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Abstract

Symbolic regression (SR) is a function identification process, the task of
which is to identify and express the relationship between the input and
output variables in mathematical models. SR is named to emphasise its
ability to find the structure and coefficients of the model simultaneously.

Genetic Programming (GP) is an attractive and powerful technique for
SR, since it does not require any predefined model and has a flexible rep-
resentation. However, GP based SR generally has a poor generalisation
ability which degrades its reliability and hampers its applications to sci-
ence and real-world modeling. Therefore, this thesis aims to develop new
GP approaches to SR that evolve/learn models exhibiting good generali-
sation ability.

This thesis develops a novel feature selection method in GP for high-
dimensional SR. Feature selection can potentially contribute not only to
improving the efficiency of learning algorithms but also to enhancing the
generalisation ability. However, feature selection is seldom considered in
GP for high-dimensional SR. The proposed new feature selection method
utilises GP’s build-in feature selection ability and relies on permutation
to detect the truly relevant features and discard irrelevant/noisy features.
The results confirm the superiority of the proposed method over the other
examined feature selection methods including random forests and deci-
sion trees on identifying the truly relevant features. Further analysis indi-
cates that the models evolved by GP with the proposed feature selection
method are more likely to contain only the truly relevant features and have
better interpretability.

To address the overfitting issue of GP when learning from a relatively



small number of instances, this thesis proposes a new GP approach by in-
corporating structural risk minimisation (SRM), which is a framework to
estimate the generalisation performance of models, into GP. The effective-
ness of SRM highly depends on the accuracy of the Vapnik-Chervonenkis
(VC) dimension measuring model complexity. This thesis significantly ex-
tends an experimental method (instead of theoretical estimation) to mea-
sure the VC-dimension of a mixture of linear and nonlinear regression
models in GP for the first time. The experimental method has been con-
ducted using uniform and non-uniform settings and provides reliable VC-
dimension values. The results show that our methods have an impres-
sively better generalisation gain and evolve more compact model, which
have much smaller behavioural difference from the target models than
standard GP and GP with bootstrap, The proposed method using the op-
timised non-uniform setting further improves the one using the uniform
setting.

This thesis employs geometric semantic GP (GSGP) to tackle the un-
satisfied generalisation performance of GP for SR when no overfitting oc-
curs. It proposes three new angle-awareness driven geometric semantic
operators (GSO) including selection, crossover and mutation to further
explore the geometry of the semantic space to gain a greater generalisa-
tion improvement in GP for SR. The angle-awareness brings new geomet-
ric properties to these geometric operators, which are expected to provide
a greater leverage for approximating the target semantics in each opera-
tion, and more importantly, to be resistant to overfitting. The results show
that compared with two kinds of state-of-the-art GSOs, the proposed new
GSOs not only drive the evolutionary process fitting the target semantics
more efficiently but also significantly improve the generalisation perfor-
mance. A further comparison on the evolved models shows that the new
method generally produces simpler models with a much smaller size and

containing important building blocks of the target models.
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Chapter 1

Introduction

1.1 Problem Statement

Artificial Intelligence (AI), which is one of the most absorbing branches
of Computer Science, has an important goal of developing intelligent sys-
tems to make rational decisions based on observations. Generally, a sys-
tem is defined to be intelligent when it can handle tasks that usually are
performed by human beings and require a significant degree of intelli-
gence [195]. Another important property of intelligent systems is to im-
prove themselves without external guidance, i.e. to learn and induce a
general pattern from the observations. Specifically, learning methods in
Al are expected to be able to generalise on unseen data of the same pat-
tern with the given observations.

Symbolic regression is a function identification process, which aims
to develop a model to best fit a given dataset [184]. More specifically, the
task of symbolic regression is to identify the relationship between the in-
put variables and the response variable(s) in the dataset, and express the
relationship in mathematical models or symbolic descriptions. Symbolic
regression is named to emphasise its target, which is to produce/find the
symbolic description of a model, not only a set of coefficients for a pre-
defined model. This is a sharp contrast with classical or statistical regres-

1



2 CHAPTER 1. INTRODUCTION

sion techniques, where the structure of the model is usually predefined
[19,162,199] and the task is to find the best fitted coefficients for the model.
Being free from predefined model structure, symbolic regression is less
likely to be affected by unknown gaps in domain knowledge or human
bias [15, 208].

Genetic programming (GP) [124] is an approach to automatically evolv
ing computer programs to solve the problems at hand. As a paradigm of
evolutionary computation (EC), GP is inspired by biological evolution and
generally starts with a population of randomly initialised programs. The
population is progressively evolved to gain higher fitness over a series of
generations. At the end of the evolutionary process, a satisfactory solution
is expected to be found to tackle the problems at hand.

GP has two attractive properties, the symbolic nature of solutions and
free from prior knowledge, which make it very suitable for symbolic re-
gression. GP based symbolic regression provides a way to efficiently and
effectively convert data steams and/or data sets into knowledge and ac-
tionable insight, and it has been successfully applied to many real-world
problems, such as industrial processing [75, 44, 90, 132, 197], software en-
gineering [2, 108] and digital circuits design [4, 172].

In the past decades, GP based symbolic regression has many successful
stories. However, its generalisation ability is still an open issue [173]. The
generalisation ability/error Erry = E[L(Y, f(X))|r| measures the predic-
tion error of the learnt model over a set of unseen/test data for a given
training set 7. When tackling learning problems, particularly supervised
learning problems, generalisation of solutions is one of the most impor-
tant performance criteria for any learning algorithm. Compared with im-
pressive training performance, generalising well on unseen data is usu-
ally much more important for learning algorithms, since it shows that
the learning algorithm is not memorising the instances in the training set
but learning a general model/pattern. GP has a flexible representation,

which usually has no constraint on the structure of the evolved models.
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This property makes GP good at learning complex patterns. However, the
downside of the flexible representation is increasing the risk of overfitting
in GP, i.e. the risk of a poor generalisation ability [173].

The contrary concept of generalisation is overfitting. Overfitting means
poor generalisation performance. A more detailed definition of overfitting
is given in [152]. According to this definition, a model overfits the training
data when there exist some other models with worse training performance
but better performance over the entire distribution of instances. Besides
the downside of the representation of GP, there are many other factors that
make GP overfit. One of them is the nature of GP to chase the lowest train-
ing error. An ideal learning process is to learn the underlying relationship
between the input and output variables while ignoring the noise. Never-
theless, GP has a greedy nature in pursuing models with the lowest error
on the training set. Then after the true relationship is learnt, GP might con-
tinue to fit the noise in the training set in order to minimise the training
error. In this case, GP might generate models that overfit the training set.
Furthermore, when the number of available observations/instances is too
small to represent the true pattern of the desired function, GP is prone to
produce models that overfit the training set.

Another issue, which might limit the generalisation of GP for symbolic
regression, is the high-dimensionality of the data. The representation of
observations often uses a large number of features, but only a small num-
ber of these features are relevant to the target/true model. Searching for
an unknown model in a high-dimensional space with a small number of

observations runs the risk of overfitting and leads to poor generalisation.

1.2 Motivations

Generalisation has been well-studied in many fields of machine learning
for long. In these fields, such as Artificial Neural Networks [91, 60] and
Support Vector Machines [210, 12], significant research has been dedicated
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to investigate the factors effecting generalisation and develop methods to
improve generalisation. Compared with these fields, the generalisation
ability of GP for symbolic regression has received growing attention just
in recent years [98, 42, 130, 218].

An important issue that leads to poor generalisation of GP for symbolic
regression arises when the available data is high-dimensional. In theory,
more features means more discriminative power. However, in practice
excessive features may not only significantly slow down the learning pro-
cess, but also cause the models overfit the training data since irrelevant or
redundant features may confuse the learning algorithms. Feature selection
is a process of choosing relevant features that are necessary and sufficient
to describe the output variable(s). For high-dimensional datasets, feature
selection is usually required in order to avoid the curse of dimensionality
and reduce the risk of overfitting. While much work has been done on
feature selection in machine learning [64, 139], the majority of the existing
work focuses on classification problems [64, 240]. Not much related re-
search on symbolic regression has been reported to date. This thesis aims
to fill the gap and investigate the possibility of feature selection to improve

the generalisation of GP for symbolic regression.

In previous studies that improve the generalisation of GP, two major
categories of methods have been proposed [41]. Methods in the first cat-
egory aim to tackle the problem of bloat [88, 141, 190, 246], which is a
phenomenon that the growth on the size of GP solutions does not bring
sufficient improvements in their learning performance [141]. These meth-
ods are based on the assumption that bloat and overfitting are related phe-
nomena. It is well accepted that compact solutions will generalise better
than their complex counterparts, since the latter have more space for noise
thus overfit the training set [152]. However, recent research has observed
that overfitting can occur in absence of bloat [41, 67]. Therefore, some
researchers suggested that bloat and overfitting are two independent phe-
nomena and should be tackled by separate mechanisms [67, 217].
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Methods in the second category are to detect and avoid overfitting
[112, 170]. Researchers found that compared with the size of solutions,
the functional /behavioural complexity of solutions is a more appropriate
and useful indicator of overfitting [224, 233]. Typically, behaviourally sim-
ple models for regression problems are more generalisable [65, 94]. How-
ever, measuring the complexity of the candidate models is not a trivial
task. A number of model complexity measures for GP have been pro-
posed [42, 217, 224, 233]. Some of them use the complexity of solutions as
an indicator of overfitting, while others treat the complexity as an objec-
tive that needs to be optimised. However, these methods usually measure
the complexity of various approximations (of GP solutions), such as order
of nonlinearity [233], curvature [224] and graph based complexity [42], but not
directly measure the solutions themselves. Moreover, some of these mea-
sures have shown to have a negative correlation with the generalisation
performance [40]. Further investigation on how to measure the complex-
ity of GP solutions and how the complexity measure can be used as an
indicator of overfitting is fundamental for pursuing a good generalisation

ability of GP for symbolic regression.

At the same time, overfitting and model complexity are well studied in
the field of statistical learning theory, particularly probably approximately cor-
rect (PAC) [221, 231]. These fields counteract overfitting by providing the-
oretical tools to analyse learning accuracy. These theoretical tools estimate
the expected test error of candidate models during learning process and
provide a good way to detect overfitting in principle. For learning prob-
lems, especially when there are insufficient data instances, the statistical
approaches such as Akaike Information Criterion (AIC) [8], Final Prediction
Error (FPE) [8], Bayesian Information Criterion (BIC) [23] and Structural Risk
Minimisation (SRM) [231], approximate the validation step analytically and
estimate prediction error effectively. These methods utilise different mea-
surements to fulfil the ability of assessing the generalisation error bound.
For example, SRM is based on Vapnik-Chervonenkis Dimension [231], which
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measures the model complexity. SRM derives formal formulae defining
the difference between the generalisation and empirical/training errors
for various classification and regression models. Regardless of the promis-
ing benefits of these statistical learning approaches in other fields, they
have not been well-studied in GP yet. This thesis will introduce these
theoretical tools into GP to evolve/learn more generalisable models for
symbolic regression. We will investigate and analyse whether (and how)
the theoretical tools could provide a reliable indicator of overfitting, and
on the relationship between model complexity and generalisation will be
conducted.

The previous research on promoting the generalisation ability of GP
focuses mainly on avoiding overfitting. In some scenarios, GP might have
poor performance on unseen data, but no overfitting occurs [62]. In these
scenarios, the traditional methods on enhancing the generalisation of GP,
which often focus only on reducing/eliminating overfitting, might not
work. A potential solution is semantic GP, which is a new branch of GP.
Semantic GP introduces semantic information into GP to utilise the knowl-
edge extracted from the behaviour of GP solutions. Previous work [98, 43,
218] has shown that introducing semantic-awareness into the evolution-
ary process brings notable improvements to GP for symbolic regression
on both the training and unseen data. Despite the promising performance
of semantics GP methods, they have some potential limitations such as
the overgrown offspring that may restrict the generalisation of GP. More-
over, the relationship between semantic control and generalisation is still
unclear. More research is deserved. Further investigation on these issues
is sensible for better improvements on generalisation ability of GP.

1.3 Research Goals

The overall goal of this thesis is to develop new GP approaches for sym-
bolic regression which can evolve models exhibiting an impressive gen-

eralisation ability. Poor generalisation often occurs when there is overfit-
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ting, but may also be affected by underfitting and other causes. This thesis
would like to improve the generalisation performance of GP for symbolic
regression, which means counteracting poor generalisation. This includes
investigating the factors influencing the generalisation performance of GP
for symbolic regression, and proposing substantial improvements on the
basic components of GP with an expectation of notably enhancing its gen-
eralisation ability for symbolic regression. Specifically, to fulfil this goal,

the following objectives are established to guide this research.

1. Developing a new GP approach incorporating feature selection to high-
dimensional symbolic regression. The rationale behind incorporating
a feature selection method into GP for high-dimensional symbolic
regression is to prevent the evolutionary process from manipulating
irrelevant features and learning from the noise, and hence improve
the generalisation of GP. The new feature selection approach is ex-
pected to discard irrelevant features and select a subset of features,
which are necessary and sufficient to describe the target variable(s).
Using the set of selected features, GP for symbolic regression is ex-

pected to achieve significantly better generalisation performance.

GP has the ability to automatically explore the search space to detect
relevant features. But when learning in a large space, the built-in
feature selection ability of GP is not strong enough to identify the
relevant features. In this scenario, GP is prone to include irrele-
vant/noisy features in the evolved models. GP for high-dimensional
symbolic regression therefore runs a high risk of overfitting. Feature
selection is an important preprocessing step for high-dimensional
datasets. However, most of the existing work is for classification
tasks. Developing a novel feature selection approach to GP for high-
dimensional regression problems is necessary. The feature selection
process is expected to discard irrelevant/noise features while main-
taining a subset of relevant features which are highly correlated with

the target models. Learning from the selected subset of features
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might be intuitively easier to produce models with good generali-
sation performance. This study will investigate a new feature rele-
vance analysis method, which measures the degree of importance of
each feature in the dataset. Accordingly, a subset of relevant features
with a high importance value will be selected while removing other

features.

. Developing a new GP approach implementing an estimating framework on
generalisation performance based on learning theory and VC-dimension.
The proposed GP method attempts to detect and avoid overfitting.
The estimated generalisation bound is expected to be an accurate
indicator of the generalisation gain of GP and guide the evolution-
ary process towards a good trade-off between training accuracy and
model complexity. This trade-off is crucial to reducing/avoiding
overfitting and making GP solutions generalise well on unseen data.

The greed in searching for models with the lowest training error
makes GP based symbolic regression prone to overfitting, which un-
avoidably leads to poor generalisation performance. In order to gen-
erate generalisable models, it is necessary to detect and avoid/eliminate
overfitting. Model complexity is an important indicator of overfit-
ting, since excessively complex models usually have a tendency of
overfitting. The complexity of a model is considered to be nega-
tively related to its generalisation ability. This study aims to esti-
mate the generalisation performance of GP solutions by developing
new methods based on the framework of Structural Risk Minimisation
(SRM). SRM estimates the generalisation bound of models based on
the empirical error and the model complexity, which is measured
by the VC-dimension. An accurate measure of the VC-dimension
of models will result in a tight generalisation bound, which corre-
sponds to a precise prediction on the performance of models on the
unseen data. However, because of the difficulties in measuring the

VC-dimension of nonlinear models, no existing work has been pro-



1.3. RESEARCH GOALS 9

posed to implement SRM into GP. This study aims to fill the gap and
utilise the estimation ability of SRM on generalisation performance
to release/avoid overfitting.

3. Developing a new Geometric Semantic GP (GSGP) approach with angle-
awareness for symbolic regression to improve the generalisation performance
of GP. The proposed algorithm is expected to provide solutions to the
limitations of the existing GSGP methods and further explore the ge-
ometry of the semantic space, and hence obtain a greater generalisa-
tion gain than the existing GSGP methods and standard GP.

As we mentioned in the motivation section, overtitting is not the
only reason for poor generalisation in GP. In many scenarios, meth-
ods, that aim to reduce overfitting thus improve generalisation do
not work. In these scenarios, although the generalisation perfor-
mance is poor, no overfitting occurs. It has been shown that semantics-
aware GP, particularly GSGP, may help [98, 43, 218]. Models evolved
by semantic GP generally exhibit a significantly better performance
both on training and test data than those by standard GP. Although
the exact reason why semantic GP can promote the generalisation
ability of models is still unknown, the geometric properties of the ge-
ometric semantic operator are shown to be highly related to the im-
pressive generalisation gain in GP for symbolic regression [98, 218].
These geometric semantic operators (appropriately) manipulate the
semantics of programs. They usually make a bounded semantic im-
pact and generate child programs with similar (but usually better)
behaviour to their parents. However, the huge size of the models
produced by the geometric operators, the highly expensive compu-
tational cost and the potential ineffectiveness of geometric semantic
crossover are still major limitations of GSGP. This research will pro-
vide solutions to these limitations. It will develop new geometric
operators, including selection, crossover and mutation, to drive the

evolutionary process to fit the target semantics more effectively and
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efficiently while overcoming the drawbacks of the existing GSGP
methods.

1.4 Major Contributions
This thesis makes the following major contributions:

1. This thesis shows how feature selection can be introduced into GP
to improve the generalisation performance of symbolic regression.
This thesis develops a new feature selection approach to GP for high-
dimensional symbolic regression. The feature selection method helps
GP identify the truly relevant features effectively, and makes the re-
gression process robuster by detecting and discarding noisy features.
The results show that the proposed feature selection method outper-
forms some state-of-the-art feature selection methods in helping GP
gain an impressively better generalisation ability. This work is one of
the very first studies on developing feature selection algorithms for
GP for high-dimension symbolic regression. Previous work focuses

mainly on selecting features for classification problems.
Part of this contribution has been published in:

Qi Chen, Mengjie Zhang, Bing Xue. “Feature Selection to Improve
Generalisation of Genetic Programming for High-Dimensional Sym-
bolic Regression”. IEEE Transaction on Evolutionary Computation. 2017.
PP. 792-806, Vol.21, No. 5, DOI: 10.1109/TEVC.2017.2683489.

Qi Chen, Bing Xue, Mengjie Zhang. “Improving Generalisation of
Genetic Programming for High-Dimensional Symbolic Regression
with Feature Selection”. Proceedings of 2016 IEEE World Congress on
Computational Intelligence/ IEEE Congress on Evolutionary Computation
(WCCI 2016 /CEC2016). Vancouver, Canada. 24-29 July, 2016. pp.
3793-3800.
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2. The thesis shows how learning theory and VC-dimension can be
used to measure the program complexity in GP to significantly im-
prove the generalisation performance for symbolic regression. The
thesis develops a new GP approach to symbolic regression that can
reduce overfitting by providing a reliable estimation of generalisa-
tion error during the evolutionary process. The new method for
estimating generalisation error roots on the development of SRM,
which is a theoretical tool from statistical learning theory, and makes
the theoretical framework available for a mixture of linear and non-
linear regression models in GP for the first time. The results show
that, compared with standard GP and GP equipped with the state-
of-the-art generalisation estimating methods, the proposed GP ap-
proach can detect and reduce overfitting more effectively. The posi-
tive effect of SRM-driven GP on generalisation confirms that it is fea-
sible to utilise SRM to achieve a proper trade-off between the model
accuracy and complexity. This trade-off has long been desired but
is lack of solution in the GP community. This is a very first work to
demonstrate that the theory on VC-dimension is practically useful

for GP to improve its generalisation performance.
Part of this contribution has been published /shown in:

Qi Chen, Mengjie Zhang, Bing Xue. “Improving Generalisation of
Genetic Programming for Symbolic Regression with Structural Risk
Minimisation”. Proceedings of 2016 Genetic and Evolutionary Computa-
tion Conference (GECCO 2016). ACM Press. Denver, Colorado, USA.
20-24 July 2016. pp. 709-716.

Qi Chen, Mengjie Zhang, Bing Xue. “Structural Risk Minimisation-
Driven Genetic Programming for Enhancing Generalisation in Sym-
bolic Regression” IEEE Transaction on Evolutionary Computation. 2017.
(Conditional accepted). 15pp.

3. This thesis shows how to use semantics and geometric information
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in GP to improve generalisation performance for symbolic regres-
sion. This thesis proposes a new GSGP approach to enhancing the
generalisation ability of GP, which covers the scenario when no over-
titting occurs in GP. The benefit of semantic information to the gen-
eralisation of GP has been confirmed, and the underlying reasons for
this phenomenon are analysed in depth. The results confirm that the
proposed GSGP method increases the generalisation of GP more re-
markably than the state-of-the-art GSGP methods. The shortcomings
of the existing GSGP methods have been overcome, which makes
GSGP more applicable on real-world regression problems with a large
number of instances. This thesis also has conducted the first compre-
hensive comparison between different types of GSGP methods.

Part of this contribution has been published /shown in:

Qi Chen, Mengjie Zhang, Bing Xue. “Angle-aware Geometric Se-
mantic Crossover in Genetic Programming for Symbolic Regression”.
Proceedings of the 20th European Conference on Genetic Programming
(EuroGP 2017). Lecture Notes in Computer Science, Vol. 10196. Am-
sterdam, The Netherlands. 18-21 April 2017. pp. 229-245.

Qi Chen, Bing Xue, Mengjie Zhang. “New Geometric Semantic Op-
erators in Genetic Programming: Perpendicular Crossover and Ran-
dom Segment Mutation”. Proceedings of 2017 Genetic and Evolutionary
Computation Conference (GECCO 2017 Companion). Berlin, Germany.
15-19 July, 2017. pp. 223-224.

Qi Chen, Mengjie Zhang, Bing Xue. “Geometric Semantic Genetic
Programming with Perpendicular Crossover and Random Segment
Mutation for Symbolic Regression”. Proceedings of the 11th Interna-
tional Conference on Simulated Evolution and Learning (SEAL). Lecture
Notes in Computer Science, Vol. 10593, Shenzhen, China. 10-13
November 2017. pp. 229-245.

Qi Chen, Mengjie Zhang, Bing Xue. “Improving the Generalisa-
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tion of Genetic Programming for Symbolic Regression with Angle-
Driven Geometric Semantic Operators”. Submitted to IEEE Transac-
tion on Evolutionary Computation. 2017. (Passed the first-round re-

view)

1.5 Organisation of Thesis

The remainder of this thesis is structured as follows. Chapter 2 presents
the literature review of related work. The main contributions of the thesis
are presented in Chapters 3-5. Each chapter addresses one of the research
objectives. Chapter 6 concludes the thesis and highlights some promising
future research directions.

Chapter 2 presents basic concepts and background on machine learn-
ing and classical regression, which is followed by an introduction to evo-
lutionary computation, GP and symbolic regression. As GP based sym-
bolic regression is the focus of this study, a detailed introduction of each
component of GP are presented. A number of related works on GP for
symbolic regression are highlighted, particularly those on improving the
generalisation performance of GP.

Chapter 3 proposes a new feature selection approach to improving the
generalisation of GP for high-dimensional symbolic regression, where the
importance of a feature is measured by the impact on increasing /reducing
the error of models in GP. A permutation measure is employed to select
the truly relevant features. Then a subset of features are selected and fed
to GP for symbolic regression. To investigate and confirm the effect of the
proposed feature selection method on promoting generalisation of GP, ex-
periments have been conducted to compare the regression performance of
several GP for symbolic regression methods equipped with various state-
of-the-art feature selection methods. The results are presented and anal-
ysed in detail.

Chapter 4 develops a new GP approach, which estimates the general-
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isation error of the models based on the model complexity and empirical
error during the evolutionary process. It investigates the relationship be-
tween the model complexity, training/empirical error and generalisation
error. The chapter then proposes a new algorithm and evaluates the ef-
fect of the new algorithm on reducing overfitting and promoting gener-
alisation ability. A set of experiments are conducted to compare the new
algorithm with the state-of-the-art methods. The results and analysis are
presented.

Chapter 5 develops a new GSGP approach, which introduces the angle-
awareness into the evolutionary process. Three new geometric semantic
operators, including a geometric crossover, a geometric mutation and a
selection operator, are proposed. In addition, a new method to formalise
the semantic requirement is developed. The proposed GSGP method is
then examined and compared with two major variants of GSGP methods.
Deep analyses are conducted on the results. Many important and interest-
ing findings on the generalisation of GSGP and GP are reported.

Chapter 6 summarises the work and draws conclusions of this thesis.
Key research points and major contributions of this thesis are also ascer-

tained. Some future research directions are also pointed out.



Chapter 2
Literature Review

This chapter provides definitions of the basic concepts and covers essen-
tial background of machine learning, generalisation and overfitting. This
is followed by an introduction of symbolic regression by means of compar-
ing with classical regression. A brief introduction of evolutionary compu-
tation is also presented. As genetic programming (GP) is a core compo-
nent in this thesis, a detailed introduction of each component of GP is
presented. Semantic GP, which is a particularly new branch of GP with
promising performance, is introduced. Some elements in learning theory;,
which are related to generalisation and will be further studied later in this
thesis, are also introduced. This chapter then reviews typical works re-
lated to GP for symbolic regression with a focus on its generalisation, fea-
ture selection approaches and the implementation of the specific elements

of learning theory.

2.1 Machine Learning

Machine learning is one of the most important areas in Artificial Intelligence.
It can be broadly defined as computational methods using experience to
improve performance or to make accurate predictions [153]. Mitchell [152]

provided a more precise definition of learning as follows:

15
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Definition 1. A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its performance at
tasks in T', as measured by P, improves with experience E.

The experience E is the past information and may take different forms
available to the learner, typically collected as electronic data. The items of
the data are often termed examples or samples or instances. The set of at-
tributes are features, which are usually represented as vectors. The quality

and size of the data is crucial to the success of the learner in all cases.

The main objective of machine learning consists of designing accurate
and efficient learning algorithms to generate accurate prediction for un-
seen items. These algorithms are data-driven methods combining funda-
mental concepts in computer science with ideas from statistics, optimisa-
tion and probability [153].

There are a number of ways to determine various types of learning.
One of the most commonly used ways is based on the types of feedback.
Three types of feedback determine the three main types of learning [192].

o Supervised Learning: The learner receives a set of labeled examples
and learns a function to map from inputs to outputs. This is the

most common learning scenario.

o Unsupervised Learning: The learner exclusively receives unlabelled
examples and learns patterns in the inputs without feedback. In this

scenario, it is difficult to evaluate the performance of the learner.

e Reinforcement Learning: In this scenario, in order to collect informa-
tion, the learner interacts with the environment. During this process
the learner learns from a series of reinforcements — punishments or

rewards from the environment.
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2.1.1 Learning Tasks

Learning tasks can be categorised into different types with respect to the
desired output of machine learning systems. The most mature and widely
researched ones are [25, 11]:

o Classification: Learning from a set of inputs which are divided into
two or more kinds of classes, the learner must develop a model to
assign the unseen items to each category. Email Spam filtering is a
typical example of classification.

o Regression: The learner needs to explore the underlying form of re-
lationship between inputs and outputs and predict a real value for
each input item. Regression is widely used for forecasting and pre-
diction. The difference between regression and classification is that

the output of regression is continuous rather than discrete.

e Clustering: Partition a set of inputs into different groups. Different
from classification, these groups are not known beforehand. Cluster-
ing is often used for analysing large datasets. For instance, in social
network analysis, clustering attempts to identify the “community”
within a large group of people [153].

e Association Rules: Learning association rules aim to identify the strong
rules/regularities discovered in databases using different measures
of interestingness [182, 5]. It can be applied to a number of indus-
tries, such as medicine, the retail industry and website traffic analy-

sis.

o Density Estimation: Learning the underlying probability distribution
that gives rise to the observed variables.

e Dimension reduction: Reducing the number of features under consid-
eration, and can be divided into feature selection and feature extrac-

tion.
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2.1.2 Training and Testing

The common procedure of learning consists of the training and testing
processes. The process by which a learning algorithm uses observations
to learn a new model is called the training process, while the process by
which the learnt model is examined on unseen observations is called the
testing process [152]. During the training process, a learning algorithm
learns from a collection of observations obtained from the problem do-
main, which is called the training set. The algorithm learns important
knowledge or patterns from the training set by building models and ad-
justing the corresponding parameters. The performance of the algorithm
is then evaluated on the test set, which is also a collection of instances in
the same problem domain, but these are not used and remain unseen during
the training process.

During the training process, another set of instances called the valida-
tion set might also take a part. A validation set is a set of instances, which
are independent of the training set. The learnt models obtained from the
training set are evaluated over the validation instances with various pur-
poses. The validation set is widely to avoid overfitting and improve gener-
alisation (these two important concepts will be introduced later). Learning
algorithms will stop training when the error on the validation dataset in-
creases, since this indicates overfitting to the training set. The validation
set also can be used for model selection (i.e. selecting the model has a
higher potential to generalise well on unseen data). The use of the valida-
tion set is often subject to the number of instances. It is appropriate to use
validation set when there are a sufficient number of instances available for

training.

2.1.3 Generalisation and Overfitting

Generalisation is an ability with which the learnt models can represent the

true underlying pattern in the training data, and provide accurate predic-
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Error Error,

Test Error Test Error

Training Error Training Error

Generation Generation
(a) The difference between training (b) The difference between training
and test errors becomes larger and test errors keeps the same

Figure 2.1: Poor Generalisation when No Overfit Occurs

tion on new unseen data. In machine learning, generalisation is one of the
most desirable properties for learning algorithms [152], since the variabil-
ity of instances exists in real-world data. The generalisation performance
of a learning algorithm is usually measured by the prediction error of its
learnt models on an independent test set.

Overfitting is the contrary concept of generalisation which generally
occurs when the evolved model performs well on the training set but
poorly on the test set. According to [152], a more specific definition of
overfitting is given as: given a hypothesis space H, a hypothesis h € H
is said to overfit the training data if there exists some other hypothesis
L' € H, such that h has smaller error than 4" on the training set, but n
has a smaller error than h over the entire distribution of instances. Over-
fitting means poor generalisation. In order to gain best generalisation for

solutions, detecting and avoiding overfitting is desirable.

Overfitting definitely leads to poor generalisation, however poor gen-
eralisation is not necessarily caused by overfitting only. In some cases, as
shown in Figure 2.1, over a series of generations, the difference between
the training error and the test error might become bigger (Figure 2.1 (a))
or keeps the same (Figure 2.1 (b)), which means the generalisation of learn
models is unsatisfied but no overfitting occurs.



