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Abstract

More and more high-dimensional data appears in machine learning, especially
in classification tasks. With thousands of features, these datasets bring chal-
lenges to learning algorithms not only because of the curse of dimensionality
but also the existence of many irrelevant and redundant features. Therefore,
feature selection and feature construction (or feature manipulation in short)
are essential techniques in preprocessing these datasets. While feature selec-
tion aims to select relevant features, feature construction constructs high-level
features from the original ones to better represent the target concept. Both
methods can decrease the dimensionality and improve the performance of
learning algorithms in terms of classification accuracy and computation time.

Although feature manipulation has been studied for decades, the task
on high-dimensional data is still challenging due to the huge search space.
Existing methods usually face the problem of stagnation in local optima
and/or require high computation time. Evolutionary computation techniques
are well-known for their global search. Particle swarm optimisation (PSO)
and genetic programming (GP) have shown promise in feature selection and
feature construction, respectively. However, the use of these techniques to
high-dimensional data usually requires high memory and computation time.

The overall goal of this thesis is to investigate new approaches to using PSO
for feature selection and GP for feature construction on high-dimensional
classification problems. This thesis focuses on incorporating a variety of
strategies into the evolutionary process and developing new PSO and GP
representations to improve the effectiveness and efficiency of PSO and GP for
feature manipulation on high-dimensional data.

This thesis proposes a new PSO based feature selection approach to

high-dimensional data by incorporating a new local search to balance global



and local search of PSO. A hybrid of wrapper and filter evaluation method
which can be sped up in the local search is proposed to help PSO achieve
better performance, scalability and robustness on high-dimensional data. The
results show that the proposed method significantly outperforms the compared
methods in 80% of the cases with an increase up to 16% average accuracy
while reduces the number of features from one to two orders of magnitude.

This thesis develops the first PSO based feature selection via discretisation
method that performs both multivariate discretisation and feature selection
in a single stage to achieve better solutions than applying these techniques
separately in two stages. Two new PSO representations are proposed to evolve
cut-points for multiple features simultaneously. The results show that the
proposed method selects less than 4.6% of the features in all cases to improve
the classification performance from 5% to 23% in most cases.

This thesis proposes the first clustering-based feature construction method
to improve the performance of single-tree GP on high-dimensional data. A new
feature clustering method is proposed to automatically group similar features
into the same group based on a given redundancy level. The results show
that compared with standard GP, the new method can select less than half of
the features to construct a new high-level feature that achieves significantly
better accuracy in most cases. The combination of the single constructed
feature and the selected ones achieves the best performance among different
feature sets created from a single tree.

This thesis develops the first class-dependent multiple feature construction
method using multi-tree GP for high-dimensional data. A new GP represen-
tation and a new filter fitness function that combines two filter measures are
proposed to evaluate the whole set of constructed features more effectively
and efficiently. The results show that in 83% of the cases, with less than 10
constructed features, the class-dependent method increases up to 32% average
accuracy on using all the original thousands of features and 10% on using

those constructed by the class-independent method.
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Introduction

1.1 Problem Statement

In machine learning and data mining, classification is an important task
that aims to classify an instance into its corresponding category or class
[34]. A classification algorithm learns a classifier or model based on an input
collection of instances or examples. Each instance is typically described by
a set of features and a class label. The quality of the input feature set is a
key factor influencing the performance of a classification algorithm [221]. If
the collected features are relevant to the class labels, a learning algorithm
could induce the relationship between them. However, in many cases, which
features are relevant is often unknown, especially when the domain knowledge
is unavailable or incomplete. Therefore, the input data usually contains as
many features as one can collect to present the problem. By retaining all
potential important information, this could mean datasets may have many
irrelevant and redundant features that are not actually useful in learning the

target concept. The presence of these features may obscure the effect of the
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relevant features on showing the hidden pattern of the data, and thereby
reduce the representativeness of the whole feature set [267]. This can hinder
learning algorithms from inducing a good classifier. Therefore, to optimise
the performance of the learnt classifier, it is vital to eliminate these irrelevant

and redundant features [57].

Feature manipulation [110] refers to the process of transforming the input
space of a machine learning task in order to improve the learning quality and
performance. It includes feature selection and feature construction, which
are also known as dimensionality reduction methods. While feature selection
chooses relevant features from the original set of features, feature construction
creates new high-level features by combining the original low-level features
using predefined operators or functions. The selected and constructed features

are expected to better represent the target concept [110].

Meanwhile, feature ranking is a relaxed version of feature selection. It
ranks features based on their relevance to the target concept. The top ranked
features will be chosen to form the best feature subset. These techniques help
the learning algorithms improve their classification performance, simplify the

learnt classifier and reduce the computation time [57].

Feature manipulation is an important data preprocessing step, especially
for classifying high-dimensional data. Recently, there has been an immense
increase in high-dimensional data such as microarray gene expression, pro-
teomics, images, text, and web mining data [72]. These datasets usually have
thousands to tens of thousands of features. When working on these datasets,
traditional learning algorithms that were developed for low-dimensional data
may suffer from the curse of dimensionality [7%], which is various phenomena
arising when analysing or organising data in high-dimensional spaces. In
machine learning, as the number of features grows linearly, the amount of
data we need to generalize an accurate model grows exponentially. However,
this requirement is usually not satisfied in reality. Furthermore, these datasets
can have a large amount of irrelevant and redundant information, which may

significantly limit the performance of learning algorithms [110]. Therefore,
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dimensionality reduction is crucial for efficient learning in problems with a

very large number of features.

Feature manipulation methods can be divided into three broad categories,
namely filter, wrapper, and embedded methods [11, 91]. Filter methods evalu-
ate the manipulated features based on the intrinsic characteristics of the data,
which can be determined via different types of measures such as distance,
information, dependence and consistency measures [57]. In comparison to
wrapper and embedded methods, filter methods are usually computationally
less expensive. Furthermore, since filters are independent of any classification
algorithm, the performance of manipulated features typically does not bias to
any learning algorithm [12, 259]. This property is referred to as the generality
of a feature manipulation method. Wrapper methods, on the other hand, use
a classification algorithm to evaluate the manipulated features. Therefore, a
learning algorithm is typically employed in the evaluation procedure. As com-
pared to filter methods, wrapper methods usually achieve better classification
performance. However, their generality may be limited and the computation
time is typically long, especially when the number of features is large [191].
Unlike filter and wrapper methods, embedded methods simultaneously learn
a classifier and choose a subset of features. Traditional machine learning
algorithms like decision trees or support vector machines are typical examples

of embedded approaches [91].

Although feature manipulation has been studied for decades, applying it
to high-dimensional data is still challenging. Feature selection is actually a
combinatorial optimisation problem. An exhaustive search for the optimal
subset from 2V possible combinations of N original features is impractical,
especially when N is large. Feature construction has an even larger search
space comprising not only original features but also possible operators used
to combine these features. In high-dimensional datasets, traditional methods
such as sequential forward selection (SFS) [210], sequential backward selection
(SBS) [153], sequential floating forward selection (SFFS), and sequential
floating backward selection (SFBS) [193] easily get stuck into local optima.
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Therefore, it is necessary to have a more efficient global search approach.
FEvolutionary Computation (EC) techniques have been proposed for fea-
ture manipulation thanks to their ability to perform a global search with
a population of individuals searching in the solution space. EC techniques
such as Particle Swarm Optimisation (PSO) and Genetic Programming (GP)
have been applied to feature manipulation [174, |. While PSO is a swarm
intelligence method which simulates the social behaviours of birds flocking,
GP is an evolutionary algorithm which works based on Darwinian evolution
principles. In PSO, a swarm of particles communicate their knowledge to opti-
mise their positions or solutions. On the other hand, in GP, fittest individuals
are selected to evolve new individuals using crossover or mutation. Although
both methods have been applied to feature manipulation, most of the current
works focus on solving problems with a relatively small number of features
(a few hundred) [51, , |. Applying these evolutionary computation
methods on high-dimensional problems is still a challenge in this field. This

gap is the primary motivation for this research project.

1.2 Motivations

This section first describes challenges of feature manipulation on high-
dimensional data, current approaches to addressing these problems and their
limitations. An explanation is then followed to show why PSO and GP are
chosen for feature manipulation along with their current limitations as well

as potentials in this field.

1.2.1 Challenges of Feature Manipulation on High-
Dimensional Data
Feature manipulation is a difficult combinatorial problem [258, | especially

on high-dimensional data due mainly to the challenges of large search space,

feature interaction and evaluation criteria.
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In feature selection, the size of the search space growths exponentially with
the number of available features (2" possible combinations for N features).
Therefore, exhaustive search becomes impractical when working on high-
dimensional data with thousands to tens of thousands of features. Different
heuristics or strategies have been proposed to search for good solutions.
However, existing methods still suffer from the problem of being stuck in
local optima. For feature construction, the size of the search space is even
larger. Feature construction methods need to choose a good set of not only

features but also operators as well as a suitable structure to combine them.

Feature interaction is another important issue in feature manipulation.
There can be two-way, three-way or multi-way complex interactions among
features [107]. A feature which is individually irrelevant to the target concept
may become useful if it is complementary to other features. On the other hand,
an individually relevant feature may be redundant or even noisy in the context
of other features. With a large number of features, high-dimensional datasets
have a higher probability of having these types of feature interactions. The
existence of feature interaction hinders the strategy of sequentially generating

a feature subset from obtaining the optimal solution.

Most evaluation criteria in the current filter approaches can only handle
two-way interactions between features, i.e. evaluation applies to two features
only. Meanwhile, evaluation functions in wrapper approaches can be expensive
and may face the problem of overfitting when dealing with high-dimensional
data. Note that given a fix number of training samples, the density of these
samples decreased exponentially when we increased the dimensionality of
the problem. In other words, high-dimensionality introduces sparseness to
the training data. Due to this sparsity, it becomes much easier for learning
algorithms to find a separable hyperplane to separate the training data very
well, but it may perform poorly on unseen test data. This phenomenon is
called overfitting. To avoid this sparsity, classification algorithms usually
require an enormous amount of samples in order to avoid overfitting to the

training data. However, this requirement is not always satisfied especially
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in domains where collecting data is expensive such as gene expression data
[220] and mass spectrometry data [3]. For example, AML-ALL [271], a gene
expression dataset differentiating two subtypes of leukemia, has 7129 features
and 72 examples. Therefore, feature subsets evaluated based on the results of

these classification algorithms may not work well for unseen data.

Another common problem associated with these high-dimensional and
small sample size datasets is feature selection bias. Because of the small
sample size of these datasets, many studies [2, 5, 13, 20, 50, , , ,

, , ] used the whole dataset to train their feature selection systems
(i.e. to evaluate feature subsets during the training process), leaving no data
left for testing. The training results are then used to evaluate the system
performance, and thus leading to feature selection bias. This problem is quite
common especially for wrapper-based feature selection methods, where a cross-
validation is usually used to evaluate the feature subset [120]. This is even
more complicated when EC-based techniques are used since many independent
runs should be conducted to eliminate statistical variance. Therefore, a careful

design of experiments and a good evaluation method are needed to deal with
these high-dimensional data.

With these challenges, feature manipulation on high-dimensional data
requires a global search technique and a good evaluation method to efficiently
and effectively explore the huge solution space to find optimal or near-optimal
solutions in a reasonable time. EC techniques are well-known for their global
search ability thanks to their population-based beam search. In this thesis,
we will investigate the ability of PSO in feature selection and GP in feature

construction.

1.2.2 Why PSO for Feature Selection

PSO is an EC technique that has been successfully applied in many different
fields [189]. Among these areas, more and more studies in feature selection

use PSO [250] due to the following reasons:
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e Natural representation. PSO has a vector representation which
provides a natural encoding scheme for the feature selection task, where
each element in the vector represents the likelihood of the corresponding

feature being selected.

e Efficiency. Compared with other EC methods that are also used in
feature selection such as genetic algorithms (GAs) and ant colony optimi-
sation (ACO), PSO has less computation time and a faster convergence

speed [117].

e Simplicity. Compared with other EC methods, PSO is simple and

easy to implement.

e The potential in feature selection. PSO has shown promise in

feature selection [248].

Although many PSO based feature selection methods have been proposed
[230, |, its application to high-dimensional data is still limited. This thesis
aims to investigate PSO’s potential in feature selection on high-dimensional

problems.

1.2.3 Why GP for Feature Construction

GP is also a global search technique under the umbrella of EC. Among many
EC techniques, it is an excellent choice for feature construction because of

the following characteristics:

e Flexible representation. With a flexible evolutionary mechanism,
GP does not require a fixed representation. It can be a tree or a graph
whose structure will be dynamically evolved during the evolutionary
process. In feature construction, a tree is usually used to represent a
constructed feature with internal nodes being operators and terminal
nodes being features. This enables GP to construct new features that

are linear or non-linear combinations of the original features via different
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operators. These new features can better represent the target concept

than the original features.

e Automatically evolving models. GP is a very flexible technique
that can automatically evolve mathematical models from a predefined
set of terminals and operators. A GP evolved model can be executed
by applying operators to terminals to produce a result. Therefore,
GP provides a natural encoding scheme for feature construction where
the terminal set comprises of original features, and operators are any

function that can be applied to features to generate new feature.

e Built-in feature selection. A GP tree does not use all the original
features to construct high-level features, which means GP implicitly
performs feature selection. The features that are used in terminal nodes
of the tree, i.e. terminal features, are potentially useful or informative

features.

e Interpretability. Unlike in other feature transformation methods such
as Principle Component Analysis and Linear Discriminant Analysis, the
features constructed by GP are easier to understand and interpret in

terms of both their origin and formation.

PSO and GP have shown promise in feature selection and construction,
respectively; however, their capabilities for feature selection and construction
on high-dimensional data have not been fully investigated and the limitations

are shown in the following subsections.

1.2.4 Limitations of PSO for Feature Selection on
High-Dimensional Data
PSO has been applied and shown its high potential to feature selection

[25, 219]. However, due to the large search space, PSO based methods on

high-dimensional data still face the problem of stagnation in local optima.
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Different strategies have been proposed to address this problem, such as
changing the leader particle [50, |, reinitialising parts of the population
[51], improving updating mechanism [161]. However, the achieved performance
of these studies still needs to be improved. Cooperative coevolution [1306, 137],
new updating mechanism [18, 19, 108], and differential grouping [183] were
also proposed and have shown promise in solving high-dimensional or also
called large-scale optimisation problems. Nonetheless, most of these methods
are tested on benchmarks of function approximation problems, where the
characteristics of the search space are very different from feature selection.
Furthermore, due to the complex interactions between features and the high
computation cost of feature evaluation, these large-scale optimisation methods
might not function well on high-dimensional feature selection. However, the
success of these methods on large-scale function approximation problems
motivates us to propose novel search strategies to improve PSO based feature

selection method on high-dimensional data.

Feature selection via discretisation is a promising approach that has
never been investigated in PSO. In data preprocessing, discretisation is also
an important and popularly used technique especially for high-dimensional
data. Many feature selection methods can only be applied to discrete data
such as those based on mutual information [263]. High-dimensional datasets
usually include continuous features that are automatically collected at the
interval or ratio level such as images and gene expression data. In additions,
discretisation techniques aim at finding a discrete representation of each
feature so that it contains enough information for the learning task while
eliminating the minor fluctuations that may be noisy in the original data [63].
Thanks to this ability, feature selection via discretisation has been proposed
to select features based on the result of discretisation process [112, ].
This approach has shown promise. However, the discretisation methods
used in these studies are univariate, which means that only one continuous
feature is discretised at a time [79]. For the sake of efficiency, these methods

work with an assumption that each feature independently influences the task.
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However, this assumption is not valid in most problems in which feature
interdependency occurs [15]. Therefore, when using data discretised by a
univariate discretisation method, feature selection methods may miss relevant
features since information showing feature interaction may be destroyed in
the discretisation process. Combining discretisation and feature selection into
a single stage may obtain a better feature set for the learning task. PSO can
represent all features in a single solution, which provides a good chance for
multi-variate discretisation, but PSO has been used for feature selection and

has never been proposed for feature selection via discretisation.

1.2.5 Limitations of GP for Feature Construction on

High-Dimensional Data

Apart from feature selection, feature construction is also an effective technique
to reduce the number of features by constructing new high-level features that
can represent the original feature set which can then be removed and improve
the classification accuracy [170]. Feature construction is a means to enhance
the representation quality of the data, where the original features may not
provide enough discrimination for learning algorithms to learn a good classifier
[L70]. In this case, feature construction aims at combining sets of features
to obtain new features with stronger discriminating power. Therefore, the
capability of a learning algorithm can be improved.

Based on its ability to automatically evolve free-form mathematical models,
GP has been successfully proposed as a feature construction method using
the single-tree representation [170] or the multiple-tree representation [125].
However, its applications to high-dimensional data are still limited [7, 9] due
to a number of challenges. One of the main challenges of GP for feature
construction on high-dimensional data is the huge search space. Since GP
needs to search not only a good combination of features from thousands of
features but also an appropriate set of operators to combine them. Although

GP has a built-in feature selection capacity, its performance is still affected
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when the number of features increases to thousands. Another challenge is how
to design a good evaluation measure to avoid overfitting especially when the
number of samples or instances is significantly smaller than the dimensionality
of the problem [149]. In these cases, GP can easily find a model that perfectly
fit the training data but has a poor performance on unseen test data. In
general, feature construction has a larger search space and is easier to overfit
than feature selection as the model can be more precisely tuned to fit the
data.

1.2.6 Limitations of Conventional Feature Manipula-

tion Methods on High-Dimensional Data

To address the problem of high computational cost in a large search space,
many filter feature selection methods have been proposed in the last decades.
A popular technique used in this context is feature ranking, sometimes also
called feature weighting [222], which ranks features based on their degrees of
relevance to the target concept. Feature ranking assesses features individually
using some measures such as the distance between instances of different
classes [199], feature dispersion [72], or classification accuracy [254]. After
features have been ranked, the final feature subset will be formed by choosing a
predefined number of top-ranked features. These methods are computationally
efficient because of their linear time complexities. However, all of them
require a certain domain knowledge to determine the number of features
to be selected. Another more serious issue is that they cannot discover
redundancy or interactions among features. The top-ranked features may
include redundant information, which can affect the speed and accuracy of
learning algorithms. Therefore, in feature selection for high-dimensional data,
purely relevance-based feature ranking methods do not meet the needs of

feature selection in commonly found data domains.

To address these limitations, a two-stage approach was proposed where fea-

ture ranking is performed following by a heuristic search to remove redundant
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features from the ranked list [03, |. In the second stage, a measure can
be used to evaluate feature redundancy such as symmetric uncertainty [263]
or feature dispersion [72]. There has been an increased amount of research
into this approach for high-dimensional data in the last decade [243, ]. In
general, these methods have shown to be effective and efficient to remove
redundant features. However, selecting an appropriate number of features
from the first stage is not straightforward especially for high-dimensional
data with thousands of features. Moreover, since the features are ranked
individually in the first stage and the proposed redundancy measures can only
detect redundancy between two features, they may fail to identify multiple
feature interactions [203, |. A wrapper method was also proposed in the
second stage [03] to evaluate the whole feature subset taking into account
multiple feature interactions. However, because the interactions between
features are not considered in the first stage, some relevant features may be
left out in the second stage. Therefore, search techniques that can consider
feature interaction are needed for better solutions.

For feature construction, techniques such as Principal Component Analysis
and Fisher’s Linear Discriminant Analysis have been tried on high-dimensional
data [60, ]. Although these methods are widely used in many areas, they
are limited to only find the optimal coefficients in a limited number of
predefined models (e.g. linear, polynomial). Recently, deep learning [20], e.g.
deep neural networks and deep belief network, has shown promise in feature
learning for speech recognition, natural language processing, computer vision,
etc. [01]. However, large amounts of data and computational resources are
crucial to their performance. Furthermore, solutions of these approaches also

have low intelligibility or human readability.

1.3 Research Goals

The overall goal of this thesis is to investigate a new approach to using Evolu-

tionary Computation techniques, i.e. PSO and GP, for feature manipulation
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on high-dimensional classification problems. This approach is anticipated
to effectively and efficiently solve feature selection and feature construction
problems with thousands to tens of thousands of features, which may include
a large number of irrelevant, redundant features and feature interactions. The

specific objectives of this research are to:

1. Develop a new PSO based feature selection algorithm for high-
dimensional data by proposing a new local search strategy, which can be
integrated with PSO to balance the global and local search to achieve
better performance. The local search needs to be designed in a way
that the evaluation process can be sped up to avoid high computational
cost since most of the computational cost in wrapper feature selection
is caused by the evaluations. The proposed algorithm is expected to sig-
nificantly reduce the dimensionality. The selected features are expected
to achieve better classification performance than using the original full
feature set as well as features selected by the conventional methods and

other existing PSO based feature selection methods.

PSO works based on collective intelligence which is implemented via
simple communication between particles in searching for better solu-
tions. Thanks to such swarming behaviours, PSO is capable of quickly
detecting fruitful regions; however, once there, it cannot perform a
refined local search in a complex search space to compute the optimum
with high accuracy [18]. Local search has been combined with PSO
to overcome this drawback [188]. This approach, which is also called
memetic algorithm, has been shown effective in many feature selection
algorithms [271, ]. However, this strategy has not been investigated
much in PSO based feature selection especially for high-dimensional
data.

2. Develop a new PSO based feature selection via discretisation for high-
dimensional data by proposing a new representation and a new evalu-

ation method for PSO to perform discretisation and feature selection
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simultaneously in a single stage. The selected discrete features are
expected to have better performance than the original feature set and
those generated by the commonly used two-stage approach where dis-

cretisation followed by feature selection [263].

PSO has been used for feature selection; however, it has never been
applied to discretisation. With real-number vector representation and a
global search ability, PSO has a high potential in multivariate discretisa-
tion where multiple features are discretised at once taking into account
possible interactions between features. In this way, useful relationships
between features can be maintained after discretisation. As a result,
feature selection via multi-variate discretisation may provide better

solutions.

. Develop a new feature construction algorithm using single-tree GP

for high-dimensional problems by proposing a new feature clustering
technique to narrow the GP search space. The proposed GP based
feature construction algorithm is expected to construct new high-level
features that can improve the classification performance of the common
classification algorithms on high-dimensional data. The performance
of different combinations of selected and constructed features from a

single tree are also investigated.

Although GP has a built-in capability to select good features based
on the guide of the fitness function, its performance is still affected
when applied to high-dimensional data due to the huge search space
[228]. Therefore, it is critical to narrow this search space for GP
performance improvement. Results from a GP based feature selection
method [7] and a classification algorithm [168] have shown that helping
GP select appropriate features is critical in enhancing its performance.
Furthermore, feature clustering has been proposed to group similar
features into the same cluster so that feature selection can be effectively

achieved by choosing one or several representative features from each
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group [29, , , |. However, feature clustering has not been

investigated in GP for feature construction.

4. Develop a new multiple feature construction algorithm using multi-tree
GP for high-dimensional data by proposing a new representation to
construct multiple features, each of which focuses on discriminating
instances of one class from the remaining classes. A new fitness function
is also developed to better evaluate the performance of the constructed
features. The proposed approach is expected to construct a small set of
features that has better discriminating ability than the original large
feature set. The constructed features are expected to help common

classification algorithms work more effectively and efficiently.

In feature manipulation, evaluating features is a critical component.
Identifying relevant features to the target class is very important. How-
ever, not all relevant features can distinguish instances from all classes.
Some particular features may have better ability than other features to
distinguish instances of a particular class from other classes. Therefore,
evaluating features in the context of class-dependency may better reveal
the hidden patterns of the data. Recently, this approach has been
proposed in feature selection [77, , ] and showed that evaluating
features in a class-based context led to a better performance. However,

the investigation of this strategy to feature construction is still limited.

1.4 Major Contributions

This thesis makes the following major contributions, each of which is exten-

sively discussed in each of the contribution Chapters 3 to 6 as appropriate.

1. This thesis proposes a new PSO approach with local search to feature
selection on high-dimensional data to significantly reduce the number of
features while increasing the classification performance. Two new local

search strategies are proposed for PSO based feature selection to balance
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the global and local search of the algorithm. The proposed algorithm is
also designed in such a way that it can avoid the large computational cost
when using local search. Experimental results show that the proposed
method achieved much smaller feature subsets with significantly better
classification performance than using the original feature sets, those
selected by standard PSO and traditional feature selection methods.
The results and analyses have suggested that local search using general
knowledge in feature selection can significantly improve the performance
of PSO in feature selection on high-dimensional data. Further analyses
also show the effectiveness and robustness of the proposed methods. In
addition, a careful design of experiments is developed to avoid feature
selection bias when using EC methods. This design can be applied to
any feature selection or feature construction system. A comparison
between the experimental results with and without feature selection

bias demonstrates the necessity of the correct experiment design.
Parts of this contribution have been published in:

Binh Tran, Bing Xue, and Mengjie Zhang, “Improved PSO for Fea-

2

ture Selection on High-Dimensional Datasets,” in Proceedings of the
10th International Conference on Simulated Evolution And Learning

(SEAL2014), vol. 8886 of Lecture Notes in Computer Science. Springer,
2014, 503-515.

Binh Tran, Mengjie Zhang, Bing Xue, “A PSO Based Hybrid Feature
Selection Algorithm for High-Dimensional Classification,” in Proceedings
of IEEE Congress on Evolutionary Computation (CEC), 2016, 3801—
3808.

Binh Tran, Bing Xue, Mengjie Zhang, and Su Nguyen, “Investigation on
Particle Swarm Optimisation for Feature Selection on High-dimensional
Data: Local Search and Selection Bias,” Connection Science 28(3), 2016,
270-294.

2. This thesis proposes the first PSO approach to feature selection via
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discretisation for high-dimensional data. To achieve discretisation, two
methods with two new PSO representations are proposed to evolve
cut-points for multiple features simultaneously. A cut-point is a real
value within the feature range used to partition that range into two
intervals. Feature selection is accomplished by removing features that
are discretised into only one interval. Experiment results show that
the proposed methods can effectively discretise multiple features to
significantly improve or maintain the classification performance in most
cases. Through discretisation, a much smaller number of relevant
features is selected at the same time. Comparisons with two-stage
(one for discretisation and one for feature selection) approaches using
PSO or conventional methods show that conducting discretisation and
feature selection in a single stage is more effective than applying these

techniques in two separate stages.
Parts of this contribution have been published in:

Binh Tran, Mengjie Zhang, Bing Xue, “Bare-Bone Particle Swarm
Optimisation for Simultaneously Discretising and Selecting Features For
High-Dimensional Classification,” in Proceedings of the 19th Furopean
Conference on the Applications of Evolutionary Computation (EvolASP),
vol. 9597 of Lecture Notes in Computer Science. Springer, 2016, 701—
718.

Binh Tran, Bing Xue and Mengjie Zhang, “A New Representation in
PSO for Discretisation-Based Feature Selection,” IEEE Transactions on
Cybernetics, 2017, DOI: 10.1109/TCYB.2017.2714145

3. This thesis proposes the first feature clustering based GP approach to
feature construction on high-dimensional data. A new clustering method
is proposed to group similar or redundant features into a particular group.
Features from these groups are chosen to construct high-level features.
The proposed clustering technique can automatically determine the

number of clusters based on a given correlation or redundancy level
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between features. Experiment results show that the proposed method
selects a smaller number of features to construct a better discriminating
feature than the standard GP. Feature clustering helps GP construct
features with better discriminating ability than those constructed by
GP using the whole feature set. Investigation on different combinations
of selected and constructed features from a single GP tree shows that
the combination of the single constructed feature and the selected ones
achieves the best performance among them. This is because the selected
features help to alleviate the overfitting problem in the constructed
feature. Further analysis also shows that GP can cope with small sample

size and skew distribution to obtain a good generalisation.
Parts of this contribution have been published in:

Binh Tran, Bing Xue and Mengjie Zhang, “Genetic Programming for
Feature Construction and Selection in Classification on High-dimensional
Data,” Memetic Computing, 8(1), 2016, 3-15.

Binh Tran, Bing Xue, and Mengjie Zhang, “Using Feature Clustering
for GP-Based Feature Construction on High-Dimensional Data,” in
Proceedings of the 20th European Conference on Genetic Programming
(EuroGP), vol. 10906 of Lecture Notes in Computer Science. Springer,
2017, pp.210-226.

. This thesis proposes the first class-dependent feature construction

method using GP for high-dimensional data. The proposed repre-
sentation enables each constructed feature to focus on distinguishing
one class from other classes. A new filter-based fitness function is pro-
posed to evaluate the whole set of constructed features more effectively
and efficiently. Experiment results show that the class-dependent con-
structed features help different classification algorithms achieve better
performance than using the original full feature set and using features
constructed by the class-independent approach. Results also show that

the proposed method can construct one or two high-level features for
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each class to obtain comparable or even better results than the selected

features.
Parts of this contribution have been published in:

Binh Tran, Mengjie Zhang, and Bing Xue, “Multiple Feature Construc-
tion in High-Dimensional Data Using Genetic Programming,” in /EEFE
Symposium Series on Computational Intelligence (SSCI). IEEE, 2016,
1-8. DOI:10.1109/SSCI.2016.7850130.

Binh Tran, Bing Xue, and Mengjie Zhang, “Class Dependent Mul-
tiple Feature Construction Using Genetic Programming For High-
Dimensional Data,” in Proceedings of the 30th Australasian Joint Con-
ference on Artificial Intelligence (A12017), Vol. 10400 of Lecture Notes
in Computer Science. Springer, 2017, pp.182—194.

1.5 Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 introduces the
essential background and related work. The major contributions of the thesis
are presented in Chapters 3-6. Chapter 7 concludes the thesis.

Chapter 2 presents the essential background of machine learning and
classification, the basic concepts in feature manipulation, an overview of
evolutionary computation and an introduction of PSO and GP techniques. It
also reviews the related work in feature selection and feature construction
using the conventional as well as evolutionary computation technique methods.

Chapter 3 proposes two new local search strategies to integrate into PSO
for feature selection on high-dimensional data. A fast fitness evaluation is
also proposed and illustrated. It then describes the details of the conducted
experiments to compare the proposed methods against the conventional
feature selection methods and existing PSO based algorithms. The results
of the compared methods on a set of commonly-used high-dimensional data

with varying difficulty are then presented and discussed. Further analysis of
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computation time, the robustness and learning capability of the proposed

methods are also shown at the end of the chapter.

Chapter 4 proposes the first PSO approach to feature selection via dis-
cretisation with two new representations. The two proposed algorithms are
described, tested and compared with the two-stage approach, where tradi-
tional discretisation method is combined with either conventional or PSO
based feature selection methods. The results of all the compared methods on
ten high-dimensional data are displayed and examined. The final section of
this chapter provides further discussion on the generalisation, robustness and

learning capability of the proposed approach.

Chapter 5 develops a new feature clustering based GP approach to feature
construction on high-dimensional data. The proposed redundancy based
feature clustering algorithm is described along with the overall structure,
representation and fitness function of the proposed GP based feature con-
struction method. It then describes the design and results of the experiments
conducted to compare the proposed method with a traditional feature con-
struction method and standard GP. It also investigates the performance of
different combinations of the constructed and selected features from the single
GP tree. Further analysis of the returned clusters, the constructed features
and the generalisability of the proposed algorithm are discussed at the end of

the chapter.

Chapter 6 proposes a novel class-dependent feature construction method
using GP for high-dimensional data. Two representations for class-independent
and class-dependent multiple feature construction are proposed and presented.
Then, it describes the two corresponding GP based methods and compares
their results. The proposed class-dependent method is also compared with the
single feature construction method proposed in Chapter 5 and an existing class-
dependent feature construction method using single-tree GP. The constructed

features are also visualised to show their discriminating ability.
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Table 1.1: Datasets

Dataset Abbrev. #F #Inst. | #Class Class Distribution | Ref.
Alizadeh-V1 Alizadeh 1,095 42 2 50%, 50% | [59]
Colon Colon 2,000 62 2 35%, 66% | [271]
SRBCT SRBCT 2,308 83 4 13%, 22%, 30%, 35% | [218]
Yeoh-V1 Yeoh 2,526 148 2 83%, 17% | [59]
DLBCL DLBCL 5,469 7 2 25%, 5% | [218]
3%, 10%, 10%,
9 Tumors 9Tumor 5,726 60 9 10%, 12%, 13%, | [218]

13%, 13%, 15%

Leukemial Leukemial 5,327 72 3 12%, 35%, 53% | [218]
Brain_Tumorl | Brainl 5,920 90 5 | 4%, ™%, 11%, 11%, 28% | [218]
ALL-AML Leukemia 7,129 72 2 35%, 65% | [271]
Central ner- | CNS 7,129 60 2 35%, 656% | [271]
vous system
Leukemia2 Leukemia2 11,225 72 3 28%, 33%, 39% | [218]
Brain_ Tumor2 | Brain2 10,367 50 4 14%, 28%, 28%, 30% | [218]
Prostate Tumor| Prostate 10,509 102 2 49%, 51% | [218]
3%, 4%, 5%, 6%,
11_ Tumors 11Tumor 12,533 174 11 7%, 8%, 8%, 13%, | [218]
15%, 15%, 16%
Lung_ Cancer Lung 12,600 203 5 | 3%, 8%, 10%, 10%, 69% | [218]
Ovarian__Cancer| Ovarian 15,154 253 2 36%, 64% | [271]

1.6 Benchmark Datasets

Throughout this thesis, the proposed PSO based feature methods and GP
based feature construction methods are evaluated on a set of high-dimensional
gene expression datasets of varying difficulty. These datasets are commonly
used in the literature to evaluate the performance of feature selection or
construction methods developed for high-dimensional data. Table 1.1 shows
their names, abbreviations, numbers of features, instances, and classes, as
well as the percentage of instances in each class. The datasets are listed in

ascending order of their dimensionality.

As can be seen from Table 1.1, these datasets have quite different numbers
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of features ranging from one to fifteen thousand. In contrast, their numbers
of instances range from 42 to 253, which are quite small compared to the
number of features. The number of classes in each dataset varies from 2 to 11.
Many of them are also unbalanced with varying degrees. These characteristics
make these datasets become challenging problems for learning algorithms to
obtain their best performance. Ten datasets from [218] are publicly available

at http://www.gems-system.org.



Literature Review

Before reviewing typical work on feature selection and feature construction,
this chapter starts with an essential background about machine learning
and classification, basic concepts in feature manipulation, an overview of
evolutionary computation and an introduction of PSO and GP techniques.
Finally, a summary of limitations of existing work and motivation of this

project are discussed.

2.1 Machine Learning and Classification

By developing algorithms that allow computers to automatically learn from
experience rather than being explicitly programmed to carry out a certain
task, machine learning (ML) is a major research area in artificial intelligence.
Learning from examples and making changes to improve their performance is
the main characteristic of ML algorithms [160].

ML algorithms can be classified into supervised, unsupervised and rein-

forcement learning [221]. In supervised learning, the examples or instances

23
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include the inputs and their desired outputs. Therefore, the aim of supervised
learning algorithms is to generate a model or a function that can map inputs
to desired outputs. On the other hand, desired outputs are not given in
unsupervised learning. The algorithms have to infer inherent patterns or
subsets of similar examples from the input. Different from supervised and
unsupervised learning, reinforcement learning interacts with the environment
through a sequence of actions, receives feedback on the goodness of its action
via rewards or penalties to learn how to choose the best actions.
Classification is a typical supervised ML task, which uses a model or a
classifier to assign an object to a given category based on its input variables
[34]. Examples of classification would be assigning an email into spam or
non-spam classes, and assigning a diagnosis to a patient based on observed
characteristics of that patient. The main objective of ML algorithms in this
area is to learn a classifier or a model that can correctly classify an input
instance into a predefined class label [31]. Thereby, these learning algorithms

are also called classifier inducers or classification algorithms.

2.1.1 Training and Testing

Typical supervised ML systems involve two processes: training and testing.
While training refers to the learning process which induces a new classifier from
given instances, testing denotes the process used to evaluate the performance of
the learnt classifier on new or unseen instances [160]. Instances from problem
domain are also called samples, examples or observations. Collections of
instances used in training and testing process are referred to as the training
set and the test set respectively. Each instance, which is usually presented
as a row in a dataset, comprises of many values of features, or attributes, or
input variables which are presented in different columns. The values of these
features can be real or nominal (discrete or ordinal). In classification problems,
each instance belongs to a single class. If the number of different classes in a
dataset is two, it is called a binary-classification problem, otherwise, it is a

multi-class classification problem.
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To evaluate the performance of a learning algorithm, or to examine its
generalisability, different ways of splitting datasets into training and test sets
have been used [I19]. The main principle here is to leave some instances in
the dataset out of the training process so that the performance of the learnt
classifier can be tested by checking if it can correctly identify unseen instances.
Holdout is a method in which a dataset is divided into two disjoint sets for
training and testing using a predefined proportion. This straightforward
method is popularly used in many studies. However, it makes inefficient use
of the data because a significant amount of data is not used for training the
classifier [119]. In addition, it may be impractical in many real-world datasets
that have a small number of instances, which is common in high-dimensional

data such as gene expression data.

To deal with small sample size datasets, k-fold cross-validation (CV) is
usually used. In this method, a dataset is randomly divided into £ mutually
exclusive subsets or folds. The inducer is trained k times. Each time, a
different fold is used as the test set and the remaining folds form the training
set. The results from k times will be averaged to produce a single estimate of
classification performance. The advantage of this method is that all instances
are used to assess the performance of a learning system. Each instance is also
ensured to participate in testing exactly once. To maintain the performance
stability of an inducer across different runs with different training and test
sets, stratified k-fold CV is used. In this method, instances are randomly
selected in such a way that the class distribution of each fold is the same as
that of the original dataset. Leave-one-out-cross-validation (LOOCV) is a
special case of k-fold CV where k is equal to the total number of instances in
the dataset. This means that in each time, only one instance is used to test

the classifier learnt from all the other instances.

0.632 bootstrap [(07] is another resampling method that was proposed for
small sample size datasets. Given a dataset of size n, a bootstrap sample is
created by sampling with replacement n instances uniformly from the data.

In this way, a bootstrap sample of size n contains on average 0.632 * n distinct
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instances. The classifier is trained on the bootstrap sample and tested on
the left-out instances. This process is independently replicated for B times,
where B should be between 25 and 200 [67]. This replication requires a
high computational time, which is one major drawback of this method. The
final accuracy is calculated based on both training and testing accuracies.
Therefore, this method fails to give the expected result for classifiers that
have a perfect memory such as k-Nearest Neighbour, which always gives 100%

accuracy on the training set.

2.1.2 Classification Algorithms

The past decades witnessed a significant development of ML algorithms
including classification algorithms. This section presents some commonly
used ones including k-Nearest Neighbour, Decision Tree, Support Vector
Machines, and Naive Bayes. Other classification algorithms, such as neural
networks, random forest can be seen from [180].

k-Nearest Neighbour (KNN) [53] is a type of instance-based learning,
which does not perform any explicit induction or learning process. KNN
classifies a new instance based on its k nearest instances in the training set,
where k is a positive and user predefined number. To determine k£ nearest
neighbours, all the distances from the test instance to each instance of the
training set are calculated. Then, the test instance is classified by a majority
vote among these k nearest neighbours. Different proximity measures can be
used to calculate the distance between instances such as Euclidean distance
for continuous values and Hamming distance for discrete values. KNN is
simple but works well in practice. It is also a non-parametric classifier which
means no assumption about the probability distribution of the underlying
data is needed. However, it is expensive in terms of time and memory due
to the need of distance calculation from the query instance to all training
instances. Furthermore, because the classification decisions are made locally,
it is quite susceptible to noise, especially when k is small. Appropriate

proximity measure and preprocessing steps have to be chosen for KNN to
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produce good predictions.

Decision tree (DT) is another non-parametric classifier that is used for
nominal, numeric, or mixture data [I60]. A classifier in this method is
presented as a tree in which each inner node is a decision stump or a split
point and each leaf node is a class label. A query instance will traverse
through the tree by testing its input values against the decision stumps and
finally reaches its class label. To build a DT, a learning algorithm carries
out a heuristic-based search using information gain as a criterion to choose
the best split feature for each node. The best feature is the one that can
split instances into separate groups that are as high homogeneous as possible.
Different impurity measures were used to implement different DT algorithms
such as C4.5 with information gain, CART with Ghini index, and CHAID
with Chi-squared test. DT learning is computationally inexpensive and robust
to noise. Moreover, the learnt classifier can be translated into comprehensible
rules. However, since only one feature is tested in a node, DT does not
perform well for cases where the boundary between classes are not parallel
with coordinate axes [196]. These cases usually happen in problems that have

two-way or multi-way relationships among features.

Support vector machine (SVM) [52] is a classification technique for con-
tinuous data that is rooted from statistical learning theory. SVM learns to
find optimal hyperplanes in a higher dimensional space, which have maximal
margins to their nearest instances of different classes. The original SVM
method can only work with binary problems. Different versions of SVMs
have been proposed for multi-class problems such as SVM one versus one,
one versus rest methods [207]. SVM has shown promising empirical results
in many practical applications. However, users must provide the type of the
kernel function to use. Another drawback of SVM is its high computation

time, especially when the number of dimensions is high.

Bayesian classifier is an approach to modelling probabilistic relationships
between the feature set and the class variable. Naive Bayes (NB) classifier

is a simple implementation of Bayesian classifier where the class-conditional
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probability is estimated by assuming that features or attributes are condition-
ally independent given the class label [160]. Although NB has been shown to
be competitive with DT [156], its performance may be degraded in problems
where assumption of features being conditionally independent given the class
labels cannot be held.

