
Scheduling and Resource
Provisioning Algorithms for

Scientific Workflows on
Commercial Clouds

by

Vahid Arabnejad

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2018

Abstract
Basic science is becoming ever more computationally intensive, increasing the
need for large-scale compute and storage resources, be they within a High Per-
formance Computer cluster, or more recently, within the cloud. Commercial
clouds have increasingly become a viable platform for hosting scientific anal-
yses and computation due to their elasticity, recent introduction of specialist
hardware, and pay-as-you-go cost model. This computing paradigm there-
fore presents a low capital and low barrier alternative to operating dedicated
eScience infrastructure. Indeed, commercial clouds now enable universal access
to capabilities previously available to only large well funded research groups.
While the potential benefits of cloud computing are clear, there are still signif-
icant technical hurdles associated with obtaining the best execution efficiency
whilst trading off cost. In most cases, large scale scientific computation is repre-
sented as a workflow for scheduling and runtime provisioning. Such schedul-
ing becomes an even more challenging problem on cloud systems due to the dy-
namic nature of the cloud, in particular, the elasticity, the pricing models (both
static and dynamic), the non-homogeneous resource types and the vast array of
services. This mapping of workflow tasks onto a set of provisioned instances is
an example of the general scheduling problem and is NP-complete. In addition,
certain runtime constraints, the most typical being the cost of the computation
and the time which that computation requires to complete, must be met. This
thesis addresses ’the scientific workflow scheduling problem in cloud’, which
is to schedule workflow tasks on cloud resources in a way that users meet their
defined constraints such as budget and deadline, and providers maximize prof-
its and resource utilization. Moreover, it explores different mechanisms and
strategies for distributing defined constraints over a workflow and investigate
its impact on the overall cost of the resulting schedule.

ii

Acknowledgments

First and foremost, I offer my profoundest gratitude to my supervisor, Kris
Bubendorfer, for his invaluable guidance, advice, and motivation throughout
my candidature. Secondly, I would like to offer my sincere gratitude to my co-
supervisor, Bryan Ng, whose wise advice and profound knowledge has made
the contributions of this thesis more significant.

I am greatly appreciative for all of the support from my friends and family
who have helped me through my tough times and filled me with confidence
and strength when I needed the most.

iii

iv

Contents

1 Introduction 1
1.1 Problem Statement: Workflow Scheduling and Resource Provi-

sioning in Cloud . 1
1.2 Research Challenges . 2
1.3 Contribution . 4
1.4 Thesis Organization . 5

2 Workflow Scheduling: Taxonomy and Literature Review 9
2.1 Application Model . 9

2.1.1 Bag of Tasks (BoT) . 11
2.1.2 Workflows . 11

2.2 Resource Model . 14
2.2.1 Grid Computing Platforms 14
2.2.2 Cloud Computing Platforms 15

2.3 Scheduling Algorithms . 19
2.3.1 Heuristic-Based Algorithms 19
2.3.2 Meta-Heuristic (Evolutionary) Algorithms 20
2.3.3 Hybrid Algorithms . 21

2.4 Static and Dynamic Scheduling . 21
2.4.1 Static Planning, Static Provisioning (SPSP) 22
2.4.2 Dynamic Planning, Static Provisioning (DPSP) 22
2.4.3 Static Planning, Dynamic Provisioning (SPDP) 22
2.4.4 Dynamic Planning, Dynamic Provisioning (DPDP) 22

v

vi CONTENTS

2.5 Scheduling Criteria . 23
2.5.1 Optimization . 23
2.5.2 Constraints . 23

2.6 Related Work . 23
2.6.1 Deadline Constrained Scheduling 24
2.6.2 Budget Constrained Methods 26
2.6.3 Deadline and Budget Constrained Scheduling 28
2.6.4 Multiple Workflows . 30

3 Motivation and Problem Statement 33
3.1 Motivation . 33

3.1.1 Dynamic Provisioning . 33
3.1.2 On-demand Resources . 34
3.1.3 Elasticity . 34
3.1.4 User Requirements . 34

3.2 Scientific Workflows Overview . 36
3.3 Problem Definition . 37

3.3.1 Application Model . 37
3.3.2 System Model . 37
3.3.3 Definitions . 38

4 Deadline Constrained Workflow Scheduling 43
4.1 Introduction . 43
4.2 PDC and DCCP Algorithms . 44

4.2.1 Preprocessing Step . 44
4.2.2 Task Prioritization . 48
4.2.3 Instance Selection in PDC 53
4.2.4 Instance Selection in DCCP 55
4.2.5 Time Complexity . 57

4.3 Evaluation . 58
4.3.1 Performance Metrics . 60
4.3.2 Task Selection in PDC . 61

CONTENTS vii

4.3.3 Backfilling in DCCP . 68
4.3.4 Cost Comparison Analysis 69
4.3.5 Success Rate Analysis . 73
4.3.6 Throughput Analysis . 74

4.4 Summary . 76

5 Distribution Strategies for Scientific Workflow Scheduling 79
5.1 Introduction . 79
5.2 Budget Distribution Strategies . 80

5.2.1 The Budget-Aware Scheduling Algorithm 80
5.2.2 Workflow Partitioning . 81
5.2.3 Budget Distribution . 82
5.2.4 Task Selection . 85
5.2.5 Instance Selection . 88
5.2.6 Evaluation . 89
5.2.7 Analysis of LIGO . 90
5.2.8 Other workflows . 93

5.3 Deadline Distribution Strategies 96
5.3.1 The DDR algorithm . 96
5.3.2 Workflow partitioning . 97
5.3.3 Deadline Distribution . 97
5.3.4 Task Selection . 100
5.3.5 Instance Selection . 102
5.3.6 Evaluation . 104
5.3.7 Experimental Results . 104
5.3.8 Cost comparison for distribution strategies 105
5.3.9 Cost Comparison with other algorithms 106

5.4 Summary . 108

6 Budget Deadline Constrained Workflow Scheduling 111
6.1 Introduction . 111
6.2 The BDAS Algorithm . 112

viii CONTENTS

6.2.1 Workflow Partitioning . 112

6.2.2 The “All in” Budget Distribution 113

6.2.3 Deadline Distribution . 114

6.2.4 Task Selection . 115

6.2.5 Instance Selection . 116

6.3 Evaluation . 117

6.3.1 Performance Metrics . 120

6.4 Experimental Results . 121

6.4.1 CYBERSHAKE . 122

6.4.2 EPIGENOMICS . 122

6.4.3 LIGO . 124

6.4.4 MONTAGE . 124

6.4.5 SIPHT . 128

6.4.6 Total Success Rate . 128

6.4.7 A summary of the performance of scheduling algorithms . 130

6.4.8 Sensitivity Analysis . 132

6.4.9 Decreasing billing cycle . 134

6.5 Summary . 136

7 Dynamic Workflow Scheduling 143

7.1 Introduction . 143

7.2 System Architecture . 144

7.3 Workload Model . 145

7.4 The DWS algorithm . 146

7.4.1 Workflow Partitioning . 146

7.4.2 Deadline Distribution . 148

7.4.3 Task Selection . 148

7.4.4 Instance Selection . 149

7.5 Evaluation . 150

7.5.1 Performance Metrics . 151

7.6 Experimental Results . 152

CONTENTS ix

7.6.1 Success Rate Analysis . 152
7.6.2 Cost Comparison Analysis 156
7.6.3 Deadline Utilization . 157

7.7 Summary . 158

8 Conclusions and Future Directions 159
8.1 Summary of Contributions . 159
8.2 Future Work Directions . 161

x CONTENTS

List of Tables

4.1 Ranks values . 47
4.2 Selected task by different policies 50
4.3 Ranks values of tasks in Figure 3.1 52
4.4 CPs and CCPs based on standard ranks 53
4.5 CPs and CCPs based on modified ranks 53
4.6 Instance Types based on Amazon EC2 59

5.1 Budget distribution for each strategy over each level for a total
budget of 165 in Figure 5.1. 87

5.2 Example of computed budget distribution for each strategy over
each level of a LIGO for budget range=5 and budget=7.035. 90

5.3 VM requested types by different strategies based on Table 5.2. . . 92
5.4 Deadline distribution for each strategy over each level for a total

deadline of 165 in Figure 5.1. 101
5.5 Definition of legends in Fig. 5.7. 105

6.1 Five main phases of BDAS . 112
6.2 Different possible ranges for Cost and Time. 118
6.3 Total Success Rate for five different scientific workflows. The

mean Total Success Rate for BDAS is 17.0%–23.8% higher than
other algorithms. 130

6.4 Time-Cost relationship for five different scientific workflows. . . . 131

xi

xii LIST OF TABLES

List of Figures

2.1 Taxonomy of Workflow Scheduling techniques 10

2.2 Application Model Taxonomy repeated from Figure 2.1 13

2.3 Resource Model Taxonomy repeated from Figure 2.1 14

2.4 cloud computing architecture . 16

3.1 A sample DAG with 12 tasks . 39

4.1 Scheduling workflow with PDC and DCCP 44

4.2 A sample DAG with 12 tasks . 51

4.3 Ready tasks and rank values (shown within each bar) after exe-
cution of task 0 . 51

4.4 Task selection results for Montage 62

4.5 Task selection results for SIPHT . 63

4.6 Task selection results for LIGO . 64

4.7 Task selection results for Cybershake 65

4.8 Task selection results for Epigenomics 66

4.9 VM utilization for three different deadline intervals with Back-
filling policies for LIGO. 70

4.10 VM utilization for three different deadline intervals with backfill-
ing policies for MONTAGE. 71

4.11 Normalized Cost vs. deadline for five different datasets. 72

4.12 Success Rate for five different datasets. 73

4.13 Throughput for five different datasets. 75

xiii

xiv LIST OF FIGURES

5.1 A Sample Workflow with 10 tasks. 84
5.2 Task Selection Example . 86
5.3 A simple structure of LIGO with six levels 91
5.4 Makespan and Success rate performance executing LIGO for all

strategies for lease time of 15, 30, 45 and 60. 94
5.5 Makespan and Success rate performance executing of workflows

for all strategies for lease time 60. 95
5.6 Producing different strategies based on baseline strategies. 102
5.7 Cost vs. deadline for different deadline distribution strategies. . . 107
5.8 Cost vs. deadline for five different datasets. 109

6.1 CYBERSHAKE . 123
6.2 EPIGENOMICS . 125
6.3 LIGO . 126
6.4 MONTAGE . 127
6.5 SIPHT . 129
6.6 Sensitivity Analysis for five different data set. 135
6.7 CYBERSHAKE . 137
6.8 EPIGENOMICS . 138
6.9 LIGO . 139
6.10 MONTAGE . 140
6.11 SIPHT . 141

7.1 Architecture of presented system 144
7.2 Success Rate . 153
7.3 Workload Cost . 154
7.4 MakeSpan Utilization . 155

Chapter 1

Introduction

1.1 Problem Statement: Workflow Scheduling and

Resource Provisioning in Cloud

Scientific discovery is in the midst of a disruptive technological change, where
experimental and observational research is being transformed by computational
and data-intensive approaches [1]. Researchers in almost every discipline now
face new opportunities [2] and challenges that impact every stage of the re-
search lifecycle due to ever-growing data volumes and increased analytical com-
plexity [3]. While much of this has in the past utilized dedicated High Per-
formance Computing (HPC) systems, there is an ongoing migration of scien-
tific computing into the various commercial clouds for a number of compelling
reasons: elastic clouds offer a variety of accessible and cost-effective comput-
ing platforms [4–7], the on-demand model better fits the typically sporadic de-
mands of researchers [8], and finally, rather than resources being used to pur-
chase and maintain dedicated HPC equipment, they are instead used for pay-
per-use computation and storage resources offered by cloud vendors. Typical
commercial cloud services charge on the basis of the number of hours the re-
sources (such as CPU, network bandwidth and amount of storage) are used.
This charging model is referred to as pay-per-use. Other advantages of using

1

2 CHAPTER 1. INTRODUCTION

commercial clouds for scientific computation include reliability and fault toler-
ance, and access to specialized resources such as GPUs. The flexibility inherent
in the elastic cloud model, while powerful, may also result in inefficient us-
age and high costs when inadequate scheduling and provisioning decisions are
made [9].

The cloud presents an opportunity to accelerate scientific discovery by au-
tomating [10] computation in workflows, permitting vast numbers of complex
compute and data-intensive experiments to be executed. A major challenge
of the cloud paradigm for e-Science lies in limiting or minimising [9] costs
while maintaining or even accelerating throughput. In fact, scheduling work-
flows and provisioning cloud resources naı̈vely can have a significant financial
penalty - especially in dynamic markets such as the Amazon spot market [11].
As the fundamental workflow scheduling problem is NP-complete [12], opti-
mising multiple constraints, such as cost and time, over a non-uniform set of
unlimited resources is nontrivial. Indeed, this complexity leads to long com-
putation times in order to create a reasonable schedule, therefore a heuristic
scheduling approach is needed.

1.2 Research Challenges

To deal with the challenges associated with the scientific workflow scheduling
in cloud, the following research problems are investigated:

• Scheduling: assigning workflow tasks to resources is known as the schedul-
ing problem that belongs to the class of NP-complete problems [12]. Al-
locating workflow tasks to resources can be separated into two stages, the
first being scheduling and the second is provisioning [13]. Given a set of
resources, the workflow task scheduling phase aims to determine the op-
timal execution order and task placement with respect to user and work-
flow constraints [14, 15].

Most of the studies in workflow scheduling problem are designed for

1.2. RESEARCH CHALLENGES 3

users on platforms such as grid and cluster. Pricing schemes in cloud sys-
tems are based on lease intervals from the time of provisioning, even if the
instance is only used for a fraction of that period. However, cost in grid is
calculated based on the accumulated cost of requested services. Therefore,
those approaches are not directly applicable for scheduling workflows on
cloud when unlimited resources can be leased from a public cloud on-
demand. However, at the final stage of writing this thesis, Amazon in-
stance prices have been changed 1.

• Resource Provisioning: The cloud provides on demand pay-per-use pro-
visioning of a range of instance types, no matter where the services or
requester are hosted. Dynamic provisioning of resources is a critical ele-
ment when utilizing the cloud for executing large-scale and complex ap-
plications. This is essentially a problem of ensuring an appropriate set of
instances is provisioned.

The resource provisioning phase aims to determine the number and type
of resources required and then reserve these resources for workflow exe-
cution [9, 16]. While the majority of cloud scheduling systems necessarily
include both scheduling and provisioning stages, prior research tends to
focus on the scheduling phase, under the assumption that a pre-identified
pool of (often homogeneous) resources are used for execution, and with
the goal of optimizing workflow execution time (makespan) without con-
sidering resource cost. In a commercial cloud environment this set of as-
sumptions no longer holds.

• User Requirements: Research is increasingly reliant on big compute and
big data, the fusion of which is known as data-intensive science. Data-
intensive computing is defined as production, manipulation and analysis
of data from mega bytes to peta bytes [17]. Data-intensive applications
in different domains, from science to social networking, produce large

1https : //aws.amazon.com/blogs/aws/new−per−second−billing−for−ec2−instances−
and− ebs− volumes/

4 CHAPTER 1. INTRODUCTION

scale data that need to be analyzed and processed with parallel processing
and distributed techniques. Data operations consist of loading input files,
data processing, distribution and aggregation, and execution is typically
modeled and characterized by workflows. While cloud platforms pro-
vide enormous elastic computing capacity, they also pose unique multi-
objective challenges in respect to cost, time and data movement. Effi-
ciently managing pay-per-use heterogeneous cloud infrastructure for large
data and compute intensive applications within user requirements (de-
fined as constraints such as budget and deadline) is a challenge that is
faced in almost every research domain.

1.3 Contribution

This thesis presents novel heuristic algorithms for scientific workflow schedul-
ing constrained by user requirements such as deadline and budget on cloud.
Specifically, the major contributions of this thesis are:

1. The design and development of two new heuristic algorithms, Propor-
tional Deadline Constrained (PDC) and Deadline Constrained Critical Path
(DCCP), that manage the scheduling of workflows on dynamically provi-
sioned cloud resources. The PDC algorithm maximizes parallelism in a
workflow by separating it into logical levels and then proportionally sub-
dividing the overall workflow deadline over different levels. Moreover,
in order to show how the order of execution can influence the scheduling,
particularly the cost, different policies are tested in the PDC algorithm.
The DCCP algorithm uses the concept of Constrained Critical Paths (CCP)
to execute a set of tasks on the same instance with the goal of reducing
communication cost between instances.

2. The investigation of different ways in which to distribute budget and
deadline over a workflow. In terms of budget, several new strategies are
introduced for sharing or distributing budget based on the dependency

1.4. THESIS ORGANIZATION 5

structure inherent in workflows. Moreover, trickling to redistribute un-
spent budget down to other levels is introduced. The main finding of my
research is in the importance of biasing budget distribution to early levels
in a workflow.

To distribute deadline, new strategies are introduced for deadline distri-
bution assessed the effectiveness of these strategies in terms of cost and
success rate. In general, the strategy that takes into consideration the ex-
ecution time of each level as well as number of tasks in the level which
yields the lowest cost.

3. The design and implementation of a new heuristic scheduling algorithm,
Budget Deadline Aware Scheduling (BDAS), which focuses on address-
ing the unique characteristics of workflow execution on cloud platforms,
such as on-demand provisioning and instance heterogeneity, while simul-
taneously meeting budget and deadline constraints. The novelty of this
work is satisfying both budget and deadline constraints while introduc-
ing a tunable cost-time trade-off over heterogeneous instances. In addi-
tion, the stability and robustness of the presented algorithm is studied by
performing sensitivity analysis.

4. The design of a Workflow as a Service (WFaaS) architecture for schedul-
ing of multiple workflows with the aim of satisfying the deadline for each
workflow in a typical cloud environment in which workflow can be sub-
mitted at any time.

1.4 Thesis Organization

The core chapters of this thesis have resulted in a set of papers published during
the PhD candidature.

• Chapter 2: Literature Review

6 CHAPTER 1. INTRODUCTION

This chapter covers essential background and provides a detailed taxon-
omy on scheduling concept. This chapter then reviews related works and
summarizes the research topics of workflow scheduling in cloud.

• Chapter 3: Motivation and Problem Statement

This chapter describes a number of challenges related to scientific work-
flow scheduling that need to be considered. Then the problem of work-
flow scheduling and related definitions are explained.

• Chapter 4: Deadline Constrained Workflow Scheduling

This chapter presents two cost-effective and deadline constrained heuris-
tics for scheduling scientific workflow. Both heuristics consider a tradeoff
of cost vs time, and includes both re-use of pre-provisioned instances and
the creation of new instances on demand.

The chapter is derived from the following publications:

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng. Scheduling Dead-
line Constrained Scientific Workflows on Dynamically Provisioned
Cloud Resources. Future Generation Computer Systems (FGCS), 2017.

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng, and Kyle Chard. A
deadline constrained critical path heuristic for cost-effectively schedul-
ing workflows. In the 8th IEEE International Conference on Utility
and Cloud Computing (UCC), Limassol, Cyprus, December 2015.

– Vahid Arabnejad and Kris Bubendorfer. Cost effective and deadline
constrained scientific workflow scheduling for commercial clouds. In
the 14th IEEE International Symposium on Network Computing and
Applications (NCA), Cambridge, MA USA, September 2015.

• Chapter 5: Distribution Strategies for Scientific Workflow Scheduling

This chapter discusses the importance of distribution of defined constrained,
budget and deadline, in terms of cost minimization, time efficiency and

1.4. THESIS ORGANIZATION 7

success rate. Various strategies are introduced for sharing or distributing
budget and deadline to different levels in a workflow.

The chapter is derived from the following publications:

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng. Budget Distribution
Strategies for Scientific Workflow Scheduling in Commercial Clouds.
In the proceeding of the IEEE 12th International Conference on eScience,
Baltimore, Maryland, USA, October 2016.

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng. Deadline Distribu-
tion Strategies for Scientific Workflow Scheduling in Commercial Clouds.
In the 9th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC 2016), December 6-9, 2016 Shanghai, China.

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng. A Budget-Aware
algorithm for Scheduling Scientific Workflows in Cloud. In the the
18th IEEE International Conferences on High Performance Comput-
ing and Communications (HPCC), 12-14 December, Sydney, Aus-
tralia.

• Chapter 6: Budget Deadline Constrained Workflow Scheduling

When more than one constraint is requested by a user, such as budget and
deadline, the problem of workflow scheduling becomes even more chal-
lenging. The main reason is conflicting behavior of these constraints, like
running on faster instances leads to shorter execution time while it costs
more. Hence, in order to analyze an acceptable balance between incom-
patible constraints, cost and time in cloud systems, this chapter presents a
new heuristic scheduling algorithm for scheduling workflows constrained
by both budget and deadline.

The chapter is derived from the following publication:

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng. Budget and Deadline
Aware e-Science Workflow Scheduling in Cloud. IEEE Transaction of
Parallel and Distributed System (TPDS), 2018.

8 CHAPTER 1. INTRODUCTION

• Chapter 7: Dynamic Workflow Scheduling

Previous chapters described static scheduling as when the number of work-
flows are known in advance and all are submitted at the same time. How-
ever, a scheduler may have to schedule an unpredictable stream of work-
flows. This chapter presents a new algorithm to address scheduling of
multiple workflows with the aim of satisfying the deadline for each work-
flow in a cloud environment in which workflows can be submitted at any
time.

The chapter is derived from the following publication:

– Vahid Arabnejad, Kris Bubendorfer, Bryan Ng. Dynamic Workflow
Scheduling: A Deadline and Cost-Aware Approach for Commercial
Clouds. Submitted to Future Generation Computer Systems (FGCS).

Chapter 2

Workflow Scheduling: Taxonomy
and Literature Review

In order to fully explain the related work in this area, I present a taxonomy that
covers different criteria and parameters for scheduling problems in distributed
computing platforms. This taxonomy (Figure 2.1) provides a broad summary
of the different aspects and techniques in workflow scheduling. Further, recent
studies that were specifically designed for scheduling scientific workflows in
cloud, are categorized, compared and discussed in more detail. Numbers ap-
pearing in brackets in Figure 2.1 map sections in this chapter.

2.1 Application Model

In general, application model for scheduling in a distributed system can be con-
sidered as Bag of Tasks (BoT) in which all tasks are independent, or workflows
with defined dependencies between tasks. The application model leaf of the
taxonomy is presented in Figure 2.2.

9

10 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

T
ax

on
om

y
of

W
or

k
fl

ow
S

ch
ed

u
li

n
g

T
ec

h
n

iq
u

es

S
ch

ed
u

li
n

g
C

ri
te

ri
a

(2
.5

)

C
on

st
ra

in
ts

(2
.5

.2
)

O
p

ti
m

iz
at

io
n

(2
.5

.1
)

S
ta

ti
c

an
d

D
y
n

am
ic

S
ch

ed
u

li
n

g
(2

.4
)

D
y
n

am
ic

P
la

n
n

in
g-

D
y
n

am
ic

P
ro

v
is

io
n

in
g

(2
.4

.4
)

S
ta

ti
c

P
la

n
n

in
g-

D
y
n

am
ic

P
ro

v
is

io
n
in

g
(2

.4
.3

)

D
y
n

a
m

ic
P

la
n

n
in

g-
S

ta
ti

c
P

ro
v
is

io
n
in

g
(2

.4
.2

)

S
ta

ti
c

P
la

n
n

in
g-

S
ta

ti
c

P
ro

v
is

io
n

in
g

(2
.4

.1
)

S
ch

ed
u

li
n

g
A

lg
o
ri

th
m

s
(2

.3
)

H
y
b

ri
d

(2
.3

.3
)

M
et

a-
H

eu
ri

st
ic

(2
.3

.2
)

H
eu

ri
st

ic
(2

.3
.1

)

R
es

ou
rc

e
M

o
d

el
(2

.2
)

C
lo

u
d

(2
.2

.2
)

Ia
aS

(2
.2

.2
.3

)

H
y
b

ri
d

(2
.2

.2
.3

.3
)

P
ri

va
te

(2
.2

.2
.3

.2
)

P
u

b
li

c
(2

.2
.2

.3
.1

)

S
p

o
t

In
st

a
n

ce
s

(2
.2

.2
.3

.1
.3

)

O
n

-D
em

a
n

d
In

st
a
n

ce
s

(2
.2

.2
.3

.1
.2

)

R
es

er
ve

d
In

st
a
n

ce
s

(2
.2

.2
.3

.1
.1

)

P
a
aS

(2
.2

.2
.2

)

S
aa

S
(2

.2
.2

.1
)

G
ri

d
(2

.2
.1

)

A
p

p
li

ca
ti

on
M

o
d

el
(2

.1
)

W
or

k
fl

ow
s

(2
.1

.2
)

T
y
p

e
(2

.1
.2

.2
)

C
o
m

p
u

te
In

te
n

si
ve

(2
.1

.2
.2

.2
)

D
a
ta

In
te

n
si

ve
(2

.1
.2

.2
.1

)

M
u

lt
ip

li
ci

ty
(2

.1
.2

.1
)

M
u

lt
ip

le
w

o
rk

fl
ow

s
(2

.1
.2

.1
.2

)
In

d
ep

en
d

en
t

(2
.1

.2
.1

.2
.2

)

In
te

rr
el

a
te

d
(E

n
se

m
b

le
s)

(2
.1

.2
.1

.2
.1

)

S
in

g
le

w
o
rk

fl
ow

(2
.1

.2
.1

.1
)

B
ag

o
f

T
as

k
s

(B
oT

)
(2

.1
.1

)

Figure 2.1: Taxonomy of Workflow Scheduling techniques

2.1. APPLICATION MODEL 11

2.1.1 Bag of Tasks (BoT)

This type of application is composed of sequential and completely independent
tasks. Each task for execution needs one or more input files, and input files
can be shared among tasks. Likewise, each task can generate one or more out-
puts [18]. This means tasks can be executed in any order as there is no data com-
munication between tasks. There are many important BoT applications, includ-
ing data mining algorithms, massive searches (such as key breaking), param-
eter sweeps, Monte Carlo simulations, fractals calculations (such as Mandel-
brot), and image manipulation applications (such as tomographic reconstruc-
tion). Comparison of different algorithms for BoT applications are presented
in [19] and [20].

2.1.2 Workflows

Workflows can be used in various fields of scientific applications and analy-
sis, therefore they are generally applied to model calculations and computa-
tions in a wide range of scientific applications, including astronomy, bioinfor-
matics, earthquake science, and gravitational wave physics [21]. For exam-
ple, an astronomical Mosaic Engine (Montage) workflow [22] was generated
by NASA/IPAC. It was designed to create custom mosaics images of the sky by
astronomers using input images in the Flexible Image Transport System (FITS)
format.

2.1.2.1 Multiplicity

One of the main differences between presented algorithms for workflow schedul-
ing is their ability to accept and schedule either a single workflow or multiple
workflows.

2.1.2.1.1 Single workflow Designed algorithms in traditional models such
as grid usually accept a single workflow and try to optimize a single objective

12 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

or multiple objectives. Each task in a workflow displays the execution of a com-
putational process. This process can be like running a function, requesting a
service, a query that is submitted to a database, or a job that is submitted to
cloud or grid on the Internet to use a remote resource.

2.1.2.1.2 Multiple Workflows From the multiplicity vision, algorithms are
designed to receive either interrelated or independent workflows.

2.1.2.1.2.1 Interrelated Workflows Some scientific experiments are grouped
into interrelated workflows that are known as ensembles. Workflows in an en-
semble typically have a similar structure, but they differ in their input data,
number of tasks and individual task sizes [23]. One of the examples of work-
flow ensembles is Cybershake [24], which produces seismic hazard maps. A
combination of hazard curves generated by each workflow in an ensemble of
Cybershake experiments can create a hazard map. As an example, an ensem-
ble of 2288 Cybershake workflows are used to produce hazard maps over 286
sites 1.

2.1.2.1.2.2 Independent Workflows Another type can be considered as
independent workflows where users submit workflows at different times. These
workflows are isolated from each other and they are not necessarily related to
each other. The number and type of workflows are not known in advance,
which need to be scheduled dynamically. I will explain more about dynamic
algorithms in further sections.

2.1.2.2 Workflow Type

Large-scale scientific analyses are typically represented as workflows, which
are the typical model for characterizing e-science experiments in distributed
systems. Scientific workflows vary in size from a couple of tasks to thousands

1http : //scec.usc.edu/scecpedia/CyberShake Study 13.4/

2.2. RESOURCE MODEL 13

Application Model (2.1)

Workflows (2.1.2)

Type (2.1.2.2)

Compute Intensive (2.1.2.2.2)

Data Intensive (2.1.2.2.1)

Multiplicity (2.1.2.1)

Multiple workflows
(2.1.2.1.2)

Independent
(2.1.2.1.2.2)

Interrelated (Ensembles)
(2.1.2.1.2.1)

Single workflow
(2.1.2.1.1)

Bag of Tasks
(BoT) (2.1.1)

Figure 2.2: Application Model Taxonomy repeated from Figure 2.1

or million of tasks, and usually consist of data-intensive or compute-intensive
applications.

2.1.2.2.1 Data-Intensive Workflows Basic research and, consequently, scien-
tific discovery, are in the midst of a disruptive transformation [1]. Research is in-
creasingly reliant on big compute and big data, the fusion of which is known as
data-intensive science. The data-intensive workflows deal with large amounts
of data in the range of megabytes to petabytes while spending most of their
time performing I/O activities. An example of data-intensive experiments is
the field of high energy physics. For example, in 2010, the Large Hadron Col-
lider (LHC) produced about 13 petabytes of data [25]. To process this amount
of data, almost 140 computing centers in 34 countries had collaborated.

2.1.2.2.2 Compute-Intensive Workflows Large-scale applications mainly con-
sist of complex tasks requiring high performance computing instances are called
compute-intensive workflows. In these applications, the majority of the tasks
execution time deals with computation rather than I/O.

14 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

2.2 Resource Model

The distributed computing is dedicated to many projects for solving large-scale
problems by using the power of a vast number of resources distributed amongst
a network. Distributed computing paradigm has seen different technologies,
started from desktop computing, through grid computing, and now to cloud
computing. This section discusses two main resource models in distributed
computing. Figure 2.3 outlines the resource model leaf, based on the taxonomy
presented in 2.1.

