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Abstract

I model the vertically averaged deviatoric stress field for New Zealand using velocity
and crustal density data. I use a thin sheet model of a viscously deforming litho-
sphere, averaging over a depth of 100 km and solve the stress balance equation. Two
methods of solving the stress balance equation are compared: one method solves first
for deviatoric stresses due to gravitational potential energy per unit volume before
accounting for deviatoric stresses due to boundary conditions; the other method
assumes an isotropic viscosity to relate deviatoric stress to strain rate, solving for
the viscosity field. Under synthetic testing, the two step method is able to cope
with high levels of noise but contains edge effects. The method solving for viscos-
ity is accurate at low noise levels, however, it is unreliable at high noise levels. I
apply the two step method to New Zealand using a Quaternary and a GPS-derived
velocity model. Vertically averaged deviatoric stress magnitudes are found to be 10-
30 MPa, similar to magnitudes found for other plate-boundary zones. Gravitational
and boundary stresses each account for approximately half of the full deviatoric
stress. Effective viscosities are found to be 1-10×1021 Pa s in the regions of most
active deformation, which can be interpreted in terms of the long term strength of
the lithosphere controlled by temperature and/or lithology.
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Chapter 1

Introduction

The thesis presented here is an expanded version of the manuscript, co-authored by
my supervisors Simon Lamb and Martha Savage, that I have submitted to Journal
of Geophysical Research. In this thesis, I explain the background and motivation for
modelling the New Zealand stress field, including why more direct stress measure-
ments are insufficient to describe the stress field within the Earth. I describe two
implementations of the thin sheet approximation of the lithosphere and compare
their ability to recover synthetic test stress fields. I apply one of these methods to
New Zealand to calculate the deviatoric stress and effective viscosity fields for New
Zealand. I compare the results I obtain for New Zealand with those obtained at
other plate boundary zones and discuss the significance of the results, in particular,
with reference to lithospheric rheology and earthquake stress drops.

1.1 Motivation

Stresses are the driving force behind plate tectonics and, therefore, earthquakes.
Consequently, an understanding of the stress field could improve the understanding
of earthquake hazard. While it is comparatively simple to calculate the orientation
of stress, it is more difficult to calculate the magnitude of stress. The orientation
of stress can be measured from earthquake focal mechanisms [e.g. Townend et al.,
2012], seismic anisotropy [e.g. Savage et al., 2016], or borehole measurements [e.g.
Rajabi et al., 2016]. These methods do not, however, give stress magnitudes. One
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2 CHAPTER 1. INTRODUCTION

method to estimate stress magnitudes is to calibrate them with gravitational forces.
Using a knowledge of the density structure of the lithosphere, the full tensor of
the stress due to gravity can be calculated. The gravitational component of the
stress field can be used to calibrate the magnitude of the overall deviatoric stress
[e.g. England and Molnar, 1997; Flesch et al., 2001, 2007]. A by-product of the
calculation is to also provide a representation of variations in effective viscosity in
the Earth, assuming a bulk viscous rheology for the lithosphere.

At shallow to moderate depths in the lithosphere, where the rocks are at lower
confining pressures and temperature, rocks show a long-term elastic behaviour and
deformation occurs by rupture along faults, resulting in earthquakes [Ranalli, 1995].
At the higher temperatures and confining pressures that prevail at greater depths,
rocks may deform by viscous flow [Ranalli, 1995]. It has been argued that this
deeper viscous flow in the mantle controls the long wavelength deformation of the
lithosphere, at horizontal distances much greater than the lithospheric thickness,
especially if mantle rocks are relatively strong compared to the overlying crust [Eng-
land and McKenzie, 1982; England and Houseman, 1986; Houseman and England,
1986; England and Molnar, 1997; Flesch et al., 2001, 2007]. In this case, there is a
direct relationship between the stress field and the rate of deformation, determined
by the bulk viscosity of the lithosphere. The advantage of this approach is that it
provides a tractable way to analyse both the effects of gravity and plate tectonic
forces on the deformation of the lithosphere, given knowledge of the rates of defor-
mation. In particular, for an isotropic viscous rheology, the orientation of the strain
rate tensor is the same as that of the stress tensor [Ranalli, 1995].

Here, I approximate the lithosphere as a thin sheet [England and McKenzie,
1982] and calculate the vertically averaged deviatoric stress field in New Zealand.
Taking advantage of the rich database of rates of deformation in the region from
active faulting [Litchfield et al., 2014, GNS active fault database (www.gns.cri.nz)]
and geodesy – particularly global positioning system (GPS) measurements over the
past 10-20 years [Beavan et al., 2016] – I combine the gravitational stress field
with possible tectonic stress fields and compare it with total stress orientations to
determine the full deviatoric stress field. I use this to determine the effective viscosity
field of the lithosphere.
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1.2 Previous Work

Stress magnitudes have been estimated by various authors, for example, in Tibet
[Flesch et al., 2001], western North America [Flesch et al., 2007], and northwest-
ern Japan [Yoshida et al., 2015]. Deviatoric stress magnitudes of 5-40 MPa were
determined for these plate boundary zones. A common method of determining the
deviatoric stress is to approximate the lithosphere as a thin sheet [e.g. England and
Jackson, 1989; Flesch et al., 2007] and solve for vertically averaged horizontal stress.
The Flesch et al. [2001] and Lamb [2015] methods for doing this are described in
detail in Section 2.2. The deviatoric stress magnitudes determined by thin sheet
methods are comparable to the magnitudes determined through loaded thick elastic
plate calculations [e.g. Luttrell et al., 2011; Yoshida et al., 2015]. The thick elastic
plate method considers the load placed on an elastic plate from above and below by
topography and density variations, adding a regionally uniform horizontal boundary
stress field to match the orientation of earthquake focal mechanisms [Luttrell et al.,
2011]. The thick plate method is more suited to smaller, simpler areas, such as
a single subduction zone, due to its assumption of a regionally uniform boundary
stress field. The thin sheet methods, which do not have this assumption, can cope
with more complex areas, such as the laterally variable New Zealand plate boundary
zone.

Stress directions have been measured in New Zealand using earthquake focal
mechanisms [e.g. Townend et al., 2012; Warren-Smith, 2016, see Fig. 5.2] and seismic
anisotropy. These indicate SHmax directions across much of the South Island to be
∼110°, at an angle of ∼60° to the Alpine Fault [Boese et al., 2012]. In the lower
North Island, SHmax directions are 60°-90° for earthquakes at depths of 20-100 km
[Townend et al., 2012]. This is in the same direction as relative plate motion, which
in this region is at 259° [Altamimi et al., 2012].

1.3 Tectonic Setting

New Zealand lies on the boundary between the obliquely converging Pacific and
Australian plates (Fig. 1.1). In the North Island, the convergence of the Pacific and
Australian plates is dominated by the subduction of the oceanic Pacific plate be-
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neath continental Australian plate at the Hikurangi margin at a rate of ∼40 mm/yr.
The Hikurangi Plateau, a large igneous province that is part of the Pacific plate,
is being subducted at the Hikurangi margin [summarised in Wallace et al., 2009].
Deformation is spread over an up to 250 km wide zone in the overlying Australian
Plate [Walcott, 1978, 1984], with dextral motion accommodated by the North Island
Dextral Fault Belt. The subduction interface beneath the Wellington and Wairarapa
regions is strongly coupled, with a high slip-rate deficit, however, the interface fur-
ther north, beneath Hawke’s Bay and the Raukumara peninsula, is weakly coupled
[Wallace et al., 2012]. Behind the Hikurangi margin, there has been up to 100 km
of back-arc spreading in the Taupo Volcanic Zone and, further north, in the offshore
Havre Trough [Walcott, 1978, 1984]. Several regions of repeating slow slip events
have been identified along the Hikurangi margin, with recurrence intervals between
2 and 6 years and durations between 6 days and 1.5 years [summarised in Wallace
and Beavan, 2010].

Subduction at the Hikurangi margin terminates beneath the northern South Is-
land, where deformation is transferred to the continental crust and accommodated
by the Marlborough Fault Zone. In the central South Island, the plate boundary
is dominated by oblique continental collision with the Alpine Fault accommodating
∼100 km of shortening over the last 23 Ma [Lamb et al., 2015] with a total dex-
tral offset of ∼700 km [Lamb et al., 2016]. To the south, the oceanic Australian
plate subducts beneath the continental Pacific plate at the Puysegur margin, off the
Fiordland coast, with small amounts of shortening in Fiordland and western Otago
[Walcott, 1998].

Deformation in New Zealand has been described in terms of block rotations and
in terms of strain rates. Block rotations [e.g. Wallace et al., 2004, 2007] consider
the deforming region to comprise a series of elastic blocks, bounded by faults, that
can rotate relative to each other. Block rotations are inverted for using GPS, fault
motion, and palaeomagnetic data. Calculating strain rates involves treating the de-
forming region as a continuously deforming elastic medium, allowing the strain rate
to be calculated from the gradients of velocity. This has been done in New Zealand
by numerous authors using GPS data [e.g. Beavan and Haines, 2001], fault motions
[e.g. Lamb, 2015; Holt and Haines, 1995], and previously triangulation surveys [e.g.
Walcott, 1984; Árnadóttir et al., 1999]. In this study, the deformation is considered
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Figure 1.1: New Zealand tectonic setting, including topography and bathymetry
[Mitchell et al., 2012]. Velocity vectors show the motion of the Pacific plate relative
to the Australian plate [Altamimi et al., 2012]. Active faults from the New Zealand
Active Fault Database [Langridge et al., 2016] are shown in red. The depth contours
of the interface of the Hikurangi subduction zone [Williams et al., 2013] are shown
in blue, with the Hikurangi margin shown in black. TVZ: Taupo Volcanic Zone.
AF: Alpine Fault.
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in terms of strain rates to provide a continuous distribution of deformation. Con-
sequently, any discontinuities that may exist over faults will be spread between the
points on either side of the fault.

1.4 Background Theory

In a tectonic environment, there are three main sources of stress. Gravitational
stresses are the result of the force of gravity acting on the overlying rocks in a
column. These stresses act in the direction to smooth variations in topography;
in the absence of other stresses, mountains would exhibit a greater tendency to
collapse under their own weight due to gravitational stresses. There are two sources
of boundary stresses: tectonic stresses and basal drag. Tectonic stresses result from
the motions of the plates relative to each other, driven by ridge push and slab pull.
Basal drag is the result of friction acting on the bottom of the lithosphere as it drags
against the top of the asthenosphere.

Earthquakes result when the stresses applied to a rock exceed those the rock is
able to accommodate, resulting in the fracturing of the rock or slip along an existing
fault. This rock failure is governed by the Coulomb-Mohr failure criterion [Stein and
Wysession, 2009]. The criterion states that if the shear stresses applied to a rock
exceed the cohesive strength of the rock, subject to a normal stress, then failure will
occur. Mathematically, this is expressed as

|τs| = S0 + µ (σn − Pf ) (1.1)

where τs is the shear stress, S0 is the cohesive strength, µ is the coefficient of internal
friction, σn is the normal stress, and Pf is the pore fluid pressure [e.g. Labuz and
Zang, 2012]. The presence of faults with a low coefficient of internal friction allow
failure to occur at lower shear stresses [Stein and Wysession, 2009]. The effective
normal stress can also be lowered by fluid pressure, also allowing the failure to occur
at lower shear stresses [Stein and Wysession, 2009]. Taken together, these factors
indicate that, while stress causes earthquakes, it is not a relationship based purely
on the magnitude of the stress. The relative magnitudes of the stress components,
the orientation and presence of faults, and the pore fluid pressure all affect when
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failure occurs in a rock. Consequently, establishing the state of stress in a region
indicates how much stress is present to drive earthquakes.

1.4.1 Measuring Stress

It is very difficult to measure stress directly in the context of the Earth. Conse-
quently, several techniques have been developed to determine stress through indirect
measures. Often, these measures only determine the orientation of the stress but not
the magnitude and it is, thus, necessary use modelling to determine the magnitude
of stress in the Earth.

The direction of the most compressive horizontal stress, SHmax, can be deter-
mined from earthquake focal mechanisms. This involves inverting the focal mecha-
nisms of a cluster of earthquakes using a Bayesian approach [Arnold and Townend,
2007]. This method determines the orientation of the three principal axes of stress,
from which SHmax can be determined, and the relative magnitudes of the principal
axes but not their absolute magnitudes.

The direction of SHmax can also be inferred from seismic anisotropy [Savage
et al., 2016]. This involves determining the fast direction of shear waves based on
the arrival times of the two shear wave components. The fast direction is related
to features such as the orientation of subsurface cracks. If the orientation of the
cracks are determined by the regional stress field, then the fast direction gives the
orientation of SHmax [Savage et al., 2016].

1.4.2 Plate Boundary Stress Field

Understanding the stress field that drives deformation in the New Zealand plate-
boundary zone is critical to assessing how this stress is relieved during the earthquake
cycle and potentially improving predictions of when large earthquakes are likely to
occur. For example, if tectonic stress magnitudes are much greater than stress drops
during individual earthquakes, i.e., tectonic stress magnitudes are of the order of
100s of MPa, then the build up in the stress field during the seismic cycle will be
difficult to detect because it will only be a small fraction of the total ambient stress.
However, if tectonic stress magnitudes are comparable to earthquake stress drops,
i.e. tectonic stress magnitudes are of the order of 1–10s of MPa, then significant
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changes in the stress field between earthquakes might be anticipated, which could
potentially be monitored.

Here, I compare two methods of estimating tectonic or deviatoric stress, de-
veloped by Flesch et al. [2001] and Lamb [2015]. Both methods approximate the
lithosphere as a thin, isotropic viscous sheet, averaging strain rates and stresses
over the thickness of the sheet and solving the 2-D stress balance equations for the
vertically averaged deviatoric stress; the magnitude of the deviatoric stress field is
calibrated from the vertically averaged gravitational potential energy per unit vol-
ume (GPE) field. Although the two methods use the same input data of surface
velocity and GPE fields for the deforming zone, they adopt different approaches to
deriving the stress field (see Ch. 2). It is important to note that neither method
makes any assumption about the viscous rheology of the deforming zone in terms
of the relationship between viscosity and strain rate, although this relation can be
potentially estimated from the stress inversion results (see Sec. 5.4).

1.5 Definitions

1.5.1 Summation Convention

This thesis uses the Einstein summation convention to simplify the presentation of
equations. In this convention, an index repeated on the same side of an equation
indicates summation of that index over its possible values, which are usually the
directions x, y, and z for a physical problem in three dimensions. For example, the
σkk term in equation (2.5) (representing the trace of the matrix σ) expands as

σkk =
∑

k=x,y,z

(σkk) = σxx + σyy + σzz, (1.2)

where the index k has been summed over its possible values of x, y, and z. When an
index occurs once on either side of the equation, it represents a separate equation
for each possible value of the index. For example, the simplified Stokes’ equation
(Eq. (2.4))

∂σij

∂xj

= −ρgi (1.3)
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represents a set of three equations:

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
= −ρgx (1.4a)

∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= −ρgy (1.4b)

∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
= −ρgz (1.4c)

where there is one equation for each of x, y, and z as the three possible values of i;
j has also been summed over its possible values of x, y, and z on the left hand side.

