yr-1) 

Topography Region N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

 
 
 
 
 
 
 
 

Sheep & 
Beef 

Allophanic 1200 Easy Hill Waikato 7 1.3 Cooke & Cooper 
(1988), Cooke 

(1988)   

1580 Easy Hill Waikato 1.2 0.2 Cooper & 
Thomsen (1988) 

 
Brown 

1000 Easy Hill Manawatu 5.2 1.6 Bargh (1978) 

1200 Easy Hill Waikato 7 1.3 Cooke & Cooper 
(1988), Cooke 

(1988)   

1271 Easy Hill Manawatu 8.7-12.1 0.7-1.5 Lambert et al 
(1985) 

1600 Steep Hill Waikato 10 1.5 Quinn & Stroud 
(2002) 

Pallic 1000 Easy Hill Manawatu 5.2 1.6 Bargh (1978) 

Recent 1200 Easy Hill Waikato 7 1.3 Cooke & Cooper 
(1988), Cooke 

(1988)   

 
Ultic 

1200 Easy Hill Wellington 0.8-1.4 
(1.4 = nitrate/N 

only) 

0.3 McColl et al 
(1977), McColl & 

Gibson (1979) 

1600 Easy Hill Waikato 10 1.5 Quinn & Stroud 
(2002) 1600 Steep hill Waikato 
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Table 3.3 Reported deer pasture losses of N and P from fields and small catchments in New Zealand, grouped according to soil order 

Land Use Soil Order Rainfall  
(mm yr-1) 

Topography Region N Loss  
(kg TN ha-1 yr-1r) 

P Loss  
(kg TP ha-1 yr-1) 

References 

 
 
 

Deer 

 
Brown 

687 Rolling  
Otago 

0.44-4.16 
(ammonium & 
nitrate only) 

0.18-1.31  
 
 

McDowell (2007; 
2008) 

Easy Hill 

949 Rolling 0.42-1.63 
(ammonium & 
nitrate only) 

0.22-2.99 

Easy Hill 

 
Pallic 

687 Rolling  
Otago 

0.44-4.16 
(ammonium & 
nitrate only) 

0.18-1.31 

Easy Hill 

949 Rolling 0.42-1.63 
(ammonium & 
nitrate only) 

0.22-2.99 

Easy Hill 
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Figure 3.2 Graphical illustration of soil order and topography combinations and indicating combinations for which literature evidence of 
pastoral N and P losses exists (green squares). Within green squares the number of studies and annual average rainfall is given. 
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Table 3.4 Export coefficients reported for High Producing Grassland in New Zealand from summary literature 

N Loss 

(kg TN ha-1 yr-1) 

P Loss 

(kg TP ha-1 yr-1) 

Land Use and Management Reference 

4-14 0.3-1.7 Pasture Cooke (1979) 

4-14 0.3-1.7 Grazed pasture Wilcock (1986) 

10.7-35.3 0.6-1.3 Dairy Elliott and Sorrell (2002) 

2.6-19.5 0.6-3.4 Hill pasture Elliott and Sorrell (2002) 

2.8-8.8 0.3-0.6 Low-intensity pasture Elliott and Sorrell (2002) 

35 1.16 Dairy Davies-Colley and Wilcock (2004) 

4-14 0.3-1.7 Average grazed pasture Davies-Colley and Wilcock (2004) 

3 0.6 Sheep McDowell and Wilcock (2008) 

8 1.5 Deer McDowell and Wilcock (2008) 

27 1.9 Dairy McDowell and Wilcock (2008) 

11 1.3 Mixed animal McDowell and Wilcock (2008) 

 

Table 3.5 Reported N and P losses for low producing grassland in New Zealand 

Land Use Soil Order Rainfall 

(mm yr-1) 

Topography Region N Loss 

(kg TN ha-1 yr-1) 

P Loss 

(kg TP ha-1 yr-1) 

Reference 

Sheep Unspecified 690 Mixed Otago  0.048 Caruso (2000) 

Summary 2.8-8.8 0.3-0.6 Elliott and Sorrell (2002) 
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3.4.3 Exotic Forest 

Table 3.6 summarises New Zealand studies of nutrient loss from exotic forest. Nitrogen 

losses range from 0.04-28 kg N ha-1yr-1 and P losses from 0.07-0.54 kg P ha-1yr-1. (Again, it 

should be noted that most studies report TN losses, but two studies report nitrate only. As 

above, no attempt to estimate TN from N species is made). Data limitations and issues are 

similar to those discussed in Section 3.4.2. Only 5 soil orders are featured and a number of 

studies report losses from mixed soil order catchments, but do not disaggregate losses 

according to soil order e.g. Fahey and Jackson (1997), Quinn and Stroud (2002), Cooper and 

Thomsen (1988).  

Rainfall range is limited and ranges from 1295-1677mm yr-1. Topography featured is steep 

for all except McColl et al (1977). This reflects the fact that forested land covers are found 

predominantly on hilly terrain. But again, this is not exclusively the case. Only 4 regions are 

featured in the data and 3 of these are in the North Island. In addition, both Bay of Plenty 

studies feature the same catchment. This data is insufficiently wide for use in development 

of export coefficient generating algorithms for the full range of locations and variables 

required.  

Figure 3.3 depicts all soil order and topography combinations and indicates which 

combinations are addressed in the literature summarised in Tables 3.6. This figure 

graphically highlights the lack of literature based evidence. Nine soil orders are not covered 

at all representing 31% of total exotic forest (2012), only exotic forest on steep hill features 

for most soil orders and rainfall is limited to moderate annual average. It certainly is the 

case that exotic forest is often found on steeper slopes, although it is also not uncommon to 

find exotic forest on flatter land in otherwise difficult locations e.g. at high altitudes such as 

around the Volcanic Plateau. Table 3.7 reports losses in summary literature. Nitrogen losses 

range from 0.04-28 kg N ha-1yr-1 and P losses from 0.01-1.2 kg P ha-1yr-1. Reported P losses in 

Table 3.7 are clearly different from those reported in Table 3.6. Table 3.7 lowest losses are 

from McDowell and Wilcock (2008). They mistakenly report losses from Cooper and 

Thomsen (1988) as 0.01 kg P ha-1yr-1 rather than 0.1 kg P ha-1yr-1 (actually reported as 9.5 kg 

km2/yr by Cooper and Thomsen (1988)). Table 3.7 highest losses of 1.2 kg P ha-1yr-1 are 

reported by Elliott and Sorrell (2002), but it is unclear where this data is from. Davis (2014) 

provides some insight into losses over the lifetime of a plantation forest, although 
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unfortunately this is only for N. Clearly he accesses a wider range of literature than is 

featured in Table 3.6. An attempt was made to track all of the relevant literature referenced 

by him. Some is featured in Table 3.6 and some was unable to be found.  

Highest N and P losses reported here are higher than those featured in Table 2.1 for 

international literature. Possibly this is because exotic forest in New Zealand tends to be 

plantation forest on land less suitable for agriculture (i.e. with steeper topography and 

higher rainfall), it is often situated on previous pastoral land that may have high soil P from 

fertiliser applications, and it is more frequently disturbed than non-plantation forest. In 

addition, Davis (2014) indicates N losses from native forest on volcanic soils can be high. 

This may also be the case for exotic forest and results from Parfitt et al (2002) support this.  
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Table 3.6 Reported exotic forest losses of N and P from catchments in New Zealand, grouped according to soil order  

Land Use Soil Order Rainfall  
(mm yr-1) 

Topography Region N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

 
 
 
 
 
 

Exotic 
Forest 

 
Brown 

1550  
Steep Hill 

Nelson 0.29 0.11 Fahey & Jackson 
(1997)  

1600 Waikato 2.07 0.58 Quinn & Stroud 
(2002) 

 
Podzol 

1550  
Steep Hill 

Nelson 0.29 0.11 Fahey & Jackson 
(1997) 

1580 Bay of Plenty 1.31 0.095 Cooper & 
Thomsen (1988) 

1677 Bay of Plenty <1-28 (nitrate only)  Parfitt et al (2002) 

Pumice 1580  
Steep Hill 

Bay of Plenty 1.31 0.095 Cooper & 
Thomsen (1988) 

1677 Bay of Plenty <1-28 (nitrate only)  Parfitt et al (2002) 

Raw 1580  
Steep Hill 

Bay of Plenty 1.31 0.095 Cooper & 
Thomsen (1988) 

1677 Bay of Plenty <1-28 (nitrate only)  Parfitt et al (2002) 

Ultic 1295 Easy Hill Wellington 0.04 (nitrate only) 0.07 McColl (1977) 

1600 Steep Hill Waikato 2.07 0.58 Quinn & Stroud 
(2002) 
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Figure 3.3 Graphical illustration of soil order and topography combinations and indicating combinations for which literature evidence of exotic 

forest N and P losses exists (green squares). Within green squares the number of studies and annual average rainfall is given.  
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Table 3.7 Export coefficients reported for exotic forest in New Zealand from summary literature 

N Loss (kg TN ha-1 yr-1) P Loss (kg TP ha-1 yr-1) Land Use and Management Reference 

0.4-5 (nitrate) 0.07-0.8  Cooke (1979) 

 0.07-0.2 Undisturbed plantation forest Wilcock (1986) 

Davies-Colley and Wilcock (2004) 

0.15  Undisturbed plantation forest Davies-Colley and Wilcock (2004) 

0.4-8 0.06-0.8 Disturbed plantation forest Wilcock (1986) 

Davies-Colley and Wilcock (2004) 

0.04-1 0.01-0.1 Exotic Forest McDowell and Wilcock (2008) 

0.6-8.5 0.07-1.2 Exotic forest Elliott and Sorrell (2002) 

11.1  Planted on pasture – Yr 1 Davis (2014) 

5.7  Planted on pasture – Yr 2 Davis (2014) 

1-2  Planted on pasture–Yr 3-5 Davis (2014) 

<1  Planted on pasture–Yr 6-14 Davis (2014) 

<1-28  Planted on pasture Davis (2014) 

3.9  Within 1 yr of harvest Davis (2014) 

4.5  The year after harvest Davis (2014) 
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3.4.4 Indigenous Forest 

Nutrient loss studies for indigenous land covers also are not sufficiently broad to support 

development of export coefficient generating algorithms. Table 3.8 reports N losses of 0.01-

7.1 kg N ha-1yr-1 and P losses of 0.1-0.6 kg P ha-1yr-1. (Again, note lowest losses for N are 

reported as nitrate-N only). Only 5 soil orders feature and a number of studies report losses 

from mixed soil order catchments, but do not disaggregate losses according to soil order e.g. 

Fahey and Jackson (1997), Quinn and Stroud (2002), Cooper and Thomsen (1988). Rainfall 

range is 1200-3000mm yr-1, but pumice and raw soil orders only feature one rainfall value 

each. Topography is limited to steep hill for all data, except McColl et al (1977) and only 6 

regions are featured. While indigenous forest in New Zealand is found in steeper, higher 

elevation areas, and is more likely to receive higher rainfall, not all indigenous forest is 

characterised by these features. For example, Allen et al. (2013) note indigenous forest is 

found in wetter lowland areas, higher montane areas, may be virgin forest or regenerating, 

and is found from the sub-tropical north of the North Island to the colder southern South 

Island.  

Figure 3.4 depicts all soil order and topography combinations and indicates which 

combinations are addressed in the literature summarised in Table 3.8. This graphically 

highlights the lack of literature based evidence. Nine soil orders are not covered at all 

representing 16% of total indigenous forest (2012) and only indigenous forest on steep hill 

features for most soil orders, although rainfall is a little more varied than for exotic forest. 

Table 3.9 features nutrient losses reported in summary literature of 0.01-12 kg N ha-1yr-1 

and 0.01-0.8 kg P ha-1yr-1. Compared to Table 3.8, Davis (2014) reports higher N losses from 

volcanic and very high rainfall areas and Elliott and Sorrell (2002) report higher and lower P 

losses, but it is unclear where these are from. P losses reported in Tables 3.8 and 3.9 are 

comparable to loses in Table 2.1 from international literature. N losses reported in Tables 

3.8 and 3.9 are considerably higher than those reported in Table 2.1. This may be due to 

geo-climatic influence such as volcanic soils and high rainfall as discussed above.    
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Table 3.8 Reported indigenous forest losses of N and P from catchments in New Zealand, grouped according to soil order  

Land Use Soil Order Rainfall  
(mm yr-1) 

Topography Region N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

 
 
 
 
 
 
 

Indigenous 
Forest 

 
 
 
 

Brown 

1200  
 
 
 

Steep Hill 

Manawatu 1.96 0.243 Bargh (1977) 

1550 Nelson 0.29 0.11 Fahey & Jackson 
(1997) 

1600 Waikato 2.07 0.58 Quinn & Stroud 
(2002) 

1663 Waikato 0.8 0.24 Hughes & Quinn 
(2014)  

2610 Westland 1.55-2.24 0.33-0.52 Neary (1978) 

3000 Westland 7.1 0.6 Davies-Colley & 
Nagels (2002) 

 
 

Podzol 

1550  
 

Steep Hill 

Nelson 0.59 0.21 Neary (1978) 

1550 Nelson 0.29 0.11 Fahey & Jackson 
(1997) 

1580 Bay of Plenty 3.67 0.1 Cooper & 
Thomsen (1988) 

3000 Westland 7.1 0.6 Davies-Colley & 
Nagels (2002) 

Pumice 1580 Steep Hill Bay of Plenty 3.67 0.1 Cooper & 
Thomsen (1988) 

Raw 1580 Steep Hill Bay of Plenty 3.67 0.1 Cooper & 
Thomsen (1988) 

 
Ultic 

1295 Easy Hill Wellington 0.01 (nitrate) 0.2 McColl et al 
(1977) 

1600  
Steep Hill 

Waikato 2.07 0.58 Quinn & Stroud 
(2002) 

1663 Waikato 0.8 0.24 Hughes & Quinn 
(2014)  
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Figure 3.4 Graphical illustration of soil order and topography combinations and indicating combinations for which literature evidence of 

indigenous forest N and P losses exists (green squares). Within green squares the number of studies and annual average rainfall is given.  
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Table 3.9 Export coefficients reported for indigenous forest in New Zealand from summary literature 

Reference N (kg ha-1 yr-1) Reference P (kg ha-1 yr-1) Land Use and Management Reference 

1.8-6.2 0.04-0.68  Cooke (1979) 

2-6 0.04-0.68  Wilcock (1986) 

0.6-5.8 0.12-0.8  Elliott and Sorrell (2002) 

2-7 0.04-0.68  Davies-Colley and Wilcock (2004) 

0.01-4 0.01-0.6  McDowell and Wilcock (2008) 

0.25-5  All NZ Davis (2014) 

0.25-2.5  ‘Normal’ All NZ Davis (2014) 

Up to 5  In volcanic areas Davis (2014) 

Up to 12  West Coast Davis (2014) 

1.2-2.7  Harvested indigenous Davis (2014) 
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3.4.5 Crops 

Data reporting measured annual nutrient losses from New Zealand crops is sparse and as 

discussed earlier in the introduction to this section, literature reported crop losses tend to 

focus on point scale leaching losses. Table 3.10 reports both short-rotation crop studies and 

estimated losses found in the New Zealand literature. N losses range from 0.2-226 kg N ha-

1yr-1 and P losses from 0-2 kg P ha-1yr-1. A lack of breadth in terms of soil, rainfall, 

topography and management variables is evident. The data feature only 3 soil orders, 4 

regions, and a limited range of crops. In addition, N measurements include only nitrate or 

nitrate plus ammonium and only leached N losses. Norris et al. (2017) is the one study that 

reports measured P losses, although these are leached losses only. Rutherford et al. (1987) 

estimate P losses of up to 2 kg P ha-1yr-1, but it is unclear where this is from. Clearly this data 

is insufficient for algorithm development. Modelled losses are found in literature, but not 

included here. For example, Gentile et al (2014) report SPASMO modelled crop losses near 

Gisborne of 13.7, 17.7 and 19.7 kg nitrate-N ha-1yr-1 and 2.4, 2.9 and 5.1 kg P ha-1yr-1 for 

maize, squash and broccoli/lettuce respectively.  

Difficulties deriving annual exports associated with specific short-rotation crops exist. 

Planting to harvest may only take 3-6 months, after which a different crop may be planted 

or the field may be left fallow. Therefore, questions arise around how and if specific crop 

nutrient loss data should be extrapolated to annual exports and, if and how, management 

following crop harvest should be included.   

Compared with international literature losses reported in Table 2.1 of 0.04-91.4 kg N ha-1yr-1 

and 0-18.6 kg P ha-1yr-1, New Zealand losses are high for N, but low for P. Higher N losses 

could reflect geo-climatic or management variables. Alternatively, it may reflect the effect 

of scale. Only point scale leached N losses are reported and it is likely little attenuation is 

included. Particulate losses are not included, but as highlighted in Section 2.2.1, leached 

losses likely make up the majority of N losses anyway. Conversely lower P losses reported 

here likely reflect the fact that only one study reports actual losses and it only includes 

leached P. As discussed in Section 2.2.2 surface loss of particulate P is often significant.  

Data quantifying N and P losses from perennial crops in New Zealand is even sparser. Table 

3.11 reports estimates of N losses of 5-50 kg N ha-1yr-1 and 0.25 kg P ha-1yr-1. Clothier et al.’s 
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(2017) estimates for grapevines provide the only estimate that is validated with 

measurements. A current study of kiwifruit may yield useful results but is not yet complete 

(Green et al. 2017). Again, using modelled losses may be an option. Gentile et al. (2014) 

report SPASMO modelled crop losses near Gisborne 5.3, 18.4 and 10.1 kg nitrate-N ha-1yr-1 

and 0.4, 0.3 and 0.2 kg P ha-1yr-1 for grapes, citrus and kiwifruit respectively. 

Losses reported in international literature from Table 2.1 are 4.7-5.49 kg N ha-1yr-1 and 0.02-

0.3 kg P ha-1yr-1 for orchards. P results reported here for New Zealand are similar, but N 

results are slightly higher. Whether this is a result of geo-climatic or management variables 

is difficult to assess.  
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Table 3.10 Reported short-rotation crop losses of N and P in New Zealand 

Soil Order Rainfall 
(mm yr-1) 

Topography Region Land Use N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

 
 
 
 

Pallic 

 
 

660 

 
 
 
 

Flat 

 
 
 
 

Canterbury 

Clover 10 
 (nitrate only) 

 Adams and Pattinson 
(1985) 

Peas 90 
(nitrate only) 

 Adams and Pattinson 
(1985) 

Wheat 60 
(nitrate only) 

 Adams and Pattinson 
(1985) 

Wheat & Clover 35 
(nitrate only) 

 Adams and Pattinson 
(1985) 

600-665 Pasture, wheat, 
barley rotation 

14-140 
(nitrate only) 

 Webb et al. (2001) 

Variable Variable  Canterbury 
Manawatu 

Hawkes Bay 
Waikato 

Variable 0.2-226 (nitrate + 
ammonium only) 

0-0.56 Norris et al. (2017) 

Estimate 60  
(nitrate only) 

 Parfitt et al. (2012) 

Estimate  Up to 2 Rutherford et al. 
(1987) 

 

Table 3.11 Reported perennial crop losses of N and P in New Zealand 

Soil Order Rainfall 
(mm yr-1) 

Topography Region Land Use N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

Estimate based on SPASMO and validated from fluxmeters Grapes 8 (nitrate only) 0.25 Clothier and Green 
(2017) 

Estimate Grapes 5 (nitrate only)  Parfitt et al. (2012) 
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3.4.6 Urban 

Davies-Colley and Wilcock (2004) provide New Zealand urban export coefficients, 

referenced to Williamson (1993), of 2.5-11kg N ha-1yr-1  and 0.4-1.6 kg P ha-1yr-1  (Table 

3.12). These are derived from storm water runoff in urban areas in the northern North 

Island. As such, these nutrient losses are limited to estimates of road runoff in a restricted 

climate area and the role of other nutrient loss pathways in cities is neglected e.g. leaching 

from gardens and parks, effects of sewage effluent etc. No other urban, New Zealand 

specific data was found. City and regional councils may hold more data. 

Compared to international data for urban areas reported in Table 2.1 of 1.48-63 kg N ha-1yr-1 

and 0.065-20 kg P ha-1yr-1, the results in Table 3.12 are low. This could reflect a number of 

possible differences in New Zealand urban landscapes compared to elsewhere e.g. lower 

urban density, less fertiliser use in gardens and parks, and the presence of sewer treatment 

plants. However, it may also reflect the limited nature of Williamson’s (1993) 

measurements, which clearly is not sufficient to support export coefficient algorithm 

development.    

3.4.7 Scrub 

Export coefficients for scrub (Table 3.13) are documented in Cooke (1979) and Rutherford et 

al. (1987) (who reference Cooke (1979)). Reported N loss is 6 kg N ha-1yr-1 and P loss is 0.12-

1.2 kg P ha-1yr-1. Cooke’s (1979) estimates are clearly based on data from the 13 catchments 

referenced in his study, although which ones is not specified. N losses here are comparable 

to those reported in Table 2.1 of 0.5-6 kg N ha-1yr-1 for scrub. P losses are slightly higher 

than those reported in Table 2.1 of 0.02-0.7 kg P ha-1yr-1 for scrub. Again, Cooke’s (1979) 

data is insufficient for algorithm development. 

Table 3.14 summarises the literature based N and P losses reported in Tables 3.1-3.13. 

Clearly for many land cover types there is a wide range of reported losses, while for others 

there is little range due to little data. In addition, some skewness within the data is 

highlighted in the differences between mean and median losses. This is particularly seen 

with N losses from high producing grassland, which is likely skewed by the inclusion of 

relatively intensive dairy studies. 
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Table 3.12 Reported N and P losses for urban land cover in New Zealand 

Soil Order Rainfall 
(mm yr-1) 

Topography Region Land Use N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

   Northern 
New Zealand 

Urban 
stormwater 

2.5-11 0.4-1.6 Williamson (1993) 

 

Table 3.13 Reported N and P losses for scrub in New Zealand 

Soil Order Rainfall 
(mm yr-1) 

Topography Region Land Use N Loss  
(kg TN ha-1 yr-1) 

P Loss  
(kg TP ha-1 yr-1) 

References 

     6 0.12 Cooke (1979) 

 

Table 3.14 Summary data of New Zealand literature reported N and P losses for the 8 land covers investigated. 

Landcover Nitrogen Loss (kg TN ha-1 yr-1) Phosphorus Loss (kg TP ha-1 yr-1) 

 Mean Median Range Mean Median Range 

High Producing Grassland 19 10 0.42-56 1.2 1.3 0.18-10.5 

Low Producing Grassland 5.8 5.8 2.8-8.8 0.3 0.3 0.05-0.6 

Exotic Forest 1.4 1.31 0.04-28 0.8 0.11 0.01-1.2 

Indigenous Forest 2.8 2.07 0.01-12 0.4 0.24 0.01-0.8 

Short-rotation Crops 71.9 60 0.2-226 0.85 0.56 0-2 

Perennial Crops 6.5 6.5 5-8 0.25 0.25 0.25 

Urban 6.8 6.8 2.5-11 1 1 0.4-1.6 

Scrub 6 6 6 0.12 0.12 0.12 
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3.4.8 Further Data Options 

Tables 3.1-3.13 indicate reported annual specific-area N and P losses from single New 

Zealand land covers is not sufficient to support development of export coefficient 

generating algorithms that consider all combinations of climate, soil, topography and land 

management variables. Further data could be obtained by applying a statistical approach to 

export coefficient derivation to water quality data from multi-land cover catchments as 

described in Section 2.4.3. This approach does have limitations, but it would expand the 

pool of potential data sources.  

Diack (2015) measured river nutrient concentrations over 2 years for 71 mixed land cover 

catchments in the Southern Alps, New Zealand. Land covers featured include indigenous 

forest, grazed and ungrazed tussock grasslands, sub-alpine shrubland, alpine herbfield, 

gravel and rock, and snow and ice. She provides NO3
-, NH4

+ and PO4
3- specific yields based 

on her in-stream measurements and estimates of stream discharge and catchment area 

from NIWA data. Even without disaggregating catchments according to land cover though, 

this data gives an excellent overview of N and P losses from largely pristine environments in 

the South Island. Reported specific yields range from 0-4.95 kg ha-1yr-1 for NO3
-, 0-0.59 kg 

ha-1yr-1 for NH4 and 0-0.17 kg ha-1yr-1 for PO4
3-. Clear differences in export are also noted 

between the west and east coasts, which is largely attributed to differences in runoff.       

Taking a similar approach to Diack (2015), N and P concentrations from the NZRWQN could 

be used in combination with NIWA or LUCI derived river flows to estimate total N and P load 

for each sampling site. Export coefficients for land units of similar climate, soil, topography, 

land cover and management could then be statistically derived.  

More recently McDowell et al (2017) developed estimates of specific yield for New Zealand 

based on instream water quality measurements and broad catchment characteristics from 

the River Environment Classification (REC). Catchment characteristics considered include 

stream order (Horton-Strahler classification), climate, topography, geology and land cover. 

This data no doubt gives some good insight into how nutrient losses are influenced by broad 

climate, topography, geology, land cover combinations, and also considers scale by including 

stream order. However, catchment characteristics are determined by the dominant climate, 

topography, geology, and land cover so are fairly broad brush. 
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Where New Zealand specific data is lacking, reference to overseas export coefficients could 

be an option. For example it is possible that some Australian data may be relevant because 

both countries tend to use more extensive agricultural practices compared to the rest of the 

developed world. However, most of Australia’s climate and soils are quite different to New 

Zealand’s. Broad and Corkrey (2011) compiled Tasmanian export coefficients for 11 land 

cover or use categories, some of which appear similar to common New Zealand agricultural 

land covers or uses. In Australia, Tasmania, and areas in the south-east mainland, are likely 

most climatically similar to New Zealand with a temperate maritime climate (Kottek et al. 

2006). No reference is made to soil, topographic or land management variables though. In 

addition, native plant areas are likely different to New Zealand’s. Certainly comparison 

between reported international export coefficients in Table 2.1 and those documented for 

New Zealand in Tables 3.1-3.13, indicate overseas data may not be appropriate for use in 

New Zealand. 

The data and methods described above are not investigated further here. However, using 

such data or methods to derive nutrient losses from a wider variety of land cover, climate, 

soil, topography and management combinations, is a future option.   

3.4.9 Summary 

Tables 3.1-3.4 and Tables 3.6-3.7 illustrate that nutrient loss data is most available for 

intensive pasture and forested land covers. However, Figures 3.2-3.4 indicate that even this 

is constrained to a few common geo-climatic areas and management types and certainly 

does not cover the required full range of climate, soil and topography.  

Data for crops (Tables 3.10-3.11) is sparse, particularly for perennial crops, it includes 

‘estimates’ and generally relates to point scale leached losses from few crop types only. 

Difficulties also arise with determining annual losses from specific short-rotation crops 

because crops are short-lived and multiple crop types can be grown in a single location over 

a year. Reported urban losses are restricted to storm water runoff and do not include the 

variety of urban nutrient sources and pathways that exist. Little data is available for 

extensive pasture and scrub. Other data options exist, but are not pursued here. For 

example, statistical derivation of nutrient losses based on in-stream measured losses from 

multi-land use catchments or use of overseas export coefficients.  
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Overall, this review indicates there is insufficient measured annual specific-area nutrient 

loss data reported in New Zealand literature from which to develop and parameterise 

export coefficient generating N and P algorithms that consider all combinations of climate, 

soil, topography, land cover and land management. Instead, an alternative data source is 

used here. Access to a large (> 20 000 samples) privately owned, OVERSEER database has 

been granted to LUCI developers. The database includes actual farm data from throughout 

New Zealand and features a wide variety of climate, soil, topographic, land cover and 

management combinations. This database, and the associated OVERSEER model, is explored 

in the following chapter (Chapter 4) and algorithms are developed and parameterised in 

Chapter 5. 
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4 THE RAVENSDOWN DATASET: EXPLORATION OF THE DATA AND 

UNDERLYING OVERSEER MODEL 

 

 

4.1 INTRODUCTION 

Insufficient New Zealand based data, from literature and other public data sources, is 

available for development of an algorithmic export coefficient approach which considers all 

combinations of climate, soil, topography, land cover, and land management. However, an 

extensive, private dataset of OVERSEER input and output from more than 20 000 sites 

(blocks) around New Zealand has been made available to LUCI developers and is used in this 

work for algorithm development.   

As discussed in Section 2.4.3, OVERSEER has been used in the past to develop export 

coefficients and it is worth reiterating how the approach suggested here is novel by 

comparison. In past studies a ‘model’ farm approach has been used, whereby OVERSEER is 

applied to a limited range of typical farms with typical or dominant geo-climatic factors. 

Resulting N and P output is used as export coefficients for agricultural land in catchment 

scale water quality models (Wilcock et al. 2006; Monaghan et al. 2007b; Elliott et al. 2008; 

Monaghan et al. 2009; Rutherford et al. 2009; Wilcock et al. 2009; Rutherford et al. 2011; 

Rutherford 2012; Wilcock et al. 2013). In this study, OVERSEER data are explored and 

‘mined’ to derive algorithms that quantify N and P losses based on variations in and 

combinations of climate, soil, topography, and land management. Spatial data are used to 

identify land units of combined variables to which the algorithms are applied, thereby 

explicitly positioning export coefficients. These can then be used in catchment scale water 

quality models, but are applied in LUCI water quality models in this study.   

4.1.1 Dataset Overview 

The dataset was provided by farmer co-operative, Ravensdown. It consists of inputs to and 

outputs from the OVERSEER model (Version 6.2.2) to 20 833 blocks on 5954 New Zealand 

farms. The data summarises predictive and actual OVERSEER nutrient budgets created 
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between 2011 and 2016 by Ravensdown farm consultants for Ravensdown clients and 

represents real farm systems.  

The area, region and land use of all dataset blocks are summarised in Table 4.1. The data 

land area are fairly evenly divided between the North and South Islands with 44.7% and 

53.3% respectively. Region is unspecified for 1.8% of the data. 14 971 of the blocks are 

pastoral (dairy, sheep, beef and/or deer (SBD), or mixed pasture) and make up 95.1% of the 

total dataset land area. The remaining 5862 blocks are crops and fodder crops (crops eaten 

by grazing animals) and make up 2.6% and 2.3% respectively of the total dataset land area. 

Crop blocks are not considered further here, but could be used to derive algorithms for crop 

land covers in the future. 

This study seeks to develop algorithms to calculate export coefficients for high producing 

pastoral land cover, which makes up 95.7% of total agricultural land and 33% of the total 

land area in New Zealand (New Zealand Land Cover Database 2012). As such, this work 

represents an improved method of export coefficient derivation applicable to a significant 

proportion of New Zealand.  

Ravensdown pastoral data are 49.9% dairy and 41.8% SBD by area (Table 4.1) and 

represents approximately 35.7% of total dairy land and 8.5% of total other pastoral land in 

New Zealand (Statistics NZ 2012). Ravensdown supplies fertiliser as well as advice and 

guidance on fertiliser application to farmers. Therefore the Ravensdown pastoral data are 

likely to represent more intensive farm practices. However, as shown in Section 3.4.2, this is 

also a problem with literature based data. At this stage Ravensdown’s pastoral data offers 

the biggest range of climate, soil, topography and land management variables and variable 

combinations for initial algorithm development and is therefore used here.  

For each pastoral block more than 100 quantitative and qualitative variables are defined in 

the dataset, including farm location, soil type, climate information, nutrient inputs and 

model outputs. Some variables are user inputs to OVERSEER, some are intermediary 

OVERSEER calculations and some define final OVERSEER output. Variables associated with 

nutrients other than N and P are included in the dataset, but not considered here. Only 

OVERSEER derived N and P losses to water and input variables influencing these losses are 

of interest here.  
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Table 4.1 Regional locations, area and land uses included in the Ravensdown dataset 

 Total Regional Area in Dataset in Particular Land Use (%)    

Region Area in 
Dataset (ha) 

Area in Dataset (%) Dairy Only  SBD 
(Sheep, Beef, 

Deer)  

Mixed Pastoral  Fodder  Cropping  

Northland 55 480 3.6 87.9 5 2.8 4.2 0.1 

Auckland 22 303 1.5 68.3 21.5 6.7 3.0 0.5 

Waikato 
Coromandel 

66 373 4.3 77.3 9.7 7.5 3.6 1.9 

Bay of Plenty 11 604 0.8 84.5 5.6 7.7 1.7 0.5 

Central Plateau 66 988 4.4 40.5 53.9 2.0 3.5 0.1 

King Country 
Taihape 

53 864 3.5 14.1 79.3 3.1 3.3 0.2 

Taranaki 115 292 7.5 92.5 3.1 2.9 1.5 0 

Manawatu 
Wanganui 

65 769 4.3 72.4 11.5 10.6 4.7 0.8 

East Coast 224 498 14.7 26.3 70.2 1.9 1.2 0.4 

Wellington 1 801 0.1 90.4 8.3 0 1.3 0 

North Island 683 972 44.7 54.8 38.4 3.9 2.5 0.4 

Marlborough 10 713 0.7 83.3 9.0 5.1 2.1 0.5 

Nelson 17 402 1.1 93.5 2.7 2.7 1.1 0 

Canterbury 359 199 23.5 43.8 40.6 5.1 2.2 8.3 

High Country 
(>300m) 

194 714 12.7 7.9 87.8 0.8 1.0 2.5 

West Coast 55 179 3.6 95.9 3.2 0 0.9 0 

Otago 80 111 5.2 50.2 43.9 1.9 3.0 1.0 

Southland 99 805 6.5 82.3 11.2 2.6 3.4 0.5 

South Island 817 123 53.3 45.7 44.8 3.1 2.0 4.4 

Undefined  26 751 1.8 50.3 40.2 2.5 1.7 5.3 

Total 1 527 846 100 49.9 41.8 3.4 2.3 2.6 
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4.1.2 Multivariate Data Analysis 

Large datasets with numerous data samples and variables provide a rich source of 

information from which to further understanding and develop models. Many data analysis 

techniques are available and the nature of the data and problem will guide method 

selection (Hair et al. 2006). Here the aim is to determine how multiple variables influence a 

dependent variable (N or P loss to water). Hair et al. (2006) state multivariate problems with 

one dependent variable are best addressed using a multiple regression approach. Here a 

multiple regression approach is initially pursued for both N and P.     

