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Abstract
Classification is a major task in machine learning and data mining.

Many real-world datasets suffer from the unavoidable issue of missing
values. Classification with incomplete data has to be carefully handled
because inadequate treatment of missing values will cause large classifica-
tion errors.

Existing most researchers working on classification with incomplete
data focused on improving the effectiveness, but did not adequately ad-
dress the issue of the efficiency of applying the classifiers to classify unseen
instances, which is much more important than the act of creating classi-
fiers. A common approach to classification with incomplete data is to use
imputation methods to replace missing values with plausible values be-
fore building classifiers and classifying unseen instances. This approach
provides complete data which can be then used by any classification algo-
rithm, but sophisticated imputation methods are usually computationally
intensive, especially for the application process of classification. Another
approach to classification with incomplete data is to build a classifier that
can directly work with missing values. This approach does not require
time for estimating missing values, but it often generates inaccurate and
complex classifiers when faced with numerous missing values. A recent
approach to classification with incomplete data which also avoids estimat-
ing missing values is to build a set of classifiers which then is used to se-
lect applicable classifiers for classifying unseen instances. However, this
approach is also often inaccurate and takes a long time to find applicable
classifiers when faced with numerous missing values.

The overall goal of the thesis is to simultaneously improve the effec-
tiveness and efficiency of classification with incomplete data by using evo-



lutionary machine learning techniques for feature selection, clustering, en-
semble learning, feature construction and constructing classifiers.

The thesis develops approaches for improving imputation for classifi-
cation with incomplete data by integrating clustering and feature selection
with imputation. The approaches improve both the effectiveness and the
efficiency of using imputation for classification with incomplete data.

The thesis develops wrapper-based feature selection methods to im-
prove input space for classification algorithms that are able to work di-
rectly with incomplete data. The methods not only improve the classifi-
cation accuracy, but also reduce the complexity of classifiers able to work
directly with incomplete data.

The thesis develops a feature construction method to improve input
space for classification algorithms with incomplete data by proposing in-
terval genetic programming—genetic programming with a set of interval
functions. The method improves the classification accuracy and reduces
the complexity of classifiers.

The thesis develops an ensemble approach to classification with incom-
plete data by integrating imputation, feature selection and ensemble learn-
ing. The results show that the approach is more accurate, and faster than
previous common methods for classification with incomplete data.

The thesis develops interval genetic programming to directly evolve
classifiers for incomplete data. The results show that classifiers generated
by interval genetic programming can be more effective and efficient than
classifiers generated the combination of imputation and traditional genetic
programming. Interval genetic programming is also more effective than
common classification algorithms able to work directly with incomplete
data.

In summary, the thesis develops a range of approaches for simulta-
neously improving the effectiveness and efficiency of classification with
incomplete data by using a range of evolutionary machine learning tech-
niques.
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Chapter 1

Introduction

This chapter introduces the thesis. It firstly discusses the problem state-
ment, then presents the motivations, the search goals, the major contribu-
tions and the organisation of the thesis.

1.1 Problem Statement

Classification is a data mining task that predicts a class label for an in-
stance based on feature values of the instance. Classification includes two
main processes: a training process and an application (test) process. The
goal of the training process is to use a classification algorithm on a training
dataset to build a classifier. The goal of the application process is to use the
built classifier to assign a class label to new instances. Classification has
been widely applied to many areas such as computer science, engineering
and medicine [38, 67, 177]. However, there are still issues, one of which is
incomplete data [1, 13, 45, 57, 109, 139].

Missing values where the values of some features are unknown are a
common example of incomplete data in many real-world datasets. For
example, in the UCI machine learning repository [8], which is one of the
most popular benchmarks for data mining, 45% of the datasets suffer from
missing values [57]. There are various causes of missing values. For exam-

1
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ple, in social surveys, respondents often refuse to answer some questions,
so datasets collected from the surveys are incomplete [107, 138, 169]. Med-
ical datasets usually contain a large number of missing values because not
all possible tests can be done on every patient [75, 151, 178]. Industrial
databases also often suffer from missing values due to mechanical failures
during data collection [93].

Missing values cause serious problems for classification. One of the
most serious problems is that the majority of classification algorithms do
not work on datasets with missing values (incomplete datasets) [13, 57,
102]. For example, neural networks cannot directly work with incomplete
data. Another problem is that missing values often lead to big classifica-
tion error due to inadequate information for the training and application
processes [45, 102, 109].

In statistical analysis, the problem of missing data has been tackled
extensively [41, 61, 100, 141] and also, but with less effort, in the classifi-
cation literature [57]. There are three common approaches to classification
with incomplete data [13, 45, 57, 139]. The first approach is to delete all in-
stances containing missing values. The main benefit of this approach is to
provide complete data for classification. However, the deletion approach
is only feasible for data with few missing values because it cannot provide
enough information when data has numerous missing values. Moreover,
this approach cannot classify new incomplete instances in the application
process. Therefore, the deletion approach can be only used on a limited
number of datasets [1, 13, 46]. The second approach is to use imputation
methods to transform incomplete data into complete data before build-
ing a classifier in the training process or classifying a new incomplete in-
stance in the application process. This approach can provide complete
data which can then be used by any classification algorithm. It also can
deal with incomplete data with a large number of missing values. There-
fore, imputation is perhaps the most popular approach to classification
with missing data [45, 57, 109]. However, imputation methods take time
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to estimate missing values, especially with powerful imputation methods
[46]. The third approach is to construct a classifier in the training process
which can directly classify incomplete instances in the application process
without requiring any imputation method [105, 125, 129]. This approach
can save time for estimating missing values. However, existing methods
are often not accurate and expensive when data contain a large number of
missing values. Therefore, how to effectively and efficiently handle classi-
fication with missing data should be further investigated.

Evolutionary computation (EC) is a subfield of computational intelli-
gence that uses computational models of evolutionary processes as the
key elements in design and implementation. Two major subsets of EC
are evolutionary algorithms and swarm intelligence algorithms [48]. Evo-
lutionary algorithms are inspired by biological evolution, such as selec-
tion, recombination, mutation and reproduction. Popular evolutionary al-
gorithms include genetic algorithms (GAs) [5] and genetic programming
(GP) [87]. Swarm intelligence algorithms are inspired by the collective in-
telligence that emerges in the natural environment such as colonies of ants,
and schools of fish, birds and flocks. Popular swarm algorithms include
particle swarm optimization (PSO) [84], ant colony optimization (ACO)
[37], and artificial bee colony algorithm (ABC) [82].

EC techniques have been widely applied to improve the classification
with complete data. For example, GP has been used to evolve high quality
classifiers and to construct new features for classification [42]. Another ex-
ample is that GA and PSO have been used to select suitable feature subsets
for classification [183]. However, EC techniques such as GP, GA and PSO
have not been systematically explored for classification with incomplete
data. Therefore, how to apply EC techniques to improve the effectiveness
and efficiency of classification with incomplete data should be further in-
vestigated.
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1.2 Motivations

Classification with incomplete data has to handle two different problems:
handling missing values and classification [57]. Therefore, two obvious
approaches to improving performance of classification with incomplete
data are to improve the input by transforming the data so that it has fewer
missing values and to create classifiers that are more tolerant of missing
values [57].

One way of improving the input for classification with incomplete data
is to improve imputation methods which are used to estimate missing
values. A problem with imputation approaches is that using imputation
methods take time to estimate missing values. This may not be significant
in the training process, but it is not feasible in many classification tasks to
spend so much time in the application process to estimate missing values
for an incomplete instance, where the instances to be classified are typi-
cally presented one by one, and the application process must be applied
to each instance separately. This is especially true for powerful imputation
methods such as Multiple Imputation by Chained Equations (MICE) [175],
which are computationally very intensive when estimating missing values
for a single incomplete instance because they must rebuild the whole im-
putation structure from all the training instances plus the new instance
[46]. Though recent research has demonstrated the increased accuracy
obtained by these advanced imputation methods, the high cost of these
methods in the application process has seldom been addressed. This the-
sis explores the question of how to reduce the computation time in the ap-
plication process without sacrificing the accuracy achieved by MICE and
other advanced imputation methods.

When the input space contains numerous redundant/irrelevant fea-
tures, many classifiers such as decision tress cannot achieve adequate ac-
curacy. Feature selection that chooses a tailored feature subset from origi-
nal features is a well known solution to the problem. The purpose of fea-
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ture selection is to eliminate redundant/irrelevant features and only keep
important features, while retaining or improving accuracy of the classifica-
tion tasks. In feature selection, there are two main approaches to evaluat-
ing feature subsets: the filter approach and the wrapper approach. The fil-
ter approach uses measures such as information gain to evaluate the qual-
ity of feature subsets. The wrapper method builds a classifier to evaluate
the quality of a feature subset. Feature selection has been widely used for
improving classification with complete datasets [23, 183]. However, there
has not been much work on feature selection with incomplete data. Filter
approaches based on mutual information have been expanded to evaluate
feature subsets when datasets contain missing values, and the experimen-
tal results show that it can help improve regression and classification tasks
when faced with missing values [9, 36, 128]. However, a wrapper-based
feature selection for classification with incomplete data has not been in-
vestigated. This thesis explores the use of a wrapper approach to feature
selection on incomplete data.

Another way of improving the input for classification with incomplete
data is to construct new robust features that transform incomplete data to
complete data. A constructed feature is a function which transforms orig-
inal values to new values, and the process of making constructed features
is called feature construction. Constructed features are typically mathe-
matical expressions of the original features. A robust constructed feature
is one where the value of the feature can be calculated even when some of
original features are missing. The original purpose of GP is to evolve com-
puter programs from the input features and set of operators. Therefore,
GP is an ideal choice for making constructed features. Recently, using GP
for feature construction has interested many researchers [42]. GP-based
feature construction can improve the classification performance of various
classifiers such as decision trees [116], neural networks, and support vec-
tor machines [63]. However, GP-based feature construction has only been
applied to complete data. This thesis explores the use of GP to construct
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robust features that will work with incomplete data.

The second approach is to create robust classifiers that can work di-
rectly on incomplete data. One way of doing this is with ensemble learn-
ing. An ensemble classifier is a classifier consisting of a set of classifiers,
and it has been proven to improve classification accuracy [35, 120, 124].
Robust ensemble classifiers have been conducted by building multiple
classifiers working on different features in the training process and then
selecting applicable classifiers to classify each incomplete instance with-
out requiring any imputation method [24, 125, 185]. However, existing en-
semble methods for classification with incomplete data often do not work
well on datasets with numerous missing values [24, 185]. Moreover, they
usually have to build a large number of classifiers, which then require a
lot of time to find applicable classifiers for each incomplete instance in the
application process, especially when incomplete datasets contain a high
proportion of missing values [24, 125]. Therefore, how to construct a com-
pact set of classifiers able to work well even on datasets with numerous
missing values should be investigated.

Another way to create robust classifiers is to build individual classifier
able to directly work on incomplete data such as C4.5 [129]. GP has been
successfully applied to induce high quality classifiers [42]. The basic idea
of the application of GP for inducing classifiers is that each individual is
designed to represent a classifier or a part of a classifier, a fitness func-
tion is defined to measure its quality, and GP acts as a search technique
to find a high quality final classifier. GP has been used to evolve decision
trees, rule-based classifiers and discriminant functions. However, GP can-
not directly work with data with missing values; therefore, to use GP for
evolving classifiers for incomplete data, imputation methods are required
to transform incomplete data into complete data before using GP. In order
to evolve good classifiers, GP has to be combined with sophisticated impu-
tation methods such as MICE [175]. However, sophisticated imputations
such as MICE are often suitable for batch imputation, but computation-
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ally expensive for imputing missing values in a single instance in the un-
seen set for classification. This thesis explores the ability of GP to directly
evolve classifiers able to deal with incomplete data without imputation.

1.3 Goals

The overall goal of the thesis is to improve effectiveness and efficiency of
classification with incomplete data by using evolutionary machine learn-
ing techniques. In order to achieve this goal, a set of research objectives
have been established to guide this search, which can be seen as follows:

1. Develop new approaches to improving imputation for classification with
incomplete data by using clustering and feature selection.

In the application process of classification with incomplete data, the
computation time to estimate missing values strongly depends on
how many training instances are used by the imputation method.
Clustering is the process of categorising data into clusters such that
the instances in a cluster are similar to one another and different
from the instances in other clusters. By selecting representative in-
stances from the clusters, it is possible to reduce the original data
to a smaller but representative subset, so clustering can be used to
reduce the number of training instances needed for the imputation,
which in turn can reduce the computation time. In the application
process of classification with incomplete data, the computation time
of the imputation process also strongly depends on the number of
features in the training data. Feature selection can remove redun-
dant and irrelevant features of the training data which not only may
improve accuracy, but also can reduce the computation of the impu-
tation. The combination of imputation, clustering and feature selection
should improve effectiveness and efficiency of imputation for classi-
fication with missing data.
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2. Develop a new wrapper-based feature selection method to improve classifi-
cation with incomplete data.

In order to build a wrapper-based feature selection for incomplete
data, this research plans to use classifiers able to classify incomplete
data such as C4.5 [129] and CART [105] to evaluate the feature sub-
sets. EC techniques such as GA [5] and PSO [84] are combined with
these evaluation measures to search for sufficient feature subsets.
The proposed method should enhance classification accuracy and re-
duce the complexity of the learnt classifier.

3. Develop a new feature construction method to directly construct multiple
complete features for classification with incomplete data.

GP has been successfully applied to construct new features for clas-
sification with complete data [42]. To construct features for incom-
plete data, existing GP-based feature construction methods need be
extended to be able to work with incomplete data. GP with inter-
val arithmetic has been shown to improve symbolic regression [83].
Interval functions can work with incomplete data because each miss-
ing value may be considered as interval between a minimum value
and a maximum value. This research uses to use interval functions as
function sets of GP. These function sets are combined with GP tech-
niques for feature construction to construct new complete features
for incomplete data. The proposed method should improve classifi-
cation accuracy and reduce the complexity of classifiers.

4. Develop an effective and efficient ensemble approach to classification with
incomplete data.

This objective aims to construct a set of classifiers which can effec-
tively and efficiently classify new incomplete instances without re-
quiring imputation. To achieve the goal, the proposed method inte-
grates three techniques: imputation, feature selection and ensemble
learning. Imputation is used to transform incomplete training data
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to complete training data which is then further enhanced by feature
selection. After that, the proposed method builds a set of specialised
classifiers which can classify new incomplete instances without the
need of imputation. The proposed method should be more accurate
and faster than existing ensemble methods for classification with in-
complete data. Moreover, the proposed method is also expected to
be more effective and more efficient than other common approaches
using imputation for classification with incomplete data.

5. Develop a new approach to using GP for directly evolving classifiers for
incomplete data.

The objective aims to use GP for evolving classifiers that can clas-
sify incomplete data without using imputation methods. GP has
been used to extract the high quality classifiers for complete data;
for example, GP has been used to extract decision trees, rule-based
classifiers and discriminant functions. To evolve classifiers for in-
complete data, GP techniques for constructing classifiers for com-
plete data need be expanded to deal with incomplete data. The pro-
posed method uses interval functions as function sets of GP to di-
rectly evolve classifiers for incomplete data. The proposed method
should be more accurate and faster than the combination of GP and
imputation for evolving classifiers.

1.4 Major Contributions

This thesis makes the following major contributions.

1. The thesis presents three new approaches that improve performance
of imputation methods for classification with incomplete data. The
first approach uses clustering to reduce the number of instances used
for imputation in the application process. The second approach uses
feature selection to remove redundant and irrelevant features of the
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imputed training data which is then used to build a classifier and
to estimate missing values in the application process. The third ap-
proach uses both clustering and feature selection. Experimental re-
sults show that the combination of imputation and clustering can
significantly reduce the computation time of imputation in the appli-
cation process, and can achieve comparable accuracy to using only
imputation. The combination of imputation and feature selection can
also significantly reduce the computation time, and can achieve bet-
ter accuracy than using only imputation. Moreover, the combination
of imputation, feature selection and clustering can not only further
speed up imputation, but can also improve classification accuracy,
simultaneously.

Part of this contribution has been submitted to:

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue, Lam Thu
Bui: “Improving Performance of Classification on Incomplete Data
Using Feature Selection and Clustering”. Applied Soft Computing
2018 (passed the second-round review).

2. The thesis presents a wrapper-based feature selection method for
classification with incomplete data. The thesis also presents the inte-
gration of the wrapper-based feature selection method into ensemble
methods to improve classification accuracy and reduce the complex-
ity of the ensemble methods. Classifiers such as C4.5 able to work
with incomplete data is used to evaluate feature subsets. Evolu-
tionary techniques such as PSO are used to search for feature sub-
sets. The experimental results show that the proposed wrapper-
based feature selection method for incomplete data is able to enhance
the classification accuracy of C4.5, significantly reduce the number
of original features and significantly reduce the complexity of the
learned classifier. Results also show that the integration of the pro-
posed wrapper-based feature selection method into ensemble meth-
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ods help improve the classification accuracy and reduce the com-
plexity of the ensemble methods.

Parts of this contribution have been published in:

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue: “A Wrap-
per Feature Selection Approach to Classification with Missing Data”.
Proceedings of the 19th European Conference on the Applications of
Evolutionary Computation (EvoApplication 2016) (1) 2016: 685-700.

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue: “Im-
proving performance for classification with incomplete data using
wrapper-based feature selection”. Evolutionary Intelligence Journal
9(3): 81-94 (2016)

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue: “Bag-
ging and Feature Selection for Classification with Incomplete Data”.
Proceedings of the 20th European Conference on the Applications of
Evolutionary Computation (EvoApplication 2017): 471-486.

3. The thesis presents a GP-based multiple feature construction method
for classification with incomplete data. The proposed method uses
interval functions as the GP function set to tackle missing values by
replacing each missing feature value by an interval. Experimental
results show that the proposed method can achieve better accuracy
than using original features or combining feature construction with
simple imputation methods. The accuracy of the proposed method is
comparable with combining feature construction with expensive im-
putation methods. The proposed method can also reduce the com-
plexity of learnt classifiers better than all the other methods.

Parts of this contribution have been published in:

Cao Truong Tran, Peter Andreae, Mengjie Zhang: “Impact of im-
putation of missing values on Genetic programming based multi-
ple feature construction for classification”. Proceedings of the IEEE
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Congress on Evolutionary Computation 2015 (CEC 2015): 2398-2405.

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue: “Di-
rectly Constructing Multiple Features for Classification with Missing
Data using Genetic Programming with Interval Functions”. Proceed-
ings of the Genetic and Evolutionary Computation Conference 2016
(GECCO 2016): 69-70.

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue: “Genetic
programming based feature construction for classification with in-
complete data”. Proceedings of the Genetic and Evolutionary Com-
putation Conference 2017 (GECCO 2017): 1033-1040.

4. The thesis presents an effective and efficient approach for classifi-
cation with incomplete data by integrating imputation, feature se-
lection and ensemble learning. The proposed method uses impu-
tation only in the training process to transform incomplete training
data into complete training data that is then further improved using
feature selection to remove redundant and irrelevant features. Then
the proposed method constructs an ensemble of classifiers which can
classify new incomplete instances without the need for imputation.
Experiments compared the classification accuracy and the computa-
tion time of the proposed method with other benchmark methods for
classification with incomplete data. Results show that the proposed
method achieves better classification accuracy in most cases, and is
much faster than the other methods in almost all cases.

Parts of this contribution have been published in:

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue: “Multi-
ple imputation and genetic programming for classification with in-
complete data”. Proceedings of the Genetic and Evolutionary Com-
putation Conference 2017 (GECCO 2017): 521-528.

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue, Lam Thu
Bui: “An Ensemble of Rule-based Classifiers for Incomplete Data”.
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Proceedings of the 20th Asia Pacific Symposium on Intelligent and
Evolutionary Systems (IES 2016): 7-12.

Part of this contribution has been submitted to:

Cao Truong Tran, Mengjie Zhang, Peter Andreae, Bing Xue, Lam Thu
Bui: “An Effective and Efficient Approach to Classification with In-
complete Data”. Knowledge Based Systems 2018 (passed the first-
round review).

5. The thesis presents an effective and efficient GP-based method to di-
rectly construct classifiers for incomplete data. To achieve this goal,
GP with interval functions is used to construct a classifier for each
incomplete dataset. Furthermore, GP with interval functions is also
combined with ensemble learning to construct a set of classifiers for
each incomplete dataset. Experimental results show that GP with
interval functions is able to construct a single classifier that is more
accurate than a single classifier constructed by combining imputa-
tion and traditional GP. Moreover, the combination of GP using in-
terval functions and ensemble learning is able to construct a set of
classifiers which is more accurate than a set of classifiers which is
constructed by the combination of imputation, traditional GP and
ensemble learning.

Part of this contribution has been published in:

Cao Truong Tran, Mengjie Zhang, Peter Andreae: “Directly evolving
classifiers for missing data using genetic programming”. Proceed-
ings of the IEEE Congress on Evolutionary Computation 2016 (CEC
2016): 5278-5285.

1.5 Organisation of the Thesis

The remainder of thesis is organised as follows. Chapter 2 carries out a
review of related work. Chapters 3-7 present the main contributions of the
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Figure 1.1: The overall structure of the contributions.

thesis as shown in Fig.1.1. Each chapter addresses one of goals described
in 1.3 . Chapter 8 concludes the thesis.

Chapter 2 presents basic concepts and essential background of classifi-
cation, missing data, imputation, evolutionary computation, feature selec-
tion and feature construction. It reviews typical related work in two main
approaches to classification with missing data: using imputation to esti-
mate missing values and constructing classifiers able to directly work on
missing data. It also visits advances in evolutionary computation, feature
selection and feature construction for classification. It then discusses open
questions and current challenges that form the motivations of the thesis.

Chapter 3 proposes new approaches to improving imputation for clas-
sification with incomplete data by using clustering and feature selection.
Clustering is used to reduce the number of instances used by the imputa-
tion in the application process. Feature section is used to remove redun-
dant and irrelevant features of training data which greatly reduces the cost
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of imputation in the application process. A set of experiments is conducted
on classification problems with missing values of varying difficulty. The
results are then presented and analysed.

Chapter 4 develops a wrapper-based feature selection method to im-
prove the input space for classification with incomplete data. The pro-
posed wrapper-based feature selection method is also investigated to im-
prove ensemble learning methods. The proposed method uses evolution-
ary techniques such as PSO to search for feature subsets, and it uses a
classifier which is able to directly work on incomplete data such as C4.5
to evaluate feature subsets. The proposed algorithm is then evaluated by
measuring the classification accuracy and the complexity of learnt classi-
fiers using selected subsets of features.

Chapter 5 proposes a GP-based multiple feature construction for clas-
sification with incomplete data. GP uses a set of interval functions as
the function set to evolve a set of constructed features. After that, the
constructed features are used to transform incomplete data into complete
data. The performance of the proposed method is compared with a com-
bination of feature construction and imputation and compared with clas-
sification algorithms that able to directly work on incomplete data.

Chapter 6 proposes an effective and efficient ensemble approach to
classification with incomplete data by integrating imputation, feature se-
lection and ensemble learning. Imputation is used to transform training
data with missing values to complete training data which is then further
enhanced by feature selection. Subsequently, the proposed method con-
structs a set of classifiers which is able to classify new incomplete instances
without the need for imputation. The proposed method is compared with
other common methods on real-world incomplete datasets using popular
classification algorithms

Chapter 7 proposes an effective and efficient GP-based method to di-
rectly evolve classifiers for incomplete data. To achieve this goal, GP with
interval functions is used to construct a classifier for each incomplete data.
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Furthermore, GP with interval functions is also combined with ensemble
learning to construct a set of classifiers for each incomplete data. The pro-
posed method is then evaluated and compared with other common meth-
ods for classification with incomplete data.

Chapter 8 summaries the work and draws overall conclusions of the
thesis. It also identifies key research points and the contributions of the
thesis. It then suggests some possible future research directions.

1.6 Benchmark Datasets

Throughout the thesis, the proposed methods are evaluated and compared
with other methods on a number of benchmark datasets of varying diffi-
culty.

The datasets are chosen from the the UCI machine learning repository
[8]. Table 1.1 shows the main characteristics of the chosen datasets: the
number of instances, the number of features (Real/Integer/Nominal), the
number of classes, the percentage of incomplete instances which contain
at least one missing value, and the abbreviation of dataset.

The first fifteen datasets suffer from missing values in a “natural”way.
These benchmark datasets are carefully chosen to cover a wide-ranging
collection of problem domains. These tasks have various percentages of
incomplete instances (incomplete instances range from 1.98% in the Hec
dataset to 100% in the Hed dataset). These problems range from a small
number of instances (Hep only has 155 instances) to a large number of in-
stances (Mar has 8993 instances). These datasets also range from low to
high dimensionality (Mam only has 5 features while Arr has 279 features).
These problems encompass binary and multiple-class classification tasks.
These datasets reflect incomplete problems of varying difficulty, size, di-
mensionality and type of features. All the real-world incomplete datasets
are used in Chapter 3, Chapter 4, and Chapter 6.

Chapters 5 and 7 use GP to construct features and evolve classifiers, re-
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spectively. A common property of datasets used in the two chapters is that
they only have numerical features. This is because both constructed fea-
tures and evolved classifiers are mathematical functions of the original fea-
tures. Therefore, only seven real-world incomplete datasets (Bre, Cle, Ban,
Hep, Mam, Mar and Ozo), which contain only numerical features, are used
in the two chapters. To further evaluate the proposed methods in Chap-
ters 5 and 7, “artificial”missing values are introduced into the last five
complete datasets to generate incomplete datasets which are then used to
test the proposed methods in the two chapters.
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Table 1.1: Datasets used in the thesis

Name #Inst
#Features

(R/I/N)
#Classes

Incomplete

inst(%)
Abbrev

Automobile 205 25(15/0/10) 6 26.83 Aut

Breast Cancer Wisconsin 699 9(0/9/0) 2 2.29 Bre

Cardiac Arrhythmia 452 279(206/0/73) 16 85.11 Arr

Chronic Kidney Disease 400 24(11/0/13) 2 60.5 Chr

Cleveland Heart Disease 303 13(13/0/0) 5 1.98 Cle

Credit Approval 690 15(3/3/9) 2 5.36 Cre

Cylinder Bands 539 19(13/6/0) 2 32.28 Ban

Hepatitis 155 19(2/17/0) 2 48.39 Hep

Horse-colic 368 23(7/1/15) 2 98.1 Hor

Housevotes 435 16(0/0/16) 2 46.67 Hou

Hungarian Heart Disease 294 13(6/0/7) 2 100 Hea

Mammographic 961 5(0/5/0) 2 13.63 Mam

Marketing 8993 13(0/13/0) 9 23.54 Mar

Ozone 2536 73(73/0/0) 2 27.12 Ozo

Primary Tumor 339 17(0/0/17) 22 61.01 Tum

Balance Scale 625 4(0/4/0) 3 0 Bal

Diabetes 768 8(8/0/0) 2 0 Dia

Iris Plants 150 4(4/0/0) 3 0 Iri

Liver Disorders 345 6(1/5/0) 2 0 Liv

Statlog Heart 270 13(13/0/0) 2 0 Sta



Chapter 2

Literature Survey

This chapter provides a review of the literature that forms the background
and supports the motivations of the thesis. The chapter presents essential
background on classification, ensemble learning, incomplete data, imputa-
tion, evolutionary computation (particularly GP, GP for feature construc-
tion and GP for evolving classifiers), feature selection and clustering. It
reviews important related work in classification with incomplete data.

2.1 Classification and Incomplete Data

2.1.1 Classification

Classification is one of the main tasks in machine learning and data min-
ing. It refers to the process of assigning a given instance, described by a
vector of feature values, to one of the given classes. This field has been
successfully applied to many scientific areas such as computer science,
statistics, engineering, medicine and biology. These applications include
biometrics, medical diagnosis, industrial automation and financial index
prediction [38, 67, 177].

A learnt classifier is needed for classification. The classifier is learnt by
a classification algorithm which is a supervised learning algorithm. The

19
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learning algorithm uses a set of instances to learn a classifier that is ex-
pected to correctly predict the class label of unseen instances. Many differ-
ent classification algorithms have been proposed in machine learning. The
most popular classification algorithms are decision trees, k-nearest neigh-
bour (kNN), Bayesian classification algorithms, support vector machines
(SVMs) and artificial neural networks (ANNs) [38, 67, 177].

Decision trees have the advantage that they are easy to interpret. A ma-
jor disadvantage of the standard decision trees is their weakness in sepa-
rating non-rectangular areas in the input space [129]. kNN has the advan-
tage of not requiring any assumptions on the underlying data distribution.
Although kNN is a simple learning algorithm, it often works well in prac-
tice. However, for a large training set, kNN requires large memory and is
very time-consuming to make a decision [179]. Bayesian classification al-
gorithms is a probabilistic approaches to classification. Naive Bayes (NB)
classification is the simplest and most common Bayesian classification al-
gorithm. An advantage of NB is that it only requires a small amount of
training data to evaluate parameters for classification. However, the as-
sumption of features being conditionally independent from each other is
not true in many real-world problems, where interdependency between
input features is common [179]. SVMs generally have good performance,
but are hard to interpret, particularly with numeric data. ANNs have been
widely used to solve a variety of hard tasks such as computer vision and
speech recognition; however, like SVMs, they are hard to interpret [67].

An important class of techniques for classification is ensemble learning
which uses a set of classifiers instead of a single classifier. Ensemble tech-
niques first build a set of classifiers, and then a new instance is classified
by conducting a vote with decisions of the individual classifiers. Ensem-
ble learning has proved capable of achieving better classification accuracy
than any single classifier [35, 120, 124, 193].

An ensemble of classifiers is good if the individual classifiers in the
ensemble are accurate and diverse. Bagging and Boosting are two popu-
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lar approaches to building accurate ensembles. Both Bagging and Boost-
ing use “resampling”techniques to manipulate the training data. Bag-
ging manipulates the original training dataset of N instances by randomly
drawing instances with replacement. Therefore, in the resulting training
dataset, some of the original instances may appear multiple times while
others might disappear. Bagging is often effective on “unstable” learn-
ing algorithms such as neural networks and decision trees where small
changes in the training dataset can lead to major changes in predictions.
Experimental results show that a Bagging-based ensemble almost always
performs better than a single classifier [35, 120].

Boosting manipulates the training dataset for each individual classifier
by using the performance of the previous classifier(s). In Boosting, in-
stances which are incorrectly classified by previous classifiers are selected
more often than instances which are correctly classified. Therefore, Boost-
ing tries to build new classifiers that are better at classifying instances for
which the current ensemble’s performance is poor. Empirical results show
that with little or no classification noise, a Boosting ensemble also almost
always performs better than a single classifier, and it is often more accurate
than a Bagging ensemble. However, in situations with substantial classi-
fication noise, a Boosting ensembles is often less accurate than a single
classifier because Boosting often overfits noisy datasets [35, 120].

2.1.2 Incomplete Data

An incomplete dataset is a dataset which does not have values in some
fields; in other words, it contains missing values. For example, the Mam-
mographic Mass dataset [40], which is used to predict the severity (benign
or malignant) of a mammographic mass lesion, is an incomplete dataset.
Table 2.1 presents some instances of the Mammographic dataset. In Table
2.1, “?” refers to missing values. Table 2.1 shows that all five features of
the Mammographic dataset contains missing values.
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Table 2.1: An example of incomplete data.

BI-RADS Age Shape Margin Density Class

5 67 3 5 3 malignant

4 70 ? ? 3 benign

? 52 4 4 3 benign

4 ? 4 5 3 malignant

4 31 1 1 ? benign

Many real world datasets suffer from the unavoidable problem of miss-
ing values [4, 49]. For example, 45% of datasets in the UCI machine learn-
ing repository—one of the most popular benchmark datasets for machine
learning and data mining—contain missing values [57]. Behind this seri-
ous problem, there are various reasons [4, 100]. For example, respondents
in a social survey may refuse to answer some questions [107, 138, 169]; in
an industrial experiment, some results may be missing due to mechani-
cal failures while collecting data [93, 176]; medical databases often suffer
from missing data where almost every patient’s record lacks some values
because not all possible tests can be run on every patient [56, 75, 127, 151,
178]. Gene expression datasets usually contain a large number of missing
values because of hybridization failures, inadequate resolution and image
corruption and noise [31, 101, 165].

Missing values lead to a number of serious problems for data analysts.
Firstly, although some methods of data analysis can work with incomplete
data, the majority of existing methods of data analysis require complete
data. As a result, these data analysis methods cannot work directly with
original data containing missing values, unless they are combined with
other techniques, which cost time, lead to complications in handing and
analysing the data, and may cause biased results [100, 140].

In most cases, in order to handle missing data appropriately, informa-
tion of how data became missing is essential. In [100], Little and Rubin
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define three types of missing data mechanisms:

• Missing completely at random (MCAR)
Missing data is missing completely at random (MCAR) if the proba-
bility that a feature value is missing is independent of the value that
is missing, the value of that feature in every other instance, and the
value of every other feature in every instance.

• Missing at random (MAR)
Missing data is missing at random (MAR) if the probability that a
feature value is missing is independent of the value that is missing,
and of every other value that is missing (in other features or other
instances), but may depend on values of features that are complete.

• Not missing at random (NMAR)
Missing data is not missing at random (NMAR) if the probability
that a feature value is missing is dependent on the missing feature
values. Therefore, the missing value in the NMAR case cannot be
predicted only from the available values in the database.

2.1.3 Approaches to Classification with Incomplete Data

Missing values cause serious problems for classification. One of the most
serious problems as for other data analysis techniques is that the majority
of classification algorithms do not work on incomplete datasets [25, 45, 80].
For example, neural networks cannot directly work with incomplete data.
Even if the missing data can be handled, another problem is that missing
values often result in big classification error [57, 46, 45].

There are three major approaches to classification with incomplete data:
the deletion approach, the imputation approach, and directly classification
with incomplete data [57].

• Deletion approach: this approach simply deletes all instances con-
taining missing values. The benefit of this approach is that it pro-
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vides complete data for classification. However, the deletion ap-
proach is only feasible for datasets with few missing values because
this approach cannot provide enough information for training a clas-
sifier when a dataset has numerous missing values. Another draw-
back of this approach is that incomplete instances with missing val-
ues cannot be classified in the application process. Therefore, the
deletion approach can be only used when a dataset contains a small
number of missing values [1, 99], and few unseen instances are in-
complete. Moreover, this method should only be used when missing
data is introduced by the MCAR mode, otherwise the results will be
biased [45, 100].

• Imputation approach: this approach uses imputation methods to
transform incomplete data into complete data before building a clas-
sifier in the training process or classifying a new incomplete instance
in the application process. This approach can provide complete data
which then can be used by any classification algorithm. It also can
deal with incomplete datasets with a large number of missing val-
ues. Therefore, imputation is the most popular approach to classifi-
cation with incomplete data [45, 109, 132]. MAR is usually assumed
by most of the existing imputation methods [45, 100].

• Directly classification with incomplete data: this approach builds
a model in the training process which can directly classify incom-
plete instances in the application process without requiring any im-
putation method. For example, C4.5 can directly classify incomplete
datasets by using a probabilistic approach [129]. Another example
is to build a set of classifiers, and then choose only applicable classi-
fiers to classify an incomplete instance [24, 125]. This approach can
save time for estimating missing values, and it does not require any
assumption about missing data [24]. However, existing methods are
often inaccurate when faced with a large number of missing values.
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2.2 Imputation

The goal of imputation is to replace missing values with plausible values.
One of the most common ways to categorise imputation methods is to
divide imputation methods into single imputation methods and multiple
imputation methods. Single imputation methods estimate a single value
for each missing value while multiple imputation methods estimate a set
of plausible values for each missing value. Multiple imputation is gener-
ally more accurate, but more expensive than single imputation [7, 46, 100].