2.1.3 Performance Measures

Prediction performance of a learnt classifier needs to be evaluated by some
measures. The most popular measures are classification accuracy or error
rate. While classification accuracy denotes the proportion of instances that
are correctly classified to its category, error rate indicates the proportion of
incorrectly classified instances. There are two types of errors: false negative
and false positive. A false negative error is a case of misclassifying an instance
belonging to the positive category, e.g. tumour, to the negative category,
e.g. normal. In contrast, a false positive error is a case where an instance
belonging to the negative class is misclassified into the positive class. In some
cases, false negative errors may result in serious problems, e.g. patients of
these cases will not be well treated. Therefore, more specific metrics are
defined to show the relative frequencies of these errors. Table 2.1 shows the
confusion matrix which defines four different relative frequencies of errors [1580].
Receiver operating characteristic (ROC) curve and Area Under ROC (AUC)
are popular methods used to display the trade-off between true positive and
false positive rate. This method is applicable when there is a vary threshold
in the classifier.

Unbalanced data is another issue that should be considered in evaluating
the classification performance of a classifier. In these datasets, instances
are not equally distributed into different classes. In a binary classification,
if one class has more instances than the other, it is called the majority
class. The other is the minority class. In this case, a high percentage of
correctly identified instances may be contributed from the majority class only.

Therefore, it cannot reflect the ability of the classifier in classifying instances
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Table 2.1: A confusion matrix for a binary-class problem [1&0]

Predicted Class
_|_ —
Actual | 4+ | True Positive (TP) | False Negative (FN)
Class | — | False Positive (FP) | True Negative (TN)

from the minority class. To address this problem, a weighted average or
balanced accuracy is proposed [187] as shown in Equation (2.1) where w;
and T'PR; are the weight and the true positive rate of class ¢. Note that
Yo w; = 1. Therefore, if all classes are equally important, w; can be set to
1/c.
c
balanced__accuracy = Z w; * TPR; (2.1)
i=1
It is also important to note that in case of unbalanced data, creating
training and test sets by splitting the whole dataset should consider stratifi-
cation to maintain the original class distribution in the training and test sets.
Otherwise, the classification performance may not reflect the effectiveness of
the learned classifier when it is applied to unseen data in the future.
In general, classification performance of a classifier depends not only on
the power of the learning algorithm but also the quality of the data. Therefore,
data preprocessing is usually required to guarantee the successful application

of a learning method to a real-world problem.

2.1.4 Discretisation

Discretisation is a data preprocessing technique that is used to transform
features with continuous values into discrete, nominal, or ordinal values. It is
often a crucial data preprocessing technique in ML because of several factors.
First of all, many learning algorithms are applicable to or efficient on discrete
data only. For instance, discretisation is either an embedded or external

process required to discretise data into nominal values before applying DT or
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NB. Furthermore, via discretisation, minor fluctuations or possible noise in
the data can be ignored. In this way, discretisation helps learning algorithms
improve their effectiveness and efficiency [65]. Last but not least, since discrete
data is more compact than continuous data, it requires less memory and thus

improving the efficiency of learning algorithms [31, 73].

Discretisation is a topic with a long research history. Many discretisation
methods with different strategies have been proposed in this area. However, all
of them share the same purpose which is to determine cut-points to partition
features values into discrete values. Cut-points or split-points are real values
within the range of the feature’s values that are used to partition that range
into several intervals. Existing discretisation methods can be categorised using
different criteria [79, , |. In direct methods, intervals are generated
based on a predefined parameter. On the other hand, incremental methods
recursively split (or merge) intervals until some criterion is met. They are also
known as top-down or bottom-up approaches, respectively. A discretisation
method is supervised or unsupervised depending on whether class labels are
used in the discretisation process or not. It is said to be global if the entire
instance space is used in each discretisation step, or local if each discretisation
step just uses a subset of instances. A method also belongs to univariate or
multivariate depending on whether features are discretised individually or

simultaneously taking into account interactions between features [79, 123].

Equal-width and equal-frequency (or equal-depth) binning are two simple
unsupervised methods. They discretise features into a predefined number of m
intervals with the same width (so-called equal-width) or the same number of
instances (so-called equal-frequency), respectively. These simple methods are
easy to implement but sensitive to the value of m which is usually difficult to
determine, especially when features are not uniformly-distributed or contain

outliers [38].

Using the class labels as a guide in searching cut-points, supervised
discretisation usually performs better than the unsupervised counterpart. 1R

[96] defines cut-points as feature values lying at the boundary of different
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classes. Each bin needs to have at least a predefined number of instances in the
same class except for the last bin. In addition to different searching techniques,
different evaluation measures are proposed such as classification error rates
[75, 197], information gain [70, 85], and statistical measures [37, 260]. More
comprehensive reviews can be found in [79, , , 150].

Among supervised methods, minimum description length (MDL) proposed
by Fayyad and Irani [70] is one of the most popular methods. It is an entropy-
based incremental splitting discretisation method aiming to find the best
splits so that the discretised features are as pure as possible in terms of
class labels. This means that the majority of the values in one interval are
preferred to have the same class label. If entropy E(S) is used to measure the
purity level of a set .S, then according to this criterion, the cut-point with the
highest information gain is the best one. Equation (2.2) is used to calculate
information gain of a cut-point 7" for feature F' given S as the set of feature

F values. S; and S5 are subsets of S after partitions.

- ey - Rl (22)

Furthermore, not all cut-points are useful, especially when the features are
noisy or irrelevant to the class label. Therefore, Fayyad and Irani [70] proposed
to use the minimum description length principle (MDLP) as a criterion to
accept a cut-point. Note that in this thesis, we use the abbreviation of MDLP
to represent the minimum description length principle and MDL to represent

the discretisation method proposed in [70].

Gain(T,F;S) = E(S)

loga(|S| = 1) | O(T, F;5)
5] 5]

Gain(T,F;S) > (2.3)

where
8(T, F; 8) = loga(3" — 2) — [ksE(S) — ks, B(S1) — ks, B(S5)] (2.4)

given |S| as the size of set S, F(S) as the entropy of S, and kg as the number
of classes in S.

According to MDLP, as shown in Equation (2.3), a cut-point 7" is only
accepted if its information gain is greater than the cost of encoding the cut-

point T" and the classes of the instances in the intervals induced by T'. If the
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cut-point 7" induces impure intervals, the sum of these two costs may exceed
its information gain. As shown in Equation (2.4), §(T, F’; S) will become
larger if the entropy values of FE(S;) and E(S) are larger; in other words,
when S; and S are less pure. In noisy or irrelevant features, the cut-points
usually cannot induce intervals that are pure enough to satisfy the condition
in Equation (2.3). Therefore, using MDLP can deal with noise or irrelevant
data.

2.2 Feature Manipulation

In this thesis, feature manipulation is a general term for feature selection
and feature construction, which are also known as dimensionality reduction
methods. This section introduces their definitions, the overview of these

systems and details of their processes.

2.2.1 Feature Selection

In real-world situations, many candidate features are introduced to better
represent the domain because which features are relevant is often unknown.
Unfortunately, the presence of irrelevant and redundant features may obscure
the effect of using the considered relevant features to show the hidden pattern
of the data, and thereby reduce the representativeness of the whole feature
set [267]. This can hinder learning algorithms from inducing a good classifier.

Feature selection is ideally defined as finding the smallest subset that
is necessary and sufficient to describe the target concept [118]. Classically,
feature selection is to select L features from N original features in such a way
that the value of a subset evaluation function is optimised over all subsets of
size L [169]. When considering the class distribution approximation, feature
selection is defined as selecting a small subset while maintaining as much as
possible the class distribution similarity between the original dataset and the
dataset using only selected features [121]. On the other hand, when focusing

on predictive accuracy improvement, feature selection is defined as choosing
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a subset of features that can improve the classification accuracy or reduce
the number of features without significantly decreasing the classification
accuracy of the classifier learnt from the selected subset [121]. Although
feature selection is differently defined by many researchers based on different

viewpoints, most of them are similar in intuition and/or content [57].

With the same purpose, feature ranking or weighting is a relaxed version
of feature selection. These methods rank or weight features based on their
relevance using a specific measure. A predefined number of top-ranked features

are then selected to form the final feature subset.

In general, feature selection is a data preprocessing technique searching
for a minimal feature subset by eliminating irrelevant and redundant features.
Its ultimate goal is to reduce the dimensionality and thus the size of the data
and the running time of the learning algorithm, increase or not significantly

decrease the classification accuracy, and simplify the learnt model [55].

2.2.2 Feature Construction

Many classification algorithms, especially those using symbolic classifiers such
as decision trees and decision rules, cannot induce good classifiers when being
confronted by problems where feature interactions exist due to their inability
to construct new features from original features [126]. This limitation can be

partially solved by feature construction.

Feature construction aims to automatically transform the original rep-
resentation space into a new one that better represents the target concept
[101]. Specifically, in the context of this thesis, feature construction is a
process which combines features selected from the original features to create
new high-level features in order to improve classification accuracy [267]. The
newly constructed features are in fact mathematical expressions of the original
features. They can be used to replace or augment the original feature set to

improve the performance of the learning algorithms [125].
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Figure 2.1: The typical structure of a feature manipulation system (adapted

from [111]).

2.2.3 A Typical Feature Manipulation System

A typical feature manipulation system usually has two stages as shown in
Figure 2.1, which is adapted from [111]. The first stage is feature manipulation,
which takes training data as input and outputs the best feature set. Details
of this stage will be described in the next section. The returned feature
set will then be examined in the next stage to test if the feature selection
method has been able to eliminate irrelevant and redundant features, or if the
feature construction method has been able to create new features with higher
discriminating power. In case of feature selection, if prior knowledge about the
relevant features is available as in synthetic datasets, then a direct comparison
can be made easily. However, in real-world applications, these prior knowledge
is usually unknown. Therefore, we usually rely on some indirect methods by
comparing the change in performance of a specific classifier from using all
features to only the selected or constructed features.

In general, the performance evaluation in Stage 2 has three steps:

1. Transforming data: By removing the unselected features or constructing
new features from the original training set and test set, this step outputs

the corresponding new training and test sets.
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Figure 2.2: Structure of a feature manipulation system with feature selection

bias.

2. Training a classifier: The new training set is fed into the learning

algorithm to induce a new classifier.

3. Testing the classifier: The performance of the learnt classifier will be
evaluated on the new test set and measured by using a performance
measure (mentioned in Section 2.1.3). The results are then analysed to
see if the selected or constructed features improve the performance of

the learnt classifier.

2.2.3.1 Feature Selection Bias Issue

When evaluating the performance of a feature manipulation method, it is
important to avoid an issue called feature selection bias [17], where the whole
dataset is used in Stage 1 to train the feature manipulation system as shown
in Figure 2.2. While this issue did not happen in many studies where datasets
have a large number of instances to be divided into training and test sets, it
can be seen in many studies where datasets have a small number of instances
[2, 5, 13, 20, 50, 106, 158, 161, 162, 205, 210, 261].

According to Ambroise and McLachlan [17], there is a feature selection
bias issue in these studies since there is no unseen data to test the generality
of the selected features. Therefore, one cannot claim that the selected features

can be used for future unseen data.



36 CHAPTER 2. LITERATURE REVIEW

___Whole dataset

FSon Selected | Test Classification
Training set Features set Accuracy

FSon Selected | Test Classification Classification
Training set Features set Accuracy Accuracy

I:l:l:l:l:l:l:l:l:._’l FS on Selected |_Test Classification
Training set Features | Set Accuracy

‘ DTraining set . Test set ‘

Figure 2.3: Structure of a 10-fold cross-validation without feature selection

bias.

To avoid feature selection bias in experiments on datasets with small
number of instances, 10-fold cross-validation (CV) is usually used to create
training and test sets [217]. The experiment setting, in this case, should
follow the structure shown in Figure 2.3, where the test fold is kept out of
the feature selection process. The average accuracy of the 10 runs will be
used to evaluate the performance of the method. The same setting should
also be applied to feature construction methods. All the experiments in this

thesis will follow this setting.

2.2.4 Feature Manipulation Process

Figure 2.4 presents the details of the feature manipulation process. It is a
procedure that takes training data as input, loops until a predefined stopping
criterion is met and outputs the best feature set. The loop contains three

steps:

1. Feature set generation:

e For feature selection, a discovery procedure is used to generate new
feature subsets from the original set. This procedure starts with
an empty subset, full feature set, or a random subset of features

[131] and then applies a search strategy to search for the optimal
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Figure 2.4: Feature manipulation process.

feature subset.

e For feature construction, before constructing new features, a dis-
covery procedure is used to select subsets of features as in feature
selection. The selected features will then be combined using some
mathematical operators to create new features. The key challenge
of this procedure is choosing appropriate features and operators as
well as an appropriate way to combine them so that the created

features have higher discriminating ability than the original ones.

Because feature selection and feature construction are combinatorial op-
timisation problems, using exhaustive search to find an optimal solution
can be computationally impractical. Therefore, many heuristics have
been proposed to search for a suboptimal solution within a reasonable

time. Different search strategies will be discussed in Section 2.2.6.

2. Feature set evaluation: Generated feature sets are evaluated by an
evaluation function. If better solutions are found, the best feature set
is updated. Using different evaluation functions or criteria may lead to
different optimal sets. Therefore, designing a good criterion to measure
the goodness of a feature set is one of the main concerns in developing a
feature manipulation system. Section 2.2.5 presents different approaches

to creating the evaluation criteria.

3. Stopping criterion: Conditions to stop the feature manipulation loop
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can be based on the generation or evaluation step. Examples of the
former can be whether a predefined number of features is selected or
if a given number of iterations is reached. The latter criteria can be
whether an optimal solution is found. When this criterion is met, the

best feature set will be returned.

2.2.5 Feature Set Evaluation

Feature set evaluation is an important component of a feature manipulation
algorithm because it guides the search process towards optimal feature sets.
Therefore, an optimal feature set is always relative to the evaluation function
used. In general, the aim of an evaluation function is to measure the discrimi-
nating ability of the feature set in distinguishing instances of different classes.
Based on the way a feature set is evaluated, feature manipulation methods
are classified into three typical approaches: wrapper, filter and embedded

approaches [91, 203].

2.2.5.1 Wrapper Approaches

In wrapper methods, the prediction performance of a learnt classifier is used
as a criterion to evaluate the feature set. The evaluation process is considered
as a black box so that any learning algorithm can be used such as KNN, DT
and SVMs. This black box performs the same steps as performance evaluation
stage in Figure 2.2 but applying to the training set instead. Therefore, the
computational time of wrapper methods is usually more expensive than
other approaches. Moreover, the best feature set evaluated by one learning
algorithm, e.g. DT, may not improve the prediction performance of another
learning algorithm, e.g. SVM. Therefore, this approach is claimed to be
less general than filter methods [12, |. However, as compared to the
filter approach, the wrapper approach usually achieves better classification

performance.
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2.2.5.2 Filter Approaches

Instead of using classification performance, filter methods evaluate the feature
set based on the intrinsic characteristics of the data. Different types of

measures [58] have been proposed:

1. Distance measures: They are also called separability, divergence or
discriminant measures. For a binary-class problem, according to this
measure, a feature is said to be better or more relevant than other
features if it can induce a higher difference between the two-class
conditional probability than other features. Examples are Euclidean

distance and Manhattan distance.

2. Information measures: Mutual information is a popular measure show-
ing how much information that two variables share with each other.
Information gain of a feature is defined as the mutual information of
itself and the class label. Therefore, a feature is more relevant if it has
higher information gain. On the other hand, two features are redundant

if their mutual information is high.

3. Dependence measures: The ability to predict the value of a feature from
the value of another feature is quantified in these measures. They are also
known as correlation measures. The higher a feature is correlated to the
class label, the higher it is relevant to the target concept. When applying
this measure to two features, it indicates the degree of redundancy
between them. Measures of this type can be divided into distance and
information measures. However, they still form a separate category due

to their different viewpoint.

4. Consistency measures: these measures aim at finding the smallest subset
that can provide a consistent labelling of all instances. Therefore, these
measures heavily rely on the training data and are usually biased to the

minimal subset.
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Evaluating feature subsets based on the above measures, a filter approach
has the advantages of low computational cost and high generality. However,
because prediction performance of the selected features on a learning algorithm
is not considered in these methods, they usually have lower classification

performance than wrapper methods on a particular learning algorithm [112].

2.2.5.3 Embedded Approaches

In embedded methods, the learning process simultaneously learns a classifier
and chooses a subset of features. Therefore, feature selection is intrinsic to the
learning algorithms such as in decision trees or support vector machines [91]. In
comparison to the wrapper approach, this approach has lower computational
time. Nevertheless, the performance of the selected features highly depends
on the learning algorithm.

In general, wrapper and embedded methods usually achieve better classi-
fication performance than filter methods, however with the price of longer

computation time and less generalisation.

2.2.6 Search Strategies

Feature set generation is another critical component of a feature selection
algorithm, especially on high-dimensional data. Generating new feature sets is
actually the process of searching through the feature space. With 2V possible
feature subsets in feature selection and even a larger number of candidate
solutions in feature construction, a good search strategy is very important
in finding the optimal or near-optimal solutions as fast as possible. Current

search strategies can be divided into following categories [115]:

1. Complete search: It guarantees to find the optimal subset according to
the evaluation criterion used. An exhaustive search such as FOCUS [10]
is complete. However, the computational cost of exhaustive methods is
too high to use with even small problems with 30 features since the size

of the search space is 230 [121]. Therefore, different heuristic functions
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are used to reduce the search cost without losing the chances of finding

the optimal subset. Branch and bound [169] is a typical method.

2. Sequential search: The generation process iteratively adds a feature
from the remaining features or removes a feature from the currently
selected subset, producing sequential forward selection (SFS) [210]
or sequential backward selection (SBS) [153], respectively. These hill
climbing methods give up completeness and therefore risk losing optimal
sets. Many variances of this simple process have been proposed but the

incremental search is their basic principle.

3. Stochastic search: Starting with a randomly generated candidate solu-
tion, the generation procedure may generate the next candidate solution
in a completely random manner [113 | or using some heuristics.
Although the former approach may avoid local optima, it is too slow
to converge in a large search space. This can be avoided in the latter
approach which is represented by simulated annealing algorithm and
evolutionary computation techniques. Different from simulated anneal-
ing algorithm and other stochastic searches, evolutionary computation
techniques are population-based, enabling them to conduct a global and
parallel search. Details about these techniques will be discussed in the

next section.

2.2.7 Feature Clustering

Clustering or cluster analysis is one of the main tasks in exploratory data
mining. It aims to group similar objects into the same group or cluster. Liter-
ature has proposed different clustering algorithms using different measures to
evaluate the similarity between objects as well as different ways of grouping
objects [211]. Clustering has been used for decades as an unsupervised task
where instances are grouped into clusters based on the similarity between
them [245].
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In machine learning and data mining, the “clustering” terminology is
usually meant instance clustering or instance grouping. Recently, clustering
techniques have been proposed to group similar features, thus called feature
clustering, to achieve feature selection [30]. Similar features are grouped into
the same cluster. Then one or more representative features from each cluster
were used to form final subsets. Different clustering techniques have been
proposed for feature selection such as statistical clustering [129, | and

minimum spanning trees [210].

2.3 Evolutionary Computation

Evolutionary Computation (EC) is an area of artificial intelligence that com-
prises of nature-inspired algorithms. All of these algorithms are population-
based search. A population of candidate solutions is maintained and evolved
using fitness (goodness) as a guide to search for better solutions. EC methods
can be broadly divided into two main categories: evolutionary algorithms and
swarm intelligence [21].

Evolutionary algorithms refer to algorithms that apply Darwinian princi-
ples to search for an optimal solution in the way that evolution searches for
optimal species. These algorithms use genetic operators such as reproduction,
crossover and mutation to evolve better solutions from the current ones.
Typical algorithms of this class are genetic algorithms (GAs) [95] and genetic
programming (GP) [124]. The main difference between GA and GP is the
representation. While GA individuals are represented as chromosomes which
are fixed-length strings of values, GP individuals can have variable lengths
with different structures such as tree and graph.

Swarm Intelligence is another EC category that is inspired by the collective
intelligence of social animals. The intelligence of these systems is based
on simple interactions among individuals and between individuals and the
environment [33]. Particle swarm optimisation (PSO) [66] and ant colony

optimisation (ACO) [061] are typical examples of this class. While PSO
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simulates birds’ behaviours, ACO is inspired by the special communication
system using pheromone between ants about favourable paths to food. The
shortest path will be the one that has most pheromone remaining after a

given time.

Although numerous EC techniques have been proposed for feature selection
and feature construction in the literature [09, 250], the remainder of this

section will focus on the two techniques to be used in this thesis, which are
PSO and GP.

2.3.1 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an EC technique developed by Kennedy
and Eberhart [66], which is inspired by social behaviours found in birds
flocking. In PSO, a swarm consists of many individuals called particles
communicating with each other to search for optimal solutions when iterating
from one position to another according to their velocity. The position of
a particle encodes a candidate solution of the problem. It is actually an
N-dimension vector of numerical values, where NN is the dimensionality of the
problem. A similar vector is used to record the velocity of a particle, which

indicates the speed and direction that it should move in each dimension.

During the search process, each particle also records the best position it
has explored so far, also known as personal best or pbest, and communicate
its pbest to its neighbours, which can be defined based on a certain topology
such as fully connected, star or ring to get the neighbourhood best. In the
fully connected topology, one particle will communicate with all the other
particles, therefore, the neighbourhood best is called global best or gbest.
pbest and gbest are used to update its velocity, which is then used to update
its position. In this way, particles move in the search space towards fruitful

areas to find better solutions.
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2.3.1.1 Standard Particle Swarm Optimisation

PSO was first introduced in a continuous version; therefore, it is also called
continuous PSO. In continuous PSO, the position is a vector of continuous
values. Formulae (2.5) and (2.6) are used to update the velocity and position

of each particle, respectively.

Vit = w x Vi e 1Y x (phy — why) 4 ca xrh * (PZd — ) (2.5)
Tig ' = T+ ogg (2.6)

where v!, and z!, are velocity and position of the i*" particle in dimension d at
time ¢, respectively. pi, and p}, are pbest and gbest positions in dimension d at
time ¢. i, and r}; are uniformly distributed random values generated at time
t. ¢y and cy are acceleration constants that determine the type of trajectory
the particle travels, thus they are important to control the searching behaviour
of the particle [235]. The inertia weight w is used to control the impact of the
last velocity to the current velocity. The velocity values are usually limited by
a predefined maximum velocity, vp,q, to the range [—vmaz, Umae] t0 maintain

particles staying in the search space.

2.3.1.2 Binary Particle Swarm Optimisation

To optimise discrete problems, Kennedy and Eberhart [116] developed a binary
PSO (BPSO) algorithm in which the position of each particle is encoded
by a binary string. Equation (2.5) is still applied to update the velocity, in
which xf,, pi,; and p}, are restricted to 0 or 1. However, unlike in continuous
PSO, the velocity in BPSO represents the probability of an element in the
position taking value 1. Therefore, a sigmoid function s(vy) is introduced
to transform v;4 into the range of 0 and 1. After that, BPSO updates the

position of the particle according to the following formulae:

1
xf:lrl _ 1, T’CLnd() < m (27>
0, otherwise
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where rand() is a random number selected from a uniform distribution in

[0,1]. v;q is transformed to [0,1] by a sigmoid limiting function.

2.3.1.3 Bare-bones Particle Swarm Optimisation

As can be seen in Equations (2.5) and (2.6) that PSO operates by sampling
points in the search space. It uses pbest and gbest which are the discovered
knowledge to guide the sampling. In [115], Kennedy investigated the trajectory
of a single particle in a standard PSO where pbest and gbest were set as
constants. All of its visiting positions after a million iterations were plotted.
The obtained histogram is a tidy bell curve centred midway between these
constant positions of pbest and gbest. The result suggests that trajectory of a
particle is determined by the difference between its pbest and gbest. Therefore,
the step size of a particle’s movement should be based on these best positions.
This finding resulted in a new PSO method called bare-bones PSO (BBPSO).
In this method, particle’s position is sampled using a Gaussian distribution
N (u,0) with the mean p and standard deviation o as shown in Equation
(2.8).

(2.8)

Liq

1 { N (p,0), rand() < 0.5

Ly, otherwise

where 1 is the centre of pbest and gbest and o is the absolute difference between
these best positions. The rand() function is used to speed up convergence
by retaining the previous best position pbest. By using the Gaussian number
generator, BBPSO avoids the need to optimise the velocity vector and the

delay of position adaptation.

2.3.1.4 Main Steps in Particle Swarm Optimisation

Despite the difference in position values, continuous, binary and bare-bones

PSO follow the same steps:

1. Randomly initialise position and velocity for each particle.
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2. Tteratively perform the following sub-steps until the stopping criterion

is met:

(a) Evaluate the fitness of each particle using a predefined fitness

function.
(b) If the fitness of a particle is better than pbest then update pbest.
(c) If the fitness of any pbest is better than gbest then update gbest.

(d) Update velocity of each particle using Equation (2.5) (this step is
skipped in bare-bones PSO).

(e) Update position using Equation (2.6) for continuous PSO, Equation
(2.7) for binary PSO, and Equation (2.8) for bare-bones PSO.

3. Return the best solution which is the position of the best particle
(gbest).

2.3.2 Genetic Programming

Genetic programming (GP) [121] is an EC method that can automatically
learn a set of computer programs for a particular task. Starting with a popu-
lation of candidate solutions, which are represented as individual programs,
GP follows Darwinian evolution principles to evolve better solutions by using
genetic operators such as crossover and mutation. Since the shape and length
of the final program are normally unknown, GP individuals usually represent
programs as trees with various lengths. There are also other common rep-
resentations such as graph-based GP, linear-based GP, and grammar-based
GP [190]. However, the tree structure provides a natural representation for
feature construction. Therefore, this thesis focuses on tree-based GP.

In tree-based GP, each program is a tree consisting of two
types of nodes. Internal nodes are operators or functions {e.g.
+, —, %, /, power(z,y), square_root(x)} with different numbers of arguments.
Leaf nodes are constants or variables serving as arguments for internal nodes.

The set of all possible operators or functions that can be used in an internal
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node is called the function set. Similarly, all possible variables form the
terminal set. The size of a GP tree is usually limited by a maximum depth
which is the longest path from the root to a leaf node.

Constraints have to be predefined to make sure that any generated program
is a valid, executable program. For example, function square_root(x) cannot
take a negative value. Function arguments can also have different types. For
example, function ¢ f may take three arguments: a condition that is of boolean
type and two numerical arguments to return when the condition is true and

false.

() 02 () (=) (r3)

Figure 2.5: Example of single-tree GP representations.

Figure 2.6: Example of multi-tree GP representations.

2.3.2.1 GP Tree-based Representation

A GP individual represents a candidate solution. It can be represented as a
single tree (so called single-tree GP) or a set of trees (so called multi-tree

GP). Figure 2.5 shows a simple example of the single-tree GP representation.
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In this example, features F}, F5, Fy and Fy are selected to construct one new
feature CF : (Fy —0.2) +if(F'1, F5, F'8)

Similarly, Figure 2.6 shows an example of a multi-tree GP individual
that selects 6 features, namely Fy, Fy, Fg, %, Fy, Fy, to construct three new

features:

o CF: (Fy— Fy)+ (0.9 % Fy),
L] CF2 : (F6_<F8*F9)7 and
o CF3: (F;r + F,)/0.5.

2.3.2.2 Genetic Programming Algorithm
As a population-based evolutionary algorithms, GP follows these steps:

1. Initialise GP trees by randomly selecting operators from function set
for internal nodes and constants or variables from terminal set for leaf
nodes (see Section 2.3.2.3).

2. Iteratively perform the following sub-steps until a stopping criterion is

met:

(a) Evaluation: Each GP tree is executed and its fitness is calculated

based on a predefined fitness function.

(b) Selection: Select one or two individual program(s) from the pop-
ulation with a probability based on fitness to participate in the

evolution step.

(¢) Evolution: Create new individuals for the new population using

the following genetic operations with specific probabilities:
i. Reproduction/Elitism: Copy the selected individuals to the
new population

ii. Crossover: Create new offspring programs by recombining

randomly chosen parts from two selected programs.
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iii. Mutation: Create a new offspring program by randomly mu-

tating a randomly chosen part of one selected program.

3. Return the program with the highest fitness as the best solution.

2.3.2.3 Initialisation Methods - Program Generation

Full and grow [121] are popular methods used to initialise or generate GP
trees. The full method produces entirely balanced trees with all terminal
nodes located at the predefined maximum depth. In contrast, terminal nodes
can appear at any depth level in the grow method. Although using the same
maximum depth for all trees, both methods can generate trees with very
different sizes (e.g the total number of nodes). Therefore, a combination of
full and grow called ramped half-and-half is widely used to diverse the initial

population with individuals of various depths, lengths and shapes.

2.3.2.4 Selection Methods

Imitating the natural selection process, good individuals are more likely to
be chosen to generate new individuals. Two popular selection methods are
the proportional selection (or roulette wheel) and the tournament selection.
In the proportional selection, individuals are randomly selected based on the
probability determined by their fitness. One disadvantage of this method is
that individuals with small fitness may not be selected. However, they might
contain good building blocks, which may form better solutions. To solve this
problem, the tournament selection randomly samples a number of individuals
based on the tournament size, and then selects the best one from them. The
smaller the tournament size is, the higher chance the bad individuals enter

the breeding process.

2.3.2.5 Genetic Operators

GP evolves new programs by applying genetic operators such as crossover,

mutation and reproduction (elitism) to the current programs. These operators
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are applied with different probabilities defined as crossover rate, mutation
rate and reproduction rate. Beside these basic operators, GP allows users to
define new operators, which makes GP become a powerful and flexible EC
technique.

Crossover is an operator applied to two selected individuals (parent trees).
The most common form of crossover is subtree crossover [124]. In each parent
tree, a random node is chosen as the crossover point. The two subtrees rooted
at these two points will be exchanged to form two new trees. If two selected
crossover points are leave nodes, crossover may not create significant new
trees. To avoid this problem, Koza [124] recommended to use a probability of
90% to choose internal nodes and 10% for leaf nodes.

Mutation is used to generate a new tree by changing a chosen parent at
a random node. Two popular types of mutation are the subtree mutation
and the point mutation. While the former replaces the subtree rooted at
the chosen node with a newly generated tree, the latter replaces the chosen
node with an equivalent node from either function or terminal set. The main
difference between these two methods is that the latter preserves the shape
of the parent tree.

Reproduction simply copies the individual selected by the selection method
(e.g. tournament) to the new population. Elitism is a special case of repro-
duction where only the best individuals are copied. In this way, GP ensures

that the best individuals will not be lost through the evolutionary process.

2.4 Related Work

Feature manipulation is a topic with a long research history. Providing a
full survey of this field is out of the scope of this thesis. This section will
review typical approaches to feature selection and construction, especially
on high-dimensional data, using either EC or conventional techniques. Some
of the methods described in this section will be used to compared with the

newly proposed methods in this thesis.
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2.4.1 Feature Selection Using Conventional Tech-

niques

This section introduces the conventional feature selection methods which
can be divided into subsections of wrapper, filter and embedded approaches.
While the embedded approaches follow their own ways to search and evaluate
features, filter and wrapper approaches can use the same search strategies to
create feature subsets. Therefore, in order to have a concise review, wrapper
and filter methods will be presented together in different search strategies.

Finally, feature selection via discretisation is introduced.

2.4.1.1 Sequential Search Based Feature Selection

Although exhaustive search such as in FOCUS [10] can definitely find a global
optimal feature subset, its high computational cost makes it inapplicable even
to datasets with tens of features. Sequential search is a popular heuristic,
which uses a greedy technique to speed up the search process with the risk of
loosening the optimality guarantee.

Two typical sequential methods are sequential forward selection (SFS)
[240] and sequential backward selection (SBS) [153]. SFS starts with an empty
feature subset, then gradually adds features until the classification accuracy is
not improved. At each iteration, it chooses the feature that can produce the
best performance when combined with the selected feature subset. Using a
similar principle, SBS starts with a full set of features and gradually removes
features until the classification accuracy is not improved. The backward
manner enables SBS to better handle feature interaction than SFS. However,
in terms of computation time, SFS is much faster than SBS. Therefore, SF'S
become a popular technique used in many feature selection methods. Not
only used in wrapper methods with KNN as in [240], or with neural network
as in [152], SFS was also used in filter methods such as SetCover [56] where
consistency is used to evaluate the feature subset. Features are gradually

added until the inconsistency measure is smaller than a predefined threshold.
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Using a greedy hill-climbing search strategy to consider one feature at
a time, both forward and backward selection approaches suffer from the so-
called “nesting effect” because a feature which is selected or removed cannot
be removed or selected at a later stage. This is the reason why sequential
search based feature selection methods failed to find the optimal solution,
such as forward-based feature selection methods in SetCover [50] failed to find
the optimal solution for the CorrAL dataset, which has four relevant features
and one feature that is 75% correlated to the class. Although this correlated

feature is not relevant, it is always selected by SFS as the first feature.

To avoid this “nesting effect”, “plus-I-take-away-r” [219] applies SFS [
times and then SBS r times. However, it is hard to determine appropriate
values for [ and r. Therefore, Pudil et al. [193] proposed dynamic forward
and backtracking steps in two corresponding methods: sequential backward
floating selection(SBFS) and sequential forward floating selection (SFFS).
These floating search methods are claimed to be better than the static

sequential methods, but they are still prone to getting stuck in local optima
[265].

Instead of using hill-climbing search, correlation based feature selection
(CFS) [91] uses best-first search strategy so that it can back track to explore
the next best unexpanded subset. Correlation-based measure was used to
bias towards feature subset that contains features that are highly correlated
to the class (relevant) and uncorrelated to each other (non-redundant). The
results showed that CFS can significantly reduce the number of features while
maintaining or improving the performance of KNN, NB and DT. However,
although best-first search can explore the entire search space to obtain the
optimal solution, CFS is still trapped in local optima [32] when facing such
class-correlated features as in the CorAL dataset, because its evaluation
method prefers subsets with more features that are highly correlated to the

class.

Derived from SFS, linear forward selection (LFS) [90] restricts the number

of features to consider at each step. Therefore, LFS is computationally
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less expensive than SFS while maintaining comparable accuracy of selected
features. However, LF'S starts with ranking features individually, which limits

LFS performance in problems where complex feature interaction exists.

2.4.1.2 Feature Ranking / Feature Weighting

Although sequential search is more efficient than exhaustive search, applying
it to high-dimensional data is still computationally expensive. Feature ranking
or feature weighting is probably the most scalable approach to feature selection
on these datasets. In these methods, features are individually ranked based
on their degrees of relevance measured by a predefined measure. Then a
predefined number of top-ranked features are used to form the final subset.

Many feature ranking methods were proposed in the literature using
different measures to rank features such as mutual information, gain ratio,
symmetric uncertainty, distance, t-Test, ANOVA and Chi-square. Readers are
referred to [28, 32, , , | for a more comprehensive review. Among
these methods, Relief [118] and its extension, ReliefF [122], are popular
methods that use distance measures to evaluate the degree of feature relevance.
In each iteration, ReliefF randomly samples an instance from the training set,
determines its two nearest instances of the same and opposite class, which
are called the “near-hit” and the “near-miss”, respectively. The weight of
each feature is updated based on the difference between the selected instance
and its near-hit and near-miss. ReliefF is an efficient method with linear
complexity to the number of features and samples, noise-tolerant, and can
handle a certain level of feature interaction [199, 233]. Readers are referred
to [232] for an expansive review of ReliefF-based algorithms.

In general, feature ranking methods are computationally efficient. They
work on the assumption that features are independently relevant to the target
concept. However, this assumption may not be hold since a feature that is
not useful by itself can become useful with others [91]. In addition, choosing
the right number of features that should be selected may require an extensive

trial and error or domain knowledge, which may be unavailable, especially
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in high-dimensional problems. Furthermore, the top-ranked features may be

redundant [57], which may degrade the performance of the learning algorithm.

2.4.1.3 Two-stage Approaches

To overcome this problem, a two-stage approach was proposed where feature
ranking is followed by a heuristic search to remove redundant features from the
selected top-ranked features. The last decades witnessed an increasing amount
of research following this approach to feature selection on high-dimensional
data [03, , , 263]

In the fast correlation-based filter method (FCBF) [262, 263], symmetrical
uncertainty (SU), a normalised version of mutual information, was used to
measure the relevance of a feature and redundancy between two features. A
predefined threshold was used to select relevant features to enter the next
stage where features that were more correlated to the selected feature than to
the class label will be removed. Experiments showed that FCBF selected the
least number of features in a much faster running time than the compared
algorithms. However, it can only work with discrete data and a threshold for
choosing relevant features had to be predefined. Similarly, FAST [216] also
used SU as a measure to remove irrelevant features in the first stage. Then,
the remaining features were clustered into the different minimum spanning
trees, which were then partitioned so that each tree contained only redundant
features. The best feature in each tree was chosen to form the final subset.
The author reported that FAST outperformed the compared methods in terms
of classification accuracy, number of selected features, and running time on
some datasets.

Minimum redundancy and maximum relevance (mRMR) [63] was also a
two-stage feature selection method. While relevance measure was based on
F-test for multi-class problems or t-test for binary-class problems, redundancy
measure was based on correlation coefficient for continuous data or mutual
information for discrete data. The proposed two-stage methods obtained

better feature subsets than using feature ranking only. Similarly, feature
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dispersion was used in the first stage to rank features in [72]. The top d
features are examined in the second stage to eliminate redundant features that
had absolute cosine with another feature higher than a predefined threshold.
The results showed that the proposed method achieved better performance

than the compared methods on some datasets.

Two-stage approaches also provide a natural framework for implementing
a hybrid method where filter and wrapper can be used in one or both stages.
In [243], the filter method first used an unconditional mixture model to assess
the discriminating potential of each feature, then information gain to rank
features. Finally, Markov blanket filtering was used to choose feature subsets
which were evaluated using Gaussian, logistic regression or KNN as the
wrapper method. Results on one dataset showed that the proposed method
improved the performance of the learning algorithms. Similarly in the BIRS
method proposed in [202], features were ranked based on a learning algorithm
(wrapper BIRS), or SU (filter BIRS). In the second stage, the best feature
was selected and subsequent features will be added if the resulting subset
significantly improves the classification performance of the learning algorithm.
Results showed that BIRS obtained a similar classification performance as
the compared methods with small feature subsets. Similar approaches can

also be found in [76, 100].

In general, two-stage methods usually start with ranking features, then
scanning forward to eliminate redundant features using some measure to
detect redundancy between pairs of features. With this setting, these methods
usually fail to identify multiple feature interactions and remove class-correlated
features [203, 271]. To avoid this issue, INTERACT [268] was proposed to
remove features from the end of the list if the inconsistency rate difference
between with and without using the feature is smaller than a predefined
threshold. By using backward elimination, INTERACT was able to take
feature interactions into account, obtaining similar or better classification
performance than FCBF [262], CFS [94], ReliefF [118], and FOCUS [16] with

smaller feature subsets. However, INTERACT may suffer from noisy data.
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2.4.1.4 Embedded Approaches

Some classification algorithms implicitly perform feature selection while learn-
ing a model. Thanks to this ability, embedded feature selection methods have
been proposed, e.g. SVM (SVM-RFE) [92], logistic regression (Lasso) [227],
neural network [23], random forests [2412], and decision tree [32].

Following the backward elimination approach, SVM-RFE [92] iteratively
ranked features based on the weights returned by SVM and removed the
worst one until reaching a predefined number of features. Results on two gene
expression datasets showed that SVM-RFE obtained significant improvement
over the baseline method. However, clean data without outliers played an
essential role in the performance of SVM-RFE. Different approaches have
been proposed to improve the performance of SVM-based feature ranking
methods [151, , ], especially on high-dimensional data. However, they
still require users to set the number of features that should be selected.

Another popular family of embedded feature selection methods developed
based on sparse logistic regression models was first proposed in Lasso [227]
and followed by many methods including [224, , ]. By simultaneously
minimising the residual sum of square and the sum of the absolute values of
the coefficients, these methods obtained both regularisation and feature selec-
tion. Results of these methods have shown their effectiveness and efficiency;,
especially on high-dimensional data. However, they often have assumptions
about the probability distribution of the data. Readers are referred to [35]

for a comprehensive study of this approach.

2.4.1.5 Feature Selection Via Discretisation

Discretisation is a preprocessing technique which aims to find a discrete
representation of the data so that it contains enough information for the
learning task while eliminating minor fluctuations or noise. Thanks to this
characteristic, feature selection via discretisation has been proposed to select

features based on the result of the discretisation process [142, 105].
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Chi2 [112] is one of the first methods proposing feature selection via
discretisation. It is a bottom-up discretisation method starting from intervals
with only one feature value. Then adjacent intervals with the lowest x?
test result will be merged recursively until x? values of all pairs exceed
a threshold. This threshold is determined by attempting to maintain a
predefined consistency level of the data. By loosening this consistency level,
Chi2 can come up with features that have only one interval, which can be
removed for feature selection. Results on two synthetic datasets showed that
Chi2 effectively discretised relevant features and removed all noisy features.
However, it is hard to predefine the inconsistency rate since it may cause
inaccuracy to the discretisation process [226]. Modified Chi2 [220] is a

completely automatic discretisation method that addresses the drawbacks of
Chi2.