This chapter explores the Ravensdown pastoral data, and underlying OVERSEER model, to 

determine which independent variables and relationship forms should be included in N and 

P algorithms. It must be acknowledged from the outset that it is not the aim to fully 

replicate the complexity of the OVERSEER model and Mather (1976) states large 

multivariate datasets can often be sufficiently summarised by a few principle factors. 

Therefore, the aim in this chapter is identification of the most influential variables and 

representative functional forms that provide good approximations of OVERSEER output, for 

use in the N and P export coefficient algorithms.   

Section 4.2 investigates OVERSEER pastoral N and P models, which underpin the data. 

Literature describing OVERSEER N and P pastoral models is reviewed including the most 

important model drivers, how soil characteristics are represented within the model, and 

functional form of bivariate relationships between N or P loss and a number of independent 

variables using the OVERSEER model. Section 4.3 explores the Ravensdown dataset. 

Principle component analysis identifies key factors evident within the data and bivariate 

relationship functional form is further explored. Section 4.4 revisits OVERSEER’s P model in 

light of results from Section 4.3 and contributes to development of a P algorithm with an 

alternative approach to multiple regression. Results from this chapter guide algorithm forms 

which are presented in Chapter 5.    

4.2 OVERSEER PASTORAL MODELS 

The OVERSEER N and P pasture models are described in Watkins and Selbie (2015), Gray et 

al. (2016), McDowell et al. (2005) and on OVERSEER’s website (OVERSEER 2017a), which 

includes a number of technical guides (Wheeler 2016c; Wheeler 2016b; Wheeler 2016a; 
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Wheeler 2016d). What follows summarises these sources, but readers are directed to them 

for further details.  

OVERSEER tracks the flow of nutrients into, out of and within a farm. A farm comprises a 

number of blocks, which are land units of similar climate, soil and management, into and 

out of which nutrients flow. Only block scale data relating to N and P movement are used 

for algorithm development.  

Several sub-models exist within OVERSEER. Component sub-models estimate climate, 

hydrology, animal intake and excreta, and effluent dynamics, which all influence nutrient 

movement. Block sub-models represent the different types of block management e.g. 

pastoral, crop, cut and carry, and combine component sub-models to track nutrient 

movement into and out of blocks. Because only pastoral data is considered, only the 

pastoral block sub-model is further described (Section 4.2.1). At the largest scale, the farm 

sub-model sums all block models with other farm components such as feed-pads and 

effluent systems, to model nutrient movement into and out of the entire farm (Watkins and 

Selbie 2015).  

Key OVERSEER assumptions are summarised in Table 4.2. The model boundary extends to 

the farm geographic boundary and to the bottom of the root zone of pasture plants (60cm). 

The fate or impact of nutrients beyond this zone are not considered. Furthermore, on-farm 

in-stream nutrient transformations are not considered, transition periods from one farm 

system to another cannot be modelled, sediment, microbes and pathogens are not 

considered, and OVERSEER is not spatially explicit (Watkins and Selbie 2015). 

Importantly, OVERSEER pastoral nutrient models are calibrated on a limited range of land 

use, soil and climate types – largely flat, dairy enterprises, on predominantly free-draining 

soils with moderate rainfall. Yet, as is evidenced in the dataset, a much wider range of 

conditions and enterprises are routinely modelled in OVERSEER.  Watkins and Selbie (2015) 

state that OVERSEER is capable of modelling this wider variety of systems, but uncertainty of 

predictions increases in these cases.   
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Table 4.2 Key assumptions of the OVERSEER model (Source: Watkins and Selbie 2015) 

 

4.2.1 Pastoral Block Model Descriptions  

Nitrogen 

N loss to water from pastoral blocks in OVERSEER includes leaching from urine patches, 

background leaching, runoff via overland flow, direct deposition by animals into streams or 

drains, direct deposition of effluent pond discharge in to streams or drains, border dyke 

outwash, and septic tank outflow. Leaching is considered the main form of loss, particularly 

via urine patches, and background leaching is generally less than 15% of total N loss, but this 

increases if effluent is applied. (Watkins and Selbie 2015). However, Ravensdown’s pastoral 

data indicates 72.3% of blocks have background leaching losses of >15% of total N loss. Of 

these, only 42.4% of the blocks receive effluent. In addition, approximately 48% of 

Ravensdown pastoral blocks include non-leached N losses. In 80% of cases, these losses 

amount to less than 10% of total N losses. This indicates background leaching losses and 

non-leached losses may be more prevalent than Watkins and Selbie (2015) suggest.  

Figure 4.1 illustrates OVERSEER steps to estimate N leaching from a pasture block and it 

highlights that OVERSEER considers animals largely at the farm scale, rather than block 

scale. Total animal food requirements are estimated for the farm based on animal numbers 

and characteristics. The amount of food eaten equals total supplementary feed, plus total 

feed crops, plus the amount of pasture required to satisfy the number and type of animals 

present (Step 1, Fig. 4.1). Farm pasture growth is estimated from the amount required to 

satisfy animals after feed supplements and crops are given. 

OVERSEER Model Assumptions: 

 The farm is in a steady state 

 Actual and reasonable inputs are entered into the model 

 Output is annual average  

 Good management practices are followed 

 Animal production inputs are a factor in pasture production estimates 
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Figure 4.1 Steps to estimate N leaching from a pasture block in OVERSEER (OVERSEER 2017b) 
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Animal excretions equal N intake (from the food eaten) minus N in product (i.e. milk, live 

weight gain etc.). This is apportioned to urine and dung based on diet and animal 

characteristics (Step 2, Fig. 4.1). Excretions are distributed around blocks, feedpads, milking 

sheds etc. according to time spent in these areas (Step 3, Fig. 4.1). Excretions on farm 

structures such as feedpads or milking sheds are sent to effluent management systems, 

while excretions on blocks can potentially be leached. The proportion of urinary N leached is 

estimated by the urine patch model. The proportion leached of other sources of N e.g. dung, 

fertiliser, effluent etc. is estimated by the background model. Drainage, based on a soil 

water balance, is integral to leaching sub-models (Step 4, Fig. 4.1). Final scaling is applied 

accounting for regular deposition of excreta N and irregular leaching due to drainage (Step5, 

Fig. 4.1) (Watkins and Selbie 2015). 

Phosphorus 

The OVERSEER pastoral P model takes a different approach to the N model, reflecting 

differences in nutrient sources, and timing and mechanisms of movement. It should also be 

noted that documentation of the model is less detailed than for OVERSEER’s N model. 

However, the P model documentation does give some equations and parameters, which is 

in contrast to the N model documentation which is largely descriptive.  

Described as a risk approach (Watkins and Selbie 2015), P loss is estimated from potential 

interaction between sources of P and influential transport variables including rainfall, slope 

and soil properties (Figure 4.2). Two categories of P loss are considered – background (soil) 

and incidental (fertiliser and effluent) (McDowell et al. 2005; Watkins and Selbie 2015; Gray 

et al. 2016).  

Soil, or background, P sources are estimated by combining Olsen P, soil ‘structural 

vulnerability’, and dissolved reactive P concentrations (which is calculated from Olsen P and 

P retention values), with a weighting factor derived from regression analysis of estimated 

and actual TP losses from various soil orders. Management variables considered include 

mole pipe drain presence and use of border dyke irrigation, both of which appear to 

increase P loss by a set amount e.g. mole tile drain presence adds 0.3 kg P ha-1 yr-1 to P 

losses (McDowell et al. 2005; Gray et al. 2016). Fertiliser P losses are influenced by the 

amount and timing of applied P. Effluent P losses are influenced by amount, speed and 

timing of application, as well as the presence of mole tile drains. Direct discharge to 
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waterways from effluent ponds is also considered. Total block P loss is the sum of soil, 

fertiliser and effluent P losses (McDowell et al. 2005; Watkins and Selbie 2015; Gray et al. 

2016). 

Figure 4.2 Diagram of OVERSEER P loss model (Watkins and Selbie 2015)   

 

4.2.2 Accounting for Soil Variables in OVERSEER 

Soil characteristics are important influences on actual N and P losses to water (as described 

in Section 2.2) and on the OVERSEER N and P models. In OVERSEER users can identify block 

soil type according to series, group, sibling or order. The following explains what these soil 

classifications are and how they relate to New Zealand’s primary soil classification system, 

the New Zealand Soil Classification (NZSC). 

Soil Series :- soil series names generally stem from original soil surveys and in some cases 

they correspond to more than one New Zealand Soil Classification (NZSC) category, so care 

must be taken with their use (Landcare Research 2017b). OVERSEER can only accept around 

800 soil series names, which are automatically linked by OVERSEER to the appropriate NZSC 

soil order (Wheeler 2016a).  
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Soil Group :- seven soil groups are defined in OVERSEER based on work related to 

OVERSEER’s predecessor, OUTLOOK, and subsequent work related to fertiliser use in New 

Zealand (Wheeler 2016a). These soil groups appear to be used by agricultural scientists and 

the agricultural industry, but are not widely used by soil scientists (Wheeler 2016a).  

Soil Order and Sibling :- soil order and sibling refer to soil categories within the NZSC. Soil 

order refers to the first soil category in the NZSC, of which there are 15. Soil sibling refers to 

the fourth and fifth categories (Wheeler 2016a).  

In OVERSEER default soil properties relating to water holding capacity, drainage, soil texture 

etc. are defined according to soil order or soil group and are found in Wheeler (2016a). 

Where only a soil group is entered, default soil values are based on the soil order within 

which the soil group falls. However, this is complicated by the fact that some soil groups 

relate to multiple soil orders. For example, the ‘volcanic’ soil group includes allophanic, 

granular and oxidic soil orders. In this case the default soil order values are ‘combined’ and 

may be weighted towards particularly prevalent soil orders (Wheeler 2016a). Where users 

have block soil value test results, these can be entered in to OVERSEER to override default 

values (Wheeler 2016a).  

In the Ravensdown dataset default soil values are not included and Olsen P is the only 

included soil test result relating to N or P. Soil sibling is not defined for any block and soil 

series is rarely defined. The majority of blocks within the dataset include both soil group and 

soil order. However, only soil order is used for this study for three reasons: 

1. Soil order is connected to New Zealand’s primary soil classification (NZSC) 

2. Soil group default soil values in OVERSEER reference soil order default values anyway 

3. Soil order is identified and spatially positioned in the NZFSL, which is the spatial soil 

data used in this research.  

The NZSC defines 15 soil orders for New Zealand (Hewitt 2010) and Table 4.4 summarises 

their national coverage, drainage and P retention, which are referred to in this and 

subsequent chapters. For more information on soil order characteristics readers are 

directed to Hewitt (2010) and the New Zealand Soils Portal (Landcare Research 2017a). 
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Table 4.4 New Zealand soil order coverage, drainage and P retention. Sources: McLaren & 
Cameron (1996), Hewitt (2010) and Landcare Research (2017a). 

Soil Order Location and % National Cover Drainage P Retention 

Allophanic Predominant in North Island 
volcanic ash. Cover 5% of NZ. 

Good High 

Brown Nationwide. Cover 43% of NZ. Good  Medium-High 

Gley Nationwide in low lying areas. 
Cover 3% of NZ. 

Poor to very poor Medium-High 

Granular Found in northern NZ, 
particularly Waikato and South 
Auckland lowlands. Cover 1% of 
NZ 

Moderate High 

Melanic Scattered throughout NZ. Cover 
1% of NZ. 

Moderate Medium-High 

Organic Nationwide in wetlands and 
under forests that produce acid 
litter and with high rainfall. 
Cover1% NZ 

Variable 
Peats - poor 

Low 

Oxidic Auckland and Northland only. 
Cover <1% NZ. 

Variable Medium-High 

Pallic In seasonally dry eastern areas 
of North & South Is and in 
Manawatu. Cover 12% NZ 

Moderate to poor Low 

Podzol In areas of high rainfall in 
association with forest 
producing acid litter. Cover 13% 
NZ. 

Moderate Low 

Pumice Central North Is, particularly 
Volcanic Plateau. Cover 7% NZ. 

Good Medium-High 

Recent Nationwide on young surfaces 
eg. floodplains. Cover 6% NZ. 

Good Low 

Semi-Arid In inland basins of Otago & 
southern Canterbury. Cover 1% 
NZ. 

Good Low 

Ultic Northern North Is, Wellington, 
Marlborough & Nelson. Cover 
3% NZ. 

Poor Low 

Raw Nationwide in alpine areas, river 
beds, beaches and estuaries. 
Cover 3% NZ. 

Variable depending 
on parent material 

Low 

Anthropogenic In urban areas and mines. Cover 
<1% NZ. 

Variable Variable 
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The NZSC soil orders are not equally represented within the Ravensdown dataset. Table 4.5 

shows the number of blocks that feature each soil order within the data. Anthropogenic and 

raw soils are not represented at all. In OVERSEER raw soils can be chosen as a soil order 

option, while anthropogenic soils cannot. Raw soils are presumably not present in the 

dataset because little farming is undertaken on them. Oxidic and semi-arid soils are 

represented, but with only 18 and 22 blocks respectively. This is presumably because oxidic 

soil covers < 1% of New Zealand land area in the Far North and around Auckland, while 

semi-arid soils are extensively drystock farmed, but few nutrient budgets are done on these 

farms (A.Roberts, personal communication, 27 November 2017).  

Table 4.5 Number of pastoral blocks in the Ravensdown dataset included in each of the soil 
order categories 

Soil Order Number of Blocks 

Allophanic 2203 

Brown 3141 

Gley 1715 

Granular 176 

Melanic 192 

Organic 287 

Oxidic 18 

Pallic 2801 

Podzol 178 

Pumice 510 

Recent 1996 

Semi Arid 22 

Ultic 252 

Raw 0 

Anthropogenic 0 
 

4.2.3 Investigation of OVERSEER Functioning Using Bivariate Relationships 

This investigation aims to identify bivariate relationship forms between N and P losses and 

variables influencing those losses, to be used in multiple regression algorithms. To achieve 

this, OVERSEER (Version 6.2.2) is used to model a theoretical farm with 13 blocks of equal 

size, each featuring one of 13 soil orders (anthropogenic and raw soils are excluded). All 

blocks are treated in the same manner for each model run. Individual variables are slowly 

increased, while keeping remaining variables constant, and their effect on N or P losses 
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recorded. Bivariate relationships are graphed in MATLAB and identified as sublinear, linear 

or superlinear (Figure 4.3) to show how increases in individual variables affect N or P loss. 

Figure 4.3 Illustrates a linear relationship and what is meant in this text by sublinear 

relationship (below the linear line) and superlinear relationship (above the linear line).  

Sections 2.2 and 4.2.1 explain which variables influence N and P loss to water both in reality 

and in the OVERSEER model. Many, but not all, of these variables are quantitatively 

represented in the Ravensdown dataset. In consultation with the wider LUCI development 

and Ravensdown team, variables for exploration were chosen based on understanding of 

nutrient cycles, the OVERSEER model and with some consideration given to wider aims 

associated with future application of these models in LUCI by Ravensdown. N losses are 

explored in relation to annual average rainfall, irrigation, fertiliser N, effluent N and stocking 

rate, which are all quantified in the Ravensdown dataset. P losses are explored in relation to 

annual average rainfall, irrigation, fertiliser P, effluent P, and Olsen P, which are all 

quantified in the Ravensdown dataset. As stated in Section 4.2.2, quantitative soil 

characteristics (except Olsen P) are not included in the Ravensdown dataset, yet soil 

variables do influence N and P losses. For the majority of blocks within the dataset, soil 

order is specified. Therefore, bivariate analysis is undertaken for each soil order to account 

for soil variables. Results are presented below.   

Nitrogen 

Figure 4.4 presents relationships between rainfall and irrigation, and N loss for the 13 soil 

orders featured in the Ravensdown dataset. A sub-linear relationship is seen for all soil 

orders, whereby N loss increases as rain only or plus irrigation increases and levels out or 

even decreases in some cases. The addition of irrigation has the effect of steepening the 

curve so losses are higher with rainfall plus irrigation compared to the same depth of rainfall 
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only. Above 3000mm yr-1 of rain only or plus irrigation, there is some variability and it is 

surprising to see decreases and subsequent increases in N loss at these higher values. 

OVERSEER is calibrated for moderate annual mean rainfall (<1200mm) (Watkins and Selbie 

2015) and variable results at higher water inputs supports Watkins and Selbie’s assertion of 

uncertainty increasing outside of calibrated ranges. In reality a minority of farms in New 

Zealand are subjected to rainfall or rainfall plus irrigation of this magnitude. For example 

only around 250 blocks in the Ravensdown dataset feature rainfall plus irrigation over 

3000mm yr-1 and the majority of these are on the West Coast of the South Island. Soil order 

differences are clear, reflecting differences in soil drainage. For example, very permeable, 

well drained allophanic soils have high N losses and continue to lose N with high rainfall 

compared to lower N losses, and little change in losses above 1000mm yr-1 rainfall only or 

rainfall plus irrigation, from poorly drained gley soils.   

Figure 4.5 illustrates relationships between fertiliser and effluent N application and N loss 

for 13 soil orders. The relationship looks very subtly super-linear. Again differences in 

magnitude of loss from different soil orders, reflect soil drainage. The relationship between 

stocking rate and N loss is shown in Figure 4.6. A clear linear relationship exists with 

magnitude of loss varying between soil orders, again reflecting soil drainage characteristics.  

Phosphorus 

Figure 4.7 shows relationships between rainfall and irrigation, and P loss for 13 soil orders. 

Like N, a sub-linear relationship exists between these variables for all soil orders. However, 

only one curve is seen and added irrigation results in a push up the single P loss curve rather 

than development of a second, steeper curve. Differences in magnitude of loss according to 

soil order reflects soil P retention. Low P retention soils, such as Organic, Pallic, Podzol and 

Ultic, lose P to a greater extent as rainfall and irrigation increase. Lower P loss are evident 

for medium to high P retention soils, such as Allophanic, Brown, Granular and Oxidic.     

Figure 4.8 illustrates relationships between fertiliser and effluent P application and P loss. 

Relationships look linear although could be very subtly super-linear. Differences in 

magnitude of loss from different soil orders are evident and appear related to soil P 

retention. Olsen P against P loss is shown in Figure 4.9. Relationships are clearly close to 

linear with higher P loss from low P retention soils.  A linear relationship between 

topography and P loss is evident for all soil orders in Figure 4.10. 
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4.3 EXPLORATION OF RAVENSDOWN PASTORAL DATA  

In this section, the Ravensdown pastoral data is explored. Section 4.3.1 applies principal 

component analysis (PCA) to the data which is divided into 14 groups, one for each of the 13 

soil orders featured in the dataset and one including all data. Section 4.3.2 explores 

bivariate relationships between N or P loss and a number of variables within each of the 14 

data groups.   

4.3.1 Principal Component Analysis  

Principle component analysis identifies variables within a dataset that explain most of the 

variation. It is used to explore data relationships and focus further investigations, 

particularly when using large datasets. PCA analyses the structure of a multivariate data 

cloud and identifies orthogonal vectors (eigenvectors) where data variance is greatest. 

Variance may be related to differences in one or a combination of data variables. The vector 

with maximum variance is the first principle component (PC1). The second PC is the vector 

with maximum variance that is orthogonal to the first PC. Each succeeding PC is the vector 

with maximum variance that is orthogonal to proceeding PCs (Mather 1976).  

Each eigenvector has an associated eigenvalue indicating the degree of variance. 

Eigenvalues descend, in order, from highest values at PC1. For each PC, component 

coefficients indicate the degree to which individual data variables are related to the PC in 

question. Component coefficients range from -1 to 1. Those close to 1 or -1 are highly 

related to a PC, while coefficients close to 0 are not. Where multiple variables are closely 

related to a PC and coefficients have the same sign, they are acting in the same direction. 

Opposite coefficient signs indicate variables are acting in opposite directions (Mather 1976).  

Here PCA is carried out in MATLAB on the Ravensdown dataset using variables associated 

with the N and P OVERSEER models. The aim is to explore the dataset and identify the most 

influential variables or combinations of variables using the 14 data groups (13 soil order 

data groups plus all data).  

Nitrogen 

For N, PCA is carried out twice for each of the 14 data groups because potential 

evapotranspiration (PET) is not consistently defined for each block in the Ravensdown 

dataset, yet investigation of the effect of PET influence is desired. One PET column is 
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featured in the dataset and it records user defined PET for around 2/3 of blocks. Where a 

user has not defined PET, the value in this column is 0. OVERSEER does assign default PET 

values based on regional location of blocks, but the default values are not included in the 

Ravensdown data.   

The first PCA for N (PCA1) uses all blocks in each data group and 10 variables (rainfall, 

temperature, irrigation added, revised stock unit (RSU), fertiliser N, effluent N, N clover 

fixation, N in irrigation water, supplemental feed N, and OVERSEER predicted N loss to 

water). The second PCA for N (PCA2) uses only blocks where user defined PET is present and 

11 variables (those detailed above plus PET as variable 2). Table 4.6 presents the variables 

and associated component coefficients related to each PC for the 14 data groups from 

PCA1. Table 4.7 presents eigenvalues for the first 5 PC in each of the 14 data groups from 

PCA1. Figure 4.11 shows bivariate plots of principal components 1-5 from PCA1 for all data 

(i.e. data is not separated by soil order). The ten variables included in the analysis (in the 

order listed above) are represented by vectors V1-V10. Vector length and direction show how 

each variable relates to the two principal components graphed. Table 4.8 and 4.9 and Figure 

4.12 present the same data, but from PCA2. Within the MATLAB generated component 

coefficient tables, it is clear variables with component coefficients over 0.75 are the only 

variable significantly contributing to the PC in question and most other variables have 

coefficients <0.3. In these cases, only the >0.75 variables are identified in Tables 4.6 and 4.8. 

Where the highest component coefficient is <0.75, all of the variables with component 

coefficients >0.3 are identified in Tables 4.6 and 4.8.         

Table 4.6 indicates rainfall is the primary PC (PC1) for allophanic, brown, gley, granular, 

melanic, organic, oxidic, podzol, pumice, recent, ultic soils and all data, with component 

coefficients ranging from 0.85-0.996. For pallic soils irrigation is PC1 with a component 

coefficient of 0.9281, and for semi-arid soils, PC1 is related to irrigation and rainfall with 

component coefficients of 0.7287 and -0.6771. Pallic and semi-arid soils are generally 

located in drier regions. Therefore it is unsurprising irrigation, rather than rainfall, is PC1 for 

pallic soils. For semi-arid soils irrigation and rainfall are inversely related to PC1. This likely 

indicates irrigation tends to be used when rainfall is low and is particularly evident in the 

data for this soil order. However, only 22 samples are analysed here and it is uncertain how 

generally indicative this is for semi-arid soils.
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Table 4.6 PCA1 variables and component coefficients related to PC1-5 for N for 14 data groups using 10 variables (excluding PET) 

Soil Order PC1 PC2 PC3 PC4 PC5 

Allophanic 
n=2203 

Rainfall  
0.9996 

Effluent  
0.8598 

Fertiliser  
0.7711 

Irrigation  
0.9372 

Clover N Fixation  
0.8255 

Brown 
n=3141 

Rainfall  
0.946 

Irrigation  
0.9297 

Fertiliser  
0.9631 

Effluent  
0.9763 

Clover N Fixation  
0.963 

Gley 
n=1715 

Rainfall  
0.9726 

Irrigation  
0.9572 

Effluent  
0.9126 

Fertiliser  
0.9428 

Clover N Fixation  
0.9156 

Granular 
n=176 

Rainfall  
0.9922 

Irrigation  
0.8236 

Effluent  
0.8875 

Fertiliser  
0.8296  

Clover N Fixation  
0.9017 

Melanic 
n=192 

Rainfall  
0.85 

Irrigation  
0.8036 

Fertiliser  
0.9388 

Clover N Fixation  
0.9128 

Effluent  
0.9275 

Organic 
n=287 

Rainfall  
0.9908 

Fertiliser  
0.8895 

Effluent  
0.7943 

Irrigation  
0.7321 

Clover N Fixation  
0.892 

Oxidic 
n=18 

Rainfall  
0.9794 

Effluent  
0.9287 

Fertiliser  
0.8779 

Irrigation  
0.773 

Clover N Fixation  
0.5148 

Pallic 
n=2801 

Irrigation  
0.9281 

Rainfall  
0.9397 

Fertiliser  
0.9693 

Effluent  
0.989 

Clover N Fixation  
0.9826 

Podzol 
n=178 

Rainfall  
0.9984 

Fertiliser  
0.9065 

Effluent  
0.9753 

Irrigation  
0.9533 

Clover N Fixation  
0.8998 

Pumice 
n=510 

Rainfall  
0.9992 

Effluent  
0.7836 

Fertiliser, Effluent  
0.6921, 0.5884 

Irrigation  
0.9506 

Clover N Fixation  
0.923 

Recent 
n=1996 

Rainfall 
0.9867 

Irrigation 
0.9728 

Fertiliser 
0.9594 

Effluent 
0.9769 

Clover N Fixation 
0.954 

Semi Arid 
n=22 

Irrigation, Rainfall 
0.7287, -0.6771 

Rainfall, Irrigation 
0.7265, 0.646 

Fertiliser 
0.946 

Clover N Fixation 
0.9601 

Effluent 
0.9688 

Ultic 
n=252 

Rainfall 
0.9971 

Effluent 
0.8843 

Fertiliser 
0.8191 

Irrigation 
0.9917 

Clover N Fixation 
0.9119 

All Data 
n=13491 

Rainfall 
0.9806 

Irrigation 
0.9628 

Fertiliser 
0.9282 

Effluent 
0.9438 

Clover N Fixation 
0.9597 
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Table 4.7 PCA1 eigenvalues for PC1-5 for N for 14 data groups using 10 variables (excluding PET) 

Soil Order PC1 PC2 PC3 PC4 PC5 

Allophanic 224310.0 9579.5 5469.3 1612.1 1339.9 

Brown 263460.0 74240.0 9021.8 5211.1 2223.7 

Gley 159730.0 30565.0 9046.4 6680.8 2013.7 

Granular 466648.0 9621.3 6859.5 4463.4 1093.6 

Melanic 87018.0 37937.0 5814.2 2112.8 1601.3 

Organic 72869.0 7929.2 5329.4 4551.5 1225.3 

Oxidic 224350.0 97888.0 6696.3 3922.3 202.3 

Pallic 122880.0 28210.0 9373.2 3399.2 2254.7 

Podzol 458710.0 6026.6 3363.8 1932.2 1157.9 

Pumice 122440.0 7790.8 6529.0 4957.2 1577.0 

Recent 777270.0 100000.0 9545.5 4647.3 2340.2 

Semi Arid 117620.0 50964.0 9503.5 1374.9 742.5 

Ultic 50897.0 8008.8 5310.8 4044.7 1287.4 

All Data 360140.0 60136.0 8145.1 6041.6 2178.0 
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Figure 4.11 Bivariate plots of principal components 1 & 2 (a.), 3 & 4 (b.), and 5 & 6 (c.) from 

PCA1. Variables 1-10 included in the analysis are represented by vectors V1-V10 and indicate 

with length and direction how each variable relates to the two principal components 

graphed 
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PC2 is related to irrigation only for 5 soil orders (brown, gley, granular, melanic, and recent), 

with component coefficients ranging from 0.8036 to 0.9728, and all data with a component 

coefficient of 0.9628. For pallic soil rainfall only is related to PC2 with a component 

coefficient of 0.9397, and rainfall and irrigation with component coefficients of 0.7265 and 

0.646 is related to PC2 for semi-arid soils. For the 6 remaining soils (allophanic, organic, 

oxidic, podzol, pumice, recent and ultic), PC2 is fertiliser or effluent with component 

coefficients of 0.7836 to 0.9287) and irrigation is related to PC4. Allophanic, oxidic, podzols 

and pumice soils tend to be located in higher rainfall areas and organic and ultic soils tend 

to retain higher soil water content. Therefore, irrigation is likely less required and used on 

these soil orders, so shows less variability. Remaining PCs feature some combination of N 

inputs via fertiliser, effluent and clover N fixation. Differences in PC rankings of these 

variables for individual soil orders likely reflects the farm types and intensities found on 

these soils. For the ‘all data’ group, PC1-5 are rainfall, irrigation, fertiliser, effluent and 

clover fixation. Figure 4.11 confirms PC1-5 for all data are rainfall (V1), irrigation (V3), 

fertiliser (V5), effluent (V6) and clover N fixation (V7).  

Table 4.8 indicates for PCA2 that rainfall is PC1 for allophanic, brown, gley, granular, organic, 

oxidic, podzol, pumice, recent, ultic soils and all data all soil orders, with component 

coefficients of 0.9091 to 0.9993. For pallic and semi-arid soils PC1 is irrigation with 

component coefficients of 0.9376 and 0.855, and for melanic soils PC1 is related to rainfall 

and irrigation with component coefficients of 0.7469 and -0.608. PET is present in the first 

five PCs for all soil orders, but this ranges from PC2 to PC5 indicating variable importance 

from soil to soil. PET is related to PC2 for podzol, semi-arid and ultic soil orders, to PC3 for 

brown, gley, melanic, pumice, semi-arid, and all data soil orders, to PC4 for allophanic, 

granular, pallic, and recent soil orders, and PC5 for granular and oxidic soil orders. Clearly 

PET influences data variance, but it is not clear there is a particular pattern of importance 

for soil orders based on climate or soil moisture variables. Like PCA1, the remaining PC’s 

relate to fertiliser, effluent, and clover fixation and results for oxidic and semi-arid soil 

orders should be viewed with some caution due to low sample sizes.  For the ‘all data’ 

group, PC1-5 are rainfall, irrigation, PET, fertiliser and effluent. Figure 4.12 confirms this 

showing rainfall as V1, irrigation as V4, PET as V2, fertiliser as V6 and effluent as V7.
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Table 4.8 PCA2 variables and component coefficients related to PC1-5 for N for 14 data groups using 11 variables (including PET) 

Soil Order PC1 PC2 PC3 PC4 PC5 

Allophanic 
n=1030 

Rainfall 
0.9993 

Effluent 
0.8622 

Fertiliser 
0.7728 

PET 
0.9933 

Clover N Fixation 
0.8103 

Brown 
n=2065 

Rainfall 
0.9091 

Irrigation 
0.8943 

PET 
0.9014 

Fertiliser 
0.8607 

Effluent 
0.9731 

Gley 
n=1239 

Rainfall 
0.9474 

Irrigation 
0.9348 

PET 
0.9807 

Fertiliser 
0.8444 

Effluent 
0.8828 

Granular 
n=132 

Rainfall 
0.9825 

Effluent, Irrigation 
0.6688, -0.6557 

Effluent, Irrigation 
0.6736, 0.659 

PET, Fertiliser 
0.666, 0.6192 

PET, Fertiliser 
0.7062, -0.6258 

Melanic 
n=150 

Rainfall, Irrigation 
0.7469, -0.608 

Irrigation, Rainfall 
0.743, 0.6186 

PET 
0.8688 

Fertiliser 
0.8298 

Clover N Fixation 
0.7688 

Organic 
n=183 

Rainfall 
0.9816 

Fertiliser 
0.9077 

Irrigation 
0.7776 

Irrigation, Effluent 
0.6946, -0.574 

PET 
0.8571 

Oxidic 
n=11 

Rainfall 
0.9798 

Fertiliser 
0.8577 

Irrigation, Rainfall 
0.6044, -0.4781 

Effluent 
0.8658 

PET, Clover N Fix 
0.7454, -0.4168 

Pallic 
n=1886 

Irrigation 
0.9376 

Rainfall 
0.9466 

Fertiliser 
0.8807 

PET 
0.9001 

Effluent 
0.9854 

Podzol 
n=85 

Rainfall 
0.9944 

PET 
0.9529 

Fertiliser 
0.885 

Effluent 
0.966 

Irrigation 
0.9494 

Pumice 
n=210 

Rainfall 
0.9966 

Fertiliser 
0.7949 

PET 
0.8076 

Effluent 
0.821 

Irrigation 
0.8607 

Recent 
n=1343 

Rainfall 
0.9815 

Irrigation 
0.968 

Fertiliser 
0.9236 

PET 
0.9503 

Effluent 
0.9756 

Semi Arid 
n=14 

Irrigation 
0.855 

Fertiliser, PET 
0.626, 0.4925 

PET, Fertiliser 
0.684, -0.6829 

Effluent 
0.9071 

Clover N Fix, Rainfall 
0.7056, 0.5189 

Ultic 
n=113 

Rainfall 
0.9788 

PET, Effluent 
0.7248, 0.646 

Fertiliser, Effluent, Rainfall 
0.6143, -0.555, 0.535 

Fertiliser, Effluent 
0.7065, 0.4556 

Irrigation 
0.9891 

All Data 
n=8461 

Rainfall 
0.9599 

Irrigation 
0.9439 

PET 
0.8337 

Fertiliser 
0.7902 

Effluent 
0.9782 
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Table 4.9 PCA2 eigenvalues for PC1-5 for N for 14 data groups using 11 variables (including PET) 

Soil Order PC1 PC2 PC3 PC4 PC5 

Allophanic 211310.0 8915.7 6386.4 4463.3 1467.1 

Brown 238810.0 75469.0 10373.0 9352.1 5358.4 

Gley 118170.0 31891.0 9423.1 7516.9 5291.9 

Granular 46274.0 9580.0 7357.4 4003.3 3258.5 

Melanic 98200.0 36867.0 9597.0 5498.0 2324.2 

Organic 52475.0 8210.2 5546.9 5218.9 3645.2 

Oxidic 353900.0 10060.0 4610.5 1182.6 725.4 

Pallic 134570.0 26282.0 10562.0 8070.5 3413.0 

Podzol 322500.0 1117.3 6685.2 4119.8 1967.9 

Pumice 70095.0 8527.3 7348.4 5064.8 4446.0 

Recent 632080.0 111200.0 10663.0 8132.6 4107.5 

Semi Arid 48909.0 14241.0 4891.5 994.2 669.9 

Ultic 57941.0 8484.6 8177.9 5489.8 3072.9 

All Data 287820.0 69726.0 10052.0 8420.6 5764.1 
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Figure 4.12 Bivariate plots of principal components 1 & 2 (a.), 3 & 4 (b.), and 5 & 6 (c.) from 

PCA2. Variables 1-11 included in the analysis are represented by vectors V1-V11 and indicate 

with length and direction how each variable relates to the two principal components 

graphed.  
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This analysis confirms the central role of hydrology and N inputs in the OVERSEER N model. 