The Kronecker delta, δij, is often used to allow equations to be easily presented
using the summation convention. δij has a value of 1 whenever i = j and a value
of 0 whenever i 6= j. For example, δxx = 1, because the two indices are equal, but
δxy = 0, because the two indices are not equal.

1.5.2 Stress Definitions

The term ‘stress’ has been applied to many properties that are very similar but
not exactly the same, sometimes incorrectly [Engelder, 1994]. In order to avoid
confusion, it is desirable to define what is meant by the term ‘stress’ and its derivative
terms. Stress is the force per unit area exerted on material inside a surface by
material outside a surface. For each of the three face directions (x, y, and z) of
the surface, there are three directions of forces that can act on that surface [Stein
and Wysession, 2009]. This results in nine components of total stress; these are also
referred to as tractions. Of the nine components, only six are independent, due to
symmetry of the xy/yx, xz/zx, and yz/zy components. Total stress refers to these
components when considered together. These are represented mathematically by
the total stress tensor

σ =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (1.5)

where σxx, σxy, etc., are the components of total stress. Shear stress refers to the σxy,
σxz, and σyz components, where the force acts parallel to the surface, resulting in a
shearing force. This is contrasted to the normal stress components σxx, σyy, and σzz,
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where the force acts perpendicular to the surface, acting to extend or compress the
material. In this study, compression is taken as negative and extension as positive,
as is conventional for seismological studies [Stein and Wysession, 2009], although the
opposite convention with compression positive is sometimes used in other disciplines.

The relative sizes of the stress components depends on the orientation of the
coordinate system they are measured in. For any given stress tensor, there is a
unique rotation of the coordinate system such that the shear stress components
are zero and only the normal stress components are non-zero [Stein and Wysession,
2009]. When the shear stresses are zero, the normal stresses represent the principal
stresses, often numbered S1, S2, and S3 from most compressive to most extensional,
and their directions represent the principal axes of stress. Mathematically, the
principal axes of stress are the eigenvectors of the stress matrix and the principal
stresses are the associated eigenvalues. The principal axes and stresses represent
a convenient way to visualise the stress tensor and are used in this thesis for the
presentation of stresses.

Deviatoric stress is the total stress but with the pressure (average normal stress)
removed from the normal stress components (presented using the summation con-
vention described in Subsection 1.5.1):

τij = σij − δijP = σij −
1
3δijσkk (1.6)

where τij is the ijth component of deviatoric stress and P is the pressure, equal
to one-third of the trace of the total stress tensor, σkk/3. The presence of the
Kronecker delta, δij, indicates that the pressure term is only removed from the
normal stress components but not from the shear stress components. The deviatoric
shear stress components are identical to their total stress equivalents. Because the
same pressure term is removed from the normal stress components, the principal
axes of deviatoric and total stress align (but with a constant difference between the
size of the principal deviatoric and total stresses). This allows the orientation of
total stress and deviatoric stress to be compared directly.

Because the full description of the stress tensor requires six numbers, it can be
more convenient to describe the stress in terms of a single indicative number. In
this study, stress magnitudes are given as the square-root of the second invariant of
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the stress tensor, that is, for deviatoric stress, the square-root of

τII = τijτji. (1.7)

Stress directions are sometimes given in terms of SHmax: this is the direction of
maximum horizontal compressive stress. If one of the principal stresses is vertical,
then SHmax is in the direction of one of the other two principal stresses, however,
this is not generally the case [e.g. Townend et al., 2012].

Differential stress is the difference between most compressive principal stress S1

and the most extensional principal stress S3, i.e., differential stress equals S1 − S3.



Chapter 2

Method

I compare two different methods to determine the deviatoric stress field in New
Zealand. Both methods, developed by Flesch et al. [2001] and Lamb [2015], use a
thin sheet approximation of the lithosphere to solve the 2-D stress balance equa-
tions for the vertically averaged deviatoric stress field. They use the variations in
gravitational potential energy per unit volume (GPE) to calibrate the magnitude
of the deviatoric stress and associate the orientation of the deviatoric stress to the
orientation of the strain rate through an isotropic viscosity. I also use two surface
velocity models for the New Zealand region, one based on Quaternary fault motions
[Lamb, 2015] and one based on GPS velocities.

2.1 Data

Two velocity models are used in this study: one based on Quaternary fault motions
[Lamb, 2015] and one derived from GPS velocities. For later calculations, it is
more convenient to re-express the horizontal velocities vx and vy in terms of the
components of the strain rate tensor ε̇ as

ε̇ij = 1
2

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (2.1)

for the ijth component of the strain rate ε̇ij, where ui is the component of velocity
in the xi direction. The strain rate components were calculated on a spherical grid

12
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by finite differences at 0.5° spacing longitudinally and latitudinally.

2.1.1 Quaternary Velocity Field

The Quaternary velocity model represents deformation during the Quaternary, aver-
aging fault motions over several earthquake cycles and recording strain accumulated
over tens to hundreds of thousands of years. The model used here is the model from
Lamb [2015], calculated using the method of Lamb [2000]. This method splits the
region into a series of triangles whose vertices are aligned with major plate boundary
zone features. Knowledge of the velocities at the vertices of a triangle uniquely de-
termines the average strain rates within that triangle, mainly based on fault slip rate
data or patterns of active faulting [Lamb, 2015]. Known velocities or average strain
rates for one triangle place constraints on the velocities and average strain rates in
the neighbouring triangle. An added constraint is the instantaneous relative motion
between the Australian and Pacific plates, based on GPS data [Beavan et al., 2002].
With enough velocity and strain rate estimates, the velocities and strain rates for
the network of triangles can be solved as a set of linear equations.

2.1.2 GPS-derived Velocity Field

The GPS-derived model represents the very short term contemporary deformation,
based on repeated dense campaign measurements on a timescale of years to a few
decades [Beavan et al., 2016]. Deformation on this timescale in a plate boundary
zone such as New Zealand is mainly elastic and mainly represents strain/stress
accumulation that will ultimately be released in earthquakes [Lamb and Smith,
2013]. The GPS-derived velocities are well constrained for onshore New Zealand due
to continuous GPS sites and repeated dense campaign GPS [Beavan et al., 2016].
The GPS-derived velocity field is specified for the stable Australian and Pacific plates
based on the relative plate motion between the two plates. The relative plate motion
is set using the Euler pole of rotation [Altamimi et al., 2012], treating those parts of
the plates as rigid. In order to extrapolate the velocity field offshore, where there are
no GPS measurements, and to interpolate the measurements of Beavan et al. [2016],
bicubic splines are fitted to the data [Beavan and Haines, 2001]. The interpolation is
done using GMT surface, which uses the method of Smith and Wessel [1990]. Strain
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Figure 2.1: Comparison of the two velocity models used in this study. Top Left:
Strain rates based on Quaternary velocities [Lamb, 2015]. The arrows indicate the
strain rate principal axes, with compression being inwards and extension outwards.
The colours indicate the strain rate magnitudes in ×10−7/yr. Top Right: Strain
rates based on GPS data. Bottom: The difference in velocities (arrows) between
the two velocity models, taken as the Quaternary fault motion model minus the
GPS-derived model. The colours indicate the magnitude of the velocity difference
in mm/yr. The grey shaded regions indicate regions that are masked in later figures.
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rates are calculated as the spatial derivatives of velocity using equation (2.1). The
strain rates are calculated on a spherical grid by finite differences at 0.5° spacing
longitudinally and latitudinally.

The two models (Fig. 2.1) are generally similar. The most notable difference be-
tween the two models occurs in the southern North Island, where the GPS-derived
velocities show greater westerly velocities than the Quaternary velocities, most likely
due to elastic strain accumulation in this region as a result of locking on the under-
lying plate interface [Darby and Beavan, 2001; Lamb and Smith, 2013]. Similarly, in
the southern South Island, the Quaternary velocity model shows greater southwest-
erly velocities than the GPS-derived velocity model, presumably for similar reasons.
The deformation, shown by the strain rate, extends over a greater width in the GPS-
derived velocity model than the Quaternary velocities. This deformation, however,
has a smaller magnitude in the GPS-derived model, resulting in the same total de-
formation across the plate boundary zone. The difference in between the models to
the southeast of New Zealand, on the assumed stable part of the Pacific plate, is
due to the GPS-derived model using the more recent Altamimi et al. [2012] relative
plate motions, whereas, the Quaternary velocity model uses [Beavan et al., 2002]
relative plate motions. Both models are poorly constrained to the northwest of the
North Island and to the south of the South Island as both models lack data in these
regions.

2.1.3 Gravitational Potential Energy per Unit Volume

For a column of rock, gravitational potential energy per unit volume (GPE) is
equivalent to the negative of the vertical normal stress at depth z in the column
[England and Houseman, 1986]:

σzz = −
∫ z

0
gρ(z′)dz′, (2.2)

averaged over the column. That is, GPE, Γ, is given by

Γ = − 1
L

∫ L

0
σzz(z)dz = 1

L

∫ L

0

∫ z

0
gρ(z′)dz′dz (2.3)
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for a column of height L. In terms of the thin sheet model, this depth-averaged
value defines the average vertical stress in the thin sheet, used in the stress balance
equations (see below), with L being the thickness of the thin sheet. The GPE field
used in this study is from Lamb [2015] and was calculated using typical crustal
and mantle densities based on a crustal structure produced from receiver function,
seismic reflection, and gravity data (see Lamb 2015 for details). Lamb [2015] actually
calculated contrasts in GPE relative to a datum, however, this is not important in
the following analysis because the key parameters in the stress balance equations
(Eq. (2.7)) are the gradients of GPE, rather than their absolute values. Variations
in GPE mainly reflect the topography of the region (∼70% contribution) with a
lesser contribution (∼30%) from variations in crustal thickness. For this reason,
average stresses are relatively insensitive to the thickness of the deforming zone (see
Sec. 5.3).

2.2 Stress Models

2.2.1 Stress Balance Equation

In order to determine the stress field, it is necessary to relate it to physical quantities
that can be measured or estimated. In this case, I link the deviatoric stress to strain
rate and vertically averaged gravitational potential energy per unit volume (GPE)
using the viscous thin sheet approximation of the lithosphere of England and Molnar
[1997]. This assumes that the lithosphere behaves as a continuously deforming solid,
i.e., it is viscous, and its deformation is governed by Stokes’ equation:

∂σij

∂xj

= −ρgi, (2.4)

where σij is the ijth component of the total stress tensor, ρ is the density and gi is
the component of the gravitational acceleration in the xi direction. Equation (2.4)
is a volumetric force balance equation, relating the force of gravity per unit volume
to the gradients of stress. This assumes that the accelerations of the plates are
negligible.

I assume that the shear tractions acting on the base of the lithosphere are small,
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as has been done in other studies [e.g. England and Jackson, 1989; England and
Molnar, 1997; Flesch et al., 2001]. This allows the vertical shear stress, σxz and
σyz, components of the total stress tensor to be neglected. The vertical component
of the total stress σzz at a depth z is now given by equation (2.2), allowing σzz

at any depth to be determined from topography and the density structure of the
lithosphere above it.

As has also been done by other studies [e.g. England and Molnar, 1997; Flesch
et al., 2001; Lamb, 2015], I vertically average equation (2.4). This reduces the
problem from a full three dimensional problem to one of a thin sheet, solving for
vertically averaged horizontal stresses. It is also more convenient to express the
stress balance equation in terms of deviatoric stress τ , defined as

τij = σij −
1
3δijσkk (2.5)

for ijth component of τ . This is equivalent to removing the average, given by one-
third of the trace of the total stress tensor, σkk/3, from the normal components
of the total stress. The shear components remain unchanged. The orientations of
the principal stresses of total stress and deviatoric stress are the same. Expressing
equation (2.4) in terms of the deviatoric stress allows the use of the relationship

τxx + τyy + τzz = 0, (2.6)

which emerges as a consequence of the definition of deviatoric stress in equation (2.5).
This allows τzz to be re-expressed in terms of τxx and τyy, simplifying the stress
balance equation.

Combining equations (2.4)–(2.6) to express the stress balance equation in terms
of the vertically averaged deviatoric stress results in

2∂τxx

∂x
+ ∂τyy

∂x
+ ∂τxy

∂y
= ∂Γ
∂x

(2.7a)

2∂τyy

∂y
+ ∂τxx

∂y
+ ∂τxy

∂x
= ∂Γ
∂y

(2.7b)

where Γ is the vertically averaged gravitational potential energy per unit volume
(GPE) given by equation (2.3). Like σzz, Γ can be determined from a knowledge



18 CHAPTER 2. METHOD

of the density structure of the lithosphere. This means that equation (2.7) relates
the horizontal gradients of the three horizontal components of deviatoric stress to
the two horizontal gradients of a quantity which can be determined, namely GPE.
Equation (2.7) corresponds to two equations with three unknowns; a further con-
straint is required in order to be able to solve it. I test two methods of solving
equation (2.7). The Flesch et al. [2001] method (Subsec. 2.2.2; referred to hereafter
as the stress method) solves first for deviatoric stress due to variations in density
by applying a stress minimisation constraint and then solves for the full deviatoric
stress by applying the constraint that the strain rate and stress fields are, as close
as possible, related by an isotropic effective viscosity. The Lamb [2015] method
(Subsec. 2.2.3; referred to hereafter as the strain rate method) applies an isotropic
viscosity constraint directly to equation (2.7), restating the equation in terms of
strain rate and viscosity. It then solves for the isotropic viscosity, which can be
converted to a stress when combined with the strain rate.

An isotropic viscosity is one that is the same in all directions and can be repre-
sented mathematically by a single scalar value, however, it can vary spatially. This
is equivalent to saying that the orientation and style of the stress and strain rate ten-
sors are the same. Both methods use the orientation of the strain rate to determine
the orientation of the stress. Because the calculated deviatoric stress is vertically
averaged, using one strain rate for the entire column is to assume that the strain
rate does not vary with depth and that the strain rate at the surface applies for all
depths over the lithosphere. This assumption is necessary because we do not have
information on the strain rate at depth; we only have information on the strain rate
at the surface.

2.2.2 Stress Method

Flesch et al. [2001] use a two step method to solve equation (2.7) for the deviatoric
stress field. They solve first for the gravitational deviatoric stress due to variations
in topography and in the density structure of the lithosphere, seeking the minimum
stress field solution to equation (2.7). To this, they add boundary stresses resulting
from tectonic stresses, seeking a stress field with orientations that most closely match
the orientations of the strain rate field; this is equivalent to seeking an isotropic
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viscosity.