Another approach to feature selection via discretisation is applying feature
ranking based on some measures calculated during the discretisation process.
Then, a number of top-ranked features will be selected. An example of
this approach is PEAR [105], which ranks features based on the number of
cut-points. A smaller number of cut-points indicates a better feature. The top-
ranked features are selected to form the final subset. Results showed that it has
similar performance as the original feature set and better than Relief. However,
it is difficult to choose appropriate parameters used in the discretisation
process. Similarly, in [71], features are discretised using Lloyd Max algorithm
[147]. The ratio of the original feature variance to the number of bits used
to encode the discrete feature is used to rank features. Results showed that
the proposed method obtains a similar or better classification performance as
other discretisation methods. However, the number of features that should be
selected from the ranked list is still an issue, especially for high-dimensional
problems. In contrast, feature selection using EC techniques such as PSO and
GA can automatically determine the number of features to select. The next
section reviews different approaches to using PSO and other EC techniques

for feature selection.
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2.4.2 Feature Selection Using PSO

Generally, when a continuous PSO algorithm is applied to feature selection
problems, a particle in the swarm is formed by a vector of N real numbers,
where N is the total number of available features. In order to determine
whether a feature will be selected or not, a threshold is needed to determine
the selection of a feature. In binary PSO (BPSO), the representation of a
particle is an N-bit binary string where “1” indicates that the corresponding
feature is selected and “0” means not. Both PSO and BPSO have been
proposed as wrapper, filter or hybrid (i.e. combination of wrapper and filter)
feature selection methods. As a general search technique, PSO cannot be
easily used for embedded feature selection. The following subsections will

review wrapper, filter and hybrid approaches to PSO for feature selection.

2.4.2.1 PSO Based Wrapper Feature Selection

Many PSO based wrapper feature selection methods have been proposed in
the literature using different learning algorithms such as SVM [13, 19], KNN
[50, 51, 259, 258, 266] and AdaBoost [163]. For example, Azevedo et al. [19]
proposed a wrapper feature selection algorithm using PSO+SVM for personal
identification in a keystroke dynamic system. Experiments showed that the
proposed approach produced better performance than a GA+SVM regarding
the classification error, processing time and the feature reduction rate.

As a relatively new EC technique, PSO cannot avoid having some disad-
vantages. Its high possibility to get stuck in local optima can be a typical
example. One strategy to help PSO jump out of local optima is to reset gbest
or particles when the gbest fitness is identical after a predefined number of
iterations [50, 51, ]. A new gbest is created by using a Boolean operator
to YAND’ each bit of the pbest of all particles [258]. The proposed method
has shown to achieve higher classification accuracy with fewer features than
GA and BPSO. Similarly, Chuang et al. [50] reset gbest to zero which is

equivalent to an empty subset. Experiments on gene expression datasets
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showed that this method effectively reduced the number of features and
acchieved a higher classification accuracy than the method proposed in [25§]
in most cases. In [51], when PSO got stuck, 10% of the worst particles were
forced to extreme positions (either all Os or all 1s randomly). The reported
results were better than deterministic algorithms such as SFS, PTA, and
SFF'S, and other stochastic algorithms including standard BPSO, simple GA
and hybrid GAs on all datasets.

Enhancing the particle velocity and position updating mechanism is an-
other way to improve PSO’s search performance. Yang et al. [259] proposed
to dynamically adjust inertia weight w using a logistic map or a tent map.
Experiments showed that the proposed methods produced slightly higher
classification accuracy than other methods, including SF'S, SFF'S, plus and
take away, a sequential genetic algorithm (SGA) and different hybrid genetic
algorithms (HGAs). Fitness was also used to dynamically set the value
of inertia weight in [29]. In [161], “speed” was used to replace velocity in
updating particles’ positions to increase the probability of not choosing a
feature. In this way, PSO was able to find much smaller feature subsets
than [50] and other compared methods. However, classification performance
was degraded in cases where a higher number of features might be needed
to obtain a good prediction. In a BPSO wrapper feature selection method
using SVM (BPSO+SVM) [13], particles were moved by applying a three-
parent mask-based crossover operator involving the current position, pbest
and gbest. Compared with GA+SVM, BPSO+SVM performed slightly better
with smaller feature subsets. In [231], a new position updating mechanism
was proposed. Features were selected according to not only their independent
likelihood calculated by BPSO, but also their contribution to the subset of
features already selected. Experimental results indicated that the proposed

method outperformed tabu search and scatter search algorithms.

Reducing the PSO search space by eliminating redundant features was
also proposed to improve PSO performance in feature selection. Lane et

al. roposed a new mechanism to update position in BPSO. A
) prop p p
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statistical clustering method was first used to group similar features into the
same cluster. Then, during the evolutionary process, only one [1258] or some
[129] features with the highest probability (i.e. velocity) in each cluster were
selected. Nguyen et al. [178, ] proposed a new representation where the
dimensionality of each particle was set to the number of clusters produced
by statistical clustering. Each position represents the probability to choose
the feature in the corresponding cluster. In [179], local search is applied to
gbest to limit the number of features selected from each cluster. Results of
these methods showed that the proposed methods can select a smaller number
of features to achieve similar or better classification performance than all
features and the compared methods. However, it is not easy to choose an

appropriate number of features that should be selected from each cluster.

Fitness function plays an important role in guiding particles to find better
feature subsets. Therefore, aggregating fitness function was proposed to
simultaneously maximise the classification accuracy and minimise the number
of features using different weights to balance between the two objectives
[13, |. However, determining an optimal weight in advance is not a
trivial task. Therefore, a multi-objective approach using PSO was proposed
for feature selection [252] to solve this problem. In [252], two methods
using the non-dominated sorting concept (NSPSOFS) and the crowding,
mutation and dominance concept (CMDPSOFS) were proposed to evolve
non-dominated solutions for feature selection in classification. The results
showed that both algorithms achieved more and better solutions than LF'S,
GSBS, the standard PSO, [250], and the three well-known evolutionary
multi-objective algorithms, NSGAII, SPEA2, and PAES on 12 benchmark
datasets. Furthermore, comparison between continuous PSO and binary
PSO for multi-objective feature selection conducted in [253] showed that
the continuous representation generally achieved better performance than its

binary counterpart.

A good initialisation procedure is also critical in improving PSO perfor-

mance [13]. Xue et al. [251, 255] proposed three mechanisms to initialise
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particles in PSO for feature selection including small (roughly 10% of features
selected), large (more than 50% of features selected), and a mix of the two.
Among the three methods, the mixed initialisation gave the best results with
much smaller subsets and better or at least similar accuracy as the standard
PSO and the aggregative fitness approach [250]. An opposition-based ini-
tialisation method was proposed in [29] to reduce the distance between the
optimal solution and the initial population. Each random initial particle will
be compared with its opposite particle. Only the winner will belong to the

initial population.

Since PSO encodes a feature subset in a vector representation, which is
similar to a chromosome in GA, different strategies to improve PSO perfor-
mance have been inspired from GA. For example, in [I77], a fitness-based
roulette wheel was used to choose pairs of particles to perform a uniform
crossover operator as in GA. The better offspring will replace its parent.
Mutation is also proposed to mutate gbest when it does not improve for a
number of iterations. The results on 8 datasets with 13 to 649 features showed
that crossover and mutation operators help PSO achieve better performance
than the compared PSO variants. However, a uniform crossover may not be
effective for high-dimensional data. A new crossover operator was proposed
in [47] using a predefined crossover weight to calculate position and velocity
of the descendent particles based on their parents’ positions and velocities.
In [159], a new strategy was proposed to update gbest using replaceable and

non-replaceable memories to maintain PSO diversity.

Enabling particles to learn from randomly selected competitors instead of
gbest and pbest is another strategy to maintain the diversity of the swarm
in a large search space. In competitive swarm optimisation (CSO) [15], the
whole swarm is divided into pairs of particles in which the loser will learn from
the winner particle. To reduce the high-computational cost of a CSO-based
wrapper approach to FS; in [30], the fitness of all evaluated solutions were
archived to be looked up later. The proposed method has shown to be efficient

and effective. However, the lookup table may not maintain its efficiency when
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each solution comprises tens of thousands of features.

Some wrapper methods not only used PSO for feature selection but also
employed PSO to optimize parameters for the classification algorithm used
in evaluation function. Lin et al. [138] proposed a wrapper feature selection
approach (PSO+SVM), which simultaneously determined the parameters and
picked a subset of features using continuous PSO. Experiments demonstrated
that the classification accuracy of PSO+SVM outperformed that of a grid
search, a newton SVM and a lagrangian SVM. A similar result was seen in
[102] where the same approach was proposed for BPSO+SVM. PSO was also
used in [163] to simultaneously pick the best feature subset and determine
the decision thresholds for the AdaBoost classifier. Experimental results
showed that the proposed method could be trained in a much shorter time
and improve the performance of feature selection.

In general, most of the PSO based wrapper methods focussed on improving
PSO search mechanism which is quite simple and flexible. Therefore, a large
number of new strategies have been integrated into PSO based wrapper

methods, resulting in a tremendous growth of this approach in the literature

[256].

2.4.2.2 PSO Based Filter Feature Selection

PSO based filter approaches also gained attention from researchers. However,
since these methods focussed on applying different measures to evaluate feature
subsets, the number of filter methods is significantly smaller than wrapper

methods. Similar to conventional methods, PSO based filter methods also

used different measures to evaluate features, e.g. rough set [104, |, fuzzy
set [12], fuzzy consistency [13], mutual information, and entropy [39, 219].
Wang et al. [238] proposed a BPSO based filter approach to feature

selection using rough set theory. The fitness function combined the degree of
classes dependent on features (calculated using rough sets theory) and the
proportion of the selected features. Results showed that the improved BPSO

was computationally less expensive than a GA using rough sets in terms of
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both memory and running time. However, the classification performance of
the feature subsets was only tested on the LEM2, which is a rule induction

algorithm that works based on rough set.

Fuzzy sets were utilised in [12] to build a BPSO based filter algorithm.
Feature evaluation index [185] was used in the fitness function to minimise
intraclass ambiguity and maximise interclass ambiguity. Experiments illus-
trated that the proposed BPSO performed better than GA did. The same
author also proposed fuzzy consistency [13] as evaluation function that can
also be used for continuous data. The proposed method was shown to obtain
a smaller subset in a shorter time than a rough set approach. However, it is
important to set appropriate thresholds for membership functions, which is

not a trivial task.

Using information theory in fitness functions, Cervante et al. [39] devel-
oped two BPSO filter methods. Both algorithms used an aggregate fitness
function combining the relevance level and the redundancy level with different
weights. The relevance level and the redundancy level are measured by using
mutual information in the first method and entropy in the second method.
The results showed that the first method evolved smaller subsets while the
second one produced better classification accuracy. However, the classification
performance using the feature subsets evolved by both algorithms was just as
good as using all the features in three out of four datasets. This confirms one
of the drawbacks of filter approaches. These measures were further explored in
[249] in a multi-objective approach and showed their potentials in improving

the performance of DT classifiers.

A filter approach to feature selection using PSO was introduced by Guan
et al. [87] for microarray data. Two informativeness metrics constructed based
on ANOVA statistics were used to evaluate feature subsets. The results on
two binary-class datasets were compared with six other methods. Although
the proposed method always evolved the smallest subsets, it only achieved

the best accuracy on one dataset.
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2.4.2.3 PSO Based Hybrid Feature Selection

Recently, hybrid approaches combining filter and wrapper methods in two
stages have been used for high-dimensional datasets as a way to address
the limitations of both models. In [270], F-statistic was first used to rank
features. The SVM accuracy from five-fold cross-validation was used to choose
from a predefined set the best number of features that should enter to the
second stage, where two wrapper methods were applied using either SVM
or fuzzy KNN. One is the maximum relevance BPSO (MRBPSO) for class
independent classification and the other one is class dependent multi-class
classification (CDMC). Experiments on 8 gene expression datasets showed
that both can improve the classification performance of SVM and fuzzy KNN
with small numbers of features. However, the computational time was very
high, especially for the class dependent method. Similarly, a quartile based
preprocessing was applied in [25] to eliminate irrelevant features in the first
stage. Remaining features are further selected by a binary PSO algorithm,
which uses hamming distance as a proximity measure in the velocity updating
formula. Results on three binary gene expression datasets showed that the
proposed method outperformed the compared ones. However, its application
to larger datasets with a higher number of classes may be hindered by its
memory requirement.

Feature clustering was also proposed in the first stage to reduce feature
redundancy before applying PSO. In [201], k-means was used to group features
into k clusters. Then, signal-to-noise ratio score was used to select the best
feature from each cluster to transfer into the second stage for PSO to search
for the optimal subset. The results showed that with a much smaller size, the
selected feature subset helped SVM, KNN and Probabilistic Neural Network
achieved higher accuracy than using all features. However, the different
setting values of k£ in k-means for different datasets might require some expert
knowledge about microarray data.

Another hybrid approach using rough set theory was introduced in [1] to

select reducts (i.e. feature subsets) in the first stage to be entered into PSO
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for the second stage, where PSO used SVM to evaluate the particles. Feature
subsets evolved by the proposed algorithm achieved higher accuracy and had

smaller feature subsets than reducts chosen by the rough set approach only.

Recently, Jain et al. [106] used the feature subset returned by CFS [94]
as an input of the second stage where BPSO combined with NB to further
reduce the number of features. During the evolutionary process, if gbest does
not change after a fixed number of iterations, it is reset based on the majority
voting of all pbest for each dimension. Experiments on 11 gene expression
data have shown the superior performance of the proposed method when
compared with seven traditional and EC-based methods. However, feature
selection bias exists since the whole dataset is used to evaluate features in
the fitness function of BPSO 2.2.3.1. This problem also occurs in another
recent PSO-based FS method [191] where SVM was applied on the whole
dataset to rank features according to the returned absolute weight vector.
The top 50 features were put into a recursive PSO scheme to further select a
smaller feature subset. In each iteration, features that were not selected in
gbest would be removed and a new PSO was called on the reduced feature
set. This recursive process was continued until no more features was removed

or the accuracy of gbest was degraded.

Instead of conducting filter and wrapper methods in two separate stages
to reduce the PSO search space as in the above methods, some methods
integrated filter and wrapper measures in a single stage to directly enhance
the performance of PSO. For example, in a wrapper method using PSO with
ID3 [116], mutual information was used to score the relevance and redundancy
of a feature within a feature subset. This score was then added to the velocity
of the particle to give features with a higher score a higher chance to be

selected.

In a PSO based wrapper method [179], a local search using mutual
information was applied to gbest to remove redundant features. In contrast,
a PSO based filter method [35] used classification accuracy to decide if a

new pbest should be updated or not. Results showed that the proposed
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method achieved higher classification accuracy than a pure filter method.
However, results from different combinations of filter and wrapper evaluations
also showed that the more filter evaluations it used, the worse classification
performance and the larger feature subsets it obtained [35]. Therefore, how
to combine filter and wrapper approaches to synthesize their strengths while

limiting their drawbacks is still challenging.

2.4.3 Feature Selection Using Other EC Methods

Not only PSO and GP, many other EC techniques have been applied to
dimensionality reduction problems such as genetic algorithms (GAs), and
ant colony optimisation (ACQO). The rest of this section reviews some typical

methods of these two techniques that have been used in feature selection.

2.4.3.1 GA-Based Feature Selection

Among EC techniques, genetic algorithm (GA) is probably the first popular
EC technique that has been applied to feature selection. A large number
of GA-based feature selection methods have been proposed in the last ten
years [256]. In GA feature selection methods, candidate feature subsets are
represented as binary strings in which “1” or “0” represents the selected or
not selected feature, respectively.

Filter methods were also proposed using different measures such as con-
sistency rate [133], fuzzy set [11], distance measure [135], ranking evaluation
function [51], and rough set theory [24]. In [11], Chakraborty used fuzzy set
to evaluate feature subsets. The feature subset having a minimum intraclass
ambiguity and a maximum interclass ambiguity is considered as the best
feature subset. Experiments on 2 datasets with 4 and 60 features showed
that the proposed method was robust. However, the performance of the
proposed method was inferior to the BPSO based feature selection using
the same fitness function [12] proposed by the same authors in terms of

classification accuracy, feature subset size and computational time. Based on
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rough set theory, Banerjee et al [24] proposed a filter-based feature selection
for gene expression data. To reduce the number of redundant features, several
preprocessing steps were performed to enable faster convergence and reduce
the computational complexity. A rough set theory was used to generate
reducts that represented the minimal sets of non-redundant features capable
of discerning between all objects. Evolved feature subsets of three datasets

were very small and significantly improved the classification performance of
KNN classifier.

Many GA-based wrapper feature selection methods were also proposed
using different learning algorithms such as KNN [236], NB [54], SVMs [83, 103,
, 271], neural networks [34, 97, 113, 182], and DT [239]. Since the learning
algorithm is considered as a black-box in wrapper approaches, enhancing GA
performance usually focused on improving its search mechanism, proposing

new representation, or using aggregative functions.

Local search is a popular approach to balancing the global and local
search in GAs [103, 113, 271]. In [103], Huang et al. proposed a local search
operation called stepwise elimination in which features are ranked using an
improved formula to compute the conditional mutual information between
the candidate feature and the classes. The proposed fitness function used not
only the SVM error rate but also the mutual information return from the local
search. Experiments showed that the two approaches were well incorporated
to achieve a competitive accuracy and a smaller number of features in many
datasets. However, the proposed method is quite complex with a very high
computational time. Zhu et al. [271] combined a GA with a local search in
a Markov blanket-embedded GA for gene selection. In each generation, the
best individual was input to a local search process in which a symmetrical
uncertainty measure was used to calculate the correlation between selected
features. In the local search, operator Add or Del was randomly applied to
add a relevant feature or to remove redundant features, respectively. C4.5
and SVM were used in fitness function for synthetic datasets and microarray

datasets, respectively. The chromosomes were constrained to 50 for binary-



68 CHAPTER 2. LITERATURE REVIEW

class problems and 150 for multi-class problems. Results showed that the

proposed method outperformed the compared methods in a reasonable time.

GA-based feature selection methods using a multi-objective approach to
minimise both the error rate and the number of features is also popular in GAs
[256]. For instance, Oliveira et al. [132] proposed a GA-based wrapper feature
selection method for handwritten digit recognition. In [239], a multi-objective
approach was proposed based on different classes since a subset that was

irrelevant to one class might be relevant to another one.

To improve the performance of GAs on high-dimensional data, Hong et al.
[97] proposed a new representation of chromosomes that are binary strings
presenting the indices of the features. The chromosome length is fixed to be
a predefined number of features that should be selected. Furthermore, to
maintain the diversity of the population, this method used an explicit fitness
sharing which degraded the fitness of individuals in densely populated regions.
A neural network was used in the fitness function. Experiments on three gene
expression data showed that the proposed method found better solutions in a
shorter time than the standard GA. However, the computational cost was
still high and some domain knowledge was required to set an appropriate

number of features that should be selected for each dataset.

Combining different evolutionary algorithms was also proposed to obtain
better feature subsets. A multi-stage feature selection method was proposed
in [81] called SAGA which performed simulated annealing (SA), then GA
and then 1-bit mutation local search to find the best subset. Generalized
regression neural network is used as a classifier to evaluate an individual subset
which is 100-bit genome. Experiments on synthetic, benchmark datasets with
ten thousand features and a real-world dataset with 285 features. Results
showed that SAGA achieved better performance in terms of classification
accuracy and feature subset size than the other compared methods. However,
the running time was still very high. Similarly, based on the fact that GA and
PSO have the same representation in feature selection, a hybrid method was

proposed in [$3] where genetic operators and particle updating mechanism
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are combined.

In [16] GA was proposed for feature selection via feature clustering. GA
was used to evolve the cluster centre for a predefined number of feature groups.
Then, features in the same cluster were ranked based on its distance to the
centre. The top-ranked features in each cluster were selected to create the
final subset.

Utilising traditional feature selection methods to narrow the search space
is also an effective approach. Tan et al. [223] proposed a framework where
features are ranked by different feature selection methods. Some top-ranked
features from each method are merged into a pool where a GA-based wrapper

method using SVM was applied to choose the final feature subset.

2.4.3.2 ACO-Based Feature Selection

When using ant colony optimisation (ACO) for feature selection, each feature
is considered as a node in a fully connected graph, and paths between nodes
represent the choices for next features. Therefore, the search for the optimal
subset is an ant traversal through the graph to find a minimal path that
satisfies the traversal stopping criterion.

In [111], a wrapper feature selection method based on ACO was proposed
for a face recognition system. In this method, KNN classification performance
and the number of selected features are used as heuristic information for ACO.
Results showed that the proposed method performed consistently superior to
the GA-based and other ACO-based feature selection methods. However, the
computational time is still very high. The same approach was introduced in
[3] for text categorisation. Experiments on the Reuters-21578 dataset showed
that the proposed method was superior to GA and other statistical methods
including information gain and Chi-square.

Jensen et al. [110] proposed an ACO filter method using a fuzzy-rough set
dependency measure as the ant traversal stopping criterion. The proposed
method was compared with other five benchmark techniques. Results showed

that the proposed method and a simulated annealing based method outper-
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formed the other three techniques. However, no comparison with other EC
methods such as PSO or GAs was conducted. In [157], an ACO-based feature
selection method using rough set theory was applied to find the core feature
set which was the smallest set of features that could not be removed. Then,
each ant performed forward selection to expand this core set until the original
positive region was reached. Experiments showed that the proposed method
is promising.

In general, ACO has shown promise in feature selection. However, with
a graph based representation, ACO does not scale well when the number of

features or nodes in the graph increases to thousands or tens of thousands.

2.4.3.3 GP Based Feature Selection

Although GP is well-known in feature construction, some studies [0, , ,

] have proposed GP for feature selection thanks to its intrinsic characteristic
of choosing features to construct new features. In [172], a binary relevance
measure was proposed to evaluate the single-tree GP individuals. Features
appearing on a GP tree that had its fitness better than a predefined threshold
were used to form a feature subset. For each subset size, the best subset was
archived and accumulated over 50 independent runs. Then, the feature subset
having the highest classification accuracy will be returned. Experiments on
three datasets with tens of features showed that using the selected features
improved the performance of C4.5, NB, SVM and Bayesian networks. However,
the proposed method required a high computational time. In [173], Neshatian
et al. proposed to use GP for context-sensitive feature scoring in classification
problems. GP was used to build weak classifiers to discriminate instances
from one class to other classes. Each feature was scored by its contribution to
the fitness of the weak classifiers where it appeared. The true negative ratio
was used as the criteria to evaluate the weak classifiers. 300 independent runs
were conducted to collect 600 weak classifiers for each binary-class problem.
The effectiveness of the proposed method on datasets with tens of features

has shown by improvement of the four learning algorithms as in [172] using
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different numbers of high-ranked features. However, it may not scale with

high-dimensional data.

One of the first works proposing GP embedded approach to feature
selection on high-dimensional data was from Langdon and Buxton [130]. This
is a multiple-stage method. In each stage, 600 GP runs were used to collect
the most-selected features to enter the next stage. The last stage ran GP as
a classification algorithm. Although the obtained result on a cancer dataset
was not better than the compared method, insights of applying GP to this

dataset were presented.

A similar approach to feature selection was proposed for mass spectrometry
data by Ahmed et al. in [0]. Features selected in all the 300 best individuals
of 300 runs on each dataset was collected to feed into SVM and NB to
compare the performance of selected features with original feature sets on 8
datasets with increasing within class variability. The results showed that GP
selected features helped SVM and NB achieve better performance than using
all features. However, the number of selected features was still quite large.
Therefore, signal to noise ratio was used to rank these selected features to
further decrease the dimensionality. Another work by the same authors [3]
used GP to further improve the feature ranking performance of information
gain and Relief-F methods. One hundred top-ranked features from each
method are collected to put into GP. The frequency of their usage in the
best GP individuals of 300 runs was used as the criteria to rank features.
The results showed that the 20 top-ranked features by GP achieved better
performance than all the original features, the top 100 or 20 features ranked
by information gain and Relief-F individually. However, the computation

time is quite high to collect results from all the runs for a final feature subset.
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2.4.4 Feature Construction Using Conventional Tech-

niques

Embedded methods were one of the early approaches to feature construction.
Murthy [167] proposed an oblique decision tree (DT) induction system called
OC1 which created a new feature for each node of the DT using linear
combinations of original features. To adjust the coefficients of the linear
combinations, OC1 used deterministic hill-climbing until reaching a local
optimum, then applied random strategies to optimise the oblique split at
each DT node starting from the best axis parallel split. Experiments on
six datasets with about ten features showed that OC1 trees achieved higher
accuracy than CART-LC (another oblique DT) and C4.5 with equal or smaller
tree sizes. Similarly, XofN [209] was also based on DT. At each decision node,
it constructed a new nominal feature in the form of X —of — NV representation
which contained feature-value pairs. Experiments showed that XofN achieved

higher accuracies and simpler DTs than the compared DT methods.

Approaching to feature construction as a separate and independent pre-
processing stage, Hu et al. [101] proposed a filter method called GALA using
information gain as a measure to evaluate the constructed feature. It used two
logical operators, AND and OR, to construct new features from boolean ones.
Results on 12 UCI datasets showed that GALA significantly improved the
inductive learners on most datasets. However, GALA can generate boolean
features only. Some feature construction systems such as BACON [132] and
STAGGER [2006] can construct numeric features by using mathematical op-
erators such as multiplication and division. However, applications of these
methods to real-world problems are rather scant due to their relatively high

computational complexity [120].

Feature clustering has also long been used to construct features for text
classification problems [22, (2 ]. “Similar” features were grouped into
the same cluster that its centroid was considered as a new feature that

represents all the features in the group. These methods have shown promise in
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dimensionality reduction for text classification problems. However, predefining

an appropriate number of clusters may require some domain knowledge.

As a statistical approach, principal component analysis (PCA) [98] has
been widely used as a dimensionality reduction technique. It constructs new
features, or components, by linearly transforming the original features to a
new uncorrelated space. PCA ranks new features based on their variances
presented as eigenvalues. Top-ranked features are selected to form new
features. However, as PCA is unsupervised learning, its constructed features

may not well separate instances from different classes.

Linear Discriminant Analysis (LDA) [71] is a supervised version of PCA,
which aims to find the projection hyperplane that minimises the interclass
variance and maximises the distance between projected means of classes.
Therefore, its constructed features may have better discriminating ability
than PCA’s components but not always [151]. However, the number of
features LDA can construct is limited by the number of classes. Furthermore,

both methods are limited to linear transformation of the original features.

Non-linear PCA (NLPCA) [208] was also proposed using auto-associate
neural network (also known as autoencoder or replicator network). It is
actually a multi-layer perception that performs an identity mapping from
input to the same output values. The constructed features are taken from the
middle layer that has a smaller number of nodes as a form of dimensionality
reduction. However, parameter estimation must be done carefully to ensure
robust approximation. Recently, deep learning [20], e.g. deep neural networks
and deep belief network, has obtained very good results in feature learning.
Examples can be seen in speech recognition, natural language processing, and
computer vision [(1]. However, large amounts of data and computational
resources are crucial to their performance. Furthermore, solutions of both
NLPCA and deep learning approaches are usually lack of intelligibility or
human readability. In contrast, GP can automatically evolve new features by
combining some of the original ones without a predefined template such as

linear or non-linear. The tree representation of GP constructed features also
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shows the importance of the original features as well as relationships between
them [211]. The next section will introduce how GP has been used in feature

construction.

2.4.5 Feature Construction Using GP

When using GP for feature construction, the terminal set comprises of random
constants and features chosen from the original features. The function set
comprises of any predefined mathematical operators that can be used to
combine the selected features. A GP individual represents a new feature
(single-tree GP) or a set of new features (multi-tree GP), resulting in single
or multiple feature construction methods, respectively. GP based feature
construction has been proposed as either filter or wrapper methods. To the
best of our knowledge, embedded approach has not been proposed in GP
based feature construction methods. Both wrapper and filter approaches will
be introduced in the following subsections.

Note that GP is not the only EC technique used for feature construction,
GA [15, 209] and PSO [55, ] have also been proposed. In [209], two
different GAs were used to separately select features and binary operators.
The operator-selected GA was nested in the fitness function of the feature-
selected GA to find an appropriate set of operators for each candidate set of
features. It has shown to have comparable results as the compared feature
construction methods. However, applying it to real-world problems may be
impractical due to its complexity. To construct feature using the selected
features by PSO, Xue et al. [257] used a local search to find the best operator
for each candidate subset. The method was shown to successfully construct
a new feature that generally improved the performance of KNN, DT and
NB. However, operators were not evolved by PSO and the computational
time was high. To address these problems, two new encoding schemes for
PSO [55] were proposed to automatically choose operators. The method ran
100 times faster while achieved similar performance as [257]. However, their

representations require more memory space than standard PSO, which can
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be an issue for high-dimensional data.

2.4.5.1 GP Based Wrapper Methods for Feature Construction

One of the first GP based wrapper methods was proposed by Raymer et al.
[198]. It aimed to improve their previous method that used a GA to evolve
weights that can transform each original features into a new one. The GA
was replaced by a GP to enable non-linear transformation for each feature.
Each GP individual is a single-tree with n subtrees, where n is the number
of original features. KNN was used to evaluate the constructed feature set.
Results on a water displacement problem with four features showed that
the proposed GP based feature construction method obtained better KNN
accuracy than a GA-based one.

Cooperative coevolution was also proposed to combine many single-tree
GP populations to construct multiple features. In [1], one GP population was
used to evolve a new feature for each original feature. Another GA population
was used for feature selection. KNN was used to evaluate the new feature
set. Similarly, [27] used n concurrent populations of single-tree individuals to
evolve n new features where n is the desired number of constructed features.
The entire new feature subset was evaluated using DT. Experiments on a
dataset with nine features showed that the proposed method constructed
better features than the standard multi-tree GP method. However, since
the number of fitness function calls was n time greater than that of GP, the
computational time of cooperative coevolution approach was significantly
longer.

Using multi-tree GP, Krawiec [125] proposed a wrapper method to con-
struct a predefined number of features (n). Each GP individual comprised of
n new features and n hidden features. Hidden features were also constructed
features but kept out of the evolutionary process to avoid losing good con-
structed features during the evolutionary process. DT was used to evaluate
each individual. Results on six datasets with less than ten features showed

that constructed features improved the classification performance of DT on
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most of them. Using hidden features also obtained close to or sometimes
better results than standard approach where all features are involved in the
evolutionary process. Smith and Bull [215, ] also proposed a wrapper
method for feature construction and selection simultaneously which used DT
to evaluate features. For an n-dimension problem, a GP individual has n
trees, each associated with a boolean variable showing if it is selected or not,
and a flag to choose among DT, KNN and NB for evaluation. The method
has shown to significantly improve classification performance on 2 out of 10
datasets with 5 to 60 features.

GP and GA were also combined in two stages of a single method for
feature construction and selection, respectively. In [231], GA was used to
select a subset of features which was then used by GP to construct new
features. The reverse order where GP was used to construct features which
were then selected by GA was also investigated in the proposed method [213].
A multi-tree GP was used to construct n new features, where n is the number
of the original features. Experiments on 10 UCI datasets showed that GAP
improved the performance of C4.5 on 8 datasets. Although C4.5 was used
in its fitness function, GAP results were robust to other classifiers including
KNN and NB. Another method which conducted both feature construction
and selection simultaneously but in a single evolutionary process was proposed
in [176]. Combined GA and GP in a single representation, each individual
contains an n — bit string for feature selection and one tree to construct one
feature. The whole set of selected and constructed features were evaluated by
KNN. Results on 10 UCI datasets showed that the proposed method either
obtained similar or significantly better accuracies than the compared methods
in almost all cases. The results from these work have demonstrated that
combination of EC techniques is a promising approach to feature manipulation.
However, on top of the high computational cost, these representations are

not suitable for problems with thousands of features.

In [9], two GP based wrapper feature construction methods, namely
GPWFC1 and GPWFC2 were proposed for high dimensional data with a
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novel approach to constructing multiple features using single-tree GP. While
GPWEFCI1 used classification accuracy of random forest (RF) classifier as
the fitness value, GPWFC2 used entropy gain of RF and the p-value of an
ANOVA test on the selected features. Results showed that GPWFC2 achieved
better generalisation ability and smaller numbers of features than GPWFCI.
However, the computational cost was quite high when adopting RF as the
learning algorithm for fitness evaluation. This is a common drawback of GP

based wrapper approaches, which can be avoided with filter methods.

2.4.5.2 GP Based Filter Methods for Feature Construction

Using information gain ratio to evaluate the constructed feature, Otero et al.
[184] proposed a GP based filter feature construction method to construct a
new continuous or boolean feature using four arithmetic operators (+,—,* and
protected division %) and two relation operators (<, >). The constructed
feature was then augmented to the original feature set. Results on four
datasets with 4 to 21 features showed that the constructed feature can
improve the performance of C4.5. However, since both C4.5 and the proposed
method are based on information gain, it is unknown whether the constructed
features will also be beneficial for other learning algorithms. This question
has been investigated in [165, | where the performance of C5, which is
a DT algorithm, was compared with two other DT algorithms, CART and
CHAID, and multilayer perceptron. Results showed that these classifiers
generally benefited from the inclusion of the constructed feature. Furthermore,
the results also showed that using the evolved feature, the learnt classifiers
outperformed the embedded approach which uses GP to induce a classifier.
Running single-tree GP program multiple times, Neshatian et al. [175]
proposed a new approach to multiple feature construction. The number of
constructed features was equal to the number of classes. Each GP run focused
on one class. Constructed features were evaluated based on the impurity
(using Shannon entropy) of the intervals which were formed by applying class

dispersion to the transformed datasets. The results indicated that constructed
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features helped DT achieved smaller error rates with much smaller sizes than
using original features in most cases. However, when combining constructed
features with original features, the performance of learnt D'Ts was worse than
using constructed features only in most cases. The method was improved
in [I71, | by adding class-wise orthogonal transformed features to GP
terminal sets. Results indicated that constructed features increased the
classification accuracy of the learnt D'Ts. However, by adding more features,
this strategy significantly increased the GP search space. Therefore, it may
not be effective and efficient for high-dimensional data.

In general, GP based filter feature construction methods are usually limited
in developing one feature at a time using single-tree GP. This may be because
they usually use univariate measures, e.g. information gain, which can only

evaluate one feature at a time.

2.5 Summary

This chapter reviewed the essential background of ML, classification, feature
selection, feature construction, and evolutionary computation techniques,
particularly PSO and GP. The related work of using conventional methods
and current evolutionary computation approaches to feature selection and
construction in this chapter showed that feature selection and construction
on high-dimensional data still faces many challenges as mentioned in Section
1.2.

Most of the conventional feature selection methods utilised deterministic
search such as sequential search which is confronted with the problem of
stagnation in local optima, especially when the number of original features is
large. Although population search in PSO can alleviate this problem, it is still
challenging for PSO to explore the huge search space of high-dimensional data
to find the optimal or near-optimal feature subset. Further improvements are
needed to enhance PSO performance on these datasets.

For feature construction, the representation of GP provides a natural
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and effective way to construct new features from the original ones. This has
been shown from the results of the existing GP based feature construction
methods. However, most of them were applied to datasets with about tens
of features. Therefore, their capabilities on high-dimensional data should be
further investigated.

Specifically, motivations of this thesis can be summarised as follows.

e The existing works have shown that the PSO global search has obtained
better results than many conventional methods and GAs. However,
they still face the problem of stagnation in local optima when applied
to high-dimensional data. A good balance between global and local
search in PSO can enhance the performance. Local search has been
combined with PSO to overcome this drawback [188]. However, this
strategy has not been investigated much in PSO based feature selection,
especially for wrapper feature selection on high-dimensional data due

to its high computational cost.

e Feature selection via discretisation has shown promise in the feature se-
lection literature. However, using the uni-variate discretisation method,
the existing feature selection via discretisation methods cannot deal
with feature interactions. On the other hand, PSO has long been used
for feature selection but never been applied to discretisation. Thanks
to its real-number vector representation and the global search ability,
PSO has a high potential in multi-variate discretisation. However, this

approach has not been investigated.

e Existing GP based methods have shown that GP has a built-in capability
to select appropriate features based on the guidance of the fitness
function. However, its performance is still degraded when confronted
with a huge search space. Therefore, effectively narrowing this search
space can enhance GP performance for feature construction on high-
dimensional data. This approach has not been investigated in GP for

feature construction.
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e Most of the existing GP based methods focused on constructing class-
independent features based on “relevant” features selected from the
whole pool of the original ones. However, not all relevant features
can distinguish instances between all classes. Some particular features
may have better ability than the others in distinguishing instances of a
particular class. Therefore, constructing class-dependent features from
the corresponding class-relevant ones may obtain better-constructed fea-
tures. However, the application of this strategy to feature construction

is still limited.

By proposing new algorithms using PSO and GP for feature selection
and feature construction, respectively, the above-mentioned issues will be
addressed in the following four chapters. Chapter 3 will develop two new local
search strategies for PSO based feature selection. Chapter 4 will introduce two
new PSO representations for feature selection via discretisation. Chapter 5 will
develop a new GP based feature construction method using feature clustering
to narrow the GP search space. Different combinations of selected and
constructed features by the proposed method are also investigated. Chapter
6 will develop a class-dependent feature construction method using GP with

a new filter-based fitness function.



PSO and Local Search Based

Feature Selection

3.1 Introduction

PSO has been applied and shown promise to feature selection [25, .
However, applying PSO to high-dimensional data still faces the problem of
stagnation in local optima due to the large search space. PSO works based
on the information sharing between particles in a swarm. By communicat-
ing the best solution that each particle has explored so far (the personal
best, i.e. pbest), each particle is able to know the best position the whole
population has found (the global best, i.e. gbest). Using this information,
each particle is driven to somewhere in around the middle of its pbest and
gbest to explore better solutions. On the other hand, this behaviour in some
extent prevents particles from fully exploiting the area surrounding their
findings, which is pbest, to obtain more refined and better solutions. Local

search has been combined with PSO to overcome this drawback [185]. An

81
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evolutionary computation algorithm when combined with local search is also
called a memetic algorithm, which has been shown to be effective in many
feature selection algorithms [271, |. However, this strategy has not been
investigated in PSO based feature selection for high-dimensional data due to

its high computational cost.

3.1.1 Chapter Goals

The goal of this chapter is to develop a new PSO and local search based
feature selection algorithm for high-dimensional classification. The proposed
method is expected to select only a small subset of features and achieve similar
or significantly better classification performance than using all features and
other compared methods. To achieve this goal, two new local search strategies
are proposed to find better solutions surrounding the new pbest location.
One uses random strategy and the other uses a correlation based measure,
resulting in two methods called PSO-RLS and PSO-CLS, respectively. For
presentation convenience, PSO-LS is used when both methods are mentioned.
A fast fitness evaluation strategy is also proposed to speed up the local search

process. Specifically, this chapter will investigate:

e Whether the feature subsets selected by PSO-LS are smaller and achieve
similar or better classification performance than the original feature

sets;

e Whether PSO-LS methods can achieve better performance than other

PSO based feature selection methods (without local search);

o Which of the two proposed local search strategies provides better results

in terms of feature subset size and classification accuracy;

e Whether PSO-LS methods obtain better performance than the tradi-

tional methods; and

e Whether the fast fitness evaluation strategy used in the local search

process helps the PSO-LS methods significantly reduce their running
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time to achieve similar or better accuracy than other PSO based feature

selection methods.

3.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 3.2 presents the
proposed PSO-LS algorithms. Section 3.3 discusses the datasets used to test
the performance of the proposed methods, the parameter settings and the
baseline methods for comparison. The results of the experiments are presented
and discussed in Section 3.4. Section 3.5 further discusses computation time,
robustness and learning capability of the proposed methods. Finally, Section

3.6 provides a summary of this chapter.

3.2 The Proposed Algorithms

The main idea of the proposed approach is to combine PSO with local search
to intensify the search in the area surrounding the best position that each
particle has visited, i.e. the pbest, with the expectation that it can explore
better solutions. The overall structure of PSO-LS can be seen in Figure 3.1
in which the added step to standard PSO are highlighted: a “local search”
on pbest. The following subsections will describe the two proposed methods
using two local search procedures and the fast fitness evaluation strategy

proposed to speed up the local search process.

3.2.1 PSO with Random Local Search: PSO-RLS

A local search mechanism is used as a complementary search of the PSO based
global search, which aims to exploit the search space around the obtained
good solutions, pbest, to find better ones. As can be seen in Figure 3.1, when
the PSO algorithm finds a better pbest for a particle, e.g. pbest is updated,
the local search is applied to refine the updated /new pbest. If a better solution
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Figure 3.1: Flowchart of PSO-LS.

is found by the local search, pbest will be further updated as the new solution.
Otherwise, pbest remains the same.