In particular, rainfall, irrigation, fertiliser and effluent, as explored in Section 4.2.3, are 

principle components within the Ravensdown dataset and should remain in any further 

analysis and be included in the developed N algorithm. This analysis also suggests PET and 

clover fixation are influential and should also possibly be included in the N algorithm.  

Barriers to inclusion of PET and clover fixation exist though. Neither variable is easily 

measured by model users. In OVERSEER clover N fixation is estimated internally based on 

user identified pasture block clover level (very low, low, medium, high, very high) (Wheeler 

2016d). As described above, PET is either user identified or a regional default value is used. 

Where user defined PET is entered, it will be an estimate based on observed climate data 

and it is uncertain who has calculated the entered PET or where it is from. Additionally, 

where default PET is used, it is not recorded in the Ravensdown data. This means only 

blocks with user identified PET can be used for parameterisation if PET is included in the N 

algorithm. This could be particularly problematic for oxidic and semi-arid soils, which 

already have very few samples. Therefore, at this stage N fixation and PET are not 

considered further here, but could be included in future iterations of the N algorithms.   

Conversely, RSU is included in bivariate analysis in Section 4.2.3, yet does not feature in the 

first 5 PC’s for any soil order. It may be argued that stock numbers must be supported by 

enough feed, which is already represented by inclusion of water and N inputs and certainly 

co-dependence between these variables and stocking rate must be acknowledged. 

However, changes to RSU also represent an important mitigation strategy. Inclusion of this 

element in the algorithm is an obvious method of accounting for and modelling changes to 

N loss as a result of changes in stocking rate. For this reason it will be included in the 

developed N algorithm.    

Phosphorus 

The third PCA (PCA3) is carried out on all pastoral blocks in each data group using 10 

variables (topography, rainfall, irrigation added, Olsen P, RSU, P added in fertiliser P, 

effluent P, P in irrigation water, supplemental feed P, and P loss to water). Table 4.10 

summarises the first 5 PC and associated component coefficients for each of the 14 data 

groups from PCA3. Table 4.11 presents eigenvalues for the first 5 PC in each of the 14 data 

groups from PCA3. Figure 4.13 shows bivariate plots of principal components 1-5 from PCA3 
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for all data (i.e. data is not separated by soil order). The ten variables included in the 

analysis (in the order listed above) are represented by vectors V1-V10. Vector length and 

direction show how each variable relates to the two principal components graphed.   

PC1 and PC2 comprise water inputs for all soil orders with rainfall as PC1 for allophanic, 

brown, gley, granular, melanic, organic, oxidic, podzol, pumice, recent, ultic soils and all 

data, with component coefficients ranging from 0.8666-1. For pallic soils irrigation is PC1 

with a component coefficient of 0.9408. For semi-arid soils irrigation and rainfall are related 

to PC1 with component coefficients of 0.724 and -0.6897. Again, this is not surprising given 

the prevalence of irrigation use on these soils. PC3-5 is some combination of fertiliser P, 

effluent P and Olsen P for most soil orders. Although, P inputs from supplemental feed 

relate to PC4 for allophanic soils, to a lesser degree, but along with Olsen P. This likely 

reflects a number of farms with particularly high supplemental feed inputs on these soils. 

RSU relates to PC5 or PC4, for brown, melanic, pallic and semiarid soils. This is surprising 

given RSU is not included in the OVERSEER P model. PC1-5 for the ‘all data’ group are 

rainfall, irrigation, fertiliser, Olsen P and effluent. Figure 4.13 confirms this showing rainfall 

as V2, irrigation as V3, fertiliser as V6, Olsen P as V4 and effluent as V7. 

Again, this analysis confirms the central role of rainfall, irrigation, fertiliser, effluent and soil 

properties such as Olsen P in the OVERSEER P model. However, topography, which 

McDowell et al (2005) and Watkins & Selbie (2015) indicate is important in OVERSEER’s P 

model, does not feature in PC1-5 for any soil order. This is likely due to a clear bias towards 

flatter land within the pastoral data. Within the dataset, the percent of blocks in each of the 

four slope categories of flat, rolling, easy hill and steep hill are 74%, 19%, 6% and 1%, 

respectively, so little topographic variability is evident. Conversely, stocking rate, which is 

not mentioned in the OVERSEER P model literature, is PC4 and/or 5 for brown, melanic, 

pallic and semi-arid soils. It is unclear why this pattern emerges for these soils – possibly due 

to the range of farm types featured. Bivariate analysis of stocking rate changes, at 4 slope 

values, on P losses using OVERSEER indicates RSU does not influence P losses (Figure 4.14), 

yet topography does. Therefore RSU is not considered for inclusion in the P algorithms, 

while topography is. . 
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Table 4.10 PCA3 variables and component coefficients related to PC1-5 for P for 14 data groups using 11 variables  

Soil Order PC1 PC2 PC3 PC4 PC5 

Allophanic 
n=2203 

Rainfall 
1 

Irrigation 
0.9993 

Fertiliser 
0.9004 

Olsen P, Supp Feed 
0.7229, 0.5668 

Effluent 
0.9662 

Brown 
n=3141 

Rainfall 
0.9484 

Irrigation 
0.9483 

Fertiliser 
0.9846 

RSU, Olsen P 
0.7093, 0.6121 

RSU, Olsen P 
0.6853, -0.6695 

Gley 
n=1715 

Rainfall 
0.9738 

Irrigation 
0.9737 

Fertiliser 
0.9019 

Olsen P 
0.7688 

Effluent 
0.864 

Granular 
n=176 

Rainfall 
0.994 

Irrigation 
0.9941 

Fertiliser, Effluent 
0.6201, -0.5505 

Effluent 
0.8127 

Fertiliser, Olsen P 
0.7378, 0.5909 

Melanic 
n=192 

Rainfall 
0.8666 

Irrigation 
0.8661 

Olsen P 
0.7766 

Fertiliser 
0.79 

Effluent, RSU 
0.6447, 0.4489 

Organic 
n=287 

Rainfall 
0.9911 

Irrigation 
0.991 

Fertiliser 
0.7644 

Olsen P, Fertiliser 
0.7117, 0.6327 

Effluent 
0.9845 

Oxidic 
n=18 

Rainfall 
0.9913 

Irrigation 
0.8093 

Effluent 
0.8145 

Fertiliser 
0.9822 

Olsen P 
0.7913 

Pallic 
n=2801 

Irrigation 
0.9408 

Rainfall 
0.9408 

Fertiliser 
0.9992 

Olsen P 
0.8266 

RSU, Olsen P 
0.6999, -0.5393 

Podzol 
n=178 

Rainfall 
0.9999 

Irrigation 
0.9993 

Fertiliser 
0.9411 

Olsen P 
0.8599 

Effluent 
0.9583 

Pumice 
n=510 

Rainfall 
0.9994 

Irrigation 
0.9991 

Olsen P 
0.8276 

Fertiliser 
0.8781 

Effluent 
0.9754 

Recent 
n=1996 

Rainfall 
0.9868 

Irrigation 
0.9867 

Fertiliser 
0.9994 

Olsen P 
0.8868 

Effluent 
0.908 

Semi Arid 
n=22 

Irrigation, Rainfall 
0.724, -0.6897 

Rainfall, Irrigation 
0.7238, 0.6894 

Fertiliser 
0.9639 

Olsen P, RSU 
0.7205, -0.6522 

RSU, Olsen P 
0.6888, 0.5952 

Ultic 
n=252 

Rainfall 
0.9978 

Irrigation 
0.9976 

Fertiliser, Olsen P 
0.7111, -0.6574 

Olsen P, Fertiliser 
0.7228, 0.6385 

Effluent 
0.9582 

All Data 
n=13491 

Rainfall 
0.9811 

Irrigation 
0.981 

Fertiliser 
0.9934 

Olsen P 
0.784 

Effluent 
0.9536 
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Table 4.11 PCA3 eigenvalues for PC1-5 for P for 14 data groups using 11 variables  

Soil Order PC1 PC2 PC3 PC4 PC5 

Allophanic 224130.0 1579.6 504.7 365.8 154.5 

Brown 272590.0 72085.0 310.3 189.4 116.2 

Gley 159450.0 29848.0 325.6 191.7 150.5 

Granular 46497.0 8364.3 352.4 242.6 191.3 

Melanic 85782.0 35226.0 245.9 203.1 61.9 

Organic 72827.0 5029.8 471.7 228.3 83.4 

Oxidic 220750.0 3183.7 1806.7 157.1 20.5 

Pallic 119690.0 28004.0 939.5 128.6 53.2 

Podzol 457350.0 2215.8 495.6 167.4 80.9 

Pumice 122380.0 4989.3 639.6 330.7 148.2 

Recent 776950.0 97384.0 1569.7 150.4 71.4 

Semi Arid 116510.0 48624.0 246.2 57.2 32.5 

Ultic 50831.0 4022.9 320.7 200.6 113.0 

All Data 359820.0 58238.0 634.2 295.7 107.3 
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Figure 4.13 Bivariate plots of principal components 1 & 2 (a.), 3 & 4 (b.), and 5 & 6 (c.) from 

PCA3. Variables 1-10 included in the analysis are represented by vectors V1-V10 and indicate 

with length and direction how each variable relates to the two principal components 

graphed.  
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4.3.2 Bivariate Analysis of Ravensdown Pastoral Data 

In this section the Ravensdown pastoral data is further explored. Bivariate relationships 

between N or P loss and the influential variables identified in Sections 4.2.2 and 4.3.1 are 

investigated using 14 data groups – 13 for each soil order represented in the Ravensdown 

data and one for all data together. Of particular interest is whether the bivariate 

relationships, identified in Section 4.2.2, are seen in the Ravensdown data.   

Nitrogen 

The effects of rainfall, irrigation, fertiliser N, effluent N and RSU on N losses to water are 

graphed using the 14 data groups from the Ravensdown pastoral dataset. Rainfall was 

initially investigated separately to irrigation. However, as Figure 4.15a indicates, for many 

soil orders a cluster of high N losses at low rainfall values is evident. Further investigation 

revealed these blocks are irrigated. A stronger relationship is seen when rainfall and 

irrigation are added and plotted against N losses (Figure 4.15b). Figure 4.16 features rainfall 

plus irrigation plotted against N loss for data within each soil order and all data together. In 

all cases positive relationships are seen - as rainfall plus irrigation increases, N losses 

increase. A sublinear relationship, as indicated in Figure 4.4, could be fitted to this data. 

However, high variance is clear.  

Figure 4.15 a. Rainfall plotted against N loss compared to 4.12 b. Rainfall plus irrigation 
plotted against N loss. Points circled in red are mainly irrigated blocks. These graphs 
illustrate that a stronger relationship is seen when rainfall and irrigation are added and 
plotted against N losses.  

Fertiliser was also initially investigated independently, but a cluster of effluent blocks with 

high N losses at low fertiliser application rates were seen. A less scattered relationship is 

seen when fertiliser N and effluent N are added. Figure 4.17 features fertiliser N plus 

(a)

. 

(b) 
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effluent N plotted against N loss for data in each soil order and all data. In all cases positive 

relationships are seen - as fertiliser N plus effluent N increases, N losses increase. It is 

possible a super-linear relationship, as indicated in Figure 4.5, could be fitted to this data, 

particularly for brown, pallic and recent soils. However, for other soils a linear relationship 

appears to be appropriate. Figure 4.18 features RSU against N loss for all soil orders and all 

data and positive relationships are seen in all cases. A linear relationship, as indicated in Fig 

4.6, could be fitted although, again, there is considerable variance.  

In summary, all of the bivariate relationships graphed in Figures 4.16-4.18 indicate the 

relationships shown in Section 4.2.3 could fit. However, there is considerable variability in 

the majority of graphs.  

Phosphorus 

The effects of rainfall, irrigation, fertiliser P, effluent P, Olsen P and topography on P losses 

are graphed using the same 14 data groups from the Ravensdown pastoral data. As for N, 

rainfall plus irrigation, and fertiliser P plus effluent P are investigated. Figure 4.19 features 

rainfall plus irrigation plotted against P loss for 13 soil orders and all data. The sub-linear 

relationship shown in Figure 4.7 is not clear in Figure 4.19. Three soils (brown, gley and 

recent) feature two clusters of data – one at lower losses and another at higher losses. 

Investigation of the cluster at higher losses reveals no specific characteristic present that 

would account for higher losses. P retention appears to influence P losses from individual 

soil orders. Highly P retentive allophanic soil has lower P losses at all rainfall plus irrigation 

values, while low P retentive soils have higher losses e.g. pallic soil which exhibits a super 

linear relationship between rainfall plus irrigation and P losses. However, P retention cannot 

explain all variability seen. For example, highly P retentive granular soil shows more of a 

super linear rather than sub linear relationship.  

Figure 4.20 features fertiliser P plus effluent P plotted against P losses for all soil orders and 

all data. A relationship between these variables does not appear to exist, despite the linear 

to subtly super-linear relationship seen in Figure 4.8.   

Figure 4.21 graphs Olsen P against P loss for all soil orders and all data. A generally positive 

linear relationship appears to exist, as seen in Figure 4.9. However, variance is high, 

particularly for low P retentive soils. Figure 4.22 graphs topography against P loss for all soil 
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orders and all data. Relationships between topography and P loss are difficult to assess due 

to the highly categorised nature of topographic representation within OVERSEER and the 

Ravensdown dataset. Additionally the dataset is dominated by flat to rolling blocks, 

reflecting the predominance of agriculture, particularly dairy, on flatter topography. No 

clear relationships are seen in Figure 4.22. 

The relationships seen in Section 4.2.3 for P loss are not seen within the Ravensdown 

dataset and individual soil orders appear to exhibit a variety of P loss behaviours. For 

example, high soil P retention clearly influences allophanic soil which show low P losses for 

all variables, while P losses in low P retention pallic soil are higher for all variables. Clearly P 

retention is influential between soil orders. Additionally, two groups of data are evident for 

some soils between rainfall plus irrigation and P loss. This possibly indicates an underlying 

threshold effect within the OVERSEER model associated with water inputs for these soils. 

Furthermore, the effect of slope is difficult to assess from OVERSEER or the Ravensdown 

data because only four slope classifications are specified and only one slope value per block 

can be specified.  

In summary, above investigations of bivariate relationships using the Ravensdown dataset 

indicate that relationships seen in Section 4.2.3, using a theoretical farm in OVERSEER, are 

plausibly seen for N, but not for P. This suggests a multiple regression approach for P is not 

suitable. Indeed, this was further confirmed when an initially developed multiple regression 

approach for P was applied at farm and catchment scale in LUCI and found to perform 

inadequately. A number of possible reasons for inadequate performance exist including 

underlying assumptions and/or threshold effects associated with the OVERSEER model, and 

differences in scale and detail between OVERSEER and LUCI. For example, OVERSEER uses 

only 4 slope classifications with only one slope value per block, while LUCI derives slope 

value from the DEM and identifies individual grid square slope and within field topography. 

Therefore, the initially developed multiple regression approach for P was discarded and a 

new approach developed by other members of the LUCI development team, based on the 

investigation documented in the following section. 
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4.4 INVESTIGATION OF THE SOIL P LOSS COMPONENT OF OVERSEER       

In an effort to better understand the mechanics of OVERSEER’s P model, an attempt is made 

to replicate the soil P loss component of the model in Excel according to model descriptions 

in McDowell et al. (2005) and Gray et al. (2016) and soil terms from Wheeler (2016a). This 

investigation informed the broader LUCI development team in their effort to develop a P 

model that performed better than the initially developed multiple regression approach. Soil 

P loss is calculated for the same 13 soil orders used in above sections and compared to soil P 

loss results from the theoretical farm in OVERSEER.  

This process presents some challenges and uncertainties. McDowell et al. (2005) and Gray et 

al. (2016) explicitly present equations for DRP and structural vulnerability. Further 

calculations are described in the text, but not always to the level of detail required to unpick 

the underpinning equations. This work therefore made some assumptions around soil 

variables and regressed ‘weighting factors’. In addition, a number of ‘typos’ originally 

featured in the documentation, although all or most were fixed following subsequent 

communication with OVERSEER developers.  

4.4.1 Method 

Soil P loss is described in McDowell et al. (2005) as “a combination of” particulate P (PP) 

loss, DRP and a weighting factor derived from regression between actual and estimated TP 

losses. They do not specify the weighting factor, but do provide a figure showing measured 

TP concentrations against estimated TP concentrations for 11 soil types, including a 

regression equation. Investigation of the featured soil types, listed according to soil series, 

using the NZFSL indicate only 6 soil orders are represented. These include recent, gley, 

pallic, brown, melanic and allophanic. One soil series, ‘Fleming’, could not be clearly linked 

to a soil order. Gray et al. (2016) clarify that PP and DRP losses are summed, but do not 

elucidate the weighting factor used. Therefore, here background soil P losses are calculated 

as the sum of PP and DRP, and weighted according to a factor inferred from McDowell et al. 

(2005). 

Particulate P 

An equation for PP is not given by either McDowell et al. (2005) or Gray et al. (2016), but is 

inferred from the text. Here PP losses are calculated according to Equation 4.1.  
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𝑃𝑃 = 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐺𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑂𝑙𝑠𝑒𝑛𝑃 × 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

          Equation 4.1 

 

Equations for structural vulnerability are given in McDowell et al. (2005) and Gray et al. 

(2016). However, they differ from each other. Here the equation in McDowell et al. (2005) is 

used, but is modified to follow the square root placement featured in Hewitt and Shepherd 

(1997), from which McDowell et al. (2005) developed their equation (Equation 4.2). 

 

𝑆𝑉 =
(
𝐴𝑆𝐶
100 +

√𝐶𝑎𝑟𝑏𝑜𝑛
5

+
√𝐶𝑙𝑎𝑦

8.5
− 0.7)

2.3
 

Where, soil order specific ASC (or P retention (PR)), Carbon and Clay are derived 

from Wheeler (2016a).        

         Equation 4.2 

 

Gravimetric Olsen P is calculated according to the equation given in Wheeler (2016a) and 

shown in Equation 4.3.  

 

𝐺𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑂𝑙𝑠𝑒𝑛 𝑃

= 𝑒𝑥𝑝
(log(𝑉𝑜𝑙𝑂𝑙𝑠𝑒𝑛𝑃) + 1.69 − 0.0057 × 𝐴𝑆𝐶 − 0.89 × 𝐵𝐷/1000

1.13
 

Where, Olsen P by volume (VolOlsenP) is 30 for all soil orders and soil order 

specific ASC (or P retention (PR)) and bulk density (BD)are derived from 

Wheeler (2016a) 

          Equation 4.3 
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Transport potential is determined from slope. PP is multiplied by 0.15, 0.5, 0.75 or 1 for flat, 

rolling, easy hill or steep hill (McDowell et al. 2005; Gray et al. 2016). Here PP is calculated 

for flat land only.   

DRP 

McDowell et al. (2005) provide an equation for DRP, which Gray et al. (2016) note has since 

been modified (Equation 4.4). 

𝐷𝑅𝑃 = 0.022
𝐺𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑂𝑙𝑠𝑒𝑛𝑃

𝐴𝑆𝐶
+ 0.022 

Where, Gravimetric Olsen P is calculated using Equation 5.3 and soil order 

specific ASC (or P retention (PR)) is derived from Wheeler (2016a) 

         Equation 4.4 

DRP is multiplied by two transport potential factors:- excess precipitation and hydrological 

class. Equations are not specified by McDowell et al. (2005) or Gray et al. (2016), but are 

inferred from the text as Equations 5.5 and 5.6. Here rainfall of 1000mm is used and no 

irrigation included. 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛

680
 

Where, Rainfall and Irrigation are in mm/yr  

         Equation 4.5 

 

𝐻𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐶𝑙𝑎𝑠𝑠 = 𝑆𝑜𝑖𝑙 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 × 𝑀𝑒𝑎𝑛 𝑆𝑙𝑎𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 

 

Where Soil Texture Index and Mean Slaking Index are from Table 1 in Gray et al. 

(2016)  

         Equation 4.5 
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Soil texture for each soil order is determined using percent clay, silt and sand from Wheeler 

(2016a) and the soil texture triangle (University of Idaho 2016). This is then used to 

determine which Soil Texture Index number (in Table 1 from Gray et al. (2016))  is 

appropriate for each soil order. The mean slaking index featured in Table 1 in Gray et al. 

(2016) lists organic soils twice (0.8 and 1) and it is not clear which is the correct value for 

organic soil. Here 1 is used. In addition, the mean slaking index differs from that featured in 

McDowell et al. (2005). Furthermore, a ‘hydroclass’ is also given in Wheeler (2016a). While 

Wheeler’s (2016a) hydroclass is not used here, it is possible this is used in the P model. 

4.4.2 Results and Discussion      

Table 4.3 compares OVERSEER derived soil P loss and Excel calculated soil P loss. P loss 

replicated in Excel are an order of magnitude higher than OVERSEER generated soil P loss for 

all soils except pallic, recent, semiarid and ultic. These four soils are all characterised by low 

P retention indicating some aspect of soil order specific variables likely contribute to 

discrepancies. This does not help to narrow down specifics though because many soil order 

variables are used in the above equations e.g. ASC, BD, % clay/silt/sand, carbon content, 

mean slaking index etc. In addition, given the number of typos and discrepancies found in 

McDowell et al. (2005) and Gray et al. (2016), and the uncertainties and assumptions made 

here, it is not clear exactly which aspect of the calculations are responsible for the 

differences seen. Potentially any one or a combination of them could be responsible. A 

further area of uncertainty relates to the weighting factor derived from regression. Neither 

McDowell et al. (2005) nor Gray et al. (2016) give much in the way of specifics and it is clear 

from Figure 2 in McDowell et al. (2005) that this weighting factor is based on only a limited 

number of soil orders. It is unclear how the weighting factor is assigned to soil orders not 

represented in the regression analysis. 

Despite uncertainties, this work contributes substantially to subsequent development of an  

alternative algorithm for P, presented in Chapter 5, which is more closely linked to 

McDowell et al.’s (2005) approach. It should be noted, that this further development of the 

P algorithm beyond a multiple regression approach was carried out by members of the LUCI 

development team with more extensive expertise in this area. Therefore, further P 

algorithm development is not presented here. However, the new P algorithm and 

parameterised constants are reported in Chapter 5 and used in the presented case studies. 
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Table 4.3 Comparison between OVERSEER modelled P loss and author replicated soil P loss 
which is based on explanation of the OVERSEER P loss model in McDowell et al. (2005) and 
Gray et al. (2016). 

Soil Order OVERSEER Soil P Loss  
(kg P/ha/yr) 

Excel replicated Soil P Loss 
(kg P/ha/yr) 

Allophanic 0.1 1.7 

Brown 0.1 1.0 

Gley 0.3 1.5 

Granular 0.2 1.5 

Melanic 0.1 1.1 

Organic 0.5 3.1 

Oxidic 0.1 1.5 

Pallic 0.4 0.5 

Podzol 0.7 1.1 

Pumice 0.2 1.2 

Recent 0.3 0.5 

SemiArid 0.4 0.1 

Ultic 0.6 0.7 

 

4.5 DISCUSSION AND SUMMARY 

This chapter aimed to identify input variables and functional forms for inclusion in export 

coefficient generating algorithms for N and P for pastoral land covers. These algorithms will 

quantify site specific pastoral N and P losses based on variations in and combinations of geo-

climatic and land management variables. Spatial data is used to identify land units of 

combined variables to which the algorithms are applied, thereby explicitly positioning 

export coefficients which can be fed into catchment scale water quality models.     

Algorithm input variables are identified using PCA analysis and OVERSEER model and 

nutrient loss understanding, with some consideration given to wider aims associated with 

future application of these models in LUCI by Ravensdown. Final N algorithm input variables 

are rainfall, irrigation, fertiliser N, effluent N and RSU. Final P algorithm input variables are 

rainfall, irrigation, fertiliser P, effluent P, Olsen P and topography. Although further soil 

variables are included in underlying equations that contribute to the P algorithm, as 

discussed in Chapter 5.  

Suitable algorithm form is less clear. Using a theoretical farm in OVERSEER, bivariate 

relationship form between identified input variables and nutrient loss was investigated, 

yielding clear results. However, the same bivariate relationships are not as clearly evident in 



126 
 

actual farm data from the Ravensdown dataset. For N, the OVERSEER theoretical farm 

derived bivariate relationships could be fitted to the actual Ravensdown data, but with 

variance evident. For P, the OVERSEER theoretical farm derived bivariate relationships are 

not seen in the Ravensdown data for many soil orders and variables, and subsequent 

application of the multiple regression approach for P, at farm and catchment scale, 

indicated it was unsuitable. This prompted further investigation into OVERSEER’s P model. In 

particular, functioning of the soil P loss component of the OVERSEER model is deciphered 

based on descriptions in OVERSEER literature and applied in a new P algorithm, developed 

and parameterised by other members of the LUCI development team.     

The analyses presented here highlight some of the difficulties around using other models to 

develop export coefficients. Models vary in assumptions and complexity, which may or may 

not be explicitly reported in associated literature. Deciding how fully to replicate an 

underlying model and which inputs or aspects of a model to include is not always easy. In 

addition, issues related to scale can exist between models. For example, once applied at 

catchment scale, the initial multiple regression P algorithm appeared to have difficulty 

accounting accurately for topography. This is likely due to differences in topographic 

representation between OVERSEER and the Ravensdown data, and LUCI. OVERSEER only 

provides four slope options and only one dominant option can be allocated per block. 

Therefore the Ravensdown data also only records one dominant slope per block. In 

addition, it is biased towards flat to rolling slopes. In contrast, LUCI considers slope at the 

DEM grid square scale and accounts for detailed intra-block topography.        

Here the aim is not full replication of OVERSEER, but sufficient replication using the most 

influential input variables to provide site specific representative export coefficients. For N, a 

multiple regression approach using the five variables identified above appears sufficient, 

although this is evaluated further in following chapters. For P, a multiple regression 

approach proved to be inappropriate and an alternative approach has been developed by 

the wider LUCI development team. These algorithms are presented and applied in following 

chapters.  
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5 EXPORT COEFFICIENT ALGORITHMS: FORM, PARAMETERISATION 

AND INPUT DATA  

 

 

5.1 INTRODUCTION 

This chapter presents N and P export coefficient algorithms for pastoral land covers in New 

Zealand, based on investigations in Chapter 4, and parameterises N algorithm constants. A 

similar algorithmic approach is desired for other land covers, but lack of suitable data 

prevents this. Instead, an alternative approach is developed based on the pastoral 

algorithms, but with the addition of a Land Cover Multiplier (LCM) derived from New 

Zealand literature reported export coefficients documented in Chapter 3. Using pastoral 

algorithms as a base for deriving other land cover export coefficients ensures important N 

and P loss variables are accounted for. The LCM then increases or decreases output from 

the algorithms to reflect reported differences in nutrient loss between pastoral land cover 

and the land cover in question.  

Publicly available national spatial data defining farm inputs (e.g. fertiliser, effluent, irrigation 

etc.) featured in the pastoral algorithms do not exist. When working with individual farms or 

in small catchments where direct interaction with farmers is possible, actual OVERSEER files 

connected to GIS shapefiles outlining block and farm boundaries, are used. Where this is not 

possible and for input to the other land cover algorithms, alternative data is required. 

Therefore, spatial data detailing regional average algorithm inputs are developed here to 

overcome this issue.  

Section 5.2 presents pastoral and other land cover algorithm forms for N and P. Section 5.3 

parameterises pastoral N algorithm constants and compares OVERSEER derived predictions 

with N algorithm predictions using the Ravensdown data. LCM for other land cover 

algorithms are developed and presented in Section 5.4. Spatial regional farm input data is 

developed and presented in Section 5.5. 
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5.2 ALGORITHM FORM 

5.2.1 Pastoral Algorithms 

Equations 5.1 and 5.2 present algorithms for N and P export coefficient generation on 

pastoral land covers based on investigations in Chapter 4. Again, it should be noted, that 

development of the presented P algorithm, beyond a multiple regression approach, was 

carried out by members of the LUCI development team with more extensive expertise in 

this area.   

 

𝑁 𝐸𝑥𝑝𝑜𝑟𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑃𝑎𝑠𝑡𝑜𝑟𝑎𝑙 = 

𝑎1(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛)𝑏1 +  𝑎2(𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 + 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡)𝑏2 + 𝑎3𝑅𝑆𝑈 + 𝑐1 

          Equation 5.1 

 

𝑃 𝐸𝑥𝑝𝑜𝑟𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑃𝑎𝑠𝑡𝑜𝑟𝑎𝑙  = 

[(𝑎1 × 𝑆𝑉 × 𝑆𝑙𝑜𝑝𝑒 × 𝐺𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑂𝑙𝑠𝑒𝑛𝑃 + 𝑎2  × 𝐷𝑅𝑃) × max ([𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 +

𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 − 𝑐1]𝑏1 , 0) + 𝑎3(𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 + 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡)     

          Equation 5.2 

Model constants ax, bx and c for the N algorithm are derived and presented for each soil 

order and all data in Section 5.3 using the Ravensdown dataset. Model constants ax, bx and c 

for the P algorithm were derived separately to this study by other members of the LUCI 

development team, but final parameterised constants are presented here. Structural 

vulnerability (SV), gravimetric Olsen P and DRP, which are required as input to the above P 

algorithm, are all calculated according to the equations and method described in Section 

4.4.  

5.2.2 Other Land Covers 

Equations 5.3 and 5.4 represent algorithms for N and P export coefficient generation on 

other land covers. These are based on the pastoral algorithms presented above with the 

addition of an LCM. Each land cover class identified in the New Zealand LCDB4 is associated 

with an LCM, which is parameterised based on New Zealand export coefficients 
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documented in Chapter 3. The LCM increases or decreases export coefficients derived from 

the pastoral algorithms, to reflect reported differences in nutrient loss between pastoral 

land and the land cover in question. Derivation of LCMs and their allocation to LCDB4 land 

cover classes, is described in Section 5.4.  

 

𝑁 𝐸𝑥𝑝𝑜𝑟𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑂𝑡ℎ𝑒𝑟 = 

(𝑎1(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛)𝑏1 +  𝑎2(𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 + 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡)𝑏2 + 𝑎3𝑅𝑆𝑈 + 𝑐1) ∗  𝐿𝐶𝑀 

          Equation 5.3 

 

𝑃 𝐸𝑥𝑝𝑜𝑟𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑂𝑡ℎ𝑒𝑟 = 

[(𝑎1 × 𝑆𝑉 × 𝑆𝑙𝑜𝑝𝑒 × 𝐺𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑂𝑙𝑠𝑒𝑛𝑃 + 𝑎2  × 𝐷𝑅𝑃) × max ([𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 +

𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 − 𝑐1]𝑏1 , 0) + 𝑎3(𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑒𝑟 + 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡) ∗ 𝐿𝐶𝑀  

          Equation 5.4 

 

5.3 PARAMETERISATION OF PASTORAL N ALGORITHM 

5.3.1 Method 

Constants for the pastoral N algorithm are parameterised for each soil order using MATLAB 

function fmincon, an automatic constrained optimisation technique. This same method was 

used to parameterise the initial multiple regression P algorithm, but is not documented here 

due to replacement of the initial approach with the algorithm presented in Section 5.2.1, 

which was not parameterised by the author of this study.   

The aim of parameter optimisation is to find a set of model parameters that minimise the 

difference between simulated and measured outputs (Smith and Smith 2007). In this case, 

minimisation is sought between simulated N loss from the developed pastoral N algorithm 

and predicted OVERSEER N loss in the Ravensdown dataset. It is assumed here that one 

optimal parameter set exists and is identified. However, it must be acknowledged that a 
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number of potentially suitable parameter sets may exist. This is a commonly cited problem 

associated with environmental modelling (Beven 2009; Beven 2012).       

Specifically, fmincon finds the minimum of a constrained nonlinear multivariable function. 

Here the nonlinear multivariable function is the nonlinear multiple regression algorithm, 

which requires constraint to ensure physically impossible outcomes are not generated e.g. 

negative N losses. A number of iterative optimisation algorithms are available in fmincon. 

Interior point is the default option and sequential quadratic programming (SQP) and active 

set are alternatives. Interior point uses linear algebra that does not store, or operate on, full 

matrices. This reduces storage requirements and processing time, however inaccuracies can 

develop. SQP and active set create full matrices and use dense algebra. Compared to 

interior point, inaccuracies are reduced, but storage and processing times are increased. For 

further information on these optimisation algorithms the reader is directed to Mathworks 

(2017). Here all three algorithms are tested and the results showing the least difference 

when compared to OVERSEER output, are reported.      

Minimisation between simulated N loss from the pastoral algorithms and predicted 

OVERSEER N loss in the Ravensdown dataset is assessed according to an objective function, 

or mathematical measure of fit. Here normalised least squares, also reported as Nash 

Sutcliffe, is used. Normalised least square results can range from 0-∞ and the closer to ‘0’, 

the better the fit. Nash-Sutcliffe results range from -∞-1. A value of 1 indicates a perfect 

model, ‘0’ indicates a model no better than simply using the mean, and negative results 

indicate performance worse than using the mean.    

For each soil order, and all data, regressed N losses from the pastoral algorithms are plotted 

against OVERSEER N losses in the Ravensdown dataset, error in regression result is plotted 

against OVERSEER N losses and frequency distribution of regressed error is graphed. Mean 

error between regressed N losses and OVERSEER N losses are reported, as are lower and 

upper 95% confidence interval boundaries (assuming normal distribution) to indicate 

uncertainty of algorithm predictions. 
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5.3.2 Results 

Nitrogen 

Very similar results are obtained from the three optimisation algorithms available with the 

fmincon MATLAB function. However, active set produces slightly better results for N and are 

reported here. Figure 5.1 features three graphs for each soil order:  

a.) Regressed N is plotted against OVERSEER generated N,  

b.) Regression error (OVERSEER N less regressed N) is plotted against OVERSEER N, 

c.) A histogram of regression error is presented.  

A positive linear trend is seen in graphs a.) for most soil orders, indicating a similar 

magnitude of predicted loss between the developed N algorithm and OVERSEER N results. 

However, variance is evident and most soil orders display under prediction of regressed N at 

higher OVERSEER N values. This is particularly evident for brown, gley, pallic and recent 

soils.  

This trend is also evident in graphs b.). Ideally, regression error should be randomly 

clustered around a horizontal line from ‘0’ on the y-axis. However, for all soil orders a clear 

pattern is seen of regressed N over prediction at lower OVERSEER N values and regressed N 

under prediction at higher OVERSEER N values.   