20 CHAPTER 2. LITERATURE REVIEW

2.1.4 Feature Selection

Real-world data is becoming extremely high-dimensional as the data col-
lection technology evolves these days. With these high-dimensional data,
the ability of learnt models to extract meaningful information has decreased.
Some other important impacts of high-dimensional data to learning algo-
rithms are:

e The curse of dimensionality: the performance of a learnt model de-
pends on the interrelationship among number of features, sample
size and model complexity [113]. Searching for optimal models us-
ing various learning techniques breaks down with the phenomenon
of curse of dimensionality in high-dimensional data. For some learning
techniques, the requirement of the number of the training instances
might be an exponential function of the features. Thus, the ability
of these learning techniques to converge to an adequate model de-
grades rapidly as the number of features increases.

e High computational cost: because of the high dimensionality of the
input space, the cost of measuring the performance of models in-
creases rapidly. Thus, converging to a true or correct model will gen-

erally become computationally intensive.

e Model overfitting: a further challenge for building models on high-
dimensional data is to avoid overfitting. When modeling on high-
dimensional data, the model search space can be extremely large.
Searching for an unknown model in such a huge space with finite

instances runs a high risk of overfitting.

In addition to all these issues, learning from all features does not nec-
essarily ensure good performance due to the existence of noisy/irrelevant
teatures. Thus, feature selection is desired when learning on high-dimensional
data.
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Feature selection, also known as variable selection or attribute selection,
is the process of finding a minimal subset of features that is sufficient and
necessary to represent the problem to be solved. A feature selection algo-
rithm explores the search space of available feature combinations to find
the best feature subset. It is an important data preprocessing technique.
Feature selection brings dimensionality reduction by eliminating the irrel-
evant and redundant features in the dataset. Therefore, it can enhance the
learning performance and make the learning process more efficient. More-
over, models generated using fewer features have lower probability to be
overfitting and easier to interpret.

2.2 Classical Regression and Symbolic Regres-

sion

2.2.1 Classical Regression

Regression, as one of the most popular machine learning tasks, is con-
cerned with modeling the relationship between variables via measuring
the error of the prediction model in an iterative way [192]. The goal of
regression is to find the mathematical model that best fits the given data.
A regression problem can be specified with a set of inputs which are in-
dependent variables X and a dependent variable Y that stands for the
desired value. The objective of the task is to approximate Y using X and
coefficients W such that:

Y = f(X,W)+e 2.1)

where € is a term for random error and represents the part of the data that
is unable to be modelled by f(X, W).

With classical regression techniques, the functional form f is prede-
fined. For example, for the most widely used regression model — linear
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regression, f would be:
F(X, W) = wo + w1 + wag + ... + Wiy, (2.2)

where the coefficients (wy, wy, ..., wy,) can be found by least squares. Some

other examples of classical regression techniques are:

e Back-Propagation Neural Network [110]: A neural network that is typ-
ically represented by a network diagram is a two-stage regression
or classification model. The main idea is to extract linear combina-
tion of the inputs as derived features, and then model the target as
a nonlinear function of these features by a transfer function (usu-
ally a sigmoid function). The generic approach to seeking values for
the unknown coefficients (usually called weights) in neural network

models by gradient descent, is called back-propagation.

o Support Vector Regression [61,71] (SVR): Support Vector Machines (SVM)
are a set of powerful modelling techniques. The original version of
SVM was developed for binary classification. In [71, 209] various
SVM versions for regression were proposed. In SVR, the regression

equation can be specified as:
FX)=Bo+ Y K (z;,w) (2.3)
=1

where the corresponding x; are support vectors, and K (x;, w) is termed

kernel function. K (z;, w) can be linear and nonlinear functions.

o Multivariate Adaptive Regression Splines [85] (MARS): MARS is an adap-
tive procedure for regression. Like neural networks, MARS uses sur-
rogate features instead of the original predictors. However, MARS
produces two different version of a feature in the models. The idea
is to form a reflected pair for each feature X;, with knots at each ob-

served value z;;; of that feature. The collection of reflected pairs is

C={(Xp = 1)+, (¢ — Xp)+} (2.4)
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where t € {z1y, ok, ..., T}, k = 1,2, ...p. The model building strat-
egy is like a forward stepwise linear regression. However, instead of
using the original features, functions in C' are used. Thus the model
has the form

J
FX) =B+ Z Bihi(X) (2.5)

where each h;(X) is a function in C. The coefficients j3; are estimated

by standard linear regression.

e Least absolute shrinkage and selection operator [215] (LASSO): LASSO
is a method for linear regression, which shrinks some coefficients in
the regression models (to 0) to retain good features in linear models.
LASSO minimises residual sum of squares. This procedure is subject
to the condition that the sum of the absolute values of the coefficients
less than a constant ¢, i.e. given IV instance with the target outputs
Y = {v1,v2,...,yn}, for linear models f(X) = ijl B,;X;, LASSO
estimates the 8 = (1, (s, . . ., 85)" by:

N J 2 J
B = argmin Z <yi — Z @Xij) , Z 1B <t (2.6)
s j=1

=1

2.2.2 Symbolic Regression

Symbolic regression is a kind of regression analysis, which performs a
function identification. The task of symbolic regression is to identify the
input variables in a given dataset that are related to output variables, and
express the relationship in mathematical models or symbolic descriptions.
Symbolic regression is named to emphasise that the target of the identi-
fication process is a mathematical model, not only a set of coefficients of
a predefined model (as in classical regression). This is a sharp difference
with classical regression techniques in which a specific model is prede-
fined.
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Symbolic regression provides a way to gain insights into the data gen-
erating process. It does not require a predefined function and has the ob-
jective of generating a model, which is a combination of primitive func-
tions, independent variables and coefficients, and minimising the error of
this model regarding the differences from the desired outputs. During the
learning /modeling of symbolic regression, there are some other important
objectives. When performing symbolic regression, it is also important to
exclude irrelevant and redundant input variables during this process. The
number of coefficients and the value of these coefficients is another prob-
lem that needs to be tackled during the deriving of the model. There is
no prior knowledge of the shape and size of the function. This is another
characteristic of the deriving process.

Symbolic regression is based on the existence of EC techniques (which
will be discussed in the following section). The idea of solving various
problems by symbolic regression by means of EC comes from Koza [124].
However, non-EC methods [146] have been proposed for symbolic regres-
sion recently. The existing methods which can solve symbolic regression

are including:

e Genetic Programming (GP): GP is an EC techniques and most pop-
ular method for symbolic regression. GP for symbolic regression is
the main focus of this thesis, so it is discussed in the following sub-

section.

e Analytic programming[245] (AP), which was inspired by GP and
Hilbert spaces, aims to address one particularly important issue in
symbolic regression, i.e. how to represent a symbolic model. AP
constructs regression models by manipulating the predefined func-
tion set and terminal set. However, instead of the direct representa-
tion used in GP, AP uses an integer index to represent the individual.
Then it uses the idea of functional spaces and building of resulting

function by means of searching process from Hilbert spaces to rep-
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resent the regression models. Note that, AP is not an independent
algorithm, i.e. to perform symbolic regression, AP needs to work
with an EC algorithm.

e Artificial immune system [114] (AIS): AIS was inspired from the way
in which natural immune systems learn to respond to attacks on
an organism. When using AIS for symbolic regression, it works in
a similar way as GP, where the programs are represented as LISP
parse-trees (the same as the standard manner of GP [124]) and vari-
ous components of the evolutionary process of GP are translated into

the immune metaphor.

e Fast Function Extraction [146] (FFX): FFX is a non-EC technique for
symbolic regression. FFX uses a recently developed machine learn-
ing technique, pathwise regularised learning [84], to rapidly prune a
huge set of candidate basis functions down to compact models [146].
Compared with EC techniques, FFX spends less computational cost.
However, its performance is highly related to the set of basis func-

tions.

EC methods, particularly various GP methods, are still the most popular
and well-study techniques for symbolic regression. GP based symbolic re-
gression describes the data effectively by developing symbolic functions.
It evolves data-driven models, which are useful for predicting the response
values while facilitating human insight and understanding of the data
generating process. In the following two sections, we will introduce EC
techniques and the detail of GP.

2.3 Evolutionary Computation

Evolutionary Computation (EC) consists of various population-based algo-
rithms that simulate different aspects of evolution. Theses algorithms are
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mainly categorized to Evolutionary algorithms (EAs) and Swarm intelligence
(SI).

Inspired by Darwinian principles and survival of the fittest, EAs are
global optimisation methods with a stochastic character and can be dis-
tinguished by the population based solutions. According to the represen-
tation of the solutions and the evolutionary operators, EAs are classified
to Evolutionary Programming [80], Evolutionary Strategies [24], Genetic Algo-
rithms [111] and Genetic Programming [124]. These algorithms share one
fundamental commonality in that they use the same iterative progress.
This progress involves random variant, reproduction, and selection of fittest
individuals in a population [16]. Many aspects of the evolutionary process
are stochastic since the variant is randomly chosen and the selection oper-

ator can be deterministic or stochastic.

Swarm intelligence (SI) considers the design of intelligent multi-agent
systems that are inspired by the collective behaviours of social insects such
as ants, bees, as well as by other animal societies such as flocks of birds or
schools of fish [26]. Two typical SI techniques in the literature are Particle
Swarm Optimisation (PSO) [118] and Ant Colony Optimisation (ACO) [70].
PSO incorporates swarm behaviours observed in flocks of birds, swarms
of bees, schools of fish [1]. It is distinguished by its fast convergence when
compared with many other evolutionary algorithms, for example, genetic
algorithms. ACO is inspired from the foraging behaviours of ants and
is typically used to solve discrete optimisation problems. In ACO, the
indirect communication by means of chemical pheromone trials enables

artificial ants to find the shortest path between their nest and food.

The application and development of EC algorithms has been one of
the fast growing fields in computer science. In studies related to both
EC and machine learning techniques, many attempts have been devoted
to make various evolutionary algorithms to be efficient and effective ma-
chine learning techniques [79, 95, 96]. Since this thesis is focused mainly

on GP for symbolic regression, we will only review GP below in detail.



2.4. GENETIC PROGRAMMING 27
24 Genetic Programming

Genetic Programming (GP) is an evolutionary computation method that
is inspired by biological evolution. The very first statement of modern
“tree-based” GP was given by Nichel L. Cramer in 1985 [102]. However
the work of Koza [124] in 1992 marked the beginning of the field of GP. In
[124], many problems in various fields were addressed by GP in a way of
automatically finding computer programs.

GP is a domain-independent approach which can automatically ad-
dress problems without requiring the specification of the structure and the
size of the solutions in advance. GP starts from a population of randomly
generated programs. This population of programs evolves generation by
generation to gain a better fitness. During this evolutionary process, GP
stochastically transforms a population of programs into a new popula-
tion and simulates evolution by some forms of fitness based on selection
and breeding. During this process, the fittest programs are expected to be

found and survive.

2.4.1 Representation

In standard GP, computer programs are represented in an abstract form —
a parse expression. Typically a parse tree is used to represent a candidate
program.

In order to generate and represent a population of programs, a function
set I and a terminal set 7' need to be prepared beforehand according to the
tasks. For regression tasks, F' can include standard arithmetical functions
such as addition, subtraction, multiplication, division, transcendental func-
tions and trigonometric functions. Each element in F' has a fixed number
of arguments. For example, function “-” has two arguments and “sin” has
one argument. The terminal set 7" usually consists of independent vari-
ables/features and a number of random constants.

The selection of function set and terminal set should satisfy the suffi-
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Figure 2.2: GP Tree for: ((z2/x3) — (x5 + x5)) * (sinzy + w¢).

ciency and closure property [17]. While the sufficiency property requires
these two sets have enough expressive power to represent a solution for
the problem, the closure property requires each function in F' is capable
to handle gracefully all possible inputs. When the terminal set and the
function set have been prepared, candidate solutions are constructed from
their elements. Fig. 2.2 describes a solution in GP by the parse tree.

In recent years, variants of GP using some other representations have
been developed, such as grammatically-based GP [235] using a context
free grammar and variants of linear GP using linear structures including
gene expression programming [76] and linear genetic programming [30]. Al-
though there are various ways to represent candidate solutions in GP, the
tree-based representation is still the most popular one. Thus, this thesis

focuses on tree-based GP.

2.4.2 Initialisation

In standard GP, initialisation of the population is the first step in perform-
ing a GP run. By using functions and terminals, it is possible to generate
well-formed tree-like individuals in GP. There are several methods to build
the trees.

Grow is the simplest one where a node is selected randomly from the
function set or the terminal set before the maximum tree size or limited
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depth is reach. In this way, the grow method can produce trees with vari-
ous shapes and sizes.

In contrast, one another commonly used method — the full method
only produces trees with a full size. The full method chooses nodes only
from functions at the beginning when construction a GP tree. It does not
select a terminal node until the maximum depth is reach.

In order to promote the population diversity of the initialisation, usu-
ally the ramped-half-and-half technique is employed by GP, which actually
is a combination of the previous two methods. That is, in this method,
half of the population is initialised with the full method and the rest half
is produced by the grow method.

2.4.3 Evaluation

The main feedback to evolutionary algorithms is the performance measure
of candidate solutions. The evaluation criterion of GP is called a fitness
function. The fitness function is calculated on the training set. It should
be designed to give a fine-grained differentiation between candidate so-
lutions for GP. There are many ways to cast fitness functions. The most

commonly used measures are:

e when applying GP for classification problems, classification accuracy
and classification error rate are most widely used for performance mea-
sure. Classification accuracy is the number of correct predictions as a
percentage of the total number of predictions. Classification error rate
is the number of error predictions as a percentage of the total number
of predictions.

e when GP is used for regression problems, generally absolute error,
squared error and scaled/normalised error can be used. Absolute error
calculates the sum of the absolute value with respect to the error be-
tween the given outputs and the desired values. Squared error is a
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common alternative which calculates the sum of the squared differ-
ence. It usually has various forms such as mean squared error (MSE),
and root mean squared error (RMSE). Scaled/normalised error refers to
some functions that can amplify or damp smaller deviations from
the desired outputs.

In GP, the fitness function is extremely important, since it is the primary
mechanism in a high-level statement of the problem’s requirements [184].
Moreover, the fitness measure is the main force of the evolutionary process
in GP, as the breeding and survival of GP solutions are generally according
to the fitness values.

2.4.4 Selection

After the performance of an individual has been evaluated, the selection
operators should be used to give the better fitted solutions more oppor-
tunities to apply genetic operators. Choosing selection methods is one of
the most important decisions in applying GP. Many standard evolution-
ary selection mechanisms can be used for selecting candidate parents in
GPD, such as fitness-proportional selection, truncation selection, and tournament
selection. Note that these selection mechanisms are generally not greedy,
i.e. the best individual in the population is not guaranteed to be selected
and the worst individual in the population is not necessarily excluded and
still has some chance (at a lower probability) of being selected.

The most commonly employed selection method in GP is perhaps four-
nament selection. In tournament selection, a number of individuals are sam-
pled at random from the population. The number of individuals is deter-
mined by the tournament size. These individuals are compared with each
other and the best of them is chosen to be a parent. For some genetic op-
erators (e.g. crossover operator which will be introduced in the following
sub-section), where two parents are needed, the tournament selection is

performed for twice. In the selection process, the tournament size, which
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Figure 2.3: The Evolutionary Process in GP.

determines the number of candidate individuals to be sampled and com-
pared, leads to different selection pressure. While a large tournament size
causes high selection pressure, a small tournament size generally causes a

low pressure.

2.4.5 Genetic Operators

Evolution proceeds by transforming parent to offspring by means of ge-
netic operators. The three principal GP genetic operators are: Crossover,
Mutation and Reproduction.

For crossover, two parents are selected based on the selection mech-
anism and a random subtree is selected in each parent. By swapping
the two subtrees, two chair trees are generated. Traditional tree-based
crossover do not need to consider the position information of the crossover
points where the two subtree root at. Apart from this traditional crossover,
various crossover operators have been proposed, such as the homologous
crossovers [183], which preserve the position of genetic materials.

Mutation only operates on one parent. A random subtree of the parent
is selected and replaced by a new subtree following the constraint of GP

setting. Mutation used to be considered not as important as crossover. In
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Given a Training Set Consisting of 3 instance:
({4,5},8,10},{12,15})

’ ° (X=4, 8,12 and Y=5, 10, 15)
° e ° a The semantic of the program is a 3 dimension vector:
16,50,126 }

where 6=(4-3)* (4+2),
50=(8-3)*(8+2),

The program P= (x-3)*(+2) 126=(12-3)*(12+2)

Figure 2.4: The Example of Calculating Semantics in a Regression Model

the early dates, Koza [124] did not use mutation and wished to show that
mutation is not necessary for GP. However, later research found that muta-
tion is also important for GP [47]. Various mutations have been proposed
for GP [194, 227].

Reproduction is straightforward. It operates by placing the copy of a
selected individual into the population. The commonly used version of
reproduction is elitism where a number of the highest fitness individuals
are copied into the next generation.

GP is a flexible methodology, allowing vigorous co-application of all
kinds of strategies and meta-strategies, as long as the cycle (as shown in
the inner loop of Figure 2.3) between solutions generation, evaluation ,se-

lection, and variation is maintained [234].

2.5 Semantic GP

2.5.1 Semantics and Semantic GP

Semantic Genetic Programming (SGP) [20, 126] is a recently developed
variant of GP that incorporates the semantic information of GP solutions.
In GP, semantics refers to a description of what the GP solution does [126].
As this variant of GP will be used in this thesis, we briefly describe the
basics in this section.
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The formal definition of semantics in GP is domain-dependent. In sym-

bolic regression, the definition of semantics is as follows [126]:

Definition 2. The semantics of a program F is defined as a vector S. The ele-
ments of S are the corresponding outputs of the program with respect to a set of n
fitness cases X, i.e. S(F) = {F(X1), F(X2), ..., F(X,)}.

Figure 2.4 shows how to calculate the semantics given the program and
instances. Semantics can be calculated for any subprogram of a given pro-
gram to describe its behaviour more thoroughly than just by its outputs,
since a part of a program is also a valid program itself. The legitimate
assumption under incorporating semantics into GP is that taking the de-
tailed behavioural information of solutions into account can increase the
effectiveness of GP. Another advantage of incorporating semantics into GP
is that it is essentially free to obtain the semantics of a GP solution, since
each solution has to run on training instances to access its fitness and the
semantics is a side-effect of fitness measure.

2.5.2 Geometric Semantic GP

Geometric semantic GP (GSGP) [126, 156], as one particular branch of SGP,
has recently been attractive. While SGP uses the semantics as a guideline
for the evolutionary process and evolves toward a program with a satis-
fied evaluation, GSGP aims to manipulate the semantics directly and has
the target of generating a program with (approximated) optimal seman-
tics.

GSGP considers the semantics of a program as a point in an n (n is the
number of instances) dimensional space. The semantics of all the candi-
date solutions in GSGP form a semantic space. In the semantic space, the
evaluation of any point is the distance from the target semantics, i.e. the
target outputs. Therefore, the surface of the semantic space takes differ-
ent conic forms according to the distance metrics. More importantly, this
conic space is unimodal, i.e. the minimum error can only be obtained at
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the target point, and no plateaus exists. Searching in such an unimodal
space is easy and promising in principle. However, it is not that easy in
practise, since the program space instead of the semantic space is the space
being searched. The move (swapping or replacing) on the programs does
not correspond to the desired move in the semantic space.

2.5.3 Theoretical Framework in GSGP

The geometry of the semantics space is attractive for enhancing GP. How-
ever, searching directly in the semantic space is difficult. Therefore, GSGP
provides a formal theoretical framework for designing geometric search op-
erators [156]. The framework defines the desired semantic properties of
the offspring generated by the geometric semantic operators. Specifically,
the geometry requirements in the semantic space are that, the child points
generated by the geometric semantic crossover stand in the segment con-
necting the two parent points (i.e. the semantics of the child programs is
the intermediate of the parent semantics), and the child program gener-
ated by the geometric semantic mutation stand within the interval bound
defined by the parent (i.e. the semantics of the child is not too different
from the semantics of the parent).
Theoretical framework in GSGP [156] is defined as follows:

Definition 3. Geometric Semantic Crossover (geometric crossover): Given two
parent individuals p, and p,, a geometric crossover generates offspring o, (je1,2)
having semantics 0;(je1,2) in the segment between the semantics of their parents,

Le., |[Pa=Pi||=]|0;—Pi ||+ P2—0;]|

Definition 4. Geometric Semantic Mutation (geometric mutation): Given a par-
ent p, -geometric mutation produces offspring o within a ball of radius r centered

inp,ie., |0-P|<r

Based on this framework, various geometric semantic operators are de-
veloped to fulfil the semantic requirements/control in the literature, which
will be reviewed later.
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Figure 2.5: Bias-Variance Trade-off.

2.6 Elements of Learning Theory Related to Gen-

eralisation

2.6.1 Bias-Variance Decomposition

A widely accepted statement in machine learning is that simpler models
are more likely to generalise well. A more accurate description is that to
get an optimal representation of the underlying pattern of the given data,
and hence to achieve a good generalisation on unseen data, it is necessary
to obtain a trade-off between achieving an impressive training accuracy
and obtaining a reasonably smooth model. The theoretical tool of bias-
variance decomposition, i.e. a decomposition of learning error into bias
and variance terms, provides insight into this trade-off. This tool comes
from statistical learning theory and is well-known in machine learning [25,
69, 86, 92].

The bias error is a measure of the difference between the expected pre-

diction of the model and the target output value. Due to randomness in the
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underlying data sets, the learnt models will have a range of predictions.
Bias measures how far these models” predictions are from the correct val-
ues. The variance error is taken as the variability of a model prediction for
a given data point. The variance measures how much the predictions for
a given point vary between different realisations of the model.

Figure 2.5 illustrates this bias-variance trade-off, where increasing model
complexity has the effect of reducing bias in the model while increasing
variance. There is an optimal “sweet spot” where bias and variance errors
are balanced and relatively low, and hence generalisation error (in terms
of bias and variance components) is minimised.

A lower variance error indicates that the models are less sensitive to

the training data, thus can potentially generalise well on unseen data.

2.6.2 Vapnik-Chervonenkis Dimension and Structural Risk
Minimisation

Statistical learning theory [231], particularly probably approximately cor-
rect (PAC) [221], defines Vapnik-Chervonenkis dimension (VC-dimension),
which is a general measure for model complexity [230]. The original def-
inition of VC-dimension is for indicator functions {I(X, «)}, where X are
the input vectors, « is a set of parameters and the outputs of {/(X,«)}
take the values of 0 or 1. The VC-dimension h is the maximal number of
input vectors X;, Xy, ---, X}, that can be shattered by {I(X,«)} [232], i.e.
no matter what the class labels are (in 2" possible values), with proper pa-
rameters «, {I(X, o)} always can perfectly separate these vectors into two
classes.

Later, this definition was extended for real-value functions { R(X, «)},
where A < {R(X,«a)} < B. The VC-dimension of a set of real-value func-
tions {R(X,a)} is defined as the VC-dimension of its corresponding in-
dicator functions {I(R(X,«) — )} [231], where 5 € (A, B). In statistical

learning theory, the VC-dimension plays an important role in various up-
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per bounds of generalisation error [83]. Structural risk minimisation (SRM)

[231] defines one of these generalisation bounds.

SRM provides a powerful framework to estimate the generalisation
performance of models. The practical forms of SRM are different for clas-
sification and regression, which are taken from [56, 231] and shown in

following: SRM for classification [231] is:

Ruup(h) < Romp(h) + \/h(ln(Qn/h) -l;Ll) —In(n/4) 2.7)
and SRM for regression [56] is:
Inn -
Rezp(h) < Remp(h) (1 — \/h/n(l —1In(h/n)) + 211) (2.8)
+

where h is the VC-dimension value and n is the number of training in-

stances.

As shown in the definitions, SRM defines an upper bound of the gen-
eralisation error considering both the empirical risk/error and the confidence
interval. The confidence interval estimates a difference between the em-
pirical risk/error and the expected risk/error, and it is determined by the
size of the training set and the VC-dimension value of the models. Since
the size of training sets is usually fixed, the confidence interval is deter-
mined purely by the VC-dimension. Thus, the generalisation bound rely-

ing on the confidence interval is also named VC generalisation bound or
VC bound [83].

The essence of the SRM principle is to minimise the generalisation up-
per bound. Therefore, the learning process under SRM, which tries to se-
lect the models having a good trade-off between the empirical error and
VC-dimension (i.e. model complexity), can potentially lead to models

with better generalisation ability.
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2.7 Related Work

2.7.1 Improving GP for Symbolic Regression

GP is able to automatically create various programs. It does not require
for the predefined shape and size of solutions. It has a strong expres-
sive power. All these properties make GP the most suitable approach to
symbolic regression. On the other hand, symbolic regression was one of
the earliest applications of GP [124]. During the past several decades, GP
has been remarkably successful in solving symbolic regression problems
[38, 133,105, 116, 122].

Although GP based symbolic regression has matured significantly in
the last few years, there are a number of issues which require further re-
search when applying GP to symbolic regression such as premature con-
vergence, limited scalability, generalisation, computational intensiveness. In the
past several decades, researchers aim to address these issues along with
discovery of quality models. They proposed various approaches to these
issues. Later we will have a brief review of these approaches.

A number of techniques have been proposed to make GP a more reli-
able and attractive approach to symbolic regression. A full catalogue of
these approaches would be beyond the scope of this thesis. Here, some
prominent ones are reviewed, particularly those related to this thesis.

Keijzer [116] proposed two relatively minor but promising modifica-
tions to GP based symbolic regression, interval arithmetic and linear scaling,
which aimed to improve the predictive performance and reliability of the
induced models. In that work, the commonly used protected operators
were argued to have severe shortcomings in the vicinity of mathematical
singularities. Thus, instead of the protected operators, interval arithmetic
was used to ensure the induced models do not contain any undefined be-
haviour in their output ranges. Meanwhile, to make GP more effective,
linear scaling was used prior to calculating the error measure. The scal-

ing took the form of a simple linear regression that is to find the optimal
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slope and intercept of the model against the target. The linear scaling cal-
culates constants that otherwise need to be found during GP evolutionary
process. This enables GP to concentrate on the search of optimal models
with desired shape. A series of experiments were conducted on a number
of regression benchmarks. A significant improvement on the training set
was reported. However, linear scaling is not without apparent limitations.
In one example of applying it to real-world applications [222], the findings
suggested that the application of linear scaling may lead to overfitting. But
it needs to be pointed out that the study led to this conclusion was based
on experiments of only 20 independent runs.

Pennachin et al. [180] proposed a system similar to Keijzer [116], but
used affine arithmetic, a more refined interval method that generates tighter
bounds for solutions. In that work, interval arithmetic was argued to be
too wide to be useful to eliminate the solutions with outside the desired
range output. The results showed integrating affine arithmetic with the
implementation of standard GP can significantly improve the effectiveness

of GP and the generalisation ability of induced models.

Reducing Evaluation Cost

Since model evaluation is often a time-consuming process, various efforts
have been made to reduce evaluation cost. These evaluation relaxation
schemes include caching subtree, and partial fitness evaluation.

Keijzer [117] presented a number of subtree caching mechanisms where
a cache of subtrees and their evaluations was maintained. By looking up
the subtree evaluated previously, it can avoid the reevaluation of com-
monly occurring subtrees. Thus, the runtime of a GP system can be rapidly
reduced.

Majeed et al. [145] applied the subtree caching mechanism [117] to
the implementation of the context-aware crossover operator. They tested
this approach on symbolic regression problems and confirmed that the
use of a cache improves the performance of GP for symbolic regression by
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dramatically reducing the number of node evaluations.

When calculating the fitness value of the candidate models, gener-
ally GP uses the whole training set for every individual in every gener-
ation. However, researchers have reported the improvement of perfor-
mance when partial fitness evaluation is used.

Smits et al. [207] applied the selection schemes for partial fitness evalu-
ation to symbolic regression problems. They applied three cases of partial
titness evaluation to three types of symbolic regression problems. These
three cases are: constant subset size with constant population size, increas-
ing subset size with constant population size and increasing subset size
with decreasing population size. Based on the experimental results, they
claimed that even when the subset size is down to 40% of the original size,
GP can still produce models that were comparable with the counterparts
obtained with the exhaustive evaluations at a lower computational cost.
Later, a number of different selection schemes were proposed in a number
of contributions [99, 100].

Counteracting Premature Convergence

Premature convergence occurs when the candidate models get stuck in a
local optimal and the GP population rapidly converges to a very concen-
trated set of behaviours and consists of very few clusters of individuals
that express the same phenotype. Moreover, no improvement in perfor-
mance can be achieved in the successive generations. Since premature
convergence poses such a threat to the performance of GP and is a well-
known open issue in GP, a number of works have emphasised maintaining
the population diversity during the evolution process as a means to coun-
teract this issue [34, 35, 37, 74, 105, 148, 193]. These methods range from en-
hancing diversity on the genotype/structure of GP solutions [34, 148, 193],
the phenotype/semantics of solutions [105, 167], to using niching tech-
niques [37].

Ryan et al. [193] presented the pygmy algorithm implementing disas-
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sortative mating. The pygmy algorithm requires the maintenance of two
lists of individuals using two different fitness functions. The fitness func-
tion of the individuals in the first list is simply their performance. Individ-
uals that were qualified to enter the first list are given a second chance by a
slight modification of the fitness function to include a weighting of length.
When choosing parents for breeding, individuals from these two lists are
analogous to differing genders with the intention that the offspring re-
ceives the good attributes of each. The results showed that pygmy algo-

rithm can improve convergence speed while evolving better solutions.

Ekart et al. [74] extended fitness sharing to GP based symbolic regres-
sion by defining a distance function that reflected the structural difference
of candidate trees. Fitness sharing regards fitness as a shared resource of
the population and requires similar solutions to share the fitness values.
By using fitness sharing, the population does not converge as a whole,
but converges as several different niches. In that work, they defined a
new metric that reflects the structural difference of the trees and applied
the metric for applying fitness sharing. The results showed that the ap-
proach could obtain compact solutions as well as maintain the population
diversity but no improvement on accuracy of models has been obtained.
The main shortcomings of fitness sharing are that the computation of the
shared fitness for the whole population in every generation might be very

time consuming and the difficulty in determining the niche radius.

Nguyen et al. [167] modified the implementation of fitness sharing in
order to speed up its execution. More important, they investigated the
effect of two difference types of metric: semantic and syntactic distance
in fitness sharing. Experimental results of that work showed that while
fitness sharing with the semantic metric often remarkably improves the
performance of GP, fitness sharing with the syntactic metric can hardly
improve the performance. At the same time, when applying fitness shar-
ing with the semantic metric to GP, the computational cost in terms of

time was almost the same of standard GP and much faster than its syn-
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tactic counterpart. However, the change of semantic diversity or syntactic
diversity in the population during the evolution process has not been re-
ported.

Gustafson et al. [105] proposed a simple improvement to GP which
forced the genetic operators to always use parents with different fitness
values. The core of that work was rooted on the fact that the probability
of no change in solution fitness value increased with the similarity of so-
lutions. By forcing the mating of solutions with different fitness values, a

significant performance improvement was shown in the training phase.

