
Forwarding Table Entries in
Software Defined Networks:
Representation and Uses in

Network Engineering

by

Liang Yang

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Network Engineering.

Victoria University of Wellington
2018





Abstract

Software Defined Networking (SDN) is an emerging architecture that de-
couples the network control and forwarding functions. In SDN, the func-
tionality of static configuration and routing table in a traditional network
has been replaced by forwarding table entries (FTEs). Thus a system-
atic research on FTE to better monitor traffic and manage networking re-
sources becomes crucial in SDN. There are already some initial works
on FTE representation from mathematical/logical perspective. However,
they usually concentrate on the abstraction and expression of FTE rather
than the applications in real network. Based on existing research, a con-
troller is unable to monitor networking traffic and manage networking
resources from a network-wide perspective. To address these challenges,
Boolean algebra is chosen and extended in this thesis to examine the rela-
tions and manipulations among FTEs together with traffic statistics. Spe-
cifically, three SDN applications: i) equivalence evaluation during FTE de-
ployment, ii) non-invasive traffic estimation and iii) anomaly detection,
have been proposed and verified with the help of Boolean algebra. All of
these applications rely on the mining of the FTEs and their associated stat-
istics, thus no overhead will be introduced to the switch’s original packet
forwarding functionalities. They can be easily deployed in production net-
works due to the non-invasive strategy as well as the feasibility and flex-
ibility in real networking scenarios.
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Chapter 1

Introduction

Software-Defined Networking (SDN) offers a way to achieve the net-
work agility required by increasingly dynamic environments such as net-
working virtualisation and cloud computing. SDN decouples the network
control plane from the network forwarding hardware, and moves the con-
trol logic and state to a programmable software component, the control-
ler. In essence, SDN is a logically centralised design which focuses on
network-wide visibility and control rather than device-level configuration
and management [1]. Compared with traditional networking, this archi-
tecture offers better administrative scalability which is the ability to ac-
commodate the communication growth as a network expands.

A core concept of SDN is that by creating a few careful abstractions,
the complexity of the underlying components is hidden and new solu-
tions are easily developed via the programming interface between the
network devices and the controller. One popular interface is OpenFlow,
the de facto standard that gives access to the forwarding plane of a net-
work [2]. In OpenFlow, forwarding table entry (FTE) has replaced routing
table entry in traditional networking to manage the forwarding capabilit-
ies of switches and routers. Packets are forwarded according to the path
which is composed of these entries. For a software defined network, the
behaviours of all packets can be precisely controlled by manipulating FTE.

15



16 CHAPTER 1. INTRODUCTION

This is the motivation for the research on FTE.

1.1 Motivation

Traditional networks rely on routing protocols to define the forwarding
path for packets while SDN manages the network via FTEs. In SDN, the
networking forwarding functionalities are implemented by the manipu-
lations of the FTEs. FTE is well organised but also complicated in terms
of component structure and functionalities. Based on the latest OpenFlow
specification [2], there are multiple flow tables inside a switch, and each
FTE contains match fields, instructions, priority, etc. An incoming packet
can be modified, forwarded or dropped according to the instructions of
a matching FTE. Moreover, each FTE is associated with a statistic allow-
ing the controller to monitor the network. From the view of controller, it
has a global view of all the FTEs in all switches. Hence, there is a need
to find a systematic method to abstract, analyze and manipulate the FTEs
and further apply them into the network management.

An intuitive solution to devise an FTE representation is to find a suit-
able mathematical approach and then apply it to FTEs. Some research-
ers have already attempted to do this with logical connective [3, 4] or ab-
stract algebra [5–14]. Unfortunately, these existing works are constrained
by the selected mathematical or logical methods and fail to take into ac-
count major FTE attributes especially priority and multiple flow tables.
Since it is unlikely to find an exact matching model to express all these
key attributes, an adaptation and expansion of the existing methods will
be required.

The goal of a representation is to better understand and utilise the func-
tionality of FTEs inside a software defined network. An effective FTE rep-
resentation must meet the following criteria: (i) it should cover the ma-
jor attributes of FTE, for example, wildcard, priority and multi-table; (ii)
this representation is capable of exploiting the various manipulations on
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FTEs such as validation and facilitating FTE placement; and (iii) the rep-
resentation should have the ability to integrate network information such
as traffic statistics and topology to resolve realistic networking problems.

In a word, compared to traditional distributed networking, a control-
ler in SDN has the ability to monitor a network’s status and manage the
resources. This is achieved by the understanding and manipulation of the
FTEs. However, the correctness, robustness and reliability of FTE place-
ment and optimasation must be guaranteed by a systematic method. This
requirement inspires the first motivation: find a way to represent the core
attributes of FTE. With the help of this representation, a controller can eas-
ily transfer high-level policies to low-level FTEs and correctly place them
into switches or routers. Moreover, SDN does not only offer the conveni-
ence of configuration and management, it enables the possibility to dy-
namically regulate a network’s resources. The typical applications include
the statistics estimation, load balancing and anomaly detection. These ob-
jectives cannot be accomplished without a network’s statistics and topo-
logy information. A good representation should be easily integrated with
these information to solve realistic networking problems. Thus the util-
isation of a representation in network engineering becomes this thesis’s
second motivation.

1.2 Research Scope

An FTE representation can be achieved by adopting either top-down (high-
level) or bottom-up (low-level) strategy. A top-down approach starts with
a big picture and breaks down from there into small segments. A rep-
resentation based on this approach is suitable for representing the fun-
damental mechanism of FTE. Instead, a bottom-up approach builds up a
system from the analysis of the detailed functionalities of each compon-
ent and then tries to put all pieces together. The representation designed
by a bottom-up approach is good for describing FTE’s networking func-
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tionalities. Take the decision tree model as an example, every single node
represents an individual packet forwarding rule while the links between
nodes express the relations among all the tables in a switch [15].

The research scope of this thesis is illustrated in Fig. 1.1 which indic-
ates the scope mainly falls into low-level representation and multiple flow
table applications (the second quadrant). Both the third and fourth quad-
rants focus on the applications of individual forwarding tables or switches
with the help of either high-level or low-level representation. As indic-
ated by the blank first quadrant, currently there is no research which fully
represents FTE with a high-level representation while achieving network-
wide applications.

The low-level representations focus on the specific FTE attributes while
the high-level representations emphasise on the overall functionality of a
network. The most widely used low-level FTE representations include
rule decomposition/composition (DIFANE [16] and Palette [17]), graph
theory (CacheFlow [15] and EAR [18] ), decision tree model (FlowAd-
apter [15], CAB [19], vCRIB [20] and Maple [21]), rectangular/brick rep-
resentation (One Big Switch [22] and RuleBricks [23]). These approaches
are good at expressing the attributes of a single FTE as well as the relations
among multiple FTEs inside one table, thus they are suitable for investigat-
ing the issues such as redundancy and routing loop in an individual table.
They are also used to optimise the placement of FTE in a single table.

As opposed to the low-level representations which pay more atten-
tion to the structures and details of an FTE, the high-level representa-
tions attempt to interpret the FTEs from the perspective of a network.
They use either formal mathematical logics, for example, Kleene algebra
(NetKAT [5]), first-order logic (FLOVER [9]), propositional logic (NICE
[14]), set theory (Frenetic [7] and PathQuery [24]), or high-level program-
ming languages, for example, functional programming (Nettle [25]), de-
clarative programming (Pyretic [26]), domain-specific language (Feather-
weight [13,27] and XML/NML [28,29]) to approximate or express the for-
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warding behaviour of a software defined network.

Representation

Application

Bottom-up (low-level) Top-down (high-level)

Single Flow Table

Multiple Flow Table
(Multiple Switches)

Frenetic

DIFANE Nettle

NICE

FlowAdapter

Featherweight

FLOVER
One Big 
Switch

Palette

vCRIB Maple

RuleBricks

CAB

NetKAT

EAR

CacheFlow Pyretic

PathQuery

XML/NML

Equivalent Forwarding Set

Heavy Hitter Detection

Deterministic Traffic Estimation

Figure 1.1: Research scope & contributions

Unlike the traditional networking which requires a network adminis-
trator to statically configure a network at device-level scale, SDN provides
the ability to dynamically program networking devices at network-wide
scale, which means better scalability can be achieved by SDN. Hence an
ideal SDN representation is able to reflect the network-wide functionalit-
ies as well as to cover all the attributes of an FTE. To the best of my know-
ledge, there is no such existing representation method to achieve both ob-
jectives. This thesis does not intend to fill that gap by inventing a new
formal method to fully represent all attributes of a software defined net-
work, it endeavours to develop practical SDN applications based on the
selected FTE representation.
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1.3 Research Questions

Forwarding table entry is a bridge between a controller and a switch, it
bears the responsibility for forwarding packets and reporting traffic stat-
istics, a better understanding and manipulation of the forwarding table
entries to explore more applications become critical. The core research
questions of this thesis are: “Is there an effective way to represent the for-
warding table entries in SDN ?” and “How to exploit this representation
in network engineering to offer better or novel solutions to manage and
monitor large-scale networks.”. More specifically, the following research
questions are expected to be answered in this thesis:

• How to evaluate the forwarding behavior of the various types of
table(s)? Given two different types of tables, is there a systematic
method to determine whether they achieve the same forwarding func-
tionalities?

• How to estimate any given flow’s statistics without impacting the
existing forwarding functionalities? This method should not require
any new FTE installation.

• How to detect heavy flow traffic without introducing any overhead
on switch side? This approach should not require the switch to send
any sampling packets or do any hardware customisation.

1.4 Research Contributions

The overall goal of this thesis is to explore the capability of SDN by finding
and applying a suitable FTE representation. With the adaptation and ex-
pansion of Boolean algebra, the following three solutions are investigated
and implemented.

• Equivalent Forwarding Set Evaluation
In SDN, the forwarding pipelines are constructed either in the form
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of a single table or multiple linked tables. By converting any given
arbitrary forwarding table(s) into a uniform representation called
equivalent forwarding set, the process of evaluating equivalence between
two forwarding sets in terms of networking functionality are form-
alised and implemented. It facilitates the flow table management in
the controller as well as the FTE placement in the switch.

• Non-invasive Deterministic Statistics Estimation
For a flow with a matching FTE in a switch, its statistic is easily ac-
quired by a status inquiry from a controller to the switch on this
flow’s corresponding FTE. But for the traffic estimation on the flow
whose corresponding FTE does not exist, its statistic is not known
until a new FTE is installed for the purpose of monitoring. However,
the extra packet forwarding delay and the decrease of throughput as
well as the potential conflicts between the monitoring FTEs and the
existing FTEs jeopardise the feasibility of this approach. To avoid
these drawbacks, a non-invasive traffic estimation approach based
on the existing FTEs’ statistics has been implemented and verified.
This traffic estimation solution does not affect the existing packet for-
warding functionality and performance, which makes it more prac-
tical and suitable for large-scale data centre networks.

• Heavy Hitter Detection
In a large network, it is often important to be able to detect high-
volume traffic (heavy hitter). A new heavy hitter detection approach
which relies on mining traffic statistics (e.g. port bitrate) and FTE
across multiple switches is designed and implemented. Compar-
ing to the existing sampling-based and sketch-based detections, this
approach simultaneously achieves considerable accuracy and good
scalability.
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1.5 Research Framework

All the aforementioned contributions rely on the same representation -
Boolean algebra. Boolean algebra is naturally suitable for FTE because
the match fields and their interactions are easily expressed in the form of
Boolean function. Figure 1.2 presents the adopted research framework in
which three applications are developed with the help of Boolean algebra.

FTE

. . . . . .

FTE

Traffic

Topology

Boolean
Algebra

Adaptation
and

Extension

Switch 1, 2 · · ·m

Table 1, 2 · · ·n

Equivalent Forwarding
Set Evaluation

Deterministic
Statistics Estimation

Heavy Hitter
Detection

Figure 1.2: Research framework

In this thesis, Boolean algebra is chosen to express and explore the cap-
ability of SDN. Some adaptations and extensions are made on Boolean
algebra to make it fully fit in with SDN forwarding pipeline. Unlike the
existing research which only takes single table into consideration, mul-
tiple flow tables as well as the tables across multiple switches are invest-
igated in this thesis. Moreover, real-time traffic and topology information
are also integrated with FTE to assist an SDN controller to better under-
stand and manage all the resources inside a software defined network. In
this thesis, FTE, topology, and traffic statistics are considered as inputs,
Boolean algebra with its extension is the major research method, and the
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three applications become the outputs of Boolean algebra on these inputs.

1.6 Organisation of Thesis

The remainder of this thesis is outlined as Table 1.1. Chapter 2 presents a
literature review of the forwarding pipelines’ representations and applica-
tions in traditional networking as well as software defined networking. In
the next three chapters, the applications of Boolean algebra on FTE have
been fully discussed and researched. Specifically, they are equivalent for-
warding set evaluation on multiple flow tables inside a single switch, non-
invasive deterministic traffic statistics estimation of an individual switch
and heavy hitter detection across multiple switches, respectively. Finally
the content and outcome of this thesis have been summarised in chapter
6. Several potential research paths are also derived to benefit the future
development of SDN.

Table 1.1: Organisation of Thesis

Introduction Chapter 1

Background

and

Related Work

SDN Overview Section 2.1

FTE Overview Section 2.2

FTE Representation Section 2.3

FTE Application Section 2.4

Contributions
Equivalent Forwarding Set Evaluation Chapter 3

Deterministic Statistics Estimation Chapter 4

Heavy Hitter Detection Chapter 5

Conclusion Chapter 6

Appendicies

Boolean Reasoning Appendix A

Boolean Function Operations on Match Fields Appendix B

Formula vs Truth-table Comparison Appendix C

Test Environment Setup Appendix D

Acronyms and Abbreviations Appendix E



Chapter 2

Background and Related Work

The packet forwarding behaviour of a network relies on the rules residing
in the networking element (e.g. switches and routers) to forward pack-
ets. This is true for both traditional networking and software defined
networking, irrespective of a distributed or centralised network design.
These rules vary in their structures and sizes, but they represent the same
fundamental functionality: to match incoming packets against rules and
determine its forwarding behaviour. All these rules in a network device
constitute a packet forwarding pipeline, they mainly include: Access Con-
trol List (ACL) and IP routing entry in traditional networking as well as a
more generic type of forwarding table entry (FTE) in SDN.

Upon surveying the existing work on network forwarding, FTE ap-
pears to be a generic form of ACL and IP routing entry in SDN. FTE is the
core element that bears responsibilities of forwarding packets according
to controllers’ instructions. This chapter presents a literature review of the
representation and application of forwarding pipeline. The chapter offers
an extensive overview on the state-of-the-art advances in representations
of the packet forwarding pipelines that contributes to the understanding
of key features of a packet forwarding behaviour. This chapter reviews
existing and up-to-date technical solutions, identifies their basic charac-
teristics to derive the essential FTE attributes which must be covered by

24



2.1. SOFTWARE DEFINED NETWORKING: OVERVIEW 25

an FTE representation.

The scope of this background and related work includes FTE represent-
ation and networking applications based on the analysis and manipula-
tion of FTE. In the review of representation, the forwarding pipeline in tra-
ditional networking and SDN are inspected and characterised. Moreover,
the various representations to analyse FTE as well as the rationale why
they are chosen and their respective applicable scenarios are presented. In
the review of applications, two types of applications are surveyed: equi-
valent forwarding table evaluation and traffic monitoring.

2.1 Software Defined Networking: Overview

With the introduction of SDN, the control plane of a network is moved to
a single entity while in traditional networking, switches and routers are
responsible for forwarding packets. This entity can be a physical single
device such as a server or a set of logically centralised but physically dis-
tributed servers. A simplified architecture view of SDN is depicted in
Fig. 2.1. The very core of a SDN enabled network is the controller which
not only exercises direct control over all forwarding devices, but also re-
sponds to the requests from the application side. A controller commu-
nicates with the higher-level components, the applications, via the north-
bound interface. Similarly, it also communicates with the lower-level com-
ponents, the network devices, via the southbound interface. The first
standard southbound interface is OpenFlow which provides an industry-
standard application programming interface (API) and protocol to pro-
gram forwarding tables in switches.

While OpenFlow is the first and probably most well-known south-
bound interface, it is not the only one available for SDN. The traditional
network management protocols such as NETCONF, SNMP or routing pro-
tocol such as BGP have been reused to configure the switches in SDN.
Even though they cannot provide the same flexibility as OpenFlow, they
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Figure 2.1: Simplified SDN Architecture

are still categorized as southbound APIs. Besides, there are some altern-
atives to OpenFlow which include Open vSwitch Database Management
Protocol (OVSDB) [30], ForCES [31], OpFlex [32], etc. OVSDB manages
Open vSwitch implementation following the same way as OpenFlow. It
just adopts a non-OpenFlow protocol to programme OpenFlow switches.
Similar to OpenFlow, both OpFlex and ForCES follow the policy-driven
mechanism. OpFlex replaces the OpenFlow controller and OpenFlow in-
terface with “Policy Authority” and “Policy Agent”, respectively. How-
ever, the switch in OpFlex still relies on the FTE-alike flow tables to for-
ward packets.

As a competing protocol to OpenFlow, ForCES is different from Open-
Flow in many aspects, but they share the same design principle in for-
warding models. ForCES manages the packet forwarding behaviour with
an abstraction of Logical Functional Blocks (LFBs) which share the similar
functionality as OpenFlow FTE. Both LFBs and OpenFlow tables consist
of “Match-Action”-alike entries, i.e. FTE. In view of this, though most
research in this thesis is exemplified through OpenFlow, the underlying
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principles extend to non-OpenFlow protocols too.

2.2 Forwarding Pipeline: Overview

In networking, a pipeline is a chain of packet-processing entities (or fil-
ters) connected in a certain type of structure, where the output of one en-
tity is the input of another one. For an individual device such as switch or
router, the entities include the various chained forwarding tables, for ex-
ample, ACL table, IP routing table in traditional networking and generic
forwarding table in SDN. For a network, the entities include forwarding
tables in all devices which are connected with a certain type of topology.
It is also called packet forwarding pipeline because its major function is
forwarding data packets between two devices.

2.2.1 Forwarding Tables in Traditional Networking and SDN

As illustrated in Fig. 2.2, a packet’s forwarding path is determined by
the forwarding tables in each element. The forwarding tables in tradi-
tional networking are usually statically configured or generated by locally
running routing protocols while the tables in SDN switches can also be
dynamically provisioned and updated by a centralised controller.

FT
FT

FTFT

FT

FT

SNMP/CLI/RestAPI Manager
SDN Controller

Network element

Network element

Forwarding table 
(ACL, IP, SDN FTE)

Figure 2.2: A network abstraction: forwarding tables
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Traditional networking mainly relies on network protocols to perform
packet forwarding. However, some applications, such as firewall and load
balancing, need more flexible ways to dynamically regulate the network,
which is unlikely to be specified by a protocol in advance. To meet this
requirement, the concept of an ACL was introduced by Cisco to provide an
alternative to manipulate the switch forwarding behaviour. Thus network
management is partly achieved by ACL policy together with other pre-
configured protocols: the incoming packets match against these ACLs and
execute certain actions. This so called “policy-driven network” design is a
primitive type of forwarding table in SDN [33]. An ACL can be considered
as a special purpose filter in a forwarding pipeline which is designed to
specify the access rights allowed or denied for all incoming packets.

Besides ACL table, IP routing table has also been widely used in a for-
warding pipeline [34]. In a network, each networking device maintains a
routing table which consists of a set of IP prefix entries and their associ-
ated egress interface(s). When an IP data packet reaches at a device, this
packet’s destination address will be matched against the routing table to
find its egress interface(s) by matching against the longest IP prefix. Com-
pared to ACL, IP routing table is a generic purpose filter and the most
important components of a forwarding pipeline, it determines a packet’s
forwarding path in a network.

The core concept of SDN is that by creating a few careful abstractions
based on ACL and IP routing table, the complexity of the underlying com-
ponents is hidden and the new functionalities are easily developed via
the programming interface between the network devices and the control-
ler. One popular interface is OpenFlow, the de facto standard that gives
access to the forwarding plane of a network. In OpenFlow, FTE has re-
placed the ACL and routing entry in traditional networking to manage
the forwarding capabilities of the switches and routers. Packets are for-
warded according to the path which is composed of these entries. For a
pure software-defined network, the behaviours of all packets can be pre-
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cisely controlled by manipulating the FTEs.

OpenFlow was proposed in year 2008 and it is still evolving [35], the
mechanism and usage of FTE are not fully researched. The core idea of FTE
is similar to the policies which have been widely used in ACL while the
policy’s scope and depth have been largely extended in OpenFlow. Since
FTEs are not easily understood and manipulated as the network scales and
grows in complexity, it is important to find a way to represent it.

The concept of FTE is central to this thesis’s research framework (Fig.
1.2) because it directly determines the packet forwarding behaviour in a
software defined network and it is also the key element to connect con-
troller and switch. The two major perspectives of OpenFlow specification
are FTE manipulations (installation, deletion, modification) and statistics
updates [36]. This motivates the research on FTE representation and ex-
ploiting FTE to better manage a software defined network.

2.2.2 Past Work for Characterising Forwarding Behaviour

Previous work investigating forwarding behaviour can be classified into i)
ACL, ii) IP routing entry, iii) FTE. All of them are the filters in a pipeline but
their structure and functionalities vary. This section reviews the past work
for all these three table entries and derives the four essential attributes for
a successful forwarding pipeline representation.

2.2.2.1 Regulating Forwarding Behaviour by ACL

An ACL is composed of a sequence of rules to match against the packet
to determine whether a specific action is performed or not. It is a special
type of role-based access control (RBAC) [37]. A ”minimal RBAC Model”,
RBACm, can be compared with an ACL mechanism, ACLg, where only
groups are permitted as entries in the ACL [38]. ACL has been widely used
in computer system, such as the user account authentication, firewall, etc.
The prior research on ACL is mainly focused on the validation of these
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access control policies and the optimization of their storage space.
Lampson introduced the formal notions of subject and object as well as

an access matrix that mediated the access of subjects to objects [39].

Definition 2.2.1. Access matrix
An access matrix consists of a set of subjects s ∈ S, a set of objects o ∈
O, a set of operations op ∈ OP , and a function ops(s, o) ⊆ OP , which
determines the operations that subject s can perform on object o.

Figure 2.3 shows a select host in NetB being granted permission to ac-
cess NetA. All traffic sourced from Host B destined to NetA is permitted
while all other sourced from NetB destined to NetA will be denied. Its
corresponding access matrix is demonstrated in Table 2.1. The specified
operations (permit host 192.168.10.1) are performed on all incoming pack-
ets which are the implicit objects in an access matrix.

R1 NetBNetA

e0

Host B: 192.168.10.1

hostname R1
!
interface ethernet0
ip access-group 1 in
!
access-list 1 permit host 192.168.10.1

Figure 2.3: An ACL example

An access matrix can be easily transferred to the “match-action” form
(MAF) which has been specified in OpenFlow specification [2]. For the
case in Fig. 2.3, its equivalent MAF is illustrated in Table 2.2. An MAF



2.2. FORWARDING PIPELINE: OVERVIEW 31

Table 2.1: Access matrix for the ACL example in Fig. 2.3

subject object operation
Interface ethernet0 Incoming packets Permit host 192.168.10.1

* * Deny

does not include the field of object in access matrix because all ACLs share
the same object: incoming packets. The action in MAF only contains two
operations: permit and deny, all the rest information in an access mat-
rix is transferred into the match fields in a MAF. The default action for
all packets which are not explicitly permitted by ACLs is denial, this is
why the second row is added in Table 2.2. The match field in a MAF is
composed of an access matrix’s subject and the negatives of the fields in
operation. From the perspective of functionality, an ACL is equal to a gen-
eric forwarding table in which no constraints on match fields while only
two type of actions are allowed: permit and deny.

Table 2.2: “Match-action” form for the ACL example in Fig. 2.3

Match Fields Action
Ingress port = Ethernet 0
Destination IP Address = 192.168.10.1

PERMIT

* DENY

2.2.2.2 Regulating Forwarding Behaviour by IP Routing Table

An IP routing table determines which specific route is selected for a given
IP address. This entry represents the smallest subnet that contains the
given IP address. A routing table captures two aspects: composition and
relation [40]. Composition analyses the components of a routing table and
their respective meaning; Relation interprets a routing table from different
functional perspective. The structure of an IP routing table is illustrated in
Fig. 2.4.
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Figure 2.4: IP routing table structure

A routing table is a list of entries, each of them contains a longest prefix
IP address and its corresponding routing action. Thus the relation between
IP and action can also be understood as a function from IP (interval) to
port (where the intervals don’t overlap) or a function from port to IP (a
set of IP space). Figure 2.5 is an adaptation of a necessary definition of
a routing table semantics [40] in which the datatype linord-helper define
the set relationship between two IP addresses (Lines 2-6). It is used to
express the concept of longest prefix match (LPM) (Lines 13-16). For all
IP packets which match the given routing table (Lines 8-11), they will be
forwarded to the corresponding output interface or next-hop depending
on their associated routing-actions (Lines 17-19).

2.2.2.3 Regulating Forwarding Behaviour by FTE

OpenFlow is a de facto interface between controller and switch. It provides
an industry-standard application programming interface and protocol to
program forwarding tables in switches. OpenFlow is managed by Open
Networking Foundation (ONF), an organization dedicated to promoting
and adoption of SDN. OpenFlow, of course, is evolving, and will continue
to evolve. The latest OpenFlow switch specification is Version 1.5.0 (Pro-
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1: datatype (′a,′b) linord-helper = LinordHelper ′a ′b
2: begin
3: AB definition linord-helper-less-eq1 a b ≡ [ case a of LinordHelper a1 a2 ⇒ case b of

LinordHelper b1 b2 ⇒ (a1 < b1) ∨ ((a1 = b1) ∧ (a2 ≤ b2)) ]
4: AB definition a ≤ b←→ linord-helper-less-eq1 a b
5: AB definition (a 6= b ∧ linord-helper-less-eq1 a b)
6: end
7: theory Routing-Table
8: import ../IP-Address/Prefix-Match
9: import ../IP-Addresses/IPv4 ../IP-Addresses/IPv6

10: import Linorder-Helper
11: import ../IP-Address/IP-Address-toString
12: begin
13: ABrecord(overloaded) ′i routing-rule =
14: ABrecord(overloaded) routing-match :: (′i::len) prex-match
15: ABrecord(overloaded) metric :: nat
16: ABrecord(overloaded) routing-action :: ′i routing-action
17: ABrecord(overloaded) ′i routing-action =
18: ABrecord(overloaded) output-iface :: string
19: ABrecord(overloaded) next-hop :: ′i word optio
20: end

Figure 2.5: Routing table semantics

tocol version 0x06) [2] which was released on December 19, 2014 by ONF.

Since OpenFlow Version 1.1.0 [41], a flexible pipeline with multiple
tables is exposed to control layer. It changes OpenFlow table processing
significantly. As depicted in Fig. 2.6, packets are processed through a
pipeline which consists of one or more tables, in each table multiple FTEs
reside. The first table, labeled “Table 0” in Fig. 2.6, must be matched
against all packets, and subsequently the packets might jump to any fol-
lowing table according to the pipeline instructions such as metadata which
carries information between tables. Once a packet hits an OpenFlow entry,
the instructions of this entry are applied immediately or accumulated in
the action set associated with this packet and carried to the next processing
table. The action set will be finally executed at the end of the pipeline and
applied to the packet. Sometimes an FTE points to a group table which
consists of a set of actions. According to the group types (for example, all,
select, indirect and fast fail-over), either one or all actions will be executed.