Resource Model (2.2)

Cloud (2.2.2)

IaaS (2.2.2.3)

Hybrid (2.2.2.3.3)

Private (2.2.2.3.2)

Public (2.2.2.3.1)

Spot Instances
(2.2.2.3.1.3)

On-Demand Instances
(2.2.2.3.1.2)

Reserved Instances
(2.2.2.3.1.1)

PaaS (2.2.2.2)

SaaS (2.2.2.1)Grid (2.2.1)

Figure 2.3: Resource Model Taxonomy repeated from Figure 2.1

2.2.1 Grid Computing Platforms

Grid provides accessing to remote and diverse high performance resources for
solving large-scale problems in different domains in science. These resources,
which are scalable, sharable, secure, heterogeneous and geographically dis-
tributed, are accessible as computing utilities to end users [26]. Moreover, these
resources can be considered as computational abilities, data storages, software
services and applications. Most resources in grids are geographically distributed
and managed by different organizations. This raises some challenges in terms

2.2. RESOURCE MODEL 15

of resource management and scheduling for solving large-scale problems. Some
comprehensive surveys that discussed these challenges are presented in [27,28].

2.2.2 Cloud Computing Platforms

Cloud computing is the latest of computing paradigms for the delivery of re-
sources, platforms, or applications to customers that are used in different do-
mains, such as science, to cope with challenging issues. A comprehensive def-
inition of cloud Computing is given by the National Institute of Standards and
Technology (NIST) [29]; cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort
or service provider interaction. NIST considers five essential characteristics for
this cloud model:

• on-demand self-service: Users can provision computing resources, with-
out any human interaction need from the service provider.

• broad network access: Users must be able to access resources over the
network with standard tools such as mobile phones, tablets, laptops, and
workstations.

• resource pooling: With a pooling strategy, multiple users can use com-
puting resources using a multi-tenant model. Based on user demands,
different physical and virtual resources can be assigned and reassigned
dynamically. The customers usually do not have any information or con-
trol over the exact location of the resource provider. They could know
about location in a higher level of abstraction, i.e, data-center, state, or
country.

• rapid elasticity: One of the remarkable properties, which makes clouds
distinct from other models such as grid, is resource elasticity. Infrastruc-
tures can be scaled up and scaled down in minutes dynamically with vari-

16 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

ation of demands. This characteristic gives a user the impression of infi-
nite capacity of resources and available at any time in cloud.

• measured service: Resource usage can be monitored, reported, and con-
trolled, providing transparency for participants, the consumer and the
provider about the utilized service.

The most important difference between cloud and grid computing is the
illusion of unlimited resources, where users can request as many resources as
needed and pay for it.

The architecture of cloud computing is represented in Fig. 2.4 [30]. Three

Figure 2.4: cloud computing architecture

different services are provided by cloud services:

2.2.2.1 Software as a Service (SaaS)

This service makes programs and applications accessible as a service from dif-
ferent customer devices from either a thin client interface, such as a web browser
to users. SaaS enables users to obtain software on a subscription basis, e.g.
monthly or yearly. In SaaS, users are not responsible for installing, running
and managing of the applications. Google Apps and Salesforce.com are distin-
guished examples of this model.

2.2. RESOURCE MODEL 17

2.2.2.2 Platform as a Service (PaaS)

PaaS enables users to deploy their applications on the cloud. Users’ applica-
tions are created by applying different tools and programming languages that
are supported by the cloud provider. The user cannot control or manage the un-
derlying cloud infrastructure, including network, servers, operating systems, or
storage, but does have control over the deployed applications and possibly ap-
plication hosting environment configurations [29]. Some such examples of PaaS
are Google App Engine, Microsoft Azure, Force.com.

2.2.2.3 Infrastructure as a Service (IaaS)

This service provides hardware, storage, servers and data-center space for users
that usually uses the virtualization technique. In simple terms, users can lease
virtual servers and storage as a service over the web. IaaS allows users in any-
where on Earth to use resources through the Internet, which proves the flexi-
bility of cloud infrastructure. Users can deploy and run their applications with
no need to control or manage the physical infrastructure. Amazon Simple Stor-
age Service (S3) and Amazon Elastic Compute Cloud (EC2) are the outstanding
instances of IaaS.

IaaS can be classified in three categories in terms of resource availability:

2.2.2.3.1 Public Cloud Resources such as computing services and storage are
available to the general public over the Internet. The general public is described
as either individual users or corporations. Public cloud services may be free
or offered on a pay-per-usage model. Because of shared infrastructure, using
public cloud can have cost-saving effects for organizations. IaaS providers offer
different resource types with diverse pricing options. In this section, a brief
discussion on different pricing strategies on these types is presented:

2.2.2.3.1.1 Reserved instances Users pay in advance to reserve instances
upfront for a specified time intervals, for example a month or even a year. Some

18 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

cloud providers offer discounts on instance prices, referred to as the reservation
option [31], if they are reserved in advance for a period of times to harvest long-
term risk-free revenue. Therefore, if their demand is steady and predictable, re-
served instances can achieve significant cost saving for executing applications,
especially if resources can be fully utilized.

2.2.2.3.1.2 On-demand instances One of the main aims of cloud is pro-
viding on-demand access to services similar to public utility services such as
electricity, water and gas [32]. The on-demand instances (also known as usage
based model) allow users to rent resources on a pay-as-you-go basis accord-
ing to the amount of consumed services. Compared to reserved instances, on-
demand instances need a per time unit usage cost, which is more expensive,
with the same configurations. In this type, providers usually charge users on a
fixed rate basis. For example, Amazon EC2 instances are charged on an hourly
interval from the time of provisioning, even if the instance is only used for a
fraction of that period.

2.2.2.3.1.3 Spot instances Spot instances are sold based on a dynamic
pricing (also called auction based) by bidding on spare and unused capacity of
resources with the aim of maximizing providers’ revenue. Spot instances price
vary, based on users’ supply and demand. If a user bid on a resource is above
the current spot price, the resource is allocated to the user. However, if the cur-
rent price at any time goes beyond the bid price, the resource is terminated.
Therefore, users can run their jobs on spot instances until their bid exceeds the
current price. Indeed, a trade-off between reliability and cost is applied in spot
instances.

For users that have enough time for executing their workflows, spot in-
stances can remarkably reduce the cost compared to on-demand instances. Compute-
intensive workflows are the best candidates to run on spot instance as they are
divisible. Due to the fact that these kinds of workflows deal with computation
rather than I/O, failure-prone spot instances are more beneficial for execution

2.3. SCHEDULING ALGORITHMS 19

in terms of cost saving.

2.2.2.3.2 Private Cloud The cloud infrastructure operated solely for an orga-
nization that can be accessed by individuals whether managed internally or by
a third-party and hosted internally or externally [29]. Private cloud benefits the
advantages of public cloud, while keeping more control over data and process
to organizations.

2.2.2.3.3 Hybrid Cloud A composition of two or more distinct cloud infras-
tructures (private or public) that remain unique entities, but are bound together
by standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between clouds) [29]. An ex-
ample of hybrid cloud deployment can be an organization that deploys crucial
and classified applications in a private cloud while keeping unessential appli-
cations in the public cloud.

2.3 Scheduling Algorithms

Scheduling workflow tasks to resources while meeting workflow dependencies
and constraints is known as the Workflow Scheduling Problem (WSP) – a class
of problem that is known to be NP-complete [12]. In this section, I would like
to give a brief introduction to general definition of scheduling algorithm types,
and in further sections more discussion of each type with relevant studies will
be provided.

2.3.1 Heuristic-Based Algorithms

Multi-objective problems tend to be extremely complex and depend on analy-
sis of large datasets [33]. These problems face many conflicting objectives that
must be optimized concurrently to obtain high-quality solutions. Due to time

20 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

and space complexity constraints of multi-objective problems, no optimal so-
lution can be found in polynomial time [34]. Algorithms that are capable of
finding a near optimal or approximate solution at a reasonable computation
cost without being able to guarantee optimality, and possibly not feasibility for
such problems, are called heuristic algorithms [35].

Most heuristic-based solutions for workflow scheduling belong to the list-
based scheduling category [36] and consist of two main stages: firstly, task pri-
oritization, and secondly, task assignment. In the first stage, a rank value is
assigned to each task and then all tasks are sorted based on their rank. In the
task assignment phase, tasks are allocated to suitable instances. More details on
these approaches will be discussed in further sections.

Another group of heuristics for solving the workflow scheduling problem
are clustering approaches. These methods usually consist of two stages, which
are grouping tasks to clusters, and prioritizing tasks in the same cluster. Each
cluster is a subset of workflow and schedules on a distinct resource. The main
goal of clustering based approach is to avoid communication cost between tasks
by executing in the same instance. Therefore, there is a conflict between reduc-
ing communication cost and maximizing parallelism.

2.3.2 Meta-Heuristic (Evolutionary) Algorithms

Heuristic algorithms are problem-dependent that usually find acceptable solu-
tions in a reasonable amount of time. On the other hand, meta-heuristics are
general-purpose and problem-independent techniques that can be applied to
solve almost any optimization problem.

Some successful meta-heuristics are inspired by nature. Methods that ap-
ply the biological evolution ideas to find a solution of an optimization problem
are called evolutionary algorithms. Most well-known evolutionary algorithms,
including Genetic Algorithm(GA), Ant Colony Optimization(ACO) and Par-
ticle Swarm Optimization (PSO), are used to tackle the workflow scheduling
problem with multiple constraints. Performance of meta-heuristics methods

2.4. STATIC AND DYNAMIC SCHEDULING 21

are compared in [37, 38], concluding that PSO outperforms other methods such
as GA and ACO in most cases.

While search-based and meta-heuristic strategies produce acceptable answers,
they are usually time-consuming algorithms based on their need for an ini-
tialization phase to obtain high-quality solutions. Therefore, due to the NP-
complete nature of workflow scheduling [12], the time needed in respect to
dimensions of the problem increases exponentially by using meta-heuristics.
Another important point that needs to be considered in these algorithms is lack
of ability to perform well when some changes happen during execution. More-
over, they do not respond well in dynamic scheduling situations because of the
required dynamic phase. In summary, the main disadvantages of meta-heuristic
are: trapping into local optima, slow convergence rate, long computational time
and tuning many parameters [39].

2.3.3 Hybrid Algorithms

A hybrid algorithm is one which combines meta heuristics with other heuristic
approaches by integrating them into a single algorithm. The main idea of such
algorithms is to leverage the strengths of optimization algorithms [40]. How-
ever, these methods use all the search algorithms in every iteration within the
convergence phase, leading to high computation time and time complexity.

2.4 Static and Dynamic Scheduling

Given a set of resources, the workflow task scheduling phase aims to determine
the optimal execution order and task placement in respect to user and work-
flow constraints [14, 15]. The resource provisioning phase aims to determine
the number and type of resources required and then reserve these resources for
workflow execution [9, 16].

In this thesis, studied algorithms can be classified into four types:

22 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

2.4.1 Static Planning, Static Provisioning (SPSP)

In this category, the number of workflows is known in advance, which could
be single or multiple and are grouped into interrelated workflows (ensembles).
Moreover, workflow characteristics, structure, and number of tasks in each work-
flow are known in advance. The provisioning stage is also static, which means
a pre-identified pool of (often homogeneous) resources are used for execution,
and with the goal of optimizing workflow execution time (makespan) without
considering resource cost. Therefore, algorithms in this category try to schedule
tasks over a given static set of resources.

2.4.2 Dynamic Planning, Static Provisioning (DPSP)

Algorithms in this class are designed to receive multiple workflows forming
a stream of workflows that arrive at different times. The provisioning phase
is static, which means a static instance pool is determined, and the instances
remain active while other workflows arrive for execution. The provisioning
phase in grid is usually static and algorithms focus only on scheduling phase to
optimize user’s requirements rather than resource provisioning.

2.4.3 Static Planning, Dynamic Provisioning (SPDP)

Similar in principle to the first category, with the only difference being that an
unlimited number of instance types (often heterogeneous) can be provisioned
at runtime. Dynamic provisioning is currently supported by most commercial
providers.

2.4.4 Dynamic Planning, Dynamic Provisioning (DPDP)

Independent workflows can be submitted at different times, continuously ar-
rived for execution. Therefore, the planning phase is dynamic as no information
about the total number of workflows is available in advance.

2.5. SCHEDULING CRITERIA 23

2.5 Scheduling Criteria

The two most significant classes of workflow scheduling are optimization and
QoS constraint scheduling [41]:

2.5.1 Optimization

In optimization scheduling algorithms, minimizing objectives such as time and
cost is the final goal. Simple heuristics such as Min-Min, Max-Min and Suf-
frage [42] are applied in the workflow scheduling problem to find the shortest
makespan. The Min-Min algorithm calculates the Minimum Completion Time
(MCT) for all resources for all tasks. The task that will be completed in the
minimum of time is selected and assigned to the corresponding resource. The
Max-Min algorithm is similar to Min-Min, the difference is that the task that is
executed has the overall maximum completion time.

2.5.2 Constraints

QoS constrained scheduling attempts to meet user defined requirements of which
deadline and budget are the most common. Deadline is the maximum amount
of time users need to wait in order to receive the result of the execution of
their request. Budget is the amount of money the users wish to spend when
using the resources. QoS constrained workflow scheduling is closer to real-
world scientific (and other) applications in contrast to optimization scheduling
approaches [13].

2.6 Related Work

This section presents related work to exercise the discussed taxonomy. Schedul-
ing workflow tasks to resources while meeting workflow dependencies and
constraints is known as the Workflow Scheduling Problem (WSP) – a class of

24 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

problem that is known to be NP-complete [12]. When multiple user require-
ments are used as constraints, the problem of workflow scheduling becomes
even more challenging. In this section, I classify recent related research into
three categories: Budget Constrained, Deadline Constrained, and Deadline and
Budget Constrained.

2.6.1 Deadline Constrained Scheduling

The deadline is the time by which a workflow must complete its execution. In
most clouds, heterogeneous resources are available that offer different levels of
performance at different price offerings. Generally, faster resources are more
expensive compared to slower ones. Therefore, there is often an exploitable
trade-off between execution time and the cost of resources.

One of the main strategies in the literature in deadline constrained workflow
scheduling is distributing deadline among tasks [43–46]. The distribution phase
consists of two steps: workflow partitioning and deadline assignment. In the
workflow partitioning, tasks can be considered as independent tasks in levels
versus dependent tasks into different paths.

Deadline Bottom Level (DBL) [43] and Deadline Top Level (DTL) [44] are the
most popular deadline distribution heuristics. DBL categorizes tasks in bottom-
top direction while DTL partition tasks in the opposite direction, top-bottom. In
the DBL heuristic, tasks are grouped into different levels where there are no de-
pendencies between tasks in each level. However, tasks in DTL are categorized
into paths as synchronization task or a simple task. A synchronization task is
defined as a task that has more than one parent or child [44].

In the deadline assignment step, the overall deadline is divided and dis-
tributed in proportion to the minimum execution time of each level. However,
in DBL, first the primary estimation on fastest instances is calculated. Then,
the difference between the user-defined deadline and the primary estimation is
distributed uniformly among all levels.

In [45], Yuan et al. presented the Deadline Early Tree (DET) algorithm. In

2.6. RELATED WORK 25

DET, tasks are partitioned into two types: critical and non-critical activities. All
tasks on the critical path are scheduled using dynamic programming under a
given deadline. Non-critical tasks are backfilled between critical tasks. How-
ever, the communication time between tasks in a workflow is not taken into
account by the DET scheduler.

The Hybrid Cloud Optimized Cost (HCOC) scheduling algorithm by Bitten-
court and Madeira presented in [47] focuses on optimizing cloud-bursting from
private to public clouds. The initial schedule starts to execute tasks on private
cloud resources; if the initial schedule cannot meet the deadline, additional re-
sources are leased from a public cloud on demand. The combination of private
and public cloud models means that this work cannot be applied to a purely
commercial cloud context.

In [46], Abrishami et al. presented the Infrastructure as a service (IaaS)
Cloud Partial Critical Paths (IC-PCP). All tasks in a partial critical path (PCP) are
scheduled to the same cheapest instance that can complete them by the given
deadline. This avoids incurring communication costs for each PCP. However,
the IC-PCP algorithm does not consider the boot and deployment time of VMs,
even though these are created on demand. One extension of IC-PCP that at-
tempts to further reduce cost is the Enhanced IC-PCP with Replication (EIPR)
algorithm [14] in which Calheiros and Buyya use idle instances and budget sur-
pluses to replicate tasks. Their experimental results show that the likelihood of
meeting deadlines is increased by using task replication. However, task repli-
cation in EIPR comes at an opportunity cost as the resources could be used for
new rather than replicated computation. Due to dynamic resource provisioning
phase in [14, 46], both algorithms are placed in SPDP category (see section 2.4).

In [48], Byun et al. presented the Partitioned Balanced Time Scheduling
(PBTS) algorithm that estimates the minimum number of instances required to
meet the deadline in order to minimize execution cost. The PBTS algorithm has
three phases, which are task selection, resource capacity estimation and the task
scheduling phase. However, only one VM type is considered for provisioning
and scheduling in order to simplify the estimation of resource capacity.

26 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

The Just in Time (JIT) algorithm proposed by Sahni and Vidyarthi in [49] is a
dynamic cost minimization deadline constrained algorithm. The JIT algorithm,
which is placed in SPDP category, attempts to combine pipeline tasks into a sin-
gle task that can abrogate the data transfer time between co-located tasks. The
majority of algorithms prioritize tasks to find the best candidate for execution
–however, no such policy is used in JIT.

2.6.2 Budget Constrained Methods

Scheduling in cloud environment encounters some challenges not present in
traditional heterogeneous environments such as the grid or HPC clusters. The
cost model and resource provisioning in cloud are among the main challenging
differences. For instance, pricing schemes in cloud systems are based on lease
intervals from the time of provisioning, even if the instance is only used for a
fraction of that period. A budget is the maximum amount of financial resource
that users wish to pay to run their workflows. Algorithms in the budget con-
strained category attempt to minimize workflow completion time for a given
budget. A significant number of cost-aware workflow scheduling algorithms in
grid have been proposed, such as [15, 50]. However, cost in grid is calculated
based on the accumulated cost of requested services [27]. Moreover, workflow
scheduling in grid focuses on minimizing the makespan without considering
the cost [51]. Grid provides a static pool of resources whose configuration is
known in advance [13], therefore previous work developed for grid are placed
in SPSP or DPSP category.

In [15] Sakellariou et al. presented two budget constrained algorithms, LOSS
and GAIN. The algorithms start with one of two different initial assignments.
The first assignment is the best assignment: a time-optimized assignment in
which the execution time is the minimum possible. For example, the HEFT
algorithm [51] is used as an initial assignment for the LOSS algorithm. HEFT
is one of the most common scheduling algorithms and attempts to reduce the
workflow makespan. The second assignment is the cheapest assignment: a cost-

2.6. RELATED WORK 27

optimized assignment wherein all tasks are assigned to resources having the
least execution cost. For example, GAIN uses the cheapest assignment as the
initial assignment. Tasks are repeatedly selected for reassignment until the user
constrained budget is reached. These algorithms, however, were designed for
non-elastic grid environments.

An extension of the HEFT [51] algorithm called the Cost Conscious Schedul-
ing Heuristic (CCSH) was presented by Li et al. in [52]. The CCSH first con-
structs a priority list of tasks and then assigns the task with the highest priority
value to the most cost-efficient virtual machine (VM). However, only one VM
type and one pricing model is considered. The authors later introduced the
Pareto dominance cost-efficient heuristic to the CCSH to consider different cost
models [53].

In [54] and [55], Zheng et al. proposed Budget constrained Heterogeneous
Earliest Finish Time (BHEFT), which is an extension of HEFT algorithm [51].
In BHEFT, a current task budget (CTB) factor is introduced to distribute spare
budget among unscheduled tasks. In the budget distribution phase, the task
budget and spare budget are calculated task by task. Moreover, their work is
set within the context of a grid environment, which is not directly applicable to
cloud environments due to differences in the cost model.

The authors in [56] and [57] presented an algorithm with budget constraints
called minimum end-to-end delay under cost constraint (MED-CC). Firstly, each
task in a workflow is assigned to an instance. In the next step, all critical tasks
are considered for rescheduling with the proposed Critical Greedy algorithm.
In [58], Zeng et al. presented a budget-aware backtracking algorithm for ex-
ecuting large-scale task workflows, referred to as ScaleStar. Their algorithm
uses a new metric termed the Comparative Advantage (CA) to select resources
in a way to minimize cost. The CA metric attempts to balance cost and exe-
cution time. This work, while developed for cloud, used a grid cost model.
However, ScaleStar is a backtracking algorithm that needs to recalculate the
makespan and cost for every re-scheduling step increasing time complexity. The
cost model considered in [56–58] is based on the use of fractional resources. For

28 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

instance, in [57] a base processing unit, which is ten instructions per time unit,
is set with price at 0.01 per time unit. However, in most of the cloud providers,
like Amazon EC2, users are billed based on a longer interval such as one hour.

In [59] two auto scaling techniques to solve the budget constrained schedul-
ing for a workload consisting of multiple workflows were proposed. In this
work, budget is distributed to different workflows proportionally based on as-
signed priorities. Both algorithms in [59] are designed to receive workflows
continuously and placing them in DPDP category.

Scheduling bags of tasks under budget constraints in cloud is presented
in [60]. One of the assumptions considered by authors is tasks is preemptive,
which means they can be interrupted, delayed and then re-triggered sometime
later.

2.6.3 Deadline and Budget Constrained Scheduling

Based on the user-defined constraints for the budget and deadline, a combina-
tion of different solutions is proposed in [61] to customers. Their main objective
is to produce a set of solutions from which a user makes a selection. However,
their approach is designed for users in grid environment. Pricing schemes in
cloud systems are based on lease intervals from the time of provisioning, even
if the instance is only used for a fraction of that period. However, cost in grid is
calculated based on the accumulated cost of requested services.

Meta-heuristics such as Genetic Algorithm(GA), Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO) are used to tackle the workflow
scheduling problem with multiple constraints. In [62], the genetic algorithm
approach was used to address scheduling optimization problems in workflow
applications, based on two QoS constraints: deadline and budget.

In [63], Chen et al. use Ant Colony Optimization (ACO) to schedule the
large-scale workflows with three QoS parameters, namely, cost, time and relia-
bility. Users can specify two of the constraints and ACO can find an optimized
answer for the third constraint. A Bi-Criteria Priority-based Particle Swarm Op-

2.6. RELATED WORK 29

timization (BPSO) was proposed in [64] to solve the workflow scheduling prob-
lem in cloud under the deadline and budget constraints. BPSO was shown to
reduce the execution cost by up to 50% compared to several then state-of-the-art
algorithms under the same deadline and budget constraint.

While search-based and meta-heuristic strategies produce acceptable answers,
they are usually time-consuming algorithms based on their need for an ini-
tialization phase to reach an acceptable answer. Another important point that
needs to be considered in these algorithms is that lack of ability to perform well
when some changes occur during execution. Moreover, they do not respond
well in dynamic scheduling because of the required dynamic phase.

The following three algorithms consider more than one constraint in schedul-
ing workflows. In [55], Zheng and Sakellariou introduce an extended version
of HEFT algorithm with both budget and deadline constraints (BHEFT). BHEFT
checks if a workflow can be scheduled based on the available budget and dead-
lines. To select the best possible instance in BHEFT, two variables named Spare
Application Budget and Current Task Budget are used. This work, while devel-
oped for cloud, used a grid cost model where the number of resources is fixed.
Moreover, in their presented algorithms, there is no mechanism to control the
deadline if in any steps the algorithm exceeds the user-defined deadline.

In Poola et al. [65], robustness, budget and deadline are considered as user
prioritizable constraints and tasks are categorized based on partial critical paths,
in a similar way to IC-PCP [46]. Three resource selection policies are used:
deadline, cost and robustness, and each user can prioritize the policies inde-
pendently.

The scheduling algorithms proposed by Malawski et al. in [23] aim to maxi-
mize the number of serviced workflows while meeting given budget and dead-
line constraints. These scheduling algorithms are designed for workflows in
an Infrastructure as a Service (IaaS) cloud. However, the authors consider only
one instance type rather than the wide variety of types that are currently sup-
ported by commercial providers. The algorithms presented in [23] are designed
to receive multiple workflows at different times, therefore they belong to DPDP

30 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

category.

There are few heuristic-based studies addressing workflow scheduling and
resource provisioning while considering both deadline and budget constraints
at the same time in cloud. In [66], compromised cost-time algorithm is pre-
sented that deadline and budget are considered as QoS parameters. The main
step of [66] is rescheduling tasks that causes higher time complexity. Moreover,
they did not consider heterogeneous instances in the problem formulation.

Most of the workflow scheduling research efforts focused on the scheduling
of the workflows under a single constraint. The review of the above-mentioned
papers reveals a need for an algorithm that considers both budget and deadline
constraints at the same time in cloud environment.

2.6.4 Multiple Workflows

In this section, I focus on the dynamic scheduling of multiple workflows in a
cloud environment. I identify and analyze related solutions for multiple work-
flows on cloud with the following aspects:

• Workload: individual workflows vs. interrelated workflow instances known
as ensembles. Workflows in an ensemble typically have a similar struc-
ture, but they differ in their input data, number of tasks, and individual
task sizes [23].

• Arrival pattern: it determines whether workflows are submitted at the
same time or continuously arrived for execution in different time inter-
vals.

• Virtual machine (VM) types: either a finite or infinite set of heterogeneous
resources (e.g. compute power, memory and input/output capacity).

• Optimization: minimizing the makespan or cost of execution are common
optimization objectives.

2.6. RELATED WORK 31

• Constraints: user-defined requirements such as deadline and budget are
the most common. Constraints can be be considered for the entire work-
loads or individual workflows.

In [67], different strategies are discussed for scheduling multiple workflows
scheduling in grid – all workflows are submitted at the beginning of the schedul-
ing phase. The algorithms developed in [67] are set within the context of a grid
environment, which is not directly applicable to cloud environments due to the
fundamental differences around elastic resource provisioning and pay-per-use
charging model. This work belongs to SPSP category (see section 2.4), as the
number of workflows and instances is known in advance.

Merge-based algorithms are presented in [68, 69] to handle multiple work-
flows. They assume all workflows are submitted at the beginning, and multiple
workflows are merged into a single workflow. These approaches are static and
typically achieve higher utilization (compared to dynamic algorithms) of re-
sources because all workflows are known, and a scheduler can leverage such
information for improving utilization. However, solutions developed under
such assumptions are not directly transferable to dynamic environments where
workflows can be submitted dynamically by different users or triggered by de-
vices/machines at any time.

A rescheduling and task rearrangement heuristic for multiple workflows is
proposed in [70] whereby it is assumed that all resources are available during
the workload lifetime and ignores the provisioning of new instances during ex-
ecution. Therefore, the algorithm in [70] belongs to DPSP category. Moreover,
rescheduling tasks incurs higher time complexity and this additional complex-
ity may not be acceptable for deadline constrained applications.

In [23], the authors introduced algorithms for scheduling ensembles, which
are made up of inter-related workflows with the aim of serving as many high
priority workflows as possible under predefined budget and deadline constraints.
However, the authors consider only one instance type rather than the multiple
instance types that are currently supported by commercial providers.

Another work for scheduling concurrent workflows in HPC cloud is pre-

32 CHAPTER 2. TAXONOMY AND LITERATURE REVIEW

sented in [71], which is named PCH (Path Clustering Heuristic). In this ap-
proach, tasks are clustered into different groups, and then priorities are assigned
to the task groups. The main purpose of the scheduling algorithms developed
in [71] is to improve the VM utilization by using unused gaps to execute tasks
from other workflows. In their model, all workload is submitted for execution
at the start, rather than in a stream.

A Workflow as a service (WFaaS) architecture presented in [72] focuses on
scheduling continuous workflow request. In the proposed WFaaS architecture,
reusing cloud resources are only allowed for tasks within the same workflow
but not among other workloads’ tasks. This limit on resource reuse is not nec-
essary in dynamic scheduling of workloads. Most recently, Rodriguez et al. [73]
proposed a resource provisioning and scheduling solution for multiple work-
flows designed for WaaS environments. Their work aims to minimize the over-
all cost of leasing the resources while meeting the deadline constraint of each
individual workflow. Algorithms in [72, 73] are placed in DPDP category as
independent workflows can be submitted at different times.

Chapter 3

Motivation and Problem Statement

3.1 Motivation

This chapter addresses a number of challenges related to scientific workflow
scheduling in dynamically provisioned commercial cloud environments. The
ever-increasing use of cloud computing by scientists has highlighted opportu-
nities for improving utilization of cloud infrastructure by improving response
time while decreasing the net cost of computation. Workflow scheduling in
cloud environments differs from grid and cluster computing environments pri-
marily in the elastic resource provisioning and pay-per-use charging model.
Therefore, workflow scheduling in clouds requires a different approach in map-
ping tasks to resources. The main challenges of the cloud paradigm for running
e-science applications that need to be considered are:

3.1.1 Dynamic Provisioning

Scheduling models in grids and clusters are subject to best effort scheduling. In
this model, the number of required resources and estimation of time required
to run a workflow is specified by users. Resource requests are located into a
queue to turn for available services that can be executed. Accordingly, some
tasks should wait a long time in the queue, particularly behind those that take

33

34 CHAPTER 3. MOTIVATION AND PROBLEM STATEMENT

long time to run or need plenty of numbers of computing resources. There-
fore, resource allocation and linking the tasks to resources in grids and clusters
are connected together and beyond customer’s control. In cloud platforms the
method is reversed. Resources that are provisioned directly by users to run
their computations need using a scheduler. This provisioning model enables
the allocation of resources first and running several tasks, which decreases the
overhead of scheduling and can significantly improve the performance [74].