Burke et al. [34] investigated six different measures of diversity in
GP for symbolic regression including genotype, phenotype, entropy diversity,
preudo-isomorphs, edit distances 1 and 2. They conducted a series of experi-
ments to find the relationship between these measures and fitnesses. They
found that compared to other problem domains of GP, symbolic regression
has the weakest correlation between any measure of diversity and fitness
overall. However, entropy and edit distance diversity showed compara-

tive stronger correlation with fitness.

Burks et al. [36, 37] proposed an effective genetic diversity technique
which is called the genetic maker diversity algorithm to enhance the diver-
sity of the GP population while maintaining a good search ability. Their
method relies on tree fragments as genetic makers and prevents the pop-
ulation from converging to a single structure by taking genetic marker
density as one objective of GP as well as the regular fitness value. The
proposed method was tested on various tasks including symbolic regres-
sion and has shown to perform significantly better than standard GP in

terms of learning performance and maintaining a more sustainable search
in GP.
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2.7.2 Improving Generalisation of GP for Symbolic Regres-

sion

For GP, as an important learning algorithm in machine learning, a good
generalisation ability is desired. Despite the importance of generalisation
for any learning algorithm, the generalisation of GP did not receive the
deserved attention for quite a long time in the past, let alone GP for sym-
bolic regression. In the past, symbolic regression had been token as an
optimisation issue and all the available data were used for training. Be-
fore Kushchu published his work on study the generalisation ability of GP
[130], there was little work on the research on generalisation of GP for sym-
bolic regression. However, in the past several years, an increasing num-
ber of studies have been devoted to enhance the generalisation ability of
GP. These studies can be mainly classified into two categories, controlling
bloat [45, 46, 88, 206] and tackling overfitting [42, 51, 54, 97, 100, 112, 170].

Controlling Bloat

Bloat is one of the most well-known problems in GP. It is defined as rapid
code growth without corresponding improvement in fitness. It was one of
the main areas on GP. Methods controlling bloat to improve the generali-
sation ability of GP solutions are in light of theories such as the Occam’s ra-
zor [27] and the Minimum Description Length [18]. Based on these theories,
researchers had a common agreement that bloat and overfitting are two re-
lated phenomenons. Also it is widely accepted that shorter solutions can
generalise better. However, in recent years contributions found that over-
fitting occur even when bloat is eliminated and vice versa [41, 67, 143].

In [67, 143], the Tarpeian method, which can successfully control bloat,
has shown to be unable to significantly improve generalisation perfor-
mance of GP solution. In [41], a bloat-free technique named operator
equalisation can not have much positive effect on controlling overfitting.

Therefore, it is suggested in these contributions that bloat and overfitting
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may be two separate phenomenons and should be tackled by separate
methods.

Avoiding Overfitting

Validation Set to Detect and Avoid Overfitting: One of the commonly
used approaches to detecting overfitting is to use a validation set.

Gagné et al. [88] investigated the effect of validation sets. In their work,
instead of selecting the best one solution, the best n solutions on the train-
ing set were selected. Among these solutions, the best solution on the
validation set was returned as the final solution. The effort of the valida-
tion set on improving the generalisation of GP was compared with that of
a lexicographic parsimony pressure. It was found that the validation set
brings a little benefit while the parsimony pressure has a negative effort
on the generalisation. However, more benefits were achieved when using
the combination of these two methods.

Smits et al. [208] extended the use of a validation set. They maintained
an archive of Pareto optimal solutions in terms of validation fitness and
model size. The advantage of this method is that it is possible to select a
satisfactory solution a posteriori. The key issue of the validation method
is that its effectiveness highly depends on the instances in the validation
set. These instances should contain a representative sample of all possible
instances.

Evolving towards Smoother Models: Much recent work counteracts over-
titting in GP by introducing various strategies to evolve towards sim-
pler/smoother models.

Chan et al. [46] incorporated a statistical method, backward elimina-
tion (BE), into GP to eliminate insignificant terms in polynomial models.
In their work, the parameters of the evolved polynomial models were de-
termined by BE, which eliminates the insignificant terms one-by-one. As
a result polynomial models, which have a fewer number of terms but only
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significant terms, can be produced. The BE-GP was shown to be effective
on reducing overfitting.

Haeri et al. [107] proposed variance-based layered learning GP, which
decomposes the evolutionary process into several hierarchical layers. From
lower to higher, these layers were trained using different training sets,
from less to more complex. The complexity of the training sets is measured
by the variance of the output values. This measure is also applied to evalu-
ate the complexity of candidate models. The experimental results showed
that the layered GP enhanced the generalisation ability of GP while reduc-
ing the model complexity.

Mousavi et al. [157] presented a multi-objective GP (MOGP) method
to enhance the generalisation by controlling the first order derivative of
GP models. In MOGP, in addition to pursuing a lower training error, the
RMSE on the first order derivative of the candidate model (i.e. measuring
the difference from the first order derivative of the target model), which
measures the model complexity, is considered to be the other objective.
The experimental results showed that MOGP had better generalisation
gain than standard GP.

Bias-Variance Decomposition in GP: Typically the variance error in GP
is estimated by Bootstrap methods [73]. Various GP methods incorporat-
ing bootstrap techniques have been proposed [3, 77, 81]. On these meth-
ods, the GP population is trained on a list of bootstrap samples. The vari-
ance error is estimated according to the error on the bootstrap sample and
individuals with a lower variance error are selected.

Fitzgerald et al. [77] claimed that introducing bootstrap into GP has the
effect on improving both generalisation and learning performance, as well
as producing more impact solutions. However, the effect of the estimation
by bootstrap might decrease when the number of instances is relatively
small due to the overlap of training instances and bootstrap instances.

Kowaliw et al. [123] investigated the bias-variance decomposition in
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linear GP and analysed factors that are important in obtaining this trade-
off, e.g. program size, the initialization of the population and the function
set. In their work, the bias and variance error of GP were approximated
by the averaged response of 50 independent GP runs. They found that the
variance of GP is largely due to the random seeds and the three examined
factors are all related to the trade-off. A reasonable adjustment of each
of these values led to significant improvements in obtaining the trade-off.
Moreover, the change of the function set has the largest gain on the trade-
off and the larger function set was consistently preferred. They found that
increase the size of the function set does not necessary increase the vari-
ance error. This is against the finding in [78], i.e. a simple function set is

more likely to evolve solutions with a smaller variance error.

Restricting Model Complexity in GP: In the past, many researchers in
the GP community considered smaller solutions to be simple and able to
generalise better. Rosca et al. [190] investigated generality versus size
in GP. They concluded that smaller programs tended to generalise bet-
ter but that methods which can control the effective size are more likely
to be beneficial in promoting generalisation than approaches which ap-
ply a general size penalty. The results indicated that small, generalisable
solutions might be difficult to find when a simple size penalty was ap-
plied. More recently, researchers found that, instead of shorter solutions,
behaviourally /functionally simpler solutions are more likely to generalise
better [78, 217, 224, 233]. The idea of quantitatively studying the relation-
ship between generalisation ability and model complexity have been ap-
proached by several works.

Vladislavleva et al. [233] proposed two measures of model complex-
ity: one is genotype and the other one is phenotype. While the genotype
one measures the complexity of models by counting the number of nodes
of a GP tree, the phenotype one which is named order of nonlinearity mea-
sures the functional complexity of models by calculating the degree of the
Chebyshev polynomial approximation of it. In that work, these two kinds
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of complexity measures were used as independent objectives separately
in two multi-objective GP approaches. The results showed that the two
methods can control bloat and overfitting simultaneously. The drawback
of the order of nonlinearity lies in the difficulty of calculating the degree
of the Chebyshev polynomial approximation of models.

Vanneschi et al. [224] proposed a measure of functional complexity of
solution inspired by the concept of curvature [39]. They simplified the cal-
culation of the curvature and gave a definition to measure the complexity
of a partial feature and the complexity of a model is the average of all the

partial complexities on all the dimensions of the feature space.

Castelli et al.[42] improved the measure of curvature by proposing an-
other complexity measure, called graph based complexity (GBC) measure,
where the curvature of solution can be measured by counting a number
V, which refers to the number of pairs of close training data point X; and
X; for which the corresponding output value of the model y; and y; are
very different. More specifically, given the distance metric for calculating
the distance between two instances X; and X, and a predefined constant
value §, when this distance is within the ball of radius ¢ centred on a given
instance X;, the two instances are considered to be close. Otherwise, they
are far away from each other. The same measure is used to determine
whether their corresponding outputs are far or close. Then the complex-
ity of a model is express by the ratio of V' over the total number of close
instances without considering the outputs. They measured the GBC of
the best-of-generation models and showed that GBC has a positive cor-
relation with the generalisation performance. They have also shown that
incorporating the number V' into the fitness function is able to improve the
generalisation of GP in some cases.

Fitzgerald et al. [78] investigated the effect of operator complexity to-
gether with a control on solution size on the generalisation ability of GP.
In their study, GP employed a combination of various function sets with

different levels of complexity and various limitations on the depth. They
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found that a simple function set was more likely to evolve solutions with a
similar training and generalisation performance while a complex function
set was prone to guide the evolutionary process to overfitting. Another
important finding is that solutions which generalise well may tend to be
small and simple but the evolution of these solutions may be more suc-
cessful in an environment which facilitates medium to large programs.
There are a number of model complexity measures. However, not
many of them are shown to related to the generalisation of GP and the
mathematical foundation of these methods is not solid enough. A more
comprehensive investigation on the relationship between model complex-
ity and overfitting or the underlying relationship between model complex-

ity and generalisation error needs to be investigated.

2.7.3 Structural Risk Minimisation on Enhancing General-
isation

Cherkassky et al. [57] investigated the effect of SRM on controlling the
model complexity of linear models. In their work, a comparison between
SRM and various model selection methods such as final prediction error
[8], Bayesian Information Criterion [23], Shibatas model selector [204] and
generalized cross-validation [63], was conducted. It showed the superior-
ity of SRM on selecting models with a better generalisation performance
and smaller complexity. However, their finding was limited to linear re-

gression models.

Implementation of the SRM Principle in Learning Algorithms

Two kinds of approaches have been found to implement SRM directly into
learning algorithms.

The first approach is to keep the empirical error fixed and minimise the
confidence interval. The design of support vector machines (SVMs) [232]
follows this rule. Grounding on the VC theory, SVMs have been proposed



2.7. RELATED WORK 49

and developed over decades [29, 232]. The original SVMs were extended
to support vector regression (SVR) for regression tasks [232]. SVR maps
data into a high-dimensional input space through some nonlinear map-
ping, and its kernel functions and parameters are selected to minimise the
VC generalisation bound. Via regularisation operators, the kernel function
in SVR is associated with a flatness property. Among a set of functions
which approximate the target outputs within a given precision, the flattest
functions are chosen.

The second important approach to implementing SRM aims to keep
the confidence interval fixed and try to minimise the empirical error. This
strategy is widely used in neural networks [87,202]. For a given number of
training examples, the confidence interval of the networks is determined
by the VC-dimension h of the functions for the neurons. The training pro-
cess is to find the weights to minimise the empirical error. Thus, in neural
networks, selecting an appropriate structure for the neurons is an impor-
tant task, since it will lead to a good trade-off between underfitting and
overfitting. A lot of research has been conducted to estimate a more accu-
rate VC bound for neural networks [131, 163, 198].

Implementing SRM in GP

Amil et al. [13] presented a theoretical analysis of GP from the perspective
of statistical learning theory and highlighted the advantage of a parsimo-
nious fitness using VC-theory. However, the practical implementation of
SRM into GP is a challenging task, and only a few works can be found in
the literature. When implementing SRM into GP, the decision of a trade-
off between an approximate complexity of the model (i.e. VC-dimension)
and the minimal empirical error should be automatically made during the
evolutionary process, since it is impossible to have a fixed confidence in-
terval for the evolved models.

[28] and [154] are the only work that can be found before our initial
work [51]. In their work, SRM was introduced as a new fitness function
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to GP for symbolic regression. The VC-dimension of the evolved mod-
els was measured by a simplified estimator, which counted the number
of non-scalar nodes (i.e. nodes that are not being operated by the func-
tions {+,-}) in a GP tree. They compared GP equipped with SRM with GP
methods incorporated with two classical statistical model selection strate-
gies, Akaike Information Criterion [8] and Bayesian Information Criterion
[23]. The comparison demonstrated the advantage of SRM in enhancing
the generalisation performance of GP. However, the relationship between
the number of non-scalar nodes and the VC-dimension of the model needs
further investigation.

In summary, the conceptual contributions and practical significance of
VC-dimension and SRM are not yet fully appreciated. Furthermore, com-
pared with a rough approximation, measuring the VC-dimension of the
evolved models through a well-designed experimental' method is more re-
liable and desired.

2.7.4 Feature Selection Approaches
Categories of Feature Selection Approaches

The search strategy and the evaluation criterion are two core factors in
designing a feature selection approach. Feature subsets are produced ac-
cording to the search strategy, while the produced subsets are evaluated
and compared under the evaluation criterion.

Based on evaluation criteria, feature selection approaches are generally
classified into three categories: filter methods, wrapper methods and em-
bedded methods [106, 242]. Filter methods [179, 243] select a subset of
features based on kinds of criteria such as mutual information. Wrapper
methods [6, 103, 120] use a learning algorithm as a black-box and select
subsets of features based on the performance of the learning algorithm.

'The word “experimental” was used to emphasise that the method is not a theoretical
estimation.
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Embedded methods [104, 169, 241] incorporate the feature selection pro-
cess within the learning process. Not many techniques can perform em-
bedded feature selection. Decision tree [187] is one of these typical tech-
niques, and among current EC technique, only GP and learning classifier
systems (LCSs) have this ability [158, 160]. Some work treats embedded
methods as a kind of wrapper methods. The main difference among these
methods is that wrapper and embedded methods include a learning al-
gorithm in the feature subset evaluation step. Filter methods usually are
independent of any learning algorithm, thus they are more general and
less computationally expensive. However, the performance of the selected
features on a learning algorithm, which is ignored by filter methods, often
can bring notable benefits to wrapper methods and make them perform
much better than filter methods.

We group feature selection methods into non-EC techniques and EC
techniques, which cover a wide range of ideas. It is impossible to cover all
of these varying approaches. In the following two sub-sections, the ma-
chine learning approaches for feature selection, which are closely related
to this thesis, are highlighted.

Non-EC Techniques for Feature Selection

A kind of feature selection method in this category is inspired from de-
cision tree inducing algorithms such as ID3 [185], C4.5 [187], C5.0 [186],
classification and regression trees (CART) [32]. Decision trees are hierar-
chical structures where each internal node n implements a decision func-
tion fn(x), and each leaf corresponds to a region for regression (a class
for classification). Feature selection approaches based on these decision
trees are straightforward. They aim to obtain a feature ranking accord-
ing to the feature/variable importance score. In these decision trees, the
variable importance is computed in two ways. The first one is calculating
the percentage of training examples falling into all the terminal nodes af-
ter the split of the variable. However, it is biased to features in the early
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split nodes. The other one tries to avoid this bias by taking the percentage
of splits that a variable is used into consideration as well when assigning
importance score.

Sugumaran et al. [212] investigated the use of decision trees (con-
structed by C4.5) to identify the important features for SVM for classifi-
cation. It was shown that the decision tree is able to identify important
features, i.e. the values of these features with minimum variation within a
class and maximum variation between classes, and SVM can perform well
when fed with the selected features.

Cho et al. [58] presented the feature selection ability of decision trees
using two kinds of tree models: C4.5 and CART. In their work, the fea-
ture selection ability of these two kinds of decision trees was compared
with principle component analysis (PCA) [236] and variable selection pro-
posed in [33] on improving the classification accuracy of the multilayer
perceptron (MLP) and the fuzzy ARTMAP networks[238]. The decision
tree has a superior feature selection ability since the best classification ac-
curacy in both classification methods was achieved based on the features
selected by CART.

Regarding some slightly more complex techniques, ensembles of deci-
sion trees play an important role in feature selection. The random forest
(RF) method [31] is an ensemble learning algorithm which constructs a
forest of decision trees and provides solutions for classification and re-
gression tasks. Further, RF also provides two different feature importance
measures, which can be utilised for feature selection. One measure is
gini importance, which is derived from the training of decision trees in the
forests, and the other one — permutation importance, which is motivated by

the concept of permutation in statistics.

When constructing the decision trees, RF performs an implicit feature
selection and use a subset of features to build the trees, which leads to
superior performance on high-dimensional data. The outcome of the im-

plicit feature selection is named Gini importance in RFE. The value of Gini
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importance provides a ranking of features. In RF, at each node in a deci-
sion tree, the best split is obtained from a set of randomly selected features
according to their Gini impurity. Adding up the Gini decreases for each
feature over all trees in the forest gives the Gini importance.

The permutation importance is related to another randomness in RF,
which is in the examples/instances. Each tree in the forest is constructed
using a different bootstrap sample from the original whole set of exam-
ples. Usually, about one third of the examples are left out of the bootstrap
and not used for constructing the tree. These examples are called out-of-
bag (OOB) examples. The concept of permutation importance of the fea-
tures is measured over the out-of-bag (OOB) examples. For each variable
in the decision tree, the values of the variable in the OOB examples are
permuted (randomly rearranged within the OOB examples). Then each
permuted example is passed down the tree. The total increase of the re-
gression error is defined to be the variable importance. The bigger value
means the variable is more important.

Many previous studies on feature selection using Gini importance [101,
151] and permutation importance [159, 203] have shown better learning

and prediction performance.

EC Techniques for Feature Selection

EC techniques have been used for feature selection in recent years. Such
methods including genetic algorithms (GAs), particle swarm optimisa-
tion (PSO) and GP. EC techniques do not require domain knowledge and
make no assumption of the search space. Moreover, EC techniques are
population-based, which generally produce multiple solutions in one run.
All these characteristics make EC techniques more attractive than tradi-
tional methods for feature selection in many cases.

GAs are the very first EC technique that has been applied to feature se-
lection [242]. One of the very early work was published in 1989 [205]. The

representation of a binary string in GA is a natural way to represent the
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selection of features, where 1 means the corresponding feature is selected
and 0 refers to not being selected. A number of enhancements have been
proposed to GA to improve its feature selection ability [93, 136, 244].

PSO [119] has also shown to be a promising technique for feature se-
lection. There has been rapid development on PSO for feature selection.
Similar to GAs, PSO has an advantage for feature selection, i.e. a straight-
forward representation. In PSO, a bit string is typically used for the repre-
sentation of a particle. For binary PSO, the bit string uses binary numbers,
where 1 means the feature is selected and 0 means not. In continuous PSO,
the bit string uses real-values. The selection of a feature is determined by
a threshold. Compared with other EC-techniques, PSO has a velocity term
that facilitates a faster convergence, and spend less computational cost.
All these advantages make it a preferable technique for feature selection.
However, PSO is not free from challenges. A number of new PSO meth-

ods have been proposed to enhance its performance on feature selection
[59, 239, 164, 216].

However, GAs and PSO has a common limitation, i.e. it is difficult for
the representation of GAs and PSO to scale well on problems with thou-
sands or more features due to a huge search space. GP has a potential to
handle large-scale feature selection since the representation does not have
to include the selection information of all features. Moreover, many real-
world problems contain a large number of features but a small number of
instances (e.g. gene selection). Feature selection on such data is a chal-
lenge not only in machine learning but also in traditional domains such as
statistics. GP might solve this challenge since it is able to handle data with

a relatively small number of instances [9].

As the features appearing in the evolved individual can be treated as
a set of selected features, GP is considered to have the built-in feature se-
lection ability. The built-in ability of GP in detecting important features
by exploring the feature space has made it a valuable method for feature
selection. A number of different GP-based feature selection methods have
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been proposed in the literature [161, 196, 7, 109]. However, compared with
GAs and PSO, there is a much smaller number of works on GP for feature

selection.

Neshatian et al. [161] developed a Pareto GP for feature selection in
classification tasks. They designed a function to measure the relevance of
subsets of features. A Pareto front archive was maintained, which consists
of non-dominated subsets of features having a low cardinality (i.e. the
number of features the subset contains) and high relevance. They also
adopted methods to avoid bloat and overfitting to allow GP to explore
large subsets of features. The experimental results showed that the feature
selection method can improve the classification accuracy while decreasing
the complexity of the evolved classifiers. However, the proposed method
might have some limitations when the cardinality of desired best subset
of features is high.

Muni et al. [196] proposed a GP-based feature selection method to ad-
dress the skewed /unbalanced high-dimensional classification tasks, which
combined multiple most commonly used feature selection metrics. The
results indicate that the method can bring dimension reduction as well as

increase the classification accuracy.

Moore et al. [155] introduced a nonlinear gene-gene (feature-feature)
interactions measure based on information entropy into their Pareto GP
system for genetic analysis of diseases. The many-objective GP system
uses three objectives (classification accuracy, model size and the interac-
tion measure) to guide the search towards models including features that
are risk factors for the disease. The GP system is claimed to be able to find
accurate models despite the size and complexity of the feature space.

Nag et al. [160] proposed a many-objective GP method for simultane-
ous designing of classifiers and feature selection. Their new GP method
minimised three objectives, which are false positives, false negatives, and
the number of terminal nodes in the GP trees. In this many-objective GP

method, several filter based feature selection approaches are used in dif-
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ferent stages of the evolutionary process. They defined a concept of fitness
and unfitness of features, which is based on an index to measure the dis-
crimination ability of each feature. This index is according to the Pearson’s
correlation between the values of the feature and their ideal values (i.e. a
vector with values of the labels). Then during mutation, roulette wheel
selection was performed on the unfitness to remove a feature, and on the
fitness to insert a feature. In addition, during the process of obtaining the
fitness and unfitness of the features, several thresholds are set to filter the
features with a low discrimination ability. Compared with a bi-objective
GP method which does not use any feature selection method and tradi-
tional classification algorithms (e.g. Naive Bayes, C4.5, lazy learning algo-
rithms) with various feature selection methods, their method has a much

better classification accuracy on a majority of the examined datasets.

Mei et al. [150] proposed a niching-GP feature selection framework
for designing job-shop scheduling rules. In this framework, the niching
techniques, more specifically — the clearing method [181], is employed
to adjust the fitness of GP solutions. This aims to reduce poor solutions
in density areas and promotes population convergence to different local
optima. At the end of the evolutionary process, the best solutions in each
niche are collected. These best solutions are treated as the source of im-
portant features. A quantitative measure of the relevance of a feature is
obtained according to its specific contribution to one specific best solu-
tion and the fitness of this solution. Features are selected according to
this value. A comparison between the test performance of the dispatching
rules evolved by GP using the selected features, the entire set of features,
and the best-so-far features found in previous research on the examined
data has been conducted. The effectiveness of their proposed feature se-
lection method has been confirmed.

We recently proposed a method namely genetic programming with fea-
ture selection (GPWES) in [50]. GPWES is a two-stage feature selection

method for high-dimensional symbolic regression. It splits the evolution-
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ary process of GP into two phases by a parameter G;. The major task of
the first phase is feature selection. On each generation of this phase, all the
distinct features appearing in the top 3 percent individuals are collected,
since these features are considered to be candidates for important features.
At the end of the first phase, a set of potentially important features F. is
formed. The second phase is the standard evolutionary process on a pop-
ulation of reinitialised individuals. On the first generation of the second
phase, GPWES reinitialises the population by keeping the top /3 percent in-
dividuals while replacing the rest. The replacement will take the form of
an equal number of randomly generated individuals using a new terminal
set formed by the set of selected features F.. The effectiveness of GPWFS
on enhancing the generalisation of GP was investigated and confirmed in
[50]. However, GPWES needs to tune two key parameters GGy and 3, which
are problem dependent and sensitive to the parameter settings of GP, such
as the population size and the total number of generations. Moreover,
GPWES treats all the features appearing on the best models the same re-
gardless of their position. This might limits the accuracy of the feature
selection process. More details can be seen in [50].

In summary, much work has been devoted to GP-based feature selec-
tion to improve the classification performance. However, for regression
tasks, especially for high-dimensional regression, more attention is de-
served. There is no existing work in this field (before this thesis) and fea-
ture selection is desired to improve the regression performance and gen-

eralisation of GP when the dimensionality is high.

2.7.5 Geometric Semantic GP Methods
Semantic GP Methods

SGP methods generally use semantic information to design or guide ge-
netic operators in GP, however there are various ways to utilise semantics
in GP.
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Nguyen et al. [165], which is a very early work in SGP for symbolic
regression, developed a new crossover operator with semantic-awareness,
which is called semantics aware crossover (SAC). SAC was based on check-
ing for semantic equivalence of subtrees and attempted to increase the se-
mantic diversity. To determine the semantic equivalence of two subtrees,
they are evaluated on a random set of instances sampled from the domain.
If the output of the two subtrees on this set of sampled instances are close
enough (subject to a parameter — semantic sensitivity), then they are con-
sidered to be semantically equivalent and allowed to swap. Although the
idea of SAC is novel, when compared with standard crossover, it has lim-
ited improvement on some test problems.

Later, Nguyen et al. [220] proposed another semantic crossover oper-
ator named semantic similarity based crossover (5SC) based on SAC. Dif-
ferent from SAC that checks the semantic equivalence, this new seman-
tic crossover selected subtrees for crossover by checking semantic simi-
larity and aimed to improve semantic locality. Compared with standard
crossover and SAC, SSC has been shown to be superior on both the train-
ing and test performance. The idea of SSC was then extended to mutation
and led to a semantic similarity based mutation (SSM) [166, 219], which
has much better performance than standard mutation. Further analysis
showed that the fitness landscapes induced by SSM on two well-studied
measures were significantly smoother than those of standard mutation on

a number of symbolic regression tasks.

Implementation Algorithms of GSGP

The implementation of geometric operators can be grouped into two cat-
egories, i.e the exact geometric operators [156] and the approximated ge-
ometric operators [126, 128, 178]. These geometric operators have their
own advantages and drawbacks.

The exact geometric operators, which rely on the convex combination

of the genotype of the parent(s) to manipulate the semantics of the pro-
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grams directly, guarantee the geometry of the offspring in the semantic
space. An implementation method of the geometric crossover and muta-
tion was proposed in [156] to guarantee the geometry in semantic spaces.
This implementation is a convex or linear combination of the parent(s) and
one or two random programs, which results in obtaining the desired se-
mantics exactly for the new generations. The exact geometric operators
make GP have the ability to search directly in the semantic space instead
of only using semantics as a guide for the evolutionary search. However,
the exact geometric operators have a critical drawback of producing off-
spring with unmanageable size, i.e the exact geometric semantic crossover
leads to a exponential growth in the size of offspring, while the geometric
mutation causes a linear growth. The over-grown offsprings are expen-
sive to execute in both memory and time. This unavoidably leads to a low
interpretability of the evolved models and an unaffordable computational
cost, which is an obstacle to the application of GSGP to data having a large

number of instances.

An improved implementation of the exact GSGP has been presented
[223], which does not generate the offspring explicitly. It stores the refer-
ence to the information needed to construct GP individuals, i.e. the initial
population and a set of random trees. At the end of the evolutionary pro-
cess, the best-of-the-run individual can be generated from the reference.
This implementation makes GSGP better applicable to real-world prob-
lems. However, the final evolved models are still over-complex and hard

to interpret.

Designing search operators that work in the genotype space and be-
have geometrically in the corresponding semantic space is not trivial. There-
fore, rather than guaranteeing the geometric behaviour, approximating it
seems to be more sensible. Based on this assumption, various approxi-
mated geometric operators have been developed. The approximated geo-
metric operators are working in the genotype space and approximating be-

haviours geometrically in the corresponding semantic space. The approx-
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imating geometric operators such as locally geometric semantic crossover
(LGX) [128], approximately geometric semantic crossover (AGX) [127] and
Random Desired Operator (RDO)(mutation) [178] do not lead to over-
grown offspring, since they generally rely on various mechanisms to ap-

proximately satisfy the semantic requirements.

Krawiec et al. [128] proposed LGX that approximates the geometric re-
combination of parents at the level of homologously chosen subprograms.
More specifically, given two parents pl and p2, LGX calculates a syntactic
common region of them, which is performed by simultaneously descend-
ing both parent trees from their roots until reaching nodes of different ar-
ities. Then, LGX uniformly selects two homologous nodes n; and n, in
the common region of the two parents. A desired semantics of the subpro-
grams that approximate the geometry of child programs is calculated by
the mid-point in the segment of the two subprograms. Finally, a library of
programs is searched for a new subprogram that minimises the semantic
distance to the desired semantics. The child programs are generated by
replacing the old subprograms that are rooted at the selected homologous

nodes with the new subprograms.

Krawiec et al. [127] proposed an approximate geometric crossover
(AGX). In AGX, the desired semantics of the offspring is defined to be
the midpoint on the segment of the two parents. Semantic backpropaga-
tion (SB) is proposed to obtain the desired semantics. The rationale behind
SB is that achieving a set of (simple) subtargets (which form the original
target) should be easier and more efficient than accomplishing the whole
target. Specifically, SB randomly selects a node (i.e. the crossover point in
AGX) in a parent tree, which divides the tree into a suffix and prefix. The
suffix is the subtree that contains the root node, while the prefix is sub-
tree rooted at the selected node. Accordingly, the desired semantics for
the whole tree is also split into two parts, which are the semantics of the
suffix and the desired semantics of the prefix, i.e. a subtarget semantics.

To generate a child tree with the desired semantics, SB keeps the suffix
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while replacing the prefix with a new subtree with the subtarget seman-
tics. The key components in SB are obtaining the subtarget semantics of
the new subtree and finding this new subtree. To calculate the subtarget
semantics, the algorithm needs to backpropagate through a chain of nodes
from the root to the selected node. A semantic library is formed by collect-
ing subtrees with distinct semantics from the population of GP trees. This
library is updated every several generations. Based on certain distance
metrics, SB then searches and selects new subtrees with the (approximate)
subtarget semantics from this semantic library.

Later, Pawlak et al. [178] further developed SB and proposed a geo-
metric mutation operator named Random Desired Operator (RDO). When
operating on programs, RDO aims to explicitly use the target semantics,
which is assumed to be the most useful information in a training set. The
target semantics is considered as the unique desired semantics of the new
generation. The programs evolved by AGX and RDO are much smaller
than those produced by the exact geometric operators. However, these
programs are still too large to be interpreted and the unique desire se-
mantics in RDO has a potential drawback of leading to a low semantic
diversity and a greedy nature in fitting the target semantics, which limit
its potential on improving the generalisation of GP.