To solve for the gravitational stress field, Flesch et al. [2001] seek the solution to
equation (2.7) with the minimum total deviatoric stress magnitude. They seek to
minimise the second invariant of the deviatoric stress tensor,

τII = 2τ 2
xx + 2τxxτyy + 2τ 2

yy + 2τ 2
xy, (2.8)

integrated over the region of interest. Seeking the stress field with the minimum
magnitude, given by the (square-root of the) second invariant of the deviatoric
stress, is to seek the stress due only to body forces from within the region and to
exclude stresses due to boundary forces from outside the region (which are considered
later). In this way, the minimum magnitude stress field is the stress field due just
to gravitational forces within the region of interest.

Flesch et al. [2001] show that minimisation of equation (2.8) whilst solving equa-
tion (2.7) occurs when

τij = 1
2

(
∂λi

∂xj

+ ∂λj

∂xi

)
, (2.9)

where λi is a Lagrange multiplier, for all points inside the region, and λi = 0
for all points on the boundary. This allows the three horizontal components of
deviatoric stress to be expressed in terms of two Lagrange multipliers. Substituting
equation (2.9) into equation (2.7) yields

2∂
2λx

∂x2 + 3
2
∂2λy

∂x∂y
+ 1

2
∂2λx

∂y2 = ∂Γ
∂x

(2.10a)

2∂
2λy

∂y2 + 3
2
∂2λx

∂y∂x
+ 1

2
∂2λy

∂x2 = ∂Γ
∂y
. (2.10b)

This is a set of two partial differential equations with two unknowns that can be
solved using numerical methods. The gravitational deviatoric stress can then be
recovered from (λx, λy) using equation (2.9).

The full deviatoric stress field is the sum of the gravitational stresses solved
for in equation (2.10) and boundary stresses. Flesch et al. [2007] represent the
boundary stress as a linear combination of basis functions. These basis functions are
solutions to the homogeneous stress balance equations; they are functions that solve
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equation (2.7) when Γ is set to 0. Because equation (2.7) is linear in stress, any linear
combination of solutions to the homogeneous equation can be added to a particular
solution of equation (2.7) and the result will be a solution to equation (2.7).

To create the basis functions, Flesch et al. [2007] set (λx, λy) = Ω×r for a segment
of the boundary, where r is the position vector of the point on the boundary and Ω
is a unit vector in the x, y, or z direction. (λx, λy) is set to 0 for the remainder of the
boundary and equation (2.10) is solved for (λx, λy) with Γ = 0. The (λx, λy) values
are converted into their equivalent values of deviatoric stress using equation (2.9) to
create a set of basis functions that represent possible boundary stresses.

Another constraint is required to determine which combination of basis functions,
when combined with the gravitational stress field, represents the physical stress
field. Flesch et al. [2001] seek a stress field that most closely matches the style and
orientation of the strain rate field. This is equivalent to seeking an isotropic effective
viscosity.

Flesch et al. [2001] seek to match the orientations of the stress field and strain
rate field by minimising the objective function

∫
S

(ET − eτ) dS (2.11)

where

E =
√

2ε̇2
xx + 2ε̇xxε̇yy + 2ε̇2

yy + 2ε̇2
xy,

T =
√

2τ 2
xx + 2τxxτyy + 2τ 2

yy + 2τ 2
xy,

eτ =
√

2ε̇xxτxx + ε̇xxτyy + ε̇yyτxx + 2ε̇yyτyy + 2ε̇xyτxy,

and the objective function is integrated over the region of interest. E and T are the
square-root of the second invariant of the strain rate and deviatoric stress tensors,
respectively, referred to here as the strain rate and deviatoric stress magnitudes. The
objective function at a particular point is zero when the deviatoric stress tensor is a
scalar multiple of the strain rate tensor, with that scalar multiple being the effective
viscosity. The effective viscosity η of a point can be determined as η = T/E, i.e.,
the magnitude of the deviatoric stress divided by the magnitude of the strain rate.

How well the modelled stress fits the strain rate can be quantified using the
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misfit. Flesch et al. [2007] define the misfit for each point as

M = 1
2

(
1− eτ

ET

)
. (2.13)

The misfit has a minimum value of 0 when the modelled stress is a scalar multiple of
the strain rate and a maximum value of 1 when the stress and strain rate orientations
are maximally misaligned.

2.2.3 Strain Rate Method

Lamb [2015] solves equation (2.7) by assuming an isotropic viscosity, relating the
components of deviatoric stress and strain rate by

τij = ηε̇ij, (2.14)

where η is the isotropic effective viscosity that is the same for all components of
the deviatoric stress and strain rate tensors for a given location. Equation (2.14) is
substituted into equation (2.7) and allowing η to vary spatially results in

η

(
2∂ε̇xx

∂x
+ ∂ε̇yy

∂x
+ ∂ε̇xy

∂y

)
+ ∂η

∂x
(2ε̇xx + ε̇yy) + ∂η

∂y
ε̇xy = ∂Γ

∂x
(2.15a)

η

(
2∂ε̇yy

∂y
+ ∂ε̇xx

∂y
+ ∂ε̇xy

∂x

)
+ ∂η

∂y
(2ε̇yy + ε̇xx) + ∂η

∂x
ε̇xy = ∂Γ

∂y
. (2.15b)

As the strain rate ε̇ and the GPE Γ are known, equation (2.15) can be solved as a
pair of simultaneous differential equations for η. Because equation (2.15) is linear in
terms of ε̇, any linear combination of solutions to the homogeneous equation (where
Γ = 0) can be added to a particular solution, with the result also being a solution
to equation (2.15). If the only solution to the homogeneous equation is the trivial
solution (i.e., η = 0 everywhere), then the only solution to equation (2.15) is the
particular solution. If, however, there are non-trivial solutions to the homogeneous
equation, then it is necessary to add a multiple of the solution to the homoge-
neous equation to the particular solution. Lamb [2015] determines the multiple of
the homogeneous solution required to add to the particular solution by using prior
knowledge, such as an assumed stress at a particular point or an assumed average
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viscosity. The deviatoric stress can be recovered from η and the strain rate using
equation (2.14).

It is important to emphasise that no assumption is made in either the stress
or strain rate methods about the relation between strain rate and viscosity (i.e.,
whether the viscous rheology is Newtonian or some power law). However, once the
effective viscosity is calculated, this relation can be potentially estimated from the
observed strain rate field and is done so in Section 5.4.



Chapter 3

Synthetic Testing

3.1 Testing Method

Synthetic testing is performed to test the ability of the Flesch et al. [2001] stress
method and the Lamb [2015] strain rate method to recover a known input stress
or viscosity field. Synthetic viscosity and velocity fields are chosen (Fig. 3.1)and
the corresponding GPE fields that satisfy equation (2.7) are calculated (Fig. 3.2).
Normally-distributed noise is added to the velocity field. The standard deviations
of the noise used, in terms of the range of the velocity, are 0% (i.e. no noise), 1%,
5%, and 20%. The velocity field with added noise and the GPE field are used as
inputs to the two methods and the output viscosity field is compared to the initial
synthetic viscosity. Two synthetic viscosity and velocity field pairs are tested, one
based on sinusoids and one with values plausible for the New Zealand region.

The plausible-values synthetic model (Fig. 3.1, left) consists of a central low
viscosity zone, representing a plate boundary zone, with higher viscosity on either
side, representing stable plates. The central zone has a viscosity of 1021 Pa s,
smoothly increasing to a viscosity of 1022 Pa s on either side [cf. Ghosh and Holt,
2012]. The velocity for the high viscosity sides was chosen to represent the relative
plate motions between the Australian and Pacific plates [Altamimi et al., 2012], with
the velocity smoothly varying across the low viscosity zone. The velocities vary
between 0–50 mm/yr. The corresponding GPE field that satisfies equation (2.7)
has a range of 40 MPa. This model aims to test the methods’ ability to recover the

23
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Figure 3.1: Input viscosity and velocity fields used to test the ability of the Flesch
et al. [2001] and Lamb [2015] methods to recover an input viscosity field. The axis
units are 100 km. The colour bar shows the viscosities in 1021 Pa s. Velocities
are shown as arrows. Left: Fields based on plausible values; largest velocity is
50 mm/yr. Right: Fields based on sinusoids; largest velocity is 70 mm/yr.

type of stress and viscosity fields that are thought to be present in the New Zealand
region.

The sinusoid model (Fig. 3.1, right) consists of a viscosity field formed from the
product of two sinusoids with an added constant, ranging between 3–9×1021 Pa s.
Each component of the velocity field is similarly formed from the product of two
sinusoids, with the velocity ranging between 0–70 mm/yr. The corresponding GPE
field that satisfies equation (2.7) has a range of 130 MPa. This model aims to test
the methods’ ability to recover stress and viscosity fields with large variations.

3.2 Testing Results

The strain rate method is able to recover the input viscosity fields (Figs. 3.3 & 3.4)
when no noise had been added to the velocity. However, its ability to recover
the input viscosity rapidly decreases as increasing levels of noise are added to the
velocity. This rapid decrease in its ability to recover the viscosity field is due to
the strain rate method involving the gradients of strain rate in equation (2.15)
or, equivalently, the second derivatives of velocity. As differentiation amplifies the
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Figure 3.2: GPE fields used in synthetic testing, calculated from the velocity and
viscosity fields shown in Figure 3.1. The axis units are 100 km. The colour bar
shows GPE in MPa relative to an arbitrary point. Left and right correspond to
GPE fields calculated from Figure 3.1 left and right, respectively.

higher frequency noise, the strain rate method’s reliance on the second derivative of
velocity makes it susceptible to noise. Increasing the noise tends to have the effect
of reducing the viscosity determined by the strain rate method unless solutions to
the homogeneous version of equation (2.15) are added to the initially outputted
viscosity.

The stress method is able to recover the magnitude and general style of the input
viscosity fields (Figs. 3.3 & 3.4) when no noise has been added, however, it does so
with noticeable ‘blurring’. This is because the stress method describes the stress
field as a combination of stress basis functions, which can only represent smooth
boundary stress fields. Furthermore, because the boundary stress is represented as
the linear combination of a series of basis functions, unless the boundary stress is
an exact linear combination of the basis functions, the stress method is unable to
exactly represent the boundary stress. Consequently, the stress method finds the
linear combination of basis functions that most closely matches the boundary stress
but as this is not exactly the boundary stress, it will not exactly recover the input
viscosity. The stress method is better able to handle higher levels of noise added
to the velocity than the strain rate method as the stress method only involves the
strain rate itself, in equation (2.11), and does not involve the derivative of strain
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rate. Additionally, because the boundary stress field is represented by smooth basis
functions, only smooth boundary stress fields can be represented. This results in a
smoothing of the calculated stress field, reducing the effect of noise.

The uncertainties in the Quaternary field are typically <1.5 mm/yr [Lamb, 2015],
corresponding to <∼3% of the range of the velocity field. Furthermore, correlations
between neighbouring grid points would reduce the uncertainty in the gradients
of velocity (strain rates), which were not included in the synthetic testing. This
indicates that the methods, especially the stress method, should be able to recover
the essential features of the deviatoric stress and effective viscosity fields in New
Zealand using the available data of velocities and GPE, albeit with some ‘blurring’
of details.

3.3 Recovering Gravitational Stress Field

A further test is performed to test the stress method’s ability to calculate gravi-
tational stresses from variations in GPE. For this, a cone with a constant density
structure is chosen because it has a simple, analytical solution. The horizontal gra-
vitational stresses around a cone are expected to have one principal axis of stress
radial and the other principal axis circumferential. This is equivalent to that if GPE
varies only in the x-direction, i.e. Γ = Γ (x), then the deviatoric stresses will be

τxx = 1
2Γ (x) + constant (3.1a)

τyy = 0 (3.1b)
τxy = 0 (3.1c)

These can be substituted into equation (2.10) to prove that they represent the min-
imum magnitude solution to equation (2.7). An equivalent form exists for the case
of the radial symmetry that exists around a cone, with both the circumferential and
shear stresses being zero and only the radial stress being non-zero. The form of the
deviatoric stress is unsurprising. When there is no variation in the circumferential
direction (i.e., around the cone), there is no source of force in that direction. The
variation and, therefore, the only force is in the radial. Consequentially, the radial
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Figure 3.3: Viscosity field recovered using the Lamb [2015] strain rate (first column)
and Flesch et al. [2001] stress (second column) methods. The input viscosity field
is the plausible-values field shown in figure 3.1 (left). The rows show increasing
noise levels. First row: No noise. Second row: Noise approximately 1% of velocity
range. Third row: Noise approximately 5% of velocity range. Fourth row: Noise
approximately 20% of velocity range.
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Figure 3.4: Same as Figure 3.3 but using the sinusoid input field shown in Figure 3.1
(right).
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Figure 3.5: Test of the stress method’s ability to determine the gravitational stress
surrounding a cone of uniform density. The coloured contours are GPE in MPa,
which here is a proxy for topographic elevation. The axis units are 100 km. The
black bars indicate the direction of the most compressive stress, SHmax.

stress is the only non-zero stress and, therefore, corresponds to one of the principal
stresses. The other principal axis of stress is perpendicular to this and, thus, circum-
ferential. As the radial stress is extensional, the most compressional stress, SHmax,
is circumferential. The stress method was able to correctly return the gravitational
stress with SHmax circumferential (Fig. 3.5).

Because the Lamb [2015] strain rate method has already been used in New
Zealand, I apply the Flesch et al. [2001] stress method to New Zealand using the
Quaternary velocity field and GPS-derived velocity field from Section 2.1. The codes
used are described in Appendix A.



Chapter 4

Results

The stress method is applied to the New Zealand region to determine the vertically
averaged deviatoric stress field. Strain rates calculated from the Quaternary velocity
field and the GPS-derived velocity field are used, resulting in two models. A GPE
field based on topography and lithospheric density [Lamb, 2015] is used. The GPE
field is relative to an arbitrary zero datum. This does not affect the calculation of
the stress field as equation (2.7) involves only the gradient of GPE, meaning it is not
the absolute magnitude of GPE that is important in the calculation of the deviatoric
stress field but rather the variation in GPE. The calculations are performed using
finite difference methods between 165.5°E and 180°E and between 36°S and 47°S.
Grid spacing of 0.5° longitudinally and 0.5° latitudinally is used throughout the
region. This is equivalent to ∼ 40 km longitudinal spacing and ∼ 50 km latitudinal
spacing.

The results are summarised in Tables 4.1 and 4.2 for the Quaternary velocity
field and GPS-derived velocity field, respectively, arranged by the regions specified in
Figure 4.2. Only points with a strain rate greater than 0.2×10−9 s−1 (0.06×10−7/yr)
are considered to produce reliable enough results to be included in these comparisons
and later figures (see Subsec. 4.1.4). The locations of regions referred to in the
descriptions of the results are shown in Figure 4.1. The full results for each region
are given in Appendix B.
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Figure 4.2: Numbered regions used in
summary Tables 4.1 and 4.2.

Table 4.1: Summary of results for different regions (see Fig. 4.2) calculated by
applying the Flesch et al. [2001] stress method to Quaternary fault motion data.
Dev. Stress = Deviatoric stress; Std. Dev. = Standard deviation. Strain rate and
deviatoric stress refer to magnitudes.