2.2.1 Single Imputation

Single imputation methods can be further divided into data-driven (or
statistical), model-based, machine learning (ML)-based and evolutionary
computation (EC)-based methods [46, 57, 59]. Data-driven imputation
methods use only available data to estimate missing data. Model-based
imputation methods make an assumption that data follows a specific model
which is then used to estimate missing values. ML-based imputation meth-
ods use the available data and ML algorithms such as decision trees, kNN,
Bayesian-based algorithms, and ANNs to estimate missing values. EC-
based imputation methods use the available data and EC algorithms such
as genetic algorithms (GAs) and genetic programming (GP) to estimate
missing values .

2.2.1.1 Data-driven Imputation

Data-driven imputation methods which use available data to impute miss-
ing values include simple imputation methods such as mean/mode impu-
tation and hot-deck imputation [6, 57].

Mean/mode imputation replaces missing values in each feature with
the average of the complete values in the same feature. If a feature is cate-
gorical, the mode, which is the most frequent value of the feature, is used
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instead of mean. This method maintains the mean of each feature, but it
under-represents the variability in the data because all missing values in
same feature have the same value [57].

In hot-deck imputation, for each instance containing missing values,
the most similar instance is found and then missing values are filled with
complete values from the most similar instance. An advantage of this
method is that it replaces missing values by real values from the data.
However, this method ignores all global properties of the data, because it
uses information of only the most similar instance [6].

2.2.1.2 Model-based Imputation

In model-based imputation methods, we need to make assumptions about
the joint distribution of all the features in the model. These methods in-
clude regression-based imputation [57, 133, 140] and likelihood-based im-
putation [44, 61, 100].

Regression-based imputation methods use regression models to esti-
mate missing values of a given instance based on complete values of the
instance. Linear regression or non-linear regression methods are suitable
for continuous features while log-linear regression methods are suitable
for discrete features. This approach can preserve the interaction between
features, but when there exist numerous missing values, this approach re-
quires building a large number of regression equations, each for a set of
complete features, which then causes high computational cost [57, 140].

One of the most popular likelihood-based imputation methods is ex-
pectation maximization (EM)-based imputation which applies the EM al-
gorithm to estimate a maximum likelihood variance-covariance matrix
and vector of means which are then used to impute missing values. This
method is an iterative procedure that includes an E-step and a M-step at
each iteration. In the E-step, the means, variances and covariances are esti-
mated from complete values and the current best guess of missing values.
In the M-step of the same iteration, maximum likelihood procedures are
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used to estimate new regression equations for each attribute predicted by
all others which are then used to update the best guess for missing values
during the E-step of the new iteration [44, 61, 100].

2.2.1.3 Machine Learning-based Imputation

Machine learning-based imputation methods use machine learning algo-
rithms to build data models that are then used to estimate missing values.
This approach includes decision tree-based imputation, kNN-based impu-
tation, Bayesian-based imputation, and ANNs-based imputation.

Decision trees are one of the most common approaches for classifica-
tion/regression. Decision trees are also used for estimating missing val-
ues. [174] uses all observations to build a binary classification tree, which
is then used to estimate missing values. [29] proposes an incremental im-
putation algorithm which uses binary decision trees to build incremental
procedures to estimate missing values. In [130], a decision tree is com-
bined with the EM algorithm to build an efficient imputation technique.
Experimental results show that the proposed method performs signifi-
cantly better than EM-based imputation. In [131], decision trees and de-
cision forests are used to identify horizontal segments of a dataset, and
then the information of the similarity and correlation of the segments is
used to estimate missing values. In [32], decision trees are used to exploit
the within-instance and between-instance correlations to estimate missing
values for traffic accident data.

kNN-based imputation method is a modified version of hot deck im-
putation. For each instance containing missing values, it finds the k most
similar instances, and then fills missing values of the instance with the av-
erage of the values in the k most similar instances [12]. There are some im-
proved versions of kNN-based imputation such as weighted kNN-based
imputation in [58, 165, 170]. kNN-based imputation is typically better than
mean imputation and hot deck imputation [12]. However, this method of-
ten suffers from a high computational cost because of having to search
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through all instances to find the k most similar instances of each instance
containing missing values [57].

There are several Bayesian networks-based imputation methods. In
[34], Bayesian networks are used to improve the the consistency of im-
puted values by preserving statistical consistency and logical consistency.
[73] proposes two imputation methods-based on Bayesian networks for
classification. The proposed methods are compared with classical impu-
tation methods such as EM-based imputation, and results show that the
Bayesian-based imputations can achieve comparable accuracy to classical
imputation methods. In [134], Bayesian networks are learnt from incom-
plete data using a structural EM procedure, and the learnt networks are
then used to estimate missing values. Experimental results show that the
proposed method usually performs better than several existing imputa-
tion methods on both real and simulated datasets.

Different kinds of artificial neural network are used for imputation.
Multi layer perceptrons (MLP) are used to estimate missing values in [10,
147, 148] by building one MLP model per missing features combination.
These MLP-based imputations are good at estimating missing values, but
they require a large number of MLP models when data containing nu-
merous missing values. The self-organizing map (SOM), which is a type
of artificial neural network, is also used for imputing missing values [47,
50, 103]. Empirical results show that SOM-based imputation methods can
work better than standard MLP-based imputation [47]. In [112], an auto-
associative neural network is also used to estimate missing values.

2.2.1.4 Evolutionary Computation-based Imputation

Evolutionary computation is a subfield of artificial intelligence which is in-
spired by biological evolution [48]. Recently, evolutionary computation al-
gorithms such as genetic algorithms(GAs) and genetic programming (GP)
have been used for estimating missing values.

A genetic algorithm is an evolutionary algorithm which is inspired by
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the process of natural selection [5]. There are several GA-based imputa-
tion methods [55, 104, 126]. In [55], a genetic algorithm is used to estimate
missing values in multivariate data. In [126], a genetic algorithm is used
to impute missing values in discrete features by searching for the most
suitable value for each missing value. In [104], a multi-objective genetic
algorithm is used to build an imputation method which can deal with
both numeric and nominal features. Experimental results show that the
proposed method can perform better than common imputation methods
and can be flexible with different application domains.

Genetic programming (GP) is good at doing regression, so it has been
used to predict missing values [11, 157]. In [11], a strong type GP is used
for imputing missing values. [157] proposes a GP-based imputation (GPI)
method for classification with incomplete data that uses GP as a regression
method to impute missing values. The experiments compare GPI with
five other popular and advanced regression-based imputation methods on
two measures: classification accuracy and computation time. The results
showed that, in most cases, GPI achieves classification accuracy at least as
good as the other imputation methods, and sometimes significantly better.
Moreover, using GPI to impute missing values for every single incomplete
instance is dramatically faster than the other imputation methods.

2.2.2 Multiple Imputation

Multiple imputation estimates a set of values for each missing value [61,
100]. Multiple imputation often assumes MAR, and it can produce asymp-
totically unbiased estimates [175]. Moreover, multiple imputation is usu-
ally better than single imputation because it can better reflect the uncer-
tainty of missing data than single imputation [46]. However, multiple im-
putation is generally more computationally expensive than single impu-
tation since it takes time to estimate a set of values for each missing value
[92, 100].
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Figure 2.1: Main steps of using multiple imputation for data analysis.

Figure 2.1 illustrates three main steps of using multiple imputation for
data analysis. Firstly, missing data is imputed N times (N≥ 1) to generate
N different imputed data sets (complete data sets) using an imputation
model that incorporates random variation. Secondly, the imputed data
sets are analysed separately by using standard procedures for handling
complete data. The second step provides N analysis results. Finally, the N
analysis results are combined into a final result [61, 100, 140].

Multiple imputation has become increasingly popular for several rea-
sons. Firstly, although multiple imputation methods are computation-
ally more expensive than single imputation methods, multiple imputation
methods are usually better than single imputation methods [46, 150, 100].
Furthermore, many recent software developments have based on the mul-
tiple imputation framework [69].

Multiple imputation using chained equations (MICE) is one of the most
flexible and powerful multiple imputation methods [22, 172, 175]. MICE
uses regression methods to estimate missing values. Algorithm 1 shows
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the main steps of MICE. Initially, each missing value in each feature is
replaced by a random complete value in the same feature. Subsequently,
each incomplete feature is regressed on the other features to compute a
better estimate for the feature. The process is performed several times (n)
for all incomplete features to provide a single imputed dataset. The whole
procedure is repeated m times to provide m imputed datasets. Finally,
the final imputed dataset is calculated by the average of the m imputed
datasets [22, 175].

Algorithm 1: MICE(D)

Input:
D, an incomplete dataset
m, the number of imputed datasets
n, the number of cycles
Output:
An imputed dataset

1 for i← 1 to m do
2 Di← RandomImputation(D)
3 for j← 1 to n do
4 foreach incomplete feature f in D do
5 Regress f in Di on other features in Di

6 end
7 end
8 end
9 return Average(D1,...,Dm);

2.2.3 Imputation for Classification with Incomplete Data

Figure 2.2 shows the main steps of using imputation for classification with
incomplete data. In the training process, imputation is used to estimate
missing values for the training data. Subsequently, the imputed training
data is put into a classification algorithm to build a classifier. In the ap-
plication process, when a new instance needs to be classified, it is directly
classified by the classifier if it is complete. Otherwise, its missing values
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are replaced by suitable values which are estimated by using the imputa-
tion method and the imputed training data. Finally, the imputed instance
is classified by the built classifier.

Figure 2.2: A common approach to using imputation for classification with
incomplete data.

Single imputation methods have been widely used for classification
with incomplete data. In [12, 13], kNN-based imputation is used to es-
timate missing values. Results show that using kNN-based imputation
performs better than using C4.5 to directly classify incomplete data, and
kNN-based imputation also performs better than the widely used mean
imputation. [1] compares four common methods for tackling missing val-
ues including deletion case, mean imputation, median imputation and
kNN-based imputation on twelve datasets. Results show that kNN-based
imputation can outperform the other methods, particularly with datasets
containing a high percentage of missing values. In [45], six common im-
putation methods are combined with six popular classifiers on fifteen dis-
crete datasets. The study shows that, on average, imputation enhances
classification accuracy compared to not using imputation. In [58], a mu-
tual information-based feature-weighted distance is used to improve kNN-
based imputation. Results show that mutual information-based imputa-
tion is more accurate than common kNN-based imputation. In [109], four-
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teen single imputation methods are tested on three classification groups.
Experimental results show that the imputation methods outperform those
without imputation. Moreover, there is no imputation method that is the
best for all classifiers. Furthermore, the use of a particular imputation
method depends on the required classifier. [80] proposes a locally linear
reconstruction (LLR)-based single imputation. The LLR-based imputation
is compared with six common single imputation methods on 13 classifica-
tion problems. Results show that all imputation methods improves clas-
sification accuracy, and the proposed method is more accurate than the
other single imputation methods, especially when faced with a large num-
ber of missing values. In [39], a multi-layered artificial immune system is
combined with a genetic algorithm to impute missing values for classifica-
tion with incomplete insurance datasets. The hybrid imputation method is
better than mean/mode imputation, and comparable or marginally better
than hot deck imputation. [147] proposes a multilayer perceptron-based
single imputation method for monotone patterns of missing values. Re-
sults show that the proposed method outperforms mean/mode imputa-
tion, regression and hot-deck imputations.

Multiple imputation has also been used to estimate missing values for
classification with incomplete data. In [46], multiple imputation meth-
ods are compared with some other single imputation methods on sixteen
discrete datasets. Results show that multiple imputation generally out-
performs single imputation, but it is much more expensive than single im-
putation. In [102], two multiple imputation methods are compared with
three single imputation methods in terms of the classification accuracy.
The study shows that multiple imputation can perform better than single
imputation, especially with datasets containing numerous missing values.
In [147], multilayer perceptron is combined with k-nearest neighbours to
build a multiple imputation for monotone patterns with missing values.
Results show that the multiple imputation outperforms single imputation
such as mean/mode, regression and hot deck imputation methods. [159]
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proposes GPMI, a multiple imputation method that uses genetic program-
ming as a regression method to estimate missing values. Experiments on
eight datasets with six levels of missing values compare GPMI with seven
other popular and advanced imputation methods on two measures: the
prediction accuracy and the classification accuracy. The results show that,
in most cases, GPMI not only achieves better prediction accuracy, but also
better classification accuracy than the other imputation methods. [164]
proposes a new method to use multiple imputation for classification. Each
imputed dataset from multiple imputation is used to build a classifier. The
set of classifiers is used to classify a new instance by majority voting in the
application process. Empirical results show that the proposed method can
obtain better classification accuracy compared to using multiple imputa-
tion in the traditional way (averaging the imputed datasets into a single
dataset for training a single classifier). [157, 158, 161, 164, 163] further con-
firm that multiple imputation is more accurate, but much more expensive
than single imputation for classification with incomplete data, especially
for the application process.

In summary, using imputation, especially multiple imputation, on in-
complete datasets can obtain better classification accuracy than not using
imputation. However, imputation takes time to estimate missing values,
especially in the application process and with multiple imputation. More-
over, existing imputation research for classification has focused mainly on
improving classification accuracy, with little concern for the computation
time. Therefore, research on how to improve both the effectiveness and
efficiency of using imputation for classification in incomplete data should
be further investigated.

2.3 Direcly Classifying with Missing Data

There are two main approaches to directly classifying incomplete data
without requiring imputation. The first approach is to build a classifier
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such as C4.5 which can directly work with incomplete data [129]. Another
approach is to build a set of classifiers (one classifier for each missing pat-
tern), and then select applicable classifiers from the set of classifiers to
classify new instances.

2.3.1 Decision Trees

Some decision trees such as C4.5/CART can directly work with incom-
plete data. C4.5 computes the information gain of an incomplete feature
by computing the gain on the complete values and discounting it by the
ratio of complete instances to all instances. C4.5 utilises a probabilistic
approach to addressing missing values in both the training set and test
set. C4.5 makes assumption that instances with the missing values are
distributed probabilistically according to the relative frequency of known
values. In the training process, each feature value is assigned a weight: the
weight is assigned one if a feature value is known; otherwise, the weight
of any other values for that feature is the frequency of those values. In the
testing process, when a test feature is chosen, the cases with known values
are divided into branches corresponding to these values. The cases with
missing values are passed down all available branches, but with weight
that corresponds to the relative frequency of the value assigned to a branch
and it decides the class label by using the most probable value [129].

The main benefit of using classification algorithms able to directly clas-
sify incomplete data is that the classification algorithms do not require any
time for estimating missing values. However, when the classification al-
gorithms work with incomplete data, they often generate more complex
models and lead to large classification errors [139], especially when data
contains a large number of missing values. Therefore, further approaches
to improving the classification algorithms should be investigated.
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2.3.2 Ensemble Methods

Ensemble learning is a learning method which constructs a set of base
classifiers for a classification task in the training process. Subsequently,
the predictions of base classifiers are combined to classify new instances
in the application process. An ensemble of classifiers has been proven
to be more accurate than any of base classifiers making up the ensemble
[124].

Ensemble learning also has been applied to classification with incom-
plete data. One of the first work using ensembles for classification with
incomplete data appears in [142], where four neural networks are built
to address classification with a thyroid disease database consisting of two
incomplete features (one classifier that ignores both the missing features,
two classifiers that can be used if one of the features is present, and one
classifier that requires both features to be present). Experimental results
show that the ensemble is superior to an imputation method using neural
networks to estimate missing values. The ensemble is also more accurate
than an induction algorithm which builds a decision tree able to directly
work with incomplete data. [79] builds an ensemble of one-class classifiers
which are trained on each feature. After that, the ensemble can classify in-
complete instances even when the instances have only one complete value.
The systems described in [24] and [76] tackle incomplete data by learning a
set of neural networks, where each neural network is trained on one com-
plete sub dataset extracted from incomplete data. Given a new incomplete
instance to classify, available learnt classifiers are combined to classify the
instance without requiring imputation. Empirical results show that the
ensemble of neural networks can achieve better accuracy than other two
ensemble methods combined with mean and mode imputations. A sim-
ilar approach is proposed in [184], where conditional entropy is used as
the weighting parameter to reflect the quality of feature subsets which are
used to build base classifiers. The previous proposal is extended in [185]
by using the mutual information criterion to eliminate redundant feature
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subsets. As a result, the extended system can not only outperform other
methods, but can also reduce the computation time to classify incomplete
instances. In [90] and [125], an ensemble of numerous classifiers is con-
structed, where each base classifier is trained on a sub dataset by randomly
selecting a feature subset from the original features. Thanks to construct-
ing a larger number of base classifiers, the system can cope with incom-
plete data containing a high proportion of missing values. [51] constructs
a meta-ensemble of classifiers to handle incomplete and unbalanced data.
The meta-ensemble is used to deal with missing values in cyber security
domain. Results show that the proposed method is comparable to other
ensemble-based methods with smaller number of classifiers.

Existing ensemble methods for classification with incomplete data can
deal with missing values to some extent. However, the ensemble meth-
ods usually cannot obtain good accuracy when datasets contain a large
number of missing values [24, 185, 142]. The underlying reason is that the
complete sub datasets often only have a small number of instances when
the original incomplete data includes a huge number of missing values.
Therefore, base classifiers trained on the complete sub datasets are weak
classifiers. To overcome the problem, numerous base classifiers have to be
built [125], which requires a long time for exploring available classifiers
to classify new incomplete instances. Therefore, how to build an effective
and efficient ensemble for classification with datasets containing numer-
ous missing values should be further investigated.

2.4 Genetic Programming

2.4.1 Genetic Programming Algorithm

Genetic Programming (GP) is one of the most popular evolutionary tech-
niques inspired by biological evolution to search for a solution for a prob-
lem in the form of a computer program [87, 88]. In the 1990s, GP was
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mainly applied to relatively simple problems because GP was quite com-
putationally intensive. Nevertheless, thanks to the exponential growth in
CPU power and the improvements in GP, GP has been used to solve many
real-world problems. The applications of GP include electronic design,
game playing, quantum computing and sorting [87, 88].

Algorithm 2: Genetic Programming
Randomly create an initial population of programs from the

available primitives.

repeat

- Execute each program and estimate its fitness.

- Select one or two program(s) from the population with a

probability based on fitness to attend genetic operations.

- Apply genetic operations to create new individual

program(s) with specified probabilities.
until stopping condition is met (e.g., an acceptable solution is found,

or a maximum number of generations is reached)

return the best-so-far individual;

Algorithm 2 shows pseudo-code of GP. The following steps are needed
to apply GP to deal with a problem [123].

2.4.1.1 Representation of candidate solutions

Although, in a GP system, there are a number of ways proposed to repre-
sent candidate solutions , the most popular form is a tree-based represen-
tation. To generate a population of individuals, firstly, a GP practitioner
has to choose a function set and a terminal set. The function set is often
chosen from arithmetic operations (such as +, - , *, /), mathematical func-
tions (such as sin, cos, exp, log), boolean operations (such as AND, OR,
XOR, NOT) and conditional operations (such as IF-THEN-ELSE). The ter-
minal set often includes a number of features and several constants. After
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that, a GP individual is built up recursively from the selected functions
and terminal sets [87, 123].

The selected function and terminal sets have to satisfy the closure and
sufficiency properties. The closure property requires that each function must
be able to tackle every possible input it receives. The sufficiency property
requires that the selected functions and terminal sets must have adequate
ability to represent the solution for the problem [87, 123].

2.4.1.2 Initialising a Population

The purpose of initialisation step is to generate a population of initial indi-
viduals that will be evolved in the later steps. In a tree-based GP system,
the grow method, the full method and the ramped half-and-half method are
the three main approaches to create an initial population.

To generate an initial individual in the grow initialisation, firstly, a func-
tion in the function set is randomly selected and is considered as the root
node of the tree. Assuming that the arity of the selected function is n, then
n nodes are randomly selected from the function and terminal sets as the
children of the root node. If a function is chosen, the recursive process is
applied to that function. If a terminal is selected, this branch of the tree
is terminated. The maximal depth of tree is usually utilised to control the
limitation of the size of the initial individual, .

In full initialisation, when building a tree, instead of choosing nodes
from the function and terminal sets, only functions from the function set
are selected until it reaches the maximal depth where only components
from the terminal set are selected.

In the ramped half-and-half initialisation, a half of the population is
generated by using the grow method and the remaining half is generated
by the full method. This method often results in greater diversity of the GP
population; therefore, it is the most popular initialisation technique [123].
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2.4.1.3 Genetic Operators

Crossover: is the primary operator in GP. Crossover generates new chil-
dren that are formed from parts taken from each parent; hence, crossover
creates variation in the population. In standard crossover, firstly, two
parents are selected by using a selection method, and then one subtree
is randomly chosen in each parent. If these two subtrees are legal for
crossover (depth of resulting children, syntactic closure properties, etc),
the crossover is done by swapping the two chosen subtrees, and then the
new offspring are added to the next generation [87].

Mutation: is the secondary operator in GP. Mutation is an asexual oper-
ator meaning that it operates on only one parent. In standard mutation,
a mutation point is randomly chosen, and then the subtree rooted at the
mutation point is removed and a newly generated subtree is added at that
point [87].

2.4.1.4 Fitness Evaluation

Each individual in the population is assigned a numerical value called
fitness that represents its ability to solve the problem. Fitness has to be
accurate to reflect the problem, but also be efficient to compute. Therefore,
it is important to make a good trade off between these two properties [88,
123].

Two popular fitness measures in GP are raw and standardised fitness.
Raw fitness is the most simple form of fitness that reflects the ability of
an individual to solve the problem. Standardised fitness is estimated using
raw fitness so that the smaller (for minimizing problems) is the better [88,
123].
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2.4.1.5 Selection Mechanism

Based on its fitness value, each individual in the population has a chance
to be chosen to participate in the breeding of the new population. The
three most popular form of selection operations are tournament, fitness pro-
portionate and ranked selection.

In tournament selection, a randomly selected subset of individuals from
the population are compared with each other in terms of fitness and the
most fit is chosen to go to the mating pool. The positive aspect of tourna-
ment selection is that the selection pressure is able to adjust by changing
the size of subsets. Furthermore, tournament selection does not require a
comparison of the fitness between all individuals. Therefore, it may assist
to reduce a large amount of processing time and make it easy to parallelise
the algorithms [88, 123].

In fitness proportionate selection, based on fitness, each individual is
assigned a probability to be chosen for the mating pool. Although propor-
tionate selection has been often used in GP and GA, its behaviour strongly
depends on the difference between fitnesses of the individuals [88, 123].

In ranking selection, based on their fitness, all individuals are sorted.
After that, based on its order, the selection probability is assigned to each
individual. Linear and exponential ranking are often used to index indi-
viduals. Although ranking selection technique assists to lessen the weak-
ness of proportionate selection, in some cases, especially in exponential
ranking, this method increases the difference between close fitness indi-
viduals; therefore, the better one can be chosen more frequently [88, 123].

2.4.2 GP for Feature Construction

Feature construction is the process of transforming the values of one or
more features to a new set of values. The purpose of feature construction
is to transform the original input space to a new input space, where clas-
sification algorithms can achieve better classification accuracy than using
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the original input space. Feature construction has been proven to improve
performance of classifiers, particularly those based on symbolic learning
(e.g. decision trees and decision rules) that cannot achieve adequate pre-
dictive accuracy when faced with difficult real-world problems [116, 160].

A constructed feature is a function which transforms values of the orig-
inal features to new values. The purpose of feature construction is to create
a set of new features which can provide a new input space for classification
that is better than the original input space. Constructed features are typi-
cally mathematical expressions of the original features. The original pur-
pose of GP is to evolve computer programs that perform a user-defined
task. Therefore, GP is an ideal choice for making constructed features.
Using GP for feature contruction has been a new research trend in recent
years [42, 116, 160].

In a GP-based feature construction approach, new constructed features
are often represented by tree-like individuals, where internal nodes con-
tain mathematical operators and functions, and leaf nodes contain origi-
nal features or constants. GP is used as a search technique that depends
on other classifiers (wrapper approaches) or some measures (filter ap-
proaches) to estimate fitness functions to guide the search for new con-
structed features. GP has been applied to both filter and wrapper ap-
proaches to feature construction [42, 116, 160].

2.4.2.1 Filter Approach

In [114], four fitness functions namely information gain, the gini index,
a combination of information gain and the gini index and chi-square are
used to choose the best constructed features. After that, four classification
algorithms namely C5.0, CART, CHAID and a multilayer perceptron are
used to build classifiers. Each individual in the population represents a
new constructed feature and when the evolutionary process ends, the best
individual is added to the original dataset to make an augmented dataset
that is used to induce the classifiers. The results show that GP is effective at
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building highly predictive non-linear features. With datasets having few
classes, all of the classifiers generally achieve a better performance when
the augmented dataset is used, irrespective of the fitness functions used by
the GP to evaluate the feature. Furthermore, the size of the classification
trees can be reduced significantly.

In [63], a GP-based feature construction is proposed to extract new fea-
tures from the raw vibration data for the bearing fault classification prob-
lem. The Fisher criterion is used to build the fitness function. The em-
pirical results show that GP is an efficient and powerful method for the
automatic feature generation directly from the raw data. By using GP-
based constructed features, the ANN and SVM achieve better classifica-
tion results, compared to those using features extracted by classical meth-
ods. Moreover, the classification performance achieved from GP-based ex-
tracted features are very robust. Furthermore, GP is capable of decreasing
the dimensionality to describe the problem.

In [64], a fitness measure based on modified Fisher linear discrimi-
nant analysis (MFLDA) is developed to help GP construct a useful feature
which is optimized to minimize the within-class scatter and maximize the
between-class scatter of pattern vectors. The experimental results on Wis-
consin diagnostic breast cancer show that MFLDA performs better than
other linear classical feature extraction methods. Moreover, the combina-
tion of GP-based feature construction using MFLDA and minimum dis-
tance classifier outperforms the other two GP-based feature construction
methods using the same classifier and also outperforms using original fea-
tures and MLP and SVM.

In [116], GP-based multiple feature construction (GPMFC) is proposed.
GPMFC uses GP for evolving new features and utilizes purity of class in-
tervals as a measure of fitness. The key difference between GPMFC and
other existing filter approaches to GP-based feature construction is that it
uses a decomposable fitness measure. Other approaches typically use a
fitness function having a fixed formulation to estimate the usefulness of
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a feature and consequently can build only a single constructed feature.
In contrast, GPMFC uses a fitness function with a parameter for the class
label; therefore, it can construct one feature per class label. The empiri-
cal results show that GPMFC, in most cases, enhances the classification of
decision trees and rule-based classifiers. Moreover, it can also reduce the
complexity of the learnt classifiers

2.4.2.2 Wrapper Approach

In [136], a GP feature constructor is wrapped around kNN algorithm. Each
individual in the GP population is a forest composed by n trees (n is the
number of original features), each tree ti (1 ≤ i ≤ n) represents the ith

constructed feature. The results show that the GP approach provides an
overall improvement in prediction accuracy opposed to the GA runs.

In [143], wrapped classification algorithm is a Generalised Linear Ma-
chine (GLIM). Each individual is a tree that uses arithmetic operations to
combine the original features. Only the constructed features are used in
classification and the original features are not used by the classifier. The
empirical results show that GP can construct complex features that help to
reduce classification error of difficult problems. In [144], the same authors
extend their research by using three classifiers namely GLIM, kNN and
the maximum likelihood classifier, and each individual is associated with
one type of classifier. Therefore, GP can select the best constructed fea-
tures, and also selects the most suitable type of classifier. In experiments
performed on nine real-world data sets, the GP-based feature construc-
tion algorithm is capable of pre-processing the data to reduce the test set
misclassification rate and reduce the dimensionality of the data.

In [91], the wrapped classification algorithm is C4.5, and the fitness
measure is the accuracy of the decision tree. Each individual contains a
certain number of trees, each tree represents a new constructed feature.
The best individuals are kept in an elitist repository. Individuals preserved
in the elitist subforest are selected by using a utility measure given by the



2.4. GENETIC PROGRAMMING 45

number of times that the constructed feature is used by C4.5. After the ge-
netic run, the best feature set is used to induce the resulting classifier. The
outcomes show that classifiers induced using the GP-constructed features
are capable of outperforming the standard approach on some benchmark
problems with a statistically significant level.

In [155], a GP feature constructor is wrapped around a Bayesian clas-
sifier to construct features for fingerprint classification. The experimental
results show that the GP has ability to find good composite operators to
effectively construct useful features for fingerprint classification problem.

In [149], where GP is utilised to construct features and then a GA is
utilised to choose features from the constructed features. Both GP-based
feature construction and GA-based feature selection are wrapped around
C4.5, kNN and a Bayesian classifier. Each individual is a forest contain-
ing n trees, where n is the number of original features, and each tree is
capable of representing a new constructed feature. The results show that
the hybrid GP/GA system can achieve significant improvements to the
classification accuracy of C4.5.

GP cannot directly work with incomplete data; therefore, to use GP
for feature construction with incomplete data, imputation methods are re-
quired to transform incomplete data into complete data before using GP
for feature construction. In order to obtain good performance, GP has to
be combined with sophisticated imputation methods such as MICE [175].
Unfortunately, sophisticated imputation methods such as MICE are often
suitable for batch imputation, but computationally intensive for imputing
missing values in a single instance in the unseen set for classification [157].
Therefore, how to effectively and efficiently use GP for feature construc-
tion with incomplete data should be investigated.
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2.4.3 GP for Extracting discriminant functions

Discriminant functions are a common way to represent classifiers. A func-
tion is a mathematical expression where different types of operators are
applied to the features of an instance that need be classified. The value re-
turned by the function determines the class predicted by using a threshold
(binary classification) or set of thresholds (multiple classification) [42].

GP has been widely applied to evolve classifiers .The basic idea of the
application of GP for inducing classifiers is that each individual is made to
represent a classifier or a part of a classifier, a fitness function is designed
to score its quality and GP acts as a search technique to discover a high
quality final classifier[42].

The obvious approach to evolving discriminant functions with GP is to
have a population where each individual encodes one discriminant func-
tion. The function set in the GP is any type of operations and functions
that can perform on the data. GP has been widely applied to evolve dis-
criminant functions including binary discriminant functions and multiple
discriminant functions [42].

For binary classification problems, a single program is adequate; if the
output value of the function is greater than a given threshold, the in-
stance belongs to a certain class, otherwise it belongs to the other class.
The threshold is often zero; therefore, a positive output associates with
a particular class, while a non-positive value associates with to the other
class. In [153], binary classification is tackled by the evolution of a single
zero-threshold discriminant function. Two fitness measures are proposed,
including the false alarm rate and the application of a multi-objective ap-
proach to simultaneously optimise two goals: classification accuracy and
the a posteriori entropy of class distributions. In [2, 188], binary classi-
fication is addressed by evolving a single threshold function with a fit-
ness function based on classification accuracy and size penalty. A single
threshold function is evolved in [71], where a fitness function includes
two components: a classification accuracy and a measure of certainty. In
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[14, 15, 16], a single threshold discriminant function is evolved, but two
special fitness functions are proposed to cope with class imbalance. In
[95], the fitness function is based on the distance between the real and the
predicted class.

For multiclass problems, two major approaches can be followed. One
approach is to consider a n-class classification problem as n-1 binary prob-
lems; hence n-1 threshold binary functions can be utilised to discriminate
the n classes [86, 146]. The other approach is to utilise only one program
to distinguish all the classes, where n-1 threshold values are required and
these thresholds determine n intervals, each class is associated with one
interval [189, 190, 191, 192]. In [86], an n-class problem is transferred into
n-1 binary problems and the fitness measure is classification accuracy. The
system is run n-1 times; in each running, a single-threshold discriminant
function is generated for a particular class. A similar approach is pro-
posed in [146], but a fitness function estimates the overlapping between
the class outputs given by the classifier. In [189, 190, 191, 192], multiclass
classification is tackled by generating a multiple threshold discriminant
function. This function recognize the differences of n classes by means of
n-1 threshold values. These thresholds make n intervals, and each interval
is associated with a particular class.

GP has been mainly applied to evolve classifiers, but mainly for com-
plete data. Therefore, to use GP for evolving classifiers for incomplete
data, imputation methods are required to impute missing values before
using GP. In order to evolve good classifiers, GP has to be combined with
sophisticated imputation methods such as (MICE) [22] or multiple impu-
tation for missing data using genetic programming (GPMI) [159]. How-
ever, sophisticated imputations such as MICE and GPMI are computation-
ally expensive. Therefore, how to use GP to directly evolve classifiers able
to deal with missing without imputation should be investigated.
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2.5 Other Relevant Techniques

This section presents several techniques used in the thesis. It firstly presents
feature selection which is used in Chapters 3, 4, and 6. It then presents
clustering which used in Chapter 3.

2.5.1 Feature Selection

The purpose of feature selection is to select a subset of relevant features
from the original features because many datasets often contain irrelevant
and/or redundant features which can be removed without losing much
information. By removing irrelevant and redundant features, feature se-
lection can reduce the training time, simplify the classifier and improve
the classification accuracy [183]. However, feature selection is a hard prob-
lem because there are 2n possible feature subsets where n is the number of
original features [23].

A feature selection method consists of two main components: an eval-
uation measure and a search technique [183]. The evaluation measure is
used to evaluate the goodness of selected features while the search tech-
nique is used to explore new feature subsets. The quality of the feature
selection method strongly depends on both the evaluation measure and
the search technique [23, 183].

2.5.1.1 Evalutation Measures

Evaluation measures for feature selection can be divided into wrapper
methods and filter methods [183]. A wrapper method employs a classi-
fication algorithm to score feature subsets while a filter method employs
a proxy measure such as mutual information to score feature subsets. Fil-
ter methods are often more efficient and general than wrapper methods.
However, wrapper methods are often more accurate than filter methods
because wrapper methods directly evaluate feature subsets using classifi-
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cation algorithms while filter methods are independent of any classifica-
tion algorithm [183].

The Correlation Feature Selection (CFS) [66] is one of the most pow-
erful filter methods, which scores feature subsets based on a correlation
measure. CFS tends to give a good score for a feature subset which con-
tains features highly related to the class, but uncorrelated to each other.
CFS gives the merit for a feature subset S with k features as the following
equation:

MeritS =
krcf√

k + k(k − 1)rff
(2.1)

where rcf is the average of all feature-class correlations and rff is the av-
erage of all feature-feature correlations.

Experiments show that CFS can effectively identify relevant features
and redundant/irrelevant features. Therefore, classification accuracy us-
ing features selected from CFS is often better than using all features. More-
over, in many cases, CFS is as accurate as wrapper methods and it executes
much faster than the wrapper methods [66].

2.5.1.2 Search Techniques

Search techniques for feature selection can be categorised into determin-
istic search techniques and evolutionary search techniques [183]. Sequen-
tial forward selection (SFS) and sequential backward selection (SBS) are
typical examples of deterministic search techniques [66]. In recent years,
Evolutionary Computation (EC) techniques such as Genetic Algorithms
(GAs), Genetic Programming(GP) and Particle Swarm Optimisation (PSO)
have been successfully applied to feature selection [183]. The underlying
reason is that EC techniques are good at searching for global best solu-
tions. EC techniques also do not require domain knowledge and do not
require any assumption related to the search space [183].
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Particle swarm optimisation (PSO) proposed by Kennedy and Eber-
hart in 1995 [84, 85] is a swarm intelligence algorithm. PSO is inspired by
the movement of organisms such as a bird flocking. In order to optimise
a problem, PSO makes a population of particles in the search space, and
moves these particles around in the search space using the information of
the particles’ position and velocity. The movement of each particle uses
both the personal best known position and the global best known position
in the search space. When enhanced positions are found, this informa-
tion will be utilised to guide the movements of the swarm toward the best
solution.