Nguyen et al.[168] proposed a subtree semantic geometric crossover
(85GC), which relies on subtree semantic similarity to approximate the ge-
ometric property. In their method, given two parents and a random gen-
erated number r, if  is smaller than a predefined threshold, then SSGC
performs. Otherwise, standard crossover executes. When performing
SSGC, the selection of crossover point is according to the metric of se-
lecting the subprogram having the most similar semantics with that of the
parent program. The number of candidate subprograms is determined by
a predefined parameter. Two child programs are then generated by a con-
vex combination of the subprograms. They compared the new geometric

crossover with the exact geometric crossover, AGX and RDO on a set of
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symbolic regression tasks and the superiority of SSGC over the exact ge-
ometric crossover on both the training and test performance has been re-
ported. Furthermore, this superior performance was achieved with much
less computational time compared to AGX and RDO. The major limitation
of SSGX lies in tuning the two key parameters determining the number of
candidate subprograms and the rate to perform SSGX. The performance
of SSGX highly depends on these two parameters.

Semantic-awareness in Other Fundamental Components of GP

Recently, researchers began to explore the effect of introducing semantic-
awareness in different fundamental parts of the evolutionary process to
enhance the performance of GP. These methods mainly cover the popula-
tion initialisation [21, 176] and the selection process [89].

Beadle et al. [21] proposed a semantic driven initialisation (SDI) method
to generate a population of individuals with a high diversity and to pro-
duce effective starting programs. The results have shown that, compared
with traditional initialisation methods, SDI is more effective.

Pawlak et al. [176] developed a new geometric semantic initialisa-
tion method, which generates a population of individuals to make sure
the convex hull spanning these individuals covers the target semantics.
Their experiments showed that compared with Ramped Half-and-Half,
their new initialisation method is more likely to guarantee the success of
GSGP in fitting the target semantics.

Galvan-Lopez et al. [89] introduced a two-mate selection operator called
semantic tournament selection (STS). Given a first parent selected by stan-
dard tournament selection, STS samples the population ¢ times and selects
the best of the ¢ sampled individuals that have different semantics from
that of the first parent. If none of the sampled individuals has different
semantics, a random one is returned. The main advantage of STS is to
discourage semantic duplicates, and hence to maintain a high semantic
diversity. The performance of GP employed STS is statistically better than
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that of standard GP.

However, Szubert et al. [213] assumed that in some cases maintaining
a high diversity in semantics is conflict with the target of approximating
the target semantic, since methods promoting behavioural diversity tend
to increase distance between behaviours while the fitness function typi-
cally rewards minimising distance to the target behaviour. Consequently,
promoting diversity can result in spreading individuals over the seman-
tic space and slowing down the convergence of the search process. They
defined two metrics to measure the semantic diversity of the population,
which are an Euclidean semantic metric and an angular semantic metric.
The first one measures the novelty of a program as a mean Euclidean dis-
tance between its semantics and semantics of its k£ nearest neighbours in
the semantic space, while the later measures the novelty of a program
by a mean angle between its residual vector and residual vectors of its
k (k = 15) nearest neighbours. Multiobjective GSGP methods, which have
one objective of minimising the Euclidean distance from the target seman-
tics and the other objective of maximising the semantic diversity, have
been examined. They claimed that maximising Euclidean diversity scat-
ters the semantics of the population away from the target semantics, hence
leads to a worse learning and generalisation performance. But the angu-
lar semantic metric does not conflict with the fitness and can improve the
performance of GP on both the learning and generalisation performance.
However, these two metrics are only tested on locally geometric crossover,

but no other geometric operator has been involved.

Generalisation in GSGP

Not much work has been devoted to investigate the generalisation of GSGP.
However, in this small number of studies, introducing semantic-awareness
into GP methods has been shown to have a positive effect on promoting
its generalisation [98, 49, 52, 218].

Uy et al. [218, 220] proposed new semantic-aware crossover operators,
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which imposed different kinds of requirement on the semantic distance
between subtrees rooted on the crossover points in the two parents. Only
subtrees that have similar (but not equivalent) semantics are allowed to
swap. These semantic-aware crossover operators maintained high locality
thus yielding a better generalisation of GP.

Gongalves et al. [98] compared the generalisation ability of GSGP meth-
ods using different settings, i.e. GSGP methods employing sole geometric
crossover, geometric mutation, and bounded geometric mutation [223].
They claimed that geometric crossover contributed little to improve the
generalisation ability, while geometric mutation had a good effect on pro-
moting the generalisation. They also claimed the benefit of GSGP to the
generalisation ability is brought by the bounded geometric mutation, which
produced a small variation to the offspring.

In summary, different from traditional methods that improve the gen-
eralisation of GP by evolving structurally simpler programs, GSGP meth-
ods can potentially enhance the generalisation of GP by controlling the
semantics of the programs during the evolutionary process. In GSGP, the
semantic-awareness can potentially drive GP search in a smoother fitness
space and the geometry of the semantic space makes GP search more ef-
fectively, both of which are important for a better generalisation gain in
GP.

2.8 Summary

This chapter reviewed the main concepts and learning tasks in machine
learning including generalisation. Symbolic regression, which is the fo-
cus of this thesis, was introduced by comparing with classical regression.
Then a brief introduction of evolutionary computation was presented. A
detailed description of all the components of GP was presented. We also
discussed the strength and challenges in GP for symbolic regression in de-
tail.
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To highlight the related work, this chapter also discussed some recently
proposed GP approaches for symbolic regression. Although generalisa-
tion has been recognised as an open issue in GP just for several years [173],
an increasing number of works have been done to enhance generalisation
of GP solutions. In this chapter we also discussed the mainstream of these
methods. The limitation of the existing works that form the motivation
of this thesis were also discussed. Summaries of these limitations are as

follows:

e Feature selection is desired for high-dimensional data in order to re-
duce the impact of the curse of dimensionality and the risk of over-
fitting. However, most of the research is for classification. There is
not much research on feature selection to improve the performance
of GP for symbolic regression.

e The relationship between overfitting and solution complexity de-
serves further research. Reducing the complexity of GP solutions
is a widely used method to control overfitting, but the measures of
model complexity are lack of solid theoretical foundation. Mean-
while estimating the generalisation error is seldom considered to be

an approach to controlling overfitting in GP.

e Methods to enhance the ability of GP on generalisation focus mainly
on counteract overfitting. In some cases, where there is no overfit-
ting, these methods might loose their advantages on improving the
generalisation of GP. This issue has rarely been considered yet.

The following chapters of this thesis will show how we can employ GP

to tackle these issues.
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Chapter 3

GP with Feature Selection for

Symbolic Regression

3.1 Introduction

Feature selection in symbolic regression (SR) is a process of identifying a
subset of relevant features (input variables) that are necessary to describe
the output variable(s). When learning from high-dimensional data, fea-
ture selection is desired. Much work has been devoted to feature selection
[158, 160, 161]. However, most of the existing work is for classification
tasks. GP for symbolic regression (GPSR) seldom considers feature se-
lection, and it is even rare when GP tackles high-dimensional symbolic
regression tasks. The underlying reason is that GP has a kind of built-in
feature selection ability when exploring the feature space to create sym-
bolic regression models. However, the built-in feature selection ability of
GP is typically not strong enough for high-dimensional regression tasks.
Moreover, when learning an unknown model for SR in a high-dimensional
feature space, GP runs a high risk of overfitting, which leads to a poor gen-
eralisation capability. Feature selection, as a data preprocessing method,
can remove noise and irrelevant features. It has the potential to reduce the

risk of overfitting, thus promotes the generalisation ability of GP. How-
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ever, not much work on feature selection to improve the generalisation of
GP has been proposed for high-dimensional regression to date. This chap-
ter aims to fill this gap by utilising the built-in feature selection ability of
GP in a better way.

3.1.1 Chapter Goals

The goal of this chapter is to propose a new feature selection method to im-
prove the generalisation ability of GPSR, particularly when learning from
high-dimensional data. More specifically, this chapter indicates four re-

search objectives as follows:

e whether and how feature selection can influence the learning ability
of GP regarding the training performance,

e whether and how feature selection can enhance the generalisation

ability of GP for high-dimensional regression tasks,

e whether the new feature selection method can select the truly rele-

vant features for high-dimensional symbolic regression, and

e whether the new method can outperform GPSR methods with com-

mon feature selection schemes.

3.1.2 Chapter Organisation

The reminder of the chapter is organised as follows. The second section
describes the new feature selection method. The third section describes the
experiment settings. The results and analysis are presented in the fourth

section. It is followed by the final section, which summarises this chapter.
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3.2 The Proposed Method

This chapter proposes a new feature selection method, which is named
genetic programming with permutation importance (GPPI). It is based on GP-
WES, which is our previously proposed method in [50], but it is superior
to GPWFS in several aspects.

GPWES [50] is a two-stage GP method for high-dimensional symbolic
regression, which is equipped with an embedded feature selection ap-
proach. It splits the evolutionary process of GP into two phases according
to the number of generations. The major task of the first phase (i.e. the
first G generations of the evolutionary process) is feature selection. On
each generation of this phase, all the distinct features appearing in the top
B percent individuals are collected, since these features are considered to
be candidates of important features. At the end of the first phase, a set of
potentially important features F. is formed. The second phase (i.e. from
the (G; + 1) generation) is the standard evolutionary process on a pop-
ulation of reinitialised individuals. On the first generation of the second
phase, GPWFS reinitialises the population by keeping the top 3 percent of
individuals while replacing the rest. The replacement takes the form of an
equal number of randomly generated individuals using a new terminal set
formed by the set of selected features. The effectiveness of GPWFS on en-
hancing the generalisation of GP was investigated and confirmed in [50].
However, GPWFS needs to tune two key parameters Gy and 3, which are
problem dependent and sensitive to the parameter settings of GP, such as
the population size and the total number of generations. More details can
be seen in Appendix A.

We intend to overcome these potential limitations of GPWFS and fur-
ther develop a feature selection method for GP of high-dimensional SR.
The new feature selection method — GPPI and GPWFS share the same as-
sumption that GP can explore the search space to detect important features
automatically. We assume that features which appear in highly fit GP indi-
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Figure 3.1: Data Flow Diagram for GP-GPPL

s

viduals are more likely to be relevant to the output feature/variable, even
though not all these features are relevant. Thus, they possibly form a can-
didate set of important features for feature selection. However, GPPI has
a significantly different way to determine the importance of the features
from GPWEFS. Moreover, while GPWES is a GP method for regression with
an embedded feature selection phase, GPPI is a feature selection method
for preprocessing the data for GPSR.

3.2.1 The Overall Structure

Figure 3.1 shows the data flow diagram for the new GPSR system named
GP-GPPI, which introduces a feature selection component GPPI. The train-
ing process in GP-GPPI consists of two sequential phases. Firstly, GPPI is
applied to the training data to select a subset of important features. Then
standard GP evolves regression models on the selected training data with
only the selected features. The key component of the new GPSR system
is GPPI. GPPI improves GPWES in two aspects. The first is the defini-
tion of the good individuals, which are the source of important features.
GPWES treats certain top individuals with the highest fitness values from
generations in one GP run as the good individuals. Instead, GPPI collects
the best-of-run individuals from a number of GP runs. Compared with
their counterpart in GPWFS, the good individuals in GPPI are sufficiently

evolved and contain important features by utilising the natural feature
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selection ability of GP. The second aspect lies in the determination of im-
portant features. GPWFS collects all the distinct features presented in the
good individuals as the relatively important features. GPPI computes a
quantitative importance value for each distinct feature. Feature selection
are based on the metric of importance values. The details of GPPI will be
presented in Section 3.2.3 and 3.2.4.

3.2.2 Fitness Function

In this work, the fitness function in both the feature selection process and
the GP for SR training process is Normalised Root Mean Square Error (NRMSE),
which evaluates the performance of individuals for feature selection and
regression. The definition of NRM SE is given in Equation (3.1).

RMSE
NRMSE = ——— 3.1
Ymam - Ymin ( )

where the term (Y,,,0. — Yinin) is the range of the target variable and RM SE
is the root mean square error. The definition of RM SE is shown in Equa-
tion (3.2).

1 N
RMSE = J N;um) ~Y;)2 (32)

where N is the number of instances, f(X;) is the output of the model and
Y, is the target output.

3.2.3 Permutation Feature Importance

As mentioned above, not all the features appearing in the highly fit indi-
viduals are important. Thus, the crucial component of the feature selection
method is a quantitative measure of feature importance, which can tell the
difference between the appearing features. Feature importance can be de-
fined as the correlation between the feature and the output variable, or the
extent to which the feature can contribute to reducing the error between
the outputs of the model and the target values.
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Permutation feature/variable importance in random forests (RF) is a
widely used score to measure the importance of features [48]. Permuting
a feature refers to rearranging the values of the feature within the dataset
randomly. For example, if the values of a feature are denoted as {4,7,9}, the
permutation of the feature can take a random form among {4,9,7}, {7,4,9},
{794}, {9,744}, {9,4,7}. The rationale behind permutation importance is
that important features should have a higher influence on the performance
of models, i.e. for regression problems, permuting a more important fea-
ture will lead to a higher regression error. Based on this hypothesis, we
measure the feature importance in GP for SR based on permutation. Note
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that Dick et al. [68] presented the very first work for introducing the idea
of permutation into GP. [68] aims to examine the data quality of a spe-
cific dataset. This involves using the permutation method to measure the
usefulness/importances of features. Different from [68], GPPI is a feature
selection method based on the importance of features, which is obtained by
permutation method.

Figure 3.2 presents the main process of GPPI. While the left part of the
figure shows the process of calculating permutation feature importance in
one GP run, the right part describes the process to obtain the permutation
importance of one feature. The whole process is defined as:

1. Randomly split the training data into a sub-training set and a sub-

test set.

2. Carry out a GP search on the sub-training set and get the best-of-run
model [;.

3. Compute the generalisation error of [, on the sub-test set, which is
referred to Erreg(1p).

4. Collect the distinct features in [, which form the candidate feature
set X = {X;, Xpn, ..., Xy }.

5. Generate a permuted sub-test set for each X, in X by permuting its
values within the sub-test set.

6. Calculate the test error of I, on the permuted sub-test set, i.e. Errym:(1y).

7. Measure the raw feature importance of X; by the distance between
Errorg(Iy) and Errym (1), i.e.

Flrqw(X;) = Errpme(Ip) — Errorg(Iy) (3.3)

Steps 5, 6 and 7 need to be performed for each distinct feature in the

best-of-run individual I;. It is important to note that the importance values
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Algorithm 1: Permutation Importance of Features

Input : The number of GP runs n, the total number of features m, an empty array
for feature importances FIs[n][m];
Output: all feature importances F'Is[m];

for g :=1ton do GP run loop
Randomly split the training set into a sub-training set (70%) D;, and a

sub-teset set (30%) Dy.;

Run GP on Dy,;

Select the individual I, with min(Erry,) on Dy,;
Calculate the Erro,g of I, over Dy.;

Collect all the distinct features { X, ..., X} in Ip;

for j :=1to k do Raw Importance loop
Shuffle/permute the values of X (€ {X1, Xa, ..., X }) within Dy, to form

the permuted sub-test set D,;;
Compute the Errpm,: of I, over Dpye;
Calculate the raw importance value F'I,q,,(X;) = Errpmi(Ip) — Errorg(Ip)

Put Fl,q,(X;) into FIs, ie. FIs[g][j] = Flrqu(X;);

end

end

for f :=1tom do Scaled Importance loop

Obtain the mean raw importance of X ; by Fl,q., (Xs) = Sor_, FIs[i][f]/n;
Obtain the standard deviation of X by

N
6(Xf) = \/Z?_l (FIS[Z} [f] — Flqw (Xf)> /TL;
Calculate the scaled importance value of X; by
Fleq (Xf) = Flrqw (Xf)/ (%)r

end

of features absent from I;, are defined to be 0. The whole process repeats n
(n > 30) times on the best-of-run individuals collected from n independent
GP runs on the given training data, respectively. The condition n > 30 is to
reduce the bias of random seed used in GP runs on the importance values.
The pseudo-code of this procedure is shown in Algorithm 1.

In order to make the feature selection according to the importance val-

ues to be flexible and problem-independent, the final importance of a fea-
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ture is defined as the scaled importance, which is the average raw feature
importance normalised by the standard error of raw feature importance.
It is given as:

Flrquw(X;)
)

\/ﬁ

FIsca (Xj) = (34)

where n is the number of GP runs, F',,,(X;) is the average value of the
raw feature importances in n GP runs, ¢ is the standard deviation, and \/iﬁ
is the standard error.

3.2.4 Feature Selection according to Permutation Feature

Importance

In GPPI, features with a positive value of F'/,.,(X;) are selected. The pos-
itive importance value indicates that these features have a positive effect
in reducing the regression error, and they are potentially more important
than their counterparts with negative importance values. The main ad-
vantage of this selection metric is problem-independence, which is especially
suitable for regression tasks without any domain knowledge. This met-
ric does not depend on the problem domain and the specific number of
features. The feature selection criterion, which selects features with pos-
itive importance values, is expected to help remove noisy and irrelevant

features effectively while keeping the relevant features.

Instead of employing the whole set of features, the regression train-
ing process in GP-GPPI uses the set of positive features selected by GPPI.
A population of programs are initialised and evolved using these posi-
tive features. Thus, GP-GPPI is expected to reduce the risk of overfitting
and potentially improve the generalisation performance of GP for high-
dimensional SR.
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3.3 Experiment Design

To demonstrate the feature selection ability of GPPI and investigate its
effectiveness on promoting the generalisation ability of GPSR, sets of ex-
periments have been conducted. A comparison has been made between
our new GPSR system GP-GPPI and GPSR with several various feature

selection methods.

3.3.1 Benchmark Methods

A comparison between GP-GPPI and five benchmark methods, which em-
ploy feature selection for GPSR, has been conducted in this chapter. The
first two benchmark methods are GP-Random Forests (GP-RF) and GP-C5.0
decision trees (GP-C5.0). The other three methods are our previous method
GPWEFS and two variants of GPWEFS. The details of the five benchmark

methods are as follows:

o GP-Random Forests (GP-RF) is a GPSR method using features selected
by random forest (RF). The permutation feature/variable importance
values in RF are obtained from 30 runs using 30 different seed num-
bers. This setting can reduce the influence of the random seed on the
importance of features. Bootstrap samples are exposed to construct
the trees, and the out-of-bag samples, which are not used for training
the forest, are used to calculate the permutation importance.

e GP-Cb5.0 decision trees (GP-C5.0) is a GPSR method which employs
C5.0 for feature selection. The feature importances in C5.0 are also
obtained from 30 runs using the same sub-training sets as GPPL.
When calculating the importance of a feature, the metric, which con-

siders the percentage of splits that the feature makes, is employed.

e GPWEFS is a GPSR method for simultaneous feature selection and
regression. A brief description of GPWFS has been given in Section

3.2. For more details, readers are referred to [50].



3.3. EXPERIMENT DESIGN 77

e GPWFS1 is GPWFS using a different setting. GPWFS1 differs from
GPWES in the number of generations for the two stages. The first
stage of GPWFS1 has the same number of generations that GPPI uses
for feature selection. The number of generations in the second stage
is the same as that GP-GPPI used for symbolic regression. GPWEFS1
is examined to make the comparison between GP-GPPI and GPWFS

using the same number of generations.

e GPWEFS2 is a variant of GPWES. It splits GP for feature selection and
GP for SR into two separate stages. At the end of the feature selection
stage, GPWFS2 collects all the distinct features appearing in the best-
of-run individuals of 30 GP runs. Then the regression will perform
on these selected features. Actually, GPWEFS2 differs from GP-GPPI
only in lacking the permutation method to determine the importance
of features.

In addition to these feature selection methods, standard GP, which uses
the whole set of features as input and performs built-in feature selection,
is also used for comparison. However, it is used as a baseline for com-
parison. The main focus of this work is on the comparison among GP
with various feature selection methods. In each GP for regression method,
100 independent GP runs have been conducted. All the GP methods are
implemented under the GP framework of the evolutionary computation
framework written in Java (ECJ) [142]. RF and C5.0 for feature selection
are implemented under the R packages, which are “randomForest” [137]
for RF and “C50” [129] for C5.0.

For a more comprehensive comparison, we also compare GP-GPPI with
two statistical regression methods, least absolute shrinkage and selection
operator (LASSO) [215] and RF for regression, which were considered to
be the most commonly used methods for regression. LASSO performs
feature selection by employing an ¢; penalty to shrink some coefficients in

the regression model to be 0. In this way, LASSO can effectively enhance
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the prediction performance of the regression model. The two methods are
implemented under R packages “glmnet” [84] and “randomForest” [137]
with default settings. Furthermore, we investigate the influence of the
computation load on GP-GPPI, and conduct a comparison between GP
and GP-GPPI under the same computation time.

3.3.2 Parameters

The parameters for all GP methods are summarised in Table 3.1. The num-
ber of generations for GPWFSI is 100 (50 generations for the first stage and
the other 50 generations for the second stage). For GPWFS, the two key pa-
rameters, which are the number of generations G to decide the splitting
point of the two phases and 3 to define the percentage of top individuals,
are tuned using three different values, respectively. Since the total num-
ber of generations is 50, G is properly set to 25, 30, 35. (3 takes the values
of 5%,10%, 15%. Thus, 9 (3 * 3) different settings of GPWFS have been
conducted. For GPWFS], the value of Gy is fixed (G ;=50). The value of
$ in GPWFSL1 is tuned among 5%, 10%, 15%. Thus, 3 different settings of
GPWES1 have been conducted.

In each run of RF for feature selection, a forest of 500 trees is built. The
number of randomly chosen candidate features for each node is defined to
be m/3, where m is the total number of features in the dataset. The values
are recommended for regression [31]. The same settings are used in RF for
regression. In C5.0, the parameter “metric” is set to “splits”, which means
the percentage of splits associated with each feature will take a part in cal-
culating the feature importance. Other parameters use the default values.
The feature selection criterion in C5.0 and RF is the same as GPPI, which
is selecting features with positive importance values. As mentioned ear-
lier, we assume these features have the potential to reduce the regression
error. Thus, they are more important and should be selected. Compared
with only selecting the top features, it is expected to reduce the risk of
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Table 3.1: Parameter Settings

Parameters Values ‘ Parameters ‘ Values
Population Size 512 Generations 50 (100 for GPWFS1)
Crossover Rate 0.9 Mutation Rate 0.1
Elitism Rate 0.01 Maximum Tree Depth | 10
Initialisation Ramped-Half&Half Initialisation Depth 2-6
Features (Selected Features)
Function Set +,0—, %, Inv( % ), sqrt Terminal Set , Random Constant
€ [-1.0,1.0)
Fitness Function NRMSE
GPWEFS (GPWFST)
—q 25, 30, 35 (50 for GPWFS1) | — g3 5%, 10%, 15%

missing some important features (particularly when the top features are
redundant).

We have also investigated the influence of computation load on the re-
sults of GP-GPPI. This is conducted in forms of comparing GP and GP-
GPPI under the same computation time and performing GP-GPPI in a
higher computation load than the setting in Table 3.1. In this set of experi-
ments, the population size of GP-GPPI is increased to 1024, while other pa-
rameters are the same as shown in Table 3.1. Standard GP has a population
of 2048 and will be terminated when it uses the same computation time as

GP-GPPI (the time including both feature selection and regression).

3.3.3 Datasets

In this chapter, GP methods with feature selection are tested on six high-
dimensional regression datasets. While two of the datasets are synthetic
data, the other four are real-world high-dimensional data. A high level
of noise and the known relevant features make the two synthetic datasets
particularly suitable for examining the ability of a feature selection method
[211]. The functions of the two synthetic datasets are shown in Table 3.2.
F} is the famous Newton’s Law of gravitation, where g is the gravitational
constant with the value of 6.67408F — 11. F, was taken from [116]. The
sampling strategies for the training data and the test data are also shown
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Table 3.2: Two Synthetic Functions

Functions ‘ Training Samples ‘ Test Sample ‘ Noise
70 points 30 points

= —g% X1, X2 =rnd[0,1] X1, X2 = rnd[0,1] 50 input variables
X3 =rnd[l,2] X3 =rnd[1,2] = rnd[0, 1]
1000 points 10000 points

30X X

o= X gxz| X1, X3 =rnd(=1,1) X1, X3 =rnd(-1,1)

X9 =rnd(1,2) X2 =rnd(1,2)

in Table 3.2. The noise, which was added to each dataset deliberately [211],
consists of 50 input variables with random values in the range [0, 1]. The
purpose of adding noise is to check whether the feature selection methods

can eliminate noise and select the truly relevant features.

The four real-world regression datasets are taken from UCI Machine
Learning Repository [138] and previous literature on the generalisation of
GP for SR [224, 226]. They are high-dimensional regression datasets with
hundreds to thousands of features. Feature selection is more desired for
these datasets than their counterparts with a smaller number of features.
The first dataset LD50 is about the pharmacokinetics, the task of which is
to predict the value of a pharmacokinetics parameter — the median lethal
dose (represented as LD50). It has been used in much recent work on
the generalisation of GP [223, 224, 226]. The second dataset is the Diffuse
Large-B-Cell Lymphoma (represented as DLBCL), which was collected by
Rosenwald et al. [191]. The task is to predict the survival time of pa-
tients who have diffuse large-B-cell lymphoma and received chemother-
apy. The remaining two datasets are taken from UCI [138]. They are
about communities and crimes within the United States, the Communi-
ties and Crime unnormalised dataset (CCUN) and the Communities and
Crime normalised dataset (CCN). Both of them are to predict the per capita
crimes. We discarded the instances which have missing values, so the
number of instances in CCUN and CCN used in this work is smaller than

in the original data.
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Table 3.3: Benchmark Problems

Name ‘ # Features ‘ #Total Instances ‘ #Iraining Instances ‘ #Test Instances
P 53 100 70 30

s 53 11000 1000 10000

LD50 626 234 163 71

DLBCL | 7399 240 180 60

CCUN | 124 1994 1395 599

CCN 122 1994 1395 599

3.3.4 The Training Sets and the Test Sets

In this work, each dataset is split into a training set and a test set to in-
vestigate the generalisation performance of the evolved models in GP.
The numbers of features, training instances and test instances of the six
datasets (including two synthetic datasets) are shown in Table A.2. Four
of the six datasets (expect DLBCL and F3) are split with 70% of instances
randomly selected from the training sets and the other 30% instances form
the test sets. This is a widely accepted way of splitting the dataset in ma-
chine learning [98, 226]. The training set and test set of DLBCL are pro-
vided [191]. The numbers of training data points and test data points are
given for F; [116].

It is important to note that, during the feature selection process, the
data used by all the feature selection methods is only the training sets. The
test set of each task is kept to be unseen during the feature selection and
the model training process. Therefore, a fair comparison on the effects of
the feature selection methods on the generalisation of GP has been con-
ducted. In each GP for feature selection run, each training set is further
split, where 70% randomly selected instances forms the sub-training set
and the other 30% forms the sub-test set to obtain the feature importance.
The same sub-training sets are used in C'5.0. RF uses the whole training
set by bootstrapping a number of samples (i.e. sub-training set) for con-
structing the trees and obtaining the permutation importance of features

on the out-of-the-bag samples (i.e. sub-test set).
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Figure 3.3: Distribution of Training NRMSEs of the 100 best-of-run indi-
viduals.

3.4 Result Analysis

34.1 Comparing GP-GPPI with GP-C5.0 and GP-RF

A comparison between GP-C5.0, GP-RF and GP-GPPl is presented in this
section, which focuses mainly on the influence of the three feature selec-
tion methods (C5.0, RF and GPPI) to the learning ability and generalisation
of GP for SR. Standard GP is used as a baseline for comparison.

Figure 3.3 shows the distribution of training NRMSEs of the 100 best
individuals from the 100 GP for regression runs on the six training sets,
while Figure 3.5 presents the distribution of their corresponding test NRM-
SEs. Each boxplot consists of four whiskered boxes for the four GP meth-
ods, respectively (On F3, the notched boxplots in GP-RF and GP-GPPIlook
different from others, because the first quartile is too close to the median
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of the results).

Figure 3.4 and Figure 3.6 show the evolution plots. On every genera-
tion, the lowest NRMSEs obtained by the best-of-run individuals on the
training set are recorded, and the corresponding test NRMSEs of these
best individuals are also obtained (the test errors serve to examine the
evolution of generalisation, but are never taken into account during the
evolutionary process). For the 100 independent GP runs, the 100 lowest
training NRMSEs and the corresponding test NRMSEs are collected on
every generation. The evolution plots are drawn using the median values
of these 100 NRMSEs. Since the median value is suggested to be more ro-
bust to outliers [98], it is preferred over the mean value in this work. The
Wilcoxon test, which is one of non-parametric statistical significance tests,
is conducted to compare the 100 training NRMSEs and test NRMSEs of
the 100 best-of-run models. Two sets of Wilcoxon tests with a significance
level of 0.05 have been performed. The first set is between GP-GPPI and
the other three methods, and the second is between GP and GP-RF and
GP-C5.0, i.e. GP with GP-RF and GP with GP-C5.0.

Results on the Training Sets — Learning Ability

To investigate the effect of the feature selection methods on the learning
ability of GP for high-dimensional regression tasks, the regression perfor-
mance regarding the training NRMSEs is reported here.

As shown in the training boxplots in Figure 3.3, the difference between
the median of NRMSEs in GP-GPPI and the other three methods are large
on four of the six datasets, i.e. I}, DLBCL, CCUN and CCN. On these four
datasets, the boxes of GP-GPPI and other three methods overlap but not
the median values. It indicates GP-GPPI has much better training perfor-
mance than the other three methods on these datasets. On F,, the boxes
of GP-GPPI and GP-RF overlap with medians. However, there is no over-
lap between these two methods and the other two methods, i.e. GP and

C5.0. This means the training performance in GP-GPPI is comparable to
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Figure 3.4: The Training Error Evolution Plots.

that in GP-RF, which is much better than their counterparts in GP and
GP-C5.0 on F,. On LD50, there is no obvious difference between the four
methods. According to the statistical significance tests, on F;, DLBCL,
CCUN and CCN, GP-GPPT has the best training performance among the
four methods. On F;,, GP-GPPI has no significant difference from GP-RF
on the training set. However, both are significantly better than the other
two methods (GP and GP-C5.0). On LD50, there is no significant differ-
ence between the training performance of all the methods.

Figure 3.4 shows more details of the evolutionary training process of
the four GP methods. GP-GPPI generally achieves better training perfor-
mance than the other three methods over generations on four out of the
six datasets except for on F, and LD50. On these four training sets, GP-
GPPI outperforms the other three methods on the first several generations.
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The difference on the NRMSEs between GP-GPPI and the other methods
increases over generations. On F, GP-GPPI and GP-RF are significantly
superior to GP and GP-C5.0. The median training errors in GP and GP-
C5.0 only decrease slightly during the training process, which indicates
the difficulty in the two GP methods to learn on this noisy dataset.