Region No. of
Points

Mean
Strain Rate

Mean Dev.
Stress

Std. Dev.
Dev. Stress

Mean
Misfit

Median
Viscosity

(×10−7/yr) (MPa) (MPa) (×1021 Pa s)
1 20 1.70 19.5 9.2 0.15 4.9
2 46 1.07 13.3 3.5 0.14 5.4
3 32 0.90 11.2 2.7 0.09 8.5
4 34 2.29 27.3 7.2 0.03 3.9
5 30 0.86 11.1 3.3 0.27 4.2
6 12 0.80 10.6 2.6 0.18 5.2
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Table 4.2: Summary of results for different regions (see Fig. 4.2) calculated by
applying the Flesch et al. [2001] stress method to the GPS-derived velocity model.
Abbreviations as for Table 4.1.

Region No. of
Points

Mean
Strain Rate

Mean Dev.
Stress

Std. Dev.
Dev. Stress

Mean
Misfit

Median
Viscosity

(×10−7/yr) (MPa) (MPa) (×1021 Pa s)
1 20 1.50 14.3 7.6 0.10 2.7
2 49 0.98 9.3 4.3 0.17 2.8
3 35 1.03 10.0 3.4 0.07 4.1
4 34 2.16 30.3 7.7 0.03 5.1
5 30 0.98 12.2 4.8 0.16 4.5
6 12 0.78 7.8 2.3 0.13 3.0

4.1 Stress Results

4.1.1 Gravitational Stress Results

As part of the stress method, the deviatoric stress due to variations in GPE is calcu-
lated for the New Zealand region (Fig. 4.3). Gravitational stress magnitudes, taken
as the square-root of the second invariant of the gravitational stress tensor, are gen-
erally 0–20 MPa. The most extensional gravitational stresses generally correspond
to areas of high topography (red in Fig. 4.3), such as the northern South Island
and the central North Island. The most compressional gravitational stresses gener-
ally correspond to areas of low topography (blue in Fig. 4.3), such as the Hikurangi
Plateau to the east of the North Island. Other areas, such as the Chatham Rise, have
a mixture of extensional and compressional stress, with one principal gravitational
stress extensional and the other compressional. As the calculation of gravitational
stress uses only GPE but not strain rates, the Quaternary and GPS-derived models
use the same gravitational stress model.

4.1.2 Total Stress Results

Using the stress method, the vertically averaged deviatoric stress magnitudes in the
New Zealand region are found to be 10–30 MPa (Fig. 4.4). Lower stress magnitudes
of 10–20 MPa are found for most of the onshore region, rising to 30–40 MPa near the
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Figure 4.3: Principal axes of deviatoric stress due to gravity calculated as part of
the stress method (arrows) from variations in GPE (contours in MPa). Extensional
stresses are shown as outwards pointing arrows and compressional stresses are shown
as inwards pointing arrows. GPE is from Lamb [2015]; see Subsec. 2.1.3 for details.
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Figure 4.4: Top: Stress magnitudes (square-root of the second invariant; contours)
and directions (arrows) in MPa calculated using the Flesch et al. [2001] stress method
with strain rates derived from the Quaternary velocity model (left) and GPS-derived
velocity model (right). Bottom: Misfit between the orientations of stress and strain
rate, calculated using the stress method according to equation (2.13), derived from
the Quaternary velocity model (left) and GPS-derived velocity model (right).
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Hikurangi margin. Similarly, in the Quaternary velocity model, the lowest deviatoric
stress magnitudes of ∼10 MPa are found for the northern South Island and parts
of the central North Island. In the GPS-derived model, the low stress magnitudes
cover most of the South Island and central North Island. In both models, the lower
North Island represents an area of higher stress magnitudes of 15–20 MPa. The
deviatoric stress is generally compressional in a northwest-southeast direction for
all of New Zealand, reflecting the effect of the boundary stresses that are mostly
perpendicular to the plate boundary zone. The sign (extensional or compressional)
of the other principal horizontal stress, generally in a northeast-southwest direction,
is usually determined by the gravitational stress at that point.

4.1.3 Boundary Stress Results

The boundary stresses (Fig. 4.5) in the New Zealand region are compressional with
magnitudes of 5–20 MPa. The smallest boundary stresses are determined for the
North Island northeast of Lake Taupo and for parts of the southern South Island.
The largest boundary stresses are determined for the Wellington and Marlborough
regions, near the southern limit of the Hikurangi subduction margin. The Quater-
nary velocity model also determines greater boundary stresses of 15–20 MPa for
the central South Island, compared to 10–15 MPa determined by the GPS-derived
model. Elsewhere, the two models determine comparable magnitudes of boundary
stresses, although the boundary stresses for the Quaternary velocity model show
greater variation in magnitude than those for the GPS-derived model.

Because the boundary stress is compressional, it partially counteracts the gravi-
tational stress in regions of high topography where the gravitational stress is exten-
sional. Consequently, the regions of high topography and extensional gravitational
stress tend to correspond to the regions of lowest overall deviatoric stress mag-
nitudes. This is noticeable in the lower deviatoric stress magnitudes (<10 MPa)
determined by both models for the northern South Island and parts of the central
North Island; both are regions of significant elevation over a large area. In the
northern South Island, the effect of the gravitational stress is so great that in some
places, the extensional horizontal stress is larger than the compressional horizontal
stress. This indicates that the effect of gravity in determining the stress regime of
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Figure 4.5: The magnitude of the boundary stress component of the deviatoric stress
field, calculated using the stress method, derived from the Quaternary velocity model
(left) and GPS-derived velocity model (right).

the northern South Island is greater than the effect of plate convergence.

4.1.4 Misfit

The areas of lowest misfit (see Fig. 4.4), where the modelled stress directions most
closely fit the measured strain rate directions, are the areas of highest strain rate.
This is because the areas of higher strain rate contribute more to the minimisa-
tion in equation (2.11), with areas of negligible strain rate contributing a negligible
amount. Consequently, points with higher strain rates are better constrained in
the minimisation than points with low strain rates to the extent that points with
very low strain rates may produce unreliable results. For this reason, points with
strain rates < 0.2× 10−9 s−1 (0.06×10−7/yr) are not considered reliable enough to
be included in this analysis. This includes the assumed rigid parts of the Australian
and Pacific plates.

The mean misfit for all regions summarised in Tables 4.1 and 4.2 is<0.25, indicat-
ing that both models are generally able to match reasonably well the modelled stress
orientations with the measured strain rate orientations in these regions. Anoma-
lously high misfits were calculated for the Raukumara Peninsula in the Quaternary
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Figure 4.6: Effective viscosity in ×1021 Pas, calculated using the stress method,
as the stress magnitude divided by the strain rate magnitude, derived from the
Quaternary velocity model (left) and GPS-derived velocity model (right).

velocity model and for Taranaki in the GPS-derived model. A region of anoma-
lously low stress and viscosity, present in the GPS-derived model around coastal
Otago and South Canterbury, is centred on a region of high misfit. This suggests
that the GPS-derived velocity model is unlikely to be reliable in this region.

4.2 Viscosity Results

Effective viscosities (Fig. 4.6), taken as the magnitude of the deviatoric stress di-
vided by the magnitude of the strain rate, are determined for both models. Both
models find low viscosities of 1–5×1021 Pa s for the zone of deformation, where the
strain rates are greatest. The lowest viscosities of 1–2×1021 Pa s are determined in
the South Island, near the Alpine Fault and Marlborough Fault Zone. Viscosities
of 2–5×1021 Pa s are determined for the southern North Island. These viscosities
increase by an order of magnitude towards the rigid parts of the Australian and
Pacific plates. No effective viscosities are calculated for the rigid plates, where the
strain rates are modelled as negligible. This is because the calculation of the effec-
tive viscosity requires dividing by the magnitude of the strain rate and dividing by a
negligibly small strain rate becomes unreliable. Furthermore, the modelled stress in
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these low strain rate regions is considered unreliable (see Subsec. 4.1.4). The GPS-
derived velocity model gives a wider region of low viscosity than the Quaternary
velocity model, consistent with the wider zone of deformation in the GPS-derived
velocity model.



Chapter 5

Discussion

5.1 Comparison to Similar Calculations

Using the stress method, I determine the vertically averaged deviatoric stress mag-
nitudes in New Zealand to be 10–30 MPa. This is comparable to the vertically
averaged deviatoric stress magnitudes of 5–40 MPa found for Tibet [Flesch et al.,
2001] using the same method. In western North America, magnitudes of 5–10 MPa
were found [Flesch et al., 2007] using a very similar method. The New Zealand mag-
nitudes are also comparable to the ∼30 MPa found for northwestern Japan [Yoshida
et al., 2015] found by considering the forces needed to match the stress orientations
observed from focal mechanisms, following the method of Luttrell et al. [2011].

Gravitational and boundary stresses are found to each account for ∼50% of the
deviatoric stresses in New Zealand, indicating that tectonics forces and variations in
GPE account for similar proportions of the deviatoric stress in New Zealand. This
is comparable to the proportions found in Tibet [Flesch et al., 2001] and western
North America [Flesch et al., 2007]. From a force balance perspective, this similarity
in magnitudes is unsurprising as it is tectonics that provide the forces to counteract
the extensional gravitational stresses in areas of high elevation and it is tectonic
forces that create the regions of high elevation. The gravitational stress magnitudes
of 0–20 MPa determined for New Zealand are less than the 15–30 MPa determined
for Tibet [Ghosh et al., 2009]. This larger magnitude for Tibet is attributable to
the greater difference in GPE between Tibet and the Indian Ocean compared to the

39
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differences in GPE in the New Zealand region.
I determine effective viscosities for the plate boundary zone in New Zealand to be

1–5×1021 Pa s. This is within the range of 1020–1022 Pa s found for plate boundary
zones by global dynamical modelling [Ghosh and Holt, 2012]. The effective viscosity
here is also comparable to the effective viscosity of ∼ 3 × 1021 Pa s determined for
cross-sections of the Andes using a thin sheet model in two dimensions [Lamb, 2000;
Husson and Ricard, 2004]. Overall, the deviatoric stresses and viscosities determined
for New Zealand are comparable to the deviatoric stresses and viscosities that have
been determined for other plate-boundary zones.

5.2 Comparison to New Zealand Measurements

5.2.1 Comparison between Models

The Quaternary and GPS-derived velocity models result in generally similar devi-
atoric stress and effective viscosity fields due to the similarity between the velocity
models. The differences between the velocity models are noted in Section 2.1. The
similarity between the velocity models indicates that the contemporary GPS-derived
velocity field is a good representation of the longer-term Quaternary velocity field,
with differences most likely due to elastic strain accumulation as a result of locking
on the plate interface [Darby and Beavan, 2001; Lamb and Smith, 2013; Wallace
et al., 2009, see Sec. 2.1]. This similarity between seismological and geodetic ve-
locity fields has been observed in New Zealand previously by others [e.g. Walcott,
1984; Nicol and Wallace, 2007]. Litchfield et al. [2014] compared fault slip rates and
GPS velocity differences across transects, finding most of the GPS velocity differ-
ence to be larger than fault slip rates for 37 out of 47 transects, with the caveat
that their fault model may be incomplete in some regions. Larger GPS velocities by
1–5 mm/yr in the southern North Island were also found by Litchfield et al. [2014],
however, they find correspondingly larger fault slip velocities in the Marlborough
Fault Zone by ∼6 mm/yr, a difference that is not present in the models used here.

The similarity between the velocity models is reflected in the similarity between
the stress and viscosity fields determined from them. The Quaternary velocity model
gives greater deviatoric stress magnitudes for central and northern South Island com-
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pared to the GPS-derived velocities model (regions 2 and 3 in Tables 4.1 and 4.2).
This is reflected in the boundary stresses being greater in the Quaternary velocity
model for central and northern South Island (the two models use the same gravita-
tional stress model). The GPS-derived velocity model extends the width over which
deformation is modelled to occur. This wider zone of deformation is also reflected
in the GPS-derived model determining a wider region of low viscosity (< 1022 Pa s)
in the deforming regions, most apparent in the South Island where the deformation
is on land and, therefore, well constrained. Despite the difference in the width of
the low viscosity zone between the two models, the two models are in strong agree-
ment over the viscosity of the region immediately surrounding the Alpine Fault and
Marlborough Fault Zone, as well as between Hawke’s Bay and the Hikurangi Margin.

5.2.2 Comparison between Stress and Strain Rate Methods

The magnitude range of deviatoric stresses determined in this study is similar, al-
though slightly higher, to that determined by Lamb [2015]. He determined vertically
averaged deviatoric stress magnitudes to be 5–20 MPa, compared to 10–30 MPa de-
termined in this study. There are, however, significant differences in the deviatoric
stress magnitudes determined for specific parts of New Zealand. In the central North
Island, Lamb [2015] determines deviatoric stress of 0–5 MPa, compared to 5–15 MPa
determined in this study.

Similarly, while the effective viscosity determined in this study is similar to that
determined by Lamb [2015], the viscosities determined by Lamb [2015] tend to be
smaller than those determined here. Lamb [2015] determines effective viscosities of
0.1–1×1021 Pa s for the areas of most active deformation, compared to viscosities of
1–5×1021 Pa s determined in this study. This is consistent with the higher deviatoric
stresses determined in this study compared to Lamb [2015] as the ratio between the
deviatoric stress magnitude and the effective viscosity, i.e. the strain rate, is the
same for Lamb [2015] and the Quaternary velocity model of this study.

Overall, this study determines deviatoric stress magnitudes of 10–30 MPa, slightly
larger than the 5–20 MPa determined by Lamb [2015]. These differences may be the
best estimate of the overall uncertainties in determining the average stress magni-
tudes from strain rate and GPE data, with uncertainties of the order of 0–10 MPa.
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Figure 5.1: Comparison of the stress magnitude calculated in this study using the
stress method (left) with those calculated by Lamb [2015] using the strain rate
method (right). The two calculations use the same Quaternary velocity model and
GPE field.

It should be noted that Flesch et al. [2007] considered their method capable of
determining stress magnitudes to within a factor of two, or within 10 MPa.

5.2.3 Comparison to Stress Directions

One of the assumptions used by both the stress and strain rate methods is of an
isotropic effective viscosity, which is equivalent to assuming that the orientations of
stress and strain rate are the same. The validity of this assumption can be tested
by comparing the orientation of stress in the resultant model with the orientation
of stress determined through other methods, such as earthquake focal mechanism
inversions. The modelled stress orientations are compared, rather than the orien-
tations of the input strain rates, because the stress method allows deviations from
isotropic viscosities, although it seeks to minimise these regions of high misfit.

