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Abstract

Humans and many animals can selectively sample important parts of their
visual surroundings to carry out their daily activities like foraging or find-
ing prey or mates. Selective attention allows them to efficiently use the
limited resources of the brain by deploying sensory apparatus to collect
data believed to be pertinent to the organism’s current task in hand.

Robots or other computational agents operating in dynamic environ-
ments are similarly exposed to a wide variety of stimuli, which they must
process with limited sensory and computational resources. Developing
computational models of visual attention has long been of interest as such
models enable artificial systems to select necessary information from com-
plex and cluttered visual environments, hence reducing the data-processing
burden.

Biologically inspired computational saliency models have previously
been used in selectively sampling a visual scene, but these have limited
capacity to deal with dynamic environments and have no capacity to rea-
son about uncertainty when planning their visual scene sampling strat-
egy. These models typically select contrast in colour, shape or orientation
as salient and sample locations of a visual scene in descending order of
salience. After each observation, the area around the sampled location is
blocked using inhibition of return mechanism to keep it from being re-
visited.

This thesis generalises the traditional model of saliency by using an
adaptive Kalman filter estimator to model an agent’s understanding of
the world and uses a utility function based approach to describe what the

agent cares about in the visual scene. This allows the agents to adopt a



richer set of perceptual strategies than is possible with the classical winner-
take-all mechanism of the traditional saliency model. In contrast with the
traditional approach, inhibition of return is achieved without implement-
ing an extra mechanism on top of the underlying structure.

This thesis demonstrates the use of five utility functions that are used
to encapsulate the perceptual state that is valued by the agent. Each utility
function thereby produces a distinct perceptual behaviour that is matched
to particular scenarios.

The resulting visual attention distribution of the five proposed utility
functions is demonstrated on five real-life videos.

In most of the experiments, pixel intensity has been used as the source
of the saliency map. As the proposed approach is independent of the
saliency map used, it can be used with other existing more complex saliency
map building models. Moreover, the underlying structure of the model is
sufficiently general and flexible, hence it can be used as the base of a new

range of more sophisticated gaze control systems.
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Chapter 1
Introduction

Computer vision is an important element in modern-day engineering ap-
plications. Despite recent improvements, the overwhelming amount of
incoming data from the camera is a serious hindrance for real-time vision
applications. On the other hand, a human vision system can comfortably
operate based on only a small portion of the visual input being of high
quality. This work explores how human vision like computer models can

be applied to dynamic visual scenes to select relevant visual input.

1.1 Scope

Biological vision systems have an incredible ability to attend to task-relevant
and important areas within a complicated visual scene. This ability al-
lows an organism to accomplish activities, such as navigation, foraging or
detecting possible prey/mates amongst the real world distractions. The
directive focus of visual attention to only a selective portion of the avail-
able visual information has been metaphorically described as a spotlight
illuminating only a small area [140, 152]. This spotlight ‘attention” al-
lows the selection of information that is most relevant to the ongoing be-
haviour [127,181].
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A typical visual environment presents a vast amount of information
and it is important for an agent to decide on which part of the available
information is to be selected for processing [154]. Selective attention en-
ables the limited processing resources of the brain to be directed to the

most task-relevant visual inputs.

Biological vision systems can efficiently choose task relevant visual in-
formation that allows the agent to visually navigate through a cluttered
environment and perform other vision based task (e.g. pick and place)
with ease. For instance, walking through a crowded city street only re-
quires the knowledge of the relative spatial locations, while facial details

of pedestrians can largely be ignored [147].

Visual attention is drawn towards salient locations in the visual scene [181].
This, in turn, triggers motor actions which direct the eyes and the head to-
wards the salient visual locations [46,58]. These swift movements of the
eyes, called saccades, allow the focus of attention to move between regions
of interest (ROI) within a visual scene. The ROIs are further selectively
captured in high-resolution by the fovea and processed by the higher ar-
eas of the brain to gain an enhanced understanding of the scene’s content.

The anatomy of the eye facilitates selective attention [7]. The visual
acuity of the eye varies across the retina. The fovea at the centre of the
retina is responsible for sharp central vision. It is surrounded by a larger
peripheral area that delivers visual information at lower acuity. The com-
bination of the high and the low acuity regions are responsible for a foveated

vision where the amount of detail varies across the image.

In a foveated vision, only a selected portion of the visual scene is ob-
served in high-resolution and the rest of the scene is observed in low-
resolution. The centres of the high-resolution area, which is the target
location in the visual scene, is called a fixation point.

The role of the non-foveal areas of the biological eye is to produce a

low-resolution image of the scene that only encodes information about

what is important in the scene. Then the high-resolution fovea is tar-
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geted towards those important regions for further inspection. The areas
that are not of interest are still processed, but with a reduced spatial res-
olution [173]. For example, in figurel.1, the red circle amongst the green
circles is important and attracts visual attention. In the saliency map liter-
ature, those important visual regions are referred to as the salient regions
of the scene and the low-resolution image that encodes which location is

conspicuous in the scene is called a saliency map.

Figure 1.1: A red dot amongst the green dots attract visual attention.

Computer vision suffers from information overload. In a common
visual environment, the amount of information to be processed in real-
time for a typical image processing task is overwhelming for the available
computational resources. Completely processing every scene details to its
finest granularity is computationally expensive for an agent.

Given this information overload, a naive computational system can-
not select what information to attend to best perform the task in hand.
Conversely, biological vision systems accomplish real-world tasks by pro-
cessing only a small portion of the visual scene. This is a knowledge gap
in understanding what information in a visual scene is best to prioritise
for further processing. Therefore, how biological systems operate in the
real world with limited computational resources of the brain has moti-
vated the saliency map research field [89,93,103]. Thus the saliency map
research field aims to develop real-time and efficient engineering systems

which may be achieved by discovering the secrets of biological attentional
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mechanisms.

Over the past three decades, the field of computational saliency and

visual attention have attracted a large amount of research interest. There

exists a vast amount of literature in visual saliency which reaches from

fundamental theories of attention to complicated computational models

of human visual attention. The research field has four main directions:

(a)

(b)

(©)

(d)

Exploratory research that focuses on discovering and understanding
biological vision systems [36,79,102,151,152,160,193]. This class of
research work involves experimenting with animals or humans in a
controlled setup to study their response with the aim to understand
the underlying biological mechanism at work.

Designing computational models that mimic human visual atten-
tional behaviour [20,75,107,109,122,126,149]. The aim of this class
of research is to design human-like computational visual attention
models.

Research focused on understanding image properties that attract vi-
sual attention [144,148,155] and statistical properties in a video that
attract attention [47].

Designing engineering applications that employ attentional mecha-
nisms [10,42,62,115]. Here the goal is to apply known saliency com-
putation models to practical problems such as visual SLAM, video
surveillance and video compression. These models often do not fol-
low any biological motivation but are aimed towards using in engi-

neering applications.

Amongst the above four groups, designing computational models of

visual attention have been of special interest as such models allow an ar-

tificial system to efficiently select critical information from a complex and

cluttered environment [10,42,115]. They can also predict visual locations

in a given video that are likely to attract human fixation. Applications of
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such a system include vision guided vehicles [128], video surveillance [50],
content-aware video compression [31, 45, 76,87, 113], content-aware im-
age manipulation [1,161], attentional robotics [62], automatic thumbnail-
ing [182], automated image cropping [178] and biological attention in-
spired simultaneous localization and mapping (SLAM) [65].

There has been an increasing interest to utilize computational human
visual attention models in engineering systems to achieve artificial selec-
tive attention. This is especially the case for computer vision applications
that benefit from selecting the most relevant parts from a visual environ-
ment. Therefore, modelling visual attention has been a very active re-
search area over the past years and as a result, extensive research effort
has gone into developing computational models, while keeping its engi-

neering implementational aspect in mind.

The intention of modelling visual attention is to design mathemati-
cal models that can generate low-resolution images similar to the ones
produced by the non-foveal regions of the biological eye. Those low-
resolution images would contain salient regions that are enough for an
artificial agent to allocate sensory and computational resources to achieve

a real-world task.

Contemporary computational models of visual attention find their mo-
tivations in two seminal works in psychology: the feature integration the-
ory [184] and the concept that bottom-up and top-down factors work to-
gether in human attention [95]. Treisman and Gelade [184] proposed the
feature integration theory, which claims that early visual features such as
colour, orientation, brightness are processed in parallel, without any con-
scious effort, and that the perception of an ‘object” emerges as a combi-
nation of those elementary features at a later stage of visual processing.
On the other hand, the seminal work called The principles of psychology by
William James [95] suggested that two components work in concert on hu-
man attention: (i) top-down/endogenous (ii) bottom-up/exogenous. The

bottom-up component results from information flowing from the sensors
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(i.e. the eyes) to the brain and is responsible for causing involuntary eye
movements (e.g. a flashing object catches human attention) [35,91,95,181].
The top-down element accounts for the higher cognitive brain areas di-
recting eye movements as well as modulating the effects of the bottom-up
influence (e.g: “I will attend to my favourite soccer player in the play-
ground”).

The bottom-up component has gained more research attention due to
its promise of providing a deep insight into subconscious feature detec-
tors that produce the saliency map [87,93,108,180,185,197]. These subcon-
scious sensors are believed to have evolved to detect visually contrasting
regions of a visual scene [36,103] Anatomically the retinal ganglion cells
(a type of neuron) have a centre-surround structure of complementary
colours [67] for detecting colour contrast. For example, some areas have
an excitatory centre sensitive to red light enclosed by inhibitory green sur-
rounding cells. The result of this arrangement for colour vision is a final
signal that is sent to the brain from these neurones. This causes comple-
mentary colours to stand out from their background. An example of this
effect is that a red circle would be prominent amongst a large number of
green circles (see figure 1.1).

Computational models emulate this subconscious set of salient feature
sensors as a set of centre-surround Gaussian filters that are sensitive to
contrasts in the visual scene [103]. The excitatory centre versus the in-
hibitory surround is computationally modelled as the difference of two
Gaussian. They are one narrower positive Gaussian and a broader nega-
tive Gaussian [69,192]. This produces a two-dimensional receptive field
similar to the biological counterpart.

Koch and Ullman presented the first psychophysically plausible bottom-
up computational model [103] using centre-surround Gaussian filters. This
model proposed the idea of an estimated saliency map, which represents
visual conspicuity of a corresponding scene. This topographical map was

called the ‘saliency map’ in the literature [103] to maintain a conceptual



1.1. SCOPE 7

similarity with the biological systems, albeit, this map is an estimate of the
biological counterpart. The saliency map computation approach identifies
contrast in visual features such as shape, orientation or colour as conspic-
uous using centre-surround Gaussian filters. It fuses them with fixed pro-
portion to form the so-called saliency map. The internal state of an agent
does not affect the saliency map. Therefore, this map solely depends on
the input image. !

Finally, saliency maps are exploited by a parallel maximizer (called
winner-take-all) to attend to the corresponding visual locations. Once a
visual location has been observed, the processing of the visual stimuli at
the recent focus of attention is suppressed to avoid the system fixating at
the current maximum. This biologically inspired mechanism of blocking
previous stimuli is called inhibition of return (IOR) [150]. Blocking the
current stimuli encourages the system to explore other parts of the visual
scene. Figure 1.2 describes the overall process.

The input block represents an input image to the algorithm. Feature;
to Feature,, represents different features (e.g: colour, object boundaries, in-
tensity) that have been extracted from the input image. The fusion process
is represented by an adder-block in the schematic and finally, the output

is represented by the saliency map block.

A spatiotemporal saliency map integrates motion features with spa-
tial features. Very often the pixel-wise difference between consecutive
video frames is treated as a motion feature. Any swift movement through
the visual scene is treated as salient [5,20,109,123,126]. Referring to the
schematic in figure 1.2, one or more of the Feature; to Feature, now rep-
resents motion features extracted from the input and the input is now a

sequence of images (i.e. a dynamic scene).

1A differing view computes saliency map by varying relative feature map contri-
butions depending on the current behavioural goals and subjective state of the ob-
server [137,198].
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Figure 1.2: A schematic diagram that shows the generic approach of

saliency map building algorithms.

Saliency based agents operate in two types of visual scenes: static and
dynamic. A static scene involves no temporal change (e.g. looking at a
painting) whereas elements in dynamic scenes change over time. This can
be either a slow and gradual change or a surprising event occurring in the

scene.



1.2. MOTIVATION 9

The majority of the computational saliency map models were devel-
oped for static visual scenes [93,108,141,185]. IOR is a suitable mechanism
for static scenario and blocking the recently observed visual location in a
static scenario is acceptable. However, dynamic scenes change with time,
hence blocking a previously observed part of the scene is inappropriate as
visual changes in the blocked region cannot be observed.

1.2 Motivation

Natural scenes are usually composed of several dynamic regions. The
movements of visual elements of interest are often embedded in a back-
ground which itself could be static or dynamic. In such scenes, the items
of interest could be as salient as the background in terms of colour con-
trast or other static image features. Hence, the key differentiating element
in discerning the interesting items is the difference in overall motion asso-
ciated with them compared to the background.

For example, consider a video of a TV presenter with a static back-
ground. The static background itself could have salient colour features.
However, an observer would be interested in visiting areas around the
face or arms of the presenter. The observer would ignore the static back-
ground as it is not informative. In such cases, the visual areas with tem-
poral change are interesting to the observer as they overall present more
information. A visual region that does not change often (e.g. the wall be-
hind a news reader) does not need frequent observation but regions that
show change need more observations. This strategy enables an agent to
distribute limited processing power towards the more informative visual
regions. Ideally, an observer would like to revisit the locations of inter-
est frequently to take in information for further processing and ignore the
uninteresting static background.

A second example is the movements of an actor amid a dynamic back-

ground e.g. one that involves swaying trees, moving water or other ob-
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jects such as a crowd. In this case, an observer would be interested in
picking up information regarding the actor and would like to ignore the
noisy background.

Another example is when an observer is interested in looking for spe-
cific targets like human faces amongst a crowd. In this case, the observer
would like to look at the visual regions with a human skin like colour fea-

tures and ignore other regions.

Since such scenes are plentiful in the natural world, successful selection
of the interesting regions from the uninteresting background i.e., identify-
ing regions that are spatiotemporally salient, is of strong survival value to

an agent.

For all the above examples, the selection and ordering of interesting
visual locations are more complicated than just picking out the instan-
taneous salient locations. Additional knowledge of the overall temporal
dynamics of change in saliency along with the knowledge of the instan-
taneous saliency in the scene would be the key to selecting the proper vi-
sual location in such dynamic visual scenes. The additional knowledge of
overall temporal dynamics of the scene would guide the agent to generate
a visual attention distribution pattern that matches that of the scene.

The agent must be able to use its current and historical knowledge of
the temporal dynamics of the scene to reason about where to direct its
visual attention. Such an agent would be using epistemic (i.e. based on
knowledge) decision making unlike the instantaneous maximiser used in
traditional saliency models. The epistemic mechanism would enable the
agent to predict the future of a visual target location, as a result, the agent
should be able to operate more effectively in a dynamic visual scene.

In contrast, the traditional saliency map approach presents a tight cou-
pling between perception (detecting what is salient in the scene) and ac-
tion (visual target selection) that is capable of responding to world changes
without any complex reasoning and decision-making. Existing literature

treats motion features in a similar way to the static features [5,20,109,126].
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This approach can detect unexpected or alarming changes in the visual
scene but cannot distribute attention to meet the spatiotemporal behaviour
of a visual scene.

As the traditional saliency map building approach was intended to
work on static visual scenes, it does not incorporate any past knowledge
based (epistemic) world models that could help the agent achieve complex
reasoning based on past experiences. A purely reactive system design is
suboptimal for distributing visual attention in dynamic scenes. In the ab-
sence of an extension, the static saliency map framework is incompatible
with the necessary temporal behaviour for an agent.

Theoretically, an epistemic visual target selector would be able to se-
lect a visual target based on predictions and past experiences. The exist-
ing bottom-up saliency models have the valuable ability to detect what is
salient in each instant of a visual scene. It is expected that the combina-
tion of an epistemic visual target selector operating on top of an existing
bottom-up saliency map model can be used to distribute visual attention
effectively in dynamic visual scenes. In such case, the feature detectors of
the existing bottom-up model will be used by the epistemic visual target
selector to distribute visual attention in a dynamic visual scene. This has

not been explored before in the saliency map literature.

1.3 Thesis Statement

This thesis argues that a limited resources agent improves its ability to se-
lect visual targets in a dynamic scene with the introduction of an epistemic
visual target selector driven by the predicted utility of future observations.

To the best of the author’s knowledge, this approach is the first attempt
to combine an epistemic visual target selector with traditional bottom-up
saliency models to distribute visual attention in a dynamic scene. The pre-
sented approach is inspired by how biological systems behave but is not

intended as a computational analogue of them. Nevertheless, the author
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believes that the proposed system is not biologically implausible in its ba-

sic structure.

1.4 Research Goals and Objectives

The overall goal of this work is to extend the traditional bottom-up saliency
map model to include an epistemic visual target selector for operating in

dynamic scenes. This is divided into the following four goals.

1. The first goal is to distribute visual attention in a dynamic visual
scene without blocking previously observed locations. The corre-
sponding objective is to use a Bayesian framework that incorporates
uncertainty into an agent’s knowledge this allows principled ways
to reason over the agent’s knowledge to calculate the utility of a
future observation. Necessary features of this model will include:
(i) behaviourally achieving inhibition of previously observed visual
locations, (ii) achieving different inhibition time for different parts
of the visual scene, (iii) predicting the utility of a future observation
by reasoning over an agent’s knowledge, (iv) providing a principled

framework for learning inhibition time from observations.

2. The second goal is to display a diverse range of useful visual scene
sampling behaviours given the same visual scene. The correspond-
ing objective is to design a set of utility functions each of which
should be capable of producing a distinct visual scene sampling be-
haviour. The utility functions’ ability to generate different behaviours
will be verified by studying the similarity between the attention dis-

tribution histogram and the spatiotemporal variance of input videos.

3. The third goal is to learn variance in a dynamic visual scene from
observations so that the epistemic target selector proposed in objec-

tive 1 can adapt to the scene. The corresponding objective is to use
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statistical methods to learn the variance of each pixel from repeated
measurements. Multiple statistical algorithms will be explored. Each
of them will be applied to videos with known process noise and will
be evaluated based on their accuracy of learning.

. The fourth goal is to devise a mechanism that detects unpredictable

visual events that could not be captured by the epistemic target se-
lector. The corresponding objective is to add a statistical distance
measure between a new observation and the prediction from the
epistemic visual target selector. If this measured distance is beyond
a threshold, a surprise is triggered. This surprise detector will be
tested for how quickly it can detect surprise compared with the tra-
ditional Itti method.

Major Contributions

The presented model is developed in the context of the traditional bottom-

up model to overcome the limitations of inhibition of return based visual

scene sampling strategy. This work presents itself as an improved frame-

work for the saliency map research and application. The contributions of

this these are the following.

e This thesis proposes a novel Kalman filter aided epistemic visual

target selector.

The novel visual target selector encapsulates uncertainty regarding
the saliency of a dynamic visual scene into the decision making pro-
cess of visual target selection. For the first time, uncertainty was
introduced in saliency based visual target selection. As a result of
considering uncertainty in decision making, an agent behaviourally
achieves inhibition of previously observed visual locations. Whereas,
existing saliency map computation approaches work along with the

add-on inhibition of return (IOR) mechanism. The role of inhibition
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of return is to block the previously observed location long enough
so that other regions gain visual attention. Blocking any part of a
dynamic visual scene is not appropriate as important visual changes
may happen in blocked regions of the scene. In contrast, the pro-
posed mechanism will be capable of detecting any visual change
faster as it does not block any part of the scene.

Also due to considering Kalman filter aided target selector, different
IOR values for different parts of the visual scene can be achieved.
This work is the first demonstration of sampling a dynamic visual
scene with different inhibition time for different parts of the scene.
In contrast, the classical saliency map approach uses same IOR time

for all the previously observed regions.

The use of the Kalman filter also provides a principled framework
for other algorithms to learn the process noise of the visual scene.
Learning process noise enables the Kalman filter to adapt to the vi-

sual scene.

This thesis proposes a novel surprise detector for the Kalman filter
aided target selector.

It works along with the Kalman filter based epistemic target selec-
tor for detecting events that could not be detected by the epistemic
target selector. The proposed surprise detector can detect surprise
taster than the traditional Itti model.

The thesis contributes two novel algorithms that can learn process
noise from observations made with varying measurement noises.

To the best of the author’s knowledge, the presented work is the
first approach towards estimation of process noise from observations
taken with varying measurement noises as previous process noise
measurement approaches only involved measurements taken with
fixed measurement noise. These novel methods can be used to adapt

inhibition of return (IOR) time for a visual scene. Whereas, the tradi-
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tional bottom-up saliency model needs the designer to manually set
the inhibition of return time by trial and error.

This work proposes two methods to learn the IOR time from the ob-
served data. The mathematical derivations, their numerical stability,

repeatability and accuracy of estimation were studied.

e This thesis contributes four novel utility functions for the Kalman
filter aided target selector.
The four utility functions are aimed to be used with the Kalman filter
based target selector for selecting visual targets in a dynamic visual
scene. Three of them are based on uncertainty and one is based on
uncertainty and the saliency of the scene. Each function produces
different visual sampling behaviour. This is the first time in the field
of saliency map literature such a range of visual target selection be-
haviour while operating on the same input was demonstrated. The
same framework can be used to develop further utility functions
that could generate other desired visual scene sampling behaviours.
In contrast, the traditional model can generate the winner-take-all

based sampling of the visual scene in descending order of saliency.

e This thesis improves the classical Itti model by replacing the tra-
ditional winner-take-all and inhibition of return mechanisms with
the novel Kalman filter aided epistemic target selector.

It was shown for the first time that an epistemic target selector based
mechanism can predict human fixation better than the traditional
bottom-up models on a standard video dataset. This indicates that
the proposed approach could readily improve the performance of
important applications like video compression, video content extrac-

tion etc.
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1.6 Organisation of the Thesis

The rest of this thesis is divided into eight chapters. The second chap-
ter, the background, describes the current state of the field. The proposed
model chapter details the proposed mechanism and provides the neces-
sary theoretical background. The contribution chapters report the method
of experiment and details the experiments along with the results used
to demonstrate the proposed system’s behaviour. Finally, the conclusion
chapter presents overall remarks and scope for future work.

1.7 Chapter Summary

Firstly this chapter presented that the scope of the saliency map research
field is to study biological visual target section mechanisms and to apply
them to real-life engineering problems. The canonical saliency models are
aimed to operate in static scenarios and they perform inadequately in dy-
namic scenarios. This thesis aims at extending the traditional bottom-up
saliency structure for dynamic scenarios. In particular, this thesis presents
a knowledge based approach for distribution of visual attention in dy-
namic scenes.

The following chapter will present the literature review in detail.



Chapter 2
Background

This chapter begins with a discussion on traditional saliency map research
and its current status. Then the saliency based engineering applications
are discussed. Finally, the limitations of the existing approach while oper-

ating in a dynamic scenario are presented.

2.1 A Brief History of Saliency Map Research

The aims of the previous saliency map research were threefold: (i) to gain
insight into the visual mechanism of living creatures by psychophysical
studies [34,36,43,132,133,190] (ii) apply the learnt mechanisms to develop
computational models that can predict eye movements of primates [22,
89,91, 93,108, 146, 185] and (iii) to design engineering applications using
computational saliency maps [10,36,37,42,115].

The first psychophysically plausible bottom-up computation model for
visual attention was proposed by Koch and Ullman in 1985 [103]. A re-
fined version of the same model was later proposed by Itti, Koch and their
colleagues, which became the reference point for further development of
the saliency map research [93]. The computational model proposed by
Itti et al. draws its basic concept from the feature integration theory de-
veloped earlier by Treisman and Gelade [184]. This approach combines

17
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multiple low-level image features (e.g. colour, intensity, orientation) to
obtain a saliency map. The location of the maximum intensity pixel in
the saliency map is identified as the most conspicuous location in the cor-
responding visual scene. Many extensions of this model have been pro-
posed [107,109,126,185] where the major focus was on adding new image
features to better determine the saliency map.

Relatively few attempts have been made to incorporate motion con-
spicuity into the production of saliency maps. Methods that include mo-
tion cues into the saliency map treat motion features in a similar manner
to the static image features. A typical approach is to compute a secondary
motion-conspicuity map using optical flow or similar ideas, then fuse it

with the spatial saliency map.

Examples of supplementing the basic model with motion cues include
pixel-wise difference [20], flicker in a visual scene [109,126] or motion
difference computed by centre-surround filters [5]. High saliency is as-
signed to sections of the input visual scene having such motion. The mo-
tion saliency map is then fused with the static-saliency map to obtain the
tinal saliency map.

Such models only detect the predetermined motion cues, despite the

much wider variety of motion cues occurring in real-life dynamic scenes.

The prototypical model of bottom-up saliency detection is the Itti model [93].
Due to the generality of the Itti model, it has become the reference point
for studying bottom-up computational saliency models and is considered
as an important contribution in the saliency map literature. This model
takes inspiration from the gradual development of bottom-up saliency
computational framework over the past three decades [91,103,184]. This
development provided the necessary tools to understand the functional
behaviour of biological vision systems and utilize them to design compu-
tational saliency models. The key contribution of Itti’s work is that this
model combined multi-scale image features into a single topographical

saliency map. This method of computing saliency is inspired by the neu-
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ronal architecture of the early primate visual system. This model will be
discussed in details in the following section.

2.2 A General Model of Computational Bottom-
up Saliency

Itti et al. modelled the combination of visual acuity in the centre, sur-
rounded by blurry peripherals as a difference of two Gaussian distribu-
tions; a narrower positive Gaussian and a broader negative Gaussian [93,
103].

Figure 2.1 shows the architecture of the Itti model [93]. The Gaussian
based centre-surround filters compute the difference in features to deter-
mine contrast in elementary image features. This operation is aimed at de-
tecting locations which locally stand out from their immediate surround.
The contrast in features over the entire visual field is presented in multi-
ple feature maps. Within each of the feature maps, locations which signifi-
cantly differ from their neighbours become highlighted. The features map
are computed across multiple spatial scales.

The first set of feature maps compute intensity contrast. They detect
dark centres on bright surrounds or bright centres on dark surrounds.

The colour feature maps are also computed by contrasting the centre
with its surround for chromatic opponency. Such chromatic opponency
is created for the red/green and yellow /blue colour pairs, which is moti-
vated by operations in the human primary visual cortex.

The orientation features are obtained using Gabor filters in a multi-
spatial scale pyramidal structure [92,93]. The orientation feature maps
encode local orientation contrast between the centre and surround loca-
tions.

For the purpose of generalization, the Itti model allows for adjustment
of the number of feature maps computed, the different scales at which
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Figure 2.1: The schematic diagram of the Itti model. (this figure has been
adapted from L. Itti, C. Koch and Ernst Niebur [93]. Notice that there are

three stages involved in generating saliency maps: 1. multi-scale feature

maps, 2. three conspicuity maps, 3. the final saliency map.

they are computed, the colour pairs and the type of orientation features.
The default model computes 42 feature maps in total: 6 for intensity, 12 for

colour and 24 for orientation.
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In the next step, feature maps are normalised to a fixed range. This is
done in order to eliminate across-modality amplitude differences due to
dissimilar feature extraction mechanisms. Normalisation is achieved by
globally multiplying the map by the squared difference of the maps global
maximum () and the average of all its other local maxima () given by
(M —m)>.

The normalised feature-maps are then combined into three conspicuity
maps which are obtained through cross-scale point-by-point addition. The
three conspicuity maps are again normalised to bring individual maps in
terms to each other. Finally, all conspicuity maps are linearly combined
into a single topographical representation of salience in the visual field
called the saliency map [103,141]. The saliency map represents the overall
conspicuity of the corresponding visual field.

It is hard to apply Itti like computational models to machine vision
tasks because of the difficulty in understanding how simple local features
give rise to complex global saliency. Also, the normalisation step used in
the model is difficult to understand. Typically, a carefully hand-crafted
combination of parameters is used to achieve desired results. Recently
Constrained Particle Swarm Optimisation (CPSO) has been employed to
determine an optimal weight vector to combine features to obtain a saliency
map [172]. Although this approach outperforms existing state-of-the-art
methods in different statistical scores (precision-recall, F -measure and
area under the curve) it is conceptually unclear due to the lack of a princi-

pled approach towards finding optimal feature combinations.

In another approach, saliency map computation has been presented as
a regression problem [96]. This approach is based on multi-level image
segmentation and uses supervised learning to map a regional feature vec-
tor to a saliency score, and finally, fuses the saliency scores across multiple
levels to yield the saliency map. As the model uses regional ‘background-
ness’” as a descriptor, it can not discriminate between the salient regions

in the visual scene from their background when the salient regions have
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features similar to their background.

A limited set of low-level features can only produce a narrow set of
saliency maps. Hence the competence of a model improves by adding
more specific features to the existing ones. Consequently, a great deal
of effort has gone into developing new and innovative features to pro-
duce better performing saliency maps [107,109,126,185]. Although these
models perform reasonably when measured against a small collection of
ground truth data, it seems that if a model captures too much of the com-
plexity of the world it may become just as cluttered as the real world that
it attempts to model.

After obtaining the saliency map it is used to drive visual attention
in the scene. A parallel maximizer called Winner-Take-All (WTA) is em-
ployed to find the most salient pixel in the saliency map, the location of
this pixel corresponds to the most salient location in the visual scene [93,
103]. The WTA always selects the maximally salient location. Hence a sys-
tem using only WTA in a static scene becomes fixated at the most salient
location forever. To encourage further exploration of the visual scene, the
visual stimuli from the recent point of focus is inhibited (called Inhibition
of return: IOR). This results in WTA selecting the second most salient lo-
cation after which that stimulus is also inhibited. This process continues

until the algorithm explores the complete visual scene.

2.3 Graph-Based Visual Saliency(GBVS)

An alternative model, called the graph-based visual saliency [78], was pro-
posed by Jonathan Harel, Christof Koch and Pietro Perona a decade after
the classical Itti model [93]. The authors claim that the model is simple
and biologically plausible insofar as it is naturally parallelized [78]. This
model introduced an innovative graph-based method to compute visual
saliency. First, similar feature maps are extracted from the input images as

in the classical Itti model. Then, a fully connected graph is built over each
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feature map, and a weight is assigned between the graph nodes. Finally,
each graph is treated as Markov chains to build an activation map where
nodes which are highly dissimilar to surrounding nodes are assigned high
values. The core contribution of this alternative approach is in its second
stage of computing the graph based activation map. All activation maps
are merged into the final saliency map. Intuitively, this model is mainly
based on local context as only locally contrasted features are brought out
using the graph based activation map.

According to the published article [78], this model achieves better per-
formance compared with the classical algorithms of Itti & Koch [90, 93].
This model was shown to powerfully predict human fixations on 749 vari-
ations of 108 natural images, achieving 98% of the ROC area of a human-
based control, whereas the classical Itti model achieves 84%.

This algorithm consists of three steps [78] which will be discussed be-
low.

e (s1) extraction: This step is similar to the previously discussed ap-
proached of extracting low-level image features like colour, orienta-
tion from input images. In this step, feature map or maps (M) are
computed from feature vectors that are comprised of single or multi-
ple feature(s) which have been extracted at locations over the entire

image plane.

e (s2) forming activation: The intent of this step is to form an “activa-
tion map” (or maps depending on the number of features used) us-
ing the previously computed feature maps M. Given a feature map
M : [n]* = R, the goal is to compute an activation map A : [n]*> = R,
such that, locations (7, j) € [n]? where M (i, j) is somehow unusual in
its neighbourhood will correspond to high values of activation A.