3.1.2 On-demand Resources

All resources in cloud are allocated on demand. Cloud customers usually re-
quest resources based on their needs at all times. In users’ view, cloud consists
of unlimited resources where they can obtain as many as they want. There-
fore, if not enough resource are available right away, then the demand fails.
However, on-demand resources are the perfect choice for loosely-coupled ap-
plications such as workflows. These kinds of applications can start with part of
the entire required resources. With this model, as many resources as possible
can be allocated to a workflow and it can be started immediately.

3.1.3 Elasticity

As well as resource provisioning on demand in clouds, users can release re-
sources on demand. This two-sided ability, called elasticity, enables workflow
applications to increase or decrease the existing resource pool as workflow needs
may change in time [75].

3.1.4 User Requirements

Workflows are scheduled on the basis of execution dependencies, expected ex-
ecution times, available resources, and typically under either a budget or dead-
line constraint. The significance of these constraints is discussed with examples:

• Budget:

3.1. MOTIVATION 35

Cost plays an important role in the cloud environment due to its impact
on the budget of users and the profitability of providers. Unlike grid or in-
house HPC systems, most cloud providers, such as Amazon, charge users
for a fixed interval from the time of provisioning, that is, users pay for the
whole interval even if the instance is only used for a fraction of that period.
From a user’s perspective, finding a schedule with a lower makespan for
a given budget is the main concern, while from the provider’s perspec-
tive, maximizing utilization is the main concern. Launching too many in-
stances does not lower makespan. Instead, it causes high scheduling over-
head and low instance utilization. As one would expect, poor resource
provisioning wastes available user budget.

• Deadline:

There are many complex and large-scale scientific processes in different
domains such as weather forecasting, climate modeling, medical model-
ing and disaster recovery simulation [28], which are examples of deadline-
sensitive applications. Some need to be executed quickly or in a specified
time. Deadline constrained applications are divided into two types:

– Hard deadline: If deadline is missed, it could have disastrous results
on life or environment.

– Soft deadline: The application can tolerate small margins in deadline
violation.

The landfall of a storm can be predicted by coastal hazard applications
and used to determine whether to send out evacuation orders. In such
workflows, missing the execution deadline is considered a failure because
safety and lives are at risk [76]. Weather forecast workflows [77] that
forecast the weather for the next day (or week) and medical applications
that analyze data related to patients activity are examples of applications
with soft deadline.

The algorithms designed and developed in this thesis consider discussed

36 CHAPTER 3. MOTIVATION AND PROBLEM STATEMENT

key challenges and features, to solve the scientific workflow scheduling prob-
lem in cloud.

3.2 Scientific Workflows Overview

In this part, the overview of real world applications [21] is presented . The
workflows are taken from various application scopes such as astronomy [22],
biology [78], gravitational physics [79] and earthquake science [24].

• Montage: An astronomical Mosaic Engine (Montage) was generated by
NASA/IPAC Infrared Science Archive [22]. It was designed to create cus-
tom mosaics images of the sky by astronomers on their own laptop. Mon-
tage can be used to merge these sky images.

• Cybershake: This project is used by the Southern California Earthquake
Center (SCEC) to build a model of earthquake hazards [24].

• Epigenomic: The USC epigenome center manages research [80] in map-
ping the epigenetic state of human cells on a genome wide scale. Epige-
nomic uses DNA sequence, which is split into several chunks that could
be run in parallel.

• LIGO: The Laser Interferometer Gravitational Wave Observatory (LIGO)
detects gravitational waves created by several events in the universe as
per Einstein’s theory of general relativity. The LIGO [79] is applied to
study about the data received merging compact binary systems such as
binary neutron stars and black holes.

• SIPHT: The bioinformatics project at Harvard University is conducting a
wide search for small, untranslated RNAs (sRNAs) that regulate processes
such as secretion and virulence in bacteria [78].

3.3. PROBLEM DEFINITION 37

3.3 Problem Definition

3.3.1 Application Model

Workflows are the most widely used models for representing and managing
complex distributed scientific computations [28]. A Directed Acyclic Graph (DAG)
is the most common abstraction of a workflow. Using a DAG abstraction, a
workflow is defined as a graph G = (T,E) where T = {t0, t1, ..., tn} is a set of
tasks represented by vertices and E = {ei,j | ti, tj ∈ T} is a set of directed edges
denoting data or control dependencies between tasks. An edge ei,j ∈ E rep-
resents the precedence constraint as a directed arc between two tasks ti and tj

where ti, tj ∈ T . The edge indicates that task tj can start only after completing
the execution of task ti with all data received from ti, and this implies that task
ti is the parent of task tj and task tj is the successor or child of task ti. Each task
can have one or more parents or children. Task ti cannot start until all parents
have been completed. In order to ensure the DAG has only one input and one
output, two dummy tasks that have zero execution cost are added to the DAG.

3.3.2 System Model

The IaaS paradigm provides a service by offering instance types containing var-
ious amounts of CPU, memory, storage and network bandwidth at different
prices. Workflows are executed on different instance types, and each instance
type is associated with a set of resources.

A resource model is used based on the Amazon Elastic Compute cloud,
where instances are provisioned on demand. The pricing model is a pay as you
go with minimum hourly billing. Under this pricing model, if an instance is
used for one minute, a user has to pay for the whole hour. A common approach
is to assume cloud vendors provide access to unlimited number of instances
and the instances are heterogeneous (denoted by P = {p0, p1 . . . ph}, where h is
the index of the instance type). It is assumed that all instances and storage ser-
vices are located in the same region and also the average bandwidth between

38 CHAPTER 3. MOTIVATION AND PROBLEM STATEMENT

the instances is essentially identical.
The resource provisioning problem is somehow simplified and is similar to

scheduling in Grid with a limited number of processors. However, provisioning
decisions are still important due to the overhead and cost associated with leas-
ing VMs. By accessing a virtually unlimited number of VMs, algorithms need to
find effective policies to manage this abundance of resources efficiently. Ther-
fore, I considered a general scenario and assumed that we have an unlimited
number of instances.

3.3.3 Definitions

Most studies on workflow scheduling assume that estimated execution time
for workflow tasks is known. Task runtimes can be estimated using analyti-
cal modeling, empirical modeling and historical data. In this thesis, scientific
workflows using trace data from real applications are considered [75]. Execu-
tion time (computation cost) for task ti on instance pj is denoted by wpjti .

All immediate predecessors of task ti are defined as:

pred(ti) = {tj | (tj, ti) ∈ T}. (3.1)

Also, all immediate successors of task ti are defined as:

succ(ti) = {tj | (ti, tj) ∈ T}. (3.2)

For example in Figure 3.1, predecessors of task 11 are 7, 9 and 10, and successors
of 5 are 7 and 8.

A task without any parent is an entry task and a task without any children
is called an exit task. In Figure 3.1, task 0 is an entry task and task 11 is an exit
task. Thus, by definition I have:

pred(tentry) = {∅} , (3.3)

succ(texit) = {∅} . (3.4)

3.3. PROBLEM DEFINITION 39

00

11 33

22

44 66

55
8877

99 1010

1111

26

16

17

29 11

9 14

18

16 14

19
1015

20 13

1216

Figure 3.1: A sample DAG with 12 tasks

The completion time of a workflow is called the schedule length or makespan
(denoted by Lms). Because texit is the last task that can be executed, the time un-
til completing the exit task is defined as the makespan of a workflow.

Lms = FT (texit) , (3.5)

where FT (texit) is the finish time of the last task in a workflow.
The amount of data transferred from task ti to task tj is called communica-

tion time (denoted by Ci,j), and this time is calculated as:

Ci,j =

{
data
β

, pi 6= pj

0 , pi = pj.
(3.6)

If task ti and task tj are executed on the same instance (denoted by pi = pj),
data transfer between them is local and the communication cost is defined as

40 CHAPTER 3. MOTIVATION AND PROBLEM STATEMENT

zero. Otherwise, the communication cost is the ratio between the size of data
(data) to be transferred from task ti to tj to the average bandwidth (β) in the
data-center.

The Earliest Start Time (EST) of a task ti is calculated on the instance with
the shortest execution time and defined as:

EST (ti) =

 0 , ti = tentry

max
tj∈pred(ti)

{
EST (tj) + wtj + Ci,j

}
,Otherwise, (3.7)

where wtj is the execution time of task tj on the fastest instance type.
The cost of executing task ti on instance pj is calculated as:

TaskCost
pj
ti =

⌈
w
pj
ti

Nt

⌉
∗ cj, (3.8)

where cj is the cost of instance pj for one time interval and Nt is the time of
an interval. Finally, the overall cost of executing all tasks in a workflow (G) is
defined as:

Costo =
∑
ti∈G

TaskCost
pj
ti . (3.9)

Scientific workflows are executed on resources with the initial objective of
optimizing the total execution time (makespan) of the workflow. Besides the
makespan, execution cost of scientific applications also forms one of the objec-
tive functions of scheduling. Therefore, the objectives of scheduling a workflow
can vary from application to application. It depends on what objective function
the user wants to minimize or maximize - examples being minimizing overall
workflow completion time, minimizing cost, maximizing resource utilization
or throughput, and executing within the defined deadline and allocated bud-
get. In this thesis, the objectives are to minimize workflow completion time
within a given budget constraint (time optimization), to minimize cost within
a given deadline (cost optimization), and meet multiple contraints without any
failure.

A general form to minimize cost under deadline constraint can be formu-
lated as:

minimize{Costo} (3.10)

3.3. PROBLEM DEFINITION 41

subject to,
{Lms} < Deadline (3.11)

Proceeding the same way, a general form to minimize makespan under budget
constraint can be formulated as:

minimize{Lms} (3.12)

subject to,
{Costo} < Budget (3.13)

42 CHAPTER 3. MOTIVATION AND PROBLEM STATEMENT

Chapter 4

Deadline Constrained Workflow
Scheduling

4.1 Introduction

This chapter presents two new algorithms, Proportional Deadline Constrained
(PDC) and Deadline Constrained Critical Path (DCCP), for scheduling eScience
workflows on commercial clouds, which focus on deadline constraints while
minimizing costs. Both algorithms belong to the class of list-based scheduling
algorithms [36] consisting of a task prioritization phase and a task assignment
phase. The PDC algorithm maximizes parallelism in a workflow by separating
it into logical levels and then proportionally subdividing the overall workflow
deadline over different levels. Moreover, the performance of the PDC algorithm
is improved by refining the task ranking carried out during the task prioritiza-
tion step. The DCCP algorithm uses the concept of Constrained Critical Paths
(CCP) to execute a set of tasks on the same instance with the goal of reduc-
ing communication cost between instances. In the DCCP algorithm, backfilling
leftover capacity (residuals) is considered in provisioned instances and several
different backfilling strategies are applied. Cloud providers charge resources
by fixed time intervals no matter if an instance is only used for a fraction of that
period. Residuals are defined as leftover computation time within allocated in-

43

44 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

tervals. This approach is most effective in data-intensive workflows due to the
reduction in data movement.

4.2 PDC and DCCP Algorithms

In this section, I present two deadline constrained algorithms, Proportional
Deadline Constrained (PDC) and Deadline Constrained Critical Path (DCCP).
As a guide to this section, Figure 4.1 shows the sequence of steps for schedul-
ing a workflow in both PDC and DCCP and indicates which sub-section details
those parts of the algorithms.

Proportional Deadline
Distribution (4.2.1.2)

Workflow Leveling
(4.2.1.1)

G=(T,E)

A Single Task
(4.2.2.1)

CTTF
(4.2.3)

PDC

Constructs CCP
(4.2.2.2)

Back Filling
(4.2.4)

DCCP

PDC DCCP

Figure 4.1: Scheduling workflow with PDC and DCCP

4.2.1 Preprocessing Step

Both DCCP and PDC use a preprocessing step for partitioning tasks. In the
preprocessing step, the tasks are partitioned into different levels based on their

4.2. PDC AND DCCP ALGORITHMS 45

respective dependencies. Subsequently, the user-defined deadline TD is dis-
tributed over the levels established in the preprocessing step. Each level gets its
own level deadline and all tasks in the same level have the same level-deadline.

4.2.1.1 Workflow Leveling

I aim to maximize task parallelism by partitioning tasks so there are no depen-
dencies between tasks in each level. Each level can therefore be thought of as a
bag of tasks (BoT) containing a set of independent tasks.

There are two main algorithms for allocating tasks into different levels: Dead-
line Bottom Level (DBL) [43] and Deadline Top Level (DTL) [44]. The DBL and
DBT algorithms categorize tasks in bottom-top direction and top-bottom direc-
tion, respectively. In this thesis, I use the DBL algorithm to partition tasks over
the different levels.

The level of task ti is described as an integer representing the maximum
number of edges in the paths from task ti to the exit task (see Fig. 3.1). The level
number (denoted by NL) associates a task to a BoT. For the exit task, the level
number is always 1, and for the other tasks it is determined by:

NL (ti) = max
tj∈succ(ti)

{NL (tj) + 1}, (4.1)

where succ(ti) denotes the set of immediate successors of task ti. All tasks are
then grouped into Task Level Sets (TLS) based on their levels:

TLS(`) = {ti|NL (ti) = `}, (4.2)

where ` is an integer denoting the level in [1 . . . NL (tentry)].

4.2.1.2 Proportional Deadline Distribution

Once all tasks are assigned to their respective levels, the tasks are proportion-
ally distributed across each level based on the user deadline (TD). Each sub-
deadline assigned to a level is termed the level deadline (Tsd(`)). In order to

46 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

meet the overall deadline, I attempt to ensure that every task in a level can com-
plete its execution before the assigned sub-deadline. Firstly, the initial estimated
deadline for each level (`) is calculated as:

InitialTsd(`) = max
ti∈TLS(`)

{ECT(ti)}, (4.3)

where ECT(ti) denotes the Earliest Completion Time (ECT) of task ti over all
instances and the ECT is defined as

ECT(ti) = max
`∈pred(NL(ti))

{InitialTsd(`), EST (ti)}+ wti , (4.4)

where EST (ti) is defined in (3.7), pred (ti) denotes the set of predecessors of
task ti; wti denotes the minimum execution duration for task ti and ` indicates
the parent level for all parents of ti. The task, tentry has no predecessors, its
ECT is equal to zero. In equation (4.3), the maximum ECT of all tasks in a
level is used as the overall estimate for that level. This duration is effectively
the absolute minimum time that is required for all tasks in a level to complete
execution in parallel.

After calculating the estimated deadline value for all levels, I distribute the
user deadline among all tasks non-uniformly based on a deadline proportion
denoted by ∝deadline in equation (4.5):

∝deadline=
TD − InitialTsd(1)
InitialTsd(1)

, (4.5)

where InitialTsd(1) is the level that contains the exit task.

Then the length of each level deadline is computed as a function of this dead-
line proportion to each level as follows:

Tsd(`) = InitialTsd(`) + (∝deadline ×|InitialTsd(`) |) . (4.6)

Intuitively, the levels with longer executing tasks gain a larger share of the user
deadline.

4.2. PDC AND DCCP ALGORITHMS 47

Po
lic

y
D

es
cr

ip
ti

on
Fo

rm
ul

a
Po

lic
y

Ty
pe

U
pw

ar
d

R
an

k

(r
a
n
k
u
)

Th
e

le
ng

th
of

cr
it

ic
al

pa
th

fr
om

ta
sk

t i
to

ta
sk

t e
x
it

ra
n
k
u
(t
i)
=

w
i
+

m
ax

t j
∈
su
cc
(t

i
)(
c i
,j
+
ra

n
k
u
(t
j
))

(4
.7

)
st

at
ic

D
ow

nw
ar

d

R
an

k
(r
a
n
k
d
)

St
ar

ts
fr

om
th

e
t e
n
tr
y

an
d

is
co

m
pu

te
d

re
cu

rs
iv

el
y

by

tr
av

er
si

ng
th

e
D

A
G

to
t e
x
it

ra
n
k
d
(t
i)
=

m
ax

t j
∈
p
r
ed

(t
i
)(
w
j
+
c j
,i
+
ra

n
k
d
(t
j
))

(4
.8

)
st

at
ic

Su
m

R
an

k

(r
a
n
k
s
)

Su
m

of
th

e
up

w
ar

d
an

d

do
w

nw
ar

d
ra

nk
ra

n
k
s
(t
i)
=

ra
n
k
u
(t
i)
+

ra
n
k
d
(t
i)

st
at

ic

M
in

im
um

Ex
-

ec
ut

io
n

Ti
m

e

(M
in

Ex
e)

Lo
w

es
t

ex
ec

ut
io

n
ti

m
e

is

gi
ve

n
fir

st
pr

io
ri

ty

m
in
(w

i)
st

at
ic

M
ax

im
um

Ex
-

ec
ut

io
n

Ti
m

e

(M
ax

Ex
e)

Ta
sk

s
w

it
h

a
lo

ng
er

ex
ec

ut
io

n

ti
m

e
ha

s
hi

gh
er

pr
io

ri
ty

m
ax

(w
i)

st
at

ic

R
an

do
m

Ta
sk

s
ar

e
pi

ck
ed

fr
om

th
e

re
ad

y
lis

ta
tr

an
do

m

—
st

at
ic

Ea
rl

ie
st

C
om

-

pl
et

io
n

Ti
m

e

(E
C

T)

Th
e

ta
sk

th
at

fin
is

he
s

fir
st

w
ill

be
th

e
be

st
ca

nd
id

at
e

fo
r

ex
ec

ut
io

n

m
in
(F

T
w
i)

dy
na

m
ic

Ea
rl

ie
st

D
ea

d-

lin
e

Fi
rs

t

(E
D

F)

Ta
sk

s
w

it
h

m
in

im
um

ED
F

ha
ve

hi
gh

es
tp

ri
or

it
y

E
D
F
(t
i)
=

T
sd
(N

L
(t
i)
)
−

E
S
T
(t
i)

dy
na

m
ic

Ta
bl

e
4.

1:
R

an
ks

va
lu

es

48 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

4.2.2 Task Prioritization

4.2.2.1 PDC Algorithm (A Single task)

In each step of the PDC algorithm, tasks that are ready to execute are placed into
the task ready list. A task is ready when all of its parents have been executed
and all its required data are readily accessible. In order to select a task, at first all
tasks in the ready list should first be prioritized. I used eight different policies in
order to show how the order of execution can influence the scheduling results,
particularly the cost. These policies summarized in Table 4.1. I will discuss
these results later (see section 4.3.2).

1. Upward Rank (ranku): This ranking is presented in [51]. The upward
rank is the length of critical path from task ti to task texit and is calculated
by equation (4.7), where wi and ci,j are the average execution time and
average communication time of task ti, respectively. The rank is called an
upward rank because the ranking process starts from the exit node and
ranks are calculated recursively by traversing the DAG to the entry node.

2. Downward Rank (rankd): The downward rank [51] starts from the entry
node and is computed recursively by traversing the DAG to the exit node.
rankd(ti) is the longest distance from tentry to task ti, excluding the compu-
tation cost of the task itself, where ranku(ti) is the length of the critical path
from task ti to texit, including the computation cost of the task itself [51].

3. Sum Rank(ranks): This rank gives equal importance to both the uprank
and downrank and is calculated as the arithmetic sum of ranku and rankd.

4. Minimum Execution Time (MinExe): For each task in the ready list, the
minimum execution time on all VMs types is calculated and the task with
the lowest execution time is given first priority.

5. Maximum Execution Time (MaxExe): Similar in principle to the minimum
execution time, with the only difference being that the task with a longer
execution time has higher priority.

4.2. PDC AND DCCP ALGORITHMS 49

6. Random: In this policy, tasks are picked from the ready list at random.

7. Earliest Completion Time (ECT): For each task the earliest completion time
on all VMs launched is calculated. The task that finishes first will be the
best candidate for execution.

8. Earliest Deadline First (EDF): Tasks with a minimum EDF have highest
priority among all ready tasks.

4.2.2.2 DCCP Algorithm (Multiple tasks: CCP definition)

A Critical Path (CP) is the longest path from the entry to exit node of a task
graph [81]. The length of critical path (|CP |) is calculated as the sum of com-
putation costs and communication costs, and can be considered as the lower
bound for scheduling a workflow.

Several heuristics that utilize critical paths have been proposed for address-
ing the workflow scheduling problem [51, 81, 82]. The set of tasks contain-
ing only the tasks ready for scheduling constitutes a constrained critical path
(CCP) [83]. In the DCCP algorithm, the CCP in a workflow is determined based
on HEFT upward rank and downward rank [51], then I apply a set of new ranking
methods defined as follows:
modified upward rank :

Mranku(ti) = wi +
∑

tj∈succ(ti)

(ci,j) + max
tj∈succ(ti)

(ranku(tj)) (4.9)

modified downward rank :

Mrankd(ti) =
∑

tk∈pred(ti)

(ck,i) + max
tk∈pred(ti)

(wk + rankd(tk)) (4.10)

The difference between my modified rank and standard rank is that the
modified rank aggregates a task’s predecessors’ or successors’ communication
time instead of selecting the maximum. With the modified rank, tasks with
higher out-degree or in-degree have higher priorities. As a result, these tasks

50 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

are executed first with higher probability and more tasks on the next CCP can
be considered as ready tasks.

In this thesis, I use the sum rank to find all CPs [51]:

ranks = ranku + rankd (4.11)

In DCCP, all tasks are first sorted based on their ranksum values and those tasks
with the highest values are selected as the first CP. All tasks in the first CP are
labeled as visited tasks. Proceeding in the same way, all CPs in a workflow can
be found.

4.2.2.3 An illustrative example

A sample DAG is considered that contains 12 tasks as shown in Figure 4.2. The
numbers associated with each edge shows the data transfer time between tasks.
The data could either be direct or indirect via shared storage. For this thesis the
only difference is in the absolute time required, and for simulation I only con-
sider direct transfers. The average execution time (wi) of each task is displayed
in Table 4.3.

1. A single task: Upon executing task 0, all its children are ready for ex-
ecution. The different start time, end time and data transfer time (blue
intervals) are shown in Figure 4.3. Different policies select different tasks
(Table 4.2).

ranku rankd ranks MinExe MaxExe ECT

Selected Task t2 t1 t1 t3 t1 t2

Table 4.2: Selected task by different policies

2. Multiple tasks: As we mentioned before, A Critical Path (CP) is the longest
path from the entry to exit node of a task graph. The first CP is obtained
based on the highest sum rank, which is the aggregation of ranku and
rankd and this yields the path (0 → 1 → 4 → 9 → 11). Regardless of

4.2. PDC AND DCCP ALGORITHMS 51

00

11 33

22

44 66

55
8877

99 1010

1111

26

16

17

29 11

9 14

18

16 14

19
1015

20 13

1216

Figure 4.2: A sample DAG with 12 tasks

t0 22

t1 29

t2 22

t3 20

Execution Time (s)

Figure 4.3: Ready tasks and rank values (shown within each bar) after execution
of task 0

52 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

any previously selected tasks, proceeding in the same way, other CPs are
found as displayed in Table 4.4. The next step is traversal of CPs to find
CCPs in a round-robin order. The first CCP consists of (0→ 1) as other
tasks in the first CP are not yet ready. For example, consider t4, which is in
the first CP. This task cannot be added to the CCP as one of its parents, t2,
has not yet been added to any CCPs. As no ready tasks can be found in the
first CP, a second (new) CP is constructed. In the new CP I have t2, which
is a ready task, as its only parent has already been included in a previous
CCP. Thus, the second CCP consists of three tasks (2→ 5→ 8), having
excluded t10 from the second CP. Similarly, other CCPs are generated by
using the remaining CPs. The different CCPs calculated by my modified
rank approach are presented in Table 4.5.

Standard Rank Modified Rank
Task wi ranku rankd ranks ranku rankd ranks

0 22 190 0 190 284 0 284
1 29 142 48 190 142 48 190
2 22 150 38 188 203 38 241
3 20 96 39 135 96 39 135
4 27 84 106 190 84 115 199
5 21 110 78 188 140 78 218
6 9 65 74 139 65 85 150
7 14 70 115 185 89 115 204
8 12 75 113 188 75 113 188
9 11 41 149 190 41 173 214

10 21 44 144 188 44 156 200
11 10 10 180 190 10 236 246

Table 4.3: Ranks values of tasks in Figure 3.1

4.2. PDC AND DCCP ALGORITHMS 53

Critical Path Constrained Critical Path

0→1→4→9→11 0→1

2→5→8→10 2→5→8

3→6 3→6

7 7

4→9

10

11

Table 4.4: CPs and CCPs based on standard ranks

Critical Path Constrained Critical Path

0→2→5→7→11 0→2→5→7

1→4→9 1→4→9

3→6→10 3→6

8 8

10

11

Table 4.5: CPs and CCPs based on modified ranks

4.2.3 Instance Selection in PDC

At the point the algorithms perform instance selection: (i) each task is already
assigned a level, (ii) the deadline for each level is already determined, and (iii)
the priority of each ready task is already assigned. During instance selection, a
trade-off must be made between execution time and cost. To demonstrate this
trade-off, I show the expressions for both the time and the cost of executing
each task on each instance type in equations (4.12) and (4.13), forming two sets
of expressions for Time and Cost.

54 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

Firstly, the time needed for the current task, ti, on the instance pj is calcu-
lated by ECT (ti, pj). The ECT is the earliest time that a task can finish on an
instance that is defined earlier in equation (4.4). Using this observation, I can
then compute how much the estimated level deadline of the current task differs
from the earliest completion time of task on the instance pj :

Time
pj
ti =

Tsd (NL (ti))− ECT (ti, pj)

Tsd (NL (ti))− ECT (ti)
. (4.12)

In equation (4.12), Tsd(·) is the deadline that is assigned to the level that
contains the current task. Also, ECT (ti) is the minimum execution time among
all instances that keeps my current task on schedule.

The values of Time for task ti are related to instance types, wherein the lower
value of Time means running on a cheaper instance. The reason is that the val-
ues of ECT (ti, pj) is bigger on an instance with a lower processing capacity.
Also, if the value of Time is negative, it means that the current task on the se-
lected instance will exceed the level deadline i.e. ECT (ti, pj) > Tsd (NL (ti)).

In the expression for Cost, given earlier in equation (3.8), TaskCosti refers to
the cost of scheduling the current task ti on instance pj . In equation (4.13), the
worst cost (maximum cost) and best cost (minimum cost) of executing the task
ti among all instances are TaskCostworst and TaskCostbest, respectively.

Cost
pj
ti =

TaskCostworst − TaskCosti
TaskCostworst − TaskCostbest

. (4.13)

To find the best instance, a Cost Time Trade-off Factor (CTTF) in equation
(4.14) is used that considers a trade-off between cost and time.

CTTF
pj
ti =

Cost
pj
ti

Time
pj
ti

. (4.14)

When an instance is first provisioned, the instance is billed on an hourly interval
until it is terminated. Therefore the first task assigned to an instance in a par-
ticular billing interval incurs the entire cost of that interval. As a consequence,
if other tasks can be executed during that paid interval, then there is no addi-
tional execution cost for executing them. Therefore, during instance selection,

4.2. PDC AND DCCP ALGORITHMS 55

I first prioritize the reuse of such instances (i.e. when Cost in equation (4.13) is
1), provided that the level deadline is not exceeded (i.e. when Time in equation
(4.12) is positive).

If there are more than one paid instances, the PDC selects the instance with
the minimum execution time (faster instances). If no such instances are avail-
able, it will attempt to use a provisioned but as yet unused instance, or as a last
resort it creates a new instance.

4.2.4 Instance Selection in DCCP

In the Instance Selection phase, the DCCP algorithm identifies the most appro-
priate instance to execute CCPs. All tasks in a CCP are executed on the same
instance to minimize communication cost between them. The time needed for
the current CCP (denoted by (CCPi)) to execute on the instance pj is calculated
by ECT (CCPi, pj). Work in scheduling generally assumes such an estimate can
be calculated. In practice this is difficult; however work is underway to profile
workflow tools and underlying cloud systems to provide usable estimates for
use in production systems [84].

The ECT is the earliest time that a CCP can complete execution on an in-
stance (as defined in equation (4.4) for a single task). The differences between
the estimated level deadline and earliest completion time of the current CCP on
the instance pj is determined by:

Time
pj
CCPi

= Tsd (NL (ti))− ECT (CCPi, pj) , (4.15)

where Tsd is the deadline that is assigned to the level (given by NL(·)), which
contains the last task ti on the current CCP. There is a possibility that this value
may be negative, which means the current CCP exceeds the level deadline
(ECT (CCPi, pj) > Tsd (NL (ti))). The cost of executing all tasks on current CCP
on instance pj is denoted by CostCCPi,pj .

CostCCPi,pj =
∑

ti∈CCPi

TaskCost
pj
ti . (4.16)

56 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

Three different scenarios to find the most appropriate instance can be con-
sidered:

1. Most cloud providers, such as Amazon, charge based on 60 minute inter-
val. When a task is scheduled on an instance, the whole billing interval is
charged no matter how much of the instance is used. Therefore, if other
tasks can be executed on the same VM during that paid interval, their ex-
ecution cost is zero. To find the best instance in DCCP, the priority is to
select an instance with residuals to execute a CCP. This is subject to its
earliest completion time does not exceed the level deadline. The instance
with minimum ECT is selected (the fastest one).

2. A new instance is provisioned if no instances could be found in the pre-
vious step. For example, at the beginning of the scheduling to assign the
first CCP, an instance should be provisioned as there are no paid instances.
For this purpose, DCCP searches among instances that can meet the level
deadline and select the cheapest one.

3. In tight deadlines, there is a possibility that none of the instances can meet
the task level’s sub-deadline (i.e. when Time

pj
CCPi

is negative). If this
condition for a CCP is met, it does not mean that it is impossible to meet
the overall user-defined deadline. Rather, it means that the sub-deadline
will be violated. In this case I select the best available instance – as overall
the schedule may still be met.

4.2.4.1 Backfilling in DCCP

Scheduling of a workflow that consists of dependent tasks creates resource uti-
lization gaps between the execution of tasks. The principal reason is that tasks
must wait for their data from its parents. Therefore, there are idle time slots
formed between scheduled tasks on each resource. Moreover, the utilization of
cloud resources depends on how tasks are placed together. Instance fragmen-
tation and resource wasting occurs if tasks are not packed firmly. Scheduling

4.2. PDC AND DCCP ALGORITHMS 57

algorithms can consider these time slots for executing ready tasks on different
resources. Consequently, filling up the idle slots decreases the makespan and
maximizes the overall instance utilization.