Algorithm 3: Particle Swarm Optimisation
Input:
|Swarm|: the population size
D: dimension of search space;
T : the maximum number of iterations
Output:
gbest: best fitness value

1 Randomly initialise the position and velocity of each particle;
2 while T or other the stopping criterion is not met do
3 Evaluate fitness of each particle
4 for i=1 to |Swarm| do
5 if fitness of xi is better than that of pbesti then
6 pbesti = xi ;
7 end
8 if fitness of pbesti is better than that of gbest then
9 gbest = pbesti ;

10 end
11 end
12 for i=1 to |Swarm| do
13 for d=1 to D do
14 update the position of particle i according to

formula 2.2;
15 update the velocity of particle i according to

formula 2.3;
16 end
17 end
18 end
19 return gbest and its fitness value;
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Algorithm 3 shows the pseudo-code of PSO. Firstly, each particle is
initialised with a random position and a random velocity. After that, the
fitness of each particle is evaluated by a predefined fitness function, and
then the velocity and the position of each particle are updated by using
current pbest and gbest. Assuming that the current position and velocity
of ith particle are represented by a vector xi and vi simultaneously, then
the following formulas are used to update the position and the velocity of
each particle:

xi ←− xi + vi (2.2)

vi ←− w ∗ vi + c1 ∗ r1i ∗ (pi − xi) + c2 ∗ r2i ∗ (pg − xi) (2.3)

where w is inertia weight used to control the effect of the previous veloc-
ities on the current velocities; c1 and c2 are acceleration constants; r1i and
r2i are random values uniformly distributed in [0, 1]; pi and pg indicate the
local best position of ith particle and the global best position, respectively.

During the search process, if the fitness of the particle is better than that
of pbest, then its position will be saved to update the pbest. If the fitness of
any pbest in the population is better than gbest, the gbest will be updated
by this pbest. The algorithm repeatedly updates the position and velocity
values of each particle to search for the best solution of the problem until
a predefined stopping criterion is met. The stopping criterion can be a
maximum number of iterations or a satisfactory fitness value.

One advantage of PSO is that it does not require making assumptions
about the problem being optimized. Furthermore, PSO is able to search
very large spaces of candidate solutions. Consequently, PSO can be used
to optimise problems which are partially noisy, irregular and change over
time, etc. However, the same as other evolutionary algorithms, PSO can-
not ensure to find an optimal solution.
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PSO has been recently used as a search technique to find feature subsets
from original features in feature selection problems [94, 180, 182, 183]. If
the number of original features is n, then the search space dimensionality
is n. Each particle in the swarm is usually presented by a vector of n real
numbers. The value of the ith particle in the dth dimension, xid, is often
in an interval [0, 1]. In order to identify whether or not a feature will be
chosen, the real value in the position vector is compared with a threshold
0 < θ < 1. If xid < θ , then the dth feature will be not chosen; otherwise, the
dth feature will be chosen.

PSO has been used for both wrapper-based and filter-based feature se-
lection. PSO has been proved capable of having the ability to deal well
with feature selection problems [26, 74, 98, 181]. However, PSO-based fea-
ture selection for incomplete datasets has not been systematically investi-
gated.

2.5.1.3 Feature Selection for Incomplete Data

Feature selection has been mainly used on complete data, but it also has
been investigated for incomplete data. In [113], kNN-based feature selec-
tion is combined with kNN-based imputation to estimate missing values
for microarray data. Results show that the proposed method can achieve
smaller error than the compared methods. In [9], the minimum subset of
features is selected to render the rest of features independent of the class
variable. In [108], the uncertainty of each instance due to the missing val-
ues is used to design a feature subset evaluation which can directly work
with missing data. In [36, 128], mutual information is modified to be able
to work with incomplete data. In [106], a general resampling approach is
proposed to perform feature selection on incomplete data. Results show
that the proposed method is suitable for both low-dimensional and high-
dimensional problems. In [162], a classifier which can directly work with
incomplete data is used to score feature subsets. These results show that
feature selection can be useful for analysing incomplete data.
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Although existing feature selection can improve classification with in-
complete data, they still provide incomplete data which cannot be used
by the majority of classifiers. Therefore, feature selection needs to be com-
bined with imputation, and research is required to discover how to do this
efficiently and effectively.

2.5.2 Clustering

The purpose of clustering is to partition data into different groups in such
a manner that elements in each group are more similar to each other than
to those in other groups. Clustering has been used in various fields such
as data compression, information retrieval, pattern recognition, and bioin-
formatics [43].

One of the most common clustering methods is k-means clustering
which groups instances into k clusters such that each instance belongs
to the cluster with the nearest mean. k-means uses Euclidean distance
as a metric and variance as a measure of cluster scatter. This clustering
method is easy to implement, and can be used for large datasets. There-
fore, k-means has been used in many fields, such as computer vision, and
geostatistics [81].

Although clustering has been mainly used for complete data, it has
been also used to improve imputation for incomplete data. In [96], a
fuzzy clustering algorithm is used to divide instances into clusters. Sub-
sequently, incomplete instances are imputed by using the values of clus-
ter centroids and the information about membership degrees. In [187],
complete instances are firstly grouped into different clusters. Each incom-
plete instance is then assigned to the most similar cluster. After that, miss-
ing values in the incomplete instance are substituted with plausible val-
ues which are generated by a kernel function on instances in the cluster.
In [121], both complete and incomplete instances are divided into clus-
ters. Subsequently, to impute missing values for an incomplete instance,
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firstly, the nearest complete neighbor to the incomplete instance is iden-
tified. After that, missing values in the incomplete instance are filled by
the average of centroid values and the centroidal distance of the neighbor.
In [54], a clustering algorithm is used to divide complete instances into
clusters, and kNN-based imputation is then used to impute missing val-
ues for each incomplete instance. A key difference between the method
and the other methods is that it uses previous imputed instances to im-
pute new incomplete instances. In [156], complete instances are firstly
grouped into clusters. After that, for each incomplete instance, the closest
cluster is identified by using the grey relational analysis-based distance
metric. Finally, the closes instance is used to estimate missing values for
the incomplete instance. In [171], missing values in medical datasets are
imputed through a class-based clustering approach. Experimental results
show that the proposed method can effectively impute both categorical
and numeric medical data. In [166], instance selection and imputation are
combined to impute missing values by using instance selection to remove
noisy instances before applying imputation methods.

Although existing cluster-based imputation methods can deal with in-
complete data in some extent, they require and strongly depend on a set of
complete instances in original data which is not always feasible in many
problems where many instances contain missing values. Moreover, clus-
tering has been proven to improve the accuracy of kNN-based imputation,
but the effect of clustering on the efficiency of this imputation method has
not been investigated. There does not appear to have been any research
into applying clustering to multiple imputation methods, although multi-
ple imputation is known to be more accurate than using single imputation.

2.6 Summary

This chapter reviewed the main concepts of classification,ensemble learn-
ing, incomplete data, imputation, evolutionary computation, particularly
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GP, feature construction, feature selection and clustering. This chapter also
reviewed related work of classification with incomplete data.

The limitations of the existing work that form the motivations of this
research were also discussed. The overall motivation is that existing ap-
proaches to classification with incomplete data mainly focus on improving
the effectiveness (accuracy), but do not adequately focus on improving the
efficiency. Therefore, how to improve both the effectiveness and the effi-
ciency of classification with incomplete data needs to be investigated.

Specially, the limitation of existing work and the motivations of this
research can be summarised as follows.

• Using imputation methods to estimate missing values is the most
common approach to classification with incomplete data. Sophisti-
cated imputation methods such as multiple imputation methods are
accurate, but expensive, especially for classification tasks. However,
no thorough work has been conducted to improve both the effective-
ness and efficiency of using imputation for classification with incom-
plete data.

• Wrapper-based feature selection has been widely used to improve
classification, but only with complete data. Several classification al-
gorithms such as C4.5 can directly work with incomplete data, but
they often generate inaccurate and complex classifiers when the data
contains numerous missing values. However, there is no existing
work in investigating the use wrapper-based feature selection to im-
prove these classification algorithms.

• Ensemble learning has been used for classification with incomplete
data by building a set of classifiers which can classify unseen in-
complete instances without requiring imputation. However, existing
ensemble methods are often inaccurate and expensive when faced
with data containing numerous missing values. Therefore how to
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improve the effectiveness and efficiency of ensemble methods for
classification needs to be investigated.

• GP has been widely used to improve classification, but mainly with
complete data. Therefore, it is needed to investigate how to effec-
tively and efficiently use GP for classification with incomplete data.

Following Chapters
This thesis aims to address the above-mentioned issues. The follow-

ing chapters will investigate those issues by developing new algorithms.
Chapter 3 will develop new approaches to using clustering and feature
selection to improve the effectiveness and efficiency of using imputation
for classification with incomplete data. Chapter 4 will develop wrapper-
based feature selection to improve classifiers able to directly work with
incomplete data. Chapter 5 will develop a GP-based feature construction
method which can directly work with incomplete data. Chapter 6 will
develop an effective and efficient approach to classification with incom-
plete data by using imputation, feature selection and ensemble learning.
Chapter 7 will develop GP-based classifiers which can directly work with
incomplete data.



Chapter 3

Improving Imputation for
Classification with Incomplete
Data Using Feature Selection and
Clustering

3.1 Introduction

One of the most common approaches to classification with incomplete
data is to use imputation methods which replace missing values with plau-
sible values. For example, mean imputation replaces all missing values of
a feature by the average of the complete values of the feature. Imputation
can transform incomplete data into imputed data that is complete, and
so can be used by any classification algorithm. Moreover, imputation can
improve classification accuracy [45].

However, effective imputation methods take time to estimate missing
values. This may not be significant in the training process, but it is not
feasible in many classification tasks to spend too much time in the ap-
plication process to estimate missing values for an incomplete instance,

57
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where the instances to be classified are typically presented one by one,
and the application process must be applied to each instance separately.
This is especially true for powerful imputation methods such as Multiple
Imputation by Chained Equations (MICE) [175], which are computation-
ally intensive when estimating missing values for a single incomplete in-
stance because they must rebuild the whole imputation structure from all
the training instances plus the new instance [46, 157]. Though recent re-
search has demonstrated the increased accuracy obtained by using these
advanced imputation methods, the high cost of these methods in the ap-
plication process has seldom been addressed. Therefore, it is important
to address the question of how to reduce the computation time in the ap-
plication process without sacrificing the accuracy achieved by MICE and
other advanced imputation methods. This chapter presents three novel
methods that dramatically improve the efficiency of classification with in-
complete data when using powerful imputation such as MICE.

Clustering is the process of categorising data into clusters such that
the instances in a cluster are similar to one another and different from
the instances in other clusters [43]. By selecting representative instances
from the clusters, it is possible to reduce an original data set to a smaller
but representative subset, so clustering has been widely used for data re-
duction [78]. In the application process of classification with incomplete
data using MICE or other powerful imputation methods, the computation
time to estimate missing values strongly depends on how many training
instances are used by the imputation method. Clustering can be used to
reduce the number of training instances needed for the imputation, which
in turn can reduce the computation time in the application. This chapter
shows how to use clustering to speed up imputation in the application
process without losing accuracy.

Feature selection is the process of selecting a subset of relevant features
from the original features. It has been widely used to improve classifica-
tion with complete data [23, 183]. In the application process of classifica-
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tion with incomplete data, the computation time of the imputation process
also strongly depends on the number of features in the training data. Fea-
ture selection can remove redundant and irrelevant features of the training
data which may not only improve accuracy, but can also reduce the com-
putational cost of the imputation. This chapter also shows how to use
feature selection to speed up imputation and not only retain accuracy, but
even improve it.

3.1.1 Chapter Goals

This chapter proposes new methods to improve the effectiveness and ef-
ficiency of using imputation for classification with incomplete data. To
achieve this goal, we propose three ways of integrating imputation, clus-
tering and feature selection. This chapter will investigate:

1. How to integrate clustering into imputation to reduce the computation
time to estimate missing values while maintaining accuracy; and

2. How to integrate feature selection into imputation to achieve better ac-
curacy and use less computation time; and

3. How to integrate both clustering and feature selection into imputation
to achieve better accuracy and use even less computation time.

3.1.2 Chapter Organisation

The rest of this chapter is organised as follows. Section 3.2 presents the
proposed methods: the integration of clustering with imputation, the in-
tegration of feature selection with imputation, and the integration of both
clustering and feature selection with imputation. Section 3.3 outlines ex-
periment design. Section 3.4 shows empirical results and analysis. Section
3.5 draws conclusions.
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Figure 3.1: Combining imputation and clustering for classification with in-
complete data.

3.2 Proposed Algorithms

This chapter proposes three new methods to improve the effectiveness and
efficiency of imputation for classification with incomplete data. The first
integrates imputation and clustering. The second integrates imputation
and feature selection. The third integrates all three. Each of the combina-
tions includes a training process and an application process. The training
process uses training data to build a classifier while the application pro-
cess then uses it to classify a new instance.

3.2.1 Integrating Imputation with Clustering

The key idea of the first method is to use clustering to produce a smaller
set of representative training data to perform imputation in the application
process. Consequently, the computation time to estimate missing values
in the application process can be reduced.

Figure 3.1 shows the main steps of this method. As usual, in the train-
ing process, an imputation method is used to estimate missing values in
the incomplete training data, and the imputed training data is used by a
classification algorithm to build a classifier. The imputed training data is
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also put into a clustering algorithm to construct clusters of data instances.
The method then extracts one central instance from each cluster to form
a smaller training dataset which will be used to estimate missing values
in the application process. When the application process needs to classify
a complete new instance, it can be directly classified by the classifier. If
it needs to classify an incomplete instance, the instance will be combined
with the clustered training data, and put into the imputation method to
estimate missing values. Finally, the imputed instance is classified by the
classifier.

Although doing the clustering increases the cost during training, train-
ing time is not considered so important in many real-world problems. Us-
ing the clustered data to estimate missing values might slightly reduce the
accuracy of imputation in test data because there is less information, al-
though this may be counteracted by improved quality of the imputation
if clustering is able to identify more representative data points. However,
the computation time of many imputation methods especially kNN-based
imputation strongly depends on the number of instances which are used
to estimate missing values. The number of instances in clustered data is
much smaller than the number of instances in the original data. Therefore,
in the application process, by using clustered data with a smaller num-
ber of instances to estimate missing values for incomplete instances, the
proposed method can speed up the application process.

3.2.2 Integrating Imputation with Feature Selection

The second method uses feature selection to remove redundant and irrel-
evant features from the imputed training data. This is known to improve
the “quality” of training data and help to construct better classifiers. How-
ever, the removed features also need to be applied in the application pro-
cess, and this can reduce the number of incomplete instances (reducing the
need for expensive imputation) and also reduce the cost if the imputation
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Figure 3.2: Combining imputation and feature selection for classification
with incomplete data.

process when it is required. Consequently, the computation time for the
application process can be reduced.

Figure 3.2 shows the main steps of the second method. In the training
process, first an imputation method is used to estimate missing values in
the incomplete training data. After that, a feature selection method is used
to remove redundant and irrelevant features in the imputed training data.
The imputed training data with selected features only is then put into a
classification algorithm to build a classifier. In the application process,
when a new instance needs to be classified, firstly redundant and irrele-
vant values in the instance are removed by only keeping selected features.
If the reduced instance is complete, it is directly classified by the classifier.
Otherwise, missing values in the instance are estimated by using the im-
putation method and the training data with selected features only. Finally,
the imputed instance is classified by the classifier.

Feature selection has several advantages. First, feature selection can
improve classification accuracy and build more compact classifiers for many
classification algorithms. Second, by removing features from new instances
(which may have missing values), it can reduce the number of incomplete
instances in the application process which in turn will reduce the compu-
tation time of the application process. Third, since the computation time
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of many imputation methods, especially MICE, strongly depends on the
number of features in the data which is used to estimate missing values,
using the selected data with a smaller number of features to estimate miss-
ing values for incomplete instances, the proposed method can speed up
the imputation in the application process.

Performing feature selection in this way may increase the cost during
training, though this may be somewhat compensated by decreased cost
of the classification algorithm on the reduced data. However, cost during
training is not generally the primary concern, and the cost saving during
application is much more important.

3.2.3 Integrating Imputation, Feature Selection and Clus-

tering

The third method combines the innovations of the first two methods. It
uses feature selection to remove redundant and irrelevant features, and
uses clustering to reduce the number of instances for the imputation step
of the application process. Unlike the first method, the clustering is ap-
plied to the imputed training data with selected features, rather than the
full imputed training data. Removing irrelevant and redundant features
can improve the clustering quality, as well as improving the classification
accuracy, and reducing the computation time of the imputation step in the
application process. The computation time is further reduced by the clus-
tering step which reduces the number of instances used in the imputation
step. Although clustering and feature selection take time in the training
process, the time saved by their results in the application process is more
important.

Figure 3.3 shows the main steps of the third method. In the training
process, the incomplete training data is put into an imputation method
to estimate missing values. The imputed training data is then put into
a feature selection method to remove redundant and and irrelevant fea-
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Figure 3.3: Combining imputation, feature selection and clustering for classi-
fication with incomplete data.

tures. Following that, the training data with selected features is used by
a classification method to build a classifier. The training data with se-
lected features is also used by a clustering method to generate a smaller
training dataset which is then used to estimate missing values in the ap-
plication process. In the application process, when a new instance needs
to be classified, firstly, redundant and irrelevant values are eliminated by
only keeping the selected features. Subsequently, if the reduced instance
is complete, it will be directly classified by the classifier. Otherwise, it is
combined with the clustered training data, and then used by the imputa-
tion method to estimate missing values. Finally, the imputed instance is
classified by the classifier.

3.3 Design of Experiments

This section presents the comparison methods, datasets used in experi-
ments and parameter settings.

3.3.1 The Comparison Methods

We perform experiments to evaluate the effectiveness and efficiency of the
proposed methods. To evaluate the combination of imputation and clus-
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Figure 3.4: A common approach to using imputation for classification with
incomplete data.

tering shown in Figure 3.1, and the combination of imputation and fea-
ture selection shown in Figure 3.2, both methods are compared with the
method that only uses imputation shown in Figure 3.4. The combination
of imputation, feature selection and clustering as shown in Figure 3.3 is
compared with the method using only imputation shown in Figure 3.4,
the combination of imputation and clustering shown in Figure 3.1, and
the combination of imputation and feature selection shown in Figure 3.2.

We also perform experiments to compare the proposed methods with
recent benchmark methods. The proposed method combing imputation
and clustering is compared with three recent benchmark methods from
[121, 54, 166], which apply clustering to improve imputation in a different
way. The proposed method combing imputation and feature selection is
compared with two recent benchmark methods in [36, 128], which directly
perform feature selection on incomplete data.

3.3.2 Datasets and Parameter Settings

The proposed methods are tested on 15 real-world incomplete datasets.
The main characteristics of the datasets are shown in Table 1.1 in page 18.
Ten-fold cross-validation is used to divide the datasets into training and
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test datasets. This is particularly appropriate because the number of in-
stances in some datasets is relatively small. The ten-fold cross-validation
process is stochastic, so it needs to be performed multiple times and the
results averaged. The ten-fold cross-validation ensures fractions of each
class in each fold are as close to the fraction in other folds as possible. It
is not feasible to also ensure an equal fraction of missing data in each fold
because this would constrain the choices too much. Therefore, whether
items have missing data is ignored during the allocation to folds. To mit-
igate the possibility of unfair results due to a fold having too much or
too little missing data, the ten-fold cross-validation is repeated 30 times to
ensure that on average, there is a reasonable distribution of missing data
across the folds.

The experiments use two imputation methods: kNN-based imputa-
tion and MICE. These imputation methods are selected to represent two
categories of imputation methods: single imputation and multiple impu-
tation, respectively. kNN-based imputation with k=1 is used since it is
simple and fast. Multivariate imputation by chained equations in R [22] is
used for MICE’s implementation. In MICE, random forest [97] is used as
a regression method to estimate missing values. The number of cycles is
set five and the number of imputed datasets is set 20 following the recom-
mendation in [175].

The k-means clustering algorithm is used to cluster data. WEKA [65]
is used to implement the clustering algorithm. The number of k in the
clustering algorithm is set to a square root of the number of instances [81].

The experiments use three classification algorithms: C4.5, k-nearest
neighbour (kNN) and Naive-Bayes (NB). These classification algorithms
are selected to represent three categories of classifiers: rule-based learn-
ing, lazy learning and approximate models, respectively. WEKA [65] is
used to implement the classification algorithms. The default parameter
values in WEKA are used for building classifiers (eg. C4.5 with pruning,
NB with kernel density estimator for numeric attributes, and kNN with
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k=1 and Euclidean distance). Default parameter settings in WEKA are not
always appropriate. However, the thesis uses the same default parameter
settings for both the proposed methods and baseline methods. Therefore,
the comparison between the proposed methods and the baseline methods
are still fair.

The experiments use a wrapper method to perform feature selection. A
classifier using in the later classification step (C4.5, kNN and NB) is used
to evaluate feature subsets. PSO is used for searching feature subsets. The
parameters of PSO in the feature selection method are chosen according to
common settings proposed by Clerc and Kennedy [27]. The parameters of
PSO are set as follows: ω = 0.729844, c1 = c2 = 1.49618, the population size
is 50, the maximum number of generations is 100.

3.4 Results and Discussions

This section presents comparisons of classification accuracy and compu-
tation time between the proposed methods and the benchmark methods.
Analysis is also performed to investigate key reasons why the proposed
methods are effective and efficient.

Abbreviations are used to refer to different methods. “kNNI” is the
baseline method as shown in Figure 3.4 that uses only kNN-based im-
putation. “kNNICl” is the method as shown in Figure 3.1 that combines
kNN-based imputation and clustering. “kNNIFs” is the method as shown
in Figure 3.2 that combines kNN-based imputation and feature selection.
“kNNIClFs” is the method as shown in Figure 3.3 that combines kNN-
based imputation, feature selection and clustering. “MICE”, “MICECl”,
“MICEFs”, and “MICEFsCl” refer to methods using MICE in Figure 3.4,
Figure 3.1, Figure 3.2 and Figure 3.3, respectively.

Table 3.1 shows mean and standard deviation of classification accuracy
of the baseline method in Figure 3.4 and the proposed methods when us-
ing kNN-based imputation and MICE. Each classification accuracy is the
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average of accuracy over 30 times for doing ten-fold cross-validation on
each dataset. The Friedman test [33], which is one of the most commonly
used non-parametric tests for multiple comparisons, is used to statistically
test whether the differences in classification accuracy are significant. The
test shows that for all datasets, there exists significant differences between
the methods. Therefore, a post-hoc procedure using the Holm procedure
[33] is used to carry out pairwise comparisons. The symbol ↑ indicates that
the proposed method is significantly better than the benchmark method.
In contrast the symbol ↓ shows that the proposed method is significantly
worse than the benchmark method.

Figure 3.5 summarises the classification accuracy comparison between
the proposed methods as shown in Figures 3.1, 3.2 and 3.3 with the base-
line method using only imputation as shown in Figure 3.4. In Figure 3.5,
each bar shows the fraction of times the accuracy of the proposed method
is better (statistically significant), similar (difference is not statistically sig-
nificant) or worse than the baseline method for each of the three classifica-
tion algorithms.

Figure 3.6 shows the magnitude of the reduction in computation time
of the proposed methods as a fraction of the computation time of the base-
line method. For example, Figure 3.6b shows that using kNN classifier
and kNN-based imputation, the feature selection method saves 80% of
the computation time of the baseline. Note that the absolute time is often
higher for MICE than for kNN-based imputation. In Figure 3.6, each bar
shows the reduction in computation time relative to the baseline method
obtained by using the proposed methods for each imputation method and
each classification algorithm.

Table 3.2 shows the classification accuracy of six other benchmark meth-
ods. Cl[121], Cl[54] and Cl[166] refer to three benchmark methods in
[121, 54, 166] which use clustering to improve imputation. Fs[36] and
Fs[128] refer to the benchmark in [36, 128] which directly perform feature
selection with incomplete data.
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Table 3.1: The mean and standard deviation of classification accuracies of
the baseline method in Figure 3.4 and the proposed methods.

Data Class
kNNI MICE

kNNI kNNICl kNNIFs kNNIFsCl MICE MICECl MICEFs MICEFsCl

Arr
J48 65.58±1.54 65.58±1.54 67.06±2.39 67.06±2.39 65.45±1.53 65.45±1.53 66.34±0.86 66.34±0.86
kNN 52.98±1.38 53.01±1.33 58.16±2.28↑ 58.16±2.28↑ 52.73±1.17 52.64±1.22 57.92±1.80↑ 57.97±1.87↑
NB 60.48±1.37 60.69±1.48 66.20±1.21↑ 66.18±1.26↑ 61.00±1.33 61.00±1.33 65.99±1.61↑ 66.04±1.58↑

Aut
J48 67.21±4.11 67.11±4.17 66.64±4.48 66.34±4.43 67.79±3.92 67.74±3.94 67.72±2.90 67.42±3.14
kNN 68.97±3.39 69.06±3.30 70.28±5.83 69.40±5.74 69.06±3.61 69.02±3.61 69.03±4.31 68.74±4.38
NB 55.39±3.76 54.95±3.79 61.99±3.20↑ 61.12±3.99↑ 56.07±3.59 56.12±3.65 59.66±4.22↑ 60.00±4.22↑

Ban
J48 67.32±1.84 67.03±1.95 65.75±1.28 65.56±1.14 71.35±2.11 70.24±1.98 70.56±1.29 70.35±1.43
kNN 68.62±1.10 68.25±1.18 69.93±1.90 69.03±1.93 72.25±0.87 71.79±1.16 71.07±1.86 71.92±1.58
NB 63.49±1.02 63.34±1.11 62.62±1.50 62.79±1.45 65.10±0.63 63.22±0.82↓ 64.51±1.38 64.34±1.25

Bre
J48 95.12±0.31 95.07±0.32 94.92±0.38 94.82±0.37 94.94±0.36 94.92±0.41 94.78±0.54 94.81±0.54
kNN 95.21±0.23 95.25±0.23 94.93±0.39 94.90±0.43 95.24±0.22 95.24±0.22 94.79±0.54 94.87±0.51
NB 95.98±0.09 95.98±0.09 95.84±0.42 95.87±0.43 96.01±0.12 96.01±0.12 95.98±0.42 95.96±0.37

Chr
J48 98.52±0.51 98.62±0.50 98.42±0.61 98.32±0.67 97.37±0.56 96.95±0.67 96.92±0.76 96.89±0.58
kNN 97.97±0.39 98.12±0.20 98.05±0.38 97.80±0.35 98.60±0.37 98.47±0.23 97.97±0.50 97.89±0.71
NB 93.60±0.42 94.10±0.53 96.62±0.72↑ 96.10±0.75↑ 95.37±0.43 95.35±0.60 96.77±0.66↑ 96.67±0.53↑

Cle
J48 52.75±2.00 52.71±2.06 57.92±0.87↑ 57.89±0.87↑ 53.05±2.16 53.09±2.16 57.95±1.41↑ 57.84±1.41↑
kNN 54.15±1.04 54.13±1.01 55.22±1.90 55.10±1.89 54.47±1.10 54.36±0.97 55.68±1.20 55.54±1.23
NB 57.11±0.91 57.17±0.87 56.21±1.38 56.33±1.43 57.50±0.73 57.45±0.71 57.30±0.99 57.39±0.88

Cre
J48 85.38±0.73 85.42±0.72 85.65±0.47 85.66±0.48 85.22±0.56 85.21±0.59 85.43±0.85 85.38±0.86
kNN 82.42±0.37 82.70±0.47↑ 84.07±0.90↑ 84.00±0.93↑ 82.86±0.41 82.83±0.40 83.54±0.62↑ 83.50±0.65↑
NB 77.18±0.51 77.30±0.51 86.18±0.46↑ 86.20±0.50↑ 77.26±0.44 77.21±0.46 86.56±0.73↑ 86.55±0.73↑

Hea
J48 79.49±0.70 79.47±0.73 81.20±1.16↑ 81.76±0.83↑ 78.57±1.33 78.73±1.78 80.49±0.80↑ 79.89±1.25
kNN 76.58±1.39 76.72±0.83 80.39±0.99↑ 80.10±1.10↑ 76.67±1.17 77.11±1.74 80.78±1.40↑ 78.73±0.98↑
NB 82.79±0.57 83.08±0.44↑ 81.10±0.93 80.85±1.14 82.79±0.43 82.79±0.59 81.39±1.11 81.32±1.20

Hep
J48 78.11±2.10 78.98±2.12↑ 78.23±2.38 78.55±2.85 79.44±2.44 78.81±2.53 81.98±0.69↑ 81.43±2.03↑
kNN 78.16±0.83 79.03±1.04↑ 78.48±2.66 79.00±2.19 80.53±1.68 80.61±1.65 77.30±2.26↓ 77.80±2.58↓
NB 83.93±1.31 84.25±0.93 80.46±2.29 81.18±2.80 83.28±0.50 83.33±0.85 82.40±1.81 82.30±2.00

Hor
J48 83.19±0.64 83.21±0.91 83.95±0.84 84.13±0.94↑ 84.26±0.78 84.38±0.64 84.34±0.62 84.17±0.64
kNN 77.66±1.14 77.02±1.85 81.49±1.85↑ 81.91±1.55↑ 76.14±1.30 75.67±1.12 79.67±1.54↑ 79.97±1.06↑
NB 77.03±1.18 75.93±1.05 83.03±0.88↑ 83.50±0.75↑ 77.61±0.46 76.92±1.08 81.44±1.05↑ 80.89±1.36↑

Hou
J48 96.24±0.62 96.29±0.58 96.26±0.66 96.33±0.61 96.15±0.54 96.15±0.60 96.22±0.57 96.22±0.56
kNN 92.20±0.66 92.48±0.48 94.58±0.99↑ 94.64±1.07↑ 92.95±0.41 93.07±0.51 95.10±0.65↑ 95.13±0.51↑
NB 90.20±0.24 90.14±0.31 95.10±0.60 95.14±0.63 91.11±0.20 91.11±0.23 95.72±0.57 95.72±0.43

Mam
J48 82.38±0.39 82.42±0.42 82.42±0.57 82.38±0.61 82.46±0.45 82.33±0.33 82.69±0.51 82.59±0.47
kNN 75.52±0.60 75.78±0.81 82.14±0.63↑ 82.01±0.60↑ 75.98±0.64 76.01±0.66 82.43±0.43↑ 82.40±0.45↑
NB 80.63±0.51 80.69±0.40 80.72±0.55 80.82±0.53 80.73±0.37 80.64±0.42 80.47±0.76 80.43±0.80

Mar
J48 30.21±0.55 30.16±0.51 32.97±0.32↑ 33.00±0.33↑ 30.02±0.39 29.92±0.47 32.86±0.45↑ 32.86±0.44↑
kNN 27.60±0.37 27.65±0.29 32.29±0.47↑ 32.28±0.43↑ 27.57±0.38 27.50±0.33 31.81±0.46↑ 31.84±0.47↑
NB 30.67±0.34 30.75±0.35 31.87±0.40↑ 31.89±0.42↑ 30.61±0.29 30.61±0.24 32.27±0.29↑ 32.26±0.30↑

Ozo
J48 95.74±0.79 95.93±0.37↑ 96.39±0.77↑ 96.54±0.35↑ 95.89±0.41 95.88±0.42 96.12±0.42 96.12±.42
kNN 96.69±0.27 96.79±0.15↑ 96.63±0.29 96.74±0.16 96.77±0.16 96.79±0.17 96.79±0.12 96.78±0.13
NB 70.89±1.42 73.06±1.78↑ 97.01±0.13↑ 97.03±0.10↑ 71.46±0.44 72.27±0.50↑ 96.18±1.16↑ 96.16±1.18↑

Tum
J48 40.61±2.51 39.63±2.64↓ 38.78±3.15 38.25±3.79 40.35±2.44 39.78±2.32 39.05±2.10 38.57±1.89
kNN 37.82±1.55 38.23±1.94 36.71±1.72 37.72±1.31 38.30±2.35 37.82±1.89 37.04±2.11 37.25±2.56
NB 45.50±1.45 45.62±2.02 42.02±2.35↓ 42.82±2.06↓ 46.58±1.74 46.28±1.31 43.36±1.69↓ 43.12±1.71↓
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(a) kNNICl (b) MICECl (c) kNNIFs

(d) MICEFs (e) kNNIFsCl (f) MICEFsCl

Figure 3.5: Classification accuracy comparison between the proposed
methods as shown in Figures 3.1, 3.2 and 3.3 with using only imputation
as shown in Figure 3.4.

3.4.1 Integrating Imputation and Clustering

Figures 3.5a and 3.5b show the comparison of the classification accuracy
between the combination of imputation and clustering and only imputa-
tion. It is clear from Figure 3.5a that the combination of kNN-based impu-
tation with clustering can achieve at least similar classification accuracy,
and in several datasets significantly better accuracy than using only kNN-
based imputation. When kNN is also used as a classifier, clustering can
help to improve classification accuracy. Moreover, as demonstrated in Fig-
ure 3.5b, the combination of MICE and clustering can achieve comparable
accuracy to using only MICE.

Figure 3.6a shows the reduction in computation time relative to the
baseline method obtained by combining clustering and imputation. It is
clear from Figure 3.6a that clustering can impressively reduce the com-
putation time to estimate missing values for the application process —by
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(a) kNNICl, MICECl (b) kNNIFs, MICEFs (c) kNNIFsCl, MICEFsCl

Figure 3.6: The reduction in computation time relative to the baseline
method obtained by using the proposed methods.

90% and 50% when using kNN-based imputation and MICE, respectively.
Clustering achieves this saving by reducing the number of instances that
need to be used by imputation in the application process. For kNN-based
imputation, where the cost of imputing missing values in a new instance
is linearly dependent on the number of instances to search, so the relative
speed gain from using clustering is very significant. In our experiments
with MICE, we used random forest for the regression step. This is a par-
ticularly effective regression method which appears to have a sublinear
dependence on the number of instances. The relative speed gained due to
clustering is therefore not as dramatic.

The proposed method integrating clustering into imputation is also
compared against of three recent benchmark methods combining cluster-
ing and imputation in [121, 54, 166] (detailed results are shown in Table
3.2). Figure 3.7 compares the classification accuracy of the methods.

Figure 3.7a shows that the proposed method using kNN-based im-
putation is very similar to the benchmark methods. Figure 3.7b shows
that the proposed method using MICE can frequently achieve better accu-
racy than the benchmark methods. The underlying reason is that MICE,
which is a multiple imputation method, is often better than the single
imputation methods which are used in the benchmark methods. Espe-
cially, the proposed method is much better than the benchmark methods
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Table 3.2: Classification accuracy of some benchmark methods.

Data Cl[121] Cl[54] Cl[166] Fs[36] Fs[128]

Arr 56.28±0.84 58.23±0.78 58.27±0.94 58.15±1.01 58.19±1.12

Aut 52.65± 3.45 53.54±3.25 52.78±3.89 54.85±2.95 58.01±3.01

Ban 68.20±1.23 68.43±1.18 68.37±1.24 69.87±1.12 69.98±1.21

Bre 95.20±0.21 95.26±0.23 95.31±0.19 94.87±0.45 94.95±0.51

Chr 98.31±0.24 98.28±0.27 98.37±0.29 98.12±0.41 98.06±0.43

Cle 54.23±0.97 54.29±1.04 54.24±0.99 55.32±1.82 55.49±1.93

Cre 86.97±0.42 86.87±0.34 87.02±0.37 86.25±0.71 86.57±0.81

Hea N/A N/A N/A 78.50±0.87 79.21±1.02

Hep 81.89±1.24 81.57±1.32 81.65±0.12 82.14±2.12 82.16±2.31

Hor 73.13±2.03 74.95±2.12 73.25±2.21 79.23±1.21 80.01±1.23

Hou 93.60±0.51 93.70±0.42 93.58±0.39 94.61±0.31 94.45±0.35

Mam 78.52±0.61 78.43±0.45 78.87±0.48 82.88±0.65 82.97±0.64

Mar 28.20±0.32 28.34±0.29 28.19±0.31 32.08±0.49 32.01±0.48

Ozo 96.78±0.13 96.77±0.12 96.75±0.18 96.62±0.14 96.65±0.18

Tum 37.92±1.87 38.01±1.89 38.12±1.91 36.81±1.87 36.92±1.82

in datasets which contain many incomplete instances. The key reason is
that the benchmark methods strongly depend on the number of complete
instances to perform clustering, so they cannot work well when datasets
contain a small number of complete instances such as the Heart Disease
dataset and the Horse-colic dataset.