In the context of a mathematical formulation, let [1 - - - n] 2 {1,2,--- ,n}.

An ‘organic’ dissimilarity between M (i, j) and M (p, ¢) was defined
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by:

d((i,5)lI(p,q)) = @.1)

log

M{i, 5) ‘
M(p,q)
Notice the contrast to the previously discussed classical Itti algo-

rithm where an analogous step is accomplished by subtracting fea-
ture maps at different scales of centre and surround.

Consider now the fully-connected directed graph G4, obtained by
connecting every node of the lattice A/, labelled with two indices
(i,4) € [n]?, with all other n — 1 nodes. The directed edge from node
(i, ) to node (p, ¢) will be assigned a weight

wi((i,9), (p,9)) = d((i, )||(p, @) - F(i —p,j — q) 2.2)
, where
F(a,b) 2 exp (_a 21_; ) (2.3)

and o7} is a free parameter of the algorithm.

The weight of the edge from node (3, j) to node (p, q) is dependent
on to their dissimilarity and to their closeness in the domain of M.
Note that the metric is symmetrical, so the two edges in the opposite

direction have exactly the same weight.

A Markov chain on G4 is now defined by normalizing the weights
of the outbound edges of each node to 1, and drawing an equiva-
lence between nodes & states, and between edge weights & tran-
sition probabilities. The equilibrium distribution of this chain that
reflects the fraction of time a random walker would spend at each
node/state if he were to walk forever, accumulates weight at nodes
that have high dissimilarity with their surrounding nodes. The result

is an activation measure which is derived from the pairwise contrast.
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The authors call this approach ‘organic” because, biologically, indi-
vidual nodes (neurons) exist in a connected and retinotopically orga-
nized, network called the visual cortex. These nodes communicate
with each other (in a formation called synaptic ring) in a way which
gives rise to emergent behaviour, including fast decisions about which
areas of a scene require additional processing, i.e the detection of vi-

sual saliency in a scene.

Similarly, the proposed approach exposes connected regions (in terms
of F') of dissimilarity (via w), in a way which can in principle be com-
puted in a parallel fashion. The computations can be carried out in-
dependently at each node in a synchronous manner, at every time
step. In which case, each node simply sums incoming mass, then
passes along measured partitions of this mass to its neighbours ac-
cording to outbound edge weights. The same process happening at
all nodes simultaneously gives rise to an equilibrium distribution of

mass.

e (s3) normalization and combination: The aim of the ‘normalization’
step of the algorithm is critical. The goal of this step is to concen-
trate mass on activation maps. If the mass is not concentrated on
individual activation maps prior to additive combination, then the
resulting master saliency map may be too nearly uniform and hence
uninformative. Although this step may seem trivial, it is on some
level the very core of any saliency algorithm. The result of this step

is concentrating activation into a few key locations.

Armed with the mass-concentration definition, the authors proposed
another Markovian algorithm as follows: This time, the authors be-
gin with an activation map A : [n]*> — R which they wish to normal-
ize. A graph Gy is constructed with n? nodes labelled with indices
from [n]?. For each node (¢, j) and every node (p, ¢) (including (¢, 7))

to which it is connected, the authors introduced an edge from (i, j)
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to (p, ¢) with weight:

ws((i, ), (p,a) 2 A(p,q) - F(i —p,j — q) (2.4)

Again, normalizing the weights of the outbound edges of each node
to unity and treating the resulting graph as a Markov chain computes
the equilibrium distribution over the nodes. it is expected that mass
will flow preferentially to those nodes with high activation. This al-
gorithm is a mass concentration algorithm by construction, and also

one which can be computed in parallel.

Although this algorithm is claimed to be better than the classical Itti ,
the serious drawback of this model is that its performance was not eval-
uated on many input images. The study involved testing the model on
only 108 images and nine modified version of those images. Modifications
were made to change the luminance contrast either up or down in selected
circular regions in the original images. In total 749 unique modifications
of the original 108 images were used to derive the model’s performance.
Clearly, this is a small test data-set in contrast to the classical Itti model

which was ‘extensively’ tested with unique set of images [90,93].

2.4 Engineering Applications of Saliency Mod-

els:

This section is aimed to present a general overview of saliency based ap-
plications. Domain specific implementation details will not be presented.

There are numerous applications of saliency maps and they can occur
in different engineering contexts. Applications of visual attention com-
monly rely on bottom-up models [121, 127,169, 170]. For some applica-
tions, the saliency maps are the final goal, while for others, saliency maps

are only an intermediary step and act as an information-filter for the next
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step. The following subsections will discuss some of the popular engineer-
ing applications of saliency maps.

2.4.1 Applications Based on Abnormality Detection.

These applications directly take advantage of the detection of abnormal ar-
eas in the visual signal. Surveillance, surprising events or defect detection

are examples of applications of this category.

Detecting abnormal motion has been in crowded scenes is an impor-
tant research topic. Authors in [17] proposed a model which detect ‘irreg-
ular’ event from videos given a past dataset of ‘regular’ videos. The model
presented in [17] can also be applied to static images to find generic de-
fects. Also, saliency models were proposed to spot unusual audio [39,125]
like a gunshot in a rail-station ambience.

In a fruit grading application presented in [125], saliency models were
used for defect detection. Saliency models were used for detecting defects

in semiconductor manufacturing [9], metallic surfaces [21] and wafers [134].

Saliency models were also applied to optimize graphical representa-
tion of abnormal regions in computer graphics [120].

Itis important for video hosting sites to measure the quality of the large
amounts of uploaded multimedia for the purpose of video ranking and ex-
pected number of views [168]. The ability to predict human fixation is a
key element in predicting video quality and it depends on the fact that
the sensitivity of the HVS to motion and texture differs significantly be-
tween areas of the stimuli attended to and those in peripheral vision [173].
This knowledge can be used to measure perceptual quality of videos [40,
167,196]. Attention and saliency in videos have recently begun to be con-
sidered as a way for video quality assessment [41,53,116,116, 168, 194].
Seshadrinathan and Bovik provide a recent survey [168] of Video Quality
Assessment (VQA) approaches.
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2.4.2 Applications Based on Normality Detection

The focus of the second category of applications is based on the locations
having the lowest saliency scores (i.e. areas of homogeneous, repetitive,
usual nature). Those areas correspond to repeating and less informative
regions, which might be easily compressed. The main application domain
is signal compression.

Unlike the classical compression methods, which distribute coding re-
sources evenly [57,70,101, 195], attention-based methods encode visually
salient regions with high priority, while treating less interesting regions
with low priority [117]. The aim of these methods is to maintain the same
perceived quality before and after compression.

In [87], a saliency map was used to smooth videos, which led to higher
spatial correlation, therefore a reduced bit-rate of the overall encoded video.
An extension of [87], uses a similar neurobiological model of visual atten-
tion to generate a saliency map [113] which is then used to guide the bit
allocation for encoding. Using the bit allocation model of [113], a scheme
for attention video compression has been suggested by [77]. This method
is based on visual saliency propagation using motion vectors, to save com-
putational time. Recently, an attention-based efficient image compression
patent [207] has been accepted.

The authors in [182] used the Itti algorithm to compute the saliency
map [91], that serves as a basis to automatically draws a rectangular crop-
ping window. The Self-Adaptive Image Cropping for Small Displays [32]
is based on the Itti and Koch bottom-up attention algorithm but also in-
cludes top-down considerations like face detection or skin colour. The
authors in [106] presented a saliency distribution based automatic thumb-
nails creation algorithm. Another algorithm proposed in [206] adaptively
partitions an image according to gradient information and saliency. Grund-
mann et. al. [73] showed methods for video retargeting using motion
saliency.

The authors in [158] propose an improved video retargeting by remov-
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ing 2D seam manifolds from 3D space-time volumes by replacing dynamic
programming method with graph cuts optimization to find the optimal
seams. An improved version of this model (reference: [158]) is proposed
by [74]. In [71], the authors describe a saliency map which takes the con-
text into account and proposes to apply it to seam carving.

Summarization of images or videos is a term which is similar to retar-
geting where the purpose is to provide a relevant summary of a video.
In [205] the authors used saliency base video summarization to provide
a mashup of several videos into a unique video containing the important
sequences of all the concatenated videos.

Computational models of attention were also used to address the prob-
lem of video skimming [119,121].

2.4.3 Applications Based on Attentive Robotics

The third application category is related to detecting the salient parts of the
signal and further processing them. Application domains such as robotics
highly benefit from this category of applications. There are three areas
where robots can take advantage of saliency models: (i) image registra-
tion, landmarks extraction and salient scene feature detection, (ii) object

detection and recognition, (iii) robots action guidance.

Image Registration, Landmarks Extraction and Salient Scene Feature
Detection: An important requirement of a mobile robot is to know its
location. For this aim, the robot can use salient features extraction to find
landmarks and register images taken at different times to build a model of
the environment [170]. The general process of real-time building of an in-
ternal map of the scene is called Simultaneous Localization and Mapping
(SLAM) [49,52,187]. Saliency models can help the extraction of more stable
landmarks from images which can be more robustly used for SLAM [65].
Salient landmarks that are detected with a visual attention system have
a high uniqueness and it has been shown that the repeatability of salient
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image regions is significantly higher than for other standard region detec-
tors [61].

Several studies have used salient landmarks for robot localization [65,
139, 145]. More recently, Siagian and Itti presented an approach for scene
classification and global localization based on salient landmarks [170].

Bottom-up attention model has been successfully used in content-based

image retrieval [127], scene classification [169].

Object Detection and Recognition: Object detection and recognition are
important tasks for mobile robots that are especially required when a robot
is supposed to manipulate objects or interact with humans [118]. Informa-
tion about saliency based proto-objects [191] or areas of objectness [3] can
help detect objects. Rudinac et al. [159] have presented a saliency based
approach in a robotic context for learning and recognising objects.

Further, filtering of features based on saliency map would help object
recognition. Papers like [204] and [8] use saliency based feature extrac-
tion technique to drastically decrease the number of key points needed to
perform object recognition. New trend proposes methods that apply clas-
sifiers to regions of interest suggested by a saliency based object detection
algorithm [83], in contrast to the classical way of applying classifiers to the
entire scene. In another two approaches [138] and [63], the discriminant
object features (features that are not in the surrounding) are learned as a
set of weights for bottom-up attention models. The approach presented
in [179] uses the relative positions of salient points (called cliques) for im-
age recognition.

In [64], the authors have generated object candidates with a method
that combines saliency and segmentation. The approach was extended
in [82] to image sequences, in which candidate regions were tracked over
time to generate sequence-level candidates. Potapova et al. [153] proposed
a method that finds objects based on a symmetry-based saliency method
that operates on RGB-D data. Martn Garca et al. [68] integrate colour and
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depth data to obtain complementary object candidates.

Some groups have used attentive object detection to support object ma-
nipulation on robots or robot arms. One of the earliest works on this topic
was presented by Bollmann and his colleagues [19] where a Pioneer1 robot
used the saliency based neural active vision system to play dominoes.
Tsotsos and his colleagues are working on a smart wheelchair based on
saliency models to support disabled children [157,186].

Rasolzadeh et al. [156] use bottom-up and top-down attention to con-
trol a KUKA arm for detecting, recognizing, and grasping objects on a
table. In [15] and [97] the focuses of attention were used as seeds for 3D

segmentation of objects from stereo data.

Guiding Robot Action: In a robotics context, some groups have inte-
grated attentive salient region detection on human-like two resolution cam-
era systems. To simulate the different resolutions of the human eye, sev-
eral groups use two cameras: one wide-angle camera for peripheral vision
and one narrow-angle camera for foveal vision. For example, Gould et
al. [72] and Meger et al. [130] determine regions of interest with visual at-
tention in a peripheral vision system, focus on these regions with a foveal
vision system, and investigate these high-resolution images along with an
object recognition method.

Clark and Ferrier [33] described how to steer a binocular robotic head
with visual attention and perform simple experiments to fixate and track
the most salient region in artificial scenes composed of geometric shapes.
Bollmann et al. [19] have used the neural active vision system (NAVIS) to
steer the pan-tilt unit of a domino-playing Pioneerl robot. Vijayakumar
et al. [188] presented an attention system which is used to guide the gaze
of a humanoid robot with two eyes. In this work, the authors represented
each eye by a wide-angle camera for peripheral vision and a narrow-angle
camera for foveal vision [188]. Schillaci et al. equipped a humanoid Nao

robot with an attention mechanism based on optical flow and face detec-
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tion [166].

Approaches to endow robots with a gesture detecting capability were
proposed by Heidemann et al. [80] and Schauerte et al. [163,164]. An in-
teresting survey on attention based interactive robots can be found in [56].

A robot that learns visual scene exploration by imitating human gaze
shifts is presented by Belardinelli [14]. Nagai et al. developed an action
learning model based on spatial and temporal continuity of bottom-up
features [136].

In addition to the above mentioned applications, 3D saliency is a very
promising future research direction [30,110]. Here the main idea is to com-
pute the saliency score of each viewpoint of a 3D model. The best view-
point is the one where the saliency score is maximum [183]. Marketing is
one of the targets of this research topic.

Also, the saliency model of Itti et al. has recently been employed to
improve the prediction of packet loss effects [116]. As a side note, bottom-
up saliency algorithm has also been implemented on GPU [201].

2.5 Evaluation of Saliency Map Models

Computational models are usually evaluated using synthetic or natural
images [76,108,123,149]. The outputs of each model are compared with
human performance subjected to the same inputs in terms of how closely
the models” outputs mimic human behaviour. There are many notable
datasets that are used by researchers; a comprehensive list of datasets can
be found at the MIT saliency benchmark [27].

There are three major metrics [24,105,112] commonly used in the eval-

uation of visual attention distribution. They are listed as below:

e Area under ROC curve (AUC): In this metric, the saliency map is
treated as a binary classifier of fixations at various threshold values.

A ROC curve is swept out by measuring the true and false positive
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rates under each binary classifier. Finally, the area under the true vs

false curve is computed as the measure.

e Information Gain (IG): This metric measures the average informa-

tion gain of a saliency map above a baseline.

The information gain metric calculates the difference in saliency—
measured in bits—at the human fixated locations between two saliency
maps. Given a binary map of ground truth fixations Q7, a saliency
map U, and another baseline saliency map V, information gain is
computed as:

N
IGUV) = + 32 QP [logale +U) —logo(e + V)] (25)

where 7 indexes over pixels, NV is the total number of fixated pixels, €
is a small regularization constant, and information gain is measured
in bits per fixation. When the baseline is considered to be the tradi-
tional Itti model, this metric will produce the gain in information by
the proposed model compared to the Itti model.

e Kullback-Leibler divergence (KL): The KL metric is similar to the
information gain but this metric evaluates the loss of information
between a computed saliency map and an ideal saliency map. The

worse saliency computation method would show more loss.

The KL metric takes a saliency map U and a ground truth fixation
map QP as inputs, and evaluates the loss of information when U is
used to approximate V' as below:

N
KL(U,V) =) Vilog (e + - +VU) (2.6)

where ¢ is a regularization constant.
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2.6 Drawbacks of the Traditional Approach When
Applied to a Dynamic Visual Scene

Traditional inhibition of return (IOR) systems lack any comprehensive method
to define how much area to impede in inhibition of return [93, 103, 188].
The Matlab® implementation of the Itti et. al. model, called the saliency
toolbox, provides five predefined choices for IOR area selection [191]. One
of those choices is a circular area with fixed diameter and the other four are
computed from intermediate results of the saliency map computation (e.g.
from the feature map or the conspicuity map etc.). Due to complicated in-
terdependency, it is difficult to understand the dynamics of interactions
between the computed saliency map and the IOR area computed from the
feature map. Therefore, suitable IOR area is often determined by trial and
error [93].

There are several different implementations of IOR. Huelse et al. [85]
proposed an approach where a list of all the earlier visited locations was
kept as blocked target locations to achieve IOR. This method requires an
increasingly large amount of memory dedicated for the purpose.

Other approaches preferred to enhance the importance of target ob-
jects in the scene by adding a slowly decaying Gaussian shaped habituation
function [25]. This function initially increases the saliency of the centre of
the field of view and slowly decays the saliency value of the central ob-
jects until a new off-centre object gains the attention [162]. Although this
mechanism seems useful, it is based on detecting objects in early stages of
a computer vision task, which is not robust as object detection algorithms
are sensitive to ambient light, camera orientation and are often slow and
computationally demanding. In addition, the idea of manipulating the
saliency map can prove to be problematic if a change in the visual scene
such as the appearance of a new object does not match the update rate of

the saliency map (decaying of the saliency value of the central objects).
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When applied to a video, the conventional saliency model along with
the winner-take-all (WTA) mechanism selects the most salient location in a
video frame and keeps staring at that location until it is blocked by IOR or
another more salient region appears in the video [93,103, 188]. Figure 2.2
shows how a WTA based visual target selection strategy selects the most
salient location throughout multiple frames of a video. The WTA based
approach cannot observe any other locations even with marginally lesser
saliency until the most salient location is blocked by IOR.

. O
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Figure 2.2: A schematic diagram depicting how a winner-take-all based
visual target selector operates on a video. Notice that the agent looks at
the same salient location (shown as a red colour dot) throughout multiple
frames.

In practice, a dynamic visual scene can be thought of constituent visual
regions that have distinctly different temporal behaviours. For example,
the backdrop behind a solo newsreader does not change during a story.
An irregular arch-shaped visual region that does not change with time
can be imagined around the news reader’s head. A human observer can
look at the backdrop once or twice and can realise that it is an inactive re-
gion and is not a rich source of information. Hence this region does not
require frequent attention. Conversely, the visual region associated with
the newsreader requires comparatively more attention. In this fashion,
ranking of visual regions based on their temporal behaviour allows effi-

cient visual attention distribution in a dynamic scene. This would require
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different inhibition of return times for different parts of the scene.

Existing systems assign equal inhibition of return time (IOR time) to all
the regions in a scene. Consequently, equal visual attention is distributed
to demanding and inactive visual regions although different visual regions
need a different amount of visual attention. Further, the IOR blocking time
is chosen to be long enough for the system to sample every salient location.

The shape of the visual area to inhibit is hard-coded in these approaches.
Therefore, these systems inhibit a predefined amount of the visual scene
area although the size and the shape of the visual stimuli just attended
may vary.

The traditional system can not learn the IOR time needed for visual
regions as it does not include any framework for learning mechanisms.
Anideal agent should learn the temporal properties of the dynamic visual
scene to assign region specific inhibition of return times that match the
temporal modality of the scene.

Also, blocking an area in a visual dynamic scene is not appropriate as

changes in that location cannot be observed by the agent.

2.7 Chapter Summary

This chapter presented a brief history and purpose of the saliency map re-
search. Then it presented the two major models of saliency based visual
attention distribution architecture. After that the saliency based engineer-
ing applications were presented. Finally, the drawbacks of the traditional
approach were discussed.

Although bottom-up saliency is believed to be based on image features,
there is an ongoing debate about whether biological attention is focused
on objects in the scene or on elementary features (e.g. brightness, colour
etc.) [93,191,203]. Researchers have mainly concentrated on the neural
mechanism of the attentional selection, however, evidence exists for both

object-based and features-based attentional selection [13,16,84]. The com-
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putational advantage of a feature-based model is that it allows attention
to be implemented without involving any sophisticated object detection
algorithms. Hence this work will focus on features-based attentional se-
lection.

The following chapter will present our conception of visual target se-
lection approach with necessary schematics.






Chapter 3
Proposed model

The last chapter presented how the traditional saliency models work and
their drawbacks. This chapter presents the proposed model. However, a
short recapitulation of the last chapter is first presented in the following
paragraphs.

To reduce the computational burden of processing the vast amount
of visual information coming from a visual scene, vision enabled engi-
neering applications can benefit from a biologically motivated two-stage
data processing approach. In the first stage, a computationally inexpen-
sive low-resolution map called the saliency map is computed. This map
topographically represents the worthiness for further detailed processing
of visual information from the corresponding region in the visual scene.
Then in the second stage, selective sections of the visual scene that are cho-
sen in descending order of their saliency, are captured by a high-resolution
camera for further detailed processing.

Overall, the traditional saliency map building approach works by com-
puting the saliency of a visual scene by combining a set of image features
(e.g. colour, orientation etc.). Then the visual locations are attended in
decreasing order of saliency using a parallel maximiser called the Winner-
Take-All (WTA). WTA causes the system to fixate at the most salient lo-
cation. Therefore, the traditional models need an additional mechanism

39
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called the Inhibition Of Return (IOR) which impedes previously observed
locations to achieve sampling of the visual scene beyond its most salient
location. As a result, IOR prevents WTA from fixating and without the
IOR the saliency computation models will fixate to the most salient loca-
tion forever.

Traditional models cannot operate without IOR due to the problem of
fixation. On the other hand, the traditional IOR mechanisms are not suit-
able for dynamic scenes as it blocks previously observed visual locations
where important changes may occur, that require immediate attention. In
addition, the shape of the IOR area (the shape of the visual area to impede)
and IOR time (how long the area is impeded) must be set manually.

In addition, the manually specified IOR time is the same for every re-
gion of the visual scene. However, many dynamic visual scenes require
different IOR times for different regions, due to variability between differ-
ent regions of the scene.

The traditional approach along with the IOR fails to achieve sensible
behaviour when applied to a dynamic visual scene as a result of the above
reasons. No extension on the traditional bottom-up saliency model has
been explored to add necessary characteristics needed to operate in a dy-
namic visual scene.

The next section begins by proposing a hypothetical solution to the
problem of applying IOR. In particular, it presents how to build a model
of the saliency in a visual world with the inclusion of uncertainty in the
model. The inclusion of uncertainty in the decision making in turn allows
behavioural generation of IOR without impeding any part of the scene.
Also, inferring of the IOR time is formalised due to the use of the frame-

work.

3.1 The Proposed Approach

It is conjectured that a visual target selector that incorporates uncertainty
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regarding visual saliency could achieve improved visual target section in
a dynamic visual scene. The uncertainty will indicate the agent’s level
of confidence that the saliency actually lies within the range defined by
the uncertainty interval. It allows the agent to assess belief reliability for
the purposes of comparison between possible target locations. Hence the
uncertainty becomes a measure of the degree of belief about the measured

saliency in the visual field.

Every pixel in the saliency map is usually considered as an individual
visual target. The agent would have 1200 visual target locations if the
saliency map is a 30 x 40 image. This agent associates individual levels
of uncertainty with all the possible visual target locations in the saliency
map.

Visual saliency in a dynamic scene is time dependent. The saliency
map of a dynamic scene changes as the visual scene itself changes over
time. Immediately after an observation, an agent’s uncertainty associated
with that visual location is low. As time passes, this uncertainty should in-
crease as the underlying visual scene changes. The increase in uncertainty
over time indicates the agent’s growing lack of confidence in the saliency

at the visual location.

When two visual regions are considered for a future visual target, the
location with higher uncertainty should gain the visual attention and the
recently observed low uncertainty region remains unobserved until its un-
certainty increases. Thus, an agent’s internal state of uncertainty about the
saliency of the external world would act as a restriction to re-observation.
If the quality of the internal knowledge is high that region needs no further
observation and if the quality is low, (i.e. the agent is uncertain about a vi-
sual region) it should be re-observed. In this way, the IOR would become

a behavioural outcome of the visual scene sampling process.

Inhibiting known parts of the visual scene from re-observation should
flow as a natural outcome of considering uncertainty in the agent’s in-

ternal representation. Hence the agent should be able to behaviourally
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achieve IOR without blocking any part of the dynamic visual scene. Also
as an added outcome, the visual area to inhibit should not need any prior
assumption as all the low uncertainty internal states will not be observed.
Thus, the quality of the agent’s knowledge about the world should decide
the shape of IOR area.

An epistemic target selector can operate based on its knowledge, hence
should be able to overcome the problems faced by the traditional saliency
models in a dynamic scene. It can project the utility of a future observa-
tion based on its current internal state. This ability is required to select
the visual target in a dynamic scene. Figure 3.1 shows a schematic dia-
gram of an epistemic target selector operating on a traditional bottom-up
saliency map. Notice that the IOR mechanism has not been added as IOR
is expected to be achieved behaviourally.

3.2 Theoretical Background on Sources of Uncer-

tainty

There are two sources of uncertainty.

e Modelling error: The results of any computational saliency model
are accurate only to a certain degree. Any computational model
bears imperfections due to the designer’s lack of knowledge about
the real world process, unintended or accidental design errors, and
random adversarial effects on the real world processes which are not

under the agent’s control.

e Measurement noise: All measurements are inherently noisy in prac-
tice due to unavoidable limitations in the measurement process (e.g.
sensor thermal and shot noise), as well as disturbances such as fluc-
tuations in operating conditions like temperature, pressure etc. Mea-
surement noise results in variation in repeated measurements of the

same quantity.
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Figure 3.1: A schematic diagram of an agent operating with an epistemic
target selector on the saliency map instead of the winner-take-all mecha-
nism. Notice that no inhibition of return mechanism has been added as it
is expected to be achieved as a behavioural outcome.

An agent operating on the visual saliency with an epistemic visual tar-
get selector experiences the above mentioned sources of noise. This is re-
flected in the uncertainty associated with its internal belief states of the
world. To keep itself updated about the external world, the agent is ex-
pected to reduce this internal uncertainty. To do so it takes measurements

which are executed as sampling the high saliency regions of the visual
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scene. The internal uncertainty reduces as the new measurements are in-
cluded in the agent’s knowledge.

The following section describes how probability distributions embody
the visual saliency of a region along with the associated uncertainty re-

garding the saliency.

3.3 Relevant Probability Theory

Consider an agent that relies on internal representations of the saliency of
a dynamic visual scene in order to select visual targets. The internal rep-
resentations, called the belief states, are the agent’s impression of the true
state of the world. The internal belief states can be conveniently modelled
by probability density functions, which represent quality assessments of
the belief state. They are represented as probability distributions on the
real world states. The mean of the probability distribution indicates the
estimated value of the state (perhaps after updates from multiple observa-
tions over time). The dispersion around the probabilistic mean indicates
the uncertainty in the belief state.

For example, given a pixel in the saliency map, the mean of the internal
belief state is the agent’s expectation of saliency at that visual location and
the dispersion around the mean of the belief state reflects the agent’s level
of confidence in that expected value.

In a probabilistic modelling scenario, the true states (denoted x) of the
world are represented by internal belief states’. Each belief state is a prob-
ability distribution of the agent’s belief about the world. The mean of the
belief state distributions is arranged in a vector &, where i*" element of &
is the estimate of the saliency at the corresponding location in the visual
scene.

An agent uses an internal model in order to encode its belief about how

the world changes over time. It can use this model to predict a future state

L An alternative term used to describe the internal belief is the state estimates.
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of the world from the past observations.

The internal model is never error free and also, the world states cannot
be measured perfectly due to random noise that affects the measurements.
Hence the internal beliefs are approximations of the real-life process and

are reliable only within a margin of error.

The reliability of the internal states is quantified by the variance in the
estimation of the belief states. The variance associated with each belief
state is arranged in a covariance matrix P. The diagonal elements of P
represent the variance of a belief state and the off-diagonal elements rep-
resent the covariance (Cov[X, Y| = E[XY|—-E[X]E[Y]) between two belief
states.

An agent predicts a future state by extrapolating from last known belief
state of the world. The accuracy of an agent’s prediction (i.e. the uncer-
tainty associated with the prediction) depends on the extent of extrapola-
tion. Hence the uncertainty of a predicted belief state grows larger with

the extent of prediction. However, new measurement reduces uncertainty.

Figure 3.2 illustrates the behaviour of uncertainty in a representative
system with and without evidence being obtained from observation. It
is a schematic diagram of the mean of a probabilistic belief state and the
uncertainty associated with it. In this example, the agent has an internal
model that the state is not undergoing any temporal change, but is sub-
ject to random perturbation of some known statistical character. The hor-
izontal axis represents time and the vertical axis represents the mean (this
value is the saliency of a visual location). The black dashed line shows the
expected value (mean of the belief probability distribution) of the state.
The underlying process was observed with negligible measurement noise
at ¢ = 0 and it was re-observed at ¢ = 17. No observations were made
between these two time instances. The area in blue shows the confidence
range in the estimate (variance of the belief probability distribution) up to
one standard deviation. This area grows wider with time, indicating the

increase in variance over time as the agent loses its confidence in the belief
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state.

At the 17'" time instant, the real world state was re-observed. The un-
certainty level is reduced at that time instant, as an effect of the new mea-
surement, The uncertainty grows again afterwards, as the state remains
unobserved again.

The blue coloured error bars give a visual comparison between the un-
certainty at different times. Notice the increase in the height of the error
bars from left to the right until the new observation, indicating higher un-

certainty in internal belief.

t

Figure 3.2: A schematic diagram of uncertainty related to a state growing
with time. The horizontal axis is time and the vertical axis plots the value
of the unobserved state denoted f(¢). The area covered in blue shows
the level of uncertainty up to one standard deviation. Note that the un-
certainty grows larger with time, unless an observation takes place, as at
t=17.

The previous discussion shows that to successfully operate as the tar-
get selector on a dynamic saliency map, the epistemic target selector must
know how to (i) update time dependent internal uncertainty (ii) merge
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new noisy measurements with existing internal states (iii) update internal
uncertainty in light of the new measurements.

The Kalman filter algorithm is a statistical learning algorithm that can
maintain anticipatory belief states in time and can update those beliefs in
light of new measurements [99]. The Kalman filter is an appropriate algo-
rithm to combine the prediction of a belief state with a new measurement
using a weighted average between the two. The result is a posterior belief
state that has a better-estimated uncertainty than either the predicted or
the measured state alone. This process is repeated in every time step when
a new measurement is available. In the case of a linear system perturbed
by Gaussian process and measurement noise, the Kalman filter provides
the optimal algorithm. This algorithm is suitable to be used in the epis-
temic target selector and will be discussed in the next section.

3.4 Kalman Filter

There are two functional processes of the Kalman filter: a) predicting the
future state estimate of the real world using a mathematical model and
b) updating the current state estimate in the light of new observations [99].
As the Kalman filter is recursive, future state estimates are calculated from
the previous time step’s estimates and the current measurement.

The saliency of a location in a visual scene can be thought of as an
autonomous linear time invariant system that can be modelled in discrete
time as

T = Az + wy (3.1)

where x € R" is a vector that represents the true state, A is the state tran-
sition matrix, which is applied to the previous state (x;) to obtain the next
state (z;41) and w; is the process noise, which is assumed to be drawn
from a zero-mean, multivariate normal distribution with covariance Q, it
is given by w; ~ N (0,Q). The mathematical equation that describes a

zero mean Gaussian is shown in footnote 2. The process noise represents
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the unpredictability of the process being modelled and modelling limita-
tions of A.

The Kalman filter framework is general enough to model a variety of
real-world sequential processes. For example, it could model temporal be-
haviours like constant velocity, exponentially decaying or sinusoidal vari-
ation. The A matrix in the Kalman filter equations epitomise the temporal
relationship. Each element in the A matrix is the relationship between a
past state and the future belief state. This describes how the mean propa-
gates in time.

In this work, the state variables represent saliency in corresponding
visual locations of a dynamic visual scene. Each pixel of the saliency map
is modelled as an individual internal state.