While backfilling policies are widely used to reduce fragmentation, this has
not been done previously in workflow scheduling. To my knowledge the use of
backfilling strategies in DCCP is unique. In this section, I show that backfilling
increases instance utilization and this improved utilization leads to cost saving.
In PDC, a cost-time trade-off for instance selection is used, this approach nar-
rows my choices of instances for backfilling. Therefore, the backfill algorithm
is only used in conjunction with DCCP. Three different policies are considered
that exploit such idle slots to efficiently schedule tasks, which are First Fit (FF),
Best Fit (BF) and Worst Fit (WF). Each CCP can be placed in a residual according
to one of the following policies:

1. First Fit (FF): a CCP can be inserted into the first gap where it fits.

2. Best Fit (BF): a CCP is placed into the schedule gap where it leaves the
minimum sized residuals.

3. Worst Fit (WF): a CCP is inserted into the schedule gap where it leaves the
maximum sized residuals.

In Section 4.3.3, I discuss how using of backfill policies significantly improves
overall utilization.

4.2.5 Time Complexity

The time complexity of the two proposed algorithms is an important metric
for benchmarking different scheduling algorithms. Consider a workflow rep-
resented by a DAG G = (T,E) with n tasks. Assume that a DAG is fully con-
nected and the maximum number of dependencies between tasks is (n)(n−1)/2.
Processing all tasks and its dependencies requires a time complexity of O (n2).
Besides, processing task dependencies, other computations in PDC that must be

58 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

taken into account are the task selection phase and the instance selection phase,
which are distinct from each other.

To compute the time complexity of task selection phase, all ready tasks (n)
should be examined on all available processors (p) that need computation of
O(np). Similarly, to select all workflow tasks, the time complexity of task selec-
tion is O (n2p). In the resource selection phase, selected tasks are evaluated on
all available instances with complexity of O(p). Thus, the total time complex-
ity of resource selection is O(np). The total time for PDC is O (n2 + n2p+ np),
where the algorithm complexity is of the order O (n2p). The only difference
between DCCP with PDC is in calculating constrained critical paths. For this
purpose, the calculation of upward and downward rank occurs with time com-
plexity ofO (n2p). Therefore, the DCCP algorithm is also of the order ofO (n2p).

4.3 Evaluation

In this section, the performance comparison of the PDC and DCCP algorithms
is presented, with the well-known IC-PCP [46] algorithm and JIT [49] algorithm.
A simulator was used to compare the performance of all four algorithms. Simu-
lations are well accepted as the first approach for evaluating new techniques for
the workflow scheduling problem. It allows researchers to test the performance
of newly developed algorithms under a controller setting. For this purpose, all
four algorithms were implemented and evaluated in CloudSim [85].

The simulation scenario was configured as a single data-center and six dif-
ferent instance types. The characteristics of the instances are based on the US-
east Amazon region1 presented in Table 4.6, and were accurate in March 2016.

The average bandwidth between instances was fixed to 20 MBps [86]. The
processing capacity of an EC2 unit is estimated at one Million Floating Point
Operations Per Second (MFLOPS) [87]. The estimated execution times are scaled
by instance type CPU performance, which means 1 second of each task in a
workflow runs for 1 second on an instance with one ECU. One EC2 Compute

1https://aws.amazon.com/ec2/pricing/

4.3. EVALUATION 59

Type ECU Memory(GB) Cost($)

m3.medium 3 3.75 0.067

m4.large 6.5 8 0.126

m3.xlarge 13 15 0.266

m4.2xlarge 26 32 0.504

m4.4xlarge 53.5 64 1.008

m4.10xlarge 124.5 160 2.520

Table 4.6: Instance Types based on Amazon EC2

Unit (ECU) provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor. In an ideal cloud environment, there is no provisioning
delay in resource allocation. However, some factors such as the time of day,
operating system, instance type, location of the data center, and number of re-
quested resources at the same time, can cause delays in startup time [88]. There-
fore, in the simulation, a 97-second boot time was used based on measurements
of EC2 [88].

In order to evaluate the performance of my algorithms with a realistic load,
five common scientific workflows were considered: Cybershake, Epigenomics,
Montage, LIGO and SIPHT. The characteristics and task composition of these
workflows have been analyzed in published works cited in the related work
section [21,75]. To evaluate the performance of these algorithms, different dead-
lines were chosen from tight to relaxed. Additionally, the fastest schedule was
calculated (denoted by FS) as a baseline schedule with the following expres-
sion:

FS =
∑
ti∈CP

(wji) (4.17)

60 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

where wji is the computation cost of task ti on the fastest instance pj . Effectively,
this baseline is the fastest possible execution – ignoring costs.

The deadline was defined as a function of the fastest schedule, and this dead-
line is expressed in equation (4.18) in which the deadline varies from tight to
moderate to relaxed:

deadline = α ∗ FS, 0 < α < 20. (4.18)

The deadline factor α starts from 1 in order to consider very tight deadlines
(typically approaches the fastest schedule) and is increased by one up to a value
of 20, which results in a very relaxed deadline.

The Amazon EC2 instances charge on an hourly interval from the time of
provisioning. The simulator was configured to reflect this charging model and
a time interval of 60 minutes was used in the simulations. To compare perfor-
mance with respect to different workflow sizes, workflows with 50, 100, 200,
500 and 1000 tasks were evaluated. However, as these results did not vary sig-
nificantly, here only workflows with 1000 tasks are presented.

The Pegasus workflow generator [75] was used to create representative work-
flows with the same structure as five real world scientific workflows (Cyber-
shake, Epigenomics, Montage, LIGO and SIPHT). For each workflow structure,
and each deadline factor, 100 distinct Pegasus generated workflows are sched-
uled in CloudSim and the performance of the scheduling algorithms are de-
tailed in the following section.

4.3.1 Performance Metrics

To evaluate the algorithms under test, the following performance metrics were
used: Success Rate (SR), Normalized Schedule Cost (NSC) and Throughput.

• Success Rate (SR): Success rate of each algorithm (SR), calculated as the
ratio between the number of simulation runs that successfully met the
scheduling deadline and the total number of simulation runs (denoted by

4.3. EVALUATION 61

nTot), defined as:

SR =
n (k)

nTot
, (4.19)

where n(k) is the cardinality of the set k and nTot = 100.

• Normalized Schedule Cost (NSC): To compare the monetary cost between
the algorithms, the cost of failure in meeting a deadline is considered. For
this purpose, a weight is assigned to average cost returned by each algo-
rithm. Let k denote the set of a simulation runs that successfully meets the
scheduling deadline, thus the weighted cost is calculated as:

Costw =

∑
k Costo (k)

SR
, (4.20)

where Costo (k) was defined earlier in equation (3.9) and it is the cost for
the experiments that meet the deadline. Thus, the NSC is defined as:

Costns =
Costw
minC

, (4.21)

The cost of cheapest schedule (denoted by minC) is defined as scheduling
of all tasks on the cheapest instance according to their precedence con-
straints.

• Throughput: It is the amount of work that can be done in a given deadline
interval by each algorithm. Million Floating Point Operations Per Second
(MFLOPS) is used as a measure of the throughput.

4.3.2 Task Selection in PDC

The task selection step is a characteristic of all list based scheduling algorithms.
This section presents task selection results in PDC using a set of eight different
ranking policies in order to evaluate the importance of and sensitivity to rank-
ing. Figures 4.4 to 4.8 show the results of different task selection policies in PDC
as defined in Section 4.2.2.1.

Workflows differ remarkably in their characteristics, including structure, size,
computation and communication requirements. Each workflow is constructed

62 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19

40

50

60

70

80

20

25

30

35

40

45

12.5

15.0

17.5

20.0

8

10

12

14

6

7

8

9

10

6

8

10

4

5

6

7

8

4

5

6

3

4

5

6

3

4

5

3

4

5

2.5

3.0

3.5

4.0

4.5

2.0

2.5

3.0

3.5

4.0

2.0

2.5

3.0

3.5

4.0

2.0

2.5

3.0

3.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

1.5

2.0

2.5

3.0

Deadline Factor

 C
os

t (
$)

Algorithm
1.UpRank
2.DownRank
3.SumRank
4.MinExe
5.MaxExe
6.ECT
7.Random
8.EDF

MONTAGE

Figure 4.4: Task selection results for Montage

4.3. EVALUATION 63

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19

80

90

100

20

25

30

12

16

20

10

11

12

13

14

6

8

10

12

5

6

7

8

5

6

7

5

6

7

4

5

6

3

4

5

2.5
3.0
3.5
4.0
4.5
5.0

3

4

2.5

3.0

3.5

4.0

4.5

2.5

3.0

3.5

2.0

2.5

3.0

3.5

2.0

2.5

3.0

3.5

2.0

2.4

2.8

1.5

2.0

2.5

3.0

1.5

2.0

2.5

Deadline Factor

 C
os

t (
$)

Algorithm
1.UpRank
2.DownRank
3.SumRank
4.MinExe
5.MaxExe
6.ECT
7.Random
8.EDF

SIPHT

Figure 4.5: Task selection results for SIPHT

64 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19

560

580

600

620

57.5

60.0

62.5

65.0

67.5

70.0

28
29
30
31
32
33

28

29

30

31

14

16

18

20

15

16

17

15.0

15.5

16.0

16.5

15.0

15.5

16.0

16.5

9

11

13

7.25
7.50
7.75
8.00
8.25
8.50

7.5

7.8

8.1

8.4

7.5

7.8

8.1

8.4

5

6

7

5.0

5.2

5.4

5.6

5.0

5.2

5.4

5.6

5.0

5.2

5.4

5.6

4.0

4.5

5.0

5.5

3.7
3.8
3.9
4.0
4.1
4.2

3.7
3.8
3.9
4.0
4.1
4.2

Deadline Factor

 C
os

t (
$)

Algorithm
1.UpRank
2.DownRank
3.SumRank
4.MinExe
5.MaxExe
6.ECT
7.Random
8.EDF

LIGO

Figure 4.6: Task selection results for LIGO

4.3. EVALUATION 65

2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19

8

10

12

3

4

5

6

2

3

4

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

1.0

1.5

2.0

1.0

1.5

2.0

0.75

1.00

1.25

1.50

0.50

0.75

1.00

1.25

0.50

0.75

1.00

1.25

0.50

0.75

1.00

1.25

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

0.4
0.5
0.6
0.7
0.8

Deadline Factor

 C
os

t (
$)

Algorithm
1.UpRank
2.DownRank
3.SumRank
4.MinExe
5.MaxExe
6.ECT
7.Random
8.EDF

CYBERSHAKE

Figure 4.7: Task selection results for Cybershake

66 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19

120

140

160

180

200

80

100

120

140

60

80

100

40

50

60

70

80

40

50

60

70

30

40

50

20

30

40

50

20
25
30
35
40
45

15
20
25
30
35
40

15

20

25

30

35

15

20

25

30

35

20

30

20

30

10
15
20
25
30
35

10

15

20

25

30

35

10
15
20
25
30
35

10
15
20
25
30
35

10
15
20
25
30
35

Deadline Factor

 C
os

t (
$)

Algorithm
1.UpRank
2.DownRank
3.SumRank
4.MinExe
5.MaxExe
6.ECT
7.Random
8.EDF

EPIGENOMICS

Figure 4.8: Task selection results for Epigenomics

4.3. EVALUATION 67

of various components, including process, pipeline, data distribution, data ag-
gregation and data redistribution [75]. The size of scientific workflows varies
from small number of tasks taking a few minutes to execute to millions of tasks
that require days to execute. Moreover, workflows also differ in terms of data
transfer operations. Examples of such transfers are fetching input data, mov-
ing intermediate data generated within a workflow, and output data. For each
workflow structure, and each deadline factor, 100 distinct Pegasus generated
workflows were simulated using CloudSim.

The average execution time and average communication time are used for
task ranking by Upward, Downward and Sum rank. Accordingly, the impact
of instances that are launched during scheduling are not accounted for by these
policies. These are static policies, as they do not change when additional in-
stances are launched by the scheduler.

The Earliest Completion Time (ECT) and Earliest Deadline First (EDF) poli-
cies require continual re-computation as execution of a task on a VM leads to
changes in ECT and EST for all other tasks on that VM. These are dynamic poli-
cies, as they change when additional instances are launched by the scheduler.

The dynamic ranking policies performed best on the Montage (Figure 4.4)
and Cybershake (Figure 4.7) workflows, whereas the results were largely rank-
ing agnostic in LIGO (Figure 4.6) and Epigenomics (Figure 4.8). The most in-
teresting result was the SIPHT workflow (Figure 4.5), where the results were
largely unpredictable. Nonetheless, overall the dynamic EDF policy produced
the lowest costs over all workflows tested.

The results of this set of experiments suggest that the structure of work-
flows can significantly impact the ranking and scheduling cost. I note that the
workflows where the policies performed most consistently had a high degree
of structural and runtime symmetry – where each task in such a sequence usu-
ally has the same amount of data as input, and in turn generates and distributes
equal information as output to its children. Indeed, the workflows for which the
policy was agnostic suggest support this conjecture. The most unpredictable
workflow, SIPHT, was strongly asymmetric in both structure and runtime. The

68 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

structures of these workflows can be found in [21, 75].

Although cost differences may seem negligible between some of the policies,
in multiples of datasets the variance could be significant. This shows that the
task selection order could play a key role in minimizing the cost.

4.3.3 Backfilling in DCCP

In this section, backfilling strategies are evaluated in terms of the number of pro-
visioned instances. Montage, LIGO and Cybershake are data-intensive datasets
that usually spend most of their time on data manipulation or data I/O, and
have a high number of small tasks. By contrast Epigenomics consists of mostly
larger computationally intensive tasks. Due to such task granularities, resid-
uals are used in DCCP to keep tasks operating on the same data on the same
instance with the goal of reducing communication cost. A more effective back-
filling strategy would ultimately provision fewer instances and thereby reduce
cost. The three different strategies (FF, BF and WF) outlined in Section 4.2.4.1
are used. The simulation is limited to a single instance type (type 3, m3.xlarge
in Table 4.6) to ensure that the comparison across the algorithms is fair. Two
data-intensive workflows, LIGO and Montage, were chosen for evaluation with
three different deadline intervals. In Figures 4.9 and 4.10, graphs in left columns
show the instance utilization based on the VM creation order, and the right col-
umn shows the same sorted by utilization. The X-axis is the total number of
instances and the Y-axis is the utilization rate.

The worst fit policy has the best performance because it launches fewer in-
stances, and the number of launched instances has a direct effect on cost. Worst
fit reduces further fragmentation of the residuals, leaving larger allocatable
blocks. A small set of high utilized VMs leads to lower overall cost in worst
fit policy compared to further low utilized VMs in other policies. Overall, the
number of instances decreases as the deadline is relaxed. In a case of the moder-
ate and relaxed deadlines in LIGO, interval 12 and 19, it is observed that worst
fit needs almost the half the number of VMs. The same observation is true for

4.3. EVALUATION 69

MONTAGE with interval 19, worst fit approximately requires one-third of VM
numbers compared to others. Considering the benefits of cost saving in worst
fit, this policy was used in DCCP algorithms for cost comparison analysis in
Section 4.3.4.

4.3.4 Cost Comparison Analysis

Ultimately the cost vs. deadline performance of each algorithm is the most
significant basis for evaluating their performance. In this section, each of the
algorithms is evaluated using six different instance types with different char-
acteristics as described in Table 4.6. As expected, experimental results in Fig-
ure 4.11 show that the cost of the workflow scheduling generally decreases as
the deadline factor increases.

In most cases, the PDC and DCCP algorithms outperform both IC-PCP and
JIT, achieving the lowest overall cost over all workflows and deadlines. Like all
heuristics, there are points at which their performance is not as good, but these
are in the minority, and for small values. For example, in Cybershake, the cost
of PDC at most deadlines is approximately 10% that of the cost incurred by the
worst performer, JIT.

Another interesting result is from the Epigenomics workflow, where while
IC-PCP achieves the lowest costs with relaxed deadlines (12 → 20), this algo-
rithm is also unable to generate any viable schedule, at any cost, for the majority
of the tighter deadlines.

As a final observation, from Figure 4.11, the cost of finding a schedule when
deadline is tight for Montage and Cybershake is extremely high. It can be ex-
plained by considering the structure of these workflows. For example, in Mon-
tage, more than 800 parallel tasks out of 1000 in first two levels need to be sched-
uled. Therefore, when deadline is tight, all algorithms need to lease many in-
stances in parallel to finish elementary tasks that makes the schedule cost very
expensive.

70 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

0 20 40 60

0

0.03

0.06

0.09

0.12

VM number

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(a) LIGO (interval 5)

0 20 40 60

0

0.03

0.06

0.09

0.12

Number of VMs

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(b) LIGO (interval 5) sorted

0 10 20 30 40 50

0

0.1

0.2

0.3

VM number

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(c) LIGO(interval 12)

0 10 20 30 40 50

0

0.1

0.2

0.3

Number of VMs

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(d) LIGO (interval 12) sorted

0 10 20

0

0.1

0.2

0.3

0.4

0.5

VM number

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(e) LIGO (interval 19)

0 10 20

0

0.1

0.2

0.3

0.4

0.5

Number of VMs

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(f) LIGO (interval 19) sorted

Figure 4.9: VM utilization for three different deadline intervals with Backfilling
policies for LIGO.

4.3. EVALUATION 71

0 30 60 90 120

0

0.01

0.02

0.03

0.04

0.05

VM number

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(a) MONTAGE (interval 5)

0 30 60 90 120

0

0.01

0.02

0.03

0.04

0.05

Number of VMs

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(b) MONTAGE (interval 5) sorted

0 20 40 55

0

0.02

0.04

0.06

VM number

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(c) MONTAGE (interval 12)

0 20 40 55

0

0.02

0.04

0.06

Number of VMs

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(d) MONTAGE (interval 12) sorted

0 10 20 30 40

0

0.02

0.04

0.06

0.08

VM number

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(e) MONTAGE (interval 19)

0 10 20 30 40

0

0.02

0.04

0.06

0.08

Number of VMs

U
ti
li
za

ti
o
n

DCCP FF

DCCP BF

DCCP WF

(f) MONTAGE (interval 19) sorted

Figure 4.10: VM utilization for three different deadline intervals with backfilling
policies for MONTAGE.

72 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

0 5 10 15

0

200

400

600

Deadline Intervals

N
o
r
m
a
l
i
z
e
d

c
o
s
t

(
$
)

JIT

PCP

PDC

DCCP

(a) Montage

0 5 10 15

0

10

20

30

40

Deadline Intervals

N
o
r
m
a
l
i
z
e
d

c
o
s
t

(
$
)

JIT

PCP

PDC

DCCP

(b) SIPHT

0 5 10 15

0

10

20

30

40

Deadline Intervals

N
o
r
m
a
l
i
z
e
d

c
o
s
t

(
$
)

JIT

PCP

PDC

DCCP

(c) LIGO

0 5 10 15

0

50

100

150

Deadline Intervals

N
o
r
m
a
l
i
z
e
d

c
o
s
t

(
$
)

JIT

PCP

PDC

DCCP

(d) Cybershake

0 5 10 15

0

5

10

15

Deadline Intervals

N
o
r
m
a
l
i
z
e
d

c
o
s
t

(
$
)

JIT

PCP

PDC

DCCP

(e) Epigenomics

Figure 4.11: Normalized Cost vs. deadline for five different datasets.

4.3. EVALUATION 73

4.3.5 Success Rate Analysis

Figure 4.12 shows the relative Success Rate (SR) of each algorithm as the dead-
line factor, α, is increased from 1 to 20.

0

25

50

75

100

5 10 15 20
Deadline Intervals

S
uc

ce
ss

 R
at

e

JIT
PCP
PDC
DCCP

(a) Montage

0

25

50

75

100

5 10 15 20
Deadline Intervals

S
uc

ce
ss

 R
at

e

JIT
PCP
PDC
DCCP

(b) SIPHT

0

25

50

75

100

5 10 15 20
Deadline Intervals

S
uc

ce
ss

 R
at

e

JIT
PCP
PDC
DCCP

(c) LIGO

0

25

50

75

100

5 10 15 20
Deadline Intervals

S
uc

ce
ss

 R
at

e

JIT
PCP
PDC
DCCP

(d) Cybershake

0

25

50

75

100

5 10 15 20
Deadline Intervals

S
uc

ce
ss

 R
at

e

JIT
PCP
PDC
DCCP

(e) Epigenomics

Figure 4.12: Success Rate for five different datasets.

74 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

A low success rate indicates that the algorithm cannot find a makespan that
meets the deadline (in most datasets). The best overall performers are the PDC
and JIT algorithms, which exhibit a success rate of 100% for most deadlines. The
relaxing of the deadline causes the success rate of each algorithm to increase ex-
cept for IC-PCP. Although fewer failures were expected when the deadline is
relaxed, the behavior of IC-PCP in different intervals is contrary to these expec-
tations. The highest failure occurs with a deadline factor of α < 4 resulting in
100% failure, except in Cybershake. IC-PCP also has the worst performance in
Epigenomics, below a deadline factor of 16. IC-PCP can find a schedule for less
than 2% of the datasets before its deadline is reached.

The best performance of IC-PCP belongs to Cybershake, which has a suc-
cess rate of above 60% in all intervals. The DCCP algorithm in all scientific
workflows has 100% success when the deadline is more relaxed. The maximum
failure in DCCP happens in Epigenomics when deadline is tight. No significant
differences were found between the PDC and JIT whereas both are able to finish
workflows for more than 95% of the deadlines. Although JIT can find a solution
in most of the tested deadlines, JIT generates expensive schedules, as discussed
in 4.3.4.

4.3.6 Throughput Analysis

The throughput of each algorithm is displayed in Figure 4.13. The X-axis in
Figure 4.13 is cost based on the deadline intervals. The Y-axis is the number of
MFLOPS in billions.

In Figure 4.13, the top left corner indicates better performance at a lower
cost. Clearly the throughput is dependent on the success rate – and therefore
over all intervals and workflows the throughput of the best algorithms, PDC
and JIT, are essentially equal. However, the cost difference between PDC and
JIT is significant, as shown in the graph. The best performance of DCCP is in
MONTAGE and LIGO (both are data intensive workflows), in which DCCP is
close to PDC with a similar cost. IC-PCP has the worst performance in almost

4.3. EVALUATION 75

1

2

3

4

5

0 200 400
Cost($)

T
hr

ou
gh

pu
t

JIT
PCP
PDC
DCCP

(a) Montage

0

20

40

60

80

0 10 20 30
Cost($)

T
hr

ou
gh

pu
t

JIT
PCP
PDC
DCCP

(b) SIPHT

0

25

50

75

100

0 10 20 30 40
Cost($)

T
hr

ou
gh

pu
t

JIT
PCP
PDC
DCCP

(c) LIGO

5

7

9

0 50 100 150
Cost($)

T
hr

ou
gh

pu
t

JIT
PCP
PDC
DCCP

(d) Cybershake

0

250

500

750

1000

0 5 10
Cost($)

T
hr

ou
gh

pu
t

JIT
PCP
PDC
DCCP

(e) Epigenomics

Figure 4.13: Throughput for five different datasets.

76 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

all workflows, which is directly related to the low success rate of this algorithm.

4.4 Summary

In this chapter, I introduced new algorithms, Proportional Deadline Constrained
(PDC) and Deadline Constrained Critical Path (DCCP). Both algorithms belong
to SPDP category (see section 2.4). The PDC operates by maximizing the paral-
lelism in a workflow by separating it into logical levels and then proportionally
subdividing the overall workflow deadline over them. The DCCP algorithm is
similar to PDC, the main difference is that it also determines the constrained
critical path through the workflow in order to co-locate tasks that communicate
on the same instance. These algorithms were evaluated (via CloudSim simula-
tion) against two previously published algorithms (IC-PCP and JIT), using a va-
riety of metrics – including success rate, normalized cost, and throughput. I also
investigated the influence of the task selection step in the PDC algorithm and
backfilling strategies in DCCP. The simulations were conducted using five sci-
entific workflows, Montage, SIPHT, LIGO, Cybershake and Epigenomics, and
these were generated by the Pegasus workflow generator.

In terms of cost performance, overall the PDC and DCCP algorithms re-
turned the lowest compute cost, over all workflows and instance configurations.
Of particular note, for the Cybershake workflow, PDC returned costs approxi-
mately 10% of those incurred by JIT. In terms of success rate and throughput,
the best overall performers were the PDC and JIT algorithms, although the JIT
algorithm was many times more expensive in terms of cost. I also investigated
the effect of eight different policies to evaluate task selection order on schedul-
ing performance in PDC. In the next chapter, I will explore different possible
strategies for distributing budget and deadline over a workflow and investigate
its impact on the overall cost of the resulting schedule.

The DCCP strategically backfills residuals in provisioned instances. This
approach is most effective in data-intensive workflows due to the reduction in
data movement. Worst fit resulted in higher utilisation on fewer instances than

4.4. SUMMARY 77

either first fit or best fit. Worst fit reduces further fragmentation of the residuals
by leaving larger allocatable blocks.

Overall, both algorithms are able to achieve a consistently high success rates
and throughput, while in most cases presenting the lowest overall pay-per-use
cost.

78 CHAPTER 4. DEADLINE CONSTRAINED WORKFLOW SCHEDULING

Chapter 5

Distribution Strategies for Scientific
Workflow Scheduling

5.1 Introduction

One critical element is the provisioning of pay-per-use instances, and the subse-
quent scheduling of workflow tasks over them – in essence we need to complete
execution on time and within budget. Scientific workflows vary in size from a
couple of tasks to thousands or million of tasks, and these need to be scheduled
in parallel and dependency order over, potentially, many instances. This is a
workflow scheduling problem – and is inherently NP-complete. There are two
significant phases to solving such a workflow scheduling problem: selecting the
task to be scheduled, and selecting the instance to be provisioned. The choices
made in these phases naturally have a significant impact on the overall cost of
the resulting schedule and whether it can meet its defined constraint. In this
chapter, looking at distributing budget and deadline based on the dependency
structure embedded in the workflow is presented. Essentially I transform the
workflow into internally dependency free “bags of tasks” (called levels [43])
and I then distribute the workflow budget and deadline over these levels using
different strategies.

79

80 CHAPTER 5. DISTRIBUTION STRATEGIES

5.2 Budget Distribution Strategies

One problem in scheduling budget constrained workflow is how to spend that
budget for the best performance. This is essentially a budget assignment prob-
lem (BAP), and in existing workflow scheduling approaches [15,54] it is shared
proportionally based on a subset of the execution characteristic(s) of the task
(or cluster of data related tasks) being scheduled, such as execution time, CPU
requirements or memory requirements.

I distribute the workflow budget over these levels using six strategies. Three
of these strategies are designed explicitly for my means of budget distribution
and therefore also represent novel work. I ensure that any budget share that is
unused by the level to which it is allocated is trickled down to the next level. For
the remainder of this chapter, I will refer to my approach as Budget Distribution
with Trickling (BDT).

Based on my results I suggest two hypotheses worthy of further considera-
tion:

Hypothesis 1 The earliest tasks in the workflow are the most critical when construct-
ing a schedule.

Hypothesis 2 Assigning a higher budget to the earliest tasks in a workflow generally
leads to a lower makespan.

5.2.1 The Budget-Aware Scheduling Algorithm

In this section, I describe my budget-aware scheduling algorithm, Budget Dis-
tribution with Trickling (BDT). The algorithm is divided into four main phases
(each of which relates to a following subsection: 5.2.2– 5.2.5):

(A) Workflow partitioning: The workflow is partitioned into dependency free
bags of tasks, called levels.

(B) Budget Distribution: The user-defined budget is then allocated to each de-
fined level using one of six different strategies.

5.2. BUDGET DISTRIBUTION STRATEGIES 81

(C) Task Selection: A task is selected based on its priority in the ready list for
execution.

(D) Instance Selection: The instances are chosen to meet the available budget.

The focus of this chapter is on budget distribution, the other phases are in-
cluded for completeness.

5.2.2 Workflow Partitioning

I aim to maximize task parallelism by arranging tasks in levels, where within
each level no tasks have dependencies on another in the same level. Each level
can therefore be thought of as a bag of tasks (BoT) containing a set of indepen-
dent tasks.

There are two main algorithms for allocating tasks to different levels: Dead-
line Bottom Level (DBL) [43] and Deadline Top Level (DTL) [44]. DBL and DBT
categorize tasks in bottom-top direction and top-bottom direction, respectively.
In this thesis, I use the DBL algorithm to partition tasks into different levels.

I describe the level of task ti as an integer representing the maximum num-
ber of edges in the paths from task ti to the exit task (see Fig. 5.1). The level
number (denoted by NL) associates a task to a BoT. For the exit task, the level
number is always 1, and for the other tasks it is determined by:

NL (ti) = max
tj∈succ(ti)

{NL (tj) + 1} (5.1)

where succ(ti) denotes the set of immediate successors of task ti. All tasks are
then grouped into Task Level Sets (TLS) based on their levels.

TLS(`) = {ti|NL (ti) = `} (5.2)

where ` is an integer denoting the level in [1 . . . NL (tentry)].

82 CHAPTER 5. DISTRIBUTION STRATEGIES

5.2.3 Budget Distribution

As the principle of distributing budget based on the dependency structure of
a workflow (levels) is new, I need to evaluate the performance of a variety of
strategies to gauge the value of the approach. I start with the most basic strate-
gies, random and uniform, to provide a baseline comparison. I then explore
more complex strategies – width, which is an analogue of prior work on pro-
portional schemes, and then the strategies designed specifically for the BDT
approach – height, area and “All in”.

The most significant differences in each strategy lie in the calculation of the
sub-budget. In some strategies, I have a Budget Factor (BF) that determines a
share of the budget for each level. Each sub-budget assigned to a level is termed
the level budget.

1. Random: The budget is allocated randomly over the levels in the work-
flow

2. Uniform: Each level gets a 1/L share of the budget, where L is the total
number of levels.

3. Height Proportional: Each level gets a share of the user budget propor-
tional to its distance from the entry node. The smaller the distance the
greater the share.