Histograms of error (c.) show highest frequencies clustered around ‘0’ error for allophanic, 

gley, and ultic soil orders. Histograms of error for brown, granular, melanic, organic, pallic, 

podzol, pumice, recent soil orders and all data show highest frequencies clustered above ‘0’ 

error indicating a large number of small over predictions by the N algorithm. Most soil 

orders display a longer tail of negative values indicating fewer, but larger, under predictions 

by the N algorithm. Histograms of error for oxidic and semi arid soils are difficult to assess 

because they include so few points.    

Table 5.1 largely confirms the distributions seen in Figures 5.1 (c.). Mean error for 

allophanic, gley, and ultic soils are close to ‘0’ and lower and upper 95%  confidence interval 

boundaries indicate less error spread and skewness and therefore, more certainty of 

algorithm predictions. Mean error for brown, granular, melanic, organic, pallic, podzol, 

pumice, recent soil orders and all data are above ‘0’ and lower and upper 95% confidence 
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interval boundaries indicate considerable spread and skewness. Skewness is particularly 

evident on brown, pallic and recent soil orders, which are common New Zealand soils found 

in many farming regions. As such, N loss OVERSEER data likely includes a number of high 

intensity farms. Less certainty around predictions for these soil orders is evident. 

Table 5.2 summarises normalised least squares and Nash-Sutcliffe results generated during 

optimisation and further confirms results from Figure 5.1 and Table 5.1. Normalised least 

square results comparing regressed N and OVERSEER N predictions range from 7.06 to 

26.62. Nash-Sutcliffe results range from -0.01 to -0.58. These results indicate using mean N 

losses would produce ‘better’ results. However, that clearly would also preclude 

representing N loss variance as a function of identified variables that influence N loss. As 

mentioned in Chapter 4, regressed N is unlikely to fully replicate OVERSEER N anyway 

because the underlying algorithm does not include the full complexity of OVERSEER. In 

addition, it is also not clear that OVERSEER results are certain, particularly for climate, soil, 

management combinations where OVERSEER has not been validated. Therefore, the 

parameterised constants generated here are used in the pastoral N algorithm. They are not, 

however, presented here due to commercial sensitivity and privacy concerns with the 

Ravensdown dataset. If required they can be provided on request subject to agreement 

from the dataset owners, Ravensdown.  Future investigation into algorithm improvement is 

always an option. 
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Figure 5.1 Graphs comparing regressed N results and OVERSEER N predictions. For each soil 
order and all data three graphs are presented a.) Regressed N results compared to 
OVERSEER N predictions, b.) Regression error plotted against OVERSEER N, and c.) 
Histograms of regression error (continued over page) 
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Figure 5.1 (continued) Graphs comparing regressed N results and OVERSEER N predictions. 
For each soil order and all data three graphs are presented a.) Regressed N results 
compared to OVERSEER N predictions, b.) Regression error plotted against OVERSEER N, and 
c.) Histograms of regression error  
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Table 5.1 Mean error between regressed N results and OVERSEER N and associated lower 
and upper 95% confidence interval boundaries 

Soil Order Mean Error 
(kg N ha-1yr-1) 

Lower 95% Confidence 
Interval Boundary 

(kg N ha-1yr-1) 

Upper 95% Confidence 
Interval Boundary 

(kg N ha-1yr-1) 

Allophanic 0.32 -0.11 0.76 

Brown 2.39 1.57 3.22 

Gley 0 -0.57 0.57 

Granular 0 -1.76 1.75 

Melanic 0 -0.96 0.95 

Organic 0.35 -0.61 1.31 

Oxidic 0 -3.22 3.22 

Pallic 2.97 2.2 3.75 

Podzol 1.83 -0.67 4.34 

Pumice 0.67 -1.1 2.44 

Recent 1 -0.17 2.16 

Semi Arid 0.48 -2.95 3.92 

Ultic 0.01 -0.86 0.89 

All Data 2.08 1.73 2.44 

 
Table 5.2 Measures of fit (normalised least squares and Nash-Sutcliffe) between regressed N 
results and OVERSEER N, as generated during optimisation using MATLAB function fmincon. 

Soil Order Normalised Least Squares Nash-Sutcliffe 

Allophanic 10.43 -0.27 

Brown 23.66 -0.23 

Gley 12.03 -0.02 

Granular 11.76 -0.06 

Melanic 6.71 -0.01 

Organic 8.24 -0.05 

Oxidic 6.33 -0.01 

Pallic 21.16 -0.03 

Podzol 16.98 -0.42 

Pumice 20.39 -0.58 

Recent 26.62 -0.2 

Semi Arid 7.59 -0.01 

Ultic 7.06 -0.44 

All Data 22.24 -0.23 

 

5.3.3 Discussion 

In Section 5.3.2 pastoral N algorithm constants are parameterised, using the Ravensdown 

pastoral dataset and an automatic optimisation function in MATLAB. In addition, 

parameterised constants for both the N and P algorithms are presented. Here specifics 
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relating to N algorithm parameterisation results are discussed along with wider discussion 

that applies to both N and P algorithms.   

Like all models, the developed algorithms represent simplified versions of reality. In 

addition, although based on and parameterised from OVERSEER data, they represent 

simplified versions of OVERSEER N models. As such, N losses predicted using the developed 

algorithms do not match OVERSEER predicted losses in all cases. While ‘correct’ prediction 

of nutrient losses is an important aim, sparse actual, measured nutrient loss data from the 

full variety of geo-climatic and management conditions is available for comparison. 

Therefore, neither the pastoral algorithms nor OVERSEER predictions can be robustly 

assessed for the myriad of existing climate, soil, topography and management variables, and 

their combinations. However, in the absence of data detailing ‘real’ losses at the variety of 

scales and climate, soil, topographic and management combinations required, aiming to 

replicate OVERSEER losses is likely a good second option. Not only is OVERSEER the most 

widely used nutrient model in New Zealand, but it is also based on New Zealand specific 

research and carries credibility amongst many users.  

N algorithm over- and under-predictions (in relation to OVERSEER predictions) are an 

obvious first focus for algorithm improvement. Investigation of these two groups of data did 

not reveal they are associated with any particular land use, climate, topographic or 

management variables. Blocks with higher OVERSEER predicted losses are likely associated 

with more intensively managed farms. As such, they are more likely to use nutrient inputs 

and management variables that are represented in OVERSEER, but not in the developed 

algorithm e.g. supplemental feed and effluent management variables. Including such 

variables in developed algorithms may improve predictions. To include management 

variables associated with timing and rate of fertiliser and effluent applications may require 

sub-annual consideration of rainfall, irrigation, fertiliser and effluent application. Currently 

all algorithm input variables are total annual values. Inclusion of qualitative variables, such 

as drainage and irrigation type, may also pose challenges.  

Further investigation of alternative algorithm forms may also yield algorithms better able to 

replicate OVERSEER predictions. Soil order specific algorithms, with soil order specific inputs 

and form, may also improve predictions. On a more aspirational level inclusion of more 

detailed soil processes, including soil microbial activity and P biogeochemical cycling, could 
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improve algorithm predictions. This would require much more detailed soil data than is 

currently available and would likely require finer temporal detail than the current annual 

time step. Possibly this level of detail would be difficult to assimilate into catchment scale 

modelling without significantly increasing processing times. Ultimately though, none of 

these suggested improvements to algorithms can be properly assessed until more 

comprehensive data detailing actual losses from a wider variety of New Zealand pastoral 

climate, soil, topography and management types and combinations, is available. Not only 

would this help improve the algorithms presented here, but it would also allow more robust 

verification of OVERSEER predictions.   

Parameterised pastoral N and P algorithms presented here likely represent an improved 

method of export coefficient derivation because they enable calculation of site specific 

export coefficients for a wide variety of geo-climatic and management variables. Certainly 

improving predictions from the developed algorithms is always a future focus. However, this 

may mean increasing algorithm complexity, and maintaining a simpler algorithm structure in 

the face of data scarcity is advocated by some environmental modellers (Beven 2009). In 

addition, due to a lack of alternative comparative data, predictions can largely only be 

assessed against OVERSEER predictions, which are also subject to some uncertainty. 

Therefore, the algorithms presented here represent those now applied in LUCI water quality 

models. They are further evaluated, at catchment scale, in Chapter 7.  

5.4 PARAMETERISATION OF LAND COVER MULTIPLIERS (LCM)  

5.4.1 Method 

Here a LCM is allocated to every land cover category in LCDB4, except high producing 

grassland, based on N and P losses reported in Section 3.4. The mean of reported N or P loss 

is calculated for 11 land covers (urban, short-rotation crop, perennial crop, low producing 

grassland, indigenous forest, scrub, exotic forest-non harvested, exotic forest–harvested, 

and exotic forest-deciduous). LCM, presented for 10 land covers (high producing grassland is 

excluded), represent the ratio between mean nutrient losses from the land cover in 

question and high producing grassland. Multipliers less than 1 indicate land cover losses are 

generally less than high producing pasture. Multipliers greater than 1 indicate land cover 

losses are higher than high producing pasture. An attempt to further define multipliers 
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within land cover categories according to site and management variables was investigated, 

but in all cases insufficient data was available.  

An LCM for N and for P is allocated to all LCDB4 land cover classes, except high producing 

grassland, based on the closest equivalent amongst the 10 broad land covers that feature 

LCM. Land cover classes with no expected N or P losses are given a LCM of 0.   

5.4.2 Results 

Average N and P losses, derived from reported losses featured in Section 3.4, are reported 

in Table 5.3 for each of the 11 broad land cover categories. These average losses are used to 

calculate N and P LCM, which are also reported in Table 5.3 for all land covers except high 

producing grassland. Table 5.4 reports LCM allocated to each LCDB4 land cover class.  

 

Table 5.3 Average N and P losses, derived from reported losses featured in Section 3.4, and 
N and P LCM for 10 land cover categories, calculated from average N and P losses.  

Land Cover Average N Loss  
(kg N/ha/yr) 

Average P Loss 
(kg P/ha/yr)  

N LCM P LCM 

Urban 6.8 1 0.36 0.83 
 

Short-rotation Crop 71.9 0.85 3.78 0.71 

Perennial Crop 6.5 0.25 0.34 0.21 
 

Low Producing 
Grassland 

5.8 0.3 0.31 0.25 

Indigenous Forest 2.8 0.4 0.15 0.33 

Scrub 6 0.7 0.32 0.58 
 

Exotic Forest-Non 
harvested 

1.6  0.02 0.08 0.02 

Exotic Forest-Harvested 1.2 2.2 0.06 1.83 

Exotic Forest-
Deciduous 

2.4 0.3 0.13 0.25 

High Producing 
Grassland 

19 1.2   
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Table 5.4 N and P LCM allocated to all LCDB4 land covers except high producing grassland 

LCDB4 Land 
Cover Code 

LCDB4 Land Cover Name N LCM P LCM 

1 Built-up Area 0.36 0.83 

2 Urban Parkland/Open Space 0.36 0.83 

5 Transport Infrastructure 0 0 

6 Surface Mine or Dump 0 0 

10 Sand or Gravel 0 0 

12 Landslide 0 0 

14 Permanent Snow & Ice 0 0 

16 Gravel or Rock 0 0 

15 Alpine Grass/Herbfield 0 0 

20 Lake or Pond 0 0 

21 River 0 0 

22 Estuarine Open Water 0 0 

30 Short-rotation Cropland 3.78 0.71 

33 Orchards, Vineyards or Other Perennial Crops 0.34 0.21 

41 Low Producing Grassland 0.31 0.25 

43 Tall Tussock Grassland 0.31 0.25 

44 Depleted Grassland 0.31 0.25 

45 Herbaceous Freshwater Vegetation 0 0 

46 Herbaceous Saline Vegetation 0 0 

47 Flaxland 0.32 0.58 

50 Fernland 0.32 0.58 

51 Gorse and/or Broom 0.32 0.58 

52 Manuka and/or Kanuka 0.32 0.58 

54 Broadleaved Indigenous Hardwoods 0.15 0.33 

55 Sub Alpine Shrubland 0 0 

56 Mixed Exotic Shrubland 0.32 0.58 

58 Matagouri or Grey Scrub 0.32 0.58 

70 Mangrove 0 0 

64 Forest-Harvested 0.06 1.83 

68 Deciduous Hardwoods 0.13 0.25 

69 Indigenous Forest 0.15 0.33 

71 Exotic Forest 0.08 0.02 
 

Results in Table 5.3 indicate average N losses from all land cover except short-rotation crops 

are lower than average N losses from high producing grassland, with LCM ranging from 0.06 

for exotic harvested forest to 0.36 from urban land cover. Average N losses from short-

rotation crops are higher than average N losses from high producing grassland, with an LCM 

of 3.78. A number of variables could contribute to higher losses from short-rotation crops 

e.g. High fertiliser and irrigation use, and periods of fallow without plant uptake.   
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For P, results indicate average losses from all land covers except harvested exotic forest are 

lower than average losses from high producing grassland, with LCM ranging from 0.02 for 

non-harvested exotic forest to 0.83 for urban land cover. Average P losses from harvested 

exotic forest are higher than those from high producing grassland, with an LCM of 1.83. 

Again, this is not surprising given P loss is often associated with sediment movement and 

exotic plantation forest in New Zealand is frequently situated on steeper topography.  

5.4.3 Discussion 

Ideally an algorithmic export coefficient approach, similar to that developed and 

parameterised for pastoral land covers, is desired for other land covers. However, due to a 

lack of suitable data, this is not possible. Instead, an alternative approach is developed here 

based on the pastoral algorithms reported in Section 5.2.1 with the addition of a LCM.  

Using pastoral algorithms as a base for deriving other land cover export coefficients ensures 

important N and P loss variables are accounted for. The LCM increases or decreases pastoral 

algorithm output to reflect literature reported differences in nutrient loss between pastoral 

land cover and the land cover in question.  

Although the general order of LCM above and below 1 and compared to high producing 

grassland, is expected, it is difficult to assess the absolute accuracy of the LCM developed 

here. LCMs for land covers with more nutrient export literature available are possibly more 

accurate e.g. indigenous forest, exotic forest and high producing grassland. Although it is 

clear, even in these cases, a limited range of climate, soil, topography and management 

variables and variable combinations are represented. For land covers with little available 

nutrient loss literature, accuracy is even less certain. This is particularly the case for urban, 

low producing grassland and scrub land covers. In addition, as discussed in Section 3.4, 

comparative scale issues exist. For example, reported losses from crops are largely based on 

point scale leaching losses only. The majority of reported losses from high producing 

grassland are based on small catchment scale losses and include a wider range of loss 

pathways and more attenuation processes. This may result in a calculated LCM for crops 

that is higher than it should be. 

Comparing LCM recorded in Table 5.3 with LCM derived from mid-point N and P losses from 

international export coefficient data (reported in Table 2.1) shows particular differences for 
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urban land cover. International data suggests urban losses for N and P are approximately 

double intensive pasture losses. This further illustrates the inadequacy of measured urban 

losses for New Zealand as discussed in Section 3.4.  

Clearly LCM could be improved with more evidential data around all land covers and ideally 

this would include a range of climate, soil, topography and management variables and 

variable combinations measured either at a range of scales or at comparable scales. 

Ultimately though the aim is development of an algorithmic approach based on an extensive 

database similar in scope to the Ravensdown dataset. Certainly the full Ravensdown dataset 

includes crop and fodder crop data, which could be used to develop crop algorithms. It is 

also possible that modelled or measured data relating to both agricultural and forested land 

covers is held in New Zealand research institutes, but at this stage no such data has been 

found or made available to LUCI developers.  

5.5 REGIONAL SCALE INPUTS TO N AND P PASTORAL ALGORITHMS  

5.5.1 Method 

Where the developed N and P loss models are applied at farm to small catchment scale, 

actual farm information from OVERSEER files may be available as model input. For 

applications where actual farm data is not available, alternative input must be used. In 

addition, input to the pastoral algorithms is required for other land covers. Therefore, in this 

section regional scale model inputs are developed for 17 New Zealand climate regions 

(Figure 5.3) based on characteristics of high producing pastoral land cover in each region.  

In ArcGIS regional masks of high producing grassland are extracted from LCDB4. These are 

used to extract annual mean rainfall data for regional high producing grassland from NIWA’s 

rainfall surface. Summary statistics based on extracted data are generated and the mean of 

annual mean rainfall for each region is used as rainfall input. 

Regional mean irrigation depth, fertiliser N and P inputs, effluent N and P inputs and 

stocking rate are derived from the Ravensdown dataset. Olsen P is set to 25 for all regions. 

This is generally considered optimal Olsen P, but it is acknowledged that, like other regional 

inputs developed here, there will be variability. 
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Figure 5.3 New Zealand climate regions, based on OVERSEER developed climate regions.  

5.5.2 Results 

Regional average rainfall, irrigation, fertiliser N, effluent N, RSU, fertiliser P, effluent P, and 

Olsen P are presented in Table 5.5. Regional mean average rainfall on high producing 

grassland ranges from 695.6 mm yr-1 in Otago to 3073.4 mm yr-1 on the South Island’s West 

Coast. Regional annual average irrigation depth on high producing grassland ranges from 2.5 

mm yr-1 in Coromandel to 352.9 mm yr-1 in Canterbury. Regional annual fertiliser N 

application on high producing grassland ranges from 99.6 kg N ha-1 yr-1 in the South Island’s 

high country to 160.6 kg N ha-1 yr-1 in Nelson. Regional annual effluent N application on high 

producing grassland ranges from 19.9 kg N ha-1 yr-1 in the South Island’s high country to 31.8 

kg N ha-1 yr-1 in Canterbury. Regional annual fertiliser P application on high producing 

grassland ranges from 14 kg P ha-1 yr-1 in the South Island’s high country to 35.2 kg P ha-1 yr-1 

in Taranaki. Regional annual effluent P application on high producing grassland ranges from 

7 kg P ha-1 yr-1 in the South Island’s high country to 17.6 kg P ha-1 yr-1 in Taranaki. Regional 

average stocking rate on high producing grassland ranges from 12.2 RSU in Northland to 

21.6 RSU in Canterbury. .  
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Table 5.5 Regional default input values, developed as described in the text and used in the developed export coefficient N and P models where 
no farm specific data is available.  

Region Rainfall 
(mm yr-1) 

Irrigation 
(mm yr-1) 

N Fertiliser 
(kg N ha-1 yr-1) 

N Effluent 
(kg N ha-1 yr-1) 

P Fertiliser 
(kg P ha-1 yr-1) 

P Effluent 
(kg P ha-1 yr-1) 

Stocking 
Rate 
(RSU) 

Olsen P 

Auckland 1441.5 9.8 134.8 27 20 10 15.8 25 

Bay of Plenty 1697.8 12.7 154.1 30.8 25.8 12.9 19.4 25 

Canterbury 729.6 352.9 159 31.8 18.3 9.2 21.6 25 

Central Plateau 1489.6 13.1 135.4 27.1 23.7 11.9 17.2 25 

East Coast North Is 1273 48.6 109.5 21.9 18.7 9.4 16.9 25 

High Country 884.3 154.8 99.6 19.9 14 7 16.9 25 

King Country 1296.9 11.9 111.2 22.2 23.2 11.6 16.1 25 

Manawatu 1020.6 79.4 134.3 26.9 18.9 9.4 15.8 25 

Marlborough 966.6 91.1 147.4 29.5 17.9 8.9 20 25 

Nelson 1750.4 46.5 160.6 32.1 23 11.5 16.1 25 

Northland 1483.9 12.1 112.4 22.5 18.8 9.4 12.2 25 

Otago 695.6 69.1 136.7 27.3 18 9 16.9 25 

Southland 1039.9 10.5 154.1 30.8 22.9 11.4 18.9 25 

Taranaki 1721.7 7.6 157.4 31.5 35.2 17.6 18.4 25 

Waikato Coromandel 1503.4 2.5 142.2 28.4 28.1 14 17.8 25 

Wellington 1345 32.3 130.4 26.1 18.5 9.3 12.9 25 

West Coast South Is 3073.4 7.4 136.8 27.4 20.2 10.1 18.1 25 
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5.5.3 Discussion 

As previously mentioned, it is difficult to assess the accuracy of developed regional inputs. It 

is acknowledged using the Ravensdown dataset to derive farm inputs may skew average 

regional inputs toward higher values because it likely features more intensive land uses. As 

an example, total national fertiliser application reported by Statistics NZ (2012) and divided 

by total hectares of high producing grassland from LCDB4 indicates approximately 9.4 kg N 

ha-1 yr-1 and 13.6 kg P ha-1 yr-1 is applied on average. Clearly, these figures are lower than 

those reported in Table 5.4, particularly for N. However, it should also be noted that only a 

select number of the most popular fertilisers are featured in Statistics NZ data and figures 

are farmer-reported. As such, they rely on farmers keeping and reporting accurate records 

of fertiliser applications. Comparison between the regional fertiliser inputs reported above 

for Manawatu and actual fertiliser applications to the Tuapaka catchment in Manawatu, 

which is largely a lower intensity cattle and sheep enterprise, indicates regional averages are 

reasonably appropriate for use in this catchment. 

Spatial land use, rather than land cover, data would enable more management specific 

inputs to be linked to specific farm types. This would somewhat overcome the skew towards 

more intensive farm types. Again, investigation of either using spatial land use data or 

developing a method of elucidating likely ‘land use’, is an avenue for future improvement. 

However, a single set of regional inputs would still be required as input to other land cover 

algorithms  

5.6 SUMMARY 

N and P export coefficient algorithms for pastoral land cover presented in this chapter 

represent a new method of calculating site specific export coefficients that account for 

important geo-climatic and land management variables. Comparison of N algorithm 

predictions with OVERSEER predictions indicates improvements to algorithm predictive 

ability could be made, particularly for more intensively managed farms. However, 

predictions from the algorithms developed here and OVERSEER cannot be robustly 

evaluated due to insufficient measured nutrient losses from New Zealand pasture featuring 

the full variety of geo-climatic and land management variables.  
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For other land covers, use of the pastoral algorithms in combination with LCM allows 

important nutrient loss variables to be accounted for, where they otherwise couldn’t be. 

Ideally however, data specific to the variety of land covers found in LCDB4, from which land 

cover specific algorithms could be developed, would represent a real step forward. No 

adequate data has been located to-date, but it is possible some exists, particularly for 

forested land cover, which is one of the more researched New Zealand land covers.  

Spatial data featuring regional averages of pastoral algorithm inputs has been developed to 

facilitate application of the algorithms for pasture, where OVERSEER data is not available, 

and for other land covers. The ability to spatially identify pastoral land uses would allow 

land use specific regional input averages to be used. This would better account for a range 

of farm types and intensities. However, a suitable input dataset would still be required for 

use in other land cover algorithms.   

Further work refining the algorithms and input data presented here is desired. However, 

application of the presented algorithms at catchment scale, already represents a conceptual 

improvement to the export coefficient approach, even if absolute nutrient loss values are 

not ‘correct’. Chapter 7 further investigates algorithm performance at catchment scale using 

LUCI water quality models in two New Zealand catchments.    
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6 INVESTIGATE AND PARAMETERISE FIVE IDENTIFIED NITROGEN 

AND PHOSPHORUS MITIGATION OPTIONS FOR USE IN LUCI 

 

 

6.1 INTRODUCTION 

Assessing the likely effect of mitigation strategies to facilitate decision making, is an 

important objective of LUCI water quality models, particularly the versions developed for 

use by Ravensdown. In this chapter literature relating to five on-farm mitigation strategies is 

reviewed, investigated, and where possible effects are quantified. This data will be used by 

the wider LUCI development team to further develop and parameterise mitigation 

strategies that feature as options in LUCI water quality models.  

Mitigation strategies target either nutrient sources or hydrological pathways carrying 

nutrients to waterbodies (McKergow et al. 2007). It is generally recommended a dual 

approach is taken, targeting both sources and hydrological pathways (Downes et al. 1997).  

This study investigates three source based mitigation strategies and two hydrological 

pathway strategies. These five strategies are identified as of particular interest to 

Ravensdown and they include: 

1. Reduced and strategic fertiliser application (Section 6.2) 

2. Reduced and strategic effluent application (Section 6.3) 

3. Reduced stocking rate (Section 6.4) 

4. Wetland and riparian margin development and management (Section 6.5) 

5. Sediment traps (Section 6.6) 

Challenges to Quantifying Mitigation Effects for New Zealand Farms 

For a number of reasons, quantification of the effects of mitigations for New Zealand is 

challenging. As found in previous chapters, lack of data is a constraint. While literature 

describing mitigations is widespread, literature quantifying effectiveness is not as 

ubiquitous, particularly over a variety of soil orders, topography, climate conditions, and 

management variables.  
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A second challenge relates to farm system complexity. Farms comprise a number of 

interacting biological and non-biological components, which impact on nutrient 

management, and changes in one component can affect one or more other components 

(Rotz et al. 2005). For example, a reduction in fertiliser application reduces available feed, 

which requires either a reduction in stocking rate or an increase in supplemental feed, and if 

stocking rate is reduced, effluent is reduced. Wetland and riparian development and 

sediment traps can also impact on farm systems by taking land out of production, resulting 

in lower stock carrying capacity. Clearly, these interconnections must be considered in LUCI 

and the impact of changes to one component must be propagated through to other affected 

components to ensure realistic mitigation scenarios are modelled. However, direct effects 

of a component change versus inter-relational effects between farm components are not 

necessarily easy to isolate and not always elucidated in mitigation related literature.  

A final point relates to quantification of economic costs and benefits related to mitigations. 

In New Zealand nutrient mitigations employed at farm scale are paid for by the enterprise 

and little, if any, compensatory funding is available. As a result the economics of mitigations 

at enterprise scale is a key concern for land owners (Monaghan et al. 2007a). LUCI currently 

does not consider economics, thus quantification of mitigation costs is not considered here. 

McDowell et al. (2013) review a range of nutrient mitigation strategies for New Zealand and 

compare relative costs and effectiveness. 

6.2 FERTILISER MITIGATIONS 

Fertiliser inputs are important to maintain or increase agricultural production and it is 

estimated that 40-60% of current global crop production is attributable to fertiliser 

applications (Johnston and Bruulsema 2014; Bindraban et al. 2015). However, fertiliser 

application is also identified as a major contributor to diffuse water pollution and must be 

carefully managed (Rotz et al. 2005; Cherry et al. 2008). 

New Zealand agriculture has traditionally focused on pastoral farming. Under this regime 

pastures are planted with a mixed clover/grass cover and lime, P, K, S and Mg fertiliser 

applied to stimulate clover growth and thereby N-fixation (Haynes and Williams 1993). 

However, over the last 2-3 decades New Zealand pastoral agriculture has diversified and 
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intensified and a wider variety of fertiliser types and nutrient contents are now used 

(MacLeod and Moller 2006).  

Magnitude of nutrient inputs, including fertiliser, is a key driver of nutrient losses (Rotz et al. 

2005; Monaghan et al. 2007a). Fertiliser associated nutrient losses are often categorised as 

direct or indirect. Direct loss to water refers to leaching or runoff losses directly from 

fertiliser after application. In a pasture system, indirect loss results from increased pasture 

production, which is eaten and excreted by pasture animals, with nutrients lost from excreta 

(Haynes and Williams 1993; Shepherd and Lucci 2011; Cameron et al. 2013). Direct fertiliser 

losses can generally be controlled through the use of good fertiliser management practices. 

Indirect losses are more challenging to address and require consideration of the whole farm 

system (Shepherd and Lucci 2011). Quantification of direct vs indirect losses would be of use 

for parameterisation of fertiliser related mitigation in LUCI. Where possible this is 

quantified, however explicit differentiation between direct and indirect losses is not always 

elucidated in the literature.  

Literature documenting good fertiliser management practices often refers to the 4R 

Nutrient Stewardship framework (Figure 6.1) of Right amount, Right source, Right time and 

Right place (Roberts 2007; Johnston and Bruulsema 2014). The Fertiliser Association of New 

Zealand also broadly follow this framework. However, they use the acronym CRAFT to 

highlight factors for consideration, which stands for Choice of fertiliser product, Rate of 

application, Application technique, Frequency of application, and Timing of application. 

Here fertiliser related mitigations are discussed under four broad headings - amount, source 

or type, timing and place, with a focus on pastoral land covers.  

Figure 6.1 4R Nutrient Stewardship concept (Sharpley 2016). 
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6.2.1 Amount: The Effects of Variable Fertiliser Applications 

Nitrogen 

Indirect loss of fertiliser N to water via excreta, particularly N leaching of urine, is considered 

to be the main concern from grazed pastures (Haynes and Williams 1993; Di and Cameron 

2002a; Monaghan et al. 2007a; Monaghan et al. 2008; Cameron et al. 2013). However, as 

stated previously, direct losses of fertiliser N can occur if good management practice is not 

followed. Here studies investigating N leaching losses reported as annual specific load at a 

range of fertiliser application rates are investigated and summarised in Table 6.1. The 

majority of these studies do not differentiate between direct and indirect N losses and Table 

6.1 reports total losses, whether direct or indirect.  However, Ledgard et al. (1999) estimate 

direct leaching losses from pasture fertilised with >400 kg N ha-1 yr-1 at approximately 10% 

and Shepherd and Lucci (2011) and Puha et al. (2008) note that direct losses of 30-50% of N 

applied in winter can occur. An additional complication with the literature investigated is 

the variety of other variables present between the studies e.g. rainfall, soil order, and stock 

type and rate. As is clear from earlier chapters, these factors are influential N loss variables.      

Nitrate leaching loss under no fertiliser ranges from 5.8-74 kg N ha-1 yr-1 with a mean of 28.3 

kg N ha-1 yr-1 (Table 6.1). Under fertilised fields 12-204 kg N ha-1 yr-1 is leached with a mean 

of 79 kg N ha-1 yr-1. Figure 6.2 shows annual nitrate leached as a function of annual fertiliser 

N applied with a linear r2 value of 0.5304. This indicates a moderate positive trend of 

increasing nitrate leaching with increasing annual N fertiliser applications and implies a 

reduction in N fertiliser application will likely reduce N leaching.  

However, variability is evident. For example, even with no fertiliser application losses are up 

to 74 kg N ha-1 yr-1 and with fertiliser applications of 400 kg N ha-1 yr-1 losses can be as low 

as 41.1 kg N ha-1 yr-1. In the case of these two examples, likely contributing factors include 

soil order, rainfall, and stock type. This highlights how differences in geo-climatic variables 

and the farm system influence losses and these factors must be considered in mitigation 

tools. It is also clear from the data only a limited range of factors is included e.g. only three 

soil orders and this will hamper parameterisation.  
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Table 6.1 Summary of N losses, reported as annual specific load, from New Zealand studies of variable N fertiliser application 

Fertiliser 

Application 

(kg N ha-1 yr-1) 

N Losses 

(kg NO3
--N 

ha-1 yr-1) 

Land Use Land Cover Rainfall 

(mm yr-1) 

Soil Order Stocking Rate Notes Reference 

0 5.8  Sheep Grass-clover 974 Recent 23 su/ha Split fertiliser application 

Soil solution concentration from 

soil cores. 

Note variable land covers and 

stocking rates as well as fertiliser 

 

 

Ruz-Jerez et al. 

(1995) 

0 7.3 Sheep Herbal ley 

incl legumes 

974 Recent 27 su/ha 

400 

 

41.1 Sheep Grass only 974 Recent 33 su/ha 

40 (Yr 1) 

 

12 Dairy Grass-clover 1200 Allophanic 3.8 cows/ha  

 

 

Split fertiliser application of 17-50 

kg N/ha/app 

Ceramic cup leachate samplers  

Note variable land covers 

 

 

 

 

 

Sprosen et al. 

(1997) 

42 (Yr 2) 23 Dairy Grass-clover 1200 Allophanic 3.8 cows/ha 

0 (Yr 3) 36 Dairy Grass-clover 1200 Allophanic 3.8 cows/ha 

200 (Yr 1) 24 Dairy Grass only 1200 Allophanic 3.8 cows/ha 

157 (Yr 2) 12 Dairy Grass only 1200 Allophanic 3.8 cows/ha 

165 (Yr 3) 39 Dairy Grass only 1200 Allophanic 3.8 cows/ha 

0 74 Dairy Grass-clover 1033 Allophanic  3.3 cows/ha  

 

 

Split fertiliser application of 22-45 

kg N/ha/app 

Ceramic cup leachate samplers  

Note variable land covers 

 

 

 

Ledgard et al. 

(1999) 

0 20 Dairy Grass-clover 1411 Allophanic 3.3 cows/ha 

0 25 Dairy Grass-clover 1421 Allophanic 3.3 cows/ha 

225 101 Dairy Grass-clover 1033 Allophanic 3.3 cows/ha 

210 78 Dairy Grass-clover 1411 Allophanic 3.3 cows/ha 

210 59 Dairy Grass-clover 1421 Allophanic 3.3 cows/ha 

360 204 Dairy Grass-clover 1033 Allophanic 3.3 cows/ha 



152 
 

430 146 Dairy Grass-clover 1411 Allophanic 3.3 cows/ha 

450 100 Dairy Grass-clover 1421 Allophanic 3.3 cows/ha 

360 147 Dairy Grass-clover 1033 Allophanic 4.4 cows/ha 

422 137 Dairy Grass-clover 1411 Allophanic 4.4 cows/ha 

450 116 Dairy Grass-clover 1421 Allophanic 4.4 cows/ha 

0 30 Dairy Grass-clover 1000 Pallic 2-4 cows/ha  

Split fertiliser application of 50 kg 

N/ha/app 

Isolated plots with drainage 

directed to a collection station 

 

 

Monaghan et al. 

(2000); 

Monaghan et al. 

(2005) 

100 34 Dairy Grass-clover 1000 Pallic 2-4 cows/ha 

200 46 Dairy Grass-clover 1000 Pallic 2-5 cows/ha 

400 56 Dairy Grass-clover 1000 Pallic 3-5 cows/ha 

0 24 Sheep & 

Beef 

Grass-clover 1026 Pallic   

Annual fertiliser application in Aug 

Lysimeter  

 

Crofoot et al. 

(2010) 60 40 Sheep & 

Beef 

Grass-clover 1026 Pallic  

120 79 Sheep & 

Beef 

Grass-clover 1026 Pallic  
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Figure 6.2 Graph showing annual nitrate leaching (including direct and indirect losses) as a 
function of annual fertiliser N applied  

Phosphorus 

Few individual New Zealand studies detail the effects of variable P fertiliser application on P 

losses. Table 6.2 summarises measured annual P loss from pasture reported by Sharpley and 

Syers (1979). Under no fertiliser application 0.85-1.28 kg TP ha-1 yr-1 is lost and P fertilised 

losses range from 0.11-6.22 kg TP ha-1 yr-1. Clearly, there is little range in amount of fertiliser 

applied and at applied fertiliser of 50 kg P ha-1 yr-1 there is considerable variability of loss. 