It is clear that on most of the datasets, feature selection can promote the
learning ability of GP. An intuitive reason is that the reduction of feature
space shrinks the search space of GP as well as decreases the production of
programs manipulating the irrelevant features. Thus the evolutionary pro-
cess is more likely to be guided towards the better models. Better feature
selection methods can shrink the search space of GP to be much smaller
but more effective since they can discard more irrelevant features while
keeping important features. Thus less effort is needed for GP to converge
to (near) optimal models. It also explains the pattern that the difference
on NRMSEs between GP-GPPI and the other three methods is increasing
over generations, and why GP-GPPI has a distinguished advantage over
the other methods.

Results on the Test Sets — Generalisation Ability

Figure 3.5 shows the distribution of generalisation errors of the 100 best-
of-run individuals. The overall trend is similar to the training set, i.e. GP-
GPPI outperforms the other methods. Particularly on LD50, GP-GPPI has
much lower median NRMSEs than the other methods on the test set. The
test evolution plots in Figure 3.6 clearly show that GP-GPPI generally has
the best generalisation performance among all the methods, i.e. the lowest
test NRMSE over generations. Based on the results of the statistical signifi-
cance tests, GP-GPPI achieves significantly better generalisation gain than
the other three methods on five of the six datasets, except for F>. On F,
GP-GPPI has slightly higher test error than GP-RF, but not significantly.
They both have a significantly lower NRMSE than C5.0 and standard GP
on the test set of I5.
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Figure 3.5: Distribution of the Corresponding Test NRMSEs.

On the two synthetic datasets F; and F5, which contain the same num-
ber of relevant features and noisy features, the generalisation ability of the
four methods show different patterns. The intuitive reason might be that
the target function of Fy(Fy = —g*152) is simpler than F; (F; = (;’lo_f”—llg)?;g).
All the three feature selection methods can have generalisation gain for GP
on Fi. On F;, which has a more complex target function, the test errors of
GP and GP-C5.0 do not reduce over generations and even increase slightly
over the final several generations, while GP-RF and GP-GPPI can gener-
alise well. On F, applying C5.0 for feature selection does not enhance but
rather decrease the generalisation of GP. GP-C5.0 has significantly larger
NRMSEs than GP on the test set. One of the possible reasons is that it
did not keep all the relevant features (in fact, it excluded the 2nd feature),

although it discarded a number of irrelevant features.

From the generalisation performance on the two synthetic datasets, it
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Figure 3.6: The Testing Error Evolution Plots.

can be observed that in GP-RF and GP-GPPI, where the feature selection
methods can reduce the noise that was deliberately added while keeping
the relevant features, the evolved models have a higher probability of in-
cluding the truly relevant features. They are more accurate in expressing
the true relationship between the input variables and the target variables,

thus can definitely have better generalisation performance.

On the four real-world datasets, GP-GPPI achieves the best generali-
sation performance among the four methods, which is confirmed by the
Wilcoxon test. While on DLBCL, GP-GPPI has notable generalisation gain
over the other three methods, on the other three tasks, GP-GPPI still out-
performs the other methods. On LD50 and DLBCL, while GP-RF has
slightly but not significantly better generalisation performance than GP,
GP-C5.0 has significantly higher test NRMSEs than GP on LD50 and slightly
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better generalisation gain than GP on DLBCL. On CCUN and CCN, GP-
RF can not improve the generalisation performance of GP to a significant
level. GP-C5.0 achieves a significant generalisation gain on CCN.

In summary, GPPI can enhance the generalisation of GP more effec-
tively because it can discard more noisy/irrelevant features than other fea-
ture selection methods (feature selection results will be presented in more
detail in Section 3.5), so that GP is more likely to construct models using
the relevant features. Moreover, the GP models with a continuous prop-
erty learn more than the stepwise function of the decision trees, thus lead-
ing to better performance of GPPI in detecting important features. This
could be a major reason that GP-GPPI is superior to the other GPSR meth-

ods on generalisation performance.

3.4.2 Comparisons between GP-GPPI and Variants of
GPWEFS

As mentioned in Section 3.2, the major difference between feature selection
in GP-GPPI and GPWES is the way to decide the importance of features.
GPPI has an additional component, which is the permutation feature im-
portance. To investigate the effect of the permutation method on identify-
ing the truly important features from the potentially relevant features, the
comparison between GP-GPPI and variants of GPWES is necessary.

Figure 3.7 and Figure 3.8 show the evolution plots of the median train-
ing and test NRMSESs of the 100 best-of-generation individuals obtained on
the training data in GP, GPWFS, GPWFS1, GPWFS2 and GP-GPPI. Here,
the best settings among the 9 settings (combination of three different set-
tings of GGy and 3) of GPWES and 3 settings (i.e. three different setting of
) of GPWFS1, which lead to the best generalisation performance in these
two methods, are chosen to report and compare with other methods.

As shown in Figure 3.7, compared with the three variants of GPWES,

GP-GPPI has better training performance on five of the six datasets ex-
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Figure 3.7: GP-GPPI and Variants of GPWFS — The Training Error Evolu-
tion Plots (GPWEFS1 is deliberately set to run 100 generations).

cept for LD50. On the two synthetic datasets F; and F,, GP-GPPI has a
much better learning performance than all the three variants of GPWEFS,
shown as the much lower training errors over generations. The advantage
of GP-GPPI over the variants of GPWES are all significant on F; and F5.
On DLBCL, GP-GPPI achieves significantly smaller training errors than
GPWFS and GPWEFS], and slightly better training performance than GP-
WEFS2. On CCUN and CCN, GP-GPPI has slightly but not significantly
better learning performance than GPWFS1 and GPWFS2. However, it still
significantly outperforms GPWEFS on these two training sets. On LD50,
GP-GPPI achieves a comparable training performance with GPWFS and
GPWEFS2, which are significantly worse than GPWEFS1 (the plot in green
colour in Figure 3.7).
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Figure 3.8: GPPI and Variants of GPWFS — The Corresponding Testing
Error Evolution Plots (GPWEFSI is deliberately set to run 100 generations).

From Figure 3.8, it can be observed that GP-GPPI outperforms the
three variants of GPWFS in achieving better generalisation performance
on all the six datasets. On F};, F, and DLBCL, GP-GPPI has achieved a
dramatic generalisation gain than the three variants of GPWFS. On LD50,
GP-GPPI also obtains significantly better generalisation performance than
the three variants of GPWFS. On CCUN and CCN, GP-GPPI has signif-
icantly smaller test errors than GPWFS. Compared with the generalisa-
tion performance of GPWFS1, GP-GPPI obtained comparable results on
CCUN and significantly better results on CCN. The comparison between
GP-GPPI and GPWEFS2 is different from GPWFS1. While GP-GPPI has sig-
nificantly smaller test errors than GPWFS2 on CCUN, their generalisation
performance is similar on CCN.
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In summary, GP-GPPI is superior to the variants of GPWEFS in both
the learning performance and the generalisation ability on most of the
datasets. On the two synthetic datasets, which contain a large number of
noisy features, the advantage of GP-GPPI over the variants of GPWES is
more obvious than on the four real-world datasets. GP-GPPI outperforms
GPWEFS, which might be because GPPI collects features from a number
of best-of-run GP individuals in different GP runs, which are more suf-
ficiently evolved than those in GPWEFS. Features appearing in these in-
dividuals are intuitively more reliable than those selected from the best-
of-generation individuals in GPWFS. However, the major contribution is
owed to the effectiveness of permutation importance, which helps to iden-
tify the real important features in GPPI. The comparison between GP-GPPI
and GPWFS2 confirms the contribution of the permutation importance
method.

3.5 Further Analysis

This section presents a further analysis of the feature selection results and
the regression models evolved by the GP methods. It is expected to pro-
vide a good way to understand how GPPI advances the other feature se-
lection methods in promoting the generalisation of GPSR.

3.5.1 Feature Selection Results

To further analyse the feature selection ability of GPP], it is necessary to
compare the selected features from different methods. Here, we focus
mainly on the comparison between RF and GPPI, since they generally
have the best performance on benchmark problems and share the same
mechanism(i.e. permutation) to evaluate the importance of features. As
the main difference between the two methods lies in searching for fea-
tures and building the trees, the comparison is to demonstrate whether
the feature selection ability of GP is superior to the search ability of RE.
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Regarding the importance values of features, a positive importance
value is formed by the increased regression error when the feature is shuf-
fled. Since a new sub-test error is obtained from a completely random
feature, it should be higher than the initial error on the sub-test sets. A
positive value indicates that the feature can contribute to reducing the re-
gression error. The bigger the value is, the more important the feature
is to the response variable. In highly correlated datasets, the importance
value of a feature in a single tree (in GP or RF) can be small since another
feature might have duplicate information. However, obtaining the feature
importance over a group of trees can reduce the limitation. A negative
importance value is obtained by the reduced new regression error on the
permuted sub-test set. It indicates that the completely random feature
works even better than the original feature. Thus, the feature is probably
not predictive enough to the response value, i.e. it is very likely not im-
portant. The zero value means the feature does not appear in the GP trees

or the decision trees in most cases.

Feature Selection Results on the Synthetic Datasets

The feature importance values in GPPI and RF on F; and F}, are shown
in Figure 3.9. It can be seen that for F3, both methods have a relatively
small number of positive features, which indicates that both can dramat-
ically reduce the number of features. Moreover, in the two methods, the
top three important features are consistent with all the truly relevant fea-
tures. In RF, all the top three features have much higher feature impor-
tance from the other features, although it has a larger number of positive
features. On the right part which is for F3, the most obvious pattern is
the same as F. Both GPPI and RF can find the truly relevant features, and
most of these features can have much higher importance values than other
teatures. Compared with F}, both methods have a much higher number
of negative features on F,. The existence of these features indicates per-
mutation importance can identify the noise which is not predictive to the
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Figure 3.9: Feature Selection Results on the Two Synthetic Datasets.

response variable. As mentioned earlier, F; is harder than F;. This might
cause a decrease in the search performance of GP and RF for the important
features. Permutation importance contributes more to identify the irrele-
vant features in this case. It is clear that for the two tasks, both GPPI and
RF can have good feature selection ability on discarding a large number of
noisy features while keeping the most important features. The discarding
of noise takes the forms of not being used /included by the good individu-

als and assigning a negative importance value to them.

Feature Selection Results on the Real-World Datasets

For the real-world datasets, which have higher dimensionality than the

synthetic datasets, the overall pattern is different. The detailed importance
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Figure 3.10: Feature Selection Results on LD50.

values of LD50 and DLBCL are presented since they have extremely higher
numbers of features and are (much) harder than the other two datasets
(CCUN and CCN).

Figure 3.10 shows the importance values of features in LD50. In GPP],
the number of features included in the evolved models is much lower, and
the permutation of features helps identify more negative features than RF.
Thus the number of features with a negative importance value is much
higher in GPPI (around 30% of the total features) than in RF, and a much
smaller number of positive features in GPPI than RF. Figure 3.11 shows
the feature importance results on DLBCL. Compared with the total num-
ber of features (which is 7399), both GPPI and RF can discard a large num-
ber of noisy/irrelevant features. With regards to the number of features
included in models, the two methods are quite different. GPPI selects a
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Figure 3.11: Feature Selection Results on DLBCL.

much smaller number of features than RFE. Different from LD50, where
GPPI detects a large number of negative features, on DLBCL most of the
features included in the good individuals of GPPI are positive. However,
many of the features appearing in the trees in RF have negative importance
values. Considering the number of positive features, GPPI is still much
smaller than RFE. The overall pattern on the other two datasets (CCUN and
CCN) is similar with LD50 and DLBCL, that is, RF selects many more fea-
tures than GPPI. This is partially due to the larger number of trees in RF,
but the major reason is that due to the randomly restricted feature selection
scheme in RF, more redundant features can appear to be important in RE,
which would be considered redundant and eliminated by GP. This is con-
firmed by the much larger number of positive features in RF than GPPI on

LD50, where many pairwise features are highly correlated regarding Pear-
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Table 3.4: Top 10 Important Features on Real-World Datasets.

Dataset | Method | Top 10 Features
RF 228, 335,227,469, 244, 0,132,408, 345, 547
ED20 GPPI 33,271,49,592,470,100,463,15, 2,146
RF 4130, 5289, 2458, 1629, 1187, 5378, 5292, 3798, 3251, 5291
PLBCL GPPI 5357,1674, 2441, 3400, 6134, 48, 262, 566, 573, 1197
RF 43,49,2,42,67,48,14,39,123,1
CCUN
GPPI 49,37,40, 26,70, 39,4,16,48,67
CCN RF 50,41, 68, 2,32,40,27,71, 30,69
GPPI 44,50, 3,43, 15,68, 2,40,49,41,71

son correlation (the correlation plots are shown in Appendix B). Overall,
GPPI is better in selecting fewer important features when tackling high-
dimensional real-world datasets.

Since the number of selected features is large on all of the four datasets
in both methods, we further analyse the results by listing the most impor-
tant features. The top 10 important features selected by the two methods
on the four real-world datasets are shown in Table 3.4 in a descending or-
der of importance. It can be observed that the top features selected by the
two methods are totally inconsistent on LD50 and DLBCL. The small ratio
of the number of instances over the number of features is a major reason.
Another reason is the existence of redundant features. In contrast, the two
methods selected many consistent features among the top ten important
ones on the other two datasets. On CCN, six out of the ten are consistent.
On CCUN, the number is four. Compared with LD50 and DLBCL, the ra-
tios of the number of instances over features are much higher on CCN and
CCUN. In summary, for the tasks that have a high dimensionality and a
large number of training samples, such as CCUN and CCN, GPPI and RF
can select many consistent features. While for tasks which have a much
higher number of features than the number of instances, like LD50 and
DLBCL, feature selection becomes much harder, and many features have

similar importance to the response variable. Thus it is difficult to select the
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Figure 3.12: The Training RSS Evolution Plots.

same features between the two methods.

3.5.2 Analysis of Evolved Models

A further analysis was taken on examining the models evolved by GP us-
ing features selected by the different methods. We randomly picked three
evolved regression models from the 100 GP runs on the synthetic dataset
F, where the target function is known, and all the feature selection meth-
ods performed well. The examples of the evolved models are shown in
Table 3.5. The mathematically simplified forms of the models are also pre-
sented in Table 3.5 for an easier analysis of the models. In these three
runs, regarding the relevant features in the target function F; = — gX;(—)g(?
(g = 6.67408 E—11), it can be observed that GP-GPPI can include all the im-
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CHAPTER 3. GP WITH FS FOR SR

X3

X1Xo

(g = 6.67408E —11)

Method ‘ Example of Best-of-Run Individual

| Simplified Individual

4.83E—11X9v/v/X14

GP (*(*-0.33(*(*(*-0.60  0.099)(0-X2))(Inv  X3)))(*-0.052(*(sqrt(sqrt <7
X14))(*(*(0-(*0.10(0- -0.0054)))(*0.047(0- -0.0054)))(*-0.29(0- (Inv
X3))))

GP-C5.0 | (*0.083(*(*0.10(*(0-(*-0.015 X2))(*(*(*0.10(0-(*-0.015 X2)))(* X1- | —4.449E — 11X X5
0.039))-0.97)))-0.0054))

GP-RF (*(*(0-0.36) (*(*(0-0.36)(*0.083(*(*(*-0.15-0.018)(+0.83(* X 23 —1.049E — 11(0.83 +
X31)))(*-0.034-0.015))))-0.15))(*-0.15-0.018)) X23X31)

GPWFS | (*(*(0-X2)(*(*(*(*-0.60 0.099) (0- X2))((Inv X3))(Inv X4))) (* -0.052 ”6“‘3*}1(%

(* (sqrt X14)(*(*(0-(* 0.11(0-0.0054)))(* 0.047 (0-0.0054)))(* -0.29 - ?
0.60)))))

GP-GPPL | (*(*0.90(*(*-0.052(*(*(0-0.032)(Inv(+X3 0.74))Inv(+(+X5 | ¢ Xz-f;?;j;&iﬁ?@)
0.74)0.74)))(*-0.29-0.60)) (*(*(*(*  -0.015(*(*(*(*-0.29  0.099)
0.054)(Inv(+X3 0.74))) X1))(Inv-0.78))(0-(0-0.055))) X 2))

GP (* (*-0.170.073)(* (* (* (*-0.097 0.56)(+ (* (* X50-0.44) (* 0.56 -8.30E- | 4.381E—6X1(2.045E—
4))-6.86E-4))(+ (* 0.0065 (0-X1)) -6.86E-4))(* 0.0065 (0-X1)))) 4Xs0 — 6.86E —

4)(0.0065X 1 + 6.86E —
4)

GP-C5.0 | (* (* (0- X2) (0-0.092)) (*(* (O- (+ (* (sqrt 0.39) (sqrt0.39))(0- (+ 0.45 | 2.116E — 11X2(X1 +
X1))))-8.30E-4)(* (Inv (0- (Inv(* (* 0.01-0.82) 0.002))))(* (sqrt 0.39) | 0.06)

(*-0.033-0.82)))))

GP-RF (*7.16E-4 (0-(* (* (* X1(*(* X2 -0.76) -8.30E-4))(* 0.010 -0.76))(* | —2.608E — 11X; X
0.010-0.76))))

GPWFS | (*(0-(*-0.170.073))(*(*(*(*-0.097 0.56)(0-(+ (*0.0065(0-X1))-6.86E- | 4.381F — 6(0.0065X +
4)))(0- X1))(* 0.0065(+(*(* X 50 -0.44)(+(*(* X50 -0.44)(*0.56 -8.31E- | 6.86F — 4)(2.12E —
4))-6.86E-4))-6.86E-4)))) 4X2) — 6.86F — 4)

GP-GPPL | (*(*(*(+ -0.23 0.86)(*X1 0.0022))(Inv(+X3(*(Inv (Inv(+ X3 M
X3)(* 0.074 -0.046)(* (* (sqrt (*(nv (+ X3 (~0.046 (+ - | ~2VZXET0057T90%s
0.230.86))(Inv(+X3  X3)))(*(*(0-  0.0065)-0.44)(*0.074(*-0.046
0.0065))))(Inv(Inv(Inv (Inv X2))))))

GP (*(*(*(*(0-0.086)(*-0.018(0-(0-0.086))))(*(0-0.086) (*(*(*(0- 6.527E — 12
0.0051)(0- -0.086))(0-(+-0.46(0-0.018))))(0-0.54))))0.0051)(Inv
-0.90))

GP-C5.0 (*(sqrt(+(sqrt(sqrt  X2))X2))(*(*(*(*(0-0.0051)(0-0.0051))(*(sqrt | —1.03F — 10X> \/ Xo +V VX2
X2)0.0046))(-0.080(0-(*(sqrt X2)0.0046))))-0.28))

GP-RF CCEE0.19  0.0039)(*(+(+(*0.980.34) X1 )(*  0.900.28))(* 098 | 5.413E — 11Xo(X; +
0.0039)))(0-  0.0051))(*(0-(*(+(+(* 0.980.0039) Xi) Xu7) (* | 0.5852)(X1 + Xar +
0.980.0039))) Xo))(O-(+(*(*(+ X2 Xs)(* (* -0.014 (* 0.19 | 0.0038)

0.0039)) X2)) (0- (+ X2 X5))) (+ -0.014(* 0.98 0.28)))))

GPWFS | (*(*(*(*(sqrt (0-0.24))(* (* (* (0- 0.0051) (0-0.086))(0-(+ -0.46 | 7.04E — 12
0.11)))(0- 0.54))) (0-(0- 0.0051)))0.0051)(*(+ -0.46 0.11)(0- -0.018)))

GP-GPPI | (*(Inv(0-(*X3X3)))(*(*(0-0.012)(*(0-0.012)(*-0.023(0- 5.0695 10X, X5

(*0.0320.95))(*(* (+ (* -0.014 X71)(* -0.014 X1))(* 0.057
X)) (+(+(Inv(0-(Inv ~ 0.33)))(*-0.014(*-0.023(0-(Inv0.33))))) (*(*-
0.014 X1)(*-0.023(Inv(*-0.014 X1))))))))

X3
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Figure 3.13: The Test RSS Evolution Plots.

portant features, and uses only the relevant features to construct the mod-
els. On the other hand, the other three GPSR methods and standard GP
either include some noisy features or can not include all the relevant fea-
tures. Concerning the shape of the models, it is also easy to find that mod-
els in GP-GPPI have a much closer/similar shape with the target model
than those in the other four methods (in the 69th run, GPPI almost found
the “true” model).

3.5.3 A Direct Interpretation of Model Accuracy

To better interpret the model accuracy, we employ a new fitness function,
i.e. relative sum fo squared error (RSS) to compare the models evolved
by GP, GP-C50, GP-RF and GP-GPPIL. The definition of RSS is shown in
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Table 3.6: Comparisons between LASSO, Random Forest (RF), GP, and

GP-GPPI
Significance
Training NRMSE | Test NRMSE Test
Benchmark | Method |\ o 'MAD) | (MediantMAD) | (with GP-GPPI)
(training, test)

LASSO | 0.17 0.22 (- )
F1 RF 0.05540.0013 0.16£0.0017 (- )

GP 0.01240.016 0.09540.03 (+,-)

GP-GPPI | 0.037+0.043 0.04940.064

LASSO | 0.1 0.09 - -)
5 RF 0.040+4.20E-4 0.07845.61E4 | (—, —)

GP 0.00242.97E-3 0.00544.45E-3 (= =)

GP-GPPI | 0.005+4.45E-3 0.00442.97E-3

LASSO | 0.04 0.68 +, )
D50 RF 0.097+7.61E-4 0.2340.0013 (+, -)

GP 0.1940.009 0.2540.026 (+ -)

GP-GPPI | 0.21-+4.45E-3 0.21+4.45E-3

LASSO | 0.18 0.22 (- )

RF 0.058+7.77E-4 0.1340.0014 (+, )
DLBCL

GP 0.088£0.012 0.182-£0.032 (-, )

GP-GPPI | 0.08140.012 0.1140.019

LASSO | 0.13 0.15 (- )
CCUN RF 0.030+1.18E-4 0.0984225E-4 | (+,=)

GP 0.073+1.48E-3 0.09942.22E-3 (+ =

GP-GPPI | 0.076:£148E-3 0.09742.97E-3

LASSO | 021 023 - -)
coN RF 0.054+1.77E-4 0.14143.44E-4 | (+,-)

GP 0.1334+2.97E-3 0.1434+2.97E-3 (+ —)

GP-GPPI | 0.139+2.22E-3 0.13942.97E-3

Equation ( 3.5)

RS = i

N

(¥; —Yi)?

S (Y —Y)?

where Y, is the ith predicted output, Y; is the ith response value, Y is the

mean of the target values, N is the number of instances.

(3.5)

RSS allows a direct comparison between the results of different datasets.

Meanwhile, the RSS error could be interpreted by comparing the evolved

model against a baseline model, i.e. using the mean of the responses as

the predict value. When RSS > 1, it means the evolved model has worse
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performance than the baseline model, RSS < 1 means a better model and
RSS = 1 indicates similar performance to the baseline model.

The evolutionary plots on the training RSS and the test RSS are shown
in Figure 3.12 and Figure 3.13, respectively. They are drawn using the
median RSS values obtained by the 100 best-of-generation individuals.

As shown in the two figures, the overall pattern is similar to that using
NRMSE. Among the four methods, GP-GPP1 is still the winner on both the
learning and generalisation performance on most of the datasets. Mean-
while, models evolved by the four GP methods all have a good accuracy
on F1, CCUN and CCN, where the RSS values are much smaller than 1.
While on the other three datasets, GP has a higher RSS than the other three
GP methods. On F2 and DLBCL, the selected features in GP-RF and GP-
GPPI bring an impressive improvement and decrease a lot on both the
training and the test RSS errors, while features selected by GP-C50 do not
improve the performance .On LD50, the three feature selection methods
do not bring an obvious benefit.

3.5.4 Further Comparisons

Table 3.6 shows the results of GP and GP-GPPI under the same computa-
tion time. The results of LASSO and RF for regression are also shown in
the TABLE. For methods with stochastic results (i.e. RF, GP and GP-GPPI),
the median value and the mean absolute deviation (MAD) of the 100 low-
est training errors and their corresponding test errors are presented. Me-
dian and MAD are claimed to be more robust to the outliers [134]. For
LASSO, only one unique result is reported. The Wilcoxon test has been
conducted on the paired training errors and the test errors of the 100 best-
of-run individuals in GP-GPPI and the two methods (i.e., GP-GPPI vs. GP,
GP-GPPI vs. RF). The statistical significance test, Z-test, is used to test the
significant difference between GP-GPPI (with a group of 100 results) and
LASSO (one result). While “—” means GP-GPPI performs significantly
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better than the compared method, “+” indicates GP-GPPI is significantly
worse, and “=" stands for no significant difference.

It is clear that GP-GPPI achieves much smaller NRMSEs than LASSO
on both the training sets and the test sets on most of the benchmark prob-
lems except for LD50. On LD50, GP-GPPI has a significantly worse train-
ing performance than LASSO. However, it achieves a much better general-
isation performance on LD50, which is also significant. On these synthetic
datasets generated by the nonlinear target functions with much noise and
real-world high-dimensional regression tasks, LASSO does not generalise
well. Compared with RF for regression, GP-GPPI obtains much smaller
training errors and test errors on the two synthetic datasets, both of which
are significant. On the four real-world datasets, GP-GPPI has significantly
larger training errors than RF. However, the generalisation performance
of GP-GPPI is better than RF on all the four test sets. While on CCUN,
the generalisation error of GP-GPP1 is slightly better than RF, on the other
three test sets, GP-GPPI outperforms RF in a significant way. In general,
GP-GPPI has a better generalisation ability than RF on the benchmark
problems.

When comparing GP-GPPI with GP (GP doubles the population size of
GP-GPPI) under the same computation time, the results show that on most
of the benchmark problems, the training errors of GP-GPPI are larger than
RF, but it has much smaller test errors than GP. On DLBCL which has a
large number of features (7399) and a small number of instances, GP-GPPI
outperforms GP on both the training set and the test set, which indicates
that the generalisation improvement brought by GPPI to GP is not because
of more computation effort. Moreover, the regression performance of GP-
GPPl in this set of experiments is generally better than the original setting,
which means that better regression performance can be expected when in-
creasing the computation load properly. However, it does not indicate that
more computation load can always achieve better generalisation, because

of the risk of overfitting.
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3.6 Chapter Summary

In this chapter, a new feature selection method GPPI for GP for high-
dimensional symbolic regression is proposed. GPPI collects features ap-
pearing in a number of best-of-run GP individuals, and obtains the im-
portance of features using a permutation measure. Feature selection is
based on the importance values. The feature selection results show that
compared with RF, which is effective in finding important features along
with the presence of redundant features, GPPI is more effective in identi-
tying the truly relevant features. The regression results of GP employing
various feature selection methods show that GPPI not only outperforms
RF and C5.0 in improving the learning performance of GP, but also gains
much more benefits on the generalisation of GP. GP-GPPI also advances
different variants of GPWES in enhancing both the learning performance
and generalisation ability of GP. Further analysis of the evolved models
indicates that GP-GPPl is superior to the other methods on evolving mod-
els including only the truly relevant features. Generally, these models are
more comprehensible.

This chapter confirms that our new feature selection method has an im-
pressive benefit on enhancing the generalisation of GP for high-dimensional
symbolic regression tasks. However, it is not a silver bullet for all the
overfitting issues in GP for SR, since overfitting does not occur only when
training models on high-dimensional regression data. When learning re-
gression models on datasets with a relatively small number of features but
an insufficient number of instances, GP is also prone to overfitting. In this
scenario, the feature selection method proposed in this chapter might have
limited effect on increasing the generalisation of GP. Next chapter will seek
a solution to improve the generalisation of GP for SR in this scenario.
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Chapter 4

Structural Risk Minimisation in
GP

41 Introduction

As mentioned in previous chapters, generalisation is one of the most im-
portant performance criteria for learning algorithms in machine learning,
since it reflects their prediction performance on unseen data. Chapter 3 de-
veloped a feature selection method to improve the generalisation perfor-
mance of GP for symbolic regression, but low generalisation may happen
in the situation of learning from datasets with a relatively small number
of features yet an insufficient number of instances. This chapter develops
a new method to address the generalisation issue in this scenario.

As a learning algorithm, GP has a major goal, which is to find a model
that can minimise the expected /prediction error Err = E[L(Y, f(X))]. The
generalisation error Erry = E[L(Y, f(X))|r| measures the prediction er-
ror of the learnt model over a set of unseen/test data for a given train-
ing set T'. Here, L(Y, f(X)) refers to the loss function between the target
output Y and the output of the model f(X). A set of input X and out-
put Y pairs are considered to be drawn from an underlying distribution
P(X,Y)=P(Y|X)P(X), where P(X) is the distribution of the input X

105
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and the conditional distribution P(Y'|.X) is based on the input-output rela-
tion. The expected error Err is taken with respect to the joint distribution
P(X,Y), which is typically unknown in most real-world learning tasks.
Thus, to minimise the expected error Err, many learning algorithms rely
on the empirical risk minimisation principle [83]. This principle consists of
computing the errors of a set of candidate models over the training set, and
then selecting the one that obtains the minimum training error among the
set of models. The empirical/training error is considered to be a good in-
dicator of the expected test error in general. However, in many cases, this
indicator does not work well, particularly when the number of training
samples is too small to represent the real distribution of P(X,Y’) and/or
over-complex models have been learnt. In these scenarios, an accurate

estimation of the expected generalisation error is more reliable.

During the evolutionary process, the training error consistently de-
creases along with the increase of model complexity, but the generalisa-
tion error typically increases. While over-simple models generally have
high training and test errors, over-complex models have lower training
error but even higher generalisation errors than simple models. There is
an (near) optimal model complexity in between (over-complex and over-
simple) that might minimise the generalisation error. Moreover, previ-
ous research has confirmed that the model complexity directly influences
its generalisation ability [224, 233]. A widely accepted agreement is that,
given the same training set, complex models generally have a larger differ-
ence between the training error and the test error than their simple coun-
terparts [55, 228, 233]. A key issue in obtaining the optimal model com-
plexity is how to measure the model complexity.

4.1.1 Chapter Goals

This chapter aims to develop a new GP approach to enhance the gener-
alisation of GP for symbolic regression. This will be accomplished by in-
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troducing an generalisation estimating framework — structural risk min-
imisation (SRM), which uses an empirical measurement of the complexity
of candidate solutions, into GP to develop a SRM-driven GP approach.
Specifically, this chapter has the research objectives as follows:

e whether and how the proposed SRM-driven GP approach improves

the training performance of GP,

e whether SRM-driven GP can lead to a significant generalisation gain
over standard GP and GP with other generalisation estimation meth-

ods such as a bootstrap method,

e how SRM-driven GP influences the complexity and behaviour of the

evolved models, and

e whether SRM with a non-uniform setting can outperform its coun-
terpart with a uniform setting in improving the training and gener-

alisation performance of GP.