4. Width Proportional: Each level gets a share of the user budget propor-
tional to the number of tasks within that level.

5. Area Proportional: Combines width and height strategies to set the bud-
get for each level.

6. All in: Places the entire budget on the entry level and any remainders are
trickled down to later levels. This is a refined version of Height propor-
tional, which was formulated as an extreme test of hypotheses 1 and 2,
rather than a realistic suggestion. I did not expect this strategy to work

5.2. BUDGET DISTRIBUTION STRATEGIES 83

in the general case, as I anticipated a reduced success rate. However,
counter-intuitively it returned the best overall performance.

An example is presented to show how the budget is distributed among dif-
ferent levels. Random needs no further explanation, so the example will only
detail uniform through “All in” strategies. Figure 5.1 shows the structure of a
sample workflow with 10 tasks and their dependencies. In this figure, the left
column shows level numbers calculated by equation 5.1. The right column is
obtained by counting tasks in each level starts from the exit task. In this exam-
ple Nmax=5, which is the maximum level in the workflow. Also, a budget of 165
is assumed.

Each strategy distributes the user budget based on the following basis (see
Table 5.1 for the complete set of budget shares):

• Uniform Proportional: Each level gets 165/5 share of budget as the work-
flow has five levels.

• Height Proportional: Each level is assigned a weighted share of budget
relative to its height in the workflow. This is calculated by:

Lweight =
Nmax=5∑
k=1

k = 15.

The Budget Factor (BF) is calculated by:

BF =
budget

Lweight
=

165

15
= 11.

For instance, level 4, consisting task B and C, is assigned a share of the
budget equal to 4×BF = 4× 11 = 44.

• Width Proportional: Each level gets a share of budget, depending the
number of tasks in corresponding level:

BF =
budget

tasknumbers
=

165

10
= 16.5.

For instance, the budget share assigned to level 4 with two tasks is 2 ×
BF = 2× 16.5 = 33.

84 CHAPTER 5. DISTRIBUTION STRATEGIES

(a)

Figure 5.1: A Sample Workflow with 10 tasks.

5.2. BUDGET DISTRIBUTION STRATEGIES 85

• Area Proportional: In this strategy, the budget share is allocated to each
level is a combination of height and width strategies. Calculated by:

Lweight =
10∑
k=1

k = 55.

The Budget Factor (BF) is calculated by:

BF =
budget

Lweight
=

165

55
= 3

The budget then is distributed based on the sum of numbers in the right
column in Fig. 5.1. For example, level 3 is allocated the share (4 + 5 + 6 +

7)×BF = 22× 3 = 66.

• All in: The total budget is assigned to level 5. After scheduling all tasks in
this level, any spare budget is trickled to the next level.

5.2.4 Task Selection

In BDT, tasks are executed level by level, which means a task can start execution
once all tasks in previous levels have been scheduled. There are no dependen-
cies between tasks that are at the same level. Therefore, all of them are ready
to execute and are put to the task ready list. To select a task, at first all tasks in
the ready list should be prioritized. In this thesis, tasks are prioritized based on
their Earliest Start Time (EST).

It could be argued that it is pointless to prioritize task as all ready tasks are
independent and their parent tasks have been already scheduled, but this is not
the case. Let me trace the execution of a sample graph shown in Fig. 5.2. The
number above each edge shows the data transfer time between tasks. Upon
executing tasks A, B and C, all their children are placed in the ready list for
execution. Note that due to execution of task A and C on the same instance,
data are local, and therefore the transfer time is essentially zero. However, task
B must wait to receive data from their parent (shown in blue intervals). Task

86 CHAPTER 5. DISTRIBUTION STRATEGIES

(a) a sample workflow

0 2 4 6 8 10 12 14 16

p0
A C

p1
B

(b) Gantt chart

Figure 5.2: Task Selection Example

5.2. BUDGET DISTRIBUTION STRATEGIES 87

Table 5.1: Budget distribution for each strategy over each level for a total budget
of 165 in Figure 5.1.

Budget Distribution Strategy

Uniform Height Width Area ”All in”

Level 5
165

5
= 33 5×BF = 55 1×BF = 16.5 10×BF = 30 165

Level 4
165

5
= 33 4×BF = 44 2×BF = 33 17×BF = 51 0

Level 3
165

5
= 33 3×BF = 33 4×BF = 66 22×BF = 66 0

Level 2
165

5
= 33 2×BF = 22 2×BF = 33 5×BF = 15 0

Level 1
165

5
= 33 1×BF = 11 1×BF = 16.5 1×BF = 3 0

D can start its execution on instance p0 and p1 at time 13 and 9, respectively
(shown by l). The earliest time that task E can start on instance p0 is 13, and on
instance p1 is 14. Therefore, I give a higher priority to task D.

The Earliest Start Time (EST) of a task ti is calculated on the instance with
the shortest execution time and defined as:

EST (ti) =

 0 , ti = tentry

max
tj∈pred(ti)

{
EST (tj) + wtj + Ci,j

}
, otherwise, (5.3)

where wtj is the execution time of task tj on the fastest instance type. The
amount of data transferred from task ti to task tj is called communication time
(denoted by Ci,j).

Task selection starts from the level that consists of tentry. After executing the
first level, all tasks in the next level are put in the ready list to be scheduled.

88 CHAPTER 5. DISTRIBUTION STRATEGIES

5.2.5 Instance Selection

The BDT algorithm attempts to minimize the execution time while meeting the
budget. Each level receives a computed budget share, which is the maximum
that is able to be spent for the tasks within this level. I start by calculating both
the time and the cost of executing each task on each instance type, given by
equations 5.4 and 5.5, forming two sets of Cost and Time.

In the equation 5.4, subBudget is a share of the budget that assigned to a
level. The cost of scheduling for the current task, ti, on the instance pj , is shown
by Ci. The minimum cost of executing current task among all instances is Cbest.

Cost
pj
ti =

subBudget− Ci
subBudget− Cbest

. (5.4)

In the Time set, the required time for the current task on instance pj is a
function of ECT(ti, pj) and is expressed in equation 5.5. The maximum and
minimum completion times of executing the task ti among all instances are
ECT(max) and ECT(min), respectively.

Time
pj
ti =

ECT(max)− ECT(ti, pj)

ECT(max)− ECT(min)
. (5.5)

To find the best instance, I use the Time Cost Trade-off Factor (TCTF) in
equation 5.6.

TCTF
pj
ti =

Time
pj
ti

Cost
pj
ti

. (5.6)

There is a possibility that the total assigned budget for the level ` has already
been spent (subBudget=0) while there are still some unscheduled tasks. If this
condition is true, it makes equation 5.4 zero. Therefore, I cannot launch a new
instance as there is no budget left. Note that the value of equation 5.6 becomes
zero as well.

When an instance is provisioned, the user is charged for the entire billing
interval, even if the task completes before the end of the interval. One way to
reduce the cost of executing tasks is by using leftover capacity (residuals) in

5.2. BUDGET DISTRIBUTION STRATEGIES 89

provisioned instances that have been already paid for. Therefore, if other tasks
can execute on an existing instance with a residual, their execution costs can be
considered zero. Moreover, the utilization of cloud resources depends on how
tasks are placed together. Instance fragmentation and resource wastage occurs
if tasks are not packed efficiently. The BDT algorithm utilizes these residuals for
executing ready tasks, which reduces makespan at no additional cost.

An important concept in my algorithm is trickling down unused budget,
and this is expressed by equation 5.7. I define Spare Budget (SB) as the amount
of money remaining after allocating all tasks in the level `. I then add the left-
over to the next level (`+ 1).

SB = subBudget` −
∑

ti∈TLS(`)

Ci. (5.7)

5.2.6 Evaluation

Five common scientific workflows were used: Cybershake, Montage, LIGO,
Epigenomics and SIPHT to evaluate the performance of my algorithms un-
der realistic load, the characteristics of which have been analyzed in [21]. The
CloudSim [85] was used, and configured with one data-center and six different
instance types. The characteristics of these instance types are based on the EC2
instance configurations presented in Table 4.6. The average bandwidth between
instances was fixed to 20 MBps, based on the average bandwidth provided by
AWS [86]. The processing capacity of an EC2 unit was estimated at one Million
Floating Point Operations Per Second (MFLOPS) [87]. The pricing model and
other characteristics were explained in section 4.3.1.

To evaluate the budget sensitivity of the BDT algorithm and associated strate-
gies, different budget ranges were considered for the scientific datasets from
lowest possible through to sufficient. The lowest possible budget to schedule a
workflow is given by equation 5.8.

Lowestcost =
∑
∀ti∈G

Cost
pj
ti , (5.8)

90 CHAPTER 5. DISTRIBUTION STRATEGIES

where pj is the cheapest instance. To achieve this, all tasks are executed on the
instance with the lowest cost (the cheapest instance). This assignment gives us
the lowest possible cost required for executing a workflow, irrespective of fin-
ishing time. Using this lowest cost, the minimal budget is calculated as follows:

budget = α ∗ Lowestcost 1 < α < 10. (5.9)

The budget range starts from 1.5 to consider minimum budget with increas-
ing step length of 0.5. The EC2 instances charge hourly basis from the time of
provisioning, even if the instance is only used for a fraction of that period. The
simulations were run with lease times of 15, 30, 45 and 60 minutes to evaluate
the sensitivity of the algorithm to the length of the lease.

In order to compare performance in respect to workflow size, workflows
with 1000 tasks were considered. The Pegasus workflow generator [21] was
used to create representative synthetic workflows with the same structure as
real world scientific workflows (Cybershake, Montage, LIGO and SIPHT). Again,
for each workflow structure, and each budget range, 100 distinct Pegasus gen-
erated workflows were scheduled in CloudSim, and these results are detailed
in the following section.

5.2.7 Analysis of LIGO

Table 5.2: Example of computed budget distribution for each strategy over each
level of a LIGO for budget range=5 and budget=7.035.

Budget Distribution Strategy
Uniform Height Width Area ”All in”

Task Numbers sub Budget Spare Budget sub Budget Spare Budget sub Budget Spare Budget sub Budget Spare Budget sub Budget Spare Budget

Level 6 229 1.173 0.01 2.01 0.15 1.61 0.01 2.85 0.01 7.035 0.001

Level 5 229 1.173 0.03 1.675 0.01 1.61 0.03 2.11 0.03 0.001 0.001

Level 4 21 1.173 0.05 1.34 0.03 0.14 0.006 0.15 0.01 0.001 0.001

Level 3 250 1.173 0.01 1 0.02 1.75 0.01 1.39 0.02 0.001 0.001

Level 2 250 1.173 0.03 0.67 0.009 1.75 0.02 0.51 0.06 0.001 0.001

Level 1 21 1.173 0.05 0.335 0.02 0.14 0.02 0.003 0.05 0.001 0.001

Achieved Makespan 938.97 798.71 798.61 682.6 603.93

5.2. BUDGET DISTRIBUTION STRATEGIES 91

(a)

Figure 5.3: A simple structure of LIGO with six levels

92 CHAPTER 5. DISTRIBUTION STRATEGIES

Table 5.3: VM requested types by different strategies based on Table 5.2.

Budget Distribution Strategy
Vm Type Uniform Height Width Area “All in”

m3.medium 1 1 6 2 0
c4.large 6 3 2 2 1

c3.xlarge 6 3 2 3 1
m4.2xlarge 0 2 2 2 0
c4.4xlarge 6 2 2 2 0
c3.8xlarge 0 2 2 2 4
#VMs 19 13 16 13 6

Total Cost 6.985 7.006 7.026 6.968 7.035

The Laser Interferometer Gravitational Wave Observatory (LIGO) attempts
to detect gravitational waves produced by various events in the universe as per
Einstein’s theory of general relativity [21]. A simple LIGO-like workflow with
six levels is shown in Figure 5.3.

For a LIGO workflow with 1000 tasks, Table 5.2 gives the levels with the
corresponding task’s numbers. The budget range of 5 with the corresponding
budget of 7.035 is selected to evaluate the budget distribution strategies. The
share of budget that each level gets and the spare budget are given in Table 5.2.
For instance, after scheduling of all tasks in the first level by using the Height
Proportional strategy, the spare budget of 0.15 (indicated in red) is added to
assigned budget of the next level (shown in blue), resulting in the total budget
of 1.69 for that level (the budget trickling concept). The last row in Table 5.2
shows the makespan that was achieved by each strategy.

It is also interesting to look at which instance types and how many of each
were provisioned by each strategy; this is given in Table 5.3. The most sig-
nificant observation is that the “All in” strategy allocates a small number of
powerful instances, reducing the data transfer costs and achieving the lowest
makespan as given in Table 5.2. From users’ perspective, finding a schedule
with a lower makespan for a given budget is the main concern, while from the
providers’ perspective, maximizing utilization is the main concern. Very few re-

5.3. DEADLINE DISTRIBUTION STRATEGIES 93

search papers report the total number of instances that a workflow needs when
provisioning. Although all BDT strategies meet the budget (only possible due
to trickle down) and find a schedule, the type and the amount of requested VMs
are very different, as shown in Table 5.3. Launching too many instances does not
lower makespan. Instead, it causes high scheduling overhead and low instance
utilization. Therefore, the budget distribution strategy has a direct impact on
resource utilization – which is significantly important.

The makespan and success rate of LIGO for four specified lease times are
shown in Fig 5.4. The “All in” strategy again performs significantly better than
other strategies for each of the defined budget factors from low to high values.
The random strategy has the worst performance for both makespan and success
rate. Another observation is that the general trend of all strategies for different
instance lease times is largely similar.

5.2.8 Other workflows

The makespan and success rates of other workflows are presented in Fig. 5.5.
The general trend is that by increasing the budget, a scheduler can launch more
costly services, which in turn leads to a lower makespan.

In terms of makespan, for almost all workflows, the “All in” strategy has the
best performance, including lowest makespan and highest success rates. An in-
teresting observation is that the structure and type of workflow appear to have
a significant effect on success rate. For instance, in CYBERSHAKE, the success
rates of most of the strategies are generally poor; this is likely due to them being
a data intensive workflow - the “All in” strategy of few, high power instances
minimized the cost of data movement and produced the best makespan and
success rate.

Overall, a budget bias towards the early tasks (and levels) of a workflow
appears to produce better overall performance.

94 CHAPTER 5. DISTRIBUTION STRATEGIES

300

500

700

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in 60

80

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(a) Lease Time=15

500

1000

1500

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

40

60

80

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(b) Lease Time=30

1000

2000

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

40

60

80

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(c) Lease Time=45

1000

2000

3000

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

40

60

80

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(d) Lease Time=60

Figure 5.4: Makespan and Success rate performance executing LIGO for all
strategies for lease time of 15, 30, 45 and 60.

5.3. DEADLINE DISTRIBUTION STRATEGIES 95

1000

2000

3000

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

0

25

50

75

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(a) CYBERSHAKE

1000

2000

3000

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

92

94

96

98

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(b) EPIGENOMICS

1000

2000

3000

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

0

25

50

75

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(c) MONTAGE

1000

2000

3000

4000

2.5 5.0 7.5 10.0
Budget Range ($)

M
ak

eS
p

an
 (

s) Random
Uniform
Height
Width
Area
All.in

0

25

50

75

100

2.5 5.0 7.5 10.0
Budget Range ($)

S
u

cc
es

s
R

at
e

(%
)

Random
Uniform
Height
Width
Area
All.in

(d) SIPHT

Figure 5.5: Makespan and Success rate performance executing of workflows for
all strategies for lease time 60.

96 CHAPTER 5. DISTRIBUTION STRATEGIES

5.3 Deadline Distribution Strategies

One approach to distribute deadline is to divide or distribute the deadline over
the workflow as sub-deadlines to ensure a more manageable constraint satisfac-
tion problem, and then to provision the instances to meet these sub-deadlines [89,
90]. This leaves us with two fundamental questions:

• What are the different possible ways to distribute a deadline over a work-
flow?

• How do these different strategies affect cost?

To answer these questions in this chapter, I explore a range of strategies for
distributing a deadline over a workflow.

5.3.1 The DDR algorithm

In this section I outline my new Deadline Distribution Ratio (DDR) algorithm.
In addition to the two phases of task selection and instance selection, when I
perform deadline distribution, I also need to introduce two additional phases,
giving:

(A) Workflow partitioning: The workflow is partitioned into dependency-free
bags of tasks, called levels.

(B) Deadline Distribution: The user-defined deadline (TD) is divided and dis-
tributed between levels. Each level gets its own level deadline. All tasks in
the same level have the same level-deadline.

(C) Task Selection: A task is selected based on its priority in the ready list for
execution.

(D) Instance Selection: The instances are chosen to meet the available deadline.

Critically, this section also introduces six base and 14 combined distribution
strategies that are evaluated in this thesis as part of the overall DDR algorithm.

5.3. DEADLINE DISTRIBUTION STRATEGIES 97

5.3.2 Workflow partitioning

Each task is categorized in a level by analyzing its synchronization requirements
to maximize the achievable parallelism from the workflow. This categorizing is
in the same way as I described in 5.2.2.

5.3.3 Deadline Distribution

5.3.3.1 Initial Estimation

The initial estimated deadline for each level (`) is calculated as:

InitialTsd(`) = max
ti∈TLS(`)

{ECT(ti)}, (5.10)

where ECT(ti) denotes the Earliest Completion Time (ECT) of task ti over all
instances, and the ECT is defined as

ECT(ti) = max
`∈pred(ti)

{InitialTsd(`), EST (ti)}+ wti , (5.11)

where EST (ti) is defined in equation. 3.7, pred (ti) denotes the set of predeces-
sors of task ti; wti denotes the minimum execution duration for task ti, and `

indicates the parent level ti. The task, tentry, has no predecessors; its ECT is
equal to zero. In equation 5.10, the maximum ECT of all tasks in a level is used
as the overall estimate for that level. This duration is effectively the absolute
minimum time that is required for all tasks in a level to complete execution in
parallel.

5.3.3.2 Deadline Distribution Strategies

The main idea of deadline distribution is simple, distribute deadline among dif-
ferent levels and try to complete its execution before any assigned sub-deadline
so that the global deadline can be met.

The baseline deadline distribution strategies are:

• Random (R): The deadline is allocated randomly over the levels in the
workflow.

98 CHAPTER 5. DISTRIBUTION STRATEGIES

• Uniform (U): Each level gets a 1/L share of the deadline, where L is the
total number of levels.

• Height Proportional (H): Each level gets a share of the user deadline pro-
portional to its distance from the entry node.

• Width Proportional (W): Each level gets a share of the user deadline pro-
portional to the number of tasks within that level.

• Area Proportional (A): Combines width and height strategies to set the
deadline for each level.

• Length Proportional (L): Each level gets a share of the deadline non-uniformly
based on the proportion of its length. Levels with longer tasks gain a
larger share of the user deadline.

I now present an example to show how the deadline is distributed among
different levels. Random needs no further explanation, so the example will only
detail the rest of baseline strategies. Figure 5.1 shows the structure of a sample
workflow with 10 tasks and their dependencies. In this figure, the left column
shows level numbers calculated by equation 5.1. The right column is obtained
by counting tasks in each level, starting from the exit task. In this example
Nmax=5, which is the maximum level in the workflow. Also, a deadline of 165 is
assumed. This number is arbitrary and serves as an example.

Each strategy distributes the user deadline based on the following basis (see
Table 5.4 for the complete set of deadline shares and assigned sub-deadline to
each level):

• Uniform: Each level gets 165/5 share of deadline as the workflow has five
levels.

• Height Proportional: Each level is assigned a weighted share of deadline
relative to its height in the workflow. This is calculated by:

Lweight =
Nmax=5∑
k=1

k = 15.

5.3. DEADLINE DISTRIBUTION STRATEGIES 99

The Deadline Factor (DF) is calculated by:

DF =
deadline

Lweight
=

165

15
= 11.

For instance, level 4, consisting task B and C, is assigned a share of the
deadline equal to 4×DF = 4× 11 = 44.

• Width Proportional: Each level gets a share of deadline, depending the
number of tasks in corresponding level:

DF =
deadline

tasknumbers
=

165

10
= 16.5.

For instance, the deadline share assigned to level 4 with two tasks is 2 ×
DF = 2× 16.5 = 33.

• Area Proportional: In this strategy, the deadline share allocated to each
level is a combination of height and width strategies. It is calculated by:

Lweight =
10∑
k=1

k = 55.

The Deadline Factor (DF) is calculated by:

DF =
deadline

Lweight
=

165

55
= 3

The deadline is then distributed based on the sum of numbers in the right
column in Fig. 5.1. For example, level 3 is allocated the share (4 + 5 + 6 +

7)×DF = 22× 3 = 66.

• Length Proportional: After calculating the estimated deadline value for all
levels, I distribute the user deadline among all tasks non-uniformly, based
on a deadline proportion denoted by ∝deadline in equation 5.12:

∝deadline=
TD − InitialTsd(1)
InitialTsd(1)

, (5.12)

100 CHAPTER 5. DISTRIBUTION STRATEGIES

where InitialTsd(1) is the level that contains the exit task.

I then compute the length of each level deadline as a function of this dead-
line proportion to each level as follows:

Tsd(`) = InitialTsd(`) + (∝deadline ×|InitialTsd(`) |) . (5.13)

Intuitively, the levels with longer executing tasks gain a larger share of the
user deadline.

In Table 5.4, two rows are specified for each level. The first row indicates
the share of deadline that each level gets. The second row is the final value of
assigned sub-deadline to each level that is calculated based on the cumulative
value with previous levels. Clearly, the sub-deadline value for level 1 should be
equal to the total deadline. For instance, in Height strategy in level 4, the share
of deadline is 44 (indicated in red) and the assigned sub-deadline is 99 (shown
in blue).

I also combine the baseline strategies in order to produce different vari-
ant strategies. For example, combination of the three strategies, Initial Esti-
mation(E), Width(W) and Length Proportional (L), gives me a new strategy to
distribute deadline, which is named EWL. In this strategy, first, estimated dead-
line for all levels are calculated. Then, the leftover deadline is distributed based
on the combination of Width and Length strategies. This gives a total of 14 dif-
ferent strategies that are evaluated in the experiments. Some of the generated
strategies are shown as exemplars in Figure 5.6.

5.3.4 Task Selection

In each step of my algorithm, those tasks that are ready to execute are put in the
task ready list. A task is ready when all of its parents have been executed and
all its required data have been provided. Therefore, there are no dependencies
between tasks that are at the same level. In order to select a proper task for
execution, all tasks in the ready list are prioritized with their Earliest Start Time
(EST). The EST is the soonest possible time that a task can start its execution,

5.3. DEADLINE DISTRIBUTION STRATEGIES 101

Deadline Distribution Strategy

Uniform Height Width Area

Level 5
share of deadline

165

5
= 33 5×DF = 55 1×DF = 16.5 10×DF = 30

sub-deadline 33 55 16.5 30

Level 4
share of deadline

165

5
= 33 4×DF = 44 2×DF = 33 17×DF = 51

sub-deadline 66 99 49.5 81

Level 3
share of deadline

165

5
= 33 3×DF = 33 4×DF = 66 22×DF = 66

sub-deadline 99 132 115.5 147

Level 2
share of deadline

165

5
= 33 2×DF = 22 2×DF = 33 5×DF = 15

sub-deadline 132 154 148.5 162

Level 1
share of deadline

165

5
= 33 1×DF = 11 1×DF = 16.5 1×DF = 3

sub-deadline 165 165 165 165

Table 5.4: Deadline distribution for each strategy over each level for a total
deadline of 165 in Figure 5.1.

102 CHAPTER 5. DISTRIBUTION STRATEGIES

Initial
Estimation

(E)

Height
(H)

Length
Propotional

(L)

Width
(W)

HL WL

EHL

EWL

Figure 5.6: Producing different strategies based on baseline strategies.

which depends on the finish time of its parent. The Earliest Start Time (EST)
of a task ti is calculated on the instance with the shortest execution time and
defined as:

EST (i) =

0 , ti = tentry

max
tj∈pred(ti)

{
EST (tj) + wtj + Ci,j

}
,Otherwise,

(5.14)

where wtj is the execution time of task tj on the fastest instance type. The
amount of data transferred from task ti to task tj is called communication time
(denoted by Ci,j). The EST on all VMs is calculated for each task. The task that
starts first will be the best candidate for execution.

5.3.5 Instance Selection

The Instance Selection phase aims to identify the most suitable instance to ex-
ecute tasks. The Instance Selection decision for each task aims to minimize the
total cost of workflow execution while also attempting to meet the task’s sub-
deadline.

I introduce an objective function referred to as Instance Comparative Ratio

5.3. DEADLINE DISTRIBUTION STRATEGIES 103

(ICR).

ICR
pj
ti =

Level
`ti
deadline − ECT(ti, pj)

TaskCost
pj
ti

, (5.15)

where Level`tideadline is the deadline that is assigned to the level that contains
the task ti. The time needed for the current task, (ti), to execute on the instance
pj is calculated by ECT(ti, pj). The ECT is the earliest time that a task can com-
plete execution on an instance (as defined in equation 5.11). The value in the
numerator of equation 5.15 assesses the differences between the sub-deadline
and earliest completion time of the current task on the instance pj . The denom-
inator is the cost of current tasks, which is defined in 3.8.

Most cloud providers like Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) charge users based on 60 minute intervals. When an instance is
provisioned, the user is billed for the entire billing interval even if the task com-
pletes before the end of the interval. Therefore, if other tasks can execute on the
same instance within the remaining interval, their execution cost can be con-
sidered zero. Thus, when allocating instances I prioritize selecting instances
with remaining idle billing intervals. The first step of the algorithm explicitly
considers instances that have no cost to execute the current task as well as en-
suring that the earliest completion time does not exceed the level deadline. The
instance with minimum ECT is then selected (the fastest one).

If no instances can be found in the previous step, the algorithm provisions
a new instance based on the highest ICR value. In tight deadlines, there is
a possibility that cheaper instances cannot meet the task level’s sub-deadline.
Therefore, the value of ICR is negative as its numerator is negative. If this con-
dition is met, more expensive instances are candidates for the current task. In
fact, the ICR value is trying to adjust the cost and time for current task among
all instances. For cost minimization purpose, most of the proposed algorithms
like [91] try to schedule a task on a cheapest available instance (slower) while
still meeting its assigned sub-deadline. However, with this strategy, tasks can
take a much longer time if the resources are slower and this leads to some delay
in the EST of its children. To avoid this, the key concept of introducing ICR in

104 CHAPTER 5. DISTRIBUTION STRATEGIES

5.15 is to make a trade-off between time and cost.

5.3.6 Evaluation

Public cloud provides instance types containing various amounts of CPU, mem-
ory, storage and network bandwidth at different prices. A resource model is
used based on the Amazon Elastic Compute cloud, where instances are provi-
sioned on demand. The pricing model and other characteristics are explained
in section 4.3.1.

The fastest schedule (denoted by FS) is calculated as a baseline schedule.
Effectively, this baseline is the fastest possible execution – ignoring costs and is
computed as:

FS =
∑
ti∈CP

(wji), (5.16)

where wji is the computation cost of task ti on the fastest instance pj . A Critical
Path (CP) is the longest path from the entry to exit node of a task. If all tasks
on the CP of a workflow are executed on the fastest instance type, the fastest
schedule will be reached.

The deadline is defined as a function of the fastest schedule, and this dead-
line is expressed in equation 5.17 in which the deadline varies from tight to
moderate to relaxed:

deadline = α ∗ FS, 0 < α < 20. (5.17)

The deadline factor α starts from 1 to consider very tight deadlines (typically
approaches the fastest schedule) and is increased by one up to a value of 20,
which results in a very relaxed deadline.

5.3.7 Experimental Results

In this section, the performance comparison of 14 deadline distribution strate-
gies in my algorithm is presented. Then, the evaluation of the presented algo-

5.3. DEADLINE DISTRIBUTION STRATEGIES 105

rithm with other state-of-the-art algorithms [46,49,89] is presented in 5.3.9. The
main metrics evaluated in my comparison are the cost and success rate (SR).

To compare the monetary cost between the algorithms, the cost of failure
in meeting a deadline is considered. For this purpose, a weight is assigned to
average cost returned by each algorithm. Let k denote the set of a simulation
runs that successfully meets the scheduling deadline, thus the weighted cost is
calculated as:

Costw =

∑
k Costo (k)

SR
, (5.18)

where Costo (k) is the cost for the experiments that meet the deadline and SR

denotes the success rate.

5.3.8 Cost comparison for distribution strategies

Legend Algorithm Name

R Random

U Uniform

H Height

W Width

A Area

L Length

EU Estimation & Uniform

EH Estimation & Height

EW Estimation & Width

EA Estimation & Area

EL Estimation & Length

EHL Estimation & Height & Length

EWL Estimation & Width & Length

EAL Estimation & Area & Length

Table 5.5: Definition of legends in Fig. 5.7.

106 CHAPTER 5. DISTRIBUTION STRATEGIES

In order to observe the precise behavior of each strategy, for each dataset,
ranges for deadline from 5 to 10 were selected. This range was chosen because
it gives us more detail about the performance of all strategies in simplifying
interpretation of results. Table 5.5 lists the legends notation in Fig. 5.7.

The first observation is that different strategies have unstable trends in tested
datasets. For example, the Width (W) strategy has the worst performance in
CYBERSHAKE while gaining the almost lowest cost in MONTAGE. Similarly,
the EL strategy resembles the same trend in MONTAGE and SIPHT. This is
attributed to the fact that workflows differ remarkably in their characteristics,
including structure, size, computation and communication requirements.

Workflows consists of various components, including process, pipeline, data
distribution, data aggregation and data redistribution [75]. The behavior of the
EWL strategy indicates a good performance with different datasets. This strat-
egy considers the number of tasks in a level and length of a level, simultane-
ously. In the next section, this strategy is considered in the distribution of the
deadline in my algorithm.

While cost differences may seen negligible between some of the strategies,
for executing big datasets, the differencing could be significant. This shows that
the deadline distribution strategy could play a key role in minimizing the cost.

5.3.9 Cost Comparison with other algorithms

Three state-of-the-art algorithms, IC-PCP [46], JIT [49] and PDC [89], were se-
lected in order to compare with the DDR algorithm. The cost and success
rates of five scientific workflows in different deadline intervals are presented
in Fig. 5.8.