The highest two loss measurements are from higher annual rainfall areas, but other 

variables could contribute e.g. stocking rates or Olsen P may be variable. Unfortunately 

these specifics are not elucidated.  

Table 6.3 summarises P concentration in “overland flow” generated from simulated rainfall 

on intact soil turf in a plywood overland flow box from McDowell et al. (2003). Here mean 

concentrations are shown for each fertiliser regime. Figure 6.3a shows P loss as a function of 

P fertiliser applications. This indicates P concentration of runoff generally increases with 

increasing P fertiliser applications, although the relationship is not strong with an r2 value of 

0.3761 and caution must be applied given the very low number of data points. Figure 6.3b 

shows P loss as a function of initial Olsen P values. This indicates initial Olsen P is a clear 

contributing factor, although the low number of data points must be noted. In addition, 

fertiliser solubility appears to influence losses with lower concentration from less soluble 
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reactive phosphate rock (RPR) than superphosphate at the same rate of application and 

similar Olsen P. (Although this observation is only based on one RPR sample). The clear 

influence of Olsen P, mirrors the influence of soil variables such as Olsen P and P retention, 

seen in Sections 4.3 and 4.4. Again, the influence of geo-climatic variables and the farm 

system on P losses should be considered in mitigation tools and a limited range of factors is 

featured here.  

As for N, the issue of direct versus indirect losses from fertiliser application exists. Direct 

losses of P from fertiliser occur where P fertiliser application coincides with a rainfall event 

and direct loss decreases exponentially with time (McDowell et al. 2003; Hart et al. 2004; 

McDowell and Catto 2005).  Approximately 100 days after fertiliser application P 

concentrations in runoff will likely be similar to that before fertilisation (McDowell et al. 

2003). McDowell and Catto (2005) indicate direct P loss from a winter application of 30 kg P 

ha-1 of superphosphate equates to approximately 1% of the initial application. Direct loss of 

P fertiliser can largely be controlled by timing applications to increase the period between 

application and the next rainfall event. In addition, the risk of direct losses can be estimated 

by fertiliser solubility as presented in McDowell and Catto (2005). 
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Table 6.2 Summary of P losses, reported as annual specific load, with variable P fertiliser application 

Fertiliser 

Application 

(kg P ha-1 yr-1) 

TP Losses  

(kg P ha-1 yr-1) 

Land Use Land Cover Rainfall 

(mm yr-1) 

Soil Order Notes Reference 

0 0.85  Ungrazed Pasture 970 Pallic  

 

Surface and tile drain 

runoff collected 

manually 

 

 

 

 

Sharpley and 

Syers (1979) 

 

 

 

 

0 1.28 Ungrazed Pasture 1170 Pallic 

0 0.87  Ungrazed Pasture 910 Pallic 

50 3.67 Dairy Pasture 970 Pallic 

50 5.63 Dairy Pasture 1170 Pallic 

50 3.77 Dairy Pasture 910 Pallic 

50 1.48  Dairy Pasture 970 Pallic 

50 6.22 Dairy Pasture 1170 Pallic 

50 0.52 Dairy Pasture 910 Pallic 

Table 6.3 Summary of P losses, reported as concentration, from New Zealand studies of variable P fertiliser application (SP=superphosphate, 
RPR=Reactive Phosphate Rock) 

Fertiliser 

Application 

(kg P ha-1 yr-1) 

Average P 

Concentration 

(mg L-1) 

Land Cover Rainfall 

(mm yr-1) 

Soil Order Initial Olsen P  

(mg kg-1) 

Notes Reference 

0 0.214  Pasture Simulated – 5 events Brown 5.8  

Intact soil turf 

(1050x2000mm) 

 

McDowell et al. 

(2003) 

18 (SP) 1.002  Pasture Simulated – 5 events Brown 18.5 

23 (SP) 1.119  Pasture Simulated – 5 events Brown 20.3 

23 (RPR) 0.302  Pasture Simulated – 5 events  Brown 18.8 

37 (SP) 1.886  Pasture Simulated – 5 events  Brown 53 
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Figure 6.3a P concentration in overland flow as a function of annual fertiliser P applied 
and 6.3b P concentration in overland flow as a function of initial soil Olsen P  

 

Plant Requirements and Nutrient Soil Reserves 

Both crop nutrient requirements and soil reserves are important considerations in 

decisions around fertiliser applications and, as highlighted previously, soil P reserves 

particularly influence P losses.  Ideally just enough nutrient should be provided to result 

in optimum growth response and minimum loss to the environment. 

Plant requirements are determined by growth stage and desired yield. The Fertiliser 

Association of New Zealand (2013) recommend lower rates of N fertiliser are applied 

more frequently to match crop or pasture growth and soil moisture conditions. For 

pasture, if more than 200 kg N ha-1 of fertiliser is required, it should be applied in split 

dressings of 50 kg N ha-1 and if more than 100 kg P ha-1 of fertiliser is required, it should 

be applied in split dressings.   

All soils have a P fixation capacity relating to soil type and current soil P reserves and in 

New Zealand soil P retention and Olsen P are routinely considered when determining 

fertiliser requirements (McLaren and Cameron 1996; FLRC 2015). Three classes of P 

retention (also known as anion storage capacity) are commonly referred to in New 

Zealand agronomic literature – low (0-30%), medium (31-85%) and high (86-100%) 

(McLaren and Cameron 1996; FLRC 2015). Table 6.4 relates these classes to NZSC soil 

orders.  
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Table 6.4 NZSC soil orders in relation to P retention classes. Note – Gley soils have 
variable P retention(McLaren and Cameron 1996) 

P Retention Class Low Medium-High High 

NZSC Soil Orders Organic 
Pallic 

Podzol 
Semi Arid 

Recent 
Raw 
Ultic 

Brown 
Pumice 
Oxidic 

Melanic 

Allophanic 
Granular 

 

In soils with high P retention, higher rates of fertiliser application are required to 

increase readily available P because a higher proportion of fertiliser P will be adsorbed 

by the soil (FLRC 2015). Table 6.5 indicates how much extra fertiliser above maintenance 

requirements (ie. fertiliser required to maintain the same soil reserves after inputs and 

outputs) is needed to lift Olsen P by one unit for three soil parent material types.  

Table 6.5 Amount of additional nutrient required per hectare to raise Olsen P test by one 
unit (FLRC 2015). 

 Soil Parent Material 

Soil Test Sedimentary Ash Pumice 

Olsen P 4-7 kg P ha-1 7-18 kg P ha-1 4-15 kg P ha-1 

 

Soil N tests are not routinely used in New Zealand. By comparison to P, N pools and 

transformations occur frequently so N quickly fluctuates (Groffman and Rosi-Marshall 

2012). This makes testing of limited use as field conditions can change before results are 

received. Additionally, sample N transformations can occur en-route to the lab if not 

appropriately stored and quickly transported (McLaren and Cameron 1996; Hill 

Laboratories 2016). However, recent work by Curtin et al. (2017) has identified a soil N 

test that can be used to predict N supply potential for a range of New Zealand soil types 

and land uses and they are advocating its use.       

6.2.2 Fertiliser Type 

The most widely applied fertilisers in New Zealand are urea, ammonium sulphate, 

diammonium phosphate (DAP), superphosphate, and potassic superphosphate (McLaren 
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and Cameron 1996; Fleming 2003; Statistics NZ 2012).  Although many other fertilisers 

are also available (Ballance Agri-nutrients 2016; Ravensdown 2016).  

Fertiliser elemental N and P content and solubility are important considerations in terms 

of nutrient losses to water and these details are provided by fertiliser suppliers. Higher 

elemental nutrient application is broadly related to higher losses. More soluble 

fertilisers also present an increased export risk. N fertilisers may be soluble, such as 

urea, or controlled release, which consist of coated soluble fertilisers. The coating 

temporarily prevents the release of N into the soil, potentially enabling better control 

over N release and better coordination of N release with N plant demand (Edmeades 

2015). P fertiliser may be water soluble e.g. superphosphate, less water soluble e.g. 

dicalcic superphosphate or slow release e.g. rock phosphate (RPR). As stated above, 

McDowell and Catto (2005) found the risk of direct P loss can be estimated by fertiliser 

solubility. P loss directly after fertilisation largely comprises of dissolved reactive P (DRP) 

and fertiliser solubility is closely related to DRP concentrations at this time (McDowell 

and Catto 2005).  

6.2.3 Timing and Placement 

Timing of fertiliser applications must consider plant growth stage and nutrient 

requirements, and future rainfall or irrigation events (Fertiliser Association of New 

Zealand 2013). Both N and P fertiliser applications should be timed to avoid near future 

rainfall or irrigation events resulting in drainage or runoff and areas of already wet soil 

should be avoided (McDowell and Catto 2005; Monaghan et al. 2009; Fertiliser 

Association of New Zealand 2013; FLRC 2015).  

Technological advances are aiding fertiliser placement. For example, detailed mapping 

of farms and crop requirements allows precise fertiliser targeting and placement where 

it is needed (Betteridge et al. 2008; Wilson 2015). Such maps also allow aerial broadcast 

methods of spreading that avoid areas where fertiliser is not required or desired, such as 

waterbodies (Chok et al. 2016). Placement of fertiliser in the soil, close to seeds or 

plants, rather than on the soil can decrease nutrient losses (McLaren and Cameron 

1996).  Time and cost involved with using some of these techniques can be a barrier to 
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uptake, but this is changing as technologies become cheaper and pressures increase to 

consider the environmental impact of fertiliser use (Betteridge et al. 2008; Wilson 2015).    

In summary, studies investigating the effects of variable fertiliser application of N and P 

broadly indicate magnitude of fertiliser inputs influences the amount of nutrient lost. 

However, this relationship is complicated by the influence of geo-climatic and 

management factors and interrelationships between farm components. Teasing out the 

individual effects and relationships of these variables is not easy, especially with only 

limited data.  

Without changing the whole farm system, direct fertiliser losses are best targeted. This 

can be done by using fertiliser best management practices, such as those advocated by 

the Fertiliser Association of New Zealand (2013) and summarised above. 

6.3 EFFLUENT APPLICATION 

In New Zealand dairy and piggery effluent and slurry are commonly applied to land as a 

means of disposal and to add beneficial nutrients to pastures or crops (Houlbrooke et al. 

2004; Wang et al. 2004). Unlike fertiliser, effluent nutrient content is highly variable and 

very often unknown. Like fertiliser, nutrient losses from effluent are influenced by geo-

climatic and management variables, and effluent is influenced by and influences other 

farm components such as fertiliser and stocking rate. Here effluent nutrient content is 

investigated in Section 6.3.1, followed by quantification and discussion of losses in 

Section 6.3.2 and mitigation options in Section 6.3.3.   

6.3.1 Nutrient Content 

Effluent nutrient content is related to feed content (especially feed additives), breed and 

life-cycle of livestock, and treatment and storage variables. Table 6.6 summarises 

reported TN and TP dairy and piggery effluent concentrations for New Zealand. Mean 

dairy TN concentrations range from 72-363 mg L-1 and TP concentrations range from 31-

69 TP mg L-1. Mean piggery TN concentrations range from 230-1420 mg L-1 and TP 

concentrations range from 65-200 TP mg L-1. N concentrations in dairy effluent have 

increased over time because less wash down water is used per cow and increased N 

fertiliser use has increased N content in feed and therefore excreta (Longhurst et al. 

2000). Broadly, 20-25% of dairy effluent, 15% of dairy sludge (pond solids which are 
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generally removed and spread approximately every 5 years) and 60-85% of piggery 

effluent N content is in plant available mineral form (Longhurst et al. 2000; Di and 

Cameron 2002a). 

Table 6.6 Effluent concentrations as reported in New Zealand studies.  

Effluent Type TN (mg L-1*) TP (mg L-1*) Reference 

Dairy 138-662  Di et al. (1998) 

Dairy 120-350  Silva et al. (1999) 

Dairy 181-506  21-82 Longhurst et al. 
(2000) 

Dairy 72  Sukias et al. (2001) 

Dairy  150-340 23-123 Di and Cameron 
(2002b) 

Dairy 80 31 Hawke and 
Summers (2003) 

Dairy 44-628 9.4-105 Saggar et al. (2004) 

Piggery 230 65 Lowe (1993) as 
cited in Wang 
(2004) 

Piggery 1420 200 Cameron et al. 
(1995) 

Piggery 85-1300 18-600 Saggar et al. (2004) 
*Please note references originally report losses in g m-3, but are reported in mg L-1 here 
for consistency. One g m-3 is equivalent to 1 mg L-1. 

 

Effluent is not a ‘balanced’ nutrient source and applying effluent to sufficiently supply 

one nutrient may result in over or undersupply of other nutrients. In New Zealand 

oversupply of potassium is commonly a limiting factor to application of dairy shed 

effluent in New Zealand (A.Roberts, personal communication, 17 May 2017), while 

Houlbrooke et al. (2004) suggest that in New Zealand dairy effluent supplies sufficient N, 

but that further P additions are often required. In contrast, Edmeades (2003) 

investigation into long-term world-wide studies of the effects of manure (which includes 

animal wastes and green manures) suggests that when adding for sufficient N supply, P 

tends to be oversupplied. However, these manures tend to be more solid than dairy 

effluent and are from animals largely fed a grain diet (A.Roberts, personal 

communication, 27 November 2017).    

Considering that effluent is generally applied to only a small proportion of farm land, an 

oversupply of nutrients seems likely. Knowing nutrient composition of effluent can help 
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to ensure no more than plant requirements are applied. Lab analysis can confirm 

effluent nutrient content, but considering seasonal and even daily variability of nutrient 

content, this can only ever be indicative (Longhurst et al. 2000). Nutrient budgeting is an 

alternative and recommended as an accurate estimate of nutrients applied in effluent 

(A. Metherell, personal communication, 9 May 2017).  

6.3.2 Nutrient Losses  

Table 6.7 shows leaching losses of NO3
--N from effluent fertilised New Zealand pasture. 

Losses associated with dairy effluent range from 6.3-131 kg N ha-1 yr-1. The two piggery 

effluent losses reported are very similar at 10.5 and 12 kg N ha-1 yr-1 which represents 5-

6% of total N applied as effluent.  

Figure 6.4 shows nitrate leaching losses for dairy as a function of effluent N applied. This 

indicates a moderate positive linear relationship with r2 value of 0.6589 between 

amount of effluent N applied and N lost through leaching. However, this is clearly 

influenced by the point with >1000 kg N ha-1 yr-1 applied and exclusion of these point 

results in an r2 value of 0.0807.  

Table 6.7 Leaching losses of NO3
--N from effluent fertilised pasture as reported in New 

Zealand literature 

Effluent Type Application Rate 
(kg N ha-1 yr-1) 

Losses 
(kg NO3

--N ha-1 yr-1) 
Reference 

Dairy 400 8-25 Di et al. (1998) 

Dairy 200 6.3 Silva et al. (1999) 

Dairy 400 10 

Dairy 100 18 Roach et al. (2001) 

Dairy 200 20 

Dairy 400 50 

Dairy 511 33 Singleton et al. (2001) 

Dairy 1518 131 

Dairy 200 55  
Di and Cameron 

(2002b) 
Dairy 200 7.6 

Dairy 400 78.3 

Dairy 400 18.7 

Piggery 200 10.5 Cameron et al. (1995) 

Piggery 200 12 
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Figure 6.4 Nitrate leaching losses as a function of dairy effluent applied to pasture and 

reported in New Zealand studies.  

Table 6.8 shows total N losses from effluent fertilised pasture reported in New Zealand 

literature. Figure 6.5a shows nitrogen loss as a function of effluent N applied. An r2 value 

of 0.9509 is reported, but this clearly is highly influenced by the sample with losses of 

150 kg N ha-1 yr-1 and only five samples are included. Figure 6.5b shows only those 

samples where effluent is applied via deferred irrigation (which is described further in 

Section 6.3.3). An r2 value of 0.9089 is reported, but again only three samples are 

included. Very broadly, figure 6.5 and Table 6.8 indicate higher effluent N applications 

appear to result in higher N losses and deferred irrigation methods do result in lower N 

losses.       

Table 6.8 Total N losses from effluent fertilised pasture reported in New Zealand 
literature 

Effluent 
Type 

Application Rate 
(kg N ha-1 yr-1) 

Losses 
(kg N ha-1 yr-1) 

Notes Reference 

Dairy 1125 150  Macgregor et 
al. (1979) as 

cited in 
Houlbrooke et 

al (2004) 

Dairy 30.1 12.6 Applied to wet 
soil 

 
Houlbrooke et 

al. (2004b) Dairy 236 3 Deferred 
irrigation Dairy 95 0 

Dairy 154 0.4 
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Figure 6.5 a. Nitrogen losses as a function of dairy effluent application and b. Nitrogen 
losses as a function of deferred dairy effluent application 

 

Fewer studies investigate P loss from effluent blocks (Table 6.9). Figure 6.6a shows 

phosphorus loss as a function of effluent P applied. An r2 value of 0.1132 is reported. 

Figure 6.6b shows only those samples where effluent is applied via deferred irrigation 

(which is described further in Section 6.3.3) and an r2 value of 0.4436 is reported. Like N, 

little can firmly be concluded from this data, although it appears deferred irrigation 

methods do result in lower P losses. Four of the five samples together indicate P losses 

increase with P effluent applications. Although this is clearly not always the case, 

particularly where effluent is applied to already wet soils.        

Table 6.9 P loss from effluent fertilised pasture reported in New Zealand literature 

Effluent 
Type 

Application Rate 
(kg P ha-1 yr-1) 

Losses 
(kg P ha-1 yr-1) 

Notes Reference 

Dairy 125 1.6  Macgregor et 
al. (1979) as 
cited in 
Houlbrooke et 
al (2004) 

Dairy 4.4 1.9 Applied to wet 
soil 

 
Houlbrooke et 
al. (2004b) Dairy 32 0.5 Deferred 

irrigation Dairy 16 0 

Dairy 31 0.08 
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Figure 6.6 a. Phosphorus losses as a function of dairy effluent application and b. 
Phosphorus losses as a function of deferred dairy effluent application 

 

Houlbrooke et al. (2004) note nutrient losses from applied effluent are particularly 

influenced by effluent management, both prior to and during spreading, and soil 

variables.  For example, whether effluent is raw or pond treated, depth and rate of 

application, whether fields are drained, inherent soil drainage variables, soil moisture 

conditions and rain events can all influence losses. Careful management of effluent 

storage and application processes can minimise losses and these are discussed 

following.  

6.3.3 Mitigation Strategies 

In some cases raw effluent is sprayed daily to land, but, to mitigate against nutrient 

losses, pond treatment and storage prior to land application is recommended. Two pond 

systems exist, whereby wastes from farm yards, sheds, feed pads and dairy platforms 

are washed first into an anaerobic pond, which then discharge into a facultative pond. 

During this process solids settle and the effluent is microbially digested. In the past 

effluent was commonly released from pond two directly to waterways, but is now land 

applied. 

Most recently built effluent systems include only one pond for storage and application is 

made to nearby pasture or cropland (usually ≥10% of total farm area). Application is 

usually via spraying irrigator. Many regional councils apply maximum N application 

limits, usually between 150-200 kg N ha-1 yr-1. Pond solids, or slurry, are removed and 
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spread every 5 or so years (Longhurst et al. 2000; Bolan et al. 2004; Houlbrooke et al. 

2004; Houlbrooke et al. 2004b; Gourley et al. 2012).   

To further mitigate against nutrient losses, deferred effluent irrigation is recommended. 

A number of authors note higher losses of N and P can occur when effluent is applied to 

already wet soils. Macgregor et al. (1979) found 60% of all N losses and 38% of all P 

losses occurred during winter drainage. Houlbrooke et al. (2004b) found 40% of effluent 

N input and 43% of effluent P input can be lost if applied to already wet soil. Deferred 

effluent irrigation involves monitoring soil moisture conditions and only irrigating the 

appropriate amount at the appropriate rate, when soil water deficit is sufficient to 

prevent drainage. This method requires sufficient effluent storage and the ability to 

monitor soil water conditions, but can result in elimination of losses via surface drainage 

and losses of only 1% of total nutrient applied via effluent in direct drainage water 

(Houlbrooke et al. 2004b).  

Non-uniform effluent application by traveling spray irrigators can be problematic with 

maximum applications occurring close to the outside of the irrigator leading to higher 

nutrient losses. Remedies include applying effluent at soil water deficits that are greater 

than or equal to the maximum, rather than mean, depth of application, and setting the 

irrigator to roll at maximum speed, applying a little effluent often (Monaghan and Smith 

2004). Low-rate (K-line) sprinkler application systems have been shown to reduce 

nutrient losses compared to travelling irrigators, particularly if there is no choice but to 

irrigate when soils are wet (e.g. if effluent storage is already full) (Monaghan et al. 

2010a).     

Constructed wetlands to further treat effluent from an effluent pond is an option and is 

discussed in Section 6.5. Healy et al (2007) suggest sand filters, in conjunction with 

constructed wetlands could further reduce effluent nutrient content. Craggs et al. (2004) 

investigated a dairy effluent advanced pond system consisting of four stages – an 

anaerobic pond (equivalent to the first pond in a traditional two pond system), a high 

rate pond, a pair of algae settling ponds, and a maturation pond. This method treats 

wastewater more reliably and efficiently than standard two pond systems and was 

shown to decrease ammoniacal nitrogen and total phosphorus. It is particularly 

recommended in areas where land disposal is limited.  
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Bolan et al. (2004) showed that adding bark or zeolite to the second pond in a two pond 

effluent system can reduce N and P concentrations. These added components are then 

land spread. Pattnaik et al. (2007) suggests multi-soil-layer (MSL) technology, consisting 

of aerobic and anaerobic layers through which water is passed and filtered, has the 

potential to remove a high percentage of inorganic N and phosphate from dairy effluent. 

Reducing total amount of effluent applied is also an option. Methods of achieving this 

could include only milking once per day, diverting rainwater away from effluent ponds 

(A. Metherell, personal communication, 9 May 2017), reducing stock or increasing 

effluent application area. Currently effluent tends to be applied to a limited area within 

a farm (usually those areas closest to ponds or collection points). Gourley et al. (2012) 

suggest barriers to increasing application area in Australia are inadequate infrastructure 

to apply effluent to a wider area, and limited regulatory requirements and enforcement. 

Cost to extend effluent application equipment to a wider farm area could also be a 

barrier.  

Finally, direct injection of effluent in to soil is commonly used overseas (Houlbrooke et 

al. 2004). It is unclear why this method is less popular in New Zealand, possibly because 

specialist equipment is required. Advantages of this system include better use of 

nutrients as they are placed at the plant root system, reduced odour and improved 

pasture palatability. Volatilisation is also reduced using this method, although emissions 

of nitrous oxide can be increased (Eckard et al. 2010; Northland Regional Council 2016).  

6.4 STOCKING RATE 

Grazing animals influence nutrient loss from pasture and forage cropland through 

deposition of excreta and compaction of soil (Monaghan et al. 2005; Monaghan et al. 

2007a). Higher stocking rates are therefore likely to lead to higher nutrient losses by 

increasing the amount of excreta deposited and increasing soil compaction. Again, 

stocking rates are inextricably linked to N and P inputs, particularly from fertiliser, 

effluent and supplementary feed. Therefore, any changes to stocking rate as a 

mitigation strategy would have to be made commensurate with changes to these other 

farm components, and vice versa. Here stocking rate is not investigated per se, but 
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losses from individual animals and their excretion behaviour are discussed and 

quantified where possible. 

6.4.1 Losses from Animal Excreta 

Pastoral animal excretions are an important return of nutrients to the plant-soil system 

and it increases the rate of nutrient cycling within the pasture system. However, these 

returns are highly concentrated and distributed in an inefficient, spatially varied manner. 

This leads to oversupply of nutrients in excretal areas and undersupply elsewhere 

(Williams and Haynes 1990).  

Published estimates of N and P in animal excretions vary between animal species, 

between individual animals of the same species, and can vary for an individual animal 

over time because excretions are influenced by animal size, productivity, diet, water 

intake, housing and seasonal weather conditions (Betteridge et al. 1986; Haynes and 

Williams 1993; Smith and Frost 2000). It is estimated that 60-90% of ingested N is 

returned to the soil as urine and dung by pasture grazing animals. In both sheep and 

cows, increases in dietary N increase urinary N content, but not dung N content. The 

loading of N under cow and sheep urine patches is estimated as equivalent to 750 kg N 

ha-1 yr-1 (Selbie et al. 2015) and 500 kg N ha-1 yr-1 respectively (Di and Cameron 2002a). P 

is largely returned to the soil in dung with a strong correlation between P intake and 

dung P content. Little P is lost in urine (Haynes and Williams 1993; Di and Cameron 

2002a; Monaghan et al. 2007a; Luo and Kelliher 2014).  

Table 6.10 summarises total annual N excretions for dairy cattle, beef cattle, sheep and 

deer, and total annual P excretions for dairy and beef cattle only. No data reporting total 

annual P excretions for sheep or deer are found, although for sheep these could possibly 

be modelled using the method of Saggar et al. (1990). Smith and Frost (2000) comment 

that animal production systems change over time which affects how much N and P is 

excreted and they suggest only data less than 10-15 years old reliably documents 

current N and P in animal excretions. In New Zealand the most significant recent 

changes pertain to dairy farming only. 

 



168 
 

Table 6.10 Average total N and P excreted for dairy cattle, beef cattle, sheep and deer 
(Source: Haynes and Williams (1993); Betteridge et al. (2010)) .  

Animal Type Average TN Excreted 
(kg/head/yr) 

Average TP Excreted 
(kg/head/yr) 

Dairy Cattle 123.1 8 

Beef Cattle 50.4 6.4 

Sheep 14.1  

Deer 29.1  
 

Moir et al. (2011) found during monitoring over a 4 year period that on average dairy 

cattle urine patches covered 23% of field area. For sheep on hill country, 60% of dung 

and 55% of urine was found to be deposited on 15-30% of total field area (Haynes and 

Williams 1993). Topography and feed, trough, gate and tree locations influence spatial 

distribution of excreta because stock congregate or “camp” in areas that provide shelter 

and/or food and water. Betteridge et al. (2010) monitored cattle and sheep excretions in 

a field of variable slope and elevation. They found cattle camp in low elevation, low 

slope areas, while sheep camp in high elevation, low slope areas. They also note excreta 

is transported from higher elevations to low elevation, low slope areas via gravity or 

water transport. Increased deer deposits are found along fence lines due to frequent 

pacing (McDowell et al. 2006). 

Stock management and paddock configuration can influence spatial distribution of 

excreta and associated losses.  For example, higher stocking rate encourages more even 

distribution of excreta, although higher loadings result, and placement of troughs, feed 

etc should be in areas less connected to waterways. Excreta deposits on “non-

productive” farm areas eg. tracks and raceways are estimated at 2-11 kg N/head/yr and 

0.5-3 kg P/head/yr for dairy cattle (Haynes and Williams 1993). 

6.4.2 Soil Damage       

Most grazed pasture is damaged by compaction to some extent, however the extent of 

this damage is usually limited to the top 50-150mm of soil and can be reversed or 

avoided (Greenwood and Mckenzie 2001). Compaction usually occurs during grazing of 

wet soil. This reduces the ability of water and nutrients to infiltrate, thereby increasing 

the likelihood of surface runoff. Mitigation strategies, other than reducing stocking rate, 
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to ameliorate or avoid damage include feedpad use and wintering barns (Clark et al. 

2007). 

6.5 WETLANDS  

Over the last 150 years, 90% of natural wetlands have been drained for use as urban or 

agricultural land in New Zealand (Peters and Clarkson 2010). Today, as concern 

heightens around water quality in association with intensified agriculture (PCE 2015a), 

wetland development and management to enhance filtering capability is advocated as a 

nutrient (N and P) management strategy on New Zealand farms (Environment 

Canterbury 2006; McKergow et al. 2007; Dairy NZ 2013; Monaghan and De Klein 2014; 

Waikato Regional Council 2015; Environment Southland 2016b; Taranaki Regional 

Council 2016a). However, nutrient retention by wetlands is highly dependent on 

individual characteristics of the wetland and surrounding area, and how it is managed. 

Therefore, these variables must be considered in any wetland mitigation model and are 

discussed below. 

6.5.1 Wetland Function – Nutrient Sink or Source? 

Wetlands are areas of permanently or intermittently wet land (Peters and Clarkson 

2010). On New Zealand farms commonly found natural wetlands include freshwater 

seeps and springs, depressional wetlands, and riparian margins (McKergow et al. 2007; 

McKergow et al. 2012) which are defined as land surrounding a stream or river, lake, 

reservoir or wetland. These systems represent the interface between terrestrial and 

aquatic ecosystems. They receive runoff from surrounding land and are at times flooded 

by the associated water body (Parkyn 2004; Aarons and Gourley 2012; Renouf and 

Harding 2015). Increasingly constructed wetlands are also being investigated and 

installed in the farm environment (McKergow et al. 2007; Tanner and Sukias 2011). 

Characterised as ‘the kidneys of the landscape’, wetlands filter waste and nutrients from 

incoming water (Mitsch and Gosselink 2007). Both particulate and soluble N and P can 

be intercepted. Wetlands are generally fed by surface water and/or groundwater, 

although some are only rainwater fed. Surface water introduces particulate and soluble 

nutrients to the wetland. Groundwater only introduces soluble nutrients. Particulates 

are intercepted via physical settling as surface water slows within the wetland 
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environment and coarser particles settle before finer. This process is particularly 

important for P interception because P tends to sorb to soil particles (McKergow et al. 

2007; Mitsch and Gosselink 2007).  

Dissolved nutrients enter wetlands via inflows, though also develop within wetlands as 

biogeochemical processing of deposited particulate nutrient occurs. Dissolved nutrients 

are taken up by plants, lost to outflows or, in the case of N, may be denitrified. 

Denitrification is the only process of permanently removing N from a wetland that does 

not involve export to a downstream water body (Fisher and Acreman 2004; McKergow 

et al. 2007; Mitsch and Gosselink 2007). For P, permanent wetland removal can only 

occur through export to a downstream water body.  

The wetland environment is usually considered a nutrient sink. However, it can also be a 

nutrient source – a point that is often overlooked (Fisher and Acreman 2004; Mitsch and 

Gosselink 2007). Under normal low surface flow conditions wetlands and riparian 

margins usually act as sinks, particularly if plants are present to slow flow and allow 

particulate deposition and infiltration of water (Smith 1989; Williamson et al. 1996).  

However, during heavy rainfall or flood events soluble nutrients can flush more quickly 

through the wetland environment, avoiding plant up take, sorption or denitrification, 

and particulates can bypass the wetland or are even entrained from within the wetland 

(Collier et al. 1995a; McKergow et al. 2012; Roberts et al. 2012; Wilcock et al. 2012).  

TN removal by riparian buffers has been shown to range between 10-100%, with higher 

removal rates associated with longer residence times in the soil matrix (Burns and 

Nguyen 2002; Collins et al. 2009). However, some authors have reported increased 

nitrate-N losses to the stream network as a result of preferential subsurface flow 

(including artificial drains) by-passing the wetland (Parkyn 2004; Collins et al. 2009). 

Channelized flow in riparian zones also acts as a by-pass mechanism (Williamson et al. 

1996).  

Wetland retention of soluble P is generally less than for particulate P (Fisher and 

Acreman 2004; Collins et al. 2009). Reviewing riparian zone performance, Collins et al 

(2009) found  TP retention is 30-85%, but only 20-50% for dissolved P (Table 6.11). 

Wilcock et al (2012) found TP retention was 93% and average filterable reactive P 
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retention was -53% in an on-farm headwater seep wetland. Roberts et al (2012) 

reviewed P retention in vegetated buffers reporting retention rates of 41-95% for TP and 

-71-95% for DRP.  Over time wetlands and riparian margins can become a P source if P-

saturation occurs, limiting P-fixation (Cooper et al. 1995; Roberts et al. 2012).  

Table 6.11 Percent P retention by wetlands as reported in New Zealand and 
international literature. 

% retention Reference 

TP DRP 

30-85 20-50 Collins et al. (2009) 

93 -53 Wilcock et al. (2012) 

41-95 -71 – (+)95 Roberts et al. (2012) 

 

6.5.2 On-Farm Management of Natural Wetlands  

How efficiently a managed wetland and associated buffer zone reduces nutrient export 

to downstream waterways depends on hydrology, soil type, vegetation type and variety, 

width and length of buffer, surrounding land characteristics, and surrounding land use 

and management (Collier et al. 1995b; Parkyn 2004; Collins et al. 2009). Currently in 

New Zealand active on-farm management of waterways and associated wetlands and 

riparian margins is voluntary, but highly encouraged by industry bodies and regional 

authorities. More recent legislation is likely to result in the introduction of regulatory 

measures to curb nutrient losses to water (McDowell et al. 2016a), which could include 

mandatory wetland and riparian management.  

Fencing 

McKergow et al. (2012) found that cattle grazing within wetland areas for only 9% of 

time, accounted for 34% of TN export and significantly elevated instream N exports 

compared to both storm and base flow N exports during non-grazed periods. At a 

minimum, on-farm ‘management’ of wetlands and riparian margins should include 

fencing so that stock cannot defecate directly in water, erode banks, and compact and 

disturb soil (Bewsell et al. 2007). Exactly how far a fence is placed from a water body will 

depend on desired outcome and how much land farmers are happy to lose to riparian 

margins. This is further discussed below. 
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Width 

Fenced riparian buffers surrounding wetlands and water bodies is recommended (Dairy 

NZ 2016b; Environment Southland 2016b). The width of buffers is identified by Parkyn et 

al. (2003) as a key predictor of stream health. As a general rule wider buffer zones 

remove more particulates (Collier et al. 1995b; Parkyn 2004), but precise width required 

to intercept particulate nutrients in overland flow depends on a number of variables.  

Buffers located in steeper terrain should be wider to slow water flow and allow 

particulate settlement (Collier et al. 1995b), although effectiveness can be reduced if 

flow is channelized or there is a lack of good groundcover (Williamson et al. 1996). Soil 

drainage is influential. Good soil drainage allows water to percolate through. This filters 

particulates and allows uptake of dissolved nutrients by plants. Additionally, infiltration 

excess overland flow is less likely to occur in well drained soils. If soil clay content in 

incoming water is high deposition only occurs once water flow has reduced sufficiently 

and this also requires wider buffers. Clay can also fill buffer soil pore spaces, reducing 

infiltration (Collier et al. 1995b).   