In order to further understand the impact of integrating clustering with
imputation, the proposed method is evaluated with five different numbers
of clusters—n0.2, n0.4, n0.5, n0.6 and n0.8, where n is the number of instances
in the training data. Figure 3.8 shows the accuracy improvement (negative
shows deterioration) by combining kNN-based imputation and clustering
with different number of clusters. Figure 3.9 shows the relative time re-
duction by combining kNN-based imputation and clustering with differ-
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(a) kNNICl (b) MICECl

Figure 3.7: Classification accuracy comparison between the proposed
method combining clustering and imputation against three benchmark
methods using clustering to improve imputation in [121, 54, 166] (using
kNN as a classifier).

ent numbers of clusters.
As expected, Figure 3.9 shows that clustering with a smaller numbers

of clusters leads to a greater reduction in computation time. Figure 3.8
shows that there is not much effect on accuracy between n0.2 and n0.8 clus-
ters, but the best accuracy appears to be around n0.5 which is the com-
monly used value of clustering. Therefore, the common setting for the
number of clusters should be used when combining imputation and clus-
tering.

In summary, the integration of clustering with imputation can markedly
speed up imputation with no loss in accuracy.

3.4.2 Integrating Imputation and Feature Selection

Figures 3.5c and 3.5d show the comparison between the combination of
imputation and feature selection and using only imputation. It is clear
from Figures 3.5c and 3.5d that feature selection can help to improve clas-
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Figure 3.8: The accuracy improvement by integrating clustering into kNN-
based imputation with different numbers of clusters(using kNN as a clas-
sifier).

sification accuracy when it is combined with imputation. With a Naive
Bayes classifier, feature selection significantly improves classification ac-
curacy in over half of the datasets (by about 25% with the Ozone dataset,
and by nearly 10% with the Credit dataset). With a kNN classifier, feature
selection also improves classification accuracy in at least half the datasets,
but not as dramatically as with Naive Bayes. Feature selection may also
improve classification accuracy of a J48 classifier, but less often than the
Naive Bayes classifier and the kNN classifier. The reason could be that
J48 classifier is a decision tree which can implicitly perform feature selec-
tion [152], so explicitly performing feature selection cannot improve the
J48 classifier very much. However, both Naive Bayes and kNN classifiers
are badly affected by irrelevant or redundant features, so explicitly per-
forming feature selection can have a large effect on accuracy.

Figure 3.6b shows the average reduction in time by combining impu-
tation and feature selection relative to using only imputation. As can seen
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Figure 3.9: The reduction in computation time relative to the baseline
method obtained by integrating clustering into kNN-based imputation
with different numbers of clusters (using kNN as a classifier).

from Figure 3.6b, feature selection can help remarkably reduce the compu-
tation time to estimate missing values for the application process. Feature
selection can reduce about 70% and 60% of the computation time when it
is combined with kNN-based imputation and MICE, respectively. There
are two reasons for this. Reducing the number of features helps speed up
the computation process since the cost of the imputation methods depends
on the number of features, as well as the number of instances. Figure 3.10a
shows that feature selection can eliminate at least half of the original fea-
tures. Secondly, feature selection can reduce the number of incomplete
instances and therefore reduce the number of test instances that require
imputation. Figure 3.10b shows that feature selection turns about 30% in-
complete instances into complete instances.

The proposed methods integrating feature selection into imputation
are also compared against of two recent benchmark methods applying fea-
ture selection for incomplete data in [36, 128] (detailed results are shown
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(a) Feature reduction (b) Incomplete instance reduction

Figure 3.10: The reduction in number of features and the fraction of in-
complete instances that were turned into complete instances.

in Table 3.2). Figure 3.11 compares the classification accuracy of the meth-
ods. Figure 3.11a shows that the proposed method with kNN-based impu-
tation is very similar to the benchmark methods; Figure 3.11b shows that
the proposed method with MICE can be more accurate than the bench-
mark methods. The key reason is that MICE can achieve better accuracy
than the single imputation methods in the benchmark methods.

The two main components of feature selection are an evaluation tech-
nique and a search technique. Both wrapper methods and filter methods
can be used to evaluate feature subsets. Wrapper methods are often more
expensive than filter methods, but wrapper methods are often more accu-
rate than filter methods. In the proposed method, feature selection is only
applied during the training process, not the application process. Since the
primary concern of our approach is the computation time in the applica-
tion process, it does not matter that wrapper is more expensive, and we
use wrapper.

Our approach could use any evolutionary search technique. We uses
PSO in our experiments because it is a powerful technique. However, we
also perform experiments to compare PSO with two other evolutionary
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(a) kNNIFs (b) MICEFs

Figure 3.11: Classification accuracy comparison between the proposed
method integrating feature selection into imputation and two benchmark
methods in [36, 128] (using kNN as a classifier).

techniques, GAs and DE that have been more commonly used for feature
selection to ensure that PSO is a reasonable choice. Table 3.3 shows the
classification accuracy by using PSO, GA, DE for feature selection in the
proposed method as shown in Figure 3.2. The experiments show that dif-
ferent classification algorithms have the same pattern, so we only report
the results of kNN.

Figure 3.12 summarises the classification accuracy of feature selection
integrating with imputation using PSO, GA and DE as search techniques
(detailed results are shown in Table 3.3). Figure 3.12 shows that PSO
achieves very similar results to DE and slightly better results than GA.
Therefore, PSO is a suitable choice for search method.

In summary, the integration of feature selection with imputation not
only improves classification accuracy, but also reduces computation time.
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Table 3.3: The classification accuracy by using DE, PSO and GA for feature
selection (kNN is used as a classifier).

Data
kNNI MICE

PSO GA DE PSO GA DE

Arr 58.16±2.28 55.12±2.19↓ 58.23±2.14 57.92±1.80 55.02±1.96 57.99±1.83

Aut 70.28±5.83 70.12±5.46 66.23±5.67↓ 69.03±4.31 68.25±4.28 66.75±4.34↓

Ban 69.93±1.90 69.82±1.93 70.02±1.87 71.07±1.86 71.03±1.89 71.18±1.79

Bre 94.93±0.39 94.91±0.41 94.89±0.38 94.79±0.54 94.63±0.57 94.80±0.52

Chr 98.05±0.38 97.95±0.41 98.02±0.36 97.97±0.50 97.86±0.49 98.01±0.42

Cle 55.22±1.90 55.24±1.86 55.26±1.85 55.68±1.20 55.59±1.22 55.78±1.18

Cre 84.07±0.90 83.28±0.94↓ 85.23±0.87↑ 83.54±0.62 82.76±0.67↓ 84.46±0.58↑

Hea 80.38±0.99 80.47±0.95 80.26±1.03 80.78±1.40 80.97±1.38 80.52±1.44

Hep 78.48±2.66 78.36±2.69 78.17±2.74 77.30±2.26 77.28±2.21 77.15±2.13

Hor 81.49±1.85 79.37±1.89↓ 80.95±1.92 79.67±1.54 78.53±1.57↓ 78.65±1.87↓

Hou 94.58±0.99 94.46±1.03 94.52±1.04 95.10±0.65 95.15±0.62 95.03±0.69

Mam 82.14±0.63 81.56±0.67↓ 82.20±0.61 82.43±0.43 81.57±0.49↓ 82.63±0.37

Mar 32.29±0.47 32.16±0.49 32.32±0.41 31.81±0.46 31.78±0.49 31.92±0.42

Ozo 96.63±0.29 96.53±0.31 96.68±0.23 96.79±0.12 96.68±0.19 96.81±0.11

Tum 36.71±1.72 36.65±1.81 36.69±1.73 37.04±2.11 36.98±2.21 37.02±2.14

3.4.3 Integrating Imputation, Feature Selection and Clus-

tering

Figures 3.5e and 3.5f show the comparison between the combination of im-
putation, feature selection and clustering and only imputation. It is clear
from Figures 3.5e and 3.5f that the combination of feature selection and
clustering also can help improve classification accuracy when it is com-
bined with imputation. The Naive Bayes classifier still obtains the most
benefits from the combination, followed by the kNN classifier and the J48
classifier. Further comparisons show that using both of feature selection
and clustering can achieve better accuracy than using only clustering, and
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(a) kNN-based Imputation (b) MICE

Figure 3.12: Classification accuracy of GA and DE against PSO for feature
selection.

can obtain comparable accuracy to using only feature selection.

Figure 3.6c shows the average reduction in time by combining impu-
tation, feature selection and clustering relative to using only imputation.
Figure 3.6c shows that the combination of feature selection with clustering
dramatically reduce the computation time for estimating missing values in
application process. The combination of feature section and clustering can
reduce about 95% and 80% of the computation time when it is combined
with kNN-based imputation and MICE, respectively. The combination of
feature selection and clustering is also quicker than either feature selection
or clustering. The key reason is that the combination of feature selection
and clustering not only reduces the number of features, but also reduces
the number of instances in training data and the number of incomplete
instances in the test set which helps reduce the computation time.

In summary, the integration of clustering and feature selection with im-
putation not only can improve accuracy, but also can dramatically reduce
the computation time in the application process.
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Table 3.4: Gene expression datasets used in the experiments.

Name #Samples #Genes #Classes
Incomplete

samples (%)

Incomplete

genes (%)

alizadeh-2000-v1 42 1095 2 100 65.66

alizadeh-2000-v2 62 2093 3 100 80.21

bredel-2005 50 1739 3 100 33.12

chen-2002 180 85 2 59.77 81.17

garber-2001 66 4553 4 100 44.47

liang-2005 37 1411 3 100 22.39

tomlins-2006 104 2315 5 100 87.65

tomlins-2006-v2 92 1288 4 100 88.76

3.4.4 Further Evaluation on Gene Expression Datasets

Gene expression datasets are often large. Moreover, gene expression datasets
usually contain a large number of missing values [30, 31]. Therefore, we
evaluate the proposed methods on gene expression datasets to further val-
idate the effectiveness and efficiency of the proposed methods. Table 3.4
shows eight gene expression datasets which were chosen to evaluate the
proposed methods.

Table 3.5 shows the classification accuracy and the computation time
of the baseline method as shown in Figure 3.4, and the proposed methods
when using kNN-based imputation and kNN as a classifier. It is clear from
Table 3.5 that the integration of clustering with imputation helps signifi-
cantly improve the efficiency (around four times faster) while still main-
tain the accuracy. The integration of feature selection with imputation not
only helps improve the efficiency (at least three times faster), but also im-
prove the accuracy (significantly better five in eight cases). Moreover, inte-
grating both clustering and feature selection with imputation can further
improve the efficiency (at least 10 times faster) and still improve the accu-



3.5. CHAPTER SUMMARY 81

Table 3.5: Classification accuracy and computation time of the baseline
method and the proposed methods on gene expression datasets (using
kNN as a classifier)

Data
Classification accuracy(%) Computation time(milisecond)

kNNI kNNICl kNNIFs kNNIFsCl kNNI kNNICl kNNIFs kNNIFsCl

alizadeh-2000-v1 77.02±3.04 77.25±2.96 77.44±4.25 77.61±4.24 2.7×10−3 7.3×10−4 7.9×10−4 1.6×10−4

alizadeh-2000-v2 93.77±0.99 93.77±0.99 93.37±1.39 93.43±1.41 9.5×10−3 2.1×10−3 6.5×10−4 1.1×10−4

bredel-2005 83.47±2.54 83.89±2.68 86.77±3.39↑ 86.79±3.25↑ 4.7×10−3 1.1×10−3 1.3×10−3 3.6×10−4

chen-2002 90.11±0.88 90.10±0.73 92.54±1.48↑ 92.48±1.45↑ 1.5×10−3 2.1×10−4 3.7×10−4 7.0×10−5

garber-2001 75.83±2.59 75.83±2.59 79.38±3.31↑ 79.41±3.78↑ 1.9×10−2 4.3×10−3 5.4×10−3 1.0×10−3

liang-2005 95.09±0.89 95.09±0.89 95.09±0.89 95.09±0.89 1.9×10−3 5.7×10−4 2.2×10−4 5.6×10−5

tomlins-2006 73.38±2.37 73.30±2.45 75.87±2.66↑ 75.70±2.30↑ 7.2×10−2 2.1×10−2 2.1×10−2 5.2×10−3

tomlins-2006-v2 72.01±2.54 72.37±2.69 74.18±2.80↑ 74.25±3.12↑ 9.8×10−3 2.0×10−3 3.5×10−3 6.7×10−4

racy (significantly better five in eight cases).

In summary, the proposed methods are still able to produce dramatic
improvement in efficiency and better accuracy on large datasets.

3.5 Chapter Summary

The goal of this chapter was to propose new methods to improve the ef-
fectiveness and efficiency of using imputation for classification with in-
complete data. To achieve this goal, we proposed three ways to integrate
clustering and feature selection with imputation. The first uses clustering
to reduce the number of instances used for imputation in the application
process. The second uses feature selection to remove redundant and irrel-
evant features of the imputed training data which is then used to build a
classifier and estimate missing values in the application process. The third
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uses both clustering and feature selection. The results showed that the
proposed methods can improve the classification accuracy and reduce the
computation time of using imputation for classification with incomplete
data.

This chapter shows that the integration of clustering with imputation
crucially reduces the computation time of the application process with
no loss in accuracy. Clustering is used to produce a smaller number of
representative instances to perform imputation in the application process.
Therefore, the integration speeds up imputation to estimate missing val-
ues in the application process while still maintains accuracy.

This chapter shows that the integration of feature selection with impu-
tation also remarkably reduces the computation time, and achieves better
accuracy than using only imputation. The first reason is that by remov-
ing redundant and irrelevant features, feature selection can enhance the
training data which then helps to build better classifiers. The second rea-
son is that feature selection also helps reduce the number of incomplete
instances, and provide a smaller number of features to estimate missing
values in the application process which then speed up imputation.

This chapter also shows that the integration of both feature selection
and clustering with imputation not only further speeds up imputation,
but also still improves classification accuracy. Feature selection is used to
improve the training data, and reduce the number of features using for
imputation in the application process . Clustering is used to further com-
press data using for imputation in the application process by providing
a smaller number of instances. Therefore, the integration of both feature
selection and clustering with imputation further reduces the computation
time of imputation and still enhances classification accuracy.

The proposed methods in this chapter helps speed up using imputa-
tion for classification with incomplete data, but the application process
still requires the computation time to estimate missing values. One al-
ternative approach is to use classification algorithms such as C4.5 [129]
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which can directly work with incomplete data without the need for im-
putation. However, these classification algorithms are often not accurate
and generate complicated classifiers when datasets contain many missing
values. The next chapter will develop a wrapper-based feature selection
method to improve the classification accuracy and reduce the complexity
of classifiers that are able to directly classify with incomplete data.
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Chapter 4

Improve Performance of
Classification with Missing Data
using Wrapper-based Feature
Selection

4.1 Introduction

One common approach to solving classification with incomplete data is
to use classification algorithms which can work directly with incomplete
data. For example, C4.5 uses a probabilistic approach to tackle missing
values in both the training and application processes by making assump-
tion that instances with the missing values are distributed probabilistically
according to the relative frequency of known values [129]. The main ben-
efit of this approach is that the classification algorithms do not require any
time for estimating missing values. However, when these classification
algorithms work with incomplete data, they often generate complex clas-
sifiers and result in large classification errors, especially when the incom-
plete data contains numerous missing values [139]. This chapter shows

85
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how to improve the effectiveness and efficiency of these classification al-
gorithms when faced with incomplete data.

Moreover, classifiers such as decision tress cannot achieve adequate
accuracy when the input space contains numerous redundant or irrele-
vant features. Feature selection that eliminates redundant and irrelevant
features and keeps important features while maintaining or improving ac-
curacy is a well known solution to the problem [66, 183]. In feature se-
lection, two main approaches to evaluating feature subsets are the filter
approach and the wrapper approach. The filter approach uses measures
such as information gain to evaluate the quality of feature subsets [111].
The wrapper approach builds a classifier to evaluate the quality of feature
subsets. In recent work [36, 128], filter approaches based on mutual in-
formation have been expanded to evaluate feature subsets when datasets
contain missing values, and results show that a filter-based feature selec-
tion method can help improve classification tasks when faced with miss-
ing values. However, a wrapper approach to feature selection for incom-
plete data has not been investigated. This chapter shows that a wrapper
approach to feature selection can improve classification with incomplete
data.

Ensemble learning is a machine learning method that builds a set of
classifiers instead of a single classifier for classification tasks. Ensemble
methods such as bagging and boosting have been demonstrated to en-
hance classification accuracy [35], but they often generate complex clas-
sifiers [119]. Feature selection also has been used to improve ensemble
learning [119, 62, 118]. However, feature selection for ensemble learning
has been mainly applied to complete data. This chapter shows that the
integration of feature selection with ensemble methods can improve clas-
sification with incomplete data of the ensemble methods.
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4.1.1 Chapter Goals

The overall goal of this chapter is to develop wrapper-based feature se-
lection methods to improve accuracy and reduce complexity of classifiers
that are able to work directly with incomplete data. This chapter presents
a wrapper-based feature selection method to improve single classifiers for
incomplete data. This chapter also presents integration of feature selection
with bagging and boosting to improve the ensemble methods for classifi-
cation with incomplete data. Specially, this chapter will investigates:

1. Whether the proposed wrapper-based feature selection method for a
single classifier able to directly classify incomplete data can improve
classification accuracy of the classifier.

2. Whether the proposed wrapper-based feature selection method for
a single classifier able to directly classify incomplete data can reduce
the complexity of the classifier.

3. Whether the integration of feature selection with bagging/boosting
can improve classification accuracy of the ensemble methods.

4. Whether the integration of feature selection with bagging/boosting
can reduce the complex of classifiers generated by the ensemble meth-
ods.

4.1.2 Organisation

The rest of this chapter is organised as follows. Section 4.2 presents the
proposed methods. Section 4.3 describes the experiments to evaluate the
proposed methods. Section 4.4 presents experimental results and analysis.
Finally, section 4.5 states conclusions.
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4.2 Proposed Algorithms

This section presents two proposed methods: a wrapper-based feature se-
lection method for a single classifier with incomplete data and a wrapper-
based feature selection method for ensemble classifiers with incomplete
data.

4.2.1 Wrapper-based Feature Selection for Single Classifier

with Incomplete Data

The key idea of the first proposed method is to use a classifier which can
work directly with incomplete data to evaluate feature subsets in wrapper-
based feature selection. The training data is incomplete, so feature subsets
probably contain incomplete features. Therefore, classifiers such as C4.5
which are able to work directly with incomplete features can be used to
evaluate the feature subsets.

Figure 4.1 shows the flowchart of the method. The method has two
main processes: a training process and an application process. The train-
ing process uses a wrapper-based feature method to build an effective and
efficient classifier which is then used classify unseen instances in the ap-
plication process.

Figure 4.1: Classification with incomplete data using a feature selection
method before applying a classifier able to directly classify the incomplete
data.
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In the training process, firstly, training incomplete data is put into a
wrapper-based feature selection method to find important features from
original features. In the feature selection method, a search technique is
used to search for feature subsets which are evaluated by using a classifier
able to work directly with incomplete features. After that, the training
data is reduced to the selected features to generate training selected data
which is then used by a classification algorithm to build a classifier.

In the application process, an unseen instance is firstly reduced to the
selected features generated in the training process. After that, the instance
with only selected features is classified by the learnt classifier built in the
training process.

4.2.2 Wrapper-based Feature Selection for Ensemble Clas-

sifiers with Incomplete Data

The key idea of the second proposed method is to integrate wrapper-based
feature selection with bagging or boosting to improve the accuracy and
diversity of ensemble classifiers. To construct a set of classifiers, bagging
and boosting repeatedly resample the training dataset to build a set of
training resampled datasets. The resampled datasets often contain redun-
dant/irrelevant features. Feature selection has been proven capable of re-
move redundant/irrelevant features. Therefore, feature selection could
be applied to each resampled dataset to eliminate redundant/irrelevant
features. By eliminating redundant/irrelavant features, this method is ex-
pected to improve resampled datasets which in turn can help build more
accurate and less complex classifiers.

Figure 4.2 shows the main steps of the training process of the method.
In the training process, firstly, the training dataset is put into a resampling
procedure several times to generate a set of training resampled datasets.
After that, each training resampled dataset is put into a feature selection
procedure to select a suitable feature subset which is then used to trans-
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Figure 4.2: The training process of classification with incomplete data by
integrating feature selection with ensemble learning methods.

form the training resampled dataset into a training selected dataset. Sub-
sequently, each the training selected dataset is used by a classification al-
gorithm to learn a classifier. As a result, the training process generates a set
of classifiers. In the application process, the set of classifiers is combined
to classify new instances.

The main steps of the method are presented in the following subsec-
tions.

Resampling Data: The purpose of resampling the training dataset is to
create a random redistribution of the training dataset. Each training re-
sampled dataset is generated by choosing with replacement the same num-
ber of instances as the original training dataset. As a result, many of
the original instances might be repeated in the training resampled dataset
while others might be left out.

Feature Selection: The key difference between the proposed method and
ensemble methods (bagging/boosting) is the feature selection. The ensem-
ble methods use the set of training resampled datasets directly to build a
set of classifiers. In contrast, the proposed method applies feature selec-
tion to eliminate redundant and irrelevant features in each training resam-
pled dataset before building a set of classifiers.
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In order to remove redundant and irrelevant features in incomplete
data, any search technique can be used to find feature subsets. Evolu-
tionary techniques such as PSO and GAs (which have been proven to be
effective and efficient for feature selection) could be used to search for fea-
ture subsets. To evaluate a feature subset which may contain incomplete
features, the feature selection procedure requires a feature subset evalua-
tion method which can deal with incomplete data. Therefore, a classifier
which is able to directly classify incomplete data such as C4.5 could be
used to evaluate feature subsets.

Combining classifiers: A set of classifiers which was built in the training
process is combined to classify new instances in the application process.
Majority vote which is a simple and powerful voting method [120] chooses
a class label with the most votes from the ensemble members as the ensem-
ble output. Therefore, in the proposed method, the majority vote is used
to combine classifiers.

4.3 Design of Experiments

This section outlines the design of the experiments. The section then presents
comparison methods, datasets and parameter settings.

4.3.1 The Comparison Methods

4.3.1.1 Feature Selection for Single Classifier with Incomplete Data

The first study is designed to empirically evaluate the impact of the wrapper-
based feature selection method for a single classifier with incomplete data.
To achieve this objective, the proposed method, as shown in Figure 4.1, is
compared to two other common methods to tackle classification with in-
complete data, as shown in Figure 4.3 and Figure 4.4. Figure 4.3 presents
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a common method for classification with incomplete data by using a clas-
sifier able to directly classify incomplete datasets. Figure 4.4 presents an-
other common method for classification with incomplete data by using
an imputation method to fill missing values with plausible values before
using a classifier.

Figure 4.3: Classification with incomplete datasets using a classifier able
to directly classify incomplete datasets.

Figure 4.4: Classification with incomplete datasets using an imputation
method before using a classifier.

In the proposed setup as shown in Figure 4.1, a feature selection method
uses the training incomplete data to select a suitable feature subset. The
feature subset is used to transform the training incomplete data into train-
ing selected data which is then used by a classification algorithm to build
a classifier. To classify a new instance, firstly, the instance is reduced to the
selected features, and then classified by the learnt classifier. In the setup
shown in Figure 4.3, the training incomplete dataset is directly used by a
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classification algorithm to build a classifier which is then used to directly
classify new instances. In the setup shown in Figure 4.4, an imputation
method is used to transfer the training incomplete data into the training
imputed data which is then used by a classification algorithm to build a
classifier. To classify a new incomplete instance, firstly, the instance is put
into the imputation method to estimate missing values, and then the im-
puted instance is classified by the learnt classifier.

4.3.1.2 Feature Selection for Ensemble Classifiers with Incomplete Data

Experiments are also conducted to evaluate the impact of the combination
of feature selection and ensemble methods for classification with incom-
plete data. To achieve this goal, the proposed method, as shown in Figure
4.2, is compared with two other common ensemble methods for classifica-
tion with incomplete data, as shown in Figure 4.5 and Figure 4.6. Figure
4.5 shows the training process of classification with incomplete data by
combining an ensemble method with a classifier able to directly classify
with incomplete data. Figure 4.6 shows the training process of classifi-
cation with incomplete data by combining an imputation method and an
ensemble method.

Figure 4.5: The training process of classification with incomplete data by
using ensemble learning.

In the proposed method shown in Figure 4.2, the training dataset is
used by an ensemble method and feature selection to build a set of classi-
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Figure 4.6: The training process of classification with incomplete data by
using imputation and ensemble learning.

fiers which is used to classify new instances. In the setup shown in Figure
4.5, the training data is put into a resampling procedure to generate a set
of training resampled datasets. After that the set of training resampled
dataset is used by a classification algorithm to build a set of classifiers
which is then used to classify new instances. In the setup shown Figure
4.6, the training dataset is firstly put into an imputation method to gen-
erate a training imputed dataset. After that, the training imputed dataset
is put into a resampling procedure to generate a set of training resampled
datasets which is used to build a set of classifiers to classify new instances.

4.3.2 Datasets and Parameter Settings

The experiments compare the proposed methods against the benchmark
methods on 15 real-world incomplete datasets. Table 1.1 in page 18 shows
the main characteristics of these datasets. As in Chapter 3, the ten-folds
cross validation procedure is used to divide the datasets into training sets
and test sets, and it is performed 30 times to generate 300 pairs of training
set and test set for each dataset.

C4.5 is a decision tree which is able to work directly with incomplete
datasets. The experiments use C4.5 to classify data and evaluate feature
subsets in feature selection. The experiments use WEKA [65] for C4.5 im-
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plementation by setting its parameters as the default values.

Chapter 3 showed that PSO is good at for feature selection. Therefore,
PSO is used as a search technique for searching feature subsets in the fea-
ture selection method. As in Chapter 3, the parameters of PSO in the fea-
ture selection method are chosen according to common settings proposed
by Clerc and Kennedy [27]. The detailed settings are shown as follows: ω
= 0.729844, c1 = c2 = 1.49618, population size is set 50, and the maximum
iteration is set 100.

The experiments use two imputation methods: kNN-based imputation
and MICE. As in Chapter 3, kNN-based imputation is in-house implemen-
tations, and a number of neighbors (k) is set 1. The implementation of
MICE using R language in [22] is used to run MICE where random forest
is used as a regression method [175]. The number of cycles is set five and
the number of imputed datasets is set 20 following the recommendation
in [175].

The experiments use two common ensemble methods: bagging and
boosting. In the two ensemble methods, the number of classifiers is set 25
as suggested in [120].

4.4 Results and Discussions

This section presents experimental results and analysis. It first shows the
comparison between the first proposed method as shown in Figure 4.1
and the other benchmark methods as shown in Figures 4.3 and 4.4. It then
shows the comparison between the second proposed method as shown in
Figure 4.2 and the other benchmark methods as shown in Figures 4.5 and
4.6.
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4.4.1 Feature Selection for Single Classifier with Incom-

plete Data

Table 4.1 shows classification accuracy along with standard deviation of
the first proposed method and the benchmark methods. “C4.5FS” refers
to the first proposed method, as shown in Figure 4.1, using C4.5 as a classi-
fication algorithm and an evaluation method in the wrapper-based feature
selection. “C4.5” refers to directly classification with incomplete data, as
shown in Figures 4.3, by using C4.5 as a classification algorithm. “kN-
NIC4.5” and “MICEC4.5” refer to the benchmark method, as shown in
4.4, using kNNI and MICE, respectively, for estimating missing values.
As in Chapter 3, the Friedman test [53] is used to test whether the dif-
ferences in classification accuracies are statistically significant. The test
shows that there exist significant differences between the methods for all
datasets; therefore, the Holm procedure [72] is used to carry out pairwise
comparisons. The symbol ↑ indicates that the benchmark method is signif-
icantly more accurate than the proposed method. In contrast, the symbol
↓ indicates that the benchmark method is significantly less accurate than
the proposed method.

It is clear from Table 4.1 that the proposed method generally achieves
comparable, or better accuracy than the benchmark methods. In 15 datasets,
C4.5FS is significantly more accurate than C4.5 and kNNIC4.5 in five and
six datasets, respectively, and it is only significant less accurate than the
two benchmark methods in two datasets. Unsurprisingly, the proposed
method is very comparable to MICEC4.5, with roughly equal numbers of
datasets better or worse.

Table 4.2 shows the average size of decision trees (the number of nodes
in the trees) generated by C4.5FS and the other benchmark methods. Fig-
ure 4.7 presents the minimum, average and maximum ratios between the
average of tree sizes generated by C4.5, kNNIC4.5 and MICEC4.5 with
C4.5FS from Table 4.2.
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Table 4.1: The average of accuracy comparison between C4.5FS and the
other methods.

Dataset C4.5FS C4.5 kNNIC4.5 MICEC4.5

Arr 66.02±2.25 65.64±2.13 65.30±2.44 65.43±2.02

Aut 65.98±3.92 67.49±3.85↑ 68.37±3.50↑ 68.09±4.17↑
Ban 68.16±1.88 68.45±1.88 66.05±1.91↓ 71.43±1.80↑
Bre 94.69±0.50 94.83±0.46 94.62±0.50 94.84±0.52

Chr 97.67±0.45 99.08±0.30↑ 99.40±0.47↑ 97.53±0.62

Cle 56.85±1.38 54.56±2.10↓ 54.16±2.02↓ 54.09±1.98↓
Cre 85.14±0.62 85.04±0.66 85.30±0.59 85.36±0.58

Hea 80.46±1.18 79.38±1.23↓ 79.10±1.19↓ 78.25±1.39↓
Hep 78.72±1.58 79.21±1.75 78.55±2.05 80.01±2.25↑
Hor 84.26±0.63 84.24±0.48 82.94±1.22↓ 84.06±1.21

Hou 96.35±0.54 96.52±0.34 96.31±0.52 96.15±0.54

Mam 82.39±0.53 82.12±0.33↓ 81.81±0.57↓ 82.24±0.65

Mar 32.76±0.39 30.91±0.45↓ 30.02±0.56↓ 30.01±0.41↓
Ozo 96.88±0.26 96.25±0.27↓ 95.67±0.88↓ 95.90±0.40↓
Tum 40.39±2.02 39.67±2.12 40.49±2.64 41.24±2.05

It is clear from Table 4.2 and Figure 4.7 that C4.5FS is able to generate
smaller decision trees than the other methods in all cases. On averaged on
all datasets, C4.5FS generates trees about half the size of the other meth-
ods. In some datasets, for example, Marketing and Ozone, the average tree
size generated by C4.5FS is less than one quarter of the average tree size
generated by C4.5 and less than one fifth of the average tree size gener-
ated by using imputation methods before using C4.5. A possible reason
that imputation methods generates particularly large tree is that imputa-
tion methods often generate further values for missing features. Therefore,
if the incomplete features are selected to make decision trees, the further
values can make decision trees bigger.

Note, C4.5 does implicit feature selection when it builds a tree. The
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Table 4.2: The average tree sizes of C4.5FS and the other benchmark meth-
ods.

Dataset C4.5FS C4.5 kNNC4.5 MICEC4.5

Arr 45.86 48.03 48.40 48.60

Aut 35.28 45.90 41.60 39.46

Ban 45.63 85.10 99.02 95.44

Bre 15.75 23.20 23.29 23.47

Chr 13.04 13.73 14.72 14.02

Cle 26.68 78.50 80.74 80.90

Cre 26.44 29.47 31.31 31.67

Hea 7.62 11.37 23.60 26.41

Hep 8.97 17.04 18.98 17.76

Hor 9.56 9.82 18.94 19.83

Hou 9.63 10.64 10.98 10.66

Mam 9.57 10.46 14.43 17.02

Mar 309.01 1361.02 1645.40 1679.65

Ozo 5.50 24.30 28.93 28.66

Tum 29.11 54.56 58.15 60.48
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Figure 4.7: The tree sizes ratio between C4.5, kNNIC4.5 and MICEC4.5
over C4.5FS.
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results above show that doing explicit feature selection achieves better re-
sults than relying on C4.5 built-in feature selection.

In summary, the proposed method using wrapper-based feature selec-
tion reduces the complexity of the learnt classifier, and achieves compara-
ble, or even better accuracy than the benchmark methods.

4.4.2 Feature Selection for Ensemble Classifiers with In-

complete Data

Table 4.3 shows the average of classification accuracy along with stan-
dard deviation of the second proposed method and the benchmark meth-
ods by using bagging and boosting methods to build ensembles of classi-
fiers. Table 4.3 is divided into two vertical partitions. The first partition
contains accuracy information for the proposed and benchmark methods
where bagging is used to build ensemble classifiers. The second partition
contains accuracy information for the proposed and benchmark methods
where boosting is used to build ensemble classifiers. The Friedman test
and Horm procedure are used to statistically test the significant differences
between the proposed method and the benchmark methods.

It is clear from Table 4.3 that when bagging is used to build ensem-
bles of classifiers, the proposed method generally achieves comparable,
or better accuracy than the benchmark methods. BagC4.5FS is signifi-
cantly more accurate than BagC4.5, BagkNNIC4.5 and BagMICEC4.5 in
four, eight and six datasets, respectively. BagC4.5FS is significantly less
accurate than BagkNNIC4.5 and BagMICEC4.5 in one and four datasets,
respectively, and it is not worse than BagC4.5 in any dataset.

Table 4.3 also shows that when boosting is used to build ensembles of
classifiers, the proposed method also achieves comparable, or better accu-
racy than the benchmark methods. The accuracy of BooC4.5FS is signif-
icantly better than BooC4.5, BookNNIC4.5 and BooMICEC4.5 in five, six
and two datasets, respectively. The accuracy of BooC4.5FS is significantly
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Table 4.3: The average of accuracy comparison between BagC4.5FS,
BooC4.5FS and the other benchmark methods.

Data
Bagging Boosting

BagC4.5FS BagC4.5 BagkNNIC4.5 BagMICEC4.5 BooC4.5FS BooC4.5 BookNNIC4.5 BooMICEC4.5

Arr 73.01±1.05 72.85±1.35 72.89±1.32 72.60±1.34 71.83±1.47 72.02±1.57 71.36±1.54 72.01±1.49

Aut 70.44±3.47 70.07±2.84 70.07±3.49 70.22±3.51 73.57±3.69 72.68±3.18 73.29±3.29 73.56±3.54

Ban 71.72±2.17 71.05±1.12↓ 68.76±1.29 73.69±1.67↑ 70.07±1.46 69.22±1.71↓ 68.10±2.10↓ 72.08±1.48↑

Bre 96.10±0.35 95.82±0.38↓ 95.77±0.36↓ 95.92±0.43 95.74±0.41 95.68±0.49 95.49±0.38↓ 95.65±0.43

Chr 99.18±0.39 99.08±0.45 99.21±0.24 97.45±0.63↓ 99.41±0.31 99.76±0.29↑ 99.61±0.27↑ 98.49±0.49

Cle 58.20±1.52 57.06±1.66↓ 57.09±1.17↓ 57.13±1.48↓ 56.79±1.21 55.88±1.46↓ 56.16±1.21↓ 56.15±1.73

Cre 86.30±0.52 86.05±0.60 85.87±0.70↓ 86.13±0.63 85.28±1.02 84.22±0.59↓ 84.24±0.94↓ 84.41±0.72↓

Hea 80.11±1.59 79.93±1.09 79.62±1.36 79.34±1.34 78.88±1.55 79.40±1.44 79.84±1.53↑ 79.15±1.46

Hep 82.01±1.57 81.30±1.39 80.80±1.82↓ 83.78±1.68↑ 82.28±1.64 82.66±1.27 81.92±1.96 84.21±1.70↑

Hor 85.09±0.68 85.34±0.48 83.95±0.84↓ 84.69±0.68↓ 82.19±1.26 81.99±1.27 82.12±1.09 81.93±1.27

Hou 95.75±0.31 95.97±0.43 95.87±0.53 96.20±0.65↑ 95.08±0.51 94.75±0.64↓ 94.78±0.58↓ 95.02±0.55

Mam 82.91±0.47 82.70±0.50 82.23±0.56↓ 82.37±0.62↓ 77.58±0.89 77.51±0.79 77.53±0.96 78.00±0.94

Mar 31.64±0.41 31.37±0.36↓ 30.89±0.33↓ 31.10±0.29↓ 29.90±0.35 29.86±0.35 29.52±0.40↓ 29.69±0.42↓

Ozo 97.08±0.09 97.05±0.07 97.00±0.17↓ 97.00±0.10↓ 97.06±0.12 97.05±0.11 97.00±0.16 97.05±0.11

Tum 41.00±1.95 41.27±1.69 42.16±2.48↑ 42.61±2.05↑ 38.91±2.02 36.83±2.42↓ 39.56±2.21 40.32±1.82↑

worse than BookNNIC4.5 and BooMICEC4.5 in two datasets, and it is sig-
nificantly worse than C4.5 only in one dataset.