At any given time ¢ an observation y is formed using the measurement
equation given by

y, = Cx; + v, (3.2)

where C'is the observation matrix which maps the true state to the mea-
surement domain. The measurement noise v, is additive white Gaussian
noise? with zero mean and known variance R, which arises from noise in
the sensor used to obtain the measurement. In this case, where the state
variables are directly measured, C becomes the identity matrix and the
measurement equation becomes y, = x, + v;, where I is the identity ma-
trix. The one-step-ahead prediction of the belief states and the associated

covariance at any time step ¢ can be calculated using [100]:
Ty = AZy (3.3a)

Py = APt\tAT +Q (3.3b)

ZHere v ~ N (i, X) means a random variable v follows the normal distribution that
is completely defined by its mean (u) and variance () and is analytically described as

1

P ¢RI ED >R (AT
(2m) |=|/?

p(v) =

where g is a random variable
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where the prediction &, ; includes measurements only up to time instant
t. Notice that the amount of increase in uncertainty in prior uncertainty
estimate P, is determined by the process noise matrix Q.

The state update equations are based on the Kalman gain K. They are

given as:
K, =P, ,,C" (CP,,,,C" +R) " (3.4a)
Bri1jes1 = Terrpe + Kot (Y1 — Cigpe) (3.4b)
P = I — Ki11C) Pryyy (3.4¢0)

where £;,.41 is the updated belief state that includes the measure-
ment up to time instant ¢ + 1.

The above mentioned statistical procedures are based on the assump-
tion that the value of states will exhibit a Gaussian distribution. It is im-
portant to note at this stage that in real life the observed state variables
might not be Gaussian. The deviation from normality might not be an is-
sue for state variables with small variance. Whereas the sensitivity of the
proposed method to potential deviations from normality are two-fold.

e The state estimation and the algorithm used (i.e. the Kalman Filter)

will become suboptimal.

e As a result of suboptimal state estimation, there will be an increase
in the residuals from the Kalman filter model. This will result in an

increased amount of surprise.

Once the state estimates and the uncertainties associated with them
are calculated, the state uncertainties can be compared with each other
using decision theory to find the visual location that offers the maximum

reduction in uncertainty. This process will be discussed in the next section.

3.4.1 Bayesian Decision Theory

Bayesian decision theory is used to trade off between various decisions
based on a utility function that accompanies each candidate decision. It is
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used to rank one decision over another. Ideally, the utility function mono-

tonically increases with the desirability of outcome [104] of a decision.

This refers to the set of assumptions related to ranking alternative tar-
get locations based on the degree of utility they provide. These assump-
tions decide the agent’s behaviour and different utility functions can be
used to achieve different real-life behaviours.

Unlike the Winner-take-all in the traditional saliency map approach,
the presented Kalman filter based mechanism makes a decision based on
the mean and the variance of the distribution. There are numerous ways
the mean and the variance information can be combined to form a utility
function. Since the normal distribution is completely defined by its first
two moments, a utility function is dependent only on the mean and the
variance of the state estimates. The utility function is maximised to obtain
the optimal choice.

Operating in the real-world requires a range of system behaviours. The
presented mechanism of making a decision based on a utility function can
be used to generate different system behaviours with appropriate choices
of the utility function. One example utility function is to reduce the av-
erage internal uncertainty of all the states. This would generate a system
behaviour that selects visual locations that offer the maximum reduction
of average internal uncertainty.

Now, referring back to the figure 3.1, the epistemic target selector is a
Kalman filter and the utility function is based on the mean and the vari-

ance of the state estimates of the Kalman filter.

3.5 Hypothesis

A Kalman filter aided epistemic visual target selector improves a tradi-
tional saliency model’s (i) visual attention distribution (ii) surprise detec-

tion and (iii) salient target detection abilities.
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3.6 Bottom-up Saliency with an Epistemic Target
Selector Model

The overall motive of this work is to design a probabilistic framework for
visual target selection in a dynamic scene. The framework is aimed to
model the dynamic saliency using probabilistic internal belief states and
select visual targets by maximising a utility function, that operates on the

internal states of an agent.

@ Surprise
:

Kalman Filter (iv) H
Measurement Prediction

S Saliency Map (iii)
Visual Scene
(ii)

\ Target location - .
@ -t ’ <--® Utility function (v)
v — argmax <

Active sensor (i)

Figure 3.3: Schematic diagram of the proposed method. The black arrows
represent the flow of visual information in the model. The visual scene is
at the bottom level of the signal processing hierarchy and the information
flow starts here. A low-resolution saliency map is produced at every time
step from the visual scene. Then the visual information flows from the
saliency map towards the Kalman filter based internal model. The new
saliency states of the real world update the internal belief states of the
agent at every time step. The internal states are used by the utility function
to calculate the utility of all possible future observations. Finally, the target
location is selected by choosing the visual location that offers maximum

utility.

Figure 3.3 shows the schematic diagram of the proposed method. This
is a complete system where individual components in isolation will not

function as desired. It consists of six conceptual units, namely:

(i) active sensor
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(ii)
(iif)
(iv)
(v)
(vi)
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visual scene,
saliency map,
Kalman filter, and
utility function

a surprise detector.

Each of these units is described in the paragraphs below.

(i)

(i)

(iii)

Active sensor: An active sensor is one that is capable of choosing
its vantage point. It accepts positional commands that set its van-
tage point within the visual scene to captures the visual scene from
that viewpoint. The decision about where to direct the sensor comes
from a utility based decision making algorithm inside the agent. Hu-
man eyes are an example of active sensors, as the eye muscles allow
the brain to orient the eyes towards a target. The line diagram of a

human eye in the schematic diagram 3.3 represents the active sensor.

Visual scene: The leftmost block in the schematic diagram in fig-
ure 3.3 represents the external dynamic visual scene. This scene is an

input to the bottom-up saliency model and the active sensor.

Saliency map: The bottom-up saliency model takes input from the
visual scene to produce a saliency map. Feature detectors extract de-
sired features from the input images. Image features could be as sim-
ple as colour, brightness or as complex as detecting the presence of
a shape. The feature detection algorithm needs to compute features
that the agent is interested in for a particular task. These features
are fused together to form the saliency map. The intensity of each
pixel in the saliency map topographically represents the saliency of
the corresponding visual region. The intensity of the pixels in the

saliency map is in the range of 0 (not salient) to 255 (most salient).
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(iv) Kalman filter: The third block from the left in the upper-row in fig-
ure 3.3 shows the Kalman filter. The Kalman Filter is made up of the

following subcomponents.

World model: The world model postulates a real-world process by
making causality assumptions on two successive events of the ob-
served process. The causality assumption is a mapping (a mathe-
matical function) from a history at a time instant ¢ into the future at
time (t + 1).

This causality relationship is assumed to be time invariant, which
means that how the saliency changed to this time instant (¢) from
the past time instant (¢ — 1) is the same as how it will change from
t to (t + 1). An agent can utilise this causal relationship to predict

unobserved future states of the dynamic saliency.

This assumption is aimed to study scenarios that do not change rapidly
in time. The gradual changes in the scene are captured by the noise
parameter w; in the equation 3.1. This model is not suited for a sce-
nario where the visual scene abruptly changes. For example, this
model is not suited for a video containing a random sequence of im-
ages, for example, an image of a cat followed by an image of a baby
then an image of a forest and so on. Also, this model is inappropri-
ate for a video that includes scene cuts, though extension to such a

scenario would be straightforward.

As a Kalman filter is a stochastic modelling approach, it is capable of
incorporating the random adversarial effects in a temporal relation-
ship. This is incorporated in the process noise in the Kalman filter.
The process noise sums up modelling limitations, adversarial effects
on the real-world process from unknown sources as a set of additive

noise parameters.

There are two ways to chose process noise in a Kalman filter: (i) these

parameters can be inferred from the noisy observations (ii) or they
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can be obtained from theoretical knowledge of the underlying pro-
cess that is being modelled. In practical applications, the process
noise is usually inferred from observations as it is not always pos-
sible to have good theoretical knowledge about the underlying pro-
cess [2,4,12,26,29,44,48,51,55,66,81,111,131,135,142,143,171,174,
175,200].

The temporal causality relationship is encoded as a matrix in a Kalman
tilter. This work mathematically denotes it as matrix A in equa-
tion 3.1. To adopt a Kalman filter to this work, the elements in this
matrix represent the relationship between the internal state of the
agent at two consecutive time steps.

Data fusion algorithm: This algorithm is also a part of the Kalman
tilter equation. It updates the internal belief states in the light of new
measurements. Once the current measurement is observed, the inter-
nal estimates are updated using a weighted average of the internal
state of the agent and the new measurement. If the new measure-
ments are accurate then more weight is given to them. If the new
measurements are less accurate than the current belief more weight
is given to the prediction obtained from the causal relationship.

One common sensor arrangement is to have two types of sensors
observe the visual scene at each time step in the presented model.
The low acuity sensor and the high acuity sensor. The data from the
low acuity sensor is used to build the saliency map and presents low-
resolution observations of the visual scene. Whereas, the high acuity
data is used to further analyse the saliency regions of the scene. The
agent must supervise the intake of both these qualities of data. The
data fusion algorithm must somehow rationally combine these two

different qualities of data while updating the internal states.

Utility function: The utility function incorporates a hypothesised re-

lationship between a potential action of looking at a target location
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in the visual scene and the pay-off in the outcome of the consequen-
tial observation [104]. Every target location in the visual scene is
assigned a utility. Hence an agent can make the decision of where to

attend to in the visual scene by maximising the utility values.

At every time step ¢ the utility function calculates the payoff of a fu-
ture observation at (¢ + 1)™. This is possible due to the prediction
ability of the epistemic target selector. At every time step, the pre-
diction equation of the Kalman filter is used to anticipate the state
estimates one time step ahead (i.e. at ¢t + 1). The mean and the vari-
ance of the anticipated internal states are used to predict the utility

of future observations.

In the previous discussion in the chapter, it was assumed that the
utility function was simply the variance of the estimated salience.
That is, it was assumed that attention was allotted to the location
with the highest variance. However, this can be generalised to many
possible utility functions that depend on both the estimated state and
its variance (and possibly other variables).

The utility is calculated for all the possible target locations. That is,
the utility is calculated for the possibility of centring an observation
on every pixel in the saliency map. This allows the agent to com-
pare all possible future visual target locations at each time instant. A
visual location is selected if it offers the highest utility for the next
observation.

In this way, the agent gets a reward by taking the action of looking
at a visual target. The reward is defined by the utility function such

as reduction in uncertainty.

This action-reward relationship represents the agent’s intention by
ranking or setting the preference for one outcome over another. It is
a set of assumptions related to ordering the set of all possible visual

locations, based on the degree of utility they provide. For example,
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an agent whose intention is to spot circular objects in a visual scene

would prefer round shaped objects over other shapes.

The action-reward relationship can be defined in multiple ways ac-
cording to the requirements of the task at hand. For example, find-
ing a specific shape or certain colour may have a high utility in a
particular visual search task. In another case, reducing the inertial
uncertainty of the agent could be the intent. These two intentions of
the agent would require different utility functions.

The presented framework allows straightforward selection and de-
sign of such utility functions. This is because the choice of the utility
function is independent of the other functional units of the proposed
observation mechanism. This allows the agent to display a range of
behaviours according to the need.

A surprise detector: The limitation of the Kalman filter based model
is that it cannot cope up with sudden changes in the scene. The pur-
pose of the surprise detector as an additional block is to detect sud-
den changes in the visual scene that could not be captured by the
Kalman filter. This functional unit is shown on top of the Kalman
filter block in figure 3.3. This block takes input from the new mea-
surements and the Kalman filter predictions. Then the difference be-
tween the two is computed using a suitable metric. A surprise is
triggered if the difference between the prediction and the new mea-
surement is beyond a pre-set threshold (possibly a large threshold).
Therefore a surprise is defined as a large deviation from the predic-

tion.

An Active Measurement Cycle: This is not a functional unit but de-

scribes a full cycle of information flow starting from the bottom layer, the

external visual scene, and ending at assimilation of new measurements

into the internal belief states. The complete measurement cycle consists of
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four steps. At the first step, the internal model is used to predict future be-
lief states. In the second step, the utility function is used to decide which
visual location offers the maximum payoff. This location becomes the next
visual target in the dynamic visual scene. New positioning commands are
sent to the active sensor. In the third step, the active sensor orients itself
and collects new measurements of the world. Finally, new measurements
update the world model by providing new information which is incorpo-

rated into the belief states. This cycle then repeats in the next time step.

3.7 Foveation Profile:

All real image-like sensors show spatial variation in their properties that
must be accommodated within the Kalman filter structure. Some sensors,
such as the human eye, show spatially varying resolution, which means
that the central regions are more informative than the periphery. Others
exhibit spatial variation in noise, spatial variation in sensitivity or faulty
sensor elements distributed across their sensing area. Each of these possi-
bilities generates a different pattern of trustworthiness of the data gener-
ated across the sensing area.

This work deals with different sensor properties, such as sensor noise,
by using a spatially varying measurement noise called the foveation pro-
file. It is implemented by choosing different values for the measurement
noise matrix R in the Kalman filter. The foveation profile therefore allows
modelling a wide range of sensor types without making changes to the un-
derlying Kalman filter implementation. The shape of the foveation profile
can be square (e.g. for a computer camera), a concave shaped (e.g. human
eyes have a concave foveation profile) or any other arbitrary shape. It is
a property of the measurement qualities provided by the sensors. Notice
that the foveation profile could be used to selectively isolate one faulty

pixel by raising the corresponding measurement noise parameter high.
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At every time instant an agent receives two qualities of visual inputs:
(i) low-resolution images from peripheral vision for computing saliency
and (ii) high-resolution to inspect salient locations in details. Visual sam-
ples from peripheral regions with decreased spatial resolution produce an
average over a larger area of the scene. In these measurements, the indi-
vidual constituent measurements of the average will considerably differ
from the mean. Multiple measurements taken using the peripheral vision
would show higher variance compared with measurements taken using
high-resolution camera. Therefore, the two qualities of input visual data
should not be equally trusted for the purpose of inclusion into the agent’s

belief states.

The Kalman filter aided data fusion algorithm which integrates new
measurements with existing beliefs encounters both the low and high-
resolution data. It must somehow incorporate these two different resolu-
tions of data into the agent’s belief state. It should trust the high-resolution

data more than the low-resolution data.

In contrast to the usual implementation of the Kalman filter, where ev-
ery measurement is trusted equally, the data fusion algorithm becomes
somewhat difficult in this case due to the variability in data resolution.
In this case, the two measurements with different measurement noises
must be trusted differently. The high acuity high-resolution data must
be trusted more than the low-resolution data. Therefore, the measurement
noise considered in the matrix R in the Kalman filter equation 3.4a must

reflect the quality of the incoming data.

A simplifying assumption of modelling the phenomena of varying vi-
sual acuity with a spatially varying measurement noise profile is proposed.
Here the measurement noise for the Kalman filter is decided based on the
source of the data. Measurements coming from the low-resolution source
is assumed to produce high measurement noise and the high-resolution
camera is believed to produce low measurement noise. It is important to

quantify the quality of measurement noise so that an agent knows how



3.7. FOVEATION PROFILE: 59

accurate its measurements are and can incorporate that into its algorithm.

The Kalman filter algorithm would trust the low measurement noise
data more than the high measurement noise data. This means that the in-
ternal state transition model is trusted more for the states that are updated
with the low-resolution data.

Usually, the low-resolution and the high-resolution cameras are sep-
arate entities. At every time instant, the low-resolution camera observes
the entire scene. The low-resolution image is only used to produce the
saliency map whereas the high-resolution camera is used to capture the
salient sub-sections of the visual scene. The high-resolution images, carry
detailed information, hence they are used for further understanding and
inspection of the visual scene.

For the practicalities of implementation, this thesis would assume one
sensor with a varying measurement noise. This assumption does not affect
the decision making and visual target selection of the agent, as the agent’s

decision making is not dependent on the number of sensors.

Inspired by the foveation characteristics of the human eye, a so-called
‘foveation profile’ is added to our model, which captures the particular
characteristics of high-resolution central and low-resolution peripheral im-
age. This work uses a simple sensor model that exhibits the characteristics
of incorporating high and low-resolution data in the belief states. This pro-
file allows us to express our relative confidence in the different locations
within the sensed area. This foveation profile can be visualised as a cen-
tral trough in measurement noise, which gradually increases with distance
from the centre of attention.

Figure 3.4 shows a foveation profile. Notice that the measurement
noise increases with distance from the fixation point at pixel no 50. The
agent observes the entire scene at each instant with increasing noise away

from the location of fixation.

The internal state of the agent is updated in light of the new measure-

ments at each time step. If the new measurement is accurate then more



60 CHAPTER 3. PROPOSED MODEL

—_

© o o
~ (0] [(e]
T T T
1 1 1

o
o
T

1

Measurement noise
© o o o
N w N ()]
T T T T
1 1 1 1

o
-
T

1

O 1 1 1 1
0 20 40 60 80 100

Pixel location

Figure 3.4: An example foveation profile. The vertical axis shows mea-
surement noise and the horizontal axis shows pixel location. Notice the
increase in measurement noise over distance from the fixation point.

weight is given to it.

The measurement noise is assumed to be additive white Gaussian noise,
whose variance increases with distance from the centre point of fixation.
The variation in measurement noise is modelled by choosing different val-
ues for the elements in the measurement noise matrix, the R matrix of the
Kalman filter equations (equation: 3.4a).

It is assumed that the measurements can be directly mapped to the
internal belief states. Therefore, the Kalman filter can combine measure-
ments with the internal beliefs directly. This corresponds to the C' ma-
trix, which defines the mapping between measurement and internal state,
equal to the identity.

The implementation of a foveation profile in the proposed system is
straightforward as the consideration of the measurement noise in the Kalman
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filter equation is in the form of a matrix. Individual elements of the mea-
surement noise matrix can be adjusted to achieve a desired foveation pro-
file shape.

The magnitude of measurement noise and its spatial distribution are
properties of the low and high-resolution sensor combination. Consider-
ing separate measurement noise for the low and the high-resolution cam-
eras allows studying the effect of foveation profile on the behavioural out-
come of the agent. Also, under the proposed framework, it is straightfor-
ward to test different foveation profiles to study the behavioural outcome
of the agent. This facilitates the engineering demand for testing an algo-
rithm with different sensors.

3.8 Adapting the Kalman Filter to Model Saliency

The Kalman filter is implemented by a set of equations (discussed in de-
tails in the section 3.4) that allows it to a) predict based on the internal
model and b) update the internal model in light of new measurements.

In this work, the Kalman filter is modelling the saliency of visual lo-
cations in a dynamic visual scene. The saliency of corresponding visual
locations is mapped into the saliency map by a bottom-up saliency com-
putation algorithm, that is computed from the input image at every time
instant. The features used to compute the saliency map could be simple
features like the pixel intensity or complex features like the shape of an
object.

In this thesis, when required, Itti’s bottom-up saliency model will be
used as it is the most commonly used bottom-up saliency model [93]. Also,
it is straightforward to implement the Itti model due to the availability
of its source code [191]. However, the proposed method is not limited to
using the Itti model and in the conclusion section of the thesis in chapter 9,
the generality of this approach will be discussed.



62 CHAPTER 3. PROPOSED MODEL

The internal belief states represent the agent’s belief about the external
world. The belief state of an agent at time ¢ is all of the information the
agent has remembered from the previous times. It encapsulates all of the
information about its history that the agent can use for current and future
to command the active sensor. At any given time ¢, an agent has access

only to its belief state and its measurements.

For the purpose of this thesis, the internal belief states will be used
to represent the bottom-up saliency in a visual scene. Each pixel in the

saliency map will be modelled by a separate belief state.

In most real scenarios, it is expected that the value of one pixel would
depend on its neighbours. In such cases, the target locations in a saliency
map could be grouped into super pixels based on some attribute of the
scene and each group could be assigned one belief state. However, com-
puting correlations between all the possible pixel-pairs in a visual scene to
achieve such grouping would be computationally very expensive. There-
fore, all the states are assumed to be independent, which results in re-
duction of computational burden and simplified implementation of the

Kalman filter based model.

The drawback of this assumption is that the agent will not be able to
make an inference about other neighbouring locations based on an obser-
vation of a location. For example, an agent does not need to observe every
pixel on a wall, instead observing one portion of the wall gives an agent
information about other portions. This means that the agent will not be
able to exploit the natural spatial regularities of a visual scene. However,
a correlated visual scene can be reduced down to smaller number of un-
correlated pixels [11,165,202]. The aim of this work is to demonstrate the
proposed system’s behaviour on such a set of uncorrelated pixels. Hence
the assumption of independence of pixels made here will not hinder the

system’s operation in visual scenes with correlated pixels.

In the case where one belief state is considered to be dependent on

other belief states, the computation becomes complicated. Under this sce-
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nario, one might need to compute the correlation between one pixel with
all the pixels in a neighbourhood. One might want to start with dividing
the entire visual scene in equal parts. This would reduce the number of
state variables, but is still suboptimal as multiple of those equally dividing
regions might belong to one object in the scene. Hence there is no straight-
forward way to compute which pixel belongs to what neighbourhood and
this is an interesting problem for future studies.

Choosing a total number of belief states to be equal to the number of
pixels in the saliency map translates to the number of dimensions of the
state vector « being equal to the total number of pixels in the saliency map
(n). Another view of x(t) € R" x Z, would be to see the time dependent
saliency map as a set of n individual time-series.

All pixel intensities (a 2D snapshot image of the saliency of the dy-
namic visual scene) at any given time are collective samples from the se-
quence of time-series data points arranged in space. Each belief state in
the Kalman filter represents the agent’s internal belief of a corresponding
state of the visual scene and the A matrix encodes how the time series
unfolds in time.

The A matrix is assumed to be an identity matrix. This means that the
agent believes that there is no change in saliency over time. This assump-
tion is to study scenarios that do not change rapidly in time. The gradual
changes in the scene are captured by the noise parameter of the Kalman
filter as presented in the equation 3.1. This model is therefore not suited
for scenarios where the visual scene contents change abruptly, such as for
videos including scene cuts.

3.9 Utility Based Decision Making

Gaussian belief states are completely represented by the first two mo-
ments: a) mean and b) variance. Hence these two statistical moments can

be used to define a utility function according to the desired behaviour.
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One elementary desired behaviour of an agent is to take measurements
to reduce the average internal uncertainty over all the belief states. This
would result in an attention distribution that it would keep the agent up-
dated about the world. The agent’s purpose is to reduce internal uncer-
tainty (hence keep up to date knowledge of the world) by taking measure-
ments with a given combination low and high acuity sensors. At each
instant, the agent is interested in placing the high acuity camera at the
location that promises maximum reduction of overall internal uncertainty.

In general, a utility driven system should maximise a utility function

of the form
1 n
Uagng = E El U; (35)

where the u; is the utility measure of the individual visual target regions,
Uag 1 the average utility of considering one action and n is the total num-
ber of observed pixels. This equation computes the average utility of look-
ing at a pixel and its the surrounding n pixels.

A visual scene with n target regions has n such average utility mea-
sures as there is one for each potential future fixation point. The average
utility measures can be arranged into a vector uw € R". Each element in
this vector is the average utility of fixating on the corresponding region.

An action a is the act of looking at a target visual location in the visual
scene with a given foveation profile. In this context looking at a region
can be thought of as placing the profile-centre of the foveation profile on a
target region.

Hence, finding the target visual location for the next time step can be
expressed as a maximisation problem shown below:

a* = argmax f(a) (3.6)

where a is the anticipated future action of choosing a point of fixation, f(a)
is the outcome of that action and a* is the optimal action that provides
maximum utility. The utility based reasoning block in the schematic 3.3

shows this functionality.
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The visual region that is observed with the lowest measurement noise
results in the maximum reduction in the corresponding uncertainty asso-
ciated with its belief state and the nearby regions are observed with pro-
gressively higher measurement noise.

At each time step the Kalman filter prediction equations are used to
estimate the future state of the world and then the agent simulates placing
the centre of the foveation profile at each possible fixation points. With
each placement considered, the mean and the variance of state estimates
are calculated. A given scene of n target locations, would have n means
and n uncertainties. Potential future actions are compared against each
other based on a specified utility function, and the observation location
having the highest utility is selected.

The effects of mean, variance and choice of Q on the system behaviour
are investigated in experiments chapter 4. The methods of experiment
(chapter: 4) for this thesis work has been designed to study the effect of
these parameters on the system behaviour and are discussed in the next
chapter.

3.10 Model Parameters Inferring:

Given the probabilistic framework for observing the saliency map at each
time step, an additional functional block that infers parameters of process
noise for the internal model from the observations can be designed. The
purpose of inferring is to adjust process noise to adapt to the temporal
characteristics of the visual scene. Two types of inferring algorithms are
envisaged at this stage:

(i) Batch inferring- where model parameters are updated after a pre-set
number of new measurements have been collected. This approach

infers the noise parameters from a set of measurements.

(ii) Online inferring- where noise parameters are inferred with every it-
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eration of the algorithm (i.e. the parameters are updated with every

new measurement).

The mechanism in effect would allow the agent to infer inhibition time
for the visual scene. Different inhibition time can be applied to different

visual target regions as the noise parameters are inferred separately.

3.11 Chapter Summary

This chapter presented the proposed model and how the Kalman filter
equations fit in with the proposed working principle. The philosophical
understanding of the utility functions was also discussed. It was presented
that given this proposed framework, suitable measurement noise param-
eters (i.e. foveation profile) and utility functions can be chosen easily. The
foveation profile plays an important role in system behaviour and it will

be a parameter of investigation in the design of experiments.



Chapter 4

Inhibition of return as an

emergent behaviour

A visual attention distribution mechanism based on saliency-maps looks
at a visual scene in descending order of saliency. A parallel maximizer
called the Winner Take All (WTA) finds the most salient location and sam-
ples that location. Observed locations are then blocked to prevent the
agent from fixating at the most salient location. The mechanism of block-
ing previously observed locations is called inhibition of return (IOR) and
is analogous to the biological mechanism of the same name. IOR does not
arise naturally from the WTA formalism but must be added to the basic
WTA architecture. As discussed in the background chapter 2, previous
approaches to the generation of IOR have relied on maintaining a list of
past observed locations which are vetoed as possible saccade targets for
some predetermined time. In contrast, this chapter argues that the pro-
posed system achieves inhibition of return as an emergent behaviour and
as such requires no addition to the underlying framework to show the de-
sired IOR behaviour.

The effect of process noise and foveation profile on the system’s be-
haviour of visual attention distribution is presented. This chapter is di-
vided into three sections: The first section shows that an agent that oper-

67
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ates based on internal uncertainty regarding the visual locations will avoid
looking at known visual regions, hence inhibits returning to past observed
locations. The second section studies the effect of the choice of a foveation
profile on the system behaviour and finally, the last section demonstrates
the effect of process noise on the system behaviour.

4.1 Experimental Method

The proposed mechanism is implemented using the MATLAB® program-
ming language on an Arch Linux platform.

In the initial phase of the experiments, a one dimensional saliency map
is used for simplicity and clarity of presentation. This simplification does
not hurt the purpose of the presentation as the dimensionality of the input
saliency map does not affect the model’s decision making process. That is,
our agent acts on a 1D world rather than 2D images, albeit the proposed
method can scale to any dimensionality given sufficient computational re-
sources.

To create an agent who’s visual attention distribution matches the dis-
tribution of spatio-temporal variation in saliency of its environment. The
aim here is to demonstrate that an agent’s visual attention distribution can
match the spatio-temporal variation in saliency of its environment. Also,
it is demonstrated that inhibition of return is a behavioural outcome of
the proposed method using mathematical analysis. Then heat-maps of
inhibition time over the visual space and frequency histograms of visual
attention distribution is used to demonstrate the effect of process noise
on decision making. Further, the effect of foveation profile on the agent’s
inhibition of return behaviour is examined. Although the last three ob-
jectives are presented sequentially, they are the simultaneous outcomes of
the experiment.

To simplify initial experiments and mitigate complications in real data

that could complicate the interpretation of results, we decided to use syn-
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thetic saliency maps rather than obtaining saliency maps from input im-
ages. This allows bypassing the implementation of low-level feature ex-
traction and de-noising algorithms without compromising on the prime
focus of the work. The first results chapter 4 uses a simple 1D synthetic
saliency map. The next section describes the method used to generate the
synthetic saliency map.

4.1.1 Generation of Synthetic Saliency Map

We designed a method for creating synthetic saliency maps with known
number and width of salient peaks to test the proposed method. We as-
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Figure 4.1: The saliency map: There are 10 distinct peaks which stretch
from 1 to 100 in a horizontal scale (the visual scene). The height of the

maximum peak is 1. The distortion in shape is due to sampling.

sumed 10 one-dimensional Gaussian bumps of fixed size in a 100 pixel

wide visual scene (see figure 6.2). The following equation was used to



70 CHAPTER 4. EMERGENT INHIBITION OF RETURN
generate such curves:

f(x) = ! ¢~ (@=m)?/20} 4.1)

oV 2T

i describes the location of the peak in the above equation and o, deter-
mines how wide the curve is around the peak.

As all probability distributions integrate to 1, a narrow Gaussian has
a higher peak at the mean than a wide Gaussian. We make use of this
property by randomly sampling 10 times to obtain different values of o
(one o for each peak) from a uniform distribution with predefined bound-
aries. This generates different heights for each peak. Similarly, the lo-
cations of those peaks were chosen by randomly sampling from another
uniform distribution, which spans the same limits as the visual scene. Fi-
nally, all the Gaussian distributions were normalised to the range 0-1 to
obtain the saliency map. We restrict ourselves to reporting one instance of
such multi-modal saliency map throughout all the experiments, but this
method has been tested on many similar problem instances with equiv-
alent results. Figure 6.2 shows an example of saliency map used in our
experiments. Notice the peak saliency value is 1 and there are 10 distinct
peaks.

The foveation profile is a property of the sensor in use. In the absence
of a specific hardware platform, a set of plausible foveation profiles were

generated using a simple exponentially decaying function.

4.1.2 Generation of Foveation Profile

The foveation profile is the distribution of measurement noise over space
under the observable region of the agent’s field of view. The choice of R
varies in every iteration of the algorithm execution based upon the cho-
sen fixation point. A plausible foveation profile should have minimum
measurement noise at the point of fixation and smoothly increasing mea-

surement noise towards the periphery. A variety of functions could be
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used to model this behaviour, an exponentially increasing function was
chosen for its simplicity in choosing in the rate of increase with distance.

This function is given as:

a2

f(d.p)=1—exp (4.2)

where d is the distance from the profile-centre and the foveation profile
parameter p? determines the rate of increase in measurement noise with
distance of the foveation profile (or the width of the foveation profile).
The exponential term in this equation is analogous to a standard normal
distribution equation, where p? in this equation plays a similar role to the
variance. A smaller value of p? results in sharp rise in the measurement

noise and a large value results in a slowly rising measurement noise.

We illustrate the system’s behaviour with three representative foveation
profiles having varying widths. Figure 4.2 shows each of the profiles,
termed: narrow (p?> = 0.001), medium (p* = 10) and wide (p*> = 100) re-
spectively. A wider foveation profile results in larger number of pixels
being sampled with low measurement noise in a single observation. No-
tice that the maximum value of measurement noise is 1. To avoid numer-
ical problems arising from using zero uncertainty at the profile centre, the
minimum value was set to 0.0001. This is a realistic modification as all real
sensors have some noise associated with every measurement. Note that
the foveation profile is characteristic of a particular sensor. A designer is
not free to choose the profile used but must select one that is matched to

the actual sensor used in a practical system.