Soluble nutrients, present in both surface and subsurface flows, must be moved through 

the soil matrix to encourage plant uptake and denitrification – both spatially and 

temporally variable processes. Therefore, determining specific buffer widths required to 

remove soluble nutrients is not clear. For both processes though, water residence time 

is influential with longer residence providing more uptake and denitrification 

opportunity (Collier et al. 1995b). Considering this, a wider buffer zone is likely to 

provide more opportunity for uptake or denitrification. However, plant uptake depends 

on plant type and growth stage (see below) and denitrification requires the ‘right’ 

conditions - denitrifying bacteria, anaerobic conditions, a supply of carbon and the ‘right’ 

temperature and pH. If any of these are lacking, denitrification may not occur or may not 

fully complete resulting in the release of nitrous oxide, a powerful greenhouse gas 

(Cooper 1990; Fisher and Acreman 2004).  

Collier et al. (1995b) developed a method to determine optimal buffer widths for 

mitigation of particulates. Mapped categories (low, medium, high) of topography, soil 

drainage and soil clay content are layered and a look up table, based on layered results, 

is used to determine optimal buffer width as a percent of uphill slope length. An 
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estimate of efficiency is also provided. This map based, layered method lends itself to 

application in a GIS and could possibly be appropriate for application in LUCI to estimate 

optimal buffer widths for mitigation of particulates. 

For soluble nutrients, Collier et al. (1995b) and Cooper (1990) recommend identification, 

enhancement and management of organic soils in buffer zones as an important strategy 

to encourage denitrification. Cooper (1990) suggest these areas can reduce nitrate loads 

to water bodies by 32-98%.  

Dosskey et al. (1997) indicate a buffer strip of up to 8m is required to filter particulates 

from agricultural land in the US, while 15-30m is required to remove soluble nutrients. 

The NZ Fertiliser Code of Practice for Nutrient Management (2013) suggests vegetated 

riparian buffers of at least 10m which may need further adjustment to account for slope   

By contrast, a survey of Canterbury buffer zones found most were no more than 5m 

wide (Renouf and Harding 2015). This suggests many riparian buffers in New Zealand 

may not be of sufficient width to fully intercept particulate and soluble nutrients. 

Literature aimed at farmers does not generally stress the importance of buffer width or 

the need for variable widths under variable circumstances (Environment Southland ; 

Taranaki Regional Council ; Waikato Regional Council). Likely barriers to installation of 

wider buffers are cost of buffer development and maintenance, and the ‘cost’ of 

agricultural land loss, both of which are generally borne by land owners.    

Vegetation and Planting 

Planting of riparian areas is recommended to encourage plant uptake and create a ‘slow 

water’ environment, more conducive to deposition, infiltration and denitrification. A 

range of native and exotic plants, from grasses to shrubs to trees, are recommended and 

found in managed wetland and riparian margins (Williamson et al. 1996; Parkyn et al. 

2003; Collins et al. 2013; Renouf and Harding 2015; Environment Southland 2016a; 

Taranaki Regional Council 2016b). Additional benefits derived from wetland and riparian 

planting include provision of fish, animal, and insect habitat and corridors, and shading 

of water bodies. This reduces water temperature which is beneficial to aquatic fauna 

and helps control nuisance in-stream flora (Parkyn 2004). On-going management of 

wetland and buffer vegetation is often required to maintain nutrient interception ability 
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and to discourage growth and spread of weeds (Aarons and Gourley 2012; Renouf and 

Harding 2015). Dense groundcover, such as grass, slows surface water sufficiently to 

encourage deposition, but under trees such groundcover may die away (Smith 1989; 

Williamson et al. 1996).  

Native and exotic plants are used in buffer zones. Exactly which plants are used depends 

on what land owners are trying to achieve. Exotics are often recommended because 

they grow quickly to stabilise stream banks and control erosion (Collier et al. 1995b; 

Environment Southland 2016a). However, Marden et al. (2005) investigated twelve 

indigenous plant species and found they too provide fast growing, good bank protection 

for low-order streams, although are less effective as stream order increases. 

Additionally, there are natives well suited to all New Zealand sub-climates and 

environments and they provide habitat for native fauna (Franklin et al. 2015; Renouf and 

Harding 2015; Environment Southland 2016a; Waikato Regional Council 2016b). 

Although New Zealand natives are adapted to a low N environment and do not generally 

take up as much N as some exotics, Franklin et al (2015) concluded that they are still of 

use in riparian planting in terms of N attenuation.     

New Zealand riparian planting guides identify two hydrological two zones - the lower 

bank zone, which is subject to regular flooding, and the upper bank zone, which is only 

flooded irregularly (Figure 6.7) (Dairy NZ 2014; Environment Southland 2016a). Lower 

bank zone plants must tolerate frequent, prolonged inundation. Sedges, grasses and 

flaxes are well suited to these conditions (Environment Canterbury 2011; Environment 

Southland 2016a; Taranaki Regional Council 2016b), but may not be deep rooted enough 

to prevent erosion (Collier et al. 1995b). A mix of taller trees and shrubs are 

recommended in the upper bank zone to take up subsurface nutrients, for bank stability 

and habitat provision (Environment Canterbury 2011; Aarons and Gourley 2012; Renouf 

and Harding 2015; Environment Southland 2016a). A third outer dense groundcover 

plant zone is also sometimes recommended to filter particulates (Environment 

Canterbury 2011; Environment Southland 2016a; Taranaki Regional Council 2016b). 

Dairy NZ (2016b) recommend close fencing and bank planting with native grasses for 

drains.  
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Invasive exotic weeds can be problematic in riparian buffers and can spread along these 

corridors. Like trees, they can shade dense groundcover to the extent that it dies away 

and is no longer an effective particulate filter (Williamson et al. 1996; Hughes and Quinn 

2014). Nitrogen fixing exotic weeds such as gorse, lupin and broom (Parfitt et al. 2006) 

may be additional sources of N to waterbodies (Hughes and Quinn 2014). Regular 

maintenance to control weeds may be required during the first years of buffer 

development. Diverse planting on a generous buffer (at least 5m wide) can encourage a 

‘self-sustaining habitat’ that is better able to out-compete invasive weeds (Renouf and 

Harding 2015). 

As discussed above, nutrient saturation in wetland and riparian zones can occur, limiting 

nutrient retention, particularly in the case of P. Aarons and Gourley (2012) suggest as 

plants mature in the upper bank zone, strategic removal and replanting can help to 

maintain nutrient uptake rates. Commercial wood or fruit crops could be options 

(Parkyn 2004). Roberts et al. (2012) suggest above-ground vegetation removal is a more 

effective P removal technique for wetland areas than addition of soil amendments or 

tillage to increase soil sorptive ability. McKergow et al. (2012) suggest periodic sheep 

grazing of riparian zones may encourage pasture growth, thereby encouraging plant 

uptake of N. Although returns via excreta could negate any benefits from such a 

strategy. 

Waterbody shading by plants can lower water temperature which benefits aquatic fauna 

and suppresses nuisance aquatic plants, but can also decrease in-stream N uptake, 

which largely occurs due to the presence of aquatic plants (Cooper 1990; Hughes and 

Quinn 2014). 
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Figure 6.7 Planting zones in the riparian margin (Dairy NZ 2014) 

6.5.3 Constructed Wetlands 

Constructed wetlands are created to treat contaminated water from various sources 

(e.g. sewage treatment, mine waste, urban storm water, and agricultural runoff) by 

emulating natural wetland processes (Mitsch and Gosselink 2007). While natural 

wetlands can also be used in this way, constructed wetlands can be placed where 

required, can be tailored to optimise nutrient attenuation and their use avoids 

contamination of sensitive or endangered wetland environments (Tanner and 

Kloosterman 1997; Tanner et al. 2010).  

Constructed Wetland Types and Design 

There are two types of constructed wetland – surface-flow wetlands and subsurface 

flow wetlands. Both types consist of a sealed channel with wetland vegetation, however 

surface flow wetlands have a soil substrate with flowing water above, while sub-surface 

flow wetlands contain a gravel substrate through which water slowly flows (Figure 6.8) 

(Tanner and Kloosterman 1997; Mitsch and Gosselink 2007).  
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Understanding of wetland nutrient uptake suggests that surface wetlands can readily 

trap and process both particulate and dissolved nutrients, while sub-surface wetlands 

are likely to better process dissolved nutrients, although no explicit reference to this has 

been found. Mitsch & Gosselink (2007) suggest that the main reason for using sub-

surface wetlands is that they require less space, while surface wetlands provide 

additional benefits such as habitat for fauna. Tanner and Kloosterman (1997) suggest 

using a sub-surface wetland after a surface wetland because they provide enhanced, 

more consistent treatment. Most New Zealand on-farm constructed wetland literature 

features surface wetlands only (Tanner et al. 2005; Tanner and Sukias 2011; Praat et al. 

2015), although subsurface wetland trials processing dairy effluent have been conducted 

(Tanner et al. 1995). 

Wetland construction guidance is provided for treating dairy shed effluent that has 

already been through two pond treatment (Tanner and Kloosterman 1997) and for the 

treatment of subsurface drainage water (Tanner et al. 2010). How efficiently a 

constructed wetland removes nutrients depends on environmental factors, such as 

rainfall patterns and variability, soil properties, groundwater levels and land and effluent 

management, and construction and design variables. In general longer wetland 

residence times will increase nutrient attenuation. To achieve this wetlands must be of 

sufficient size to process incoming water and nutrient loads, must distribute flows as 

evenly as possible throughout the wetland, and must provide appropriate plants and soil 

or other amendments to encourage nutrient uptake (Tanner and Kloosterman 1997; 

Mitsch and Gosselink 2007; Tanner et al. 2010). Mitsch and Goselink (2007) emphasis 

the need to create an appropriate hydrological regime and then establish appropriate 

vegetation. They state that if wetland creation fails, it is generally the hydrology that is 

at fault. 

Water residence time within a wetland is related to the size of the wetland and the 

wetland to catchment area ratio (Zedler 2003). Tanner et al. (2010) indicate that a 

wetland covering 1% of a catchment and processing tile drainage water will remove 12-

32% of incoming nitrate-N, while a wetland covering 5% of a catchment will remove 38-

68% of incoming nitrate-N. Tanner and Kloosterman (1997) provide detailed wetland 

size guidelines, based on dairy herd size, for processing dairy shed wastewater.  
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Figure 6.8 Constructed wetlands types (Tanner and Kloosterman 1997). 

Water flow through a constructed wetland must ideally be steady and utilise the whole 

wetland. Water input mechanisms should encourage even flow distribution along the 

head of the wetland and the wetland shape should not include too many highly curved 

edges that can cause flow dead-zones. Length-to-width ratios of between 3:1 and 10:1 

are recommended, depending on the total wetland size. Flow velocities in very long 

skinny wetlands can be excessive during high flow events (Tanner and Kloosterman 

1997; Mitsch and Gosselink 2007; Tanner et al. 2010). 

Constructed wetland nutrient attenuation is enhanced by the addition of plants (Tanner 

et al. 1999; Mitsch and Gosselink 2007). Plants within the inundation zone are the 

nutrient processors, while edge plants stabilise banks and suppress weeds (Tanner et al. 

2010). Plants used in constructed wetlands must tolerate local climate and hypertrophic 

waterlogged conditions, must be readily propagated and established, must remove 

pollutants, and must not be pest plants (Tanner 1996). Plant recommendations for 

constructed wetlands are offered by Tanner (1996), Tanner and Kloosterman (1997) and 

Tanner et al. (2010). 

Substrate soil and/or soil amendments influence nutrient attenuation. Constructed 

wetlands should be water tight to prevent leaching to groundwater. This requires either 
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a compact clay lining or plastic liner if suitable clay is unavailable. The plant growing 

medium is deposited on this lining (Tanner et al. 2010). P-sorbing materials can also be 

added to enhance P retention (Ballantine and Tanner 2010; Tanner et al. 2010). 

Ballantine and Tanner (2010) reviewed a number of soils, natural product and industrial 

and waste by-products that can be used in constructed wetlands to encourage higher 

rates of P retention. Allophane, limestone, tephras, tree bark, shells, alum, domestic 

waste treatment residues and fly ashes provided the best results.  

Constructed Wetland Performance 

Table 6.12 summarises New Zealand study results into constructed wetland 

performance. Tanner et al (1995) explored nitrogen and phosphorus removal from dairy 

farm wastewater flowing, at various rates, through unplanted and planted subsurface 

gravel bed wetlands. TN removal in the unplanted wetland varied from 12-41%, with 

removal generally increasing as flow slowed. In the planted wetland TN removal varied 

from 48-75%. Notably in the unplanted wetland NH4 removal rates were sometimes 

negative (i.e. NH4 was generated by the wetland). This did not occur in the planted 

wetland. TP removal ranged from 12-36% in the unplanted wetland and 37-74% in the 

planted wetland.  

Tanner et al. (2005) investigated nutrient export for two years from a constructed 

surface flow wetland receiving water from subsurface drains on a dairy farm in Waikato. 

TN attenuation was 79% in Year 1 and 21% in Year 2. TP attenuation was -70% in Year 1 

and 12% in Year 2. They suggest attenuation variability was likely due to seasonal 

temperature and rainfall event variability. Temperature influences denitrification and 

the breakdown of nutrient rich organic material, while large rainfall events or events in 

close succession can reduce wetland residence time which is important for nutrient 

removal.  

The above wetland was further studied by Tanner and Sukias (2011) in conjunction with 

two other constructed wetlands receiving subsurface drain water – one in Northland 

and one in Southland. Annual TN removal by the wetlands ranged from 7-63%. However, 

while nitrate-N was quite efficiently removed, ammonium and organic-N were 

generated within the wetland and exported at times. Overall the wetlands were also 

found to be a source of P. 12-115% more of input TP was exported. The authors state 
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that this result contrasts with TP attenuation rates in many overseas studies of 

constructed wetlands. However, they also note that most of the overseas studies are 

conducted on cropland where most TP runoff is in particulate form, while P in 

subsurface drain water is largely in dissolved form. Additionally, they note that wetland 

maturation factors, such as reduced uptake in mature plants, senescence of plants, 

changes to soil P retention and saturation of P sorption sites, could also account for TP 

export. 

Praat et al. (2015) document results from a constructed wetland processing subsurface 

drain water in Wairarapa. Monitoring over only four months (Feb-May) indicated that 

38-80% of imported TN was removed by the wetland per month. For the first three 

months imported DRP was reduced by 38-64% per month, but in the final month of 

monitoring the wetland became a source of P with 2.3 times DRP being exported 

compared to P imported. The authors conclude that nitrate-N is attenuated by this 

wetland, but it is likely a source of P. 

Table 6.12 Nutrient retention of constructed wetlands   

% Incoming Nutrient Retained Particulars Reference 

N P 

12-41 (TN) 12-36 (TP) Unplanted Tanner et al. (1995) 

48-75 (TN) 37-74 (TP) Planted 

71 (TN) -70 (TP) Yr 1 Drain water Tanner et al. (2005) 

21 (TN) 12 (TP) Yr 2 Drain water 

7-63 (TN) -115 - -21 (TP) Drain water Tanner and Sukias 
(2011) 

38-80 (TN) 38-64 (DRP) Drain water Praat et al. (2015) 

 

6.5.4 Barriers to Wetland Construction or Restoration  

It is uncertain how many constructed or restored wetlands with the aim of reducing 

agricultural runoff (as opposed to septic tank effluent) are on New Zealand farms. Myers 

et al. (2013) indicate that wetland loss rather than gain is the trend and that small, 

privately owned on-farm wetlands are most likely to be lost, largely because wetlands 

on public land often have protected status. Certainly regional councils and industry 

bodies advocate using wetlands for nutrient attenuation. In particular they emphasise 

the need for riparian wetland restoration by fencing and planting, rather than 
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restoration of other wetland types or installation of constructed wetlands (Environment 

Canterbury 2011; Dairy NZ 2016b; Taranaki Regional Council 2016a). However, a 

demonstration wetland has been recently constructed in a previous natural wetland on 

a Waikato farm, with support from a number of authorities and industry bodies and 

using the principles of constructed wetlands. The aim of the project is to provide farmers 

with advice and knowledge on wetland design and performance to reduce nutrient 

losses (Dairy NZ 2016a). Both the financial implications of construction and maintenance 

as well as nutrient attenuation and initial results are due in December 2016 (Piddock 

2015). However, a search in December 2017 found no published results.   

The Dairy NZ study referred to above, with its focus on finances, points to what is likely 

to be one of the main barriers to on-farm wetland development. Indeed, McDowell et al. 

(2013) identify constructed wetland development cost as high to very high compared to 

other mitigation options. Financial investment does not only include initial development, 

but also on-going maintenance and a loss of agricultural land. Tanner et al. (2015) 

investigated using remnant wetlands to develop constructed wetlands in Southland. 

However, many farmers had spent considerable money draining these areas in recent 

years and were opposed to their reversion. Additional concerns included slowing runoff 

and jeopardising upland drainage function.   

McLeod et al. (2006) found an almost universal desire to look after the environment 

amongst farmers for both aesthetic reasons and nutrient attenuation. However, there 

was a clear difference amongst farmer types. Dairy farmers generally agreed that 

waterways and wetlands should be fenced, while many sheep and beef farmers felt 

because they manage stock differently they don’t need to exclude them from wetlands 

and waterways. They also showed more concern around the cost of fencing. It seems 

likely that increased targeting of dairy farms in terms of wetland nutrient mitigation 

options has had an impact. Perhaps a similar focus on other farming types would yield 

similar results.  

6.5.5 Catchment Scale Wetland Management 

Most research on wetland nutrient attenuation efficacy is conducted at the site scale 

(Collins et al. 2009), but in-stream water quality assessments are often conducted at 
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catchment scale. Linkages between these scales are important when evaluating wetland 

performance and planning improvements to catchment scale water quality (Parkyn 

2004).  

Tanner (2013) investigated whether it is better to have many smaller wetlands at the 

head of a catchment or fewer larger wetlands at the bottom of a catchment. Generally 

wetlands perform best when they have a slow steady flow entering them and this is 

more likely to occur lower down the catchment while smaller wetlands in headwaters 

are more likely to be overwhelmed during high flow events. Zedler (2003) concurs 

stating that upstream wetlands trap few nutrients. However, in a recent study McDowell 

et al. (2017) found on average 77% of national N and P load to waterbodies is sourced 

from low order streams (<1m wide and 30cm deep) on flatter agricultural land, 

suggesting wetlands and riparian buffers may be required more widely.  

At the catchment scale Zedler (2003) suggests when wetland loss exceeds 80-90% of 

original cover, eutrophication (and flooding) risk greatly increases. Mitsch and Gosselink 

(2007) suggest that wetland restoration that equates to less than 1% of the total 

Mississippi catchment would be sufficient to significantly reduce nitrogen entering the 

Gulf of Mexico hypoxic zone.  

6.6 SEDIMENT TRAPS 

A number of structures can be defined as sediment traps. McDowell et al. (2013) define 

two types of sediment trap –a pond or earth reservoir located at the outlet to a zero-

order catchment, and in-stream sediment traps. McKergow et al. (2007) suggest only the 

in-stream version is a “trap”, while Barber (2014) discusses ‘silt traps’ in a horticultural 

environment describing a reservoir type structure that encourages the deposition of 

fines prior to entry of water to drains. In a broader sense any structure or landform that 

slows water sufficiently to allow deposition of sediment is a sediment trap. This includes 

wetlands, lakes and estuaries. For the purposes of this review though the focus will be 

on small scale structures specifically built for trapping sediment and will include in-

stream sediment traps, silt traps and detainment bunds. Constructed wetlands could 

also be included in this category, but have already been reviewed above. These 
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structures do not appear to be commonly used in New Zealand and data quantifying 

their effects is sparse.   

6.6.1 In-stream Sediment Traps 

In-stream sediment traps are stream bed excavations that aim to trap coarse sediment 

(sand and gravel) and prevent it moving further downstream, which would reduce 

channel capacity and habitat quality (Hudson 2005; McKergow et al. 2007). Hudson 

(2005) suggests that such traps should be located in straighter sections of channel where 

access by digging equipment is possible. As a guide, the trap should be 1.5 times wider 

than the stream width, the length should be 4-10 times the trap width, and it should be 

1.5m deeper than the stream bed (Figure 6.9). Traps require periodic emptying, 

particularly after storm events, to ensure they maintain trapping capability. For more 

detail on the location, construction and maintenance of in-stream sediment traps see 

Hudson (2005) and Hudson (2002). 

Trapping efficiency is not well documented.  If excavated and maintained correctly, 

McKergow et al. (2007) suggest up to 90% of fine sand can be removed. McDowell et al. 

(2013) give no quantitative indication of efficiency, but state that traps are excellent at 

retaining coarse sediment, but less so for fine sediment. As a result, they have low P 

trapping effectiveness. Additionally, sediment traps may become sources of sediment 

and nutrients during high flows (McDowell et al. 2013).  More recently Canterbury 

University ecologists trialled sediment traps in a small, lowland agricultural stream. They 

found over an 8 month period 60-70% of sediment between <63µm-1mm was trapped 

(CAREX 2014; Harding et al. n.d.). It is unclear if this includes clay sized particles, to 

which P sorbs. 
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Figure 6.9 Diagram showing in-stream sediment trap construction (Hudson 2005). 

 

6.6.2 Silt Traps 

Barber (2014) suggests silt traps to impound field runoff for a time, allowing suspended 

soil to settle. For best results the field should be broken into smaller sections, each with 

its own silt trap, and other methods of soil loss control should be used. Figure 6.10 

shows a silt trap with snorkel in the foreground. Water is allowed to enter the trap and 

is slowly discharged at the other end. It is recommended traps be at least 3 times longer 

than width. Water generally exits the trap in to a drain. No data was found regarding silt 

trap effectiveness. 
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Figure 6.10 Silt trap with the blue snorkel in the foreground for slowly decanting the trap  
(Barber 2014).  
 

6.6.3 Detainment Bund 

Detainment bunds play a similar role to silt traps, but are generally used on pastoral 

areas. The construction consists of a 1-2m high earth dam or ‘bund’ situated 

perpendicular to an ephemeral stream channel so that it retains water in storm events. 

The detained water is slowly decanted via a decant pipe and riser from behind the bund 

over a 3 day period. This timeframe allows sediment to settle without adversely 

affecting the underlying pasture (Figure 6.11) (Clarke et al. 2013; BoPRC 2016; Rotorua 

Te Arawa Lakes Strategy Group 2017). Initial study of detainment bunds recommended a 

storage capacity behind the bund of 120m3 per 1ha upstream contributing area. Peryer-

Fursdon (Unknown) suggests this capacity is too small to treat water thoroughly.  



186 
 

Trials undertaken in the Lake Rotorua catchment indicate bunds are significant sinks for 

particulate P, but not for dissolved P or N (Clarke et al. 2013). Although there could be 

some danger that these retained P laden sediments could become a P source in future 

(Clarke et al. 2013; Peryer-Fursdon et al. 2015). To help combat this issue and mitigate 

dissolved nutrients Clarke et al. (2013) recommend detainment bunds are used in 

conjunction with other mitigations, such as downstream constructed wetlands. Peryer-

Fursdon et al. (2015) suggest more of these structures should be present in the high 

rainfall, steeper topography of the Lake Rotorua catchment (where to-date research on 

detainment bunds has occurred) to trap sediment and reduce overland flow into the 

lower catchment.        

Figure 6.11 Diagram showing detainment bund construction (Clarke 2013). 

 

6.7 DISCUSSION AND CONCLUSIONS 

Five mitigation strategies are investigated here. The aim is provision of information and 

quantification around strategy options, variables, practices and effects that may be of 

use in the further development and parameterisation of mitigations in LUCI. Three 

nutrient source based strategies and two nutrient pathway based strategies are 

investigated.  
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Nutrient Source Related Mitigations 

For fertiliser, literature pertaining to nitrate leaching losses at variable fertiliser 

application rates is more prevalent than either literature detailing total nitrogen losses 

or P losses at variable fertiliser application rates. Review of the literature indicates very 

broadly that as fertiliser N or P applications increase, N or P losses increase. However, in 

both cases the relationship is not strong and it is clear other variables are influential 

such as rainfall for N and Olsen P for P. Mitigations related to fertiliser application focus 

on minimising direct losses of fertiliser using the 4R framework, or similar.  

Similarly, more literature is found reporting nitrate leaching losses from applied effluent, 

than is found for either total N losses or P losses. Very generally, it appears nutrient 

losses increase as effluent application rate increases with timing of applications 

according to soil moisture particularly important. It is likely other geo-climatic and 

management variables are influential. Mitigations related to effluent application focus 

on largely on carefully managing storage and application.  

Here stocking rates per se are not discussed, but individual animal losses via excretion 

and patterns of excretory behaviour are discussed. Maximum possible stocking rate is 

highly dependent on provision of feed, which is dependent on fertiliser and effluent 

applications and/or provision of supplementary feed.    

Results from fertiliser, effluent and stocking rate investigations highlight the multi-

variate influences on N and P losses to water, also seen and discussed in previous 

chapters. In terms of modelling mitigations, trying to elucidate and isolate a clear 

relationship between fertiliser or effluent application and N or P losses is challenging. 

Breaking data down in to soil, climate, management groups would appear to be an 

obvious approach, but lack of variability amongst studies prevents this.  

In addition, the farm system must be considered in any mitigation models. There are 

clear links between fertiliser, effluent and stocking rate, and changes in one component 

may require changes or have effects on the other components. These interrelationships 

must be accounted for in mitigation models to ensure unrealistic farm systems are not 

modelled. Teasing these relationships out, while also considering geo-climatic variables, 

is not within the scope of this research and is likely a considerable job. In addition, 
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minimal data is a constraint. Rotz et al. (2005) suggest investigation of farms systems, 

where data limitations exist, is best done through farm models.    

Nutrient Pathway related Mitigations 

Natural and constructed wetlands are investigated here. Wetland performance as a 

nutrient sink can be variable and is linked to many factors e.g. buffer width, soil type, 

topography, plant type, animal management, climate etc. Clearly these factors need 

consideration in wetland mitigation models. Sediment traps are not commonly featured 

in the literature. Presumably because they are a less used mitigation in New Zealand. As 

a result clear quantification of their effectiveness is not reported. However, research 

related particularly to detainment bunds is on-going and they may become a more 

popular mitigation option in future.      
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7 MODEL EVALUATION: TWO CASE STUDIES  

 

 

7.1 INTRODUCTION 

In Chapter 5, N and P export coefficient generating algorithms were presented and 

parameterised. This chapter applies LUCI N and P models, including the new pastoral 

algorithms, to two New Zealand catchments and explores and assesses model 

performance at this wider scale. It should be noted that at the time these case studies 

were conducted, the LCM had not yet been incorporated into LUCI water quality models.  

Section 7.2 presents results from 4 increasingly detailed applications of LUCI N and P 

water quality models in a small (85ha) agricultural catchment in Manawatu, North 

Island, New Zealand. This application particularly illustrates how easily location specific 

data is incorporated into LUCI analyses and shows how this improves predictions 

compared to using regional default input data only.  

Section 7.3 presents results from application of three LUCI ecosystem service sub-

models:- the N and P water quality models, and agricultural productivity model. In 

addition, LUCI trade-off analysis is applied. This study is conducted in the larger (502 

km2), more complex catchment of Lake Rotorua, Bay of Plenty, North Island, New 

Zealand. Not only does this case study provide assessment of LUCI water quality models 

at catchment scale, but it also more broadly illustrates LUCI’s value as an investigative 

and illustrative tool to assist stakeholders with ecosystem service assessment, 

management and decision making.  

To assess LUCI N and P models at the catchment scale, LUCI in-stream predictions are 

compared with measured in-stream water quality data. To reiterate from Chapter 3, 

limitations associated with measured in-stream water quality data exist and must be 

considered as a factor in any measured versus modelled in-stream comparisons. Papers 

summarising results from these studies are available in Appendix A (Trodahl et al. 2017a; 

Trodahl et al. 2017b).  
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7.2 CASE STUDY 1: TUAPAKA CATCHMENT, MANAWATU 

Results of four applications of LUCI water quality models to the Tuapaka catchment are 

presented, with each application using increasingly detailed input data. These are 

compared to OVERSEER predictions and in-stream nitrogen (N) and phosphorus (P) 

measurements. 

7.2.1 Study Area 

The 85ha study area is situated to the east of Palmerston North, New Zealand, in the 

foothills of the Tararua Ranges (Figure 7.1). Terrain is rolling to steep hill with a mix of 

brown and pallic soil orders. Ninety percent of the catchment is in pastoral grassland 

used largely for sheep and beef farming, while the remaining 10% is forested. Sixty three 

hectares of the catchment is within Massey University’s Tuapaka Agricultural 

Experimental Station. Massey University have developed a detailed soil map for the 

experimental farm (Pollok and McLaughlin 1986) and have collected meteorological and 

water quality data within 

the catchment. 

Meteorological data 

includes rainfall and 

evapotranspiration from 

June 2013-June 2015. Ten 

minute flow data and 

monthly in-stream water 

quality sampling (N and P) 

were also collected for this 

period and a further year 

of monitoring is being 

undertaken. In addition, 

Massey University applied 

OVERSEER to the 

catchment. 

Figure 7.1 Terrain and land cover map of Tuapaka catchment showing location in the 

North Island (inset) 
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Burkitt et al. (2016) compared actual water quality measurements, taken between June 

2013 and June 2014, and OVERSEER predictions of N and P loss within the catchment. 

This work is extended here by conducting a comparative analysis between actual water 

quality measurements from June 2013-June 2015, OVERSEER predictions of N and P loss, 

and LUCI water quality predictions. In addition, sensitivity of LUCI’s N and P predictions, 

to input datasets of varying resolution and accuracy, is investigated. 

7.2.2 Method 

Four LUCI water quality model applications are made to the Tuapaka catchment using 

increasingly detailed and catchment specific input data with each successive application 

(Table 7.1). Application 1 uses only default national and regional input datasets. For 

Application 2, nationally available spatially varying annual average rainfall and 

evapotranspiration data by NIWA (Tait et al. 2006; Woods et al. 2006b) is replaced by 

raster surfaces derived from actual rainfall and evapotranspiration data collected from 

June 2013-June 2014. Derivation was achieved by applying the difference between 

actual and modelled climate variables at the point of measurement to the NIWA raster 

climate surfaces. Application 3 uses the above climate surfaces with the addition of 

Massey University’s soil map for the Tuapaka Agricultural Experimental farm, increasing 

spatial detail around soil variability. Application 4 uses the climate surfaces based on 

actual data, the detailed soil data and actual farm input information from OVERSEER xml 

files. Output from the LUCI water quality models, including maps and in-stream loads, 

are compared to actual water quality data and OVERSEER predictions. 

Table 7.1 Data input details between the four LUCI applications 

LUCI Application Climate Data Soil Data Farm Input Data 

Application 1 National1 
 

National2 Regional default3 

Application 2 Raster derived from 
actual rain & evap 

National2 Regional default3 

Application 3 Raster derived from 
actual rain & evap 

Massey University 
Tuapaka Soil Map 

Regional default3 

Application 4 Raster derived from 
actual rain & evap 

Massey University 
Tuapaka Soil Map4 

Actual farm input 
(OVERSEER xml) 

1 Rain and evapotranspiration surfaces developed by NIWA (Tait et al. 2006; Woods et al. 2006b)  
2 NZFSL 
https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Ma
ps&menuItem=SoilData 
3 Regional farm input defaults developed by LUCI developers 
4 Pollock and McLaughlin 1986 

https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&menuItem=SoilData
https://soils.landcareresearch.co.nz/contents/SoilData_FSL_Maps.aspx?currentPage=SoilData_FSL_Maps&menuItem=SoilData
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7.3.3 Results and Discussion  

A number of maps and data are generated by the LUCI water quality models allowing 

exploration of TN or TP loads and concentrations both in-stream and on land. The results 

are presented as a map with DEM grid cells coloured according to their total nutrient 

loads, from low total nutrients in red to high nutrient loads in green. (Note: this colour 

scheme is now reversed in the latest version of LUCI). Nitrogen load maps from the four 

applications of LUCI are shown in Figure 7.2a-d. While the highest and lowest TN loads 

remain the same for all four applications, it is clear that Application 4, with the addition 

of actual farm nitrogen input data for Tuapaka Agricultural Experimental farm, has lower 

nitrogen loads within this area (Figure 7.2d).        

Figure 7.2 Nitrogen load maps from Applications 1-4 of LUCI to the Tuapaka catchment, 
showing the effect of increasingly detailed input data from Application 1 (7.2a) to 
Application 4 (7.2d).     
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Accumulated nitrogen load, classified into 3 groups, from LUCI Applications 1-4 is shown 

in Figure 7.3a-d. These indicate pathways where water and nitrogen converge in the 

landscape. Spatially explicit identification of these pathways illustrate existing 

opportunities to intercept nutrients before they enter the stream network. Like Figure 

7.2, maps from Applications 1-3 are very similar. Figure 7.3d, however, more clearly 

identifies pathways of very high load, enabling specific spatial targeting of those areas 

for intervention and mitigation.  

Figure 7.3 Accumulated nitrogen load maps from Applications 1-4 of LUCI to the 
Tuapaka catchment, showing the effect of increasingly detailed input data from 
Application 1 (7.3a) to Application 4 (7.3d).  

Figure 7.4 shows P load maps from Applications 1-4. Figures 7.4a and 7.4b are very 

similar with highest P loads sourced from steeper pastoral grassland and lowest loads 

from forested areas and flatter pastoral grassland in the upper catchment. With the 

addition of the detailed soil map in Application 3 (Figure 7.4c), highest P loads are 

reduced to 8.8 kg TP ha-1 yr-1 from 12.3 kg TP ha-1 yr-1 in Applications 1 & 2. This is 

because Massey University’s soil map indicates low P retention pallic soils only make up 
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20% of the catchment compared to 80% with the national soil map. A further reduction 

in highest P loads (to 5.6 kg TP ha-1 yr-1) occurs with addition of actual farm inputs in 

Application 4 (Figure 7.4d).   

Figure 7.4 Phosphorus load maps from Applications 1-4 of LUCI to the Tuapaka 
catchment, showing the effect of increasingly detailed input data from Application 1 
(7.4a) to Application 4 (7.4d). 