In PSO-LS, the position of each particle represents a solution, i.e. a
feature subset. Although both continuous and binary PSO have been used
for feature selection, binary PSO has potential limitations in its updating
mechanism where the new position is updated based solely on the velocity
while the position in the standard PSO is updated based on both the velocity
and current position [08]. Therefore, the continuous PSO is used here. The
representation of the particle’s position is a real-number vector with the length
equivalent to the total number of features in the dataset. Each element of the
vector corresponds to one feature and the possible value is in the range of [0, 1],
which represents the likelihood of being selected of the corresponding feature.
A threshold @ is used to determine the selection of the feature. A feature
is selected if its corresponding position value is larger than 6; otherwise, it
is not selected. To perform local search, the pbest, which is a real-number
vector, is converted into a binary vector to show a feature subset in which

“1”s represent the corresponding feature being selected.
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The aim of the local search is to explore the area surrounding the current
pbest solutions. Therefore, it will generate and examine candidate solutions
that are slightly different from the current pbest. To ensure that the local
search only focuses on the near surroundings of the pbest, “similar” candidate
solutions is generated by randomly flipping a small proportion of the binary
vector. In other words, the local search is a flipping mechanism, which flips
the values in the binary vector from “0” to “1” or from “1” to “0”, i.e. a
feature from being “not selected” to “selected” or from being “selected” to “not
selected”. Since this work targets on high-dimensional data with thousands or
tens of thousands of features, only 2% of the bits/dimensions in this binary
vector are flipped in each step of the local search. Algorithm 1 shows the
pseudo-code of the random local search which outputs a better pbest based
on a given pbest, a percentage (0) of features to flip and a maximum number
(B) of flipping tries. While § shows how different the new pbest compared to
the current pbest, [ specifies how long the local search should run. Based on
0, m number of features will be randomly picked to flip. If the flipped pbest
is better than the current pbest, pbest is updated. The flipping is repeated

for  times.

3.2.1.1 Fitness Function

Although filter methods are said to be faster than wrappers, their performance
is usually inferior to wrappers in terms of classification accuracy. Therefore,
in this study, PSO-RLS is proposed as a wrapper method, where any learning
algorithm can be used to evaluate the classification performance of the
candidate solution. In this work, K-Nearest Neighbours (KNN) is used as it
is simple, fast and non-parametric.

Since many datasets used in the experiment are unbalanced, a balanced
classification accuracy [187] as shown in Equation (3.1) is used to guide the

search.
‘TP,
i=1 |Sil

1
balanced accuracy = — (3.1)
c
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Algorithm 1: Random local search
Input :pbest,d, s
Output : better pbest

=

begin

2 fort=1to 8 do
3 m < nbr_original__feature x §;
4 features_to_ flip < Randomly pick m features in pbest;
5 pbest’ < Apply features_to_ flip on pbest ;
6 Evaluate pbest’ using the fast fitness evaluation described in Section 3.2.3;
7 if pbest’ is better than pbest then
8 pbest < pbest’ ;
9 end
10 end
11 return pbest;
12 end

where ¢ is the number of classes of the problem, T'P; is the number of correctly
identified instances in class ¢ and |S;] is the total number of instances in class
1. Since there is no bias to any specific class, the weight here is set equally to
1/c.

To evaluate a candidate solution, the fitness function transforms the
training set based on the selected features. It then applies KNN with LOOCV
to the transformed training set to calculate the average accuracy which will

be used as the fitness of the corresponding candidate solution.

3.2.2 PSO with Correlation Based Local Search: PSO-
CLS

Using a randomly flipping mechanism, the local search in PSO-RLS may have
a low chance of reaching better solutions. In order to increase this chance,
the local search process should be guided in order to keep relevant features
and eliminate redundant ones. Therefore, a filter measure was proposed to

incorporate general knowledge in feature selection to identify relevant and
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redundant features. A feature is more relevant than others if it is more
correlated to the class label than other features. Similarly, if features f; and
f2 highly correlate with each other, one of them can be said to be redundant.
This means that f; can represent f; and vice versa; therefore, only one of
them should be selected.

To evaluate the correlation between two variables X and Y, a normalised
version of information gain (IG) [196] called symmetric uncertainty (SU) [192]

is used. It is defined as follows:

IG(X]Y)
SU(X,Y) = [ 50 B (Y)] (3.2)
[G(X|Y) = H(X) — H(X|Y) (3.3)

where H(X) is the entropy of X and H(X|Y") is the conditional entropy of X
given Y. The value of SU(X,Y) is in the range [0,1]. The higher the value
of SU, the higher the dependence between X and Y.

Based on Equation (3.2), the relevance of a feature f is measured using
the SU between f and the class label, which is denoted as SUq. Similarly,
SUr is used to denote the redundancy between two features f; and f5, which
is measured based on the SU between f; and fs.

The objective of this local search is to find a better pbest from each
particle by removing from the current pbest a certain percentage of redundant
features and introducing a certain percentage of relevant features. As shown
in Algorithm 2, PSO-CLS has the same input and output specification as
PSO-RLS. However, the number of features that will be considered to flip, m,
is proportional to the current pbest size (i.e. the number of selected features
in pbest) instead of the original number of features. This enables PSO-CLS to
adjust its search according to the current pbest. Lines 4-13 remove redundant
features by selecting m/2 features from current pbest to form the ones list,
sorting ones based on the descending order of the relevance measure SU¢
of each feature. Then, ones is scanned from the first feature (i.e. the most
relevant one) to remove any subsequent features that are more correlated to

the currently scanned feature than to the class label. In other words, any



88

CHAPTER 3. PSO AND LOCAL SEARCH BASED FEATURE SELECTION

Algorithm 2: Correlation based local search

Input :pbest,d, S
Output : better pbest
1 begin
2 fort=1to 8 do
3 m < pbest__subset__size X J;
a ones < Randomly pick m/2 selected features in pbest;
5 pbest’ < pbest ;
6 Sort ones in descending order of their SU¢ values calculated based on
Equation (3.2);
7 for i =1 to ones.length do
8 for j =i+ 1 to ones.length do
9 if (ones[i] and ones[j] are still in pbest’ and
SUr(onesli], ones[j]) > SUc(ones[j]) ) then
10 ‘ Remove feature ones[j] from pbest’;
11 end
12 end
13 end
14 zeros + Randomly pick m/2 non-selected features in pbest;
15 AvgSU <« Average SU¢ of all features in ones;
16 for i =1 to zeros.length do
17 if SUc(zeros[i]) > AvgSU then
18 ‘ Add feature zeros[i] to pbest’;
19 end
20 end
21 Evaluate pbest’ using the fast fitness evaluation described in Section 3.2.3;
22 if pbest’ is better than pbest then
23 pbest < pbest’ ;
24 end
25 end
26 return pbest;
27 end

feature that has its SUr with a previous feature selected in the ones list

higher than its SU¢x value is removed.

Lines 14-20 introduce more relevant features into the new pbest by ran-
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domly choosing m /2 features that are not selected in pbest to form the zeros
list. A feature in zeros will be added only if its SUq is greater than the
average SUg values of the ones list to ensure that no feature that is less
relevant than the current features on average is added. After being evaluated,
if the new pbest is better than the current pbest, the current pbest will be
updated.

3.2.2.1 Fitness Function

As with other EC methods, PSO search is guided by a fitness function.
Therefore, the fitness score assigned to different candidate solutions should
be as different as possible. However, when using solely classification accuracy
as a fitness measure, this requirement may not be satisfied, especially in
cases where the boundary margin between different classes is quite large,
many different classifiers can achieve the same 100% classification accuracy.
This scenario is likely to happen in high-dimensional data, where there may
exist many redundant features, resulting in many different feature subsets
which may obtain the same classification accuracy. Therefore, to improve the
performance of PSO-CLS, an additional measure is added to better distinguish

different candidate solutions without adding more computation effort.

A distance measure is a filter based multivariate measure that can evaluate
the feature set as a whole. It can be used to maximise the distance between
instances of different classes and minimise the distance between instances of
the same class. Furthermore, KNN also works based on a distance measure.
Therefore, a distance measure combined with KNN accuracy will not require
additional computation cost. Equation (3.4) shows a new fitness function
that combines the distance measure [12] and KNN accuracy using a weighting

coefficient ().

fitness = (a - balanced__accuracy + (1 — «) - distance) (3.4)
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where 1
distance = [ — (3.5)

MH:

min Dis(1;,1;) (3.6)

T {jli#i,class(I;)#class(1;)}
1=

S

1
Du M  {jli class class(]])} Dis(I;, I;) (3.7)

Dy, is the average distance between each instance and the nearest instance of
other classes. D, is the average distance between each instance to the farthest
instance of the same class. Dis(I;, [;) is any measure used to approximate
the distance between two instances (or vectors) I; and I;. Here the number
of matches or overlapping between two nominal vectors divided by the size
of the vectors is used to approximate the distance between two instances.
Since KNN also works based on this overlapping distance calculation, adding
this distance component to the fitness function does not increase (much) the
computation time to the evaluation process.

Although both D, and D,, are in the same range of [0,1], 1 is considered
as the best case for D, and the worst case for D,. Using the difference
Dy — D,,, Equation (3.5) maximises D, and minimises D,, in order to find
feature subsets that keep the same-class instances close together and different-
class instances far away. Since the value of (D, — D,,) ranges from -1 to 1,
coefficient —5 is used in the logistic function to scale it into the full range
[0,1] in which 0 is the worst distance and 1 is the best distance as shown in
the right plot of Figure 3.2. Note that the logistic function with coefficient
—1 shown in the left plot of Figure 3.2 does not return a value in the full
range [0,1] for an input between -1 and 1. As a result, Equation (3.4) shows

a maximisation fitness function.

3.2.3 Fast Fitness Evaluation in “Local Search”

The introduction of the local search brings a number of extra fitness evalua-

tions. In wrapper approaches, each evaluation requires a process of training
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and testing a classifier to get the classification performance as the fitness value.
Therefore, most of the computational cost is spent on the fitness evaluations.
In PSO-LS, each flipping step in the local search brings an extra calculation
of the fitness value (i.e. the classification error rate), which may cause a

significant increase in the computational cost.

To address this issue, a fast fitness evaluation strategy is proposed for
the local search, which is designed by considering the characteristics of KNN
classification algorithm and the local search. In KNN, the class label of
an unseen instance is determined according to its distance to the training
instances. The overall distance between the unseen instance and a training
instance can be calculated based on the sum of their distances in each feature.
Therefore, when adding or removing features, the overall distance value can be
calculated /updated by adding or subtracting their distances in these features
only. In PSO-RLS, each flipping step changes only a small percentage (2%)
of the total dimensions/features while 98% of them remain the same. Instead
of re-calculating the distance between an unseen instance and a training
instance, the fast fitness evaluation strategy only re-calculates the 2% of
the total features. To achieve this, at the beginning of each “local search"
run, all the distances between the unseen instance and the training instances
are calculated based on the features selected by the given pbest and stored
in a square matrix (distance[i][j]). Since this matrix is symmetric, %
distances are calculated with M instances. When a flipping step is performed,

using the distances stored in the matrix can speed up the computation of
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Flip dimensions: (2, 4, 7, 8, 10)
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Figure 3.3: An example of re-calculating instances’ distance in a local search

step.

finding the nearest neighbours of a certain instance by recalculating only 2%
of the dimensions. Similarly, PSO-CLS also has the same benefit when using
this strategy.

3.2.4 Illustration of the “Local Search”

Figure 3.3 illustrates the process of the local search and the fast fitness
evaluation process. Figure 3.3(a) shows an example of the flipping procedure,
where pbest is converted to a binary vector. Based on the randomly chosen
flipping dimensions, e.g. (2, 4, 7, 8, 10), the current pbest can be flipped to
obtain a new pbest position (flipped pbest).

Figure 3.3(b) shows an example of the fast fitness evaluation process
between two instances: I; and I;, where the overall distance is the sum
of the squared distance between [; and [; in all dimensions/features. Sup-
pose the overall distance between I; and I; according to the current pbest

(distanceli][j]) is 258, their overall distance according to the flipped pbest can
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be re-calculated by changing values in the five flipped dimensions. Features
4 and 7 are flipped from selected to not selected, so their distances will be
subtracted from 258. Meanwhile, Features 2, 8 and 10 are flipped from not
selected to selected and their distances will be added to 258. The new distance
therefore is 258 - 16 - 64 + 25 + 9 +1 = 213. After calculating the overall
distance with all the training instances, the KNN algorithm can quickly find
the new nearest neighbour to determine the class label of the unseen instance.
As a result, a large amount of time can be saved in the local search process

compared with calculating all distance again.

3.3 Experiment Design

3.3.1 Datasets

In order to examine the performance of PSO-LS, a set of experiments were
conducted on ten gene expression datasets downloaded from http://gems-
system.org/. The details of these datasets can be seen in Table 1.1 on Page 21.
Before applying feature selection, all datasets are discretised using minimum
description length (MDL) method [70] in order to use symmetric uncertainty

which can only be applied to categorised data.

Since the numbers of instances of these datasets are very small compared
with the number of features, 10-fold cross-validation is used to create training
and test sets by stratified splitting from the original dataset as shown in
Figure 2.3. In this setting, 10 pairs of training and test sets are created for
each dataset. In each pair, a different fold is used as the test set and the
remaining folds form the training set. During the feature selection process,
only the training set is used. The returned feature subset will be evaluated
using the corresponding left-out test set. The classification accuracy is then

averaged from the results of 10 runs.
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3.3.2 Baseline Methods

The performance of PSO-RLS and PSO-CLS were tested by comparing the
classification accuracy of the selected features versus the original features,
the feature subsets selected by standard PSO, the PSO with resetting gbest
(PSO-RG) [50]. We also compared PSO-CLS with three deterministic feature
selection methods, which are linear forward selection (LFS) [90], greedy
stepwise backward selection (GSBS), correlation-based feature selection (CFS)
[94]. Details of these methods are described in Section 2.4.1.1. We choose
these methods to compare because they are representative for single stage
feature subset selection methods that are similar to the proposed algorithms
in a way that no predefined number of selected features is required. The

baseline methods are run using Weka package with default settings.

3.3.3 Experiment Configuration and Parameter Set-

tings

Table 3.1 shows the parameter settings used in the experiments. All the four
PSO based algorithms share the same settings for PSO parameter that are
cl = ¢2 = 2.0, w linearly decreases from 0.9 to 0.4 [211]. Fully connected
topology is used and the maximum velocity is 0.6. The threshold § = 0.6 [252]
is used to determine whether a feature is selected. The maximum number of
iterations is 70. Since the 10 datasets have quite different numbers of features
ranging from 2,000 to 12,000, which means that their search spaces are also
very different, the population size is set to one-twentieth of the number of
features, but limited to 300 due to memory limit.

In PSO-RG, if gbest is not improved for three iterations, it is reset to
all 0, which is the same as in [50] for comparison purposes. In PSO-RLS
and PSO-CLS, 100 times of flipping will be performed to find a better pbest
in each local search. In PSO-RLS, a fix flipping size of 2% of the original
dimension is used to maintain the same small portion of changes in the new

pbest. 2% is chosen because it is small enough to maintain a local search
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Table 3.1: Parameters settings

Parameter Parameter value

Acceleration constants (cl = ¢2) | 2.0

0.9 — 0.5 % current iteration

Inertia weight (w) maz iteration

Communication topology Fully connected

Velocity range [-0.6..0.6]

Threshold for selected feature (6) | 0.6

Maximum iteration 70

Population size #features/20 (restricted to 300)

gbest resetting PSO-RG: gbest is not improved for 3 iterations
Local search tries 100

Local search flipping size — PSO-RLS: 2% of #features

— PSO-CLS: 25% of current pbest’s size
Local search frequency — PSO-RLS: every iteration

— PSO-CLS: the first ten odd iterations
Stopping criterion — PSO-RLS: reaching maximum iteration

— PSO-CLS: reaching maximum iteration or

having the same gbest for 10 iterations

and not too small to lower the convergence rate. In PSO-CLS, the flipping
size is dynamically determined as shown in Algorithm 2. The number of
features are considered in the flipping process is proportional to the current
pbest size. 25% of the current pbest size is chosen to encourage removing
more redundant features and adding more relevant ones in one local search
try. While PSO-RLS runs the local search in every iteration, PSO-CLS only
runs in the first ten odd iterations.

The fitness function used in the Standard PSO and PSO-RG was the
same as in PSO-RLS which is based on the average balanced accuracy of
KNN (K=1, i.e. INN) with leave-one-out cross-validation on the training
data. The Standard PSO and PSO-RG also follow the same stopping criteria
as PSO-RLS, which is when reaching the maximum iteration.

Since PSO is a stochastic optimisation technique, 30 independent runs
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with different seeds are executed on each training set. As a result, PSO is
run 300 times (30 runs x 10 folds) on each dataset. Wilcoxon rank sum test,
a non-parametric statistical significance test, is performed to compare the
classification performance of different algorithms, where the significance level
is set to 0.05.

3.4 Results and Discussions

Table 3.2 shows the experimental results of the four PSO algorithms: PSO,
PSO-RG, PSO-RLS, and PSO-CLS. “Full” means the original feature set
is used for classification. “Ave-Size” shows the average number of features
selected by each method over the 30 runs. “Best”, “Mean” and “StdDev”
show the best, the average, and the standard deviation of the classification
accuracy achieved by each method in the 30 independent runs. The last
two columns show the results of the significance tests comparing PSO-RLS,
or PSO-CLS with the other corresponding algorithms. For example, the
“4+7 (“=7) in the “TrLs” column means the corresponding method achieves
significantly better (worse) accuracy than PSO-RLS. “=" means they are

Y

similar. Similarly, “Tizps” is the results of the Wilcoxon tests comparing

the classification accuracy achieved by other methods versus PSO-CLS. In

“_”

general, the more s, the better the proposed methods are.

3.4.1 Results of PSO-RLS

PSO-RLS versus Full. As can be seen from Table 3.2, PSO-RLS selected
about 25% to 30% of the original features on all the 10 datasets. Using the
selected features, KNN significantly improved its classification performance
on all datasets except Prostate where both have a similar accuracy. More
than 10% increase in average accuracy was found on five datasets with the
highest improvement of nearly 14% on Leukemial. The results showed that
PSO-RLS can eliminate a significant number of irrelevant and/or redundant

features to improve the classification performance of KNN in almost all cases.
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Table 3.2: Experimental results

Dataset Method Ave-Size Best | Meant+StdDev | Trrs | TcLs
Full 2308.0 87.08 -
PSO 915.0 99.17 96.56 + 1.55 = -
SRBCT PSO-RG 606.2 99.17 95.60 £+ 1.66 = —
PSO-RLS 545.1 99.17 96.08 + 1.73 -
PSO-CLS 59.7 | 100.00 99.97 + 0.15
Full 5469.0 83.00 -
PSO 2279.9 95.83 93.61 + 2.19 = +
DLBCL PSO-RG 305.5 93.33 85.92 + 4.06 - -
PSO-RLS 1417.4 97.33 93.72 £ 1.79 +
PSO-CLS 47.4 96.67 90.86 + 3.19
Full 5726.0 36.67 -
PSO 2564.2 65.00 51.22 £+ 5.23 + =
9Tumor PSO-RG 1894.3 60.00 50.22 + 4.54 + =
PSO-RLS 1352.0 58.33 48.39 + 4.88
PSO-CLS 46.7 60.00 51.39 + 4.22
Full 5327.0 79.72 -
PSO 2143.8 95.56 93.88 £+ 1.47 = -
Leukemial | PSO-RG 786.1 94.31 89.63 £+ 2.96 - -
PSO-RLS 1534.9 95.56 93.45 + 1.71 -
PSO-CLS 31.9 95.42 94.84 £+ 1.16
Full 5920.0 72.08
PSO 2481.6 80.00 75.89 + 1.68 = =
Brainl PSO-RG 519.7 77.08 72.00 £ 3.13 -
PSO-RLS 1549.0 77.50 75.00 £ 1.80 -
PSO-CLS 1081.5 82.50 76.78 £ 2.09
Full 11225.0 89.44 —
PSO 4577.7 93.89 92.07 + 1.40 = -
Leukemia2 | PSO-RG 1116.6 95.00 90.72 £+ 2.59 = —
PSO-RLS 3426.5 93.89 91.72 4+ 1.46 -
PSO-CLS 53.7 98.33 95.56 + 1.68
Full 10367.0 62.50 -
PSO 4249.9 81.25 75.83 £ 2.99 = +
Brain2 PSO-RG 654.9 85.00 73.74 + 4.95 = =
PSO-RLS 3099.0 82.50 75.35 + 3.16 +
PSO-CLS 2647.7 78.75 73.47 £+ 2.82
Full 10509.0 85.33 = -
PSO 4603.1 88.17 85.04 £+ 1.59 = -
Prostate PSO-RG 873.2 89.33 84.97 £+ 2.55 = -
PSO-RLS 2690.3 89.17 85.79 + 1.49 —
PSO-CLS 2670.3 91.17 86.98 + 1.76
Full 12533.0 71.42 —
PSO 5588.9 87.67 84.26 + 1.35 = -
11Tumor PSO-RG 2108.4 86.82 83.84 £+ 2.25 = -
PSO-RLS 3163.9 87.77 84.19 + 1.47 -
PSO-CLS 266.8 90.72 87.51 + 1.73
Full 12600.0 78.05 -
PSO 5353.3 84.73 83.18 + 0.77 = -
Lung PSO-RG 887.3 84.72 82.13 + 1.78 —
PSO-RLS 3453.9 86.87 83.50 + 1.16 -
PSO-CLS 311.6 96.43 90.78 £ 2.61
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PSO-RLS versus PSO. According to Table 3.2, PSO-RLS selected
about 10% to 20% fewer features than standard PSO on all datasets. With
this reduction, PSO-RLS maintained PSO classification performance on nine
out of the ten datasets. Results show that the proposed random local search
effectively removed redundant features to further reduce the feature subset
size selected by PSO without degrading its classification performance.

PSO-RLS versus PSO-RG. Compared with PSO-RLS, PSO-RG se-
lected a smaller number of features than PSO-RLS on eight out of the ten
datasets. However, according to the statistical test results shown in the Txrpg
column, its classification performance is significantly worse than PSO-RLS on
four datasets, similar on five and better on one where PSO-RG selected 542
more features on average than PSO-RLS. This indicated that by resetting
gbest to an empty set, PSO-RG facilitates particles search towards smaller
feature subsets; however, without guaranteeing to maintain the classification
performance.

In general, over the 30 comparisons with Full and the two PSO based
feature selection methods using three learning algorithms, PSO-RLS won 13,
drew 15 and lost 2. This indicated that a random search mechanism could
achieve significantly better classification performance than the compared
methods.

3.4.2 Results of PSO-CLS

PSO-CLS versus Full. As can be seen from Table 3.2, PSO-CLS achieved
significantly better classification performance than using all features on all
datasets. The highest improvement is on 11Tumor with more than 16% on
average and 19% in the best run. In seven out of the ten datasets, the feature
subsets selected by PSO-CLS are reduced one to two orders of magnitude
with the best ratio of 1/209 in Leukemia2. On SRBCT, PSO-CLS selected
about 60 features among 2,308 features to achieve 100% accuracy in almost
all 300 runs.

PSO-CLS versus PSO. According to Table 3.2, PSO-CLS generated
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feature subsets with significantly higher accuracy than PSO on six datasets
and selected at least an order of magnitude fewer features than PSO on
seven datasets. The highest dimensionality reduction is in Leukemia2 where
PSO-CLS selected 85 times fewer features than PSO and still improved more
than 3% on the PSO performance. On 9Tumor, PSO-CLS obtained a similar
classification performance to PSO with only 46 features which are 2,505 fewer
features than PSO. Only on DLBCL, PSO achieved a higher accuracy but
with a much larger number of features. Therefore, the proposed local search
heuristic and the combined wrapper and filter fitness measure in PSO-CLS
has achieved the goal of obtaining smaller feature subsets while maintaining

or improving the classification performance.

PSO-CLS versus PSO-RG. Although PSO-RG selected a much smaller
number of features than PSQO, it still selected many more features than PSO-
CLS on seven datasets with an order of magnitude more features on four
datasets. According to the significance test results in the last column of Table
3.2, PSO-CLS outperformed PSO-RG on eight datasets and had a similar
accuracy on the other two. For example on Leukemial and Leukemia2, PSO-
CLS selected more than 20 times fewer features than PSO-RG while obtained
5% higher accuracy than PSO-RG on both datasets. On Brainl and Prostate,
PSO-RLS selected larger feature subsets than PSO-RG; however, to achieve
4% and 2% higher accuracy, respectively. This indicated that PSO-CLS can
select an appropriate number of important features to improve or maintain
the discriminating ability of the feature subset. The results showed that using
general knowledge in feature selection to guide the search for smaller feature

subsets is better than solely resetting gbest to an empty set.

In general, selecting a very smaller number of features, PSO-CLS won 24,
drew 4 and lost 2 out of the 30 comparisons with the compared methods. It

achieved the best average accuracy on eight out of the ten datasets.
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3.4.3 PSO-CLS versus PSO-RLS

As can be seen in Table 3.2, feature subsets selected by PSO-CLS are always
smaller than those of PSO-RLS with an order of magnitude fewer features on
six datasets. The smaller feature subsets by PSO-CLS achieved a significantly
better classification accuracy than PSO-RLS on eight datasets with the highest
improvement of 7% in average and 10% in the best case on Lung. On 9Tumor
and Leukemia2, while PSO-RLS selected 1,352 and 3,426 features, PSO-CLS
selected only 46 and 53 features to further improve 3% and 4% accuracy,
respectively. The results show that by using a filter measure to guide the
flipping process and a new fitness function, PSO-CLS can effectively choose
relevant features and remove redundant ones to obtain much smaller feature

subsets with better discriminating power.

3.4.4 PSO-CLS versus Traditional Methods

Table 3.3 shows the compared results of PSO-CLS with LEFS and CFS. Besides
the size shown in the third column, the best and the mean of the training and
test accuracies are shown under each corresponding column. The “Sr7,.” and
“Sr.” display the Wilcoxon significance test results (with a 5% significance
level) of the corresponding method over PSO-CLS in terms of training and
test accuracy, respectively. The results of GSBS are not displayed because
GSBS could not finish its run in 12 hours for any of the 10 datasets because
backward selection is too slow for high-dimensional data. CFS method is
also quite expensive, it fails to finish its run in 12 hours for the two largest
datasets that are Lung and 11Tumor with more than 12,000 features.

As can be seen from Table 3.3, PSO-CLS outperformed LFS on almost
all datasets in terms of training and test accuracies. At least 10% higher
test accuracy was found on nine datasets. It can be noted that on Brain2,
while LFS had better training accuracy than PSO-CLS, its test accuracy
was 20% lower than PSO-CLS. Although LFS selected the smallest feature

subsets among all compared methods on all datasets, it failed to maintain
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Table 3.3: Comparison with traditional methods

Training Test
Dataset Method Size
Best | Mean | St Best | Mean | St

Full 2,308.0 83.35 - 87.08 —

LFS 6.1 98.19 88.75
SRBCT

CFS 80.9 100.00 = 100.00 =

PSO-CLS 59.7 | 100.00 | 100.00 100.00 99.97

Full 5,469.0 81.71 - 83.00 -

LFS 4.0 98.24 - 74.00
DLBCL

CFS 58.0 99.22 — 91.67 =

PSO-CLS 47.4 | 100.00 | 100.00 96.67 90.86

Full 5,726.0 33.44 - 36.67 -

LFS 12.6 82.39 - 41.67 -
9Tumor

CFS 38.0 90.71 — 53.33 +

PSO-CLS 46.7 97.78 97.78 60.00 51.39

Full 5,327.0 79.77 - 79.72 -

LFS 4.8 99.17 81.39 —
Leukemial

CFS 56.0 100.00 = 93.19 —

PSO-CLS 31.9 | 100.00 | 100.00 95.42 94.84

Full 5,920.0 65.07 — 72.08 —

LFS 9.9 89.13 - 59.17 -
Brainl

CFS 115.4 99.93 - 79.58 +

PSO-CLS 1081.5 | 100.00 99.96 82.50 76.78

Full 11,225.0 88.82 - 89.44 —

LFS 4.3 99.08 90.00 -
Leukemia2

CFS 79.0 100.00 = 98.89 +

PSO-CLS 53.7 | 100.00 | 100.00 98.33 95.56

Full 10,367.0 63.52 - 62.50 -

LFS 5.6 98.80 + 53.33 -
Brain2

CFS 63.4 100.00 + 71.25 -

PSO-CLS 2647.7 99.20 98.55 78.75 73.47

Full 10,509.0 82.08 - 85.33 -

LFS 4.9 82.44 - 73.17 -
Prostate

CFS 51.6 98.12 - 90.17 +

PSO-CLS 2670.3 98.92 98.64 91.17 86.98

Full 12,600.0 71.59 - 78.05 -

LFS 12.2 95.12 — 80.55 —
Lung

CFS NA NA NA

PSO-CLS 311.6 99.11 99.02 96.43 90.78

Full 12,533.0 71.01 - 71.42 -

LFS 14.3 79.96 — 61.71 -
11Tumor

CFS NA NA NA

PSO-CLS 266.8 | 100.00 | 100.00 90.72 87.51
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the baseline accuracy of using Full on five datasets with the most significant
drop of 13% on Brainl. In contrast, PSO-CLS achieved better performance
than Full in all cases.

Compared with CFS, PSO-CLS obtained a similar or better training
accuracy on seven out of eight datasets with smaller feature subsets on four.
In terms of test accuracy, PSO-CLS feature subsets obtained a higher accuracy
than CFS on two datasets, namely Leukemial and Brain2. On SRBCT and
DLBCL, PSO-CLS selected a smaller number of features than CFS to achieve
a similar accuracy as CFS. On the other four datasets, CF'S had better results
than PSO-CLS on average but the best accuracy of PSO-CLS is almost always
better than CFS.

In general, over the 28 comparisons based on test accuracy, PSO-CLS
won 22, drew 2 and lost 4. The results showed that PSO-CLS had better

performance than the compared methods on high-dimensional data.

3.5 Further Analysis

3.5.1 Computation Time

Since the local search introduces extra fitness evaluations that require longer
computational time, the fast fitness evaluation mechanism was proposed
to speed up the process. To see the effect of this fast mechanism on the
computational cost of the local search, Table 3.4 summaries the average CPU
time used by each method in the 30 independent runs on the ten datasets,
where the numbers are expressed in minutes. The last two columns show the
ratio between PSO-RLS and PSO-CLS time versus PSO time, respectively.
As can be seen from Table 3.4, among the four methods, PSO-RG required
the shortest running time in all cases, where the main reason is that by
resetting gbest, PSO-RG attracts all particles flying towards the small feature
subset space. Therefore, the number of features selected by particles in PSO-
RG is usually smaller than in other methods. This confirms the significant

influence of the size of feature subsets on the computational time in wrapper
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Table 3.4: Average computation time (minutes)

PSO- PSO- || PSO-RLS | PSO-CL
PSO | PSO-RG RSLS CSIf)s vSsOPsoS vSsOPsoS
SRBCT 7.19 5.89 43.8 6.51 6.1 0.9
DLBCL 33.73 18.8 156.57 56.82 4.6 1.7
9Tumor 22.92 18.69 85.37 22.45 3.7 1.0
Leukemial 28.31 20.29 115.14 29.41 4.1 1.0
Brainl 55.67 32.29 262.94 234.65 4.7 4.2
Leukemia2 117.95 75.42 323.01 134.73 2.7 1.1
Brain2 73.31 42.3 214.09 264.71 2.9 3.6
Prostate 112.87 58.04 520.62 548.35 4.6 4.9
Lung 333.52 151.18 3532.11 1830.07 10.6 5.5
11Tumor 393.54 257.24 1772.29 373.76 4.5 0.9

feature selection approaches.

Compared with PSO, PSO-RLS running time is two to ten times longer
as shown in the sixth column of Table 3.4. Note that both algorithms were
run with the same number of particles and iterations, so they have the same
number of fitness evaluations in the PSO search process. However, since
PSO-RLS involves a local search process, they involve a much larger number
of evaluations than PSO. Every time a particle reaches a new pbest, the
local search repeats 100 times of flipping to search for a better pbest. In
other words, it will call 100 fitness evaluations. For example, in DLBCL, the
population size is 5469/20 = 273 and hence the number of evaluations in PSO
is 273 %70 = 19, 110. If in one PSO iteration, only one-third of the population,
which is about 90 particles in this example, can reach new pbest, PSO-RLS
will have extra 9000 (100*90) evaluations in each iteration. In total, PSO-RLS
may have extra 630,000 (9000*70) fitness evaluation, which is about 33 times
more than PSO. However, by reaching solutions with smaller subsets and the
use of the fast fitness evaluation in local search, the computational time of
PSO-RLS on this dataset is just 4.6 times longer than PSO. The results show

that this new strategy successfully reduces the running time of 1NN classifier.
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Using the same strategy in speeding up fitness evaluation, PSO-CLS even
had shorter running time than PSO-RLS on 8 datasets. Note that compared
with PSO-RLS, PSO-CLS has extra steps for choosing the flipping features
based on their symmetric uncertainty values. Its fitness function also involves
an additional filter measure. However, by eliminating redundant features to
obtain smaller feature subsets and by running local search only in the first odd
iterations, PSO-CLS has significantly reduced its running time while achieved
much better discriminating subsets than PSO-RLS. The results confirmed
that applying a small number of informed local search is better than applying
an extensive number of random local search. With this strategy, PSO-CLS
required a similar running time as PSO on 5 datasets and 5.5 times longer
than PSO in the largest dataset which is Lung.

In general, the results indicate that the proposed local search heuristic is
not only an effective but also efficient to achieve much smaller feature subsets

with significantly better classification performance.

3.5.2 Robustness

In the experiments, each algorithm was run 300 independent times producing
300 different solutions for each dataset. An investigation to see if the features
selected by the proposed method in all runs are not selected by random chance
was done by comparing the Z-score [111, | of the top 100 features selected
by each method. Z-score of a feature indicates the significance of the selection

frequency of that feature. Z-score of feature ¢ is defined as follows:

:fz'—ﬂ
ag

Z; (3.8)

where f; is the number of times feature ¢ appeared in S solutions, y and o are
the mean and standard deviation of f;. Let A be the average feature subset
size of S solutions, N is the total number of features, then the probability of
feature ¢ being selected is denoted as, P(f;) = A/N. Using this probability,
the mean and the standard deviation of f; are calculated using u = P(f;) - S

and o = \/P(f;) - (1= P(f:)) - 5.
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Figure 3.4: Z-score of the top 100 selected features on each dataset.

As can be seen from Equation (3.8), the higher the value of Z;, the less
likely that feature 7 is selected randomly. Therefore, an algorithm that selects
more features with higher Z-score is said to be more robust.

The procedure to compare the robustness of the four methods starts with
sorting all features in descending order based on their selection frequency in

each method. Z-score of the top 100 selected features by each method on
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Table 3.5: Experimental results with feature selection bias

Dataset Method Ave-Size Best | Mean+StdDev | Trrs | TcLs
PSO 930.0 | 100.00 100.00 + 0.00 = =
PSO-RG 465.4 | 100.00 99.89 £ 0.37 = =
SRBCT PSO-RLS 536.9 | 100.00 100.00 £ 0.00 =
PSO-CLS 65.6 | 100.00 100.00 £ 0.00
PSO 2306.2 94.83 94.83 £+ 0.00 = -
PSO-RG 295.5 98.28 95.14 £ 1.25 = -
DLBCL PSO-RLS 1377.6 95.69 94.86 £+ 0.28 -
PSO-CLS 50.5 | 100.00 100.00 £ 0.00
PSO 2594.2 88.89 80.93 £ 3.23 - -
PSO-RG 1947.1 92.86 82.22 + 3.95 - -
9Tumor PSO-RLS 1304.4 95.83 86.85 £+ 5.08 -
PSO-CLS 51.7 | 100.00 96.40 £ 2.80
PSO 2159.5 | 100.00 99.79 £ 0.38 = -
PSO-RG 434.9 | 100.00 99.50 £ 0.63 - -
Leukemial | PSO-RLS 1496.3 | 100.00 99.85 £ 0.33 -
PSO-CLS 33.1 | 100.00 100.00 + 0.00
PSO 2501.5 88.00 87.72 £ 0.20 = —
PSO-RG 584.1 95.33 89.01 £ 2.28 = -
Brainl PSO-RLS 1488.7 91.33 87.93 £ 1.25 -
PSO-CLS 2100.2 96.67 91.46 + 2.40
PSO 4585.2 | 100.00 98.97 £ 0.41 = —
PSO-RG 511.0 | 100.00 99.35 £ 0.71 + —
Leukemia2 | PSO-RLS 3335.4 | 100.00 99.01 £ 0.45 -
PSO-CLS 56.7 | 100.00 100.00 £ 0.00
PSO 4173.0 94.64 94.64 £+ 0.00 = =
PSO-RG 605.9 96.43 94.52 £ 1.23 = =
Brain2 PSO-RLS 3132.9 94.64 94.64 £ 0.00 =
PSO-CLS 4830.6 96.43 94.70 £ 0.33
PSO 4590.3 91.19 90.89 + 0.47 = -
PSO-RG 761.3 93.19 90.79 £+ 1.29 = -
Prostate PSO-RLS 2676.7 91.19 91.02 £ 0.38 -
PSO-CLS 2560.2 96.12 92.51 £ 1.25
PSO 5448.7 91.23 88.94 £+ 1.72 = -
PSO-RG 767.7 91.80 89.10 £ 1.70 = -
11Tumor PSO-RLS 3363.3 91.37 88.75 £ 1.62 -
PSO-CLS 347.1 99.86 99.38 £+ 0.49
PSO 5702.4 98.08 96.81 £ 0.76 - -
PSO-RG 2517.3 99.24 97.04 £ 1.16 = -
Lung PSO-RLS 3074.7 99.24 97.39 £ 0.90 -
PSO-CLS 297.1 | 100.00 99.54 + 0.38
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each dataset were plotted in Figure 3.4. As can be seen from these plots, the
features selected by PSO-CLS had much larger Z-score than other methods.
This indicated that feature subsets selected by PSO-CLS in different runs
had much more overlap than other methods. In other words, PSO-CLS
consistently chose similar features across different runs with different random
seeds and training datasets. Furthermore, PSO-CLS’s Z-scores started at a
very high value and gradually decreased, forming a gentle slope in almost all
cases, which indicated that more relevant features were selected by PSO-CLS.
The results showed that PSO-CLS was more robust than the other methods.

3.5.3 Feature Selection Bias

As mentioned in Section 2.2.3.1, feature selection bias usually happens in
studies where datasets have a small number of instances as the datasets that
are used in this thesis. In many studies [2, 5, 13, 20, 50, , , , ,

, , |, the whole dataset is used during the feature selection process
as shown in Figure 2.2. There is no separate unseen data to test the generality
of the selected features. According to Ambroise and McLachlan [17], there is
a feature selection bias issue in these studies, so one cannot claim that the
selected features can be used for future unseen data.

This problem is investigated here by conducting another set of experiments
of all the compared PSO methods on the same datasets using the same
parameter settings except that the whole dataset is used by PSO to evolve
the feature subsets. In other words, this set of experiments follows the system
shown in Figure 2.2 (with feature selection bias), while the experiments in
Section 3.4 follows the system shown in Figure 2.3 (without feature selection
bias). Table 3.5 shows the experimental results with feature selection bias
of the four PSO algorithms: PSO, PSO-RG, PSO-RLS, and PSO-CLS. The
same format and meaning as Table 3.2 are used in this table.

A comparison between Table 3.2 that does not have feature selection
bias and Table 3.5 that has feature selection bias showed that all the four

algorithms obtained a much higher accuracy in the latter than the former.
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The highest difference can be seen in 9Tumor with 30% to 45% increase in the
results having feature selection bias. With feature selection bias, PSO-CLS
achieved the best accuracy among the four algorithms on all the ten datasets.
It obtained 100% accuracy in all the 300 runs on four datasets, which can be
10% higher than the results in Table 3.2.

The performance gap between the four methods decreased in some datasets
and increased in some others in the experiments having feature selection bias.
In SRBCT and Brain, the performance difference became smaller or even
neglectable, while their results in Table 3.2 showed a different pattern. On the
other hand, while PSO-CLS had a similar accuracy as PSO and PSO-RG on
9Tumor in the previous experiment, it obtained a significantly better results
than the other two methods in this experiment. In general, the comparison
showed that in many cases the patterns found from the results with feature
selection bias cannot be generalised on those without feature selection bias.
This suggested that a feature selection method that was tested with feature
selection bias might not be a good feature selection approach in practice.

Although feature selection bias should be avoided in most cases, there
still can be situations where feature selection bias does not lead to misleading
observations or conclusions. For example, in some engineering problems,
the goal of feature selection is to find factors or features that significantly
influence the model performance. There is no unseen data to be tested on
and the whole set of data (with feature selection) can be safely used to find
such important features. Feature selection bias is also not a problem in some
biological analysis tasks in which feature selection is used to find key genes

or proteins without the need of testing them on unseen data.

3.5.4 Discussion on Closely Related Work

A new local search approach to using PSO for FS called HPSO-LS [164] was
proposed recently in 2016. In HPSO-LS, a local search procedure is used
to add relevant features and remove redundant features to maintain 65% of

relevant features and 35% of redundant features in each particle position
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(i.e. feature subset). The number of selected features by each particle is
initially fixed based on a predefined parameter and kept unchanged by the
local search.

Although both HPSO-LS and PSO-CLS use general knowledge about
features to add and remove features, they work in different ways. Unlike
the local search proposed in this chapter where the new solution found by
the local search is only updated back to the particle if it achieves better
performance, the proposed local search in [164] is always applied on each
particle right after the particle updating step and before fitness evaluation.
Although this strategy does not involve more evaluation time, it is likely to
cancel the good results shared among particles through communication, which
is an essential characteristic of PSO. Furthermore, restricting the number of
features selected by particles to a predefined one also limits PSO from showing
its fundamental strength in automatically choosing an appropriate subset size.
The performance of HPSO-LS will highly depend on the predefined number
of selected features.