4.1.2 Organisation

The remaining sections of this chapter are organised as follows. The sec-
ond section proposes the new GP methods, which implement the generali-
sation estimating framework, and describes the procedure of obtaining the
model complexity in detail. In the third section, the details of the experi-
ment design are presented, including the benchmark problems, the bench-
mark methods for comparison, and the parameter settings. The fourth sec-
tion provides an analysis on the learning and generalisation performance,
as well as an analysis on the evolved models. Finally, the fifth section

draws a summary of this chapter.
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4.2 The Proposed Methods

This section firstly presents Vapnik-Chervonenkis dimension and struc-
tural risk minimisation, then describes the proposed SRM-driven GP ap-
proach including two specific methods, genetic programming with structural
risk minimisation (GPSRM) and genetic programming with optimised structural
risk minimisation (GPOPSRM).

4.2.1 Vapnik-Chervonenkis Dimension and Structural Risk
Minimisation

In statistical learning theory [231], probably approximately correct (PAC)
[221] defines a general measure for the complexity of a learning machine,
which is the Vapnik-Chervonenkis dimension (VC-dimension) [230]. The
original definition of the VC-dimension is for a set of indicator functions
{I(X,«)}, where X are the input vectors, « is a set of parameters and the
outputs of {/(X,«a)} take the values of 0 or 1. The VC-dimension h of
functions {I/(X, «)} is the maximal number of input vectors X;, Xs, ---,
X, that can be shattered by {I(X, )} [232]. In other words, with proper «,
{I(X, o)} can always perfectly separate these vectors into two classes in all
the 2" possible ways. Later, this definition was extended for a set of real-
value functions { R(X, )}, where A < {R(X,«a)} < B. The VC-dimension
of {R(X,a)} is defined as the VC-dimension of the corresponding indica-
tor functions {I/(R(X, «a) — 3)} [231], where 5 € (A, B).

After the proposal of VC-dimension, various assessments of the ex-
pected generalisation risk (i.e. expected test error) have been developed [56].
Structural risk minimisation (SRM) [231] is one of these approaches, which
provides a powerful framework to estimate the generalisation ability of
prediction models. SRM defines an upper bound of the generalisation
error, which is a combination of the empirical risk/error and the confidence
interval. The confidence interval, which estimates a difference between the

empirical risk/error and the expected risk/error, is determined by the size
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of the training set and the model complexity measured by VC-dimension.
For a fixed size training set, the confidence interval is determined purely
by the VC-dimension. Thus, the generalisation bound relying on the con-
fidence interval is also named the VC generalisation bound or VC bound
[83]. The learning process under SRM, which tries to select the models
having a good trade-off between the empirical error and VC-dimension
(i.e. model complexity), has the potential to lead to models with better
generalisation ability. In [56, 231], a practical form of VC generalisation
bound for regression problems is proposed. It is defined as:

-1

Remp(h) < Remp(h) (1 —\/P- plnp + 1;:) 4.1)

+

where R.,,(h) is the expected test risk, R.,,(h) stands for the empirical

risk of the model, (1 — \/ p—plnp+ g‘—n”) represents the confidence in-
+

terval (“+” denotes the positive part of 1 — \/ p—plnp+ lg—nn). In the con-
fidence interval, p = h/n. h is the VC-dimension of the model, and n is
the size of the training set. Accordingly, when learning from a fixed num-
ber of training samples, a higher VC-dimension / is more likely to lead
to a larger generalisation bound R.,,(h). Let a set of k regression models
be evaluated by SRM. These models form a nested sequence with increas-
ing estimated generalisation errors like Reyp1 < Regpo < -+ < Regpre SRM
then chooses models with a lower R.,,. These models usually have a good
balance between the empirical error and the model complexity. They are
expected to generalise well on unseen data.

Despite its solid theoretical foundation and the ability to assess the ex-
pected test error, SRM is seldom considered in GP for symbolic regres-
sion. The underlying reason is the great difficulty in measuring the VC-
dimension of evolved models. It is challenging to obtain a tight theoret-
ical estimation of the VC-dimension for nonlinear models. Vapnik et al.

[228] developed an experimental' method to measure the VC-dimension

IThe word “experimental” was used in the original paper [228] to emphasise that the
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of a learning machine for classification. This chapter aims to extend it
to GP for symbolic regression and develops two methods named genetic
programming with structural risk minimisation (GPSRM) and genetic pro-
gramming with optimised structural risk minimisation (GPOPSRM).

4.2.2 GPSRM: Measuring the VC-Dimension using Uni-

form Setting

In GP for symbolic regression, obtaining a small empirical/training error
does not guarantee a good generalisation performance in many scenarios,
such as when the number of available training instances is small or when
learning from training data with noise. In these scenarios, the evolution-
ary process is prone to overfitting and the empirical error is not a good
indicator of the generalisation performance. Instead, an accurate estima-
tion of the expected generalisation error of the evolved models is more
reliable. Guided by the estimated generalisation error, the evolutionary
process is expect to move towards models having a good generalisation
ability.

When adopting SRM in GP, the crucial and most difficult aspect is to
obtain the VC-dimension of the evolved models. Note that, the fruitful-
ness of SRM in promoting the generalisation of GP depends greatly on the
precision of the measured VC-dimension of evolved models.

The theoretical approximation of the VC-dimension is easy to obtain
for linear models. The meaningful complexity index for linear models is
N + 1, where N is the number of free parameters in the model [232]. How-
ever, this complexity index is not appropriate for nonlinear models [232].
Since the population of GP consists of a mixture of linear and nonlinear
models, it is difficult to measure the VC-dimension of GP by a theoreti-
cal analysis. There is no existing work measuring the VC-dimension of
the evolved models in GP experimentally, which could be more accurate

method is not a theoretical estimation.
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and reliable than any simple theoretical estimation. Different from the ex-
isting methods [28, 154] that approximate the VC-dimension by counting
the number of specific nodes in the models, we extended an experimental
method to calculate the VC-dimension of the evolved models. This exper-
imental method was proposed in [228] to measure the VC-dimension of a
learning machine for classification, which is suitable for both linear and
non-linear models. We decided to extend this method to regression mod-
els in GP.

We introduce SRM into GP to propose a GP approach named genetic
programming with structural risk minimisation (GPSRM). GPSRM employs
SRM as the fitness function, and intends to achieve a good trade-off be-
tween the accurate approximation on the training data and the lower com-
plexity of these models. The evaluation process in GPSRM is shown in Fig-
ure 4.1. An example of this procedure is shown on Figure fig:exampleVCDim

As mentioned above, the VC-dimension of a real-value /regression func-
tion f(X, «) is equal to the corresponding value of its indicator functions
I(f(X,a) — B) [231], where A < {f(X,a)} < Band § € (A, B). The value
of 3 can be obtained by calculating the corresponding output of the regres-
sion model for a randomly selected training example. By assigning a pos-
sible value of f(X,«) to /3, the problem of measuring the VC-dimension
of a regression model f(X,«) is easily changed to the VC-dimension of
the indicator function I(f(X, «) — ). Then from step 2 to step 4 in Figure
4.1, the VC-dimension of the model is measured. The method to measure
VC-dimension is described as follows.

Main Idea

Vapnik et al. [229] derived a criterion to decide whether a learning pro-
cess is consistent. Being consistent means that the maximum deviation
between the empirical error and the expected error does not exceed a

small value . Specifically, for the indicator function /(X, «) with a VC-
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Measure g(ni) on each design point n;
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mi (=20) times to get &(nij)
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Set the set of design points

{ny, n, ..., ng} for measuring e(n;) |,

of I(f(X, a )-p) on each design point
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Step 3:

Obtain h by best fitting g4 theoretical
@(ni) and empirical measured &(ni) (n

in{ny, n, ..., ng}), i.e. e

h=argmin 3" [e(n)-o(n, /)]

Randomly generate two
datasets D1, D2 having ni
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Merge D" and D2to form
D; (Di is generated by
reversing the labelsin D1)

v

Training the model to
minimise regression error

v

Calculate the estimated generalisation
error of f(X, a ) by

Err,, :RMSE/[l— p-ih p+lg—n] ,p=h/n
n

Y
Cw

on D3
v

Get the maximal deviation
€(nj) onD1and D2

Calculate g(ni) as the mean
over mi different g(ni)

Figure 4.1: The evaluation process in GPSRM for each individual f(X, «) .

dimension £, to decide whether the learning process is consistent, Vapnik

et al. [229] defined the bound as follows:

P {sup [Rezp — Remp| > €} < min {1, exp [(C’l

In2n/h +1 2:/+ hh+ L 0252> n} } 42)

where (] and C, are two constants, C; <= 1 and Cy > 0.25. This bound is
independent of the conditional distribution P(Y|.X'). The bound also leads

to an inequality as follows: for any given constant §, a number n; exists so

that when the number of training instances n is larger than n; (n > n;), the
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The experimental
values for 10
different runs are
VC={4,5,5,5,5,
5r 4: 41 5r s}r
Which are good
approximations of
the theoretical
value, i.e. 5

Measure the VC-
dimension h for

Iz + a0 +a3+2,-4)

Figure 4.2: An example on how to measure the VC-dimension.

obtain the estimated
generalisation errorfor: f(z) =21+ 243 +24+6

Step 1: feed f(x) with the input values of a randomly
selected training instance, such as X=(1,1,1,1),

then get B=f(x)=10, the problem now changes to
calculate the VC dimension of the indicator function

f(z):Z1+Z2+£I?3+24+6 I(f(l‘) — 10) i.e.
I(z1 + 29+ 23+ 24— 4)

Step 2: set the number of instances for datasets where
the maximum deviations would be measured.

According to ni/h’={0.5,0.8,..., 30} and h’=5 for the given
model f(x), the 15 ni is {3, 4, ..., 150}

v

Step 3: for each ni in {3, 4, ..., 150}, randomly generate
two datasets with ni instances, then train and calculate
the deviation €(ni) on the two datasets

Step 4: tune the value of h in ®(ni/h) to have a small error
between the values of and the 15 values of g(ni)

following inequality holds.

P {sup[Regp — Remp] > €} < exp [(—(C2 — 8)e?) n|

113

(4.3)

Later, researchers improved the value of the constant to Cy = 2 [66]. In this

case, it was found that for a large n, the bound is close to the value given by

the Kolmogorov-Smirnov law [121], which defines the distribution law of

the maximum deviation between the training error and the test error of a

simple linear function. The law is formulated as: when learning the target

function f(x,a) = I(x — ), for a sufficiently large number of instances,
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the equality

(e 9]

P {sup[Rexp — Remp) > €} = exp (—252) n—2 E(—l)k exp (—2ekn) (4.4)
k=2

holds. Note that compared with the value of the first term, the value of
the second term is very small. The closeness of the above bound and the
value of the Kolmogorov-Smirnov law indicate that the bound is tight and
close enough to the exact value. Based on this observation, [228] assumed
that it is possible to find a value for C; to make the bound tight for both
small and large numbers of instances. In this scenario, the function ®(3),
which defines the expected maximum deviation between the error rates,
is independent of the conditional distribution P(Y|X'). The definition of
O(1) is:

h
n

‘I)(h

) =K {sup [Remp - Remp]} (45)

Based on the assumption that it is possible to derive ®(7), the idea
of the experimental method to measure the VC-dimension was proposed
in [228]. Suppose that ®(7) can be derived successfully, and the exper-
imental estimation of the maximum deviation between the expected test
error and the empirical error is also available, the VC-dimension h of a
model can be measured by finding the value that can achieve a good fit be-
tween the theoretical values given by ®(3) and the maximum deviations
obtained experimentally. Figure 4.3 visualises this process. As the figure
shows, given a list of €(n;) (i.e. the orange dots, the values of which are ob-
tained from the experimental method), the VC-dimension value is obtained
by getting the parameter % of the curve ®(n/h) to make it best fit into the
given e(n) values. These ¢(n) values are obtained based on a set of design
points, where each design point determines the size of randomly gener-
ated datasets [228]. Note that in practice, it is impossible to obtain an error
on an infinite number of test instances. Instead, measuring the maximum
deviation of the errors on two independently generated paired datasets

is a reasonable choice. Here these paired datasets refer to two datasets
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The maximum deviation
- of error rates obtained by

the model on two
datasets

—n 00—/ h¥)

ni/ h

Figure 4.3: h is measured by searching for a better fitting (from 7’ to h*)
between ®(7) and the experimental maximum deviation.

having the same number of instances. The inputs in the two datasets fol-
low the same distribution and the outputs are generated randomly. The
derivation of ®(7) and the process of obtaining the experimental values of
the maximum difference between the errors will be presented in detail in

the following sections.

Theoretical Formula of the Maximum Deviation

To estimate a bound on the expectation of the maximum deviation be-
tween errors, we first need to formulate this maximum deviation. For a
set of indicator functions (X, «) with a VC-dimension h, given a set of
samples Z*" = X1,Y1, Xs,Ya, ..., Xop, Ya, where X; is the input vector and
Y; € 0,1 is the label, let Pe;(Z%") denote the error rate on the first n sam-
ples, and Pey(Z*") denote the error rate on the other n samples, the error
rate is obtained by:

P77, 0) = (ZYj I(Xj,a>), i€(1,2) (46)
j=1

Then the maximum derivation ¢(n) between the errors obtained by (X, «)

is defined as:
e(n) = sup [Pe1(Z*", o) — Pea(Z°", )] (4.7)
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where sup is the supremum (least upper bound) of the set of deviations.

The expectation of ¢(n) is bound as follows:

1 if% <=0.5
E{e(n)} < q CyREMH if0.5 <2 <=8 (4.8)
C, ln@gjj;)“ if 2>

where C; and C; are two constants. It is possible to find values for C
and C, that make the bound tightly hold. The two values 0.5 and 8 are
to distinguish datasets with large and small n/h values [228]. Using a
continuous approximation, the right side of the bound can be defined as

1 if 7 <=0.5

() =1 ez n_ (4.9)
h a* (i}iz:rl ( 1+ LG + 1) otherwise.
h

In(27)+1

where the parameters a and b determine that ®(3) can cover the region
of large (7 > 8) and small (0.5 < 7 <= 8) values of n/h. The values of a
and b are obtained by fitting Equation (C.4) to the experimental maximum
deviations of linear models on datasets with various n/h, since the VC-
dimension & of these linear models are known. Accordingly, it is found
that « = 0.16 and b = 1.2 in [228]. Then, according to ®(0.5) = 1, it is easy
to get k = 0.14928.

Experimental Measure of the Maximum Deviation

Step 3 in Figure 4.1 shows the procedure for obtaining ¢(n;) on all the de-
sign points {ni,ns,...,n,}. On each design point, €(n;) is the average
value over a set of ¢(n; ;) (j € {1,2,...,m;}). These values are obtained
from m;(= 20) times of independent experimental measure. The average of
these values is used, since it is considered to be able to reduce the influ-
ence of randomness. The blue dashed box in Step 3 in Figure 4.1 shows
how the maximum deviation of errors is obtained for one time, i.e. on two

randomly generated datasets. To get the maximum deviation €(n; ;) on
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the two datasets, the error rate needs to be maximised on the first dataset,
while minimising the error rate on the second dataset at the same time. It
is important to note that the error rate is a measure for the performance
of an indicator/classification function, which is not suitable for regression
models — the focus of this work. Therefore, we change the task from
calculating the VC-dimension of f(X, a) to obtaining the corresponding
value of the model I(f(X, «) — /), which is a binary classification model.
The pseudo-code of this procedure is shown in Algorithm 2.

As shown in Algorithm 2, for a given regression model f(X, «) with
u distinct input variables, the detailed procedure of getting the maximum
deviation €(n;) of I(f(X, o) — /) on two independent datasets is described

as follows:

1. Generate two random datasets D, and D,, each of which has n in-
stances. The length/dimensionality of the input vectors is equal
to u, which is the number of distinct features in f(X,«). The in-
puts are drawn randomly within a uniform distribution over the in-
terval [—1,1]. The labels of the instances are created according to
the conditional probability distributions P(Y|X) = 0.5 for Y = 0 and
P(Y|X)=05forY = 1.

2. Merge D'1 and D, to form a new dataset D3, which has 2n instances.
Here, D) refers to a new dataset where the instances are generated
by reversing the labels in D, (D; and D) have the same input vectors
but the opposite output values, i.e. for an instance with a label Y = 0
in D;, the corresponding instance in D'1 has the label of Y = 1) .

3. Training the model {f(X,«) — f} to minimise its MSE on dataset
D3 (D3 =D} U Dy), thus I(f(X,a) — ) can (approximately) obtain
a maximum deviation of errors on D; and Ds.

4. Calculate the ¢(n;;) over the two datasets D, and D, according to
Equations (4.6) and (C.2).
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Algorithm 2: Measuring a set of maximum deviations obtained by f(X, «)

Input: a regression model f(X, a), p represents the number of distinct nodes in a
GP tree, i.e. the regression function f(X, ), and u is the number of distinct
features in (X, a)

Output: a set of maximum deviations €(n;)

Randomly select one training example X; and set f=f(X1, a).

Seth/ =p

Calculate the set of {n1,ns, ..., n,} according to a set of design points

ni/h' = {0.5,0.8,1.0,1.2,2,2.5,3,3.5,5,6.5,8, 10, 15,20,30}, i € [1, ¢| (as
recommend in [231], it needs a bunch of different n; to make sure the range of
n;/h’ to cover a wide enough range 0.5 < n; /b’ < 32)

for i :=1to g do Obtaining the maximum deviations on one design point loop

for j := 1 to m; do Measuring one maximum deviation loop
Randomly generate two classification datasets D; and D,. Each dataset

has n; instances and a feature set X containing u features/variables, and
the label Y of each instance is generated randomly.

Reverse the labels in D; to form a new dataset D; and merge D’ and D,
to form another new dataset Ds.

Training the model { f(X, a) — 8} to minimise its MSE on D3 using
mini-batch gradient descent, then calculate its error rates on D; and D,
according to Equations (4.6) and (C.2) .

Calculate €(n;;) that is the deviation of the error rates obtained by
{f(X,a) — 8} on D; and Ds.

end

G(TLZ) = Z;n:ll e(n”)/mz

end
Return e(n;)

In Step 3 of the above procedure, mini-batch gradient descent [53] is used
to train the coefficients in the model to obtain the minimal MSE on Ds.
Minimising the error of the model on Dj is equivalent to getting the max-
imum deviation ¢(n) on D; and D, (since D3 =D; U D,). The deviation is
largely independent of the distribution P(Y'|.X), thus we use P(Y'|X) = 0.5
to generate random labels. However, P(Y|.X') can be any other value. Step
1 to Step 4 should be repeated for m; times independently (m; = 20 is
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suggested in [228], which is considered to be large enough to make the
average value represent the central tendency of €(n;)). The mean value of
the €(n;;), j € [0,m;] is treated as the maximum derivation on the design
point n;.

Then the whole procedure is repeated on ¢ design points. Different de-
sign points refer to different numbers of instances, i.e. n; from {n;, no, ..., ny}.
The selection of {n1,n,,...,n,} should cover the range of 0.5 < 7 < 32 (it
is the recommended setting in [228]), where 0.5 is the starting point of the
definition of ®(7) shown in Equation (C.4) and 32 is to make sure that the
range of 7: is big enough for various n;. ' is an initial guess of the VC-
dimension of the model. In this study, %’ is set to the number of distinct
nodes in the GP model. A larger ¢ means more design points, which would
lead to a more accurate fit between ¢(n) and ®(3) and a tighter VC bound.
However, more design points also lead to more computational cost. Thus,
to achieve a good balance, the trial experiments in our preliminary work
show that 15 is a reasonable value for g, (i.e. for a given 7/, setting 15 n;
to make n;/h’ ={0.5,0.8,1.0,1.2,2,2.5,3,3.5,5,6.5,8, 10, 15,20,30}). This
repeated procedure is under a uniform setting, i.e. the number of ex-
periments repeated on each of the ¢ design points is the same, that is
my = mgy = --- = m, = 20, which is recommended in [228].

After getting all the maximum deviation (i.e. €(n;)) values, the VC-
dimension of the model can then be approximated by choosing the i that
can create a good fit between the set of ¢(n;) and the function ®(7) accord-
ing to h = argmin 3.%_, [e(n;) — ®(n;/h)]’, i.e. choosing an approximate h
to minimise the error (such as the MSE used in this chapter) between the
set of ¢(n) and ®(7).

Despite the potential generalisation improvement of GPSRM over stan-
dard GP, it still has some drawbacks. One major limitation of GPSRM is
the uniform setting® in the method that measures the VC-dimension of the

2The “uniform setting” refers to the setting in the experimental method to obtain the
maximum deviations of the error rates, which are a set of key values for measuring the
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evolved models. More specifically, the uniform setting refers to the same
number of experiments conducted on all the datasets to get the experimen-
tal maximum deviations. This setting does not consider the fact that these
datasets are randomly generated and have different numbers of instances.
The uniform setting and the variability of the random datasets potentially
restrict the accuracy of the measured VC-dimension of the evolved mod-
els. Accordingly, it limits the effect of SRM on improving the generalisa-
tion of GP. To address this problem, a more precise and reliable setting is
needed.

4.2.3 GPOPSRM: Measuring the VC-Dimension using Op-
timised Setting

In applied statistics, there is an important research topic of experimen-
tal design, which aims to construct the optimised design for experiments.
In previous work [115, 135], the experimental design is iteratively im-
proved by exchanging the design points according to the optimality cri-
teria. In [201], this idea is introduced into the process of measuring the
VC-dimension of linear models and shown its effectiveness.

Since we aim to make further improvement on measuring the max-
imum deviation by employing a better setting, and also motivated by
the idea of constructing an optimised design and the promising results
achieved in [201], we further propose an improved method to measure
the VC-dimension of evolved models in GP to increase the accuracy of the
estimated generalisation errors. The proposed method is named genetic
programming with optimised structural risk minimisation (GPOPSRM).

The idea of optimised experiment design from applied statistics [115,
135] is employed in this study. The process of searching for a better setting

VC-dimension. The “uniform setting” means that the number of experiments to obtain
the maximum deviation of errors is the same for all datasets regardless the number of
instances.
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starts from a well-designed setting, then repeats a process of constructing
neighbour settings, which have better performance than the current set-
ting, until an “optimal” setting is achieved (i.e. no any better neighbouring
setting is available) or the stopping criterion is satisfied. To develop a bet-
ter setting to measure the VC-dimension, the original uniform setting is a
good starting point. The target of this optimisation process is to minimise
the error between a set of ¢(n) and ®(n, h). Thus the evaluation criterion

for a setting is set as:

qa m;
MSE =YY (e(ni;) — ®(ni, h*))? /(mi * q) (4.10)

i=1 j=1
where €(n; ;) is the jth maximum deviation on the design point n,. m;
is the number of maximum deviation values obtained from the repeated
experiments onn;, ¢ € [1,¢]. ¢ is the number of design points (¢ = 15 in this
work). The number of instances on each design point is different, typically
ny <mng < ---<n, A better setting leads to a lower M SE between €(n)

and ®(n, h).

To improve the setting, we need to adjust m; for each design point
appropriately. To find a better setting, the neighbours of current setting
are obtained and evaluated. A neighbouring setting can be reached by
decreasing the number of experiments by one on the worst design point
while running the experiments one more time on the best design point.
The quality of a design point n; is measured by its contribution (which
is defined as ¢(n;) — ®(n;, h)) to the overall M SE in Equation (4.10), the
smaller the better. The procedure of measuring VC-dimension using the

optimised setting is presented as follows:

1. Measure the ¢(n;) and ®(n;) on ¢ design points, each for m, times.
Here, n; € {ni,no,...,ny}, m; = 20 and ¢ = 15 (i.e. the process starts

from the uniform setting).

2. Calculate the VC-dimension h* by finding the best fit among all the

various €(n; ;) and ¢(n;/h). Here each €(n; ;) participates in the fitting
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instead of using the average ¢(n;) over m, times in the uniform set-
ting, since the values of m on {n,, n, ..., n,} are potentially different

now.

. Calculate the M SE according to Equation (4.10).

. Rank the design points n,n, ..., n, according to theirs contribution

CB(n;) to MSE, CB(n;) = (MSE(remove n;) — MSE)/n; (the contri-

bution is normalised by the number of instances).

. Construct a neighbouring setting by adjusting the number of exper-

iments on the design points, which is to add one experiment on the

best point, while removing one experiment from the worst point.

. Calculate the new M SE* between the set of ¢(n) and ®(n, h) on the

new setting. If M SE* is higher than M SFE, then reverse to the former
setting and add the removed experiment to the 2nd (or 3rd, 4th, ...,
until the one that yields to lower M SE* is found).

. Repeat Steps 2 to 6 until no design point has a positive contribution

on M SE or the number of experiments on the positive points reaches
a predefined threshold, which is to prevent the situation that all the
experiments are allocated on a single design point, not a set of design
points.

. Obtain the VC-dimension value h that can create (near) the best fit

between the set of €(n;) and the theoretical values of ®(n;).

The proposed GPOPSRM algorithm employs the non-uniform setting for

measuring the VC-dimension of evolved models in GP. This is the major
difference between GPOPSRM and GPSRM. In addition, the advance of
the non-uniform setting over the uniform setting is expected to bring ben-

efit to SRM-driven GP, since the advance will lead to a more accurate VC

generalisation bound, which is crucial to the success of SRM-driven GP.
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For GPSRM and GPOPSRM, note that it is only necessary to measure
the VC-dimension for a number of top/best individuals ranked according
to their empirical errors (i.e. RMSE). This is because the difference be-
tween the confidence interval of the top individuals and their worse coun-
terparts ranges within the interval [0, 1], so that it can be ignored when
the empirical risk difference between two sets of individuals is large. On
the other hand, these worst individuals have a very low probability to win
the tournament selection to be parents of the new individuals in GP. More-
over, measuring the VC-dimension of all the evolved models is expensive.
Therefore, we define a parameter v in GPSRM and GPOPSRM, so that only
the best v percent of individuals in the candidate population will be mea-
sured. For the rest 1 —  percent of the population, their VC-dimension
is assigned to be a random big value (i.e. 50 in this study). The setting
is to make the evolutionary process focus on the comparison of estimated
generalisation error between the best v percent of individuals and make

the method more efficient.

4.2.4 Fitness Function in SRM-Driven GP

When introducing SRM into GP, the major change is the fitness function
for measuring the performance of the evolved models. In SRM-driven GP
methods, i.e. GPSRM and GPOPSRM, the solutions are evaluated by the
estimated generalisation error given by SRM. Assuming the VC generali-
sation error bound is tight, the fitness function is defined as:

RMSE

Inn
<1 pfplanr 2n>

Erresy = (4.11)

+

where

n

— \/ S (F(X) - Y)?

2n

the confidence interval between the empirical /training error and the esti-

-1
is the error of the models on the training data, (1 — \/ p—plnp+ 1“”) is
+
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mated generalisation error. p = h/n, h is the VC-dimension of the model
and n is the number of training instances. When learning from a given
training set, i.e. n is fixed, the confidence interval of a model is determined

solely by h. In other words, for a given n, a higher h leads to a larger p,
-1

Inn
2n

Consequently, given the same/similar values of RMSE, a higher h will

which then causes a larger confidence interval (1 — \/ p—plnp+

lead to a larger generalisation bound R.,,(h). Moreover, when GP adopts
the metric of SRM, the evolved models, which have slightly smaller em-
pirical errors but are over complex (large %), are less likely to be selected
to generate new individuals. Those models and their offspring generally
incorporate too much information from the training data, thus are over-
adapted to the pattern in the training set and difficult to generalise well
on unseen data. By assigning a higher estimated generalisation error to
those models and decreasing the probability of selecting them for breed-
ing, our new GP methods are expected to eliminate or decrease the trend
of overfitting thus generalise well.

4.3 Experiment Design

To investigate the generalisation ability of GPSRM and GPOPSRM, a set of
experiments have been conducted. The experiment design, in particular,
the selection of benchmark problems, the benchmark methods for com-
parison, and the parameter settings for GP runs, is presented in detail.

4.3.1 Benchmark Problems

Due to the lack of benchmarks (datasets) specially designed for testing the
generalisation ability of GP for symbolic regression, we examine the meth-
ods on eight synthetic symbolic regression problems and two real-world
high-dimensional regression datasets, which are taken from previous re-

search on GP for symbolic regression [233, 116, 226]. These benchmark
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Table 4.1: Sampling Strategies for the Training Data and the Test Data.

The notation rnd[a,b] denotes the variable is randomly sampled from the interval
[a,b], while the notation mesh([start:step:stop]) defines the set is sampled using

regular intervals.

Target function ‘ Training ‘ Test

fi= 50 points 221 points

e~ *x3coswsinz(coszsin®z — 1) x=rnd[0.05,10] z=mesh([-0.5:0.05:10.5])
50 points 2707 points

fo =130 (z1—1)(z3—1)

x, :E3=I‘l’1d[0.05,2]

x1, z3=mesh([-0.05:0.15:2.1])

Jc% (x1—10)
xo=rnd[1,2] z2=mesh([0.95:0.1:2.05])
fs = Gsi 50 points 961 points
8 = benaicosta 21, 22=md[0.1,5.9] 21, zo=mesh([0.05:0.02:6.05])
Ja = 50 points 1157 points

(21 -8)*+(22-3)3—(25-3)

(zo—2)%+10

21, £2=rnd[0.05,6.05]

x1, zg=mesh([-0.25:0.2:6.35])

s =

z122 + sin((z1 — 1) (2 —

1))

f6:$£11—$?+$%/2—$2

20 points

f1=8/2+a}+a3)

x, :ch:rnd[-3,3]

fs = 1“‘;’/5-&-:5%/2 — X2 — T1

361,201 points
x1, zg=mesh([-3:0.01:3])

Table 4.2: Real-World Problems

Name # Features | #Total Instances | #Training Instances | #Test Instances
LD50  |626 234 163 71
DLBCL (7399 240 160 80

problems have been shown to be prone to overfitting, therefore generali-
sation estimation during the training process is desired.

The details of the target functions and the sampling strategies for the
training data and the test data of the eight synthetic regression datasets are
shown in Table 4.1. The first four functions are taken from [233]. Despite
the low dimensionality, they are claimed to be difficult regression tasks.
The other four problems are from [116]. For all these eight problems, a
small number of training points is obtained to simulate the real-world sit-
uation, where GP is prone to overfitting. The number of training data
points is 50 for the first four problems and 20 for the other four problems.

We also test the methods on two high-dimensional real-world regres-
sion datasets, which are shown in Table 4.2. The first dataset is from the
field of pharmacokinetics [14]. The task is to predict the value of a kind of

pharmacokinetics parameter, i.e. the median lethal dose (represented as
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LD50). It has been used in many recent papers [223, 224, 226] to investi-
gate the generalisation of GP. LD50 is split randomly with 70% of instances
for training and the other 30% for test. The second dataset is the Diffuse
Large-B-Cell Lymphoma (represent as DLBCL) dataset [191]. The task is
to predict the survival time of patients who have diffuse large-B-cell lym-
phoma and received chemotherapy. In DLBCL, the training set and the

test set are provided.