Table 4.4 shows the average size of decision trees(the number of nodes
in the trees) of the second proposed method and the other benchmark
methods. Figure 4.8 summaries Table 4.4 by showing the average of tree
size ratio between the other methods and the proposed method with bag-
ging and boosting (bigger than one means bigger tree, otherwise equal or
smaller tree). It is clear from Figure 4.8 that the proposed method also
generates smaller decision trees the other benchmark methods.

In summary, the combination of feature selection and bagging/boosting
not only improves classification accuracy of the ensemble methods, but
also reduces the complexity of ensemble classifiers.
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Table 4.4: The average of tree size comparison between BagC4.5FS,
BooC4.5Fs and the other methods.

Data
Bagging Boosting

BagC4.5FS BagC4.5 BagkNNIC4.5 BagMICEC4.5 BooC4.5FS BooC4.5 BookNNIC4.5 BooMICEC4.5

Arr 41.67 42.69 42.70 43.44 48.96 49.78 50.05 50.10

Aut 35.09 38.37 34.30 34.52 35.30 39.83 39.72 39.08

Ban 80.15 83.39 83.72 85.76 79.56 81.15 80.76 81.28

Bre 19.47 22.92 23.29 23.23 39.61 39.02 39.70 39.83

Chr 12.84 13.57 13.93 11.57 15.71 16.35 16.17 16.63

Cle 69.93 73.41 74.35 73.50 79.37 79.29 79.55 78.97

Cre 48.61 48.44 49.13 49.47 92.15 100.0 102.7 101.2

Hea 29.63 28.70 38.50 38.93 43.51 48.97 47.08 46.84

Hep 12.44 15.16 16.92 14.72 19.22 20.66 20.57 18.73

Hor 23.69 21.60 36.46 36.63 46.13 36.54 51.80 48.48

Hou 9.27 11.70 13.01 12.71 26.03 27.08 31.38 27.97

Mam 23.29 32.03 41.52 40.16 75.06 78.86 86.32 81.72

Mar 1691 1710 1873 1874 1689 1703 1813 1821

Ozo 20.05 23.01 25.68 26.68 47.38 48.77 49.28 49.35

Tum 57.98 70.22 70.99 71.77 63.60 72.03 71.86 74.84

4.4.3 Further Analysis

To understand how the integration of feature selection with ensemble meth-
ods achieves better accuracy and smaller trees than the ensemble meth-
ods with all features, we looked carefully at the trees generated by C4.5
in two cases: bagging using all features and bagging combined with se-
lected feature on Hepatitis which has 19 features (Age, Sex, Steroid, Antivi-
rals, Fatigue, Malaise, Anorexia, LiverBig, LiverFirm, SpleenPalpable, Spiders,
Ascites, Varices, Bilirubin, AlkPhosphate, Sgot, AlbuMin, ProTime, Histology).
The Hepatitis is chosen since the trees generated on this dataset are not too
big to analyse. Figures 4.9 and 4.10 present two typical pattern trees we
observed.

It is clear from Figures 4.9 and 4.10 that the combination of bagging and
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Figure 4.8: The ratios of tree size between the other benchmark methods
and BagC4.5FS, BooC4.5Fs.

Figure 4.9: Left tree with 90.0% of accuracy generated by C4.5 bagging
with all features and right tree with 92.14% of accuracy generated by C4.5
bagging with selected features.
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Figure 4.10: Left tree with 86.42 of accuracy generated by C4.5 bagging
with all features and right tree with 91.42% of accuracy generated by C4.5
bagging with selected features.

feature selection can generate more accurate and less complex trees than
bagging with all features. The reason might be that classifiers like C4.5 are
greedy algorithms which make the locally optimal choice at each stage.
Therefore, they may provide locally optimal solutions. The purpose of
feature selection is to search for more suitable feature subsets. Therefore,
feature selection can help reduce the limitation of greedy algorithms. For
example, in Figure 4.9, with a training resampled data, when C4.5 bagging
uses all features, the information gain of feature Spiders and feature Sex
are higher than the information gain of feature Age, so feature Spiders
and feature Sex are chosen to build the right tree before choosing feature
Age. When feature selection is applied to the training resampled data,
only three features Age, Ascite and LiverBig are selected. Consequently,
feature Age is chosen to develop the right tree instead of feature Spiders
or feature Sex. As a result, bagging with selected features generates more
accurate and less complex trees than bagging with all features.

It also can be seen from Figures.4.9 and 4.10 that the combination of
bagging and feature selection can generate more diverse trees than bag-
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ging with all features. For example, the right tree on Figure 4.9 uses the
same feature Ascites in the first level as the right tree on Figure 4.10. How-
ever, the left tree on Figure 4.9 uses different feature in the first level from
the right tree on Figure 4.10. By generating more diverse trees, feature
selection helps improve the bagging method.

In summary, bagging with selected features can generate more accu-
rate, less complex and more diverse learnt models than bagging with all
features. Therefore, the combination of bagging and feature selection helps
improve the traditional bagging method.

4.5 Chapter Summary

This chapter attempted to explore the impact of a wrapper feature-based
feature selection method for classification with incomplete datasets. To
achieve this goal, a wrapper-based feature selection method for incom-
plete datasets was proposed and compared with the two other common
methods coping with incomplete datasets: one using a classifier able to
directly classify incomplete datasets and the other using an imputation
method to transfer incomplete datasets to complete datasets. The exper-
iments used C4.5 as an evaluation and PSO as a search method for the
feature selection approach. The experimental results showed that the pro-
posed wrapper-based feature selection method for incomplete datasets is
able to help to enhance the classification accuracy of C4.5 and significantly
reduce the complexity of the learned classifier.

This paper also proposed a combination of bagging/boosting and fea-
ture selection method to improve classification with incomplete data. In
the proposed method, bagging/boosting is firstly used to construct a set
of training resampled data. After that, the set of training resampled data is
used by a wrapper-based feature selection method to build a set of train-
ing selected data which is then used to learn a set of classifiers. The pro-
posed method is compared with the other ensemble methods. The results
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showed that the combination of bagging/boosting and feature selection
method is more accurate than the other methods. Moreover, the com-
bination of bagging/boosting and feature selection is able to reduce the
complex classifiers generated by bagging/boosting.

The proposed method in this chapter can improve the classification ac-
curacy and reduce the computation time of classifiers able to directly clas-
sify by removing redundant and irrelevant features. However, many clas-
sification algorithms such as decision trees cannot achieve adequate accu-
racy when faced with difficult tasks because they are not good at trans-
forming their input to gain class separability. Feature construction is a
traditional approach to this problem [116]. The next chapter will develop
a new feature construction method for classification with incomplete data.
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Chapter 5

Genetic Programming-based
Feature Construction for
Classification with Incomplete
Data

5.1 Introduction

Decision trees such as C4.5 and CART can directly work with incomplete
data without requiring any imputation method. However, decision trees
often cannot work well when faced with difficult classification tasks. One
reason is that these classifiers are not able to capture the interaction be-
tween features. Feature construction which constructs better new fea-
tures from original features is a conventional solution to this problem. GP
can learn the definition of a function itself from example data, so GP is
an excellent choice for feature construction, and has been widely applied
[42, 158, 161].

Although there are many GP-based feature construction methods, most
of them construct only a single feature, which needs to be combined with

107
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the original features, so will lead to a higher dimensionality [42]. GP-based
multiple feature construction (GPMFC) [116] is a recent promising filter
approach using GP for feature construction. GPMFC is able to evolve mul-
tiple high-level features from the original features. The empirical results
show that, in almost all cases, GPMFC can not only improve the classifi-
cation accuracy, but can also reduce the complexity of decision trees and
rule-based classifiers.

However, GPMFC is not able to deal with incomplete data. As a re-
sult, using GPMFC for incomplete data requires imputation methods to
transform incomplete data into complete data before using GPMFC [158].
In order to obtain good performance, GPMFC has to be combined with
sophisticated imputation methods such as MICE [175]. Unfortunately, so-
phisticated imputation methods such as MICE are often suitable for batch
imputation, but computationally intensive for imputing missing values
in a single instance in the unseen set for classification [157]. This chapter
presents an extended version of GPMFC which can directly construct mul-
tiple features from incomplete data without using any imputation meth-
ods.

5.1.1 Chapter Goals

This chapter presents a new method that uses GP to directly construct
multiple features for classification with incomplete data without using
any imputation method. To achieve this goal, we develop an extension
of GPMFC, called IGPMFC, that uses GP with a set of interval functions
to directly construct multiple features. Specially, this chapter will investi-
gate:

1. How GP can directly perform feature construction for classification
with incomplete data; and

2. Whether IGPMFC can improve classification accuracy and reduce
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the complexity of classifiers with incomplete data compared to using
original features; and

3. Whether IGPMFC can improve classification accuracy and reduce
the complexity of classifiers with incomplete data compared to com-
bining imputation and GPMFC.

4. Why GP can effectively and efficiently perform feature construction
for classification with incomplete data.

5.1.2 Organisation

The rest of this chapter is organised as follows. Section 5.2 states key ideas
of GPMFC. Section 5.3 presents the IGPMFC algorithm which directly per-
forms multiple feature construction for classification with incomplete data
using GP with a set of interval functions. Section 5.4 outlines experiment
design. Section 5.5 presents empirical results and analysis. Section 5.6
draws conclusions.

5.2 GP-based Multiple Feature Construction

GP-based multiple feature construction (GPMFC) is a filter approach to
feature construction that uses GP for constructing multiple features [116].
GPMFC uses GP to evolve new features, and uses the purity of class inter-
vals as a measure to evaluate new features.

Algorithm 4 shows the main body of the GPMFC algorithm. The input
data for GPMFC includes two parts. The first part is a matrix contain-
ing values of original features. The second part is an array containing
class labels corresponding observations in the matrix. For each class label,
GPMFC evolves the best constructed feature that maximise the purity of
the corresponding class interval. As a result, the output of GPMFC is a set
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of constructed features equal to the number of classes in the problem. The
detail of GPMFC can be seen in [116].

Algorithm 4: GPMFC [116]
Input:
D: a matrix containing values of original features
C: an array containing class values corresponding
observations in D
Output: CF– a set of constructed features

1 CF ← {}
2 for c ∈ C do
3 P ← InitialPopulation
4 bestFitness← +∞
5 while ¬maxGenerations ∧ bestFitness 6= 0 do
6 for φ ∈ P do
7 φfitness ← Fitness(D,φ, c)
8 if φfitness < bestFitness then
9 bestProgram← φ

10 bestFitness← φfitness

11 end
12 end
13 Perform selection
14 Perform genetic operators
15 end
16 CF ←− CF ∪ {bestProgram}
17 end
18 return CF

To apply GPMFC, GPMFC firstly uses the training data to build a set of
constructed features that then forms a transformation. The training data
is then put into the transformation to generate transformed training data.
After that, a classification algorithm uses the transformed training data to
build a classifier that is then used to classify the unseen transformed data.

The experimental results show that in almost all cases, GPMFC greatly
improves classification accuracy of decision trees and rule-based classi-
fiers. Furthermore, GPMFC helps to reduce the complexity of the learnt
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classifiers. However, GPMFC is not able to directly deal with incomplete
data. Therefore, the ability of GPMFC to directly deal with incomplete
data should be investigated.

5.3 GP with Interval Functions for Multiple Fea-

ture Construction on Incomplete Data

Although GPMFC is a powerful feature construction method for com-
plete data, it cannot work directly with datasets containing missing val-
ues. To tackle this problem, we proposes IGPMFC which is an extension
of GPMFC. IGPMFC uses GP with a set of interval functions—interval
GP—to directly evolve multiple new features from incomplete data. The
underlying idea of IGPMFC is that interval functions enables GP to oper-
ates directly on missing values. If a value for a feature is missing, it is sub-
stituted by an interval associated with the feature. If a value for a feature
is complete, it is substituted by an interval spanning just the value—the
lower bound and upper bound are both equal to the value. The purpose
of using interval functions is that missing values are unknown; hence re-
placing a missing value with an interval reflects the uncertainty associated
with the missing value better than using a single value.

The interval associated with each feature must represent the range of
possible values of the feature and needs to be estimated by the algorithm.
Furthermore, the interval function set of GP also needs to be defined.

5.3.1 Finding the Interval of a Feature

A feature interval is the range which covers a large majority of the actual
values of the feature. The interval of a feature should be estimated from
the distribution of the feature values. A simple way to find the interval of a
feature is to consider that the range between the minimum and maximum
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of the feature is the interval of the feature. However, this kind of interval
may contain outliers which are not desired [116].

If the values of feature f are normally distributed, the interval (µf −
3σf , µf + 3σf ) covers 99% of the feature values, where µf and σf are the
mean and the standard deviation of the feature f, respectively [116]. Unfor-
tunately, the values of a feature are not necessarily normally distributed;
therefore, the interval might include too many values, or too few values.
The introselect algorithm in [115] is an advanced method that could be
used. We used the method described in [116] which removes a fixed frac-
tion of values from both the top and bottom of the range. Experiments in
[116] showed that this worked well for a range of distributions.

5.3.2 Interval Functions

Assuming the interval of feature a is represented by the range between
the lower bound al and the upper bound au, and the interval of feature
b is represented by the range between the lower bound bl and the upper
bound bu. In IGPMFC, the function set of GP uses four interval arithmetic
operations defined as follows [68]:

a+ b =

lower : al + bl

upper : au + bu

a− b =

lower : al − bu
upper : au − bl

a ∗ b =

lower : min(al ∗ bl, al ∗ bu, au ∗ bl, au ∗ bu)

upper : max(al ∗ bl, al ∗ bu, au ∗ bl, au ∗ bu)

a/b =

lower : min(al/bl, al/bu, au/bl, au/bu)

upper : max(al/bl, al/bu, au/bl, au/bu)
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It is important to notice that the division operation is not correct if the
lower and upper bounds of denominator have different signs. Therefore,
it requires an assumption that the denominator lower bound has the same
sign with the denominator upper bound. We expect GP search to eliminate
trees which break the assumption.

5.3.3 Estimating the Real Output of an Individual

The output of an individual evolved by GP with interval functions is an
interval. Nevertheless, to use constructed features for classification, single
values are required. Hence, in IGPMFC, the real output of an individual
is calculated as the middle point of the final computed interval. Assum-
ing that [outl, outu] is the output of an individual, the real output can be
defined as follows:

out =
outl + outu

2

5.4 Experiment Design

This section shows detailed experiment design including the comparison
methods, datasets, the imputation methods used in the experiments, GP
settings and classification algorithms.

5.4.1 Comparison Method

The experiments are designed to evaluate the impact of IGPMFC to con-
struct new features for classification with incomplete data. To achieve this,
three experimental setups are designed, as shown in Figure 5.1, Figure 5.2
and Figure 5.3. The Figure 5.1 shows classification with incomplete data
by using IGPMFC to construct new features from incomplete data before
using a classifier. The Figure 5.2 shows classification with incomplete data
by using a classifier such as C4.5 or CART that is able to directly classify
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Figure 5.1: Classification with incomplete data by using IGPMFC before
using a classifier.

Figure 5.2: Classification with incomplete data by using a classifier able to
classify incomplete data.

incomplete data. The Figure 5.3 shows classification with incomplete data
by using an imputation method to transform incomplete data into com-
plete data that is then used by GPMFC to construct new features before
using a classifier.

In the first setup, as shown in Figure 5.1, IGPMFC directly uses training
incomplete data to construct new features that is then used to build a data
transformation. The data transformation is used to transform the train-
ing incomplete data and unseen incomplete instances into training trans-
formed data and unseen transformed instances, respectively. The training
transformed data is used by a classification algorithm to build a classifier
which is then used to classify the unseen transformed instances. In the sec-
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Figure 5.3: Classification with incomplete data by using an imputation
method and GPMFC before using a classifier.

ond setup, as shown in Figure 5.2, the training incomplete data is directly
put into a classification algorithm to build a classifier that is then used to
classify unseen incomplete instances. In the third setup, as shown in Fig-
ure 5.3, both training incomplete data and unseen incomplete instances
are put into an imputation method to generate training imputed data and
unseen imputed instances, and then, the training imputed data is put into
GPMFC to build a data transformation. The data transformation is then
used to transform the training imputed data and the unseen imputed in-
stances into training transformed data and unseen transformed instances,
respectively. After that, as in the first setup, the training transformed data
is then put into a classification algorithm to build a classifier that is then
used to classify the unseen transformed instances.

5.4.2 Datasets and Parameter Settings

In order to examine the performance of the proposed method, a set of ex-
periments have been conducted on twelve datasets. These datasets only
have numerical features because constructed features are mathematical
functions of the original features. Table 1.1 in page 18 shows the main
characteristics of these datasets. Seven of these datasets contain “natu-
ral” missing values, and the other five datasets contain “artificial” miss-
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ing values by removing complete values and introducing missing values.
To evaluate more precisely the proposed methods on incomplete datasets,
missing values are introduced into important features. The correlation-
based feature selection method (CFS) [66] is used to select important fea-
tures. For each of the dataset, we use CFS to select important features, and
then randomly introduce 20% of missing values into the selected features.
The same as the previous chapters, these datasets are divided into training
sets and test sets by using ten-fold cross-validation.

Experiments use two imputation methods which are kNN-based im-
putation (a single imputation) and MICE (a multiple imputation). As in
the previous chapters, for kNN-based imputation, the number of neigh-
bour (k) is set 1. MICE’s implementation in [22] with random forest for
regression is used for multiple imputation. The number of cycles is set
five and the number of imputed datasets is set 20 following the recom-
mendation in [175].

Experiments use the ECJ package [110] to implement GP. The parame-
ters of GP are the same in all experiments and are shown in Table 5.1. For
each pair of training set and test set, GPMFC combined with kNN-based
imputation, GPMFC combined with MICE and IGPMFC run a number of
times, each constructing a new feature for a particular class.

GPMFC is designed to improve symbolic learning classifiers such as
decision trees. Therefore, experiments use four decision trees to classify
data: C4.5 [129], CART [21], REPTree [17] and BFTree [145]. The classifica-
tion algorithms can directly work with incomplete data. For all the classi-
fiers, WEKA’s implementation is used and all parameters set to WEKA’s
defaults [65].

5.5 Results and Discussions

This section presents the comparison of the proposed method (IGPMFC)
as shown in Figure 5.1 with the Baseline as shown in Figure 5.2 and GPMFC
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Table 5.1: GP parameters.

Parameter Value

Function set Interval functions, +, -, x, / (protected division)

Variable terminals Interval of the original features \{f1, f2, .., fn}

Constant terminals Random float values

Population size 1024

Initialization Ramped half-and-half

Generations 50

Crossover probability 60

Mutation probability 30

Reproduction rate 10

Selection type Tournament(size=7)

combined with imputation as shown in Figure 5.3.

5.5.1 Effect of Constructed Features on Classification Ac-

curacy

Table 5.2 presents the average of classification accuracy along with stan-
dard deviation of the proposed method and benchmark methods. The
averages are calculated on 30 times performing ten-fold cross-validation
on each dataset. “IGPMFC ” column indicates results from the first ex-
perimental setup as shown in Figure 5.1; “Baseline” column indicates re-
sults from the second experimental setup as shown in Figure 5.2; “kN-
NGPMFC” and “MICEGPMFC” columns indicate results from the third
experimental setup as shown in Figure 5.3 by using kNN-based imputa-
tion and MICE combined with using GPMFC, respectively. As in previous
Chapters, in order to compare the classification accuracy of IGPMFC with
the other methods, the Friedman test [33] is used to test the significance of
the results. The test shows that there exits significant differences between
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the methods in each dataset and each classifier. Therefore, the Holm pro-
cedure [33] is used to perform pair tests between the proposed method
and the other methods. In Table 5.2, the symbol ↑ indicates that the bench-
mark method is significantly better than IGPMFC. In contrast, the symbol
↓ shows that the benchmark method is significantly worse than IGPMFC.

Figure 5.4 summarises the accuracy comparison of IGPMFC with Base-
line, kNNGPMFC and MiceGPMFC. It is clear from Figure 5.4 that IGPMFC
achieves significantly better classification accuracy than Baseline in over
50% of cases, and IGPMFC is only significantly worse than Baseline in
about 5% of cases. The underlying reason is that IGPMFC constructs a new
feature for each class label which then helps the decision trees separate
classes better [116]. The classification accuracy improvement is different
among datasets. For example, on the Balance Scale dataset, the improve-
ment is much higher than in the other datasets. Moreover, the classifica-
tion accuracy improvement in each classifier is also different on different
datasets.

It is also clear from Figure 5.4 that IGPMFC is significantly more ac-
curate than kNNGPMFC in over half of cases. Moreover, IGPMFC is not
significantly worse than kNNGPMFC in any cases. The key reason is that
IGPMFC replaces missing values by intervals which can reflect better the
uncertainty of missing values than specific imputed values generated by
kNN-based imputation.

Figure 5.4 also shows that IGPMFC can achieve comparable accuracy
to MICEGPMFC. In 48 cases, IGPMFC achieves significantly better clas-
sification accuracy than MICEGPMFC in 7 cases, similar accuracy in 35
cases and significantly worse in 6 cases. The reason is that by replacing
missing values by intervals, IGPMFC can reflect the uncertainty of miss-
ing values as well as MICEGPMFC which also estimates a set of values for
each missing value.

In summary, in almost all cases, IGPMFC not only can achieve better
classification accuracy compared to using original features, but also can
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Table 5.2: Average of Classification Accuracy on the Test Set

Dataset Classifier IGPMFC Baseline kNNGPMFC MICEGPMFC

Bands

C4.5 68.66±1.17 68.45±1.88 59.46±1.36↓ 64.86±1.99↓
CART 68.69±1.35 65.99±1.69↓ 60.00±1.35↓ 67.72±1.48↓
REPTree 68.10±1.45 65.82±1.71↓ 59.31±2.12↓ 66.92±1.50↓
BFTree 67.47±1.79 66.66±1.94 59.41±1.41 64.10±2.05

Breast Cancer

C4.5 95.78±0.59 94.83±0.46↓ 95.46±0.71↓ 95.71±0.55
CART 96.19±0.69 94.42±0.44↓ 95.94±0.56↓ 96.14±0.44
REPTree 96.11±0.51 94.35±0.65↓ 95.83±0.55 96.08±0.44
BFTree 95.80±0.90 94.49±0.54↓ 95.27±0.99↓ 95.46±0.95

Cleveland

C4.5 56.77±1.64 54.56±2.10↓ 56.93±1.76 57.06±2.10
CART 58.39±1.46 56.32±1.37↓ 58.03±1.44 58.19±1.54
REPTree 58.04±1.31 56.55±1.36↓ 57.62±1.83 57.69±1.62
BFTree 57.68±1.64 54.88±1.93↓ 57.57±1.62 57.29±1.76

Hepatitis

C4.5 80.44±2.59 79.21±1.75↓ 79.93±1.85 80.30±1.71
CART 80.70±2.60 77.47±1.45↓ 80.93±2.45 80.71±1.99
REPTree 80.81±2.51 79.32±2.17↓ 80.40±1.67 80.55±1.63
BFTree 79.56±2.34 78.55±1.80 79.48±2.67 79.85±2.35

Mammographic

C4.5 81.98±0.43 82.12±0.33 79.70±0.90↓ 81.63±0.87
CART 82.02±0.35 82.12±0.50 80.94±0.80↓ 82.01±0.99
REPTree 82.01±0.43 82.11±0.41 80.50±0.82↓ 82.14±1.11
BFTree 81.28±0.62 81.47±0.72 78.88±1.50↓ 80.97±1.44

Marketing

C4.5 30.68±0.44 30.78±0.54 29.78±0.54↓ 30.55±0.64
CART 33.43±0.49 33.53±0.39 32.43±0.59↓ 33.23±0.59
REPTree 32.48±0.65 32.68±0.55 31.58±0.45↓ 32.78±0.43
BFTree 31.58±0.45 31.68±0.55 30.48±0.35↓ 31.76±0.44

Ozone

C4.5 96.71±0.30 96.25±0.27↓ 96.33±0.67↓ 96.49±0.29↓
CART 96.66±0.27 97.09±0.07↑ 96.25±0.75↓ 96.55±0.33
REPTree 96.77±0.27 97.04±0.17↑ 96.51±0.72 96.71±0.26
BFTree 96.61±0.30 97.04±0.18↑ 96.12±0.77 96.45±0.32

Balance

C4.5 94.50±0.94 77.41±1.26↓ 91.91±1.24↓ 93.10±1.39↓
CART 94.51±0.80 77.97±1.19↓ 91.83±1.16↓ 92.99±1.50↓
REPTree 94.38±1.06 77.23±1.70↓ 91.44±1.10↓ 92.95±1.44↓
BFTree 94.19±1.03 77.44±0.99 91.37±1.28 92.78±1.50

Diabetes

C4.5 69.64±1.58 68.98±1.48 68.82±1.55 69.38±1.16
CART 69.80±1.91 69.29±1.66 68.98±1.64 69.60±1.76
REPTree 69.13±1.81 68.92±1.68 68.63±1.84 68.78±1.74
BFTree 69.02±1.68 67.68±1.46↓ 68.35±1.32 68.70±1.55

Iris

C4.5 91.88±2.15 89.35±2.10↓ 85.88±2.37↓ 93.84±1.15↑
CART 92.08±2.29 89.62±1.76↓ 86.08±2.62↓ 93.91±1.47↑
REPTree 91.95±2.34 86.15±2.26↓ 85.42±2.81↓ 94.57±1.24↑
BFTree 92.31±1.94 89.73±1.80↓ 86.08±2.82↓ 94.28±1.08↑

Liver

C4.5 64.02±1.90 61.56±2.15↓ 63.67±2.30 65.80±1.75↑
CART 64.23±2.51 63.27±2.20 63.84±2.31 65.73±1.99↑
REPTree 63.78±1.96 63.38±2.61 62.97±2.19 64.08±1.89
BFTree 63.79±2.21 62.88±2.33 62.96±2.32 64.52±1.56

Statlog

C4.5 74.01±2.56 71.97±2.80↓ 73.79±2.35 73.64±2.66
CART 74.12±2.33 72.45±2.23↓ 72.54±2.38↓ 73.75±2.38
REPTree 73.98±2.02 72.27±2.68↓ 72.67±2.09↓ 73.85±2.12
BFTree 73.79±2.10 71.86±2.50↓ 71.88±2.45↓ 73.61±1.89
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Figure 5.4: Accuracy comparison of IGPMFC with Baseline, kNNGPMFC
and MICEGPMFC.

achieve better classification accuracy than using GPMFC combined with
kNN-based imputation in most cases. Moreover, IGPMFC is comparable
with GPMFC combined with using MICE that is expensive for classifica-
tion tasks.

5.5.2 Effect of Constructed Features on the Complexity of

Classifiers

The complexity of the decision trees is evaluated by the average number of
nodes in the decision trees. A decision tree with a small number of nodes
is preferred because having too many nodes is often a symptom for poor
generalisation, especially in non-rectangular decision spaces [116]. Table
5.3 shows the average of number of nodes in decision trees generated by
the proposed method and the benchmark methods.

Figure 5.5 summarises the percentage of size reduction by using the
constructed features generated by IGPMFC over using the original fea-
tures (reduction= sizeBaseline−sizeIGPMFC

sizeBaseline
). As can be seen from Figure 5.5 that

using the constructed features generated by IGPMFC helps to decrease
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Table 5.3: Average of Size of classifiers (number of nodes in decision trees)

Dataset Classifier IGPMFC Baseline kNNGPMFC MICEGPMFC

Bands

C4.5 5.10 85.10 5.76 5.71
CART 10.20 57.05 24.10 17.78
REPTree 22.94 43.50 30.71 30.78
BFTree 34.32 99.38 44.84 26.44

Breast Cancer

C4.5 6.57 23.20 7.08 6.92
CART 4.49 16.57 5.03 4.84
REPTree 5.46 13.14 5.64 5.46
BFTree 12.01 29.82 12.20 12.12

Cleveland

C4.5 53.38 78.50 58.96 59.07
CART 13.86 14.59 14.37 14.74
REPTree 17.28 18.57 17.68 17.40
BFTree 31.66 34.00 32.57 32.52

Hepatitis

C4.5 7.10 17.04 7.28 7.20
CART 6.97 7.38 7.75 6.98
REPTree 6.10 7.08 7.02 6.34
BFTree 11.28 22.23 11.67 10.57

Mamographic

C4.5 10.44 10.46 11.36 10.27
CART 13.48 17.31 16.76 15.64
REPTree 23.62 26.68 25.51 24.64
BFTree 38.78 42.56 44.29 40.19

Marketing

C4.5 2035 2077 2055 2042
CART 30.10 40.50 35.10 30.00
REPTree 315.50 360.20 315.52 332.25
BFTree 325.70 380.40 325.72 352.45

Ozone

C4.5 6.43 24.30 6.20 7.56
CART 4.43 5.43 3.63 4.96
REPTree 3.16 5.63 5.16 5.33
BFTree 4.80 8.30 7.50 9.53

Balance

C4.5 9.89 57.48 11.42 16.49
CART 8.22 68.70 10.65 13.16
REPTree 8.42 43.03 10.25 11.60
BFTree 17.15 156.10 23.46 23.24

Diabetes

C4.5 6.38 18.98 7.16 7.43
CART 16.57 22.93 20.57 19.96
REPTree 31.32 35.39 31.80 31.50
BFTree 26.90 73.04 41.63 35.93

Iris

C4.5 6.83 14.01 8.20 5.09
CART 5.86 17.10 7.16 5.00
REPTree 5.50 9.51 6.84 5.01
BFTree 7.40 23.56 8.88 5.82

Liver

C4.5 5.13 34.80 5.24 5.95
CART 14.48 39.27 14.10 12.92
REPTree 19.38 28.58 20.89 19.32
BFTree 32.37 65.32 32.96 33.52

Stalog

C4.5 4.39 25.94 6.32 6.40
CART 12.80 25.76 16.61 12.46
REPTree 10.51 17.99 13.02 11.22
BFTree 24.52 49.42 22.92 22.04
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considerably the complexity of the learned classifiers. In most datasets,
except for REPtree achieving about 30% size reduction in some datasets,
the complexity of the other three classifiers reduces around 50%. Espe-
cially, on the Balance Scale dataset, the decrease in complexity is around
90%.

Figure 5.5: Size reduction by using IGPMFC compared to Baseline.

Figure 5.6 shows the average of ratio tree size of the other methods
over IGPMFC. On average, Baseline generates about 4.0 times bigger trees
than those using IGPMFC, and both kNNGPMFC and MICEGPMFC also
generate bigger trees than IGPMFC.

In summary, in all cases, IGPMFC can dramatically reduce the com-
plexity of the classifiers by using original features. Furthermore, IGPMFC
can better reduce the complexity of the classifiers than GPMFC combined
with simple or sophisticated imputations.

5.5.3 Computation Time

Table 5.4 shows the average computation time of IGPMFC and the other
methods for constructing new features in the testing process. It is clear
from Table 5.4 that the proposed method is the fastest method and fol-
lowing kNN-based imputation and MICE. Especially, GPMFC with MICE
is million times slower than the other methods. The main reason is that
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Figure 5.6: The average of ratio tree sizes of Baseline, kNNGPMFC and
MICEGPMFC over IGPMFC.

MICE requires rebuilding the regression functions using all the training
data and the new instance each time when it needs to estimate missing
values in a new instance.

In summary, IGPMFC is faster than GPMFC combined with single im-
putation, and it is much faster than GPMFC combined with multiple im-
putation.

5.6 Chapter Summary

The goal of this chapter was to develop feature construction for incom-
plete data. To achieve this goal, this chapter develops IGPMFC which is
a GP-based feature construction for classification with incomplete data.
IGPMFC is extended from GPMFC which is a recent promising feature
construction method, but it cannot directly work with incomplete data.
IGPMFC uses GP with a set of interval functions to tackle with missing
values.

This chapter shows that IGPMFC can be more accurate than the com-
bination of GPMFC with single imputation. The reason is that an inter-
val can reflect better the uncertainty of missing values than a single value
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Table 5.4: Computation time of different methods for constructing multi-
ple features (millisecond).

Dataset IGPMFC kNNGPMFC MICEGPMFC

Ban 5.3× 10−6 1.7× 10−1 1.6× 104

Bre 2.7× 10−6 8.1× 10−1 2.3× 102

Cle 1.6× 10−6 4.2× 10−1 1.1× 102

Hep 1.2× 10−5 3.8× 10−1 1.5× 104

Mam 6.3× 10−5 2.7× 10−1 2.8× 104

Mar 6.3× 10−5 5.9× 10−1 3.7× 104

Ozo 9.2× 10−4 9.8× 10−1 8.5× 105

Bal 5.3× 10−6 7.2× 10−2 2.4× 103

Dia 7.4× 10−6 8.3× 10−2 3.5× 103

Iri 6.6× 10−6 4.6× 10−2 3.3× 103

Liv 2.3× 10−6 1.9× 100 1.1× 103

Sta 5.5× 10−6 3.5× 10−2 2.2× 103

generated by single imputation. IGPMFC can achieve comparable accu-
racy with the combination of GPMFC with sophisticated imputation such
as MICE. Moreover, IGPMFC can generate less complex classifiers than
the combination of GPMFC with imputation. Furthermore, IGPMFC can
construct features more effectively than the combination of GPMFC with
imputation because IGPMFC does not require any time to estimate miss-
ing values.

This chapter also shows that IGPMFC can enhance the accuracy and re-
duce the complexity of classifiers compared to using original features. The
key reason is that by constructing new features, IGPMFC helps classifiers
be able to transform their input to gain class separability.

Chapters 3, 4 and 5 presented three ways to improve input space for
classification with incomplete data. Another way to improve classifica-
tion with incomplete data is to enhance classifiers. Next two chapters will
describes new approaches to improving classifiers for incomplete data.



Chapter 6

An Effective and Efficient
Ensemble Approach for
Classification with Incomplete
Data

6.1 Introduction

One of the most common approaches to classification with incomplete
data is to use imputation methods to substitute missing values with plau-
sible values [100, 109]. Imputation can provide complete data which can
then be used by any classification algorithm. Simple imputation methods
such as mean imputation are often efficient but they are often not accu-
rate enough. In contrast, powerful imputation methods such as multiple
imputation [175] are usually more accurate, but are computationally ex-
pensive [46, 164]. It is not straightforward to determine how to combine
classification algorithms and imputation in a way that is both effective and
efficient, particularly in the application process.