We are interested in understanding the overall system behaviour, which
is independent of the specific choices of minimum or maximum value of
the measurement noise. Rather it depends on the distribution of the mea-
surement noise, which is determined by the choice of the foveation profile

(narrow, medium or wide).



N
N

CHAPTER 4. EMERGENT INHIBITION OF RETURN

—_

NN N
nonn
O = =
o oo
o

S o
=

o

©

T
™ ™ H

o
(o]
\

\

o
3
\

\

°
(o]
\

\

o
~
T
|

Measurement Noise
o
(6}
I
|

o o
N w
I I
| |

o
N
T
|

10 20 30 40 50 60 70 80 90 100
Pixel Number

Figure 4.2: The fixation point for each profile is the middle of scene. Nar-
row, medium and wide foveation profiles are shown in red, green and blue

respectively.

4.2 Preventing Fixation Due to Consideration of

Uncertainty

The three Kalman filter equations that are at play are: The prediction of

state covariance P is given by
Py =APy A" +Q (4.3a)
where P, is the current uncertainty. The Kalman gain K is given as
K, = P,,,C" (CP,,,,C" +R)" (4.3b)

The updated estimate of state covariance after including the newest mea-

surement is given by:

P, i1 = I—-K.C) Py (4.30)
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where P, is the predicted uncertainty and ¢ denotes time in the three
equations above. These three equations are the guiding principles for how
the internal uncertainty of a belief state changes over time.

In the presented model, the sensor observes the entire scene at each
instant with increasing noise away from the profile centre. This means
that the measurements are taken with varying measurement noise. Also,
C matrix is assumed to be an identity matrix. Therefore, C' can be dropped

from equations 4.3 to obtain the following;:
Ki1=Piyy (P +R) (4.4)
This equation can be substituted into (4.3c) to obtain:
Py = (I — Py (P + R)_l) Py (4.5)

where P, ,; and P, ;1 are the pre-observation and post-observation
uncertainties. For an intuitive understanding of equation 4.5 let us con-
sider one such belief state, along with the assumption of independent in-
ternal belief states (i.e. all the matrices in the equation are diagonal). Equa-

tion 4.5 can then be presented as

P,
Pt+1|t+1 = (1 - m%) Pt+1|t (46)

where F,) is an element of the state covariance matrix P and R is similarly
an element of the noise matrix R.

The interest is in understanding how the measurement noise affects the
updated state covariance. Notice that equation 4.6 shows that measure-
ment noise variance (R) determines post observation uncertainty. Hence
it governs the improvement after observation for a given prior uncertainty
(P41} ) and posterior uncertainty (P .11 ). Further the process noise (Q)
decides the prior uncertainty at the next time step (P;,s;+1). Hence the
current state of uncertainty at any given time is jointly influenced by the

process noise Q@ and the measurement noise variance R. Section 4.3 and
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section 4.4 in this chapter investigate the effect of these two parameters

separately.

Equation 4.6 shows that the updated state covariance reaches zero when
Ris zero. A zero state-covariance means no error in the belief states, which
is possible in theory only in the case of a perfect measurement. However
as the measurement noise covariance is not zero in practice, the updated
covariance is always non-zero in practice. Also, the updated state covari-
ance is equal to the predicted covariance when the measurement noise
covariance is high because the measurement had no effect on the belief
state due to its unreliability. In between these two extremes, the value of
P, 1t+1 monotonically increases with the increase of measurement noise

covariance R.

Figure 4.3 shows the relation between updated state covariance (F,1}441)
and the noise variance R. The figure shows that error covariance matrix
and the measurement noise follows a positive monotonically increasing
relation and the posterior variance is asymptotic to the prior variance at
high measurement noise covariances (refer to equations 4.3).

A visual region that is observed with a higher measurement noise would
have higher uncertainty in the associated belief state compared to one that
is observed with a lower measurement noise. As an example let us con-
sider two visual regions with equal internal uncertainty that are observed
with two different measurement noise levels R; and Ry, where R; > R,.
After incorporating the observation into the internal belief states, region
1 will have greater internal uncertainty than region 2. This property is
made use of to achieve inhibition of return as a behavioural outcome of

the proposed algorithm.

A rational agent behaviour is to take measurements to reduce the inter-
nal uncertainty of the belief state that has the highest level of uncertainty
amongst all the regions in the scene. It can be achieved by treating the
internal uncertainty as the utility, the agent would look at the visual loca-

tion with the largest uncertainty at every time step. A visual scene with n
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Figure 4.3: Plot of posterior error variance versus the measurement noise
variance. The three lines in the plot depict the relation between measure-

ment noise and posterior variance for three different prior variances.

regions of interest has n internal belief state uncertainties, hence it has n
utility values, one for each potential future fixation point.

All the utility measures are arranged into a vector u € R". Each el-
ement in this vector is the internal uncertainty of a corresponding visual

region. Such a system should maximize a utility of the form
U= {R51+1|t7 Pt2+1|t7 Pt3+1\t7 T 7Ptn+1|t} (4.7)

mn
where Pt+1|t

sponding visual region.

is the projected uncertainty in the internal beliefs of a corre-

The maximum in u gives the location of the visual scene that has the
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highest internal uncertainty and is to be observed in the next time step.
Observing a region is placing the profile-centre of the foveation profile on
the target. A visual region that is observed with the lowest measurement
noise (profile-centre of the foveation profile) results in a maximum reduc-
tion in the corresponding uncertainty of its belief state. In the next time
step, the region that has just been observed will have the lowest internal
uncertainty amongst all regions. As the agent is interested in observing vi-
sual locations that it is uncertain about, it will ignore the region that it has
just observed. Hence it will effectively inhibit looking at the visual loca-
tion that it observed in the last time instant. This behaviourally generates

inhibition of return.

As an initial simplified experiment to test behaviourally generated IOR,
a simple one-dimensional world with ten pixels was set up. In this sim-
ple model, each pixel is an individual visual location of the scene. Those
ten pixels were modelled as ten independent states in a Kalman filter. The
Kalman filter tracks the ten states over time and makes a decision about
where to place the centre of the foveation profile at every time step based
on the internal uncertainty. This process was run for 5 seconds in total.
During this process, the internal uncertainty reduces after an observation.
Therefore the utility offered by that location becomes lower. During the

experiment, the utility offered by each pixel was noted at every time step.

Figure 4.4 plots the utility u of a pixel versus the respective pixel num-
ber. The horizontal axis represents pixel number and the vertical axis rep-
resents the utility of observing that location at a given time instant. The
blue line shows the utility and the red circle indicates the peak in the util-
ity. Notice that the utility offered by pixel 1 is the lowest at ¢ = 1 and it
remains low at the 8" time step. Therefore the visual location was inhib-

ited from being re-observed.

Notice that the pixel location that has just been observed offers the low-
est utility and the first of the unobserved pixels offers the highest utility.

Also, note that the utility of pixel number 1 remains low almost until the
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9'" time step. Consequently, that pixel remains inhibited from observation,
an example of achieving behavioural inhibition of return.

3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Pixel location Pixel location
(a) Utility plot at time step 1 (b) Utility plot at time step 8

Figure 4.4: Plots of the utility of pixels versus the pixel number at time
instant 1 (left panel) and 8 (right panel). Projected internal uncertainty
P11 of the belief states were adopted as the utility. The blue line shows
the utility and the red circle indicates its peak.

4.3 Effect of Foveation Profile Width on Utility

The distribution of the measurement noise over space (the foveation pro-
file) determines the area that is observed with low measurement noise.
With a very narrow foveation profile (p* = 0.001) any observation results
in a high reduction in the uncertainty associated with the point of focus.
This profile does not reduce the uncertainty of any neighbouring pixels. In
contrast, a wide foveation profile reduces the uncertainty associated with
a wider visual area.

To study the effect of foveation profile on utility, the uncertainty based
visual scene sampling approach was applied to a simple 1D visual scene.

The system was run separately with a very narrow (p = 0.001) and a wide
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(p = 1) foveation profile. The history of the visual locations attended and
the utility at every time step of the system run was noted.

Figure 4.5 shows the plot of the two foveation profiles and the corre-
sponding utility functions and the visual locations attended. The left col-
umn shows the narrow foveation profile and its outputs. The right column
shows the wide foveation profile and its resulting outputs.

Notice that the observed pixel has low uncertainty in the utility plot
(panel: 4.5(c)). Subsequently, the agent observes every pixel in the visual
scene in sequence. Figure 4.5(e) depicts that the agent chronologically at-
tended the visual locations.

When a wide foveation profile (o> = 1) was used, one observation re-
sults in a reduction in uncertainty associated with a few neighbouring pix-
els. This consequently reduces the uncertainty associated with a larger set
of neighbouring pixels. This can be noticed as a reduction in uncertainty
of broader span of pixels (panel: 4.5(d)). Reduction of uncertainty over
wider area behaviourally inhibits that area from re-observation, which
produces jumps between two successive fixation locations (figure: 4.5(f)).
As a broader area of the visual scene gets observed at every time-step,
more parts of the visual scene are observed with low measurement noise.
Therefore the wider foveation profile results in a lower average internal
uncertainty (average internal uncertainty after 10 time steps is: 0.18) com-

pared to the narrow foveation profile (0.2).
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4.4 Different IOR Timing From Process-noise

Equation 4.3a shows that the rate of growth of internal uncertainty of a
belief state arises directly from the values of process noise in the @ ma-
trix. The @ matrix is a temporal property of the visual scene being ob-
served. The aim of an intelligent algorithm is to use its sensor in a given
visual scene to optimise the sensor action according to the attention re-
quirements of the scene. Higher values of @ result in uncertainty growing
more quickly, and hence a previously observed location offers higher util-
ity compared to other regions. This forces the agent to re-observe that

location and determines how often any given region is re-observed.

To illustrate the point a process noise matrix that varies across the vi-
sual scene was constructed. This process noise matrix has two elements
that are higher than the other elements in the matrix.

The same ten pixel visual scene discussed in the last section is used
again for visual attention distribution. This time the non-uniform process
noise matrix with two elements with a higher value than the others were
used to distribute visual attention. History of the visual locations attended
was noted. Finally, normalised histograms of attention distribution are

computed.

Figure 4.6 shows a graphical representation of the process noise matrix
and the resulting distribution of visual attention as histograms. The values
of each element of the process noise are colour coded. White colour shows
high value and block shows zero.

The proposed uncertainty based attention distribution method was run
for 500 time steps with each of the process noise matrices and the his-
togram (normalised to have a unit area under the curve) of the visual at-
tention distribution was plotted to show the attention distribution over
visual locations. Note that locations with higher process noise in the Q
matrix attract more visual attention in the corresponding visual scene (left

and right panels of the top row respectively). Pixel numbers 2 and 3 took
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higher process noise values in the Q matrix (top-left panel) which resulted
in the peak in attention distribution in the related histogram (top-right
panel). The even Q matrix (bottom-left panel) resulted in a uniformly dis-
tributed histogram (bottom-right panel). This suggests that a process noise
matrix that matches the attention requirements of a dynamic visual scene
will result in an efficient visual attention distribution.

Notice that an uneven @ matrix results in an attention distribution that
is biased towards highly dynamic visual locations, i.e. the visual locations
that have a higher value of process noise in the corresponding element in
the @Q matrix. In contrast, an even process noise matrix results in an even
visual attention distribution.



82 CHAPTER 4. EMERGENT INHIBITION OF RETURN

Pixel locations
o
Frequency of visit

2 4 6 8 10 1 2 3 4 5 6 7 8 9 10
Pixel locations Pixel location

(a) Heatmap plot of an uneven process noise (b) Histogram of visual attention distribu-

matrix tion
0.1
0.1
0.08 =
@ 2 0.08
9 ©
~§ 0.06 0.06
2 5
o o
(I
0.02 0.02
0 0
2 4 6 8 10 1 2 3 4 5 6 7 8 9 10
Pixel locations Pixel location

(c) Heatmap plot of an even process noise (d) Histogram of visual attention distribu-

matrix tion

Figure 4.6: Plots of two different process noise matrices with their result-
ing histogram of visual attention distribution. The goal of the experiment
is to observe if our algorithm favours visual regions with high process
noise over visual regions with lower process noise in distributing visual

attention.

The proposed Kalman filter based system was run for 5 seconds on a
visual scene comprised of 10 pixels. The inhibition of return time was cal-

culated by counting the number of iterations between two direct observa-
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tions of the same pixel. A narrow foveation profile was chosen (p = 0.001)
for this experiment, where a direct observation means observing a given
pixel with the lowest observation noise.

Figure 4.7 shows the inhibition of return (IOR) time distribution over
the visual scene. This figure depicts the actual inhibition of return time
whereas the earlier figure presented the histogram of attention distribu-
tion. The blue line shows the IOR time distribution achieved by the pro-
posed method and the red line shows IOR distribution by traditional WTA
based systems. As the traditional system allocates the same IOR time for
all regions, the red line shows constant value for all the regions. The dip in
the blue line shows unevenness of IOR time distribution by the proposed
method. The figure shows that the proposed system achieves dissimilar
IOR time distribution whereas the IOR time distribution of the traditional
system is equal everywhere in the visual scene.

Uneven distribution in IOR time was realised by choosing unequal pro-
cess noise () matrix, where the two middle pixels (pixel number 2 and
3) were set to have higher process noise. The IOR time for the traditional
system came from a theoretical understanding of that method, where the
same IOR time is applied to each visual location. An IOR time of 10 was
chosen for the traditional system as there are 10 pixels in the scene. This

way each pixel in the scene gets a chance to be observed.
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Figure 4.7: Plot of inhibition of return time of all the pixels in the visual
scene (10 pixels in the visual scene). The blue line shows the inhibition of
return time for the proposed method and the red line shows the inhibition
of return time distribution of the traditional system.

4.5 Chapter Discussion

This chapter presented two important contributions of the thesis as below.

1. This chapter presented the novel Kalman filter aided epistemic vi-
sual target selector. It encapsulates a layer of uncertainty regarding
the saliency of the dynamic visual scene. As a result of considering
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uncertainty in decision making, an agent behaviourally achieved in-
hibition of return without blocking previously observed visual loca-

tions.

2. Different inhibition time for different parts of the scene was achieved
due to the use of Kalman filter based visual target selection. To the
best of the author’s knowledge, this was the first demonstration of
different inhibition time in a dynamic scene. As a result of different
inhibition time, the agent updates its internal state more frequently
about the regions that are changing quickly with time and the re-
gions that are not changing are observed less. This was not possible
using the traditional IOR based method.

The next four chapters stem from this chapter as below.

1. Knowing the proper values for the process noise variance is key to
distributing visual attention. In this chapter, the process noise ma-
trix was obtained beforehand from the video dataset. In practice a
dynamic visual scene is observed frame by frame, hence the process
noise needs to be learnt during observation. Chapter 5 examines

methods to learn process noise from observations.

2. The use of the Kalman filter aided novel visual target selector further
enabled varied utility functions to be used for visual target selection.
A number of utility function will be discussed in chapter 6 and in

chapter 7 of this thesis.

3. Due to the behavioural outcome of inhibition of previously observed
locations, the novel target selector should be able to detect sudden
changes in the visual scene quicker than the IOR based approaches.
This will be studied in the chapter 8.






Chapter 5

Learning Process Noise from
Noisy Observations

This chapter proposes two novel approaches for learning the statistical
variance of visual regions from observations having varying measurement
noise. The first approach estimates the statistical variance using a maxi-
mum likelihood method (MLE) while the second approach uses a low pass
filter (LPF) for estimation. The MLE approach operates on a batch of ob-
servations where each datum in the batch is measured with different mea-
surement noise. On the other hand, the LPF based variance learning is
an online method that trusts accurate measurements more than the noisy
measurements and recursively builds up an estimate of the process noise
over time. This two process noise learning methods help the Kalman filter
based visual target selector discussed in chapter 3 adapt to a new dynamic
visual scene.

As the existing process noise estimation approaches are designed to op-
erate with a fixed measurement noise, they are not suitable for the purpose
of estimating variance in a changing measurement noise scenario. To the
best of the author’s knowledge, the presented work is the first approach
towards estimation of process noise from observations taken with varying

measurement noise.

87
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In this chapter, a short background on process noise learning from ob-
servations is discussed. The mathematical derivation of the proposed al-
gorithms along with an intuitive discussion of the algorithms are then pre-
sented. Finally, the accuracy, repeatability and numerical stability of the

algorithms are examined.

5.1 Background

Estimation of process noise is a well studied topic in the context of closed
loop process control and the Kalman filter algorithm [2,4,12,26,29, 44,48,
51,55,66,81,111,131,135,142,143,171,174,175,200].

These studies can be put into two thematic groups based on their method

of estimation:

1. Bayesian statistics based approach [4,12,111,174,175]:
This approach formulates the covariance estimation problem as max-
imising a likelihood function of choice [12]. The likelihood function
is devised to inversely correlate with the difference between a pre-
dicted state and a measured state (also called the innovation). Ele-
ments of the covariance matrix are obtained by maximizing the like-
lihood function i.e by finding matrix elements that minimise the pre-
diction measurement difference. Analytical minimization often does
not work with complex covariance functions, hence gradient based

numerical optimisation schemes are used.

2. Deterministic approach [131,135]:
The deterministic approach uses simple statistical measures like first
and second order moments to estimate the process noise variance.
For example, the covariance matching technique [135] presents an
algorithm that estimates the process noise covariance (Q) at every
sampling instant. Here estimates of @ are constructed using the

sample covariance of the state prediction error. This approach can be
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used either on all the past data at every time instant or over a smaller
batch of past data points using a moving time window. There is no
recursive version of this algorithm.

A popular related technique was proposed by Raman K. Mehra [131].
This technique estimates the elements of the 2 matrix by making use
of the sample autocorrelation. This method is slow and computa-
tionally expensive as the algorithm involves computing autocorrela-

tion over past innovations.

The same studies can also be grouped based on the quantity of data pro-
cessed at each time instant:

1. Batch processing [12,135]:
This approach finds the best suited process noise values given a col-

lection of data points.

2. Recursive approach [29,51,55,111,174,175]:
This approach learns and updates the Q matrix at every measure-

ment instant.

Notice that there are overlaps amongst the groups presented above.
For example [135] comes under batch processing and correlation based
approach while [12] sits in the intersection between batch processing and
Bayesian statistics based approach. Similar combinations can be observed
in a recursive and Bayesian statistics based method [174] and in a recursive-
correlation based approach [55].

Kenneth A. Myers [135,177] proposed a simple approach that com-
putes measurement noise from an innovation sequence (also known as
the measurement residual) of the Kalman filter. This method also esti-
mates the process noise from the difference between the true state and a
prior belief state (also known as the forcing residual). The forcing residual
cannot be computed directly as the true states are unknown, hence it is

approximated using the posterior mean of the Kalman belief state [177].
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The covariance based techniques [135,177] assume constant measure-
ment noise and all the forcing residuals are equally trustworthy. Whereas
the measurement noise for observing any given visual location of the pro-
posed system changes between observations and this reflects as variations
in the measurements. Hence all the forcing residuals are not equally trust-
worthy. Therefore covariance based techniques are not suited to operate

in such circumstances and will produce erroneous results.

Bo Feng et al. [55] presented a recursive covariance estimation approach
that works in conjunction with a Kalman filter. The prime focus of this ap-
proach is to compute the covariance between observations. The problem
in this thesis is the assumption that the individual pixels are independent
and there is no correlation between pixels. This simplifies the process
noise computation to computing just the variance. Hence the approach
proposed by [55] is not readily applicable for the purpose of the presented
work.

The work by Bo Feng et al. [55] also assumes constant process noise
matrix throughout the entire run of the Kalman filter. Whereas the tempo-
ral variance of visual locations can change over time. Hence this method

tails to meet the requirements of dealing with changing process noise.

Another assumption of this method is constant measurement noise,which

does not meet the requirements of the presented work.

The correlation based technique presented in [131] estimates the pro-
cess noise making use of the autocorrelation amongst current and past
innovations. This process is computationally expensive and memory in-
tensive. Also, the key component of this method is to find how statistically
independent one innovation is from the rest of the past sequence (a mea-
sure of whiteness of the innovation sequence). Measuring ‘whiteness’ of
an innovation sequence involves computing the expectation between the
current sample and past samples, ideally all the past samples. This process

requires a large amount of memory.

Although Mehra [131] proposed a block-wise recursive scheme for on-
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line update of process and measurement noise, it proves to be restrictive
for systems where the number of unknowns in process noise matrix (Q) is
larger than n x r, where n is the number of states and r is the dimension
of the measurement vector. Also, the overall algorithm is computationally
demanding due to involving matrix inverses involved with the algorithm
and cannot satisfy real-time performance requirements.

Summarising existing approaches reported above, it is necessary to de-
velop a new algorithm for the problem of estimation of process noise (Q)
that can deal with changing measurement noise while requiring low de-
mand for computational resources.

The rest of this chapter is divided into three more sections. First, a
maximum likelihood based approach for variance estimation from noisy
observations is presented, then a simpler recursive algorithm is presented
along with their respective results.

5.2 Learning Process Noise From Noisy Measure-

ments

Any given region of the visual scene is observed with different measure-
ment noise. Measurements taken with low measurement noise are more
trustworthy than measurements taken with high measurement noise. This
is because, from a statistical point of view, the less-noisy measurements
are drawn from a narrow distribution whereas noisier measurements are
drawn from a wide distribution and are therefore more likely to be inac-
curate.

The standard variance estimation method is an average of the squared
difference of all the data points from the mean. This given as below:

Var(X) = 1 Z(mz —p)? (5.1)

i=1

where p is the mean, X is the random variable and z; is a datum in the



92CHAPTER 5. LEARNING PROCESS NOISE FROM NOISY OBSERVATIONS

dataset.

A simple averaging of variance estimation over multiple observations
divides a sum of variance by the total number of observations. Stated
another way, each squared difference is given an equal weight. As a sim-
ple expectation based variance computation method gives equal weights
to all observations, it would always overestimate the process noise due
to the influence of high measurement noise in the observations. Hence a
mechanism is needed to smooth out these instantaneous variances due to
change in measurement noise. This method should be able to compute the
underlying process noise variance from observations with varying mea-
surement noise.

The aim of the process noise learning method is twofold:

e to reduce the effect of measurement noise from the observed vari-

ables and
e to determine the process noise from the observations.

With an assumption that the process noise is quasi-static', a maximum
likelihood based method and a recursive exponentially weighted average
based method for process noise estimation are presented in this chapter.

5.2.1 Maximum Likelihood Estimation of Process noise

This approach aims to solve a maximum likelihood estimation (MLE) of
the variance in the observed data. The observations are noisy and the mea-
surement noise changes between observations. The proposed approach is
a batch learning approach. It is assumed that the mean and the variance of
the real world state is constant within a reasonably small window of time
t = 1tot = N, which is the length of the batch. The aim is to make the

best estimation of the variance in the real world process.

!quasi-static process changes very slowly and can be treated as stationary
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The mathematical derivation:

e y, is the observation at the ¢ time instant.
e ¢ is the sample from the noise distribution at ¢" time instant.
e 0., is the measurement noise, which is a function of time.

e /i, is the mean of the measurement noise distribution. Its value

is zero. i.e. p, = 0.
e /i, is the mean of the true state of the world.
e o2 is the variance of the true state of the world.

e 1, is the true state of the world. i.e. z; is a sample from the distri-
bution defined by the mean 4, and variance o2.

The joint probability distribution of one observation is given as:

P(yt7 22 032;7 Ko, 0’721,1:) (52)

The joint probability distribution over all the observations (y;,t = 1--- N)
is Y. Mathematically it can be written as below:

P(Y) = P(yt=1~--N7 Moz O‘i, Mo, 0-72Lt:1---N) (5.3)

The observation depends on the values of i, 07, jin, 07, . .. - Let us define
a vector 6 that contains all the parent variables that the observation y,

depends on:
0 = {:uxao-iaﬂnagit:l...]v} (54)

Now let us assume a uniform prior over 6

P(0) = P(pa) (07, )P () (o, ;) (5.5)
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where every term in the prior probability is independent of the other.
Now the conditional probability distribution can be written as:

P(Y’O) = P(ytzl---Nl,ux; 0'3257 Hop 0-721715:1...]\[) (56)
The aim is to find parameters ¢ that are plausible under the prior and
would make all the y,{t = 1--- N} likely. This is defined by the posterior

function M

M = P(0]Y) (5.7)
Using Bayes’ theorem the following is obtained

M = P(0]Y)

_ P(Y|0)P(6) (5.8)

- P)
where P(Y') is a normalization factor that does not depend on © Hence
the following can be written:

PO|Y) x P(Y|0)P(0) (5.9)

where P(0) is the prior belief. Under the assumption of uniform prior
over 0, the posterior distribution is equivalent to the likelihood. Now sub-
stituting 5.6 into 5.9 the following is obtained:

M  P(Y|0)P(6)

(5.10)
< P(y=1-n |y O s O =1y ) P(O)
Equation 5.10 can be expanded as below:
N
P(yi=1..n | e, Uia Moy U?%t:lmN)P(o) = H P [(yt‘ﬂxa U§> Mo Uz,t) P, Uggca Mo Ui,t)
- (5.11)

where every term in the prior probability is independent of the other.
Hence the above equation can be rewritten as the following likelihood

function below:
N

M =TT P|lite: 02, 1 02, | P(e) P02 ) P(ua) Pa2,) (5.12)

t=1
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The log-likelihood function would be

N

[T P[tli2: 02 10, 02| P(1) P(o2) P(1) P02

t=1

N
= Zln (P [(ytlﬂxy 032:7 Moy U?L,t)]) +o

In(P(pz)) + I (P(07)) + In(P (1)) + In(P(or; ;)

=X

=
[
=

(5.13)

Now from the assumptions it is known that ., 02, 11,, are constants. Hence
In(P(ps)) = In(P(c?)) = In(P(u,)) = 0. This is because constants are delta

T

distributed at the value of the constant, i.e. P(u,) = P(c?) = P(u,) = 1.

Hence 5.13 can be rewritten (putting the values of zero in proper places)
as below:

WE

(M) = "I (PWilite, 02, 10, 02,)] ) + n(P(o,)

! (5.14)
(P (16)]) + In(P(s2,))

t

NE

t=1

From basic assumptions it is known that the measurement noise is ad-
ditive Gaussian noise, hence P(y;|0) is Gaussian distributed as below:

P(y:|0) ~ N (po, 02, + 07)
1 (_(%—mf) (5.15)
T V@B 100 D\ 20020 + o)

Equation 5.15 is plugged into the log-likelihood function to obtain:

In(M) =

_ (vt —pa)?
+1n (exp 2(o7 (t)+0%) >]

—O—Z[ln(mm)
:ln(P(Ui7t))+Z[ ln\/27r ol(t) + 02)) }—FZ[ :uw)z ]

= = @+“>
(5.16)

2
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As the possible values that o7, can take are all equally likely, a uniform
prior over o, , can be safely assumed. The maximum and the minimum
values of the measurement noise variance is known beforehand. Let them
be 0™ and ¢™". A uniform distribution between these two limits would
be as below:

2 )= _r (5.17)

o-glax — o-gn'n
Our purpose is to find how the log-likelihood changes with ¢?. Notice that

P(c?.,) does not change with respect to change in o7, so it will be dropped

from the log-likelihood equation and the following is obtained:

61;12\/!) _ ai% (Z [~ 2r@ @ o)+ | - %])

t=1 t=1

(5.18)

The first term on the right hand side of the above equation gives:

0T, | ~In y2r(3(0) + 02))] :
=—) —= 5.19
072 L O
and the second term gives:
N _ (yt*HZ)Q
aztzl [ z(ag(t)+a§)] _ i %(yt - Mx)2 (5.20)
da (o3(t) +03)? '

the final answer of the partial is and it is set to zero to find the minima:

EN: [( (e —ma)® 1 =0 521)

—~ Lon () +02)*  (0h(1) + 02)

Observe that when o7, is set to 0 the above equation reduces to the
standard definition of variance.

The log-likelihood function proposed in equation 5.21 can be numer-
ically solved to estimate process noise variance. It is important to gain
insight into how this function depends on changes in the variance estima-
tions. A simple way to visualise the function’s behaviour is to evaluate

and plot the function value at different values of estimated variance.
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Figure 5.1 shows a plot of the log-likelihood function presented in equa-
tion 5.21 versus estimated variance. For the purpose of this figure, the
true variance was chosen to be 5 and a set of 500 samples were chosen as
the batch size. The samples were drawn from normal distributions with
zero mean and varying variances. The variance of the measurement noise
normal distribution changes as the measurement noise is varying between
measurements. A vertical red dashed line shows the true value of variance
and a horizontal red dashed line shows zero on the vertical axis.

The two red dashed lines and the likelihood function meet at the true
value of variance (5). A green circle marks the crossover. Note that the
value of the likelihood function reaches zero when the value of the esti-
mated variance is the true variance. Afterwards, with further increase in
estimated variance, the likelihood values become negative.

Zero value of the likelihood function indicates that the function has
reached its local maximum. This indicates that the root of the function pro-
vides maximum likelihood estimate of the process noise. Hence it is the
best estimate of the variance given the set of data. A numerical root find-
ing algorithm such as an inverse quadratic interpolation based method

can be used to solve this equation for zero.

5.2.2 Recursive Learning of Process Noise

For a measurement, it is supposed that the total variance is

§=w; + vy (5.22)

where w is a process noise sample drawn from a normal distribution given
by w; ~ N (0,Q). and v, is the measurement noise drawn from a normal
distribution given by v, ~ N (0, R;). It is assumed that the measurement
noise and the process noise are uncorrelated [100].

It can be seen that estimating the process noise variance is simple if the
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Figure 5.1: Plot of log-likelihood function versus estimated process noise
variance. The blue line in the plot depicts the relation between log-
likelihood function and estimated variance. The horizontal and vertical
dashed lines show the zero and the true variance respectively. Those three

line cross at the true variance which is marked with a green circle.

measurement noise is constant for all the measurements.
var(w) = var(§) — R (5.23)

In the case where measurement noise variance changes between obser-
vations this cannot be directly applied.

As different observations are made with different measurement noise
variance all the observations cannot be trusted equally. An observation

with high measurement noise is expected to be further away from the true
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value. If this noisy observation is given equal weight to another accu-
rate observation, it will contribute equally like to other observations in a
straightforward variance calculation shown in equation 5.23. As an effect,
the noisy observation will increase the estimate of variance. Therefore all

the observations cannot contribute equally to the variance estimation.

One simple but effective way to modify the contribution of a datum
(observation) into the variance computation is to reduce the contribution
of noisy observations in variance computation. This reduces the effect of
varying measurement noise on observations. Then an averaging mecha-
nism can be employed to compute the final variance. Notice the difference
between the flat average based variance estimator and the weighted aver-

age is that the noisy observations are given less weight.

As a simple averaging method equally weights all observations it is
less adaptive to changes. The weight of each observation in the case of
simple average varies in inversely proportional to the number of observa-
tions. Which means that for a large number of observations any new data
will have a very small contribution towards the estimated mean and the
estimator will effectively ignore new changes in the trend of the observed
data.

The exponentially weighted moving average (EWMA) improves on
simple average estimation. The equal weights are replaced by an expo-
nentially weighted moving average (EWMA). In this method, more re-
cent observations have greater weight when calculating the variance. The
weight coefficients of exponential averaging decreases as the temporal in-
dex grows into the past. The most recent measurement has the greatest
weight in the result and the influence of the previous observations is re-

duced exponentially as they become older.