The match fields and actions in FTE can be easily customised to imple-
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ment the same forwarding behaviour as ACL and IP routing entry [42].
For an ACL, the match fields remain the same as FTE, only the ACL’s de-
fault action “deny” is replaced by “drop”. The conversion from an IP rout-
ing entry to an FTE is more straightforward, neither the match fields or ac-
tions need any changes. But not all match fields in traditional networking
are explicitly indicated, for example, usually only the packets with spe-
cified VLAN id and destination MAC (DMAC) address will be sent to IP
routing table for prefix searching. To maintain the same forwarding beha-
viour for an existing IP routing entry, the match fields of FTE will become
the combination of “VLAN, DMAC” as well as the original IP prefix in
routing table.
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Figure 2.6: OpenFlow table processing

A flow table consists of multiple flow entries. Figure 2.7 illustrates the
main components of an FTE: match fields, instructions, counters, timeouts
and priority. An FTE is identified by match fields and priority: the match
fields determine whether a packet can hit an FTE while the priority de-
termine whether a packet has the chance to match against this FTE. Only
the matching flow entry with the highest priority will be selected. A match
field contains the well-known fields in an IP header (source MAC, destin-
ation MAC, source IP, destination IP, etc.) as well as the fields related to
pipeline processing, for example, ingress port and metadata.

From the SDN forwarding table research in [43–45], there are four es-
sential FTE attributes: i) Wildcard [W], ii) Priority [P], iii) Multi-table [M],
iv) Topology [T].
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Figure 2.7: Inside FTE: OpenFlow packet matching and actions
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Figure 2.8: OpenFlow attributes

Among the above key attributes, wildcard and priority are only associ-
ated with a single table. Wildcard and priority inherited from ACL and a
lot of research has been done on these attributes [46, 47]. As illustrated in
Fig. 2.8, they are categorised as core attributes and must be covered by all
representations. Multi-table is one of the most significant feature in Open-
Flow to enrich dynamic configuration and placement of FTE. Multi-table
is listed as extended attributes in Fig. 2.8 and it must be represented by
any network-wide representation. Although topology is not an intrinsic
attribute of FTE, it is still listed here as a crucial attribute because it plays
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an important role in determining the network-wide packet forwarding be-
haviour.

2.2.3 Pipelines: a Common Denominator for Packet For-

warding

Inside a single forwarding element (switch or router), there might have
multiple forwarding tables - each table serves a different purpose - to
match their respective specified field(s) against the incoming packets. These
tables construct a packet forwarding pipeline which is the common de-
nominator for ACL and IP routing table in traditional networking as well
as the generic forwarding tables in SDN.

Since IP routing table has only one match field - the destination IP ad-
dress to match upon the incoming packets, it is also called a single dimen-
sional forwarding pipeline [48]. The ACL, on the other hand, is a multiple
dimensional pipeline because it matches against more than one known
field simultaneously. However, as the name ACL suggests, it can only
decide whether a packet is allowed to pass through a device by its prede-
termined action: permit or deny. The SDN paradigm uses a more generic
forwarding pipeline which allows arbitrary combination of multiple fields
and performs more complex actions.

Table 2.3 depicts their respective scopes of match fields and actions.
From the perspective of “match fields”, the IP routing table only has one
dimension which is the IP prefix while the rest two types have arbitrary
combinations of the fields in a packet header. From the perspective of
“actions”, IP routing table always directs to the next-hop and associated
with one egress interface.

Though the structure and functionalities of forwarding pipelines have
changed significantly from traditional networking to SDN, the underly-
ing hardware almost remains the same. Most SDN switches on the mar-
ket share the same hardware as before. Figure 2.9 and 2.10 illustrate the
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Table 2.3: Forwarding table comparison

Forwarding Table Type Match Action
ACL multiple dimensions permit/deny

IP routing table single dimension egress interface
FTE multiple dimensions arbitrary actions

reference forwarding pipeline of a typical ASIC (application–specific in-
tegrated circuit) based switch in traditional networking and SDN, respect-
ively.

VLAN
Forwarding

Table

Routing
Forwarding

Table
ACL

Apply
Actions

L2 Network 
Protocol

L3 Network 
Protocol

Static 
configuration

Figure 2.9: Switch-level pipeline in a traditional network

In traditional networking, each table has fixed width and is assigned
the corresponding predetermined functionality, for example, VLAN val-
idation in the first table, IP address prefix matching in the second table
and ACL filtering in the third table, etc. However, in SDN, these table can
be customised and they are not restricted to the predetermined actions.
Hence, the ACL and IP routing table can also be considered as a special
type of forwarding pipeline. A forwarding pipeline is composed of one
or multiple forwarding tables which contain forwarding table entries to
specify the match fields and their associated actions.
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2.3 FTE Representation

2.3.1 Past Work for FTE Representation

Even though the OpenFlow standard is still evolving, various approaches
have been proposed to analyse and manipulate the FTE in OpenFlow. A
summary of the literature of FTE representation is presented in Table 2.4
and 2.5. They use either simple logical connectives to explore FTE ma-
nipulations [3, 4] or advanced methodologies to abstract and represent
FTE. They are built upon single logic or a combination of multiple lo-
gics. The prior single-logic based representations include algebra [5,6,49],
set theory [7, 8], first-order logic based model checking [9], temporal lo-
gic [10–12], and higher-order type theory [13, 27]. Some representations
adopt more than one logic which includes Z [6, 49] and multiple-logics
based model checking [14]. The Z representation is developed from typed
first-order predicate logic and Zermelo-Fraenkel set theory.

Some research in Table 2.4 and 2.5 adopts the data structure based rep-
resentation such as brick, tree and graph [15–20,22,50,51]. They will not be
used in this thesis because they usually aim to resolve a specific problem
rather than providing a generic solution. For example, the RuleBricks [23]
provides high availability (HA) policies to OpenFlow forwarding pipeline.
This thesis intend to find a representation which is not particular to any
application. But they demonstrate that the low-level representations are
easily applicable to the real networking applications.
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Table 2.4: Summary of FTE manipulation

Project and
Reference

Technique Attrs* Applications

FlowChecker [10] Binary decision
diagrams,
Computational Tree
Logic

[WP] Identify
misconfiguration

Frenetic [7] Set theory [WPT] Application oriented
network programming
language over controller

DIFANE [16] Rule partition [WPT] Scalability

NICE [14] Propositional logic,
temporal logic

[WPT] Test and verification of
OpenFlow applications

Slicing
abstraction [11]

Computation Tree Logic [T] Slicing and Isolation

NetCore [8] Declarative language,
Domain specific
languages, Set-theoretic
operations

[WPT] A compiler,
transformation from
application-level policies
to switch-level policies
transformer

Formal
Specifications [6, 49]

Algebra of
communicating shared
resources

N/A Formalisation and
verification of SDN
framework

FlowAdapter [15] Tree composition/de-
composition

[M] Multi-table processing on
legacy hardware

OpenFlow rules
interaction [3]

Logic connective [WP] Generic analysis,
management and
optimization of FTE

Featherweight
OpenFlow [13, 27]

Coq [52],
Domain-specific
languages

[WPT] SDN controller
verification

FLOVER [9] First order logic, Logical
connective

[WP] Verification of security
attributes in OpenFlow

* Attrs: W - Wildcard; P - Priority; M - Multi-table; T - Topology



40 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.5: Summary of FTE manipulation - continued

Project and
Reference

Technique Attrs* Applications

Automated
Synthesis of

Controller [12]

Linear temporal logic N/A Action-based synthesis
of SDN

“One Big
Switch” [22]

Rectangular
representation and
selection

[WPT] Rule placement (Space,
time, resource)

Palette [17] Rule Decomposition,
Graph-based model

[PT] Rule decomposition,
distribution and
placement

vCRIB [20] Tree based model,
partition

[WPT] Traffic-optimal rule
placement

CAP for
Networks [50]

CAP (consistency,
Availability, Partition)
theorem

[WT] Trade-off between policy
enforcement and
network connectivity

Maple [21] Algorithmic Policies [WPT] Simplify SDN
Programming

RuleBricks [23] Brick based model [WP] OpenFlow
Failure-planning

CAB [19] Tree decision model,
partition

[WP] Flow setup efficiency
improvement

NetKAT [5, 53] Coalgebraic theory,
Kleene algebra,
Brzozowski derivative

[PT] All-pair connectivity,
Loop-freedom,
Translation validation

Routing for
Efficiency [54]

Integer linear
programming mode

[T] Maximise traffic
satisfaction

EAR [18] Graph-based model [PT] Energy-aware Routing

CacheFlow [4] Graph theory, Recursive
theory

[WP] Caching system for SDN,
FTE abstraction

Generalised FTE
Optimisation [51]

Tree-based model,
Tagging approach

[PM] FTE compression

* Attrs: W - Wildcard; P - Priority; M - Multi-table; T - Topology
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Logical connective representation mainly utilises logical operators to
express the relation and interactions between FTEs. The relations that can
be in place among match fields and instruction sets are first analysed in [3].
Based on potential relation combinations, they define five FTE interaction
types: Disjoint, Exact match, Subset, Superset, and Correlated. More details
on Boolean operations are further explained in Appendix B. They will be
extended with the help of Boolean algebra and applied into all the three
applications which will be further discussed in the next three chapters.

Algebra representation is good at describing the attributes and reason-
ing of a structure or program. The simplest algebra is Boolean algebra [55]
in which the values of the variables are the truth values true(1) and false(0).
Another branch of well-studied algebra representation pioneered by E.F.
Codd called relational algebra [56], was proposed to model the data stored
in relational databases. Kleene algebra [57], partly built on relational al-
gebra, focuses on the semantics of a program which can be expressed as
an idempotent semiring. Another network programming language which
builds on top of Kleene algebra, NetKAT [5,53], has demonstrated its cap-
ability of representation for the attributes such as priority and topology,
but there is no evidence to show that it can also be used to represent multi-
table in SDN.

Set theory (Frenetic, [7]) is concerned with the concept of sets. It stud-
ies the well-determined collections of objects. However, its strength lies
in descriptiveness rather than manipulation, thus it is unlikely to fulfil the
desired functionalities related to FTE manipulation, for example, remov-
ing the priority in a single table, combining multiple tables.

Symbolic logic uses symbols and variables to express logical ideas. It is
by far the simplest kind of logic. Variants of symbolic logic includes pro-
positional logic [58], predicate logic [59] and temporal logic [60]. Among
these three logics, propositional logic has no quantifiers while the other
two have. The quantifiers are quite useful to express the uncertainties in a
forwarding pipeline, such as load balancing and failover [14], in both scen-
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arios the same packet might be forwarded to different paths. Propositional
logic studies the indivisible statements. It assumes every statement can be
interpreted as true or false and then produces more complex statements in
which truth-value depends on the truth-values of the simpler statements.
The symbols or words used to connect two statements are logical connect-
ives which include binary connectives such as “or”, “and” as well as unary
connectives such as “negation”. It has been proven useful in modelling
network forwarding pipelines where each entry is interpreted as a logical
expression of the conditions to trigger their associated actions [58].

Since propositional logic is not able to represent the relationship between
propositions, a more powerful logic, predicate logic, is studied [59]. Pre-
dicate logic is an extension of propositional logic and more expressive. It
uses quantified variables such as existential ∃ (“there exists”) and univer-
sal ∀ (“for all”) over objects to define the scope of the statements. Predicate
logic is a generic term of higher-order logic.

These logics can describe functional relationships and statements about
“for all” objects or about “for some” objects but their quantifiers vary.
First-order logic quantifies over individuals of the domain of discourse.
Higher-order logic is distinguished from first-order logic by additional
quantifiers. As illustrated in Fig. 2.11, higher-order logic quantifies over
sets or sets of sets while first-order logic has the quantifiers of non-nested
sets.

Modal logic extends the classical proposition logic and predicate logic
to allow the quantifiers to express modality, for example, “necessarily”
and “possibly” [60].

Compared to logical connectives and Boolean algebra, the aforemen-
tioned logics in Fig. 2.11 are high-level abstraction which indicates that
they are better at expressing the connections among FTEs, for example,
the priority and topology. However, the low-level FTE attributes such as
wildcard and “goto table” actions are easily overlooked by these logics.

In this thesis, Boolean algebra is selected as the technology to represent
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finite quantifications or infinite quantifications.

Propositional logic

First-order logic

Second-order logic Modal logic

Higher-order logics

Quantifiers:
None

Quantifiers:
Individuals

Quantifiers:
Sets(Relations)

Quantifiers:
Sets of Sets

Quantifiers:
Modal

Figure 2.6: Quantifiers of Logics

Modal logic extends the classical proposition logic and predicate logic to allow the quanti-
fiers to express modality, for example, “necessarily” and “possibly”.

Mathematical logic is an extension of symbolic logic into other areas, especially in proof
theory [67], set theory [36], recursion theory [64] and model theory [34]. It introduces
formal logic to analyse and express mathematics.

Proof theory studies the concepts of mathematical proof and mathematical provability in
a general sense. It is syntactic in nature because it studies the structure of formal proofs to
establish syntactic facts of these proofs.

Set theory is concerned with the concept of sets. It studies the well-determined collections
of objects.

Recursion theory, also called computability theory, studies the concept of computable func-
tions and Turing degrees. As we know, the modern computers are predicated and predeter-
mined by the Universal Turing Machine which is a central combinatorial object of recursion
theory [32].

Model theory studies the classes of mathematical structures (e.g. groups, fields, and graphs)
from the perspective of formal logic. It utilises syntactical elements (formulas and proofs) to
examine the semantical elements (meaning and truth). Chang and Keisler (1990) [13] gave the
definition of model theory as below:

universal algebra(semantics) + logic(syntax) = model theory

Whereas universal algebra provides the semantics for an object, logic provides the syntax.
First-order logic and higher-order logics are two types of logics which are usually adopted in
model theory.

2.1.3.2 Semantic Representation

Logic is concerned with the structure or syntax of the objects while semantics is the study of
meaning. A formal representation should represent the syntax with a certain type of logic as
well as the meaning with a certain formal semantics. In the area of computer science, semantics

10

Figure 2.11: Quantifiers of logic

FTE, more justifications will be given in the next subsection.

2.3.2 Boolean Algebra for FTE Representation

In mathematics and mathematical logic, Boolean algebra is a branch of al-
gebra in which the values of the variables are the truth values “true” and
“false”, usually denoted 1 and 0, respectively. Boolean algebra is naturally
suitable to represent SDN forwarding pipeline especially on the applica-
tions such as the equivalent forwarding set evaluation and traffic monit-
oring. In the former scenario, the question turns to the Boolean function
on the match fields for the same action. In the latter scenario, the question
turns to find all supersets/subsets and retrieve their individual statistics
for a given flowset.

To fit the Boolean algebra to SDN FTE, two challenges must be ad-
dressed: wildcarded logical operations and deprioritisation. Although
in traditional networking, wildcard is only supported on lower bits (at
the rear) of an IP address or MAC address to facilitate the longest prefix
search, it may locate at any position in SDN FTE. Thus the Boolean algebra
on FTE must allow the wildcard be positioned anywhere and accepted by
all Boolean operations.

In this thesis, “wildcard” stands for “wildcard mask” which comes
from CISIO. It is a mask of bits that indicates which parts of IP addresses
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are available for examination. For example, a wildcard mask 0.0.0.3 rep-
resents that the last two bits are not available for examination. A packet
with an IP address which ends with bit 0 or 1 will have the same examin-
ing result. A wildcard mask is continuous and always indicates the last
certain number of bits are not available for examination. Thus a wildcard
mask in a truth table has the following format: 1000011111****, 000111**,
110000* in which the number of asterisk is flexible while they always posi-
tion at the rear of a Booelan value. However, in FTE, a more flexible format
of wildcard is expected in a truth table, the wildcard (*) should be posi-
tioned anywhere (not only in the rear of a value), such as 10000**111****,
10000**0011, ***111000.

Another challenge is introduced by a FTE’s unique attribute: “prior-
ity”. Due to the existence of priority in a forwarding table, most FTEs’
match fields cannot reveal their actual matching scope. After appropri-
ate adaptations and extensions, Boolean algebra extends the existing SDN
application into multiple flow tables across multiple switches.

Besides the intrinsic FTE attributes wildcard and priority, Boolean al-
gebra is also capable of representing another two attributes: multi-table
and topology. The Boolean operations (for example, logical AND (∧) and
OR (∨)) between any two forwarding tables or even two switches can be
converted to the operations between the FTEs in their respective tables or
switches.

Besides Boolean algebra, other mathematical logical methods have also
been examined to investigate the possibility of representing FTE and ex-
ploiting their applications. It is found that propositional logic and some
lower-order logic are also good at expressing SDN forwarding pipeline,
but the abstraction in the process of FTE representation makes these ap-
proaches less applicable in practical scenarios because some low-level in-
formation has already lost. For example, the relative positions of multiple
forwarding table entries and the connections among multiple tables are
hard to be represented in these logics.
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Among all the formal semantics, NetKAT represents single table very
well and maintains most essential low-level information. However, the
two challenges on Boolean algebra exist for NetKAT as well, which means
the similar adaptations and extensions on Boolean algebra are also re-
quired for NetKAT. Moreover, its initial design does not cover the multi-
table attribute, which further limited its applicable scope.

In a word, as a low-level representation, Boolean algebra is unlikely
to reveal the whole picture of network-wide forwarding pipeline, but it is
easily extended to support the latest SDN core forwarding attributes such
as priority and multi-table. In the following three chapters, the flexibil-
ities, manipulability and applicability of Boolean algebra have been well
proven.

2.4 Applications Based on FTE Representation

Based on the analysis of FTE, various applications have been developed.
They can be mainly categorised into two types from functionality per-
spective: FTE placement and Traffic monitoring. FTE placement mainly
covers the following aspects: i) FTE manipulation [15, 61–63]; ii) consist-
ent updates over multiple switches [64–68]; iii) placement optimisation
[69]. All these three placement applications rely on the correct conversion
among the different forms of tables across multiple switches. The works
on traffic monitoring include traffic estimation [70], traffic anomaly detec-
tion [71], verification of forwarding tables [72], etc.

2.4.1 Optimising FTE

Prior works on FTE’s placement optimisation can be further divided into
two categories: single switch flow table optimisation [19, 23, 73–76] and
network-wide flow table optimisation [16–18,20–22,50,51,54]. The optim-
isation of single table usually focuses on compression which heavily relies
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on the mechanism “merge” and “ split”. The new installed rules are firstly
merged with each other and then split according to the hardware table
structure and size. Then the neighbouring or function-alike flow entries
can be further merged to save table space. Another optimisation approach
is to deploy FTEs according to their different access frequencies, for ex-
ample, deploying the most frequently accessed FTE in high-speed cache
and the relatively unpopular FTEs in low-speed cache [73]. In the scenario
of FTE compression, a number of practical advances to increase the applic-
ability of hardware resilience via forwarding table compression algorithm
and compression-aware routing have been discussed [77]. A method to
verify whether redundant rules exist and the way to avoid them during in-
cremental deployment are also proposed and verified [76]. A major draw-
back of this “merge” and “ split” approach is that it fails to explore FTE’s
multi-table capability. Some researchers notice the benefit of multiple flow
tables and they perform partitioning and compression by distributing for-
warding rules into different tables according to their respective capabilit-
ies [74]. Network-wide optimisation is usually achieved by “combination”
and ”distribution”. In a given interval, all requests from different applic-
ations will be combined as a single composite request. Then they are re-
organised and distributed to the devices. During this process, the exact
path specified by the original application might be changed. It enriches
the freedom to adjust the FTE placement across all applications, however,
the achievements of some higher-level goals such as traffic engineering
cannot be guaranteed.

A core question for any deployment of multi-table FTE is how to verify
the equivalence between the table(s) to be provisioned and the table(s) de-
ployed in the switches. Particular attention about multi-table evaluation
and deployment should be paid to the research in [78] and [15]. The former
proposed a reconfigurable match tables (RMT) model, which allows the
forwarding plane to be modified by reorganizing the tables (for example,
adding new match fields and reconfiguring IP lookup tables) [78]. The
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latter proposed a middle layer to convert flow rules (entries) from the con-
troller to switch hardware flow table pipeline, in which the transforma-
tion from one single policy to a multi-table rule is usually required so that
the rules can be fitted into different types of hardware [15]. Both works
are concerned with the conversion between different types of forwarding
tables, which motivates the first contribution of this thesis , i.e., guarantee-
ing that the conversion between a single table and multi-table is equivalent
in terms of networking functionality.

However, it is found that the OTN (the conversion of a One-stage flow
table into N -stage flow tables) proposed in [15] is NOT always correct. Its
core idea is to fill the corresponding match field value of a one-stage flow
entry to multi-stage entries based on their containing match field types, as
illustrated in Fig. 2.12. In this conversion, the original single table (Table
1) has been converted into a multi-table structure (Table 2 and Table 3).
Take the first entry in Table 1 as an example, the original match fields {A,
B} are decomposed and distributed into {A} in Table 2 and {B} in Table
3, respectively. However, closer analysis reveals that packets matching
either {A, B} or {C, D} will behave the same while the packets with {A,
D} or {C, B} will not. The packets with attributes {A, D} will NOT match
any entries in the single table and will be dropped by default; however,
in the converted multi-table, the same packets can match the first entry
in Table 2 and then the second entry in Table 3 sequentially, which means
the matching packets will egress out of port 2. For the same packets, the
forwarding behaviour will not be the same, which means the single table is
not equivalent to the multi-table. Thus, a systematic approach to evaluate
the equivalence of any two given forwarding sets becomes a challenge for
all forwarding table manipulations.
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Match Action Priority
A
C

Goto Table 1 2
Goto Table 1 1

Single Table

Multiple Table

Match Action Priority
A, B
C, D

Output 1 2
Output 2 1

Match Action Priority
B
D

Output 1 2
Output 2 1

?

Figure 2.12: Match fields distribution of OTN conversion

2.4.2 Traffic Monitoring

The most widely adopted traffic monitoring approaches are either based
on packet sampling or sketch-based measurements. Sampling-based mon-
itoring solutions mainly include NetFlow and sFlow. NetFlow [79] is a fea-
ture on Cisco routers for collecting IP network traffic with predetermined
rules. sFlow [80], short for “sampled flow”, provides a means for col-
lecting information of truncated packets, together with the interface stat-
istics. Unlike NetFlow, sFlow offers greater scalability and reports OSI
layer two to layer seven information on network traffic in detail [81] but
it consumes more resources (e.g., CPU, memory, and bandwidth). A high
sampling rate generates too much information (costly to store), while a
lower sampling rate may result in heavy-hitter flows going undetected.

Compared with sampling-based monitoring, sketch-based approach
can process millions of streams in a short time and with low overheads.
It is a probabilistic summary of data streams within a compact data struc-
ture. The approach builds forecast models on top of sketches which rep-
resent the past traffic patterns. Sketch-based approach adopts an unique
hash function and associates multi-dimensional tables to data streams for
storing summarised data, which requires customisation of existing switch
ASIC. This is why most of the existing works are only verified by simula-
tion and implemented on field-programmable gate array (FPGA) [82, 83].
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To fit the afore-mentioned approaches into the realistic networking mon-
itoring scenario, ProgME (Programmable Network MEasurement) presents
a framework to measure a flowset defined according to application re-
quirement [84]. A statistics query is processed by a query answering en-
gine which maps a flowset to unique flows whose statistics can be re-
trieved directly from hardware. Even though the scenarios of these traffic
monitoring research vary, they share the same principle: to measure an
arbitrary set of flows’ traffic based on the ready statistics.

No matter what kind of approaches and frameworks are chosen, all the
existing SDN traffic monitoring solutions use the same way to get the stat-
istics. They install the application specified rules and then retrieve their
statistics [83, 85–88]. The benefit is that the controller can customise the
FTE rules for flexible traffic monitoring, for example, the controller is able
to update the FTE rules to monitor the suspected malicious traffic dynam-
ically. However, it is difficult to avoid the interference on the active traffic
because the behaviour of all the packets matching with these monitoring
FTEs will be altered.

2.5 Summary

This chapter reviews the recent literatures on the representation and ap-
plication of packet forwarding pipeline. The review indicates that Boolean
algebra is suitable for the low-level representation of forwarding table
entries and more importantly, it also facilitates the applications such as
equivalent forwarding set evaluation and traffic monitoring. From the
next chapter, the SDN applications based on Boolean algebra will be fur-
ther discussed: equivalent forwarding set evaluation (next chapter, chapter
3); deterministic statistics estimation (chapter 4) and heavy hitter detection
(chapter 5).



Chapter 3

Equivalent Forwarding Set
Evaluation

Network devices rely on forwarding rules to convey packets. Individual
devices use these rules to construct a forwarding set to determine the be-
haviour of incoming packets. Forwarding rules appear in the form of ac-
cess control list and IP routing entries in traditional networking while it
is implemented as a generic forwarding table in SDN. In SDN, the design
and structure of forwarding tables have progressively become more com-
plicated to support evolving network applications. According to Open-
Flow Specification 1.5 [2], these rules are constructed either in the form of
a single table or multiple linked tables. The multi-table approach advoc-
ated by the OpenFlow specification has been widely adopted by commod-
ity switch manufacturers, while the software controlling the switches use
a single table for better manageability. A fundamental question is how to
reconcile the forwarding behaviour of the multiple tables and single table.
By converting any given arbitrary OpenFlow table into a uniform repres-
entation called equivalent forwarding set (EFS), this chapter formalises and
implements the process of evaluating equivalence between two forward-
ing sets in terms of networking function. This research will facilitate the
flow table management in controller where an equivalent table is usually

50
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maintained as well as the flow table deployment in switches where mul-
tiple flow tables are more often chosen to adapt to switch’s various for-
warding pipeline design.

3.1 Research Question

A physical network is composed of multiple nodes and the links to inter-
connect them. Individual network nodes use forwarding rules as inputs to
construct a forwarding set, and this forwarding set determines the move-
ment of incoming packets passing through the node. These nodes may use
a single table or linked multiple tables to implement forwarding rules.

In SDN, match fields in forwarding tables are dynamically customised
by an intelligent, centralised controller. Moreover, SDN also allows these
tables to be chained together to process the incoming packets in a more
sophisticated way. Figure 3.1 illustrates the structure of multiple flow
table in OpenFlow specification. A multi-table forwarding set example
with three linked tables is presented in Fig. 3.2. These tables collectively
form a forwarding set to match against all incoming packets and execute
associated actions. Here the forwarding set refers to the rules within a
single node spanning one or multiple tables. In this figure, the packets
with fields “A” and “B” will be sent to Table 1 and Table 2 for further
processing, respectively. The actions in “Table 0” contain “Goto Table” at-
tribute which indicates the matched packets of this forwarding entry will
be passed to next table for further processing. The row “A, Goto Table 1,
200” in “Table 0” is a flow table entry and it is linked to “Table 1”, “Table 1”
is also referred as this entry’s associated table and a link is added between
them to represent their association relationship.