 

Figure 7.5a-d shows classified accumulated P load maps from LUCI Applications 1-4. Like 

Figure 7.3, pathways of water and P convergence in the landscape are identified where 

opportunities exist to intercept nutrients before they enter the stream network. As with 

N, it is clear the addition of actual, more detailed data better defines pathways, allowing 

for highly spatially targeted interventions and mitigations.  

Table 7.2 summarises N and P concentration and specific load from measured water 

quality data, OVERSEER, and the four LUCI applications. Average concentration and 

specific load, based on measurements from June 2013-June 2015, are shown in row 1 

with the range in brackets. OVERSEER estimates of N and P annual average loses are 
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shown in row 2, and below that, predictions of N and P in-stream concentration and 

specific load for each of the four LUCI applications. 

Figure 7.5 Accumulated phosphorus load maps from Applications 1-4 of LUCI to the 
Tuapaka catchment, showing the effect of increasingly detailed input data from 
Application 1 (7.5a) to Application 4 (7.5d). 

 

Table 7.2 – Measured and modelled concentration and specific load for the Tuapaka 
catchment. Note for Row 1 mean is presented with range in brackets. 

 

Model/Measured NITROGEN 
Concentration 

(mg N/L) 

NITROGEN 
Specific Load 
(kg N/ha/yr) 

PHOSPHORUS 
Concentration 

(mg N/L) 

PHOSPHORUS 
Specific Load 
(kg P/ha/yr) 

Measured 0.61 
(0-1.5) 

2.37 
(1.67-3.07) 

0.025 
(0-0.1) 

0.12 
(0.06-0.18) 

Overseer  8  0.8 

LUCI Application 1 2.16 7.39 0.22 0.77 

LUCI Application 2 2.34 7.39 0.25 0.77 

LUCI Application 3 2.43 7.7 0.1 0.33 

LUCI Application 4 1.76 6.23 0.08 0.28 
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It is clear from the maps and Table 7.2 there is little difference in outcome between LUCI 

Application 1 and Application 2.  Rainfall and evapotranspiration data from Massey 

University indicates a difference of 10% compared to annual average rainfall and 

evapotranspiration for the area from NIWA data. In terms of excess rainfall (i.e. rainfall 

less evapotranspiration) the difference between measured and modelled data is only 

7%. Clearly these differences are not sufficient to significantly change LUCI output for N 

or P. The addition of detailed soil data in Application 3 has a clear impact on sources, 

concentrations and loads of P due to significant decreases of pallic soil within the 

catchment. Detailed farm input data also decreases loads for both N and P.  

These results highlight the important influence of farm inputs for N loss and soil plus 

farm inputs for P loss and indicate location specific soil and farm data is preferable, 

where available, for use in LUCI. Additionally, the ease with which actual and specific 

data can be incorporated into LUCI is demonstrated. 

There are clear differences between LUCI predictions and measured concentrations and 

specific loads (Table 7.2). While uncertainties exist around water quality measurements, 

particularly at the monthly sampling scale (Letcher et al. 2002; Johnes 2007; Krueger et 

al. 2012; Lloyd et al. 2016), this analysis suggests that further development to improve 

representation of nutrient attenuation in the catchment may improve the accuracy of 

LUCI predictions. The export coefficient algorithms quantify nutrient losses from each 

grid square, but further attenuation is applied as these nutrients cascade through the 

catchment. Currently, two catchment scale attenuation factors lump into one linear 

coefficient the impact of losses, lags and/or transformations from root zone to stream, 

and a similar factor represents within-stream attenuation. However, attenuation 

variability at the scales within which LUCI operates could be better represented.  

7.2.4 Conclusion 

Application of the newly developed multivariate, algorithmic approach to EC calculation 

allows small-scale variability within land covers to be considered, which enhances farm 

to catchment scale water quality modelling in LUCI. Exploration of effects of data 

resolution and detail on N and P exports using this method in LUCI on the Tuapaka 

catchment indicates catchment or farm specific data is preferable, where available.  
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However, clear differences exist between measured and LUCI predicted nutrient losses 

at the catchment scale. Notwithstanding uncertainty around measured water quality 

data, improved understanding and representation of nutrient attenuation in the 

catchment is likely to improve the accuracy of LUCI predictions. Currently, attenuation is 

broadly accounted for in LUCI with catchment wide root zone to stream and in-stream 

attenuation factors applied for N and P respectively. Development of attenuation factors 

that account for small scale spatial variability within catchments and recognise different 

processes (lag times, biogeochemical transformations, etc.) is desired. This, in addition 

to development of an export coefficient algorithmic approach for other land cover types 

that is based on data from those land covers, are areas for further investigation and 

development. 

7.3 CASE STUDY 2: LAKE ROTORUA CATCHMENT, BAY OF PLENTY 

LUCI water quality and agricultural productivity models are applied to the Lake Rotorua 

catchment in New Zealand.  N and P sources, sinks and pathways in the landscape are 

identified and trade-offs and synergies between water quality and agricultural 

productivity investigated. While the focus for assessment here is N and P water quality 

models, agricultural productivity and trade-off tools, which have not been developed as 

part of this research project, are also applied to demonstrate LUCI’s utility for farm and 

catchment management.  

7.3.1 Study Site 

Lake Rotorua is situated in the Bay of Plenty, New Zealand (Figure 7.6). The lake is a 

volcanic caldera with significant geothermal resources and springs in the surrounding 

catchment. The contributing surface water catchment is 502.1 km2. In addition, there 

are significant groundwater resources. It is estimated that an additional area of 35 km2 

to the north-west of the catchment also contributes groundwater to the Lake Rotorua 

system (White et al. 2014). The catchment is largely comprised of porous allophanic and 

pumice soils, although the west of the catchment consists of less porous podzol soils.  

Smaller areas of recent, organic and raw soil are also present.  

Land cover within the catchment is largely agricultural (210 km2). 1% of agricultural land 

cover is crops and orchards. The remaining agricultural land is pastoral with 25% of this 
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in dairy farming and 75% in dry stock (sheep and beef) farming (BoPRC 2012b). There is 

negligible irrigation or artificial drainage on agricultural land within the catchment due 

to high rainfall and porous soils. Commercial forestry covers 74.9 km2, and non-

commercial forest and shrubland 95.8 km2. The largest urban area in the catchment is 

the city of Rotorua (20.8 km2) with a population of just over 53 000 (Te Ara 2016).  

Lake Rotorua has suffered from well-documented reductions in water quality in recent 

decades. Past and present anthropogenic drivers of declining water quality include 

intensification of pastoral farming, septic tanks and sewage treatment plant discharge. 

However, natural sources of N and P are also present due to the area’s geology and 

volcanism and, in some sub-catchments, these represent a significant proportion of the 

nutrient load (Williamson and Cooke 1982; Rutherford et al. 2011; Tempero et al. 2015).   

Figure 7.6 Lake Rotorua catchment and land cover 

Land management strategies to reduce nutrient input to the lake are used to varying 

degrees and include riparian protection from stock (fencing and planting), efficient 

fertiliser use, detention dams, tree planting for erosion control, land use change and 

improved septic and sewage treatment (Rotorua Te Arawa Lakes Strategy Group 2016). 

Recent local government regulation now limits nitrogen and phosphorus export to a 

2001-2004 benchmark for properties over 4000 m2. This benchmark is established for 

each property using OVERSEER (BoPRC 2012a).   



199 
 

Despite hydrological complexity and diverse nutrient sources in the Rotorua catchment, 

LUCI water quality models are applied here because long term, fairly comprehensive 

hydrological and nutrient data for 11 sub-catchments is available. In addition, farmers 

are concerned that the new regulatory measures to limit nutrient losses to waterways 

within the catchment will negatively impact the viability of agricultural enterprise in the 

region (McRae 2015).  LUCI can assist with decision making around this complex issue by 

providing information to stakeholders, and farmers respond positively to the visual, 

spatially explicit nature of the LUCI framework (Scott 2015). Although the focus of this 

thesis is LUCI’s N and P water quality models, the agricultural productivity tool is applied 

and a trade-off analysis conducted to assess the likely impact of reducing N and P export 

to water on agricultural productivity. This is key information for farmers and other 

stakeholders.  

7.3.2 Method 

Base Data 

The base data for this application includes a 5 m by 5 m DEM derived from LiDAR data 

from Bay of Plenty Regional Council (BoPRC), land cover data from the New Zealand 

Land Cover Database (LCDB4), soil data from the New Zealand Fundamental Soils Layer 

(NZFSL), stream network data from the National Institute of Water and Atmospheric 

Research (NIWA) River Environment Classification (REC), rainfall and evapotranspiration 

surfaces from NIWA (Tait et al. 2006; Woods et al. 2006b), and locations of spring 

additions of water (m3/s) to the river network developed by the author from information 

provided by BoPRC. Further information, on all but the author developed springs data, is 

found in Chapter 3 and Table 1.1. 

LUCI Models Applied 

Water Quality Models 

LUCI N and P water quality models are thoroughly described in previous chapters. Here 

the pastoral land cover export coefficient generating algorithms are applied. However, 

export coefficients for other land cover categories, including urban, are derived from 

New Zealand literature and summarised in Table 7.3 (Alexander et al. 2002a; Quinn and 

Stroud 2002; Davies-Colley and Wilcock 2004; Lin 2004; Meneer et al. 2004; McQueen et 
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al. 2006; Parfitt et al. 2006; Al Bakri et al. 2008; McDowell and Wilcock 2008; Cox et al. 

2012; Davis et al. 2012; Magesan et al. 2012; Cameron et al. 2013; Davis 2014; Baillie 

and Neary 2015).  

As discussed in Case Study 1, representation of attenuation variability in LUCI water 

quality models is a focus for future improvement. Here an attenuation factor of 0.5 for N 

is applied, which has been shown to be appropriate when applying OVERSEER N exports 

in one small catchment scale application (Power et al. 2002), although this requires 

wider confirmation (Arbuckle 2015). Given other sources of uncertainty, observed versus 

modelled instream nitrogen concentrations seem reasonable with this attenuation 

factor (see later results), so no additional calibration of the factor is attempted for this 

study. An attenuation factor of 0.7 for P is estimated and applied based on differences 

between observed and modelled phosphorus in-stream concentrations, although no 

corroborating evidence from other studies is currently available to ascertain whether 

this is more generally representative.  

To calculate ECs at the farm or small catchment scale, where direct communication with 

farmers is possible, actual management data can be used, as in Case Study 1. For larger 

catchment scale applications, such as this, individual farm details are usually not known 

and regional averages, derived in Chapter 5, are applied. Table 7.3 shows ECs used for 

this study for pastoral land covers based on the new algorithms with regional average 

input variables. Pastoral ECs for P also consider slope in degrees. A range of pastoral ECs 

on soils found in the Lake Rotorua catchment for slopes of 2-15° is shown in Table 7.3. 

The average slope value for agricultural land in this catchment is 10°. 

Agricultural Productivity 

The agricultural productivity model predicts optimal utilisation based on evaluation of 

slope, fertility, aspect, drainage and elevation. Reasonably flat, fertile, well-draining soils 

are considered of highest value for agricultural production. As slope increases, and/or 

soils become seasonally to permanently waterlogged (as can occur on very flat, poorly 

draining soils), and/or soil fertility decreases, estimated productive value lowers. 

Drainage and fertility are determined soil data variables. Aspect is DEM determined. 

LUCI currently considers north facing slopes most productive in the Southern 
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Hemisphere, and up-weights fertility and drainage (i.e. soils with positive aspect receive 

a bonus to fertility and drainage 

Table 7.3 - ECs used for this application of LUCI N and P export to water tools. ECs for P 
consider slope in degrees and the above gives the range of ECs for pastoral land for 
slopes of 2-15°. The average slope values for agricultural land in the Lake Rotorua 
catchment is 10°. Forest cover ECs show a range because there are a variety of forest 
types with a variety of nutrient ECs. 

Land Cover Soil Order Nitrogen EC 
(kg N/ha/yr) 

Phosphorus EC 
(kg P/ha/yr) 

Pastoral Allophanic 25.4 0.02-0.06 

 Organic 13.8 0.14-0.47 

 Podzol 18.1 0.26-0.79 

 Pumice 25.8 0.05-0.25 

 Recent 26.8 0.06-0.27 

 Raw 22.6 0.04-0.11 

Orchard & Perennial Crops  6.8 0.05 

Short-rotation Crops  10.6 1.6 

Urban  6.8 1 

Non-commercial Forest  2.4-2.9 0.2-0.4 

Shrubland  6 0.7 

Commercial Forest  1.2-1.6 0.2-2.2 

 

scores). Here, slopes ≤ 5° are considered very productive, between 5° and 15°, 

somewhat productive, and slopes >15°, of lower production value. Often an elevation 

threshold is used to reflect temperature or other variations impacting productivity. For 

this application no threshold is implemented because increasing rainfall as elevation 

increases in the well-draining Bay of Plenty soils, reduces drought and compensates for 

any productivity deterioration caused by decreasing temperature. Slope, elevation and 

cut-off fertility thresholds can be changed to account for local conditions and practices.  

Current land utilisation is determined from land cover data. By comparing current and 

optimal agricultural use, LUCI identifies locations appearing under or over utilised and 

suggests where change in land use or management could be beneficial. Areas of current 

optimal use are also identified for protection. For further detail on LUCI agricultural 

productivity algorithms see Jackson et al. (2014) and Jackson et al. (2013a).   



202 
 

Trade-off and Synergy Identification 

LUCI trade-off tools identify opportunities to improve delivery of multiple ecosystem 

services, while protecting areas already delivering multiple ecosystem services of high 

quality. When individual ecosystem services are analysed, each terrestrial cell is 

categorised into one of five provisioning categories - very high existing service, high 

existing service, moderate or marginal service with little capacity to improve, small or 

degrading service with significant capacity to improve, very small or rapidly degrading 

service with significant capacity to improve.   

During trade-off analysis, this categorisation is further reduced to three categories – a) 

high existing good, b) bad or negligible existing good with potential to improve, and c) 

negligible existing good but negligible opportunity to improve significantly. These 

categories, for two or more single ecosystem services, are layered to identify parts of 

the landscape where trade-offs versus win-win situations exist and where management 

interventions could enhance or protect multiple ecosystem services. Areas with only 

multiple “high existing good” are flagged as win-win situations where status quo should 

be preserved. Areas with multiple “bad or negligible existing good with potential to 

improve” are flagged as win-win situations for potential change. Areas where trade-offs 

exist (i.e. where significant improvements of a service would likely go in tandem with 

degradation of other services) are separately categorised, as are areas where there are 

no obvious advantages in either preserving the status quo or implementing 

management change.  

A numerical value is assigned to each of the three categories described above and used 

to calculate trade-offs and synergies among ecosystem services. Five calculation 

methods are available - equally weighted arithmetic, conservative, standard, weighted 

additive, and a combined “conservative and weighted additive” approach. The equally 

weighted arithmetic method for multiple ecosystem service trade-off and synergy 

identification is used here in the absence of any clear reason to use a different 

approach. Two-way and three-way analyses between agricultural productivity and N and 

P exports to water are applied. For further detail on LUCI trade-off algorithms see 

Jackson et al. (2014) and Jackson et al. (2013a).  
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To explore the extent to which targeting zones of high accumulated load rather than 

input loads over the catchment might reduce loss of agricultural productivity, two 

separate analyses were conducted (by other members of the LUCI development team) 

for loads and accumulated loads, both aiming to reduce loading to waterways of both N 

and P. Load and accumulated load outputs from LUCI were each classified into 10 classes 

using Jenks’s natural breaks (implemented via ArcGIS software).  A zone for each class 

was created and the average value of each attribute was calculated using zonal 

statistics.  Four pasture production classes were assigned based on likely pasture dry 

matter production for each productive environment identified in the predicted optimal 

agricultural utilisation layer, with values ranging from 6000 to 12000 kg dry matter/ha. 

The agricultural productivity, N and P layers were overlaid resulting in 88 combinations 

for load and 352 combinations for accumulated load. The area of each of these 

combined zones was found and area weighted total loads calculated in a spreadsheet.  A 

simplex method (implemented via Lindo Systems Inc.’s What’sBest! Excel Add-in) was 

used to find the areas required to achieve varying degrees of N and P load mitigation 

with minimal impact on agricultural productivity. The same method was used to identify 

areas with large amounts of accumulated load. The contributing areas above these 

points, and their associated direct loadings were then calculated to establish the total N 

and P load that could potentially be intercepted in these zones of high accumulated 

load.  

7.3.3 Results 

Water Quality 

Nitrogen 

Strong spatial gradients in the total generated N loads exist in the Lake Rotorua 

catchment (Figure 7.7) and are linked to combined land cover and soil order categories. 

The highest TN loads are associated with pastoral land situated on porous allophanic, 

pumice and recent soils, while pastoral land in the west of the catchment over podzol 

soils has lower TN loads. The lowest TN loads are associated with both commercial and 

non-commercial forests and shrubland on all soil types. Urban areas are moderate 

sources of TN. 
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When accumulated TN load is considered at the catchment scale (Figure 7.8) the same 

pattern of highest loads associated with pastoral land is observed. When considered at 

smaller spatial scales, however, this is not exclusively the case. A close-up view of a 

mixed land-use portion of the landscape (Figure 7.8 inset) reveals that even in forested 

areas (largely amber) there are clear pathways of high to very high accumulated TN 

loads where water converges in the landscape.  

Investigation of model performance for each sub-catchment, by comparing over and 

under predicted in-stream TN concentrations with LCDB4 land cover and with 

groundwater characteristics from Tempero et al (2015) and Morgenstern et al (2006), 

shows no clear pattern. This indicates no particular bias associated with LUCI’s land 

cover based EC’s.  However, in the four sub-catchments where groundwater is likely 

sourced from beyond sub-catchment boundaries (Hamurana, Awahou, Waiowhero and 

Waiohewa), LUCI under predicted in-stream TN concentrations by 55-90% of observed 

concentrations. In addition, Waiohewa sub-catchment has notably high ammonium 

input from a local geothermal source (Williamson and Cooke 1982). In one other sub-

catchment (Waingaehe) where groundwater is likely sourced from within the catchment 

bounds yet has very long (>100 years) lag times, LUCI over predicted in-stream TN 

concentrations by 69% (Table 7.4 and Figure 7.9).  At the six sites where neither of the 

above situations apply, most sub-catchment predictions are no more than 20% different 

from observed TN concentrations.  The one exception is a small sub-catchment 

(Lynmore) to the south-east for which little groundwater data is available. LUCI under 

predicted TN concentrations for this catchment by 49%. Hoare (1984) also noted 

particularly high nitrate concentrations in this stream.  He attributed it to septic tank 

leachate, although since the early 1980’s this area has been connected to Rotorua’s 

sewage treatments works. Possibly, this small sub-catchment also receives groundwater 

from surrounding sub-catchments and/or volcanic N influences prevail.  
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 Figure 7.7 TN load generated in Lake Rotorua catchment 

Figure 7.8 Accumulated TN load for whole Lake Rotorua catchment (a) and close up (b) 

 

 

 

(a) (b) 
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Table 7.4 Observed and predicted TN concentrations for 11 Lake Rotorua sub-
catchments with detail on groundwater (GW) vs surface water (SF) dominance (where 
available). 

Catchment 
Name 

Observed 
TN (mg/lt) 

Predicted 
TN (mg/lt) 

% diff from 
observed (100%) 

Notes on Catchment 

Hamurana 0.77 0.1 -87.01 GW from out of 
catchment 

Awahou 1.28 0.48 -62.50 GW possibly from out 
of catchment 

Waiteti 1.41 1.45 2.84 SF Dominated 

Ngongotaha 0.99 1.16 17.17 SF Dominated 

Waiowhiro 1.05 0.43 -59.05 GW possibly from out 
of catchment 

Utuhina 0.91 0.73 -19.78 50/50 SF/GW 

Puarenga 1.14 1.05 -7.89 SF Dominated 

Lynmore 3.01 1.54 -48.84 Historically high NO3
- 

Basley Rd 2.28 2.7 18.42 
 

Waingaehe 1.48 2.5 68.92 GW Dom from within 
catchment, but long lag 
time 

Waiohewa 3.01 1.34 -55.48 GW from Hells Gate 

 

Figure 7.9a, showing observed versus LUCI predicted TN concentrations for all data, 

reports a linear R2 value of 0.2733. Excluding Lynmore and Waiohewa sub-catchments, 

both noted for their elevated N concentrations (Williamson and Cooke 1982; Hoare 

1984), a linear R2 value of 0.7084 is seen (Figure 7.9b). By comparison, measured versus 

CLUES predicted TN concentration resulted in R2 values of 0.0066 (including outliers) and 

0.3966 (excluding outliers) in the Auckland region (Semadeni-Davies et al. 2015) and 

0.454 in Waikato (Elliott et al. 2011). Comparison between observed and LUCI predicted 

TN concentrations for Wales show an R2 of 0.8582. To-date applications of LUCI in the 

UK have all used the “one export coefficient per land cover category” method (as 

opposed to the algorithmic method applied here) using UK ECs with a longer history of 

testing and application compared to New Zealand. In addition, Wales is not subject to 

the same groundwater and volcanic complexity as seen in the Rotorua catchment. 
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Figure 7.9a Observed vs LUCI predicted TN concentrations for all 11 Lake Rotorua sub-
catchments and 7.9b Observed vs LUCI predicted TN concentrations for 9 Lake Rotorua 
sub-catchments.  

Phosphorus 

There are strong spatial gradients in the total generated P loads in the Lake Rotorua 

catchment which are linked to land cover and soil, but also highly influenced by 

topography (Figure 7.10). Pastoral land on steeper slopes is associated with highest P 

loads. Moderate P loads are associated with pastoral land on moderate slopes, urban 

land cover and newly harvested commercial forest. Intact forest areas are associated 

with the lowest loads. 

When accumulated TP load is considered at the catchment scale (Figure 7.11) the same 

pattern of highest loads associated with pastoral land is observed. At smaller spatial 

scales, this pattern is still clear (Figure 7.11 inset) although even in forested areas 

(largely amber) there are clear pathways of high to very high accumulated TP loads 

where water converges in the landscape. 

LUCI appears to have a tendency to over-predict P concentrations in surface water 

dominated catchments and under-predict in groundwater dominated catchments (Table 

7.5).  No clear patterns are evident between percent over- and under-predicted and 

catchment land-cover characteristics indicating no particular bias associated with LUCI’s 

land cover based EC’s. Figure 7.12a shows observed TP concentrations versus LUCI 

predicted TP concentrations and reports a linear R2 value of 0.002. White et al. (2004) 

report groundwater concentrations of PO4
3--P in the Rotorua catchment of 0.1-0.4 mg/L. 

If the lower limit of 0.1 mg/L is added to the six catchments with significant groundwater 
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resources, a linear R2 value of 0.6009 is reported. If, in addition, attenuation is increased 

to 0.8 for P, a linear R2 value of 0.6025 is reported (Figure 7.12b), although no specific 

evidence suggests increasing attenuation is necessarily warranted. By comparison, 

predicted CLUES TP vs measured TP concentration resulted in R2 values of 0.11 

(including outliers) and 0.1113 (excluding outliers) in the Auckland region (Semadeni-

Davies et al. 2015).   

It appears likely groundwater and volcanic complexity in the Rotorua catchment 

complicate P loss prediction, which even without these complexities is acknowledged as 

challenging to model at catchment scale (Meals et al. 2010; Jarvie et al. 2013) and, as 

discussed in Chapter 3, uncertainty around observed P measurements is a known issue 

(Krueger et al. 2012; Lloyd et al. 2016). 

 Figure 7.10 TP load generated in the Lake Rotorua catchment 
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Figure 7.11 Accumulated TP load for whole Lake Rotorua catchment (a) and close up (b) 

Table 7.5 Observed and predicted TP concentrations for 11 Lake Rotorua sub-
catchments 

Catchment 
Name 

Observed 
TP (mg/L) 

Predicted 
TP (mg/L) 

% diff from 
observed (100%) 

Notes on Catchment 

Hamurana 0.08 0.003 -97 GW from out of catchment 

Awahou 0.07 0.027 -61 GW possibly from out of 
catchment 

Waiteti 0.05 0.099 98 SF Dominated 

Ngongotaha 0.05 0.117 134 SF Dominated 

Waiowhiro 0.05 0.027 -46 GW possibly from out of 
catchment 

Utuhina 0.07 0.048 -31 50/50 SF/GW 

Puarenga 0.07 0.066 -6 SF Dominated 

Lynmore 0.06 0.066 10  

Basley Rd 0.05 0.126 152  

Waingaehe 0.12 0.129 8 GW Dom from within 
catchment, but long lag time 

Waiohewa 0.08 0.057 -29 GW from Hells Gate 
 

 

(a) (b) 
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Figure 7.12 Observed vs predicted TP concentrations for 11 Lake Rotorua sub-

catchments 

Agricultural Productivity 

Estimates of current agricultural use, based on national land cover information, 

considers all arable and high producing grassland to be highly productive. Low producing 

grassland is considered to be of lower production value, and the dominant other land 

uses of commercial and non-commercial forestry areas within the catchment are 

classified as non-productive. Urban areas are excluded from the analysis (Figure 7.13a).     

Predicted optimal agricultural utilisation, based on an analysis of slope, soil fertility, 

aspect and soil drainage characteristics by LUCI indicates 106.3 km2 of the catchment 

has very high to high productive capacity. This land is concentrated on flatter lowlands 

and highlands within the catchment (Figure 7.13b). This finding contrasts with the 

amount of existing agricultural land cover, an area of 206.8 km2. LUCI predicted a 

moderate productive capacity for an area of 140.6 km2, which surrounds highly 

productive land where slopes begin to steepen, and marginal to negligible productive 

capacity for 142.1 km2 of the catchment, on the steepest slopes and wetland areas 

surrounding the lake.  

Figure 7.13c compares current and optimal agricultural land use indicating that, if both 

current and predicted utilisation maps are correct, only 36.6% (184 km2) of the 

catchment is being used at optimal or close to optimal production levels, while almost 

half (46.3%) of the catchment falls into categories of sub-optimal agricultural use (i.e. 
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139.4 km2 in non-optimal use and agricultural production is not realised on 93.4 km2 of 

the catchment).  This analysis suggests potential to improve agricultural productivity 

exists on 18.4% of the catchment area, but that agricultural over use could be a problem 

on 27.9% of the catchment area.   

Trade Off and Synergy Identification 

Given that sources and pathways of N and P frequently correspond, it is unsurprising to 

observe similar spatial patterns between agricultural productivity and exports of these 

nutrients (Figure 7.14a & b).  Forty-seven km2 or 11.4% of the catchment potentially 

provides opportunities to improve both TN export and agricultural productivity (bright 

green areas Figure 7.14a), while 61 km2 or 14.7% of the catchment potentially provides 

opportunities to improve both TP export and agricultural productivity (bright green 

areas Figure 7.14b). There are no areas within the catchment where agricultural 

productivity is high and TN or TP export to waterways is low.     

Opportunities are high to reduce both TN and TP export to waterways within the 

catchment (Figure 7.14c) because sources and pathways for N and P frequently coincide.  

154 km2 or 37% of the catchment (bright green) offers opportunities for reducing both 

TN and TP export and a further 65 km2 or 15.7% of the catchment (dark green) offers 

opportunities to reduce one of these.  

Three way trade off and synergy analysis indicates 119 km2 or 28.7% of the catchment 

provides opportunities to improve all services and, importantly, that no part of the 

catchment currently provides well for all three services (Figure 7.15).   
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Figure 7.13 LUCI agricultural productivity maps for the Lake Rotorua catchment 
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Figure 7.14 Two way trade off and synergy identification between TN, TP and Agricultural Productivity for the Lake Rotorua catchment 
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Figure 7.15 Three way trade off and synergy identification between TN, TP and Agricultural Productivity for the whole Lake Rotorua catchment 

(a) and a close up (b) 

(a) (b) 
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The analysis investigating targeted zones of load and accumulated load with consideration 

of agricultural productivity shows that achieving significant reductions in in-stream loading 

via targeting direct loading of N and P cannot be achieved without significant loss of 

productivity, although spatial optimisation does allow the percentage loss in production to 

be lower than the percentage gains for water quality outcomes. For example, 20% of both N 

and P loading could be mitigated by targeting 17% of agricultural land area, with 12% of 

total agricultural production impacted, while achieving 50% reduction in both loadings 

would impact 46% of agricultural land area and 37% of total agricultural production. 

Targeting 5% reductions in loading could be achieved via modifications to 4.2% of 

agricultural land impacting 3% of production. 

Taking an approach targeting accumulated load requires a much smaller footprint on 

agricultural land. Targeting 1% of agricultural area achieved a reduction of approximately 

6.5% in loading, while targeting 1.5% resulted in an 8.4% reduction.  

7.3.4 Discussion 

Water Quality 

Nitrogen 

Nitrogen export analysis results demonstrate LUCI’s ability to provide clear guidance for 

positioning of nutrient mitigation solutions. Various opportunities exist to reduce N export 

to waterways and Figures 7.7 & 7.8 suggest two general strategies for reduction: targeting N 

sources and targeting N pathways. N sources on farms can be lessened by reducing the 

amount or frequency of N fertiliser, changing from cattle to sheep farming, using feedpads 

or housing to minimise winter grazing, improving effluent management or reducing stocking 

rates (Monaghan et al. 2008).  

While a more strategic approach to source reductions is recommended, as an indicative 

scenario a blanket halving of N fertiliser inputs to all pastoral land in the Lake Rotorua 

catchment indicates this would result in reduced N loads of 12.7% on recent soils, 13.8% on 

allophanic soils, 20.2% on pumice soils and 22.7% on podzols. In-stream N loads at stream 

confluences with Lake Rotorua would reduce by 11-20% depending on sub-catchment 

characteristics.    
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N pathways, where water and nutrients converge within the landscape and make their way 

to the stream network, are depicted in bright green in Figure 7.8. These pathways represent 

opportunities to intercept nutrients. Targeted placement of nutrient interception at these 

locations can mitigate N generated from all up-catchment areas. N pathways, as identified 

in classified accumulated N load using a minimum threshold accumulation of 1 kg yr-1 

(Figure 7.8), cover 36.7 km2 or 7.3% of the Lake Rotorua catchment area. Focusing N 

interception in these areas alone would be highly effective, resulting in significant N-

removal using only 7.3% of the catchment land area. Interception strategies are numerous 

and should be chosen in conjunction with land and farm managers, but could include 

planting vegetation or restoring wetlands. Chapter 6 offers a comprehensive review of a 

limited number of nutrient interception mitigation strategies. McDowell et al. (2013) 

summarise a wider range of strategies in less detail, but include an assessment of relative 

cost vs effectiveness.  

Sub-catchment scale analysis indicates improved representation of groundwater residence 

times and pathways, and associated nutrient transport is important, particularly where 

groundwater is sourced from outside the surface catchment and/or where lag times are 

significant. Future work will utilise the method of Jackson et al. (2006), which allows the 

history of land management change and variable residence times within a catchment or 

sub-catchment to be explicitly accounted for. This has previously quantified the lag times in 

river response to changing management that occur as a consequence of groundwater 

residence times (Jackson et al. 2007; Jackson et al. 2008). However, the method requires the 

collation of a long-term dataset of historical land use change and a robust understanding of 

the pathways and residence times for groundwater movement within the catchment. 

Despite these higher data requirements, the method is necessary to overcome a major 

drawback of the EC approach, and the typical assumption in policy, that current water 

quality is directly (and only) associated with current land cover and/or management. 

Phosphorus 

As with N, although the model requires further enhancement, LUCI provides clear guidance 

for positioning of mitigation solutions in its current form. Sources of agricultural P to 

waterways can be reduced using similar targeted management strategies as those described 

for agricultural N sources, although further attention to the effects of slope is of particular 



217 
 

importance. P readily binds to clays and metal-oxides in soil. As a result, it tends to move 

attached to sediment, which occurs more frequently on exposed steeper slopes (Bennett 

and Schipanski 2012).  Retirement or conversion of steep pasture to natural or commercial 

forest cover is an option. As can be seen in the results, intact forestry blocks largely remain 

in-situ with little P loss. However, once trees are harvested, P is more likely to be lost to 

waterways with sediment run-off.  Strategies to reduce soil loss during forest harvest 

include minimising logging roads, retaining waste wood on-site, and the maintenance of 

riparian buffer zones (Baillie and Neary 2015).  

In a similar manner to N, areas of very high TP accumulated loads occur where water and 

nutrients converge in the landscape (Figure 7.11). Again, these are ideal locations for 

targeted interception.  As with N, a variety of P interception strategies exist (see Chapter 6 

and McDowell et al. (2013)) and should be chosen in conjunction with land and farm 

managers.  

Additionally, areas of N and P sources and pathways within the Rotorua catchment 

frequently correspond (Figures 7.7, 7.8, 7.10 and 7.11). Therefore, significant land areas 

exist with opportunities to improve both N and P export to water simultaneously. This 

synergy is discussed further in Trade-off & Synergy Identification.   

In general, a highly targeted source or pathway approach for N and/or P requires detailed 

and precise understanding of farm environments, but may achieve significant reductions in 

generated and exported nutrient loads without significantly impacting production. Such an 

approach traditionally relies on individual farmer skills and management, which have been 

identified as crucial factors when balancing nutrient reductions with productivity 

(Anastasiadis and Kerr 2013; Dewes 2013).  However, frameworks such as LUCI can assist 

more farmers to take a highly targeted and strategic approach.   

Agricultural Productivity 

The analysis shows large areas of the Rotorua catchment are currently in high agriculturally 

productive land uses. Much of this area however may not be suited to these levels of 

production. In addition there are also under-utilised areas within the catchment. Clearly this 

analysis could be used as a basis for discussion around land use suitability. 
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However, the analyses are somewhat limited because current agricultural use is based on 

national land cover information, which is admittedly broad-brush and lacks much capacity to 

distinguish variations in production in pastoral landscapes. Additionally, commercial forest 

productivity areas are not currently included and could be included. Commercial forestry is 

often used in New Zealand as a means of maintaining production on steeper terrain. In 

addition, production forests can act as nutrient sinks, carbon stores, and may protect soil 

from erosion and moderate flooding (Baillie and Neary 2015).  Furthermore, LUCI could help 

to identify ideal locations for conversion to commercial forest.   