In this section, an inverse variance weighted exponential moving av-
erage based method is presented. This method is able to estimate process
noise under the influence of changing measurement noise. This approach

aims to estimate the variance in pixel intensity online.
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This approach mitigates the effect of measurement noise variance by
inverse-variance weighting the observations by the measurement noise.
Asnoisy observations have higher measurement noise variance, the inverse-
variance weighting will be small and this will reduce the contribution of
the noisy observation towards the variance estimation. Finally, an EWMA

is employed to compute the average variance in the observations.
The mathematical derivation:

The traditional EWMA is given by the following equation

3(t) = D Zkf (tk_ k) (5.24)
Zk:o Y

where 5(t) is the EWMA estimate of variance, ¢ represents time and & is a

dummy variable. The above equation (equation 5.24) can be written as a

recursive form as below [18]:

5(8) = (1 =) f(t) + 3t — 1) (5.25)

where s;_; is the estimate at previous time step and 0 < vy < 1.

As the denominator of 5.24 37, _ 7" is a sum of a geometric progres-
sion, it approaches ﬁ as time ¢ approaches infinity. This allows equa-
tion 5.24 to be written in a compact recursive form shown in equation 5.25.

Notice that there is no inverse variance weighting in the EWMA for-
mulation 5.24. This work improves upon the EWMA by adding an inverse
variance weighting so that the proposed method can be used in a varying
measurement noise scenario. The proposed method is given by the equa-
tion

o Zico M=Kt = k)
> ko VRA(t — K)
where ¢, is the estimate of variance, £k is a dummy variable, ¢ represents

(5.26)

time, \(t) is proportional to measurement precision and f(¢) is the squared
deviation of the observation from the mean. The sum in the denominator

acts as a normalizer.
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Notice that in comparison to the traditional EWMA (equation: 5.24) an
extra term \(¢ — k) which changes inversely to the measurement noise has
been introduced in equation 5.26.

The proposed filter in 5.26 cannot be written in a compact form similar
to equation 5.25 as the values of \(t—k) in the denominator >, _ v*A(t—k)
are unknown in advance.

A recursive-like version of the proposed method can be achieved by
writing the denominator and the numerator of the proposed filter indi-
vidually in a recursive form.

Expansion of the numerator term in equation 5.26 yields
t
Ne =" MOF(E) + YA M= k) f(E = k)
k=1

= MO f(E) + A= 1) f(t = 1) + At = 2) f(t = 2)+
VXt —3)f(t—3)+---

= A f(t) +y[AE =D f(t = 1)+

YAt —2)f(t —2) + VAt —2)f(t—2)+ -]

Now, the numerator of equation 5.26 up to the time instant ¢ — 1 would
be

(5.27)

t—1

Neev =Y A"\t —1-k)f(t—1—k)
k=0

= At =D ft =1+t = 2)f(t —2) + VANt —2)f(t —2) + -
(5.28)

From equation 5.28 and equation 5.28 a recursive version of the numerator

is obtained which is shown below.
Ne = M) f (1) +¥Niy (5.29)

The denominator of equation 5.26 can be written in a recursive format

similar to equation 5.29. The recursive form is shown below:

Dy = A(t) +~vD,_, (5.30)
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Finally the proposed filter can be written as a ratio of the numerator
and denominator as shown below

~ N,

qs = E

)‘(t)f(t) + ’Yﬁt—l
A(t) + Dy,

(5.31)

Although equations 5.26 and 5.31 are mathematically equivalent, imple-
menting a recursive version of an equation reduces memory requirements.

As the current output of an EWMA filter depends on both the past out-
puts and the present input, it is an infinite impulse response filter. How
much the filter output depends on past outputs is controlled by the con-
stant parameter 7. 7 and the response-speed 7 of a filter are related as

below: AL
v = exp(—T) (5.32)

where At is the sampling interval and assumed to be 1. The above equa-

tion is rewritten to solve for 7 as below

1
log(7)

T = (5.33)
A high value of + results in a high value of 7 which means that the filter
trusts its past and gives less weight to new measurements. Hence a filter
with v = 0.5 would result in comparatively noisier output than a filter
with v = 0.99.

Individual measurements are made with different measurement noise
in the presented problem. It is desired that a filter in this situation trusts
the low noise measurements more than the noisy measurements. That can
be interpreted as a filter whose response-speed changes with the measure-
ment noise. The filter should have a high response-speed while incorpo-
rating measurements with high noise and a very low response-speed for
measurements with low measurement noise. This will effectively ignore

the noisy measurements and the filter output will follow past outputs,
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whereas a filter with a constant time-constant (7) will produce compar-
atively more noisy behaviour.
The time-constant 7, of the proposed filter depends on both A(¢) and

as given below
1

77 log(1A (1)) 539
where 0.001 < A(¢) < 1. 0.001 is the minimum measurement noise of a
foveation profile and the relationship between A and measurement noise
is given as

Tmin
A= o (5.35)

where r is the measurement noise variance and the r,,;, is the minimum
measurement noise variance.

It can be observed that A = 1, when 7(t) = r,,;,. Hence from equa-
tion 5.26, it can be noted that the response-speed of the proposed method
is the same as for EWMA at r,,,;,.

Both variance estimation methods (MLE and recursive) require an es-
timation of the mean to compute the variance. For the recursive process
noise estimator, a recursive exponentially weighted moving average was
used. An inverse variance weighted mean as shown below was used for
the MLE.

b

2. y(0)/r(@)

M, = —=— (5.36)

L 1/r@)

where M, is the weighted mean, (i) is measurement noise, y(i) is the
measurement and b is the size of a batch. The initial choice of a recursive

mean is always chosen as half of the maximum pixel intensity (0.5).

Accuracy

Since neither variance nor standard deviation can take on a negative value,
the support of the probability distribution describing either is not [—oo, o],



104CHAPTER 5. LEARNING PROCESS NOISE FROM NOISY OBSERVATIONS

thus the normal distribution cannot be the distribution of a variance or a
standard deviation. The correct PDF must have a support on the closed
interval of [0, oo]. It can be shown that if the original population of data is
normally distributed, then the expression

(n—1)s?

(5.37)

(o}
where s is a point estimate of the process noise, n is the total number of
samples has a chi-squared distribution with n—1 degrees of freedom given

by
o 1 (On = Ey)?
P = d;:l: - (5.38)

The chi-squared distribution of the quantity ("_0—2)82 allows a confidence

interval to be constructed for the estimated variance.

5.3 Results

To evaluate the proposed algorithms, a synthetic dataset of known mean
and variance was generated. This dataset is a collection of multiple sam-
ples drawn from a Gaussian distribution with a known mean and vari-
ance. Both the MLE and recursive variance methods were tested on this
data and their performance and error statistics were plotted.

Figure 5.2 shows a plot of the dataset and its histogram. This dataset
was drawn from a zero mean Gaussian with standard deviation of five.
The left pane of the figure shows the plot of the data points, where the hor-
izontal axis is the data-point and the vertical axis is the value of that data
point. The right pane of the figure shows the histogram of this dataset.
Notice that as the dataset comes from a zero mean Gaussian, the peak of
the histogram is at zero.

Which pixel of a visual scene will be observed with what measure-

ment noise variance cannot be predicted beforehand as the position of the
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Figure 5.2: The dataset used for testing the MLE algorithm and its his-
togram. The left panel shows a plot of the dataset. The right panel shows
the histogram of the dataset. It can be noticed from the histogram and the

dataset plot that the mean of the dataset is zero.

foveation profile in a visual scene is a function of the specific visual scene
and other conditions such as the internal state of uncertainty. Hence mea-
surement noise variances for the purpose of evaluating the variance esti-
mation algorithms were generated by choosing randomly from a uniform
distribution of measurement noise. The distribution had the same maxi-
mum and the minimum of the foveation profile discussed in the proposed
model chapter 3. The selection process is random with uniform probabil-
ity for any of the values. As the sampling was done with a uniform prob-
ability of selection of any value and without replacement, which results in

an unbiased choice for measurement noise variances.

5.3.1 Maximum Likelihood Estimator

This subsection presents the results of the maximum likelihood estimator.
The MLE estimator was tested for its estimation error, the effect of dataset
size etc. using the same dataset used to test the recursive estimator.
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Figure 5.3 shows a plot between absolute percentage error and number
of data-points. Each data-point in the figure represents separate experi-
ments. Separate datasets, each drawn from the same Gaussian distribu-
tion with zero mean and known variance, with each having an increasing
size from the previous one were generated to be used as the dataset for the

experiment.
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Figure 5.3: Plot of the error statistics of the MLE estimator. The horizontal
axis shows the total number of data-points used in the estimation and the
vertical axis shows the error value of estimated variance. The plot in blue
shows the error in estimated variance. It can be clearly observed that the
estimation is better with more data.

Figure 5.4 shows a plot between estimated variance and the number of

data-points for an MLE estimator.
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Figure 5.4: Plot of estimated variance and true variance using the Maxi-
mum likelihood estimator. The horizontal axis shows the total number of
data-points used in the estimation and the vertical axis shows the value of
estimated variance. The plot in blue shows the estimated variance and the
red dashed line shows the true variance. It can be clearly observed that

the estimation is better with more data.

Figure 5.5 presents a comparison between the forcing residual based
method proposed by Mayers [135,177] and the proposed maximum likeli-
hood estimator (MLE) based method. Note that the proposed MLE based
method performs better than the forcing residual based method.
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Figure 5.5: Plot of the results of the two estimation methods. The blue line
shows the percentage error in estimation of the method proposed by May-
ers [135,177] and the red line shows the percentage error for the proposed
maximum likelihood based method. Note that the proposed maximum

likelihood based method performs better.

5.3.2 Recursive Estimator

Equation 5.34 was used on linearly spaced measurement noise ranging to
find the corresponding response-speeds. The time-constant values were
plotted against the measurement noise values. Figure 5.6 shows a plot of
measurement noise variance versus the response-speed of the exponen-
tially weighted moving average (EWMA) and the proposed filter. The
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horizontal axis shows measurement noise variance and the vertical axis
shows response-speed for the proposed filter and EWMA. Minimum mea-
surement noise variance (r,,;,) used for the plot is 0.001 and the maxi-
mum measurement noise is 1. Notice that, only at low measurement noise
variance, the time-constant (7) of the proposed filter is equal to that of
the EWMA (high response-speed). Elsewhere the time-constant of the
proposed filter is low. The response-speed at higher measurement noise
changes with the change in measurement noise but the change is too small
to be noticed with the vertical scaling of figure 5.6.

It can be observed from equation 5.34 and equation 5.35 that the upper
limit of the response-speed of the proposed filter is determined by , as
when measurement noise variance r is minimum then X is 1. Whereas the
lower limit is decided by the minimum measurement noise variance 7,
as A\ = 7y, when r(t) = 1. Also, note that when )\ = 1 the response-speed
of the proposed estimator is the same as the response-speed of EWMA.
These attributes of the proposed estimator are true for values other than
the values chosen at present. Hence the property of the proposed filter of
having a high response-speed for measurements with low measurement
noise and having a low response-speed for measurements with high mea-
surement noise is not specific to the presented foveation profile and can be

used along with other foveation profiles.

Ideally, the proposed filter should behave the same as the EWMA when
the measurement noise is minimum. But it is suspected that due to the
lack of a compact recursive form of the proposed filter (equation 5.31), the
response-speed of the filter may not be as expected, particularly during
a transient. As the numerator and the denominator of the equation 5.31
reach steady state values it should start acting as expected. Hence if the
proposed filter is run with the minimum measurement noise at every time
instant (i.e. r(t) is replaced with 7, for all the measurements) on same
measurements, its output would not match the EWMA output for an ini-

tial period of time, but as the recursive numerator and denominator settle
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Figure 5.6: Plot of filter response-speed 7 versus measurement noise vari-
ance. The horizontal axis is measurement noise and the vertical axis is
the filter response-speed. The blue line shows the filter response-speed
for the exponentially weighted moving average and the red line shows
the response-speed of the proposed filter. It can be observed that the filter
response-speed of the proposed filter is high at low noise (at r = r,,,,) and
is low at high measurement noise variance, which makes the proposed

filter less susceptible to instant variations in measurement.

down it should start matching the EWMA output.

The proposed filter along with EWMA was run for 500 time steps and
the filter outputs were recorded. The minimum measurement noise (7, =
0.001) was used for all the measurements.
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Figure 5.7 plots the outputs of the proposed filter and EWMA. Notice
that the output of the proposed filter differs from that of EWMA for about
100 time steps and matches the EWMA afterwards. The specific trajecto-
ries produced by the filters are not fixed and vary from trial to trial.
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Figure 5.7: Plot of outputs of the proposed estimator and EWMA. The
horizontal axis shows time and the vertical axis shows estimated variance.
The blue line shows the output of the proposed estimator and green shows
the EWMA'’s output. The black line shows the true variance (4). Notice

that the proposed estimator’s output starts matching EWMA’s output af-
ter the first 100 time steps.

As the response-speed of the proposed method is high only for mea-
surements with low noise and is low elsewhere it is expected that the fil-
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ter output will ignore noisy measurements. In contrast, the EWMA will
incorporate all the measurements whether it is made with low measure-
ment noise or high measurement noise. Hence noisy measurements will
influence the EWMA'’s output to fluctuate, but the output of the proposed

method will stay comparatively stable.

To examine the behaviour of the proposed filter, it was run along with
EWMA for 500 time steps and the filter outputs were recorded. To capture
how the proposed estimator deals with accurate and noisy measurements,
the measurement noise was chosen to be the highest (1) for all measure-
ments except for one measurement at ¢ = 120. The proposed estimator’s
output was expected to be more stable compared to the EWMA output.
This should capture the estimator’s tendency to stick to old values when

the measurement noise is high.

Figure 5.8 shows a plot comparing the outputs of the proposed estima-
tor’s and the EWMA output along with the measurement noise variances.
As the measurement noise variance and the estimated variance are of dif-
ferent scale, figure 5.8 plots two different y-axes one on the left and the
other on the right side. Hence the two variances were plotted with two
different vertical axes. The axis on the left side of the plot shows estimated
variances, whereas the axis on the right side of the plot shows measure-

ment noise.

The horizontal axis shows time. The transient phase of the proposed
estimator’s output, the first 100 time instances, is not plotted. Hence the
horizontal scale of the plot starts for 101. The black horizontal line shows
the true variance of the entire dataset. Notice that the output of the pro-
posed method is more stable compared to the EWMA.

Figure 5.9 shows the overall performance of the proposed method com-
pared to the traditional EWMA. The horizontal axis shows time and the
vertical axis shows estimated variance. The black horizontal line is the
true variance. It can be noted that the EWMA based estimation fluctuates

more than the proposed method. Measurement noise variance was chosen
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Figure 5.8: Plot of the output of the recursive variance estimator. The verti-

cal axis on left shows estimated variance (blue colour) and the vertical axis

on the right (red colour) shows the measurement noise variance. The hor-

izontal axis shows time for both the vertical axes. Notice that the output

of the EWMA is noisier than the proposed method.

randomly from a set of measurement noise values with 1 as the maximum
and 0.001 as the minimum measurement noise. This selection process has
already been discussed at the beginning of this section.

The ability of the proposed filter to effectively ignore the noisy mea-
surement and maintain its previous estimate is important in the context
of visual sampling based on internal uncertainty. Short time fluctuation
in variance estimation is not a desired quality of the estimator as that

would undesirably change the visual sampling distribution between two
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constitutive frames of a video. As shown in figure 5.9, with the proposed
method visual sampling distribution remains relatively stable for a longer

period of time, until an accurate measurement changes the estimation.
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Figure 5.9: Plot of estimation of variance using the proposed method (blue
line), EWMA (green line) and true variance (black line). The horizontal
axis shows time and the vertical axis shows the estimated variance. Notice
that the output of EWMA fluctuates more hence the proposed method is
more trustworthy.

Figure 5.10 shows the percentage errors in the estimation of variance
using the recursive variance estimation method versus the total number
of data-points. It is observed that the percentage error goes down as the
total number of data points used in estimation is increased.
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Figure 5.10: Plot of the error statistics of the recursive estimator. The hor-
izontal axis shows the total number of data-points used in the estimation

and the vertical axis shows the error in the estimation of variance.

Figure 5.11 shows a plot between the number of data points used ver-
sus the value of the estimated noise for the recursive variance estimation
method. A red dashed line at the value of true variance is plotted as a
reference. Note that the estimated variance is closer to the true variance as
the number of data-points increases.
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Figure 5.11: Plot of estimated variance and true variance. The horizontal
axis shows the total number of data-points used in the estimation and the
vertical axis shows the value of estimated variance. The plot in blue shows
the estimated variance and the red dashed line shows the true variance. It

can be clearly observed that the estimation is better with more data.

5.4 Application to video

It is important to assess the performance of the proposed variance esti-
mators on real life video data rather than the synthetic data drawn from
normal distributions. The changes in the pixel intensity of a natural video
are exact pixel intensity. Not necessarily always Gaussian, but it is ex-
pected that pixels with high and low temporal variances can be modelled
with a simple additive Gaussian noise model.

Also, the pixel intensity ranges from 0 to 1 whereas a Gaussian distri-
bution used to model the belief state in a Kalman filter can extend beyond
this range. Hence the pixel intensity predicted by the Kalman filter will
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not be always accurate. This lack of accuracy is not crucial as the use of a
Kalman filter in this work is not aimed at tracking the exact pixel intensity.
Instead, the aim is to use the filter’s ability to combine new observations
with existing beliefs.

The Kalman filter would track the pixel intensity better with a con-
straint on the mean values of the belief states but that would introduce
complication into the filter implementation. The data fusion and belief
state uncertainty update feature of a Kalman filter is independent of the
mean of the belief state. Therefore the pixel intensity of the videos was

directly used without any modification for updating belief states.

5.4.1 Description of Natural Video Content

Videos of natural scenes contain a wide variety of motion patterns of vary-
ing complexities. An example of a simple motion would involve an object,
for example, a ball moving through the visual scene. Whereas a random
group of people walking across a four-way crossing is an example of com-
plex motion as it lacks any specific pattern.

A small subsection of the video which is on the trajectory of the path
of the moving ball would show changes in its average intensity over that
small area. It would show average background intensity when the ball
does not overlap with the subsection and would show the intensity of the
ball as it passes through the section. Hence there would be a clear change
in pixel intensity.

Events such as changes in camera angle or the appearance of a new
object in the scene affect pixel intensity of the video. These events can be
grouped into two distinct sets of ‘causes’;

e Global causes: These are causes that affect the visual scene globally.
A change in a global cause, for example, the lighting in a room affects
all the pixels in the scene globally. A similar effect can be observed

for camera pan, camera tilt, use of a coloured filter, or more generally
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change in camera parameters or a scene change.

e Local cause: These causes affect a visual scene locally. For example,
an appearance of a new object in a specific part of a scene affects
the intensity of that part only. Stochasticity of motion in a region of
the scene, for example, someone waving hands, a leaf shaking from

wind have local effects.

It can be posited that local causes are more informative of events hap-
pening in the scene. Usually, the information content of the video is con-
veyed by local motions and there are more local motions in a video than
global causes. For instance, during a news presentation, the gesticulation
of the news anchor carries information and it is there for longer than any
global change in the scene. The effect of global causes are surprising for a
short while but are not informative afterwards. For example, if the lights
go off during a television interview, it triggers surprise at that moment but
loses importance after a while.

The local temporal change in pixel intensity is a time-series whose tem-
poral characteristics depend on the underlying set of motions in the video.
For example, the temporal characteristics of a subsection of a video show-
ing people walking are different from a ball moving across a uniform
scene. As there is no definite pattern of motion in the people walking
video the pixel intensity will change abruptly based on many parameters
like the colour of the dress worn by an individual, his walking speed, the
trajectory of his motion etc. Hence the average intensity of the patch on the
video will fluctuate abruptly. Whereas a similar patch on the ball moving
across the video shows a more bistable type change. During the presence
of the ball, the intensity of the pixel changes to a different state and it stays
there until the ball leaves the region and the pixel intensity falls back to
the background intensity. Conversely, a wall or a backdrop has very dif-
ferent temporal characteristics. As it is unaffected by any local motion the
associated pixel intensity does not show any change.
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A location where pixel intensity does not change is predictable in the
temporal sense. One past observation can be used to forecast future values
accurately. This location can be observed a few times and the measured
pixel intensity can be carried forward in time using a predictive model.
On the contrary, a location where the pixel intensity changes abruptly need
regular observations to keep oneself updated about its state.

In a broad sense pixels from natural videos can be considered to have
three groups of temporal predictability. Each group corresponds to a dis-
tinct type of local motion in the scene.

e Highly predictable group: Elements in this group correspond to sec-
tions of a video that can be predicted with high accuracy. For exam-

ple, regions associated with a wall, table or chair in a room.

e Unpredictable group: This corresponds to video regions with no dis-
tinct temporal patterns. Past observations are not useful in predict-
ing the future state of the pixel. An example would be the random
quiver of a tree leaf in wind.

e The medium predictable group are in between predictable and un-
predictable groups. When there is a change in pixel intensity it holds
the changed state for longer than an unpredictable region. In con-
trast, unpredictable and predictable regions show frequent and no
changes respectively. These changes could be regular or irregular
in time, but usually natural videos will observe irregular changes in
the pixel intensity. During the steady period, there is always a small
quantity of noise on top of the steady value. For example, a shot of
turbulent water in a whirlpool would have its natural motion which

is in between predictable and unpredictable.

The predictability of image points carries information about local stochas-
ticity of motion hence it can be used as a measure of attentional demand

of a visual region. This measurement of attentional demand can be further
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used to drive visual attention in proportion to the demand in a dynamic
scene.

An average measure of pixel intensity over a wide area of a video in-
cludes changes over multiple smaller regions of the video. In that big area,
each region may include individual and disconnected changes. Changes
in those smaller regions are indistinguishable from the average change in
the big area.

For initial experiments, an intensity change over a single pixel was cho-
sen for modelling as it is the most elementary building block of a video.
Figure 5.12 shows a plot of the change in pixel intensity over time of a

pixel in a video.
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Figure 5.12: Plot of pixel intensities for first 100 time frames versus time
from a video. The horizontal axis shows time. Each square in the vertical

axis denotes pixel intensity at a specific time instant.

The mathematical relation between two consecutive pixel intensities al-
lows an unobserved state of the future to be predicted based on the knowl-
edge of observed past state. A prediction is never completely accurate due
to random adversarial effects on the future state and the limitation of the
mathematical relation that describes the relationship between two consec-
utive states in time. Hence the accuracy of prediction lies within a certain
degree of uncertainty.

For a given model that describes the relationship between two states
in time, the process noise matrix (Q) of Kalman filter equations quanti-

fies how accurate its prediction is. Higher process noise indicates unpre-
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dictability by the model and low process noise indicates that the future can
be predicted with high accuracy. Also if a pixel’s intensity in a real world
is affected by unpredictable effects like random motion in the visual scene,
the future state is unpredictable and the process noise matrix captures that
as high process noise in the corresponding element of the Q matrix. Hence
the process noise matrix defines how predictable an observed real-world

state is.

A real life agent needs to make accurate and reliable estimates of pro-
cess noise from observations. Although the proposed estimators were
evaluated with synthetic data, it is important to also evaluate their per-
formance on real life video data. The rest of this chapter evaluates the per-
formance of the proposed process noise estimators (maximum likelihood
and recursive estimator) with real life videos. It is intended to qualita-
tively assess the performance of the MLE and the recursive algorithm in
following pixels with low and high predictability and how the algorithms

cope with unexpected large changes in pixel intensity.

5.4.2 Choice of Videos

Conversation scenes are a typical example in which low, medium and high
predictable regions can easily be found. Usual conversations happening
in a natural scene will include a background, often containing walls, fur-
niture and perhaps buildings as well as the subjects engaged in conver-
sation, random movements of tree leaves, random movements of people
not in focus etc. as a part of the scene. Pixels from the building, furniture
and walls have predictable intensity, whereas pixels that are part of the
random crowd in the background are unpredictable. The area surround-
ing the people’s head, torso, hands would show medium predictability as
it can be expected that people would move their body during a conversa-
tion and stay in the new location for some time before returning back to

original position.
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The Coutrot Database 1 [38] provides visual materials consisting of 15
one-shot conversation scenes extracted from French cinema. Each video
features two to four conversation partners embedded in a natural envi-
ronment. Videos last from 12 to 30 seconds (mean = 19.6 sec; SD = 4.9
sec), have a spatial resolution of 720 x 576 pixels and a frame rate of 25
frames per second. All the conversations take place in complex but nat-
ural scenes (cafe, streets, corridor, office, etc.) involving different moving
objects (glasses, spoons, cigarettes, papers, hands, back of a head, face,
body part etc.) in separate videos. Faces occupied most of the area in each

scene.

To investigate the performance of the proposed process noise estima-
tors, five random videos from the Coutrot Database 1 [38] was chosen.
The estimation process involves measurements taken with varying mea-
surement noise as mentioned in the earlier section on results using syn-
thetic data. Each of those videos has low, medium and high predictable
visual regions and are generally free from any scene cut or other major
global effects (e.g. change in camera angle, pan, zoom etc.). One exception
is ‘Faces-46" which includes a small camera shake in the beginning of the
video.

Pixels that are low, medium and unpredictable were chosen manually
by trial and error method by looking at the time-series waveform for a va-
riety of pixels. Also, the standard deviation is a measure of predictability
of an outcome hence is high for unpredictable regions and low for pre-
dictable regions. Hence the standard deviation of a chosen pixel over time

was used to make the selection of the pixel’s predictability.

Pixels intensities in the original videos range in value from 0 to 255
(due to 8-bit quantization of sensor output) which was normalised to a
standard monochrome image whose pixel intensities range from 0 to 1.
In the normalised video, 0 represents black, 1 is the brightest value possi-
ble representing white and other intensities in between represent different
shades of the grey-scale.
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‘Faces-clip 46" is a 21 second long video clip of a group of people having
a conversation in a restaurant. Only two people of the group are visible
and hold centre stage throughout the clip. The background is mostly the
wall of the restaurant and partly the couch on which the actors are seated.
Any pixel in this region is a predictable time-series (5D=0.0085724). The
actor on the right side gesticulates excitedly during the conversation and
the area around his hand is an unpredictable region (SD=0.17555). The
area surrounding the actors” heads are of medium predictability (SD=0.1354)
as the actors move their heads back and forth during the conversation
which causes short term (but stable during the term) changes in pixel in-
tensity.

It is important to find out how well the presented model can describe
the changes in pixel intensity over time. To understand that the tempo-
ral behaviour of selected pixels was plotted. These graphs show how the
intensity changes over time.

Figure 5.13 shows one frame from the ‘Faces-clip 46’ video and a plot
of pixel intensity over time for a particular pixel from the video. The left
column shows the first frame of the video, the red square that overlaps the
frame indicates the pixel choice. The right column shows the change in

pixel intensity over time for the entire length of the video clip.
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Figure 5.13: The first frame of the faces-46 video and the plot of pixel in-

tensity of a chosen pixel (shown as a red square) over time.
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Notice the clear difference in temporal behaviour of the three pixel
choices. On the top right panel of 5.13 is the predictable pixel and its inten-
sity does not change rapidly over time. The middle panel on the right has
medium predictability. The pixel value changes but remains stable at the
new value for a short amount of time before it goes back to the background
pixel intensity. In this specific example, the actor on the left holds his drink
close to his chest at around 13 sec into the video play. This is reflected as
the dip in the pixel intensity near the 300" frame in the time-series plot. Fi-
nally, the pixel near the right actor’s hand shows unpredictable fluctuation
in pixel intensity as the actor moves his hand unpredictably throughout
the video (as an act of gesticulation).

An important guide to the persistence of pixel intensity in a time-series
is given by the series of sample autocorrelation coefficients. They measure
the statistical correlation between observations at different times. The set
of autocorrelation coefficients (acf) arranged as a function of lag in time is
called the sample autocorrelation function.

The autocorrelation function is a statistical description of how reliably
an observation at a current time instant can be used to predict a future
state at a certain time-steps ahead. Hence, for the same time lag, the au-
tocorrelation function would have high values for predictable regions and

values for unpredictable regions of a visual scene.
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Figure 5.14: Plot of autocorrelation coefficients versus time lag for the lo-
cations in video Faces-46. The three lines in the plot depict the relation be-
tween measurement noise and posterior variance for three different prior
variances. The figure shows that error covariance matrix and the mea-
surement noise follows a positive monotonically increasing relation and
the posterior variance is asymptotic to the prior variance at high measure-

ment noise covariances (refer to equations 4.3).

Figure 5.14 shows a 3-dimensional plot of sample autocorrelation ver-
sus time lag, called a Correlogram, for a low, medium, and highly pre-
dictable pixels. The x-axis shows time lag, the y-axis shows the type of
pixel (low, medium or high predictability) and the z-axis shows coeffi-
cients of autocorrelation. At zero time lag,t the autocorrelation coefficient
is always 1, as is shows the correlation of a data point with itself. The three

Correlograms are plotted in the same graph, separated in the y-direction,
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for ease of visual comparison.

Notice that the autocorrelation coefficients for the low predictability
pixel quickly reaches a value close to zero (acf = 0.038965) after 10 time-
lags. The autocorrelation coefficient for the predictable pixel remains al-
most close to 1 (acf = 0.78272) at 10 time lag and the same for the medium
predictable pixel is (acf = 0.4137).

Figure 5.14 is an estimate of predictability of the three different types
of pixels. It can be observed that a past observation can be used to forecast
the future states of a predictable pixel whereas a past observation does not

forecast the future state of an unpredictable region.

5.4.3 Type of Noise for the Chosen Videos

It is important to determine if the additive white Gaussian model holds
true for the videos. To test that the temporal mean and variances of mul-
tiple time series of a few chosen pixels are computed. The mean and the
variance computation considered pixel intensities over the length of the
entire video.

Table 5.1 shows three different values of the mean for each high, medium
and low predictability with their corresponding standard deviations. Each
pixel in any group was chosen manually from the ‘Faces-clip 46" video by
visually observing the time-series pattern.

The leftmost column on table 5.1 shows the predictability of the pixel.
The centre and the right column shows the mean and the standard devia-
tion measures of three pixels belonging to each of the high, medium and
low predictability groups.

Notice in table 5.1 that pixels with different means of similar predictabil-
ity show standard deviations in close range. In each of the predictability
groups, the measured mean changes from almost 0.1 to 0.7 but the stan-
dard deviations within a group do not scale with the mean. Therefore
the average amount of disturbance, measured by the standard deviation,
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is not a function of the average pixel intensity. Hence it is reasonable to

model the disturbance (noise) as additive in nature.

Pixel type Mean | Standard deviation
0.321 0.009
High predictability | 0.411 0.009
0.734 0.008
0.0789 0.139
Mid predictability | 0.361 0.138
0.736 0.138
0.133 0.186
Low predictability | 0.364 0.188
0.665 0.178

Table 5.1: Table of pixel intensity mean and standard deviation for three
pixels belonging to each of the high, medium and low predictability
groups in the ‘Faces-clip 46" video.

5.4.4 State Modelling

The use of multiple Gaussian models to describe dynamic scenes at the
pixel level, specifically methods involving a mixture of Gaussian distribu-
tions, have become popular in the recent years [60,176,199].

N. Friedman and S. Russell [60] proposed a model that uses a mixture
of three Gaussian components to model visual properties of each pixel.

C. Stauffer and W. E. L. Grimson [176] proposed an adaptive method
that models each pixel as a mixture of Gaussian distributions with a vari-
able number of Gaussian components.