The motivation of this research lies in the fact that forwarding sets are
interpreted in various forms (single table, for example, fixed-width fixed-
length multiple-table, dynamic-reconfigurable multiple-table) in different
networking elements [89]. In an SDN controller, a logical single table is
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usually maintained because the forwarding sets in a server has far less lim-
itations compared to the rules in a hardware switch. The table structure
and size in hardware switches vary significantly due to different hardware
specification. For any transformation of a forwarding set among those
various networking elements, the functional equivalence must be guaran-
teed. This research aims to find a solution to evaluate the equivalence of
any two forwarding sets. The generic principle is to convert different types
of forwarding sets into a canonical form and then compare each other with
the help of Boolean reasoning.

Table
0

Table
1

Table
n

Execute
Action

Set

Packet In
Ingress
Port

Empty
Action
Set

Update 
action set

metadata
meta
data Packet Out

Egress
Port

Update 
action set

...

Update 
action set

Figure 3.1: Multi-table forwarding set specified by OpenFlow
Packet Out

Table 0 Table 1

Table 2

Match Action Priority Stats
A
B

Goto Table 1 200 50
Goto Table 2 100 80

Match Action Priority Stats
D1
D2
D3
D4

Output 5 4 200
Output 6 3 40
Output 7 2 75
Output 8 1 80

Match Action Priority Stats
D1
D2
D3

Output 5 3 20
Output 11 2 45
Output 24 1 90

Figure 3.2: Multi-table forwarding set example

Since OpenFlow is the de-facto standard for SDN, the solution to the
afore-mentioned question will be exemplified using OpenFlow specifica-
tion 1.5. However, the approach presented in this chapter targets a generic
conversion method which is not limited to OpenFlow [90].

Multiple flow table (MFT) is one of the most significant enhancements
of OpenFlow 1.1, which adds power and flexibility to an OpenFlow switch
[91]. In recent years, some works have noticed the benefits of MFT and
applied it into SDN deployment, which requires a forwarding set to be
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presented in different forms to adapt to the various networking applica-
tions. However, MFT introduces additional complexity and challenges to
the software responsible for managing these tables. Thus a systematic way
to evaluate the functional equality between two forwarding sets becomes
indispensable.

Match fields in SDN can be naturally expressed as Boolean functions.
Intuitively, the research work on Boolean logic is also applicable to net-
working forwarding set. The related fundamental concepts, equations and
theories were explained very thoroughly in [92]. The definitions and the-
orems which are used in this chapter are listed in Appendix A and C.

3.2 EFS: Towards a Uniform Table Structure

Definition 3.2.1 (Equivalent Forwarding Set (EFS)). For any two given for-
warding sets Fg and Fh, no matter what their structures and forms are, if
they perform the exact same operations for all incoming packets pin ∈ P,
they are considered as the equivalent forwarding sets.

In Definition 3.2.1, the operations include any modification on the pack-
ets themselves and their output interface(s), i.e., (Pout(g) = Pout(h)) ∧
(Pif (g) = Pif (h)) where Pout represents the egress packets and Pif repres-
ents the output interface(s). The typical modifications of IP packets in-
clude MAC address replacement and VLAN tagging, etc. The interfaces
include physical egress ports (output (port) 1 & 2 in Table 3, Fig. 2.12)
as well as the next hop in a logical pipeline which has been widely used
in networking virtualisation. According to Definition 3.2.1, the incoming
packets will have the same modifications and egress port(s) on a switch
with two EFSs.

Fig. 3.3 illustrates two equivalent forwarding sets in the form of a
single table and MFT. The multi-table forwarding set consists of three
tables which are labelled “Table 0”, “Table 1” and “Table 2”, respectively.
In this multi-table structure, the actions in ”Table 0” contains “goto table”
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attributes which indicate that the matched packets of the forwarding entry
in ”Table 0” will be passed to another table for further processing. In this
case, this specific table becomes the entry’s associated table and a link is
added between the entry and the table. It can be easily verified that all the
incoming packets will be forwarded to the same destinations without any
modification in these two EFSs.

Using Definition 3.2.1, an MFT can be replaced by a single equivalent
table and vice versa, i.e., these two sets are interchangeable.

Match Action Priority 

M0_1 A0_1, goto table 1 2 

M0_2 A0_2, goto table 2 1 

Match Action Priority 

M1_1 A1_1 2 

M1_2 A1_2 1 

Match Action Priority 

M2_1 A2_1 2 

M2_2 A2_2 1 

Table  0 

Table  1 

Table  2 

Match Action Priority 

M0_1,  M1_1 A0_1, A1_1 4 

M0_1,  M1_2 A0_1, A1_2 3 

M0_2,  M2_1 A0_2, A2_1 2 

M0_2,  M2_2 A0_2, A2_2 1 

Table 3: Equivalent Single Table 

Figure 3.3: Equivalent forwarding example

3.3 Equivalent Forwarding Set Conversion

In this section, the conversion of a forwarding set into an equivalent uni-
form single-table is investigated to facilitate the comparison of two for-
warding sets. Two approaches are proposed to achieve this: (i) match-
field oriented approach (MFA), which builds indexing on “match-fields”; and
(ii) action oriented approach (ACA), which constructs its forms on “actions”.
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The rest of this section presents these two conversion approaches with the
same multi-table forwarding example in Fig. 3.4.

Match (MAC) Action Priority 

00:11:11:* Goto Table 1 6 

00:22:22:* Goto Table 1 5 

00:33:33:* Goto Table 1 4 

00:44:44:* Goto Table 2 3 

00:55:55:* Goto Table 2 2 

00:66:66:* Goto Table 2 1 

Match Action Priority 

10.1.1.1 Output 1 4 

10.2.1.1 Output 2 3 

10.3.1.1 Output 3 2 

10.4.1.1  Output 4 1 

Match Action Priority 

10.5.1.1 Output 5 4 

10.6.1.1 Output 6 3 

10.7.1.1 Output 7 2 

10.8.1.1  Output 8 1 

Table  0 

Table  1 

Table  2 

Figure 3.4: Multi-table forwarding example

3.3.1 MFA Conversion

In the match field oriented approach, a forwarding entry in one table and
its associated tables will generate a new composite entry. This new entry
preserves the functionality of the original entries. Thus, the link between
multiple tables can be removed once the original entry and the link are
replaced by an “equivalent” composite entry. Algorithm 1 describes the
conversion process which removes one table per step i until the a compos-
ite single table is achieved.

Taking the MFT set in Fig. 3.4 as an example, Table 0 (with its entries)
has two associated tables: Table 1 and Table 2. Each entry in Table 0 gen-
erates a new entry for every entry in Table 1 or 2. Thus, the equivalent
single table will have 24 entries which are far more than the sum of the
original three tables. In the worst case, for a MFT with N entries and t

tables, the number of entries in its equivalent single table is in the order of
O(N t). The worst case is easily constructed with a chained MFT structure
in which every table, except the last one, has an associated table.

Once a multi-table forwarding set has been converted into a single-
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Algorithm 1 Match fields oriented table join

1: T← input: An array of all the tables in a switch
2: e← input: Forwarding table entries in table T
3: S← output: Equivalent Single Table
4: MAX PRI← constant: Maximum value of priority
5: .cnt← count of an array (T )
6: .m, .act, .pri← match fields, actions and priority of a flow (el, ek, e)
7: procedure Multi table join(T )
8: n← T.cnt, e← new empty flow
9: for i = 0 to n− 1 do

10: for ek ∈ Ti do
11: if ek.act has goto table id = n− 1 then
12: for el ∈ Tn−1 do
13: e.m← ek.m ∧ el.m
14: e.act← ek.act ∪ el.act
15: remove goto table id in e.act
16: e.pri← ek.pri+ el.pri/MAX PRI
17: insert e into Ti
18: end for
19: remove ek from Ti
20: Convert all priorities to integer in Ti
21: end if
22: end for
23: end for
24: remove Tn−1 from T
25: if T.cnt = 1 then
26: S ← T
27: else
28: Multi table join(T )
29: end if
30: end procedure
Note:
A table (T ) consists of multiple flow entries (el, ek, e). Every flow entry contains multiple
properties (match field (.m), action (.act) and priority (.pri)).
The operator ∧ in Line 13 is a logical “AND”-alike operation. The result of a ∧ operation
on two match files yield a new match field which means the incoming packet must match
both of them.
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table set, the evaluation of the equivalence of these two sets is a Boolean
comparison of the entries between two individual tables. Algorithm 2
presents a comparison of two tables based on a strategy in which all items
of one table will be successively eliminated.

For two given tables T1 and T2, every item i1 in T1 will be compared
with all the items in T2 in the decreasing order of priority. If two items
share same match fields while their actions differ, it can be concluded that
these two tables are not equivalent (Algorithm 2, Line 8-11). For those
two items with the same action, the common match fields will be removed
from both items (Algorithm 2, Line 19-28). This process is repeated until
the match fields in item i1 yields an empty set, which means i1 is sub-
sumed by T2. Otherwise, these two sets are not equivalent (Algorithm 2,
Line 30-31). Since all items in the forwarding sets are sorted according to
decreasing priority, the scope of match fields must be either independent
or increasingly expanded. This order will also accelerate the process of the
successive elimination comparison between two tables (Fig. 3.5).

Match Action Priority 

IP=10.1.0.*; 
MAC = 00:11:22:*  

Output 1 7 

IP=10.1.1.*; 
MAC = 00:11:33:* 

Output 2 6 

IP=10.1.1.*; 
MAC = 00:11:22:*  

Output 1 5 

MPLS Label = 2001 Output 23 4 

IP=10.2.1.*; 
MAC = 00:11:22:* 

Output 3 3 

MPLS Label = 2002; 
MAC = 00:AA:BB:* 

Output 24 2 

IP=10.2.0.*; 
MAC = 00:11:22:* 

Output 3 1 

Match Action Priority 

IP=10.1.1.*; 
MAC = 00:11:33:* 

Output 2 5 

IP=10.1.0.1/23; 
MAC = 00:11:22:*  

Output 1 4 

MPLS Label = 2001 Output 23 3 

MPLS Label = 2002; 
MAC = 00:AA:BB:* 

Output 24 2 

IP=10.2.0.1/23; 
MAC = 00:11:22:* 

Output 3 1 

Table  1 Table  2 

Figure 3.5: Successive elimination comparison
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Algorithm 2 Two-tables-comparison

1: T1, T2 ← input: Arrays of two single tables
2: True, False← output: Equivalence of T1, T2
3: .cnt← count of an array (T1, T2)
4: .m, .act← properties: match fields and actions of a flow entry
5: procedure Table comparison(T1, T2)
6: for i = 0 to T1.cnt− 1 do
7: for j = 0 to T2.cnt− 1 do
8: if T1[i].act 6= T2[j].act then
9: if T1[i].m ∧ T2[j].m 6= ∅ then

10: return False
11: end if
12: else
13: if T1[i].m = T2[j].m then
14: if (i = T1.cnt− 1)&(T2.cnt = 1) then
15: return True
16: end if
17: remove flow entry j from T2
18: break
19: else if T1[i].m ⊂ T2[j].m then
20: T2[j].m← T2[j].m ∧ (¬T1[i].m)
21: break
22: else if T2[j].m ⊂ T1[i].m then
23: T1[i].m← T1[i].m ∧ (¬T2[j].m)
24: remove flow entry j from T2
25: else if T1[i].m ∧ T2[j].m 6= ∅ then
26: T1[i].m← T1[i].m ∧ (¬T2[j].m)
27: T2[j].m← T2[j].m ∧ (¬T1[i].m)
28: end if
29: end if
30: if j = T2.cnt− 1 then
31: return False
32: end if
33: end for
34: end for
35: end procedure
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3.3.2 ACA Conversion

Action oriented forwarding set is a collection of items with a key and a
value attached to each item, i.e., a dictionary. In this structure, key is “ac-
tion” while value represents the conditions that trigger this action. The
format and content of the aforementioned actions have been specified in
Section 5.8 of OpenFlow 1.5 specification [90]. If two forwarding sets can
be transformed into two dictionaries in which all keys and the associated
values are identical, they are equivalent.

If multiple entries share the same action, all this action’s match fields
will be merged with the logical AND(∧) operation. However, the match
fields in one table are not always independent due to the attribute: “pri-
ority”. A packet matches against all forwarding tables in the sequence of
decreasing priority, which implies that the condition to trigger an action is
that this packet will NOT match any item with higher priority. When a for-
warding set is reorganised into a dictionary-based structure, the “priority”
must be removed. Fig. 3.6 illustrates the deprioritisation process (remov-
ing the priority attribute while preserving the same forwarding function-
ality) with a five-entries example. In Table 1 (the original table), each item
is associated with a priority which determines the matching sequence of
an incoming packet. After adding an “unmatch” attribute, the depend-
ence among the items have been removed, which means their positions in
the table are exchangeable and forwarding functionality remains.

Algorithm 3 depicts the process of removing priority and merging match
fields while preserving forwarding functionality. In this algorithm, the
process of deprioritisation has been transformed to the AND(∧) operation
between each item’s match fields and the negation of all the match fields
with higher priorities.

The core idea of converting multiple tables into a dictionary is achieved
by a mapping from the linked table structure to a trie in which each edge
represents a match field (Fig. 3.7). Each leaf node represents an action set
which can only be reached by the packets matching all the fields along the
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Match Action Priority 

M1_1,  M1_2 A1 100 

M2_1 A2 90 

M3_1, M3_2, M3_3 A1 80 

M4_1, M4_2 A4 70 

* A2 0 

Match Unmatch Action 

M1_1,  M1_2 NULL A1 

M2_1 M1_1, M1_2 A2 

M3_1, M3_2, M3_3 M1_1, M1_2, M2_1 A1 

M4_1, M4_2 M1_1, M1_2, M2_1, M3_1, M3_2, M_3_3 A4 

* M1_1, M1_2, M2_1, M3_1, M3_2, M_3_3, 
M4_1, M4_2 

A2 

Table 1 

Table 2 

Figure 3.6: Single table preprocessing: deprioritisation

path from root to that leaf node. In this example, there are four different ac-
tions: {A1 1, A1 2, A2 1, A2 2}, they are the “keys” in the converted forward-
ing sets while their associated match fields are determined by the fields
in each respective path, which are the composite attributes: {M0 1,M1 1},
{M0 1,M1 2}, {M0 2,M2 1} and {M0 2,M2 2}.

In a real-world scenario, the structure of a multi-table pipeline is more
complicated than the example in Fig. 3.7. Usually a table is composed
of multiple entries which contain more than one “goto-table” ids. Here
the id is the identification of a forwarding table, for example, the table ids
in 3.7 are 0, 1 and 2. Correspondingly, it is very common that there exist
more than one table whose traffic is directed to a same table, which means
multiple tables share the same “goto-table” id. The table represented by
the id should be cloned for all the tables if they contain “goto-table” action
with the same id. The process is illustrated in Algorithm 4. The algorithm
guarantees that the same “goto-table” id in different tables will be direc-
ted to different table. In the converted trie, the number of nodes (denoted
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Algorithm 3 Single table preprocessing: deprioritisation and merging

1: e← input: forwarding table entries in table T
2: d← output: equivalent forwarding dictionary set
3: .cnt← count of an array
4: .m, .um, .act← match fields, unmatch fields, actions
5: procedure Single table Preprocessing(T )
6: e0.um← ∅
7: d.key[e0.act]← e0.m
8: for i = 1 to T.cnt− 1 do
9: ei.um← ei−1.m ∨ ei−1.um

10: d.key[ei.act]← ei.m ∧ (¬ei.um)
11: end for
12: end procedure

Match Action

M0_1 goto table 1

M0_2 goto table 2

Match Action

M1_1 A1_1

M1_2 A1_2

Match Action

M2_1 A2_1

M2_2 A2_2

Table  0

Table  1

Table  2

0

1 2

M0_1 M0_2

A1_1 A1_2 A2_1 A2_2

M1_1 M1_2 M2_1 M2_2

Step 2: Trie conversion & traversal

- A1_1:   M0_1, M1_1
- A1_2:   M0_1, M1_2
……

Step 2: Trie conversion

Figure 3.7: Multi-table trie conversion

by total in Algorithm 4) is the same or greater than the number of tables
due to the clone processing (Line 11 in Algorithm 4). Once a clone hap-
pens, the original “goto-table” id must be replaced by the new generated
table id (Line 12 in Algorithm 4). An example of this algorithm will be
demonstrated in Fig. 3.26 (Function test scenario 4 in section 3.4).

The process to compute a dictionary is detailed in Algorithm 5 which
uses a typical breadth-first search strategy. All entries in one table are
iterated and the “goto-table-id” in these entries will be replaced by the
combinations of this entry and all entries in its associated table. Finally all
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Algorithm 4 Multi-table trie conversion

1: T← input: An array of all tables in a switch
2: T’← output: An array of tables converted from T
3: D← A dictionary [key, value] - [original table id, cloned table id]
4: procedure Multi table conversion(T, T ′)
5: T ′[0]← T [0]
6: for i = 0; i ≤ total; i++ do
7: S ← a set of all ids in table T ′[i]’s “goto table” actions
8: S ′ ← ascending sort for all table ids in S
9: for j = 1; j ≤ S ′.count; j ++ do

10: build a dictionary with D[S ′(j)] = total + j
11: clone table T ′[D[S ′(j)]]← T [S ′(j)]
12: replace goto table id S ′(j) with D[S ′(j)] in T’[D[S’(j)]]
13: total ++
14: end for
15: end for
16: end procedure

the “goto-table-id” will be removed, which means the remaining actions
become the “key” in the final dictionary and the match fields in these new
generated entries become their corresponding “value”.

3.3.3 MFA vs ACA

The concept of EFS means that if the same packet traverses through two
EFSs, the same forwarding behaviour they will have, which can be ex-
plained from two perspectives: i) the same match fields must share the
same action; and ii) the same actions must be associated with the same
match fields. Hence, the evaluation of two EFSs can be achieved either by
the comparison of actions for the same match field or by the comparison
of match fields for the same action.

Both MFA and ACA are built on the comparison of match fields. The
difference between them lies in all the match fields of the same action in
ACA being combined together while MFA intending to preserve original
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Algorithm 5 Multi-table trie traversal

1: T← input: An array of all tables in a switch
2: D← output: EFS Dictionary [key, value] - [action, match]
3: .cnt← Properties: Count of an array
4: .m, .act←Match fields and actions of an entry
5: procedure Multi table traversal(T,D)
6: for i to T.cnt− 1 do
7: for ek ∈ T [i] do
8: if goto table id 6∈ ek.act then
9: D[ek.act]← ek.m ∪D[ek.act]

10: else
11: j ← ek.goto table id
12: for el ∈ T [j] do
13: e.m← el.m ∧ ek.m
14: e.act← el.act ∪ ek.act
15: remove goto in ek from el.act
16: insert e into T [j]
17: remove el from T [j]
18: end for
19: end if
20: end for
21: end for
22: end procedure

match fields.

MFA enumerates all the combinations among the match fields in differ-
ent tables while ACA constructs the union set for the same actions. Take
the multi-table forwarding set in Fig. 3.4 as an example, there is a total
number of 14 entries in all three tables. However, as shown in Fig. 3.8, the
combinations of all the potential match fields based on their association
relationship among these three tables will result in 24 entries. However,
as shown in Fig. 3.9, the total number of entries in ACA is reduced to only
eight due to the limited actions.
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Match Action Priority 

00:11:11:*, 10.1.1.1 Output 1 

00:22:22:*, 10.1.1.1 Output 2 

00:33:33:*, 10.1.1.1 Output 3 

00:11:11:*,10.2.1.1 Output 4 

00:22:11:*,10.2.1.1 Output 1 

00:33:33:*,10.2.1.1 Output 2 

… 

00.55:55:*,10.5.1.1. Output 5 

00:55:55:*,10.6.1.1 Output 6 

00:55:55:*,10.7.1.1 Output 7 

00:55:55:*,10.8.1.1 Output 8 

… 

Total number 
of flow table 
entries: 
3*4+3*4=24 

Figure 3.8: Match-fields oriented conversion approach (MFA) yielding a
“tall” table.

3.4 Functional Test and Performance Evaluation

3.4.1 Functional Test Design

The function test adopts black box model in which the switch is a black box
while the incoming packets and outgoing packets are this box’s input and
output, respectively (Fig. 3.10). In each test, the same incoming packets
will be sent to the switch in which the forwarding set will be presented in
the different form (Original MFT, Equivalent MFA and ACA).

Open vSwitch has been adopted as a networking operating system by
many platforms (for example, OpenStack) and physical switches (for ex-
ample, Pica8). To balance the flexibility and applicability, the latest Open
vSwitch 2.6.1 [93] is chosen as the test platform. It maintains the exact
same design and implementation as the one on the physical switch but
offers stronger multi-table capability. Scapy [94] is used for packet gener-
ation due to its flexible customization ability. More details about the test
bed setup are listed in Appendix D.
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Match

(00:11:11:*, 10.1.1.1) V (00:22:22:*, 10.1.1.1) V (00:33:33:*, 10.1.1.1) 

(00:11:11:*, 10.2.1.1) V (00:22:22:*, 10.2.1.1) V (00:33:33:*, 10.2.1.1) 

(00:11:11:*, 10.3.1.1) V (00:22:22:*, 10.3.1.1) V (00:33:33:*, 10.3.1.1) 

(00:11:11:*, 10.4.1.1) V (00:22:22:*, 10.4.1.1) V (00:33:33:*, 10.4.1.1) 

(00:44:44:*, 10.5.1.1) V (00:55:55:*, 10.5.1.1) V (00:66:66:*, 10.5.1.1) 

(00:44:44:*, 10.6.1.1) V (00:55:55:*, 10.6.1.1) V (00:66:66:*, 10.6.1.1) 

(00:44:44:*, 10.7.1.1) V (00:55:55:*, 10.7.1.1) V (00:66:66:*, 10.7.1.1) 

(00:44:44:*, 10.8.1.1) V (00:55:55:*, 10.8.1.1) V (00:66:66:*, 10.8.1.1) 

Total number 
of flow table 
entries: 8

Action

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Output 7

Output 8

Figure 3.9: Action oriented conversion approach (ACA) yielding a “fat”
table.

Original MFT
Equivalent MFA
Equivalent ACA

Incoming Packets 
with id

Egress packets 

Black box (Switch)

Figure 3.10: Test environment design: functional test principle

3.4.1.1 ACA Forwarding Table Deployment

In the conversion process from an arbitrary table to a MFA or ACA table,
the original MFT and its equivalent MFA are still compatible with the ex-
isting switch (for example, Open vSwitch), which means these tables are
able to be installed into a switch without any transformation. Compared
to MFA, the match fields in ACA can also be transformed into conjunctive
normal form (CNF). However, each clause in ACA’s CNF is not a simple
match field, it becomes a disjunctive normal form (DNF) of the simple
match fields and their negatives. Thus they are not able to be written into
the OpenFlow table in real switch directly.

Algorithm 6 illustrates the process to convert a single action’s associ-
ated match fields into a switch compatible table. All non-negative fields (a
field without unary operation “¬”) in a clause will be installed into a single
table in sequence (Algorithm 6 Lines 13-15). Every negative field (a field
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with an unary operation “¬”) occupies a separate table in which an entry
with the original non-negative match field to pass packets to next table (or
drop if it is already the last table) and a default entry to pass packets to
next clause (or execute the action if it is the last table) are installed. These
two entries are combined to represent a negative field (Algorithm 6 Lines
18-26). Thus for each clause, the incoming packets will be proceed by the
non-negative table firstly and all matched packets will be sent to the first
table of next clause. For the unmatched packets, they will be sent to next
table(s) to match against the negative fields. With this design, the “OR”
operation between two fields inside a clause is represented by the action
“goto next table” between any two adjacent tables. The whole process is
demonstrated in Fig. 3.18.

Algorithm 6 illustrates the process to verify the forwarding behaviour
of a single action in an ACA table. However, the table(s) occupied by an
action cannot be shared by other actions. Otherwise, the later installed
action’s associated match fields with lower priority in a table might not
get the chance to match against the incoming packets. Thus, it is not able
to deploy an entire ACA table into the existing Open vSwitch, only one
action’s match fields can be installed in each test. Thus an ACA table’s
verification will involve multiple rounds of single action based test.

The functional test is to verify if a given MFT table forwards all in-
coming packets to the same destinations as its converted MFA and AFA
table using the approaches in Section 3.3, i.e., to verify whether these three
tables are equivalent.

In the black box of Fig. 3.10, three type of forwarding tables will be
verified. Among them, the original table(s) and its equivalent MFA are
still compatible with Open vSwitch and able to be installed without any
transformation. For each action in ACA, the associated match fields can
be written into Open vSwitch by Algorithm 6.
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Algorithm 6 ACA associated Boolean function deployment

1: S ← input: single ACA associated match fields in the form of CNF
2: C.negCount← input: (the count of negative fields in each clause C) + 1
3: ct← input: the index of the table in processing
4: procedure Aca deployment
5: ct← 0
6: for each clause C in S do
7: rt← C.negCount
8: if C is the last clause in S then
9: act← S.action

10: else
11: act← “goto (ct+ rt)th table”
12: end if
13: for each non-negative field m in C do
14: install flow {match = m, action = act} in table ct
15: end for
16: install flow {match = ∗, action = “goto (ct+ 1)st table”} in ct
17: ct← ct+ 1
18: for each negative field ¬m in C do
19: if ct 6= rt− 1 then
20: install flow {match = m, action = “goto (ct+1)st table”}
21: else
22: install flow {match = m, action = DROP}
23: end if
24: install flow {match = ∗, action = act} in table ct
25: ct← ct+ 1
26: end for
27: end for
28: end procedure
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3.4.1.2 Functional Test Scenarios

In this section, three typical scenarios in traditional networking are veri-
fied: i) Forwarding information base (FIB) for OSI layer 2 switching; ii)
simple IP table for layer 3 routing; iii) MPLS to VLAN translation. To
cover the various types of forwarding set, a comprehensive multiple in-
ward outward pipeline is also presented in the end of this subsection.

Scenario 1: FIB

A forwarding information base (FIB), also known as a forwarding table
or MAC table, is most commonly used in OSI layer 2 switching to find the
proper interface to which the input interface should forward a packet. It is
a dynamic table that maps MAC addresses to ports based on their VLAN
groups. In the case of Fig. 3.11, the packets with VLAN 1001-1002 and des-
tination MAC (DMAC) ending with 11 and 22 will be forwarded to port 1
or 2 while the packets belonging to VLAN 1003-1004 will be forwarded to
port 3 or 4 based on their respective DMAC.

Match(VLAN) Action Priority
1001
1002
1003
1004

Goto Table 1 4
Goto Table 1 3
Goto Table 2 2
Goto Table 2 1

Table 0

Table 1

Table 2

Match(DMAC) Action Priority
*:11
*:22

Goto Port 1 2
Goto Port 2 1

Match(DMAC) Action Priority
*:33
*:44

Goto Port 3 2
Goto Port 4 1

Figure 3.11: Functional test scenario 1 - MAC forwarding

The equivalent MFA and ACA of the test case in Fig. 3.11 has been
demonstrated in Fig. 3.12 and Fig. 3.13, respectively. During the verific-
ation, all the converted FTEs in MFA are still able to be written in Open
vSwitch but the FTEs in ACA cannot be written directly to Open vSwitch
because they contain the “OR(∨)” operations. With the help of Algorithm
6, after converting “OR(∨)” to multiple entries, every action can be veri-
fied separately by deploying them to Open vSwitch. The detailed process
will be exemplified in the next test scenario.
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Match(VLAN ∧ DMAC) Action Priority
1001 ∧ *:11 Output port 1 8
1001 ∧ *:22 Output port 2 7
1002 ∧ *:11 Output port 1 6
1002 ∧ *:22 Output port 2 5
1003 ∧ *:33 Output port 3 4
1003 ∧ *:44 Output port 4 3
1004 ∧ *:33 Output port 3 2
1004 ∧ *:44 Output port 4 1

Figure 3.12: Functional test scenario
1 - MFA of the MAC forwarding table
in Fig. 3.11

Action Match(VLAN ∧ DMAC)
Output port 1 (1001 ∨ 1002) ∧ (*:11)
Output port 2 (1001 ∨ 1002) ∧ (*:22)
Output port 3 (1003 ∨ 1004) ∧ (*:33)
Output port 4 (1003 ∨ 1004) ∧ (*:44)

Figure 3.13: Functional test scen-
ario 1 - ACA of the MAC for-
warding table in Fig. 3.11

During the test, various type of traffic with the specific VLAN and
MAC in the range of match fields in Fig. 3.11 have been fed. As illustrated
in Fig. 3.14, in each test, the same packets are replayed for MFT, MFA and
ACA to observe their respective actions. In the rest of this subsection, MFT
also stands for the original forwarding table which unusually presents in
the form of multiple flow table.