Ensemble learning is the process of constructing a set of classifiers in-

125
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stead of a single classifier for a classification task, and it has been proven
to improve classification accuracy [124]. Ensemble learning has also been
applied to classification with incomplete data by building multiple clas-
sifiers in the training process and then applicable classifiers are selected
to classify each incomplete instance in the application process without re-
quiring any imputation method [24, 125, 185]. However, existing ensemble
methods for classification with incomplete data often cannot work well on
datasets with numerous missing values [24, 185]. Moreover, they usually
have to build a large number of classifiers, which then require a lot of time
to find applicable classifiers for each incomplete instance in the application
process, especially when incomplete datasets contain a high proportion of
missing values [24, 125]. This chapter shows how to construct a compact
set of classifiers able to work well even on datasets with numerous missing
values.

Feature selection is the process of selecting relevant features from orig-
inal features, and it has been widely used to improve classification with
complete data [183]. Feature selection has also been investigated in in-
complete data [36, 162], but the existing methods typically still use im-
putation to estimate missing values in incomplete instances before classi-
fying them. By removing redundant and irrelevant features, feature se-
lection has the potential of reducing the number of incomplete instances,
which could then improve accuracy and speed up classifying incomplete
instances. However, this aspect of feature selection has not been investi-
gated. This chapter also shows how to utilise feature selection to improve
accuracy and speed up the application process for classification with in-
complete data.

6.1.1 Goals

To deal with the issues stated above, this chapter aims to develop an effec-
tive and efficient approach to classification with incomplete data, which
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use three techniques: imputation, feature selection and ensemble learn-
ing. Imputation is used to transform training incomplete data to training
complete data which is then further enhanced by feature selection. After
that, the proposed method builds a set of specialised classifiers which can
classify unseen incomplete instances without the need of imputation. The
proposed method is compared with other common approaches for classi-
fication with incomplete data to investigate the following main objectives:

1. How to effectively and efficiently use multiple imputation for classi-
fication with incomplete data; and

2. How to use feature selection for classification with incomplete data
to not only improve classification accuracy but also speed up classi-
fying new instances; and

3. How to build a set of classifiers which can effectively and efficiently
classify incomplete instances without the need of imputation; and

4. Whether the proposed method can be more accurate and faster than
using imputation both in the training process and the application
process; and

5. Whether the proposed method can be more accurate and faster than
the existing ensemble methods.

6.1.2 Organisation

The rest of this chapter is organised as follows. Section 6.2 describes the
proposed method. Section 6.3 explains experiments to evaluate the pro-
posed methods. Section 6.4 presents the results and analysis. Section 6.5
provides a summary of this chapter.
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6.2 Proposed Algorithms

This section presents the proposed method in detail. It starts with showing
the definitions used in the method. The section then presents the overall
structure and the underlying ideas of the method. After that, it describes
the details of the training process and the application process.

6.2.1 Definitions

Let D = {(X i, ci)|i = 1, ..,m} denote a dataset, where each X i represents
an input instance with its associated class label ci, and m is the number of
instances in the dataset. The input space is defined by a set of n features
F = {F1, ..., Fn}. Each instance X i is represented by a vector of n values
(xi1, x

i
2, ...x

i
n), where an xij is either a valid value of the jth feature Fj , or is

the value “?”, which means that the value is unknown (a missing value).

An instanceX i is called an incomplete instance if it contains at least one
missing value. A dataset, D, is called an incomplete dataset if it contains at
least one incomplete instance. A feature, Fj , is called an incomplete feature
for a dataset if the dataset contains at least one incomplete instance, X i

with a missing value xij . For example, the incomplete dataset shown in
Table 6.1 contains five incomplete instances: X2, X4, X5, X6, and X7. It
has four incomplete features: F1, F3, F4 and F5.

Table 6.1: An example dataset with missing values.

F1 F2 F3 F4 F5 c

X1 5 67 3 5 3 1
X2 4 43 1 1 ? 1
X3 4 28 1 1 3 0
X4 5 74 1 5 ? 1
X5 4 56 1 ? 3 0
X6 4 70 ? ? 3 0
X7 ? 66 ? ? 1 1
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A subset of features, S ⊂ F , is called a missing pattern in a dataset D if
there is at least one instance, X i in D, such that the value in X i for each
feature in S is missing, and the value in X i for all the other features are
known. That is, S ⊂ X is a missing pattern in D if there exists an instance
X i in D such that if Fj ∈ S, xij =? otherwise, xij is not missing. For example,
the dataset shown in Table 6.1 has five missing patterns: {∅}, {F5}, {F4},
{F3, F4} and {F1, F3, F4}.

Algorithm 5 shows the steps to identify all missing patterns of a dataset.
We useMP to denote the all missing patterns. At the beginning of the al-
gorithm, MP is empty. The outer loop in the algorithm iterates over all
instances. For each instance, all features with missing values are combined
to form a missing pattern. If the missing pattern is not yet inMP , it will
be added inMP . By the end of the algorithm, MP contains all missing
patterns.

Given a dataset D and a feature subset S, we use DS to represent the
projected datasetD onto the features in S, i.e. the datasetD reduced to the
feature subset S. That is, each instance in D is replaced by the projected
instance in which values for features not in S are removed. For example,
given the dataset shown in Table 6.1 with five features, the data subset
D{F1,F2,F3} is shown in Table 6.2.

6.2.2 Overall Proposed Method

The proposed method has two main processes: a training process and an
application process. The training process constructs an ensemble of clas-
sifiers which is then used to classify new instances in the application pro-
cess. Figure 6.1 shows the flowchart of the method.

The method is based on three key ideas. The first idea is that the
method constructs an ensemble of classifiers to cover possible missing
patterns, each classifier being built on one missing pattern. Therefore,
new incomplete instances can be classified by the ensemble without re-
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Algorithm 5: MissingPatterns(D)

Input:
D, a dataset
Output:
MP , a set of missing patterns

1 MP ← {}
2 for i← 1 to m do
3 temp← {∅}
4 for j ← 1 to n do
5 if xij =? then
6 temp← temp ∪ Fj

7 end
8 end
9 if temp /∈MP then

10 MP ←MP ∪ temp
11 end
12 end
13 returnMP

quiring imputation. This is not completely novel —it has also been used
in [24, 185]. The second idea is to use imputation in the training process,
but not in the application process. Using a powerful imputation method to
generate high quality complete training data for building classifiers results
in more accurate classifiers. In contrast, existing ensemble methods based
on missing patterns [24, 185] do not use any imputation, so the training
set for each classifier may be as small as a single instances which leads to
low accuracy. However, good imputation methods such as multiple im-
putation are computationally expensive. For the training process, there is
no time limit for many applications, and the high cost of multiple impu-
tation is not a problem; in the application process, there may be tight time
limits on the process of classifying a new instance, and using multiple im-
putation may be infeasible. The third idea is to use feature selection to
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Table 6.2: The dataset in Table 6.1 reduced to the feature subset
{F1, F2, F3}.

F1 F2 F3 c

X1 5 67 3 1
X2 4 43 1 1
X3 4 28 1 0
X4 5 74 1 1
X5 4 56 1 0
X6 4 70 ? 0
X7 ? 66 ? 1

further improve the training data. By removing redundant and irrelevant
features, feature selection not only produces a high quality feature set, but
also reduces the number of missing patterns and removes missing values
of incomplete instances in the application process.

6.2.3 Training Process

The purpose of the training process is to build a set of classifiers, one clas-
sifier for each missing pattern. Algorithm 6 shows the main steps of the
training process. The inputs of the algorithm are an original datasetD and
a classifier learning algorithm L.

The algorithm starts with using multiple imputation to estimate miss-
ing values in the original dataset D to generate an imputed dataset ImpD
which is complete. After that, feature selection is applied to the complete
dataset D to select the subset SF of important features. The missing pat-
terns algorithm is then used to search for all missing patterns,MP , from
the original (incomplete) dataset reduced to the selected featuresDSF . Sub-
sequently, for each missing patternMP i, a “complete pattern” CP i is gen-
erated by selecting features which are in SF , but not inMP i. After that,
the imputed dataset is reduced to the features in the complete pattern and
then split into a training dataset and a validation dataset. The training
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Figure 6.1: The proposed method builds an ensemble of classifiers then
used to classify new incomplete instances without imputation.

dataset is used to construct a classifier which is evaluated using the val-
idation dataset. The average accuracy on the validation set becomes the
score (or weight) of the classifier. As a result, the application process gen-
erates a set of classifiers, one classifier on each missing pattern.

The four main components in the training process are imputation, fea-
ture selection, identifying missing patterns and learning the classifiers. Ei-
ther single imputation or multiple imputation can be used to transform
the incomplete training data to the imputed training data. Multiple impu-
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Algorithm 6: The training process

Input:
D, an original training dataset
L, a classifier learning algorithm
Output:
C, a set of learnt classifiers
w, the weighting of classifiers
SF , a set of selected features

1 ImpD ←MultipleImputation(D)

2 SF ← FeatureSelection(ImpD)

3 MP ←MissingPaterns(DSF)

4 C ← {}
5 foreachMP i ∈MP do
6 CP i ← SF −MP i

7 Divide ImpDCPi
into ImpTrain and ImpV alidation

8 classifieri ← L(ImpTrain)
9 C ← C ∪ classifieri

10 wi ← classifieri(ImpV alidation)

11 end
12 return C, w and SF ;

tation is generally more accurate than single imputation, especially when
the data contains a large number of missing values [102]. Therefore, a mul-
tiple imputation method such as MICE should be used to estimate missing
values for the training data where possible. However, multiple imputa-
tion is usually much more expensive than single imputation, especially
when data contains a large number of features such as in gene expres-
sion datasets [31]. Therefore, with datasets containing numerous features,
a good single imputation method such as kNN-based imputation to esti-
mate missing values for the training data can be used which makes the
imputation cost in the training process feasible.
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Feature selection can also be expensive, and the choice of both the eval-
uation method and the search method must be made carefully. Wrap-
per evaluation methods are often more accurate than filter methods, but
generally more expensive, especially with large training datasets or if the
wrapper methods use expensive classifiers such as multiple layer percep-
tron. There exist fast filter methods such as CFS [66] and mRMR [122] have
comparable accuracy to wrapper methods, and these filter methods could
be used to evaluate feature subsets efficiently, even when the training data
contains a large number of instances and features. For search techniques,
evolutionary techniques have been proven to be effective and efficient for
feature selection. Therefore, using evolutionary techniques such as GAs
and PSO to search for feature subsets and CFS or mRMR to evaluate them
enables feature selection to be done efficiently.

Searching for all missing patterns is not time-consuming. The compu-
tation time of Algorithm 5 is O(m*n) where m is the number of instances,
and n is the number of features which is no more than the cost of reading
the dataset (assuming that temp is represented as a bitset, and MP as a
hash table).

If there are a large number of missing patterns, then the cost of training
a set of classifiers for all missing patterns may be very expensive. Exist-
ing ensemble methods search for missing patterns in the original training
data [24, 184, 185]; therefore, they often get a very large number of miss-
ing patterns when the training data contains numerous missing values. In
contrast, the proposed method searches for missing patterns in the train-
ing data after it has been reduced to the selected features. This reduces
the number of missing values, often by a large fraction. Therefore, the
proposed method often generates a much smaller number of missing pat-
terns even when the original training data contained numerous missing
values. Therefore, the cost of the classifier learning could be much less
than in other ensemble methods.
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6.2.4 Application Process

The application process is to classify new instances using the learnt clas-
sifiers. Algorithm 7 shows the main steps of the application process. The
inputs of the algorithm are an instance needed to be classified X , an en-
semble of learnt classifiers C along with their weighs w and a set of selected
features SF . The algorithm will output the most suitable class label for the
instance.

Algorithm 7: The application process

Input:
X , an instance to be classified
C, a set of learnt classifiers
w, weights of classifiers
SF , a set of selected features
Output:
the class of x

1 Reduce X to only containing the features in SF
2 AC ← C
3 foreach missing values xj =? in reduced X do
4 foreach classifier ∈ AC do
5 if classifier requires Fj then
6 AC ← AC − classifier
7 end
8 end
9 end

10 Apply each classifier in AC to reduced X

11 return majority vote of classifiers, weighted by w;

The algorithm starts by removing features in the instance X which are
not in the set of selected features SF . Next, the algorithm searches for all
classifiers which are applicable to the instance—classifiers which do not
require any incomplete features in the instance. Subsequently, each ap-
plicable classifier is used to classify the instance. Finally, the algorithm
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returns a class by taking a majority vote of the applicable classifiers’ pre-
dictions, weighted by the quality of the classifiers measured on the train-
ing process.

Typical methods for classification with incomplete data perform impu-
tation on the new instance. In order get adequate accuracy, it is particu-
larly important to use a high quality imputation method such as MICE,
which is very expensive. The proposed method, on the other hand, does
not require any imputation method to estimate missing values for unseen
incomplete instances. Therefore, the proposed method is expected to be
faster than the common approach.

To classify an incomplete instance, the proposed method also reduces
the instance to contain only selected features. After this reduction step,
the incomplete instance frequently becomes a complete instance, which in
turn removes the need to search for applicable classifiers for the instance.
Moreover, because of the feature selection, the proposed method often
generates a smaller number of classifiers than existing ensemble methods
which reduces the cost of the search if the instance is incomplete. There-
fore, the proposed method is expected to be considerably faster than exist-
ing ensemble methods for classification with incomplete data.

6.3 Design of Experiments

This section discusses the aim and design of the experiments. The discus-
sion consists of methods for comparison, datasets and parameter settings.

6.3.1 Benchmark Methods for Comparison

In order to investigate the effectiveness and efficiency of the proposed
method, namely NewMethod, its accuracy and computation time are com-
pared with five benchmark methods. The first two methods are common
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approaches to classification with incomplete data by using imputation in
both training process and application process. The other three methods
are ensemble methods for classification with incomplete data without re-
quiring imputation. The details of the five methods are as follows:

• The first benchmark method, namely kNNI, is to use kNN-based im-
putation, which is one of the most common single imputation meth-
ods, to estimate missing values for both training data and unseen
instances. This benchmark method provides complete training data
and complete unseen instances which can be used by any classifica-
tion algorithm. Comparing the proposed method with this bench-
mark method can show the proposed method’s advantages over one
of the most common methods for classification with incomplete data.

• The second benchmark method, namely MICE, is to use MICE, which
is a powerful multiple imputation method, to estimate missing val-
ues for both training data and unseen incomplete instances. Both the
proposed method and this benchmark method use multiple imputa-
tion to estimate missing values for training data; the key difference
is that this benchmark method requires multiple imputation to es-
timating missing values for incomplete unseen instances in the ap-
plication process which is very expensive. However, the proposed
method can classify unseen instances by constructing a set of clas-
sifiers instead of requiring multiple imputation. Therefore, compar-
ing the proposed method with this benchmark method can show the
proposed method’s effectiveness and efficiency in classifying incom-
plete instances.

• The third benchmark method, namely Ensemble[24], is a recent en-
semble method for classification with incomplete data in [24]. Both
the proposed method and this benchmark method search for miss-
ing patterns and build one classifier for each missing pattern. One
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difference is that this benchmark method does not use any impu-
tation method to fill missing values in the training data, while the
proposed method uses a powerful imputation method to estimate
missing values and provide complete data for the training process.
Another difference is that this benchmark method does not use any
technique to reduce the number of missing patterns; hence it may
have to build a large number of classifiers. In contrast, the proposed
method uses feature selection to reduce the number of missing pat-
terns, so it is expected to speed up classifying unseen instances by
building a compact number of classifiers. Therefore, comparing the
proposed method with this benchmark method can show the pro-
posed method’s benefits due to using multiple imputation and fea-
ture selection.

• The fourth benchmark method, namely Ensemble[185], is a very re-
cent extension of the third benchmark method, using the mutual in-
formation to reduce the number of missing patterns [185]. Compar-
ing the proposed method with this benchmark method can shows
the proposed method’s advantages due to using feature selection to
not only reduce the number of missing patterns, but also reduce the
number of missing values in unseen incomplete instances.

• The final benchmark method, namely Ensemble[125], is an ensemble
method for classification with incomplete data in [125]. This bench-
mark method randomly generates missing patterns rather than ex-
ploring missing patterns from the training data; hence it has to build
a large number of classifiers. Therefore, comparing the proposed
method with this benchmark method can show the proposed method’s
effectiveness and efficiency thanks to searching for missing patterns
from training data.
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6.3.2 Datasets and Parameter Settings

In order to examine the performance of the proposed method, a set of
experiments have been conducted on 15 real-world incomplete datasets.
The details of these datasets can be seen in Table 1.1 in page 18. As in
previous chapters, ten-fold cross-validation is used to divide the datasets
into training and test datasets.

The experiments use two imputation methods: knn-based imputation
and MICE, representing two types of imputation, single imputation and
multiple imputation, respectively. As in previous Chapters, with kNN-
based imputation, the number of nearest neighbours, k, is set 1 because it
is simple and quick. The implementation of MICE using R language in [22]
is used to run MICE where random forest is used as a regression method.
The number of cycles is set 5 and the number of imputed datasets is set 20
following the recommendation in [175].

The proposed approach is a framework, so any feature selection method
can be used to select relevant features. The experiments use a filter-based
feature selection method because a filter method is often quicker and more
general than a wrapper method. The Correlation Feature Selection (CFS)
measure [66] is used to evaluate feature subsets. The main reason is that
CFS not only can evaluate the correlation between each feature with the
class, but also can evaluate the uncorrelation between features in the fea-
ture subset. PSO is used to search for feature subsets because it has been
successfully applied to feature selection as shown in Chapter 3. The pa-
rameters of PSO for feature selection are set as follows. The number of
particles is set to 50, and the maximum number of generations is set to
100. CFS and PSO are implemented under the WEKA [65].

In machine learning, decision trees such as C4.5 [129], rule-based classi-
fiers such as PART [52], and function-based classifiers such as a multilayer
perceptron (MLP) [67] are suitable to ensemble learning. Therefore, three
classification algorithms (C4.5, PART, and MLP) are used to compare the
proposed method with the other benchmark methods. The classification
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algorithms are implemented under the WEKA [65] with default parameter
settings.

The proposed method, Ensemble[24] and Ensemble[185] automatically
identify the number of classifiers from the training data. The number of
classifiers in Ensemble[125] is set equally to the number of classifiers ex-
plored by Ensemble[24].

6.4 Results and Discussions

This section presents and discusses the experimental results. It first shows
the comparison on accuracy between the proposed method and the bench-
mark methods. It then presents the comparison between them on compu-
tation time. Further analysis is also discussed to demonstrate the advan-
tages of the proposed method.

6.4.1 Accuracy

6.4.1.1 Comparison Method

Table 6.3 shows the mean and standard deviation of classification accu-
racies of the proposed method and the benchmark methods. The first
column shows datasets, and the second column shows classification al-
gorithms used in the experiments. “NewMethod” refers to the proposed
method. The rest five columns are the five benchmark methods. “kNNI”
and “MICE” refer to the benchmark methods using kNN-based imputa-
tion and MICE to estimate missing values, respectively. “Ensemble[24]”,
“Ensemble[185]” and “Ensemble[125]” refer to the three ensemble bench-
mark methods in [24], [185] and [125], respectively. The values in the ta-
ble are the average classification accuracy ± standard deviation resulting
from combining a classifier (row) with an approach to classification with
incomplete data (column).
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It is very important to choose a suitable statistical test to correctly eval-
uate the significance of the results. A multiple test rather than a pair test
should be used to compare the proposed method with the multiple (five)
benchmark methods. Moreover, a non-parametric test rather a parametric
test should be used because non-parametric tests do not require the nor-
mal distribution of data as parametric tests. Therefore, the Friedman test
[33], which is one of the most popular multiple non-parametric tests, is
used to test the significance of the results. The test indicates that there ex-
its significant differences between the methods in each dataset and each
classifier. Therefore, the Holm procedure [33], which is a post-hoc proce-
dure, is used to perform pair tests between two methods. In Table 6.3, the
symbol ↑ indicates that the benchmark method is significantly better than
the proposed method. In contrast, the symbol ↓ shows that the benchmark
method is significantly worse than the proposed method.

6.4.1.2 Compare with Imputation Methods

Figure 6.2 shows the fraction of cases that the proposed method is signifi-
cantly better or worse than the benchmark methods. It is clear from Fig 6.2
that the proposed method can achieve significantly better accuracy than
using imputation (kNNI and MICE) in most cases. The proposed method
is significantly better than both kNNI and MICE in about 50% cases, and it
is only significantly worse than both of them in one out of the 45 cases.

The proposed method is more accurate than the imputation methods
because it incorporates feature selection to remove redundant and irrel-
evant features, which helps to improve classification accuracy. Further-
more, the proposed method can construct multiple classifiers, which can
be more comprehensive and generalise better than constructing a single
classifier. Therefore, the proposed method can classify new instances bet-
ter than the imputation methods.
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Table 6.3: Mean and standard deviation of classification accuracies.

Data Classifier
The proposed and the benchmark methods

NewMethod kNNI MICE Ensemble[24] Ensemble[185] Emsemble[125]

Arr
J48 66.45±2.07 65.30±2.44 65.43±2.02 66.99±1.78 59.01±12.31↓ 54.46±9.62↓
PART 64.36±2.82 63.76±2.04 64.06±1.89 64.46±1.75 57.69±11.85↓ 48.99±12.12↓
MLP 64.90±2.22 65.49±1.94 65.85±1.69 65.02±1.64 59.60±12.68 53.63±11.49↓

Aut
J48 68.78±4.28 68.37±3.50 68.09±4.17 66.46±4.19↓ 66.34±4.29↓ 63.50±4.90↓
PART 65.37±3.87 64.34±4.05 64.54±4.24 65.93±3.84 64.43±3.84 63.36±4.60↓
MLP 67.67±4.07 66.04±3.35↓ 66.46±3.42 65.17±3.78↓ 64.75±3.13↓ 61.76±4.96↓

Ban
J48 69.96±1.53 66.05±1.91↓ 71.43±1.80↑ 69.40±1.13 69.83±1.55 64.49±1.33↓
PART 69.22±1.39 64.00±1.96↓ 68.85±1.40 69.34±1.25 68.75±1.29 63.26±1.44↓
MLP 67.07±1.08 62.91±1.76↓ 66.66±2.04 67.23±1.22 67.05±1.36 62.19±2.03↓

Bre
J48 94.30±0.78 93.88±0.64 94.04±0.74 94.32±0.47 93.85±0.48 90.54±1.07↓
PART 94.53±0.67 94.66±0.42 94.61±0.46 94.44±0.46 94.56±0.51 90.84±1.50
MLP 95.52±0.64 95.37±0.43 95.71±0.41 95.59±0.39 95.17±0.41 90.89±1.44↓

Chr
J48 99.10±0.36 99.08±0.47 97.53±0.62↓ 94.21±0.46↓ 94.18±0.35↓ 97.31±0.68↓
PART 99.30±0.29 99.30±0.53 98.40±0.68↓ 94.28±0.49↓ 94.20±0.31↓ 97.34±0.84↓
MLP 96.83±0.50 99.00±0.35↑ 96.48±0.44 93.93±0.33↓ 93.90±0.40↓ 96.75±0.72

Cle
J48 58.19±1.55 54.16±2.02↓ 54.09±1.98↓ 55.17±1.74↓ 53.10±1.49↓ 56.79±1.10↓
PART 56.48±1.88 53.54±2.16↓ 53.75±1.45↓ 54.00±1.71↓ 51.55±2.08↓ 56.46±0.98
MLP 57.94±1.32 52.72±1.51↓ 54.19±1.96↓ 54.21±1.50↓ 52.98±1.57↓ 56.92±1.29↓

Cre
J48 85.15±0.51 85.30±0.59 85.36±0.58 85.06±0.67 84.98±0.76 79.79±1.56↓
PART 85.44±0.59 83.83±0.94↓ 83.82±0.86↓ 85.56±0.71 84.80±0.77↓ 79.65±1.68↓
MLP 86.12±0.50 82.86±0.99↓ 83.25±0.78↓ 85.18±0.62↓ 85.10±0.56↓ 76.96±3.07↓

Hea
J48 78.92±1.51 78.33±1.56 78.25±1.29↓ 76.86±1.41↓ 76.76±1.49↓ 63.50±6.32↓
PART 79.09±0.96 78.78±1.16 78.80±1.19 77.11±1.44↓ 77.61±1.50↓ 65.26±4.98↓
MLP 80.03±1.42 80.49±1.58 78.58±1.63↓ 76.93±1.43↓ 77.23±1.48↓ 64.53±5.31↓

Hep
J48 81.75±1.42 78.55±2.05↓ 80.01±2.25↓ 79.80±1.76↓ 80.98±1.58 81.74±1.62
PART 81.28±1.80 79.32±2.75↓ 82.11±1.85 80.75±1.83 80.69±1.92 81.47±2.16
MLP 82.80±1.57 81.61±1.77↓ 82.56±1.24 80.16±1.23↓ 78.85±2.18 83.32±1.76

Hor
J48 85.38±0.28 82.94±1.22↓ 84.06±1.21↓ 85.10±0.57 85.25±0.49 63.49±2.60↓
PART 84.76±0.48 79.23±1.32↓ 79.25±1.77↓ 84.69±0.62 85.29±0.79 62.88±2.67↓
MLP 84.14±0.51 79.28±1.13↓ 79.94±1.74↓ 84.20±0.75 84.00±0.89 62.93±3.25↓

Hou
J48 96.28±0.30 96.31±0.52 96.15±0.54 93.69±0.37↓ 93.70±0.39↓ 91.25±0.88↓
PART 95.70±0.36 95.72±0.79 95.74±0.63 94.14±0.35↓ 94.31±0.44↓ 91.08±1.04↓
MLP 94.64±0.39 94.88±0.66 94.72±0.65 93.45±0.53↓ 93.98±0.48↓ 91.04±0.84↓

Mam
J48 82.86±0.52 81.81±0.57↓ 82.24±0.65↓ 82.57±0.46↓ 82.33±0.49↓ 79.68±1.53↓
PART 82.53±0.58 81.45±0.59↓ 81.52±0.70↓ 82.16±0.63↓ 82.07±0.62↓ 79.76±1.11↓
MLP 83.11±0.43 82.46±0.60 82.97±0.49 82.99±0.36 82.95±0.45 79.73±1.05↓

Mar
J48 33.93±0.33 30.02±0.56↓ 30.01±0.41↓ 33.32±0.40↓ 33.43±0.37↓ 31.03±0.79↓
PART 33.53±0.29 28.71±0.33↓ 28.83±0.42↓ 32.82±0.37↓ 32.82±0.42↓ 31.05±0.60↓
MLP 33.56±0.34 32.15±0.45↓ 32.40±0.38↓ 33.46±0.22 33.34±0.29 30.20±0.98↓

Ozo
J48 97.11±0.03 95.67±0.88↓ 95.90±0.40↓ 96.44±0.24↓ 96.83±0.21↓ 83.45±1.04↓
PART 97.11±0.03 95.24±1.15↓ 95.86±0.44↓ 96.89±0.16↓ 96.93±0.17↓ 83.26±0.94↓
MLP 96.59±0.58 95.99±0.68↓ 96.34±0.27↓ 96.48±0.19 96.40±0.17 83.16±1.11↓

Tum
J48 41.26±2.26 40.49±2.64 41.24±2.05 42.32±2.12 38.38±2.59↓ 30.70±3.02↓
PART 40.07±1.86 39.68±1.94 40.49±1.76 40.55±1.99 37.46±2.41↓ 31.50±2.76↓
MLP 39.65±1.91 38.95±1.74 39.79±2.29 39.83±2.09 36.40±1.96↓ 33.16±3.18↓
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Figure 6.2: The comparison between the proposed method and each of the
benchmark methods on all the classification algorithms.

6.4.1.3 Compare with Other Ensemble Methods

As also can be seen from Figure 6.2 that the proposed method also can
achieve significantly better accuracy than the benchmark ensemble meth-
ods in most cases. The proposed method is significantly more accurate
than the benchmark ensemble methods over 50% cases, and it is not sig-
nificantly worse than the other ensemble methods.

The proposed method is more accurate than the other benchmark en-
semble methods because it uses a powerful imputation to provide com-
plete data for the training process rather than working on incomplete train-
ing data as Ensemble[24] and Ensemble[185]. The second reason is that
feature selection helps further improve the training data of the proposed
method. Moreover, by removing redundant and irrelevant features, fea-
ture selection helps reduce the number of incomplete instances in the ap-
plication process as shown in Figure 6.3. As a result, the proposed method
can more frequently choose applicable classifiers to classify incomplete in-
stances than the other ensemble methods.

Table 6.4 shows the percentage of incomplete instances which can be
classified by the ensemble methods. It is clear from Table 6.4 that the
proposed method can classify all incomplete instances on nine out of fif-
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Figure 6.3: The percentage of incomplete instance reduction by using fea-
ture slection.

teen datasets and classify almost all incomplete instances on the other six
datasets. In contrast, the other ensemble methods cannot well classify in-
complete instances. Especially, Ensemble[125] only can classify 81.02% and
48.85% incomplete instances on the Hor and Ozo datasets, respectively, be-
cause Ensemble[125] randomly generates missing patterns instead of find-
ing missing patterns in the training data as the other ensemble methods.

6.4.1.4 Further Comparison

As can be seen from Table 6.3 that the proposed method can obtain better
accuracy than the benchmark methods not only on datasets with a small
number of incomplete instances, but also on datasets with a large number
of incomplete instances. For instance, the proposed method achieves the
best accuracy on Cle dataset containing only 1.98% incomplete instances
and also on Hea dataset with 100% incomplete instances.

Figure 6.4 shows the fraction of cases that the proposed method is sig-
nificantly better or worse than the other methods on each classifier. Figure
6.4 shows that with any of the classifiers, the proposed method can signif-
icantly outperform the other methods in most cases. Moreover, J48 can get
more benefits from the proposed method. The reason is likely that a fil-
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Table 6.4: The percentage of incomplete instances are classified by ensem-
ble methods.

Data NewMethod Ensemble[24] Ensemble[185] Ensemble[125]

Arr 99.23 99.5 87.64 90.19

Aut 97.09 92.21 92.21 98.68

Ban 98.72 93.93 93.93 94.33

Bre 100 100 100 98.34

Chr 100 92.53 92.53 99.68

Cle 100 97.13 97.13 93.59

Cre 100 98.95 98.95 100

Hea 100 99.32 99.32 85.85

Hep 98.66 97.02 97.02 95.69

Hor 99.84 99.71 99.71 81.02

Hou 98.04 96.79 96.79 97.88

Mam 100 99.25 99.25 100

Mar 100 98.95 98.95 100

Ozo 100 99.82 99.82 48.85

Tum 100 99.03 99.03 100

ter feature selection often removes irrelevant and redundant features, but
it may keep redundant features. J48 can perform feature selection while
constructing classifiers [135]. Therefore, by further removing redundant
and irrelevant features, these classifiers can be more tolerant of missing
values [164].

In summary, the proposed method can obtain significantly better ac-
curacy than the benchmark methods in almost all cases when combining
with any of the classification algorithms.



146CHAPTER 6. AN EFFECTIVE AND EFFICIENT ENSEMBLE APPROACH FOR CLASSIFICATION WITH INCOMPLETE DATA

C4.5 PART MLP
0

10

20

30

40

50

60

70

N
u
m

b
e
r 

o
f 
C

a
s
e
s

better similar worse

Figure 6.4: The comparison between the proposed method and all the
benchmark methods on each of classification algorithms.

6.4.2 Computation Time

For most classification tasks, the training time has no constraint, but the
computation time to classify an unseen instance should be feasible. There-
fore, we focus on the computation time to classify unseen instances in the
application process.

The experiments show that different classification algorithms have the
same pattern of computation time. Hence, we only report the computation
time of one classification algorithm: J48. Table 6.5 shows the computation
time to classify instances in the application process.

6.4.2.1 Compare with Imputation Methods

It is clear from Table 6.5 that the proposed method is considerably more
efficient than the methods using imputation (kNNI and MICE). The pro-
posed method is thousand to million times faster than MICE because it
does not take any time to estimate missing values in the application pro-
cess. In contrast, MICE takes a long time to estimate missing values in the
application process because MICE needs to rebuild all regression functions
when it estimates missing values for each unseen incomplete instance. The
proposed method is also remarkably more efficient than kNNI because



6.4. RESULTS AND DISCUSSIONS 147

Table 6.5: Time to classify instances in the application process (millisec-
ond).

Data NewMethod kNNI MICE Ensemble[24] Ensemble[185] Ensemble[125]

Arr 2.2×102 8.1× 102 7.6× 107 1.1× 102 1.3× 102 3.5× 102

Aut 8 2.1× 101 8.6× 105 2.6× 101 3.3× 101 4.5× 102

Ban 1.1× 101 3.1× 101 6.6× 105 1.6× 102 2.3× 102 5.5× 102

Bre 1.2 9.2 3.7× 103 2.3 2.6 6.7

Chr 1.2×101 3.1× 101 9.6× 105 6.1× 101 2.3× 101 1.5× 102

Cle 1.0 6.0 2.7× 103 1.0 1.0 6.0

Cre 2.0 8.0 5.1× 104 5.0 3.0 8.0

Hea 1.0 1.9× 101 2.0× 105 2.0 1.0 2.0

Hep 1.0 8.0 8.1× 104 3.0 1.0 2.0

Hor 5.0 2.1× 101 3.6× 105 1.7× 101 1.5× 101 2.8× 101

Hou 4.0 3.1× 101 4.6× 105 2.7× 101 1.3× 101 1.7× 101

Mam 3.0 6.4× 101 1.8× 105 7.0 5.0 8.0

Mar 7.9× 103 1.3× 104 7.1× 108 8.8× 104 6.7× 104 4.7× 104

Ozo 1.2× 104 2.7× 104 1.2× 109 1.3× 105 2.9× 104 1.7× 105

Tum 2.1× 101 5.3× 101 8.2× 105 3.1× 101 4.0 6.2× 101

kNNI also takes time to estimate missing values for unseen incomplete
instances. Especially with big datasets such as the Mar and Ozo datasets,
the proposed method is much more efficient than both MICE and kNNI
because the two methods take a long time to estimate missing values in
datasets with numerous instances and features.

6.4.2.2 Compare with Other Ensemble Methods

As can be seen from Table 6.5 that the proposed method is also more effi-
cient than the benchmark ensemble methods. The first reason is that the
proposed method uses feature selection to remove redundant and irrele-
vant features before building classifiers, so it can generate simpler clas-
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sifiers than the other ensemble methods. As demonstrated in Figure 6.5
that feature selection can remove over half of the features in the major-
ity of datasets. Moreover, by removing redundant and irrelevant features,
the proposed method also reduces the number of missing patterns; there-
fore, it only needs to build a small number of classifiers. As is evident
from Figure 6.6 that the proposed method can reduce over 50% missing
patterns in many datasets. In other words, the proposed method only
needs to build half of the number of classifiers compared to other ensem-
ble methods such as the ensemble method in [24]. With a smaller number
of classifiers, the proposed method can classify instances quicker than the
other methods. Finally, by using feature selection, the proposed method
can reduce the number of incomplete instances in the application process.
Therefore, the proposed method can save time to search for applicable
classifiers for incomplete instances. As can be seen from Figure 6.3 that
the proposed method can significantly reduce the number of incomplete
instances. For example, it can reduce over 70% incomplete instances in the
Heh, Hou and Mar datasets.
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Figure 6.5: Feature reduction by using feature selection.

In summary, the proposed method can not only be more effective, but
also more efficient than the other benchmark methods.
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Figure 6.6: Missing pattern reduction by using feature selection.

6.4.3 Further Analysis

This section discusses further analysis to deeply understand the effective-
ness and efficiency of the proposed method.

6.4.3.1 Evaluation of the Proposed Method on Different Imputation
Methods

One of the important component in the proposed method is imputation.
In order to know the impact of imputation on the proposed method, ex-
periments are designed to compare the proposed method on three mul-
tiple imputation methods in MICE (using random forest regression (rf),
bayesian linear regression (norm) and linear regression (nob)) and kNN-
based imputation (kNNI). Table 6.6 shows the classification accuracy and
the training time of the proposed methods on different imputation meth-
ods.