The general results show that the JIT underperforms others in terms of cost
in all cases. For almost all workflows, the DDR algorithm has the best per-
formance, including lowest cost and highest success rate. There are instances
where their performance is poorer, but these are few and far between. For ex-
ample, in CYBERSHAKE and EPIGENOMICS with very tight deadlines, the

5.3. DEADLINE DISTRIBUTION STRATEGIES 107

R

U

EU

L

EL

H

EH

EHL

W

EW

EWL

A

EA

EAL

(a) Algorithm Legend

2

4

6

5 6 7 8 9 10
Deadline Range

C
o

st
 (

$)

(b) CYBERSHAKE

20

40

60

80

5 6 7 8 9 10
Deadline Range

C
o

st
 (

$)

(c) EPIGENOMICS

5

10

15

20

5 6 7 8 9 10
Deadline Range

C
o

st
 (

$)

(d) LIGO

0

5

10

5 6 7 8 9 10
Deadline Range

C
o

st
 (

$)

(e) MONTAGE

5

10

15

20

5 6 7 8 9 10
Deadline Range

C
o

st
 (

$)

(f) SIPHT

Figure 5.7: Cost vs. deadline for different deadline distribution strategies.

108 CHAPTER 5. DISTRIBUTION STRATEGIES

DDR algorithm is unable to schedule some workflows.

The IC-PCP algorithm has the worst success rate, especially in tight dead-
lines. The relaxing of the deadline should lead increasing the success rate of
each algorithm. However, the behavior of IC-PCP in different intervals is con-
trary to expectations. The highest failure occurs in EPIGENOMICS, while even
in relaxed deadline, IC-PCP can find a schedule for less than 25% before its
deadline is reached. JIT performs very well in most of the deadline intervals
with nearly 100% success rate. However, it is the most expensive algorithm for
finding a schedule over all workflows and instance configurations. The main
reason for this behavior in JIT is how instances are selected [49].

5.4 Summary

In this chapter, I introduced the Budget Distribution with Trickling (BDT) and
Deadline Distribution Ratio (DDR) algorithms. The time complexity of the two
presented algorithms is of the order O (n2p) which is calculated similar in prin-
ciple to section 4.2.5.

In BDT, the makespan and success rate of six strategies were evaluated us-
ing five real-world workflows with different lease times on instances. The width
and uniform strategies are largely analogous to existing budget distribution ap-
proaches, and these are outperformed in makespan and success rate by Area
and “All in” BDT strategies. Overall, the strategy that performed the best for
all workflows in terms of both success rate and makespan was “All in”. This
strategy was proposed largely to test the hypothesis that biasing the budget
distribution to the earliest levels was beneficial in terms of reducing makespan.
“All in” took this to an extreme by assigning the entire budget to the first level
and relying wholly on the trickle-down mechanism to distribute budget to later
levels. Counter-intuitively, “All in” gave the best success rates – and the best
performance for data-intensive workflows due to the resulting data locality –
from fewer more powerful instances. The main finding of my research is the
importance of biasing budget distribution to early levels in a workflow. This

5.4. SUMMARY 109

0

10

20

30

5 10 15
Deadline Range

C
os

t (
$)

IC.PCP
JIT
PDC
DDR

50

60

70

80

90

100

5 10 15
Deadline Range

S
uc

ce
ss

 R
at

e
(%

)

(a) CYBERSHAKE

50

100

150

5 10 15
Deadline Range

C
os

t (
$)

IC.PCP
JIT
PDC
DDR

0

25

50

75

100

5 10 15
Deadline Range

S
uc

ce
ss

 R
at

e
(%

)

(b) EPIGENOMICS

10

20

30

40

50

5 10 15
Deadline Range

C
os

t (
$)

IC.PCP
JIT
PDC
DDR

0

25

50

75

100

5 10 15
Deadline Range

S
uc

ce
ss

 R
at

e
(%

)

(c) LIGO

0

10

20

30

5 10 15
Deadline Range

C
os

t (
$)

IC.PCP
JIT
PDC
DDR

0

25

50

75

100

5 10 15
Deadline Range

S
uc

ce
ss

 R
at

e
(%

)

(d) MONTAGE

10

20

30

5 10 15
Deadline Range

C
os

t (
$)

IC.PCP
JIT
PDC
DDR

0

25

50

75

100

5 10 15
Deadline Range

S
uc

ce
ss

 R
at

e
(%

)

(e) SIPHT

Figure 5.8: Cost vs. deadline for five different datasets.

110 CHAPTER 5. DISTRIBUTION STRATEGIES

leads to finding a schedule with a lower makespan. From this I have extrapo-
lated two hypotheses that need further investigation. In addition, these results
suggest that gaining a better understanding of workflow types (compute and
data intensive) and workflow structure can lead to better budget distribution
and likely scheduling in general.

The DDR focuses on addressing different ways of deadline distribution in
scientific workflow. For that purpose, I introduced new strategies for dead-
line distribution and assessed the effectiveness of these strategies in terms of
cost and success rate. Some strategies exhibit performance that is strongly de-
pendent on the workflow size and structure, including process, pipeline, data
distribution, data aggregation and data redistribution. In general, the strategy
which takes into consideration the execution time of each level as well as num-
ber of tasks in the level, yields the lowest cost.

In summary, this chapter presents new notions and strategies for distribut-
ing budget and deadline based on the dependency structure inherent in work-
flows – levels. When multiple constraints are requested by users, the problem
of workflow scheduling becomes even more challenging. In the next chapter, I
will introduce a new algorithm for scientific workflow scheduling to consider
budget and deadline as constraints, simultaneously. The importance of these
constraints was discussed in 3.1.4. Moreover, the strategies that performed the
best in this chapter in terms of distributing budget and deadline will be applied
in the next chapter.

Chapter 6

Budget Deadline Constrained
Workflow Scheduling

6.1 Introduction

A major challenge of the cloud paradigm for e-Science lies in limiting or min-
imising [9] costs while maintaining or even accelerating throughput. In fact,
scheduling workflows and provisioning cloud resources naı̈vely can have a sig-
nificant financial penalty – especially in dynamic markets such as the Amazon
spot market [11]. The majority of research into scheduling and provisioning has
focused on one of cost or time, as the fundamental workflow scheduling prob-
lem is NP-complete and optimising multiple constraints, such as cost and time,
over a non-uniform set of unlimited resources is nontrivial. Indeed, this com-
plexity leads to long computation times in order to create a reasonable schedule
– hence I advocate that a heuristic scheduling approach is needed.

To address this set of problems, I present a new heuristic scheduling algo-
rithm – Budget and Deadline Aware Scheduling (BDAS) for scheduling work-
flows constrained by both budget and deadline. The BDAS algorithm uses a
novel tradeoff factor between time and cost to determine the most viable sched-
ule, and uses this to determine the most appropriate type of instance to provi-
sion.

111

112 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

6.2 The BDAS Algorithm

In this section, I describe the Budget-Deadline Aware Scheduling (BDAS) algo-
rithm that attempts to meet budget and deadline constraints. The BDAS algo-
rithm is divided into five main phases that are indexed in Table 6.1.

Phase Description

6.2.1 Workflow partitioning The workflow is partitioned into
dependency-free bags of tasks, called
levels.

6.2.2 Budget Distribution The user-defined budget (B) is then allo-
cated to each defined level using ”All in”
strategy.

6.2.3 Deadline Distribution The user-defined deadline (D) is divided
and distributed between levels. Each level
gets its own level deadline. All tasks in the
same level have the same level-deadline.

6.2.4 Task Selection A task is selected based on its priority in the
ready list for execution.

6.2.5 Instance Selection In this phase, I introduce new trade-off be-
tween Cost and Time. I find the best combi-
nation of cost and time in order to select the
most suitable instance.

Table 6.1: Five main phases of BDAS

6.2.1 Workflow Partitioning

I aim to maximize task parallelism by partitioning tasks so that there are no
dependencies between tasks in each level. Each level can therefore be thought of

6.2. THE BDAS ALGORITHM 113

as a bag of tasks (BoT) containing a set of independent tasks. This categorizing
is in the same way as I described in 5.2.2.

6.2.2 The “All in” Budget Distribution

The financial cost and total execution time of a workflow depends on the num-
ber and types of instances requested during resource provisioning. The cost
plays a significant role in a cloud environment as users wish to minimize costs
and providers maximize profits. Most cloud providers, for example Amazon,
charge users for a minimum period of time – even if the instance is only used
for a fraction of the period leased.

The idea of budget distribution is to distribute a global budget (B) among
different levels and schedule each task on an instance considering the available
sub-budget (subB(`)) assigned to a level. Essentially, the workflow is trans-
formed into internally dependency free “bag of tasks” and then the workflow
budget is distributed over these levels. In section 5.2.3, I presented new no-
tions for distributing budget based on the dependency structure inherent in
workflows levels. In addition, I proposed several new strategies for sharing or
distributing budget over these levels.

The most significant differences in each strategy lie in the calculation of the
sub-budget. In some strategies, a Budget Factor (BF) is used that determines a
share of the budget for each level. Each sub-budget assigned to a level is termed
the level budget. Overall, the strategy that performed the best for all workflows
in terms of both success rate and makespan was “All in”. The “All in” strategy
assigns the budget to the earliest levels and was shown to be beneficial in terms
of reducing makespan. An important concept in my algorithm is trickling down
unused budget to later levels, and this is expressed by equation 6.1:

SpareB = subB(`)−
∑

ti∈TLS(`)

TaskCostti , (6.1)

where Task Level Set (TLS) is defined in equation (4.2). I define Spare Budget
as the amount of money remaining after allocating all tasks in the level `. I then

114 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

add the leftover to the next level (`+1). The “All in” gave the best success rates
– and the best performance for data-intensive workflows due to the resulting
data locality, from fewer but more powerful instances.

6.2.3 Deadline Distribution

The main idea of deadline distribution is to distribute deadline among differ-
ent levels and complete its execution before any assigned sub-deadline so that
the global deadline can be met. One approach is to divide or distribute the
deadline over the workflow as sub-deadlines to ensure a more manageable con-
straint satisfaction problem, and then to provision the instances to meet these
sub-deadlines.

In section 5.3.3.2, I explored a range of strategies for distributing a deadline
over a workflow. I found that the choice of distribution strategy has a significant
impact on performance. Some strategies exhibit performance that is strongly
dependent on the workflow size and structure, including process, pipeline, data
distribution, data aggregation and data redistribution. In general, the strategy
that takes into consideration the execution time of each level as well as number
of tasks in the level yields the lowest cost.

Once all tasks are assigned to their respective levels, the tasks are propor-
tionally distributed across each level based on the user deadline (D). Each sub-
deadline assigned to a level is termed the level deadline (subD(`)). In order to
meet the overall deadline, I attempt to ensure that every task in a level can com-
plete its execution before the assigned sub-deadline. Firstly, the initial estimated
deadline for each level (`) is calculated as:

subD(`) = max
ti∈TLS(`)

{ECT(ti)}, (6.2)

where ECT(ti) denotes the Earliest Completion Time (ECT) of task ti over all
instances.

In equation (6.2), the maximum ECT of all tasks in a level is used as the over-
all estimate for that level. This duration is effectively the absolute minimum

6.2. THE BDAS ALGORITHM 115

time that is required for all tasks in a level to complete execution in parallel.
After calculating the estimated deadline value for all levels, the user dead-

line is distributed among all tasks non-uniformly based on a deadline propor-
tion and the number of tasks in each level. For this purpose, I first introduce the
proportion unit denoted by ∝deadline in equation (6.3):

∝deadline=
tentry∑
`=1

|subD(`)| × |TLS(`)|, (6.3)

where |subD(`)| is the length of each level deadline calculated by the differenti-
ate of level ` and `− 1. Also, |TLS(`)| is the number of tasks on each level.

Now the Deadline Factor (DF) is defined as:

DF =
D − subD(1)

∝deadline
, (6.4)

where subD(1) is the level that contains the exit task. The numerator in equation
(6.4) is the leftover deadline subtracting the total deadline (D) and the soonest
possible finish time for a workflow (subD(1)).

I then update the length of each level deadline as a function of this Deadline
Factor (DF) to each level as follows:

subD(`) = DF × |subD(`)| × |TLS(`)|+ subD(`). (6.5)

Intuitively, the levels with longer executing tasks and higher number of tasks
gain a larger share of the user deadline.

6.2.4 Task Selection

In BDAS, tasks are executed level by level, which means a task can start execu-
tion once all tasks in previous levels have been scheduled. There are no depen-
dencies between tasks that are at the same level. Therefore, all tasks within a
level are readily executable and are put to the task ready list. To select a task, at
first all tasks in the ready list should be prioritized. Tasks are prioritized based
on their Earliest Start Time (EST).

116 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

6.2.5 Instance Selection

At the point the algorithms perform instance selection: (i) each task is already
assigned a level, (ii) the budget and deadline for each level is already deter-
mined, and (iii) the priority of each ready task is already assigned. During
instance selection, a trade-off must be made between execution time and cost.
To demonstrate this trade-off, I show the expressions for both the time and the
cost of executing each task on each instance type in equations (6.6) and (6.7),
forming a pair of expressions for Time and Cost.

Firstly, the time needed for the current task, ti, on the instance pj is denoted
by ECT (ti|pj). The ECT is the earliest time that a task can finish on an instance,
which is defined earlier in equation (4.4). Using this observation, I can then
compute how much the estimated level deadline of the current task differs from
the earliest completion time of task on the instance pj :

Time
pj
ti =

subD`ti − ECT (ti|pj)
subD`ti − ECT (min)

. (6.6)

In equation (6.6), subD`ti is the deadline that is assigned to the level that
contains the task ti. Also, ECT (min) is the minimum execution time among all
instances that keeps the current task on schedule.

The values of Time for task ti are related to instance types, wherein a lower
value of Time means running on a cheaper instance. The reason is that the
values of ECT (ti|pj) is bigger on an instance with a lower processing capac-
ity. Also, if the value of Time is negative, it means that the current task on the
selected instance will exceed the level deadline i.e. ECT (ti, pj) > Level

`ti
deadline.

TaskCost
pj
ti refers to the cost of scheduling the current task ti on instance pj .

The cost of executing task ti among all instances pj is defined as:

Cost
pj
ti =

subB`ti − TaskCostpjti
subB`ti − TaskCostmin

, (6.7)

where subB`ti denotes the budget assigned to the level which contains the cur-
rent task. The best cost (minimum cost) of executing the task ti among all in-
stances is TaskCostmin.

6.3. EVALUATION 117

When an instance is first provisioned, the instance is billed on an hourly
interval until it is terminated. Therefore, the first task assigned to an instance
in a particular billing interval incurs the entire cost of that interval. As a con-
sequence, if other tasks can be executed during that paid interval, then there
is no additional execution cost for executing them. Ideally, during instance se-
lection, the reuse of such instances leads to lowering the execution cost. This
situation comes true when Cost in equation (6.7) is 1 (The value of TaskCostpjti
and TaskCostmin are zero).

To find the best instance, a Cost Time Trade-off Factor (CTTF) is used in
equation (6.8) that considers a trade-off between cost and time. The CTTF value
is trying to adjust the cost and time for current task among all instances. For cost
minimization purposes, most of the proposed algorithms like [23] schedule
tasks on the cheapest available instance (slower) while still meeting its assigned
sub-deadline. However, with this strategy, tasks can take much longer time if
the resources are slower and leads to some delay in the EST of its children. To
avoid this hold up, more expensive instances are better choices to meet dead-
line, which probably lead to exceeding the budget. Therefore, the key concept
of introducing CTTF in (6.8) is to make a trade-off between time and cost.

While calculating (6.7) and (6.6) for a task among all instances, four different
combinations of cost and time ranges that are possible are listed in Table 6.2. As
I mentioned before, a trade-off between Cost and Time should be considered in
order to find the best instance for each task. The trade-off function is calculated
as follows:

CTTF
pj
ti = Cost

pj
ti + Time

pj
ti . (6.8)

The instance with highest CTTF value is selected for execution the task ti.

6.3 Evaluation

This section presents the performance evaluation of the BDAS algorithm, with
recent published papers in [65] and [92] that match my goal and conditions.

118 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

Cost Time Description

> 0 > 0 In the best scenario, there is enough budget from a user to
schedule a workflow. Also, the deadline is relaxed and there
is no pressure on finishing the scheduling. In this situations,
while distributing budget and deadline, each level can get a big
share of them. Therefore, both values of Cost and Time are pos-
itive as task level’s sub-budget and task level’s sub-deadline are
big enough. Moreover, at the beginning of the scheduling pro-
cess when no budget has been spent or there is enough time for
scheduling the current task ti on any instances, both values are
positive.

≤ 0 > 0 The total assigned budget for the level ` has already been spent
(subB`ti=0). Therefore, a new instance cannot be launched as
there is no budget left. Another probable situation is that the
cost of current task ti on the instance pj is higher than the left-
over sub-Budget (in the numerator of equation (6.7)). If either
of these conditions is true, equation (6.7) is less than or equal
zero.

> 0 ≤ 0 In tight deadlines, there is a possibility that cheaper instances
cannot meet the task level’s sub-deadline. Therefore, the value
of ECT in equation (6.6) is greater or equal to task level’s sub-
deadline. If this condition is met, the value of equation (6.6)
becomes negative or zero.

≤ 0 ≤ 0 In tight budget and deadline, where current sub-budget and
sub-deadline are smaller than values of TaskCost and ECT,
respectively, for task ti on an instance, both equations (6.7)
and (6.6) can be negative or zero.

Table 6.2: Different possible ranges for Cost and Time.

6.3. EVALUATION 119

The CloudSim [85] simulator was used to implement and compare the perfor-
mance of all four algorithms. The simulation scenario was configured as a sin-
gle data-center and six different instance types. The pricing model and other
characteristics are explained in section 4.3.1.

In order to evaluate the performance of the algorithms with a realistic load,
five common scientific workflows were used: Cybershake, Epigenomics, Mon-
tage, LIGO and SIPHT. The characteristics and task composition of these work-
flows have been analyzed in published works cited in the related work sec-
tion [21, 75]. To evaluate the performance of these algorithms, different dead-
lines were chosen from tight to relaxed. For this purpose, the fastest schedule
(denoted by FS) is calculated as a baseline schedule. Effectively, this baseline is
the fastest possible execution – ignoring costs. The fastest schedule is expressed
as:

FS =
∑
ti∈CP

(wji), (6.9)

where wji is the computation cost of task ti on the fastest instance pj . Addition-
ally, different budget ranges were considered for the scientific datasets from
lowest possible through to sufficient. As a baseline schedule, the lowest budget
(denoted by LB) to schedule a workflow is given by equation (6.10):

LB =
∑
∀ti∈G

TaskCost
pj
ti , (6.10)

where pj is the cheapest instance. To achieve this, all tasks are executed on the
instance with the lowest cost (the cheapest instance). This assignment gives
us the lowest possible cost required for executing a workflow, irrespective of
finishing time.

Using equations (6.9) and (6.10), a variation for budget and deadline are
calculated from tight to moderate to relaxed:

deadline = α ∗ FS, 0 < α < 20, (6.11)

120 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

budget = β ∗ LB, 0 < β < 20. (6.12)

Both deadline factor α and budget factor β start from 1 to consider very tight
values and are increased by one up to a value of 20, which results in a very
relaxed deadline and sufficient budget.

6.3.1 Performance Metrics

In order to evaluate the algorithms under test, the following performance met-
rics were selected: Success Rate (SR), Cost Ratio (CR) and Time Ratio (TR).

• Success Rate (SR): Success rate of each algorithm (SR), calculated as the
ratio between the number of simulation runs that successfully met the
scheduling of both constraints, deadline and budget, and the total number
of simulation runs (denoted by nTot), defined as:

SR =
n (k)

nTot
, (6.13)

where n(k) is the cardinality of the set k and nTot = 100.

• Cost Ratio (CR): In order to compare the achieved cost between each al-
gorithm, a Cost Ratio is used, which is calculated by dividing overall cost
(expressed in equation 3.9) by given budget (B).

CR =
Costo
B

. (6.14)

A CR value greater than 1 indicates a cost larger than the budget, which
counts as a failure to meet the defined budget. CR value of less than 1
indicates that the scheduled workflow meets the budget.

• Time Ratio (TR): With the same reasoning with CR, the value of Time Ratio
metric is considered while smaller than 1 means a user-defined deadline

6.4. EXPERIMENTAL RESULTS 121

(D) is met.

TR =
Makespan

D
. (6.15)

6.4 Experimental Results

I defined 20 different deadline factors (given by (6.11)) and 20 different budget
factors (given by (6.12)). Therefore, for my experiments permuting both factors
yields 400 different cases per workflow and a grand total of 40000 test cases for
all workflows. Comparative studies were conducted by box plots for cost ratio
and time ratio defined in (6.14) and (6.15) respectively. A box plot shows the
degree of dispersion of cost ratio and time ratio. The lowest ”dash” denotes
the minimum, while the upper ”dash” denotes the maximum. The median is
marked in the box, and the top boundary and bottom boundary denote the
upper and lower quartile.

I present the results in two dimensions:
(i) Time Efficiency (Budget Factor vs. Time Ratio): Four different ranges

of budget factor were chosen in the experiments giving us more detail about
the performance of all algorithms in order to simplify interpretation of results.
Then, for each budget factor a box plot is drawn for all achieved makespan
by Time Ratio (6.15) factor. With this plot I can observe for a constant budget
factor, for example β = 4, the behavior of each algorithm on meeting/failing
and utilizing deadlines. Moreover, corresponding success rates of each budget
factor are plotted.

(ii) Cost Efficiency (Deadline Factor vs. Cost Ratio): Four different ranges
of deadline factor were chosen, including very tight deadlines (α = 4), end-
ing with more relaxed deadline (α = 16). The y-axis in this plot is Cost ra-
tio (6.14) indicating meeting/failing and utilizing all ranges of budget for a
constant deadline. Also, corresponding success rates of each deadline factor
are plotted.

122 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

The primary object for any workflow scheduling algorithm is finding a sched-
ule without violating defined constraints. For a user, shortening the execution
time with minimum cost is of interest. Therefore, precise behavior of each al-
gorithm on expenditure budget/deadline is of interest. In order to present de-
scriptive statistics, box plots are used, which are divided into two areas named
valid schedule and invalid schedule. The valid schedule starts from 0 to 1, in-
dicating an algorithm could meet the define constraint. Therefore, time/cost
efficiency (valid schedule) for a given budget/deadline factor not only shows
if a schedule without violation is found but also represents the distribution of
each constraint.

6.4.1 CYBERSHAKE

Figure 6.1 shows the results achieved for CYBERSHAKE. For time efficiency
(Figure 6.1(a)), BDAS and BDHEFT have the best performance by achieving a
smaller time ratio than others. This means that both algorithms were able to
find a schedule ahead of the given deadlines. Moreover, the related success rate
shows BDAS and BDHEFT outperform both RCT and RTC.

However, in terms of Cost Efficiency, both BDAS and BDHEFT utilized up
to 100% of the assigned budget in CYBERSHAKE workflow (Figure 6.1(b)). The
RCT and RTC algorithms are better at saving cost compared to BDAS and BD-
HEFT. The RTC algorithm has the worst success rate among the four, especially
in tight deadlines. Indeed, RTC experienced a 100% failure when deadline fac-
tor, α, is 4.

6.4.2 EPIGENOMICS

The results obtained for the EPIGENOMICS are shown in Figure 6.2. The BDAS
algorithm is capable of meeting constraints of nearly 100%. It almost uses the
whole budget while finding a schedule sooner than defined deadline. The
BDAS for EPIGENOMICS utilizes the whole budget and finishes sooner than
defined deadline leading to users’ satisfaction. The behavior of RCT and RTC

6.4. EXPERIMENTAL RESULTS 123

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Budget Factor (β)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Budget Factor (β)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(a) Time Efficiency

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Deadline Factor (α)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Deadline Factor (α)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(b) Cost Efficiency

Figure 6.1: CYBERSHAKE

124 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

are opposite of the BDAS algorithm whereby they utilize deadline rather than
budget. An interesting feature of RCT in Figure 6.2(a) happens when budget
factor, β, is 4. As can be seen, almost all time ratio results yield a valid schedule,
while achieving a success rate of 60%. It means 40% of failures in this algorithm
happens due to violating budget. The opposite is observed in BDHEFT in 6.2(b),
when deadline factor ,α , is 8. Nearly all cost ratio values are inside the valid
schedule; however, the success rate is less than 40%. The reason is that most of
the failures are caused by exceeding the given deadline.

The highest failure occurs in EPIGENOMICS while deadline factor α is 4,
BHEFT,RCT and RTC can find a schedule for less than 7% before they’re con-
straints are reached. However, the BDAS algorithm obtained more than 90%
success rate under the same conditions.

6.4.3 LIGO

Figure 6.3 shows the results achieved for LIGO. In general, the BDAS heuris-
tic has the best performance in terms of meeting given constraints, budget and
deadline. The behavior of BDAS is similar to EPIGENOMICS, whereby it uti-
lizes the full budget and completes the execution of workflows sooner than pre-
scribed deadline. On the contrary, the RCT and RTC algorithm spend less bud-
get while exhausting the deadline.

The worst performance is observed with BDHEFT in the first and second
defined deadline factor, α, with almost 100% failure. All related cost ratio values
for mentioned deadline factors are placed in the valid schedule, as can be seen
in 6.3(b). All failures are due to violating the prescribed deadline.

6.4.4 MONTAGE

The results obtained from the simulations for the MONTAGE workflow are
shown in Figure 6.4. All algorithms exhibit nearly identical success rate for
this application in specified intervals. The figures for BDAS in both plots show
similar decrease trends in time ratio and cost ratio. In terms of time efficiency

6.4. EXPERIMENTAL RESULTS 125

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Budget Factor (β)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Budget Factor (β)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(a) Time Efficiency

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Deadline Factor (α)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Deadline Factor (α)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(b) Cost Efficiency

Figure 6.2: EPIGENOMICS

126 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Budget Factor (β)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Budget Factor (β)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(a) Time Efficiency

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Deadline Factor (α)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Deadline Factor (α)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(b) Cost Efficiency

Figure 6.3: LIGO

6.4. EXPERIMENTAL RESULTS 127

Figure 6.4(a), the time ratio obtained by BDHEFT is smaller than the ratio ob-
tained by other algorithms in all intervals. The behavior of BDHEFT for differ-
ent deadline intervals implies that it maintains a constant level of performance
by utilizing all the allocated budget.

Apart from the lowest considered budget factor and deadline factor in my
experiments, all four algorithms obtained ratios remained under 1 for MON-
TAGE (valid schedule). In MONTAGE, all algorithms gained the highest to-
tal success rate compared to other scientific workflows, as discussed in Sec-
tion 6.4.6.

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Budget Factor (β)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Budget Factor (β)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(a) Time Efficiency

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Deadline Factor (α)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Deadline Factor (α)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(b) Cost Efficiency

Figure 6.4: MONTAGE

128 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

6.4.5 SIPHT

The time ratio and cost ratio obtained by tested algorithms for SIPHT workflows
are shown in Figure 6.5(a) and Figure 6.5(b), respectively.

The maximum of box plots for RCT and RTC are not shown because any
ratio greater than 1 means a failure to yield a valid schedule, which is not of
interest. Therefore, I only show values up to 2 to better illustrate results with
valid schedules in more detail. The results are similar for RTC and RTC when
almost 100% failure is observable in the tight deadline in 6.5(b). As no plots are
shown in this figure, it means the achieved cost by RCT and RTC is at least 2
times greater than defined budget.

The impact of BDHEFT is a complete contrast while achieving 100% failure
due to time violation, which can be supported by looking at 6.5(b). Its clearly
obvious that when α is 4, all cost ratios are placed in the valid schedule. How-
ever, the corresponding success rate reports almost 100% failure. Therefore, it
can be concluded that failures happened due to exceeding deadlines.

6.4.6 Total Success Rate

Table 6.3 shows the total Success Rate of each algorithm, considering all values
for budget factor, β, and deadline factor, α. For each workflow, I test 400 differ-
ent states, which is combination of 20 different budget factors and 20 different
deadline factors. I have considered 100 different workflows that leads to 40000
different test cases for each scientific workflow. A low success rate indicates
that the algorithm cannot find a schedule that meets the budget and deadline.
The best overall performer is BDAS, which exhibits a success of above 84% in
all datasets with the best performance of 96% in Epigenomics. The highest fail-
ure and worst performance occurs in BDHEFT algorithm, which fails around
60% of different test cases in EPIGENOMICS and LIGO. RCT and RTC present
almost the same results with the highest success rates with 82% and 87% in
MONTAGE, respectively. It is worth noticing that MONTAGE workflow is the
most successful application to be scheduled with all algorithms, based on re-

6.4. EXPERIMENTAL RESULTS 129

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Budget Factor (β)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Budget Factor (β)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(a) Time Efficiency

V
al
id

S
ch
ed

u
le

4 8 12 16

0

1

2

Deadline Factor (α)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

4 8 12 16

0

20

40

60

80

100

Deadline Factor (α)

S
u
cc
es
s
R
at
e
(%

)

BDAS BDHEFT RCT RTC

(b) Cost Efficiency

Figure 6.5: SIPHT

130 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

BDAS BDHEFT RCT RTC

CYBERSHAKE 88% 84% 72% 64%

EPIGENOMICS 96% 38% 72% 71%

LIGO 86% 44% 69% 78%

MONTAGE 84% 90% 82% 87%

SIPHT 93% 72% 59% 62%

Mean 89.4% 65.6% 70.8% 72.4%

Table 6.3: Total Success Rate for five different scientific workflows. The mean
Total Success Rate for BDAS is 17.0%–23.8% higher than other algorithms.

ported success rate.
In general, my approach is more consistent to generate acceptable schedules

under defined constraints.