Test Case
MFT MFA ACA Expected Output

VLAN MAC
1001 00:0a:95:9d:68:11 X X X Output port 1
1001 00:0a:95:9d:68:22 X X X Output port 2
1002 00:0a:95:9d:68:11 X X X Output port 1
1002 00:0a:95:9d:68:22 X X X Output port 2
1003 00:0a:95:9d:68:33 X X X Output port 3
1003 00:0a:95:9d:68:44 X X X Output port 4
1004 00:0a:95:9d:68:33 X X X Output port 3
1004 00:0a:95:9d:68:44 X X X Output port 4

Figure 3.14: Functional test scenario 1 - summary of the MAC forwarding
table in Fig. 3.11

Scenario 2: IP routing table

An IP routing table is used to determine where data packets travel-
ling over an Internet Protocol (IP) network will be directed. The packets
matching a certain range of VLAN and destination MAC address will be
sent to routing table for IP lookup to determine its output port. In tra-
ditional networking, a MAC address usually points to a switch or router
rather than any hosts in the same subnet to indicate the packets should be
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further forwarded based on its destination IP (DIP) address. Hence, the
actual match fields for an IP routing table include VLAN, DMAC and DIP,
which are represented in the three separate tables in Fig. 3.15.

Match(VLAN) Action Priority
1001
1002
1003
1004
1005

Goto Table 1 5
Goto Table 1 4
Goto Table 1 3
Goto Table 1 2
Goto Table 1 1

Table 0 Table 1 Table 2

Match(DMAC) Action Priority
*:11
*:22
*:33
*:44
*:55

Goto Table 2 5
Goto Table 2 4
Goto Table 2 3
Goto Table 2 2
Goto Table 2 1

Match(DIP) Action Priority
192.168.1.0/24
192.168.0.0/16

192.0.0.0/8
10.0.0.0/16
10.0.0.0/8

Output port 1 5
Output port 2 4
Output port 3 3
Output port 4 2
Output port 5 1

Figure 3.15: Functional test scenario 2 - IP routing table

For the given IP routing example in Fig. 3.15, its equivalent MFA and
ACA are illustrated in Fig. 3.16 and Fig. 3.17, respectively. The match
fields in MFA are in conjunctive normal form (CNF) in which every clause
is a single match field. Thus it can be easily verified by Open vSwtich.
However, the ACA table cannot be written to Open vSwitch directly be-
cause it contains the “OR(∨)” and “NOT(¬)” operations.

Match(VLAN ∧ DMAC ∧ DIP) Action Priority
1001 ∧ *:11 ∧ (192.168.1.0/24) Output port 1 125
1001 ∧ *:11 ∧ (192.168.0.0/16) Output port 2 124

· · · · · · · · · · · · · · · · · ·
1001 ∧ *:11 ∧ (10.0.0.0/8) Output port 5 121
1001 ∧ *:22 ∧ (192.168.1.0/24) Output port 1 120

· · · · · · · · · · · · · · · · · ·
1001 ∧ *:22 ∧ (10.0.0.0/8) Output port 5 116

· · · · · · · · · · · · · · · · · ·
1005 ∧ *:55 ∧ (10.0.0.0/8) Output port 5 1

Figure 3.16: Functional test scenario
2 - MFA of the IP routing table in Fig.
3.15

Action Match(VLAN ∧ DMAC ∧ DIP)

Output port 1
(1001 ∨ 1002 ∨ 1003 ∨ 1004 ∨ 1005) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
(192.168.1.0/24)

Output port 2
(1001 ∨ 1002 ∨ 1003 ∨ 1004 ∨ 1005) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
((192.168.0.0/16) ∧ (¬(192.168.1.0/24)))

Output port 3
(1001 ∨ 1002 ∨ 1003 ∨ 1004 ∨ 1005) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
((192.0.0.0/8) ∧ (¬(192.168.0.0/16)))

Output port 4
(1001 ∨ 1002 ∨ 1003 ∨ 1004 ∨ 1005) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
(10.0.0.0/16)

Output port 5
(1001 ∨ 1002 ∨ 1003 ∨ 1004 ∨ 1005) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
((10.0.0.0/8) ∧ (¬(10.0.0.0/16)))

Figure 3.17: Functional test scen-
ario 2 - ACA of the IP routing
table in Fig. 3.15

Fig. 3.18 illustrates the deployment of an ACA table on Open vSwitch
for action “output port 5” in Fig. 3.17 by applying Algorithm 6. Here four
tables are used to represent the equivalent match fields of a single action
in ACA. Once the same packets are replayed in the switch, all packets
egressing from port 5 will be identified. This process is repeated for other
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output ports until all ACA’s actions have been tested.

Match
(VLAN)

Action Priority

1001
1002
1003
1004
1005

Goto Table 1 5
Goto Table 1 4
Goto Table 1 3
Goto Table 1 2
Goto Table 1 1

Table 0 Table 1

Table 2

Match
(DMAC)

Action Priority

*:11
*:22
*:33
*:44
*:55

Goto Table 2 5
Goto Table 2 4
Goto Table 2 3
Goto Table 2 2
Goto Table 2 1

Match(DIP) Action Priority
10.0.0.0/16

*
Drop 2

Output Port 5 1

Match(DIP) Action Priority
10.0.0.0/8 Goto Table 3 1

Table 3

Figure 3.18: Functional test scenario 2 - the deployment of the ACA with
action “Output port 5” in Fig. 3.15

During the functional test, the various combinations of VLAN, DMAC
and DIP in the range specified in Fig. 3.15 have been tested. As shown
in Fig. 3.19, the packets matching multiple entries in MFT are forwarded
based on their original priorities. For example, the packets with destina-
tion IP 192.168.1.1 (row 3 in Fig. 3.19) which matches the first two entries
in Table 2 (Fig. 3.15) are correctly sent to output port 1 in all three tables.

Test Case
MFT MFA ACA Expected Output

VLAN DMAC DIP
1001 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
1001 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
1002 00:0a:95:9d:68:33 192.1.1.1 X X X Output port 3
1002 00:0a:95:9d:68:44 10.0.1.1 X X X Output port 4
1003 00:0a:95:9d:68:55 10.1.1.1 X X X Output port 5
1003 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
1004 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
1004 00:0a:95:9d:68:33 192.1.1.1 X X X Output port 3
1005 00:0a:95:9d:68:44 10.0.1.1 X X X Output port 4
1005 00:0a:95:9d:68:55 10.1.1.1 X X X Output port 5

Figure 3.19: Functional test scenario 2 - summary of the IP routing table in
Fig. 3.15

Scenario 3: MPLS to VLAN translation
Another typical networking scenario is the Multiprotocol Label Switch-

ing (MPLS) label push, swap and pop. When a packet passes through the
gateway from wide area network (WAN) to local area network (LAN), the
MPLS label it carries will be popped and replaced by the local VLAN tag.

The matching condition of MPLS to VLAN translation can be repres-
ented by the tables in Fig. 3.20 in which the ingress port and DMAC are
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Match(Port) Action Priority
2
3
4
5
6

Goto Table 1 5
Goto Table 1 4
Goto Table 1 3
Goto Table 1 2
Goto Table 1 1

Table 0 Table 1 Table 2

Match(DMAC) Action Priority
*:11
*:22
*:33
*:44
*:55

Goto Table 2 5
Goto Table 2 4
Goto Table 2 3
Goto Table 2 2
Goto Table 2 1

Match(MPLS) Action Priority
1001
1002
1003
1004
1005

Output port 1 5
Output port 2 4
Output port 3 3
Output port 4 2
Output port 5 1

Figure 3.20: Functional test scenario 3 - MPLS to VLAN translation

added as match fields because they are often used to identify whether a
packet should be further processed with MPLS operations. In a real MPLS
translation case, the actions include MPLS pop, VLAN tagging, source and
destination MAC replacement, here only output port is specified because
MFA and ACA focus on the conversion of match fields.

Match
(Port ∧DMAC ∧MPLS)

Action Priority

2 ∧ *:11 ∧ 1001 Output port 1 125
2 ∧ *:11 ∧ 1002 Output port 2 124
· · · · · · · · · · · · · · · · · ·

2 ∧ *:11 ∧ 1005 Output port 5 121
2 ∧ *:22 ∧ 1001 Output port 1 120
· · · · · · · · · · · · · · · · · ·

2 ∧ *:22 ∧ 1005) Output port 5 116
· · · · · · · · · · · · · · · · · ·

6 ∧ *:55 ∧ 1005 Output port 5 1

Figure 3.21: Functional test scenario
3 - MFA of the MPLS to VLAN trans-
lation in Fig. 3.20

Action Match(Port ∧ DMAC ∧MPLS)

Output port 1
(2 ∨ 3 ∨ 4 ∨ 5 ∨ 6) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
1001

Output port 2
(2 ∨ 3 ∨ 4 ∨ 5 ∨ 6) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
1002

Output port 3
(2 ∨ 3 ∨ 4 ∨ 5 ∨ 6) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
1003

Output port 4
(2 ∨ 3 ∨ 4 ∨ 5 ∨ 6) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
1004

Output port 5
(2 ∨ 3 ∨ 4 ∨ 5 ∨ 6) ∧
(*:11 ∨ *:22 ∨ *:33 ∨ *:44 ∨ *:55) ∧
1005

Figure 3.22: Functional test scen-
ario 3 - ACA of the MPLS to
VLAN translation in Fig. 3.20

Since the original MFT of the MPLS translation is very similar to the
IP routing table in second scenario, they have similar MFA and ACA (Fig.
3.21 and Fig. 3.22). A difference is that MPLS does not support wildcard,
thus the deprioritisation can be avoided, which makes the ACA deploy-
ment easier because every single action only requires one table. (In Fig.
3.18, the DIP for action output port 5 takes two tables due to the existence
of IP overlap.) The test cases to verify this scenario are also listed in Fig.
3.23.
Scenario 4: A multiple-inward multiple-outward case
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Test Case
MFT MFA ACA Expected Output

Port DMAC MPLS
2 00:0a:95:9d:68:11 1001 X X X Output port 1
2 00:0a:95:9d:68:22 1002 X X X Output port 2
3 00:0a:95:9d:68:33 1003 X X X Output port 3
3 00:0a:95:9d:68:44 1004 X X X Output port 4
4 00:0a:95:9d:68:55 1005 X X X Output port 5
4 00:0a:95:9d:68:11 1001 X X X Output port 1
5 00:0a:95:9d:68:22 1002 X X X Output port 2
5 00:0a:95:9d:68:33 1003 X X X Output port 3
6 00:0a:95:9d:68:44 1004 X X X Output port 4
6 00:0a:95:9d:68:55 1005 X X X Output port 5

Figure 3.23: Functional test scenario 3 - summary of the IP routing table in
Fig. 3.20

The last test scenario depicts the conversion of a multiple inward out-
ward MFT. Fig. 3.24 demonstrates a case which contains tables (Table 0
and Table 1) who have two outward links and tables (Table 2 and Table 3)
who have two inward links.

Match
(Port)

Action Priority

2

3

4

5

Goto 
Table 1

4

Goto 
Table 1

3

Goto 
Table 2

2

Goto 
Table 2

1

Table 0 Table 1 Table 2

Match
(VLAN)

Action Priority

1001

1002

1003

1004

Goto 
Table 2

4

Goto 
Table 2

3

Goto 
Table 3

2

Goto 
Table 3

1

Match
(DMAC)

Action Priority

*:11

*:22

Goto 
Table 3

4

Goto 
Table 3

3

Match
(DIP)

Action Priority

192.168.1.0
/24

192.168.0.0
/16

Output 
port 1

4

Output 
port 2

3

Table 3

0

1 2

2 3 3

3

0

1 2

3(2) 4(3) 5(3)

6(3)

Figure 3.24: Functional test scenario 4 - a multiple-inward multiple-
outward case

Figure 3.25 presents the equivalent single table which is converted from
the multi-table example in Fig. 3.24. All the flows in the converted MFA
table are the compositions of the original match fields and they are still
able to write into Open vSwitch, thus the same method for the other scen-
arios can be used to verify the equivalence of MFA in Fig. 3.25.

In the processing of ACA computation, the conversion from the ori-
ginal pipeline to the trie structure is different from the previous simple
cases due to the existence of the multi-inward links. To make Algorithm
5 applicable to this case, all the inward links need to be removed by the
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Match
Action Priority

Port VLAN DMAC DIP
2 1001 *:11 192.168.1.0/24 Output port 1 32
2 1001 *:11 192.168.0.0/16 Output port 2 31
2 1001 *:22 192.168.1.0/24 Output port 1 30
2 1001 *:22 192.168.0.0/16 Output port 2 29
2 1002 *:11 192.168.1.0/24 Output port 1 28
2 1002 *:11 192.168.0.0/16 Output port 2 27
2 1002 *:22 192.168.1.0/24 Output port 1 26
2 1002 *:22 192.168.0.0/16 Output port 2 25
2 1003 * 192.168.1.0/24 Output port 1 24
2 1003 * 192.168.0.0/16 Output port 2 23
2 1004 * 192.168.1.0/24 Output port 1 22
2 1004 * 192.168.0.0/16 Output port 2 21
2 1001 *:11 192.168.1.0/24 Output port 1 20
2 1001 *:11 192.168.0.0/16 Output port 2 19
3 1001 *:22 192.168.1.0/24 Output port 1 18
3 1001 *:22 192.168.0.0/16 Output port 2 17
3 1002 *:11 192.168.1.0/24 Output port 1 16
3 1002 *:11 192.168.0.0/16 Output port 2 15
3 1002 *:22 192.168.1.0/24 Output port 1 14
3 1002 *:22 192.168.0.0/16 Output port 2 13
3 1003 * 192.168.1.0/24 Output port 1 12
3 1003 * 192.168.0.0/16 Output port 2 11
3 1004 * 192.168.1.0/24 Output port 1 10
3 1004 * 192.168.0.0/16 Output port 2 9
4 * *:11 192.168.1.0/24 Output port 1 8
4 * *:11 192.168.0.0/16 Output port 2 7
4 * *:22 192.168.1.0/24 Output port 1 6
4 * *:22 192.168.0.0/16 Output port 2 5
5 * *:11 192.168.1.0/24 Output port 1 4
5 * *:11 192.168.0.0/16 Output port 2 3
5 * *:22 192.168.1.0/24 Output port 1 2
5 * *:22 192.168.0.0/16 Output port 2 1

Figure 3.25: Functional test scenario 4 - MFA of the multiple-inward
multiple-outward case in Fig. 3.24

clone process implemented in Algorithm 4. The left trie in Fig. 3.26 de-
picts the actual table jumping relationship in which a same table might
be traversed for more than one time. The right trie converts the original
four-nodes trie into a six-nodes trie by cloning and reindexing all nodes in
sequence. After this transformation, the equivalent ACA can be acquired
following the process in Algorithm 5.

The final result shown in Fig. 3.27 is a composition of all match fields
for the same action (Output port 1 and 2) in Fig. 3.24. Here the match
fields are separated according to their respective traversing path to bet-
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Figure 3.26: Functional test scenario 4 - trie conversion for the multiple-
inward multiple-outward case in Fig. 3.24

ter demonstrate the packet matching sequence in the original forwarding
pipeline. The correctness of the ACA conversion can also be proven with
the same deployment strategy illustrated in Algorithm 6.

Action
Match Traverse

pathPort VLAN DMAC DIP
Output port 1 2 ∨ 3 1003 ∨ 1004 192.168.1.0/24

0-1-4(3)
Output port 2 2 ∨ 3 1003 ∨ 1004

¬(192.168.1.0/24)
∧ (192.168.0.0/16)

Output port 1 4 ∨ 5 *:11 ∨ *:22 192.168.1.0/24
0-2-5(3)

Output port 2 4 ∨ 5 *:11 ∨ *:22
¬(192.168.1.0/24)
∧ (192.168.0.0/16)

Output port 1 2 ∨ 3 1001 ∨ 1002 *:11 ∨ *:22 192.168.1.0/24
0-1-3(2)-6(3)

Output port 2 2 ∨ 3 1001 ∨ 1002 *:11 ∨ *:22
¬(192.168.1.0/24)
∧ (192.168.0.0/16)

Figure 3.27: Functional test scenario 4 - ACA result of the multiple-inward
multiple-outward case in Fig. 3.24

Figure 3.28 summarises all the test cases in this scenario. All the ports,
VLAN, DMAC and DIP in the original MFT are enumerated to guarantees
its equivalence to MFA and ACA.

This multi-inward multi-outward scenario can be interpreted as the
various conditions for a packet to be proceeded by an IP routing table,
which are the combination of: i) ingress port and VLAN; ii) DMAC and
DIP; iii) Port, VLAN, and DMAC. More importantly, this case represents a
generic MFT structure, which proves the feasibility of MFA and ACA.
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Test Case
MFT MFA ACA Expected Output

Port VLAN DMAC DIP
2 1001 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
2 1001 00:0a:95:9d:68:11 192.168.0.1 X X X Output port 2
2 1001 00:0a:95:9d:68:22 192.168.1.1 X X X Output port 1
2 1001 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
2 1002 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
2 1002 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
2 1002 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
2 1002 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
2 1003 00:0a:95:9d:68:EE 192.168.1.1 X X X Output port 1
2 1003 00:0a:95:9d:68:EE 192.168.0.1 X X X Output port 2
2 1004 00:0a:95:9d:68:EE 192.168.1.1 X X X Output port 1
2 1004 00:0a:95:9d:68:EE 192.168.0.1 X X X Output port 2
3 1001 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
3 1001 00:0a:95:9d:68:11 192.168.0.1 X X X Output port 2
3 1001 00:0a:95:9d:68:22 192.168.1.1 X X X Output port 1
3 1001 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
3 1002 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
3 1002 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
3 1002 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
3 1002 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
3 1003 00:0a:95:9d:68:aa 192.168.1.1 X X X Output port 1
3 1003 00:0a:95:9d:68:bb 192.168.0.1 X X X Output port 2
3 1004 00:0a:95:9d:68:cc 192.168.1.1 X X X Output port 1
3 1004 00:0a:95:9d:68:dd 192.168.0.1 X X X Output port 2
4 2001 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
4 2002 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
4 2003 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
4 2004 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
5 2005 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
5 2006 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2
5 2007 00:0a:95:9d:68:11 192.168.1.1 X X X Output port 1
5 2008 00:0a:95:9d:68:22 192.168.0.1 X X X Output port 2

Figure 3.28: Functional test scenario 4 - summary of the multiple-inward
multiple-outward case in Fig. 3.24

3.4.2 Performance Evaluation

3.4.2.1 Complexity Analysis

The EFS evaluation consists of two stages: i) the conversion from any arbit-
rary types of forwarding tables into either MFA or ACA table; ii) the com-
parison between two converted MFA or ACA tables. Both stages are in-
volved with large amount of space-hungry and time-consuming Boolean
operations. The details will be investigated in the following complexity
analysis, moreover, the potential methods to reduce the computation time
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and the respective applicable scenarios for MFA and ACA will also be dis-
cussed.

Table 3.1 compares the number of FTEs in the original MFTs and their
corresponding converted MFA and ACA tables for the four scenarios in
functional tests. The number of MFA (denoted as NM ) is determined by
the number of tables and the number of FTE in each table while the num-
ber of ACA (denoted as NA) is only associated with the final action(s).
Supposing there is a MFT with t forwarding tables, f FTEs and a actions,
the maximum number of MFA will be (f

t
)t while NA is always the same as

a. For a MFT with two linked tables in which one contains 100 MAC ad-
dress entries and the other contains 100 IP addresses, the total number of
entries in the converted single table by MFA will reach 100× 100 = 10, 000

which is significantly higher than the original total number of entries (just
100 + 100 = 200). However, the size of its converted ACA table is determ-
ined by the number of actions which is smaller than the original MFT.

Table 3.1: Total number of entries in original multiple flow tables, MFA
and ACA for afore-mentioned four function test scenarios

Scenario Match Field Type NO NM NA

1 FIB VLAN, DMAC Multiple outward 8 8 4
2 IP routing table VLAN, DMAC, DIP Sequential 15 125 5
3 MPLS to VLAN Port, DMAC, MPLS Sequential 15 125 5

4 Comprehensive case Port, VLAN, DMAC, DIP
Multiple inward,
multiple outward

12 32 2

Notes:
NO - Number of FTEs in original MFT.
NM - Number of FTEs in equivalent MFA.
NA - Number of FTEs in equivalent ACA.

MFA introduces not only the greater number of FTE but also the higher
complexity. As illustrated in Table 3.2, the conversion complexity of MFT
is proportional to (f

t
)t because every entry in a table operates with the

FTEs in all other tables. The conversion of ACA has two steps: i) the re-
moval of priorities and the merging of the FTEs for the same action; ii)
the trie conversion and traversal. The first step occurs in each individual
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forwarding table and the complexity is proportional to the number of FTE
(O(f)). The second step intends to combine all the action indexed FTEs in
different tables whose complexity is determined by the number of tables
and their containing actions (O(a

t
)t).

The complexity of the second step is determined by the number of FTEs
in the converted tables. In the worst case, two equivalent MFTs with dif-
ferent type of structure might yield two completely different MFA tables,
therefore, all FTEs in one table must compare with all FTEs in anther MFA,
this is why the comparison complexity isO((f

t
)2t) rather thanO((f

t
)t). This

will not happen on ACA because all the FTEs have been indexed based on
actions.

Besides MFA and ACA, the closest research on equivalent forward-
ing set is MTO which aims to convert M-stage multiple flow tables into a
One-stage flow table [15]. It can be observed that MTO chooses a similar
strategy as MFA thus they have the same complexity. However, MTO has
limited applicable networking scenarios because it did not notice the effect
of priority and the existences of multiple inward and outward structure.

Table 3.2: Complexity comparison of MFA, ACA and MTO

MFA ACA MTO

Conversion complexity O((f
t
)t) O(f + (a

t
)t) O((f

t
)t)

Comparison complexity O((f
t
)2t) O(a) O((f

t
)2t)

From table 3.1 and 3.2, it can be observed that ACA has lower com-
plexity than MFA, however, it does not imply that MFA always requires
less storage space and conversion time. It only indicates that ACA has
fewer Boolean operations than MFA but each operation might take longer
time because ACA retains all the original match fields for the same action.
In the following two subsections, the performances of MFA and ACA are
evaluated and the way to reduce the computation time are also investig-
ated.
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3.4.2.2 Formula Based Boolean Operation

The storage and computation of Boolean functions are proceeded in the
format of either formula or truth-table (Appendix C). Equation C.3 demon-
strates that the number of the prime implicants is constrained by variables
and conjunctions. Take IPv4 which requires 32 bits (as thus requires 32
variables) as an example, it will have at least 3b32/3c = 310 = 59, 049 prime
implicants if no limitation of conjunctions imposed. In practice, the width
of match fields might be far larger than 32 due to the existence of various
fields such as MAC address, VLAN ID, MPLS label and their combina-
tions. Usually these values spread in various ranges and they are hard
to be merged to eliminate the variables significantly, so the reduction of
prime implicants by the elimination of variables is difficult to achieve.

Referring again to Eq. (C.3), another way to limit the number of prime
implicants is to reduce the number of conjunctions. In most cases, the
number of variables should be in the same order-of-magnitude for MFA
and ACA because both of them rely on the same composition of match
fields. It is possible for MFA to use fewer variables to represent a match
field because it involves far less conjunctions than ACA, however, the
number of prime implicants is still considerably large. Suppose there are
two forwarding entries with different match fields, for example, one IP
address and one MAC address, if they share the same action, they will be
merged into one forwarding set ultimately in ACA, which means the vari-
ables in ACA will become the sum of IP and MAC address. While in MFA,
they should always belong two different forwarding sets and they will be
compared in their respective width.

Though there is not much difference on the number of variables between
ACA and MFA, their conjunctions vary significantly. In ACA, all match
fields with the same action will be merged into one big set which contains
all the conjunctions from the original forwarding entries. The situation
becomes worse during the process of deprioritisation. In deprioritisation,
the compliment of the match fields with higher priority will be introduced,



80 CHAPTER 3. EQUIVALENT FORWARDING SET EVALUATION

which is huge compared to the original conjunctions. Take a forward-
ing table with only two entries as an example, if both of them contain an
IPv4 address (IP1 and IP2) as match fields while their actions vary, the
match fields of the second entry will become {IP1 ∧ (¬ IP2)} after deprior-
itisation. According to the wildcard-supported “compliment” operations,
it will have 32 conjunctions. Thus in the final ACA forwarding set, the
number of conjunctions equals to the sum of original conjunctions and
their compliments. However, this problem does not exist in MFA which
does not involve deprioritisation and merging among multiple forward-
ing entries.

In summary, ACA defers the normalization and comparison to the final
step of the conversion process and then compares the generated large and
complexed forwarding sets, the final number of conjunctions are usually
a factor ten more than the number of original entries. Because of this,
the computation of prime implicants becomes extremely complicated and
the number of prime implications turns to extraordinary large. However,
ACA is easily implemented in real-world applications with the help of
truth table, which makes it more favourable in practice.

3.4.2.3 Truth-table Based Boolean Operation

Another way to compare two Boolean functions is to convert them into
truth tables and then compare all the elements one by one. This is achieved
by electronic logic gates or software. The comparison of two Boolean val-
ues is an exclusive logical OR operation. The performance on two Boolean
functions with different widths and lengths is illustrated in Fig. 3.29.

Fig. 3.29 demonstrates the time consumption of bitwise operation between
two truth-tables on a Dell OptiPlex 9020 server with Intel i7 Quad-Core
CPU and 8GB RAM. The conversion time from Boolean functions to truth-
table is excluded. It is observed that the execution time is not sensitive
to the width of Boolean values. The comparison time of 128 bits width
truth table is only increased around 14.4% compared with the 32 bits table
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in the case of 232 elements. However, the time is linearly proportional to
the number of elements, it reaches 24 minutes for the comparison of two
232 elements. This result demonstrates that the number of Boolean values
is the decisive factor in the comparison of two Boolean functions. Hence,
the truth-table based comparison favours ACA than MFA because it has
smaller number of FTE.
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Figure 3.29: Time of Boolean operations with variable lengths and widths

In the conversion between Boolean function and a truth table, the length
of a truth table can be further reduced with the introduction of wildcard.
In this scenario, each element must strictly represent one prime implicant,
otherwise, the same Boolean functions with different form of truth tables
might be determined as inequivalent.