Trade-off & Synergy Identification 

LUCI indicates there are significant areas within the catchment where both agricultural 

productivity and N or P loss could be improved. However, difficulty arises in choosing a 

strategy that might address both issues, because agriculturally productive areas are 

identified as significant nutrient sources (Figure 7.7 and 7.10) and nutrient pathways are 

most prevalent on agricultural land. Illustrating this point further, Figures 7.14a and 7.14b 

show there are no areas within the catchment where both services are currently well 

provided for, that is, there are no areas where agricultural productivity is high and TN or TP 

export to waterways is low. In contrast, opportunities are high to improve both TN and TP 

export to waterways within the catchment (Figure 7.14c) because sources and pathways for 

N and P frequently coincide.   

Clearly if water quality is to be improved, it is likely to come at the expense of agricultural 

land because most of the nutrient interception pathway opportunities exist on agricultural 

land.  However, entire pathways may not be required for adequate nutrient interception, 

rather interceptions could be strategically placed in receiving areas to mitigate the largest 

uphill area possible.  Additionally, due to shared pathways for N and P movement, single 

mitigation options that target both nutrients can be effective. 

Furthermore, analysis suggests targeting zones of nutrient convergence in the landscape 

may be highly beneficial in maintaining productivity levels. The current method requires 

some modification to its classification techniques to quantify potential for larger reductions 

in water loading. It is important to note these results are conservative and perhaps 

underplay the full potential of such an approach; the analysis on accumulated load 

overestimates the amount of area required for interception as the accumulated load is 
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spatially connected and non-additive. For this illustrative calculation steepest descent was 

used, but methods of weighting flow via all downwards slopes will also be explored in 

future. A more refined analysis would also estimate the reduction in agricultural production 

from a particular mitigation practice because measures such as totally removing livestock 

from pastoral land or planting up pastoral land to intercept upslope nutrients are effectively 

a total loss of production, while other management changes such as reducing fertiliser input 

would only result in a partial reduction.  

Clearly there are options available within the Lake Rotorua catchment to reduce nutrient 

export to waterways and keep loss of agricultural productivity to a minimum.  As illustrated 

above, options on agricultural land involve strategically managing nutrient sources and 

targeting nutrient pathways with interception strategies that address both N and P and 

consider productivity.  Implementation of these mitigations is necessitated by current water 

quality regulation.  LUCI can support this process at the farm and catchment scale and on-

going improvements to the model will further enhance this capability for agricultural land.  

Wider consideration of the suitability of land for production purposes should also be 

reviewed and appropriate land uses favoured. Options for land moderately or marginally 

suited for production include commercial forestry or complete retirement.  Changes in land 

use may face resistance from landowners as it will represent a financial loss.  At the 

catchment and community scale agricultural land losses can be partly offset by improving 

production on land that is less subject to nutrient losses and improvements to water quality, 

which will likely lead to wider environmental and social benefits e.g. improved aquatic 

biodiversity, increased recreational opportunities, more opportunities for wild food 

gathering. While strategies such as conversion to commercial forestry can currently be 

considered in LUCI, further refinements to incorporate a wider range of agriculturally 

productive land uses would be useful.   

7.3.4 Conclusion 

Comparison of LUCI predicted catchment scale in-stream N and P concentrations and 

observed data in the Lake Rotorua catchment indicate both the N and P models would 

benefit from further enhancement. In particular, better incorporation and representation of 

groundwater pathways, residence times and resulting lags would be beneficial. However, 
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even as is, LUCI catchment scale results are comparable to variability seen in other 

catchment scale water quality models and uncertainty around measured water quality 

values is a further consideration.       

Significant opportunities exist within the Lake Rotorua catchment to improve N and P 

exports to water and agricultural productivity at the level of individual services, but multiple 

ecosystem service analysis reveals that interventions aimed at improving water quality are 

likely to come at the expense of agriculturally productive land.  Yet this study also highlights 

opportunities to improve water quality while minimizing the loss of productivity on 

agricultural land.  This includes identifying, at a fine spatial scale, the most appropriate 

locations to intercept nutrient pathways, and to increase production on agricultural land 

that is currently at lower risk of nutrient loss.   

Overall, this case study demonstrates the utility of LUCI in multiple ecosystem service 

decision making at both the farm or block scale, where LUCI can assist individual land 

owners to take a highly targeted and strategic approach to land and ecosystem service 

management, and at the catchment or regional scale, where LUCI can better inform 

stakeholders with planning and management of landscape scale processes and resources. 

7.4 DISCUSSION AND SUMMARY 

Application of LUCI water quality models in Case Studies 1 and 2 illustrate and highlight 

LUCI’s highly detailed and spatially explicit nature. Sources and pathways of N and P are 

clearly identified enabling implementation of highly spatially targeted mitigations. In 

addition, Case Study 2 demonstrates LUCI’s ability to consider other ecosystem services and 

evaluate trade-offs and synergies between ecosystem services. In the context of water 

quality, the ability to evaluate potential trade-offs and synergies with agricultural 

productivity is particularly pertinent.  

While both case studies demonstrate LUCI’s clear ability to guide decision making at both 

the farm and catchment scale, they also highlight limitations associated with evaluating 

water quality models against actual in-stream water quality data and they point to a number 

of areas for model improvement. Catchment scale water quality models are often assessed 

by comparing predicted nutrient losses with actual in-stream water quality data. Case Study 

1 indicates model predictions are improved with the addition of increasingly detailed 
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catchment and/or farm specific data. Although even the most detailed application 

(Application 4) predicts N and P concentrations and loads 2-3 times measured means (but 

close to highest measured values) (Table 7.2). Case Study 2 indicates variable accuracy when 

comparing predicted and measured in-stream nutrient concentrations, particularly for P, in 

multiple sub-catchments (Figures 7.9 and 7.12). Despite this, it is not clear current LUCI in-

stream predictive ability for New Zealand is any poorer than similar catchment scale water 

quality models used in New Zealand. However, LUCI clearly brings superior spatial detail 

compared to many other catchment scale water quality models and it is likely relative 

nutrient losses from land units of variable climate, soil, topography and land management 

are representative. Further applications of LUCI water quality models at a variety of scales 

would better verify this and a number of potential areas for model improvement are 

highlighted by the case studies.  

In particular, both case studies suggest better, site specific representation of nutrient losses, 

lags and transformations, both between the root zone and stream network and within the 

stream network, could improve LUCI predictive ability. Recent work by Singh et al. (2017) in 

the Rangitikei Catchment offers a promising avenue for investigation to improve 

representation of N attenuation between the root zone and stream network based on soil 

type and underlying geology. Case Study 2 suggests better representation of groundwater 

systems and associated lags could improve LUCI predictions, particularly in hydrologically 

complex catchments. 

Case Study 1 clearly indicated farm specific input data for pastoral land cover algorithms is 

preferable to average regional default inputs. At large scale, this is difficult to achieve. 

However, pastoral land cover export coefficients could be improved by disaggregation of 

pastoral land cover to pastoral land use (i.e. disaggregation in to dairy, beef, sheep etc.) and 

application of land use specific average regional default inputs. Development of land use 

specific average regional nutrient inputs is available from the Ravensdown dataset. Instead, 

the challenge is disaggregation of land cover to land use in the absence of land use data. 

Development of a “likely land use” algorithm based on known land use characteristics may 

be a possible solution, although this would introduce additional uncertainty. A second 

option, is to gain access to land use data. Such data is available, but not freely, and there 

can be issues around land owner privacy. 
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Although Case Study 2 showed no particular bias associated with current export coefficients 

from the variety of land covers in Lake Rotorua catchment, development of an algorithmic 

approach to export coefficient calculation is desired for land covers other than pasture and 

based on land cover specific data (as discussed in previous chapters). This relies on locating 

suitably detailed land cover specific nutrient loss data, which currently is not publicly 

available, but may be held in New Zealand research institutes. 

Indeed lack of data is a confounding issue. Case Study 1 highlighted the importance of more 

detailed, site specific soil data, which significantly improved LUCI in-stream P predictions. 

Full S-Map national coverage and public access to data pertaining to pedo-transfer functions 

would improve soil representation and finer scale national DEM coverage would improve 

hydrological routing in LUCI. However, representative measured in-stream water quality 

data is of particular importance for water quality modelling. As discussed in Section 3.3, 

more frequent long-term sampling, including during storm events, and better spatial 

coverage with multiple nested sampling sites within any one catchment, would undoubtedly 

assist with assessing and developing water quality models.  

These case studies point to areas for improvement to LUCI water quality models. However, 

even as is, the utility of the models is evident. N and P sources and pathways are identified 

with spatial detail seen in few other water quality models allowing spatially explicit targeting 

of mitigations. In addition, scenarios and options can be explored and trade-offs and 

synergies with other ecosystem services evaluated. While efforts to improve LUCI water 

quality models are on-going, it is nevertheless already a valuable decision making tool for 

both farm and catchment scale management. 
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8 CONCLUSIONS  

 

 

8.1 INTRODUCTION 

Globally, freshwater and marine environments have been degraded due to nutrient 

contamination from diffuse sources, and many countries now mandate control of diffuse 

nutrient losses to water. Water quality models are valuable tools for decision making in the 

context of this widespread issue as they enable exploration of current and future scenarios.  

To model diffuse nutrient losses, many catchment scale water quality models require some 

form of estimated nutrient loss, or export coefficient, from land units within the catchment 

of interest. To be representative export coefficients must consider climate, soil, topography, 

and land cover and management variables. A number of methods of export coefficient 

derivation are used. Many early export coefficient models considered only land cover 

and/or use, sometimes extended to consider geo-climatic variables by application of ‘expert 

judgement’ (Reckhow et al. 1980; Beaulac and Reckhow 1982; Johnes 1996; Young et al. 

1996) and some models still take this approach (Baginska et al. 2003; Robinson and Melack 

2013). Opportunities to more easily estimate diffuse nutrient losses for a wide variety of 

land uses and geo-climatic variables increased with the advent of field to farm scale 

computer based nutrient models. Using this approach export coefficients for commonly 

found land uses within the area of interest are derived using broadly representative or 

dominant catchment geo-climatic variables (Rutherford et al. 2009; Rutherford et al. 2011; 

Anthony et al. 2012; Semadeni-Davies et al. 2016).  

This thesis posits that using readily available spatial data, site-specific geo-climatic and land 

cover and management variables can be considered to derive site-specific export 

coefficients. Therefore, the principle aim of my research was to develop algorithms that 

calculate site-specific N and P export coefficients, using spatial data pertaining to geo-

climatic and land cover and management variables, for application in LUCI water quality 

models. The application context is New Zealand, but the method could be extended to other 

regions and environments. Four objectives were achieved in pursuit of this aim: 
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Objective 1 Data Review: Three categories of New Zealand data were reviewed. Data 

detailing N and P losses for a variety of New Zealand climates, soils, topography, land cover 

and land uses were collated and investigated to identify suitable information from which to 

develop algorithms. Spatial data (suitable for use in ArcGIS), for identification and 

positioning of important nutrient loss variables and their combinations, were identified.  In-

stream water quality data, against which to assess output from the N and P algorithms 

applied in LUCI, were reviewed.       

Objective 2 Algorithm Development and Parameterisation: Data identified as suitable for 

algorithm development were more fully explored. This largely entailed investigation of the 

Ravensdown dataset, a large set of pastoral farm input and output data from nutrient 

budgeting tool, OVERSEER. Using this data, supplemented with data identified in Objective 1 

for other land cover categories, algorithm input variables and forms were developed, 

algorithm constants were parameterised, and default regional algorithm inputs were 

parameterised.   

Objective 3 Parameterisation of 5 Categories of Mitigations Available in LUCI: 

An important aspect of modelling N and P losses at farm to catchment scale is assessment of 

options to reduce nutrient losses. Five categories of mitigations were investigated, including 

documenting the quantified effect of strategies, where possible. Resulting data will be used 

by the wider LUCI development team to update and improve mitigation models already 

featured in LUCI and to develop new ones. Mitigations explored include reduced and 

strategic fertiliser application, reduced and strategic effluent application, reduced stocking 

rate, wetland and riparian margin development and management, and sediment traps.  

Objective 4 Algorithm Application in LUCI Water Quality Models: Developed N and P 

algorithms, integrated into LUCI water quality models, were applied to two New Zealand 

case study catchments: Tuapaka catchment in Manawatu and Lake Rotorua catchment in 

Bay of Plenty. These applications provide considerably more nuanced, detailed maps and 

data showing N and P sources and pathways, compared to LUCI’s previously used ‘one 

export coefficient per land cover’ approach. Results also indicate absolute nutrient loss 

values are variable compared to in-stream water quality measurements. However, these 

differences appear comparable to those seen with similar water quality models. In addition, 

the issue of representativeness of in-stream water quality measurements exists.  
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This chapter presents the main conclusions of my thesis. Section 8.2 summarises specific 

contributions to water quality modelling using export coefficients and to water quality 

modelling in New Zealand using LUCI. Section 8.3 discusses the main conclusions from my 

work, and Section 8.4 makes recommendations for future work and development associated 

with this research.  

8.2 MAIN CONTRIBUTIONS 

Robust analysis of underlying data and models used for the development of export 

coefficient generating algorithms: Data pertaining to N and P losses from New Zealand land 

covers provides the base from which algorithms are developed and parameterised. Core 

pastoral algorithms are based on the large Ravensdown dataset of nutrient inputs and 

outputs from nutrient budgeting tool, OVERSEER. A major contribution of my work is the 

elucidation of the main drivers and relationships among predictor N and P loss variables 

within the Ravensdown dataset and the underlying OVERSEER models, in particular for the P 

model. Further, I extended the core pastoral algorithms to other land covers by addition of 

Land Cover Multipliers, which are based on my investigation and analysis of literature 

reporting N and P losses for a variety of New Zealand land covers. 

Development and parameterisation of algorithms that derive N and P export coefficients 

for New Zealand land covers and consider influential variables, and their combinations, 

associated with climate, soil, topography and land management: The algorithms 

developed here further facilitate a movement beyond the traditional “one export coefficient 

per land use” approach to water quality modelling using export coefficients. Pastoral 

algorithms utilise spatially explicit climate, soil, topography and actual farm data to calculate 

export coefficients unique to each site. This represents an advance on commonly used 

techniques of field to farm export coefficient derivation, based on a limited number of 

“typical farm” scenarios associated with representative or dominant combinations of 

climate, soil, and topography.  

For non-agricultural land covers, it is still common to use the “one export coefficient per 

land cover” approach. Here an attempt was made to also consider site-specific variables for 

non-pastoral land covers. However, a lack of non-pastoral land cover data, that is similar in 

breadth and detail to the Ravensdown dataset, is a major limitation. Instead, I have 
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developed an alternative method of calculating other land cover export coefficients that 

considers influential geo-climatic and land management variables. This was achieved 

through extension of pastoral algorithms with a Land Cover Multiplier, which represents the 

ratio between the mean of reported nutrient losses from the land cover in question and 

high producing grassland. Although algorithms are developed here for application in LUCI, 

they are potentially of use in any export coefficient based catchment scale water quality 

model.  

Demonstration of the utility of the algorithmic export coefficient approach applied in LUCI 

water quality models to two New Zealand catchments: Implementation of the developed 

algorithms in LUCI water quality models provides a particularly powerful decision support 

tool. The developed algorithms use spatial data to calculate site specific export coefficients, 

which LUCI positions and cascades through the catchment at the DEM grid square scale. This 

provides particularly detailed information and maps of nutrient sources, sinks and pathways 

within the catchment. In addition, LUCI can combine water quality analyses with other 

ecosystem service analyses to identify areas where land use or management changes could 

result in benefits to multiple ecosystem services.  

In my study, these qualities are clearly demonstrated through application of the models in 

two New Zealand catchments: Tuapaka catchment in Manawatu and Lake Rotorua 

catchment in Bay of Plenty. These case studies represent the first catchment scale 

applications of the improved LUCI water quality models in New Zealand and demonstrate 

LUCI’s highly visual and spatially explicit nature, which can particularly assist with 

communication of information and decision making. I identify areas for improvement of this 

approach.             

Review of available data in preparation for fuller parameterisation of mitigations in LUCI: 

Modelling of mitigation options is a desirable capability for water quality models. Five 

mitigation strategies, identified as particularly important for on farm modelling, are 

implemented in LUCI, but require further parameterisation for optimal use. My study 

identified, investigated and documented data for use, by the wider LUCI development team, 

in parameterising these mitigation options in LUCI. 
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8.3 MAIN CONCLUSIONS 

8.3.1 Algorithmic Export Coefficient Models 

Review of export coefficient literature (Section 2.4) indicates that, no matter how export 

coefficients are derived, they generally incorporate a limited range of variables. For 

example, they may only consider land use or cover, or may be extended to characterise 

broadly representative or dominant geo-climatic and land management variables. In 

contrast, this study develops algorithms capable of calculating site specific export 

coefficients for N and P based on spatially explicit geo-climatic, land cover and land 

management data.  

Development of such algorithms relies on availability of sufficiently detailed data 

quantifying N and P losses for a wide range and combinations of climate, soil, topography, 

land cover and land management. Review of New Zealand literature reported N and P losses 

for a variety of land covers (Section 3.4), indicated that it is not sufficiently broad or detailed 

for algorithm development. Instead, access to a large dataset of nutrient inputs and outputs 

from nutrient budgeting tool, OVERSEER, was used here. The Ravensdown dataset provided 

an excellent opportunity to develop export coefficient generating algorithms for pastoral 

land cover. 

Algorithm development was comprised of two steps, development of algorithm form, and 

optimisation to parameterise algorithm constants. Development of algorithm form proved 

somewhat challenging. Guided by understanding of nutrient cycling and understanding of 

OVERSEER, algorithm input variables were selected and a multiple regression approach was 

developed (Chapter 4). While this proved suitable for N, it was clearly less suitable for P 

when applied at the farm to catchment scale. In particular, differences in the scale of slope 

representation between OVERSEER, which only applies one slope value to an entire block,  

and LUCI, which considers slope at the DEM grid square scale, appeared to be problematic. 

Instead an alternative approach for P algorithms was developed with some similar elements 

to the approach reported by McDowell et al. (2005). Final P algorithm form and 

parameterisation was undertaken by the wider LUCI development team and is particularly 

based on investigations of OVERSEER’s P model reported in Section 4.4. 
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Parameterisation of N algorithm constants was conducted using automatic optimisation 

(Chapter 5). This is a quick and easy method of deriving parameters, but it yielded poor 

measures of fit between N losses from my algorithms and N losses from OVERSEER 

predictions. However, it should also be noted that the algorithms I developed represent 

simplified versions of OVERSEER. They do not fully replicate OVERSEER N losses because 

they consider fewer input and management variables. Further assessment of the N and P 

algorithms at catchment scale is discussed below.  

My results from optimisation do point to areas of potential algorithm improvement. For 

example, farms with higher N losses appear less well represented by the algorithms. These 

are likely more intensively managed farms (e.g. dairy), and inclusion of additional nutrient 

inputs, such as supplemental feed, may improve the predictive ability of my algorithms 

relative to OVERSEER predictions.  

Difficulties in developing and parameterising the algorithms presented here highlight issues 

around using other models to develop export coefficients. All models simplify reality and 

include assumptions and limitations, which are not always clear or fully recorded in the 

associated literature. In the case of OVERSEER, documentation has become more 

transparent in recent years, but it is still not entirely clear how the models work. For 

example, in documentation of OVERSEER’s P model only a limited number of equations are 

explicitly documented, and text descriptions of model functioning are somewhat 

ambiguous. A further complication to developed algorithm and OVERSEER output 

comparison, is that OVERSEER output itself is somewhat uncertain. Until comprehensive 

data is available detailing measured N and P losses from pasture with a wide variety of geo-

climatic and management variables, neither OVERSEER nor the developed algorithms can be 

fully evaluated at field scale.   

For non-pastoral land covers, an algorithmic approach, based on land cover specific data 

similar in scope to the Ravensdown data, would be ideal. However, publicly available data is 

not sufficient for the development of such an approach. Other data sources may offer more 

opportunities. For example, crop data from the Ravensdown dataset could be used to 

develop crop algorithms, and other models could be used to derive algorithms (e.g. 

SPASMO). Alternatively, a wider range of measured or modelled data may be available from 

private organisations or New Zealand CRI’s.   
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Instead, this study extended pastoral algorithms with addition of an LCM, which represents 

the ratio between the mean of reported nutrient losses from the land cover in question and 

high producing grassland (Section 5.4). My use of pastoral algorithms allows for 

incorporation of site-specific details, such as climate and soil variables. The LCM then 

increases or decrease the pastoral algorithm output to account for differences between 

losses from the land cover in question and pastoral land covers.  

It is difficult to determine the accuracy of both LCMs and resulting N or P losses from non-

pastoral land covers. LCMs are based on quite limited data and comparative scale issues 

exist between land covers. For example, most short-rotation crop measurements are point 

scale leaching losses only, while most pasture measurements are at small catchment scale. 

Where a source of data is unavailable for development of an algorithmic approach for non-

pastoral land covers, further investigation and refinement of the LCM approach could 

include collection of more actual measurement data from single land cover areas.             

Regional average pastoral algorithm inputs are developed for areas where actual farm data 

is unavailable. These could be disaggregated according to pastoral land use (i.e. dairy, sheep 

etc.) to provide more representative inputs. However, commensurate land use data needs 

to be available to apply this approach or a method of estimating likely land use could be 

developed. Regional inputs to the pastoral algorithms applied in conjunction with LCM for 

other land covers would still be required. Moving beyond my LCM approach for other land 

covers represents a significant effort, which was beyond the scope of this thesis.  

8.3.2 Application of Developed Algorithmic Export Coefficient Models in LUCI  

Developed algorithms were applied here to two diverse New Zealand catchments (Chapter 

7). Case Study 1 features the agricultural Tuapaka catchment in Manawatu. LUCI was 

applied four times in the catchment, with each successive application including increasingly 

detailed, site specific data. My results illustrate the importance of farm specific data for 

both the N and P models, and indicate spatially detailed soil data is particularly important 

for the P model. Comparisons of in-stream LUCI predicted and measured N and P 

concentrations showed that LUCI predictions were closer to highest measured 

concentrations rather than mean concentrations. LUCI N and P predicted loads were higher 



230 
 

than the measured loads. Improved representation of site-specific attenuation may improve 

LUCI’s predictive ability. 

Case Study 2 featured the multi-land use Lake Rotorua catchment in Bay of Plenty. This 

application not only included LUCI water quality models, but also the agricultural 

productivity model and demonstrated LUCI trade-off tools. Catchment complexities 

including naturally occurring volcanic nutrient sources and significant groundwater 

resources made water quality for this catchment somewhat challenging to model. 

Comparison of in-stream LUCI-predicted and measured N concentrations yielded variable 

results. This variability was linked to sub-catchment groundwater vs. surface water 

domination and unusual N sources such as those from a geothermal area, Hell’s Gate. 

Comparison of in-stream LUCI predicted and measured P concentrations was similarly 

variable and linked to sub-catchment groundwater vs. surface water domination and 

groundwater derived P sources from volcanic rock and water interaction. Better 

incorporation and representation of groundwater pathways, residence times and resulting 

lags would improve predictions of N and p exports for this catchment.  

These results highlight a number of points regarding the application of the newly modified 

LUCI water quality models. Case study 1 reinforces the key message that site specifics are 

important in terms of nutrient losses and it emphasises the need for an export coefficient 

approach, such as the algorithms presented here, that considers these specifics. Case Study 

2 indicates that inclusion of other nutrient sources, such as natural volcanic sources, can be 

locally important. Both case studies indicate that improved representation of site-specific 

attenuation factors, including better groundwater representation, may improve LUCI’s 

predictive ability. In LUCI, the export coefficient algorithms quantify nutrient losses from 

each grid square, but further attenuation is applied as these nutrients cascade through the 

catchment. Currently, attenuation is broadly accounted for with catchment-wide root zone 

to stream and in-stream attenuation factors applied for N and P respectively, and these can 

be increased or decreased for the whole catchment. However, development of a method of 

applying variable attenuation factors that account for small scale spatial variability within 

catchments and recognise different processes (i.e. lag times, biogeochemical 

transformations, etc.) may improve predictions. For example, such an approach could apply 

the findings of Singh et al. (2017), which indicate soil and rock type can be used to estimate 
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attenuation for N. In addition, better representation of groundwater residence times and 

pathways could improve predictions. 

However, although improvement to predictive ability is always desired, these case studies 

also illustrate how the developed algorithms applied in LUCI N and P water quality models 

now provide more nuanced, highly spatially explicit information on nutrient sources, sinks 

and pathways. In addition, Case Study 2 illustrates LUCI’s ability to model other ecosystem 

services and to perform trade off analysis among them.   

8.3.3 Implications of Data Review  

My study includes four data reviews - a review of data for algorithm development, a review 

of spatial data pertaining to influential nutrient loss variables, a review of in-stream water 

quality measurements and a review of data related to mitigation strategies. These reviews 

highlight a number of data constraints.  

While a number of reviews of reported New Zealand export coefficients have been 

conducted in the past, they largely focus on pastoral versus forested land covers and 

provide little detail of individual study specifics. In contrast, the review here includes a wider 

range of land covers, summarises study specifics where available and attempts to 

distinguish intra-land cover data groups according to land management, soil, climate, and 

topography. Results of this review indicate a clear lack of data quantifying N and P losses for 

a wide range of geo-climatic, land cover and land management (Section 3.4). However, 

access to the Ravensdown dataset has enabled development of algorithms for pastoral land 

covers and this dataset could also potentially be used for the development of algorithms for 

crop land covers. However, no data of similar range and detail is found for other land 

covers. Instead I developed an alternative approach for non-pastoral land covers using LCM, 

based on the New Zealand export coefficient data reviewed. Although, the LCM developed 

are also somewhat uncertain due to data limitations. In addition, lack of actual, measured N 

and P losses from a wide variety of geo-climatic and management variables for New Zealand 

pastoral land covers, means prediction accuracy of N and P algorithms, as well as OVERSEER 

predictions, cannot be robustly assessed.     

Detailed spatial data provides the information required to apply the developed N and P 

algorithms in LUCI. Review of this data highlights three particular areas where improved 
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spatial detail would likely enhance LUCI water quality model output and predictions. These 

include a finer scale national coverage DEM, national S-map coverage and full access to the 

soil attribute database, and land use data. Land use data would be particularly useful for 

disaggregating pastoral land covers according to animal type, for use as a proxy to land 

management and intensity. Where actual farm data is not available for use in LUCI, regional 

farm inputs according to land use could be developed, hopefully better reflecting actual 

inputs.   

In-stream water quality measurements are a further constraint to full assessment of model 

accuracy. As discussed above, comparison between in-stream LUCI predictions and 

measurements indicates some variability. It is likely that better representation of 

attenuation associated with losses, lags and/or transformations would improve model 

predictions. However, it is also clear from water quality literature that New Zealand in-

stream N and P measurement protocols are generally less than ideal. To improve 

representativeness, measurements need to be taken more frequently, in more places, 

under variable conditions, and should include nested measurements within catchments. 

Such improvements would result in better water quality information and would assist with 

improving water quality models.    

Data pertaining to the five identified mitigation strategies tends to be qualitative rather 

than quantitative and doesn’t span a wide range of geo-climatic and management variables. 

In addition, literature featuring sediment traps is particularly sparse. A further complication 

results from farm complexity and interactions between mitigations and farm components. 

Ideally all direct and indirect effects and implications arising from a mitigation must be 

included in LUCI’s mitigation models. However, teasing out specific effects and implications 

from the literature is not easy and likely requires more time and analysis than was available 

here. An alternative may be to use models, such as OVERSEER, to investigate individual 

effects and implications of mitigations on individual farm components.      

In summary, lack of data is a constraint associated with this research. It limits algorithm 

development, mitigation parameterisation, application of the algorithms and water quality 

models, and assessment of model accuracy at field to catchment scales. Improved data 

coverage would help with further development and assessment of both LUCI and other 

water quality models. Specific initial areas for address could include algorithm development 
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for crop land covers using the Ravensdown data, collaboration with short and perennial 

crop, and forest experts to develop algorithms for these land covers using their expertise 

and data, and further work to tease out the effects of mitigation strategies applied in a 

complex farm system.  

8.4 RECOMMENDATIONS FOR FUTURE WORK AND DEVELOPMENT 

Although this research represents an advance to the export coefficient approach to water 

quality modelling, a number of limitations exist. Specifically, current pastoral algorithms 

represent simplified versions of OVERSEER. As such, they can never fully replicate OVERSEER 

predictions and they implicitly include assumptions and uncertainty associated with the 

OVERSEER model. Additionally, neither the developed algorithms nor OVERSEER can be truly 

validated until more comprehensive data detailing losses from a wider variety of New 

Zealand pastoral climate, soil, topography and management types and combinations, is 

available. Furthermore, because the other land cover algorithms include the same pastoral 

algorithm base, they also suffer from the same issues, and the LCM developed here are 

largely based on very limited data. Once these algorithms are fed into LUCI, it is also clear 

that further work is required to refine the representation of attenuation as nutrients are 

cascaded through the catchment in LUCI. Following are recommendations for future work 

and development which address these limitations and suggest how and where the 

algorithms and models could be significantly improved and further tested.   

Improve export coefficient generating pastoral algorithms: The pastoral algorithms 

presented here could be improved. For example, more intensively managed farms may be 

better represented with additional nutrient inputs and/or management factors included in 

the algorithms. Here, soil orders were separately parameterised, but algorithms have the 

same form. An alternative approach where soil order specific algorithm forms are developed 

with soil order specific inputs, may yield better predictions. Inclusion of more detailed soil 

properties and processes would also be desirable. Soil drainage, profile characteristics and 

chemical properties could be further investigated using OVERSEER. On a more aspirational 

level, soil microbial activity and P biogeochemical cycling, could be included. It is also 

possible a move away from OVERSEER as a basis for algorithm development may improve 

predictive ability. To assess any improvements though further actual N and P loss 
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measurement data is required. In particular, measurements must encompass a wider range 

of soil orders and climate regions.  

Develop export coefficient generating algorithms for other land covers: Ultimately an 

algorithmic approach to export coefficient derivation for other land covers using land cover 

specific data, is desired. Certainly the Ravendown dataset offers the possibility of 

developing export coefficients for short-rotation crop covers. Additionally, other field to 

farm scale nutrient loss models could be used to investigate, develop and train other land 

cover algorithms. It is also possible that a wider range of measured or modelled data may be 

available, either privately or from New Zealand CRI’s. Partnering with such organisations 

may be one way to gain access to the type of data required and also to collaborate with 

researchers who have expertise related to particular land covers and land management, as 

has been done here with Ravensdown.  

Improve representation of attenuation processes in LUCI water quality models: Case 

studies 1 and 2 highlight the need for better representation of site specific nutrient 

attenuation through losses, lags and transformations. Currently, attenuation is broadly 

accounted for in LUCI with catchment wide attenuation factors applied for N and P, which 

can be increased or decreased to calibrate LUCI in-stream predictions. However, these may 

over or underrepresent site-specific attenuation. Particular areas for improvement include 

enhanced groundwater representation in LUCI and a number of projects are currently 

working towards this. Additionally, work by Singh et al (2017) investigating N attenuation 

between the root zone and stream network based on soil type and underlying geology, 

offers promising insight that could be included in LUCI. Addition of more detailed soil and 

plant processes may also assist progress toward this goal.      

Collect and develop higher spatial and/or temporal resolution national spatial data and 

water quality data: Lack of data impedes application and assessment of water quality 

models including the improved LUCI water quality tools. Increased spatial and/or temporal 

resolution of national spatial data and water quality data could enhance model output and 

predictive ability. In particular, more detailed DEM, soil and land use spatial data, and in-

stream water quality data that is collected more frequently, in more locations and under 

variable conditions, are required. 
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Apply LUCI widely in New Zealand: Ultimately the aim of algorithm development and 

application in LUCI water quality models is to inform and assist with improving water quality 

in New Zealand and elsewhere. It is clear that further improvements could be made to both 

the algorithms developed here and to LUCI’s water quality models. However, it is also clear 

that currently LUCI can provide detailed, timely, spatially explicit information on relative 

nutrient sources, sinks and pathways that land managers find useful (Scott 2015), even if 

absolute predictions do not always match measured losses. Wider application of LUCI water 

quality models would immediately assist individual land owners and regional land managers 

with decision making pertaining to this urgent issue. In addition, understanding of the 

conditions under which LUCI water quality models perform best and understanding of 

where they need refinement will increase the more LUCI water quality models are applied 

and tested. Furthermore, LUCI offers the ability to consider other topical ecosystem services 

(e.g. carbon sequestration and agricultural productivity) and to conduct trade-off analyses. 

Parameterise and test the developed algorithms in other regions and environments: The 

same or a similar algorithmic approach to export coefficient derivation could be applied 

elsewhere. This may or may not include use of the algorithms within LUCI water quality 

models. Although, as discussed above, LUCI clearly has a number of advantages over many 

other catchment scale water quality models including comparatively fast application times, 

spatially explicit and comparatively fine scale information on nutrient sources, sinks and 

pathways, and the ability to model additional ecosystem services and conduct trade off 

analyses between ecosystem services.  

To apply the developed algorithms in other countries or regions, either independently or 

within LUCI, would first require some work to match local soil classifications and land covers 

to New Zealand soil orders and land covers. This would then allow the most appropriate 

algorithms to be positioned according to local soil and land cover data. Locally appropriate 

algorithm inputs would also require identification, particularly around agricultural 

management variables e.g. fertiliser and effluent applications, stocking rates etc. 

Additionally, quantification of local differences in N and P losses between pastoral land 

cover and other land covers would be required.         
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8.5 FINAL SUMMARY 

My thesis has successfully developed an algorithmic export coefficient approach for N and P 

that utilises spatially explicit geo-climatic, land cover and land management data to 

calculate site-specific export coefficients. Application of the developed algorithms in LUCI 

results in consideration of influential variables at the DEM grid square scale (≤152 m2 for 

New Zealand) to derive and position grid square specific export coefficients. LUCI then 

cascades water and nutrients through the catchment grid square-by-grid square, thereby 

explicitly considering intra-basin configuration and identifying nutrient sources, sinks and 

pathways at fine scale.  

Like most models, both the developed algorithms and LUCI water quality models can always 

be improved. However, lack of data is a constraint to further model development, 

application and evaluation of results. Despite these limitations, the improved LUCI water 

quality models now offer the ability to investigate nutrient sources, sinks and pathways, in 

spatially explicit fine scale detail. In addition, model runs are comparatively quick and other 

ecosystem services and service trade-offs can be investigated. In New Zealand and globally, 

interest and urgency is growing to improve water quality and other ecosystem services. 

Current LUCI decision support models can be of great assistance with this task.   
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