HPSO-LS was tested on 13 datasets having 9 to 7129 features which are
not used in this chapter. The average results of HPSO-LS over 20 independent
runs have shown to outperform standard PSO, GA, ACO, an improved PSO
method using new initialisation method called PSO(4-2) [255] and other
traditional F'S methods such as information gain, F-score, and term variance.
However, the results are confusing since the paper did not describe how
PSO(4-2) can produce a feature subset with a predefined size while this
feature is not designed in the original method [255]. The same question arises

for other baseline methods.

3.6 Chapter Summary

The overall aim of this chapter was to investigate a new PSO and local search
based feature selection approach to high-dimensional classification. The goal
has been achieved by developing two PSO methods namely PSO-RLS and
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PSO-CLS. While PSO-RLS employs a random flipping mechanism to produce
a new candidate solution based on the newly found pbest, PSO-CLS choose
some redundant features to eliminate and some relevant ones to add to pbest.
An efficient local search was proposed to speed up the evaluation time in the

local search of both methods.

Ten high-dimensional datasets of varying difficulties were used to compare
the proposed methods with standard PSO, PSO with gbest resetting mecha-
nism (PSO-RG). The experimental results showed that PSO-RLS had better
performance than the original feature sets, standard PSO and PSO-RG in
terms of feature subset size and/or classification accuracy. Compared with
PSO-RLS, the use of symmetric uncertainty in PSO-CLS to choose features
for flipping helps local search effectively discover relevant and redundant
features. As a result, PSO-CLS obtained much smaller feature subsets with
higher discriminating ability than PSO-RLS. PSO-CLS’s performance is con-
firmed by the analysis on the Z-score of the top 100 selected features. The
results show that PSO-CLS selected more relevant features than the other
compared methods. Analyses of the running time revealed that although
PSO-RLS and PSO-CLS had a much larger number of fitness evaluations
than PSO and PSO-RG, their computation time is not as much longer as they
should thanks mainly to the fast fitness evaluation procedure. Comparisons
between PSO-CLS and two traditional feature selection methods, namely
LFS and CFS, in both scenarios with and without feature selection bias have
shown that PSO-CLS outperformed LFS in almost all cases and had better
performance than CFS in terms of feature subset size and/or classification

accuracy in many cases.

The results and analyses have shown that the proposed local search
has effectively and efficiently enhanced PSO performance by balancing its
exploration and exploitation. PSO-CLS results also suggested that local
search using general knowledge in feature selection can significantly improve

the performance of PSO on high-dimensional data.

In this chapter, symmetric uncertainty was used to evaluate feature rele-
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vance and redundancy. This measure can only be applied to categorical data.
Therefore, all datasets are discretised before applying feature selection method
using MDL method as mentioned in Section 3.3. Since MDL discretises feature
individually, if feature interactions exist in a dataset, the discretised data may
lose the interaction information. Therefore, the performance of the feature
selection in the later stage may be affected by this process. This problem will

be addressed in the next chapter.
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PSO Based Feature Selection

via Discretisation

4.1 Introduction

In data preprocessing, discretisation is an important and popularly used
technique to transform continuous data into discrete values. It aims at
maintaining essential information while eliminating the minor fluctuations
that may be noisy in the original data so that learning algorithms can
easily learn the target concept. Therefore, discretisation can improve the
performance of many machine learning algorithms [11%]. Feature selection
methods have also shown to obtain better results on discrete data [31].
During the discretisation process, the information used to obtain discrete
features that can satisfy the above criteria also reflects their relevance to
the target concept. Because of this, feature selection via discretisation has
been proposed to select features based on the results of the discretisation

process [1412] |. However, for the sake of efficiency, these methods often

113
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use univariate discretisation where features are discretised individually. This
scheme works based on the assumption that each feature independently
influences the task (i.e. there is no interaction between features), which
may not hold in most real-world problems. Therefore, the performance
of the feature selection stage may be degraded since information showing
feature interactions may be lost during the discretisation process. With
the ability of simultaneously optimise multiple variables, PSO may achieve
better performance with feature selection via multiple (features) discretisation.

However, this approach has never been investigated in the literature.

4.1.1 Chapter Goals

The goal of this chapter is to develop a new PSO based approach to fea-
ture selection via discretisation for high-dimensional continuous data. As
a first work in using PSO for discretisation-based feature selection, binary
discretisation was used for simplicity. In other words, the proposed methods
evolve a single cut-point for each feature. Two new methods called EPSO
and PPSO, are proposed based on two new representations to achieve this
goal. While EPSO used PSO to directly evolve a cut-point for each feature,
PPSO allows PSO to automatically choose potentially good cut-points for
discretisation and feature selection. EPSO and PPSO are compared with
using the original feature set, and the two-stage approach of discretisation and
feature selection on high-dimensional data. Our specific research objectives

include the following:

1. How to perform multivariate discretisation and feature selection in a

single stage to improve the discriminating power of the feature set;

2. Whether EPSO obtains better performance in terms of classification
accuracy and feature subset size than using all features and the two-stage

approach;

3. Whether PPSO outperforms using all features and the two-stage ap-

proach in terms of classification accuracy and feature subset size;
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4. Which of the two proposed methods, EPSO and PPSO, has better

performance;

5. Whether the proposed approach achieves better classification perfor-
mance than traditional methods in both cases with and without feature

selection bias;

6. Whether the proposed approach is more efficient than the two-stage

approach and scales better to high-dimensional data; and

7. Whether the features generated by results of the proposed approach are
robust and generalised well to other classification algorithms than the

wrapped learning method.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 4.2 presents the
overall system as well as details of EPSO and PPSO. Section 4.3 describes the
information related to the experiments including the datasets, the baseline
methods used to compare with the proposed methods, the parameter settings,
the termination criteria and the configuration of the experiments. Results of
both methods are presented and discussed in Section 4.4. Further discussion
about generalisation, robustness and learning capability of the proposed
methods is given in Section 4.5. Finally, Section 4.6 provides a summary of

this chapter.

4.2 The Proposed Algorithms

In order to achieve feature selection via discretisation using PSO, PSO
representation must be able to encode a discretisation solution. As the first
work on PSO based feature selection via multi-variate discretisation, the
proposed method used binary discretisation where each continuous feature

value is discretised into either 0 or 1 using a single cut-point. Therefore, a
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discretisation solution, in this case, is a set of NV cut-points corresponding to
the N original features. PSO’s task is to evolve a set of good cut-points so
that the corresponding discrete data can improve their discriminating ability.
The evolved cut-points are then used as criteria to select features.

This chapter proposed to use a derived type of PSO called “bare-bones”
PSO (BBPSO) [115] to simultaneously discretise and select features because
of the following reasons. In PSO for feature selection, the PSO representation
is usually an N-dimension vector corresponding to N features. Each value
is of the range [0,1] and represents the likelihood of being selected of the
corresponding feature. If it is greater than the predefined threshold, the
corresponding feature is selected and vice versa, regardless of how much
smaller or greater it is when compared to the threshold. Therefore, two
different evolved vectors may result in the same feature subset. On the other
hand, in PSO for discretisation, the evolved value represents a cut-point
whose slight change may lead to a different discrete feature. As a result,
finding a good cut-point requires a fine-tuned search mechanism which can
be found in BBPSO.

In BBPSO, new positions are sampled using a Gaussian random generator
with the centre being the mean position of the individual best position (pbest)
and its neighbours’ best position (gbest). The standard deviation is the
distance between them. Therefore, when the difference between these two
bests is large, the variance enables particles to explore new regions in the
space. When they are closer, the new position is limited to a smaller region
around this mean.

Based on BBPSO, EPSO and PPSO are proposed. While EPSO aims to
directly evolve a cut-point for each feature, PPSO focuses on choosing one

from many potentially good cut-points.

4.2.1 Overall Structure

The overview of the proposed approach to multivariate discretisation and

feature selection in one stage is shown in Figure 4.1(a). The two-stage
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Figure 4.1: System Overview.

approach (named PSO-FS) is shown in Figure 4.1(b) in which features are
first discretised and then selected. Except for the details inside the dotted
box, both systems have the same structure. Firstly, the dataset is split into
a training and a test set. Based on the training set, the system evolves a
set of cut-points for a set of selected features that are used to transform the
training and test sets. These transformed datasets (i.e. the new training set
and new test set) are input to the classification algorithms for performance

evaluation.

4.2.2 EPSO and PPSO basic steps

Both EPSO and PPSO follow the basic steps shown in Figure 4.2. After
initialisation, particles are iteratively evaluated and updated until the stopping

criterion is met. In order to evaluate a particle, the training data is first
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Figure 4.2: EPSO and PPSO basic steps.
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Figure 4.3: Particle representation of EPSO.

discretised and features are selected based on the evolved cut-points. The
transformed data is then put into a learning algorithm to calculate the fitness.
Based on this fitness, pbest and gbest are updated and used to update a

particle’s position as described in Equation (2.8).

Discretisation and feature selection steps in both methods work based
on the same principle. To achieve discretisation, a feature value is con-
verted/discretised into 0 if it is smaller than the evolved cut-point; otherwise,
it will be 1. If all values of a feature are converted into the same discrete value,
it is considered as an irrelevant or useless feature because it cannot distinguish
instances of different classes. Feature selection is done by eliminating these
useless features. The remaining discrete features are evaluated based on
the improvement in classification performance of the whole discretised data.
Using a single step to evaluate both discrete and selected features enables

EPSO and PPSO to take into account possible interactions between features.
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4.2.3 EPSO: PSO for Evolving a Cut-Point

4.2.3.1 Particle Representation

The main idea of EPSO is using BBPSO to directly evolve a cut-point
which can be any real value falling in the range of the corresponding feature
values [Minp — Mazp| in the training set, where Ming and Maxp are the
smallest and largest values of feature F', respectively. The position of each
particle represents a candidate solution which is a vector of real-values with
N dimensions corresponding to the dimensionality of the problem. Figure
4.3 shows an example of a particle’s position and its corresponding candidate
solution. In this example, the first dimension of the particle, which represents
the cut-point for the first feature (F}), needs to have a value within the range
[8.5, 25.7]. If an updated cut-point of a feature F' is out of this range, it will

be set to the nearest boundary.

4.2.3.2 Particle Initialisation

Because the search space of multivariate discretisation on high-dimensional
data is huge, each initial particle is restricted to a random feature subset
of size 50 for binary-class problems and size 150 for multi-class problems as
suggested in [271]. This means that for those features that are not selected
in the initial candidate solutions, their cut-points will be set to the maximum
values of the corresponding features. For the other selected features, their
cut-points are initialised using the best entropy-based cut-point that satisfies
minimum description length principle (MDLP) [70]. In principle, they can be
initialised based on any value within the range of the corresponding feature.
However, completely random initial cut-points may lead to slow convergence.
Furthermore, information gain in partitioning feature F' using the best cut-
point T' (calculated based on Equation (4.1)) is an indicator of its relevance
to the class label. Therefore, features with larger information gain will have

a higher probability to be selected in the initialisation procedure.
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_Isil
S|

B(s) - 22 p(s,) (4.1

Gain(T, F; S) = E(S) 5]

where S is the set of feature F' values, F(S) is the entropy of S. S; and S,
are subsets of S after partitioning F' based on cut-point 7. Further details

are explained in Section 2.1.4 on Page 29.

4.2.3.3 Particle Evaluation

Based on the cut-points evolved by the particle, the training data is trans-
formed into a new training set with discrete values with a smaller number
of features thanks to eliminating features whose cut-points are equal to the
minimum or maximum values. For example, in Figure 4.3, F5 cut-point is
equal to its maximum value and Fy cut-point is equal to its minimum value,
both features will be discarded.

The discretisation and feature selection solution in each particle is then
evaluated based on the classification accuracy of the transformed training
set. By evaluating the whole discrete data, the proposed method is able to
evaluate cut-points of all the selected features as well as implicitly consider
possible feature interactions at the same time. The fitness function uses the
balanced classification accuracy [187] shown in Equation (4.2), which is the

same as in Chapter 3.

C TPZ
i=1 |5il

(4.2)

1
balanced__accuracy = —
c

where ¢ is the number of classes of the problem, T'P; is the number of correctly
identified instances in class ¢ and |5;| is the sample size of class 7. All classes
are treated equally with the weight of 1/c. Algorithm 3 shows the pseudo
code of EPSO.
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Algo

rithm 3: EPSO pseudo code

Input :Original training set T’

Output : Selected features and their cut-points

1 begin
2 Best__cut__points + the best entropy cut-points that satisfy Equation (2.3)
of each feature;

3 Initialise particles using Best_ cut_ points;

4 while Stopping criteria are not met do

5 for each particle i do

6 T! + Discretise T based on the evolved cut-points of particle ;

7 T! + Remove one-value features from T7;

8 ¢; < Evaluate the accuracy of T} using Equation (4.2);

9 & + pbest’s fitness;

10 if ¢; is better than & then

11 ‘ Update pbest ;

12 end

13 end

14 Update gbest,;

15 for each particle i do

16 for each dimension d do

17 Update position x;4 using Equation (2.8) ;

18 if x;q is out of the valid range of feature d then

19 Tiq < nearest boundary of feature d

20 end

21 end

22 end

23 end

24 Return the selected features and their cut-points from gbest’s position;

25 end
4.2.4 PPSO: PSO for Choosing a Potentially Good

Cut-Point

In the first proposed method (EPSO), BBPSO is free to evolve a cut-point
within the range of the corresponding feature. This may result in a huge
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Figure 4.4: Particle representation of PPSO.

search space especially in multivariate discretisation on high-dimensional data.
Therefore, PPSO uses BBPSO to choose a cut-point from potential cut-points

of each feature to narrow the search space into potentially promising areas.

4.2.4.1 Particle representation

Potential cut-points are entropy-based cut-points that have their information
gain satisfying the MDLP criterion shown in Equation (2.3) on Page 31.
Each feature may have a different number of potential cut-points which are
calculated and stored in a potential cut-point table. Figure 4.4 shows an
example of this table and a particle’s position as well as the corresponding
candidate solution. Each particle position is an integer vector denoting the
chosen cut-point indexes. The size of the vector, therefore, is equal to the
number of the original features and the evolved value needs to be between
1 and the number of potential cut-points of the corresponding feature. For
example, in Figure 4.4, the first feature (F7) has two potential cut-points
with index 1 and 2. Therefore, the first dimension of the particle needs to
fall in the range [1,2]. If it is 2 as in the example, then the cut-point 6.8 is
chosen to discretise F7.

During the updating process, if the updated value of a dimension is
outside the cut-point index range, then it is set to 0, which indicates that the
corresponding feature does not have a good cut-point and therefore should

be ignored, not selected.
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4.2.4.2 Particle Initialisation

Each particle position is initialised as a random feature subset with a restricted
number of selected features. Similar to EPSO, features with higher information
gain will have higher chance to be selected. Then, for those features that are
selected, their corresponding positions in the particle will be set to the indexes
of their best MDLP cut-points. For the remaining not selected features, their
positions will be set to 0.

In order to make PPSO general to all problems, one restricted size of
initial feature subset is applied to all datasets. Then during the evolutionary
process, when BBPSO seems to get stuck in local optima, all particles will
be reset with a larger size if the current gbest fitness is better than the last
gbest fitness at least 1%. The aim of this scaling mechanism is to start the
search from small feature subsets while leaving open the chances for larger
and better feature subsets. At the beginning, PPSO initialises particles with
the subset of 150 features which is suggested in [271] for multi-class datasets.
However, based on the experiments, this value is also a good initial size for
binary class problems since PSO is able to choose an appropriate feature
subset size during the evolutionary process. This initial size increases by 50

features every time the scaling criterion is met.

4.2.4.3 Particle Evaluation

Based on the chosen cut-point index for each feature, the cut-point value is
retrieved from the potential cut-point table. It is then used to discretise the
corresponding feature. If the evolved cut-point index of a feature is 0, that
feature is considered as not selected. For example, Features Fy and F) are
not selected in the example shown in Figure 4.4.

In EPSO, classification accuracy is used as the fitness measure to evaluate
each particle. This may be difficult for PSO to distinguish between particles
that obtain the same accuracy, which may happen in problems where the mar-

gin for separating instances between different classes is quite large, enabling
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many different models to obtain the same accuracy. Furthermore, while the
wrapper methods can produce solutions with high accuracy, filter methods
are usually faster and more general. Combining the strength of these two
approaches in the evaluation function is expected to produce better solutions.
In addition, combining the two measures can also better distinguish the subtle
difference between feature subsets, providing a smoother fitness landscape
to facilitate the search process. However, simply combining these measures
may be impractical in terms of computation time. Therefore, a smart way is
needed to combine them without requiring more running time. Among the
commonly used filter measures, distance is a multivariate measure that can
evaluate the discriminating ability of a feature set and it is used as the base
measure of KNN. Incorporating this measure with the KNN wrapper method
will not increase the computation time much because the distance measure
is calculated only once but used twice. Therefore, in the fitness function of
PPSO, balanced KNN classification accuracy is combined with a distance
measure using a weighting coefficient () as described in Section 3.2.2. Its

description is repeated here for reading convenience.

fitness = (v - balanced__accuracy + (1 — ) - distance) (4.3)

where
dist = ! 4.4
istance = o cxp 5D D0) (4.4)

{Jl3#4, class ;éclass( D} ( J) ( )

max Dis(1;, I, 4.6
{jlg#i,class(I;)=class(I;)} ( ]) ( )

M
M

Dy, is the average distance between each instance and the nearest instance of
other classes. D, is the average distance between each instance to the farthest
instance of the same class. Dis(1;, I;) is the number of matches or overlapping
between two nominal vectors divided by the size of the vectors, which is as

in Chapter 3. Since KNN also works based on this overlapping distance
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calculation, adding this distance component to the fitness function does not
substantially (except for simple additions and multiplications) increase the
computation time to the evaluation process.

Although both D, and D, are in the same range of [0,1], 1 is considered
as the best case for D, and the worst case for D,,. As a result, Equation (4.4)
maximises D, and minimises D,, in order to find feature subsets that keep
the same class instances close together and different class instances far away.
The logistic function in Equation (4.4) is used to transform the difference
between D, and D,, from the range [-1,1] into the range [0,1]. Therefore,
distance has 0 as the worst and 1 as the best case. As a result, Equation (4.3)

shows a maximisation fitness function. Algorithm 4 presents the pseudo-code
of PPSO.

4.3 Experiment Design

4.3.1 Datasets

The performances of EPSO and PPSO are tested on ten gene expression
datasets that are available on http://www.gems—system.orqg. Table
1.1 on Page 21 describes details about these datasets.

4.3.2 Baseline Methods

The effectiveness of EPSO and PPSO on feature selection via discretisation is
tested by comparing the classification performance of KNN on the transformed
dataset by EPSO and PPSO with the original dataset using the full set of
features. Furthermore, they are also compared with the two-stage method
(PSO-FS) to see if combining both feature discretisation and feature selection
in a single stage achieves better results than applying them in two stages. In
PSO-FS, data is first discretised by MDL [70], then PSO runs on the discrete
data to find the best feature subset. In PSO-FS, particles are initialised with

the same restricted numbers of selected features as in EPSO.
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Algorithm 4: PPSO pseudo code
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24
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26

27

28

Input :Original training set T

Output : Selected features and their cut-points

begin

Potential__cut__points < All the entropy cut-points that satisfy Equation
(2.3) of each feature;

repeat

Initialise particles using the index of the best cut-point in
Potential__cut_points ;

while Stopping criteria are not met do

for each particle i do

T! < Discretise T based on the evolved cut-points of particle i;

T! < Remove one-value features from T ¢; < Calculate fitness
of particle ¢ based on T} using Equation (4.3);

&; < pbest’s fitness;

if ¢; is better than &; then
‘ Update pbest ;

end

end
Update gbest;
if The scaling criterion is met then
Increase the initial size;
break;
end
for each particle i do
for each dimension d do
Update z;4 (position of particle ¢ at dimension d) using
Equation (2.8) ;
Adjust x;4 to the valid range of feature d;

end

end

end

until The scale criterion is not met;

Return the selected features and their cut-points from gbest’s position;

end
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Table 4.1: Parameter settings

Parameters Settings

Population Size #features/20 (restriction to a maximum of
300)

Communication topology Fully connected

Maximum iterations 70

Stopping criterion - EPSO: When gbest not improved for 10 iter-
ations.

- PPSO: When gbest not improved for 10 itera-
tions and the current gbest fitness is not better

than the previous gbest fitness at least 1%.

Scaling criterion (PPSO only) When gbest not improved for 10 iterations and
the current gbest fitness is better than the
previous gbest fitness at least 1%.

PPSO is also compared with several traditional two-stage methods which
combine MDL [70] for discretisation with LFS [90], with consistency method
[8] and correlation-based feature selection method (CFS) [91] for feature
selection. It is also compared with the Modified Chi2 (or MChi2) [226], which
is a representative method for feature selection via discretisation. Weka
package [93] was used to run LFS, CFS and Consistency, and the KEEL
package [11] to run MChi2.

4.3.3 Parameter Settings and Termination Criteria

Parameter settings for the three compared methods, EPSO, PPSO and PSO-
FS, are described in Table 4.1. The size of the search space is proportional to
the dimensionality of the problem, which varies from one dataset to another.
The number of features in the ten datasets ranges from about 2,000 to 12,000,
leading to very different sizes of search space. Therefore, the population size
is set to the number of features divided by 20 with a restriction to 300 due to

the limited computer memory. The maximum number of iterations was set
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to 70.

In EPSO, an early stop was applied when gbest is not improved after
10 iterations. On the other hand, when this happens in PPSO, the scaling
mechanism (as described in Section 4.2.4.2 on Page 123) would be triggered if
the current gbest fitness is better than the previous gbest fitness for at least
1%; otherwise, PPSO also stops.

4.3.4 Experiment Configuration

Since these datasets have small sample sizes, 10-fold cross-validation (CV)
is used to generate training and test sets. In each cross-validation, one
fold is used to form the test set and the remaining nine folds are used to
form the training set. The test set is used for performance evaluation of
the discretisation and feature selection solution produced by each method
based on the training set. During the evolutionary process, an inner loop
of 10-fold CV on the training set is used for fitness evaluation. Therefore,
each method comprises of two loops of CV as recommended in [120] to avoid
feature selection bias.

To eliminate the statistical variations, each method was run 30 times with
different random seeds for each dataset. Because each dataset was split into
training and test set using 10-fold CV, a total of 300 runs were executed for
each method on each dataset. Experiments were run on PC with Intel Core
i7-4770 CPU @ 3.4GHz and 8GB memory. The results of 30 runs from each
method were compared using the statistical Wilcoxon significance test with a

5% significance level.

4.4 Results and Discussions

Table 4.2 shows the results of PSO-FS, EPSO, and PPSO. The average feature
subset size returned by each method over the 30 runs is shown in column
“Size”. The best, mean and standard deviation of KNN accuracies using “Full”

(i.e. all continuous features), or using the transformed data by each of the
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compared methods are shown in columns four and five, respectively. The test
accuracies calculated based on Equation (4.2) are reported.

Column T and T'p display the statistical Wilcoxon significance test results
of the method in the corresponding row over EPSO and PPSO, respectively.
In Tg, “+7 or “=” means the result is significantly better or worse than EPSO.
“=" means they have similar performance. In other words, the more “-”, the

better EPSO. The same meaning of these symbols is used for Tp.

4.4.1 Results of EPSO

4.4.1.1 EPSO versus Full

According to Table 4.2, the average number of features selected by EPSO was
less than 1% of the original number of features in Prostate and DLBCL, 1%
to 3% in other seven datasets and 6% in SRBCT. Using the discretised and
selected features by EPSO, KNN achieved significantly better performance
than using Full on seven out of the ten datasets. An increase of more than
7% in average accuracy was achieved on five out of the ten datasets and the
highest improvement was 22% on 9Tumor.

EPSO obtained a similar accuracy as using original features on Brainl
and Leukemia2 and 2% lower accuracy on Prostate with much smaller feature
subsets (on average 54.9 features from 10,509 features). However, the best
accuracies of EPSO on these three datasets were still 7%, 5% and 5% higher
than using all features, respectively.

The results indicated that EPSO could simultaneously discretise and select
relevant features so that the discriminating power of the feature set was either

significantly improved or maintained with a much smaller number of features.

4.4.1.2 EPSO versus PSO-FS

As can be observed in Table 4.2 that EPSO selected a much smaller number
of features than PSO-FS. With the transformed features, EPSO outperformed
PSO-FS on six datasets with the highest improvement of about 12% in
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Table 4.2: Experimental results

Dataset Method Size Best Mean + Std Tg Tp

Full 2308.0 87.08 - -

PSO-FS 150.0 97.50 91.31 £ 2.71 - -
SRBCT

EPSO 137.3 100.00 96.89 + 1.64 +

PPSO 108.5 100.00 95.78 £+ 1.96

Full 5469.0 83.00 - -

PSO-FS 101.8 96.67 80.03 £ 6.13 -
DLBCL

EPSO 42.8 94.17 85.18 £+ 5.46 =

PPSO 44.0 94.17 86.22 + 3.58

Full 5726.0 36.67 - -

PSO-FS 955.0 55.00 45.95 + 4.93 -
9Tumor

EPSO 138.5 65.00 58.22 + 3.12 =

PPSO 118.1 65.00 59.28 + 2.08

Full 5327.0 79.72 - -

PSO-FS 150.0 92.22 81.60 £ 4.72 - -
Leukemial

EPSO 135.9 95.56 93.37 £ 1.83 —

PPSO 80.4 95.42 94.37 £ 1.36

Full 5920.0 72.08 = -

PSO-FS 317.3 78.75 71.00 + 3.06
Brainl

EPSO 150.7 79.17 72.79 + 3.48 =

PPSO 73.4 82.08 74.40 £ 3.67

Full 11225.0 89.44 = -

PSO-FS 150.0 93.89 86.11 + 3.97 — —
Leukemia2

EPSO 139.9 94.44 89.93 £ 2.79 -

PPSO 86.7 100.00 96.74 £+ 1.64

Full 10367.0 62.50

PSO-FS 4179 82.08 69.11 £ 5.89 = =
Brain2

EPSO 152.8 83.75 70.76 £+ 5.30 =

PPSO 66.7 74.58 68.75 + 4.24

Full 10509.0 85.33 + -

PSO-FS 7774 90.33 85.20 £ 2.35 + -
Prostate

EPSO 54.9 90.33 83.74 £+ 3.55 -

PPSO 65.6 95.17 91.82 £ 1.77

Full 12533.0 71.42 - -

PSO-FS 1638.8 86.07 82.62 £+ 1.70 + +
11Tumor

EPSO 149.9 83.68 79.29 + 2.11 +

PPSO 167.0 83.20 76.83 + 2.91

Full 12600.0 78.05 - -

PSO-FS 686.2 85.73 81.72 £+ 2.08 = +
Lung

EPSO 150.8 85.58 80.60 £ 2.42 =

PPSO 203.0 84.11 79.38 + 3.26
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average accuracy on 9Tumor and Leukemial. While PSO-FS degraded the
performance of KNN over using Full on DLBCL, EPSO still attained a better
performance than using the original feature set on this dataset with only half
the number of features selected by PSO-FS.

The biggest difference between these two methods can be seen on the 9Tu-
mor dataset. While PSO-FS selected 955 features to achieve an improvement
of 9% in classification accuracy, EPSO improved 22% accuracy with only 139
features. A similar pattern can be seen from the first six datasets.

On Brain2, Prostate and Lung, both methods obtained a similar accuracy.
However, EPSO feature subset was smaller than a half of the size of feature
subset selected by PSO-F'S. On Prostate and Lung, EPSO selected only 54
and 150 features on average compared to 777 and 686 features selected by
PSO-FS. In 11Tumor, PSO-DFS attained 3% lower accuracy than PSO-FS
with only 149 features while PSO-F'S selected more than 1,600 features.

In general, out of the 20 comparisons between EPSO versus Full and
PSO-FS, EPSO won 13 cases, drew 4 and lost 3. The results showed that
EPSO effectively performed feature selection via discretisation to create a
more compact and better discriminating representation for data than the
original dataset. The EPSO results also suggested that the proposed approach
of combining data discretisation and feature selection in one stage performed

better than separating the two steps into different stages.

4.4.2 Results of PPSO

4.4.2.1 PPSO versus Full

As can be seen from Table 4.2 that PPSO selected less than 1% of the
total number of features on four datasets, less than 2% on five datasets and
4.6% on SRBCT. In general, PPSO selected the smallest subsets among the
compared methods on six datasets. With very compact solutions, PPSO
achieved significantly better classification performance than using Full on all

ten datasets. It increased more than 5% accuracy on seven datasets with the
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highest improvement of 23% on 9Tumor.
The results indicated that PPSO could produce a much more powerful

and compact representation for high-dimensional datasets.

4.4.2.2 PPSO versus PSO-FS

In terms of the dimensionality reduction, feature subsets returned by PPSO
were much smaller than those selected by PSO-FS, which is the two-stage
approach. In terms of the classification accuracy, the PPSO transformed
data outperformed PSO-FS on seven datasets. While PSO-FS degraded the
classification performance on Brainl and Prostate, PPSO still obtained better
accuracies than using “Full” on these datasets with about 11% and 8% of
feature subset size selected by PSO-FS on these datasets respectively. A
similar pattern was observed on DLBCL and Leukemia?2.

Similar to EPSO, the results on the 9Tumor dataset revealed the largest
difference between two approaches. While the transformed dataset by PSO-
FS improved 9% classification accuracy with 955 features, the transformed
dataset by PPSO achieved 23% improvement using eight times fewer features
than PSO-FS (118 features). The first six datasets witnessed a similar pattern.

On Brain2, PPSO obtained a similar accuracy to PSO-FS with just a
quarter of features selected by PSO-FS. On Lung and 11Tumor, PPSO
obtained worse results than PSO-FS with about one third and one-tenth
number of features selected by PSO-FS, respectively.

In general, solutions evolved by PPSO obtained either a significantly
better or similar classification accuracy to PSO-FS on eight out of the ten

datasets.

4.4.3 PPSO versus EPSO

As can be seen from Table 4.2 that PPSO selected a smaller number of features
than EPSO on six datasets and obtained better or similar classification
accuracy to EPSO on eight datasets. On Leukemia2, while EPSO obtained a
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similar classification accuracy to “Full” with 140 features, PPSO increased
7% accuracy with only 87 features.

The improvement of PPSO over EPSO may result from several proposed
strategies in PPSO. First of all, PPSO only finds an appropriate cut-point
for each feature from the potentially good cut-points while EPSO chooses
any possible cut-point within the range of the feature values. Therefore,
PPSO has a much smaller search space than EPSO. This enables PPSO to
better cover the search space when using the same parameter settings as
EPSO. Furthermore, the evolutionary process of PPSO is not only guided
by the accuracy of the transformed dataset but also the distance measure.
This measure helps PPSO to differentiate feature subsets with the same
training accuracy. Finally, the scaling mechanism enables PPSO to move
the evolutionary process to larger feature subsets that may provide better

solutions.

4.4.4 Computation Time

Figure 4.5 compares the running time to complete a single run of PSO-FS,
EPSO, and PPSO. The reported time (in minutes) is the average of the 30
runs. Note that the three compared methods used the same wrapper approach
with KNN for fitness evaluation. We also note that to evaluate each particle,
PSO-F'S only needs to transform data based on the selected features, while
EPSO and PPSO need to discretise and select features at the same time. This
means that the EPSO and PPSO evaluation procedures need an additional
overhead compared to PSO-FS. Therefore, EPSO and PPSO were expected
to run longer than PSO-FS. However, an opposite trend is reported in Figure
4.5.

Compared with PSO-FS, EPSO had a shorter running time on eight
datasets although both have the same stopping criterion, which is either the
maximum of 70 iterations is reached or gbest is not improved for 10 iterations.
In addition, the initial particles in both methods have the same number

of selected features. Similarly, PPSO’s running time was also shorter than
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Figure 4.5: Running Time of PPSO.

PSO-FS on eight datasets with about 8 times shorter on the 11Tumor dataset.
As can be seen from Figure 4.5 that the larger the dataset, the greater the
ratio of PSO-FS’s running time to PPSO’s running time.

Compared with EPSO, PPSO took slightly longer time on most datasets
due to the scaling mechanism, which introduces large feature subsets. Note
that although the fitness function of PPSO combines both wrapper and filter
measures, the time spent on fitness evaluation was not longer than EPSO.
This is because both KNN and the filter measure are based on the distance
which only needs to be calculated once and used for both measures.

The main contribution of this improvement in EPSO and PPSO com-
putation time can be explained by the average number of iterations run by
each method on each dataset which is presented in Table 4.3. The results
showed that PSO-FS and EPSO evolved solutions using similar numbers
of iterations. On the other hand, due to the scaling mechanism, the total
number of iterations PPSO used were 2 to 7 times larger than PSO-FS and
EPSO on all datasets. However, despite of this longer evolutionary process,
PPSO is still more efficient. This indicates that the difference in computation
time was mainly because the numbers of selected features in PSO-FS were
much larger than those of EPSO and PPSO (as shown in Table 4.2), which
in turn leads to a much longer running time required by KNN in the fitness

evaluation process.
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Table 4.3: The average number of iterations until the stopping criterion is

met
Dataset PSO-FS EPSO PPSO
SRBCT 10.87 13.13 73.60
DLBCL 11.63 15.43 70.00
9Tumor 26.80 34.23 70.00
Leukemial 10.87 13.27 70.33
Brainl 12.63 12.70 70.00
Leukemia2 11.00 13.40 70.33
Brain2 13.77 12.73 70.70
Prostate 16.97 15.87 70.00
11Tumor 25.23 11.27 85.27
Lung 14.70 11.00 56.87

4.4.5 PPSO versus Traditional Methods

Table 4.4 shows the compared results of PPSO with “Full”, MDL+LFS,
MDL+CON, MDL+CFS and MChi2. Besides the size and time, which are
shown in the third and the last columns, the best and the mean of the training
and test accuracies are shown under each corresponding column. The “Sp,.”
and “S7.” display the Wilcoxon significance test results of the corresponding
method over PPSO in terms of training and test, respectively. The result of
MChi2 on the Lung dataset is unavailable due to the out of memory error.
Since the CFS method is quite expensive, it failed to finish its run in 12 hours
for the two largest datasets, which are Lung and 11Tumor with more than

12,000 features.

As can be seen from Table 4.4 that PPSO outperformed MDL+LFS and
MDL+CON on all the ten datasets in terms of training accuracy and on
nine datasets in terms of test accuracy. Compared with MDL+LFS, PPSO
achieved 6% to 19% higher test accuracy on all datasets except for the
Lung dataset where both obtain similar accuracy. However, the best test
accuracy achieved by PPSO was 4% higher than MDL4LFS on this dataset.
Similarly, PPSO achieved 5% to 31% higher test accuracy than MDL+CON
on all datasets except for DLBCL where MDL+CON achieved the highest
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Table 4.4: Comparison with traditional methods
Dataset Method Size Bestﬁijll‘:;ng S Bost {ZZ‘;H Sre Time(s)
Full 2,308.0 83.35 | — 87.08 | —
MDL+LFS 6.1 98.19 | - 88.75 | - 28.78
SRBCT MDL+CON 4.3 9771 | - 85.83 | - 3.24
MDL+CFS 80.9 100.00 | = 100.00 | + 318.04
MChi2 85.9 100.00 | = 100.00 | + 83.07
PPSO 108.5 | 100.00 | 100.00 100.00 | 95.78 87.14
Full 5,469.0 8171 | - 83.00 | -
MDL+LFS 4.0 98.24 | - 74.00 | - 73.78
DLECL MDL+CON 3.4 98.14 | - 9250 | + 6.29
MDL+CFS 58.0 99.22 | - 91.67 | + 1310.49
MChi2 10.2 87.96 | - 7550 | - 369.45
PPSO 44.0 | 100.00 | 100.00 94.17 | 86.22 207.40
Full 5,726.0 33.44 | - 36.67 | —
MDL+LFS 12.6 82.39 | - 41.67 | - 64.20
9Tumor MDL+CON 7.6 7161 | - 28.33 | - 12.65
MDL+CFS 38.0 90.71 | - 53.33 | - 656.21
MChi2 58.5 7728 | - 48.33 | - 260.70
PPSO 118.1 | 92.87 | 92.31 65.00 | 59.28 192.68
Full 5,327.0 7977 | - 7972 | -
. MDL+LFS 4.8 99.17 | - 81.39 | - 70.48
Leukemial | \/r 1 coN 3.0 98.67 | - 80.17 | - 5.69
MDL+CFS 56.0 100.00 | = 93.19 | - 1358.35
MChi2 46.4 98.80 | - 92.08 276.35
PPSO 80.4 | 100.00 | 100.00 95.42 | 94.37 236.56
Full 5,020.0 65.07 | — 72.08 | —
) MDL+LFS 9.9 89.13 | - 59.17 | - 104.41
Brainl MDL+CON 6.2 79.99 | - 55.42 | — 14.51
MDL+CFS 115.4 99.93 | - 79.58 | + 2859.76
MChi2 290.0 80.63 | - 7458 | = 438.82
PPSO 73.4 | 100.00 | 99.99 82.08 | 74.40 202.84
Full 11,225.0 88.82 | - 80.44 | -
Leukeming | MDLFLES 4.3 99.08 | - 90.00 | - 231.15
MDL+CON 3.0 99.44 | - 85.56 | — 17.54
MDL+CFS 79.0 100.00 | = 98.89 5407.43
MChi2 166.1 99.56 | - 93.33 | - 904.96
PPSO 86.7 | 100.00 | 100.00 100.00 | 96.74 441.95
Full 10,367.0 6352 | — 62.50 | —
Braind MDL+LFS 5.6 98.80 | - 53.33 | - 179.83
MDL+CON 4.7 89.92 | - 61.67 | - 19.33
MDL+CFS 63.4 100.00 | = 7125 | + 3304.74
MChi2 160.7 84.00 | - 70.00 | = 562.42
PPSO 66.7 | 100.00 | 99.99 74.58 | 68.75 357.34
Full 10,509.0 82.08 | - 85.33 | -
MDL+LFS 4.9 82.44 | - 7317 | - 227.68
Prostate | \ipr 1 con 47 98.46 | 70.50 23.61
MDL+CFS 51.6 98.12 | - 90.17 | - 2694.27
MChi2 33.6 95.44 | - 86.17 | - 1246.46
PPSO 65.6 | 100.00 | 99.84 95.17 | 91.82 478.17
Full 12,533.0 71.01 | — 142 | -
MDL+LFS 14.3 79.96 | - 6171 | - 555.99
HTumor |\t 4 cON 9.4 72.58 | — 53.83 | - 85.41
MDL+CFS NA NA NA NA
MChi2 2098.0 93.32 | - 84.54 | + 3125.14
PPSO 167.0 | 99.47 | 99.14 83.20 | 76.83 1387.01
Full 12,600.0 7159 | - 78.05 | -
Lung MDL+LFS 12.2 95.12 | - 80.55 | = 685.78
MDL+CON 6.6 89.54 | - 7464 | - 63.37
MDL+CFS NA NA NA NA
MChi2 NA NA NA NA
PPSO 203.0 | 97.67 | 97.09 84.11 | 79.38 1335.21
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average test result. Although these two methods obtained the smallest feature
subsets, their test accuracies were the lowest among the compared methods.
Compared with the Full accuracy, MDL+LFS even had 13% lower on Brainl
and MDL+CON had 18% lower on 11Tumor. In contrast, PPSO achieved
better accuracy than the full feature sets on all datasets.

Compared with MDL+4CFS, PPSO obtained better or similar training ac-
curacies on the eight datasets. For testing, PPSO achieved better results than
MDL~+CFS on three datasets, namely 9Tumor, Leukemial and Prostate. For
the other five datasets, MDL+CFS had better results than PPSO on average
but the best accuracy of PPSO was almost always better than MDL+CFS.
As can be seen in the last column of Table 4.4 that the computation time of
MDL+CFS quickly increased along with the number of features. Therefore,
scalability is a major concern when applying this method to high-dimensional
data.

Similarly, in terms of training accuracy, PPSO also outperformed MChi2
on all datasets. In terms of test accuracy, PPSO performed either similar to
or significantly better than MChi2 on seven datasets and selecting smaller
feature subsets on four datasets. We also noted that although MChi2 is a filter
method, its running time was longer than that of PPSO and MDL+LFS on
almost all datasets. While the difference in running time between MChi2 and
PPSO was not too big on small datasets, it became much larger on datasets
with more than ten thousand features. This indicates that the proposed

algorithm is scalable to high-dimensional datasets.

4.5 Further Analysis

In addition to classification performance and feature subset size, generalisation
and robustness are also important criteria in evaluating the performance of
a feature selection method. While generalisability relates to the ability of
the learned model to have a similar performance on both training and test

data, robustness relates to the ability to reproduce the results regardless of
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Table 4.5: Average training accuracy.