Therefore, the performance of formula-based approach primarily relies
on the number of prime implicants which are determined by width and
length while truth-table based approach values length more than width.
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Since the width in a forwarding set is fixed (determined by the match
fields in original MFT), reducing the complexity relies on reducing the
number of length, i.e., reducing the number of operations. Thus, ACA
achieves better performance than MFA because it intends to push mer-
ging operations ahead in every stage, for example, in deprioritisation and
trie traversal. However, MFA can be easily verified by hardware or Open
vSwitch because the match fields of MFA are the simple “AND(∧)” op-
eration of all the original individual match filed, which makes them still
compatible with the existing forwarding pipeline.

In a word, the truth-table based ACA is the most realistic approach to
verify EFSs. No matter which procedure and sequence during the ACA
conversion is chosen, two forwarding sets are considered as equivalent as
long as they share the same truth table for same action.

3.5 Summary

With the introduction of SDN, the forwarding sets can be interpreted as a
single table or multiple linked tables. Two algorithms namely MFA and
ACA are discussed and verified in this chapter to convert an arbitrary
table into an uniform representation called EFS. The former converts a
forwarding set into a match-field-indexed dictionary in which the “key”
represents “match fields” yielding a tall dictionary. The latter converts
a forwarding set into an action-indexed dictionary in which the “value”
represents composite “match fields” sharing the same action. It produces
a fat dictionary. The experiment on Open vSwitch proves the correctness
of the conversion from a table to its equivalent MFA and ACA while the
performance analysis shows that ACA advances in the truth-table based
expression and goes on to show that MFA is easier to implement in today’s
devices.

In the next chapter, a non-invasive traffic estimation application will be
discussed. Compared to the equivalent forwarding set evaluation which
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aims to explore the relation between FTEs, this application extends the
research scope to FTEs’ associated statistics.



Chapter 4

Deterministic Statistics
Estimation

Software Defined Networking enables a centralised controller to monitor
the network’s status by collecting traffic statistics such as packets, bytes,
etc. Each statistic is associated with a forwarding table entry (FTE) in a
switch whose structure and format is specified by the OpenFlow stand-
ard (de-facto SDN standard). For a flow with a matching FTE, its stat-
istic is easily acquired by an inquiry from a controller to the switch on
this flow’s corresponding FTE. If a flow has no matching FTE, its statistic
is not known until a new FTE is installed for the purpose of monitoring
it. However, the overheads of packet transmission delay and throughput
loss as well as the potential conflicts between newly installed and existing
FTEs jeopardise the feasibility of this approach. To avoid these drawbacks,
this chapter proposes a traffic estimation approach based on the existing
FTEs’ statistics. With the help of Boolean algebra, the deterministic confid-
ence interval of any given flowset can be estimated. This traffic estimation
solution does not affect the existing packet forwarding functionality and
performance, which makes it more practical and suitable for large-scale
data-centre networks.

84
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4.1 Research Question

In SDN, the control plane is separated from the data plane, which means
the messages between switch and controller are absolutely isolated from
the normal packet forwarding. The control messages are composed and
decomposed in the CPU while the normal packets are processed by ASIC.
As illustrated in Fig. 4.1, the control messages are sent in a dedicated
control channel which is physically isolated from packet forwarding chan-
nels. An FTE manipulation based traffic estimation usually occurs in the
data plane because FTE installation is conducted in ASIC, thus it alters the
packet forwarding functionality and performance, which is called invasive
traffic measurement. Contrary to this, the traffic estimation in the control
plane does not affect the normal packet forwarding, it is a non-invasive
traffic measurement.

CPU

ASIC

Controller

Packets

Data
Plane

Control
Plane

SDN Switch

Figure 4.1: SDN architecture: control plane vs data plane

A common invasive traffic estimation is achieved by installing FTEs
into a separate table and gathering the corresponding traffic statistics [95,
96]. The process is depicted in Fig. 4.2. Sometimes there exist multiple
monitoring tables to serve different designated monitoring purposes and
their locations also vary. Usually the monitoring tables are put in the front
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of a forwarding pipeline to guarantee that all incoming traffic must pass
through them [96].

Monitoring Tables Forwarding Tables

Figure 4.2: Architecture of traffic estimation by FTE installation

However, the network forwarding performance has been affected by
the introduction of newly installed FTEs. Based on the research in [96], the
packet forwarding throughput decreases by 1% while the latency increases
by 41% on average.

Another serious problem which has been neglected in the existing re-
search is the conflicts between monitoring flows. Here “conflict” means
there are some overlaps between the monitoring flows. In this case, the
match fields of their respective monitoring FTEs do not reveal their actual
matching packets. This will prevent FTE with lower priority from captur-
ing all matching packets. Two conditions must be met by the monitoring-
only FTE: i) it must have the highest priority to match against all incom-
ing packets; and ii) it must have the lowest priority to avoid having any
impact on the forwarding behaviour of incoming packets. These two con-
tradictory conditions cannot be achieved on a single-table switch which
is still popular due to backward compatibility for legacy hardware. For a
multi-table switch, it can be achieved by reserving the first table (Table 0)
for these monitoring FTEs if the match fields of these newly installed FTEs
are independent [43]. Thus all the interacted FTEs must be deployed into
separate tables, which makes the FTE installation based traffic estimation
less attractive because it is too expensive in terms of forwarding resources.
It also makes the number of reserved monitoring tables become unpredict-
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able.

To avoid these aforementioned issues, this chapter proposes a solution
based on the statistics of the existing FTEs, which achieves less estima-
tion accuracy but it is more practical and easily deployed on a large-scale
network.

4.2 Non-invasive Traffic Estimation in SDN

In a software defined network, all the incoming packets are forwarded ac-
cording to the rules and actions specified by the FTEs in switches; at the
same time, the packet counters and bytes for this FTE are also recorded. By
querying these statistics, a controller is able to estimate traffic for any given
FTE’s matching packets. These packets are also called flows because they
always follow a certain pattern which is defined by the FTE’s match fields.
Typically, a flow is a sequence of packets sharing some common character-
istics, for example, MAC or IP address, the same protocol, etc. However,
not all flows follow the aforementioned standard flow definition. Flows
can belong to an arbitrary set of flows which share some common charac-
teristics; such an arbitrary set of flows is also called a “flowset” [84].

In this chapter, the DEterministic Confidence Interval eStimatION (DE-
CISION) solution is proposed based on the relation between a given flow-
set and the existing FTEs. In this solution, there will be no new FTE in-
stalled into any switch. The deterministic confidence traffic interval for a
given flowset is estimated by FTEs already installed in a switch and their
associated statistics.

4.2.1 Definition

A traffic interval is a set of data with the property that any datum lying
between two values in the set is also included in the set. For example, the
set of all data x satisfying 0 ≤ x ≤ 1000 is an interval which contains 0 and
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1000 as well as all values between them. Here the traffic might be packet
count, number of bytes or any units which reflect the amount of traffic in
a flow. In this chapter, the statistics collected from all flow tables use the
same unit (packet counter or bytes). For the estimated traffic interval, the
same unit will be adopted. To simplify the expression of traffic interval,
their units will be omitted in the rest of this chapter.

A traffic interval between a and b, including a and b, is denoted as
[a, b]. When both a and b are finite and real numbers, the interval [a, b] is
bounded. In this case, a and b are lower bound and upper bound of this
interval, respectively. For any given flowset, the traffic interval is always
bounded because it must fall between 0 (no traffic at all) and the total
traffic in a device. Thus, the problem of traffic interval estimation turns
into finding the lower bound and upper bound for a given flowset. The
absolute difference between these two bounds is also called length of an
interval. The smaller the length of an interval is, the more accurate an
estimation becomes. Thus the optimal estimated interval is determined
by the greatest lower bound as well as the least upper bound.

Definition 4.2.1 (Deterministic Confidence Interval (DCI) [97]). A confid-
ence interval gives an estimated range of values so defined that there is a
specified probability that the value of a parameter lies within it. The estim-
ated range is calculated from a given set of sample data. If the probability
reaches 100%, it becomes a deterministic confidence interval (DCI), which
means the parameter always falls in the estimated range.

Definition 4.2.2 (Optimal DCI (ODCI)). An optimal DCI (denoted by O)
is a DCI such that there does not exist any other DCI which is a subset
of O: @D ∈ D, D ⊂ O where D represents the full set of DCI for a given
estimation. Thus an Optimal Deterministic Confidence Interval (ODCI)
is bounded by the greatest lower bound (infimum) and the least upper
bound (supremum): O = [lo, ro] : @D = [lv, rv] ∈ D, lo < lv, ro > rv. They
are denoted as the lower bound of ODCI (LODCI) and the upper bound
of ODCI (UODCI), respectively.
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With the definition of ODCI, the DECISION approach turns into the
problem of finding ODCI for a given flowset.

4.2.2 Problem Description

A flowset is an arbitrary set of flows defined by the specified common
fields (SCF), for example, a flowset f whose medium access control (MAC)
address equals “00:11:22:33:44:55” (SCFf = {MAC = 00:11:22:33:44:55} )
or a combination of a virtual LAN (VLAN) ID 1 and a Multiprotocol Label
Switching (MPLS) label 101 (SCFf = {VLAN = 1,MPLS = 101}). In this
chapter, SCF and an FTE’s match fields are expressed in a form of Boolean
function, i.e., SCF = g(a1, a2, . . . , an) where ai represents the attributes
of a flowset which has been specified in latest OpenFlow standard [90]
and function g represents a Boolean logical operation (e.g., “AND(∧)”,
“OR(∨))”, “NOT(¬)”, etc.) on these attributes. With the introduction of
SCF, an ODCI estimation problem can be addressed with the help of set
relation between SCF and the match fields of a forwarding set. The formal
definition of this problem is expressed as follows:

Problem 4.2.1 (Optimal DCI Estimation). Given a forwarding set F and a
flowset f which is defined by its specific common fields SCFf , the ODCI estima-
tion problem is to identify the traffic interval of f (denoted as Tf ) whose length is
as small as possible. Here F is composed of forwarding table entries in the form
of single-table or multi-table, each entry is associated with a statistic. Specific-
ally, the traffic interval is composed of lower bound l and upper bound u, i.e.,
Tf =

[
l, u
]
. Thus the ODCI estimation problem turns into the maximisation of l

and the minimisation of u.

For a switch, all the FTEs, routing entries, access control lists (ACL)
and high level polices determine the forwarding behaviour of all incom-
ing packets, these various types of forwarding entries are called forwarding
set. In SDN, a forwarding set is interpreted in the form of a single table or
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chained multiple tables to enable packets processing in a more sophistic-
ated way. The OpenFlow standard specifies the structure of a forward-
ing table which is illustrated in the top half of Fig. 4.3 [90]. The bottom
half of Fig. 4.3 shows a detailed multi-table structure with three linked
tables. These tables collectively form a forwarding set to match against
all incoming packets and execute associated actions. Since these chained
tables behave as a packet processing pipeline, they are also called forward-
ing pipeline. In this forwarding pipeline, the actions in “Table 0” contain
“Goto Table” attribute which means the matched packets of this forward-
ing entry will be passed to another table for further processing. A packet
with attributes “A” and “B” will be sent to Table 1 and Table 2 for further
processing, respectively. Note that in each table, every single entry is asso-
ciated with a statistic, which means a packet’s traffic will be counted more
than one time if it travels along multiple tables.

Our DECISION solution in section 4.3 begins from a single forwarding
table and then extends to the multi-table scenario. A single flow table is
composed of multiple flow entries which is illustrated as a row in a table.
Take the table in the top half of Fig. 4.4 as an example, there are a total
of three FTEs in which “Match fields”, “Action” and “Priority” are Open-
Flow’s intrinsic attributes. While each FTE is always associated with a
statistic, the “Statistics” is not part of an FTE. For the sake of easy refer-
ence to a specific FTE, an “Index” column is also added into this table.

Using the forwarding table example in Fig. 4.4 which contains three
FTEs indexed 1-3 (the top half) as shown, the ODCI for the flowset with
SCF as {MAC = A, IP = B}, {IP = B} and {MAC = D, IP = B} are
[40, 40], [100, 180] and [0, 60], respectively (bottom half in Fig. 4.4). Take
the second SCF {IP = B} as an example, the packets with IP address as
B may match FTE 1 or 3, thus the LODCI is the sum of FTE 1’s and FTE
3’s statistics (40 + 60 = 100). However, the packets with MAC address as
C and IP address as B will only match FTE 2, which means the UODCI
of SCF {IP = B} is the sum of all the three FTE’s statistics in this table
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Match Action Priority Stats
A
B

Goto Table 1 200 50
Goto Table 2 100 80

Match Action Priority Stats
D1
D2
D3
D4

Output 5 4 200
Output 6 3 40
Output 7 2 75
Output 8 1 80

Match Action Priority Stats
D1
D2
D3

Output 5 3 20
Output 11 2 45
Output 24 1 90

Figure 4.3: Forwarding table structure: a typical OpenFlow multiple flow
table forwarding pipeline specified in OpenFlow specification (on top) and
an example with three tables in which Table 0 has the “Goto Table” action
(on bottom)

(40 + 80 + 60 = 180). In this case, a packet with IP address as B may hit
any of these three FTEs.

4.3 Deterministic Traffic Estimation Algorithms

4.3.1 Single-Table Traffic Statistics Estimation

Intuitively, LODCI of a given flowset f is the sum of the statistics for all
FTEs whose match-field set is a subset of f ’s SCF (denoted as SCFf ). The
UODCI, however, is a set cover problem i.e. to find a collection of FTEs
whose union match-field set is a superset of SCFf . This approach is de-
noted as Simple-Subset-Superset (S3) in the reminder of this chapter. Take
the forwarding table in Fig. 4.5 as an example, the match fields of the first
two FTEs M1 and M2 are subsets of flowset f , thus the lower bound of
flowset f is the sum of these two FTEs’ statistics (i.e. 120). The union of all
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Index Match Fields Action Priority Statistics

1 MAC = A, IP = B Port 1 200 40

2 MAC = C Port 4 90 80

3 IP = B Port 12 70 60

SCFf Lower bound Upper bound

MAC = A, IP = B 40 40

IP = B 100 180

MAC = D, IP = B 0 60

Figure 4.4: A single forwarding table ODCI estimation example

the three sets {M1,M2,M3} is a superset of SCFf , thus the upper bound of
flowset f is the sum of all the statistics (i.e. 180).

Index Match Fields Action Priority Statistics

1 VLAN = [1 – 100] Port 1 200 40

2 VLAN = [101 – 200 ] Port 4 90 80

3 VLAN = [ 201 – 300] Port 12 70 60

SCFf Low bound Upper bound

VLAN = [1-250] 40+80 40+80+60

0 4096

VLAN

100 200 300

M1 M2 M3

250

SCFf

Figure 4.5: A traffic estimation example on independent FTE set

In the example illustrated in Fig. 4.5, all match fields are independent,
(i.e. their match fields have no intersections). However, for FTEs with
intersections, the S3 approach does not guarantee that an optimal lower
and upper bound can be found. Figure 4.6 demonstrates a forwarding
table with two FTEs (Index 1 and 2) whose match fields intersect. For a
flowset SCFf = { VLAN ranges from 11 to 150}, there is no FTE whose
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match-field set is the subset of f and the estimate is always 0. For the
upper bound, the minimum covering set of f are FTE 2 and 3’s match
fields, thus the upper bound is the sum of these two FTEs’ statistics (i.e.
80 + 60 = 140).

Unfortunately, the ODCI estimation based on the S3 approach for the
case in Fig. 4.6 is not correct. As mentioned earlier, all incoming packets
to a switch match against the FTEs in a single table in the sequence of
decreasing priority. Once a packet matches an FTE, the corresponding
action will be performed and the remaining FTEs will be ignored. As an
example, a packet with VLAN between 1 and 15 will never match against
FTE 2 in Fig. 4.6, thus the effective VLAN id of FTE 2 ranges from 16 to 100
rather than from 1 to 100. Hence all FTE 2’s matching packets belong to
the estimated flowset whose SCFf = {V LAN = [11, 150]} and the lower
bound of flowset f should be 80 rather than 0. Similarly, the union set of
the FTE 2 and 3’s match fields do not include VLAN id between 11 and 15
(inclusive) and it is not the cover set of the given flowset’s SCF. The correct
LODCI and UODCI of this given flowset should be [80, 180] rather than
[0, 140].

Because the proposed S3 approach is only applicable to the independ-
ent FTE sets, the intersections between two FTEs’ match fields must be
eliminated. The elimination will lead to a large match set for each FTE and
thus it is unlikely to be adopted in the real-world traffic estimation. How-
ever, it is a rigorous approach and the ODCI will be guaranteed. Besides
this, a pragmatic approach which does not require removing dependen-
cies on all FTEs is also proposed. It is more practical because it offers a
coarse traffic estimate involving far less computation.

4.3.1.1 AS3 Approach

In a single OpenFlow table, an incoming packet will hit only one FTE no
matter how many FTEs it matches. Therefore an FTE’s actual match-field
(AMF) set excludes all the match fields with higher priorities. Once an
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Index Match Fields Action Priority Statistics

1 VLAN = [1 – 15] Port 1 200 40

2 VLAN = [1 – 100] Port 4 90 80

3 VLAN = [101 – 200] Port 12 70 60

SCFf Low bound Upper bound

VLAN = [11-150] 0 ? 80+60 ?

0 4096

VLAN

10 100 200

M1

M2

M3

150

SCFf

15

Figure 4.6: A traffic estimation example on non-independent FTE set

FTE’s original match-field (OMF) set is replaced by its AMF set, these
FTEs are independent (within a table) and their positions in a table are
exchangeable. This process is called “deprioritisation” because the “Prior-
ity” attribute is safely removed without changing forwarding behaviour.
In the following discussion, the S3 approach will be called AS3 when ap-
plied on AMF and OS3 when applied on the original match fields.

Fig. 4.7 illustrates the deprioritisation process with a five-entries ex-
ample. In Table 1 (the original table), each item is associated with a pri-
ority which determines the matching sequence of an incoming packet. To
eliminate the dependencies among different FTEs, a virtual attribute “Un-
match Fields” is added in each FTE to exclude the match fields in all FTEs
with higher priorities. Thus an FTE’s AMF can be expressed by a logical
AND operation between the original “Match Fields” and the newly added
“Unmatch Fields”. Here “Unmatch Fields” is the logical negation of the
union of all previous FTEs’ OMFs. The deprioritisation preprocessing of
a single table is depicted in Algorithm 7 where “

∑
” represents the logical
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operation “OR” (∨) and “·” means the logical operation “AND” (∧).

Index Match Fields Action Priority Statistics 

1 M1 A1 200 S1 

2 M2 A2 90 S2 

3 M3 A3 70 S3 

… … … … … 

N MN AN 10 SN 

Index Match  
Fields 

Unmatch 
Fields 

Action Priority Statistics 

1 M1 NULL A1 X S1 

2 M2 M1 A2 X S2 

3 M3 M1  M2 A3 X S3 

… … … … X … 

N MN M1  M2… MN-1 AN X  SN 

Table 1 

Table 2 

Figure 4.7: Single table deprioritisation

In a deprioritised forwarding table, the original match field of an FTE
has been converted into AMF and the AMFs in a table are independ-
ent. Algorithm 8 outlines the process of computing the LODCI (lv) and
UODCI (rv) from a deprioritised table using AS3. The LODCI is the sum
of the statistics (stat) for all FTEs whose match-field set is a subset of the
given flowset SCF (Scf ) (Algorithm 8, lines 7-9). For UODCI, all FTEs
are enumerated to find the SCF’s intersected FTEs, the sum of these FTEs’
associated statistics is UODCI (Algorithm 8, lines 10-15). If the default
FTE (packets sent to controller or dropped) is taken into consideration, the
union of all FTEs’ match fields is a full set of SCF, thus the UODCI is finite
and computable.
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Algorithm 7 Single table preprocessing: deprioritisation

1: T← input/output: An Array of FTEs with Match Fields (input)
2: and it will be converted to an array of FTEs with AMF (output)
3: procedure Deprioritisation(T )
4: T [0].amf ← T [0].omf
5: for i = 1, i < T.count, i++

6: T [i].amf ← T [i].omf · (¬(
j=i−1∑
j=1

T [j].omf))

7: end for
8: end procedure

4.3.1.2 OS3 Approach

The operations on SCF and FTEs’ match fields are Boolean logical opera-
tion upon their respective Boolean functions. The complexity of a Boolean
function depends on two factors: width and length. The width means
number of literals in a formula-based Boolean function or the bits of a
value in a truth-table based Boolean function while the length represents
the number of products in a disjunctive normal form (DNF) or values in a
truth table [92].

In deprioritisation, an FTE’s AMF is composed of this FTE’s original
match fields and the compliment of the AMF of the FTEs with higher pri-
ority. The length of an AMF is usually far greater than the original match-
field set. This introduces a significant computation effort when perform-
ing the Boolean operations on AMF. A more practical approach with DE-
CISION builds ODCI without deprioritisation.

In OS3, a given flowset f ’s statistics must not be less than the sum of
all FTE’s statistics if these FTE’s match-field sets are subsets of f ’s SCF .
It means a flowset’s lower bound is still able to be estimated based on the
subset relation between FTE’s match fields and a flowset’s SCF . How-
ever, for the case that an FTE’s AMF rather than its OMF is a subset of a
given flowset, this FTE will be excluded from the computation of the lower
bound. Referring back to Fig. 4.6, the second FTE cannot be included in
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Algorithm 8 Single table ODCI estimation (AS3)

1: Scf← input: SCF of a given flowset
2: T← input: An Array of FTE with AMF
3: lv, rv← lv: LODCI, rv : UODCI, [lv, rv] is the ODCI
4: procedure Single table ODCI(Scf, T, lv, rv)
5: lv ← 0; rv ← 0 ; S[0]← Scf
6: for i = 1, i <= n, i++
7: if T [i].amf ⊆ Scf then
8: lv ← lv + T [i].stat
9: end if

10: if S[i] 6= ∅ then
11: S[i]← S[i− 1] ∩ (¬T [i].amf)
12: if (T [i].amf ∩ S[i− 1]) 6= ∅ then
13: rv ← rv + T [i].stat
14: end if
15: end if
16: end for
17: return lv, rv
18: end procedure

the computation of lower bound because its original VLAN range is not a
subset of the given SCFf while its AMF is subsumed into SCFf . Thus, the
lower bound achieved by OS3 is lower than AS3, which means that OS3

cannot provide an optimal DCI in some circumstances. Although the AS3

approach achieves a better (greater) lower bound than OS3, both achieve
the same upper bound estimates, and this is given as a proof below:

Proof. The proof of the equivalence of UODCI between AMF and OMF re-
lies on two conditions which must be met in each iteration : i) the value of
S[i] is identical for both AMF and OMF in step i; ii) the conditional state-
ment of (T [i].amf ∩ S[i − 1]) 6= ∅ (line 12 in Algorithm 8) yields identical
result (i.e. true or false) if T [i].amf replaces T [i].omf .

By definition, there exists T [0].amf = T [0].omf . By induction on k, it
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has the same S[k]: Samf [k] = Somf [k]. Let i = k + 1, then:

Samf [k + 1] = S[k] ∩ (¬T [k + 1].amf)) (4.1)

T [k + 1].amf =T [k + 1].omf ∩ (¬T [0].omf)

∩ (¬T [1].omf) · · · ∩ (¬T [k].omf) (4.2)

where Eq. 4.1 and Eq. 4.2 come from Algorithm 8 Line 11 and Algorithm
7 Line 6, respectively. For the case of OMF, then:

S[k] ∩ T [i].omf = ∅ ∀i ∈ [0, k], (4.3)

which holds because in the (k−1)-th iteration, it can be asserted that S[k] =
S[k − 1] ∩ (¬T [k].omf)). The right hand side of Eq. 4.1 is expanded based
on Eq. 4.2 to give:

(S[k] ∩ T [k + 1].omf) ∪ (S[k] ∩ T [0].omf)

∪ (S[k] ∩ T [1].omf) · · · ∪ (S[k] ∩ T [k].omf) , (4.4)

and then simplified to:

S[k] ∩ T [k + 1].omf, (4.5)

which is by definition Somf [k + 1]. Therefore, substituting Eq. 4.5 back to
Eq. 4.1 yields to desired result:

Samf [k + 1] = Somf [k + 1]. (4.6)

Similarly, it also holds for the second condition: T [i].amf ∩ S[i− 1].amf =

T [i].omf ∩ S[i − 1].omf using Eq. 4.2-4.5. Thus, Algorithm 8 produces
identical UODCI with AMF and OMF.
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4.3.2 Multi-Table Traffic Statistics Estimation

All the FTEs in a switch are constructed either in the form of single table or
multiple tables. For a multi-table switch, all packets must match against
“Table 0” for subsequent forwarding to other tables via the “Goto Table”
action. As illustrated in Fig. 4.8, a packet has potentially multiple paths to
reach its egress port(s). Hence the estimation of a flowset must consider
all the potential paths to compute the ODCI. In this example, an arrow
line is added between two tables if there exists one FTE in the former table
which contains a “Goto Table” action to the next table. For a point in a for-
warding pipeline, potential paths for a packet passing through this point
can be identified by the corresponding table indices. For example, for any
point between “Table 0” and “Table 1”, the potential paths for a packet are
{T01, T02, T03, } in which Tij represents a path between “Table i” and “Table
j”. To take the packets going straightforward from one table to the egress
port(s) into consideration, a virtual end point “5” is added. Thus, T45 rep-
resents the path between “Table 4” and the egress ports, the traffic passing
through it includes all packets egressing from physical ports.

Table
0

Table
1

Table
3

Table
4

Packet In Table
2 Packet Out

{T01,T02,T03} {T02,T03,T12} {T03,T24} {T24,T34} {T45}

Virtual 
End point

5

Figure 4.8: An example of multi-Table ODCI estimation

At any given point in a forwarding pipeline, the local ODCI is an accu-
mulation of the statistics for all the possible forwarding paths at the same
point. Then a global ODCI can be easily selected from these local ODCIs.
The process is demonstrated in Algorithm 9 in which Sij = [lvij, rvij] rep-
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resents the local ODCI between Table i and j. In Algorithm 9, it is assumed
that the ODCI for each table has been computed. Thus, a local estimation
of a point between two tables is achieved by accumulating the statistics
of all the potential paths at that point (Algorithm 9 Lines 6-12). Finally a
global optimal estimation is accomplished by selecting the greatest LODCI
and least UODCI (Algorithm 9 Lines 13-18).

Algorithm 9 Multiple table ODCI traffic estimation

1: Sij = [lvij, rvij]← input: local ODCI
2: N← input: index of the last table (0 ≤ i ≤ N)
3: lg, rg← lg: global LODCI, rg: global UODCI
4: procedure Multiple table ODCI(S,N, lg, rg)
5: for k = 0, k ≤ N, k++
6: tmp lg ← 0 , tmp rg ← 0
7: for i = 0, i ≤ k, i++
8: for j = i+ 1, j ≤ N + 1, j++
9: tmp lg ← tmp lg + lvkj

10: tmp rg ← tmp rg + rvkj
11: end for
12: end for
13: if tmp lg > lg then
14: lg ← tmp lg
15: end if
16: if tmp rg < rg then
17: rg ← tmp rg
18: end if
19: end for
20: return lg, rg
21: end procedure

4.4 Evaluation

The evaluation of the DECISION solution was performed by comparing
the statistics measured on the traffic generator (ground truth) and the stat-
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istics estimated on SDN controller. The traffic tests will be executed on
different scales of number of tables and number of FTEs.