6.4.7 A summary of the performance of scheduling algorithms

In order to have a better insight on the performance of the proposed BDAS algo-
rithm, a new metric is used to measure the behavior of BDAS based on budget
and deadline. The time-cost relationship shows a more accurate representation
of BDAS on spending defined budget and deadline. This relationship is defined
as:

f =
∑
i∈α

∑
j∈β

T (i, j)

C(i, j)
, (6.16)

where T is defined as:

T =
makeSpan

Deadline
(6.17)

and C is defined as:

C =
AchievedCost

Budget
(6.18)

6.4. EXPERIMENTAL RESULTS 131

BDAS BDHEFT RCT RTC

CYBERSHAKE 0.4 0.75 2.7 1.88

EPIGENOMICS 0.35 4.06 2.66 3.06

LIGO 3.09 3.32 3.26 3.45

MONTAGE 0.71 0.54 3.81 1.19

SIPHT 0.72 2.24 4.69 3.28

Table 6.4: Time-Cost relationship for five different scientific workflows.

Deadline factor, α is defined in (6.11), and budget factor, β, is defined in (6.12).
The results for five scientific workflows are given in Table 6.4 based on 20 dif-
ferent deadline and budget factors.

In general, the behaviour of scheduling algorithms in this chapter can be
summarized as follows:

• In general, BDAS utilized budget without considerable failures.

• The BDAS outperformed all algorithms in terms of success rate in speci-
fied tight budget/deadline factors.

• In contrast to BDAS, the performance analysis shows the both RCT and
RTC utilize deadline while trying to find a cheaper schedule. In tight
deadlines, most of the failures in RCT and RTC happen due to violating
the budget constraint. This is the case in 6.1(b), 6.2(b) and 6.5(b).

• BDHEFT performs worse than other algorithms. It not only suffers from a
large number of failures and constraint violation; I also see the wide range
on its cost and time ratios.

• Most of the failures in BDHEFT are due to violating deadline. For exam-
ple, in SIPHT, when deadline factor is 4, the cost ratio obtained by BD-
HEFT is placed in the valid schedule. However, it achieved almost 100%

132 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

failure due to violating the prescribed deadline. The same pattern is ob-
servable in EPIGENOMICS workflow.

6.4.8 Sensitivity Analysis

The design of a scheduling strategy depends on what objectives are more im-
portant to users. In order to check how sensitive an algorithm is, in terms of
assigning priority to budget and deadline, a sensitivity analysis is performed in
this thesis. Sensitivity analysis may be carried out to evaluate the stability and
robustness of scheduling algorithms, allowing users to consider the preferred
choice.

To achieve customizable services based on user requirements, I consider a
weight parameter in my algorithm. With this mechanism, the sensitivity ex-
periment consists of analyzing how different priorities on cost and time would
affect my algorithm. The parameter ω takes values between 0 and 1; the smaller
the value the more priority on time, while values close to 1 correspond to as-
signing more priority on cost. The weight modifies the CTTF in 6.8 as follows:

CTTF
pj
ti = (ω) ∗ Cost pj

ti + (1− ω) ∗ Time
pj
ti . (6.19)

The results in Figure 6.6 are shown up to their maximum possible number
of success rates in total, no matter what the budget factor and deadline factor
are. The results of this set of experiments suggest that the structure and type of
workflows can significantly impact on the user priorities in scheduling work-
flows. The analysis provides insights into the performance of my scheduling
algorithm with data intensive vs. compute intensive workflows, of which the
most important ones are:

• Data-Intensive: Cybershake, LIGO and MONTAGE, which are three data-
intensive workflows that deal with large amounts of data in the range
of megabytes to petabytes while spending most of their time performing
I/O activities. As reported in [21], a MONTAGE workflow with 10000
tasks reads 146 GB of input data, needs 4.93 CPU hours, and writes 49 GB

6.4. EXPERIMENTAL RESULTS 133

of output data. In these data-intensive applications, data transfer time be-
tween resources usually takes a significant portion of the execution time.
Therefore, the most effective approach in data-intensive workflows is re-
ducing in data movement. Assigning low priority to Cost in the trade-off
equation introduced in 6.8 usually leads to plenty of failure. When the
weight parameter, ω, is 0.1, almost 80% of experiments in Cybershake fail
to meet the defined constraints. In the same condition, LIGO and MON-
TAGE experienced 60% and 55% failures, respectively.

In order to have a better insight, I look to the Time and Cost equations
given earlier in 6.6 and 6.7, respectively. The value for Time is large for
an instance that can finish its execution sooner, which is probably an ex-
pensive instance. Because the expression in equation 6.19 has a higher
weight on Time, more expensive resource are selected. This explanation is
confirmed by the results while all the failures in the tested data-intensive
workflows happened due to exceeding budget.

Another interesting observation in data-intensive applications is the con-
trary situation, when the highest priority is assigned to Cost (ω=0.9).
Highest failure (60%) happened in MONTAGE while CYBERSHAKE ex-
perienced 40% failures. Before analysis, I need to study the interaction
between Time and Cost in this scenario. The highest value for Cost in 6.7
is attained when a task is executed during paid intervals that have no cost.
Because the Cost factor in equation 6.19 has higher weight, which directly
affects the selection of the most suitable instance, an instance with zero
cost usually has a higher chance of being selected. However, it may fail to
meet a task’s sub-deadline. At the end, continuing the same pattern leads
a failure by exceeding the deadline.

• Compute-Intensive: Large-scale applications mainly consisting of com-
plex tasks requiring high performance computing instances are called com-
pute intensive workflows. In these applications, the majority of task’s exe-
cution time deals with computation rather than I/O. The EPIGENOMICS

134 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

workflow can be considered as CPU intensive application due to spend-
ing almost 99% of its execution in the CPU, and performs comparatively
low I/O compared to Montage [21]. Higher priority given to time rather
than cost caused nearly 50% failure in SIPHT and 40% failure in EPIGE-
NOMICS. This is a result of more expensive resources being more likely
to be selected, resulting in exceed budget. The experimental results in
EPIGENOMICS show that the likelihood of meeting constraints is en-
hanced by increasing the value ω. As can be seen in Figure 6.6, the general
trend is that by assigning higher priority on cost, a scheduler yields fewer
failures. As I mentioned earlier, compute-intensive workflows allocate
most of their time to performing computation. Therefor, a budget is more
important factor leading launch more instances.

In summary, the results of this set of experiments suggest that the different
priorities have different impacts in finding a valid schedule for each workflow
type.

6.4.9 Decreasing billing cycle

In this section we investigate the Time Ratio and Cost Ratio performance of the
four scheduling algorithms across different billing cycle (from 15 minutes to
1 hour with 15 minute increments). For the Time Ratio evaluations, we use a
budget factor of β = 4 and β = 16, while Cost Ratio evaluations are performed
with deadline factors fixed at α = 4 and α = 16.

Figures 6.7–6.11 show the Time Ratio and Cost Ratio performance for CY-
BERSHAKE, LIGO, MONTAGE and SIPHT respectively. For BDAS and BD-
HEFT, the medians for Time Ratio marginally decrease with decreasing billing
cycle while the range for Time Ratio also shrinks with decreasing billing cycle
(from 60 minutes to 15 minutes). This observation for BDAS Time ratio holds
across all four workflows for both budget factors β = 4 and β = 16. By decreas-
ing the billing cycle, the number of idle time slots between scheduled tasks are
decreased leaving more budget available for launching new VMs, thus resulting

6.4. EXPERIMENTAL RESULTS 135

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Weight

S
u
cc
es
s
R
at
e
(%

)

(a) CYBERSHAKE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Weight

S
u
cc
es
s
R
at
e
(%

)

(b) EPIGENOMICS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Weight

S
u
cc
es
s
R
at
e
(%

)

(c) LIGO

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Weight

S
u
cc
es
s
R
at
e
(%

)

(d) MONTAGE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

20

30

40

50

60

70

80

90

100

Weight

S
u
cc
es
s
R
at
e
(%

)

(e) SIPHT

Figure 6.6: Sensitivity Analysis for five different data set.

136 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

in a reduction of Time Ratio.

The Cost Ratio medians for BDAS and BDHEFT also decreases with decreas-
ing billing cycle, however, the range for Cost Ratio slightly increases (converse
of Time Ratio) suggesting that shorter billing cycles introduce more cost volatil-
ity. A larger range for Cost Ratio is observed in the CYBERSHAKE Fig. 6.7 and
EPIGENOMICS Fig. 6.8, and to a lesser extent in LIGO Fig. 6.9, MONTAGE
Fig. 6.10 and SIPHT Fig. 6.11. A shorter billing cycle means more granular up-
dates on incurred cost resulting in fewer idle instances, this helps reduce cost (as
seen in the median trend). However, the more granular updates also increase
the Cost ratio variance as observed in Figures 6.7–6.11. Both RTC and RCT do
not show significant variation in Time Ratio and Cost Ratio performance with
decreasing billing cycle.

Overall, the different billing cycles have marginal influence of the Cost Ratio
and Time Ratio; this finding concurs with another research by Rodrigues and
Buyya [93].

6.5 Summary

This chapter presented a novel algorithm to address the problem of scientific
workflow scheduling in dynamically provisioned commercial cloud environ-
ments. This approach focuses on addressing the unique characteristics of work-
flow execution on cloud platforms, such as on-demand provisioning and in-
stance heterogeneity while simultaneously meeting budget and deadline con-
straints.

The time complexity of BDAS is of the orderO (n2p) which is calculated sim-
ilar in principle to section 4.2.5. I evaluated the BDAS algorithm and compared
it with three previously published algorithms (BDHEFT, RCT, RTC), using a
range of metrics. In terms of success rate, the best overall performer is the BDAS
algorithm, which exhibits a success of above 84% in all datasets while the worst
performance occurs in BDHEFT algorithm, which fails around 60% of different
test cases in EPIGENOMICS and LIGO. I also investigated the sensitivity of my

6.5. SUMMARY 137

Budget Factor (β)

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(a) Time Efficiency when Budget Factor β=4
V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)
T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(b) Time Efficiency when Budget Factor β=16

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(c) Cost Efficiency when Deadline Factor α=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(d) Cost Efficiency when Deadline Factor α=16

Figure 6.7: CYBERSHAKE

138 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

Budget Factor (β)

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(a) Time Efficiency when Budget Factor β=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(b) Time Efficiency when Budget Factor β=16

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(c) Cost Efficiency when Deadline Factor α=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(d) Cost Efficiency when Deadline Factor α=16

Figure 6.8: EPIGENOMICS

6.5. SUMMARY 139

Budget Factor (β)

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(a) Time Efficiency when Budget Factor β=4
V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)
T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(b) Time Efficiency when Budget Factor β=16

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(c) Cost Efficiency when Deadline Factor α=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(d) Cost Efficiency when Deadline Factor α=16

Figure 6.9: LIGO

140 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

Budget Factor (β)

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(a) Time Efficiency when Budget Factor β=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(b) Time Efficiency when Budget Factor β=16

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(c) Cost Efficiency when Deadline Factor α=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(d) Cost Efficiency when Deadline Factor α=16

Figure 6.10: MONTAGE

6.5. SUMMARY 141

Budget Factor (β)

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(a) Time Efficiency when Budget Factor β=4
V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)
T
im

e
R
at
io

BDAS BDHEFT RCT RTC

(b) Time Efficiency when Budget Factor β=16

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(c) Cost Efficiency when Deadline Factor α=4

V
al
id

S
ch
ed
u
le

15 30 45 60

0

1

2

Billing Cycle (minutes)

C
os
t
R
at
io

BDAS BDHEFT RCT RTC

(d) Cost Efficiency when Deadline Factor α=16

Figure 6.11: SIPHT

142 CHAPTER 6. BUDGET DEADLINE CONSTRAINED SCHEDULING

algorithm on different workflow types over a range priorities for budget and
deadline. Increasing budget on compute-intensive workflows tends to achieve
higher success rate, which implies that budget is more important than deadline
for such applications.

A primary advantage of BDAS (and by extension, heuristic algorithms) is
its low overhead, or computational tractability. The scheduling performance
achieved by the BDAS algorithm is promising, especially in light of the time re-
quired to compute a schedule. However, the presented algorithms in previous
chapters belong to SPDP category (see section 2.4), when the number of work-
flows are known in advance and all are submitted at the same time. In practice,
a scheduler may have to schedule an unpredictable stream of workflows. As a
result, in the next chapter, I intend to explore the use of a heuristic algorithm in
near-realtime, multiple workflow and dynamic scheduling situations.

Chapter 7

Dynamic Workflow Scheduling

7.1 Introduction

Once a scientific experiment is defined in a workflow, it needs to be executed,
which requires resources to be requested and provisioned. Such computational
resources are unlikely to be dedicated to the execution of a single workflow, and
as such, multiple overlapping workflows, which occur at various non periodic
times, need to be scheduled and resourced.

As a motivating scenario, consider the example from [94] in which the au-
thors describe data-driven workflows that are executed on-demand, in response
to data produced by beam-line experiments. These data need to be processed
in near real-time and may occur at undefined intervals. The authors state “The
ability to analyze data produced by detectors in near-real-time can enable opti-
mized data collection schemes, on-the-fly adjustments to experimental param-
eters, early detection of and response to errors (saving both beam time and sci-
entist time), and ultimately improved productivity. . . ”. It is clear that in ex-
periments involving physical sciences or real world measurements, scheduling
such workloads with static schedulers that require all execution characteristics
and all workloads to be known in advance is untenable.

Despite considerable research on cloud scheduling, cost challenges and ex-
ecution performance of workloads are still significant and unsolved issues. In

143

144 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

fact, scheduling workflows and provisioning cloud resources naı̈vely can have
a significant financial penalty – especially in dynamic markets such as the Ama-
zon spot market [11]. Indeed, the most attractive elements of the cloud itself,
which are its elasticity, heterogeneity, and on-demand cost model, further com-
pound the already NP-hard [12] workflow scheduling problem. Unfortunately
for the actualization of science as outlined above, the most common simplify-
ing assumption for the vast majority of prior workflow scheduling research is
that the workload is static and all characteristics and parameters are known and
accurate a-priori.

This chapter addresses this problem by focusing on dynamic scheduling and
presents a novel heuristic algorithm, the Dynamic Workflow Scheduler (DWS),
for dynamically scheduling workflows on the cloud from an incoming work-
load of non-periodic workflows. The presented algorithm schedules workflows
with a mixture of different deadline runtime constraints – providing a solution
to the Workflow as a Service (WaaS) scheduling problem [72].

7.2 System Architecture

.

Sch
e

d
u

le
r

Resource provisioning

 . . .

Central QueueWorkflow Submission Pool

Cloud Resources

1

1

1

2

3

45

6 7

Figure 7.1: Architecture of presented system

The high level architecture of presented Workflow as a Service (WaaS) in this

7.3. WORKLOAD MODEL 145

chapter is shown in Figure 7.1 – and consists of a submission pool, scheduler,
resource provisioning unit and central queue.

Users submit workflows at different times (label 1, Figure 7.1), forming a
stream of workflows that arrive at unpredictable times in the submission pool.
An arrival to the submission pool triggers the scheduler to pick all available
workflows from the pool (labels 2 and 3, Figure 7.1). The scheduler then finds
all the ready tasks from the workflows and adds these tasks to the central queue
(label 4). A task is ready when all of its parents have been executed and all its
required data have been provided. Therefore, the central queue contains tasks
from different workflows that are ready to execute and exhibit no dependencies.
The scheduler’s role is then to find the most suitable task for execution from the
queue and does so by prioritizing them (label 5). The next step for the scheduler
is to initiate execution of the selected tasks based on the current status of the
systems resources, and does so by coordinating with the resource provisioning
block. Specifically, the resource provisioning block within the WaaS responds to
the queries received by scheduler regarding resource availability (labels 6 and
7). The resource provisioning block is responsible for managing all instances
and performs actions such as deploy, migrate, suspend, resume and shut down.
Multiple instances are launched dynamically to fulfill service requests, with the
ability to run concurrent applications on various operating systems on a single
physical machine (labels 8 and 9). After scheduling a task on a resource, the
central queue is updated by the scheduler, which may add additional ready
tasks.

7.3 Workload Model

A workload is defined as a set of all workflows in the workflow submission
pool. Let Gk denote a workflow indexed by k, therefore the workload (G) is
expressed as

G = ∪Nk=1Gk. (7.1)

146 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

A Directed Acyclic Graph (DAG) is the most common representation of a work-
flow [28]. A workflow is defined as a graphGk = (T,E) where T = {t0, t1, ..., tn}
is a set of tasks represented by vertices and E = {ei,j | ti, tj ∈ T} is a set directed
edges denoting data or control dependencies between tasks ti and tj . The only
difference with defined notations in section 3.3.1 is calculating the total cost for
scheduling multiple workflows.

The cost of executing task ti on instance pj is calculated as:

TaskCost
pj
ti =

⌈
w
pj
ti

Nt

⌉
∗ cj, (7.2)

where cj is the cost of instance pj for one time interval and Nt is the time of an
interval, and w

pj
ti is the execution time of task tj on the instance pj . The cost of

executing all tasks in a DAG is defined as:

CostG =
∑
ti∈G

TaskCost
pj
ti , (7.3)

where G is the DAG. Finally, the overall cost of executing all DAGs in a work-
load is defined as:

Costo =
∑
G∈G

CostG, (7.4)

where G is the workload defined in equation (7.1).

7.4 The DWS algorithm

In this section, I describe the Dynamic Workload Scheduler (DWS) algorithm – I
start with the pseudo code given in algorithm 1. In the remainder of this section,
I dig deeper and explore in detail the various different phases of the algorithm
for a given workflow Gk from the workload G as defined in equation 7.1.

7.4.1 Workflow Partitioning

In this step, the tasks are partitioned into different levels based on their re-
spective dependencies. Subsequently, the user-defined deadline (D) and user-

7.4. THE DWS ALGORITHM 147

Algorithm 1 Main DWS Algorithm

1: procedure DWS
2: while Central Queue is not empty do
3: if a new DAG has arrived then
4: call Algorithm 2
5: end if
6: ti ←− select the task with the highest priority

based on EDF (explained in section 7.4.3)
7:

8: for all instances pj ∈ P do
9: calculate the Time set as defined in equation (7.5)

10: calculate the Cost set as defined in equation (7.6)
11: calculate the CTTF as defined in equation (7.7)
12: end for
13: BestInstance←− choose the instance that

has the highest CTTF value
14:

15: Schedule task ti on BestInstance
16:

17: Update the Central Queue
18: end while
19: end procedure

148 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

defined budget (B) are distributed over the levels established in the preprocess-
ing step. Each level gets its own level deadline and budget and all tasks in the
same level have the same level-deadline and level-budget. This partitioning is
in the same way as I described in 5.2.2.

7.4.2 Deadline Distribution

In previous section 5.3.3.2, I explored a range of strategies for distributing a
deadline over a workflow. I found that the choice of distribution strategy has
a significant impact on performance. Some strategies exhibit performance that
is strongly dependent on the workflow size and structure, including process,
pipeline, data distribution, data aggregation and data redistribution. In general,
the strategy that takes into consideration the execution time of each level as
well as number of tasks in the level yields the lowest cost. The explanation of
deadline distribution and its notations is outlined in section 6.2.3.

Algorithm 2 Deadline Distribution

1: procedure DISTRIBUTE DEADLINE(DAG, D)
2: for all task ti ∈ DAG do
3: calculate the L (ti) as defined in equation (4.1)
4: end for
5: categorize tasks on tasks level set as defined in equation (4.2)
6: for all levels in DAG do
7: calculate the level deadline as defined in equation (6.5)
8: end for
9: put tentry on Central Queue

10: end procedure

7.4.3 Task Selection

In DWS, tasks are selected from the global queue containing all ready tasks from
different workflows. A task is ready when all of its parents have been executed

7.4. THE DWS ALGORITHM 149

and all its required data are readily accessible. As a consequence, there are no
dependencies between tasks waiting in the ready list.

To select a task, at first all tasks in the ready list need to be prioritized. In this
chapter, tasks are prioritized based on the Earliest Deadline First (EDF) strategy.
EDF gives priority to the tasks having the nearest deadline. Therefore, the task
with the earliest deadline has the highest priority and it is the best candidate for
execution.

7.4.4 Instance Selection

At the point the algorithm performs instance selection, each task of received
workflows is already assigned to a level, the deadline for each level is already
determined, and the priority of each ready task is assigned. The Instance selec-
tion phase aims to identify the most appropriate instance to execute the current
task. I therefore need to trade off execution time and cost. Firstly, the time
needed for the current task, ti, on the instance pj is denoted by ECT (ti|pj). The
ECT is the earliest time that a task can finish on an instance, which is defined
earlier in equation (4.4). Using this observation, I can then compute how much
the estimated level deadline of the current task differs from the earliest comple-
tion time of the task on the instance pj :

Time
pj
ti =

subD`ti − ECT (ti|pj)
subD`ti − ECT (min)

. (7.5)

In equation (7.5), subD`ti is the deadline that is assigned to the level that
contains the task ti. Also, ECT (min) is the minimum execution time among all
instances that keeps the current task on schedule.

The values of Time for task ti are related to instance types, wherein a lower
value of Time means running on a cheaper instance. The reason is that the value
of ECT (ti|pj) is bigger on an instance with a lower processing capacity. Also,
if the value of Time is negative, it means that the current task on the selected
instance will exceed the level deadline i.e. ECT (ti, pj) > Level

`ti
deadline.

150 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

In the Cost set given earlier in (7.2), TaskCostti refers to the cost of schedul-
ing the current task ti on instance pj . In equation, (7.6), the worse cost (max-
imum cost) and best cost (minimum cost) of executing the task ti among all
instances are Cworse and Cbest, respectively.

Cost
pj
ti =

TaskCostworse − TaskCosti
TaskCostworse − TaskCostbest

(7.6)

To find the best instance, a Cost Time Trade-off Factor (CTTF) in equation
(7.7) is used that considers a trade-off between cost and time.

CTTF
pj
ti =

Cost
pj
ti

Time
pj
ti

(7.7)

When an instance is first provisioned, the instance is billed on an hourly
interval until it is terminated. Therefore the first task assigned to an instance
in a particular billing interval is assigned the entire cost of that interval. As a
consequence, if other tasks can be executed during that paid interval, once the
first task has been completed, then their individual execution cost is effectively
zero. Therefore, during instance selection, I first prioritize the reuse of such
instances (when Cost in equation (7.6) is 1), providing that the level deadline is
not exceeded (when Time in equation (7.5) is positive). If there are more than
one paid instances, the DWS selects the one that has the minimum execution
time (faster instances). If no such instances are available, I will attempt to use
a provisioned but as yet unused (in this interval) instance or, as a last resort,
provision an entirely new instance.

7.5 Evaluation

The CloudSim simulator was used to compare the performance of both algo-
rithms. The simulation scenario was configured as a single data-center and six
different instance types. The pricing model and other characteristics were ex-
plained in section 4.3.1.

7.5. EVALUATION 151

In order to evaluate the performance of the algorithms with a realistic load,
three different workloads with 1000, 2000 and 4000 workflows were consid-
ered. Each workload was a combination of common scientific workflows: Cy-
bershake, Epigenomics, Montage, LIGO and SIPHT. Each workflow could have
different sizes, which are 100, 200, 500 and 1000 tasks. The arrival rate for each
workload was modeled based on a Poisson distribution. The characteristics and
task composition of these workflows have been analyzed in published works
cited in the related work section [21, 75]. In order to evaluate the performance
of these algorithms, different deadlines were chosen from tight to relaxed. For
this purpose, the fastest schedule (denoted by FS) was calculated as a baseline
schedule. Effectively, this baseline is the fastest possible execution – ignoring
costs. The fastest schedule is expressed as:

FS =
∑
ti∈CP

(wji), (7.8)

where wji is the computation cost of task ti on the fastest instance pj .
Using equation (7.8), a variation for deadline is calculated from tight to mod-

erate to relaxed:

deadline = α ∗ FS, 0 < α < 20, (7.9)

The deadline factor α starts from 1 to consider very tight values and is in-
creased by one up to a value of 20, which results in a very relaxed deadline. To
assign a deadline for each workflow, the deadline factor α is randomly chosen
based on a uniform distribution.

7.5.1 Performance Metrics

To evaluate the algorithms under test, the following performance metrics were
selected: Success Rate (SR), Cost Ratio (CR) and Time Ratio (TR).

• Success Rate (SR): Success rate of each algorithm (SR), calculated as the
ratio between the number of simulation runs that successfully met the

152 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

scheduling deadline and the total number of simulation runs (denoted by
nTot), defined as:

SR =
n (k)

nTot
, (7.10)

where n(k) is the cardinality of the set k and nTot = 100.

• Workload Cost (WC): To compare the cost between the algorithms, equa-
tion (7.4) is used, which calculates the achieved cost of each algorithm for
executing a workload.

• Time Ratio (TR): To compare the achieved makespan between each algo-
rithm, a Time Ratio is used, which calculated by dividing makespan of
each workflow by given deadline (D).

TR =
Makespan

D
. (7.11)

A TR value greater than 1 indicates a makespan larger than the deadline,
which counts as a failure to meet the defined deadline. TR value of less
than 1 indicates that the scheduled workflow meets the deadline.

7.6 Experimental Results

This section presents the performance evaluation of the DWS algorithm, with
the EPSM-NC algorithm from [73], which most closely aligns with my goals
and design.

7.6.1 Success Rate Analysis

The primary object for any workflow scheduling algorithm is finding a sched-
ule without violating its constraints – in my case, the constraint is deadline.
Figure 7.2 shows the relative Success Rate (SR) of each algorithm as the arrival
rate is increased from 0.1 to 10. A low success rate indicates that the algorithm

7.6. EXPERIMENTAL RESULTS 153

0.1 0.5 1 5 10

0

20

40

60

80

100

Arrival Rate Per Minute

S
u
cc
es
s
R
at
e
(%

)

DWS EPSM-NC

(a) 1000 Workflows

0.1 0.5 1 5 10

0

20

40

60

80

100

Arrival Rate Per Minute
S
u
cc
es
s
R
at
e
(%

)

DWS EPSM-NC

(b) 2000 Workflows

0.1 0.5 1 5 10

0

20

40

60

80

100

Arrival Rate Per Minute

S
u
cc
es
s
R
at
e
(%

)

DWS EPSM-NC

(c) 4000 Workflows

Figure 7.2: Success Rate

154 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

0.1 0.5 1 5 10

0

1,000

2,000

3,000

4,000

Arrival Rate Per Minute

C
os
t
($
)

DWS EPSM-NC

(a) 1000 Workflows

0.1 0.5 1 5 10

0

2,000

4,000

6,000

8,000

Arrival Rate Per Minute

C
os
t
($
)

DWS EPSM-NC

(b) 2000 Workflows

0.1 0.5 1 5 10

0

5,000

10,000

15,000

Arrival Rate Per Minute

C
os
t
($
)

DWS EPSM-NC

(c) 4000 Workflows

Figure 7.3: Workload Cost

7.6. EXPERIMENTAL RESULTS 155

V
al
id

S
ch
ed

u
le

0.1 0.5 1 5 10

0

1

2

Arrival Rate Per Minute

T
im

e
R
at
io

DWS EPSM-NC

(a) 1000 Workflows
V
al
id

S
ch
ed

u
le

0.1 0.5 1 5 10

0

1

2

Arrival Rate Per Minute

T
im

e
R
at
io

DWS EPSM-NC

(b) 2000 Workflows

V
al
id

S
ch
ed

u
le

0.1 0.5 1 5 10

0

1

2

Arrival Rate Per Minute

T
im

e
R
at
io

DWS EPSM-NC

(c) 4000 Workflows

Figure 7.4: MakeSpan Utilization

156 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

cannot find a makespan that meets the deadline for a workflow. No significant
differences were found between the DWS and EPSM-NC whereas both exhibit
nearly identical success rate for all workloads when the arrival rates were less
than 1. The best overall performer is DWS, which exhibits a success rate of
96% for most deadlines in different arrival rates. As the rate of workflows per
minute increases, the success rate of EPSM-NC decreases most rapidly. When
arrival rate is 12 workflows per minute, almost 15%-18% of workflows fail to
meet the deadline when scheduled by EPSM-NC. For the same experimental
conditions, DWS experiences a 4%–7% failure rate.

7.6.2 Cost Comparison Analysis

In this section, the cost of each algorithm is evaluated using six different in-
stance types with different characteristics as described in Table 4.6. In general,
DWS experiences a monotonic increase in cost in respect to an increase in the
arrival rate of workflows. However, this is not the case for EPSM-NC, which
exhibits an inconsistent non-linear relationship. It would be reasonable to ex-
pect a linear increase as each algorithm would be expected to lease more VMs
to meet the deadline for each workflow.

Both algorithms utilize any idle time slots formed between scheduled tasks
on each resource to maximize the overall instance utilization without a need
to request a new instance. Therefore, this difference is due to the trade-off be-
tween time and cost (see equation 7.7) in the DWS algorithm. Overall, the DWS
outperforms the EPSM-NC algorithm, achieving the lowest overall cost over
all workflows in a workload. In all cases, the DWS outperforms the EPSM-NC
algorithm, achieving the lowest overall cost over all workflows in a workload.

The EPSM-NC experiences considerably higher cost when arrival rate is low
(0.1 workflow per minute). In section 4.2.2.1, I explored the importance of, and
sensitivity to, the prioritization of tasks in the task selection phase. In the pub-
lished EPSM-NC algorithm [73], tasks are selected without any prioritization
and this is the likely major source of the cost differences between the algorithms.

7.7. SUMMARY 157

As a final observation, from Figure 7.3, the cost of scheduling a workload is
close for both algorithms when arrival rate is high. For example, in the work-
load of 4000, when arrival rate is 5, DWS and EPSM-NC achieves almost the
same cost. The number of instances provisioned depends on the arrival rate
of workflows. When arrival rate is high, additional instances are requested to
meet the deadline constraints. At the same time, there is a opportunity to better
use idle times, leading to increase in VM utilization.

Overall, DWS is shown to achieve considerably lower costs by an average
23% when compared to EPSM-NC for all the workloads.

7.6.3 Deadline Utilization

The behavior of each algorithm on utilizing deadline, which is defined as Time
Ratio (TR) in equation (7.11), is shown in Figure 7.4. Box plots are used, which
are divided into two areas named valid schedule and invalid schedule. The
valid schedule starts from 0 to 1, indicating an algorithm could meet the define
constraint. Therefore, time efficiency (valid schedule) for a given deadline factor
not only shows if a schedule without violation is found but also represents the
distribution of deadline. Any ratio greater than 1 means a failure to generate a
valid schedule – therefore, only values up to 2 are shown to better focus on the
results with valid schedules.