Dataset Method | Train-Acc(Std) | T || Dataset Method | Train-Acc(Std) | T

PSO-FS 100.00 (0.00) | = PSO-FS 100.00 (0.00) | =
SRBCT Leukemia2

EPSO 100.00 (0.00) | = EPSO 100.00 (0.00) | =

PPSO 100.00 (0.00) PPSO 100.00 (0.00)

PSO-FS 100.00 (0.00) | = PSO-FS 99.73 (0.12) | —
DLBCL Brain2

EPSO 100.00 (0.00) | = EPSO 98.38 (0.27) | —

PPSO 100.00 (0.00) PPSO 99.99 (0.05)

PSO-FS 97.49 (0.23) | + PSO-FS 98.89 (0.10) | —
9Tumor Prostate

EPSO 95.03 (0.22) | + EPSO 98.56 (0.14) | —

PPSO 92.31 (0.33) PPSO 99.84 (0.5)

PSO-FS 100.00 (0.00) | = PSO-FS 99.80 (0.08) | +
Leukemial 11Tumor

EPSO 100.00 (0.00) | = EPSO 96.21 (0.19) | —

PPSO 100.00 (0.00) PPSO 99.14 (0.20)

PSO-FS 100.00 (0.00) | = PSO-FS 97.77 (0.05) | +
Brainl Lung

EPSO 99.33 (0.29) | — EPSO 97.10 (0.14) | =

PPSO 99.99 (0.06) PPSO 97.09 (0.30)

the small variance of the experiments. In this section, the performance of
the one-stage (EPSO and PPSO) is compared with the two-stage (PSO-FS)

approaches in terms of these two aspects.

4.5.1 Generalisation

The generalisability of the one-stage (EPSO and PPSO) and two-stage (PSO-
F'S) approaches are compared based on the training accuracy of the returned
solutions. Table 4.5 shows the mean and standard deviation of the training
accuracy obtained by the three methods in 30 runs of each dataset.

As can be seen from Table 4.5, PPSO achieved better training accuracy
than PSO-FS on two datasets and similar on five. However, as can be seen
from Table 4.2, PPSO achieved significantly better test accuracy on seven
datasets than PSO-FS and similar on one. This indicated that PPSO had
better generalisability than PSO-FS.

Compared with EPSO, PPSO obtained the same training accuracy (100%)
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on SRBCT with a smaller number of features and 3% higher accuracy on
11Tumor with a bigger feature subset. This indicated that the scaling mech-
anism helped PPSO effectively select appropriate feature subsets that can
maintain or increase the training accuracy. However, these solutions seemed
to overfit the training data when they got 1% and 3% lower test accuracy than
those of EPSO, respectively as shown in Table 4.2. Another possible reason
is that PPSO used the fix potential cut-points calculated from the training
data that may not be representative of the test data. A better mechanism to
calculate the potential cut-points may help PSO improve the performance of
PPSO.

We also noted a big difference between the test and training accuracies
(shown in Table 4.2 and 4.5), especially on 9Tumor for all the three methods.
This indicated the existence of overfitting, which may be because the skew
distribution of features in these datasets creates different distributions on
training and test sets. Therefore, the learned model may not be generalised
well to the test data. This problem is worse on datasets with smaller numbers
of samples, such as Brain2 and 9Tumor with 50 and 60 instances. On top of
this, the large number of classes and the class imbalance nature are additional
challenges of these datasets. With 9 classes, 9Tumor had worse results than
Brain2 which has 4 classes. As can be seen from Table 4.4, MDL+LFS
and MChi2 performances were also affected by this phenomenon. The gaps
between training and test accuracy obtained by MDL+LFS on 9Tumor and
Brain2 are about 40%, which is even larger than PPSO with about 30%.

4.5.2 Robustness

Since each method was run 30 times on each 10-fold CV, it produced 300
solutions for each dataset. If the dataset has redundant features, different
solutions may include very different features if the method is sensitive to the
experimental conditions, leading to a low selection frequency of each feature.
As described in Section 3.5.2 on Page 104, Z-score [271, | is a measure

indicating the significance of the selection frequency of a feature, which shows
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Figure 4.6: Z-score of the top 100 selected features on each dataset.

the robustness of a method. Figure 4.6 shows the Z-score calculated based on
Equation 3.8 of 100 most selected features of each method.

As can be observed from the chart, the Z-scores of the features selected
by PPSO are greater than those of EPSO, which are in turn greater than
PSO-FS. This indicates that PPSO is more robust than the other methods.

In general, the results show that PPSO had better generalisability and
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robustness than PSO-FS. Solutions produced by PPSO were more compact
and had higher discriminating power than PSO-FS. This demonstrated the
hypothesis that important information including feature interaction may be
lost during the discretisation process in the first stage of PSO-FS. Since
the proposed one-stage approach evaluates the selected features with their

cut-points simultaneously, it takes this important information into account.

4.5.3 Comparison with PSO-LS

To see if the multi-variate discretisation and feature selection proposed in
this chapter obtained better results than the previously proposed methods
in Chapter 3, this section will compare the results of PPSO with PSO-RLS
and PSO-CLS. For reading convenience, the results of these methods were
shown again in Table 4.6. The last column 7" shows the Wilcoxon significance
test results with a 5% significance level comparing the corresponding method
against PPSO.

As can be seen from Table 4.6, PPSO selected a much smaller number
of features than PSO-RLS on all datasets and PSO-CLS on six datasets. Its
feature subsets performed similar to or significantly better than PSO-RLS on
6 datasets and PSO-CLS on 4 datasets. Using the PPSO generated features
on 9Tumor, KNN obtained 8% and 11% higher accuracy than using PSO-RLS
and PSO-CLS features, respectively. On Prostate, PPSO selected about 65
features that obtained 5% higher accuracy than 2600 features selected by
the other two methods. Note that PSO-RLS and PSO-CLS discretised data
before applying feature selection using the MDL method [70], which can
discretise feature into multiple discrete values. On the other hand, PPSO
is a binary discretisation which can only divide features into two discrete
values only. This difference may mainly account for the inferior performance
of PPSO on the other datasets, where more discrete values may be needed to

better represent the feature space.
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Table 4.6: Comparison between PPSO and PSO-LS methods

Dataset Method Size Best Mean + Std T

PSO-RLS 545.07 99.17 96.08 (1.73) =

PSO-CLS 59.69 100.00 99.97 (0.15)
SRBCT

PPSO 108.47 100.00 95.78 (1.96)

PSO-RLS 1417.44 97.33 93.72 (1.79) +

PSO-CLS 47.43 96.67 90.86 (3.19) +
DLBCL

PPSO 44.01 94.17 86.22 (3.58)

PSO-RLS 1352.04 58.33 48.39 (4.88) -

PSO-CLS 46.68 60.00 51.39 (4.22) -
9Tumor

PPSO 118.12 65.00 59.28 (2.08)

PSO-RLS 1534.91 95.56 93.45 (1.71) -

PSO-CLS 31.92 95.42 94.84 (1.16) =
Leukl

PPSO 80.39 95.42 94.37 (1.36)

PSO-RLS 1549.01 77.50 75.00 (1.80) =

PSO-CLS 1081.48 82.50 76.78 (2.09) +
Brainl

PPSO 73.37 82.08 74.40 (3.67)

PSO-RLS 3426.47 93.89 91.72 (1.46) -

PSO-CLS 53.68 98.33 95.56 (1.68) —
Leuk2

PPSO 86.65 100.00 96.74 (1.64)

PSO-RLS 3099.04 82.50 75.35 (3.16) +

PSO-CLS 2647.70 78.75 73.47 (2.82) +
Brain2

PPSO 66.74 74.58 68.75 (4.24)

PSO-RLS 2690.31 89.17 85.79 (1.49) —

PSO-CLS 2670.34 91.17 86.98 (1.76) -
Prostate

PPSO 65.55 95.17 91.82 (1.77)

PSO-RLS 3163.91 87.77 84.19 (1.47) +

PSO-CLS 266.84 90.72 87.51 (1.73) +
11Tumor

PPSO 166.96 83.20 76.83 (2.91)

PSO-RLS 3453.94 86.87 83.50 (1.16) +

PSO-CLS 311.55 96.43 90.78 (2.61) +
Lung

PPSO 202.95 84.11 79.38 (3.26)
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4.6 Chapter Summary

The goal of this chapter was to propose an integrating approach to multivariate
discretisation and feature selection in a single stage using BBPSO. The goal
has been achieved by proposing two new PSO based methods, EPSO and
PPSO, with two new PSO representations for discretising and selecting
features simultaneously. While EPSO aims to directly evolve a cut-point
for each feature, PPSO aims to choose one from all the potentially good
cut-points. EPSO and PPSO were compared with using the full set of original
features, and the two-stage approach (PSO-FS).

Experimental results on ten datasets having thousands to tens of thousands
of features with various numbers of classes showed that the proposed methods
were able to discretise and select features simultaneously. A much smaller
number of relevant features were selected with better discriminating ability
than the two-stage approach. The comparison results suggested that it is
more effective to combine discretisation and feature selection in a single stage.
Compared with EPSO, PPSO obtained either equivalent or better results
with smaller numbers of features. Further analysis also showed that PPSO

was more general and more robust than the compared PSO methods.

PPSO was also compared with four traditional methods as representa-
tives of the two-stage and one-stage approaches, MDL+LFS, MDL+CON,
MDL+CFS and MChi2. The results of two experiments with and without
feature selection bias showed that PPSO had significantly better perfor-
mance than MDL+LFS, MDL+CON and MChi2 and similar performance
to MDL+CFS in most cases. The results of PPSO also showed that it is
more scalable than MDL+CFS and MChi2 in dealing with high-dimensional
problems. Comparing results on both KNN and NB indicated that solutions
obtained by PPSO could be generalised to other classification algorithms than

the one used during the training process.

In Chapters 3 and 4, feature selection has shown to be effective in improving

classification performance of learning algorithms on high-dimensional data.
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However, its performance may still be limited if the original features do not
provide enough discriminative information for learning algorithms to learn a
good classifier. There may exist certain combinations of features that may
provide better discriminating ability [170]. In this case, feature construction
can be used to construct new high-level features that better represent the
problem. We will investigate the techniques of feature construction in the

next two chapters.



Cluster-Based Single Feature
Construction Using GP

5.1 Introduction

The previous chapters have shown that feature selection is an important step
to improve classification performance of learning algorithms, especially for
high-dimensional data due to the curse of dimensionality. Apart from feature
selection, feature construction can also be used for dimensionality reduction
by constructing a much smaller number of new high-level features from the
original ones [9].

Genetic programming (GP) has shown promise in feature construction
[9, 174]. By applying the Darwinian principle "Survival of the fittest", GP can
choose good features and operators from the given feature set and function
set, respectively, to create better discriminating features. Although GP has
shown its capability in feature selection and construction, its performance on

high-dimensional data is still limited due to the large search space. Compared

145
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with feature selection on the same problem, feature construction has much
larger search space, because feature construction needs to select not only
good features but also appropriate operators and ways to combine them.
Therefore, it is critical to narrow the search space to improve GP performance
on high-dimensional data. Results of GP based methods for feature selection
[7] and classification [168] have shown that helping GP select appropriate
features is critical in enhancing its performance. However, applying this
approach to GP for feature construction is still limited, especially for high-
dimensional problems. Furthermore, feature clustering, which was introduced
in Section 2.2.7 on Page 41, has been proposed and shown promise in feature
selection [81, 89, , , 200]. Different from the common data mining task
of clustering that groups similar instances into clusters [36], feature clustering
groups similar features into one cluster. Based on the resulting clusters, one
or several features from each group can be chosen as representatives to form
the final feature subset. This approach effectively reduces the search space
for feature selection. However, feature clustering has not been investigated in

feature construction for classification.

5.1.1 Chapter Goals

The goal of this chapter is to develop a clustering and GP based feature
construction method (CGPFC) for classification in high-dimensional data.
The scope of the proposed algorithm is to construct a single feature for binary
classification problems. The new algorithm is expected to select appropriate
features to construct a single new feature that can improve the classification
performance of the common classification algorithms on these problems. To
achieve this goal, a new feature clustering technique is proposed to narrow

the GP search space. Specifically, this chapter will investigate:

1. How to use feature clustering to automatically and effectively reduce

the GP search space;

2. Whether CGPFC can construct features with better discriminating



5.2. THE PROPOSED ALGORITHMS 147

ability (better classification accuracy) than the original full feature set

and the one constructed by standard GP;

3. Whether CGPFC can select a smaller number of features than standard

GP to construct a new feature;

4. Whether the sets of features selected by CGPFC have better discrimi-
nating ability than those of standard GP; and

5. Which combination set of selected and/or constructed features from a

single GP tree helps learning algorithms obtain the best performance.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 5.2 describes
the proposed algorithm CGPFC. Section 5.3 discusses the datasets, parameter
settings and experiment configuration used to test the performance of CGPFC.
The results of CGPFC are shown and discussed in Section 5.4. Further analysis
is followed in Section 5.5. Finally, a summary of this chapter is given in
Section 5.6.

5.2 The Proposed Algorithms

High-dimensional data may contain a significant number of irrelevant and
redundant features that should be eliminated to reduce the GP search space.
Therefore, this new method aims at using feature clustering to group similar
features so that only representative features from these groups are fed into

GP for feature construction.

5.2.1 Overall Structure

Figure 5.1 shows the overall system of the proposed method called CGPFC.

Firstly, all features are grouped into clusters using a proposed redundancy
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Figure 5.1: The CGPFC overall system.

based feature clustering algorithm (RFC), which will be described in the
following section. Each cluster includes similar or redundant features. Then,
the best feature of each cluster is put into the terminal set for GP (GPFC) to
construct a new feature. Therefore, CGPFC can be seen as a combination of
RFC and GPFC. Note that while RFC uses a filter measure to group features,
GPFC follows the embedded approach. More details are explained in the

following sections.

5.2.2 Redundancy Based Feature Clustering: RFC

As shown in Figure 5.1, the first component of the proposed method is the
redundancy based feature clustering method or RFC. The aim of RFC is
to group similar or redundant features into the same cluster. Among many
clustering techniques, K-means is a well-known, simple and effective algorithm.
It has also been used to cluster features for feature selection method [99].
However, it is essential to predefine a suitable number of clusters, which

is not easy, especially in high-dimensional data with thousands to tens of
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thousands of features. An inappropriate value may lead to clusters with
uncorrelated or non-redundant features. In addition, the number of clusters
in feature clustering is not as meaningful as the number of clusters in instance
clustering, which represents the number of different types of objects/instances.
Therefore, instead of grouping features based on a predefined number of
clusters, the proposed feature clustering method will group features based
on the redundancy levels between them (so-called RFC). Different from the
number of clusters, the level of redundancy or correlation between two features
is a value in the range of 0 and 1, representing no and full correlation between

them, respectively.

RFC uses a simple approach to ensure that all features in the same cluster
are redundant features with their correlation level higher than a predefined
threshold. If two features X and Y have their CC(X,Y) larger than this
threshold, they will be grouped into the same cluster. In this way, the number
of clusters will be automatically determined. If a dataset has a large number
of redundant features, the number of clusters will be much smaller than the
number of features, and vice versa. Furthermore, this strategy ensures that
the generated clusters include only features having their correlation levels
higher than the predefined redundancy threshold.

Algorithm 5 shows the pseudo code of RFC with a redundancy threshold
6. First of all, features are analysed to remove irrelevant ones (lines 4-9). In
this study, a feature is considered irrelevant if it does not give any information
about the class label. Since the class label is a discrete variable, Symmetrical
Uncertainty (SU), which is a normalised version of information gain, is a
suitable measure for feature relevancy. Therefore, in this step, all features

whose SU with the class label are equal to zero will be removed.

SU between a feature X and the class C' is calculated based on Equation
(5.1) which gives a value between 0 and 1 representing no to full correlation,
respectively. As SU is an entropy-based measure, it can only be applied to
category or nominal data. Therefore, data is discretised before calculating

SU using the popular discretisation method, the minimum description length
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Algorithm 5: The pseudo code of RFC
Input :Training data, redundancy_ threshold 6

Output : Clusters of features

1 begin
2 F+0;
3 for each feature f; in Training data do
4 su « SU(f;, class) (based on Equation (5.1)) ;
5 if su > 0 then
6 | Fe FU{f);
7 end
8 end
9 Sort F' based on descending order of su;
10 clusters <+ 0 ;
11 while (F # () do
12 fi < next feature in F;
1s F e F\{f}
14 new__cluster < {f;};
15 while (F #() do
16 fj < next feature in F
17 cc < CC(fi, f;) (based on Equation (5.3)) ;
18 if (cc > 0) then
19 new_ cluster < new_ cluster U {f;};
20 F« F\{f;}
21 end
22 end
23 clusters < clusters U new__cluster;
24 end
25 Return clusters;
26 end

(MDL) [70], whose principle is explained in Section 2.1.4.

SU(X,C) = 2[ IG(X|0) ]

H(X)+ H(C)
where

IG(X|C) = H(X) — H(X|C) (5.2)
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and H(X) is the entropy of X and H(X|C) is the conditional entropy of X
given C.

All the remaining features are then sorted based on their SU values so
that the most relevant feature will be the first one in the list. The outer while
loop in Line 11 picks the next feature f in the list to form the first cluster,
while the inner while loop scans the remaining features in the list to add all
features that are correlated with f. In this step, Correlation Coefficient (CC)
is used to measure the redundancy level between features because it can be
directly applied to numerical data. Although CC can only measure the linear
relationship between variables, it has been shown to be effective in many
feature selection methods [99, 216]. The CC measure gives a value between
-1 and 1 whose absolute value represents the correlation level between two
features. Given that M is the number of instances in the dataset, CC between
features X and Y is calculated based on Equation (5.3), which gives a value

between 0 and 1.

M —_ —
Z X;Y; —nXY
CO(X,Y) = =1

M B M B
dOXP—nX? | YE - ny?
=1 =1

If the CC value of two features is larger than a threshold, they are
said to be redundant and grouped in the same cluster. When a feature is
added to a cluster, it is removed from the list. Therefore, all features are
grouped into exclusive or non-overlapped clusters and the number of clusters

is automatically determined based on the given redundancy threshold.

Finally, at the end of the outer while loop when all features are clustered,
RFC returns all the created clusters whose best features will be used to form
the terminal set which is fed into GP for feature construction as shown in

Figure 5.1.
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Figure 5.2: GP representation of a constructed feature.

5.2.3 Representation

CGPFC aims at constructing a single feature using a tree-based representation.
Each GP individual has one tree (so-called single-tree GP) which represents
a constructed high-level feature because it can generate a new value from the
original feature values.

The main focus of this chapter is single feature construction. However,
multiple constructed features can also be generated from a single GP tree
as proposed by Ahmed et al. in [10]. Furthermore, since GP has a built-in
feature selection mechanism, the selected features in the evolved tree are found
to be relevant [6]. Therefore, the performance of five different combinations
of selected and constructed features from a single GP tree is also investigated.
Figure 5.2 shows a simple GP tree, which combines Feature 1 (F}), Feature 5
(Fs), Feature 7 (F7), Feature 9 (Fy), and a constant value 0.8 using operators
+, —, x and / to construct a new feature. Five different feature sets can be

generated from this example tree as follows:

1. Set 1: The single constructed feature only (“CF”), which is Fjj =
(Fl + F7) — (08 X (F7/F9 -+ Fg,)),

2. Set 2: Terminal feature set that is used to construct the new feature
(“Ter”), which is {Fy, F5, Fr, Fy};
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3. Set 3: The combination of Sets 1 and 2 (“CFTer”), which is {F}, F},
F57 F77 FQ},

4. Set 4: Multiple constructed features from all possible subtrees of the
GP tree (“mCF?”), which is {F}, F|, F}, F}, F,}, where F| = F| + 7,
F2, =0.8 x <F7/F9 + F5>, Fé = F7/F9 + F5, and Fi = F7/F9,

5. Set 5: The combination of Sets 2 and 4 (“mCFTer”), which is {F}, F5,
F7, F97 Fé? F1/7 FQI }

Among the five feature sets, Set 1 has been used in many existing methods
[166, 174]. Set 2 and Set 4 have been proposed in [10]. The other subsets have
not been proposed. In addition, no investigation has been done to compare

the performance of these sets.

5.2.4 Fitness Function

When applied to high-dimensional data, GP usually needs a large population
size to cover the huge search space with thousands of features. This may lead
to an expensive evaluation in terms of computational cost. Therefore, a filter
approach is preferred to speed up this process [10]. However, while filters are
said to be faster than wrappers, their performance is usually not as good as
wrappers. In CGPFC, an embedded approach that compromises these two
approaches is proposed. Since a GP tree can be used as a classifier, GP can
be employed as an embedded method for feature construction. A GP tree or
the corresponding constructed feature works as a simple classifier that can
classify an instance x by executing Rule 5.4. The classification accuracy of

GP on training data will be used as a fitness measure to guide the search.

IF constructedF <=0 THEN x € classy; (5.4)
ELSE x € class;. .

Since many of the high-dimensional datasets are unbalanced data, the

balanced accuracy [30, 187] as shown in Equation (5.5) is used to evaluate
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the fitness of each GP individual. Equation (5.5) is essentially the same as
Equation (3.1) and Equation (4.2). TP, TN, FN, FP are the numbers of true

positiv

same weight 1/2 is used for each class to treat the two classes as equally

e, true negative, false negative and false positive respectively. The

important.
1 TP TN
it = - 5.5
fuiness 2(TP+FN+TN+FP) (5:5)
Algorithm 6: The pseudo code of CGPFC

Input :Training data, redundancy_ threshold 6

Output : Constructed feature and selected features

1 beg

2

3
4

[}

[

10
11

12

13

14

15

16 end

in
clusters < RFC(Training_data, 0);
Initialise population using the best feature in each cluster of clusters;
while Mazimum generation is not reached or the best solution is not found do
// The best solution is the GP tree that obtains 100% accuracy
for i = 1 to Population Size do
transf__train < Calculate constructed feature of individual 7 on
Training data (transf_train has only one new feature) ;
Evaluate transf_train by applying Rule (5.4);
fitness < accuracy based on Equation (5.5);
end
Select parent individuals using tournament;
Create offspring individuals by applying crossover or mutation to the
selected parents;

Place new individuals into the population of the next generation;

end

Return the constructed feature and selected features of the best individual;
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5.2.5 Cluster-Based Feature Construction Method:
CGPFC

Algorithm 6 describes the pseudo code of CGPFC. Given a training set and
a redundancy threshold, the algorithm will return the combination of one
constructed feature and the selected features that are used to construct the
new feature.

First of all, the feature clustering procedure RFC is called to create a
set of clusters from the training data. The most relevant feature (based on
SU measure) in each cluster is employed to initialise GP individuals. Lines
5-9 are used to evaluate GP individuals. The loop of evaluation-selection-
evolution (lines 4-13) is executed until the stopping criterion is met. Then,

the constructed and selected features of the best individual are returned.

5.3 Experiment Design

5.3.1 Datasets

Eight binary-class gene expression datasets, namely Colon, DLBCL, Leukemia,
CNS, Prostate, Ovarian, Alizadeh, and Yeoh) with thousands of features are
used to examine the performance of the proposed method on high-dimensional
data. Details about these datasets are shown in Table 1.1 on Page 21.
Since gene expression data usually contains substantial noise generated
during the data collection in laboratories, discretisation is applied to reduce
noise as suggested in [63]. Each feature is first standardised to have zero
mean and a standard deviation of one. Then its values are discretised into
-1, 0 and 1 representing the three states that are the under-expression, the
baseline and the over-expression of a gene. Values that fall in the interval
[t —0/2, 4 0 /2], where p and o are mean and standard deviation of the
feature values, are transformed to state 0. Values that are in the left or in

the right of this interval will be transformed to state —1 or 1, respectively.
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Table 5.1: Parameter settings

Function set +, —, %X, %, sqrt, min, mazx, if
Terminal set Features and random constant values
Population size — GPFC: +#features - o

— CGPFC: #clusters - g

Maximum generations 50

Initial population Ramped Half-and Half
Maximum tree depth 17

Selection method Tournament Method
Tournament size 7

Crossover rate 0.8

Mutation rate 0.2

Elitism 1

Redundancy threshold 0.9

5.3.2 Baseline Methods

The performance of the proposed method was tested by comparing the
discriminating ability of the constructed feature and selected features by
CGPFC versus the original features and those constructed and selected by
the standard GP (GPFC). The comparison is done based on the classification
accuracy of three common learning algorithms including K-nearest neighbour
(KNN) with K = 1, Naive Bayes (NB) and Decision Tree (DT).

Since the principal component analysis algorithm (PCA) is a traditional
well-known algorithm in feature transformation, it is also compare with

CGPFC using the most important component returned by PCA.

5.3.3 Parameter Settings

Table 5.1 shows the parameter settings for both GPFC and CGPFC. The
function set includes four basic arithmetic operators and three functions that
are used to construct a numeric feature from the selected features and random
constants.

Since the numbers of features in these datasets are quite different, ranging



5.3. EXPERIMENT DESIGN 157

from about two thousand to fifteen thousand, the search spaces of these
problems are very different. Therefore, the population size is set proportional
to the size of the terminal set. Since GPFC uses the full feature set to form the
terminal set, the population size is set to #features- a. Due to the limitation
of computer memory, « is set to 3 for datasets with the number of features
less than 5,000, and 2 for the others. In CGPFC, the terminal set takes only
one representative feature from each cluster. Therefore, the population size is
set to #clusters - 5. [ is set to 20 in this experiment. The mutation rate is
set to 0.2, but after generation 10 it gradually increases with a step of 0.02 in
every generation to avoid stagnation in local optima. The crossover rate is
also updated accordingly to ensure the sum of these two rates always equal to
1. The redundancy threshold is empirically set to 0.9. The stopping criterion
is either GP reaches the maximum generation or the best solution is found.
The best solution is the GP tree that obtains 100% classification accuracy

(i.e. fitnessis 1).

5.3.4 Experiment Configuration

Due to the small number of instances in each dataset, a stratified 10-fold CV
on the whole dataset is used to create training and test data. In the fitness
function, the single constructed feature or GP tree is used as a classifier
classifying all instances in the training set based on Rule 5.4 on Page 153
to evaluate the discriminating ability of itself. Note that there is no inner
cross-validation loop in the fitness function of an embedded method.

Since GP is a stochastic algorithm, CGPFC is run on each dataset 50 times
independently with different random seeds. Therefore, a totally 500 runs (50
runs combined with 10-fold CV) are executed on each dataset. Experiments
were runs on PC with Intel Core i7-4770 CPU @ 3.4GHz, running Ubuntu
4.6 and Java 1.7 with a total memory of 8GB. The results of 50 runs from
each method were compared using Wilcoxon statistical significance test [241],
which is a non-parametric rank sum test. A significance level of 0.05 was

used.
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5.4 Results and Discussions

5.4.1 Performance of the Constructed Feature

Table 5.2 shows the average test accuracy obtained by KNN, NB and DT
using the constructed feature by CGPFC over the 50 runs. The results are
compared with “Full”(i.e. using the original feature set) and the constructed
feature by the standard GP (GPFC). Column “#F” shows the average size
of each feature set. The number of instances in each dataset is also displayed
in parentheses under its name, followed by the average computation time in
second that CGPFC spent on each run to construct a single feature. The
following columns display the best (B), mean and standard deviation of the
accuracy (M=£Std) obtained by KNN, NB and DT on the corresponding
feature set. The highest average accuracy of each learning algorithm for each
dataset is bold. Columns S, Sy, and S5 display the Wilcoxon significance
test results of the corresponding method over CGPFC with a significance
level of 0.05. “4” or “~” means that the result is significantly better or worse
than CGPFC and “=" means that their results are similar. In other words,

the more “—”, the better the proposed method.

5.4.1.1 Computation Time

The average running time in the first column of Table 5.2 showed that by
using an embedded approach, the running time of the proposed method was
quite fast. The smallest dataset (Alizadeh) took less than one second and the
largest datasets (Ovarian) required a little bit more than 4 minutes to finish
one run. We noted that there was a high correlation between the running
time and the dataset size including both the number of instances and the

number of features.
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Table 5.2: Results of the constructed feature
Dataset | Method | #F|B-KNN|M+Std-KNN |S; |B-NB| M£Std-NB|S, |B-DT | M+Std-DT |S;
Colon | Full 2000  74.29 =| 7262 — | 7429 =
(62) PCA 1| 43.81 ~ | 64.76 —| 64.76 -
2.04(s)  |@pPFC 1| 82.14| 7242 +£4.89| — | 80.47| 70.37 £4.62| — | 82.14| 73.01 £4.51| —
CGPFC 1|  86.91| 75.43 £3.60 85.48(75.53 +£3.65 86.91|75.39 +£3.68
DLBCL | Full 5460|  84.46 — | 81.96 — | 80.89 -
(T7) PCA 1 68.75 —| 76.79 —| 75.36 -
15.65(s) | GpFC 1| 96.07| 86.46 £3.94| — | 93.57| 86.01 £4.35| — | 94.64| 86.39 £3.95| —
CGPFC 1| 9750 88.49 +£4.01 97.50|88.68 +3.61 97.50|88.40 +4.09
Leukemia| Full 7129  88.57 ~ | 91.96 +| 91.61 +
(72) PCA 1 61.67 60.17 - | 62.67 -
17.14(s) | gpFC 1| 94.46| 88.92 £3.00| = | 94.46| 87.23 +4.30| — | 95.89| 88.80 £3.17| =
CGPFC 1| 9464 89.82 £3.20 94.64| 89.73 £3.36 94.64| 89.86 £3.19
CNS Full 7129  56.67 ~| 5833 ~ | 50.00 -
(60) PCA 1 55.00 —| 66.67 +| 65.00 +
717(s)  |GpPFC 1| 70.00| 57.29 £5.82| — | 70.00| 58.04 £5.65| — | 70.00| 57.46 £5.88| —
CGPFC 1| 70.00| 61.54 £4.04 70.00| 61.33 +£4.45 70.00| 61.50 +£4.03
Prostate |Full 10509|  81.55 ~ | 6055 — | 86.18 =
(102) PCA 1 53.64 - | 61.64 - | 51.91
128.21(s) | gpFC 1| 90.18|  83.47 £3.38| — | 90.18| 83.20 £3.75| — | 90.18| 83.82 £3.01| —
CGPFC 1| 92.27| 85.88 +2.72 92.27(85.95 +£2.74 92.27|85.93 £2.74
Ovarian | Full 15154  91.28 ~| 90.05 ~ | 98.41 -
(253)  |PCA 1| 56.54 — | 64.01 — | 64.03 -
255.40(s) | GpFC 1| 99.62| 97.84 £1.10| — | 99.62| 97.25 £1.45| — | 99.62| 97.84 £1.06| —
CGPFC 1| 99.62| 98.62 £0.56 99.62|98.52 +0.63 99.62|98.63 +£0.57
Alizadeh |Full 1095  77.00 =| 9250 +| 7850 =
(42) PCA 1 48.00 ~ | 33.00 ~ | 48.00 -
0.97(s)  |gpFC 1| 90.50| 78.59 £6.13|=| 88.50| 77.43 £6.27| = 90.50| 78.19 £6.31|=
CGPFC 1| 95.00] 78.58 £5.85 95.00| 78.48 £5.91 95.00|78.58 +5.85
Yeoh  |Full 2526  89.97 — | 9357 — | 97.57 =
(248) PCA 1 73.03 —~| 81.83 ~| 82.67
16.12(s) | gpFrC 1| 99.17| 9711 £0.95| — | 97.57| 95.20 £2.45| — | 99.17| 97.13 £0.90| —
CGPFC 1| 99.18| 97.59 +£0.84 98.78|97.17 +£0.98 99.18|97.59 +0.84
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5.4.1.2 CGPFC versus Full

As can be seen from Table 5.2 that using only a single feature constructed by
CGPFC, KNN obtained significantly better results than Full on six datasets
with the highest improvement in the average accuracy of 8% on Yeoh, and 14%
in the best result on the CNS dataset. On the remaining two datasets namely
Colon and Alizadeh, it had a similar performance on average. However, in

the best case, it achieved 12% and 18% higher accuracy, respectively.

Similar to KNN, the constructed feature by CGPFC also helped NB
achieve 3% to 25% higher accuracy than Full on six datasets. Using only
one constructed feature on Prostate, the best accuracy NB achieved is 32%
higher than Full. On Leukemia, although NB obtained 2% lower than Full on
average, its best accuracy was still 3% higher. On Alizadeh, the accuracy of
CGPFC constructed feature was significantly lower than Full. We also noted
that the accuracy of NB on the Full feature set of this dataset was much
higher than KNN and DT. This phenomenon indicated that the features in
this dataset were quite independent to meet the NB assumption, and they
might include a significant amount of noise data which could be averaged out
in NB by estimating conditional probabilities; however, these noise strongly
affected the performance of KNN and DT.

DT also benefited from the constructed feature, shown as significant
improvement in its performance on three datasets and obtaining a similar
result on four. The highest improvement was on CNS with 11% increase on
average and 20% in the best case. Although the average accuracy was slightly
worse on Leukemia, the best accuracy DT obtained on this dataset was still
3% higher than Full.

In general, over the 24 comparisons between CGPFC and Full on the 8
datasets and 3 learning algorithms, the constructed feature by CGPFC won
15, drew 6 and lost 3. The results indicated that the CGPFC constructed
feature had much higher discriminating ability than the original feature set

with thousands of features.
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5.4.1.3 CGPFC versus PCA

The result of PCA in Table 5.2 showed that using the first component of PCA,
the three learning algorithms obtained significantly worse accuracy than using
the feature constructed by CGPFC or using Full on almost all datasets. PCA’s
results on Colon and Alizadeh were even worse than using random guess.
Only 2 out of the 24 comparisons, the first principle component obtained
better performance than CGPFC constructed feature, which was on the CNS
dataset. The results showed that using the CGPFC constructed feature, all
the three learning algorithms could effectively and efficiently improve their
performance. However, given that PCA is an unsupervised method that can
only linearly transform the features and it is not designed to construct one
strong component, these results are not surprising. Therefore, this is certainly
not a fair comparison. We showed PCA results here so that readers could
have a rough idea about the performance of one PCA component on these

datasets.

5.4.1.4 CGPFC versus GPFC

Compared with GPFC, CGPFC helped KNN further improve its results to
achieve the best results on almost all datasets. The result was significantly
better than GPFC on six datasets and similar on the other two. Similarly,
using the CGPFC constructed feature, NB obtained significantly better results
than using the GPFC constructed feature on seven datasets with the highest
improvement of 5% on Colon. Applying the CGPFC constructed feature on
DT also gave similar results as KNN with significant improvement on six
datasets and equivalent on the remaining two.

In summary, the CGPFC constructed feature won 19, drew 5, and lost
0 out of the 24 pairs of comparisons with GPFC. The results showed that
by reducing the irrelevant and redundant features in the GP terminal set,
the constructed feature had a better discriminating ability than the one

constructed from the full feature set.
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5.4.2 Performance of the Selected Features

In GP based methods, there is a built-in feature selection process which
selects informative features from the original set to construct the new feature.
This subsection will investigate whether CGPFC selects a smaller number of
features with better discriminating ability than GPFC and using all features.
Table 5.3 shows the average test results of GPFC and CGPFC selected features
in the 50 runs. Besides the highest average accuracy, the smallest average

size among the feature sets is also in bold.

5.4.2.1 CGPFC versus Full

As can be seen from Table 5.3, the number of features selected by CGPFC
was very small compared with the original feature set size. On five out of
the eight datasets, CGPFC selected less than 10 features from thousands to
construct a new feature.

Using such a small number of features, KNN had significantly better
accuracy than using Full on six out of the eight datasets. Using about 4
features selected by CGPFC from the 15,154 original features in Ovarian,
KNN increased 7% on its average accuracy and obtained 100% in the best
case. On Leukemia and CNS, although KNN attained a similar accuracy as
Full on average, it still obtained 6% and 14% higher accuracy in the best case,
respectively.

Similarly, NB also significantly improved its accuracy on six datasets and
worse on two. The set of about 18 features selected by CGPFC among 10,509
features on Prostate helped NB increase 30% on average accuracy and 35%
in the best case.

Using features selected by CGPFC, DT significantly increased its accuracy
on four datasets and similar on one. On the remaining three datasets, namely
Leukemia, Prostate and Alizadeh, the selected features slightly degraded DT
accuracies in about 2% to 4%. However, the best accuracies attained by the
CGPFC selected features on these datasets were still higher than Full.
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Table 5.3: Results of the selected features

Dataset | Method #F |B-KNN | M+Std-KNN | S] |[B-NB| M+Std-NB | S | B-DT | M+Std-DT | S3
Full 2000.0 74.29 — 72.62 — | 74.29 —

Colon

(62) GPFC 22.0 87.14 76.46 +£5.01| — | 85.48| 75.97 £3.95| =| 84.05| 73.48 £4.91| —
CGPFC 22.7 83.81| 78.53 +£2.82 87.38|77.46 +3.74 84.05|76.33 +5.20
Full 5469.0 84.46 - | 81.96 — | 80.89 —

DLBCL

(77) GPFC 14.8 95.00 86.70 £3.76| — | 96.25| 88.65 +£3.61| =| 98.75| 85.48 +5.16| =
CGPFC 7.8 95.00| 89.27 +3.36 94.82|90.06 +2.98 93.57|86.09 +3.52
Full 7129.0 88.57 =1 91.96 + | 91.61 +

Leukemia

(72) GPFC 11.2 97.32| 89.57 £3.51| =| 96.07| 91.88 +£2.75| =| 98.75| 90.14 £4.37| +
CGPFC 5.4 94.82 89.56 +2.81 97.50| 90.99 +2.76 93.21| 87.69 £3.01

ONS Full 7129.0 56.67 =] 58.33 — | 50.00 -

N

(60) GPFC 30.5 70.00| 57.67 £5.47| =| 70.00| 60.38 £3.99| =| 73.33| 57.21 +£6.04| =
CGPFC 12.8 70.00 57.17 £5.38 68.33|61.25 +3.62 70.00|58.38 +4.58
Full 10509.0 81.55 — | 60.55 — | 86.18 +

Prostate

(102) GPFC 21.6 90.36 83.48 £3.60| — | 91.27| 87.16 £2.10| — | 90.18| 82.70 +3.33| —
CGPFC 18.1 91.18| 85.80 +£2.53 95.09/90.62 +2.32 88.46| 84.66 +2.60
Full 15154.0 91.28 -1 90.05 — | 98.41 =

Ovarian

(253) GPFC 9.4 100.00 98.13 £0.88| — | 98.82| 97.78 £0.64| — | 100.00| 97.78 +1.06| —
CGPFC 4.4 100.00| 98.81 +0.63 99.62|98.40 +0.56 100.00|98.52 +0.73
Full 1095.0 77.00 -1 92.50 78.50 +

Alizadeh

(42) GPFC 10.7 92.50 78.41 £7.27| =| 93.00| 82.29 £6.29| =| 88.00| 75.95 £5.97| =
CGPFC 5.5 95.00| 80.03 £5.92 93.00| 81.85 +5.52 86.50| 75.56 +4.61
Full 2526.0 89.97 — | 93.57 — | 97.57 -

Yeoh

(248) GPFC 14.0 94.75 91.33 £1.95| — | 98.77|97.22 £0.85| = | 98.77| 98.62 +0.46| =
CGPFC 7.0 97.97| 96.21 £1.02 98.38| 97.12 +£0.76 98.77(98.70 £0.15

In general, the CGPFC selected features had significantly better classifica-

tion performance than Full on 16 cases, similar on 3 and worse on 5 over the
24 comparisons. The results indicated that CGPFC had the ability to select
an extremely small number of relevant features from thousands of features to
improve the performance of KNN, NB and DT.
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5.4.2.2 CGPFC versus GPFC

It can be seen from Table 5.3 that although GPFC selected a very smaller
number from thousands of features, the feature sets selected by CGPFC were
even smaller on almost all datasets. On most datasets, the feature set selected
by CGPFC was about half size or less compared to those selected by GPFC.

With a much smaller size, the CGPFC feature sets obtained either signifi-
cantly better or similar classification performance as GPFC using KNN, NB
and DT on almost all the 24 comparisons. Only on Leukemia, DT obtained
4% lower accuracy on average when using about 5 features selected by CGPFC
compared with 11 features by GPFC. The results indicated that by using
clustering to narrow the search space, GP could select a much smaller number

of features with higher discriminating ability.

5.4.3 Comparisons Between Different Created Feature
Sets

This section will investigate which combinations of the constructed and
selected features has the best performance in improving classification accuracy
of KNN, NB and DT.

Five different feature sets, namely CF, CFTer, Ter, mCF and mCFTer
as described in Section 5.2.5, were created from the best GP tree at the
end of each run. Training and test sets were transformed according to
these feature sets and put into the three learning algorithms for performance
evaluation. The average training and test accuracy of these learning algorithms
on each dataset over 50 runs are reported and compared in Tables 5.4 and
5.5, respectively. In these tables, the “4+” or “-” means the result of the
corresponding feature set is significantly better or worse than “Full”, and “="
means they are similar in the Wilcoxon tests. Note that the KNN accuracy
shown in Table 5.4 are the average of 10-fold CV within the training set.