4.3.2 Benchmark Algorithms for Comparison

To further investigate and confirm the effect of SRM on estimating the gen-
eralisation performance, comparisons between GPSRM, GPOPSRM and
the following two GP methods have been conducted:

e Standard GP, which is a baseline for comparison.

e GP with 0.632 Bootstrap (BGP). We would like to compare the pro-
posed approach with GP methods that also take the estimation of
generalisation error into account during the evolutionary process. In
[51], GPSRM was compared with a state-of-the-art method namely
Bias/Variance Error Decomposition (BVGP) [3]. In BVGP, the gen-
eralisation error of a GP model is assessed by two aspects, the bias
error and the variance error. The bias error refers to the error over
the training set, while the variance error is considered as the sensitiv-
ity of a model to the training data. However, the experiment results
in [51] show BVGP generally has worse generalisation performance
than GPSRM on the examined benchmark problems (therefore, the
results of BVGP are not included in this thesis). The underlying rea-
son might be that, due to the potential overlap of instances in boot-
strap datasets and the original training set, standard bootstrap does
not provide a good estimation of variance error [83]. Therefore, in
this work we decide to compare with an improved version of BVGP
employing the 0.632 bootstrap [72], which is named following the
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fact that the probability of an instance appearing in a bootstrap set
is 0.632. Under 0.632 bootstrap, the definition of the estimation of

generalisation error as follows:

le— 1
Verr =52 1577 2 (E(D™) (4.13)
i=1 beC—i

where R, is the estimated generalisation error, R.,,, is the empirical
error, and V,, is the variance error. V,,, is estimated by the leave-
one-out bootstrap, which is different from the traditional bootstrap.
Leave-one-out bootstrap is a smoothed version of cross validation.
As shown in Equation (4.13), n is the number of training instances.
C~" refers to the set of bootstrap samples which do not contain the
training instance i, and |C'| is the number of such bootstrap sam-
ples. E(D*?) is the error of each bootstrap set in C~*. For computing
Verr, we should choose the total number of bootstrap samples B to
be large enough to ensure |C~’| is larger than zero. In this work,
we set B = 200, which is a recommended setting in [83]. The 0.632
bootstrap is shown to overcome the shortcoming of standard boot-
strap and have a better ability in estimating the variance error. Thus,
we decide to compare GPOPSRM with GP employing this improved
version of bootstrap, namely BGP.

These four GP methods use different indicators for the generalisation per-
formance. Standard GP relies on the empirical risk/error, while BGP uses
the variance error estimated by the 0.632 Bootstrap. The GPSRM and
GPOPSRM use the confidence interval. The comparison focuses mainly
on the effect of these indicators on the generalisation of GP. All the exam-
ined GP methods are implemented under the EC] GP framework [142].

4.3.3 Parameter Settings

The parameter settings for the four GP methods (GP, BGP, GPSRM and
GPOPSRM) can be found in Table 4.3. Following the settings in [116, 233],
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Table 4.3: Parameters for the Four GP Methods

parameter Values

Population Size 512

Generations 51

Crossover Rate 0.9

Mutation Rate 0.1

Elitism(number of individual) 1

Maximum Tree Depth 11

Initialisation Ramped-Half&Half

Initialisation

— Minimum Depth 2

— Maximum Depth 6

Selection Operator Tournament Selection with a size of 7

Basic Function Set +, =%, Yoprotected, )
Square, Sqrt, Negative

—f1 e?, e~ %, sinx, cosx

I f3 efl), effL‘

Percentage of Top Individuals — ‘ 20%

the function set is different for different benchmark problems. For the
same benchmark problem, all the four methods have the same function
set. According to our preliminary experiments, the parameter 7 is set to
20%, which is sufficiently large for not missing individuals that have po-
tentially good generalisation ability while can reduce the computational
cost.

In each method, 100 independent runs have been conducted on each
problem. Therefore, 4000 (i.e. 4*10*100) experiments have been run for the
four methods on ten datasets, and 8000 (i.e. 4000*2) training and test re-
sults are used here to discuss the training and generalisation performance
of the four methods.

4.4 Results and Discussions

The section presents and discusses the results on the ten datasets. The dis-
tributions of RMSEs of the 100 best-of-run individuals on both the training
sets and the test sets are presented. To examine the generalisation per-
formance in more detail, the evolutionary plots drawing the median test
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RMSE of the 100 best individuals on every generation are provided. Fur-
ther analyses on the model size and model behaviour are also presented.

The Wilcoxon test, which is a non-parametric statistical significance
test, is conducted to compare the 100 best training RMSEs and the cor-
responding test RMSEs. The significance level is 0.05. The Wilcoxon test
is performed on the comparisons between GPOPSRM and the other three
methods (GP, BGP and GPSRM) in pairs, and also between GP and BGP
and GPSRM (i.e. GP vs. BGP and GP vs. GPSRM).
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Figure 4.4: Distribution of RMSE of the 100 Best-of-run Individuals on the
Training Sets.

4.4.1 Overall Results

The distributions of the RMSEs of the 100 best-of-run models on the train-
ing sets and the test sets are shown in the boxplots in Figure 4.4 and Fig-
ure 4.5, respectively. The overall pattern is that the two SRM-driven GP
methods (GPSRM and GPOPSRM) generally have worse learning perfor-
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mance (shown in Figure 4.4) but much better generalisation performance
(demonstrated in Figure 4.5) than standard GP and BGP on the examined
datasets.

Learning Performance on Training Sets

As shown in Figure 4.4, on most of the ten training sets, both of the two
SRM-driven GP methods have a worse training performance than stan-
dard GP. On seven of the ten training sets, GPOPSRM has much higher
training RMSEs than GP (except for fi, f; and fs). The training advan-
tage of standard GP over GPOPSRM on these seven datasets is significant.
While GPOPSRM has a better training performance (in median) than GP
on f; and fg, and a slightly larger training error on f3, the difference be-
tween the training RMSEs in the two methods is not significant. When
compared with BGP, GPOPSRM has significantly higher RMSEs on six
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training sets, which are fs, f1, f5, fs, f7, and LD50. On fi, it has a smaller
training error than BGP, which is significant. The training RMSEs of BGP
and GPOPSRM on the other three training sets have a similar distribu-
tion, and no significant difference can be found. Compared with GPSRM,
GPOPSRM has smaller training errors on most of the datasets. On four
training sets (f1, f2, f3 and fs), GPOPSRM has significantly smaller train-
ing errors than GPSRM. On the other six datasets, GPOPSRM has a smaller
training RMSE than GPSRM, but the gaps are not significant.

It is not very surprising that standard GP outperforms the two SRM-
driven GP methods on most of the training sets. This is due to the under-
lying objective in the two SRM-driven GP methods, which is to restrict the
model complexity. This restricted objective has a tendency to conflict with
the lower training errors, particularly when over-complex models with
smaller training errors and smoother models with larger training errors
are competing in the GP population. This is also the reason that GPOP-
SRM has a worse learning performance than BGP. The variance error in
BGP is not related to the model complexity directly. Therefore, the conflict
between the variance error and the empirical/training error is not as se-
vere as its counterpart in SRM. This is confirmed by the fact that on three
of these training sets (f2, f¢ and f7), BGP has better training performance
than GP.

Generalisation Performance

Compared with the training performance, we are more interested in the
generalisation performance, which is a more important criterion for the
success of the learnt model. The overall pattern is very clear in Figure 4.5.
Both GPSRM and GPOPSRM have significantly better generalisation per-
formance, i.e. a much smaller RMSE, than GP and BGP on almost all the
ten test sets. This is very different from the pattern in the training sets. As
shown in Figure 4.5, on most of the test sets, GPOPSRM has much lower
median values than GP, which indicates that GPOPSRM has much bet-
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ter generalisation performance than GP. In addition, the smaller whiskers
in the boxes of GPOPSRM represent a much smaller standard deviation
than that of GP, which indicates that GPOPSRM outperforms GP on all
the test sets in a stable way. The Wilcoxon test results confirm that, the
new method can enhance the generalisation of GP significantly on all the
ten datasets.

Compared with BGP, GPOPSRM has much smaller test errors on five of
the eight synthetic datasets (f1, f3, f1, f5, and fs). On the other three syn-
thetic datasets, no significant generalisation difference between the two
methods can be found. GPOPSRM outperforms BGP on the majority of
the test sets, which indicates the advantage of SRM over bootstrap on es-
timating the generalisation ability of GP solutions, particularly when the
number of training instances is small. In this case, the bootstrap sets and
the training set are more likely to have instances in common, thus it is
difficult for bootstrap to provide a good estimation of the generalisation
performance. Compared with BGP on the two real-world datasets with
a larger number of training instances, GPOPSRM has significantly better
generalisation gain on DLBCL, and slightly larger test RMSEs on LD50,
but not significant. These two datasets have a similar number of training
instances (which is 163 in LD50 and 160 in DLBCL), but the number of fea-
tures in DLBCL is much larger than LD50 (i.e. 7399 vs. 626). The available
information in DLBCL is much less than LD50. This makes BGP, which
relies on extracting information from the training set during the evolu-
tionary process, lose the advantage on DLBCL, while it can perform well
on LD50.

Compared with GP and BGP, SRM-driven GP methods generally achieve
a better generalisation performance on most of the test sets, particularly on
the first five synthetic datasets. The target functions of these five datasets
contain trigonometric or exponential functions and have a smaller num-
ber of training instances. So the first five datasets are more difficult than

the other three synthetic datasets. On four of the last five test sets (except
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for LD50), the two SRM-driven GP methods still outperform GP and BGP
in a smooth and significant way.

In terms of the comparison between the two SRM-driven GP methods,
GPOPSRM has a better generalisation performance than GPSRM on most
datasets. GPOPSRM has significantly smaller test RMSEs than GPSRM
on fi, fo, fs and LD50. On the other six test sets, GPOPSRM still out-
performs GPSRM, although not at a significant level. The advantage of
GPOPSRM over GPSRM is due to the non-uniform setting for measuring
VC-dimension of evolved models, which is the major difference between
the two methods.

4.4.2 Evolution of Generalisation Performance

Since the capability of generalisation is the focus of this chapter, we will
examine the generalisation performance in more detail. The evolutionary
plots on the test sets are drawn using the median corresponding test RMSE
over the 100 best-of-generation models. On every generation, the gener-
alisation performance of the best-of-generation model on the test sets is
recorded, but the test sets never take any part in the evolutionary process.

It can be observed that overfitting occurs in GP in most cases. GP has
an increasing generalisation error after decreasing over the first few gen-
erations on most of the test sets, except for fs and fi. On fy, f5, fs, f5 and
[z, it suffers from a serious overfitting, while on the other three datasets, it
slightly overfits over several final generations.

On most of the datasets (i.e. f3, f3, f1, f5 and f7), where GP overfits
severely and quickly, BGP can not eliminate/reduce overfitting effectively
either. This is due to the small number of training instances and/or the
smaller ratio of the number of instances over features in the training sets.
BGP, which relies on the bootstrap of the training instances to estimate the
variance error, fails to generalise beyond the training sets in this case. In
some test sets (i.e. on fi, f3 and f5), it performs even worse than GP.

Different from GP and BGP, the two SRM-driven GP methods gener-
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Figure 4.6: Evolution Plots of the Median RMSE of the Best Individual on
Every Generation on the Test Sets.

alise well on most of the test sets. On f5, f5, f4 and f5, where GP overfits
severely, the two methods can eliminate overfitting and do not have the
overfitting trend. On f7, the two methods can reduce generalisation er-
rors significantly, but still overfit. On the other test sets, where GP does
not overfit or overfits slightly, the two SRM-driven GP methods gener-
alise very well. The pattern of generalisation errors in the evolutionary
process confirms the advantage of SRM principle over the empirical risk
minimisation principle. In other words, guiding the evolutionary process
by the estimated generalisation error typically leads to a better generalisa-
tion ability than by the purely empirical risk. This might be due to the less

greedy nature for chasing a lower training error of SRM-driven GP, which
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encourages a better exploration of the search space.

Considering the comparison between GPSRM and GPOPSRM, on most
of the examined benchmarks, GPOPSRM generalises better than GPSRM.
The improvement on the generalisation performance is brought by the
non-uniform setting in GPOPSRM, which outperforms the uniform set-
ting in GPSRM in two aspects. Firstly, the optimised setting can reduce
the random variability of the measured VC-dimension by removing the
relatively large MSE as defined in Equation (4.10). Secondly, compared
with the uniform setting, the non-uniform setting generally has more ex-
periments on design points having a larger number of instances. This will
decrease the difference between the theoretical and the experimental maxi-
mum deviation of errors. Both the two aspects will lead to a more accurate
VC-dimension of evolved models, therefore will achieve a better general-
isation estimation. The advantage of GPOPSRM confirms the expectation
that a better estimation of the VC-dimension of the evolved models can
lead to a lower generalisation error.

4.4.3 Further Analysis

Further analysis on the evolved models has been approached with respect
to their structures and behaviours. We also have an analysis of the expen-

sive computational cost in SRM-driven GP.

Structural Level

To examine how SRM influences the model complexity in GP, we draw
the evolutionary plots to show the relationship between RMSEs and VC-
dimensions in both GP and the SRM-driven GP. These plots are drawn us-
ing the median RMSE of the best-of-generation programs and the median
VC-dimension of these programs. Note that the best solution is selected
according to the fitness value, i.e. the estimated generalisation error in the
SRM-driven GP and the RMSE in standard GP. So it is possible that the

best solutions in these GP methods are totally different from each other
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from the first generation (e.g. on f1, f2, f3, f4). For standard GP, the
VC-dimension of the best solution is measured and recorded, but it never

plays a role in the GP evolutionary process.

As Figure 4.7 shows, the overall pattern is that the VC-dimension of
the best solutions increases along with the generation, while RMSE keeps
decreasing. As expected, on the ten datasets, standard GP has consistently
larger VC values than the SRM-driven GP on all the datasets. In standard
GP, where there is no any restriction on the model complexity, the VC-
dimension increases very fast. On most generations, it grows linearly. In
some cases, at the final stage of the evolutionary process, the growth of
the VC-dimension does not bring any benefit on the training performance
(this is obvious on F'4 and F'6). SRM-driven GP has a different pattern.

On most of the datasets, the VC-dimension increases slowly. The upward

15

10
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8 10
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trend of the VC-dimension and the downward trend of the RMSE are con-
sistent, i.e. a larger increase in the VC-dimension brings a larger decrease
to the RMSE. This increase in the model-complexity in SRM-driven GP is
effective in reducing the training errors.

Another finding is that when comparing the VC-dimensions of GPSRM
and GPOPSRM, the VC-dimensions in these two methods are slightly dif-
ferent. In some cases, this small difference brings a big difference in RMSE
(e.g. on f1, f2, f3,LD50 and DLBCL). On these datasets, the difference be-
tween the VC-dimension of GPOPSRM and standard GP is large, but the
RMSE difference is small. This indicates that there might exist a certain
threshold for the model complexity. Under this threshold, the increase in
the model complexity brings notable benefits for the training performance.
When the complexity is above the threshold, it is difficult to improve the
performance by increasing the model complexity. We will investigate this

in future work.

Behavioural Level

On the behavioural level, we examine some evolved models in detail and
try to find why the models evolved by GPOPSRM outperform those of the
other three methods. We randomly took two groups (from the 100 groups)
of the best-of-run models on f;, where the four algorithms all have good
generalisation performance. They are displayed in the Evolved Model col-
umn of Table 4.4. To make the behaviour of the evolved models more
obvious, we present the mathematically simplified form of these mod-
els. The original evolved models confirm that SRM-driven GP methods
can evolve more compact models with a simpler structure. The behaviour
of the evolved models can be seen from the simplified form of the mod-
els. The similarity between the simplified models and the target model
(fe = o1 — 23 + 23/2 — x,) indicates why all the four methods can gener-
alise well on fg. It is clear that the example models evolved by GP on fs

are more complex than the target models. The other three methods can
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reduce the model complexity to different levels. Compared with BGP and
GPSRM, GPOPSRM can evolve simpler models. Moreover, these simpler
models generally contain the same components as those in the target func-
tion, such as 2}, 23, and z?. This indicates that the behavioural similarity
between these models and the target models is higher than their counter-
parts in BGP and GPSRM.

Computational Cost for Measuring SRM

The computation cost in both GPSRM and GPOPSRM is much higher than
standard GP, usually more than 10 times higher. Here, we summarise the
additional computational effort needed when introducing SRM into GP
under the uniform setting. Using the non-uniform setting needs more ef-
fort.

The major cost in SRM-driven GP methods is spent on measuring the
VC-dimension of the solutions experimentally. To measure the VC-dimension
of programs, when using the uniform setting, SRM-driven GP needs 102x(3000+600)
additional evaluations than standard GP on every generation. Specifically,
on every generation, the VC-Dimension of 102 individuals (20% of 512 in-
dividuals) needs to be measured. Each individual needs 3000 times train-
ing before obtaining the maximum deviations, and 600 additional evalua-
tions to calculate the maximum deviations of the errors.

The VC-dimension of a model is obtained by fitting the theoretical
maximum deviations to the experimental values on 15 different design
points (i.e. 15 different numbers of instances). On each design point, the
deviation between the errors of the model on 2 datasets (with the same
number of instances) is calculated 20 independent times. To approximate
the maximum deviation, the mini-batch gradient descent is employed to
train the model to gain the largest error on one dataset while achieving
the smallest error on the other dataset. On one combined dataset (i.e. a
combination of the two datasets), a model is trained for 10 steps by gra-

dient descent. On each step, the model is evaluated on a number of in-
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stances (at most 50 instances) to get the gradient. Therefore, to obtain the
maximum deviations of one model, 15 x 20 x (10 + 2) additional evalua-
tions are performed independently. While the 3000(= 15 * 20 % 10) eval-
uations are performed on the subsets, the 600(= 15 * 20 * 2) evaluations
are performed on the whole datasets. These evaluation cost scales with
the size of the models, since the number of instances {ni,ns,...n15} in these
datasets are determined by the number of coefficients p in the program
({n1,n2, ...,n15} = {0.5,0.8,1.0,1.2,2,2.5,3,3.5,5,6.5,8, 10, 15, 20, 30} * p).

On the other hand, as we mentioned above, the model complexity/size
in SRM-driven GP is much smaller than standard GP. This saves some
effort on the evaluation.

Although at a considerable computational cost, the experimental esti-
mation of the VC-dimension provides a practical solution to measure the
model complexity. More importantly, the positive effect of SRM-driven
GP on the generalisation of GP confirms that it is feasible to utilise SRM to
achieve a proper trade-off between model accuracy and complexity. This
trade-off has been desired but is lack of solution in GP community for
long. This is perhaps a very first work to demonstrate that the theory on
VC-dimension is practically useful for GP to improve its generalisation

performance.

4.5 Chapter Summary

This chapter proposed new GP approaches including two methods GP-
SRM and GPOPSRM by incorporating structural risk minimisation (SRM)
into GP to improve the generalisation ability of GP for symbolic regres-
sion. SRM has solid theoretical foundation and is able to provide tight
generalisation error bound for models. This study extended the experimen-
tal method to measure the VC-dimension for regression models and made
SRM available for a mixture of linear and nonlinear regression models in
GP for the first time.
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The results show that SRM-driven GP has an impressive generalisation
gain over standard GP on all the ten examined datasets. Moreover, the bet-
ter generalisation performance in SRM-driven GP than BGP confirms the
advantage of SRM as a framework to estimate generalisation error. This
study also conducts a comparison between GPOPSRM and GPSRM, which
are SRM-driven GP methods using non-uniform and uniform settings, re-
spectively. The results confirm that GPOPSRM outperforms GPSRM in
both the training performance and the generalisation ability on most of
the examined problems. Further analyses of the evolved models show that
GPOPSRM not only evolves more compact models but also approximates
the behaviour of the target functions better than the other methods.

Although taking more computational efforts, the proposed SRM-drive
GP methods represent perhaps the first approach showing that the VC-
dimension is practically useful to measure the complexity of the evolved
programs for estimating the generalisation of GP for symbolic regression.

In this chapter and the previous one (Chapter 3), the proposed methods
eliminate/reduce overfitting thus improve the generalisation of GP. How-
ever, overfitting is not the only reason for poor generalisation in GP. In
scenarios when the generalisation performance of GP is poor but no over-
fitting occurs, the proposed methods might not work. Meanwhile, the pro-
posed methods in Chapters 3 and 4, which are including feature selection
to decrease/eliminate the possibility of incorporating irrelevant/noise fea-
tures into the evolved models and restricting the model complexity, seek
for a better generalisation of GP mainly from the structural aspect. An-
other very important and promising aspect — the behavioural informa-
tion of the evolved models is worth exploring further. Therefore, the next
chapter will propose a new method to improve the generalisation of GP,
which relies on utilising the detailed behavioural information of solutions

instead of putting effect on avoiding overfitting.
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Chapter 5

Angle-driven Geometric Semantic
GP

5.1 Introduction

Geometric semantic genetic programming (GSGP) [126, 156] has recently
been attractive. The geometric semantic operators in GSGP aim to manip-
ulate the semantics of GP solutions/programs. These operators generally
make a bounded semantic impact and generate child programs with sim-
ilar behaviour to their parents. These properties are shown to be highly
related to a notable generalisation improvement in GP. Different from the
previous two chapters (Chapters 3 and 4), where new developments were
made based on the canonical form of GP to avoid overfitting, thus improve
its generalisation, this chapter aims to further explore the geometry of the
semantic space of GP to gain a better generalisation ability, particularly
when the generalisation of the learnt models is poor but no overfitting oc-
curs. In this case, the difference between the training and test errors might
become bigger or remain the same, which is shown in Figure 2.1 (in Chap-
ter 2 Page 19).

143
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5.1.1 Advances and Limitations of GSGP

Semantic Genetic Programming (SGP) [126, 20] is a relatively new vari-
ant of GP that considers the semantic information during the evolutionary
process. In GP, semantics refers to a description of what the GP solution
does [126]. The widely adopted definition of semantics in symbolic re-
gression is that the semantics of a program F' is a vector V, in which the
number of elements is determined by the number of instances n, while the
values of these n elements are the corresponding outputs of F' over the n
instances X, i.e. V(F) = {F(X1), F(X2), ..., F(X,)}. And the n target val-
ues Y form the target semantics 7" = {Y7, Y5, ..., Y, }. More detail on how to
calculate the semantics of a program can be found in Chapter 2 (Page 32).
GSGP [126, 156] is a particular branch of SGP, where the semantics of
a program is considered as a point in an n (n is the number of instances)
dimensional space. The semantics of all the candidate solutions in GSGP
form a semantic space. In the semantic space, the evaluation of any point
is the distance from the target semantics, i.e. the target outputs. There-
fore, the surface of the semantic space takes various conic forms according
to the distance metrics. More importantly, this conic space is unimodal,
i.e. the minimum error can only be obtained at the target point, and no
plateaus exists. Searching in such an unimodal space is easy and promis-
ing in principle. Therefore, GSGP provides a formal theoretical framework for
designing geometric search operators [156]. The framework (the detailed
definition is given in Chapter 2 Page 34) defines the desired semantic prop-
erties of the offspring generated by the geometric semantic operators.
Guided by the theoretical framework in GSGP, a number of implemen-
tation algorithms have been proposed for formalising the geometric prop-
erties and various forms of geometric semantic operators (geometric oper-
ators for short) are presented. In Chapter 2 (Page 58), we have a detailed
review on the exact GSGP [156] and the approximated GSGP methods in-
cluding locally geometric semantic crossover (LGX) [128], approximately

geometric semantic crossover (AGX) [127] and Random Desired Operator
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(RDO)(mutation) [178]. A good generalisation ability has shown in the ex-
isting geometric operators [98, 223], which was justified by their geometric
properties. The geometric crossover performs a more constructive repro-
duction, i.e. more likely to generate child programs with better fitness and
generalisation ability than their parents. More importantly, the geometric
operators generally bring a small semantic variation to the new genera-
tions. This helps GP preserve a high semantic locality, which correlates to
the smoothness of the fitness landscape and in turn influences the perfor-
mance of GP search [125]. High semantic locality does not guarantee to
find good solutions in GP. But it can help GP converge to good solutions
with better learning performance and generalisation ability by improving
the exploitation ability of GP.

Despite the promising performance of GSGP, there exist a number of
major limitations in the existing GSGP methods. The potential ineffec-
tiveness of geometric semantic crossover should be noted. The geometric
crossover can produce child programs that outperform both parents only
when the target semantics are between the semantics of the two parents.
This ineffectiveness holds not only on the training data but also on the test
data. Moreover, the geometric crossover becomes more ineffective along
with the increase of the number of data instances, which leads to higher
dimensional semantic spaces. For geometric semantic mutation, it is diffi-
cult to determine the mutation step and how tight the variation should be
bound. Too large mutation steps might lead to a decrease on the training
error but an increase on the test error when overfitting appears, while too
small mutation steps decrease the exploration/search ability of GP, thus

might lead to underfitting and poor generalisation performance.

5.1.2 Chapter Goals

To address the above issues, the overall goal of this chapter is to develop

new geometric operators for obtaining a greater generalisation improve-
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ment in GSGP for symbolic regression than the existing geometric opera-
tors. The new geometric operators will be designed to further utilise the
geometric properties of the semantic space and incorporate angle-awareness.

Specifically, this work has three objectives as follows:

e Whether and how the proposed geometric operators can improve
the learning performance of GSGP for symbolic regression over the
state-of-the-art GSGP methods, and the canonical GP method,

e Whether and how the proposed geometric operators can further im-
prove the generalisation ability of GP for symbolic regression over
the state-of-the-art GSGP and canonical GP methods (particularly

when no overfitting occurs in the canonical GP), and

e Whether and how the proposed geometric operators influence the
size and interpretability of the evolved programs in GP.

5.1.3 Chapter Organisation

The remainder of this chapter is organised as follows. The second sec-
tion describes the proposed angle-driven GSGP method. The third section
describes the design of the experiments. The results and discussion are
presented in the fourth section. The fifth section provides a summary of
this chapter.

5.2 The Proposed Method

The theoretical framework in GSGP has shown to be positive in enhanc-
ing the generalisation of GP. However, the geometric operators defined by
the framework still have the potential limitation, which restrict their ef-
fectiveness on gaining better generalisation ability. This work attempts to
further explore the geometry of these search operators to make them more
constructive. To this end, we incorporate angle-awareness into GSGP and
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make the angle-awareness as a main force to drive the evolutionary pro-
cess of GSGP. The proposed GSGP method is thus named angle-driven ge-
ometric semantic GP (ADGSGP). The angle-awareness is expected to make
geometric operators more effective and help the evolutionary process con-
verge to the target semantics much more accurately and faster. The follow-
ing subsections will describe the five key components of ADGSGP, which
are the angle-distance, measurement, the angle-awareness driven selec-

tion, crossover and mutation.

5.2.1 Angle-Distance Measurement

Before presenting the details of the proposed method, a brief introduction
on how to measure the angle-distance between the semantics of two indi-
viduals and between two relative semantics is necessary. As the semantics
of individuals in GSGP for symbolic regression is defined as a vector, the
angle-distance between the semantics of two individuals is defined as the
angle between the two vectors. In an n-dimensional space (e.g. the seman-
tic space of a symbolic regression problem with n training instances), the
angle v between two vectors V, and 172 is the arccos of the dot product of

their normalised vectors. The definition is given as follows:

~ = arccos ( ‘_/,1 . ‘_/,2 > (5.1)
[Vall [Vl
where the normalised vector/semantics is
V. T
_)] _ Zz—l Js , je {1’2}
NRE

and v, ; is the ith dimensional value of V.

For the angle between the relative vectors (a relative vector is the vector
between one parent’s semantics and the target semantics), the only change
in the definition is to replace the normalised vectors with the normalised

relative vectors. Given three vectors 171, ‘72 and 17'3, the angle between the
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two relative semantics, (Vs — V;) and (Vs — V4), is defined as:

(Vs —Vi) (V5 —Vh) ) (52)

Yr = arccos = — . —— -
Vs —Vall [V — V2|
where the normalised relative semantics is

(Vs — Vi) _ S0 (vgi — o)
Vs = Vill /i (s — vka)®

vs,; and vy ; are the values of ‘73 and Vk in the ith dimension, respectively.

ke {1,2}

5.2.2 Angle-Driven Selection

We introduce an angle-awareness mating scheme to geometric crossover
in [49] (More details on angle-awareness mating scheme can be seen in
Appendix D). Given a set of candidate parents that have won the tourna-
ment selection, the mating scheme drives geometric crossover operating
on pairs of parents which have the largest angle-distance between the rel-
ative semantics of the parents and the target. The large angle-distance be-
tween these relative semantics helps reduce semantic duplications in the
offspring and increase the effectiveness of crossover. Mating between in-
dividuals having a large angle-distance increases the exploration ability of
GP and makes the evolutionary process converge to the target semantics
much faster. However, the mating scheme has an underlying limitation.
During the evolutionary process, the set of candidate parents that have
won the tournament selection are more and more likely to overlap with
each other in the semantic space. Accordingly, it becomes increasingly
difficult to find parents with a large angle-distance.

To address the limitation of angle-awareness mating scheme and fur-
ther utilise the angle-awareness for selecting better parents, a new selec-
tion operator named angle-driven selection (ADS) is proposed to select pairs
of parents for geometric crossover in ADGSGP. ADS selects a pair of par-
ents that not only have good fitness values, but also are far away from
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each other regarding the angle-distance of their relative semantics (to the
target semantics) in the semantic space.

Introducing angle-awareness into the selection operator and selecting
parents with large angle-distance can potentially bring several benefits to
the evolutionary process. First, they help decrease the semantic dupli-
cates. Since these far away parents generally have different semantics,
and the interval between their semantics, i.e. the segment between the
two parent points in the semantic space, is much larger than that of the
nearby parents. The semantics of the two children, which stand in this
larger segment, are more likely to differ from their parents and from each
other. This can potentially maintain/increase the semantic diversity of
the population. Second, the convex hull of the far-away parents becomes
larger, which will increase the probability of covering the target semantics,
and have a more accurate fitting to the target semantics. The benefits of
a larger angle-distance between parents to the evolutionary process have
been investigated and confirmed in our preliminary work [49]. Compared
with the angle-aware mating scheme in [49], the advantage of ADS is in
increasing the probability of finding parents with a large angle. ADS se-
lects parents directly from the population. These parent pairs satisfy the
angle-distance and fitness requirement simultaneously, while the mating
scheme in [49] selects the satisfied parent pairs from the winners of the
tournament selection. The pseudo code of ADS is shown in Algorithm 3.