4.4.1 Functional Test

4.4.1.1 Test Bed & Traffic

An evaluation of the DECISION solution was performed on an Open vSwitch
(version 2.6.1) which supports 255 flow tables [93]. As illustrated in Fig.
4.9, three virtual machines (VMs) on a Ubuntu server are created, one is in-
stalled with an Open vSwitch as OpenFlow switch (vm2) and the rest two
VMs as traffic generator (vm1) and receiver (vm3). On the host OS, Ryu
(version 4.11) [98] is installed as a controller to provision OpenFlow rules
and retrieve the traffic statistics while Scapy [94] is the traffic generator.
More details about this test bed are listed in Appendix D.

Client 1 Client 2

Open vSwitch

VM 2 VM 3

Physical Machine

Host OS (Ubuntu Server as Ryu Controller)

VM 1

...

Figure 4.9: Test bed environment

In this evaluation, the estimated statistic for a given flowset is com-
pared with the ground truth, the actual traffic, which is measured by in-
stalling a new FTE with the exact same matching fields. This is achieved
by reserving tables in the head of a forwarding pipeline for traffic meas-
urement only [43]. In the following description, the new installed FTE
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and reserved table are called “traffic measurement FTE” (TM-FTE) and
“traffic measurement table” (TM-Table), respectively. Figure 4.10 depicts
the design where the first table (or tables) is reserved for measurement and
the rest behaves as normal packet forwarding.

Open vSwitch multi-table forwarding pipeline

  

Match: flowset 1,  
actions=resubmit(,1)

Match: flowset 2  
actions=resubmit(,1)

Match: flowset n  
actions=resubmit(,1)

  

Match: flowset n+1,  
actions=resubmit(,2)

Match: flowset n+2  
actions=resubmit(,2)

Match: flowset n+m 
actions=resubmit(,2)

 

Traffic Measurement Reserved 

 

Normal Forwarding Table

Figure 4.10: Reserving tables for traffic measurement

4.4.1.2 Functional Test Result & Analysis

In the DECISION functional testing, both correctness and accuracy are
evaluated. A correct traffic estimation means the actual traffic value (av)
falls into the range of the estimated ODCI: lo ≤ av ≤ ro where lo and ro

stand for LODCI and UODCI, respectively.
The accuracy of ODCI reflects how close an estimation is to the actual

traffic. In the DECISION approach, accuracy is determined by the distance
between LODCI and ground truth (the actual traffic, denoted as av in Eq.
4.7) as well as UODCI and ground truth. In each estimation, the sum of
aforementioned distances must be always less than the total traffic passing
through a switch, herein a relative distance is chosen to measure the accur-
acy among different estimations. As expressed in Eq. 4.7, the accuracy is
determined by the relative length of ODCI.
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accuracy =

{
1− |av − lo|+ |ro− av|

total

}
× 100%

=

{
1− |ro− lo|

total

}
× 100%.

(4.7)

Table 4.1: Single table, single non-wildcarded match field functional test
result

FTE Generated Traffic Pattern
FTE

Count

Total Traffic

(Bytes)

Ground Truth

(Bytes)

LODCI

(Bytes)

UODCI

(Bytes)
Accuracy (95% CI)

VLAN Dot1Q(vlan=RandNum(1,1024)) 29 6.55 ∗ 106 4.96 ∗ 103 3.92 ∗ 102 3.18 ∗ 106 51.5%± 8.2%

VLAN Dot1Q(vlan=RandNum(1,1024)) 28 6.55 ∗ 106 3.92 ∗ 103 3.84 ∗ 102 4.97 ∗ 106 24.1%± 4.5%

VLAN Dot1Q(vlan=RandNum(1,1024)) 27 6.55 ∗ 106 3.84 ∗ 103 2.56 ∗ 102 5.64 ∗ 106 13.9%± 2.1%

VLAN Dot1Q(vlan=RandNum(1,1024)) 26 6.55 ∗ 106 3.20 ∗ 103 1.28 ∗ 102 6.11 ∗ 106 6.7%± 1.1%

Table 4.2: Single table, single wildcarded match field functional test result

FTE Generated Traffic Pattern
FTE

Count

Total Traffic

(Bytes)

Ground Truth

(Bytes)

LODCI

(Bytes)

UODCI

(Bytes)
Accuracy (95% CI)

DIP IP(dst=RandIP(“10.1.*.*”)) 215 6.55 ∗ 106 4.96 ∗ 103 3.92 ∗ 102 1.82 ∗ 106 72.2%± 9.7%

DIP IP(dst=RandIP(“10.1.*.*”)) 214 6.55 ∗ 106 3.92 ∗ 103 3.84 ∗ 102 3.44 ∗ 106 47.4%± 7.4%

DIP IP(dst=RandIP(“10.1.*.*”)) 213 6.55 ∗ 106 3.84 ∗ 103 3.20 ∗ 102 4.12 ∗ 106 37.1%± 6.3%

DIP IP(dst=RandIP(“10.1.*.*”)) 212 6.55 ∗ 106 3.20 ∗ 103 2.56 ∗ 102 4.88 ∗ 106 25.5%± 5.1%

DIP IP(dst=RandIP(“10.1.*.*”)) 211 6.55 ∗ 106 1.92 ∗ 103 1.28 ∗ 102 5.18 ∗ 106 20.9%± 3.9%

DIP IP(dst=RandIP(“10.1.*.*”)) 210 6.55 ∗ 106 2.56 ∗ 102 6.4 ∗ 101 5.78 ∗ 106 11.7%± 2.7%

The functional test results in single non-wildcarded match field (VLAN),
single wildcarded match field (DIP) and multiple match fields (DMAC +
DIP) for single table scenario are presented in Table 4.1, 4.2 and 4.3, re-
spectively. Here “wildcard” indicates whether a match field contains the
“ANY” bit (the bit will match both 0 and 1, usually denoted as an aster-
isk (*)). In these tables, the columns “FTE”, “Traffic Pattern”, and “FTE
Count” denote the FTE’s match fields, the pattern of the traffic generated
by Scapy, and the number of FTEs in the table, respectively. The fifth
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Table 4.3: Single table, multiple match fields functional test result

FTE Generated Traffic Pattern
FTE

Count

Total Traffic

(Bytes)

Ground Truth

(Bytes)

LODCI

(Bytes)

UODCI

(Bytes)
Accuracy (95% CI)

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
219 6.55 ∗ 106 4.96 ∗ 103 1.28 ∗ 103 3.83 ∗ 106 41.5%± 6.7%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
218 6.55 ∗ 106 3.92 ∗ 103 4.96 ∗ 102 4.21 ∗ 106 35.7%± 6.1%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
217 6.55 ∗ 106 3.84 ∗ 103 4.96 ∗ 102 4.49 ∗ 106 31.5%± 5.8%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
216 6.55 ∗ 106 3.84 ∗ 103 3.20 ∗ 102 4.83 ∗ 106 26.3%± 5.2%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
215 6.55 ∗ 106 1.28 ∗ 103 1.92 ∗ 102 5.11 ∗ 106 22.0%± 3.8%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
214 6.55 ∗ 106 1.92 ∗ 102 6.4 ∗ 101 5.48 ∗ 106 16.3%± 3.1%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
213 6.55 ∗ 106 1.28 ∗ 102 6.4 ∗ 101 6.02 ∗ 106 8.1%± 2.2%

column, “Total Traffic”, is the recorded traffic passing through the table
for each test, i.e., the value of total in Eq. 4.7. The “Ground Truth” is the
actual traffic (av in Eq. 4.7) which is measured by TM-FTE ( Fig. 4.10).
Each set of tests is repeated ten times and the average accuracy is com-
puted and shown in the last column.

From the observation of all the values in the column of “Ground Truth”
in all three tables, the ground truth always falls in the range [LODCI,
UODCI], which means the traffic estimation results are correct. For each
test scenario, various numbers of FTEs (denoted by column “FTE Count”)
are installed into Open vSwitch to verify the correlation between the num-
ber of FTEs and the estimation accuracy. The accuracy increases with in-
creasing number of FTEs because more FTEs are likely to produce a closer
simple-subset-superset that matches a given flowset’s SCF .

In Table 4.2, the traffic patten has 216 − 2 valid variations. It can be
observed that the accuracy grows when the number of FTEs increases (the
match fields base held constant). Here the base is the total number of pos-
sible combinations for a given type of match field. In this table, the base
of the traffic is 216 − 2, thus the estimation accuracy with 215 FTEs (72.2%)
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will be better than the accuracy with 210 FTEs (11.7%) for the same traffic
pattern “10.1.*.*” because the probability of finding a closer superset and
subset in the former case is higher.

Table 4.4: Multi-table, multiple match fields functional test result

FTE Generated Traffic Pattern
FTE

Count

Total Traffic

(Bytes)

Ground Truth

(Bytes)

LODCI

(Bytes)

UODCI

(Bytes)
Accuracy (95% CI)

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
219 6.55 ∗ 106 4.96 ∗ 103 3.92 ∗ 102 4.04 ∗ 106 38.3%± 6.2%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
218 6.55 ∗ 106 3.92 ∗ 103 3.84 ∗ 102 4.81 ∗ 106 26.5%± 5.3%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
217 6.55 ∗ 106 3.20 ∗ 103 3.84 ∗ 102 5.34 ∗ 106 18.4%± 3.7%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
216 6.55 ∗ 106 2.56 ∗ 103 1.92 ∗ 102 5.66 ∗ 106 13.6%± 3.1%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
215 6.55 ∗ 106 1.92 ∗ 103 1.28 ∗ 102 5.93 ∗ 106 9.4%± 2.7%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
214 6.55 ∗ 106 1.92 ∗ 102 6.4 ∗ 101 6.07 ∗ 106 7.3%± 2.4%

DMAC

DIP

Ether(dst=RandMAC(“11:22:33:44:*:*”))

IP(dst=RandIP(“10.1.1.*”))
213 6.55 ∗ 106 1.28 ∗ 102 6.4 ∗ 101 6.11 ∗ 106 6.7%± 2.1%

In the functional test results illustrated in Table 4.1, 4.2 and 4.3, the ac-
curacies vary from 6.7% to 72.2%. The low accuracies in these experiments
are caused by the randomly generated match fields of estimated flowsets.
In typical traffic estimation cases, such scenarios are unlikely to occur be-
cause the flowset to be estimated is usually highly correlated with existing
FTEs and are more likely to have narrower UODCI and LODCI than the
randomly selected flowset.

The estimation accuracies increase when increasing the number of FTEs,
and this is easily observed in Fig. 4.11 with the experiment on an IP match
field whose first 16 bits are fixed. In other words, its base size is 216. The
ratio of the number of FTEs to the base explains why the accuracies of the
first two tests in both tables are very low (≤ 20%). A low ratio means a
low probability to find the appropriate subsets and supersets for a given
flowset. All these experiments clearly indicate a high positive correlation
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Figure 4.11: Increasing accuracy with number of FTEs

between the number of FTEs and accuracy.

The same test cases in Table 4.3 are also repeated on a multi-table scen-
ario in which the same number of FTEs are spanned in five tables ran-
domly. Table 4.4 demonstrates the estimation accuracies, each of them is
slighter better than the corresponding case in Table 4.3. This is mainly at-
tributed to the greatest LODCI and least UODCI selection process in mul-
tiple table traffic estimation (Algorithm 9).

All the test results in Table 4.1, 4.2, 4.3 and 4.4 indicate that the estim-
ation accuracy is determined by the ratio of the number of residing FTEs
to the base of match fields. Actually this accuracy will be improved in real
production environment in which the monitoring flowset is usually highly
correlated with the already installed FTEs. Moreover, it is also more suit-
able to large-scale networks such as data-centres because the accuracy will
also benefit from large quantities of FTEs.

4.4.2 Performance Evaluation

The performance evaluation will be conducted from four perspectives on
both DECISION and traditional FTE installation based approaches. They
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are detection time and bandwidth overhead in control plane, the impacts
on packet transmission delay and throughput in data plane.

4.4.2.1 Control Plane Performance in DECISION

In DECISION, the time to complete a round of traffic estimation can be
expressed as:

Test = Tcomm + Tswitch + Tcontroller ,

where Tcomm represents the transmission time between control-
ler and switches, Tswitch denotes the querying time for traffic statistics
and Tcontroller denotes the time to process traffic statistics at the controller
side. In this experiment, the transmission time and statistics querying time
on switch side is calculated from the timestamp in multipart request mes-
sage and multipart response message. The format of multipart message
is defined in the OpenFlow specification to retrieve flow table statistics.
Since it is hard to measure the transmission time and statistics querying
time separately, they are measured as a single value which is illustrated
in Fig. 4.12. It can be observed from this figure that the retrieval time
increases nearly linearly to the number of FTEs. After observing the mul-
tipart format in Fig. 4.14, every pair of multipart request and response
messages only carries a certain number of FTEs statistics, this means the
number of multipart messages are proportional to the number of FTEs. It
also explains the linear relationship between statistics retrieval time and
the scale of FTE.

The processing time at the controller, Tcontroller, is also proportional to
the number of FTEs. Figure 4.13 demonstrates the computation time of
various scales of FTEs. The tests are conducted on a Dell OptiPlex 9020
server with Intel i7 Quad-Core CPU and 8GB RAM. The experiment shows
that the computation time is not sensitive to the width of match fields,
which means the number of FTEs rather than the type of FTE determines
the computation time on controller. The most time-consuming computa-
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Figure 4.12: Traffic statistics retrieval time with increasing number of FTEs
(95% CI)

tion on controller is the Boolean operations among different FTEs’ match
fields, which is loaded into memory and computed simultaneously re-
gardless of the width of the Boolean values.

Based on the measurements in Fig. 4.12, suppose there are 105 FTEs
in a flow table, the maximum time for statistics retrieval and computation
is around 6,510 ms and 86 ms, respectively. Thus, the major time over-
head lies in the traffic statistics retrieval rather than the computation on
controller. In this experiment, the traffic estimation on an Open vSwitch
with 10,000 flows and an entry-level server takes around six seconds to
complete.

The performance evaluations on bandwidth are also conducted on the
same scale of FTEs ranging from 1 flow to 100,000 flows. Figure 4.15 illus-
trates the bandwidth overhead of flow status which is near-linear to the
number of FTEs. It can be explained by the format of multipart Open-
Flow message. As demonstrated in Fig. 4.14, besides the fixed length of
IP header, every reply message contains a certain number flows’ status.
Thus the traffic of FTE statistics is mainly determined by the number of
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Figure 4.13: Traffic statistics computation time with increasing number of
FTEs (95% CI)

FTEs and the size of each flow status. In this experiment, all FTEs are con-
structed with a random MAC address as matching fields, thus they have
the same constant flow status length: 88 bytes. The total traffic overhead
for an Open vSwitch table with 100,000 flows is around 100,000*88 bytes =
8.8 Mbyte, which is acceptable for any control plane transmission media.
In a small scale network, control plane relies on a switch’s management
port whose bandwidth is either 10Mbps or 1000Mbps. The bandwidth can
be increased to 10Gbps in large-scale network where one or more aggreg-
ated data ports are allowed to be reserved for the control plane. From this
perspective, the bandwidth in the control plane will not become the bot-
tleneck of DECISION. Thus the following discussion will mainly focus on
the reduction of traffic estimation time.

There are two methods to improve the efficiency of traffic statistics re-
trieval. In real scenario, the process of reading all flows’ statistics is usu-
ally divided to multiple stages. For example, firstly, a controller asks all
switches to report table-level rather than individual flows’ status, and then
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Figure 4.14: OpenFlow multipart message format

the controller selects interested flow table(s) and gets their aggregated stat-
istics. In the final stage, a small number of individual flows’ statistics will
be collected and analysed. The process is fully explained in section 5.2.2.

This coarse-to-fine multi-stage approach reduces the number of mon-
itoring flows, thus the time overhead will be reduced. Another approach
is reducing the size of multipart reply message by removing all the non-
statistics information. Currently the payload of a single flow’s status packet
is 88 bytes while in the payload only “Table ID”, “Match”, “Packet count”
and “Byte count” are the information of interest to DECISION, the total
size of these fields is only 17 bytes. With the adaptation of multipart mes-
sage, the traffic of statistics decreases around 80%, thus the transmission
time will also be saved.

4.4.2.2 Data Plane Performance in DECISION

In a typical commercial switch, two independent processing units are used
to convey the packets in data plane and control plane, i.e., ASIC and CPU.
All incoming packets are processed by ASIC unless they are required to
be sent to the controller for further analysing. Similarly, all the messages
between controller and switch are processed by CPU without the involve-
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Figure 4.15: Bandwidth overhead of the flow status with increasing num-
ber of FTEs (flow match field: MAC address, single flow status length: 88
bytes)

ment of ASIC. In this case, the traffic statistics processing in control plane
- which is the place where DECISION overhead occurs - will not affect the
packet forwarding performance.

However, in a software switch such as Open vSwitch, only one CPU
is used to emulate the behaviour of both control and data planes. In this
case, any operations in the control plane will inevitably jeopardise the per-
formance on the data plane.

Figure 4.16 depicts the latency of packet forwarding in a OpenFlow
table with 1,000 flows with and without traffic retrieval. As indicated by
the x-axis, 50 latencies are collected in each scenario. The test is performed
between two vNICs with a fixed packet rate at 39.0 kpps. The traffic
is fixed 64-bytes-length UDP packets generated by iperf. In this experi-
ment, the average packet transmission delays with and without statistics
retrieval operations are 41.9 µs and 41.26 µs, respectively. It indicates that
the latency overhead introduced by traffic statistics processing on Open
vSwitch only increases around 1.53%.
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Figure 4.16: Latency comparison

The throughput comparisons under the same circumstances have also
been conducted and results are presented in Fig. 4.17. Similar to latency,
the throughput is measured with fixed 64-bytes-length UDP packets between
two vNICs. The average throughput under no traffic retrieval and consist-
ent traffic data reading are 97.54 kpps and 97.00 kpps, respectively. The
actual throughput loss introduced by DECISION’s traffic estimation in the
control plane is around 0.55%.

Although on Open vSwitch, the packets are forwarded in kernel while
the control plane messages are processed in user space, their mutual influ-
ences are unavoidable because they rely on the scheduling of a single CPU.
However, the experiment has proven that the influence on data plane is
comparably less heavy than the traditional FTE installation approach. The
direct comparisons between them will be fully exploited in subsection
4.4.2.4.

4.4.2.3 Performance on FTE-installation Based Approach

As illustrated in Fig. 4.10, TM-Tables are reserved for traditional meas-
urements. This can be achieved by installing all TM-FTEs in the monitor-
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Figure 4.17: DECISION: throughput comparison

ing reserved table(s). However, for multiple parallel measurements, any
intersected TM-FTEs must be installed in a different table. Otherwise, a
measurement by a TM-FTE with lower priority is not accurate because the
incoming packets might hit higher-priority TM-FTEs and be forwarded to
other tables.

On Open vSwitch, the single FTE installation time plus the round trip
between switch and controller is around 2.1ms. Since each OpenFlow
modification message only contains one flow adding command, the time
to install new FTEs is linear to the number of OpenFlow entries. However,
every single measurement unusually requires installing one new FTE, the
time overhead can be ignored compared to the DECISION computation.

The FTE storage space (measured in number of FTEs) required by the
TM-FTE is illustrated on the right-hand of Fig. 4.18, from which it can be
observed that the storage space increases up to six orders of magnitude
when the measurements of intersected flowsets occur. In the best case, all
the match fields of estimated flowsets are independent and these TM-FTEs
are installed in a single table; in the worst case, the match fields of every
two estimated flowsets intersect and each TM-FTE must occupy a separate
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Figure 4.18: TM-FTE installation time and a theoretical estimate of storage
space overhead in traditional measurement

4.4.2.4 DECISION vs FTE-installation Approach

Although the direct comparisons between DECISION and FTE-installation
approach are not fair for either of them because the major overheads in the
former occurs in control plane while the latter takes place in data plane, it
is still worth weighing up their overheads before deciding which approach
will be taken in the real scenario.

Table 4.5 summarises the performances of the traditional FTE-installation
approach and DECISION from four perspectives: control plane, data plane,
FTE space and accuracy. Although both time cost and bandwidth over-
heads in control plane for DECISION and FTE-installation approach are
linear to the number of FTEs, the latter greatly outweighs the former in
the control plane because usually one new FTE is enough to complete a
traffic estimation. However, FTE-installation introduces more overheads
in the data plane, i.e., more transmission delay and throughput loss. Actu-
ally it is easily demonstrated that DECISION has no any impacts on packet
forwarding in physical switch. Another advantage of DECISION is that it
relies on exiting FTEs in switch to estimate the traffic, which means no
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Table 4.5: Performance comparisons between DECISION and FTE-
installation approach

Approaches DECISION FTE-installation

Control

Plane

Time
Linear to number of FTEs,

around six seconds per 10,000 FTE

Linear to number of FTEs (2.1 ms/FTE),

one FTE required for each measurement

Bandwidth
Linear to the number of FTEs,

around 8.8 Mbytes per 10,000 flows

Linear to number of FTEs (154 bytes/FTE)

one FTE required for each measurement

Data

Plane

Delay
On Open vSwitch, 1.53% increase;

no additional delay on physical switch
41% increase on physical switch [96]

Throughput
On Open vSwitch, 0.55% degradation;

no additional loss on physical switch
1.81% degradation on physical switch [96]

FTE space 0
best case: one FTE per measurement

worst case: one table per measurement

Accuracy
up to 100%

(highly dependent on FTE number)

up to 100%

(no dependence on FTE number)

OpenFlow table(s) should be reserved in advance.

All the comparisons in Table 4.5 indicate that DECISION is easier to de-
ploy in a production network, but it cannot achieve the same accuracies in
most cases. Thus it is more suitable for large-scale networks in which large
quantities of FTEs will facilitate DECISION to improve accuracy and the
table reservation for FTE-installation approach becomes more unrealistic.

4.5 Summary

Most existing works on networking traffic estimation in SDN rely on the
manipulations of the configuration and forwarding policies (rules) in switch
[83,85–88]. They perform traffic measurement and estimation by installing
application-specified rules and then retrieving their statistics, though their
capabilities and scenario vary significantly. As depicted in Table 4.6, DE-
CISION offers the queries for an arbitrary flow set without relying on the
manipulation of FTEs. This absolutely non-invasive solution will not alter
the existing packet forwarding functionalities or impose any adverse effort
on the performance. Although DECISION cannot achieve the same level
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accuracy as the traditional FTE installation approach, it outperforms the
latter in terms of feasibility and practicality, which makes it more suitable
for large-scale networks.

Table 4.6: Summary: DESICION vs existing works

Project Flow Type Pipeline Manipulation Hardware Dependencies Scenario
ProgME [84] Flowset Not Required N/A Non-SDN, Heavy Hitter Detection
iSTAMP [86] Aggregated FTE TCAM SDN, Generic Purpose

DCM [87] Aggregated FTE TCAM/FPGA SDN , Generic Purpose
OpenSketch [83] [85] Flow Sketch TCAM/FPGA SDN , Generic Purpose

OpenWatch [88] Flow FTE Not Mentioned SDN, Anomaly Detection
DECISION Flowset Not Required N/A SDN, Generic Purpose

In the next chapter, the last research contribution will be discussed. It
is a traffic anomaly detection based on pattern recognition and FTE correl-
ation. The research scope has been further extended to multiple switches
and their associated traffic statistics.



Chapter 5

Heavy Hitter Detection &
Identification

In a large network, it is often important to be able to detect high-volume
traffic in near real-time. Existing work on the detection and identifica-
tion of such high volume traffic (so-called heavy hitters) is typically del-
egated to individual nodes and often relies on deep packet inspection
or packet sampling. However, these techniques have well known limit-
ations in terms of its ability to scale with network size. Inspired by the
capabilities of SDN, a novel heavy hitter detection solution based on un-
derstanding connections between traffic statistics and OpenFlow rules has
been proposed and verified in this chapter. This approach relies on min-
ing traffic statistics (e.g. port bitrate) and forwarding table entry to im-
prove heavy hitter detection. The rationale behind this approach are (i)
the information is readily available with minimal overheads, thus it scales
better with increasing network size; and (ii) the FTEs and traffic statistics
provide different vantage for detection and identification of heavy hitters.
The effectiveness and accuracy of the proposed heavy hitter detection al-
gorithm have been implemented and evaluated on a test bed as a proof-
of-concept. The test results show that this heavy hitter detection simultan-
eously achieves considerable accuracy and good scalability.

117
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5.1 Research Question

The phenomena of small number of flows carrying majority of bytes has
been studied in many incarnations in computer networking [99, 100]. A
simple way to define these “important” traffic are the terms elephant flow
or heavy hitter (HH). They can be identified from the fields in a packet
header, for example, the source IP prefix or destination MAC address. The
detection and identification of these flows are critical for Quality of Service
provisioning and traffic load balancing.

To find these heavy hitters in a network, two general approaches have
been widely used. One is based on statistical sampling and another utilises
a specialised data structures called a “sketch” to maintain a probabilistic
record of data streams.

There are two major problems with the existing approaches. The first
problem is excessive overheads. Sampling-based technique is extremely
resource intensive because of the packet inspection process while sketch-
based solution is highly dependent on proprietary hardware. Another
problem is that they lack the capability to detect the multi-dimensional
heavy hitters (MHH) because the packet header fields (e.g., MAC address,
IP address and port numbers) must be defined in advance for accurate de-
tection. Here the “dimension” refers to the type of fields to identify a flow,
for example, all the packets with the same destination IP address. If there
is more than one field to identify a heavy hitter flow, this heavy hitter
is also called multi-dimensional heavy hitters [101]. However, it is diffi-
cult to identify which header fields to monitor because MHHs are aggreg-
ate flows that have headers permuted from its constituent flows. These
have been shown on the traffic originated from virtual machines (VMs) in
which the traffic is aggregated from various applications. Without prior
knowledge about the patterns of such traffic, all possible combinations of
aggregates must be examined to detect the heavy hitters.

In the study of multi-dimensional traffic, one notable type of heavy
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hitter is called hierarchical heavy hitter (HHH) [102, 103]. Autofocus is a
good attempt to automatically characterise HHH traffic based on IP ad-
dresses [101]. Autofocus is a method of traffic characterisation that auto-
matically groups traffic into minimal clusters of conspicuous consump-
tion. Rather than providing a static analysis specialized to capture flows,
applications, or network-to-network traffic matrices, this approach dy-
namically produces hybrid traffic definitions that match the underlying
usage. However, the research on unstructured heavy hitters has not been
fully explored. There are numerous examples that show the aggregate
traffic does not follow any known pattern [104].

To address these problems, a lightweight heavy hitter detection and
identification solution has been proposed and implemented which incurs
lower communication and processing overheads compared to traditional
sampling-based technology. It is a software solution based on multiple
rounds of retrieving and analysing network traffic statistics. A controller
can retrieve statistics from the switches at three levels: (i) OpenFlow table,
(ii) aggregate flow, and (iii) individual flow. By analysing these coarse-
to-fine statistical information, the suspected HHs are gradually narrowed
down and finally identified. It has been demonstrated on a test bed that
the proposed solution meets the functional tests for HH detection and it is
also shown via analysis that this solution is scalable and efficient.