In terms of deadline consumption, DWS utilized up to 100% of assigned
deadline in all workloads as shown in Figure 7.4. Indeed, my algorithm uses al-
most the entire deadline (nearly all time ratio values are inside the valid sched-
ule) while finding a schedule with lower cost as discussed in previous section.
The EPSM-NC is able to often complete the execution of workflows sooner than
the deadline (smaller values in the valid box) – but suffers from a greater varia-
tion and more failure. Time ratios greater that 1 means failure that is observable
in Figure 7.4. These failures are corresponding to the discussed success rates in
Figure 7.2.

158 CHAPTER 7. DYNAMIC WORKFLOW SCHEDULING

7.7 Summary

This chapter presented a novel algorithm to address the problem of multiple
workflow scheduling in dynamically provisioned commercial cloud environ-
ments. My approach addresses dynamic workflow scheduling within the unique
characteristics of cloud platforms, such as on-demand provisioning and instance
heterogeneity, while simultaneously meeting deadline as a constraint. The pre-
sented algorithm exhibits a success of above 93% for all workloads considering
different arrival rates. Indeed, the results demonstrate that the proposed DWS
algorithm utilizes deadline while finding a schedule without considerable fail-
ures and lower cost.

Chapter 8

Conclusions and Future Directions

8.1 Summary of Contributions

Elastic, on-demand cloud computing enables significant computational lever-
age to be applied to real world problems, be they medical, commercial, indus-
trial or scientific. From a scheduling point of view, the most interesting subset
of these problems is of those that can be represented as workflows. Workflows
are being extensively used by scientists to model and manage complex, com-
pute and data-intensive experiments, and more of these workflows are being
progressively moved onto commercial clouds.

In this regard, this thesis addresses the problem of scientific workflow schedul-
ing in cloud considering user-requirements. The algorithms in this thesis ad-
dress the challenges of scheduling, on-demand resource provisioning and meet-
ing user requirements such as budget and deadline.

To find the important characteristics and challenges of scientific workflow
scheduling in cloud, chapter 2 presented a detailed taxonomy, including the
background and relevant aspects for workflow scheduling problem. In addi-
tion, it discussed the related work and summarized the research topics of work-
flow scheduling in cloud. This chapter helps researchers to understand and
identify research directions in this area.

Chapter 3 described the challenges that need to be considered followed by

159

160 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

problem definition of workflow scheduling. The significance of user require-
ments such as meeting deadline, which is one of the objectives in this thesis,
was discussed in section 3.1.4. To address this objective, chapter 4 presented
two cost-effective and deadline constrained heuristic algorithms for scheduling
scientific workflows. Both algorithms belong to the class of list-based schedul-
ing algorithms consisting of a task prioritization phase and a task assignment
phase. In the PDC, the influence of the task selection step was investigated.
In the DCCP algorithm, backfilling leftover capacity (residuals) was considered
in provisioned instances and applied to several different backfilling strategies.
This approach was most effective in data-intensive workflows due to the reduc-
tion in data movement. Overall, both algorithms achieved a consistently high
success rates and throughput, while in most cases presenting the lowest overall
pay-per-use cost.

One problem in workflow scheduling is how to spend/distribute the de-
fined budget/deadline for the best performance. For this purpose, chapter 5
explored different possible ways to distribute budget and deadline based on the
dependency structure inherent in workflows levels. In terms of budget distri-
bution, two hypotheses were investigated. Overall, the strategy that performed
the best for all workflows in terms of both success rate and makespan was “All
in”. This strategy was proposed largely to test the hypothesis that biasing the
budget distribution to the earliest levels was beneficial in terms of reducing
makespan. “All in” took this to an extreme by assigning the entire budget to
the first level and relying on the trickle-down mechanism to distribute budget to
later levels. In terms of deadline distribution, a range of strategies for distribut-
ing a deadline over a workflow were presented. In all strategies, the deadline
was divided and distributed over the workflow as a set of sub-deadline. Over-
all, the strategy that takes into consideration the execution time of each level as
well as the number of tasks in the level yields the lowest cost.

With additional constraints imposed by users, the problem of workflow schedul-
ing becomes even more challenging. Chapter 6 presented a new heuristic for
scheduling workflows constrained by both budget and deadline. The heuris-

8.2. FUTURE WORK DIRECTIONS 161

tic used a novel trade-off factor between time and cost to determine the most
viable schedule, and used this to determine the most appropriate type of in-
stance to provision. A sensitivity analysis was performed on this algorithm and
we concluded that increasing budget on compute-intensive workflows tends
to achieve higher success rate, which implies that budget was more important
than deadline for such applications.

The algorithms presented in chapters 4, 5 and 6 belong to SPDP category
(see section 2.4) when the number of workflows is known in advance and an
unlimited number of instance types can be provisioned at runtime. To explore
the use of heuristic algorithms in near-realtime situations, when scheduling of
an unpredictable stream of workflows is needed, chapter 7 focused on dynamic
scheduling. A novel algorithm was introduced to solve the multiple workflow
scheduling constrained by deadline on the cloud. This algorithm is placed in
DPDP category, when an incoming workload of non-periodic workflows can
be arrived at any time. The results demonstrate that the proposed algorithm
utilizes deadline while finding a schedule without considerable failures and
lower cost.

8.2 Future Work Directions

The current research and results lay the ground work towards scientific work-
flow scheduling in cloud. In future, various extensions to the current research
are possible to further enrich the problem domain. This final section of the the-
sis outlines some future research directions:

• Workflow structure

Chapter 3 discussed eight different policies (summarized in Table 4.1) in
order to show how the order of execution can influence the scheduling
results, particularly the cost. The results of the experiments suggest that
the structure of workflows can significantly impact on the ranking and
scheduling cost. Therefore, it is crucial to develop a better understand-

162 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

ing of workflow structure and its impact on scheduling performance as a
critical prelude to the design of new heuristic scheduling algorithms.

• WaaS provider

Dynamic workflow scheduling is an open and difficult problem, and a
workable solution will benefit science and research across many fields by
decreasing cost and increasing experimental throughput. Therefore, fo-
cus on Workflow as a Service (WaaS) provider is much required in order
to host many scientific applications. WaaS providers rent cloud instance
from IaaS and charge users to execute their applications. In such a dy-
namic environment, multiple workflows can be submitted to a provider
at different time intervals. WaaS should be able to dynamically schedule a
workload while considering different user’s requirements. The next step
for advancing WaaS is to decide the right number of instances required to
execute a workload in favor of minimize the cost of leased resources from
the users’ perspective, and simultaneously maximize the utilization from
the providers’ perspective.

• Multiple Constraints Another important consideration is the extension
of the algorithms to consider more objectives such as robustness, secu-
rity and privacy. For example, some scientific applications in bioinformat-
ics and medical research domain analyze and produce sensitive files that
need to be kept secure. Therefore, scheduling algorithms for such applica-
tions need to consider security and locality aspects to protect user’s data.

• Energy Efficient Scheduling

Data centers are expensive for hosting scientific applications and consume
huge amount of energy. Based on the recent report in [95], data centers in
U.S. consumed about 1.8% of total power consumption, and registered
a 4% increase from 2010 to 2014. Therefore, more studies in workflow
scheduling in cloud considering energy efficiency are much required.

• New cost model

8.2. FUTURE WORK DIRECTIONS 163

Some cloud providers, such as Amazon, charge users on an hourly inter-
val from the time of provisioning, even if the instance is only used for a
fraction of that period. However, at the final stage of writing this thesis,
Amazon instance prices have been changed 1. Instances that are launched
in On-Demand, Reserved, and Spot form will be billed in one-second in-
crements. This raises some new challenges in terms of vm utilization,
profit maximization, performance variation of instances, provisioning and
releasing delays of instances, that need to be considered as future direc-
tions.

1https : //aws.amazon.com/blogs/aws/new−per−second−billing−for−ec2−instances−
and− ebs− volumes/

164 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

Bibliography

[1] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Ha-
zlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott,
N. Wilkins-Diehr, Xsede: Accelerating scientific discovery, Computing in
Science Engineering 16 (5) (2014) 62–74.

[2] B. P. Abbott, R. Abbott, et al., Observation of gravitational waves from a
binary black hole merger, Phys. Rev. Lett. 116 (2016) 61–102.

[3] V. Mayer-Schonberger, K. Cukier, Big Data: A Revolution That Will Trans-
form How We Live, Work, and Think, Houghton Mifflin Harcourt, Boston,
2013.

[4] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud computing: A
view of scientific applications, in: 2009 10th International Symposium on
Pervasive Systems, Algorithms, and Networks, 2009, pp. 4–16.

[5] C. Evangelinos, C. N. Hill, Cloud computing for parallel scientific hpc ap-
plications: Feasibility of running coupled atmosphere-ocean climate mod-
els on amazons ec2, in: In The 1st Workshop on Cloud Computing and its
Applications (CCA), 2008, pp. 2–34.

[6] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. J. Wasserman, N. J. Wright, Performance analysis of high performance
computing applications on the amazon web services cloud, in: Proc.
2nd IEEE Intl. Conference on Cloud Computing Technology and Science,
CloudCom10, 2010, pp. 159–168.

165

166 BIBLIOGRAPHY

[7] S. C. Park, S. Y. Ryoo, An empirical investigation of end-users switching
toward cloud computing: A two factor theory perspective, Computers in
Human Behavior 29 (1) (2013) 160–170.

[8] I. T. Foster, R. K. Madduri, Science as a service: How on-demand comput-
ing can accelerate discovery, in: Proceedings of the 4th ACM Workshop on
Scientific Cloud Computing, Science Cloud ’13, ACM, 2013, pp. 1–2.

[9] R. Chard, K. Chard, K. B. andLukasz Lacinski, R. Madduri, I. Foster, Cost-
aware cloud provisioning, in: the IEEE 11th International Conference on
E-Science, 2015, pp. 136–144.

[10] I. Foster, Service-oriented science: scaling the application and impact of
eresearch (abstract), in: First International Conference on e-Science and
Grid Computing (e-Science’05), 2005, pp. 1–2.

[11] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, I. Foster,
Cost-aware elastic cloud provisioning for scientific workloads, in: pro-
ceedings of the 8th IEEE International Conference on Cloud Computing
(CLOUD), New York, 2015, pp. 136–144.

[12] J. Ullman, Np-complete scheduling problems, Journal of Computer and
System Sciences 10 (3) (1975) 384 – 393.

[13] F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud: a survey, The Journal
of Supercomputing (2015) 1–46.

[14] R. Calheiros, R. Buyya, Meeting deadlines of scientific workflows in pub-
lic clouds with tasks replication, Parallel and Distributed Systems, IEEE
Transactions on 25 (7) (2014) 1787–1796.

[15] R. Sakellariou, H. Zhao, E. Tsiakkouri, M. D. Dikaiakos, Scheduling work-
flows with budget constraints, in: in Integrated Research in Grid Comput-
ing, S. Gorlatch and M. Danelutto, Eds.: CoreGrid series, Springer-Verlag,
2007.

BIBLIOGRAPHY 167

[16] K. Chard, K. Bubendorfer, P. Komisarczuk, High occupancy resource allo-
cation for grid and cloud systems, a study with drive, in: Proceedings of
the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, ACM, New York, NY, USA, 2010, pp. 73–84.

[17] R. Moore, T. A. Prince, M. Ellisman, Data-intensive computing and digital
libraries, Commun. ACM 41 (11) (1998) 56–62.

[18] F. A. da Silva, H. Senger, Improving scalability of bag-of-tasks applications
running on masterslave platforms, Parallel Computing 35 (2) (2009) 57 –
71.

[19] T. D. Braun, H. J. Siegel, N. Beck, L. L. Blni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, R. F. Freund, A com-
parison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems, Journal of Parallel and
Distributed Computing 61 (6) (2001) 810 – 837.

[20] D. P. da Silva, W. Cirne, F. V. Brasileiro, Trading Cycles for Information: Us-
ing Replication to Schedule Bag-of-Tasks Applications on Computational
Grids, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 169–180.

[21] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi, Char-
acterizing and profiling scientific workflows, Future Generation Computer
Systems 29 (3) (2013) 682 – 692.

[22] G. Berriman, A. Laity, J. Good, J. Jacob, D. Katz, E. Deelman, G. Singh,
M. Su, T. Prince, Montage: The architecture and scientific applications of
a national virtual observatory service for computing astronomical image
mosaics, in: Proceedings of Earth Sciences Technology Conference, 2006.

[23] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algorithms for cost-
and deadline-constrained provisioning for scientific workflow ensembles
in iaas clouds, Future Generation Computer Systems 48 (2015) 1 – 18.

168 BIBLIOGRAPHY

[24] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve,
C. Kesselman, P. Maechling, G. Mehta, K. Milner, D. Okaya, P. Small,
K. Vahi, Cybershake: A physics-based seismic hazard model for southern
california, Pure and Applied Geophysics 168 (3) (2011) 367–381.

[25] G. Brumfiel, High-energy physics: Down the petabyte highway, Nature
News 469 (7330) (2011) 282–283.

[26] I. Foster, The Grid: A New Infrastructure for 21st Century Science, John
Wiley and Sons, Ltd, 2003, pp. 51–63.

[27] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing
360-degree compared, in: Grid Computing Environments Workshop. GCE
’08’, 2008, pp. 1–10.

[28] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, Workflows for e-Science:
Scientific Workflows for Grids, Springer Publishing Company, Incorpo-
rated, 2014.

[29] P. Mell, T. Grance, Tech. rep., National Institute of Standards and Technol-
ogy (NIST), Gaithersburg, MD.

[30] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and re-
search challenges, Journal of Internet Services and Applications 1 (1) (2010)
718.

[31] W. Wang, D. Niu, B. Li, B. Liang, Dynamic cloud resource reservation
via cloud brokerage, in: 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, 2013, pp. 400–409.

[32] Cloud computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility, Future Generation Computer Sys-
tems 25 (6) (2009) 599 – 616.

[33] N. Kokash, An introduction to heuristic algorithms, Department of Infor-
matics and Telecommunications (2005) 1–8.

BIBLIOGRAPHY 169

[34] K. Miettinen, F. Ruiz, A. P. Wierzbicki, Introduction to multiobjective
optimization: interactive approaches, in: Multiobjective Optimization,
Springer, 2008, pp. 27–57.

[35] C. R. Reeves, Modern heuristic techniques for combinatorial problems,
John Wiley & Sons, Inc., 1993.

[36] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed
task graphs to multiprocessors, ACM Computing Surveys (CSUR) 31 (4)
(1999) 406–471.

[37] M. Wang, W. Zeng, A comparison of four popular heuristics for task
scheduling problem in computational grid, in: 2010 6th International Con-
ference on Wireless Communications Networking and Mobile Computing
(WiCOM), 2010, pp. 1–4.

[38] H. Liu, A. Abraham, A. E. Hassanien, Scheduling jobs on computational
grids using a fuzzy particle swarm optimization algorithm, Future Gener-
ation Computer Systems 26 (8) (2010) 1336 – 1343.

[39] Z. Beheshti, S. M. H. Shamsuddin, A review of population-based meta-
heuristic algorithms, Int. J. Adv. Soft Comput. Appl 5 (1) (2013) 1–35.

[40] C. W. Tsai, W. C. Huang, M. H. Chiang, M. C. Chiang, C. S. Yang, A hyper-
heuristic scheduling algorithm for cloud, IEEE Transactions on Cloud
Computing 2 (2) (2014) 236–250.

[41] J. Yu, R. Buyya, K. Ramamohanarao, Workflow scheduling algorithms for
grid computing, in: Metaheuristics for scheduling in distributed comput-
ing environments, Springer, 2008, pp. 173–214.

[42] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F. Freund, Dynamic
mapping of a class of independent tasks onto heterogeneous computing
systems, Journal of Parallel and Distributed Computing 59 (2) (1999) 107 –
131.

170 BIBLIOGRAPHY

[43] Y. Yuan, X. Li, Q. Wang, Y. Zhang, Bottom level based heuristic for work-
flow scheduling in grids, Chinese Journal of Computers-Chinese Edition-
31 (2) (2008) 282–290.

[44] J. Yu, R. Buyya, C. K. Tham, Cost-based scheduling of scientific workflow
applications on utility grids, in: First International Conference on e-Science
and Grid Computing., 2005, pp. 140–147.

[45] Y. Yuan, X. Li, Q. Wang, X. Zhu, Deadline division-based heuristic for cost
optimization in workflow scheduling, Information Sciences 179 (15) (2009)
2562–2575.

[46] S. Abrishami, M. Naghibzadeh, D. H. Epema, Deadline-constrained work-
flow scheduling algorithms for infrastructure as a service clouds, Future
Generation Computer Systems 29 (1) (2013) 158 – 169.

[47] L. Bittencourt, E. Madeira, HCOC: a cost optimization algorithm for work-
flow scheduling in hybrid clouds, Journal of Internet Services and Appli-
cations 2 (3) (2011) 207–227.

[48] E.-K. Byun, Y.-S. Kee, J.-S. Kim, S. Maeng, Cost optimized provisioning of
elastic resources for application workflows, Future Generation Computer
Systems 27 (8) (2011) 1011 – 1026.

[49] J. Sahni, D. Vidyarthi, A cost-effective deadline-constrained dynamic
scheduling algorithm for scientific workflows in a cloud environment,
Cloud Computing, IEEE Transactions on PP (99) (2015) 1–1.

[50] J. Yu, R. Buyya, A budget constrained scheduling of workflow applications
on utility grids using genetic algorithms, in: Workshop on Workflows in
Support of Large-Scale Science, IEEE, 2006, pp. 1–10.

[51] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, Parallel and
Distributed Systems, IEEE Transactions on 13 (3) (2002) 260–274.

BIBLIOGRAPHY 171

[52] J. Li, S. Su, X. Cheng, Q. Huang, Z. Zhang, Cost-conscious scheduling for
large graph processing in the cloud, in: High Performance Computing
and Communications (HPCC), 2011 IEEE 13th International Conference
on, 2011, pp. 808–813.

[53] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, J. Wang, Cost-efficient task
scheduling for executing large programs in the cloud, Parallel Computing
39 (45) (2013) 177 – 188.

[54] W. Zheng, R. Sakellariou, Budget-Deadline Constrained Workflow Plan-
ning for Admission Control, Journal of Grid Computing 11 (4) (2013)
633651.

[55] W. Zheng, R. Sakellariou, Budget-deadline constrained workflow planning
for admission control, Journal of Grid Computing 11 (4) (2013) 633 – 651.

[56] X. Lin, C. Q. Wu, On scientific workflow scheduling in clouds under bud-
get constraint, in: 2013 42nd International Conference on Parallel Process-
ing, 2013, pp. 90–99.

[57] C. Q. Wu, X. Lin, D. Yu, W. Xu, L. Li, End-to-end delay minimization for
scientific workflows in clouds under budget constraint, IEEE Transactions
on Cloud Computing 3 (2) (2015) 169–181.

[58] L. Zeng, B. Veeravalli, X. Li, Scalestar: Budget conscious scheduling
precedence-constrained many-task workflow applications in cloud, in:
Advanced Information Networking and Applications (AINA), 2012 IEEE
26th International Conference on, 2012, pp. 534–541.

[59] M. Mao, M. Humphrey, Scaling and scheduling to maximize application
performance within budget constraints in cloud workflows, in: Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium
on, 2013, pp. 67–78.

172 BIBLIOGRAPHY

[60] A. M. Oprescu, T. Kielmann, Bag-of-tasks scheduling under budget con-
straints, in: Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, 2010, pp. 351–359.

[61] J. Yu, M. Kirley, R. Buyya, Multi-objective planning for workflow execution
on grids, in: Proceedings of the 8th IEEE/ACM International Conference
on Grid Computing, GRID ’07, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 10–17.

[62] J. Yu, R. Buyya, Scheduling scientific workflow applications with deadline
and budget constraints using genetic algorithms, Scientific Programming
14 (3-4) (2006) 217–230.

[63] W.-N. Chen, J. Zhang, An ant colony optimization approach to a grid work-
flow scheduling problem with various qos requirements, Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
39 (1) (2009) 29–43.

[64] A. Verma, S. Kaushal, Bi-criteria priority based particle swarm optimiza-
tion workflow scheduling algorithm for cloud, in: 2014 Recent Advances
in Engineering and Computational Sciences (RAECS), 2014, pp. 1–6.

[65] D. Poola, S. Garg, R. Buyya, Y. Yang, K. Ramamohanarao, Robust schedul-
ing of scientific workflows with deadline and budget constraints in clouds,
in: Advanced Information Networking and Applications (AINA), 2014
IEEE 28th International Conference on, 2014, pp. 858–865.

[66] K. Liu, H. Jin, J. Chen, X. Liu, D. Yuan, Y. Yang, A compromised-time-cost
scheduling algorithm in swindew-c for instance-intensive cost-constrained
workflows on a cloud computing platform, Int. J. High Perform. Comput.
Appl. 24 (4) (2010) 445–456.

[67] L. F. Bittencourt, E. R. M. Madeira, Towards the scheduling of multiple
workflows on computational grids, Journal of Grid Computing 8 (3) (2010)
419–441.

BIBLIOGRAPHY 173

[68] H. Zhao, R. Sakellariou, Scheduling multiple dags onto heterogeneous sys-
tems, in: Proceedings 20th IEEE International Parallel Distributed Process-
ing Symposium, 2006, pp. 1–14.

[69] U. Hönig, W. Schiffmann, A meta-algorithm for scheduling multiple dags
in homogeneous system environments, in: Proceedings of the eighteenth
IASTED International Conference on Parallel and Distributed Computing
and Systems (PDCS06), 2006.

[70] W. Chen, Y. C. Lee, A. Fekete, A. Y. Zomaya, Adaptive multiple-workflow
scheduling with task rearrangement, The Journal of Supercomputing 71 (4)
(2015) 1297–1317.

[71] H.-J. Jiang, K.-C. Huang, H.-Y. Chang, D.-S. Gu, P.-J. Shih, Scheduling
Concurrent Workflows in HPC Cloud through Exploiting Schedule Gaps,
Springer Berlin Heidelberg, 2011, pp. 282–293.

[72] J. Wang, P. Korambath, I. Altintas, J. Davis, D. Crawl, Workflow as a service
in the cloud: Architecture and scheduling algorithms, Procedia Computer
Science 29 (2014) 546 – 556, 2014 International Conference on Computa-
tional Science.

[73] M. A. Rodriguez, R. Buyya, Scheduling dynamic workloads in multi-
tenant scientific workflow as a service platforms, Future Generation Com-
puter Systems.

[74] G. Juve, E. Deelman, Resource provisioning options for large-scale scien-
tific workflows, in: eScience, 2008. eScience ’08. IEEE Fourth International
Conference on, 2008, pp. 608–613.

[75] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, K. Vahi, Char-
acterization of scientific workflows, in: Third Workshop on Workflows in
Support of Large-Scale Science (WORKS)., 2008, pp. 1–10.

174 BIBLIOGRAPHY

[76] S. M. Park, M. Humphrey, Predictable high-performance computing using
feedback control and admission control, IEEE Transactions on Parallel and
Distributed Systems 22 (3) (2011) 396–411.

[77] X. Liu, J. Chen, Y. Yang, Temporal QoS management in scientific cloud
workflow systems, Elsevier, 2012.

[78] J. Livny, H. Teonadi, M. Livny, M. K. Waldor, High-throughput, kingdom-
wide prediction and annotation of bacterial non-coding rnas, PloS one 3 (9)
(2008) e3197.

[79] A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura, F. J.
Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, et al., Ligo: The
laser interferometer gravitational-wave observatory, science (1992) 325–
333.

[80] Usc molecular genomics core, http://epigenome.usc.edu.

[81] Y.-K. Kwok, L. Ahmad, Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors, Parallel and Dis-
tributed Systems, IEEE Transactions on 7 (5) (1996) 506–521.

[82] G. Sih, E. Lee, A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures, Parallel and Dis-
tributed Systems, IEEE Transactions on 4 (2) (1993) 175–187.

[83] M. A. Khan, Scheduling for heterogeneous systems using constrained crit-
ical paths, Parallel Computing 38 (4) (2012) 175–193.

[84] R. Chard, K. Bubendorfer, B. Ng, Network health and e-science in commer-
cial clouds, Future Generation Computer Systems 56 (2016) 595 – 604.

[85] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,
CloudSim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms, Software:
Practice and Experience 41 (1) (2011) 23–50.

http://epigenome.usc.edu.

BIBLIOGRAPHY 175

[86] M. R. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for
science grids: a viable solution?, in: Proceedings of the 2008 international
workshop on Data-aware distributed computing, ACM, 2008, pp. 55–64.

[87] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema, A
performance analysis of ec2 cloud computing services for scientific com-
puting, in: Cloud Computing, Vol. 34, Springer Berlin Heidelberg, 2010,
pp. 115–131.

[88] M. Mao, M. Humphrey, A performance study on the vm startup time in the
cloud, in: 2012 IEEE Fifth International Conference on Cloud Computing,
IEEE Computer Society, Washington, DC, USA, 2012, pp. 423–430.

[89] V. Arabnejad, K. Bubendorfer, Cost effective and deadline constrained sci-
entific workflow scheduling for commercial clouds, in: IEEE 14th Interna-
tional Symposium on Network Computing and Applications, IEEE, Cam-
bridge, MA USA, 2015, pp. 106–113.

[90] V. Arabnejad, K. Bubendorfer, B. Ng, K. Chard, A deadline con-
strained critical path heuristic for cost-effectively scheduling workflows,
in: IEEE/ACM 8th International Conference on Utility and Cloud Com-
puting (UCC), IEEE, Limassol, Cyprus, 2015, pp. 242–250.

[91] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Cost- and deadline-
constrained provisioning for scientific workflow ensembles in iaas clouds,
in: International Conference on High Performance Computing, Network-
ing, Storage and Analysis, SC 12, Los Alamitos, CA, USA, 2012, pp. 1–11.

[92] A. Verma, S. Kaushal, Cost-time efficient scheduling plan for executing
workflows in the cloud, Journal of Grid Computing 13 (4) (2015) 495–506.

[93] M. A. Rodriguez, R. Buyya, Budget-Driven Scheduling of Scientific Work-
flows in IaaS Clouds with Fine-Grained Billing Periods, ACM Trans. Au-
ton. Adapt. Syst. 12 (2) (2017) 5:1–5:22.

176 BIBLIOGRAPHY

[94] Z. Liu, R. Kettimuthu, S. Leyffer, P. Palkar, I. Foster, A mathematical pro-
gramming and simulation based framework to evaluate cyberinfrastruc-
ture design choices, in: the proceedings of the 13th IEEE International Con-
ference on eScience, IEEE, Auckland, New Zealand, 2017.

[95] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, W. Lintner, United states data center
energy usage report.

	Introduction
	Problem Statement: Workflow Scheduling and Resource Provisioning in Cloud
	Research Challenges
	Contribution
	Thesis Organization

	Workflow Scheduling: Taxonomy and Literature Review
	Application Model
	Bag of Tasks (BoT)
	Workflows

	Resource Model
	Grid Computing Platforms
	Cloud Computing Platforms

	Scheduling Algorithms
	Heuristic-Based Algorithms
	Meta-Heuristic (Evolutionary) Algorithms
	Hybrid Algorithms

	Static and Dynamic Scheduling
	Static Planning, Static Provisioning (SPSP)
	Dynamic Planning, Static Provisioning (DPSP)
	Static Planning, Dynamic Provisioning (SPDP)
	Dynamic Planning, Dynamic Provisioning (DPDP)

	Scheduling Criteria
	Optimization
	Constraints

	Related Work
	Deadline Constrained Scheduling
	Budget Constrained Methods
	Deadline and Budget Constrained Scheduling
	Multiple Workflows

	Motivation and Problem Statement
	Motivation
	Dynamic Provisioning
	On-demand Resources
	Elasticity
	User Requirements

	Scientific Workflows Overview
	Problem Definition
	Application Model
	System Model
	Definitions

	Deadline Constrained Workflow Scheduling
	Introduction
	PDC and DCCP Algorithms
	Preprocessing Step
	Task Prioritization
	Instance Selection in PDC
	Instance Selection in DCCP
	Time Complexity

	Evaluation
	Performance Metrics
	Task Selection in PDC
	Backfilling in DCCP
	Cost Comparison Analysis
	Success Rate Analysis
	Throughput Analysis

	Summary

	Distribution Strategies for Scientific Workflow Scheduling
	Introduction
	Budget Distribution Strategies
	The Budget-Aware Scheduling Algorithm
	 Workflow Partitioning
	Budget Distribution
	Task Selection
	Instance Selection
	Evaluation
	Analysis of LIGO
	Other workflows

	Deadline Distribution Strategies
	The DDR algorithm
	Workflow partitioning
	Deadline Distribution
	Task Selection
	Instance Selection
	Evaluation
	Experimental Results
	Cost comparison for distribution strategies
	Cost Comparison with other algorithms

	Summary

	Budget Deadline Constrained Workflow Scheduling
	Introduction
	The BDAS Algorithm
	Workflow Partitioning
	The ``All in'' Budget Distribution
	Deadline Distribution
	Task Selection
	Instance Selection

	Evaluation
	Performance Metrics

	Experimental Results
	CYBERSHAKE
	EPIGENOMICS
	LIGO
	MONTAGE
	SIPHT
	Total Success Rate
	A summary of the performance of scheduling algorithms
	Sensitivity Analysis
	Decreasing billing cycle

	Summary

	Dynamic Workflow Scheduling
	Introduction
	System Architecture
	Workload Model
	The DWS algorithm
	Workflow Partitioning
	Deadline Distribution
	Task Selection
	Instance Selection

	Evaluation
	Performance Metrics

	Experimental Results
	Success Rate Analysis
	Cost Comparison Analysis
	Deadline Utilization

	Summary

	Conclusions and Future Directions
	Summary of Contributions
	Future Work Directions