The direction of most compressive horizontal stress, SHmax, modelled using the
stress method is compared to the direction of SHmax determined by focal mechanism
studies [Townend et al., 2012; Balfour et al., 2005; Boese et al., 2012; Warren-Smith,
2016] in Figure 5.2. In the South Island, the modelled directions match well with



5.3. IMPLICATIONS OF STRESS MAGNITUDE 43

168˚ 172˚ 176˚ 180˚

−44˚

−40˚

−36˚

Figure 5.2: Comparison of SHmax directions determined by this study (blue) with
directions determined by earthquake focal mechanism studies: Townend et al. [2012,
red]; Balfour et al. [2005, gold]; Boese et al. [2012, purple]; Warren-Smith [2016,
green].

the measured SHmax directions. In the central South Island, the direction of SHmax

is measured as being 110°–120° [Townend et al., 2012; Warren-Smith, 2016; Boese
et al., 2012], while the models give an SHmax direction of ∼110°. This supports the
assumption of an isotropic viscosity being valid. It is harder to compare the modelled
orientations of SHmax with those from earthquake focal mechanisms shallower than
20 km [Townend et al., 2012] in the central North Island due to the greater variation
in orientation of SHmax determined from focal mechanisms.

5.3 Implications of Stress Magnitude

The vertically averaged deviatoric stress magnitudes of 10–30 MPa determined in
this study support the hypothesis that the average stress in the lithosphere is low.
Earthquake stress drops are typically in the range of 1–10 MPa [Kanamori and An-
derson, 1975], with the MW = 9.0 2011 Tohoku earthquake having a stress drop
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of ∼20 MPa [Hasegawa et al., 2011], making the deviatoric stress magnitude com-
parable to the stress drops observed after large earthquakes. This indicates that
large earthquakes relieve most of the stress in the crust. This helps to explain
why rotations of the stress tensor have been observed after some large earthquakes,
such as the 2011 Tohoku earthquake [Hasegawa et al., 2012] and the 1992 Landers
earthquake [Hardebeck and Hauksson, 2001].

It is notable that the MW = 7.8 2016 Kaikoura earthquake in a region of very
low deviatoric stress. The northern South Island has deviatoric stress magnitudes of
<10 MPa, with some points as low as 5 MPa, amongst the lowest in New Zealand. A
typical earthquake stress drop of 1–10 MPa [Kanamori and Anderson, 1975] would
remove a large portion of the stress in the region and likely result in rotations of the
stress tensor.

The deviatoric stress magnitudes calculated in this study are averaged over the
lithosphere to a depth of 100 km. Consequently, it is averaging over the crust and
the lithospheric mantle, two rheologically distinct regions. It is, therefore, possible
that the crust is stronger, containing a higher stress, and the lithospheric mantle
is weaker, containing a lower stress, than the average over the whole lithosphere
suggests. Flesch et al. [2007] favoured this interpretation, noting its consistency with
extrapolated bore hole stress measurements. Lamb [2015], however, found similar
magnitudes of deviatoric stress when using GPE averaged over just the crust (depth
of 20 km) and over the whole lithosphere (depth of 100 km), giving the simple
interpretation that the deforming mantle and crust have similar strengths in the
order of 10s of MPa. This is because the thickness of the thin sheet only enters
the stress balance equation in terms of the right hand term in equation (2.7), which
represents the gradient of gravitational potential energy per unit volume (GPE).
However, because these gradients of are dominated by surface topography (∼70%
contribution), they are relatively insensitive to the chosen thickness of the thin
sheet over which the stresses are vertically averaged. For this reason, the values of
deviatoric stress obtained in this study cannot be explained in terms of averages
over a large thickness with much higher stresses in the crust than in the mantle, as
suggested by Flesch et al. [2001, 2007], but instead they must represent the general
level of stress in the lithosphere [Klein et al., 2009; Lamb, 2015].
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5.4 Rheology of the Deforming Zone

The methodology in this study makes no assumption about the viscous rheology. If
the lithology and conditions (i.e., average temperature and pressure) are the same,
then ductile flow often exhibits a power-law dependence on strain rate, where the
effective viscosity is proportional to E1/n−1, E is the strain rate magnitude (square-
root of the second invariant of the strain rate tensor), and n is defined as the power-
law exponent [Ranalli, 1995]. Newtonian fluids have a constant viscosity, regardless
of the strain rate, described by a power-law exponent of 1, whereas, silicates such
as olivine have a power-law exponent ∼3 [Ranalli, 1995]. For a simple power-law
rheology, a log-log plot of strain rate E against effective viscosity η should be linear
with a slope equal to 1/n− 1. Figure 5.3 shows such a plot, using the results in this
study from the Quaternary velocity field for the whole plate boundary zone, for just
the South Island, and for just the North Island.

While the strain rate directions and relative sizes of the strain rate components
are used to determine the deviatoric stress, and hence the effective viscosity, the
absolute strain rate magnitude is not. This is evidenced by the ability to remove a
common factor from all the strain rate components in equation (2.11), changing the
magnitude of the strain rate whilst not changing the relative sizes of the components,
without altering the stress result obtained from the minimisation. Consequently, the
deviatoric stress magnitudes is determined independently of strain rate magnitude,
allowing the relationship between strain rate magnitude and either stress magnitude
or effective viscosity to be analysed meaningfully.

The best-fitting lines have a slope of ∼-1 and imply an inverse relationship
between strain rate and viscosity, where the viscosity is approximately proportional
to 1/strain rate. The relationship holds when the North and South Islands are
considered separately (Fig. 5.3) and is also used empirically in dynamic models of the
lithospheric deformation by Wang et al. [2015]. This relationship requires the power-
law exponent n to be large and, therefore, cannot be explained by a simple power-
law rheology. However, we would anticipate significant variations in the average
temperature of the deforming zone between the relatively ‘cold’ conditions adjacent
to the subduction zones, to the relatively ‘hot’ conditions in the central North Island,
where there is rapid back-arc spreading. Consequently, the viscosity field from the
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Figure 5.3: Log-log plot of effective viscosity η against strain rate magnitude E to
test a power-law dependence, using the results from the Quaternary velocity field for
the whole plate boundary zone (top), for just the South Island (left), and just the
North Island (right). The slopes of the lines are -1.07, -1.08, and -0.95, respectively.
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stress inversion results can be more easily interpreted in terms of the long term
strength of the lithosphere, independent of strain rate, but strongly controlled by
temperature and/or lithology.

5.5 Conclusion

I model the vertically averaged deviatoric stress field in New Zealand from crustal
structure and velocity models. I use a thin sheet model of a viscously deforming
lithosphere, averaging over a depth of 100 km, and solve the stress balance equation.
Two methods of solving the stress balance equation are compared: one method solves
first for deviatoric stresses due to gravitational potential energy before accounting
for deviatoric stresses due to boundary conditions; the other method assumes an
isotropic viscosity to relate deviatoric stress to strain rate, solving for the viscosity
field. Under synthetic testing, the two step method is able to cope with high levels
of noise but contains edge effects. The method solving for viscosity is accurate at
low noise levels, however, it is unreliable at high noise levels.

Using Quaternary fault motion and GPS-derived velocity data, both models
predict deviatoric stress magnitudes of 10–30 MPa. This is comparable to what has
been found for other plate boundary zones [e.g. Flesch et al., 2001, 2007; Yoshida
et al., 2015; Ghosh et al., 2009]. It is also comparable to the stress drops observed
after large earthquakes, which helps to explain why rotations of the stress tensor have
been observed after some large earthquakes, such as the 2011 Tohoku earthquake
[Hasegawa et al., 2012] and the 1992 Landers earthquake [Hardebeck and Hauksson,
2001]. Effective viscosities are found to be 1–20×1021 Pa s in the regions of most
active deformation, such as the Alpine Fault and Marlborough Fault Zone, and are
similarly comparable with effective viscosities found for other plate boundary zones
[e.g. Lamb, 2000; Husson and Ricard, 2004; Ghosh and Holt, 2012]. The effective
viscosities can be interpreted in terms of the long term strength of the lithosphere
controlled by temperature and/or lithology.
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Appendix A

Codes Used

Presented below are the codes used to realise the stress method described in Subsec-
tion 2.2.2. All programs are written to be run in Matlab. Many are designed to be
run in sequence and some cannot be run independently without modification. These
files can be accessed at https://github.com/hamishhirschberg/stress-modelling. The
versions accessible on Github are the versions intended for real data and differ only
in their input and output (but not calculation) from those used for synthetic test-
ing. All of the programs operate with grid points at constant latitude and longitude
spacings and use finite differences when calculating derivatives.

A.1 Gravitational Stress

The gravitational stress was calculated as part of the Flesch et al. [2001] stress
method using the program grav mat in.m. This program takes as its input a list
of gridded points, with their associated longitude, latitude, and GPE. The program
calculates the gravitational stress using equation (2.10) at either the input spacing
or an increased spacing. The program outputs the calculated gravitational stress as
the principal stresses and the azimuth of the most compressive stress, for plotting
using GMT’s psvelo function.
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A.2 Basis Functions

Basis functions, representing solutions to the homogeneous version of equation (2.10)
(where Γ = 0), were calculated as part of the stress method using the program
basis fn mat many.m. This program uses the region and grid spacing defined during
the calculation of gravitational stress. It solves equation (2.10) with (λx, λy) specified
for a given section of the boundary of the region. The program creates a series of
basis functions corresponding to the specified sections of the boundary. The basis
functions are not outputted outside of Matlab but instead kept as variables within
Matlab to be used by later programs (i.e. lin comb.m) to calculate the full deviatoric
stress.

A.3 Full Deviatoric Stress

The full deviatoric stress calculated using the stress method is calculated by the
program lin comb.m. This program takes as its inputs the gravitational stress and
basis functions calculated earlier in the form of Matlab variables. It also takes as
input the velocity field, for the same region and grid spacing, that it differentiates
to find the strain rate field. The program finds the linear combination of basis
functions that when added to the gravitational stress minimise equation (2.11) using
the function totlincomb.m. The program outputs a variety of parameters related
to the final deviatoric stress solution. These include the principal stresses, azimuth,
and magnitude of the gravitational, boundary, and full deviatoric stress and of the
input strain rate, as well as the effective viscosity and misfit. The stresses and strain
rates outputs are in the format required for plotting using GMT.

A.3.1 Minimisation of Equation (2.11)

The minimisation of equation (2.11), as part of the stress method, is done by min-
imising the function totlincomb.m. The function takes as arguments the mea-
sured strain rate, the calculated gravitational stress, basis functions, and the coeffi-
cient by which each basis function is multiplied. The function returns the value of
equation (2.11) for the given combination of strain rate, gravitational stress, basis
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functions, and coefficients. The program lin comb.m minimises equation (2.11) by
varying the coefficients given to totlincomb.m.

A.4 Full Stress Method Implementation

The full implementation of the stress method is performed by stress model.m.
This program is not responsible for any calculations itself, with the exception of the
calculation of the regional summaries. Instead, it calls the above programs in the
correct order to allow for simpler implementation. The program also allows for the
small differences in the input of the data between the two velocity models.



Appendix B

Complete Results

Presented below in tabular form are the stress and viscosity results from the Quater-
nary and GPS-derived velocity models, with points arranged by the regions defined
in Figure 4.2. The columns headings are abbreviated as follows:

Long. : Longitude of the point;

Lat. : Latitude of the point;

vx : East velocity (mm/yr);

vy : North velocity (mm/yr);

Γ : Gravitational potential energy per unit volume (GPE; in MPa);

τex : Most extensional vertically averaged deviatoric stress (MPa);

τcp : Most compressional vertically averaged deviatoric stress (MPa);

τaz : Azimuth of the most compressional deviatoric stress;

τGex : Most extensional gravitational stress (MPa);

τGcp : Most compressional gravitational stress (MPa);

τGaz : Azimuth of the most compressional gravitational stress;

η : Effective viscosity (×1021 Pa s);

Mis. : Misfit between stress and strain rate orientations (see Eq. (2.13)).
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B.1 Results of Quaternary Velocity Model

Below are the stress and viscosity results, with input data, from the Quaternary
velocity model in tabular form arranged by region (see Fig. 4.2).