It is clear from Table 6.6 that the proposed method with multiple im-
putation is generally more accurate than the proposed method with single
imputation. Moreover, the proposed method with multiple imputation
using non-linear regression is usually more accurate than the proposed
method with multiple imputation using linear regression. However, the
training time of the proposed method using multiple imputation is much
more expensive than using single imputation.
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Table 6.6: Classification accuracy and training time of the proposed
method by using different imputation methods.

Data
Classification accuracy Training time

rf norm nob kNNI rf norm nob kNN

Arr 66.45 66.32 66.10 66.24 2.1×105 4.2×104 3.6×103 1.8×101

Aut 68.78 68.82 68.32 68.12 4.2×104 4.1×103 2.3×101 1.4×101

Ban 69.96 69.03 68.11 67.24 7.2×104 6.1×103 3.8×101 2.4×101

Bre 94.30 94.36 94.38 93.87 3.8×104 3.4×103 6.3×101 1.3×101

Chr 99.10 99.09 99.12 99.04 9.1×104 8.2×103 4.6×101 2.8×101

Cle 58.06 57.82 57.21 57.10 7.7×103 6.9×102 2.0×101 7.6

Cre 85.34 85.34 85.45 85.16 4.2×104 3.2×103 5.2×101 1.2×101

Hea 78.92 78.56 78.43 78.89 7.3×104 6.1×103 3.4×101 1.6×101

Hep 82.19 81.96 80.88 79.32 5.8×104 6.1×103 2.1×101 9.1

Hor 85.38 85.20 84.53 83.37 9.2×104 8.1×103 4.0×101 1.2×101

Hou 95.00 94.94 94.66 95.32 8.1×104 7.3×103 3.6×101 1.5×101

Mam 82.86 82.73 82.61 82.05 2.5×104 1.7×103 4.8×101 1.2×101

Mar 33.90 33.86 32.89 32.21 4.5×104 1.7×104 1.2×103 4.2×102

Ozo 97.10 97.10 97.07 96.45 3.1×106 5.2×105 7.9×102 2.9×102

Tum 41.16 41.27 40.67 40.34 3.4×104 1.8×103 5.2×101 2.2×101

6.4.3.2 Evaluation of the Proposed Method on Gene Expression Datasets

Gene expression datasets usually contain a large number of features, and
often contain a large number of missing values [31]. Therefore, we eval-
uate the proposed method on gene expression datasets to further vali-
date the effectiveness and efficiency of the proposed methods. Table 3.4
in Chapter 3 in page 80 shows eight gene expression datasets which are
chosen to evaluate the proposed methods.

Table 6.7 shows the classification accuracy of the proposed method
and the other methods on the gene expression datasets. It is clear from
the Table 6.7 that the proposed method using kNN-based imputation in
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the training processes is more accurate than using kNN-based imputation
both in the training and application processes. Moreover, the proposed
method is much more accurate than existing ensemble methods. For ex-
ample, in tomlins datasets, the accuracy of the proposed method is double
that of the other ensemble methods in [24, 185].

Table 6.7: Classification accuracy (using J48 as a classifier) of the proposed
method (using kNN-based imputation) and the other benchmark methods
on the gene expression datasets.

Dataset NewMethod kNNI Ensemble[24] Ensemble[185] Ensemble[125]

alizadeh-2000-v1 74.41±6.41 66.81±8.39↑ 50.23±5.23↑ 51.42±5.54↑ 64.83±5.21↑

alizadeh-2000-v2 83.18±5.17 81.24±4.96 67.81±4.24↑ 65.87±4.52↑ 62.12±3.21↑

bredel-2005 69.43±7.21 66.36±7.48↑ 62.01±4.26↑ 63.27±4.03↑ 59.35±3.69↑

chen-2002 87.72±2.75 82.28±2.93↑ 78.86±4.62↑ 79.06±4.64↑ 88.72±2.45

garber-2001 71.55±4.93 63.62±4.87↑ 52.29±4.93↑ 53.62±4.78↑ 51.17±4.38↑

liang-2005 79.68±6.08 78.42±5.09 75.73±2.84↑ 74.65±2.76↑ 75.60±3.25

tomlins-2006 65.42±6.03 52.61±5.12↑ 30.78±1.42↑ 30.78±1.42↑ 60.78±3.33↑

tomlins-2006-v2 63.14±3.27 53.78±4.81↑ 34.79±1.42↑ 35.64±1.38↑ 58.72±3.61+

Table 6.8 shows the computation time to classify new instances in the
application process of the proposed method and the benchmark methods.
It is clear from Table 6.8 that although the proposed method is slightly
more expensive than kNN-based imputation, but it is much faster than
the ensemble methods.

In summary, the proposed methods are still able to produce dramatic
improvement in efficiency and better accuracy on large datasets.

6.4.3.3 Evaluation of the Proposed Method on Specific Problem

In order to demonstrate how the proposed method works and its effec-
tivenesses and efficiencies, we analysed carefully the proposed method
on Heart-h using C4.5. The Heart-h dataset was chosen because it has the
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Table 6.8: Time to classify instances in the application process on the gene
expression datasets (millisecond).

Dataset NewMethod kNNI Ensemble[24] Ensemble[185] Ensemble[125]

alizadeh-2000-v1 4.4×101 9.3 1.4×103 1.3×103 1.4×104

alizadeh-2000-v2 9.9×103 2.9×101 1.1×104 1.0×104 1.2×105

bredel-2005 2.1×102 3.6×101 2.3×103 2.1 ×103 1.3×105

chen-2002 5.4 6.8 1.1×102 9.1×101 3.4×102

garber-2001 2.4×103 8.1×101 2.9×104 2.7×104 8.5×105

liang-2005 4.9×101 9.9 6.1×102 5.8×102 8.0×103

tomlins-2006 7.4×103 8.9 6.3×104 6.1×104 5.5×105

tomlins-2006-v2 8.3×102 3.7 1.4×104 1.2×104 1.2×105

largest percentage of incomplete instances (100%) compared to the other
datasets. C4.5 was chosen because decision trees generated by C4.5 are
straightforward to interpret.

Hear-h describes the contents of the heart-disease collected by Hun-
garian Institute of Cardiology [3]. The dataset has 13 features: {age, sex,
chest pain, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal}.
The values of the 13 features are used to decide the diagnosis of heart dis-
ease shown in a class feature, where 0 indicates less than 50% diameter
narrowing and 1 indicates more than 50% diameter narrowing. The origi-
nal dataset has six incomplete features: {chol, fbs, exang, slope, ca, thal } and
contains 15 missing patterns.

In the application process, MICE imputation is firstly used to trans-
form the incomplete dataset into an imputed dataset. CFS is then applied
on the imputed dataset, and it selects a subset of five features SF = {sex,
chest pain, exang, oldpeak, slope} and removes the other eight features. As
a result, the original dataset reduced on SF has only two incomplete fea-
tures {exang, slope} and it contains only three missing patterns: {slope},
{exang} and {∅}. Therefore, feature selection helps to reduce the number
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of incomplete features (from 6 to 2) and reduce the number of missing
patterns (from 15 to 3).

(a) {sex, chest pain, exang, oldpeak}

(b) {sex, chest pain, oldpeak, slope}

(c) {sex, chest pain, exang, oldpeak, slope}.

Figure 6.7: Decision trees constructed by using different feature subsets.

From the three missing patterns, the proposed method generates three
complete patterns: {sex, chest pain, exang, oldpeak}, {sex, chest pain, oldpeak,
slope} and {sex, chest pain, exang, oldpeak, slope}. Figs. 6.7a, 6.7b and 6.7c
show three decision trees generated by C4.5 according to the three com-
plete patterns. It is clear from the figures that the decision trees do not re-
quire all features, so they are tolerant with missing values because they can
be applicable to more than one missing pattern. For example, the decision
tree in Figure 6.7b is built on a dataset with four features (sex, chest pain,
oldpeak, slope), but it requires only two features (sex, chest pain). As a result,
the decision tree in Figure 6.7b is originally designed to classify incomplete
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instances with only one missing value in feature exang; however, it does
not require feature slope, so it also can be used to classify any incomplete
instance with missing value in feature slope.

Table 6.9 shows some incomplete instances in the Hear-h dataset, which
need to be classified. Table 6.10 presents instances in Table 6.9 reduced on
the selected features SF = {sex, chest pain, exang, oldpeak, slope}. As can be
seen from Tables 6.9 and 6.10 that feature selection can help to reduce the
number of missing values and reduce the number of incomplete instances.
For example, the second and third instances in Table 6.9 are incomplete,
but by only keeping the selected features, these instances become complete
as shown in Table 6.10.

Table 6.9: Incomplete instances in the original Hear-h dataset.

N age sex chest pain trestbps chol fbs restecg thalach exang oldpeak slope ca thal
1 59 male asympt 140 ? f normal 140 no 0 ? 0 ?
2 46 male asympt 120 277 f normal 125 yes 1 flat ? ?
3 54 male asympt 150 365 f st t wave abnormality 134 no 1 up ? ?
4 48 male atyp angina 100 ? f normal 100 no 0 ? ? ?
5 54 female atyp angina 140 309 ? st t wave abnormality 140 no 0 ? ? ?
6 48 female atyp angina ? 308 f st t wave abnormality ? ? 2 up ? ?

Table 6.10: Instances in Table 6.9 reduced on the selected features.

N age chest pain exang oldpeak slope
1 59 asympt no 0 ?
2 46 asympt yes 1 flat
3 54 asympt no 1 up
4 48 atyp angina no 0 ?
5 54 atyp angina no 0 ?
6 48 atyp angina ? 2 up

In Table 6.10, the second and third instances are complete so they are
quickly classified by all the decision trees without requiring time for ex-
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ploring applicable classifiers. The first, fourth and fifth instances contain
a missing value in feature slope. Although only the decision tree in Figure
6.7a is learned to classify these incomplete instances, the other decision
trees in Figure 6.7b and 6.7c also can be used to classify the incomplete in-
stances because they do not require feature slope thanks to implicitly per-
forming feature selection of C4.5.

In summary, three powerful techniques—multiple imputation, feature
selection and ensemble learning—make the proposed method effective
and efficient.

6.5 Chapter Summary

The goal of this chapter was to develop a new ensemble approach to classi-
fication with incomplete data which can effectively and efficiently classify
new incomplete instances without requiring any imputation. To achieve
this goal, we integrated imputation, feature selection and ensemble learn-
ing to construct an ensemble of classifiers, each tailored to a known pattern
of missing data. The imputation creates higher quality training data. The
feature selection process reduces the number of missing patterns, which
increases the speed of classification, and greatly increases the fraction of
new instances that can be classified by the ensemble. Results show that
the proposed method is more accurate, and faster than previous common
methods for classification with incomplete data.

This chapter shows that integration of imputation with feature selec-
tion and ensemble learning can build more effective classifiers than a com-
mon approach to using imputation for classification with incomplete data.
One reason is that feature selection helps reduce redundant and irrelevant
features which in turn provides better training data for building classifiers.
Another reason is that ensemble learning constructs multiple classifiers
which are generally better than a single classifier generated by the com-
mon approach. The proposed method can also classify new incomplete
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instances more efficiently than the common approach. The underlying
reason is that the proposed method can directly classify new incomplete
instances without requiring any time to estimate missing values.

This chapter also shows that the integration of imputation and fea-
ture selection with ensemble learning can build more effective classifiers
than existing ensemble learning methods for classification with incom-
plete data. The key reason is that the proposed method uses imputation
and feature selection to provide high quality training complete data. In
contrast, existing ensemble methods often generate low quality training
data, especially when incomplete data contains numerous missing values.
The proposed method can also classify new instances faster than existing
ensemble methods. The reason is that due to using feature selection to re-
move incomplete features, the proposed method generates a smaller num-
ber of classifiers and only needs to classify a smaller number of incomplete
instances than existing the ensemble methods.

This chapter presented an an ensemble approach to directly classifying
incomplete data by building a set of classifiers. Another approach such as
C4.5 and CART is to build single classifiers which can work directly with
incomplete data. The next chapter will describe using GP with interval
functions to directly evolving classifiers for incomplete data.



Chapter 7

Directly Evolving Classifiers for
Incomplete Data using Genetic
Programming

7.1 Introduction

In classification tasks, discriminant functions are a popular method for
representing classifiers. A discriminant function is a mathematical expres-
sion that represents a combination of the features of an instance which
needs be classified. The value returned by the discriminant function deter-
mines the predicted class by using a single threshold (binary classification)
or a set of thresholds (multiple classification) [42].

Genetic programming (GP) is an evolutionary technique which con-
structs computer programs [89]. The capability of GP to learn the defi-
nition of a function from examples makes it a very good choice for con-
structing discriminant functions for classification tasks. Therefore, GP
has been widely used to construct discriminant functions for classification
tasks [42].

Although GP has been successfully used to construct classifiers, it has
been mainly applied to complete data. In order to use traditional GP

157
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to construct classifiers for incomplete data, imputation methods are re-
quired to transform incomplete data into complete data before using GP.
The combination of GP and a simple imputation method such as mean
imputation often leads to big classification error. Therefore, to construct
good classifiers, GP should be combined with sophisticated imputation
methods such as multiple imputation by chained equations (MICE) [175]
or multiple imputation for missing data using GP (GPMI) [159]. Unfortu-
nately, sophisticated imputation methods like MICE and GPMI are only
appropriate for batch imputation, and are too computationally intensive
to estimate missing values for individual incomplete instances in the un-
seen data [157]. This chapter shows how to use GP to construct classifiers
which can work directly with incomplete data without requiring an impu-
tation method.

7.1.1 Chapter Goals

This chapter describes two methods that we use interval GP developed
in Chapter 5 to construct effective and efficient classifiers able to work
directly with incomplete data without requiring any imputation method.
The first method construct a single classifier. The second method combines
interval GP and ensemble learning to construct an ensemble of classifiers.
Specially, this chapter will investigate:

1. How GP can directly construct effective and efficient classifiers for
incomplete data without combining with imputation.

2. Whether a classifier constructed by interval GP can achieve better
classification accuracy than a classifier constructed by combining im-
putation and traditional GP; and

3. Whether a classifier constructed by interval GP can achieve better
classification accuracy than a classifier build by using a classification
algorithm able to work directly with incomplete data; and
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4. Whether a set of classifiers constructed by the combination of en-
semble learning and interval GP can achieve better classification ac-
curacy than a set of classifier constructed by the combination of en-
semble learning, imputation and traditional GP; and

5. Whether a set of classifiers constructed by the combination of ensem-
ble learning and interval GP can achieve better classification accu-
racy than a set of classifier build by using the combination of ensem-
ble learning and classification algorithm able to work directly with
incomplete data.

6. Why interval GP can construct effective and efficient classifiers for
incomplete data.

7.1.2 Chapter Organisation

The rest of the paper is organised as follows. Section 7.2 discusses the
proposed algorithms including interval GP to construct a single classifier
for each incomplete data, and the combination of ensemble learning and
interval GP to construct a set of classifiers for incomplete data. Section
7.3 outlines experiment design. Section 7.4 presents results and analysis.
Section 7.5 draws conclusions.

7.2 Proposed Algorithms

This section presents two proposed algorithms. The first algorithm uses
interval GP, namely IGP, to construct a single classifier for each incom-
plete dataset. The second algorithm combines ensemble learning with IGP,
namely EIGP, to construct a set of classifiers for each incomplete dataset.
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7.2.1 Interval Genetic Programming to Directly Construct

a Single Classifier for Incomplete Data

The key idea of IGP is to use interval GP to directly construct a classifier for
each incomplete data. With the constructed classifier, each missing value
is replaced by an interval that expresses the uncertainty associated with
the missing value.

The Figure 7.1 shows the main steps of IGP. The proposed algorithm
consists of the training process and the application process. The training
process uses interval GP to construct a single classifier for each incomplete
dataset. The application process then uses the constructed classifier to
classify new instances.

training 
incomplete 

data 

Intervalise

unseen
instance

training 
interval 

data 

interval
instance

GP with  
interval functions 

Classifier class
label

training  
process

application  
process

Figure 7.1: interval GP to construct a classifier for incomplete data

In the training process, firstly, all features in the training data are rescaled
to build the training rescaled data. Next, the interval of feature is esti-
mated, and then each feature value is replaced by an interval. Conse-
quently, the training rescaled data is transformed into the training inter-
val data. Finally, interval GP uses the training interval data to construct a
classifier.

In the application process, an instance that needs to be classified is
firstly rescaled to build a rescaled instance. After that, each feature value
in the rescaled instance is replaced by an interval to construct an inter-
val instance. Finally, the interval instance is classified by the constructed
classifier.
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The following subsections present main steps of the proposed algo-
rithm: rescaling data, finding interval, interval functions and class bound-
ary determination.

7.2.1.1 Rescaling Data

In order to construct a discriminant function for classification task, GP
usually combines different features by using some operators. However,
in a dataset, different features often have different scales. It is beneficial
to make all features have the same scale before putting them into GP to
build a classifier. Two common ways to rescale data are normalisation and
standardization [28].

Normalization rescales all numeric features into the range of [0,1]. One
formula for normalisation can be given below:

fnew =
fori − fmin

fmax − fmin

where fmin and fmax are minimum value, maximum value of original fea-
ture f, respectively; fori and fnew are original value and new rescaled value
of feature f, respectively.

Standardization rescales mean and variance of a feature into zero mean
and unit variance, respectively. One formula for standardization can be
given below:

fnew =
fori − µf

σf

where µf and σf are the mean and standard deviation of original feature
f, and fori and fnew are original value and new rescaled value of feature f,
respectively.

Each of these techniques has its drawbacks. If data contains outliers,
normalization is likely to rescale the data to a very small interval. Stan-
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dardizing data can lead to a poor result if the data has a very non-normal
distribution [28].

7.2.1.2 Feature Interval and Interval Functions

As in Chapter 5, in order to make interval GP able to work directly with
missing values, we need to find an interval for each incomplete feature,
and then replace missing values for the feature by the interval. We used
the method shown in Section 5.3.1 in page 111 to find the feature interval.

Along with transforming incomplete data to interval data, we also need
to build interval functions to work with interval data. We used the four
interval arithmetic operations shown in Session 5.3.2 in page 112.

7.2.1.3 Class Boundary Determination

The classifier outputs an interval [l,u], which must be assigned to a partic-
ular class. IGP uses a sequence of static boundaries (T1 < T2 < ... < Tn−1)
to define n class regions [190]. It then determines the class by working out
which which region the center of the interval (mid = l+u

2
) fall in:

class =



class1 : mid ≤ T1

class2 : T1 < mid ≤ T2

...

classi : Ti−1 < mid ≤ Ti

...

classn : mid > Tn−1

where T1, T2, ..., Tn−1 are pre-defined static class boundaries.
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7.2.2 The Combination of Interval Genetic Programming

and Ensemble Learning to Evolve a Set of Classifiers

for Incomplete Data

The problem with IGP is that the output of a classifier constructed by IGP
is an interval which can span more than one class boundary, but IGP deter-
mines a single class label by using the middle point of the output interval.
This decision method does not select the highest probability class when
the middle point belongs to one class region, but the biggest overlap with
the output interval belongs to another class region. For example, in Figure
7.2, the middle point belongs to class 2, but the highest overlap with the
interval output is the region of class 1. The decision method also makes an
unjustified decision when there exist two or more class regions with the
same or similar overlap with the interval output. For example, in Figure
7.3, class 2, class 3 and class 4 have the same overlap with the interval, but
IGP only outputs class 3.

class 1 class 2 class 3

L U. mid

Figure 7.2: A problem with IGP because of using the middle of interval
output to decide a final class.

In order to overcome the limitations of IGP, the second proposed al-
gorithm, EIGP, combines ensemble methods and IGP to construct a set of
classifiers for incomplete data. To construct a set of classifiers, firstly, train-
ing data is put into a resample procedure such as in bagging/boosting to
build a set of training resampled data. After that, each training resampled
data is used by IGP to build a single a classifier. As a result, a set of classi-
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class 1 class 2 class 3 class 4 class 5

L U.mid

Figure 7.3: A problem with IGP because of building only one classifier.

fiers is generated. When a new instance needs be classified, each classifier
in EIGP estimates the probability of the instance belonging to each class
instead of determining a single class for the instance as IGP. After that,
the final class of the instance is the class which achieves the highest total
probability over all classifiers.

Assuming [l,u] is the output of a classifier constructed by GP with in-
terval function, and [Ti−1, Ti) is the class region of the ith class label, then
the probability of the ith class label is chosen by the classifier is defined as
followed:

prob([l, u] ∈ classi) =

0 : if u < Ti−1 or T i ≤ l

min(u,Ti)−max(l,Ti−1)
u−l : otherwise

where T1, T2, ..., Tn−1 are the pre-defined static class boundaries.

7.3 Design of Experiments

This section presents the comparison method between the proposed meth-
ods with benchmark methods. It also shows datasets and parameter set-
tings which are used in the experiments.
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7.3.1 The Comparison Methods

The experiments are designed to achieve two main objectives. The first
objective is to evaluate the impact of IGP on evolving a single classifier
for each incomplete dataset. The second objective is to evaluate the im-
pact of ensemble learning on IGP for evolving a set of classifiers for each
incomplete dataset.

To achieve the first objective, the experiments are designed to com-
pare IGP with two other common classification methods for classifying
incomplete datasets. The Figure 7.1 shows the process of IGP for building
a single classifier for each incomplete dataset. The Figure 7.4 shows one
common classification method for classifying incomplete datasets by com-
bining an imputation method and GP for evolving a single classifier for
each incomplete dataset. The Figure 7.5 shows other common classifica-
tion method for classifying incomplete datasets by using a classifier which
is able to work directly with incomplete datasets. In the first setup, as
shown in Figure 7.1, the training incomplete data is used by IGP to build a
classifier which is then used to classify unseen incomplete instances. In the
second setup, as shown in Figure 7.4, an imputation method is firstly used
to transfer the training incomplete data and unseen incomplete instances
into the training imputed data and unseen imputed instances, respectively.
After that, the training imputed data is used by GP to construct a classi-
fier which is then used to classify unseen imputed instances. In the third
setup, as shown in Figure 7.5, the training incomplete data is directly used
by a classification algorithm which is able to classify incomplete datasets
to build a classifier which is then used to classify unseen incomplete in-
stances.

To achieve the second objective, in the three setups, the training in-
complete dataset in Figures 7.1 and 7.5 and the training imputed dataset
in Figure 7.4 are put into the bagging method to generate a set of training
datasets. After that, each training dataset is used to build a classifier. Con-
sequently, with the set of training datasets, a set of classifiers is generated.
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Figure 7.4: Classification with incomplete data by combining imputation
and GP

Figure 7.5: Classification with incomplete data by using a classifier able to
work directly with incomplete data.

Finally, the set of classifiers is used to classify the testing dataset.

7.3.2 Datasets and Parameter Settings

The experiments compare the proposed methods with the other methods
on 12 datasets which were used in Chapter 5. The main characteristics of
these datasets are shown in Table 1.1. These datasets only contain numeric
features because classifiers which are evolved by GP are the mathematical
expressions. As in previous chapters, ten-fold cross-validation is used to
divide these datasets into training sets and test sets.

The first seven of these datasets contain “natural” missing values. To
test the proposed methods on datasets with various levels of missing val-
ues, from the last five complete datasets, some complete values are ran-
domly removed to generate “artificial” incomplete datasets. Six levels of
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missing values: 5%, 10%, 15%, 20%, 25% and 30% are introduced into each
complete dataset. The same as Chapter 5, missing values are introduced
into important features which are selected by CFS [66].

As in Chapter 5, ECJ package [110] is used to implement GP. The pa-
rameters of GP in imputation methods combined with GP are similar to
the parameters of GP in the proposed methods, except using normal func-
tion set and normal terminal set instead of using interval function set and
interval terminal set. The parameters of GP is set the same as in Chapter 5
shown in Table 5.1 in page 117. Bagging is used to generate a set of clas-
sifiers. The number of classifiers in ensemble learning evolving by GP is
also 25 as suggested by [120].

The experiments use two imputation methods to combine with GP are
kNN-based imputation and MICE. As in previous Chapters, with kNN-
based imputation, the number of k is set 1; MICE in [22] with random for-
est is used to estimate missing values for incomplete features. Each incom-
plete feature is repeatedly regressed 20 times on other features. With each
incomplete dataset, the multiple imputation is repeatedly done 5 times to
generate 5 imputed datasets before averaging them to generate a final im-
puted dataset.

The proposed methods are compared with two decision trees which
can directly classify incomplete data: C4.5 [129] and CART [105]. WEKA
[65] with default parameter settings is used to implement the classification
algorithms. Following the suggestion in [120], the number of classifiers in
ensemble learning evolving by C4.5 and CART is set 25.

7.4 Results and Discussions

This section presents the comparison of the proposed methods with bench-
mark methods and performs analysis.
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7.4.1 The comparison between IGP with other single meth-

ods

Table 7.1 presents the average of classification accuracy along with stan-
dard deviation of IGP and the other single methods on the first seven
datasets. The average of classification accuracy in Table 7.1 is calculated on
accuracies of each method on 30 times performing ten-fold cross-validation
on each dataset. Table 7.2 shows the average of classification accuracy
along with standard deviation of IGP and the other single methods on
the last five datasets with six levels of missing values. With each dataset
and each level of missing values, the averages of classification accuracy in
Table 7.2 is calculated on accuracies of each method on 30 generated in-
complete datasets by using ten-fold cross-validation on each incomplete
dataset.

Table 7.1: The comparison between IGP with the other single methods on
natural incomplete datasets

Dataset IGP kNNGP MICEGP C4.5 CART

Ban 69.97±1.23 69.89±1.0 69.91±0.85 68.45±1.88↓ 65.99±1.69↓

Bre 96.53±0.28 95.66±0.35↓ 95.75±0.39↓ 94.83±0.46↓ 94.42±0.44↓

Cle 58.12±1.50 56.56±1.35↓ 57.27±1.16↓ 54.56±2.10↓ 56.32±1.37↓

Hep 81.05±1.77 79.72±2.30↓ 80.36±2.14 79.21±1.75↓ 77.47±1.45↓

Mam 83.13±0.35 80.07±0.82↓ 80.29±0.92↓ 82.12±0.33 82.12±0.50

Mar 30.74±0.47 30.77±0.52 30.57±0.66 30.91±0.45 33.57±0.35↑

Ozo 97.12±1.42 96.91±0.13 96.89±0.11 96.25±0.27↓ 97.09±0.07

In Table 7.1 and Table 7.2, “IGP” refers to the first proposed method,
as shown in Figure 7.1. “kNNGP” and “MICEGP” refer to the second ex-
perimental setup, as shown in Figure 7.4, combining GP with kNN-based
imputation and MICE, respectively. “C4.5” and “CART” refer to the third
experimental setup as shown in Figure 7.5 using C4.5 and CART as classi-
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Table 7.2: The comparison between IGP with the other single methods on
each artificial incomplete dataset.

Dataset

Missing

values

(%)

IGP kNNGP MICEGP C4.5 CART

Bal

5 98.98±0.41 98.79±0.41 98.92±0.40 78.95±0.77↓ 78.51±0.84↓

10 97.75±0.64 97.70±0.62 97.41±0.57 78.66±0.86↓ 78.14±0.80↓

15 97.10±0.60 96.93±0.72 96.73±0.62 78.23±0.94↓ 77.95±0.78↓

20 95.81±0.53 95.32±0.73 95.59±0.50 77.69±0.87↓ 77.31±0.95↓

25 94.95±0.76 94.22±0.90 94.65±0.86 77.49±1.10↓ 76.82±1.09↓

30 93.70 ±0.71 92.87±0.88 93.41±0.81 77.02±0.96↓ 76.37±0.96↓

Dia

5 74.89±0.88 67.37±0.87↓ 67.61±0.79↓ 74.86±0.93 74.52±0.80

10 74.20±0.79 67.15±1.00↓ 67.36±0.95↓ 74.81±0.72 73.71±1.26

15 73.42±0.68 66.87±0.63↓ 67.13±0.85↓ 74.34±1.22 73.08±1.09

20 72.61±0.98 66.81±0.80↓ 66.93±1.04↓ 72.62±1.21 72.59±1.21

25 72.08±1.22 66.61±0.61↓ 66.67±0.95↓ 72.48±0.96 71.64±1.24

30 70.97±1.16 66.75±0.86↓ 67.13±1.01↓ 72.24±1.06↑ 70.88±1.35

Iri

5 95.06±0.93 93.42±1.58↓ 93.77±1.06↓ 91.33±1.24↓ 91.17±1.27↓

10 95.11±0.93 92.11±1.90↓ 93.42±1.35↓ 91.17±1.51↓ 91.11±1.46↓

15 94.19±1.37 90.06±2.22↓ 92.11±1.73↓ 90.62±1.73↓ 90.06±1.63↓

20 93.91±1.48 87.91±2.34↓ 91.57±1.80↓ 89.20±1.61↓ 89.86±1.81↓

25 93.51±1.58 86.28±2.43↓ 90.24±2.26↓ 88.62±1.95↓ 88.57±2.33↓

30 91.33±2.2 84.91±2.83↓ 87.60±2.62↓ 87.24±2.20↓ 87.62±1.87↓

Liv

5 67.98±1.95 67.58±2.03 68.20±2.24 62.54±2.21↓ 64.23±2.28↓

10 67.87±2.01 67.58±2.02 68.21±2.25 62.46±2.12↓ 64.28±2.21↓

15 67.48±1.89 67.08±2.02 67.70±2.31 62.06±2.23↓ 63.77±2.21↓

20 66.97±1.97 66.58±2.00 67.20±2.27 61.56±2.15↓ 63.27±2.20↓

25 65.86±1.86 65.47±1.98 66.19±1.97 60.46±2.34↓ 62.16±2.19↓

30 64.98±1.96 65.47±2.01 66.19±2.25 60.46±2.13↓ 62.37±2.25↓

Sta

5 83.04±1.31 78.50±1.63↓ 78.46±1.55↓ 81.39±1.25↓ 77.49±1.49↓

10 81.81±1.70 77.60±1.89↓ 78.14±1.56↓ 80.04±2.05↓ 76.38±1.54↓

15 81.45±1.38 76.92±1.40↓ 77.71±1.93↓ 78.77±1.67↓ 75.70±1.51↓

20 80.92±1.83 76.46±2.04↓ 77.32±2.13↓ 77.06±2.19↓ 75.04±1.75↓

25 80.22±1.60 75.80±1.66↓ 76.80±2.01↓ 76.02±1.96↓ 74.12±1.96↓

30 79.14±1.51 74.67±1.82↓ 75.99±1.98↓ 75.35±1.76↓ 73.48±1.65↓
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fication algorithm, respectively.

As in previous chapter, for each incomplete dataset, Friedman test [53],
which is a non-parametric test for multiple comparisons, is used to statis-
tical test the null hypothesis in classification accuracies. The test shows
that for all tasks, there is a significant difference in classification accura-
cies for the five methods, so null hypothesis rejected. Therefore, a post
hoc multiple comparisons test using the Holm method [72] is used to de-
termine the statistically significant differences between group means. “↑ ”
means that the benchmark method is significantly more accurate than the
proposed method; “↓” means that the benchmark method is significantly
worse than the proposed method.

It can be seen clearly from Table 7.1 that with the “natural” incomplete
datasets, IGP is significantly more accurate than the other methods in most
cases. IGP is not significantly worse than kNNGP, MICEGP and C4.5 in
any case, and it is only significantly worse than CART in Marketing dataset.

It can be seen clearly from Table 7.2 that with “artificial” incomplete
datasets, in most cases, IGP are also significantly more accurate than the
other benchmark methods. Except Balance and Liver datasets with the
same accuracy, the classification accuracies of IGP are significantly better
than both kNNGP and MICEGP in three other datasets with all levels of
missing values. Moreover, for all tasks except Diabetes, the classification
accuracies of IGP are significantly better than both C4.5 and CART. For Di-
abetes task, the classification accuracies of IGP are not statistically different
from both C4.5 and CART with the first five levels of missing values, and
significantly worse than C4.5 with 30% of missing values.

In summary, with both natural and artificial incomplete datasets, in
most cases, IGP are generally significantly more accurate than the other
benchmark methods.
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7.4.2 The Comparison between EIGP with Other Ensem-

ble Methods

Table 7.3 presents the average of classification accuracy along with stan-
dard deviation of EIGP and the other ensemble methods on the first seven
“natural” incomplete datasets. It is clear from Table 7.3 that with the “nat-
ural” incomplete datasets, the classification accuracies of EIGP are also
significantly more accurate than the other benchmark methods in most
cases.

Table 7.3: The comparison between bagging IGP with the other bagging
methods on natural incomplete datasets.

Dataset EnIGP EnkNNGP EnMICEGP EnC4.5 EnCART

Ban 72.15±0.84 70.53±0.77↓ 70.74±0.62↓ 71.18±1.26↓ 70.10±1.85↓

Bre 96.69±0.21 96.22±0.28↓ 96.30±0.32↓ 95.86±0.31↓ 95.84±0.35↓

Cle 59.85±1.17 57.88±0.84↓ 57.69±1.27↓ 57.08±1.29↓ 57.73±1.64↓

Hep 82.39±1.69 82.47±1.84 82.85±1.47 81.56±1.63↓ 81.27±1.77↓

Mam 83.44±0.27 80.77±0.54↓ 80.77±0.59↓ 82.68±0.50↓ 81.63±0.54↓

Mar 31.40±0.28 30.83±0.39↓ 30.89±0.37↓ 31.56±0.42 31.26±0.41

Ozo 97.09±0.06 97.12±0.01 97.12±0.01 97.05±0.08 97.07±0.09

Table 7.4 shows the average of classification accuracy along with stan-
dard deviation of EIGP and the other ensemble methods on the last five
datasets with six levels of missing values. It is also clear from Table 7.4
that with “artificial” missing values, in almost all cases, the classification
accuracies of EIGP are significantly better than the other methods.

To confirm whether the proposed methods are really significantly bet-
ter than the other methods, we perform the Friedman test on the average
of accuracies of all the algorithms in all incomplete datasets as shown in
Table 7.1, Table 7.2, Table 7.3 and Table 7.4. The test indicates that there is
a significant difference in classification accuracies in the ten methods, so
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Table 7.4: The comparison between bagging IGP with the other bagging
methods on artificial incomplete datasets.