5.2 Heavy Hitter Detection

5.2.1 Design of the HH Detection Framework

A generic SDN application framework that retrieves and processes the net-
work’s information in a hierarchical and staged manner is proposed to
reduce the: (i) computation overheads on the controller and (ii) commu-
nication overheads between switches and controller. In comparison to a
sFlow or NetFlow server in a conventional network, a centralised control-
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ler in SDN has a broader view of the devices under its control. An SDN
controller can leverage real-time status and statistics from these devices to
make better decisions about how to deploy or optimise them for HH de-
tection. However, it is infeasible to request every switch to report all flow
statistics due to the enormous communication overheads in a network and
the excessive processing to be done by the controller.

Besides the switch-level and table-level (coarse-grained) statistics, a
controller also deals with more fine-grained statistics such as the status of
ports, meter, CPU queue, etc. [2]. The key challenge of designing an SDN-
based HH detection solution is to strike a careful balance between gener-
ality (supporting a wide variety of statistics) and efficiency (low commu-
nication cost and computation overheads) [83].

Two types of inputs are used in the HH detection framework: traffic
statistics and OpenFlow tables. Traffic statistics enable the controller to
understand the network runtime status while OpenFlow tables define the
underlying paths across the network. To avoid input deluge to the con-
troller, a multi-stage coarse to fine approach is used to stagger the inputs
for HH detection. A controller begins with the coarse-grained informa-
tion such as table or port level statistics for the initial investigation, and
then selects the fine-grained flow-level information for further processing.
This two-stage input processing design allows the controller to focus on a
small set of information in each stage, thus reducing communication and
computation costs.

The rationale behind the multi-stage approach is that aggregate traffic
retains some characteristics of each individual flow, especially the most
significant one. In fact, all traffic can be considered as aggregate flows with
different granularities. The traffic in a single Ethernet card is an aggrega-
tion of flows from all applications on that server; the traffic in a physical
switch port is an aggregation of flows from several servers or switches.
Early traffic models were derived from telecommunications networks and
generally operated under the assumption that aggregate traffic from a
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large number of sources smooths out bursts [105]. However, today’s net-
works are designed to scale-out rather than to scale-up, which makes these
aggregate traffic traceable and their hidden HHs detectable [106].

5.2.2 Modules of the HH Detection Framework

The HH detection framework consists of a detection module and an iden-
tification module. The detection module determines if an HH is likely to
be present in a flow while the identification module positively establishes
the HH. The worklow for the HH detection and identification framework
in Fig. 5.1 depicts two-stages and each stage is instantiated as a module.

In Stage 1 (detection module) of Fig. 5.1, the SDN controller requests all
switches to report their coarse level information such as OpenFlow table
status or port packet counters. After examining the coarse level inform-
ation, the controller filters out the messages in which it has no interest.
Then the controller requests switches to send the finer aggregate statistics
(e.g. per-flow level) for further processing. Since FTEs determine the for-
warding behavior of all the underlying flows, the characteristics of these
flows can be reversely inferred from its matched FTEs.

In Stage 2 (identification module) of Fig. 5.1, a new FTE in which the
match fields are constructed based on the characteristics of the detected
heavy hitter is created and installed into the switches along the path where
HH are detected. By monitoring the traffic statistics of these new added
FTEs, it can be verified whether a detected flow is indeed an HH or just an
aggregation of multiple mice flows.

5.2.3 Detection Module

The purpose of detection module is to distinguish the elephant flows from
each traffic data stream and group them based on certain measure of sim-
ilarity. This is achieved through processing the information from switches
such as outgoing counters or bytes as a time series. The time series model
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Figure 5.1: The proposed HH detection framework as a two-stage process.
Each stage is instantiated as a module.

[107] is adopted to describe the traffic from a physical port in a switch. It is
a sequence of traffic data points which consist of successive measurements
made over a constant time interval.

As illustrated in Fig. 5.2, the detection module consists of four proced-
ures: smoothing, thresholding, windowing, and correlating. Smoothing
removes the spikes in the time series, thresholding determines the interval
in which an elephant flow occurs, windowing isolates these elephant flows
after applying a threshold. The effect of these three procedures on a raw
traffic stream is illustrated in Fig. 5.9. Finally, these windowed datasets
are grouped based on their correlations and each group represents a set
of elephant flows with high similarities, assumed to be the same elephant
flow pending further diagnostic. A heavy hitter is defined as follows:

Definition 5.2.1 (Heavy Hitter). L is a set of points indexed by k for a
single flow such that L = {αk} : ∀k ∈ Z+

0 . Let L denote the minimum
period for observing an HH, and let I denote maximum period in which
all sampled rates are less than the threshold T ; an HH H is a subset of L ,
H = {αk}jk=i : (j − i + 1) ≥ L, (@m,n : i ≤ m ≤ n ≤ j, (n − m + 1) ≥
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I, {αk}nk=m < T ).
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Figure 5.2: The work-flow of four procedures within the detection module.

5.2.3.1 Smoothing

Smoothing is the procedure that removes “noise” from a data stream. For
an aggregate traffic dataset, the elephant flows are considered as the de-
sired signal and the mice flows as noise. We use the k-nearest neighbour
algorithm to filter out spikes and noise from the time-series of an aggreg-
ate flow and this procedure is outlined in Algorithm 10.

5.2.3.2 Thresholding

After smoothing the incoming traffic dataset Si (where i is the index of
that dataset), a threshold is applied to Si. All the flows above a certain
threshold value T are considered as potential elephant flows. The threshold-
ing process is expressed in the following equation:

Ti =

{
Si − T, if Si ≥ T ;

0, if Si < T.
(5.1)
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Algorithm 10 Minimum k-nearest neighbours algorithm

1: procedure SMOOTHING(k)
2: R← input: Two dimensional array of raw traffic data
3: S← output: Two dimensional array of smoothing data
4: M← Absolute maximum value
5: for i = 0, i < len(R)/k, i++ do
6: for j = 0, j < k, j++ do
7: if Ri*k+j < M then
8: M ← Ri*k+j

9: end if
10: end for
11: Si ←M
12: end for
13: end procedure

5.2.3.3 Windowing

In practice, Ti cannot be observed on the interval (−∞,+∞). One way
of overcoming this problem is to split every traffic stream into multiple
fixed time interval datasets. According to Definition 5.2.1, an elephant
flow or HH is a flow in which the longest continuous period below the
given threshold is no more than t with duration no less than l. For the
post-threshold dataset Ti, the problem of identifying potential HH is sim-
plified to finding all datasets with the following three attributes: i) the
length of each dataset is no less than l; ii) the number of consecutive zeros
is smaller than t; and iii) begin and end with non-zero value. This win-
dowing procedure is shown in Algorithm 11.

5.2.3.4 Correlating

To reduce the dimensionality of the original data, a series of similarity
search methods with a multi-dimensional index structure to index the data
in the transformed space has been proposed [108]. Different representa-
tions determine the ease and efficiency of similarity identification. Four
indexable feature extraction techniques are simulated and verified with
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Algorithm 11 Windowing

1: procedure WINDOWING
2: T← input: Two dimensional array thresholding data
3: W← output: Two dimensional array windowing data
4: Z← Array to save consecutive 0 in T
5: t← Treat as same flow with consecutive 0 less than t
6: l← The minimum length of a window
7: n← 0, Number of windows
8: for i = 0, i < len(T ), i++ do
9: if Ti = 0 then

10: if (len(Wn) ≥ l) & (len(Z)) ≥ t) then
11: n← n+1
12: end if
13: Append Ti to Z
14: else
15: if Ti-1 = 0 &

(len(Wn) > 0) & (len(Z) < t) then
16: Append Z to Wn

17: end if
18: Z← 0
19: Append Ti to Wn

20: end if
21: end for
22: end procedure

the windowed data: Discrete Fourier Transform (DFT), Discrete Wavelet
Transform (DWT), Piecewise Linear Approximation (PLA) and Adaptive
Piecewise Constant Approximation (APCA) [109].

An original signal is transformed into the frequency domain (DFT) or
decomposed in terms of a basis set of functions (DWT). Each time series
can be represented by a few selected coefficients corresponding to the low
frequencies in DFT or scaling functions in DWT. These few coefficients
preserve most of the energy of the original signal. The particular wave-
let chosen in comparison is the simplest wavelet form namely the Haar
Wavelet. PLA projects a curve into a series of segmented straight-line. In
the implementation, the least-square method (LSQ) is used to obtain an



126 CHAPTER 5. HEAVY HITTER DETECTION & IDENTIFICATION

optimal line to fit the non-linear curve. Different from the aforementioned
three representation techniques, APCA approximates each time series as a
set of constant value segments of varying lengths.

Taking the windowed dataset of sub-plot “Traffic Data Windowing-2”
that appear earlier in Fig. 5.9 as an example, the above mentioned four rep-
resentations is illustrated in Fig. 5.3. From left to right, the four columns
demonstrate the signal transformation with algorithm DFT, DWT, PLA
and APCA, respectively. The first row is the original signal, and the rest
three rows are the representation with resampling rate at 1/64, 1/16 and
1/4, respectively. In the test scenario, the size of the original dataset is 256,
thus the number of resampling points from row two to row four in Fig. 5.3
are 4, 16 and 64, respectively. It can be observed that APCA outperforms
the other three algorithms at the resampling rate 1/64 and 1/16 while all
the feature selections except PLA reflect the main aspects of the original
signal at rate 1/4. The varying length of each dimension in APCA fits
well with elephant flows which usually last for a certain time in a relative
stable volume, and lets APCA reflect the key features of traffic data with
less storage space.
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Fig. 1. The most common representations for time series data mining: DFT, DWT(Haar Wavelet), PLA, APCAFigure 5.3: The most common representations for time series data mining:
DFT, DWT(Haar Wavelet), PLA, APCA

If an HH traverses multiple switches, it can be observed from the stat-
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istics of the FTEs in these switches. The procedure of correlating is used
to find the HHs belonging to the same flow based on their similarities.
There are two major categories of similarities: bias oriented and variance
oriented. If bias outweighs variance as an indicator of similarity, the bias
oriented similarity is selected. In this case, two datasets with exact fluc-
tuations will be considered as dissimilar if the difference of their mean
values exceed a certain threshold.

On the contrary, the variance oriented similarity values the weights of
deviations more than the difference of their mean values. For an aggregate
traffic stream, the variance of an elephant flow is not easily identified be-
cause it is obscured by other mice flows. In this solution, the bias oriented
similarity will be applied to find the possibility whether two aggregate
flows hide the same elephant flow.

The similarity between two time series is typically measured with Eu-
clidean distance. The Euclidean distance is suitable for HH detection pur-
pose because there are no offset and acceleration-deceleration along the
time dimension to be taken into consideration after the time series passes
through the windowing procedure. However, the problem of storing large
amounts of data persists because of the following three factors prevalent
in large networks: (i) over hundreds of time series data streams; (ii) large
volume per dataset (since each unit of sampling traffic data takes one byte
in memory, the total size of a single 60-minute dataset will be as high as
3.6MB); and (iii) fast response time for detecting HH.

In this chapter, Adaptive Piecewise Constant Approximation (APCA)
[109] is adopted to represent the original time series data for similarity
search. The APCA representation of a time series C = {c1, . . . , cn} can be
expressed as:

C = {〈cv1, cr1〉, . . . , 〈cvM , crM〉}, cr0 = 0 (5.2)

where cvi is the mean value of datapoints in the i-th segment and cri is the
right endpoint of the i-th segment.
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5.2.4 Detecting Similarity

The approximate Euclidean distance between a measured dataset and a
time series in APCA representation was derived in [109]. Considering the
APCA representation C as a reconstructed time series, the Euclidean dis-
tance between a time series Q and C is defined as:

DAE(Q,C) =

√√√√ M∑
i=1

cr1−cri=1∑
i=1

(cvi − qk+cri=1
)2. (5.3)

To further reduce the computation time, a coarser approximation of Eu-
clidean distance between two time series A = {〈av1, ar1〉, . . . , 〈avm, crm〉}
andB = {〈bv1, br1〉, . . . , 〈bvn, brn〉},DCE(A,B), is used in this solution. This
distance is calculated directly based on their respective APCA representa-
tion and defined as:

DCE(A,B) =

√√√√ m∑
i=1

n∑
i=1

(avi − bvj)2|ari − brj|, (5.4)

where (ari-1 ≤ brj ≤ ari) or (brj-1 ≤ ari ≤ brj).
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Algorithm 12 Euclidean distance of APCA representation

1: procedure APCA DISTANCE
2: A, B← input: Two APCA datasets
3: E,AR,BR← 0 // temporary vectors
4: AV ← all avi in A; BV ← all bvi in B
5: D← output: Euclidean distance of A and B
6: for ari in A do
7: Append ari to E and AR
8: end for
9: for bri in B do

10: Append bri to E and BR
11: end for
12: Sort, Insert 0 at E[0] and delete E[len(E)− 1]
13: a value← AV [0]; b value← BV [0]
14: for i = 0, i < len(E)− 1, i++ do
15: if Ei in AR then
16: index← the index of item Ei in AR
17: a value← AVindex

18: else
19: if Ei in BR then
20: index← the index of item Ei in BR
21: b value← BVindex

22: end if
23: end if
24: D+=(|a value− b value|) ∗ (Ei+1 − Ei)
25: end for
26: end procedure

Although the distance DCE(A,B) is not a lower bound measure, it is
still very useful for approximate search in a large dataset. The procedure
to compute the distance between APCA representations is described in
Algorithm 12.

Fig. 5.10 illustrates the APCA distance computation of two datasets,
each of them consists of 16 elements.

APCA distance will be used to determine the similarity of two HHs.
If their distance is below a given threshold which is also called similarity
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threshold (ST ) in this chapter, they will be considered as the same flow.

5.2.5 HH Detection via Match Set Analysis

A typical OpenFlow FTE is composed of match set, actions(instructions) and
priority, this is shown in Fig. 5.4. Usually, a match set is composed of mul-
tiple fields which identify an individual flow or a set of flows. In the me-
dium access control (MAC) layer, it includes destination MAC (DMAC)
and source MAC (SMAC) addresses, while in the network layer, it is a
5-tuple consisting of source IP address (SIP), port number, destination IP
address (DIP), port number and the protocol in use. In most cases, actions
contain the output ports, which helps relate traffic statistics and their cor-
responding FTEs. Priority indicates matching precedence of a flow entry
which means the matching entry with highest priority will determine how
a packet is forwarded.

Match Priority Counters Instructions Timeouts . . .

Figure 5.4: A single flow table entry

The relations that can be in place among match sets and instruction
sets were first analyzed in [3]. Based on the potential relation combina-
tions, they define five FTE operator types: Disjoint, Exactly matching, Sub-
set, Superset, and Correlated. A brief overview of these operators is given in
Appendix B.

An HH that matches multiple FTEs, can be expressed by a function of
match fields and set operators (explained in Appendix B). This approach
of using one or more match fields to identify an HH is also called HH
match set. Suppose there are two OpenFlow switches SA and SB, each
of them maintains a single OpenFlow table, which are shown in Table 5.1
and Table 5.2, respectively. A controller detects two elephant flows coming
from port 21 in switch SA and port 4 in switch SB, respectively. These two
flows demonstrate a certain level of similarity such that they are assumed
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as a same flow. If so, this elephant flow will match at least one FTE in both
tables simultaneously.

For Table 5.1, the potential FTE matching set is FA = {2, i + 1, i + 2}
because all outputs of these FTEs consist of port 21 where elephant flow
is observed. Similarly for Table 5.2, the FTE set is FB = {1, 3, j + 1, j + 2}.
According to the definition of conjunction and disjunction, the match set of
packets that matches at least one FTE in both FA and FB can be expressed
as below:

MFA∧B
=MFA

∧MFB

=
(
MA

2 ∨MA
i+1∨MA

i+2

)
∧
(
MB

1 ∨MB
3 ∨MB

j+1∨MB
j+2

)
,

such that MFA∧B
consists of one or more match fields which determines

the characteristics of matching packets, i.e., it is an HH match set.

Table 5.1: OpenFlow sample table
A

Index FTE

1 Match: MA
1 , Action: Drop

2 Match: MA
2 , Action: output 21

3 Match: MA
3 , Action: output 2

i . . .

i+ 1 Match: MA
i+1, Action: output 2,21,24

i+ 2 Match: MA
i+2, Action: output: ALL

i+ 3 Match: ALL, Action: output: CONTROLLER

Table 5.2: OpenFlow sample table
B

Index FTE

1 Match: MB
1 , Action: output 4

2 Match: MB
2 , Action: output Drop

3 Match: MB
3 , Action: output 4, 18,22

j . . .

j + 1 Match: MB
j+1, Action: output 4,20

j + 2 Match: MB
j+2, Action: output: ANY

j + 3 Match: ALL, Action: output: CONTROLLER

5.3 Heavy Hitter Identification

Once a suspected HH is found, the next step is to verify whether it is a
real HH or a false positive. The approach is to install a newly constructed
FTE with the match fields as the HH match set into the switches where
the HH occurs and then observe its statistics. One challenge is that the
behaviour of the existing FTEs should not be affected by the new added
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flow entry. However, the newly added FTE might share the same match
fields with the existing FTEs which also match the suspected HHs. The
HH will not match with the original FTE any more if the new FTE is in-
stalled in the same table with higher priority. Thus, these FTEs must be
carefully constructed to ensure the existing pipelines of all packets remain
unchanged.

Using the “multi-table” feature provided by the latest OpenFlow spe-
cification [2], these new FTEs will be added in a separate table, table “0”,
to guarantee that all packets match against the FTEs in this table while
preserving the original actions being executed. Table “0” is specifically de-
signed for HH verification. The process is illustrated in Fig. 5.5 in which
all the instructions of the FTEs in Table 0 have been set as “Goto Table:
1”. In Table 0, all packets will be directed into next table for normal pro-
cessing without performing any additional actions. The counters of these
new FTEs in Table 0 are recorded in switch side. The controller retrieves
these statistics of these FTEs to validate whether an HH match set really
represents an elephant flow.

Table
0

Table
1

Table
n

Execute
Action

SetPacket In

Ingress
Port

Empty
Action
Set

Match set fields+
Action set
Pipeline

metadata

Packet  Out

Egress
Port

Update packet headers
Update match set fields
Update pipeline fields

Goto-Table: 1

Figure 5.5: Table “0” reservation for HH identification in OpenFlow
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5.4 Experiment Evaluation

5.4.1 Test Bed & Traffic

A simple leaf-spine topology is adopted in the experiment which uses one
Ryu OpenFlow 1.4.0 controller, three physical switches and eight hosts.
Fig. 5.6 illustrates the topology of the data plane in which the spine switch
(“Pica8-2”) connects the other two leaf switches, “Pica8-1” and “Pica8-3”,
respectively. The spine switch forwards packets according to the destina-
tion MAC as match set, while leaf switches forward packets according to
the destination IP address as match set. All hosts are in the same IP subnet
and all FTEs are installed proactively in the switches to ensure connectiv-
ity between hosts. More details of the test bed and the source code of this
project are listed in Appendix D.
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4

Pica8 – 3

1

2

3

4

Pica8 – 2

1
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Pica8 – 1

SDN1 SDN2 SDN3

SDN4 SDN5

SDN6 SDN7 SDN8

dpid: 5e3e089e01391a31

dpid: 5e3e089e01391a0e

dpid: 5e3e089e010d4af9

OpenFlow Switch

OpenFlow Switch

OpenFlow Switch

Figure 5.6: Test bed data plane topology
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To demonstrate the functionality of the HH detection solution, Distrib-
uted Internet Traffic Generator (D-ITG) [110] is chosen for traffic gener-
ation as it supports the following customization: i) number of flows per
physical port; ii) transmission rate of each flow; iii) variance of the trans-
mission rate for each flow; and iv) protocol, duration, jitter, and delay of
each flow. D-ITG produces packet level traffic with customizable packet
interarrival time and packet size.

A distance-based HH detection system (DHHDS) is implemented in Py-
thon with three independent threads for traffic statistics retrieval, data
logging and HH detection, respectively. The traffic rate threshold T (see
Eq.(5.1)) is adjusted to the mean traffic rate of all monitored flows. Like-
wise, the similarity threshold ST is also tuned to the average APCA dis-
tance. Thus, any two or more flows will be considered as a single HH if
their traffic rates and APCA distance are below the average transmission
rate and distance respectively.

The traffic data streams retrieved from all active physical ports are con-
tinuous in the time domain. In this evaluation, each stream is split into a
series of discrete datasets with fixed time intervals. Recent research shows
that elephant flows maintain their state for 20-40 minutes [111]. In this
chapter, the length of each dataset is set as 60 minutes to guarantee most
of elephant flows be covered by two consecutive datasets.

5.4.2 Functional Test

A functional test checks the detection correctness by comparing the results
for a given input traffic set against the desired outcome. In the functional
test, seven sets of test traffic have been defined, each of them has various
number of flows and HHs.

The process of detection in the functional test is shown in Fig. 5.7.
The controller retrieves the real-time outgoing traffic data of all physical
ports and then analyse these data and their associated FTEs to determine
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whether there are some HHs. Suppose there is a time period in which one
flow egressing out of port 2 in switch A and another flow coming from port
1 in switch B exceed the average transmission rate simultaneously, which
implies that both flows might contain HHs. If their APCA distance is also
less than the average distance of all potential HHs, they will be assumed
to be the same HH. This HH matches all the flow entries associated with
these two ports. As illustrated in Fig. 5.7, the match set of output with
port 2 in switch A and port 1 in switch B are “DMAC: 00:11:22:33:44:55”
and “DIP: 192.137.1.1/32” respectively. Thus it can be determined that this
HH goes to a machine with MAC address as 00:11:22:33:44:55 and IP ad-
dress as 192.137.1.1 by the conjunction operation of these two match sets.
In the identification stage, a new FTE with the HH match set {“DMAC:
00:11:22:33:44:55”, “DIP: 192.137.1.1/32”} as the match fields will be in-
stalled and monitored.

SWITCH  A

PORT  2 
Outgoing Traffic 

SWITCH  B

PORT  1
Outgoing Traffic 

Switch B’s OpenFlow Table Entries

MATCH: DMAC 00:11:22:33:44:55  ACTION: output 1  PRIORITY: 100

MATCH: eth_type 2054    ACTION: output controller    PRIORITY: 200

…...

MATCH: ALL   ACTION: DROP  PRIORITY: 0

Switch A’s OpenFlow Table Entries

MATCH: DIP 192.137.1.1/32   ACTION: output 2  PRIORITY: 100

MATCH: eth_type 2054    ACTION: output controller    PRIORITY: 200

…...

MATCH: ALL   ACTION: DROP  PRIORITY: 0

SDN Controller

Figure 5.7: A heavy hitter detection scenario
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Table 5.3: Heavy hitter functional test results

Set
Num

of flows

Num of

HH

HH Traffic

percentage

Packet size

distribution
Accuracy

1 3 1 81% Constant 100%

2 10 2 42%, 42% Constant 50%

3 10 2 42%, 32% Constant 75%

4 10 2 42%, 42% Uniform [8KB, 50KB] 50%

5 10 2 42%, 32% Uniform [8KB, 50KB] 75%

6 10 2 42%, 42% Poisson (61KB) 50%

7 10 2 42%, 32% Poisson (61KB) 75%

Table 5.3 shows the functional test results of DHHDS with seven differ-
ent sets of input traffic. As shown in Table 5.3, these flows follow certain
packet size distributions and contain different percentages of HHs. The
detection accuracy, also called positive predictive value (PPV), is determ-
ined by the true positive (TP) and false positive (FP), which is expressed
as:

PPV = TP/(TP + FP ).

True positive means that a flow is correctly identified as HH while false
positive incorrectly labels a flow as an HH. The results show that the detec-
tion accuracy is dependent on each flow’s transmission rate. If two differ-
ent flows demonstrate a certain similarity in a time period, DHHDS might
consider them as the same flow incorrectly. This explains the 50% detec-
tion accuracy in some cases because DHHDS cannot distinguish any two
HHs with the same transmission rate. The scenario whereby two flows
share the exact transmission rate is rare. Further improvements to the de-
tection accuracy can be achieved by tuning the similarity threshold.

Another factor related to accuracy is the misidentification of an aggreg-
ate elephant flow as an HH. It happens when multiple flows share a com-
mon forwarding path between two intermediate switches, which can be
avoided if at least one port in edge switches is involved in the similarity
computation. Another observation is that DHHDS is not sensitive to the
traffic pattern. This is attributed to the APCA representation, which aver-
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ages time series traffic and thus the distance between two APCA datasets
are comparably insensitive to short traffic spikes.

The tests demonstrate that the HH detection using traffic statistics and
FTE functions is as expected. However, its efficiency needs to be evaluated
to determine whether it can be deployed in a large-scale network.

5.5 Performance Analysis

In the functional test of DHHDS, a real test bed with physical switches
and servers is used. However, the bottleneck in DHHDS is the commu-
nication overhead and computation capability of the controller. This is
because the controller collects and analyses statistics of all physical ports,
which might affect the network performance as the network scales up. In
this section, the time overheads in a network with fixed number of ports
is analysed and then the number of ports are repeatedly increased to eval-
uate the scaling capability of DHHDS.

5.5.1 Evaluation Scenario

Since both communication overhead and computation time are highly de-
pendent on the traffic statistics which are measured on the level of phys-
ical ports, the number of active ports will be the evaluation units. Scaling
to various number of switches and ports in the laboratory-level test bed
is prohibitively expensive, therefore this scenario is simulated by replay-
ing scaled up traffic statistics from a test bed (recall that DHHDS relies on
traffic statistics from switches). In this performance evaluation, the con-
troller is a desktop machine (Dell Optiplex 9020) with Intel Core i7-4790
CPU at 3.60GHz and 8Gb RAM running the Ryu controller. Besides, it
also assumed that all switches’ port are operating at 10Gbps and 10% of
these ports contain heavy hitters.
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5.5.2 HH Detection Time

The time to complete a round of heavy hitter detection in DHHDS (THH)
can be expressed as:

THH = Tcomm + Tswitch + Tcontroller,

where Tcomm represents the communication time between controller and
switches, Tswitch denotes the querying time for traffic statistics and Tcontroller
denotes the time to process traffic statistics at the controller side. Recent
measurement studies have shown that both Tcomm and Tswitch are in order
of milliseconds [112, 113] compared to seconds for Tcontroller, and can be
safely ignored in computing measures of efficiency.

The processing time at the controller side, Tcontroller, is proportional to
the number of active ports. In the scenario of a network with 4800–ports
(100 switches×48 ports), the computation time is 15.2 seconds. As shown
in Fig. 5.8, when the number of active ports are increased from 102 to
105, the HH detection time increases linearly from less than one second
to around five minutes. The five minute benchmark is the average time
for HH detection for sampling-based methods [114] and this is shown as
a horizontal line in Fig. 5.8.

Upon profiling the operations and computations in DHHDS, it is found
that the most time-consuming procedures is APCA which costs more than
98% of the total computation time. This is also consistent with the fact that
the complexity of APCA is O(n log(n)) while the remaining procedures
(smoothing, thresholding and windowing) are O(n), where n denotes the
length of sampled traffic data.

5.5.3 Comparing Different HH Approaches

Table 5.4 summarises the major differences and indicative performances
for three widely documented HH detection approaches in the 4800–port



5.5. PERFORMANCE ANALYSIS 139

0 0.2 0.4 0.6 0.8 1

·105

0

100

200

300
Sampling-based detection time

Active Physical Ports

H
H

D
et

ec
ti

on
Ti

m
e

(s
ec

)

Figure 5.8: HH detection time with increasing number of active ports.

scenario. In this table, the values for computation time in the sampling
based approach is calculated with the assumption that the link utilization
rate is 20% and the sampling rate is 5% given by [115].