C.R. Wren and colleagues proposed a method for tracking human mo-
tions in a relatively static background [199]. This method model each pixel
with a multi-modal normal distribution. Each dimension of the multi-

modal normal distribution models one feature. For example, this approach
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will model a quick and random motion of an object in front of a contrast-
ing static background with a covariance that is very elongated in the lumi-
nance direction, but narrow in the chrominance direction.

The strength of a mixture of Gaussian models approach is that it can
converge to any arbitrary distribution provided there are a sufficient num-
ber of components. Multiple states per pixel require a large number of
components or states to be tracked by an estimator like the Kalman fil-
ter. For instance, a 720 x 576 video with 3 states per pixel would roughly
need more than one million states to be maintained by an agent. This is
computationally very expensive.

To address such a computationally challenging situation this work mod-
els each pixel with only one state, the pixel intensity. It is very likely that
a single Gaussian model is inadequate to accurately model the temporal
changes of pixel intensity over time.

A multi-modal representation of the world is not a necessity for the
presented work as the main aim of this thesis is to study the behaviour of
utility function based sampling. Although a multi-modal model will be
more informed and will produce more accurate results, the essential be-
haviour produced by the utility function does not change. Hence the be-
haviour can reasonably be demonstrated with a single Gaussian per state

model without getting into challenges of computational complexity.

5.4.5 Experimental Setup

The proposed maximum likelihood estimator (MLE) and the recursive
estimator were run on videos from the Coutrot video database 1 [38].
Five conversation clips (Faces-46,Faces-51,Faces-53,Faces-55,Faces-57) that
have multiple low, medium and high predictability visual regions were
chosen from the database for experiments. Each of the five videos contains
two actors engaged in conversation in settings like in a cafe(Faces-46),

balcony(Faces-51), an airport(Faces-55), public bar(Faces-57), and inside
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a room(Faces-53). All five videos show a non-synthetic natural setting, i.e.

there is no computer generated graphics in any video.

The area around actors’ body parts that move in space, form a medium
predictability zone. For example area around the head, torso etc. Elements
of the setting which contain the actors mostly show predictable tempo-
ral behaviour. For instance the wall in the background (Faces-46,Faces-
55,Faces-53), furniture(Faces-51), buildings in the background(Faces-51),
windows(Faces-57) etc. A variety of objects and the area around them in
the scene show unpredictable behaviour. Examples are someone using
his hand to gesticulate (Faces-46, Faces-53), random people walking in the
background(Faces-55), smoke coming off a cigarette (Faces-51), moving

torso while talking (Faces-55).

The MLE estimator requires the input observations to be grouped in a
batch. In contrast, the recursive estimator updates its estimation at every

time step.

The change in pixel intensity of a video is one time-series and it needs
to be divided into batches for MLE estimator. For the purpose of evalua-
tion of the MLE estimator, all the data-points in a batch were chosen from
parts of the video with similar variance. For example, if an actor’s head
moves forward, the pixel intensity at that region would change. As long as
the actor keeps his head in that region, the pixel intensity would remain
the same with some small variance. The pixel intensity would return to
the background pixel intensity (with some variance) as the head moves
back to its original position. Hence there are two clear segments of pixel
intensities: one before the head moved in and the second is after the head

moved back to its original position.

Thus a complete video is divided into smaller segments and each seg-
ment is treated as a batch. Hence the video segment length determines
the number of data-points in one batch. The segmentation was done by
visually inspecting changes in pixel intensity over time and watching the

corresponding sections of the video clip.
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The medium predictability region of videos was manually segmented
in time, where each segment corresponds to a local motion in the video.
If a video had multiple motions, it is divided into multiple segments. On
the other hand, high and low predictability regions show similar variance
behaviour throughout the video. Hence the entire video was treated as

one segment.
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Figure 5.15: Plot of pixel intensity over time. Six vertical dashed lines de-
pict five segments of the time series. The figure shows how pixel intensity
time series is grouped into smaller batches. Notice the last vertical dashed

red line overlaps the figure axis.

Figure 5.15 is a plot of the medium predictability time-series from the

‘Faces-clip 46’ video clip. Dashed vertical red lines overlaid on top of the
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time-series plot mark time divisions. The section of the time-series that is
in between two lines is one batch. Notice that there are five batches shown
in the plot.

The first batch is from the beginning of time series (¢ = 0 to ¢ = 268)
which includes a steep fall in pixel intensity at the end. The steep fall at
the end was included in the batch to evaluate how the MLE algorithm
performs on sharp changes. The second batch involves a sharp change
with less data than the first batch. The third batch is long and there are
no sharp changes in the batch. The fourth batch includes only two data
points and there is a sharp change in pixel intensity in the batch. Finally,
the fifth batch is a small batch and does not involve any sharp changes.

Responses of each of the estimators (MLE and recursive) were recorded
and compared with true statistical variance within the batch. The area
under the curve between true variance and estimated variance is the error
in estimation. The integrated error over time is total error and the total

error divided by total time (i.e. error per unit time) is the average error.

t=b
oy = / le(t)|dt (5.39)
t=a
t=b
t)|dt
Eavg = ﬂ (539]3)
b—a

where a, b are limits of integration that marks the beginning and the end
of the time duration of the integral, e(¢) is instantaneous error, £, is total
error and E,,, is average error. As the process noise estimation starts at
the beginning of the video and runs up to the end, the lower limit of inte-
gration a = 0 and the upper limit is b is the total number of frames of the
video.

As the estimated variance curves are irregular in shape, the error in
estimation is computed numerically as an approximated integral (approx-
imation is done using trapezoidal method, with unit spacing in time axis)

of difference in area between the true and the estimated process noise.
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The integrated area under the curve between the true and the estimate
indicates total error and is a measure of performance of the estimators.
As the MLE is a batch estimator, its estimation remains constant for the
duration of a batch, whereas the recursive estimation varies at every time
step (See figure: 5.16).

It might seem from figure 5.16 that the MLE estimator performs better
than the recursive estimator as visually the area shown in green is less
than the area shown in blue. But these error curves depend on specific
selection of measurement noise, choice of 7, and on the accuracy of the
estimated mean. Hence error curves change between runs and there could
be instances where the recursive estimator performs better than the MLE

estimator.
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Figure 5.16: Plot of estimated variance and true variance with estimation
error shaded in colour. The area shaded in blue indicates error in estima-
tion by the recursive estimator and the green area shows the error in MLE
estimation. Notice that the error for MLE is constant, whereas the error
of the recursive estimator changes with time. Integration over the entire
shaded area for a given estimator is a measure of total error in estimation.

While evaluating the maximum likelihood estimator on synthetic data
it was observed that performance of MLE suffers when there are not enough
data points in a batch(see figure: 5.4). It is expected that the MLE would
produce erroneous result for the fifth batch and its performance would
be better for the other divisions. Also, the effect of choice of response-
speed(y) on the recursive estimator and effect of size of dataset on maxi-

mum likelihood estimator was noticeable. It is described below.
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~ | Total error in recursive estimation
0.95 17.841
0.85 31.190

Table 5.2: Table showing total error in estimation for two values of 7. A
low choice of +y results in more total error and a high choice results in less

total error.

5.4.6 Results of Process Noise Estimation
Effect of v on recursive estimation

Figure 5.17 is a plot of recursive estimation for 300 time instances, overlaid
with the true variance estimation. The height of the red depicts changes in
true variance changes. The blue line shows the estimate and the red line
shows true value. The left panel shows the estimate with v = 0.95 and
right panel shows the estimate with v = 0.85 on the same data.

If the choice of v is high (y = 0.95), the recursive estimator trusts past
estimates more than the recent measurements and fails to catch up with
short term changes in the time series. This results in a slow response in
estimation from the recursive estimator. Notice that the estimator took
around 50 time steps to reflect the change in variance ( 5.17, left panel,y =
0.95,t = 270 to t = 320). In contrast, the recursive estimator takes around
26 time steps to reflect the change.

Low ~ causes the estimator to trust measurements more. This causes
the estimator to follow the real time-series data closely but the recursive
variance estimation is easily affected by noisy measurements and the es-
timate fluctuates. Estimate fluctuations result in more total error (F;,; =
31.190) compared to more non-reactive version of the estimator (y = 0.95),
which results in total error of F,,; = 17.841.

Figure 5.18 shows plots of pixel intensities over time and their corre-

sponding estimations of variance. The left column shows pixel intensi-
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Figure 5.17: Plot of estimated variance and true variance using the recur-
sive estimator with two different values of 4. The horizontal axis shows
the total number of data-points used in the estimation and the vertical
axis shows the value of estimated variance. The plot in blue shows the
estimated variance and the red dashed line shows the true variance.

ties where upper, middle and bottom rows show predictable, medium
predictable and unpredictable pixel correspondingly. The right column
shows estimations of variance of the corresponding pixel shown in the left
column. All the pixels shown in this plot are chosen from the ‘Faces-46’
video. The v for the recursive estimator was chosen as 0.85 as low choice
of v allows the recursive estimator to follow the changes in variance better.

As MLE is a batch estimation method, its estimation is constant within
a time window whereas the output of recursive estimation changes at each
time step. A small number of data points affect the MLE negatively causes
it to overestimate variance, which can be observed in the middle panel.
The distance between the green line and the true variance is high, indicat-
ing higher error in estimation(around ¢ = 282 and ¢t = 517). Where the data
size is big MLE performs better. Average estimation error is 0.6381 with
2 data points and 0.0929 with 22 data points in contrast with 0.0002 with
223 data points. In general, MLE seems to have performed better than the
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recursive estimator and results in less error in estimation.

Table 5.19 shows a summary of average estimation errors of MLE and
recursive methods. Each of the estimators was run on three choices of
pixels on each of the five videos choices from the Coutrot video database
1 [38]. The first, second and third rows in the table show average errors in
estimated variance of low medium and noisy pixels respectively.

Unlike the previous measurement of error presented in table 5.2, total
error cannot be used to compare performance across videos of different
lengths. The total error is a function of the video length and the video
lengths of the five chosen videos are different. Hence the effect of video
length on error calculation needs to be nullified. To bring error estimation
on a similar footing, average error per unit time was chosen over total

error.
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Figure 5.18: The left column shows plot of pixel intensities over time and

the right column shows estimated variance by MLE and recursive estima-

tors for that pixel. Blue, green lines show recursive and MLE estimations

respectively. The true estimation is shown in red.
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Video name | Pixel characteristics Eovg
Max likelihood estimator | Recursive estimator
Low variance 0.0024 0.0128
Faces-46 Medium variance 0.0025 0.0128
High variance 0.0023 0.0033
Low variance 0.0007 0.0153
Faces-51 Medium variance 0.0077 0.0162
High variance 0.0271 0.0310
Low variance 0.0000 0.0150
Faces-53 Medium variance 0.0050 0.0133
High variance 0.0101 0.0249
Low variance 0.0002 0.0094
Faces-55 Medium variance 0.0052 0.0183
High variance 0.0015 0.0031
Low variance 0.0009 0.0146
Faces-57 Medium variance 0.0063 0.0210
High variance 0.0141 0.0197

Figure 5.19: Summary of average estimation errors of MLE and recursive

methods.

Notice that on average the MLE performs better than the recursive vari-

ance. Amongst the three types of pixels, estimating the variance of the

unpredictable pixel produces the highest error.

A point worth noticing is that in the case of maximum likelihood based

batch estimation of variance, the sequence of sampling in a batch of data

is irrelevant as the set of data-points is treated as a whole. In contrast, the

sequence in which individual measurements occur affects the trajectory of

the recursive estimator.
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5.5 Chapter Discussion

This chapter contributes two novel algorithms that can learn process noise
from observations made with varying measurement noise. To the best of
the author’s knowledge the two proposed algorithms are the first to learn
process noise from observations made with varying measurement noise.
This two process noise learning methods are intended to help the Kalman

filter based visual target selector adapt to a new dynamic visual scene.

In the context of the saliency map literature, this chapter presented the
first demonstration of adapting inhibition time according to the temporal

characteristics of the visual scene.

The drawback of the MLE estimator proposed is that it cannot fol-
low instantaneous changes in variance as it is a batch processing method.
However, the recursive estimator can follow instantaneous changes, given
its response-speed is chosen to be sufficiently short, but is less accurate
than the MLE. Choice of v is an important design parameter for this esti-
mator. Low v allows the recursive estimator to follow changes in variance
closely but is easily affected by noise. High v lowers the recursive estima-
tor’s response-speed, therefore, the past estimates are trusted more and
estimation is robust to noise. The drawback of high ~ is the estimator can-

not follow quick changes.

It is important to note that the aim of this variance estimation is not to
produce an accurate estimate of the variance in the video. Instead, the aim
here is to make an estimate of the process noise so that a foveation profile
can be driven sensibly. Hence an accurate estimation is not necessary as
long as the estimation is within a limit that keeps the corresponding pixel
within its original category of low medium or high predictability.

It was assumed that visual regions with their characteristic predictabil-
ity do not change over space. However, in real life, characteristic pre-
dictability of scene regions might change. This change in temporal charac-

teristic should not hinder the performance of the two estimators proposed
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here.
These two variance estimators will be used in the next chapter (chap-
ter 6) along with the proposal of the novel utility function.



Chapter 6

Utility functions

6.1 Introduction

In this chapter, the proposed Kalman filter based visual target selector will
be experimented with using multiple utility functions to select visual tar-
gets in a dynamic visual scene and the model’s behaviour will be studied.
The experiments will be carried out in three stages, where with each stage
progressively more complexity will be added.

The first stage presents how the proposed Kalman filter based target se-
lector prevents fixation without using the classical IOR mechanism. This
stage proposes three utility functions and studies the resulting system be-
haviours. The proposed model is tested with a set of simple videos with-
out using the Itti saliency map to study the model’s behaviour. In these
experiments, pixel intensity of the videos is used for the internal belief
states.

Finally, in the third stage the proposed model will be applied to the
Itti model. This stage will present a comparative study between the ability
of the Itti model and the proposed model to predict human fixation for a
popular video dataset. The ability to predict human fixation of a video
is an important application of saliency models as this has many impor-

tant real-life applications like video segmentation, video encoding, visual

143
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SLAM.

6.2 Experimental Method

Visual scene sampling behaviours of an agent with each of the five util-
ity functions were explored. The results of each of the utility functions
are presented in their corresponding sections of this chapter. Each section
presents an analytical explanation of the agent’s behaviour using the help
of Kalman filter equations and the utility function. Attention distribution
plots are used to show how the agent distributes attention over the five
chosen videos from the Coutrot video database 1 [38].

Similar methods are used for experimenting with each of the utility
functions. So, a general description of experimental methods is discussed
here. Where necessary, each subsequent section presents a small addi-
tional description, explaining aspects of the experiments related to that
section only.

All the proposed utility functions were implemented using the MATLAB®
programming language on a Linux platform. In each experiment, an agent
running Kalman filters that follow the pixel intensities of a video makes its
decision of where to look in the visual scene based on one of the five util-
ity functions discussed above. Given a visual scene and a utility function,
how the agent distributes its visual attention is noted at each time step.
Then this data is used to plot an attention distribution histogram, and to
show the agents decision at each time step.

An attention distribution histogram is a plot of the number of visits
to a visual location versus the location it visited. The number of visits is
colour coded into a 2D plot to show a heatmap of the frequency of visit to
all possible locations within a video. The 2D heat map is overlaid with the
tirst frame of the corresponding video for a better reference for visualisa-
tion of which location the agent visited the most. This plot depicts what

region of the video got how much visual attention.
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Another plot shows the histogram of the visual attention distribution
versus process noise. This plot describes what process noise attracted how
much visual attention. This histogram is necessary to depict how the agent
distributes visual attention based on the process noise matrix of the video.

It is expected that the distribution of visual attention over process noise
will be different based on the choice of utility function. For example, when
an agent aims to reduce internal uncertainty it should preferentially visit
rapidly changing visual locations. On the other hand, if an agent aims to
ignore the predictable and unpredictable elements in the scene, its atten-
tion should be paid towards visual regions with a medium predictability
that lies in between predictable and unpredictable.

The two process noise learning algorithms presented in the earlier chap-
ter 5 are implemented. The MLE based learning algorithm learns process
noise from batches of data of predefined size. In contrast, the recursive
learning algorithm learns process noise at every time step of algorithm

execution.

It is important to note that the entire process noise matrix is replaced
with a new one at the end of a learning window in case of the maximum
likelihood estimator. Hence the agent operates based on the last updated
version of the @ matrix. Atany point of time, an agent with MLE estimator
operates based on the @ matrix it learnt at the end of the last learning
window. Any attention distribution plot would reflect the result of only
the last learnt process noise matrix. Hence it was decided that the results
of only the first learning window and its resulting attention distribution

will be presented in this chapter.

Recall as discussed in the proposed model chapter 3, the pixel at the
profile centre is observed with the lowest measurement noise. The remain-
der of the visual scene is observed with increasing measurement noise
from the centre. Although the generation of foveation profile was dis-
cussed in an earlier chapter, a short description is provided next as a reca-

pitulation.
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6.2.1 Choice of Foveation Profile

The foveation profile is the distribution of measurement noise over space
under the observable region of the agent’s field of view. A biologically
plausible foveation profile has minimum measurement noise at the centre
and measurement noise increases towards the periphery.

A simple exponentially increasing function was used to model the out-

wardly increasing measurement noise property This function is:
2

fldip)=1—exp (6.1)
where d is the distance from the profile centre and the foveation profile
parameter p? determines the rate of increase in measurement noise with
distance from the profile centre. A smaller value of p? results in a sharp rise
in the measurement noise from the profile centre and a large value results
in a slowly rising measurement noise that covers more visual region with
low measurement noise.

Figure 6.1 shows two foveation profiles with p* = 30. The profile
shown on the left is a one dimensional foveation profile, whereas the one
on the right is a two dimensional profile. The horizontal axis of the left
panel shows pixel number and the vertical axis shows the measurement
noise. For the right panel, both the horizontal and the vertical axis shows
pixel location and the measurement noise is colour coded. Both the foveation
profiles have their profile centre at the centre of the plot. Notice that the
measurement noise increases symmetrically with distance from the profile
centre.

The foveation profile is normalised so that the maximum value of mea-
surement noise is 1. To avoid numerical problems arising from using zero
uncertainty at the profile centre the minimum value was set to 0.0001. The
two dimensional profile has been used throughout all the experiments pre-
sented in this chapter.

The main intent of this chapter is to understand the overall system be-

haviour. It is independent of the specific choices of minimum or maxi-
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mum value of the measurement noise. Rather it depends on the choice of

the utility function.

Note that the foveation profile is characteristic of a particular sensor.
A system designer is not free to choose the profile used but must select
one that is matched to the actual sensor for the purposes of experimental
demonstration in a simulation.
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Figure 6.1: Plots of one dimensional and two dimensional foveation pro-
files. Each of the profiles has p* = 30. The horizontal axis shows pixel
location. The fixation points for the foveation profiles shown are in the
middle of the scene. For the left plot, the vertical axis shows the measure-
ment noise, whereas the measurement noise is colour coded for the 2D
foveation profile plot. Please note that the Gaussian distribution was nor-
malised to 0 1 for both the plots. This can be noticed on the vertical axis of
the plot. On the right pane, the maximum height of the 2D Gaussian is 1.

Sometimes it is easier to describe the output of a utility function on a
smaller dimensional world. In such cases, the utility function is applied on
a small synthetic visual scene made of only ten pixels to describe the out-
put. Then the utility function is applied to the videos from the database.
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6.2.2 Generation of Synthetic Saliency Map for Initial Tests

A method was designed for creating synthetic saliency maps with a set

number of saliency peaks and their widths.
Ten one-dimensional Gaussian bumps of fixed size in a 100 pixels wide

visual scene (see figure 6.2) was used for saliency map generation. The

following equation was used to generate saliency peaks:

flan) = e v 62)
Jp s

p describes the location of the peak in the above equation and o, deter-

mines how wide the curve is around the peak.

Different values of o, (one o, for each peak) were chosen by randomly
sampling from a uniform distribution with predefined boundaries. A nar-
row Gaussian produces a higher saliency peak than a wide Gaussian.

Similarly, the locations of those peaks were chosen by random sam-
pling from another uniform distribution, which spans the same limits as
the visual scene. Finally, all the Gaussian distributions were normalised to

the range 0-1 to obtain the synthetic saliency map.

As this process of generating synthetic saliency maps involves random
sampling, individual instances of saliency maps will be different.

Figure 6.2 shows an example of such a saliency map used in our ex-
periments. Notice the peak saliency value is 1 and there are 10 distinct

peaks.

For the final testing of the utility function on videos, each of the five
chosen videos from the Coutrot video database 1 [38] were down sampled
into a 64 x 64 video. The agent operates on the down-sampled video. each
pixel of the video is modelled with an independent Kalman filter and the
chosen utility function makes a decision to look at a particular pixel based

on the internal states of the Kalman filter.
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Figure 6.2: A saliency map: There are 10 distinct peaks which stretch from
1 to 100 in a horizontal scale (the visual scene). The height of the maximum

peak is 1. The distortion in shape is due to sampling.

6.3 Utility Function 1: Targeted Point Uncertainty

Reduction

A useful observation strategy to keep an agent updated about the sur-
rounding world is to look at parts of the visual scene that the agent is
uncertain about. An agent operating on this principle would give maxi-
mum importance to a belief state that has the highest uncertainty and the

corresponding visual location would have the highest utility.

At every time instant, the agent finds the location of the visual scene
with highest internal uncertainty by a simple maximum finding operation.

Then that location is chosen as the next saccade target.

Hence the utility function should find the internal state with the high-

est uncertainty.
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Umaz = maX(U?) (63)

where af is the internal uncertainty of the agent’s i*" belief state and 1, iS
the corresponding utility and each of the o7 comes from the corresponding
element in the P matrix. The visual location corresponding to the belief
state with the highest uncertainty becomes the target location for the next
time step. The remainder of the visual scene is observed with increasing
measurement noise from this centre.

Equation 3.3b is the guiding principle for how the internal uncertainty
of a belief state changes over time. In that equation, P, is the uncer-
tainty associated with a prediction and P, is the current level of uncer-
tainty. While taking action to reduce internal uncertainty, the uncertainty
growth rate  dictates how often any given region is re-observed. Large
values of @ results in uncertainty growing more quickly hence a previ-
ously observed location offers higher utility compared to other regions.
This forces the agent to re-observe that location. Hence ) determines the
time gap between two subsequent observations and the R determines the
improvement after observation.

To simplify initial experiments with this utility function, synthetic saliency
maps were used rather than saliency maps derived from input videos. A
simple 100 pixel visual scene was used with a foveation profile having
p = 30.

6.3.1 Results

Figure 6.3 shows a plot of the utility versus the target saccade locations.
The vertical axis shows the utility of a location and the horizontal axis
shows pixel location. As the internal uncertainty is used as the utility, the
vertical axis also shows the internal uncertainty of the agent. Notice that
the highest utility is offered by the pixel with the highest uncertainty.
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Pixel 28 offers the highest utility in figure 6.3. The highest value is
marked with a red circle.
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Figure 6.3: Utility of looking at 100 candidate saccade locations. The utility

used is the internal uncertainty of the agent.

When applied to real-life videos it is expected that locations with the
highest process noise will gain most of the attention.

Figure 6.4 shows the outputs of this utility function applied to the five
videos. The MLE based variance estimator was used for learning process
noise from observations. A learning window of 30 time steps was chosen,
which means that the process noise matrix was updated at every 30 time
step. The effect of learning window length on the MLE estimator was
discussed earlier in chapter 5.

The outputs presented in this figure 6.4 are after the first 30 time steps.
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The left column of the figure shows the learnt process noise image of the
video. Each pixel in the process noise image shows the process noise of a
corresponding pixel in the down-sampled video.

The middle column of the figure shows the histogram plot. This plot
has two separate graphs superimposed. The axis on the left shows the fre-
quency of visit. The height of the blue coloured bar plots shows frequency
of a number of visits versus the process noise shown on the horizontal
axis. Notice that the pixels with the highest process noise get observed the

most.

On the same histogram plot, the histogram of pixels versus their pro-
cess noise is plotted. This plot uses the right-hand axis and is shown in red
colour. Notice that the pixel count is high towards the low process noise,
suggesting that most pixels have low processing noise. This can be intu-
itively understood as the majority of a visual scene is made of stationary

objects like wall or furniture.

The right hand column shows, the attention distribution of the agent
superimposed on the first frame of the corresponding video. Notice that
the pixels with high process noise, shown as white in the process noise
image, got the most visual attention. A direct fixation means that the
foveation profile centre was directly placed on that pixel. A correlation
can be seen between the process noise image and the visual locations that
got the highest visual attention.

Figure 6.5 shows the output of this utility function with the recursive
method as the process noise learning mechanism. The agent operated on
the entire video using the recursive process noise learner. Hence the vari-
ance images presented in the first column is the output of the learner at
the end of the entire length of the corresponding video.

As the recursive learner is adaptive, the process noise matrix has differ-
ent process noise associated with each pixel at different times. Hence the
histogram, which is computed at the end of the entire run is not an accu-

rate description of which process noise got the most attention. Although
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the presented histograms show an average result of attention distribution.

Differences in the variance image between the MLE and the recursive
are noticeable. Although the visual locations with the highest uncertainty
are almost the same between the videos, the recursively estimated pro-
cess noise image shows an average of process noise over the length of the
video.

A one to one correspondence between the locations with high process
noise can be found with the locations that gained the highest visual atten-

tion.
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Figure 6.4: Estimated process noise using MLE of all the five videos, and
the corresponding visual attention distribution. The left, middle and right
column shows the process noise image, histogram plot and the visual at-
tention distribution respectively. Notice that the variance image was nor-
malised between 0 1. Notice in the colorbar, the highest varying pixel has
been coded white.
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five videos, and the corresponding visual attention distribution. The left,
middle and right column shows the process noise image, histogram plot
and the visual attention distribution respectively. Notice that the variance
image was normalised to have values between 0 1. The colorbar shows

that the highest varying pixel is displayed in white color.
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6.4 Utility Function 2: Total Uncertainty Reduc-
tion

Another desired agent behaviour is to take measurements to reduce the
average internal uncertainty over all the belief states. In this, the agent
considers the sum of reduction in uncertainty over all the locations of the
visual scene. In contrast, the previous section 6.3 considered the reduction
in uncertainty associated with only the targeted location of the scene.

At every time instant, the agent simulates placing the foveation profile
centre all the possible locations. At every location of the visual scene, the
agent computes the total uncertainty reduction over the entire scene. And
finally looks at the visual location that offers maximum reduction in total
uncertainty. This would result in an optimal attention distribution in the
sense that it would keep the agent optimally updated about the whole
visual world.

Such a system should maximise a utility function of the form

1
Ugvg = ﬁ U; (64)
i=1
11

where the u; is the utility measure (1/uncertainty in this case) of the indi-
vidual regions of interest (ROI), u,,, is the average utility of considering
one action and n is the total number of regions that could be observed.

A visual scene with n regions of interest has n average utility measures
one for each potential future fixation point. All the average utility mea-
sures were arranged into a vector u € R". Each element in this vector is
the average utility of fixating at the corresponding region.

An action a is the act of looking at a target region in the visual scene
with a given foveation profile. Looking at a region means placing the

profile-centre of the foveation profile on a target region. The visual region
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which is observed with the lowest measurement noise results in maximum
reduction in the corresponding uncertainty associated with its belief state.
The nearby regions are observed with progressively higher measurement
noise.

Hence the problem of selecting the next saccade target can be expressed

as a maximisation problem shown below:

a* = argmax f(a) (6.6)
a
where a is the anticipated future action of choosing a point of fixation and
a* is the optimal action that provides maximum utility.

At each time step, the Kalman filter prediction is used to estimate the
world one-step-ahead and then assume placing the centre of the foveation
profile at target fixation points. With each placement the variance of state
estimates is considered for all the possible future measurements is calcu-
lated. For a given scene of n regions of interests, there are n means and
n uncertainties. Potential future actions are compared against each other
based on a given utility function, and the observation location having the
highest utility is selected.

Figure 6.6 shows plots of foveation profiles that are looking at the first
pixel in the scene. Notice that portion of the foveation profile that is out-
side the scene does not contribute to reduction in uncertainty. Hence the
visual locations towards the edge offer low utility.

Results

Initially, this utility function was used to distribute visual attention in a
small visual scene with 100 pixel. Figure 6.7 shows the utility of each pixel.

This figure plots two graphs, the utility and the internal uncertainty,
each plotted with its own vertical axis. The left vertical axis shows the
utility of the observation of a target saccade location and the right vertical

axis shows the internal uncertainty.
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Figure 6.6: Plots of one dimensional and two dimensional foveation pro-
files. Each of the profiles has p? = 30. The fixation points for the foveation
profiles shown are in the middle of scene. For the left plot, the vertical axis
shows the measurement noise, whereas the measurement noise is colour
coded for the 2D foveation profile plot. Notice that the measurement noise

increases symmetrically with distance from the profile centre.

Notice that this utility function differs from the earlier one, in that the
utility of looking at a pixel does not directly reflect the internal uncertainty.
Figure 6.7 shows that pixel number 45 which is towards the centre of the
scene has the highest utility. The highest utility value is marked with a
red circle in the utility plot. The corresponding state uncertainty is also
marked with a red circle. Clearly, the utility is not highest at the locations
where state uncertainty is the highest.

The internal uncertainty is high towards the edges of the scene but the
utility is very low at the edges. This behaviour is due to the averaging of
reduction in uncertainty. As this utility computes the overall reduction in
uncertainty instead of the reduction in uncertainty of the targeted pixel,
the edges of a scene provide the lowest utility. In other words, if the agent
looked at a pixel which is at the edge of a visual scene, half of the area of

the foveation profile that is beyond the edge does not contribute to uncer-
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tainty reduction.

The maximum total uncertainty reduction is offered by the pixels that
are more central in the scene. Hence, the natural tendency of an agent
running this utility function is to look away from the edges and towards

the centre of the scene.
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Figure 6.7: Utility of looking at 100 candidate saccade locations. The util-
ity of each target location is the sum of reduction in uncertainty of all loca-
tions. Notice that the visual location offering the highest utility is not the

same as the visual location with the highest internal uncertainty.

If there is a pixel with high uncertainty, the agent’s attention would
be shifted towards that pixel but unlike the previous utility function, the
agent would not directly look at the pixel. Instead, it is expected that the
agent would tend to look at a nearby region that offers the highest total
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reduction in uncertainty. Also, it is expected that an agent would have
a bias towards looking at the centre of the visual scene when this utility
function is used.

Figure 6.8 shows the process noise image, histogram and the attention
distribution plot generated while using this utility function. The left, mid-
dle and the right column shows the process noise image, histogram and
the visual attention distribution respectively. Like the earlier utility func-
tion, the MLE learner was run for the first learning window.

Notice that a bias towards the centre of the visual scene is present for
all the videos.

The agent did not look directly at the pixel with the highest uncertainty.
Clusters of attended locations can be found at the centre of the scene.

Compared to the previous utility function, notice that histogram plot
shows that the most attended locations do not have the highest process-
noise.

Figure 6.9 shows the output of the same utility function with recur-
sive process noise learning. As the recursive learner was run for the entire
length of the video, there are more counts for the visual attention distribu-
tion. Therefore the central bias is more prominent in the attention distri-
bution images. The histograms for the recursive learner is an average over
the length of the video hence they differ from the MLE version.
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This utility function is computationally demanding as it involves the
process of simulating profile-centre placement at every pixel in the scene.
Also, looking at the centre of a visual is a sensible way to reduce the most
amount of total uncertainty in one time step. Hence central bias results in
gaining the most amount of information at a glance.