As can be seen from the third column of Table 5.5, sizes of the five created

feature sets were one to two orders of magnitude smaller than the original
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Table 5.4: Results on training set of the five combinations
Dataset | Subset #F [[B-KNN [ A+Std-KNN [[B-NB| A+Std-NB|[[B-DT| A+Std-DT
Full 2000.0 72.94 84.96 97.13
colon | CF 10| 100.00 | 99.96 +0.07 4 || 100.00 | 99.83 +0.28 + || 100.00 | 100.00 £0.00 +
©2) CFTer 23.7 89.07 | 87.51 £0.96 + || 96.06 | 94.34 £0.92 + || 100.00 | 100.00 £0.00 +
aoas) | T 22.7 87.09 | 85.26 £1.16 + || 90.51 |88.89 £0.91 + || 96.42| 94.68 +£0.79 -
MulCF 28.0 95.17 | 92.96 £1.35 + || 97.85 | 96.42 +0.74 + || 100.00 | 100.00 £0.00 +
MulCFTer | 50.7||  92.66| 90.29 +1.22 + || 97.49 | 95.53 +0.87 + || 100.00 | 100.00 £0.00 +
Full 5469.0 83.55 90.91 98.85
—ei 10| 100.00 | 99.95 +0.09 + || 100.00 | 99.79 +0.24 + || 100.00 | 100.00 £0.00 +
o) CFTer 8.8 98.70 | 97.40 +£0.65 + || 100.00 | 99.57 +0.24 + || 100.00 | 100.00 +0.00 +
1565 | T 7.8 97.69 | 95.76 £0.85 + || 98.85 | 97.80 £0.53 + || 98.56| 97.38 +£0.58 -
MulCF 6.6 99.28 | 97.95 +0.83 + || 100.00 | 98.92 +0.52 + || 100.00 | 100.00 £0.00 +
MulCFTer | 14.4 98.56 | 97.11 £0.70 + || 99.57 | 98.99 +0.46 + || 100.00 | 100.00 £0.00 +
Full 7129.0 90.73 98.15 99.38
Lewkernia | CF 10| 100.00 | 99.93 +0.12 4 || 100.00 | 99.87 +0.18 + || 100.00 | 100.00 £0.00 +
72) CFTer 6.4 98.61 | 97.28 £0.61 + || 99.85 | 99.33 £0.28 + || 100.00 | 100.00 £0.00 +
vraa | 5.4 97.84 | 96.34 £0.83 4 || 98.77 | 98.00 +£0.49 = || 98.46| 97.41 +£0.58 —
MulCF 42 99.23 | 97.67 £0.72 + || 99.85 | 98.63 £0.56 + || 100.00 | 100.00 £0.00 +
MulCFTer 9.6 98.31 | 97.08 £0.56 + || 99.69 | 99.30 £0.30 + || 100.00 | 100.00 £0.00 +
Full 7129.0 58.70 73.89 98.70
ONS CF 10| 100.00 | 99.97 +0.08 + || 100.00 | 99.86 +0.47 + || 100.00 | 100.00 £0.00 +
(60) CFTer 13.8 90.00 | 86.96 £1.77 + || 100.00 | 99.43 +0.41 + || 100.00 | 100.00 +0.00 +
it | 12.8 81.67 | 78.77 £1.48 + || 95.56 |93.36 £1.01 + || 97.04| 96.14 +0.50 -
MulCF 15.0 97.96 | 95.99 £1.05 + || 99.44 | 98.58 +0.71 + || 100.00 | 100.00 £0.00 +
MulCFTer | 27.8 94.63 | 92.61 £1.34 + || 99.81 | 98.59 +0.62 + || 100.00 | 100.00 £0.00 +
Full 10509.0 79.30 66.67 98.59
prostate | CF 10| 100.00 | 99.96 +0.06 4 || 100.00 | 99.86 +0.23 + || 100.00 | 100.00 +0.02 +
(102) CFTer 19.1 95.21 | 93.66 £0.91 + || 98.80 | 97.68 +0.49 + || 100.00 | 100.00 +0.02 +
1o821(s) | T 18.1 94.01 | 92.07 £0.96 + || 96.63 | 95.49 £0.64 + || 97.39| 96.77 +£0.40 -
MulCF 17.3 96.95 | 95.54 £0.74 + || 98.58 | 97.87 £0.43 + || 100.00 | 100.00 £0.02 +
MulCFTer |  35.3 95.86 | 94.52 £0.76 + || 98.58 | 97.84 £0.48 + || 100.00 | 100.00 +£0.02 +
Full 15154.0 90.95 91.79 99.91
ovarian | CF 10| 100.00 | 99.99 +0.02 4 || 100.00 | 99.89 +0.11 + || 100.00 | 100.00 £0.00 +
(253) CFTer 5.4 99.87 | 99.62 £0.14 + || 99.87 | 99.43 +0.15 + || 100.00 | 100.00 £0.00 +
255.40(5) | T 44 99.69 | 99.39 £0.23 + || 99.25 | 98.87 +£0.18 + || 99.82| 99.57 +£0.12 —
MulCF 3.7 99.87 | 99.53 +£0.18 + || 99.78 | 99.25 +0.25 + || 100.00 | 100.00 +0.00 +
MulCFTer 8.2 99.82 | 99.49 £0.18 + || 99.74 | 99.42 +0.17 + || 100.00 | 100.00 £0.00 +
Full 1095.0 75.94 100.00 97.88
Audizadens | CF 10| 100.00 | 99.87 +0.19 + || 100.00 | 99.85 +0.45 — || 100.00 | 100.00 £0.00 +
2) CFTer 6.5 98.94 | 95.12 £1.40 + || 100.00 | 99.82 +0.21 — || 100.00 | 100.00 £0.00 +
0ot(s) | T 5.5 95.78 | 92.80 £1.58 + || 99.47 | 97.96 +0.82 — || 97.08| 95.47 +£0.78 -
MulCF 45 98.16 | 96.19 +1.16 + || 99.73 | 98.74 +0.55 — || 100.00 | 100.00 +0.00 +
MulCFTer | 10.0 98.42 | 94.89 +£1.23 + || 100.00 | 99.34 +0.39 — || 100.00 | 100.00 +0.00 +
Full 2526.0 90.01 100.00 99.28
Voo CF 10| 100.00 | 99.78 +0.12 4 || 99.91 | 99.38 +0.58 — || 100.00 | 99.83 +0.08 +
(248) CFTer 8.0 99.01 | 98.20 £0.45 + || 99.87 | 99.67 +0.11 — || 100.00 | 99.83 +0.07 +
T2 | T 7.0 98.65 | 97.78 £0.54 + || 99.24 | 98.77 £0.28 — || 99.10| 99.01 +0.07
MulCF 1.1 99.64 | 99.20 £0.26 + || 99.69 | 99.36 +0.27 — || 100.00 | 99.83 +0.08 +
MulCFTer |  18.2 99.51 | 98.77 £0.44 + || 99.73 | 99.47 +£0.17 — || 100.00 | 99.83 +0.07 +
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Table 5.5: Results on test set of the five combinationsr
Dataset | Subset #F || B-KNN | A£Std-KNN || B-NB| A+Std-NB |[B-DT| A+Std-DT
Full 2000.0 74.29 72.62 74.29
CF 1.0 86.90 | 75.43 £3.60 = || 85.48 [ 75.53 £3.65 + || 86.90 | 75.39 £3.68 +
Colon CFTer 23.7 84.05 | 78.76 £2.88 + || 87.14 |77.88 £3.79 + || 86.90 | 75.39 £3.68 +
(62) Ter 22.7 83.81 | 78.53 £2.82 + || 87.38 |77.46 £3.74 + || 84.05 | 76.33 £5.20 +
MulCF 28.0 85.24 | 76.97 £4.14 + || 85.48 | 77.02 £3.82 + || 86.90 | 75.17 £3.57 =
MulCFTer|  50.7 88.81 | 78.68 £4.40 + || 85.24 |77.44 £3.65 + || 86.90 | 75.17 +£3.57 =
Full 5469.0 84.46 81.96 80.89
CF 1.0 97.50 | 88.49 £4.01 + || 97.50 | 88.68 £3.61 + || 97.50 | 88.40 £4.09 +
DLBCL | CFTer 8.8 95.89 | 89.46 £3.16 + || 97.50 [90.19 £2.91 + || 97.50 | 88.40 £4.09 +
(77) Ter 7.8 95.00 | 89.27 £3.36 + || 94.82[90.06 £2.98 + || 93.57 | 86.09 £3.52 +
MulCF 6.6 96.25 | 88.77 £3.29 + || 96.25 [89.24 £3.36 + || 97.50 | 88.46 +£4.21 +
MulCFTer|  14.4 94.64 | 89.25 £3.33 + || 96.25 [90.35 £3.06 + || 97.50 | 88.46 +4.21 +
Full 7129.0 88.57 91.96 91.61
CF 1.0 94.64 | 89.82 £3.20 + || 94.64 | 89.73 £3.36 — || 94.64 | 89.86 +£3.19 —
Leukemia | CFTer 6.4 94.64 | 90.02 £2.59 + || 94.82 | 91.17 42.65 — || 94.64 | 89.86 +3.19 —
(72) Ter 5.4 94.82 | 89.56 £2.81 =|| 97.50 | 90.99 £2.76 — || 93.21 | 87.69 £3.01 —
MulCF 4.2 94.64 | 88.40 £3.37 =|| 94.64| 88.32 £3.50 — || 94.64 | 89.79 £3.25 —
MulCF Ter 9.6 94.82 | 89.87 £2.71 + || 94.64 | 90.44 +2.85 — || 94.64 | 89.79 £3.25 —
Full 7129.0 56.67 58.33 50.00
CF 1.0 70.00 | 61.54 +4.04 + || 70.00 | 61.33 £4.45 + || 70.00 | 61.50 +£4.03 +
CNS CFTer 13.8 70.00 | 58.96 £4.95 + || 70.00 | 61.71 £4.14 + || 70.00 | 61.50 £4.03 +
(60) Ter 12.8 70.00 | 57.17 £5.38 = || 68.33 | 61.25 £3.62 + || 70.00 | 58.38 £4.58 +
MulCF 15.0 68.33 | 60.50 £4.26 + || 71.67 |60.96 £4.48 + || 70.00 | 61.25 £4.04 +
MulCFTer|  27.8 70.00 | 59.42 £5.00 + || 71.67 |61.33 £4.34 + || 70.00 | 61.25 £4.04 +
Full 10509.0 81.55 60.55 86.18
CF 1.0 92.27 | 85.88 £2.72 + || 92.27|85.95 £2.74 + || 92.27|85.93 +£2.74 =
Prostate | CFTer 19.1 91.18 | 86.67 £2.18 + || 93.18[89.24 £2.25 + || 92.27|85.93 +£2.74 =
(102) Ter 18.1 91.18 | 85.80 £2.53 + || 95.09 |90.62 £2.32 + || 88.45 | 84.66 +£2.60 —
MulCF 17.3 91.36 | 85.52 £2.20 + || 92.27[86.72 £2.68 + || 92.27 | 85.88 £2.79 =
MulCFTer|  35.3 93.09 | 86.96 £2.47 + || 93.18 |87.88 £2.40 + || 92.27 |85.88 £2.79 =
Full 15154.0 91.28 90.05 98.42
CF 1.0 99.62 | 98.62 £0.56 + || 99.62 |98.52 £0.63 + || 99.62 | 98.63 +£0.57 +
Ovarian | CFTer 5.4 99.62 | 98.94 £0.60 + || 99.60 | 98.50 £0.55 + || 99.62 | 98.63 +£0.57 +
(253) Ter 44| 100.00 | 98.81 £0.63 + || 99.62 [98.40 £0.56 + || 100.00 | 98.52 £0.73 =
MulCF 371 100.00 | 98.50 £0.72 + || 99.22 [97.78 £0.82 + || 99.62 | 98.64 £0.57 +
MulCF Ter 8.2||  100.00 | 98.86 £0.64 + || 99.62 [98.40 £0.73 + || 99.62 | 98.64 £0.57 +
Full 1095.0 77.00 92.50 78.50
CF 1.0 95.00 | 78.58 +£5.85 = || 95.00 | 78.48 +£5.91 — || 95.00 | 78.58 +5.85 =
Alizadeh | CFTer 6.5 95.00 | 80.79 +£5.95 + || 95.00 | 80.41 +£5.85 — || 95.00 | 78.58 +5.85 =
(42) Ter 5.5 95.00 | 80.03 £5.92 + || 93.00| 81.85 +£5.52 — || 86.50 | 75.56 +4.61 —
MulCF 45 95.00 | 78.78 £5.99 = || 92.50 | 79.70 £5.78 — || 95.00 | 78.51 +5.83 =
MulCFTer|  10.0 95.00 | 80.30 £6.44 + || 95.00 | 80.70 £5.52 — || 95.00 | 78.51 +5.83 =
Full 2526.0 89.97 93.57 97.57
CF 1.0 99.18 | 97.59 +0.84 + || 98.78[97.17 £0.98 + || 99.18 | 97.59 +0.84 =
Yeoh CFTer 8.0 97.97 | 96.47 £0.98 + || 99.17|97.97 £0.64 + || 99.18 | 97.64 +£0.82 =
(248) Ter 7.0 97.97 | 96.21 £1.02 + || 98.38|97.12 £0.76 + || 98.77 | 98.70 £0.15 +
MulCF 11.1 98.77 | 97.51 £0.88 + || 98.77|97.49 £0.90 + || 99.18 | 97.60 +£0.81 =
MulCFTer|  18.2 99.17 | 97.13 £1.07 + || 98.78 |97.85 £0.74 + || 99.18 | 97.65 +0.80 =
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feature set. With this reduction, they could significantly speed up the learning

process as well as simplify the learnt classifiers of any learning algorithm.

With such small sizes, all the feature sets generated by CGPFC helped
KNN improve its performance on all datasets with extremely small amounts
of features compared to the full feature set. In each dataset, the average
accuracies slightly changed when using different feature sets. The difference
could be up to 4% as on CNS. Among the five generated feature sets, CFTer

achieved the highest average accuracy on five datasets.

Similarly, all the five feature sets also helped NB significantly improve its
performance on six out of the eight datasets. On Leukemia and Alizadeh, all
the five created feature sets had a worse performance than Full on average.
However, they still had higher accuracy in the best case. For DT, similar
classification performance was witnessed in all the feature sets except for
the selected feature set (Ter) with slightly lower accuracies. Only on Colon
and Yeoh, this feature set had a slightly better performance than the others.
The same accuracies were obtained by CF and CFTer on almost all datasets,
which showed that the learnt decision trees in both cases were the same. A
closer look at the learnt decision trees showed that they used only the single
constructed feature. This indicated that the constructed feature had much
better discriminating abilities than the selected ones, resulting in the decision

trees with the size of several nodes only.

Friedman test with Tukey as the post hoc test was used to confirm which
feature set to be significantly better than others. R package is used to run
this test. The results showed that there was no significant difference between
different created feature sets for DT. The reason may be related to the fact
that since the single constructed feature had much better discriminating
power than the other features in the set, DT always used it to build classifiers.
However, only one feature might not be enough to represent the whole complex

feature space of the original problem.

For KNN and NB, on the other hand, a significant difference between
these feature sets was found with p-value 0.0002 for KNN and 0.0249 for NB.
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Differences of KNN accuracy between two feature sets
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Figure 5.3: Friedman with Tukey post-hoc test for KNN on eight datasets.

Differences of NB accuracy between two feature sets
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Figure 5.4: Friedman with Tukey post-hoc test for NB on eight datasets.

Figure 5.3 and Figure 5.4 show the boxplots of the differences between pairs
of created feature sets in KNN and NB results respectively. In these figures,
the “Full” and the five created sets are indexed from zero to five with the
same order as shown in Table 5.5. If the difference between two feature sets
is significant with p-value < 0.05, its corresponding boxplot is filled.

The first five boxes in Figure 5.3 showed that on average all the five
created sets had better results than the full feature set. Two differences
among the five were significant, i.e., CFTer (i.e. subset 2 or the combination
set of constructed and selected features) with a p-value 0.0002 and mCFTer

(i.e. subset 5 or the combination set of all multiple constructed features from
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all subtrees and selected features) with a p-value 0.0014. However, there was
no difference between these two feature sets as shown in the boxplot (5-2).
Furthermore, as can be seen from Table 5.5, the size of CFTer was much
smaller than mCFTer on all datasets. Using CFTer, KNN ran much faster
than using mCFTer. Therefore, among the five created sets, the combination
of constructed and selected features is the best feature set in improving KNN

performance in terms of classification accuracy and computation time.

This finding is also held for NB. In Figure 5.4, (2-0) is the only filled
boxplot, which indicates that CFTer is the only feature set that helps NB
achieve significantly better performance than Full on all datasets. Note that
while subset 5 (mCFTer) helped KNN achieve significantly better performance
than Full on all datasets, it could not do the same thing for NB. This may be
related to the fact that features constructed from all subtrees can be highly
correlated or redundant, which makes NB’s assumption on features to be

conditionally independent become invalid.

An investigation on the training and test results of the five combinations
of constructed and selected features reveals the reason why CFTer is the best
feature subset among them. Comparing the training results of CF with CFTer
in Table 5.4 showed that CF had higher KNN and NB accuracy than CFTer
on almost all datasets. These results were expected since the evolutionary
process of GP aimed to maximise the classification accuracy of CF. However,
the test results of KNN and NB using CF and CFTer in Table 5.5 showed
an opposite pattern on almost all datasets. This indicated that the single
constructed feature might overfit the training data and thus its performance
on unseen test data was slightly degraded. Therefore, combining it with the

selected features helped to alleviate the overfitting problem.

The results again confirmed the ability of GP in selecting informative
features and constructing new features that can significantly reduce the
feature set size from thousands to tens of features while improving or at least

maintaining the classification performance of the common learning algorithms.
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5.5 Further Analysis

This section will analyse the feature clusters created by RFC and constructed
features to further investigate the effectiveness of the proposed method as

well as its generalisation ability.

5.5.1 Cluster Analysis

To validate the structure of the clusters generated by the proposed algorithm,
this section investigates the cohesion or compactness within each cluster as
well as the separation or isolation between different clusters.

Silhouette analysis [201] is a popular method to study both the cohesion
and the separation of clusters. Equation (5.6) displays the calculation of
the silhouette coefficient of a feature ¢ in which a; is the average distance
of feature ¢ to all other features in the same cluster, and b; is the minimum
average distance of feature ¢ to other clusters. Given that ¢; is the cluster
that includes feature i, and ¢, is other clusters, CC(f;, f;) is the correlation
coefficient (CC) between features i and j, a; and b; are calculated based
on Equations (5.7) and (5.8). Since CC (see Equation (5.3)) measures the
correlation level or similarity between 2 features and has a value between 0

and 1, (1 - CC) is used as a distance or dissimilarity measure between them.

(bi — a;)

= mar(aby) (5.6)

where "
@i = size(c;) e (1=CC(fi, ;)i #J (5.7)
bi = Jmin Z (1-CC(fi, £,))) (5.8)

M Slze C
Ck¢61 k ]:1

The value of the silhouette coefficient ranges from -1 to 1, where -1 is the
worst and 1 is the best case. The average silhouette coefficient (ASC) of all

features is an overall measure indicating the goodness of a clustering. Since
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Table 5.6: Results of cluster analysis

%Dimensionality

Dataset  #Features #Clusters . ASC
reduction
Colon 2000 104.10 0.95 0.80
DLBCL 5469 819.20 0.85 0.96
Leukemia 7129 901.30 0.87 0.98
CNS 7129 79.30 0.99 1.00
Prostate 10509 1634.80 0.84 0.85
Ovarian 15154 601.20 0.96 0.31
Alizadeh 1095 93.60 0.91 0.94
Yeoh 2526 97.60 0.96 1.00

the experiments were conducted based on a 10-fold CV framework on each
dataset, the average of ASC over 10 folds was calculated. Table 5.6 shows the
original number of features, the average number of clusters generated with
the redundancy level of 0.9, the percentage of dimensionality reduction, and
the average of ASC over 10 folds of each dataset.

As can be seen from the fourth column of Table 5.6, all datasets obtained
at least 84% of dimensionality reduction after applying the proposed feature
clustering algorithm. The number of input features into GP was significantly
reduced with the largest reduction of 99% on CNS and 96% on Ovarian and
Yeoh. The third column of Table 5.6 also showed differences in the number
of clusters generated on different datasets regardless of its original number
of features. For example, CNS had a much smaller number of clusters than
Colon although its original feature set size was more than three times larger
than Colon. This again confirms that it is very difficult to predefine an
appropriate number of clusters for each dataset to maintain a certain level of
redundancy among all features in the same cluster.

Results of the silhouette coefficients shown in the last column of the table
were 0.8 or above on all datasets except for Ovarian. This indicates that the
clusters generated by RFC were compact and separated. Only on Ovarian,

this coefficient was low. An investigation on this dataset showed that most
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Figure 5.5: Leukemia constructed feature.

of the features in this dataset have their correlation coefficient with other
features higher than 0.5. Therefore, features in different clusters might still
be highly correlated but with a lower level than the predefined threshold (0.9).
However, even though its silhouette coefficient was low (0.31), the results of
this dataset shown in Table 5.2 revealed that the feature clustering method
enabled the constructed feature to perform significantly better than the one
constructed from the whole feature thanks to the significant reduction of 96%

in dimensionality.

5.5.2 The Constructed Features

This section investigates the reason why the constructed and selected features
can achieve good performance by showing a constructed feature by a GP run
on a dataset as a typical example. Leukemia was chosen because the size
of the constructed feature (or GP tree size) on this dataset is smaller than
others. This is also a challenging dataset as can be seen from its results in

Tables 5.2 and 5.3.

Figure 5.5 shows the GP tree of the constructed feature and its values
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Figure 5.6: Leukemia original features.

returned by CGPFC in the run of seed 1 on fold 5 of the Leukemia dataset.
It was constructed from four original features, which are feature M19507 at,
X61587 at, U0908T s _at, and U82759 at whose values are plotted in Figure

5.6. Note that this dataset has two classes of leukemia patients, namely acute

lymphoblastic leukemia (ALL) or acute myelogenous leukemia (AML).

It can be seen from these scatter plots in Figure 5.6 that the selected

features had low impurity or high correlation to the class labels. Specifically,
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in feature M19507 at, the value —1 is corresponding to class ALL while the
value 1 is corresponding to class AML. In other words, these selected features
were relevant to the problem. By combining the four selected features, the
constructed feature split instances in the two classes into two completely
separate intervals. Therefore, using this constructed feature, GP and other
learning algorithms could easily learn a classifier that can classify all instances
into its correct class. However, results in Table 5.2 showed that this ideal
case did not always happen in all runs and all folds. We will investigate the

reason in the following section.

5.5.3 Generalisability

During the evolutionary process, an evolved constructed feature or GP tree
is evaluated based on the classification accuracy of itself on the training set.
When GP reaches the maximum number of generations or the best solution
(i.e. the GP tree that obtains 100% accuracy on training data) is found, the
best solution found so far is returned. A comparison between the training
accuracy which is also the fitness value and the test accuracy obtained by
the GP tree or the constructed feature was conducted to see if the returned
solutions can generalise well to the unseen test data. Table 5.7 presents the
average training accuracy, test accuracy and the difference between them over
the 50 runs. In this table, the datasets are listed in an ascending order by the
number of instances to better show the influence of the sample size or the
number of training instances on the generalisability of the proposed method.

As can be seen from Table 5.7, in general, the constructed features obtained
optimal solutions on almost all training sets. However, their performances
on unseen test set were quite different, especially for the first three datasets.
This phenomenon suggested that in some cases the constructed features were
overfitted to the training data. Values in the last column of the table roughly
revealed a descending order of differences between training and test accuracies
from very large gaps in the first three datasets to very small ones in the last

two, which was negatively correlated with the number of instances shown in
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Table 5.7: Results of training and test accuracy

Dataset #Instances Training Accuracy Test Accuracy Difference
Alizadeh 42 100.00 78.46 21.54
CNS 60 100.00 54.51 45.49
Colon 62 100.00 70.94 29.06
Leukemia 72 100.00 89.56 10.44
DLBCL 7 100.00 83.53 16.47
Prostate 102 100.00 85.84 14.16
Yeoh 248 99.90 96.00 3.90
Ovarian 253 100.00 98.62 1.38

the second column. This indicated that the smaller the number of instances
was, the severer the overfitting problem would be.

However, this rule did not always hold. For example, the results of the
first two datasets shown in Table 5.7 showed that constructed features on
Alizadeh had better generalisation than CNS although it has only 42 instances
while CNS has 60. This phenomenon can be explained by investigating the
distributions of each feature in these two datasets. Figures 5.7 shows the
distributions of 50 features from the two datasets. Results in the figure
showed that compared with Alizadeh, CNS features had a much more skewed
distribution with a lot of outliers scattering far away from its mean value. In
the experiments, CNS was divided into 10 folds, each of which has 6 instances.
Therefore, it was likely that the distributions of the training and the test
folds were very different. As a result, the constructed or selected features
based on the training fold could not generalise well to correctly predict the
unseen data in the test fold.

This hypothesis is confirmed by investigating the accuracies of each classi-
fication algorithm on each data fold of the CNS dataset. The results of full
feature was used to leave out the effect of feature selection and construction.
Table 5.8 shows the test accuracies of KNN, NB and DT obtained on each
fold. The last row presents the largest difference between accuracies obtained
by each learning algorithm on 10 folds. The results showed that all the three
learning algorithms obtained very different accuracies on different folds. Some

had as high accuracy as 87.5%, some had even worse results than the random
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Figure 5.7: Distributions of 50 features of Alizadeh and CNS.

guess (37.5%). Therefore, the gap between the obtain accuracies in different
folds became very high with the maximum of 62.5% in KNN.

The results showed that some test folds might have very different dis-
tributions to their corresponding training folds. As a result, it is difficult
for learning algorithms to learn a model that can perform well on the test
folds. In addition, with a small number of instances in one test fold (less than
ten instances in many datasets), one misclassified instance can significantly
decrease the classification accuracies. Combination of this small sample size
problem and the skew distribution of the features makes CNS and Colon
become the most challenging datasets with the highest level of overfitting
as shown in Table 5.7. This explanation is concordant to the result of the

Ovarian dataset where the gap between training and test accuracies is just
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Table 5.8: Results of “Full” feature set on each fold of Colon dataset

Fold KNN NB DT

0 50.00 50.00 50.00

1 62.50 75.00 50.00

2 62.50 62.50 50.00

3 62.50 87.50 50.00

4 62.50 50.00 37.50

5 37.50 87.50 25.00

6 75.00 37.50 25.00

7 87.50 37.50 62.50

8 25.00 75.00 37.50

9 62.50 50.00 75.00

Max difference 62.50 50.00 50.00
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Figure 5.8: Distributions of 50 features of Ovarian.

1.38%. The boxplot of the first 50 features of Ovarian in Figure 5.8 shows that
Ovarian features have rather symmetric distributions without many outliers.

Furthermore, investigating the Yeoh dataset showed that given a significant
number of instances, GP still achieved a good generalisation despite the fact
that Yeoh features have very skew distribution with a lot of outliers as shown
in Figure 5.9. In this case, although outliers existed, the training set was
still large enough (about 220 instances) to be representative of the whole
distribution.

In conclusion, the proposed algorithm can cope with small sample size
as well as skew distribution to obtain a good generalisation as long as the

given training data has enough information to represent the distribution of
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Figure 5.9: Distributions of 50 features of Yeoh.

the unseen data.

5.6 Chapter Summary

The goal of this chapter was to apply feature clustering to GP for feature
construction in classification in order to improve its performance on high-
dimensional data. The goal has been achieved by proposing a new feature
clustering algorithm to cluster redundant features in the same group based
on a correlation or redundancy level. Then the best feature from each cluster
is fed into GP to construct a single new high-level feature. Performance of
the constructed feature is tested on three different classification algorithms.
The results on eight gene expression datasets having two classes have shown
that the proposed method can construct a single feature that can help these
learning algorithms improve classification performance of using thousands
of the original features. Comparisons between CGPFC and the standard
GP for feature construction also showed that feature clustering helps GP
construct features with better discriminating ability than those created from
the whole feature set. The results also showed the effectiveness and efficiency
of the proposed feature clustering technique in automatically determining the
number of feature clusters.

Investigation on the performance of different created feature sets from the
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single GP tree showed that all the five feature sets help the three learning
algorithms improve their classification accuracy. Furthermore, thanks to
their much smaller sizes, these feature sets also reduce the learning time and
simplify the learned classifiers. Among the five feature sets, the combination
of the single constructed feature and the selected ones help KNN and NB
significantly improve their performance on all datasets. For DT, adding the
selected features does not make any difference in its performance compared to
using only the single constructed one most likely due to the built-in feature
selection ability of DT.

In this chapter, GP has shown promise in feature construction. However,
only one constructed feature may not be enough to represent the complex
feature space of the original thousands of features, which prevents it from
achieving higher classification accuracy. On the other hand, creating multiple
constructed features from a single tree does not make a significant difference.
Therefore, multiple feature construction using multi-tree GP should be con-
sidered to create a larger number of independently constructed features with
better discriminating ability. Furthermore, using the embedded approach,
GP may construct features that are too overfitted to the training data since
the constructed feature is evaluated based on its performance as a classifier
on the whole training set. This problem is even worse when the number of
examples or instances given for training is small. Next chapter will investi-
gate multiple feature construction using multiple-tree GP with filter and/or

wrapper approaches for feature evaluation.
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Class-Dependent Multiple
Feature Construction Using GP

6.1 Introduction

The previous chapter has shown the ability of GP in constructing features
with better discriminating power. However, it may not enough for a single
feature to represent the whole complex feature space of the original high-
dimensional data. Meanwhile, the previous chapter showed that multiple
features constructed based on all possible subtrees of a single GP tree did not
obtain significantly better performance than the single feature constructed
from the whole tree.

Another approach to multiple feature construction using single-tree GP is
to run GP multiple times as in [171], where each time constructs one feature
focusing on discriminating instances from one class from all other classes.
For presentation convenience, it is called I TGPFC here because it used the

single-tree representation. 1TGPFC has shown to be effective on UCI datasets

181
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with tens of features. However, it requires to run GP many times to construct
one set of new features and the number of constructed features is limited to
the number classes of the problem, which may be inefficient and insufficient
for high-dimensional data. Furthermore, since each feature is independently
constructed in different GP runs, it is impossible to determine the interaction
of the newly constructed features, which may be redundant, overlapping to
each other. As a result, the performance of the whole feature set may not
be as good as expected. This problem can be overcome by using multi-tree
representation, where each individual contains many trees, each of which
represents a constructed feature.

Multiple-tree GP was proposed and shown effective to construct multiple
features [30, , ]. However, the datasets used in these studies are quite
small with about tens of features. Therefore, they may not scale well to
high-dimensional data. Furthermore, these methods usually construct features
from all the original features, which may not be effective since some particular
features may have better ability than other features to distinguish instances
of one class from other classes [237]. For example, a feature may be good at
distinguishing samples of class A from those of class B, C and D, but may
not be good at differentiating samples of classes B from those of C and D.
Therefore, it may be more difficult to construct a better discriminating feature
when combing features that are relevant to different classes. Recently, class-
dependent features have been considered in both conventional [77, , 237]
and PSO based feature selection method [270]. Results of these methods
showed that evaluating features in a class-based context led to a better
performance. However, the research of such approaches in feature construction

in general as well as using GP is still limited.

6.1.1 Chapter Goals

This chapter proposes two multiple feature construction methods using multi-
tree GP for high-dimensional data, one is class-independent (MGPFC) and

one is class-dependent (CDFC). The proposed methods aim to construct a
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small number of new high-level features, which are expected to improve the
classification performance of common learning algorithms including k-Nearest
Neighbour (KNN), Naive Bayes (NB) and Decision Tree (DT). Performance
of the class-dependent constructed features by CDFC will be tested and com-
pared with the original feature set, the class-independent features constructed
by MGPFC, the single feature constructed by CGFPC in Chapter 5 and those
constructed by 1TGPFC [174]. Specifically, the following research objectives

will be investigated:
e How to construct class-dependent features;

e Whether the features constructed by the proposed methods achieve

better classification accuracy than the original full feature set;

e Which of the two proposed methods performs better in terms of classifi-

cation accuracy and computation time.

e Whether the better proposed method here achieves better performance
than the single feature construction method in Chapter 5 (CGPFC);

and

e Whether the better proposed method outperforms the multiple feature
construction method using single-tree GP [171] (1TGPFC).

6.1.2 Chapter Organisation

The remaining of this chapter is organised as follows. Section 6.3 describes
the proposed multi-tree GP based feature construction algorithms including
the class-independent one (MGPFC) and the class-dependent one (CDFC).
Section 6.4 discusses the datasets, parameter settings and experiment config-
uration used to test the performance of the proposed methods. Results of
the experiments are shown and discussed in Section 6.5. Further analyses
are presented in Section 6.6. Finally, a summary of this chapter is given in
Section 6.7.
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6.2 The Proposed Method: MGPFC

6.2.1 Representation

The aim of this method is to construct a very small number of features that
can improve or at least maintain the discriminating ability of the original set
with thousands to tens of thousands of features. The number of new features
will be set proportional to the number of classes of the problem since we
hypothesise that the more classes the problem has, the more complex the
solution space might be. The number of constructed features m is defined
based on a given construction ratio » which can be 1, 2, 3, etc. For example, if
the given construction ratio r is equal to 2, then 4 features will be constructed
for a binary-class problem. Figure 6.1 shows an example of a GP individual

in this case.

CF1 @ CFz ° CF3 °
OERONNOSNONNONR®

E) (2) ) @) ) E) ) @)|F ) (+) @
F9) () () ()

Figure 6.1: MGPFC representation.

Using this individual, 4 features are generated as follows.

CFl = MCLI(F7 + (Fg — F4>,F4 X FQ)

CFQ = (Fg — F4) + (F5 X FQ)

CFg = (Fﬁ + F4) — MCLQT(Fg + F4,F1)

CF4 = (F6 + If(F4,F1,F8)) X (FS — Fg)
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6.2.2 MGPFC Fitness Function

To evaluate an individual, its m constructed features are used to transform
the training set into a new training set with m features. The discriminating
ability of the transformed dataset indicates how good the constructed features
are. While a wrapper measure based on a classification algorithm can be
a good indicator for searching good feature sets, the resulted feature set
may not be general for other classification algorithms. On the other hand,
a filter measure is based on the intrinsic characteristics of the data, its
solutions may be effective for many learning algorithms, however, with the
price of lower classification accuracy than wrapper approaches. Therefore,
a hybrid approach that combines both wrapper and filter was proposed to
synthesise their strengths. Decision Tree is used to evaluate the classification
performance of the constructed feature set as it is a fast learning algorithm.
For filter approach, a distance measure is chosen because it is simple and
multivariate which means it can evaluate the discriminating ability of a set of
features at a time.

To evaluate an individual with m trees, its constructed features are
used to transform the training set into a new dataset with m features. The
discriminating ability of the transformed training set will be used to determine
the fitness of the individual. Equation (6.1) describes the fitness function
which combines the classification performance and a distance measure using

a weighting coefficient a.
Fitness = a - Accuracy + (1 — «) - Distance (6.1)

where Accuracy is the average accuracy of DT over K-fold (K=3) cross-
validation (CV) on the transformed training set. To avoid overfitting, this
K-fold CV is repeated L times (L=3) with different data splitting similar to
[125]. Totally, K x L models were built to evaluate the set of constructed
features. Therefore, 9 models are trained in each evaluation, which requires an
equivalent running time as a 10F-CV. Because many high-dimensional datasets

are unbalanced, the same balanced accuracy [187] as previous chapters was
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used. However, for reading convenience, it is presented again in Equation (6.2)
in which ¢ is the number of classes, T'P; and S; are the number of correctly

identified instances and the number of total instances of class 1.

TP,
balanced _accuracy = Z 5 (6.2)
The Distance measure [11] is calculated based on Equation (6.3) which is

the same as in Chapters 3 and 4. However, the measure used in this method
to approximate the distance between two vectors are different from the
previous two chapters. Therefore, its description is repeated here for reading
convenience. As shown in Equation (6.3), Distance is used to maximise
the distance of instances between class (D) and minimise the distance of
instances within the same class (D,,). D, is approximated by the average
distance between an instance and its nearest miss which is the nearest instance
of other classes. D, is approximated by the average distance between an
instance and its farthest hit which is of the same class. Let S be the training
set, Dy and D,, are calculated based on Equations (6.4) and (6.5).

distance = T 6—51(Db—Dw) (6.3)
15|

D= [ER= Z [iljiclass(V #class(V)}DiS(‘/i’ Vi) (6.4)
S|

1
— max
|S] z; {jli#i.class(Vi)=class(V;)}

2 Z min(V;d, V]d)
. d=1

> (Via+ Via)

d=1

D, = Dis(V;, ;) (6.5)

Czekanowski(V;,V;) = (6.6)

where Dis(V;,V;) can be any measure used to approximate the distance
between two vectors V; and V;. Czekanowski distance [10] was used in this

method to evaluate the dissimilarity of two vectors because it is calculated
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based on the shared portion between two vectors as shown in Equation (6.6).
Therefore, its value is bounded in the interval [0,1]. As a result, D, and D,
values also fall in [0,1] interval and their difference (D, — D,,) will fall in [-1,1].
This difference was used as the second component in the fitness function after
using a logistic function with coefficient —5 to transform it into a value of
[0,1] interval. Note that the Czekanowski distance can only be used with
non-negative values. Therefore, the constructed features are scaled into the

range of [0..1] before applying the formula.

6.2.3 MGPFC Overall Algorithm

Algorithm 7: The pseudo code of MGPFC

input :Training set, Construction ratio r

output : The best constructed features

1 begin
2 m < r X Nbr_Classes ;
3 Randomly initialise individuals, each has m trees;
4 while Maximum generations is not reach do
5 for ¢+ = 1 to Population Size do
6 transf__train < Transform training set based on the constructed
features in individual i;
7 Apply learning algorithm on transf_train to get average accuracys;
8 Calculate distance on the normalised transf_train data using
Equation (6.3);
9 Calculate fitness of individual ¢ using Equation (6.1);
10 end
11 Select parent individuals using tournament;
12 Create offspring individuals by applying crossover or mutation to the
selected parents;
13 Place new individuals into the population of the next generation;
14 end
15 Return the constructed features in the best individual;
16 end

The overall algorithm as shown in Algorithm 7 returns a set of constructed
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features for a given training set and a construction ratio r. First of all,
the number of constructed features m is determined based on r and the
number of classes of the given problem. Then, GP starts by randomly
initialising individuals, each having m trees using the predefined function set
and the terminal set. Each individual corresponds to a new candidate solution
which is m constructed features. These features are used to transform the
training set where accuracy and distance will determine the fitness of the
corresponding individual (lines 6 to 9). After evaluation, a normal selection
and evolutionary process is conducted. This is repeated until the maximum
number of generations is reached. Then the set of constructed features in the

best individual will be returned as the final solution.

6.3 The Proposed Method: CDFC

6.3.1 Representation

This method aims at constructing multiple features using multi-tree GP rep-
resentation. Each constructed feature will focus on discriminating instances
of one class from the other classes. Similar to MGPFC, the number of con-
structed features m is equal to the user-given construction ratio » multiplied
by the number of classes. However, different from MGPFC, each constructed
feature is associated with one class. Figure 6.2 shows an example of a GP
individual with » = 1 for a three-class problem. In this case, while C'F} is
evolved towards a high-level feature that can distinguish instances of Class;

to other classes, C'Fy and C'F3 focus on Classy and Classs, respectively.

6.3.2 Class-Dependent Terminal Sets

Since one constructed feature aims at discriminating instances of one class
from the other classes, it should be constructed based on features that are
relevant to its associated class. In other words, the constructed features of

different classes are expected to choose original features from different subsets.
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Figure 6.2: Representation of a class-dependent GP individual with construc-

tion ratio 1.

Therefore, different trees in an individual will have different terminal sets,
each of which comprises of features that are relevant to the corresponding
class. Since there might be features important to different classes, it is likely
to have overlap between different terminal sets.

A feature f is said to be relevant to discriminating a class c if its values
appeared in class ¢ are significantly different from its values in other classes.
In CDFC, t-Test is used to measure how relevant a feature f is to class c.
First of all, values of f will be divided into two groups, one comprises values
belonging to class ¢ and one from other classes. Then, the relevant measure
Rely . is calculated based on Equation (6.7). Rel, is set to 0 if the two
groups are not significantly different (i.e. p-value > 0.05). Otherwise, it is
equal to the absolute of t-value divided by p-value. Therefore, the larger the

value of Rely., the more relevant the feature f to discriminating class c.

(6.7)

|t_value(fcla55:c7fcla,ss7$c) ‘
p-value )

Rel,, = { 0, if p-value > 0.05

otherwise

For each class c, features are ranked by its Rel. values. Then half of the
top-ranked features will be used to form the terminal set of class ¢. By doing
so, the method not only eliminates irrelevant features but also narrows the

search space so that the searching process will be more efficient.
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6.3.3 CDFC Fitness Function

Since different constructed features in an individual focus on different classes,
they need to be evaluated separately. Therefore, the evaluation time will
become very high if CDFC uses the same hybrid fitness function as MGPFC
because the computation cost of the wrapper measure is very high. Therefore,
a new fitness function is proposed in CDFC using two filter measures that are
simple and fast to calculate and can provide a good indicator of data discrim-
inating ability. Equation (6.8) shows the fitness function that maximises two
measures combined using a weight a. The size of the GP individual (indSize)
is also used here as a pressure for small-tree preference. Therefore, its weight
is set to a very small value (1077) to limit its effect on only cases when two

individuals have the same information gain and distance.
Fitness = o - AvglG + (1 — «) - Distance — 107" - indSize (6.8)

The first measure (AvglG) is the average information gain (IG) measured
by mutual information of the constructed features and the binary-class label
(i.e. the focused class versus all the other classes). AvglG is calculated based
on Equation (6.9) where f,q. is the best feature with the highest IG among m
constructed features. The f,,..’s IG is added to bias toward those candidates
that have the better f,,... IG of feature f is calculated based on unconditional

and conditional entropy H as in Equation (6.10), i.e. mutual information.