Table 5.4: Performance comparisons of HH detection approaches

Objects Measured Scale Scanning(Computation) Time Memory Communication overhead

Sampling based Packets Multiple devices ∼510s (DFA OP [115]) 7391KB (DFA OP [115]) Order of Gbps

Sketch based Hash Table Device-level Line rate [83] ∼2MB [83] Order of Kbps

Proposed DHHDS Statistics Multiple devices ∼15s 4915KB Order of Mbps

Comparing the communication overheads, it is clear that sampling-
based solution is of limited use in large-scale networks. Sketch-based solu-
tions have low communication overheads because they are self contained
in individual switches, but it requires hardware customization making it
less favourable with network operators. The proposed solution manages
the traffic statistics rather than the packets to achieve a balance between
the resource consumption and efficiency.
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5.6 Summary

Motivated by SDN, this chapter tackles the problem of heavy hitter detec-
tion and identification without packet inspection. The proposed solution
relies on analysis of the readily available information in the controller and
is especially suitable for large-scale networks. Compared with traditional
HH detection, this solution has three advantages: i) easily scalable; ii) ar-
bitrary traffic detection without prior knowledge of traffic patterns; and
iii) independent of underlying hardware design.

In the next chapter, all the afore-mentioned research contributions will
be summarised. Their implications in real world network and potential
future research points will also be discussed.
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Chapter 6

Conclusions

Software Defined Networking (SDN) enables a network to be intelligently
and centrally controlled via forwarding table entries. The structure and
functionality of FTE are more complicated than the ACL and IP routing
entry used in traditional networking. Thus, it is vital to have a represent-
ation to facilitate the investigation and use of FTE in SDN.

After evaluating all the existing mathematical/logical representations,
Boolean algebra is chosen and extended to explore SDN applications. More
specifically, the applications such as equivalent forwarding set evaluation,
traffic estimation and heavy-traffic flow detection are implemented and
verified.

6.1 Review

The contents of this thesis are summarised as below:

• In chapter 3, the process of evaluating equivalence between two for-
warding sets in terms of networking functionality is formalised by
converting multiple tables and single table into a uniform repres-
entation called equivalent forwarding sets. This approach facilitates
the flow table management in the controller where a single large

143
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table is usually maintained as well as the flow table deployment in
switches where multiple flow tables are more often chosen to adapt
to switches’ various forwarding pipeline designs.

• In chapter 4, a novel traffic estimation approach based on the existing
FTEs’ statistics is proposed and evaluated. With the help of Boolean
algebra, the deterministic confidence interval of any given flowset
can be estimated. It is a non-invasive approach because this process
does not require installing any new FTE, which makes it more prac-
ticable than the current SDN traffic monitoring solutions.

• In chapter 5, a heavy hitter detection and identification in SDN is
implemented. This approach relies on mining traffic statistics and
FTE to detect and identify heavy hitters. The experiments on a test
bed show that this approach simultaneously achieves considerable
accuracy and good scalability. This non-invasive anomaly detection
approach enables an SDN controller to identify heavy traffic flows
only based on readily available information, which makes this solu-
tion easy to deploy on a production network.

6.2 Implications

The study of forwarding table entries mainly focuses on the applications
of network engineering. However, it still shows some theoretical implica-
tions.

The previous research of SDN representation showed that it was pos-
sible to abstract the networking attributes with some adaptation and ex-
tension of existing logical and mathematical approaches. However, they
rarely delve into the internal structure of forwarding table entries. This
thesis examines the individual attributes of forwarding table entries as
well as the existing approaches to represent them. More importantly, the
pros and cons of these approaches are investigated and the rationale be-
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hind them are also explained. Besides this, Boolean algebra has been mod-
ified to support wildcard, priority and multiple tables. All these changes
make Boolean algebra more applicable to attack the realistic network en-
gineering problems and serve more SDN applications.

The practical implications of the study can be seen from the following
three perspectives. First, the equivalent forwarding set evaluation is an ef-
fective tool for a network administrator to verify and optimise FTE place-
ment. The truth-table based ACA approach is easily programmed and
implemented in real world to check against the various types of forward-
ing tables. Moreover, it can also be used to detect the routing problems
such as loopback and redundancies.

Second, the proposed traffic estimation approach provides an alternat-
ive method to monitor a network’s running status. This approach is very
practical due to its non-invasiveness. Since this approach avoids the ad-
ditional FTE installation, it will not impact the existing packet forwarding
functionality and performance. However, it also has a obvious limitation:
the estimation accuracy will be deteriorated with decreasing number of
FTEs. Thus, this proposed solution is very suitable for a rough estimation
of a network’s overall statistics rather than an accurate measurement of a
specific flow.

Third, the heavy hitter detection offers an novel way to do traffic ana-
lysis which cannot be achieved in traditional networking. SDN has the
ability to collect and analyse the real time traffic from a global perspect-
ive. It inspires the idea to design a heavy hitter detection based on data
mining and FTE correlation. This solution is easily applied in large-scale
data-centre since all computation occurs on the SDN controller. The per-
formance will be improved with the scale growth of a network. With the
involvement of more switches and FTEs, the characteristics of a suspected
heavy flow can be further narrowed down because they rely on the AND
(∧) operations upon the match fields of all correlated FTEs.

In a word, all of these aforementioned practical implications demon-



146 CHAPTER 6. CONCLUSIONS

strate the possibility of developing novel solutions to traditional problems
due to SDN’s logically centralised architecture.

6.3 Future Work

• Formal representation of network-wide FTE: The current FTE rep-
resentations still focus on the forwarding tables of individual switches.
These representations are unlikely to be applicable to a network dir-
ectly. This shortcoming could be mitigated by introducing formal
logics and semantics to represent the connections between switches.
Ideally an appropriate FTE representation is capable of covering FTE’s
three aspects: i) attributes inside a single forwarding table, for ex-
ample, wildcards, priority; ii) relations among multiple tables, such
as the “goto table” attributes; iii) network-wide topology informa-
tion. Only the representation covering all these afore-mentioned as-
pects is able to reflect the characteristics of a network and further
verify the correctness of FTE deployment or even predict the packet
forwarding behaviour. These first two aspects have been well de-
veloped in this thesis but it would be better if the “group-table” at-
tribute could be covered due to its functionality in multicast and load
balancing. The topology in the third aspect has been integrated into
the application of heavy hitter detection but the representation of to-
pology together with other attributes have not been fully exploited.

• Applications of network-wide FTE representation: Even though
it has been emphasised that a successful FTE representation should
cover all the essential attributes, the criteria to evaluate an FTE rep-
resentation are not only determined by the number of attributes.
Their feasibility and usability should be validated in practice, spe-
cifically, more work can be done in these two areas: i) verification
and optimization of network-wide FTE deployment; ii) traffic mon-
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itoring and analysis.

The detection such as the redundancy and routing loop on a single
table or individual switch has been largely exploited, however, rare
works have been done on the network-wide FTEs. The future works
in this area include the verification of FTE deployments such as con-
version from a single large table on controller to multiple tables on
multiple switches. More importantly, it should be able to direct a
networking administrator to optimise FTE deployment to reduce the
FTE storage space and even speed up the packet forwarding.

Another potential research point of network-wide FTE representa-
tion is traffic monitoring and analysis . A benefit of SDN’s central-
ised architecture is the ability to coordinate all the switches to deliver
the packets more economically and efficiently. A good FTE repres-
entation should be able to integrate with other non-intrinsic FTE at-
tributes such as topology and statistics. Thus, the applications based
on this FTE representation along with the topology and statistic in-
formation can assist a network administrator to better understand
the real-time status of a network. Moreover, these application should
also help an administrator to dynamically analyse, predict and regu-
late the packet forwarding behaviour inside a software defined net-
work.
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Appendix A

Boolean Reasoning

An n-variable function f : Bn → B is called a Boolean function if and only
if it can be expressed by a Boolean formula.

For any element b ∈ B, the constantfunction, defined by f(x1, x2, ..., xn) =
b ∀(x1, x2, ..., xn) ∈ Bn,
is an n-variable Boolean function.

Product Term: The product term of a n-variable Boolean function is
defined to be the logical AND of some or all of these variables.

Minterm (Canonical) Form: A product term in which all variables ap-
pear once and only once, i.e., a function with n variables has 2n possible
unique minterms.

Sum of Product (SOP): SoP is a disjunction (OR) of minterms. A SOP
of a Boolean function is a sum(OR) of the minterms which represent all the
”true” values in this function.

Equivalent(≡): Two formulas will be called equivalent(≡) in case they
represent the same Boolean function, i.e., in case one can be transformed
into the other by the application of the rules of Boolean algebra.

Congruent(∼=): Two formulas in the form of disjunctive normal form
(DNF) is congruent in case that one can be transformed into the other using
only the commutative rule.

Included(≤): Given two Boolean function g and h, if the identify gh′ =
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0 is satisfied, then g is included in h, written g ≤ h.
Implicant / Prime Implicant: An implicant of a Boolean function f is a

term p such that p ≤ f . Any term of an DNF formula for f is clearly an
implicant of f. An implicant p of f is a prime implicant if and only if no
other implicant of f contains p, i.e., for any term q, p ≤ q ≤ f → p = q.

Absorptive: An DNF formula F will be called absorptive in case no term
in F is absorbed by any other term in F. The equivalent absorptive for-
mula (ABS) of a non-absorptive F can be obtained by successive deletion
of terms absorbed by other terms in F.

Syllogistic: A formula F will be called syllogistic in case, for every DNF
formula G, G ≤ F → G� F.

Blake Canonical Form (BCF): LetF be a syllogistic formula for a Boolean
function f . The formula ABS(F), the Blake canonical form for f , which is de-
noted by BCF(f). If a DNF formula F is not syllogistic, it contains terms p
and q, having exactly one opposition, such that c(p, q) is not formally in-
cluded in F . F is syllogistic if and only if every prime implicant of f is a
term of F .



Appendix B

Boolean Function Operations on
Match Fields

LetM0 andM1 denote am-dimension match setM0 = {f 0
0∧f 0

1 . . .∧f 0
m} and

n-dimension match setM1 = {f 1
0 ∧f 1

1 . . .∧f 1
n} respectively. The operations

between M0 and M1 are defined as follows:

Definition B.0.1 (Exact matching). The physical meaning of two exactly
matching FTEs is that one’s matching flow will also match another one.

M0 =M1 : ∀i ∃j | [(f 0
i = f 1

j ) ∧ (f 1
i = f 0

j )], f
0
i,j ∈M0 ∧ f 1

i,j ∈M1

Definition B.0.2 (Subset (Superset)). The physical meaning of M0 ⊂ M1

is that M0’s matching flow does match M1, but not vice versa. M1 is also
called a superset of M0.

M0 ⊂M1 : ∀i ∃j | [(f 0
i ⊂ f 1

j ) ∨ (f 0
i = f 1

j )], f
0
i ∈M0 ∧ f 1

i ∈M1

Definition B.0.3 (Disjoint (./)). The physical meaning of two disjoint FTEs
is that one’s matching flow will NOT match another and their respective
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matching packets share no common characteristics.

M0 ./ M1 : ∀i, j | f 0
i ∧ f 1

j = φ, f 0
i ∈M0 ∧ f 1

i ∈M1

Definition B.0.4 (Joint (./)). The physical meaning of two joint FTEs is that
their matching packets share one or more common characteristics, e.g., in
the same IP subnet.

M0 ./ M1 : ∃i, j | f 0
i ∧ f 1

j 6= φ, f 0
i ∈M0 ∧ f 1

i ∈M1

Three logical operations are used on match sets in the HH identification
module (see Section 5.3): (i) Negation (not): ¬; (ii) Conjunction (and): ∧;
and (iii) Disjunction (or): ∨.

Negation is used in the set theory context and defined as follows:

¬M0 = ¬{f 0
0 ∧ f 0

1 . . . ∧ f 0
m}

= {¬f 0
0 ∨ ¬f 0

1 . . . ∨ ¬f 0
m}.

The conjunction operator on match sets M0 and M1 implies that packets of
M0 ∧M1 can match both sets simultaneously (as expressed in (B.1)).

M0 ∧M1 =



M0 or M1 if M0 = M1

M1 if M0 ⊂ M1

Mc

(
M

′

0 ∧M
′

1

)
if M0 ./ M1

M0 ∧M1 if M0 ./ M1

(B.1)

where Mc is the greatest common subset of M0 and M1, M ′
0 and M ′

1 are the
subsets of M0 and M1, respectively, from which Mc has been removed.

The disjunction operator on match sets asserts that the matching packets
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of M0 ∨M1 match either M0, M1, or both as expressed in (B.2).

M0 ∨M1 =



M0 or M1 if M0 = M1

M0 if M0 ⊂ M1

Mc

(
M

′

0 ∨M
′

1

)
if M0 ./ M1

M0 ∨M1 if M0 ./ M1

(B.2)



Appendix C

Formula vs Truth-table
Comparison

There are two approaches to evaluate the equivalence of two Boolean func-
tions: formula based and truth table based comparison. The former method
converts a Boolean function formula into a normal form while the latter
transforms all the “truth” value in the Boolean function into a table in
which each row represents exact one value. In both methods, the complex-
ity of comparison depends on two factors: width and length. The width
indicates the number of literals in a formula or the bits of a value in a truth
table and the length represents the number of products in a disjunctive
normal form (DNF) or values in a truth table.

An n-variable Boolean system on a Boolean algebra B is a collection of
simultaneously-asserted equations, as follows:

p1(X) = q1(X)

...

pk(X) = qk(X)

The pi and qi are n-variable Boolean functions on B; X denotes the vector
(x1, x2, ..., xn). The Boolean system is equivalent to the single equation
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f(X) = 0,

where f is defined by

f =
k∑

i=1

(pi ⊕ qi)

Thus, for any two forwarding sets Fg and Fh, their equivalence is determ-
ined by the equivalence of every Boolean function gi and hi, where gi and
hi represent the Boolean function for the same action set ai in Fg and Fh,
respectively.

It is obvious that any two Boolean functions are equivalent if they com-
prise the same DNF expression. The method based on the comparison of
formula is also called formula based equivalence. One major challenge of
this method is that how to transform a Boolean function into a uniform
formula. The formula must have one property: it has a consistent form for
any two equivalent Boolean functions. One solution is sum of products
(SOP) form in which all “truth” values of a Boolean function represent by
a minterm product. However, the size of SOP is the largest among all dis-
junctive form. The Blake canonical form (see Appendix A) of a Boolean func-
tion f (denoted by BCF (f)), is minimal within the class of syllogistic for-
mulas while also comprises the disjunctions of all of the prime implicants
of f . Hence, the BCF of any two equivalent Boolean functions f and g must
be identical or congruent, i.e., BCF (f) = BCF (g) or BCF (f) ∼= BCF (g).

Another way to express a Boolean function is using a truth table in
which each row represents a minterm canonical form (truth-table based
equivalence). If a Boolean function f has k elements, then the maximum
number of rows in its truth table is 2k. The equivalence of two Boolean
functions based on the truth-table comparison is a straightforward but
time-consuming process, which is an exclusive OR bitwise operation of
all entries in these two tables.

The width of a Boolean function for a forwarding set is determined by
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the total number of bits in all match fields. In a formula-based expres-
sion, each literal represents a single bit, thus the width also determines
the number of literals of all products in a Boolean formula. The number
can be further reduced with the introduction of “do not care” bits. If the
“do not care” bit exists in the same position for all match fields, it can be
removed by the “absorptive” operation. However, the truth-table repres-
entation does not benefit from this. It must be expressed using the same
width as the original Boolean function. This is because a literal in a for-
mula represents both the value of a bit but also the position of this bit.
Take the function in Eq.(C.1) as an example,

f = a
′
b
′
cde

′
+ a

′
bcde

′
+ ab

′
cde

′
+ abcde, (C.1)

if the literal c in (C.1) is set to “do not care”, then its formula based expres-
sion simplifies to:

f = a
′
b
′
de

′
+ a

′
bde

′
+ ab

′
de

′
+ abde,

in which the literal c is omitted because all the value in its specified posi-
tion is “do not care”. However, in the truth table representation Eq.(C.2),
the third bit which is represented by the literal c cannot be removed from
the truth table, otherwise, the position of c cannot be inferred.

f =



0 0 ∗ 1 0

0 1 ∗ 1 0

1 0 ∗ 1 0

1 1 ∗ 1 1


. (C.2)

The minimum length of a Boolean function is equal to the least num-
ber of products of its equivalent absorptive formula (ABS). However, the
ABS is not identical for any two given equivalent Boolean function thus it
cannot be used to evaluate the equivalence of any two Boolean functions.
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Another form, the BCF formula, can be used to compare two functions.
Thus the number of products in the BCF formula of a Boolean function is
more valued than the minimum ABS during the evaluation of equivalence.

The BCF (f) is the disjunction of all of the prime implicants of f . It has
been shown in [116] that the prime implicants are related to the number of
conjunctions and variables

max
(
3bk/3c, 3n/n

)
≤ Npi ≤ min

(
2k, 3n/

√
n
)

(C.3)

Thus any complexity reduction on BCF (f) lies upon the decreasing
the conjunctions or variables in f .



Appendix D

Test Environment Setup

D.1 Overview

In this thesis, all of the three contributions involve functional tests and
performance evaluation. The heavy hitter detection was the first project
and conducted on a small-scale test bed which was built on top of physical
switches. The rest two contributions were conducted on an Open vSwitch
for efficiency and convenience.

The overall architecture of each test environment has already been de-
scribed in their respective chapters, this appendix illustrates more details
on the configurations, commands and source code explanation.

D.2 Open vSwitch on VirtualBox

As depicted in Fig. D.1, an Oracle VirtualBox was installed on a Ubuntu
Server. On this VirtualBox, three virtual machines are created. They are
names as “VM1”, “VM2” and “VM3” respectively. The VirtualBox host,
which is the Ubuntu server, also bears the role of OpenFlow controller. All
experiments in this thesis choose Ryu as the SDN controller.

The host machine was assigned a public IP address and there was a
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domain name (https://sdn.lianghub.com) to associate with it to make it
accessible outside of the lab. There virtual Ethernet interfaces were cre-
ated on the host to connect with the three VMs to make sure they can be
accessed by host via SSH.

Figure D.1: Snapshot of Open vSwitch on VirtualBox

The Open vSwitch was only installed on VM2 and three additional vir-
tual network adapters was created to connect with the other two VMs as
well as the host server. Figure D.2 depicts the details of virtual network
adapters’ configurations. During the experiment, this VM played the role
of OpenFlow switch to receive the commands from the OpenFlow control-
ler (the host server) to install FTEs and report traffic statistics.
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Figure D.2: Configuration for individual VM (VM2)

D.3 OpenFlow Physical Switch Test Bed

In the experiment of heavy hitter detection, a small-scale test bed with
physical switch (Pica8, https://www.pica8.com/) was used. To increase
the number of end hosts (the machine to send/receive packets to/from
switches), virtual machines were built on some machines (physical servers
in Fig. D.3). The overall topology of the test bed is illustrated in Fig.
D.3 in which data plane and control plane are completely separated. The
OpenFlow controller, as well as other switches, were put inside a private
network which can be still accessed from WAN via a Network Address
Translation (NAT) router.

In this test bed, all the switches came from Pica8. Edgecore Networks
switches (https://www.edge-core.com/) were also tested but finally they
were not used in the experiment. A major reason was that Edgecore adop-
ted Open Network Linux operating system which offers better flexibility
but involves more configuration effort.

Table D.1 listed the most frequently used Pica8 OpenFlow commands
in the experiment. In this table, “br0” stands for OpenFlow bridge 0 which
defines the OpenFlow port range.
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... ...

PICA8 OF 
Switches

Open 
vSwitch

Virtual 
Machines

NATOF 
Controller

WAN

Physical
Servers

OF Data Plane

OF Control Plane

Figure D.3: Topology of OpenFlow physical switch testbed

Table D.1: Most frequently used Pica8 OpenFlow command

Function Command

Create a bridge ovs-vsctl add-br br0 – set bridge br0 datapath type=pica8

Add port to a bridge ovs-vsctl add-port br0 ge-1/1/1 – set interface ge-1/1/1 type=pica8

Remove port from a bridge ovs-vsctl del-port br0 ge-1/1/1

Set controller for a bridge ovs-vsctl set-controller br0 tcp:192.168.138.115:6633

D.4 Scripts and Source Code

During the experiments of equivalent forwarding set evaluation and traffic
estimation, a large amount of OpenFlow table entries were created. The
following code snippet illustrates how to generate this by a bash script.

#!/bin/bash

hexchars="0123456789ABCDEF"

echo $end

for (( c=1; c<=400000; c++ ))

do

end="aa:bb:cc"$( for i in {1..6} ; do echo -n ${hexchars:$(( $RANDOM % 16 )):1}

; done | sed -e ’s/\(..\)/:\1/g’ ) command=$(printf "curl -X POST -d
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’{\"dpid\": 8796751660512,\"cookie\": 1,\"cookie_mask\": 1,\"table_id\":

0,\"idle_timeout\": 0,\"hard_timeout\": 0,\"priority\": 22222,\"flags\":

1,\"match\":{\"dl_dst\": \"%s\"},\"actions\":[{\"type\":\"OUTPUT\",\"port\":

2}]}’ http://103.196.108.10:8080/stats/flowentry/add" "$end")

echo $command >> 400000flow

done

In the evaluation of the most effective networking traffic representa-
tion (Chapter 5), the algorithm DFT, DWT, PLAN and APCA were imple-
mented by MATLAB. For the heavy hitter detection, the traffic collection
and pattern recognition were implemented by Python. All the source code
have been uploaded to Github (https://github.com/csliangy/hhdetection).



Appendix E

Acronyms and Abbreviations

ABS . . . . . . . . . . Absorptive Formula

ACA . . . . . . . . . . Action Oriented Conversion Approach

ACL . . . . . . . . . . Access Control List

AMF . . . . . . . . . . Actual Match-field

APCA . . . . . . . . . Adaptive Piecewise Constant Approximation

AS3 . . . . . . . . . . . Simple-Subset-Superset on AMF

ASIC . . . . . . . . . Applicationspecific Integrated Circuit

BCF . . . . . . . . . . . Blake Canonical Form

CNF . . . . . . . . . . Conjunctive Normal Form

DCI . . . . . . . . . . . Deterministic Confidence Interval

DECISION . . . DEterministic Confidence Interval eStimatION

DFT . . . . . . . . . . Discrete Fourier Transform

DHHDS . . . . . . Distance-based HH Detection System
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DIP . . . . . . . . . . . Destination IP

D-ITG . . . . . . . . Distributed Internet Traffic Generator

DMAC . . . . . . . . Destination MAC

DNF . . . . . . . . . . Disjunctive Normal Form

DWT . . . . . . . . . Discrete Wavelet Transform

EFS . . . . . . . . . . . Equivalent Forwarding Set

FIB . . . . . . . . . . . Forwarding Information Base

FTE . . . . . . . . . . . Forwarding Table Entry

FP . . . . . . . . . . . . False Positive

FPGA . . . . . . . . . Field-programmable Gate Array

HA . . . . . . . . . . . High Availability

HH . . . . . . . . . . . Heavy Hitter

HHH . . . . . . . . . Hierarchical Heavy Hitter

IP . . . . . . . . . . . . . Internet Protocol

LAN . . . . . . . . . . Local Area Network

LODCI . . . . . . . Lower Bound of Optimal DCI

LSQ . . . . . . . . . . Least-square Method

MAC . . . . . . . . . Medium Access Control

MAF . . . . . . . . . . Match-action Form

MFA . . . . . . . . . . Match-fields Oriented Conversion Approach

MFT . . . . . . . . . . Multiple Flow Table
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MHH . . . . . . . . . Multi-dimensional Heavy Hitter

MPLS . . . . . . . . . Multiprotocol Label Switching

ODCI . . . . . . . . . Optimal Deterministic Confidence Interval

OMF . . . . . . . . . . Original Match-field

ONF . . . . . . . . . . Open Networking Foundation

OS3 . . . . . . . . . . . Simple-Subset-Superset on OMF

OTN . . . . . . . . . . One-stage to N-stage Flow Tables

PLA . . . . . . . . . . . Piecewise Linear Approximation

PPV . . . . . . . . . . . Positive Predictive Value

ProgME . . . . . . . Programmable Network MEasurement

RBAC . . . . . . . . . Role-based Access Control

RMT . . . . . . . . . . Reconfigurable Match Table

S3 . . . . . . . . . . . . . Simple-Subset-Superset

SCF . . . . . . . . . . . Specified Common Field

SDN . . . . . . . . . . Software Defined Networking

SMAC . . . . . . . . Source MAC

SOP . . . . . . . . . . Sum of Product

ST . . . . . . . . . . . . Similarity Threshold

TM-FTE . . . . . . Traffic Measurement FTE

TM-Table . . . . . Traffic Measurement Table

TP . . . . . . . . . . . . True Positive
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UODCI . . . . . . . Upper Bound of Optimal DCI

VLAN . . . . . . . . Virtual LAN

VM . . . . . . . . . . . Virtual Machine

WAN . . . . . . . . . Wide Area Network


	Introduction
	Motivation
	Research Scope
	Research Questions
	Research Contributions
	Research Framework
	Organisation of Thesis

	Background and Related Work
	Software Defined Networking: Overview
	Forwarding Pipeline: Overview
	Forwarding Tables in Traditional Networking and SDN
	Past Work for Characterising Forwarding Behaviour
	Pipelines: a Common Denominator for Packet Forwarding

	FTE Representation
	Past Work for FTE Representation
	Boolean Algebra for FTE Representation

	Applications Based on FTE Representation
	Optimising FTE
	Traffic Monitoring

	Summary

	Equivalent Forwarding Set Evaluation
	Research Question
	EFS: Towards a Uniform Table Structure
	Equivalent Forwarding Set Conversion
	MFA Conversion
	ACA Conversion
	MFA vs ACA

	Functional Test and Performance Evaluation
	Functional Test Design
	Performance Evaluation

	Summary

	Deterministic Statistics Estimation
	Research Question
	Non-invasive Traffic Estimation in SDN
	Definition
	Problem Description

	Deterministic Traffic Estimation Algorithms
	Single-Table Traffic Statistics Estimation
	Multi-Table Traffic Statistics Estimation

	Evaluation
	Functional Test
	Performance Evaluation

	Summary

	Heavy Hitter Detection & Identification
	Research Question
	Heavy Hitter Detection 
	Design of the HH Detection Framework
	Modules of the HH Detection Framework
	Detection Module
	Detecting Similarity
	HH Detection via Match Set Analysis

	Heavy Hitter Identification 
	Experiment Evaluation
	Test Bed & Traffic
	Functional Test

	Performance Analysis
	Evaluation Scenario
	HH Detection Time
	Comparing Different HH Approaches

	Summary

	Conclusions
	Review
	Implications
	Future Work

	Appendices
	Boolean Reasoning
	Boolean Function Operations on Match Fields
	Formula vs Truth-table Comparison
	Test Environment Setup
	Overview
	Open vSwitch on VirtualBox
	OpenFlow Physical Switch Test Bed
	Scripts and Source Code

	Acronyms and Abbreviations