Table B.1: Full results for Region 1 (Fiordland) calculated by applying the Flesch
et al. [2001] stress method to the Quaternary velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
166.0 -45.0 -0.1 0.0 -31.5 8.3 -25.9 310 -0.0 -8.9 289 25.5 0.15
166.0 -45.5 -4.2 -2.0 -28.4 -5.4 -13.3 282 0.9 -8.6 283 2.2 0.05
166.5 -44.5 -0.0 0.0 -36.9 6.1 -26.1 296 -3.2 -5.6 293 49.0 0.03
166.5 -45.0 -2.0 -0.3 -29.5 2.9 -18.9 298 -0.7 -6.0 287 4.0 0.10
166.5 -45.5 -18.6 -9.2 -9.7 0.6 -10.6 282 3.1 -5.5 74 1.1 0.03
167.0 -44.0 -0.0 0.0 -40.2 3.0 -27.6 282 -5.7 -4.1 31 109.0 0.14
167.0 -44.5 -0.9 0.4 -35.9 3.3 -22.3 291 -4.8 -3.2 301 8.3 0.07
167.0 -45.0 -11.6 -4.4 -9.9 3.5 -12.5 284 1.4 -3.7 61 1.4 0.03
167.0 -45.5 -29.8 -15.6 11.3 5.2 -6.6 82 9.0 -6.8 52 1.2 0.08
167.0 -46.0 -31.6 -16.5 9.8 3.2 -2.7 60 8.3 -6.0 51 0.3 0.32
167.5 -44.0 -0.2 0.2 -33.3 2.5 -22.6 283 -2.5 -3.8 4 21.0 0.18
167.5 -44.5 -5.9 -0.9 -24.4 3.3 -16.5 284 0.1 -4.3 27 2.6 0.05
167.5 -45.0 -24.5 -12.8 4.0 6.7 -9.2 89 7.7 -6.5 43 1.2 0.02
167.5 -45.5 -32.5 -16.9 7.4 8.9 -8.8 81 9.5 -7.8 50 5.9 0.25
167.5 -46.0 -32.6 -16.6 -3.1 5.6 -7.8 77 5.0 -5.5 56 9.3 0.31
168.0 -44.5 -16.6 -8.2 -2.9 5.8 -11.1 280 6.0 -4.4 24 1.4 0.01
168.0 -45.0 -30.4 -16.4 6.2 9.4 -9.7 273 8.0 -5.4 41 3.0 0.05
168.0 -45.5 -32.7 -16.4 -2.7 10.8 -12.8 272 5.7 -6.1 56 24.8 0.48
168.5 -45.0 -31.8 -16.2 -0.2 10.4 -13.0 283 3.7 -1.6 42 8.9 0.08
168.5 -45.5 -32.6 -15.9 -4.0 12.4 -15.4 283 3.0 -2.9 71 46.3 0.52
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Table B.2: Full results for Region 2 (central South Island) calculated by applying
the Flesch et al. [2001] stress method to the Quaternary velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
168.0 -43.5 -0.0 0.0 -13.2 4.3 -16.2 281 3.0 -1.9 350 61.9 0.27
168.0 -44.0 -1.4 0.3 -20.5 3.7 -17.1 284 1.9 -3.1 3 5.1 0.16
168.5 -43.5 -0.1 0.1 -9.8 5.5 -14.3 285 4.5 -1.3 346 12.1 0.22
168.5 -44.0 -6.3 -2.3 -9.4 4.8 -13.0 283 4.8 -2.9 9 2.1 0.04
168.5 -44.5 -25.4 -14.1 0.8 6.9 -10.5 282 6.6 -3.4 22 1.8 0.01
169.0 -43.0 -0.0 0.0 -0.5 7.7 -11.9 289 6.8 -0.3 332 68.7 0.19
169.0 -43.5 -1.0 -0.2 -5.5 6.8 -13.0 287 4.9 -0.5 345 3.9 0.08
169.0 -44.0 -16.0 -8.6 -7.3 5.3 -11.7 285 5.3 -2.3 9 1.6 0.02
169.0 -44.5 -29.1 -15.1 -14.3 6.0 -13.7 286 2.8 -2.4 17 3.8 0.06
169.0 -45.0 -32.4 -15.8 -8.2 9.6 -15.5 289 1.0 -0.4 61 18.1 0.08
169.0 -45.5 -32.4 -15.4 1.0 12.1 -14.5 291 3.1 -1.0 77 59.3 0.54
169.5 -43.0 -0.0 -0.0 -0.4 8.2 -12.3 290 6.3 -0.2 329 10.6 0.15
169.5 -43.5 -5.7 -2.9 -0.2 7.7 -12.0 288 5.4 0.1 343 2.1 0.01
169.5 -44.0 -23.9 -12.7 -6.3 6.1 -12.4 290 4.4 -1.0 357 2.1 0.02
169.5 -44.5 -31.6 -15.0 -15.9 5.9 -14.9 291 1.3 -1.2 359 6.5 0.01
169.5 -45.0 -32.7 -15.2 -6.0 7.9 -13.3 290 2.2 -1.0 36 30.8 0.09
169.5 -45.5 -32.2 -14.9 6.0 9.5 -10.3 294 4.9 -1.0 45 57.6 0.53
170.0 -42.5 0.0 0.0 -4.4 6.7 -11.8 290 5.0 -0.3 329 65.3 0.28
170.0 -43.0 -0.8 -0.4 -0.0 8.4 -12.2 290 5.9 -0.0 329 4.1 0.04
170.0 -43.5 -14.7 -7.9 1.0 7.8 -11.2 291 6.0 0.2 342 1.6 0.02
170.0 -44.0 -28.4 -13.6 -10.2 6.1 -12.5 293 4.3 -0.7 349 2.8 0.01
170.0 -44.5 -33.3 -14.6 -6.6 6.1 -11.7 293 3.8 -0.7 359 9.1 0.01
170.0 -45.0 -32.9 -14.5 7.3 7.2 -8.0 290 6.2 -1.4 29 38.3 0.30
170.0 -45.5 -32.1 -14.3 12.7 7.3 -5.9 294 7.5 -1.5 35 46.2 0.53
170.5 -42.5 -0.0 -0.0 -5.1 6.5 -11.8 291 4.5 -0.2 332 11.2 0.16
170.5 -43.0 -5.0 -2.6 0.5 8.0 -11.1 290 5.7 0.4 334 2.0 0.02
170.5 -43.5 -22.7 -11.2 6.4 8.0 -9.7 292 6.7 0.6 345 1.6 0.01
170.5 -44.0 -32.3 -13.8 -3.2 6.1 -10.2 292 5.4 -0.3 355 3.4 0.00
170.5 -44.5 -33.8 -14.1 4.6 5.7 -7.4 291 6.7 -0.9 11 16.6 0.06
170.5 -45.0 -33.0 -13.9 14.4 6.3 -4.5 289 8.6 -1.4 26 29.9 0.58
171.0 -42.5 -0.9 -0.3 -4.1 6.5 -10.7 290 4.7 0.2 340 3.7 0.03
171.0 -43.0 -13.9 -6.7 6.0 7.9 -8.6 289 6.5 0.9 348 1.3 0.04
171.0 -43.5 -28.7 -12.3 8.1 7.9 -7.8 290 7.3 0.8 354 1.8 0.05
171.0 -44.0 -34.4 -13.5 1.7 6.2 -8.0 291 6.6 -0.0 360 5.7 0.03
171.0 -44.5 -33.9 -13.4 4.9 5.2 -5.8 287 7.5 -1.1 15 30.4 0.31
171.0 -45.0 -33.1 -13.2 10.8 5.3 -4.0 285 8.3 -1.4 25 30.5 0.60
171.5 -42.5 -5.4 -2.1 2.0 6.6 -7.9 288 6.3 0.4 357 1.7 0.01
171.5 -43.0 -21.5 -9.0 13.3 8.0 -5.9 287 8.4 0.9 1 1.3 0.08
171.5 -43.5 -33.1 -12.6 9.9 8.0 -7.1 290 7.7 1.0 354 2.6 0.07
171.5 -44.0 -34.8 -13.0 3.3 6.5 -7.3 291 7.0 0.4 358 16.5 0.07
171.5 -44.5 -34.0 -12.8 6.7 5.4 -5.3 284 7.5 -0.7 16 37.2 0.51
172.0 -43.0 -26.4 -9.2 13.2 7.7 -5.2 288 9.1 0.6 2 1.5 0.10
172.0 -43.5 -35.1 -12.3 7.1 8.0 -7.7 291 7.7 1.0 349 4.7 0.01
172.5 -43.0 -31.4 -10.2 7.6 7.5 -6.8 291 8.5 0.6 355 1.9 0.05
172.5 -43.5 -35.8 -11.9 6.5 8.0 -8.2 291 7.6 0.9 345 10.0 0.04
173.0 -43.5 -35.9 -11.3 7.8 8.4 -8.6 290 7.3 1.1 343 35.4 0.07
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Table B.3: Full results for Region 3 (northern South Island) calculated by applying
the Flesch et al. [2001] stress method to the Quaternary velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
171.0 -42.0 -0.0 0.0 -5.3 5.8 -11.4 292 4.0 -0.2 336 45.2 0.02
171.5 -41.5 -0.1 0.1 -5.0 5.9 -10.8 295 4.3 -0.1 339 36.0 0.08
171.5 -42.0 -0.4 0.2 -1.3 6.1 -9.8 292 4.9 0.2 346 8.8 0.04
172.0 -40.5 -0.0 0.0 -5.4 3.7 -8.4 298 4.4 -0.8 1 55.5 0.05
172.0 -41.0 -0.2 0.1 -1.5 5.8 -8.8 301 6.2 -0.1 349 24.7 0.12
172.0 -41.5 -0.5 0.3 2.1 6.6 -8.1 297 6.7 0.3 351 16.6 0.09
172.0 -42.0 -1.6 0.1 6.4 6.5 -6.5 291 7.5 0.2 2 3.1 0.01
172.0 -42.5 -12.0 -4.2 10.3 6.8 -4.7 286 9.2 -0.2 8 1.2 0.11
172.5 -40.5 -0.3 0.1 -4.7 2.1 -6.7 298 5.9 -2.6 12 20.8 0.03
172.5 -41.0 -0.6 0.3 7.6 5.8 -6.3 302 8.2 -0.5 359 16.5 0.23
172.5 -41.5 -1.0 0.5 15.3 8.1 -5.1 299 9.9 0.7 357 10.8 0.08
172.5 -42.0 -4.5 -0.5 16.1 7.7 -3.7 293 10.6 0.3 4 2.1 0.19
172.5 -42.5 -17.6 -5.2 13.5 7.0 -3.6 290 10.8 -0.2 6 1.2 0.15
173.0 -40.0 -0.2 0.0 -7.4 0.5 -6.3 275 6.4 -6.7 30 36.6 0.08
173.0 -40.5 -0.6 0.2 -8.8 -0.1 -6.1 289 6.4 -5.3 21 23.6 0.01
173.0 -41.0 -0.9 0.3 -0.4 3.3 -6.0 297 7.5 -2.5 11 20.0 0.06
173.0 -41.5 -1.6 0.4 13.7 7.6 -4.7 298 10.1 0.1 2 5.0 0.08
173.0 -42.0 -9.2 -1.8 19.9 8.7 -3.3 295 11.7 0.6 2 1.8 0.27
173.0 -42.5 -23.5 -6.6 11.1 7.9 -5.4 294 10.2 0.5 357 1.4 0.11
173.0 -43.0 -35.0 -10.8 4.1 7.9 -9.1 293 7.6 0.5 345 3.5 0.00
173.5 -40.5 -0.8 0.1 -15.7 -1.2 -7.7 279 5.4 -7.2 26 39.2 0.04
173.5 -41.0 -1.1 0.3 -11.0 0.9 -8.1 285 5.4 -5.2 22 20.4 0.17
173.5 -41.5 -3.3 -0.1 4.7 5.2 -6.3 287 7.8 -2.1 17 2.3 0.02
173.5 -42.0 -15.1 -3.5 14.6 7.9 -5.4 292 9.7 0.1 4 1.4 0.13
173.5 -42.5 -29.2 -8.0 2.6 8.2 -9.4 294 7.8 0.4 346 2.0 0.03
173.5 -43.0 -36.5 -10.7 -0.0 8.4 -11.9 292 6.3 0.1 334 8.1 0.04
174.0 -41.0 -1.4 0.2 -17.7 0.1 -10.2 278 4.2 -7.2 29 10.5 0.28
174.0 -41.5 -7.4 -1.4 -6.2 3.4 -9.2 277 6.0 -5.4 29 2.1 0.04
174.0 -42.0 -21.1 -5.4 -0.9 5.9 -9.5 288 5.6 -1.1 7 1.7 0.00
174.0 -42.5 -34.1 -9.3 -11.1 7.5 -14.4 293 4.7 -0.8 333 4.0 0.00
174.0 -43.0 -36.9 -10.3 -7.3 8.5 -14.9 289 4.7 -0.9 322 25.6 0.16
174.5 -41.5 -13.2 -3.6 -12.2 2.1 -11.3 275 4.8 -7.1 32 2.3 0.07
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Table B.4: Full results for Region 4 (east coast of the North Island to Hikurangi mar-
gin) calculated by applying the Flesch et al. [2001] stress method to the Quaternary
velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
174.5 -42.0 -27.1 -8.5 -16.1 3.6 -14.3 287 1.2 -2.1 7 3.1 0.03
174.5 -42.5 -36.7 -9.8 -21.2 6.5 -18.4 291 2.5 -2.4 324 8.7 0.02
175.0 -42.0 -31.2 -10.0 -30.9 1.8 -18.5 288 -1.9 -3.0 354 4.6 0.03
175.0 -42.5 -37.6 -9.3 -27.0 5.3 -20.6 290 0.6 -3.2 321 15.9 0.11
175.5 -41.5 -22.8 -10.5 -18.2 1.3 -14.7 291 1.1 -4.1 11 3.4 0.03
175.5 -42.0 -35.1 -9.2 -38.0 1.6 -21.9 291 -2.8 -3.8 337 5.7 0.03
175.5 -42.5 -37.9 -8.8 -28.1 4.9 -21.5 287 -0.5 -3.2 319 39.9 0.19
176.0 -41.5 -27.5 -10.0 -29.7 1.6 -19.5 297 -1.2 -3.7 350 3.4 0.01
176.0 -42.0 -37.7 -8.3 -42.0 2.2 -24.5 293 -2.4 -4.6 330 9.7 0.04
176.5 -41.0 -21.6 -10.5 -28.8 0.8 -17.3 302 -1.6 -3.7 356 3.0 0.01
176.5 -41.5 -33.6 -8.5 -39.2 2.1 -24.4 299 -2.8 -4.7 334 4.3 0.00
176.5 -42.0 -38.6 -7.6 -42.1 3.0 -26.2 293 -2.4 -4.9 327 24.6 0.08
177.0 -40.5 -16.0 -11.0 -33.2 -1.1 -14.6 307 -2.8 -3.5 357 2.9 0.02
177.0 -41.0 -28.3 -8.9 -39.3 0.9 -21.8 304 -4.2 -4.3 337 3.2 0.00
177.0 -41.5 -38.1 -7.2 -45.7 2.4 -27.7 299 -4.1 -5.5 327 8.4 0.00
177.0 -42.0 -38.8 -7.1 -41.2 3.7 -27.6 291 -3.1 -4.7 323 146.9 0.16
177.5 -40.0 -11.8 -12.6 -28.3 -1.6 -11.4 303 -2.7 -2.4 325 2.0 0.00
177.5 -40.5 -22.7 -9.5 -40.5 -1.5 -17.3 309 -4.9 -4.0 331 2.5 0.01
177.5 -41.0 -34.9 -7.3 -45.8 1.2 -24.6 306 -5.4 -5.3 325 4.4 0.01
177.5 -41.5 -39.5 -6.5 -48.5 2.9 -29.7 299 -5.2 -5.8 323 26.8 0.03
178.0 -39.5 -10.5 -16.5 -12.8 2.4 -9.7 294 2.2 -3.3 301 1.0 0.03
178.0 -40.0 -19.7 -11.9 -29.7 -0.8 -13.7 305 -1.1 -4.6 310 1.5 0.00
178.0 -40.5 -30.0 -7.9 -43.4 -0.6 -19.2 313 -4.2 -5.7 315 2.6 0.01
178.0 -41.0 -39.2 -6.1 -47.9 2.4 -26.2 309 -5.4 -6.1 317 8.5 0.01
178.0 -41.5 -39.6 -6.0 -47.4 4.0 -31.1 299 -5.4 -5.6 319 190.0 0.13
178.5 -39.0 -15.0 -17.3 -17.6 3.9 -12.3 284 3.3 -7.1 285 0.7 0.03
178.5 -39.5 -23.0 -13.4 -28.1 2.1 -15.4 293 1.9 -7.4 299 1.1 0.01
178.5 -40.0 -30.7 -9.6 -38.6 -0.7 -16.7 302 -0.0 -7.8 305 1.7 0.00
178.5 -40.5 -37.6 -6.3 -46.7 0.0 -19.2 314 -3.0 -7.5 307 3.6 0.02
178.5 -41.0 -40.3 -5.4 -48.2 4.0 -25.9 310 -5.0 -6.6 309 29.3 0.00
179.0 -39.0 -40.9 -6.1 -40.1 2.4 -19.6 290 1.6 -12.0 289 1.6 0.00
179.0 -39.5 -42.0 -5.3 -44.0 2.7 -22.2 292 1.1 -11.7 295 2.7 0.01
179.0 -40.0 -42.0 -4.9 -44.5 -0.3 -18.8 291 0.1 -10.3 298 4.2 0.01
179.0 -40.5 -41.3 -4.8 -45.3 -0.6 -15.0 311 -2.1 -8.6 298 10.7 0.08
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Table B.5: Full results for Region 5 (southern and eastern North Island) calculated
by applying the Flesch et al. [2001] stress method to the Quaternary velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
173.5 -40.0 -0.3 0.0 -11.3 0.4 -7.3 88 6.5 -8.4 33 47.7 0.20
174.0 -40.0 -0.4 0.0 -14.2 0.2 -8.2 87 6.0 -8.9 34 50.9 0.28
174.0 -40.5 -1.0 0.1 -21.0 -1.6 -9.3 278 4.1 -7.8 28 51.7 0.12
174.5 -40.0 -0.5 0.1 -16.4 -0.2 -8.3 89 5.1 -8.4 33 51.9 0.23
174.5 -40.5 -1.1 0.1 -21.5 -1.5 -9.7 281 3.4 -7.3 26 39.6 0.12
174.5 -41.0 -2.6 -0.1 -16.7 0.2 -10.4 278 4.3 -7.5 30 5.0 0.10
175.0 -40.0 -0.6 -0.0 -17.9 -0.9 -7.2 272 5.1 -7.6 29 18.9 0.11
175.0 -40.5 -1.5 -0.5 -21.0 -1.7 -8.6 283 4.2 -7.3 25 6.5 0.15
175.0 -41.0 -6.9 -3.3 -11.3 0.5 -9.1 281 5.3 -6.9 27 2.3 0.07
175.0 -41.5 -19.3 -8.5 -14.7 1.3 -12.2 281 3.4 -6.1 26 3.0 0.08
175.5 -40.0 -1.6 -2.1 -11.3 -0.8 -4.7 282 6.3 -6.0 24 3.6 0.26
175.5 -40.5 -5.6 -4.8 -15.9 -2.0 -6.6 288 5.7 -7.3 23 2.6 0.17
175.5 -41.0 -13.9 -8.7 -10.3 0.2 -8.8 288 5.2 -6.2 22 2.5 0.05
176.0 -39.5 -1.2 -5.1 11.3 4.3 -0.7 273 8.5 -2.4 27 4.4 0.52
176.0 -40.0 -4.6 -6.4 -5.1 0.4 -3.9 301 6.3 -4.0 18 2.3 0.20
176.0 -40.5 -10.8 -9.1 -14.6 -1.1 -7.3 303 4.9 -5.7 18 3.4 0.16
176.0 -41.0 -17.3 -10.7 -17.7 0.2 -12.0 298 2.3 -4.9 14 3.5 0.02
176.5 -39.0 1.5 -10.7 15.7 8.0 -1.2 78 9.8 -3.4 48 7.5 0.73
176.5 -39.5 -2.2 -9.5 -0.0 3.0 -3.0 276 5.3 -2.1 32 2.8 0.42
176.5 -40.0 -6.7 -9.3 -14.2 -0.1 -6.5 303 3.0 -2.9 13 5.6 0.07
176.5 -40.5 -12.4 -10.8 -21.8 -0.4 -10.9 307 1.3 -4.0 9 4.5 0.07
177.0 -38.5 4.5 -15.8 17.6 9.9 -1.0 82 10.5 -3.4 66 9.6 0.83
177.0 -39.0 0.7 -14.3 6.1 7.0 -3.2 87 7.1 -2.8 64 4.2 0.78
177.0 -39.5 -3.3 -12.7 -11.1 2.0 -6.2 282 1.4 -1.4 54 3.4 0.14
177.0 -40.0 -7.8 -11.4 -24.5 -1.3 -9.5 300 -1.2 -2.4 10 4.1 0.01
177.5 -38.5 3.5 -19.1 14.2 9.3 -2.4 86 9.8 -4.2 73 6.8 0.81
177.5 -39.0 -0.5 -17.5 2.1 6.3 -4.6 276 5.7 -2.4 86 2.9 0.59
177.5 -39.5 -5.0 -15.7 -11.8 2.0 -7.5 289 1.1 -1.5 292 1.8 0.06
178.0 -38.5 2.2 -22.1 8.2 8.0 -4.6 89 8.5 -5.3 77 1.9 0.48
178.0 -39.0 -2.7 -20.2 -1.6 5.4 -6.6 280 4.7 -3.3 278 0.9 0.24
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Table B.6: Full results for Region 6 (Taupo Volcanic Zone) calculated by applying
the Flesch et al. [2001] stress method to the Quaternary velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
175.5 -37.5 0.0 -0.0 6.4 5.7 -0.7 39 5.7 0.9 4 12.6 0.02
175.5 -38.0 0.0 -0.1 7.8 5.8 -0.4 72 6.4 -0.2 30 6.4 0.18
175.5 -38.5 0.1 -0.2 17.0 8.6 -0.7 79 9.4 -1.9 43 6.6 0.23
175.5 -39.0 0.2 -0.6 20.4 8.7 -0.6 83 10.7 -2.7 41 7.1 0.25
175.5 -39.5 -0.4 -0.9 8.0 4.4 -1.9 89 8.7 -3.8 31 4.7 0.26
176.0 -37.5 0.8 -1.7 10.8 5.3 1.1 4 6.1 1.7 346 2.4 0.11
176.0 -38.0 1.6 -3.4 15.2 6.1 1.8 70 7.4 0.5 36 2.3 0.10
176.0 -38.5 2.2 -4.7 19.2 9.1 0.2 73 10.7 -2.6 44 3.3 0.14
176.0 -39.0 1.7 -5.5 21.0 8.5 0.3 77 11.1 -2.8 40 5.9 0.27
176.5 -38.0 4.9 -10.3 18.9 7.5 2.2 81 8.2 0.2 60 2.4 0.14
176.5 -38.5 4.5 -11.2 20.1 9.9 -0.0 76 10.9 -2.9 54 5.5 0.24
177.0 -38.0 7.1 -16.5 14.9 8.2 0.6 86 9.3 -2.5 74 4.8 0.22
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B.2 Results of GPS-Derived Velocity Model