Z IG(fi,class) + IG(fmaz, class)
AvglG = =

m+1 (6.9)

IG(f,class) = H(class) — H(class|f) (6.10)

Although IG is a good measure of feature relevancy, it can only evaluate
features individually. Therefore, it cannot show how good the whole set of
constructed features in discriminating instances of different classes. Therefore,
IG is combined with distance measure to overcome this limitation. CDFC
uses the same Distance measure [11] as used in MGPFC method, which was
described by Equation (6.3).
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Figure 6.3: CDFC overall system.

6.3.4 CDFC Overall System

Figure 6.3 shows the overall system of CDFC. Based on the training set,
CDFC forms one terminal set for one class using the relevance measure in
Equation (6.7). These terminal sets are then put into GP for class-dependent
feature construction. In each GP individual, the tree corresponding to class ¢
will use the ¢th terminal set. When the stopping criterion is met, the best
individual is used to generate the constructed features. The training and test
sets will be transformed based on these features and used to evaluate the

performance of CDFC.

6.4 Experiment Design

6.4.1 Datasets

Eight gene expression datasets with thousands of features are used to examine
the performance of the proposed method on high-dimensional data. Details
about these datasets are shown in Table 1.1 on Page 21. Among the eight
datasets, six are binary-class problems (Colon, DLBCL, Leukemia, CNS,

Prostate, and Ovarian), one has three classes (Leukemial), and the last one
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has four classes (SRBCT). Note that the last two datasets were not used in
the experiment of Chapter 5 because the single feature construction method
proposed in Chapter 5 used embedded approach, where GP-tree was used as
a binary-class classifier to evaluate the constructed feature.

Before being fed to the feature construction methods, these datasets are
discretised in the same way as in Chapter 5 (described in Section 5.3 on Page
155) to reduce noise generated during the data collection in laboratories as

suggested in [63].

6.4.2 Experiment Configuration

The performance of MGPFC and CDFC were tested by comparing the
discriminating ability of the constructed feature versus the original features.
The better method was used to compare with the clustering-based feature
construction method (CGPFC) proposed in Chapter 5, which has been
shown to produce significantly better results than standard GP for feature
construction. It was also compared with another multiple feature construction
method using single-tree GP proposed by Neshatian et al. [171], which is
called 1" TGPFC here for representation convenience. All the comparisons
were done based on the classification accuracy of three common learning
algorithms including K-nearest neighbour (KNN), Naive Bayes (NB) and
Decision Tree (DT).

Due to the small number of instances in each dataset, 10-fold CV is used
to generate training and test set, where one is used for testing, and the other
9 for training as shown in Figure 2.3. As GP is a stochastic algorithm, 50
independent runs of each method with 50 different random seeds are executed
on each training set. Average of 500 results (50 x 10) are used for comparisons.

Experiments were runs on PC with Intel Core i7-4770 CPU @ 3.4GHz,
running Ubuntu 4.6 and Java 1.7 with a total memory of 8GB. The results of 50
runs from each method were compared using Wilcoxon statistical significance
test [241], which is a the non-parametric rank sum test, with a significance
level of 0.05.



6.5. RESULTS AND DISCUSSIONS 193

Table 6.1: Parameter settings

Function set +, —, X, mazx, if Generations 50
Population Size #features x 3 Crossover Rate 0.8
Initial Population Ramped Half-and Half Mutation Rate 0.2
Maximum Tree Depth 8 Elitism Size 1
Selection Method Tournament Method Tournament Size 7
Construction ratio r 2 Fitness weighting 0.8

6.4.3 Parameter Settings

Table 6.1 describes the parameter settings of all GP based methods used in
the experiments. The function set comprises of 3 arithmetic operators (4, —,
X ), a max function which returns the maximum values from the two inputs
and an i f function which returns the second argument if the first argument
is positive and returns the third argument otherwise. No constant values are
used in the terminal set for simplicity. The population size is set proportional
to the dimensionality of the problem using a coefficient 3, which is set to 3
for the Colon dataset and to 2 for all the others due to memory limit. The
construction ratio r used to determine the number of constructed features is
experimentally chosen as 2. The fitness weight o in both MGPFC and CDFC
is set to 0.8 in order to bias fitness values towards the accuracy (in MGPFC)

and information gain measure (in CDFC).

6.5 Results and Discussions

Table 6.2 shows the average test accuracy of KNN, NB and DT using the
constructed features obtained from 50 independent runs of CDFC compared
with “Full” (i.e. using the original feature set) and MGPFC. For each learning
algorithm, the best (B), the mean and standard deviation (M+Std) results
are displayed. The best result among the three compared methods on each
dataset is highlighted. In addition, the Wilcoxon significance test is applied
to the results with a 5% significance level. Its results for KNN, NB and DT
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Table 6.2: Results of the constructed features
Dataset |Method| #F|B-KNN|M+Std-KNN|S;|B-NB| M+Std-NB|S;|B-DT| M+Std-DT|S3
Col Full 2000 74.29 (+H)|—| 72.62 (=) | 74.29 ()] -
olon

(62) MGPFC 4| 8547 71.95 +5.39| — | 85.48| 71.23 + 5.83| — | 85.48| 71.17 + 5.25| —
CDFC 4|  88.81| 81.87 + 3.08 90.47|83.52 + 3.11 87.38/78.03 + 4.00
Full 5469|  84.46 ()| -] 81.96 ()| -1 80.89 )| -

DLBCL

(1) MGPFC 4 97.32| 89.39 + 3.53| — | 97.32| 89.18 + 3.54| — | 96.07| 87.47 + 4.32| —
CDFC 4| 98.75| 96.03 + 1.96 98.75(95.25 + 2.19 95.00(90.76 + 3.01
Full 7129|  88.57 ()] - 91.96 ()] -1 91.61 (=)=

Leukemia

(72) MGPFC 4] 97.32] 92.92 + 229 — | 96.07| 92.77 + 1.90| — | 95.89| 91.16 + 2.50| =
CDFC 4]  98.57| 94.83 + 1.71 97.32(94.07 + 1.60 04.82| 90.72 + 2.47

NS Full 7129|  56.67 (=) -| 58.33 (=) - | 50.00 |-

(60) MGPFC 4| 71.67| B57.97 £ 7.43| —| 71.67| 58.37 £ 7.46| — | 78.33| 57.43 + 7.83| —
CDFC 4| 73.33]| 65.10 + 4.20 73.33/66.17 + 3.75 68.34(61.03 + 4.87
Full 10509|  81.55 ()| -1 60.55 (|- 86.18 (=) -

Prostate

(102) MGPFC 4] 92.27| 86.39 £ 3.14| — | 92.18| 85.95 + 2.89| — | 91.27| 85.32 + 2.91| —
CDFC 4| 95.18| 92.81 + 1.59 96.09(92.82 + 1.50 94.09(88.04 + 2.52
Full 15154|  91.28 ()] -1 90.05 (|- 98.41 )| -

Ovarian

(253) MGPFC 4| 100.00] 99.35 + 0.42| — [100.00| 99.36 + 0.50| = [100.00/98.96 + 0.60| =
CDFC 4| 100.00| 99.73 + 0.31| [100.00/99.55 + 0.34| |100.00| 98.78 + 0.69
Full 5327|  88.57 (=) - | 88.75 (]| 94.46 (H)|+

Leukemial]

(72) MGPFC 6| 95.89| 89.39 + 3.57| —| 95.89| 90.86 + 2.72| — | 95.89| 90.65 + 2.36| +
CDFC 6| 97.32| 93.47 + 1.82 97.32(93.07 + 2.22 05.89| 89.72 + 2.70
Full 2308|  80.83 )| -1 97.50 (+)|+| 72.36 )| -

SRBCT

(83) MGPFC 8  95.14| 87.71 £ 3.31| —| 94.03| 87.31 + 3.97| — | 91.39] 83.12 + 4.08| —
CDFC 8| 100.00| 95.88 + 1.94| [100.00| 95.08 + 2.39 94.17|88.01 + 3.48

are displayed in column S, S5, and Ss, respectively. “4” or “-” indicates that

the corresponding method is significantly better or worse than the proposed

method CDFC. “=" means they have similar performance. In other words, the

more “—”, the better the class-dependent feature construction method. The

significance test results of MGPFC against Full are displayed in parentheses

on the row of Full.
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6.5.1 Results of MGPFC

As can be seen from Table 6.2, the number of features constructed by MGPFC
was obviously way smaller than the original number of features. However,
when using the constructed features, KNN obtained a significantly better
accuracy with 4% to 8% higher than using Full on five out of the eight
datasets. Its performance was similar to Full on two datasets, namely CNS
and Leukemial, and worse on Colon. However, the best accuracy obtained by
KNN on these datasets were 15%, 7% and 9% higher than Full, respectively.

When using the MGPFC constructed features, NB also witnessed a similar
pattern as KNN, where its performance was significantly better than Full on
five datasets, similar on two and worse on one. The largest improvement was

on the Prostate dataset with 25% on average and 32% in the best case.

DT also had a significantly higher accuracy on four datasets with an
impressive increase of more than 10% and 7% on the average accuracy of
SRBCT and CNS, respectively. The best accuracies that DT achieved on
these two datasets are 19% and 28% higher than Full. It had a similar
result on other two datasets and worse on the remaining two. On Colon and
Leukemial, its average accuracy was dropped 3.1% and 3.8%, respectively.
However, in the best case of these two datasets, it still achieved 11% and
1.4% higher than the Full.

In general, over the 24 pairs of comparisons of MGPFC against Full on
eight datasets, the constructed feature set by MGPFC won 14, drew 6 and lost
4. The results indicated that GP could construct an extremely small number
of new features that helped the three learning algorithms obtained notably

better performance than using the original set of thousands of features.
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6.5.2 Results of CDFC

6.5.2.1 CDFC versus Full

All the “-”s appeared in column S; of Table 6.2 showed that the constructed
features helped KNN achieve significantly higher accuracy than using full
feature sets on all the eight datasets. The highest improvement was on the
SRBCT dataset with 15% on average and 20% in the best case, reaching 100%
accuracy. The modest improvement was still 5% on average and 9% in the
best case on Leukemial. The results showed that the discriminating ability
of the constructed features was much higher than the original all features
although the number of constructed features was negligible to the original
dimensionality.

For NB, the features constructed by CDFC also obtained better perfor-
mance than Full on almost all datasets. For example, using the 4 constructed
features on the Prostate dataset, NB achieved 32% higher accuracy than
using the whole 10,509 features. Similarly, the improvement on Colon and
DLBCL was 11% and 14% on average with 18% and 17% in the best case,
respectively. Only on SRBCT, CDFC had about 2.4% lower accuracy than
Full. However, the best accuracy achieved by CDFC was 100% which was
2.5% higher than the Full accuracy.

Compared with using Full, DT using features constructed by CDFC also
had significantly better performance on six datasets, similar on one and worse
on the remaining one. An improvement of at least 10% on average accuracy
was achieved on three datasets, namely SRBCT, CNS and DLBCL, with
the best accuracy improved from 15% to 22%. Only on Leukemial, CDFC
obtained about 5% lower average accuracy than Full. However, the best result
was still better than Full.

In general, over the 24 comparisons with Full using the three learning
algorithms on eight datasets, CDFC won 21, drew 1 and lost 2 in terms of
average accuracy. However, in term of the best accuracy, CDFC outperformed

Full in all 24 cases except for the tie result of DT on Leukemial. Results
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showed that CDFC could construct a very small number of features with a
high discriminating ability, which can generalise well to the three learning

algorithms in most cases.

6.5.2.2 CDFC versus MGPFC

As shown in Table 6.2, although both methods constructed the same number
of features for each dataset (since the construction ratio was set to 2 for both
methods), KNN using features constructed by CDFC achieved significantly
better performance than using those of MGPFC on all datasets. The highest
improvement of 10% on average was found on Colon, where MGPFC failed
to maintain the Full accuracy. The results showed that using terminal sets
comprising of features that are relevant to a specific class, CDFC achieved
much better results than MGPFC, allowing it to obtain the best KNN accuracy
on all datasets.

Similarly, NB using features constructed by CDFC achieved significantly
better accuracy on 7 datasets than using those constructed by MGPFC.
Among these datasets, CDFC further improved the performance of MGPFC
from 6% to 12% on 5 datasets. Only on Ovarian, CDFC obtained a similar
accuracy as MGPFC.

For DT, features constructed by CDFC obtained significantly better
performance than those of MGPFC on five datasets, namely Colon, DLBCL,
CNS, Prostate and SRBCT with a further improvement of 3% to 7%. For
the remaining three datasets, CDFC had similar performance as MGPFC on
two and worse on one.

In general, compared with MGPFC using the three learning algorithms,
CDFC won 20, drew 3 and lost 1 out of the 24 comparisons.

Comparisons between the three learning algorithms revealed an interesting
phenomenon. Recall that the features constructed by both MGPFC and
CDFC were optimised towards DT performance by using either DT accuracy
(MGPFC) or information gain (CDFC) in their fitness functions. However,

the results showed that the improvement of DT performance was not as
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much as KNN and NB, making its accuracy usually lower than the other
two learning algorithms. This may relate to the characteristics of DT where
classification decision highly depends on the split values inside the internal
nodes of the DT trees. These values are learned based on the training data,
which may not be generalised well on the unseen test data of these datasets

due to their skew distributions with many outliers as discussed in Chapter 5.

Another interesting observation from the results of CDFC and MGPFC
was that although DT used IG as its base measure, it had less power than the
average IG measure in evaluating GP individual with multiple constructed
features. This finding is contradictory with common practice where wrapper
approaches are preferred to filter ones because they usually produce better
classification performance. However, the results showed that CDFC obtained
significantly higher accuracy than MGPFC in almost all cases. A closer
investigation on the evolutionary process of MGPFC showed that in a set
of multiple constructed features that gave very good DT accuracy, there
might exist very bad or even constant-value features. The reason is that DT
does not use all features in building the DT tree. Therefore, the returned
classification accuracy does not reflect the goodness of all constructed features.
On the other hand, the average IG shows the average relevance level of all
the constructed features of the individual. Therefore, using average 1G as a
fitness measure, GP can better evaluate individuals and choose those that
comprise more good features to create better offspring in its evolutionary

process.

In summary, features constructed by CDFC had significantly better per-
formance than those constructed by MGPFC on 20 cases, similar on 3 and
worse on 1. Note that results of CDFC had smaller standard deviation than
MGPFC in almost all cases. This indicated that by constraining the terminal
sets to class relevant features, the performance of CDFC was better and more
stable than MGPFC.
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6.5.3 Computation Time

Figure 6.4 shows the average running time to complete a single run for
MGPFC and CDFC. Results in the figure showed that the CDFC running
time was less than half of MGPFC on five out of the eight datasets, and less

than 60% on the remaining three.

Note that both methods used the same population size and the maximum
number of generations. In other words, they had the same number of evalua-
tions. However, CDFC running time was much shorter than MGPFC on all
datasets. The main reason behind this reduction is the computation time of
the fitness evaluations. While the CDFC fitness function comprises of two
filter measures, distance and IG, MGPFC combines distance with a wrapper
measure which is an average accuracy of DT over 3-fold cross-validation within
the training set. Although IG is the base measure of DT, computation time of
the average IG of each constructed feature is still much lower. Therefore, the
running time of CDFC was much faster than MGPFC. This again confirmed

the efficiency of filter measures.
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6.6 Further Analysis

6.6.1 Class-Dependent versus Class-Independent FC

Since CDFC differs from MGPFC not only in the class-dependent feature
construction strategy but also in the fitness function, the superior performance
of CDFC over MGPFC might be contributed by either components or both
of them. Therefore, the effectiveness of the proposed class-dependent feature
construction strategy was confirmed by another set of experiments where
CDFC is compared with F-MGPFC, which is the same method as MGPFC
except that its fitness function uses the distance measure combined with the

average IG by the same fitness weight as CDFC.
The average results over the 50 runs of F-MGPFC compared with CDFC

are shown in Figure 6.5. The first three sub-figures present the average
accuracy of KNN, NB and DT of each method. In these figures, each group of
bars shows the results of the features constructed by F-MGPFC and CDFC
on each dataset. On the CDFC bars, results of the Wilcoxon significance test
with a 5% significance level comparing CDFC against CGPFC are displayed.
“+7 and “~” mean that CDFC is significantly better or worse than CGPFC. “="
means that they are similar. The last subfigure shows the average accuracy

improvement of each learning algorithm on each dataset.

As can be seen in Figure 6.5(a), using CDFC constructed features, KNN
obtained significantly higher average accuracies than using F-MGPFC con-
structed features on all datasets with the biggest gap of 7.9% on SRBCT
which is a four-class problem. A similar pattern can be seen for NB in Figure
6.5(b) with a significant improvement made on seven out of the eight datasets.
SRBCT was also the one that NB obtained the highest average improvement
of more than 8% on average. For DT, significantly higher accuracies were
found on three datasets and the remaining five had similar performance as
F-MGPFC. The compared results of different learning algorithms in Figure
6.5(d) showed that among the three algorithms, KNN had the highest improve-
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Figure 6.5: Results of class-dependent (CDFC) versus class-independent
(F-MGPFC) feature construction.

ments on five datasets and NB on the remaining three. In general, features
constructed by CDFC helped the three learning algorithms either obtain a
significantly better or similar classification performance on all datasets. This
indicated that by constructing features from relevant features to one class,
thus narrowing the GP search space, and evaluating each constructed feature
against the corresponding class only, CDFC could construct features with

better discriminating ability.
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Figure 6.6: Results of multiple feature construction (CDFC) versus single
feature construction (CGPFC)

6.6.2 Multiple versus Single Feature Construction

This section will check the hypothesis that was stated at the beginning of the
chapter that multiple constructed features may better represent the original
problem than a single constructed feature. Since the clustering-based single
feature construction method (CGPFC) developed in Chapter 5 has shown
to have better performance than standard GP, the performance of the four
features constructed by CDFC will be compared with the single feature
constructed by CGPFC.

Figure 6.6 shows the compared results of CDFC and CGPFC over the 50

runs on six binary-class datasets. Since CGPFC was designed to construct
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features for binary-class problems only, the two multiple-class datasets, namely
Leukemial and SRBCT, are left out in this comparison.

Results in Figure 6.6(a) showed that the CDFC constructed features
obtained a significantly higher KNN accuracy than CGPFC on all datasets
with the largest gap of 7.5% on DLBCL. Similar pattern was observed in
Figure 6.6(b) for NB with an improvement made on all the datasets. For
DT, significantly higher accuracies were found on 3 datasets and similar
accuracies were found on the remaining three. In general, compared with
the single feature constructed by CGPFC, the four features constructed by
CDFC helped the three learning algorithms either obtained a significantly
better or similar classification performance on all datasets. The compared
results of different learning algorithms in Figure 6.6(d) showed that among the
three algorithms, KNN had the highest improvements on four out of the six
datasets. Furthermore, as can be seen in the first three subfigures of Figure
6.6, the error bars of CDFC were smaller than the corresponding error bars of
CGPFC in almost all cases. This indicated that using the CDFC constructed
features, the three learning algorithms obtained more stable results than using
the one constructed by CGPFC.

6.6.3 Multi-Tree GP versus Single-Tree GP for Multi-

ple Feature Construction

This section will compare the performance of CDFC with the method proposed
by Neshatian et al. [174] where single-tree GP was used to construct multiple
features. It is named 1TGPFC here for presentation convenience. In this
method, GP was run multiple times, and each time constructed one feature
focusing on discriminating instances from one class to other classes. Therefore,
two features will be constructed for a binary-class problem. 1TGPFC also
follows a filter approach. We ran 1TGPFC with the same settings for GP
parameters as in CDFC. In this set of experiments, CDFC was run with the

construction ratio 1 to construct the same number of features as 1 TGPFC.
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Figure 6.7: Results of multiple-tree GP (CDFC) versus single-tree GP
(ITGPFC) for multiple feature construction.

The average results over the 50 runs of both methods are displayed in Figure
6.7.

Results from Figure 6.7 showed that using the CDFC constructed features,
all the three learning algorithms obtained significantly higher accuracies than
using the ones created by 1"TGPFC on all datasets. KNN obtained the largest
increase of 8.1% average accuracy on Prostate, NB had 7.2% biggest gap
on CNS, and DT achieved 13% increase on SRBCT. Comparisons between
the three learning algorithms in Figure 6.7(d) showed that KNN had the
highest improvement on four datasets. On the other four datasets, DT had
the largest difference of 10.5% and 13% on Leukemial and SRBCT, which
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are the multiple-class problems.

Although 1'TGPFC used an impurity measure in its fitness function to
minimise the impurity of the interval including constructed feature values of
the focused class, its created features did not perform as well as expected,
leading to significantly worse results than CDFC. This result may be related to
the fact that by using a multi-tree representation to construct multiple features
simultaneously, CDFC can evaluate the constructed features as a whole during
the evolutionary process. This enabled it to optimise the discriminating power
of the whole feature set, taking into account possible interactions between
the constructed features. This ability is obviously impossible when running

GP separately to construct one feature at a time as in 1 TGPFC.

6.6.4 Constructed Features

This section will confirm this hypothesis by having a closer look at the features
constructed by both the CDFC and 1TGPFC methods. A fair comparison
is made by choosing the set of constructed features that had the worst
performance among 50 results from 50 runs obtained by each method on
the first pair of training and test folds. The reason for comparing the worst
results of both method is that the difference between the best results is not
large enough to be visually distinguished. The transformed data of seven
datasets (excluding SRBCT with more than 3 constructed features) using the
constructed features by both methods are plotted in Figures 6.8 to 6.10.

As can be seen from these figures, the constructed features by both methods
were quite good in grouping instances of different classes into separate clouds.
However, as can be seen from the right column of each figure, the data
clouds produced by CDFC were more compact and separated from each other
than those created by 1TGPFC, which are shown in the left column of the
figures. Therefore, with the new representation obtained from CDFC, it
would be much easier for the three classification algorithms to find a model
that achieved higher accuracies.

Since both methods constructed features focusing on discriminating in-
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Figure 6.8: Constructed features on Colon, DLBCL and Leukemia.
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Figure 6.10: Constructed features on Leukemial.

stances of one class from the others, contributions to the superior results of
CDFC mainly came from its fitness function. While both methods used an
entropy-based measure to minimise the impurity of the constructed feature
values within each class, CDFC incorporated an additional distance measure
to evaluate the whole set of constructed features. The aim of the distance
measure is to maximise the distance between instances of different classes and
minimise the distance between instances of the same class. This is the reason
why the data clouds produced by CDFC are more compact and scattered far

away from each other.

6.6.5 Comparison with Feature Selection Results

The results of CDFC have shown that feature construction is a promising
approach to dimensionality reduction on high-dimensional data. This section
will compare the results of CDFC with the best results obtained by feature
selection methods in Chapters 3 and 4 using all the four datasets that have
been used in all the experiments of feature selection and feature construction
methods in this thesis, namely DLBCL, Prostate, Leukemial and SRBCT.
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As shown in Table 4.6, the best accuracy obtained by all the proposed
feature selection methods on DLBCL is 93.72% using 1417 selected features.
On the other hand, the results of the 4 features constructed by CDFC on this
dataset obtained 96.03% as shown in Table 6.2. Similarly, results of the 4
features constructed from Prostate obtained 1% higher accuracy than the best
feature subset of 65 features selected by PPSO. On Leukemial, CDFC could
construct 6 features to achieve 2% higher accuracy than 32 features selected
by PSO-CLS. Only on SRBCT, CDFC constructed 8 features that obtained
4% lower average accuracy than 60 features selected by PSO-CLS. However,
in the best case, the 8 constructed features still achieved 100% accuracy as
PSO-CLS. The results indicated that although the set of constructed feature
is extremely small, its performance is comparable to tens or even thousands
of selected features. The intense reduction in dimensionality obtained by
the proposed feature construction methods not only significantly speed up
the classification methods but also substantially reduce the storage space
for these datasets. Once the constructed features are learnt, the process
of transforming features is extremely fast. This opens an opportunity for

high-dimensional data to be processed on online systems.

6.7 Chapter Summary

The goal of this chapter was to propose a new multiple feature construction
approach using GP which can produce a very small number of high-level
features to improve the performance of common learning algorithms on high-
dimensional data. Two methods were proposed using multi-tree representation,
one for class-independent feature construction (MGPFC) and one for class-
dependent (CDFC). In MGPFC, a hybrid evaluation method was used to
synthesise the strength of wrapper and filter approach. In CDFC, different
terminal sets were generated to construct different class-dependent features.
The t-Test is used as a relevance measure to choose features that are relevant

to a given class. A new filter-based evaluation method was also proposed in
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CDEFC to better evaluate a set of constructed features and to speed up the
evaluation process as well.

Performance of the MGPFC and CDFC constructed features has shown to
be significantly better than the original set using KNN, NB and DT. Results
on the eight high-dimensional datasets also show that CDFC is not only more
effective but also more efficient than MGPFC. The proposed strategies in
CDFC demonstrate that by forming the GP terminal set with class-relevant
features and a good fitness function, the proposed filter method can achieve
better performance than the hybrid approach MGPFC.

Results of CDFC has also shown that it outperforms the single feature
construction method CGPFC proposed in Chapter 5 and the multiple feature
construction method using single tree GP (1TGPFC) proposed in [171].
Further investigation and analysis have shown that multiple constructed
features better represent the original high-dimensional data than a single one.
Compared with the single-tree GP approach to multiple feature construction,
multi-tree GP has the benefit of evaluating all constructed features in a single
run. Comparison with the proposed feature selection methods in previous
chapters has shown that CDFC can construct an extremely small number of
features that obtained comparable or even better results than the selected

features.



Conclusions

This thesis focuses on PSO and GP for high dimensionality reduction in clas-
sification. The overall goal was to investigate and improve the performance of
PSO for feature selection and GP for feature construction on high-dimensional
data in terms of feature subset size, classification accuracy and computation
time. This goal has been successfully achieved by developing a number of
new PSO based feature selection and GP based feature construction methods
to automatically evolve sets of selected or constructed features that are much
smaller than the original feature set while achieving classification performance
better than or similar to the original one. The proposed methods were ex-
amined and compared with existing methods on a range of high-dimensional
classification problems of varying difficulties. The results show that the newly
proposed methods can be effectively and efficiently used for feature selection

and construction in classification on high-dimensional data.

The remainder of this chapter provides conclusions for each of the research
objectives of this thesis, highlights the findings in each contribution, and

outlines potential research directions for future work.
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7.1 Achieved Objectives
This thesis has led to the following:

e The proposal of two new PSO based feature selection methods with
two new local search strategies to enhance PSO performance in feature
selection on high-dimensional data by balancing its global and local
search capability. Both local search strategies are applied to pbest in
order to intensify the search in the area surrounding this newly found
solution: while the first one employs a random flipping mechanism to
produce a new candidate solution, the second one relies on general
knowledge in feature selection to remove redundant features and add
more relevant features. A new hybrid evaluation method is proposed to
synthesise the strength of both wrapper and filter methods. To speed
up the running time of the local search process, a fast fitness evaluation
mechanism is also proposed. The results show that the proposed PSO
based feature selection algorithms can reduce the number of features
by one to two orders of magnitude. The feature subsets selected by
the proposed methods either outperform or achieve similar results to
using all features, two traditional feature selection methods, standard
PSO based feature selection method, and another PSO based feature

selection method that uses resetting gbest strategy.

e The proposal of the first PSO based feature selection via discretisation
method, which integrates multivariate discretisation and feature selec-
tion in a single stage. Two new representations are proposed to either
directly evolve a cut-point for each feature or choose one from multiple
potentially good cut-points. The results of the conducted experiments
show that the proposed approach selects a much smaller number of
features and achieves better performance than using all original features,
four two-stage approaches with traditional feature selection methods,

one traditional feature selection via discretisation method, and standard
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PSO based feature selection method.

e The proposal of the first clustering-based feature construction method
using single-tree GP for high-dimensional data. A new feature clustering
method is proposed to cluster similar or redundant features into the
same group from which only the best feature is fed into GP to construct
a new feature. The experiment results show that the proposed method
can construct a single feature that can help common learning algorithms
improve classification performance over using all the original features
and the one constructed from the whole feature set. Investigation on
five different created feature sets from the single GP tree shows that
the combination of the single constructed feature and the selected ones

achieved the best performance among the five.

e The proposal of two new multiple feature construction methods using
multi-tree GP, the first one constructs class-independent features and
the second one constructs class-dependent features. A new GP rep-
resentation is proposed to construct a small number of features that
is proportional to the number of classes in the dataset. New fitness
functions are proposed to evaluate the whole set of constructed features.
By constructing features that focus on distinguishing instances in one
class from the others using features that are relevant to the focussed
class, the second feature construction method achieves a significantly
better classification accuracy than using all features, the first proposed
method without considering the class dependency, the single feature
construction method proposed in Chapter 5, and a multiple feature

construction method in the literature.

7.2 Main Conclusions

Overall, this thesis finds that PSO and GP can be used effectively for feature

selection and construction, respectively, on high-dimensional classification
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problems.
This section discusses the main conclusions for the four research objectives

drawn from the four contribution chapters (Chapter 3 to Chapter 6)

7.2.1 Using Local Search in PSO for Feature Selection

Chapter 3 proposes two PSO based feature selection methods using two new
local search strategies to intensively search for better solution surrounding

the newly found pbest during the evolutionary process of PSO.

7.2.1.1 Local Search Effectiveness

PSO is well-known with its global search capability. However, it is usually
difficult for PSO to fine-tune its solution, especially in the search space with
thousands of features as in high-dimensional classification problems. This
thesis finds that a local search strategy guided by general knowledge in
feature selection can significantly improve the performance of PSO for feature
selection on these problems.

The randomly flipping mechanism (PSO-RLS) helps PSO find much
smaller feature subsets while maintaining the classification performance of the
selected features. Using a correlation-based measure to guide the local search,
PSO-CLS further helps PSO achieve much better classification accuracies
with 15 to 85 times fewer features in most cases. The superior performance
of PSO-CLS to PSO-RLS is contributed by two components, an informative
search and a better evaluation method, which are essential for an effective
feature selection algorithm. By measuring the relevance and redundancy
of the features in the current pbest, the correlation-based local search can
remove redundant features and add more relevant ones to the feature subsets,
allowing it to find a much smaller and better feature subset for the given
pbest. The second contribution is the hybrid evaluation method, which will

be discussed at the end of this subsection.



7.2. MAIN CONCLUSIONS 215

7.2.1.2 Local Search Efficiency

One of the main concerns of combining local search into PSO is the high
computation time that local search added into an already expensive process
of PSO when applying to high-dimensional data, especially in wrapper ap-
proaches. However, this thesis finds that a fast fitness evaluation strategy can
be used to reduce the evaluation time during the local search process while
maintaining its accurate calculation. By using this strategy, the proposed
methods can evaluate hundreds of thousands of solutions more in a reasonable
time. Furthermore, when using local search to remove redundant features, the
number of features was greatly reduced, leading to a shorter evaluation time.
As a results, the proposed method uses a similar running time as standard
PSO. In addition, the effectiveness of the local search helps PSO find better
pbest with smaller and better feature subsets, which can direct particles to
more fruitful areas with smaller dimensionality in the search space. This
enables PSO to reach better solutions in a shorter time. In fact, PSO-CLS
has a similar computation time to standard PSO on five datasets and a much
smaller running time than PSO-RLS on eight out of the ten datasets.

The frequency of applying local search is also an important factor influ-
encing the running time. It is found that a high frequency requires a longer
running time but does not necessarily lead to a better solution. It is the
informative search and a good evaluation method that a local search needs to

better guide the evolution in fine-tuning a given solution.

7.2.1.3 Hybrid versus Wrapper Evaluation

This thesis finds that a clever combination of a wrapper and a filter measure
can create a better evaluation procedure for feature selection. A combina-
tion of KNN and distance measure is proposed to evaluate the fitness of a
feature subset. While the classification accuracy can measure how well the
performance is, the distance measure can approximate how far these features

can separate instances of different classes and unite those of the same class.
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By combining these two measures, PSO-CLS can better evaluate feature
subsets or particles. It will then select a better particle to lead the search,
allowing the algorithm to explore more fruitful areas of the huge search space.
Therefore, smaller feature subsets with better classification performance are
found by PSO-CLS.

A PSO based feature selection method using a wrapper approach is already
expensive in terms of the computational cost, especially on high-dimensional
data. Therefore, adding another filter measure may make it more expensive.
However, it is found that by choosing a classification algorithm and a filter
measure that are based on the same calculation which in this case is a distance
measure, the proposed hybrid evaluation method requires no or very little

increase in the computation time.

7.2.2 PSO Based Feature Selection Via Discretisation

The first discretisation-based feature selection using PSO is proposed in
this thesis (Chapter 4). It is found that using PSO to perform multivariate
discretisation and feature selection at the same time achieves smaller feature
subsets with better discriminating ability than the two-stage approach where
discretisation is done before feature selection. By evaluating all the cut-points
of the selected features at the same time, the proposed methods can consider
possible interactions between the discrete version of the selected features
which is not obtainable in the two-stage approach. Therefore, better cut-
points can be chosen to minimise the information lost during discretisation,
which helps PSO to choose better feature subsets.

Chapter 4 further confirms the findings of the hybrid evaluation method
concluded from Chapter 3.

7.2.2.1 Representation

This thesis finds that using PSO to choose cut-points from a set of potentially
good ones (PPSO) can obtain smaller feature subsets with similar or better

classification performance than using PSO to directly evolve a cut-point from
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the range of feature values (EPSO). The main reason is that the search space
of discretisation and feature selection on high-dimensional data in EPSO is
much larger than PPSO. By predefining some potentially good cut-points,
PPSO significantly narrows the PSO search space into a much smaller and

more fruitful space. This strategy helps PSO achieve better performance.

7.2.2.2 Initialisation

It is found that in such a large search space of feature selection on high-
dimensional data, the initialisation mechanism plays an important role in
helping PSO find better discretisation and feature selection solutions in a
shorter time. By using a predefined subset size and the potentially best
cut-point of each feature, the proposed initialisation method helps PSO reach
better solutions in early stages, which can then benefit the whole evolutionary
process. This thesis also finds that cut-points created by the minimum
description length principle are good starting points for PSO to search for

better solutions.

7.2.3 Cluster-Based Feature Construction Using
Single-Tree GP

This thesis proposes the first clustering-based feature construction method
using single-tree GP for high-dimensional data. It is found that using feature
clustering to reduce redundant features in the terminal set can significantly im-
prove GP performance in feature construction on high-dimensional problems.
By choosing a representative feature from each group of similar features, GP
can effectively reduce its search space. This enables GP to focus on choosing
appropriate operators and features to construct a better one. It is also found
that by eliminating redundant features, GP selects a much smaller number of
original features and constructs a new feature with a higher discriminating
ability. The number of selected features is reduced by half or more in most

cases.
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7.2.3.1 Feature Clustering

This thesis finds that using a predefined redundancy threshold to group similar
features can automatically determine the number of feature clusters, which
is not a trivial task, especially on high-dimensional data with thousands of
features. It is found that by guaranteeing features in the same cluster to
have their correlation level higher than the predefined threshold, the proposed
feature clustering algorithm effectively and efficiently creates compact and

separated clusters in most cases.

7.2.3.2 Combinations of Constructed and Selected Features

This thesis investigates the performance of five different combinations of
selected and constructed features from a single GP tree. It is found that
among the five feature sets, the combination of the single constructed feature
and the selected ones can significantly improve the performance of KNN and
NB.

7.2.3.3 Generalisability

Overfitting is a common issue in GP for feature construction, especially
when the number of instances is small. This thesis finds that GP can cope
with small sample size and features with skew distribution to obtain a good
generalisation as long as the given training data has enough information to

represent the distribution of the unseen data.

7.2.4 Class-Dependent Feature Construction Using
Multi-Tree GP

This thesis proposes a new class-dependent feature construction method using
multi-tree GP for high-dimensional data. It is found that the class-dependent
constructed features achieve better performance than the class-independent

ones. By forming the terminal set with class-relevant features, the proposed
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method can narrow the search space and hence improve GP performance for

feature construction.

7.2.4.1 Multi-tree Representation

This thesis finds that using multi-tree GP representation to construct multiple
features can achieve a better set of constructed features than running single-
tree GP multiple times. The main reason is that constructing multiple features
in a single run allows GP to evaluate the whole new feature set at once taking
into account possible interactions between the constructed features, which is

not obtainable when constructing them in separate runs.

7.2.4.2 Wrapper and Filter Approaches

It is found that evaluating a feature set using a classification algorithm
where there is a built-in feature selection process, such as DT, may not
reflect the goodness of all features in the set. Very bad or even features
with constant values may exist in a very fit individual. Therefore, using
this measure may mislead GP to choose these trees for breeding, resulting
in performance deterioration. By replacing DT classification accuracy with
a corresponding filter measure, e.g. the average Information Gain of each
feature as in this thesis, the fitness of an individual can reflect the goodness
of every single constructed feature. Switching from a wrapper to a filter
approach also significantly reduces the evaluation cost, hence the running
time of the proposed method.

This thesis also finds that by combining a distance measure in the evalua-
tion method to maximise the distance between instances of different classes
and minimise the distance between instances of the same class, the constructed

features obtain better discriminating ability.

7.3 Future Work

This section highlights key areas of future work.
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7.3.1 New PSO Representation for Higher Dimension-
ality

This thesis focuses mainly on classification problems with thousands to tens
of thousands of features. However, datasets with millions of features become
more and more popular in many domains, and the number of features can
grow even larger with the trend of big data. In current PSO, the particle
representation is fixed-length based on the number of features. Therefore,
the high computation cost and a large memory requirement may hinder PSO
from working on these big datasets. A smaller or dynamic representation is
needed to reduce the resource consumption, enabling PSO to work with even

larger scale problems.

7.3.2 New GP Representation for Feature Construc-
tion

Representation defines the search space or scope of the problem. The number
of features constructed by the proposed methods in this thesis is predefined
and fixed during the evolutionary process. This may prevent GP to explore
solutions with bigger or smaller numbers of constructed features. A dynamic
representation which enables GP to automatically evolve any number of
constructed features could be helpful in obtaining better feature sets for

high-dimensional data.

7.3.3 PSO Based Feature Selection via Multi-Interval

Discretisation

This thesis proposes the first discretisation-based feature selection using
PSO, which has shown promise in simultaneous discretisation and feature
selection. The capability of PSO for multivariate discretisation has not been
fully investigated with binary discretisation, where only one cut-point is

evolved for each feature. New representation for multi-interval discretisation
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can be proposed to evolve multiple cut-points for each feature. In other words,
features are discretised into multiple intervals or discrete values, which may
be required for a better representation. With this ability, PSO can achieve

even better feature subsets.

7.3.4 Feature Evaluation Methods for Feature Selec-

tion and Construction

One of the main problems of applying EC techniques, such as PSO and
GP, to feature selection and construction on high-dimensional data is its
high computational cost, which comes mainly from the evaluation process,
especially when the number of instances is large. On the other hand, overfitting
can become serious when the number of instances used to evaluate candidate
solutions is small. Therefore, different strategies are needed to improve
the performance of feature evaluation methods, which encourages more EC

applications.

7.3.4.1 Hybrid Approaches

This thesis has shown combining different wrapper and filter measures can
better evaluate the discriminating power of a feature set in an acceptable
running time. More effective and efficient evaluation methods should be

investigated on these high-dimensional problems.

7.3.4.2 Instance Selection or Creation

While a large number of instances can affect the efficiency of the evaluation
procedure, a small number of instances can affect its effectiveness. Therefore,
an adaptive strategy is needed to automatically adjust this number so that
the evaluation method can maximise its performance on high-dimensional or
large-scale datasets. Representative instances could be chosen to speed up
the evaluation function while new instances or prototype could be created to

make the training data more representative.
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7.3.5 Multi-objective Approach to Feature Selection

and Construction

This thesis only adopts single-objective approaches in developing feature
selection and construction methods. As can be seen from this thesis, high-
dimensional data usually contains a large number of irrelevant or redundant
features. Removing these features helps improve the discriminating ability
of the feature set. However, at some stage, further removing features may
degrade its ability in distinguishing instances of different classes. Therefore,
an appropriate multi-objective approach to feature selection and construction
on high-dimensional data could provide multiple informed solutions showing
the trade-off between the number of features and the classification accuracy.

more and better solutions.

7.3.6 Integration of PSO and GP for Dimensionality

Reduction

PSO and GP have shown promise in feature selection and construction
for high-dimensional classification. New approaches of integrating these
techniques should be investigated to create an automatic dimensionality
reduction method, where feature selection or construction or both can be
automatically chosen and applied to produce the best representation for a

given dataset.

7.3.7 Transfer Learning

As can be seen from this thesis, the small number of instances in gene
expression data is a challenging issue not only for feature selection, feature
construction but also for classification algorithms. However, these datasets
may share some common knowledge which can be learnt from the larger
datasets and adaptively applied to the smaller ones. This can be achieved by

transfer learning which is learning based on the knowledge transferred from
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related and previously solved problems. GP has shown promise in not only
feature construction but also transfer learning. The ability to transfer good
building blocks from GP constructed features of the large datasets may help
GP improve its learning capability on the smaller ones. Our future work will

also investigate this approach.

7.3.8 Ensemble Learning

With thousands of features, the solution space of high-dimensional data may
be too complex to represent in a few constructed features. Their feature
space may need a large number of high-level and diverse features to better
represent the problem. Ensemble learning has become one of the state-of-
the-art techniques in machine learning; however, it has not been applied to
feature construction or data transformation. New ensemble learning methods
or methods using the idea of ensemble learning should be proposed for better

addressing these tasks.
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