The problem with central bias is that the agent’s internal confidence
about visual areas at the periphery is low. In case the uncertainty asso-
ciated with the peripheral regions grow really big, the agent’s attention
would show shifts away from the central area and towards the edges of
the scene.

The aim of the last two utility functions discussed is to reduce internal
uncertainty (either of individual states or the average of all the states).
Hence an agent operating solely based on reduction of uncertainty would
distribute most of its visual attention to unpredictable sections of a visual
scene.

These two utility functions are useful in scenarios where an agent must
keep itself updated about the most unpredictable elements in the scene. In
case there are too many unpredictable regions, the agent might not be able
to directly attend them all and it will mostly ignore the predictable regions.

In contrast in a real life scenario the unpredictable visual regions are
often not important and are ignored. For example, human observers will
not look at TV snow. The following section presents a strategy for visual
scene sampling that avoids unpredictable sections of the visual scene.
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6.5 Utility Function 3: Avoiding Unpredictable
Regions

Utilities presented in sections 6.3 and 6.4 get fixated on noise. Therefore
in environments where there is a noise source present (a detuned TV set),
the utility requires modification.

A deeper insight into the uncertainty based sampling strategy reveals
that although the instantaneous states of unpredictable elements offer knowl-
edge gain (instantaneous reduction in uncertainty), the newly gained knowl-
edge is not usable (cannot be used to predict the world) for long. As an
example, observation of an unpredictable state like the white noise of TV
snow produces zero future usability of the newly gained knowledge.

In case of a predictable state, one observation is usable for a long period
of time. For example, if a predictable state is observed, the knowledge
gained about the state is good enough for the agent for a long time before
the state needs to be observed again.

There is an inherent link between predictability, time difference be-
tween two subsequent observations of the same state, knowledge gained
from one observation and the usability of the observation. For the same
amount of time difference, an unpredictable region offers more gain in
knowledge but less usability compared to the predictable state. Whereas
one observation of a predictable state offers more usability than the un-
predictable state. A visual sampling strategy that considers the usability
of an observation can be used to avoid unpredictable elements of a scene.

The usability of an observation can be computed given the process
noise matrix (Q) using the Kalman filter equations.

Usually, elements of the visual scene are observed with different mea-
surement noise depending on how far it is located from the location choice
of the profile-centre for that time instant. The worst case of observing a
visual scene element is when it is always observed with the highest mea-

surement noise of the foveation profile. Such a state would have high
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internal uncertainty. Also as this state has been observed with a constant
measurement noise, it’s internal uncertainty would reach a steady state
value. This steady state of the internal uncertainty indicates the agent’s
maximum level of possible uncertainty regarding a world state which has
only been observed with the highest measurement noise.

The worst case internal uncertainty specific to the belief state and can
be computed using steady state Kalman filter equations given by the fol-

lowing;:

_Qij + \/ij + 4Qz‘jRij

(6.7)

where Pj; is the ij'" element of the steady state error matrix, and Q;; and
R;; are ij" element of the process noise and the measurement noise ma-
trices respectively.

In reality, an agent’s internal uncertainty would be less than the worst
case scenario as visual states are typically not constantly observed with the
highest measurement noise. As the measurement noise changes at each
time step, a steady state uncertainty for the internal belief state cannot be
computed analytically. Hence the worst case uncertainty can be used as
a baseline to measure how much a new measurement improves on the
internal uncertainty. If the new measurement is made using the highest
measurement noise, there is no improvement as the internal uncertainty is
already at a steady state.

Any observation of that state made with a lower measurement noise
would reduce the internal uncertainty. The amount of reduction in inter-
nal uncertainty from the worst case steady state uncertainty is the gain in
knowledge due to the observation. Hence it is the usability of taking that
observation.

Figure 6.10 shows plots of how the internal uncertainties of three belief
states increase over time. The plot shows change in uncertainty from a
low state to steady state of high (yellow colour), medium (brown colour)

and low (blue colour) predictability states. Also, notice that each of the
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states reaches a steady state value and that the steady state uncertainty is
different for each of the states. It is the highest for the unpredictable region
and the lowest for the predictable region.

Low
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Figure 6.10: Plot of how the internal uncertainties of three states increase
over time when all the states are observed with a constant measurement
noise. The vertical axis represents uncertainty and the horizontal axis rep-
resents time. The three lines show change in uncertainty for high (yellow
colour), medium (brown colour) and low (blue colour) predictability states
respectively. Notice that the internal uncertainties for all three states reach

steady state values.

Notice in figure 6.10 that each of the three states was observed once
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directly (at different times). The uncertainty reaches its minimum imme-
diately after a state is observed and it grows to the steady state afterwards.
The reduction in uncertainty from the steady state until it reaches back to
the steady state is due to the observation. In this work, the usability of
the observation is defined as the area under the curve between the time
instances of observing the state and the uncertainty returning to its steady
state.

Figure 6.11 shows the uncertainty of the same three internal belief states
discussed above. The area shaded in blue is the usability of that observa-

tion.

In reality, the internal state of uncertainty might be lower than the
worst case steady state. Hence a new observation does not reduce the
uncertainty from the worst case, instead, it will reduce it from the current
state of uncertainty of the internal state.

Also, the same state may be observed again before its internal uncer-
tainty grows back to the worst level. As it is not possible to know when
that state will be observed again, the state’s future uncertainty level is not
known in advance and the exact uncertainty area between two observa-
tions cannot be calculated. In contrast, the worst case uncertainty can be

theoretically computed.

The total gain in knowledge (or reduction in uncertainty) from the cur-
rent state of uncertainty up to the worst case uncertainty is the best case
usability and that will be used as the utility function. Hence, overall us-
ability of an observation is the area under the curve between the time in-
stances of observation and uncertainty growing back to worst case steady

state.

For a given state (process noise is known), the current state of uncer-
tainty and the process noise of the state decides the usability of a new
observation. For an unpredictable state, the usability is low as a new mea-
surement cannot reduce uncertainty for a long period of time. In compar-

ison, for a predictable state, the very first measurement has high usability
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Figure 6.11: The area shaded in blue shows the usability of an observation.
The vertical axis represents uncertainty and the horizontal axis represents

time.

but the immediate measurements after the first one do not have much us-
ability as the uncertainty is already low. For example, if a predictable state
has just been observed, a re-observation of the same state in the following
time step will not produce high amount of usability as there is not enough
improvement to make over the last observation. Over time the uncertainty
of the predictable state will grow high and the usability of observing that
location rises again. Hence usability of an observation is a function of the

time gap between two observations of a state.
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The usability of an observation cannot be analytically computed as the
uncertainty of internal states at the moment of a potential future obser-
vation are not known beforehand. Hence in this work, it is computed
numerically using trapezoidal integration method from the instant of ob-
servation until the internal uncertainty reaches the worst case steady state
value.

Similarity Between ‘Usability of Observation” and “Uncertainty Reduc-
tion’

Usability of observation discussed in this section is similar to the reduction
in uncertainty approach discussed earlier in a sense that usability is an
extended version of uncertainty. Reduction in uncertainty measures the
instantaneous gain in knowledge, whereas the usability of one observation
over time measures the instantaneous gain in knowledge plus how long
that knowledge is retained by the agent.

From this point of view usability of an observation is a time integral
(or area under the curve) with the lower limit as the time instant when
the observation is taken and the higher limit as the time instant when the
internal state reaches the worst case steady state uncertainty. If the higher
limit of the integration is imagined to be one time step, then the usability
of an observation is the reduction in uncertainty discussed in earlier two

sections.

Results

Figure 6.12 shows plots of usability of observing low, medium or high
predictability pixels. The left and the right columns show usability plots
with At = 5 and At = 200 respectively. The first row shows the usability
as a blue shaded area and the second row shows bar plots of usability.

A short time gap (At) between two observations of a predictable state
offers low usability, comparatively higher usability for the medium pre-
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dictability and low usability for the unpredictable state. A longer time
gap between observations will offer the highest usability of observing a
predictable state.

Notice on the left top panel (At = 5) the area shaded in blue is the
smallest for the predictable region and highest for the medium predictable
region. On the right top panel (At = 200) the shaded area is highest for
the predictable region. Hence an agent running on this utility function
will ignore the unpredictable elements of the visual scene and will observe
the predictable regions only when their uncertainties are high. Hence a
predictable region, for example, a wall, will be re-observed only after a
long period without any observation, and the unpredictable region, for

example, TV noise, will never be observed.
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Figure 6.12: Plots of usability of an observation. The left column shows
plots of usability with a short time gap (At = 5) and the right column
shows the usability with a longer time gap (At = 200). The top row shows
usability as blue shaded area and the bottom row shows a bar plot for vi-
sual comparison of usabilities. Notice that medium predictability regions
offer more usability in short time gaps and the high predictability regions
offer high usability only after a long time gap.

It is seen that the usability changes with the time gap between two
subsequent observations. A summary of how usability changes with time
gap is shown in figure 6.13. The vertical axis of the plot shows usability

and the horizontal axis shows time gap between two observations.
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Notice that at At close to zero, medium predictable regions gain im-
portance whereas the unpredictable region gains higher importance as the

time gap increases and the unpredictable regions are not observed.
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Figure 6.13: Plot of usability of an observation with change in A¢. The
horizontal axis shows time gap between two observations and the vertical
axis shows usability. Usability of predictable visual regions is very low at
small time gaps and usability of medium region is highest. Whereas the

usability of predictable regions is the highest at longer time gaps.

Figure 6.14 shows a plot of the usability of an observation versus the
process noise of the corresponding element of the visual scene with At =
5. The horizontal axis shows the process noise and the vertical axis shows

usability. Notice that the usability grows with increase in process noise
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until a maximum after which the usability drops. This indicates that an
agent using this utility function will avoid both the unpredictable and the
very predictable regions of the visual scene.
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Figure 6.14: Plot of usability of an observation versus the process noise.

Figure 6.15 shows the process noise image, histogram and attention
distribution of running this utility on the five videos from the Coutrot
video database 1 [38]. Notice that the agent ignores regions with high
process noise. Visual locations shown in white colour (high process noise)
and black colour (low process noise) in the process noise image are ig-
nored. The histogram plot shows that most of the visual attention was
given to visual locations with process noise that is in between the high

and the low process noise.
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Figure 6.16 shows the outputs of the agent’s behaviour while learning
the elements of the @ matrix using the recursive estimation algorithm. As
discussed in the earlier sections (section: 6.4, 6.3), the histogram presents
an overall average of visual attention distribution. As expected, it can be
seen that the agent ignores the high and low process noise regions of the

scene.
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Figure 6.16: Estimated process noise using recursive estimator on all five

videos, and the corresponding visual attention distribution. The left, mid-
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6.6 Improved Ability to Predict Human Fixations

The aim of this set of experiments is to compare the proposed model with
the baseline Itti model [90, 93] in their ability to predict human fixation.
The comparison in the ability to predict human fixations was tested using
the CRCNS eye-1 eye-tracking ‘original” video dataset [94]. This dataset
records eight human volunteers’ eye fixations data while they freely viewed
50 complex video stimuli (TV programs, outdoors videos, video games
rooftop bar etc.). In this set of experiments, the uncertainty reduction util-
ity function is used as it resembles the free viewing for which the human

fixation data is available.

The Itti model was chosen to be compared with for two reasons: a) This
seminal work is well known and has been applied to videos previously [113,
129]. b) The implementation of the model is publicly available.

Grayscale saliency maps are first obtained for each individual frame
of each video using the L.Itt model using the implementation proposed
by [191]. The magnitudes of the entries in these maps denote how much
attention each pixel is predicted to attract in the frame. Further, these
saliency maps were used as input for our proposed algorithm with the

uncertainty reduction utility function.

Each model was evaluated using two different metrics for accuracy and

the evaluation scores were compared.

An accuracy score is determined for each frame and averaged across
all frames to provide a measure of performance. For each sequence, the
scores of all methods are compared and analysed statistically to determine

if there is a clear winner for that sequence.

Different measurement metrics have previously been proposed [28]
in the past where saliency evaluation metrics have been adopted from
the field of information theory and signal detection and also including a
crowd-sourced perceptual experiment where human participants ranked

saliency models based on how similar an estimated a saliency map is to
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the ground-truth saliency map [112]. There is substantial disagreement
between researchers regarding which metric to use to compare saliency
maps. No metric captures all the aspects of saliency map comparison, for
example, the difference in information between two saliency maps, accu-
racy in predicting human scanpath, accuracy in predicting human fixation
etc. Objectively determining which model offers the best approximation
to human eye fixations still remains a challenge.

A detailed study by Zoya et al. suggests [28] to use information gain
(IG) as a metric to compare probabilistic saliency models. This applies
for the proposed model due to its probabilistic nature. A visual location
scored higher by the information gain metric does not ensure that the loca-
tion would gain visual attention. Ideally, better saliency maps should have
higher saliency compared with the baseline model at the human fixated
(ground truth) locations and should be able to attract attention at those
locations, i.e. those locations must have high saliency within the saliency
map itself. The IG metric is inadequate to capture if a location would ac-
tually gain visual attention. Hence, two measurement metrics are used to
compare the proposed saliency maps with the baseline Itti maps.

The information gain metric calculates the difference in saliency—measured
in bits—at the human fixated locations between two saliency maps for each
frame of the video. Given a binary map of ground truth fixations @7, a
saliency map U, and another baseline saliency map V, information gain is

computed as:

N
16 = 5 7 Q¥ [logale + Vi) —logy(e + V) (6.9)

where i indexes over pixels, IV is the total number of fixated pixels, ¢ is
a small regularization constant, and information gain is measured in bits
per fixation. Then an average information score is computed for the whole
video.

The information gain metric expects valid probability distributions as

input. Hence, the saliency map was normalized accordingly to have a
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valid probability distribution.

Although higher IG score indicates higher saliency, it does not ensure
gaining visual attention for the video frame. On the other hand, the AUC
measures how successfully a location in a saliency map was to attract vi-
sual attention in competition with other random locations in the same
map. In other words, it measures the relative saliency map values at
ground truth fixation locations. This is computed by varying a hypothet-
ical threshold and computing the trade-off between true and false posi-
tives. Models that place high valued predictions at human fixated loca-
tions receive high scores.

A high scores on both the metrics will indicate that the proposed saliency
map has higher saliency and attracts visual attention at human fixated lo-
cations more than the baseline saliency model.

The rest of the results section is divided into three parts. Each para-
graph presents one of the three utility functions described above and the

resulting sampling distribution of visual attention.

6.6.1 Results

Itis not possible to display all the saliency maps produced by the two com-
peting methods within the limited space of this article. The video, called
‘beverly03’, was chosen as an example to display and visually compare
the saliency maps produced by the two methods. This video shows chil-
dren playing in a field. In this video, the left half of the window displays
most of the movements and actions. Figure 6.17 shows the 100" frame of
the input video and the two corresponding saliency maps. Notice that,
the saliency map from the new method highlights the overall motions in
the video (high intensity on the left). In comparison the baseline model
highlights an area with high contrast in that frame.

Table 6.1 shows the information gain score between the Itti and the

proposed model. It can be noticed that the proposed model achieves a
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(a) Input video frame. (b) Saliency map pro-(c) Saliency map pro-

duced by Itti model. duced by the proposed
model.

Figure 6.17: Input image frame and the resulting saliency maps form the
two competing models.

higher score in all the videos.

Table 6.2 shows an AUC score comparison between the two models.
The AUC computation method proposed in [23] is followed to compute
AUC score for each frame of the video, then the AUC scores were averaged
over the entire sequence. The proposed model outperforms the Itti model
in 35 videos based on the average AUC score, while the standard devia-
tion in the frame-wise AUC scores for any given video sequence remains
comparable between the two models. This indicates a steady performance

improvement for all the frames in the video.
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Table 6.1: This table displays average Information Gain score of videos.
The information gain score on each frame of a video has been averaged
over the entire video sequence. A positive number indicates that the pro-
posed system assigns higher saliency on an average for the video. Notice
that the IG score is positive for all the videos.

Video file Avg. IG score

beverly01 31.5
beverly03 35.8
beverly05 32.1
beverly06 28.1
beverly07 30.5
beverly08 27.1
gamecube02 32.7
gamecube(4 31.6
gamecube05 28.8
gamecube06 30.3
gamecubel3 36.1
gamecubel6 33.6
gamecubel? 28.6
gamecubel8 325
gamecube23 24.3
monica03 355
monica04 29.6
monica05 30.8
monica06 28.2
saccadetest 12.2
standard01 28.9
standard02 339
standard03 38.1
standard04 352
standard05 35.3
standard06 345
standard07 322
tv-action01 32.7
tv-ads01 354
tv-ads02 314
tv-ads03 345
tv-ads04 305
tv-announce01 37.3
tv-music01 35.8
tv-news01 27.7
tv-news02 32.8
tv-news03 30.3
tv-news04 31.3
tv-news05 344
tv-news06 323
tv-news09 32.6
tv-sports01 37.2
tv-sports02 34.9
tv-sports03 37.3
tv-sports04 36.7
tv-sports05 33.9
tv-talk01 30.3
tv-talk03 33.6

tv-talk04 254
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Table 6.2: AUC score of the proposed and the Itti model. The proposed
model achieves better AUC score in 70% of the videos.

Video file Itti Proposed

beverly01 0.553 £0.09 0.654 £0.15
beverly03 0.514 £0.06 0.633 £0.14
beverly05 0.539 £0.09 0.619 £0.14
beverly06 0.587 £0.12  0.681 £0.17
beverly07 0.478 £0.04  0.453 £ 0.03
beverly08 0477 £0.04 0.461 £0.04
gamecube02 0.55+0.11  0.637 £0.16
gamecube04 0.571+0.13 0.7124+0.2
gamecube05 0.564 £0.08 0.584 £0.11
gamecube06 0577 £0.11 0.743 £0.13
gamecubel3 0.504 £0.07 0474+0.1
gamecubel6 0538+ 0.1 0.458 £ 0.14
gamecubel?7 0581+01 0.597 £0.14
gamecubel8 0564 +0.1  0.684 £+ 0.16
gamecube23 0.638 £0.18  0.709 £ 0.17
monica03 0.515£0.07 0.522 £0.13
monica04 0.572£0.11 0.589 £0.17
monica05 0562+ 0.1 0592 £0.16
monica06 0.565+0.1  0.592 £0.13
saccadetest 0.758 £ 0.16  0.704 £0.17
standard01 0.564 £0.12 0.594 £0.19
standard(02 0.541 £0.09 0.586 £0.13
standard03 0.486 £0.03 0.467 £0.12
standard04 0.517 £0.07  0.488 £0.13
standard05 0.524 £0.09 0.627 £0.15
standard06 0.526 £0.08  0.496 £0.15
standard07 0.557 £0.1  0.656 + 0.17
tv-action01 0543+ 0.1  0.657 £0.18

tv-ads01 0.506 +0.08 0.497 +0.11
tv-ads02 0533+01 0479 £0.12
tv-ads03 0.527 +0.08  0.55 £ 0.14
tv-ads04 0.523 £0.08 0.511 £0.11

tv-announce01 0.49 £ 0.05 0.493 £0.15
tv-music0l 0.524 £0.09 0.603 £ 0.16
tv-news01 0.545+0.09 0.632 £0.16
tv-news02 0.504 £0.06  0.51 +0.08
tv-news03 0.519 £0.08  0.533 0.1
tv-news04 0544 +01 0.512+0.11
tv-news05 0.516 £0.08 0.538 £ 0.12
tv-news06 0.502 £0.06  0.541 £ 0.12
tv-news09 0.508 £0.07  0.516 +0.1
tv-sports01 0.501 +0.06  0.528 4+ 0.15
tv-sports02 0.509 +0.08 0.493 +0.11
tv-sports03 0.507 £0.07  0.589 + 0.2
tv-sports04 0.5154+0.08 0.539 £0.17
tv-sports05 0.541 £0.09 0.616 £0.15
tv-talk01 0.554 £0.12 0.556 £0.14
tv-talk03 0.53+0.09 0.495+0.13
tv-talk04 0.506 £ 0.06  0.502 £ 0.07
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6.7 Chapter Discussion

This chapter presented two important contributions of the thesis as below.

1. The first contribution of this chapter is the three novel utility func-
tions that were proposed for selecting visual targets. This is the first
time in the field of saliency map literature a varied range of useful
behaviours has been demonstrated while operating on the same in-

put.

2. This chapter presented an improvement of the classical Itti model
by replacing the traditional winner-take-all and inhibition of return
mechanisms with the novel Kalman filter aided epistemic target se-
lector. It was shown that the improved Itti model could predict hu-
man fixations better compared to the classical Itti model according

to two standard measurement metrics.

One drawback of using Kalman filter aided epistemic target selector
methods is that the computational complexity of the algorithm is O(n?)
due to the matrix inversion involved with the Kalman Filter equation. Un-
der the assumption that the visual regions of interest are independent of
each other, the computational cost was reduced. Nevertheless, a more
general case where the interdependencies of the pixel intensities are con-
sidered needs to be explored. The extent to which computational perfor-
mances constrain real-world exploitations of our proposed method also
remains to be explored.

Due to the simplicity of initial experiments, any spatial dependency in
the visual scene was not considered. As the proposed method does not
make any assumptions on the size of input dimensions it should princi-
pally work on a spatially dependent scenario without modification.

Three utility functions were proposed in this chapter, but other strate-
gies could also be formed. Different strategies would result in different
agent behaviours, which might be necessary to operate as per the need of
different situations.
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All three utility functions proposed in this chapter operate solely on
the uncertainty in the state estimate. Often visual locations with a desired
set of features need to be given more attention. In such scenarios, the
mean of the agent’s belief distribution about the presence of that feature
at a specific location needs to be included in the utility function. Such a
utility function will be proposed in chapter 7. This one combines the mean
and the uncertainty in a way that higher uncertainty regions that have the

desired features gain the most visual attention.



Chapter 7

Prioritisation of High Salience
Targets

This chapter presents a utility function that can achieve the task of re-
ducing uncertainty about visual targets with desired features. This utility
function is important for scenarios where reduction in knowledge about
every element of the scene is not important. Instead, it is desired that the
agent reduces uncertainty about sections of the visual scene that have rel-
evant features. Such an agent’s internal belief states would represent the
intensity of the feature by the mean of the belief distribution and the con-
fidence as the variance of the distribution.

A desired agent behaviour is searching for a known set of features in a
visual scene. As an example, in an image processing application it could
be important to be able to locate the pedestrians in a scene. In such case,
the agent should be driven by some combination of where it thinks the tar-
get is likely to be (mean of saliency), plus at areas where it is not sure. Most
importantly, the agent does not want to look at locations where it is con-
fident that there is not a target. That is, if the mean (the saliency) and the
variance (the confidence on saliency) are both low then the agent should
avoid that region. The aim of the agent looking for desired features in a vi-

sual scene would be to reduce uncertainty about the belief distributions at
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locations that have high values for the desired features. This would gener-
ate a behaviour where the agent will look preferentially at visual regions
with a high degree of desired features.

It is important to notice that the process nose estimators proposed in
the previous chapter 5 will be utilised in this chapter to compute the ele-
ments of the process noise online. This will allow the Kalman filter based
target selector to adapt to the visual scene.

7.1 Searching for Desired Features in a Visual

Scene

The internal belief states of an agent are its representation of the world. In
the presented case it was assumed that the internal belief states are Gaus-
sian distributed. Hence they are completely defined by the mean of the
distribution and the variance of the distribution.

In such scenarios, reduction in knowledge about every element of the
scene is not important. Instead, it is desired that the agent reduces uncer-
tainty about sections of the visual scene that have relevant features. Hence
the sections of the visual scene that have the relevant feature need to gain
higher utility than the rest of the scene.

These task dependent features would form the constituent parts of the
saliency map, just as colour, orientation and intensity formed the parts of
the original Itti model. In this way, the combination of task specific target
features is rendered salient by the initial processing of the saliency system.
An agent can then operate on this modified saliency map to seek areas of
desirable properties (i.e. areas with high saliency).

Such an agent’s internal belief states would represent the intensity of
the feature by the mean of the distribution and the confidence as the vari-
ance of the distribution. Given the mean and the variance of the belief

states, the aim of an agent looking for desired features in a visual scene
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would be to reduce uncertainty about the belief distributions that have
high values for the desired features. This would generate a behaviour
where the agent will look at visual regions with a high degree of desired
features.

An agent needs proper instruments to measure the presence of desired
features in a scene. For example a camera with relevant feature detector.
Such an agent’s internal belief states would represent the intensity of the
feature by the mean of the distribution and the confidence as the variance
of the distribution.

Given the mean and the variance of the belief states, the aim if an agent
looking to desired features in a visual scene would be to reduce uncer-
tainty about the belief distributions that have high mean.

This behaviour can be achieved by finding the mass of a belief proba-
bility distribution that is above a given threshold. That is, it would only
investigate areas that appear to offer pay-off for the current task. For ex-
ample, consider figure 7.1 where blue and the red lines show two inde-
pendent Gaussian distributions. The black vertical dashed line shows a
chosen threshold and the area shaded in blue and red shows the area un-
der the distribution above the threshold.

The left panel shows that the red distribution has more variance than
the blue one and it can be noticed that the area in blue is smaller than
the area in red. On the other hand, the right panel shows that the red
distribution has a higher mean than the blue distribution. The red area
under the curve above the threshold is more than the blue area under the
curve.

These two figures show that if the area under the curve above a thresh-
old is used as a utility function, the agent will minimise uncertainty only
regarding the sections of the visual scene that have a higher mean than the

threshold. This is known as the expected improvement above a threshold.
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the blue than the blue

Figure 7.1: Figure shows the area under the curve of two Gaussian dis-
tributions above a threshold. The threshold is shown as a black dashed
line.

Instead of simply finding the probability that there will be some im-
provement, the amount of expected improvement can be calculated by
finding the expected value of the mass of the probability distribution above
the threshold.

Figure 7.2 shows two Gaussian distributions. The left panel shows the
probability distribution and the area shaded in blue shows the area under
the curve above a threshold of 5. The right panel shows the same belief
state distribution but now the horizontal axis marks the improvement over
the threshold 5. Notice the change in the marking of the horizontal axis in
the two plots.

This can be achieved by finding out the mass of a belief probability
distribution that is above given threshold. The following equation is used
to compute the mass of the probability distribution above a threshold.

Bl = /@ " Pl — O)da 7.1)

where EI is the expectation of an improvement, O is a chosen threshold
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Figure 7.2: The left and the right panels show the expectation above a
threshold and the expected improvement above a threshold. Notice that

the horizontal axis on the right panel shows improvement.

beyond which an improvement is sought, P(x) is the probability distribu-
tion of a belief state and xz is the mean of the distribution.

The integration mentioned in equation 7.1 is tedious to solve. A com-
pliment of this equation that finds the expected improvement by integrat-
ing from a threshold to —oco already exists in the Gaussian process based
efficient global optimisation literature [59,98].

As this existing integral finds the expectation of the distribution from
a threshold up-to the negative infinite, this integral can be used to form
our proposed equation 7.1 as a minimization problem over all the belief
states. Hence the visual state with the highest expected improvement over
threshold © is given by

EI* — arg min ( /_ T P(a)(— — @)dm) (7.2)

z ©

where ET* is the optimum choice.
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Equation 7.2 is evaluated using the error function as below:

1 1 -0+
2 ) +

BIa) = (<0 -+ ) |5+ gerf(—

1 . —(—0 +)?
X
O\/27T P 2072

This evaluation is a standard result of the Gaussian process and efficient

| o3

global optimisation literature [59,98].

The above equation 7.3 computes the expectation of a distribution above
a given threshold. The threshold is a choice of the agent. Figure 7.3 shows
two heat-map plots of the proposed utility function with two different
thresholds. Each plot shows how the utility changes with a change in
variance and the mean of a distribution. The vertical axis shows the vari-
ance and the horizontal axis shows the mean of the distribution. White
indicates high values and black colour is low values.

It is important to note that the mass of the probability distribution
above the threshold is the probability of improvement. The Gaussian dis-
tributions represent the uncertainty in the belief state and the part of the
distributions that is above the dotted line indicates the possibility of im-
proving above the threshold. Hence it is the area enclosed by the Gaussian
belief state above the threshold value.

Equation 7.1 computes the expectation of a distribution above a given
threshold. The threshold is a choice of the agent. The choice of the thresh-

old produces different visual scene sampling strategy.

Method

For the utility function that searches for desired features in the visual
scene, skin colour was used as the desired feature. How close a pixel is to
a skin colour was decided by computing the Euclidean distance between
the pixel and a reference point for skin colour in the L*a*b colour space.
This method is commonly referred to as the AE colour difference com-



7.1. SEARCHING FOR DESIRED FEATURES IN A VISUAL SCENE 191

putation [86] The reference pixel is chosen manually for each video. This
pixel is always chosen from an exposed part of the skin.

The distance in the L*a*b colourspace of all the pixels in each frame of
the videos from the reference pixel was computed. Then the individual
frames were put back in the same sequence as the original video.

Results

Figure 7.3 shows two heatmap plots of the proposed utility function with
two different thresholds. Each plot shows how the utility changes with a
change in variance and the mean of a distribution. The vertical axis shows
the variance and the horizontal axis shows mean of the distribution. The
white colour shows high value and black colour shows low value.

The left panel shows the utility plot with © = 0 and the right panel
shows the utility plot with © = 10. Notice that the high variance region
above the set threshold offers the highest utility.

o

Variance
Variance
- n w S~ (9] o ~ fe-] ©

Mean Mean

@ ©O=0 (b) © = 10

Figure 7.3: Two plots of how the utility changes with a change in the mean
and the variance of the distribution. White colour shows the high utility
and black shows the low utility. Notice that only the high variance region
above the threshold offers high utility (white colour).
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Figure 7.4 shows the results of using an expected improvement based
utility function. MLE was used to learn the process noise matrix. The
tirst second and the third column of the figure shows the first frame of the
skin-colorness, process noise matrix and the visual attention distribution
respectively.

The process noise matrix image differs from the earlier process noise
matrices as the agent computes the variance in change in the coloruness,
not in the pixel intensity.

Notice that the agent visited the visual regions that have a similar
colour to the reference colour. The colorness image can be used as a ref-
erence for understanding the visual attention distribution. Notice that the
visual regions attended have high values in the colorness image. For ex-
ample, the area on the left side of the forehead of the actor on the right of
the Faces-46 video has high values. The corresponding regions attracted
high visual attention, which can be noticed in the attention distribution

plot. Similar correspondences can be found for all the other videos.
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Figure 7.4: Estimated process noise using MLE of all the five videos, and

the corresponding visual attention distribution. The left, middle and right

columns show the skin-colorness image, histogram plot and the visual at-

tention distribution respectively.
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Figure 7.5 shows the outputs of the expected improvement based util-
ity function while the @ matrix was learnt using the recursive method.
The left, middle and the right columns show the colourness, process noise
and the visual attention distributions plots respectively. Notice that the
visual regions with high values of skin colour attracted most of the visual

attention which is the desired behaviour.
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Figure 7.5: Estimated process noise using recursive estimator of all the

five videos, and the corresponding visual attention distribution. The left,

middle and right column shows the skin-colorness image, histogram plot

and the visual attention distribution respectively.
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7.2 Chapter Discussion

This chapter contributed a novel utility function which can generate the
behaviour of reducing uncertainty about desired visual targets. This be-
haviour could not be achieved using the three utility functions in chap-
ter 6. Also, different values of the threshold can be used to generate differ-

ent behaviours.