Dataset

Missing

values

(%)

EnIGP EnkNNGP EnMICEGP EnC4.5 EnCART

Bal

5 98.98±0.41 98.79±0.41 98.92±0.40 82.95±0.77↓ 82.51±0.84↓

10 97.75±0.64 97.70±0.62 97.41±0.57 82.66±0.86↓ 82.14±0.80↓

15 97.10±0.60 96.93±0.72 96.73±0.62 82.23±0.94↓ 81.95±0.78↓

20 95.81±0.53 95.32±0.73 95.59±0.50 81.69±0.87↓ 81.31±0.95↓

25 94.95±0.76 94.22±0.90 94.65±0.86 81.49±1.10↓ 80.82±1.09↓

30 93.70±0.71 92.87±0.88 93.41±0.81 81.02±0.96↓ 80.37±0.96

Dia

5 74.89±0.88 67.37±0.87 67.61±0.79 74.86±0.93 74.52±0.80

10 74.20±0.79 67.15±1.00 67.36±0.95 74.81±0.72 73.71±1.26

15 73.42±0.68 66.87±0.63 67.13±0.85 74.34±1.22 73.08±1.09

20 72.61±0.98 66.81±0.80 66.93±1.04 73.62±1.21 72.37±1.21

25 72.08±1.22 66.61±0.61 66.67±0.95 73.48±0.96↑ 71.64±1.24

30 70.97±1.16 66.75±0.86 67.13±1.01 72.24±1.06↑ 70.88±1.35

Iri

5 95.06±0.93 93.42±1.58↓ 93.77±1.06↓ 93.33±1.24↓ 94.17±1.27↓

10 95.11±0.93 92.11±1.90↓ 93.42±1.35↓ 93.17±1.51↓ 94.11±1.46↓

15 94.19±1.37 90.06±2.22↓ 92.11±1.73↓ 92.62±1.73↓ 93.06±1.63↓

20 93.91±1.48 87.91±2.34↓ 91.57±1.80↓ 91.20±1.61↓ 91.86±1.81↓

25 93.51±1.58 86.28±2.43↓ 90.24±2.26↓ 90.62±1.95↓ 90.57±2.33↓

30 91.33±2.20 84.91±2.83↓ 87.60±2.62↓ 88.24±2.20↓ 88.62±1.87↓

Liv

5 69.53±1.62 69.24±1.49 69.47±1.62 69.12±1.79 68.56±1.72

10 69.05±1.73 68.73±1.54 68.96±1.43 68.59±1.93 68.07±1.70

15 68.54±1.63 68.21±1.63 68.65±1.53 68.10±1.83 67.58±1.73

20 68.04±1.72 67.72±1.55 68.06±1.42 67.59±1.92 67.07±1.69

25 67.53±1.66 67.22±1.64 67.66±1.57 67.12±1.82 66.59±1.72

30 67.05±1.74 66.73±1.56 67.09±1.43 66.58±1.97 66.03±1.65

Sta

5 83.04±1.31 78.50±1.63↓ 78.46±1.55↓ 81.39±1.25↓ 80.49±1.49↓

10 81.81±1.70 77.60±1.89↓ 78.14±1.56↓ 80.04±2.05↓ 79.38±1.54↓

15 81.45±1.38 76.92±1.40↓ 77.71±1.93↓ 78.77±1.67↓ 78.70±1.51↓

20 80.92±1.83 76.46±2.04↓ 77.32±2.13↓ 79.06±2.19↓ 78.04±1.75↓

25 80.22±1.60 75.80±1.66↓ 76.80±2.01↓ 78.02±1.96↓ 77.12±1.96↓

30 79.14±1.51 74.67±1.82↓ 75.99±1.98↓ 77.35±1.76↓ 76.48±1.65↓
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null hypothesis rejected. Therefore, the Holm method [72] is used to deter-
mine the statistically significant differences between pairs of algorithms in
all the incomplete datasets.

Table 7.5 shows the significant comparison between some pairs of al-
gorithms. As demonstrated from Table 7.5, in all the incomplete datasets,
IGP is significantly more accurate than the other single methods, and EIGP
is also significantly more accurate than the other ensemble methods. As
also can be seen from Table 7.5 that each ensemble method is significantly
better than the corresponding single method. Table 7.6 shows the rank-
ing of the algorithms using the Friedman test (smaller means better). As is
evident from Table 7.6 that the proposed methods are the best algorithms.

Table 7.5: The significant comparison between some methods on all in-
complete datasets (Holm’s procedure rejects those hypotheses that have a p-
value <= 0.00294).

Algorithms Holm
IGP vs. kNNGP 0.0012
IGP vs. CART 0.0013
IGP vs. MICEGP 0.0014
IGP vs. C4.5 0.0015
EIGP vs. EkNNGP 0.0013
EIGP vs. ECART 0.0016
EIGP vs. EMICEGP 0.0019
EIGP vs. EC4.5 0.0023
IGP vs. EIGP 0.0028
C4.5 vs. EC4.5 0.0016
MICEGP vs. EMICEGP 0.0018
CART vs. ECART 0.0020
kNNGP vs. EkNNGP 0.0024

In summary, with both “natural” and “artificial” incomplete datasets,
in most cases, the proposed method is generally significantly better than
the other benchmark methods.
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Table 7.6: The ranking of the methods on all incomplete datasets using
Friedman test.

EIGP IGP EC4.5 EMICEGP ECART EkNNGP C4.5 MICEGP CART kNNGP

1.214 3.414 3.757 4.300 5.000 5.971 7.385 7.628 7.857 8.471

7.4.3 Further Analysis

To investigate how the proposed methods work, we further analysed trees
generated by using interval GP on Diabetes dataset. Diabetes is chosen be-
cause generated trees in this case are small enough to be analysed by hu-
mans. Diabetes is a binary classification problem (two classes: tested negative,
tested positive), and it has eight features {f1,f2,..,f8} and we put 10% miss-
ing values in four features {f2, f6, f7, f8}, which are selected by CFS [66].

In training process, the training data is firstly normalised. After that,
the interval of each feature is estimated from complete values of the fea-
ture. Table 7.7 shows the interval of each feature in Diabetes. Subsequently,
in the training data, each complete field is replaced by an interval where
lower bound and upper bound are set the complete value, and each miss-
ing field is replaced by an interval of the feature containing the field. For
example, from Table 7.7, if a field in f2 is missing, it is replaced by [-2.09,
2.40]. Finally, the training data is put into interval GP to build a classifier.
Figure 7.6 show a tree generated by interval GP on Diabetes.

Table 7.7: Interval of features in Diabetes dataset.

f1 f2 f3 f4 f5 f6 f7 f8

lower -1.14 -2.09 -3.44 -1.28 -0.68 -3.96 -1.17 -1.04

upper 2.98 2.40 2.03 2.46 5.07 3.13 5.07 3.12

In application process, when an instance needs to be classified, it is
firstly normalised, and then intervalised. For example, to classify an in-
stance: (5, 99, 9.74, 27, 0, ?, ?, ?) (? means missing value), complete values
are firstly normalised: (0.34, -0.68, 0.25, 0.41, -0.69, ?, ?, ?). After that, each
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field is replaced by an interval: ([0.34, 0.34], [-0.68, -0.68], [0.25, 0.25], [0.41,
0.41], [-0.69, -0.69], [-3.96, 3.13], [-1.17, 5.07], [-1.04, 3.12]) (each missing
field is replaced by an interval of corresponding feature). The interval in-
stance is then put into a classifier such as shown in Figure 7.6 to result
in an interval [-9.42, 4.77]. Subsequently, the middle point of the interval
is calculated: −9.42+4.77

2
= −2.32; therefore, the instance is classified into

tested negative class.

Figure 7.6: The first tree generated by GP with interval. functions

In the second proposed algorithm, namely EIGP, instead of construct-
ing one classifier, a set of classifier is contructed and combined to classify
new instances. For example, Figure 7.7 shows another classifier generated
by using interval GP on Diabetes. When the instance is put into the sec-
ond classifier, the output is [-7.28, -0.18] . Instead of using middle point to
decide class label, the proportion of the instance belonging to each class.
For example, with the output [-9.42, 4.77], |−9.42|

|−9.42|+4.77
∗ 100 = 66.38% of

the instance belongs tested negative class, and |4.77|
|−9.42|+4.77

∗ 100 = 33.62%

belonging tested positive class. With the output [-7.28, -0.18], both lower
bound and upper bound are less than zero; therefore, 100% of the in-
stance belongs tested negative class. As a result, if the two classifiers are
used to classify the instance, on average, 66.38+100

2
= 83.19% of the in-
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stance belongs tested negative class, and 33.62+0
2

= 16.81% of the instance
belongs tested positive class. Consequently, the instance is classified to
tested negative class.

Figure 7.7: The second tree generated by interval GP.

In summary, replacing missing values with intervals help reflect very
well the uncertainty of incomplete data. Moreover, the combination of a
set of classifiers generated by interval GP can improve the accuracy for
classification with incomplete data.

7.5 Chapter Summary

The goal of this chapter was to develop GP-based classifiers that can di-
rectly classify new incomplete instances effectively and efficiently without
using any imputation method. To achieve this goal, GP with a set of inter-
val functions as a function set is used to directly evolve a single classifier
for incomplete data, where each missing value is replaced by an interval.
Interval GP is also combined with ensemble learning to directly evolve a
set of classifiers for each incomplete data.

This chapter shows that interval GP can evolve more effective classi-
fiers than the combination of GP and imputation methods. One reason is
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that an interval can reflect better the uncertainty of a missing value than
a single value generated by imputation methods. As shown in Chapter 5,
interval GP is more efficient than the combination of GP and imputation
methods; therefore, the proposed methods can classify new incomplete
instances faster than the combination of GP and imputation methods.

This paper also shows that interval GP can evolve more effective clas-
sifiers than classification algorithms such as C4.5/CART that are able to
work directly with incomplete data. The key reason is that GP has ca-
pability of evolving more accurate classifiers than decision trees in many
cases.
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Chapter 8

Conclusions

This thesis focuses on classification with incomplete data. The overall goal
was to improve the effectiveness and efficiency of classification with in-
complete data by using evolutionary machine learning techniques. This
goal was successfully achieved by developing a number of new methods
based on evolutionary machine learning techniques for feature selection,
feature construction, clustering, ensemble learning and constructing clas-
sifiers in order to build effective and efficient classifiers for incomplete
data. The proposed methods were evaluated and compared with existing
methods on a range of incomplete classification tasks of varying difficulty.
Results show that the proposed methods are able to construct effective and
efficient classifies for incomplete data.

The rest of this chapter first presents conclusions for each of research
objective of this thesis. After that, it provides the main findings and high-
lights from each individual chapter. Finally, it discusses potential research
areas for future work.

8.1 Achieved Objectives

This thesis has achieved the following objectives:

179
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• Develop new methods to improve the effectiveness and efficiency of using
imputation for classification with incomplete data by integrating clustering
and feature selection with imputation.

One method uses clustering to reduce the training set of imputed in-
stances into a smaller, but representative, subset which is then used
for estimating missing values in the application process. The second
method uses feature selection to remove redundant and irrelevant
features from the training imputed data to provide better training
data for building classifiers and imputing missing values. Integrat-
ing clustering with imputation can speed up the imputation of miss-
ing values, and still obtain comparable accuracy to using only impu-
tation. Integrating feature selection with imputation also can reduce
the computation time of imputation, and improve classification ac-
curacy compared to using only imputation. Integrating both feature
selection and clustering with imputation not only improves the ef-
fectiveness, but also improves the efficiency of using imputation for
classification with incomplete data. The proposed methods also out-
perform recent approaches to using clustering and feature selection
for classification with incomplete data.

• Develop new wrapper-based feature selection methods to improve classifiers
that are able to directly work with incomplete data.

The first proposed method uses wrapper-based feature selection for
a single classifier, where the feature selection is used to remove re-
dundant and irrelevant features of the original training data. The
second proposed method uses wrapper-based feature selection for
ensemble classifiers, where the feature selection is used to remove re-
dundant and irrelevant features of resampled datasets generated by
bagging/boosting. In the wrapper-based feature selection methods,
a classifier that can directly classify incomplete data without requir-
ing any imputation is used to evaluate the quality of feature subsets.
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By removing redundant/irrelevant features from the original train-
ing data, the wrapper-based feature selection for a single classifier
can improve the accuracy and reduce the complexity of the classi-
fier. By removing redundant and irrelevant features from resampled
datasets generated by bagging/boosting, the wrapper-based feature
selection for the ensemble classifiers can generate more accurate and
less complex classifiers than classifiers generated by the original bag-
ging/boosting. The proposed methods also outperform using impu-
tation for classification with incomplete data.

• Develop a new feature construction method to evolve multiple complete fea-
tures from incomplete data for classifiers that are able to directly work with
incomplete data.

The proposed method uses GP with interval functions as a function
set to evolve multiple complete features, where a constructed fea-
ture is evolved for each class to maximise the purity of the class. The
proposed method replaces each missing value for a feature with the
interval of possible values for the feature to better reflect the uncer-
tainty of missing data. By constructing multiple complete features
from incomplete data, the proposed method can improve the accu-
racy and reduce the complexity of the classifiers. It can achieve better
accuracy and less complex classifiers than using imputation to esti-
mate missing values before constructing new features.

• Develop an effective and efficient ensemble method to classification with
incomplete data by integrating imputation, feature selection and ensemble
learning.

The method uses an imputation method to estimate missing values
in the original training set to generate an imputed dataset which is
complete. A feature selection method is then used to improve the
imputed dataset by removing redundant and irrelevant features. Af-
ter that, the training process identifies all missing patterns and then
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builds a set of classifiers, one classifier for each missing pattern. To
classify a new instance, the algorithm starts by removing the redun-
dant and irrelevant features, and then searches for classifiers appli-
cable to the instance. Subsequently, each applicable classifier is used
to classify the instance, and the algorithm returns a class by taking a
majority vote of the applicable classifiers’ predictions. By integrating
imputation, feature selection and ensemble learning to build a set of
classifiers and avoiding the need for imputation in the application
process, the proposed method is more effective and more efficient
than other common methods for classification with incomplete data.

• Develop new methods to use interval GP for directly evolving classifiers for
incomplete data without requiring any imputation method.

The first proposed method uses interval GP to evolve a single clas-
sifier for incomplete data. The second proposed method combines
interval GP with ensemble methods to build a set of classifiers for
incomplete data. In the proposed methods, GP with a set of inter-
val functions is used evolve classifiers, where each feature missing
value is substituted by an interval. By using interval functions as the
function set in GP, the proposed method can evolve more accurate
classifiers than using imputation to estimate missing values before
using traditional GP to evolve classifiers. The proposed methods can
also achieve better accuracy than existing classifiers that are able to
directly work with incomplete data.

8.2 Main Conclusions

This section discuss the contributions from the five main chapters (Chap-
ter 3 to Chapter 7)
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8.2.1 Integrating Clustering, Feature Selection and Impu-

tation

Chapter 3 presented new methods to improve imputation for classification
with incomplete data by using clustering and feature selection.

Integrating Clustering with Imputation

It was found that using clustering to produce a smaller set of represen-
tative training data to perform imputation can dramatically reduce the
computation time of the application process, and still maintain the clas-
sification accuracy.

The computation time of many imputation methods such as kNN-based
imputation strongly depends on the number of instances which are used
to impute missing values. The number of instances in clustered data is
much smaller than the number of instances in the original data. Therefore,
using clustered data with a smaller number of instances to estimate miss-
ing values for unseen incomplete instances can speed up the application
process.

Using the clustered data to estimate missing values might be expected
to slightly reduce the accuracy of imputation in the application process
because there is less information. However, this may be counteracted by
improved quality of the imputation if clustering is able to identify more
representative data points. Results show that integrating clustering with
imputation is generally as accurate as using only imputation.

Integrating Feature Selection with Imputation

It was found that using feature selection to remove redundant and irrel-
evant features from the imputed training data for building classifiers and
performing imputation can not only improve the classification accuracy
but also reduce the computation time of the application process in classi-
fication with incomplete data.
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Feature selection improves the quality of training data by eliminating
redundant and irrelevant features, which in turn helps to construct more
accurate classifiers. By removing redundant and irrelevant features, fea-
ture selection also reduces the number of missing values in testing data,
which in turn also improves the classification accuracy.

The computation time of many imputation methods such as MICE
strongly depend on the number of features in the data which is used to im-
pute missing values. Due to using the selected data with a smaller number
of features to estimate missing values for unseen incomplete instances, the
integration of feature selection with imputation can reduce the computa-
tion time of the imputation in the application process. Moreover, by re-
moving redundant and irrelevant features from unseen instances, feature
selection is able to reduce the number of incomplete instances in the appli-
cation process which then reduces the computation time of the application
process.

Integrating both Feature Selection and Clustering with Imputation

It was found that integrating both feature selection and clustering with im-
putation can further speed up imputation in the application process and
still achieve better accuracy than using only imputation. The reason is
that the innovations of the two methods are complementary. Both feature
selection and clustering help reduce the computation time of imputation
in the application process but in different and complementary ways. By
removing irrelevant and redundant features, feature selection reduces the
number of features in the data; clustering reduces the number of instances
in the data. Both of these factors reduce the computation time of imputa-
tion in the application process. Moreover, due to removing redundant and
irrelevant features, feature selection not only improves classification accu-
racy, but also provides better data for clustering which produces better
clusters and therefore better representative instances, which then further
helps maintain classification accuracy.



8.2. MAIN CONCLUSIONS 185

8.2.2 Wrapper-based Feature Selection for Classification with

Incomplete

Chapter 4 presented wrapper-based feature selection methods to improve
classifiers such as C4.5 and CART that can directly work with incomplete
data.

Wrapper-based Feature Selection for a Single Classifier

This thesis showed that a wrapper-based feature selection method can im-
prove the accuracy and reduce the complexity of a classifier able to directly
classify incomplete data. One reason is that although classification algo-
rithms such as C4.5 and CART can directly work with incomplete data,
they often generate inaccurate and more complex classifiers, especially
when data contains a large number of missing values. By eliminating re-
dundant and irrelevant features, feature selection helps to generate more
accurate and simpler classifiers. Moreover, decision tree algorithms such
as C4.5 tend to select complete features and ignore incomplete features
to build classifiers. However the bias of selecting complete features to
build decision trees is not always good. Therefore, by considering differ-
ent feature subsets, the feature selection is able to reduce the bias towards
selecting complete features to build classifiers.

Wrapper-based Feature Selection for Ensemble Classifiers

This thesis showed that a wrapper-based feature selection method can also
improve the accuracy and reduce the complexity of ensemble classifiers
generated by bagging/boosting. To construct a set of classifiers, bagging
and boosting repeatedly resample the training dataset to build a set of
training resampled datasets. The resampled datasets often contain redun-
dant/irrelevant features. Applying feature selection to each resampled
dataset can eliminate redundant/irrelevant features and hence improve
the resampled datasets which in turn can help build more accurate and
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less complex classifiers. Moreover, feature selection provides different fea-
ture subsets for different resampled datasets; therefore, it helps to generate
more diverse classifiers which then result in better accuracy.

8.2.3 Interval GP-based Feature Construction for Classifi-

cation with Incomplete Data

Decision trees such as C4.5 and CART can directly work with incomplete
data. However, decision trees are not always effective classifiers—they of-
ten do not achieve adequate accuracy when faced with difficult tasks be-
cause they cannot capture the complex interaction between features. Fea-
ture construction which builds new features from original features is a
conventional solution for this problem because such features can capture
the relationships between features.

GP has been widely used for feature constructions with complete data,
but it cannot directly work with incomplete data because its functions can-
not work when faced with missing values. This means that decision trees
with GP-based feature construction no longer have the desirable of origi-
nal decision trees. To deal with this problem, Chapter 5 presented interval
GP which uses a set of interval functions to replace the normal function
set in traditional GP. To use a feature constructed by interval GP, first, each
missing value for a feature is replaced by an interval associated with the
feature. The interval functions then operate on the intervals as well as reg-
ular value to compute an output value for the feature. The result is that
decision trees using these constructed features can still work on incom-
plete data.

Using interval GP is an alternative to using traditional GP with impu-
tation to deal with the missing data. It was found that interval GP can
construct complete features from incomplete data which help to generate
more accurate classifiers. The key reason is that replacing a missing value
with an interval can better reflect the uncertainty associated with the miss-
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ing value than the value generated by single imputation. This idea is to
some extent similar to multiple imputation where a set of values is esti-
mated for each missing value which also captures the uncertainty well.
Although multiple imputation is accurate, it often takes a long time to es-
timate the set of values. In contrast, calculating interval of each feature is
fast, and only needs to be done one time in the training process. Therefore,
interval GP-based feature construction can generate more efficient classi-
fiers than the combination of imputation with traditional GP-based feature
construction.

Chapter 5 also showed that interval GP-based feature construction can
generate less complex classifiers than the combination of imputation and
traditional GP-based feature construction. The underlying reason is that
imputation generates more values for the features which then leads to
more complex classifiers while the proposed method avoids the need for
multiple values.

8.2.4 Ensemble Approach to Classification with Incomplete

Data

Chapter 6 presented a new approach to constructing effective and efficient
ensemble classifiers for incomplete data by combining imputation, feature
selection and ensemble learning.

Building Ensemble Classifiers for Incomplete Data

The thesis confirmed that constructing an ensemble of classifiers to cover
all possible missing patterns is an effective and efficient approach to clas-
sification with incomplete data. By constructing a set of classifiers, each
classifier being built on one missing pattern, unseen incomplete instances
can be classified by selecting applicable classifiers without requiring im-
putation in the application process. As a result, this approach is more effi-
cient than a common approach using imputation both in the training and
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application processes. Moreover, there usually exist more than one appli-
cable classifier to classify an unseen incomplete instance which makes the
ensemble approach more accurate than the common approach which uses
imputation to estimate missing values for unseen incomplete instances,
but builds only a single classifier.

Integrating Imputation with Ensemble Learning

The thesis shown that it is important to use imputation in the training
process to provide high quality complete training data for constructing
ensemble classifiers which then results in more accurate classifiers. Exist-
ing ensemble methods for classification with incomplete data also build a
set of classifiers, but they do not use any imputation. However, when the
original training data contains numerous missing values, the training set
for each classifier can be as small as a single instance which results in low
accuracy classifiers.

Either single imputation or multiple imputation can be used to esti-
mate missing value for the training data. Multiple imputation is usually
more accurate than single imputation, especially when the data contains
numerous missing values. Hence, a multiple imputation method should
be used to impute missing values for the training data where possible.
However, multiple imputation is generally computationally more expen-
sive than single imputation, especially when data contains numerous fea-
tures. Therefore, with datasets containing a large number of features, a
good single imputation method such as kNN-based imputation can be
used to impute missing values for the training data and still obtain better
accuracy than existing ensemble methods while having a feasible imputa-
tion cost in the training process.
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Integrating Feature Selection with Ensemble Learning

The thesis showed that feature selection can further improve the effective-
ness and efficiency of ensemble classifiers for incomplete data. By remov-
ing redundant and irrelevant features, feature selection produces a high
quality feature set which then helps to build accurate classifiers. More im-
portantly, feature selection also reduces the number of missing patterns,
so fewer classifiers are required which then saves time when identifying
applicable classifiers and classifying an unseen instance. Moreover, re-
moving redundant and irrelevant features from unseen instances before
classifying them can reduce the number of unseen incomplete instances
which also saves time in the application process.

The thesis showed that feature selection can be done effectively and ef-
ficiently by using fast and powerful filter methods such as CFS and mRMR
and using evolutionary techniques such as PSO.

8.2.5 Directly Evolving Classifiers with GP

Chapter 7 presented interval GP-based methods to directly evolve single
classifiers and ensemble classifiers for incomplete data.

GP with Interval Functions to Build Single Classifiers

It was shown that GP using a set of interval functions can evolve an ef-
fective and efficient classifier for incomplete data. A classifier evolved by
interval GP is often more effective and efficient than a classifier evolved
by the combination of imputation and traditional GP. The underlying rea-
son is the same reasons as given in Chapter 5 for the advantage of interval
GP-based feature construction.
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GP with Interval Function to Build Ensemble Classifiers

Chapter 7 also showed that interval GP also can evolve effective and ef-
ficient ensemble classifiers for incomplete data. The output of a classifier
evolved by interval GP is an interval, and the class boundary is also an in-
terval. Therefore, the output interval probably spans more than one class
boundaries so that more than one class label could be determined by the
classifier. However, if interval GP only constructs one classifier for each
classification task, it has to use the middle point of the output interval to
determine one class label. Therefore, constructing a set of classifiers for
each incomplete data can lessen the uncertainty of an interval classifier
which then improve the classification accuracy. The combination of inter-
val GP with ensemble learning to evolve classifiers is also more effective
than the combination of GP, imputation and ensemble learning because
interval GP can directly work with incomplete data without requiring any
time to estimate missing values.

In conclusion, the proposed methods are generally significantly more
accurate than the existing benchmark methods. Although the accuracy
improvement on some of the benchmark datasets is not really large, the
improvement is still meaningful in real applications. For example, if we
improve a cancer prediction system with 1% of accuracy, the system is
used to test million patients, we can save life for thousand patients. Fur-
thermore, the thesis proposed genetic methods which can be applied to
another problems. For example, in chapter 6, the proposed method was
applied to gene expression datasets and made very meaningful differences
with baseline methods (improve more than 10% of accuracy). Moreover,
the thesis also focused on improving the efficiency of classification with
incomplete data. It is clear from the contribution chapters that the pro-
posed methods in the thesis can dramatically improve the efficiency of
classification with incomplete data (speed up thousand times of compu-
tation time). Therefore, the proposed methods are really meaningful for
classification with incomplete data.
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8.3 Future Work

There are a number of directions for future work suggested by the thesis.

8.3.1 Improve Input Space for Classification with Incom-

plete Data

This thesis proposed several ways to improve the input space for clas-
sification with incomplete such as improving imputation by using fea-
ture selection and clustering as shown in Chapter 3, improving feature
space for classifiers able to directly work with incomplete data by using
wrapper-based feature selection and interval GP-based feature construc-
tion as shown in Chapter 4 and Chapter 5, respectively. There are other
ways to improve the input space, we could investigate.

GP-based Imputation

Regression-based imputation is one of main approaches to estimate miss-
ing values. GP has been successfully applied to symbolic regression. In
[157, 159], we showed that GP is good at estimating missing values. Along
with standard GP for symbolic regression, advanced GP such as semantic
GP [173] has been proven to improve symbolic regression. Therefore, ad-
vanced GP for symbolic regression should be investigated for effectively
and efficiently estimating missing values.

Filter-based Feature Selection

This thesis investigated wrapper-based feature selection for classification
with incomplete data. Other researchers have investigated filter-based fea-
ture selection methods for incomlete data, but they often do not work well
when the data contains a large number of missing values. Therefore, it
would be interesting to further investigate filter-based feature selection
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for incomplete data. Modifying evaluation measures such as mutual in-
formation, Pearson product-moment correlation coefficient and the point-
wise mutual information would be more necessary for working directly
with incomplete data.

8.3.2 Further Investigate GP to Evolve Classifiers for In-

complete Data

Chapter 7 proposed new methods for using GP to directly evolve classi-
fiers for incomplete data. GP also have been widely used for evolving de-
cision trees and rule-based classifiers , but only for complete data. There-
fore, how to use GP to evolve decision trees and rule-based classifiers for
incomplete could be a productive direction for further work.

GP for Evolving Decision Trees

Decision trees are one of the most popular representation methods for clas-
sifiers. Some decision trees such as C4.5 and CART can directly classify in-
complete data, but they often generate inaccurate and more complex clas-
sifiers when faced with data containing numerous missing values. Future
work could explore using GP to evolve more accurate and less complex
decision trees. Existing GP technique to evolve decision trees for com-
plete data [19, 20, 70, 117, 137, 167] could be combined with techniques
for handling missing values in C4.5 and CART to evolve decision trees for
incomplete data.

GP for Evolving Rule-based Classifiers

Rules are one of the simplest and most interpretable ways to present clas-
sifiers. Some rule-based classifiers such as CN2 can classify incomplete
data, but they often build inaccurate and complex rules when faced with
data containing a large number of missing values. GP has been widely
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applied to evolve rule-based classifiers, but only for complete data [18,
60, 77, 154, 168]. Therefore, in future, it could be interesting to use GP to
evolve rule-based classifiers that can classify incomplete data better than
CN2. Existing GP techniques to evolve rule-based classifiers for complete
data could be combined with techniques for handling missing values in
CN2 to evolve rules for incomplete data.

8.3.3 Regression with Incomplete Data

Missing values are also a common issue in many regression problems
[186]. However, there has been much less work on handling missing data
in regression than in classification. In future work, we would like to inves-
tigate how the ideas in this thesis can be used for regression with incom-
plete data.

Imputation for Regression with Incomplete Data

As with classification, the most common approach to regression with in-
complete data is to use imputation to estimate missing values before doing
regression. Simple imputation such as mean imputation is fast, but not ac-
curate. In contrast, powerful imputation such as MICE is accurate, but
slow. It would be useful to investigate how to effectively and efficiently
use imputation for regression with incomplete data. Based on ideas in
Chapter 3, one possible idea is to integrate clustering and feature selec-
tion with imputation to improve the effectiveness and efficiency of using
imputation for regression with incomplete data.

Feature Manipulation for Regression with Incomplete Data

Feature manipulation including feature selection and feature construction
has been used to improve regression. However, existing feature manipula-
tion techniques cannot directly work with incomplete data, and they have
to be combined with imputation to estimate missing values. Therefore,
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how to directly perform feature manipulation for regression with incom-
plete data could be investigated. It would be interesting to investigate
how apply ideas of feature selection in Chapter 4 and feature construction
in Chapter 5 for regression with incomplete data.

Interval GP for Regression with Incomplete Data

GP is well-known for symbolic regression, but it cannot directly work with
incomplete data —GP has to be combined with imputation to estimate
missing values before doing regression. One possible idea that could be
explored is using interval GP, as Chapter 7, to directly do regression with
incomplete data.
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[109] LUENGO, J., GARCÍA, S., AND HERRERA, F. On the choice of
the best imputation methods for missing values considering three
groups of classification methods. Knowledge and information systems
(2012), 1–32.

[110] LUKE, S., PANAIT, L., BALAN, G., PAUS, S., SKOLICKI, Z.,
POPOVICI, E., SULLIVAN, K., HARRISON, J., BASSETT, J., HUBLEY,
R., ET AL. A java-based evolutionary computation research system.
Online (March 2004) http://cs. gmu. edu/˜ eclab/projects/ecj (2004).

[111] MACKAY, D. J. Information theory, inference, and learning algorithms,
vol. 7. Citeseer, 2003.

[112] MARWALA, T., AND CHAKRAVERTY, S. Fault classification in struc-
tures with incomplete measured data using autoassociative neural
networks and genetic algorithm. Current Science (2006), 542–548.



208 BIBLIOGRAPHY

[113] MEESAD, P., AND HENGPRAPROHM, K. Combination of knn-based
feature selection and knn-based missing-value imputation of mi-
croarray data. In Innovative Computing Information and Control, 2008.
ICICIC’08. 3rd International Conference on (2008), pp. 341–341.

[114] MUHARRAM, M., AND SMITH, G. D. Evolutionary constructive in-
duction. Knowledge and Data Engineering, IEEE Transactions on 17
(2005), 1518–1528.

[115] MUSSER, D. R. Introspective sorting and selection algorithms.
Softw., Pract. Exper. 27 (1997), 983–993.

[116] NESHATIAN, K., ZHANG, M., AND ANDREAE, P. A filter approach
to multiple feature construction for symbolic learning classifiers us-
ing genetic programming. IEEE Transactions on Evolutionary Compu-
tation 16 (2012), 645–661.

[117] OKA, S., AND ZHAO, Q. Design of decision trees through integra-
tion of c4. 5 and gp. In Proc. 4th Jpn.-Australia Joint Workshop Intell.
Evol. Syst (2000), pp. 128–135.

[118] OLIVEIRA, L. S., MORITA, M., AND SABOURIN, R. Feature selection
for ensembles applied to handwriting recognition. International Jour-
nal of Document Analysis and Recognition (IJDAR) 8 (2006), 262–279.

[119] OPITZ, D. W. Feature selection for ensembles. AAAI/IAAI 379
(1999), 384.

[120] OPITZ, D. W., AND MACLIN, R. Popular ensemble methods: An
empirical study. J. Artif. Intell. Res.(JAIR) 11 (1999), 169–198.

[121] PATIL, B. M., JOSHI, R. C., AND TOSHNIWAL, D. Missing value
imputation based on k-mean clustering with weighted distance. In
International Conference on Contemporary Computing (2010), pp. 600–
609.



BIBLIOGRAPHY 209

[122] PENG, H., LONG, F., AND DING, C. Feature selection based on
mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Transactions on pattern analysis and machine
intelligence 27 (2005), 1226–1238.

[123] POLI, R., LANGDON, W. B., MCPHEE, N. F., AND KOZA, J. R. A
field guide to genetic programming. Lulu. com, 2008.

[124] POLIKAR, R. Ensemble based systems in decision making. IEEE
Circuits and systems magazine 6 (2006), 21–45.

[125] POLIKAR, R., DEPASQUALE, J., MOHAMMED, H. S., BROWN, G.,
AND KUNCHEVA, L. I. Learn++. mf: A random subspace approach
for the missing feature problem. Pattern Recognition 43, 11 (2010),
3817–3832.

[126] PRIYA, R. D., AND KUPPUSWAMI, S. A genetic algorithm based ap-
proach for imputing missing discrete attribute values in databases.
WSEAS Transactions on Information Science and Applications 9 (2012),
169–178.

[127] PURWAR, A., AND SINGH, S. K. Hybrid prediction model with
missing value imputation for medical data. Expert Systems with Ap-
plications 42 (2015), 5621–5631.

[128] QIAN, W., AND SHU, W. Mutual information criterion for feature
selection from incomplete data. Neurocomputing 168 (2015), 210–220.

[129] QUINLAN, J. R. C4. 5: programs for machine learning. Elsevier, 2014.

[130] RAHMAN, G., AND ISLAM, Z. A decision tree-based missing value
imputation technique for data pre-processing. In Proceedings of the
Ninth Australasian Data Mining Conference-Volume 121 (2011), pp. 41–
50.



210 BIBLIOGRAPHY

[131] RAHMAN, M. G., AND ISLAM, M. Z. Missing value imputation
using decision trees and decision forests by splitting and merging
records: Two novel techniques. Knowledge-Based Systems 53 (2013),
51–65.

[132] RAHMAN, M. G., AND ISLAM, M. Z. Fimus: A framework for im-
puting missing values using co-appearance, correlation and similar-
ity analysis. Knowledge-Based Systems 56 (2014), 311–327.

[133] RANA, S., JOHN, A. H., AND MIDI, H. Robust regression imputa-
tion for analyzing missing data. In Statistics in Science, Business, and
Engineering (ICSSBE), 2012 International Conference on (2012), pp. 1–4.

[134] RANCOITA, P. M., ZAFFALON, M., ZUCCA, E., BERTONI, F., AND

DE CAMPOS, C. P. Bayesian network data imputation with applica-
tion to survival tree analysis. Computational Statistics & Data Analysis
93 (2016), 373–387.

[135] RATANAMAHATANA, C. A., AND GUNOPULOS, D. Feature selection
for the naive bayesian classifier using decision trees. Applied artificial
intelligence 17 (2003), 475–487.

[136] RAYMER, M. L., PUNCH, W. F., GOODMAN, E. D., AND KUHN,
L. A. Genetic programming for improved data mining: application
to the biochemistry of protein interactions. In Proceedings of the 1st
annual conference on genetic programming (1996), pp. 375–380.

[137] ROUWHORST, S., AND ENGELBRECHT, A. Searching the forest: us-
ing decision trees as building blocks for evolutionary search in clas-
sification databases. In Evolutionary Computation, 2000. Proceedings of
the 2000 Congress on (2000), vol. 1, pp. 633–638.

[138] RUBIN, D. B. Multiple imputation for nonresponse in surveys, vol. 81.
John Wiley & Sons, 2004.



BIBLIOGRAPHY 211

[139] SAAR-TSECHANSKY, M., AND PROVOST, F. Handling missing val-
ues when applying classification models. Journal of machine learning
research 8 (2007), 1623–1657.

[140] SCHAFER, J. L. Analysis of incomplete multivariate data. CRC press,
1997.

[141] SCHAFER, J. L., AND GRAHAM, J. W. Missing data: our view of the
state of the art. Psychological methods 7 (2002), 147.

[142] SHARPE, P. K., AND SOLLY, R. J. Dealing with missing values in
neural network-based diagnostic systems. Neural Computing & Ap-
plications 3, 2 (1995), 73–77.

[143] SHERRAH, J., BOGNER, R. E., AND BOUZERDOUM, A. Automatic
selection of features for classification using genetic programming.
In Intelligent Information Systems, 1996., Australian and New Zealand
Conference on (1996), pp. 284–287.

[144] SHERRAH, J. R., BOGNER, R. E., AND BOUZERDOUM, A. The
evolutionary pre-processor: Automatic feature extraction for super-
vised classification using genetic programming. Genetic Program-
ming (1997), 304–312.

[145] SHI, H. Best-first decision tree learning. Master’s thesis, University
of Waikato, Hamilton, NZ, 2007. COMP594.

[146] SILVA, S., AND TSENG, Y.-T. Classification of seafloor habitats us-
ing genetic programming. In Applications of Evolutionary Computing.
2008, pp. 315–324.
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