Below are the stress and viscosity results, with input data, from the GPS-derived
velocity model in tabular form arranged by region (see Fig. 4.2).

Table B.7: Full results for Region 1 (Fiordland) calculated by applying the Flesch
et al. [2001] stress method to the GPS-derived velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
166.0 -45.0 0.0 0.0 -31.5 3.1 -19.8 293 -0.0 -8.9 289 6.8 0.02
166.0 -45.5 -5.7 -1.9 -28.4 3.8 -16.4 288 0.9 -8.6 283 2.8 0.02
166.5 -44.5 0.0 0.0 -36.9 5.7 -18.2 301 -3.2 -5.6 293 5.6 0.03
166.5 -45.0 -7.1 -0.5 -29.5 2.6 -16.5 289 -0.7 -6.0 287 2.4 0.01
166.5 -45.5 -14.3 -4.0 -9.7 4.5 -9.3 278 3.1 -5.5 74 1.6 0.01
167.0 -44.0 0.0 0.0 -40.2 5.3 -23.0 293 -5.7 -4.1 31 11.5 0.00
167.0 -44.5 -6.8 0.3 -35.9 1.6 -15.6 297 -4.8 -3.2 301 2.6 0.01
167.0 -45.0 -16.6 -0.4 -9.9 2.6 -9.5 278 1.4 -3.7 61 1.5 0.00
167.0 -45.5 -19.9 -5.4 11.3 6.7 -4.5 78 9.0 -6.8 52 1.8 0.20
167.0 -46.0 -22.0 -7.5 9.8 5.0 -3.6 78 8.3 -6.0 51 2.0 0.26
167.5 -44.0 -3.9 -0.3 -33.3 2.7 -18.6 293 -2.5 -3.8 4 6.2 0.01
167.5 -44.5 -13.3 -1.4 -24.4 0.1 -10.0 289 0.1 -4.3 27 2.7 0.03
167.5 -45.0 -22.8 -4.5 4.0 4.6 -5.6 76 7.7 -6.5 43 1.1 0.12
167.5 -45.5 -23.5 -7.0 7.4 7.0 -5.7 70 9.5 -7.8 50 2.7 0.21
167.5 -46.0 -25.0 -7.3 -3.1 2.4 -6.1 76 5.0 -5.5 56 3.4 0.02
168.0 -44.5 -16.5 -5.7 -2.9 1.6 -4.9 278 6.0 -4.4 24 1.3 0.09
168.0 -45.0 -30.2 -8.2 6.2 5.5 -5.2 77 8.0 -5.4 41 2.6 0.14
168.0 -45.5 -26.3 -10.1 -2.7 5.7 -8.1 78 5.7 -6.1 56 2.9 0.07
168.5 -45.0 -28.7 -10.2 -0.2 5.1 -7.1 275 3.7 -1.6 42 4.0 0.59
168.5 -45.5 -29.1 -10.5 -4.0 6.3 -9.3 272 3.0 -2.9 71 7.8 0.19
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Table B.8: Full results for Region 2 (central South Island) calculated by applying
the Flesch et al. [2001] stress method to the GPS-derived velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
168.0 -43.5 -1.1 0.1 -13.2 5.3 -16.6 285 3.0 -1.9 350 12.0 0.08
168.0 -44.0 -6.2 -1.3 -20.5 2.5 -13.3 294 1.9 -3.1 3 4.6 0.16
168.5 -43.0 0.0 0.0 1.5 6.8 -11.3 281 7.1 -0.1 338 29.2 0.36
168.5 -43.5 -2.1 0.6 -9.8 5.0 -13.5 288 4.5 -1.3 346 7.5 0.04
168.5 -44.0 -8.3 -0.9 -9.4 2.4 -9.0 290 4.8 -2.9 9 2.2 0.08
168.5 -44.5 -20.6 -7.6 0.8 2.5 -4.7 279 6.6 -3.4 22 1.1 0.06
169.0 -43.0 0.0 0.0 -0.5 6.6 -11.4 287 6.8 -0.3 332 13.4 0.25
169.0 -43.5 -3.9 0.2 -5.5 5.3 -11.4 289 4.9 -0.5 345 4.4 0.07
169.0 -44.0 -14.2 -3.4 -7.3 2.4 -7.9 289 5.3 -2.3 9 1.5 0.04
169.0 -44.5 -24.6 -9.2 -14.3 1.6 -8.5 285 2.8 -2.4 17 3.0 0.11
169.0 -45.0 -28.1 -10.8 -8.2 4.6 -9.8 283 1.0 -0.4 61 9.6 0.52
169.0 -45.5 -28.6 -12.3 1.0 7.1 -8.7 280 3.1 -1.0 77 15.5 0.59
169.5 -42.5 0.0 0.0 -2.3 4.7 -9.8 287 5.9 -0.2 330 31.7 0.68
169.5 -43.0 0.0 0.9 -0.4 6.4 -11.1 289 6.3 -0.2 329 8.4 0.08
169.5 -43.5 -5.6 -0.1 -0.2 5.5 -10.0 290 5.4 0.1 343 2.0 0.04
169.5 -44.0 -21.7 -9.8 -6.3 3.0 -8.9 294 4.4 -1.0 357 1.8 0.12
169.5 -44.5 -27.3 -13.0 -15.9 1.8 -10.3 292 1.3 -1.2 359 5.5 0.10
169.5 -45.0 -28.8 -12.8 -6.0 3.4 -8.3 285 2.2 -1.0 36 12.6 0.20
169.5 -45.5 -29.1 -12.9 6.0 5.5 -5.5 284 4.9 -1.0 45 12.5 0.40
170.0 -42.5 0.6 0.6 -4.4 4.3 -10.3 289 5.0 -0.3 329 20.4 0.25
170.0 -43.0 -1.4 1.1 -0.0 6.0 -10.5 290 5.9 -0.0 329 3.7 0.01
170.0 -43.5 -12.2 -0.9 1.0 5.1 -8.9 293 6.0 0.2 342 1.4 0.04
170.0 -44.0 -25.3 -10.9 -10.2 2.8 -9.2 297 4.3 -0.7 349 2.0 0.30
170.0 -44.5 -29.6 -14.7 -6.6 2.1 -7.6 296 3.8 -0.7 359 6.1 0.07
170.0 -45.0 -29.4 -13.2 7.3 3.0 -3.7 284 6.2 -1.4 29 3.2 0.42
170.0 -45.5 -29.4 -12.4 12.7 3.3 -1.7 285 7.5 -1.5 35 11.9 0.73
170.5 -42.0 0.3 0.1 -5.7 2.8 -10.1 291 3.8 -0.3 332 25.7 0.13
170.5 -42.5 -0.1 0.4 -5.1 3.8 -10.2 291 4.5 -0.2 332 8.8 0.00
170.5 -43.0 -5.5 -0.5 0.5 5.2 -9.2 291 5.7 0.4 334 2.0 0.01
170.5 -43.5 -21.1 -8.3 6.4 4.9 -7.2 295 6.7 0.6 345 1.3 0.07
170.5 -44.0 -27.3 -11.0 -3.2 2.6 -7.0 297 5.4 -0.3 355 2.9 0.09
170.5 -44.5 -30.2 -13.8 4.6 1.6 -3.5 295 6.7 -0.9 11 2.6 0.02
170.5 -45.0 -30.2 -12.4 14.4 2.3 -0.6 276 8.6 -1.4 26 1.5 0.73
171.0 -42.5 -1.9 -0.8 -4.1 3.5 -9.0 291 4.7 0.2 340 3.7 0.01
171.0 -43.0 -11.1 -3.4 6.0 4.6 -6.5 290 6.5 0.9 348 1.1 0.01
171.0 -43.5 -25.8 -10.4 8.1 4.3 -5.1 293 7.3 0.8 354 1.4 0.00
171.0 -44.0 -30.3 -11.8 1.7 2.4 -4.8 296 6.6 -0.0 360 2.4 0.03
171.0 -44.5 -31.6 -12.0 4.9 1.0 -2.1 287 7.5 -1.1 15 1.6 0.02
171.0 -45.0 -32.5 -12.7 10.8 1.7 -0.7 85 8.3 -1.4 25 0.9 0.70
171.5 -42.5 -5.1 -0.5 2.0 3.3 -6.1 289 6.3 0.4 357 1.8 0.01
171.5 -43.0 -18.6 -5.3 13.3 4.3 -3.6 288 8.4 0.9 1 0.8 0.07
171.5 -43.5 -28.8 -11.2 9.9 4.0 -4.3 293 7.7 1.0 354 1.5 0.01
171.5 -44.0 -31.7 -11.9 3.3 2.3 -4.0 298 7.0 0.4 358 2.8 0.03
171.5 -44.5 -32.4 -11.5 6.7 0.9 -1.6 283 7.5 -0.7 16 1.3 0.10
172.0 -43.0 -24.3 -9.0 13.2 3.7 -2.8 289 9.1 0.6 2 0.8 0.06
172.0 -43.5 -31.8 -11.3 7.1 3.5 -4.7 296 7.7 1.0 349 2.7 0.00
172.5 -43.0 -28.5 -11.4 7.6 3.1 -4.2 293 8.5 0.6 355 1.3 0.01
172.5 -43.5 -32.0 -11.7 6.5 3.0 -4.8 295 7.6 0.9 345 4.1 0.08
173.0 -43.5 -33.4 -11.1 7.8 2.8 -4.8 288 7.3 1.1 343 2.0 0.10
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Table B.9: Full results for Region 3 (northern South Island) calculated by applying
the Flesch et al. [2001] stress method to the GPS-derived velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
171.0 -41.5 -0.5 -0.2 -5.0 2.8 -10.2 295 3.7 -0.3 332 11.5 0.07
171.0 -42.0 -0.7 -0.2 -5.3 2.9 -9.9 293 4.0 -0.2 336 6.7 0.05
171.5 -41.0 -0.8 -0.2 -5.4 2.5 -9.6 301 3.9 -0.2 341 11.5 0.03
171.5 -41.5 -2.2 -0.4 -5.0 3.1 -9.7 298 4.3 -0.1 339 7.3 0.03
171.5 -42.0 -3.4 -0.2 -1.3 3.1 -8.4 294 4.9 0.2 346 4.7 0.03
172.0 -40.5 -0.8 0.0 -5.4 1.4 -8.1 306 4.4 -0.8 1 8.8 0.03
172.0 -41.0 -2.0 -0.2 -1.5 3.5 -8.4 307 6.2 -0.1 349 6.2 0.06
172.0 -41.5 -3.5 -0.0 2.1 3.9 -7.2 301 6.7 0.3 351 4.3 0.08
172.0 -42.0 -4.6 -0.0 6.4 3.4 -5.1 293 7.5 0.2 2 2.9 0.02
172.0 -42.5 -8.8 -1.9 10.3 3.3 -2.8 285 9.2 -0.2 8 0.7 0.07
172.5 -40.0 -0.7 0.1 -5.4 -1.5 -6.0 297 5.4 -4.3 27 11.4 0.03
172.5 -40.5 -2.2 0.3 -4.7 0.1 -6.9 310 5.9 -2.6 12 8.4 0.03
172.5 -41.0 -3.7 0.3 7.6 3.7 -6.3 310 8.2 -0.5 359 5.4 0.07
172.5 -41.5 -5.7 0.4 15.3 5.5 -4.6 305 9.9 0.7 357 3.6 0.28
172.5 -42.0 -7.4 -0.2 16.1 4.5 -2.5 297 10.6 0.3 4 1.3 0.17
172.5 -42.5 -16.7 -7.2 13.5 3.3 -1.7 291 10.8 -0.2 6 0.5 0.22
173.0 -40.0 -1.2 0.2 -7.4 -2.5 -5.6 285 6.4 -6.7 30 12.1 0.04
173.0 -40.5 -2.5 0.3 -8.8 -2.3 -6.1 306 6.4 -5.3 21 12.3 0.07
173.0 -41.0 -4.2 0.2 -0.4 1.1 -6.0 306 7.5 -2.5 11 6.4 0.01
173.0 -41.5 -7.0 0.3 13.7 5.0 -4.2 303 10.1 0.1 2 2.6 0.20
173.0 -42.0 -12.4 -1.9 19.9 5.5 -2.2 299 11.7 0.6 2 1.1 0.37
173.0 -42.5 -23.3 -8.3 11.1 4.0 -3.6 296 10.2 0.5 357 0.8 0.09
173.0 -43.0 -31.1 -11.4 4.1 3.2 -6.3 294 7.6 0.5 345 2.2 0.00