Chapter 8
Surprise Detection

This chapter presents a novel surprise detection mechanism that works
along with the Kalman filter based epistemic target selector. The combi-
nation of these systems will behave as before until it detects a surprise. In
case of a surprise, the system will direct attention to the surprising location

for further inspection.

The proposed model chapter 3 presented the Kalman filter based visual
target selector. At every time step the Kalman filter updates the internal
belief states as a weighted average of its observation and internal predic-
tion. The limitation of this approach is that in case the measurement sig-
nificantly varies from the prediction of the Kalman filter, the Kalman filter
will still find a weighted average between the measurement and the pre-
diction to update the internal belief state. Whereas, in real life surprises

need immediate attention for further detailed inspection.

A view is taken that a surprise is an unpredicted or sudden change
in the real-world, which cannot be predicted by the internal world model
matrix. That is, a surprise is an occasion for which the model does not ad-
equately predict what has been observed. Hence surprising events should

be considerably different from the prediction of the agent’s internal belief.
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8.1 Detecting Surprising Events in a Visual Scene

The aim is to add surprise detection ability on top of one of the previously
discussed utility functions. Therefore the system will behave as before
until it detects a surprise.

A view is taken that a surprise is an unpredicted or sudden change in
the real world, which can not be predicted by the internal world model
matrix (A). That is, a surprise is an occasion for which the model does
not adequately predict what has been observed. Hence surprising events
should be considerably different from the prediction of the agent’s internal
belief.

The difference between the internal belief and a new measurement can
be described as a difference between prediction and the actual measure-

ment.

Ziv1 =Yy — Tevap (8.1)

where Z, , is called the innovation, y, , is the new measurement, &, is
the prediction. The magnitude of the innovation will be high for surpris-
ing measurements.

The proposed model measures each visual region with different mea-
surement noise. A measurement with higher measurement noise will in-
herently give rise to higher innovation due to statistical variation. How-
ever as it was measured with higher measurement noise, the measurement
itself is not trustworthy. Hence a measure of surprise should be weighted
by the uncertainty associated with the innovation.

The innovation Z,, is a zero mean, white Gaussian noise signal whose
covariance is the sum of the measurement noise covariance and the uncer-
tainty in the internal belief. As model uncertainty and the measurement
noise are uncorrelated, the uncertainty in innovation is given by the equa-
tion below:

E[It+1I:+1] =Py + Ry (8.2)

An individual instance of innovation (described as a difference in equa-
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tion 8.1) can be thought of as a sample from a Gaussian distribution with
zero mean and the variance given by equation 8.2. Given a sample from
the innovation distribution defined as above, the distance between the
sample and the distribution in terms of ‘how many standard deviations’
can be calculated. This distance measure is known as the Mahalanobis
Distance [124], which is adopted as a measure of surprise in this work.

This measure is given by the following equation:

Sty = \/ItT+1 (Pt+1|t + Rt+1)711t+1 (8.3)

where s is the measure of surprise. Elements of the vector s in equation 8.3
will be small for the regions with unsurprising measurements but will
be high for the case of measurement that is inconsistent with the inter-
nal model. Note that this calculation doesn’t require the inclusion of the
current measurement into the belief state, unlike the approach of Itti and
Baldi [88].

With the assumption where the regions of interests in a visual scene are
independent, it is found that the surprise at a region i is given by

Sty = It%rl’i (8.4)
(Pt+1|t,i + Rt-‘rl,i)

where Z, P, 1, Ri+1, are corresponding elements of the innovation, un-
certainty and measurement noise matrix.

Equation 8.4 can be thought of as a ratio of “innovation” (numerator)
to ‘confidence’ (denominator). Hence high innovation alone does not re-
sult in high surprise; the value of (P,;1¢; + Ri11,:) have to be low at the
same time. The ideal condition for the surprise to be high is when there
is a low value in denominator and high value in the numerator. An intu-
itive interpretation is that a system is surprised only when it is confident
about the future state of a region and the actual measurement of the state

is considerably different from the prediction.
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8.1.1 System Performance Measurement Metric

In the light of equation 8.3 a surprise after observation is:

Sttlft+1 = \/I;FH (Pt+1|t+1 =+ Rt+1>_IIt+1 (8.5)

where s, ;11 is the surprise after observation at time instant ¢ + 1, Z is the
innovation, P is the covariance and R is the measurement noise. Notice
the change in the notation of covariance matrix compared to equation 8.3.
Here the internal uncertainty is updated to the current time step as the
interest is in measured surprise after the observation in contrast to the
detection of surprise, which is detected before the observation.

Surprise detection can be thought of as a problem of statistical hypoth-
esis testing. The value of s is low when there is no surprise and it is high
when the agent detects surprise. A decision threshold is used to verify
whether or not a hypothesis (e.g. there was a surprise) is true or false. A
hypothesis H : s(¢) > 6 can be formulated, for when there is a surprise,
where ¢ is the corresponding element of the surprise vector. Here 6, the
decision threshold, is a positive number. If 6 is set too low, a noisy mea-
surement can render H to be true. Alternatively, if 0 is too high, the agent
might not detect any surprise at all. A noisy measurement triggering H is
a false alarm, known as False Positive (FP), whereas a true surprise escap-
ing the test is a deficient performance, known as False Negative (FN).

A low threshold guarantees detection of all the true surprises, known
as True Positives (TP), but potentially along with a few false positives (FP).
Whereas setting a very high threshold would cause the system to ignore
many true surprises. Deciding on a value of the decision threshold is a
trade-off between TP and FP. A receiver operating curve (ROC) depicts
the sensitivity of the decision threshold when faced with balancing this
trade-off.

A ROC plots false positive on the horizontal axis and true positive on
the vertical axis (the surprises intended to be identified). It illustrates the
complete trade-off between false positives and false negatives over a range
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of decision thresholds. Each point on the ROC corresponds to a unique
decision threshold.

A good algorithm detects a significant proportion of true positives with
a few false positives. When plotted, a good algorithm results in a ROC that
climbs rapidly towards the upper left corner of the graph. Originally, ROC
was designed for two class problems but has been extended to multi-class
problems, which suits our problem of surprise detection. This uses the
one-vs-rest strategy described in [54].

One algorithm results in a single ROC, so by comparing these curves
the performances of an algorithm with different settings can be compared.
One data point on the ROC gives us an ‘operating point” of an algorithm
and the whole curve captures the overall quality of the algorithm. Fig-
ure 8.4 shows three ROCs, plotted in red, green and blue. The area under
the ROC, called AUC, is used to quantify how quickly the ROC rises to
the upper left corner, which in turn is a quantified measure of the system’s
performance. A larger value of AUC represents better ability in detecting

surprise. The result section analyses these curves in details.

8.1.2 Experimental Method

The goal of the experiments with a surprise detector is to determine how
long an agent takes to detect a novel event (or to measure the system’s
reaction time). Here a novel event is a highly salient element that appears
at a random location within the visual scene, with saliency higher than the
usual maximum saliency. This happens only after the system has sampled
the entire visual scene at least once.

A computer program records the system’s reaction time, measured in
a number of iterations the system takes to detect the novel event after the
novel event has occurred. This test is run for 1000 trials in order to record
the reaction time for each run.

Each test run, called a trial, involves the salient event occurring at a
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random location which is fixed only through that trial. Hence over the
course of 1000 trials, the system’s reaction time is measured in detecting
surprises occurring at different locations of the visual scene. Finally, a
histogram of the reaction times will be plotted to show the sensitivity of
the system to surprise and the foveation profile. Each histogram was later
normalised to have an area under the curve as 1.

The choice of foveation profile affects the system’s reaction time. These
choices are discussed in this section. The implementation method for the
traditional saliency map idea and the measurement metric used to evalu-
ate the proposed method is presented.

As discussed in chapter 4, an agent with a narrow foveation profile is
designed to reduce uncertainty only at the point of fixation. For such a
system, the overall uncertainty of its own knowledge will remain high. Its
lack of internal confidence makes it difficult for the system to detect any
surprise.

It is important to bias the agent’s decision in the case of a low internal
confidence. Hence the surprise (s) is added to the utility function to make
the system aware of the unexpected changes. It was decided to compare
the augmented utility function with that described in section 6.4. That
is the surprise detection performance of the total uncertainty reduction
utility function was probed.

Up = Pi,i (863)

Usp = L5 + Sty1)t,i (8.6b)

The first equation involves only uncertainty and the second equation adds
surprise to the uncertainty. P;; are diagonal elements of the matrix P, .
P, is the projected uncertainty and s;,; is the corresponding element
from surprise vector. It is evident that the agent’s decision should be in-
fluenced by surprise for the second choice of utility function.

1000 trials were tested with the three foveation profiles (section 6.2.1)

for each of the two utility functions introduced in equation 8.6. It is pos-
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tulated from equation 8.6 that adding surprise would result in shorter re-

sponse time.

8.1.3 Traditional Saliency Map

Our method is compared with the traditional method of sampling saliency
maps, where important regions of a visual scene are sampled serially in
decreasing order of their salience. It is important to inhibit a previously
observed salient location in traditional saliency maps otherwise the sys-
tem would keep fixating forever on the most salient location. Hence after
each observation, a small section of the saliency map around the just ob-
served peak is set to zero saliency. As a result, the next higher saliency
gains visual attention. Named after its functionality, this mechanism is
called Inhibition of Return (IOR). The human visual system is believed to

have an after observation inhibition effect of around 3 seconds [160].

The performance of an artificial system, designed to detect surprise,
will depend on how long a previously observed location is blocked (the
IOR blocking time). It is expected that a longer IOR blocking time will
increase the system’s reaction time to a surprising event, as such events

are likely to occur at blocked locations.

The area of sampling (number of pixels to be viewed at each step) was
chosen as 5% of the saliency map area with an equal number of pixels on
either side of the fixation point. That gives us (100 x 5)/100 ~ 5 pixels
to sample at every iteration, centred at the location of the most salient
region on the visual scene. This can be imagined as a 5 pixel wide movable
spotlight within a visual scene of 100 pixels, which would take 20 steps to
sample the complete visual scene. The IOR blocking time was chosen as
20, so that ideally, the system can explore the whole visual scene before
re-observation of any location. When part of the ‘spotlight” went outside

the saliency map boundary, the hanging section was trimmed accordingly.
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8.1.4 Results

This section presents the performance of the proposed algorithm under
six different evaluation conditions described below. The end of this sec-
tion presents a quantitative evaluation of response time with a traditional
saliency map approach with varying IOR blocking time and the proposed
method. Experimentation with both the approaches use the same saliency
map (see figure 6.2).

8.1.5 Results from Kalman Filter Based Saliency Map

Figures 8.2 shows the histograms of the distribution of reaction times with
three foveation profile parameters (p* = 0.001, 10,100). For each of these
parameters, the histogram of the system’s performance was plotted for
both utility functions described in equation 8.6. The three panels in the
first column of the figure show the system’s output without surprise in
the utility function, whereas the three panels of the right column show
the system’s output with surprise included in the utility function. The
surprise detection threshold was set to 3 for all the cases.

With a narrow foveation profile (p* = 0.001) any observation results in
a reduction in uncertainty associated only with the point of focus in the
scene, so this strategy does not reduce the uncertainty of any neighbour-
ing pixels. A slow growing rate (Q = 0.001) for uncertainty causes the
system to place the profile-centre of the foveation profile at every pixel in
the scene in turn. The top panel of figure 8.1 shows the system’s attention
distribution for 10 time steps with narrow foveation profile. The horizon-
tal axis shows time, the vertical axis shows locations. The red dots show
the attended location. The system attended each pixel serially.

The introduction of surprise in the utility equation reduces the worst-
case reaction time from 386 time steps to 139 time steps, which is evident
from the limit of the horizontal axis in the right-top panel in figure 8.2.

Also, the system failed to detect surprise 18 times out of the total number
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Figure 8.1: Staircase plot of the agent’s attention distribution over time
with the three foveation profiles. The Y axis shows the visual location
attended and the horizontal axis shows time. The red dots show the at-
tended locations. The height of each step increases as the foveation profile
becomes wider. This is because a wider foveation profile reduces uncer-
tainty related to a larger group of pixels. Hence the system skips the whole

group of pixels.

of trials when it was not biased by previous measures of surprise, i.e. only
the uncertainty was used as the utility (see equation: 8.6a).

The system fails to detect surprise because while operating with the
narrow foveation profile the system’s average level of uncertainty remains
high. Hence the system is not confident about detecting surprise. This can
be thought of as the large denominator (due to high internal uncertainty )
in equation 8.5, which results in a very low value of measured surprise.

With a medium foveation profile (p*> = 10) one observation results in
a reduction in uncertainty associated with a small group of neighbour-
ing pixels. Hence when the system is reducing only uncertainty (equa-

tion: 8.6a), many of the pixels are never directly observed. This is because
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each observation adequately reduces the uncertainty of neighbouring pix-
els. This is evident from the increase in the height of the step in attention
distribution (figure: 8.1, middle panel). The step height is greater com-
pared with p? = 0.001 (the top panel). The second row, first column of fig-
ure 8.2 shows the histogram of the system’s performance with the medium
foveation profile. Reduction in worst case reaction time (maximum reac-
tion time decreased from 290 time-steps to 30 time-steps) is observed when
surprise was included in the utility function (shown in the correspond-
ing histogram in the right of the figure 8.2). Under this foveation profile,
the system failed to detect surprise only once with uncertainty as the util-
ity function. As expected, this is a better performance than the narrow
foveation profile as the system more successfully detected a larger num-
ber of surprises.

With a wide foveation profile (p* = 100) one observation results in a
reduction in uncertainty associated with a larger number of neighbouring
pixels. This results in bigger jumps between two successive fixation loca-
tions (Figure: 8.1 bottom panel). In this case, most of the pixels are never
directly observed again as the observation of a neighbouring pixel reduces
the uncertainty associated with it. The addition of surprise in the utility
function does not reduce the maximum time taken to detect a surprise as
much as in the earlier settings. The maximum response time with wide
foveation profile shown in the third row of figure 8.2 is almost the same
with or without adding surprise. Due to overall low internal uncertainty,
the system always detected surprise successfully. The wider foveation
profile results in low overall uncertainty level (the system maintains a bet-
ter knowledge of the world) and detects all the surprising events, hence
it generates the most efficient system behaviour. However, having a wide

foveation profile is more expensive.

Figure 8.3 shows the change of true state, internal state, and surprise
related to region number 1 over time for comparison of how the internal

state updates with two different foveation profiles. The left panel shows
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Figure 8.2: System’s performance with three foveation profiles (p* =
0.001, 10, 100). Simulation outputs of the proposed algorithm under 6 eval-
uation conditions. The system’s response time with two utility functions

for three foveation profiles is shown column wise.

the states while operating with a narrow foveation profile (p* = 0.001)
and the right panel shows a plot of a wide foveation profile(p? = 100).
Notice that the amplitude of measured surprise is considerably higher in
the case of the wider foveation profile. This is due to the wide foveation
profile reducing the overall internal uncertainty. Hence the system is more
confident about the surprise in the external world. Notice also, that the
internal belief state (the red line in the figure) reaches the true value, near
time instant 100, in case of the wide foveation profile. This is because the
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agent trusts its measurements more as they are less noisy compared with
a narrow foveation profile. On the other hand, the agent mostly trusts its
internal predictions rather than the measurements while operating with a
narrow foveation profile. This results in slow rising of the internal belief
state of the agent (refer to the left panel of figure 8.3).

Surprise
Bel. state
Surprise

100 1
Time Time

Figure 8.3: Plot of the agent’s belief state, with perceived surprise com-
pared to the true change in the visual scene over time. the left panel shows
the agent operating with a narrow foveation profile and right panel shows
operating with a wide foveation profile. The axis on the left hand side of
each panel shows surprise whereas the right hand axis shows the internal
belief state of the agent. Notice that the system fails to detect the surprise
that comes just after the 100" time instant while operating with narrow

foveation profile.

Figure 8.4 shows the ROC for the surprise detection algorithm with
three foveation profiles. The vertical axis shows the true positive and the
horizontal axis shows the false positives. A larger area under the curve in-
dicates better classification. Notice that the best classification is achieved
when the agent operates with a wide foveation profile. This is because
the wide profile observes a greater area of the visual scene with low mea-
surement noise, which results in low internal uncertainty. Therefore the
agent’s internal uncertainty is low and can tell surprise apart from noisy

measurements.

Bel. state
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Figure 8.4: ROCs with three foveation profiles. The red curve shows the
least area covered (AUC=0.86), the green curve shows AUC=0.98 and the
blue curve shows AUC=1. They capture the system’s ability to detect false
positive compared to true positives. A larger area under the curve ( AUC)
represents better classification.

8.1.6 Results from Traditional Saliency Map

A simple version of the traditional saliency map with IOR was imple-
mented. It showed how the average time to detect surprise increases as a
function of the IOR blocking time. Figure 8.5 shows the output of a tradi-
tional Saliency map implementation with IOR blocking time varying from
20 to 35, and the graph shows a monotonic increase in surprise detection
time (the response time) with an increase in IOR blocking time.

Although direct comparison is difficult the medium foveation profile
has the closest resemblance of the IOR blocking area of 5 pixels wide.
Hence the system behaviours of traditional saliency map and the pro-
posed system operating with the medium foveation profile are compared.

Figure 8.6 shows the response time histograms of the traditional and the
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proposed method. On an average, the traditional method took 11.9 time-
steps and the proposed method took 6.9 time-steps to detect the surprise.
The traditional approach has a longer response time because it ignores
the inhibited regions of the scene. Any surprise event occurring at the
inhibited region remains undetected until it is released. Hence the max-
imum response time is determined by the IOR blocking time. The max-
imum response time taken by the proposed method was 290 time steps,
which is longer than the maximum time taken by the traditional method
(20 time steps). Observe that the histogram of the traditional approach
is less skewed (standard deviation=>5.5) compared to the histogram of the
proposed system (standard deviation is=20.3). This is because with the
medium foveation profile the system cannot maintain an average uncer-

tainty level low enough to detect all the surprises (refer to equation 8.5).



8.1. DETECTING SURPRISING EVENTS IN A VISUAL SCENE 211

- —_ —_ —_ - —_ N
E (&) )} ~ e} © o
T T T T T T T
1 I | 1 I I I

Average response time (epochs)

-
w
T
|

| |
20 25 30 35
IOR blocking time (epochs)

Figure 8.5: A plot showing the rise in average reaction time with the in-
crease in the IOR blocking time for the traditional saliency system.
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Figure 8.6: The left panel shows the histogram of the response time of 1000
runs of the traditional saliency map using inhibition of return. The right
panel shows the output of the proposed system. The traditional saliency
map algorithm took 11.9 epochs on an average to detect surprise whereas

our proposed method took 6.9 epochs on average.

8.2 Chapter Discussion

This chapter contributes a novel surprise detector that fits along with the
Kalman filter based epistemic target selector for detecting sudden event in
the visual scene that could not be captured by the Kalman filter.

Although this utility was shown to operate in conjunction with the sum
of uncertainty reduction utility function, it is not specific to the sum of
uncertainty utility and can be used in conjunction with other utility func-
tions.

In this chapter, the assumption of a one-dimensional visual world was

intended for the purpose of demonstration. The proposed surprise de-
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tection method is not limited to one dimension as any 2D videos can be

rearranged into 1D and this method can be applied.






Chapter 9

Conclusion and Future Work

9.1 Discussions

This thesis focuses on saliency map based visual sampling in dynamic sce-
narios. The overall goal was to extend the traditional saliency map model
to include an internal world model.

An internal model was used for utility based sampling of the visual
scene. For example, states of uncertainty are used to guide sampling of a
visual scene as uncertainty in an internal model represents its confidence
in itself. Once a visual region is sampled its uncertainty goes down due
to the addition of new measurement and visual attention is distributed to
other locations with higher uncertainty. In general different visual scene
sampling behaviours were achieved by designing a variety of appropriate
utility functions.

Two supporting algorithms were also presented for learning process
noise from observations. This allows the proposed system to adapt to a
dynamic visual scene.

The traditional approach towards visual scene sampling is to find a
suitable combination of visual features to compute a saliency map and
observe the visual scene in descending order of the saliency map. This ap-

proach needs an additional mechanism called the IOR to prevent fixation.
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IOR has the drawback of blocking previously observed visual regions. An
IOR based mechanism is inappropriate for a dynamic visual scene as it
cannot observe visual changes in the blocked region.

This work presented the first Kalman filter aided approach that allows
preventing fixation without using the traditional IOR mechanism. More
importantly, the novel mechanism proposed a conceptual framework that
allows further development of utility functions and learning from visual
observations.

The presented thesis which proposed the Kalman filter aided visual

scene sampling approach achieved the following:

1. The first objective was to use a Bayesian framework to include un-
certainty in an agent’s decision making. Such a system should be-
haviourally inhibit previously observed locations, achieve different
inhibition time for different parts of the scene and predict utility of
a future observation. A novel Kalman filter aided epistemic visual
target selector was presented in chapter 3. It was shown in chap-
ter 4 using equations in section 4.2 and attention distribution plots
that the proposed method could behaviourally achieve inhibition of
previously observed locations, achieve different inhibition time for
different parts of the scene and could act based on predicted utility
of a future observation.

2. The second objective was to design a set of utility functions using
which a variety of visual scene sampling behaviour could be pro-
duced. This objective was achieved in the chapters 4, 6 and 7. These
three chapters proposed four novel utility functions that could be
used to distribute visual attention in a dynamic scene. Varied vi-
sual scene sampling behaviours were displayed using visual atten-
tion distribution plots in those chapters.

3. The third objective was to use statistical methods to learn the vari-

ance of pixels from observations. Two novel estimators were pro-
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posed in chapter 5. It was shown using the estimation error plots in
that chapter that the two proposed variance learners could estimate
the statistical variance of pixels form observations with varying mea-

surement noise.

4. The fourth objective was to detect a sudden event, which could not
be detected by the epistemic target selector. This was achieved in
chapter 8 by adding a novel statistical distance based metric between
a new observation and the prediction from the epistemic visual tar-
get selector. The proposed distance based surprise detector’s ability
was presented using histograms of its response-time in detecting a
surprising event. Also, it was shown that the proposed system can
detect surprising events in a visual scene faster than the traditional
Itti model.

5. In addition, it was also shown in chapter 6 that, the proposed sys-
tem improves human fixation prediction by replacing the traditional
winner-take-all and inhibition of return mechanisms with the novel
Kalman filter aided epistemic target selector as assessed by standard

measurement metrics.

The proposed system along with the variance learning algorithm could
be used in various engineering applications. The proposed model is not
dependent on any specific feature detector although, the Itti bottom-up
model and pixel intensity were used as feature detectors in this work. An
application engineer could implement the proposed system on top of a
suitable feature detector that he thinks useful. In such case he does not
need to worry about choosing an inhibition of return blocking previously
observed locations, inhibition time or inhibition shape. He needs to choose

a suitable utility function to express what the agent cares about. He also
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For example, an online pedestrian detection task would require “pri-
oritisation of high salience targets” as the utility function and a square
foveation profile. The proposed saliency based algorithm can be utilised
to reduce the search space whereas the canonical pedestrian detectors per-
form a brute force search of desired features in a visual scene (e.g. Viola-
Jones algorithm [189]). This should result in reduction in pedestrian de-
tection time.

Another application area that could benefit from the proposed method
is video conferencing systems. Usually these systems use evenly spaced
grid to reduce video resolution when transmitting. This often results in
a very poor perceived video quality, especially when used over slow net-
works. The proposed mechanism can be used to selectively encode areas
perceived as important by humans in high resolution. This would reduce
the data transmission burden without compromising on the video qual-
ity experience. In this application, the uncertainty reduction utility along

with the concave foveation profile could be used.

9.2 Future Work

Many different adaptations, tests, and experiments can be conducted based
on the presented work. Future work should concern deeper analysis of
particular mechanisms, new proposals to try different methods, or simply

curiosity. Here is a list of ideas to be tried out as future work.

1. The presented work assumes a non changing world model for sim-
plicity in presentation. However, a future work could involve more
general Kalman filter equations to accommodate for complicated mo-
tions and different state transition matrices. This could be useful for

applications such as tracking, motion stabilized camera systems.

An internal model that describes motions across a visual scene (e.g.

motion of a moving ball) can be used to distribute visual attention
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amongst tracking multiple objects in the scene with limited process-
ing. Such an agent will distribute more visual attention to an object
whose motion it cannot describe with its internal model compared
to an object with predictable motion path. This behaviour can be
seen as an extension of the uncertainty based visual seen sampling
strategy proposed in this work.

This work assumed that the entire visual scene has similar state tran-
sition model. In future it can be extended to describe different types

of motions for different sections of a scene.

Also, it would be interesting to learn the state transition matrix from
observations.

2. This work considered every pixel of a visual scene to be indepen-
dent. Often those pixels can be grouped based on colour or simi-
larities in temporal statistics, and observing any pixel of that group
gives information about rest of the pixels in the group. In such cases,
an input image could be segmented into super-pixels (groups of sim-
ilar pixels) [114]. Hence the total number of internal states can be

heavily reduced to a more manageable number.

An immediate consequence is that an observation of any pixel in a
group would give information about other pixels in that group. This
would reduce the total number of visual targets in the scene and an
agent should be able to explore a visual scene quicker.

Usually, predictable regions (for example: wall, furniture, buildings
etc.) take up the most space in a setting and medium and unpre-
dictable regions take comparatively less space. Predictable objects
have the most distinctive temporal characteristic and are easy to sep-
arate from the rest of the visual scene based on other features like
colour. Therefore predictable regions are easier to group together
and offers a big reduction in a total number of internal states.
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As an introductory idea, the variance learning algorithm presented
in chapter 5 can be modified to learn the covariance between differ-
ent visual regions. This covariance information can be further used
for perceptual grouping.

However, it can be challenging to find the exact size and shape of
a visual region that can be grouped into one. A predefined set of
features for example colour, texture, the temporal behaviour is nec-
essary to be used as the criteria for grouping. This grouping of pixels

is an important future direction to study.

. This work presented four utility functions. Many other utility func-

tions could be explored in the future. As an immediate example,
two further visual scene sampling strategies based on the expected
improvement can be thought of as an extension of the utility function
presented in chapter 7. The agent could follow one of the following
strategies: (i) give more importance to features values above a fixed
threshold, and (ii) give more importance to feature values above the
best known feature value. The first strategy should generate a be-
haviour where the agent would look at visual locations that have
high intensity of the desired features. The second strategy would
generate a behaviour where the agent would be looking at the visual
location with the highest intensity of feature.

It would also be interesting to work out what utility function can

achieve what real-life robot tasks.

. Another important future work could be to study the Kalman filter

aided system’s behaviour with a non Gaussian error assumption. As
the Kalman filter non optimally works with non Gaussian error as-
sumptions [6], it would be interesting to study the resulting visual
attention distribution. Specially, it would be important to study how

often the surprise signal is triggered.
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5. The Kalman filter assumes that the immediate past random variable
can sufficiently describe the future. Hence the filter keeps track of
one prior state. Other richer algorithms like the Gaussian process
can predict future based on all the past states of an agent. Including
all past states is computationally more expensive, but can express
more complicated temporal behaviours. A promising future work is
to extend the presented Kalman filter based work to use a Gaussian

process based reasoning algorithm.

6. The proposed work assumed that each visual scene part is observed
at every time step with varying measurement noises. In practice,
only a smaller part of the entire visual scene is observed at any time
step. For example, when someone is looking towards the front, he is

not watching part of the visual scene behind him.

In such a case the unobserved visual states should be updated in time
based on the internal model of the agent. The proposed method can

be extended in future for such scenarios.

In the case of partial observation of a visual scene, any given part of
the scene is observed irregularly. Due to lack of regular observations,
the recursive method of estimation process noise is not suitable. The
MLE based batch processing must be adapted to deal with datasets

consisting of observations at irregular time intervals.

7. For simplicity of initial experiments the proposed visual scene sam-
pling scheme was demonstrated with pixel intensity and Itti based
saliency. The proposed method is not specific to any choice of a fea-
ture representing the visual scene, hence it is not limited to any par-
ticular bottom-up model. Future attempts could be made to study
the proposed systems behaviour in conjunction with other promi-

nent bottom-up models in the Saliency field.

8. It was assumed that a single Gaussian distribution faithfully repre-
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sents a real world state. It might be possible that a single Gaussian
distribution is not a good model of the real world states of a video or
a visual scene and a mixture of Gaussian distributions is a suitable
approach for real life modelling of visual scenes. Therefore using
a Gaussian mixture model would be an important future direction
to study. It is known that given enough Gaussian distributions per
world state, any world state can be modelled. Causes that influences
the world states can also be accurately modelled with the mixture
of Gaussian, where each cause is represented as one Gaussian dis-
tribution. Although it is accurate, having multiple Gaussian distri-
butions representing one state has the drawback of being memory
extensive and computationally demanding. Therefore the total num-

ber of states that can be practically tracked by an agent is limited.



Appendix A

Itti bottom-up Saliency Map

Parameters

This chapter discusses the Itti saliency model’s default parameters. The
Itti saliency map is given every frame of the video dataset and it produces
the corresponding saliency maps for each frames.

A.1 Spatial Sampling in Itti Saliency Generation

The saliency map computed by the Itti model has smaller pixel count than
the input image. This is because, that the saliency is computed by the sum
of differences in features in centre-surround windows. Hence the group
of pixels coming under a centre surround window gets represented by
one pixel in the final saliency map. As an outcome the saliency map has
less number of pixels and each pixel in the saliency map corresponds to
a region in the input image. The mapping between a salient pixel and
the cosponsoring image coordinates is defined by the choice of feature
detectors and how they are interconnected.

Parameters such as the number of feature detector windows and how
they are interconnected can be chosen in the Itti model. Hence, the saliency

map to image coordinate mapping depends on the choice of these param-
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eters.

The toolbox provided by the creators of the Itti model allows the user
to chose amongst a set of predefined set of model parameters or can cus-
tom define parameters. Amongst the predefined sets, there is a special
set, which was hand-crafted by the designers of the Itti model called the
‘default’ parameters set. Table A.1 lists out some of the parameters in the
default set. The entire list is not presented here as it is long and it can be
found in the saliency toolbox. The ‘default’ parameters were chosen for all
the experiments that used the Itti model.

Table A.1: Selected default saliency parameters of the Itti model.

pyramidType "dyadic’
features {’Color’, Intensities’,'Orientations’}
weights [111]
IORtype "shape’
shapeMode ‘shapeFM’
levelParams [1x1 struct]
IORdecay 0.9999
gaborParams [1x1 struct]
oriAngles [0 45 90 135]

The mapping between the saliency map the input image was fixed for
all the experiments as the same parameters (the default parameters set)
were used. The saliency tool box also comes with a built-in function to
compute this mapping between the saliency location and the correspond-
ing image coordinates.

Due to this down-sampling in image size the epistemic target selector
operates on a much smaller number of pixels than the total pixels in the
input image. Similarly the epistemic target selector does not need to oper-
ate on each pixel of the initial input videos. Therefore, all the initial testing

videos were downsampled by a Itti saliency map to input image like ratio.
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The pyramidType parameter in table A.1 defines the interconnection
between the feature detectors. In this example, the default ‘dyadic’ means
that the model will create a Gaussian pyramid by blurring and subsam-
pling a map by a factor of two repeatedly, as long as both image-width
and image-height are larger than one. Notice how the inhibition of re-
turn decay time, called the IORdecay, has been hard coded into the set of
parameters. In contrast this work would attempt to learn this parameter

form observations.
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