173.5 -40.5 -3.4 0.1 -15.7 -3.8 -7.5 289 5.4 -7.2 26 8.7 0.06
173.5 -41.0 -5.6 -0.4 -11.0 -1.6 -7.9 289 5.4 -5.2 22 5.1 0.06
173.5 -41.5 -10.4 -1.5 4.7 2.5 -5.8 288 7.8 -2.1 17 1.8 0.01
173.5 -42.0 -20.5 -6.1 14.6 4.7 -4.4 292 9.7 0.1 4 1.1 0.09
173.5 -42.5 -28.7 -10.3 2.6 4.1 -7.6 294 7.8 0.4 346 1.9 0.01
173.5 -43.0 -34.2 -10.5 -0.0 3.4 -9.1 290 6.3 0.1 334 2.7 0.03
174.0 -41.0 -8.8 -1.1 -17.7 -2.3 -10.2 279 4.2 -7.2 29 4.1 0.07
174.0 -41.5 -14.8 -4.0 -6.2 0.9 -9.2 275 6.0 -5.4 29 2.2 0.05
174.0 -42.0 -24.6 -8.0 -0.9 2.8 -9.0 285 5.6 -1.1 7 2.0 0.02
174.0 -42.5 -32.4 -9.3 -11.1 3.5 -12.8 290 4.7 -0.8 333 3.1 0.01
174.0 -43.0 -36.8 -8.5 -7.3 3.6 -12.3 284 4.7 -0.9 322 4.2 0.06
174.5 -41.5 -21.9 -6.7 -12.2 -0.0 -11.7 273 4.8 -7.1 32 2.2 0.02
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Table B.10: Full results for Region 4 (east coast of the North Island to Hikurangi
margin) calculated by applying the Flesch et al. [2001] stress method to the GPS-
derived velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
174.5 -42.0 -30.3 -8.1 -16.1 0.9 -14.2 283 1.2 -2.1 7 3.0 0.01
174.5 -42.5 -36.5 -7.6 -21.2 2.7 -17.3 287 2.5 -2.4 324 4.5 0.01
175.0 -42.0 -35.8 -8.2 -30.9 -0.6 -18.9 285 -1.9 -3.0 354 5.5 0.01
175.0 -42.5 -39.9 -6.3 -27.0 2.0 -20.1 284 0.6 -3.2 321 10.5 0.03
175.5 -41.5 -31.9 -9.7 -18.2 -0.4 -15.9 290 1.1 -4.1 11 6.7 0.06
175.5 -42.0 -37.2 -7.8 -38.0 -0.6 -22.8 288 -2.8 -3.8 337 10.6 0.08
175.5 -42.5 -39.8 -5.8 -28.1 2.3 -22.1 281 -0.5 -3.2 319 29.4 0.28
176.0 -41.5 -33.7 -9.5 -29.7 0.1 -21.2 296 -1.2 -3.7 350 7.3 0.03
176.0 -42.0 -38.1 -7.1 -42.0 0.4 -26.1 290 -2.4 -4.6 330 12.1 0.08
176.5 -41.0 -29.3 -11.3 -28.8 -0.2 -19.3 303 -1.6 -3.7 356 5.4 0.01
176.5 -41.5 -35.8 -8.4 -39.2 1.0 -26.5 298 -2.8 -4.7 334 7.2 0.02
176.5 -42.0 -39.3 -5.9 -42.1 1.7 -28.7 289 -2.4 -4.9 327 13.3 0.06
177.0 -40.5 -21.6 -14.5 -33.2 -1.8 -16.9 309 -2.8 -3.5 357 3.7 0.04
177.0 -41.0 -31.7 -10.2 -39.3 -0.1 -23.8 305 -4.2 -4.3 337 4.6 0.01
177.0 -41.5 -38.6 -6.2 -45.7 1.6 -30.2 298 -4.1 -5.5 327 7.2 0.01
177.0 -42.0 -40.8 -4.2 -41.2 3.1 -31.2 288 -3.1 -4.7 323 26.3 0.06
177.5 -40.0 -15.4 -16.0 -28.3 -1.8 -13.6 309 -2.7 -2.4 325 2.1 0.01
177.5 -40.5 -26.1 -12.1 -40.5 -2.4 -19.6 310 -4.9 -4.0 331 3.1 0.01
177.5 -41.0 -35.6 -7.5 -45.8 -0.1 -26.4 307 -5.4 -5.3 325 4.8 0.01
177.5 -41.5 -41.8 -3.7 -48.5 2.2 -32.4 299 -5.2 -5.8 323 13.3 0.02
178.0 -39.5 -13.6 -15.7 -12.8 1.8 -11.0 302 2.2 -3.3 301 1.3 0.00
178.0 -40.0 -23.0 -12.5 -29.7 -0.7 -16.1 309 -1.1 -4.6 310 2.0 0.01
178.0 -40.5 -32.2 -8.6 -43.4 -2.0 -21.4 311 -4.2 -5.7 315 3.2 0.01
178.0 -41.0 -39.1 -5.1 -47.9 0.4 -27.3 309 -5.4 -6.1 317 6.2 0.00
178.0 -41.5 -41.7 -3.2 -47.4 3.1 -33.4 300 -5.4 -5.6 319 46.5 0.13
178.5 -39.0 -14.1 -15.1 -17.6 2.4 -12.7 292 3.3 -7.1 285 1.1 0.01
178.5 -39.5 -23.8 -11.6 -28.1 1.6 -16.6 299 1.9 -7.4 299 1.6 0.00
178.5 -40.0 -32.0 -8.2 -38.6 -0.0 -19.5 304 -0.0 -7.8 305 2.3 0.00
178.5 -40.5 -38.9 -4.9 -46.7 -1.8 -21.5 309 -3.0 -7.5 307 3.8 0.01
178.5 -41.0 -42.7 -2.7 -48.2 0.6 -25.3 310 -5.0 -6.6 309 12.4 0.00
179.0 -39.0 -27.0 -9.7 -40.1 1.6 -20.8 294 1.6 -12.0 289 1.8 0.00
179.0 -39.5 -35.5 -6.3 -44.0 1.8 -22.4 296 1.1 -11.7 295 2.2 0.00
179.0 -40.0 -40.2 -4.1 -44.5 1.4 -22.0 297 0.1 -10.3 298 3.6 0.00
179.0 -40.5 -43.7 -2.1 -45.3 -1.2 -19.7 297 -2.1 -8.6 298 8.7 0.00
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Table B.11: Full results for Region 5 (southern and eastern North Island) calculated
by applying the Flesch et al. [2001] stress method to the GPS-derived velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
173.5 -40.0 -2.0 -0.0 -11.3 -2.7 -6.6 272 6.5 -8.4 33 9.6 0.03
174.0 -40.0 -3.3 -0.4 -14.2 -2.7 -7.6 273 6.0 -8.9 34 8.0 0.03
174.0 -40.5 -5.5 -0.3 -21.0 -4.0 -9.3 286 4.1 -7.8 28 6.3 0.05
174.5 -40.0 -4.7 -1.0 -16.4 -2.8 -8.1 278 5.1 -8.4 33 10.9 0.10
174.5 -40.5 -8.5 -1.5 -21.5 -3.6 -10.1 290 3.4 -7.3 26 5.7 0.09
174.5 -41.0 -13.7 -3.2 -16.7 -2.0 -10.7 279 4.3 -7.5 30 3.5 0.09
175.0 -40.0 -5.3 -2.4 -17.9 -3.0 -7.5 287 5.1 -7.6 29 11.7 0.55
175.0 -40.5 -11.6 -3.2 -21.0 -3.4 -9.4 293 4.2 -7.3 25 4.5 0.11
175.0 -41.0 -18.5 -5.6 -11.3 -1.3 -9.8 284 5.3 -6.9 27 2.7 0.08
175.0 -41.5 -30.0 -9.3 -14.7 -0.6 -13.0 279 3.4 -6.1 26 3.4 0.04
175.5 -40.0 -4.3 -5.0 -11.3 -2.0 -5.9 306 6.3 -6.0 24 5.1 0.26
175.5 -40.5 -15.6 -5.9 -15.9 -3.2 -8.0 302 5.7 -7.3 23 2.9 0.14
175.5 -41.0 -24.8 -9.4 -10.3 -1.3 -10.1 292 5.2 -6.2 22 3.5 0.07
176.0 -39.5 -0.6 -8.0 11.3 2.6 -1.2 297 8.5 -2.4 27 4.3 0.67
176.0 -40.0 -8.4 -8.5 -5.1 0.0 -6.1 315 6.3 -4.0 18 2.2 0.10
176.0 -40.5 -20.8 -9.9 -14.6 -1.8 -9.3 311 4.9 -5.7 18 4.5 0.12
176.0 -41.0 -26.9 -10.8 -17.7 -1.0 -13.7 300 2.3 -4.9 14 6.2 0.03
176.5 -39.0 2.7 -11.9 15.7 5.2 -0.4 82 9.8 -3.4 48 5.3 0.27
176.5 -39.5 -2.3 -12.5 -0.0 1.3 -3.7 295 5.3 -2.1 32 2.2 0.03
176.5 -40.0 -11.0 -12.0 -14.2 -0.3 -8.7 313 3.0 -2.9 13 8.2 0.24
176.5 -40.5 -21.5 -13.5 -21.8 -1.0 -13.1 311 1.3 -4.0 9 7.6 0.18
177.0 -38.5 2.1 -14.9 17.6 7.3 0.1 82 10.5 -3.4 66 5.9 0.15
177.0 -39.0 2.0 -16.2 6.1 4.4 -2.6 274 7.1 -2.8 64 3.3 0.35
177.0 -39.5 -4.4 -16.1 -11.1 0.6 -7.0 295 1.4 -1.4 54 3.4 0.02
177.0 -40.0 -9.4 -17.6 -24.5 -1.7 -11.6 308 -1.2 -2.4 10 4.9 0.04
177.5 -38.5 1.6 -17.1 14.2 6.5 -0.9 86 9.8 -4.2 73 5.1 0.36
177.5 -39.0 -0.6 -18.7 2.1 4.1 -4.2 285 5.7 -2.4 86 1.8 0.18
177.5 -39.5 -7.7 -17.4 -11.8 1.1 -8.6 300 1.1 -1.5 292 1.8 0.00
178.0 -38.5 -1.6 -17.3 8.2 4.5 -2.4 272 8.5 -5.3 77 1.6 0.24
178.0 -39.0 -4.1 -18.5 -1.6 3.4 -6.5 290 4.7 -3.3 278 1.0 0.05
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Table B.12: Full results for Region 6 (Taupo Volcanic Zone) calculated by applying
the Flesch et al. [2001] stress method to the GPS-derived velocity model.

Long. Lat. vx vy Γ τex τcp τaz τGex τGcp τGaz η Mis.
175.5 -37.5 1.7 -1.2 6.4 2.6 1.8 35 5.7 0.9 4 2.0 0.02
175.5 -38.0 0.8 -2.2 7.8 3.6 0.3 88 6.4 -0.2 30 2.5 0.08
175.5 -38.5 1.2 -3.6 17.0 5.9 0.1 88 9.4 -1.9 43 2.8 0.17
175.5 -39.0 1.7 -4.1 20.4 6.0 0.0 272 10.7 -2.7 41 4.8 0.36
175.5 -39.5 -1.0 -3.2 8.0 2.2 -2.0 287 8.7 -3.8 31 6.1 0.39
176.0 -37.5 4.4 -1.8 10.8 4.0 0.9 1 6.1 1.7 346 4.8 0.06
176.0 -38.0 2.3 -2.8 15.2 4.2 2.0 68 7.4 0.5 36 3.8 0.00
176.0 -38.5 4.4 -5.1 19.2 6.4 1.0 73 10.7 -2.6 44 3.1 0.05
176.0 -39.0 2.9 -8.5 21.0 5.6 1.1 82 11.1 -2.8 40 4.9 0.07
176.5 -38.0 2.8 -2.8 18.9 5.2 2.6 77 8.2 0.2 60 2.5 0.10
176.5 -38.5 1.7 -10.8 20.1 7.1 0.8 74 10.9 -2.9 54 2.6 0.09
177.0 -38.0 2.9 -13.6 14.9 6.3 1.1 81 9.3 -2.5 74 2.9 0.20
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