5.2.3 Perpendicular Crossover

The desired semantics of the offspring in existing geometric operators is
highly correlated to the semantics of their parents. In exact geometric
crossovet, the semantics of the children stands in the segment of their par-
ents, while in AGX, it is the (approximately) middle point of this segment.
Neither of them has been considered to improve the effectiveness of the

geometric crossover by introducing the geometry of the target semantics.
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Algorithm 3: Angle-Driven Selection

Input :a population of individuals, the target semantics T', the number of pairs
np to be selected, the maximum number of trails nt, the threshold
angle-distance ta

Output: a list [ containing all the selected pairs

for g := 1 to np do Selection loop
Setting the flag of finding good enough pair f = false, clear the candidate list

cl;
Select the first parent p; by tournament selection;
for ¢t := 1 to nt do Selecting the second parent py loop
Select a candidate parent individual ¢p; by tournament selection;
Calculate the angle v, between the relative semantics T — p1 and T — Do
according to Equation (5.2);
if v, > ta then
p2 = cpa, [ = true;
Stop the loop;
else
‘ Put ¢ps into cl;

end

end

if f == false then

Select the maximum angle value from al;

Set ps to be the individual with the largest v, from cl;

end

Put the selected pair p; and p; into
end

return [;

A better geometric crossover can produce offspring that is not only highly
correlated to the parent semantics but also effective in approximating the

target semantics.

To this end, a new crossover operator named perpendicular crossover
(PC) is proposed. PC imposes a more precise semantic requirement than
exact geometric crossover. In this way, it aims to drive the search converg-

ing to the target semantics much faster. Given two parent individuals,
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(a) PC (b) PC
when a<90°_and B.<90° when a>90° and p <90°

(c) PC .
when a<90° and p >90° (d) RsM

Figure 5.1: Offspring generated by PC (a-c) and RSM (d).

PC generates a child point standing on the line crossing the two parents,
which follows the theoretical framework of GSGP. Moreover, the relative
vector given by this child point and the target semantics is perpendicular
to the vector defined by the two parents. Suppose the target semantics is
f, and the semantics of the two parents are ﬁl and ﬁz. As shown in Figure
5.1 (a-c), the three points define a triangle. « refers to the angle between
the relative semantics of (P, — P;) and (T — P,), while £ is its counterpart
to B,. Given T, P,, B, according to Equation (5.2), it is straightforward to
obtain the values of these two angles.

To obtain the semantics of the offspring O, it needs to calculate the
position of O, which is the base of the perpendicular dropped from T to
the relative semantics (151 — ]32). As shown in Figure 5.1(a-c), according

to the values of o and 3, there are three possible positions of 0. In the
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tirst case (as shown in Figure 5.1 (a)), when « and 3 are both smaller than
90 degrees, the offspring O (represented by the green point in the figure)
stands in the segment of (]31 - ]32). In the other two cases where either o
or [ is larger than 90 degrees, the offspring stands along the segments on
the 151 or 152 side.

To calculate the position of 0, i.e. a particular point in the line cross-
ing the two parent points, we adopt the parametric equation, which is the
most versatile equation to define a line in an n-dimensional space, to ex-
press this line. Specifically, suppose that the line is given by two points
P, and P, in an n-dimensional space, the particular point O is defined by

Equations (5.3) - (5.5) (corresponding to Figure 5.1 (a-c)) as follows.

e when O stands on the segment between 151 and ]32, i.e. a <90 and

£ <90
. P —T| - L.
6=p 1B —Tlcosl@) 5 g (5.3)
[ Pr — P2

e when O is outside the segment on the ]31 side, i.e. o > 90

~ = ||IP, =T cos(180 — Lo
6= p, P =Tl -cos( @) (P, — B) (5.4)
[P — P

e when O is outside on the ]32 side,i.e. 5 > 90

= =~ ||P, =T - cos(180 — .-
6= p+ 1Tl oIS -P) (5 _ (55)
[P — P2

where (P} — 131) gives the direction of the line, the elements of which are
defined as {(p21 — p11), (po2 = Pr2)s- - -+ (P2 — pra)}- 1B = Ol and |, — O]
are the relative distance between P, (132) and O.

As the evaluation of a program in GSGP is generally defined as the
distance from the target semantics, when the Euclidean metric is adopted,
the exact geometric crossover produces offspring that is not worse than
the worse parent, but PC guarantees that the offspring program is better
than both of its parents.
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Algorithm 4: Obtaining the Desired Semantics in RSM

Input : Target semantics 7', and the semantics of the parent P.

Output: The desired semantics of the offspring O.

Calculate the relative semantics between the parent and the target semantics
P — T and the norm ||P — T'[|;

Obtain a random real number % € (0, 1);

Calculate O according to O = P + k - (T — P), which will make O stand in the
segment of Pand T;

Return O ;

5.2.4 Random Segment Mutation

Inspired by RDO (Chapter 2 Page 61) and to have a better control of the
semantic variation induced by geometric mutation, we consider to utilise
the target semantics. We propose an angle-driven geometric mutation op-
erator named random segment mutation (RSM). By operating RSM, the de-
sired semantics of the offspring is standing on the segment connecting the
parent and the target point in the semantic space (Figure 5.1 (d)).

The pseudo code of the procedure to obtain the desired semantics in
RSM is shown in Algorithm 4. Given a parent ﬁ, RSM firstly needs to find
the segment between the target semantics 7 and P. Then a random point
is obtained along this segment, which is treated as the desired semantics
of the offspring 0. Given the semantics of the parent P and the target T,
the desired semantics of O is calculated according to Equation (5.6), which
has the same principle as Equations (5.3) - (5.5).

O=P+k-(T—-P)ke(0,1) (5.6)
This requirement on the semantics of the offspring follows the theoreti-
cal requirement in geometric mutation and meanwhile makes the angle
between the relative semantics of (O — P) and (T — O) be 180 degrees.
In this way, RSM has a more precise semantic control on the offspring
than the exact geometric mutation which drives the fitting of the target se-
mantics in the “right” direction. On the other hand, compared with RDO,
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Figure 5.2: Semantic Backpropagation and Semantic Context Replace-

ment.

which only considers the unique target semantics to be the desired seman-
tics for all the offspring, RSM requires varying semantics for the offspring,
which is more likely to maintain the semantic diversity and increase the
exploration ability of GSGP.

5.2.5 Semantic Context Replacement

Once the desired semantics of the offspring in the two geometric opera-
tors is obtained, a further step is to generate offspring to fulfil these se-
mantics. In our preliminary work [52], semantic backpropagation (SB) is
employed, which aims to achieve the desired semantics. In SB, a parent

tree is split into two parts, i.e. a suffix and a prefix by a randomly selected
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Algorithm 5: Semantic Context Replacement
Input :The parent individual P, the maximum depth of the GP individuals M D,

an angle-distance list AL.
Output: A new subtree with the subtarget semantics.
Randomly select a binary operator from the function set to be the root node R, i.e.
select one operator among {+, —, *, %oprotected};
Calculate the subtarget semantics for the remain part of the context T" according to
the inverted execution of R ;

for each ct in the semantic library do
Calculate the angle between ct and T according to Equation (5.1), and put it

into AL;
end
Obtain the tree T'R with the smallest angle value in AL;
Perform a linear scale to TR, and make it as (a + b - TR), where a and b are set
according to Equation (5.7)

node in the tree. Then SB keeps the suffix, which generally contains the
root node of the tree. Meanwhile, SB replaces the prefix expressed by the
subtree rooted at the selected node with a new subtree with the (approx-
imate) subtarget semantics from a semantic library. While the idea of SB
is sensible, it generally produces over-complex models (but these models
are much smaller/simpler than those in exact GSGP), and obtains the sub-
target semantics by propagation backward through these complex trees,
which is still very time consuming. Meanwhile, over-complex models are
often prone to overfit the training set and do not generalise well on the un-
seen data. All these limitations prevent SB from being applied to problems
with a lager semantic space.

To avoid the potential limitations of SB, we further propose a new
method named semantic context replacement (SCR) to fulfil the semantic re-
quirement. The procedures of fulfilling the desired semantics in SB and
SCR are shown in Figure 5.2. The major difference between SCR and SB is
that SB maintains the suffix/context of the parent individual and replaces
the prefix, while SCR aims to provide a better suffix/context, which con-
sists of a new root node (selected from a set of binary operators) and a new
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subtree with subtarget semantics, and preserves the semantics of the prefix
to the children. The motivation of making this change is the importance of
the context of a GP individual to its fitness, which has been confirmed by
previous research [144]. Meanwhile, we expect this small but important
change will bring many benefits during the process of achieving the de-
sired semantics. First, compared with backpropagation in SB to obtain the
desired subtree semantics, SCR is more straightforward and less complex
to calculate the desired semantics for the context. As shown in Figure 5.2,
SB needs several subsequent steps of backpropagation (from the parent of
the selected node to the root node), while SCR only needs one step. Once
the new root node R is decided, SCR inverts the execution of the new root
node R to get the subtarget semantics. The rules for the inverted opera-
tors are very simple, i.e. + and — , and * and %p are inverted with each
other. Furthermore, replacing the context with a newly constructed one,
which is generally smaller than the original one, can potentially decrease
the complexity of the offspring programs.

The pseudo code of SCR is shown in Algorithm 5. Different from SB,
which searches for a tree that has the closest distance with the subtarget
semantics from the semantic library, SCR considers the angle-distance be-
tween the semantics of candidate trees (according to Equation (5.1)) and
the subtarget semantics. SCR selects the tree T'R having the smallest rel-
ative angle-distance. In this chapter, a dynamic semantic library is em-
ployed, which contains all the semantically unique subtrees collected from
all the individuals in the current generation. It needs to be maintained and

updated at every generation.

We hypothesise that the subtree with the shortest angle-distance to the
desired semantics is most likely to have the desired structure. Then per-
forming a linear scaling will help find better coefficients to the selected
subtree so that it can fit the subtarget semantics better. Compared with
obtaining the subtree which has the closest distance with the subtarget se-

mantics in SB, SCR is expected to provide a better context for the child
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programs that will not only fit the target semantics better but also be po-
tentially resistant to overfitting. Therefore, after finding T'R, a linear scal-
ing [116] is performed to T'R, i.e. inducing two coefficients a and b to T'R
to scale it to (a + b - TR), where a and b are the intercept and slope of the
linear scaling, respectively. According to [116], the values of a and b are
defined as follows:

2 i [(ti = B)(cti — ct)]
it —ct)?]

where ¢; is the value of the subtarget semantics in the ith dimension, ¢ is

b= a=t—b-ct (5.7)

the mean of all the ¢; values, ct; is the value of the semantics of T'R in the

ith dimension, and ct is the mean value of all ct;.

5.3 [Experiment Design

To investigate and confirm the effectiveness of the proposed ADGSGP
method, a set of experiments have been conducted to compare ADGSGP
with two state-of-the-art GSGP methods and standard GP. The three bench-
mark GP methods are:

o GSGP refers to the exact GSGP method which uses the exact geo-
metric crossover and geometric mutation. The improved implemen-
tation of GSGP [223] is used in the experiments.

o AGSGP stands for the approximate GSGP method [178] which em-
ploys two state-of-the-art geometric operators: AGX and RDO. Both

of these two operators are based on SB.

e Standard GP, which employs standard crossover and mutation, is

also used as a baseline for comparison.

All the four GP methods are implemented under the GP framework
provided by Distributed Evolutionary Algorithms in Python (DEAP)[82].
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Table 5.1: Synthetic Datasets.

The training samples are drawn regularly from the interval range, and

the test samples are drawn randomly within the same interval.
#Points

(Training, Test)

Problem Function Range

Nguyen-7 | log(z + 1) + log(x? + 1) [0,2] (20, 100)
Keijzer-11 | (z*y) + sin((z — 1)« (y — 1)) | [-1,1] (25, 100)
Keijzer-14 | 8.0/(2 + 22 + y?) [-1,1] | (25,100)

[

Pagiel T e -5,5] | (625, 10000)
Table 5.2: Real-World Problems
#Instances
Name #Features —
Total ‘ Training ‘ Test
BHouse 13 506 354 152
Concrete 9 1030 712 309
Wine 12 1402 980 422
DLBCL 7399 240 160 80

5.3.1 Benchmark Problems

Following previous research on geometric operators, we investigate the
performance of the GP methods on a set of synthetic datasets. We test the
GP methods on four synthetic datasets given in [147]. The target func-
tions and sampling strategies are shown in Table 5.1. Furthermore, we
are also interested in testing the proposed method on real-world datasets,
which have not been widely used in research on GSGP. As shown in Ta-
ble 5.2, compared with the synthetic datasets, these real-world datasets
have a much larger number of features/variables and instances, which
means larger semantic spaces, and typically contain noise. Implementing
the geometry of the geometric operators and approximating target seman-
tics in these larger semantic spaces are clearly more difficult. The first
three datasets are taken from UCI [138]. The Housing Data Set (BHouse),

which concerns housing values in suburbs of Boston. The Concrete Com-
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pressive Strength Data Set (Concrete) is to model the concrete compressive
strength. The third one is the (red) Wine Quality Data Set (Wine), the task
of which is to predict the quality of the wine. The fourth dataset is the
Diffuse Large-B-Cell Lymphoma (DLBCL)[191], which has been used in
previous chapters. The training set and the test set are given in DLBCL,
while each of the other three datasets is split randomly with 70% of the
data for training and the rest 30% for test in each GP run, which is the
same as previous chapters. The splitting is different in each independent
GP run, but is the same for the four GP methods in one run.

5.3.2 Parameter Settings

The parameter settings for all the four GP methods are summarised in Ta-
ble D.2. Most of these parameters are common settings in GP and GSGP
[124, 156]. The crossover and mutation rates in GP and GSGP are different.
Standard GP generally has a higher crossover probability, since crossover
is considered to be much more important than mutation for the evolution-
ary process. A high mutation rate is desired in GSGP methods to promote
the search in semantic spaces more efficiently. Exact GSGP does not have
a depth limitation. For the other three GP methods, the maximum tree
depth is 17. Root mean square error (RMSE) is adopted as the fitness func-
tion. For all the four GP methods, at every generation, the RMSE of the
best-of-generation model on the training set and its corresponding test er-
ror are recorded. Each GP method has been conducted for 50 independent
runs on each problem.

5.4 Results and Discussions

This section compares and discusses the results obtained by the four GP
methods. The comparisons will be presented in terms of the training per-

formance, the generalisation ability and the size of the evolved programs
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Table 5.3: Parameter Settings for GP Runs

Parameter ‘ Value

Population Size 100

Maximal Number of Generations 100

Crossover and Mutation Rates GP(0.9 and 0.1) and GSGPs (0.5 and 0.5)
Elitism 1

Maximum Tree Depth 17

Initialisation Ramped half-and-half
Initialisation Depth 2-6

Function Set +, —, %, Y%protected

Fitness Function Root Mean Square Error (RMSE)
Crossover and Mutation Node Selection | Uniform depth node selector
Mutation Step for Exact GSGP 1

in the GP methods. The computational cost will also be shown. The main
comparison is conducted between GSGP methods. The non-parametric
statistical significance test — Wilcoxon test, with a significance level of
0.05, is conducted to compare the training RMSEs and test RMSEs of the
best-of-run models. Two sets of statistical significance tests have been con-
ducted. One is between GP and the three GSGP methods. The other is
among the three GSGP methods, i.e. comparing ADGSGP with the other
two GSGP methods.

5.4.1 Overall Results

The distribution of RMSEs obtained by the best-of-run programs on the
training sets and their corresponding test RMSEs are shown in Figure 5.3.
Each method has two boxes on each problem. Red and blue boxes are
for the training set and the test set, respectively. Note that on BHouse
and Wine the interquartile range of the box for the test error (in blue) of
AGSGP is too large to display. For a better comparison, they were cut
off. Table 5.4 presents the results of the two sets of statistical significance
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Figure 5.3: Distribution of the Training errors and the Corresponding Test
Errors of the Best-of-run Models.

tests. While “—" indicates that ADGSGP (or GP) performs significantly
better than the compared method, “+” means that ADGSGP (or GP) is
significantly worse, and “=" means no significant difference can be found.

On three of the four synthetic datasets, except for Keijzer14, the three
GSGP methods generally have much lower RMSEs than standard GP on
both the training sets and the test sets. On Keijzer14, the exact GSGP
method produces significantly higher training and test RMSEs than stan-
dard GP. The other two GSGP methods significantly outperform standard
GP in terms of both the learning ability and generalisation performance.
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Table 5.4: Results of Statistical Significance Tests.

GP(training, test) ADGSGP(training, test)
Datasets
GSGP | AGSGP | ADGSGP || GSGP | AGSGP | GP

Nguyen-7 | (+,4) | (+,+) | (1) (=) | == | (=)
Keijzer-11 | (+,+) | (+,+) +,+) (=, =) | (=) (=, -)
Keijzer-14 | (—, =) | (+,4) | (1) (=) | (== | (=)
Pagiel (++) | (++) | (1) (=) | (=-) | (=)
BHouse | (—,=) | (+ ) | (+ ) (=) |- | (=)
Concrete | (—, ) | (+,+) | (+,+) (=) | =) | (=)
Wine ++H |- | ) =)&) | =)
DLBCL (++) | =) |+ +) =-)](=-) | (=)

On all the synthetic datasets, ADGSGP significantly outperforms exact
GSGP on both the learning and generalisation performance. ADGSGP
achieves significantly smaller training errors on Pagiel and Keijzer14 than
AGSGP, and no significant difference on their training performances was
found on Nguyen? and Keijzer11l. More importantly, ADGSGP has lower
test errors than AGSGP on all the synthetic datasets, where on three of the
four test sets (except for Nguyen-7) the advantage is significant. Mean-
while, ADGSGP has more robust performance than the other two GSGP
methods in both the learning and generalisation performance, which is
indicated by the shorter whiskers in the boxplots. Overall, the newly
proposed method ADGSGP is undoubtedly the winner on the synthetic
datasets.

The pattern on the real-world datasets is not very similar to that on
the synthetic datasets. The superiority of GSGP methods over standard
GP is not as obvious as on the synthetic datasets, particularly in GSGP
and AGSGP. GSGP performs worse than standard GP on Concrete re-
garding both the train and the test performance. On BHouse, GSGP also
obtains much higher training errors than standard GP while no signif-
icant difference on their test performances. On Wine and DLBCL, the
advantage of GSGP over standard GP is significant on both the training
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sets and the test sets. On the four real-world problems, AGSGP obtains
significantly better training performance than standard GP. However, it
has a significantly worse generalisation performance than GP on two test
sets (BHouse and Wine), while having comparable generalisation perfor-
mance with GP on DLBCL, and only generalising better than standard GP
on Concrete. Different from the two counterparts, our proposed method
ADGSGP achieves significantly smaller RMSEs than standard GP on all
the training sets and the test sets of the real-world problems.

Regarding the comparison between the three GSGP methods on the
real-world datasets, the superiority of AGSGP on the learning performance
clearly contrasts with its poor generalisation performance on the real-world
problems, which indicates the occurrence of overfitting. ADGSGP is not
always the winner of the training performance, but it outperforms the
other two GSGP methods on the generalisation performance in all cases.
ADGSGP is the only GSGP method that consistently outperforms stan-
dard GP in all the examined datasets. The notably shorter whiskers in the
boxplots of ADGSGP show the robustness of the performance. Statisti-
cal significance tests confirm that ADGSGP generalises the best on all the
real-world datasets among all the four GP methods.

To sum up, the overall pattern is that the newly proposed method
ADGSGP has comparable training performance to AGSGP, and much bet-
ter than standard GP and GSGP. More importantly, regarding the gener-
alisation ability, ADGSGP is undoubtedly the winner among the four GP
methods. It performs significantly better than all the other three GP meth-
ods in all cases except for one case (Nguyen-7), where it performs similar
to AGSGP.

5.4.2 Learning performance

To have a closer view on the training performance, here the evolution-

ary training plots are presented (as shown in Figure 5.4) and analysed in
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detail. These plots are drawn using the median RMSEs obtained by the
best-of-generation programs on every generation.

As seen from these evolutionary training plots, AGSGP and ADGSGP
are generally the most effective methods in fitting the training data. The
progress of the evolution is due to the percentage of effective breeding,
i.e. the number of children which have better learning performance than
their parents, has increased. Among all the training sets, ADGSGP con-
sistently achieves a faster decrease in the training error, which indicates
that it learns much faster than GSGP and AGSGP. The geometry property
of PC drives ADGSGP converging much faster than the other three GP
methods in the early phase of the evolutionary process. Along with the
evolutionary process, it becomes more difficult for ADGSGP to get closer
to the target semantics, which is indicated by the very slow decrease in
the training errors after the first around 20 generations. This might be
due to the difficulty in finding pairs of parents that are far away regard-
ing their angle-distance, which limits the effectiveness of the new geo-
metric crossover. In addition, this is an unavoidable phenomenon caused
by the geometries of PC and RSM. When the whole population becomes
closer to the target semantics, the distance between the parent(s) and the
target semantics becomes smaller. The smaller relative distance leads to
a smaller movement towards the target semantics. AGSGP suffers from
the same difficulty as ADGSGP in most training sets. However, the case
is different on the three real-world datasets (i.e. BHouse, Concrete, and
Wine). These datasets have a much higher number of training instances
than the other five training sets. So correspondingly their semantic spaces
are much larger in dimension than the other datasets. Approximating the
target semantics is more difficult in this scenario. RDO in AGSGP, which
aims to produce offspring highly correlated with the target semantics and
approximates the target semantics greedily, is able to fit the target seman-
tics much better than the other GP methods in this scenario. On other

datasets, this advantage is not very clear. Exact GSGP generally learns
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Figure 5.4: Evolutionary Plots on the Training Median RMSEs of the Best-
of-Generation Models.

much slower and produces much higher training errors than AGSGP and
ADGSGP over generations. Particularly, GSGP fits the target semantics
much slower than ADGSGP on almost all the training sets. On DLBCL,
GSGP outperforms AGSGP and standard GP from the very early several

generations, and this advantage increases over generations.

To summarise, introducing the semantic information into the evolu-
tionary process does not always bring improvement, which is indicated
by the much slower learning speed of exact GSGP than that of standard
GP on BHouse, Concrete and Keijzerl4. How to utilise the semantic in-
formation is an important factor that influences the learning speed and
learning performance. ADGSGP equipped with angle-awareness, which
explores the geometry properties of the search operators in the semantic
space, generally fits the target semantics much faster and more accurately
than GP and exact GSGP.
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5.4.3 Generalisation Performance

Compared with the training performance, we are more interested in the
generalisation ability of the GP methods. Figure 5.5 shows the evolu-
tionary plots on the median generalisation errors of the best-of-generation
models on the test sets. As shown in Figure 5.5, GSGP continues the ad-
vantage over standard GP on five of the eight test sets. While on BHouse
and Concrete, where GSGP has worse training performance, it also gen-
eralises worse than standard GP. On BHouse, along with the increase of
the generations, the difference between the generalisation performance of
GSGP and standard GP has decreased. At the end of the evolutionary
process, they have almost the same generalisation errors.

For AGSGP and ADGSGP, on the synthetic test sets, the overall pattern
is very similar to that on the training sets. Both of them can generalise
well on these test sets. Meanwhile, ADGSGP generalises the best on four
test sets. It generalises significantly better than GP and GSGP on all these
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test sets, and significantly better than AGSGP on three test sets. However,
for AGSGP, the overall pattern on the test sets of the real-world datasets is
very different from that on the training sets. AGSGP loses the advantage
and is difficult to generalise well on the unseen data of the four real-world
problems. In AGSGP, overfitting happens on all the four problems, where
a severe overfitting occurs on BHouse and Wine, and a weak overfitting
appears on DLBCL and Concrete. Unlike AGSGP, the proposed ADGSGP
method can generalise well and resist to overfitting on all the test sets.
A possible reason is, compared with RDO in AGSGP, RSM in ADGSGP
produces offspring highly correlated with the parent. Along with the evo-
lutionary process, when both AGX in AGSGP and PC in ADGSGP have
difficulties to bring further progress to the search process, RSM brings a
smaller variation to the offspring than RDO, so it has the ability to limit
the deterioration of the generalisation error. In other words, the less greed
of RSM approximating the target semantics drives ADGSGP to generalise
well and resist overfitting. This can be shown by the fact that the stage
where AGSGP advances ADGSGP on the training set is right at the time
when overfitting happens in AGSGP. Another possible reason is from SCR
in our new method to fulfil the semantic requirement. Compared with SB
in AGSGP, SCR induces simpler programs that are more likely to gener-
alise better on the unseen data. This will be confirmed later in the analysis

of the evolved programs in Section 5.5.

In general, on most of the test sets, the three GSGP methods generalise
much better than standard GP. It confirms that the geometric properties of
the geometric operators can hold on the unseen data, i.e. the generalisa-
tion error committed by the child program might be bounded by the worst
(or best for ADGSGP) parents. It is extremely the case for the synthetic
datasets, where the problems are easier than the real-world problems with
a large number of instances to some extent. These smaller semantic spaces
have less or no noise, so the pattern of the target semantics in the training

set can represent the actual pattern of the problem. This also explains why
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the overall pattern on the test sets of the synthetic datasets and DLBCL
(where the number of instance is much smaller than other three real-world
datasets) is almost the same with that on the training sets.

On the other hand, the geometric operators in GSGP may also bring
negative variations to GP individuals, which might increase the general-
isation errors of the offspring. When the majority of the variations pro-
duced by these operators are negative, overfitting occurs. Compared with
RDO, the variations imposed to the parents are bounded and smaller in
RSM. In this way, RSM can make the deterioration (increase) of the gener-
alisation error to be slower and consequently lead to a better generalisa-
tion in ADGSGP.

5.4.4 Comparisons of Program Size and Computational Time

Table D.3 shows the mean and minimum program sizes in terms of the
number of nodes in the best-of-run GP individuals. The computational
costs are also presented in the form of the average and minimum compu-
tation time (in seconds) of one GP run in the evolutionary training process,
where N/ A means that we did not consider the computational cost of ex-
act GSGP, since the implementation method of GSGP does not generate
the GP trees explicitly.

It is clearly shown in Table D.3 that exact GSGP and AGSGP have no-
tably larger program sizes than standard GP on most of the datasets. Dif-
ferent from the other three GP methods, exact GSGP does not have a limit
on the maximum depth of the GP tree. The exact geometric operators lead
to a exponential or linear growth on the size of the offspring. So it has a
much larger program size than the other three GP methods. On the real-
world problems, the mean program sizes of exact GSGP are in millions. In
this case, the evolved programs are impossible to be interpreted by human
experts and lose the advantage of GP over the traditional machine learn-

ing algorithms such as support vector regression [71], which performs a
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Table 5.5: Program Size and Computational Time.

Program size (Node)

Time(in second)

Benchmarks Method — —
Mean(Minimum) Mean(Minimum)
GP 142.36(11) 47.0(18.28)
GSGP 1.46E17(1.04E10) N/A
BHouse
AGSGP 1029.68(331) 2237.04(1512.26)
ADGSGP 225.4(97) 614.84(384.2)
GP 103.36(39) 44.07(29.06)
Wi GSGP 2.89E21(2.78E19) N/A
ine
AGSGP 1222.71(443) 5052.86(4298.66)
ADGSGP 258.36(129) 673.58(411.79)
GP 54.6(1) 21.51(3.48)
GSGP 4.56E24(4.85E23) N/A
DLBCL
AGSGP 175.04(1) 550.08(97.98)
ADGSGP 150.52(75) 440.15(306.91)
GP 146.24(63) 54.1(28.62)
GSGP 3.89E12(1.85E8) N/A
Concrete
AGSGP 1191.4(637) 4342.31(3636.02)
ADGSGP 196.88(107) 628.43(485.42)
GP 157.32(35) 53.8(26.34)
GSGP 2.51E23(8.2E13) N/A
Nguyen?
AGSGP 1542.88(275) 963.21(332.65)
ADGSGP 317.2(111) 215.66(140.18)
GP 254.28(143) 82.36(46.67)
. GSGP 7.85E23(6.8E21) N/A
Keijzer11
AGSGP 946.08(489) 767.76(492.48)
ADGSGP 382.68(187) 322.62(203.3)
GP 265.75(175) 91.6(52.85)
. GSGP 3.08E20(1.12E17) N/A
Keijzer14
AGSGP 592.24(175) 636.12(207.32)
ADGSGP 195.0(33) 212.05(84.62)
GP 159.92(47) 59.52(29.47)
Pagiel GSGP 1.83E25(4.25E22) N/A
agie
& AGSGP 1238.92(1) 4482.86(168.99)
ADGSGP 243.0(99) 370.81(273.0)
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black-box regression. In AGSGP, the size of the evolved programs is 3 to
10 times larger than their counterparts in standard GP. This might be due
to the fact that SB is prone to find more complex trees with the desired
(or approximate) semantics to replace the original prefix of the tree. The
complexity difference between the new subtree and the original prefix ac-
cumulates over generations, which will lead to a much larger GP individ-
ual. As expected, ADGSGP has a much smaller program size than AGSGP
in all the examined cases. This confirms our hypothesis that replacing the
context of the tree by SCR has a benefit over SB in restricting the increase
of the program size. On the other hand, the average size of the evolved
programs in ADGSGP is 1.3 to around 3 times larger than standard GP.
On Keijzer14, it even has a smaller mean program size than standard GP.
This indicates that ADGSGP will not decrease the interpretability of GP
programs too much and the increase of the computation cost is also af-
fordable. More importantly, the program simplification methods [247, 237]
might work for ADGSGP (which is not so easy for oversize programs in
AGSGP). This will help address the open issue of over-grown program
size in GSGP methods. Another pattern in the program size is that, com-
pared with GP and AGSGP, the size of the programs in ADGSGP is more
stable. This is indicated by a much smaller difference between the mean
and the minimum program size. ADGSGP does not produce programs

with extremely large /small size.

An interesting phenomenon is that these oversize/complex programs
in GSGP methods generally generalise better than their counterparts in
standard GP on unseen data. This conflicts with the widely accepted the-
ories, such as the Minimum Description Length principle [189] and Oc-
cam’s razor [214], which claim that complex programs are difficult to gen-
eralise well. A possible explanation on this phenomenon is that not only
the size/complexity of the programs matters, but also the way how they
are generated is also important. These theories might not hold among
models that are produced in different manners. Previous research consid-
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ers these oversize programs as ensembles of programs [98]. They claimed
that there might exist some overfitted subprograms in the final evolved
programs (the same as in an ensemble). However, their contribution to an
increased generalisation error can be reduced/eliminated by their coun-

terparts in the programs that generalise well.

Considering the comparison of the computational cost between stan-
dard GP, AGSGP and ADGSGP, AGSGP and ADGSGP have much more
expensive computational cost than standard GP. The maintenance and the
search procedure for the semantic library in AGSGP and ADGSGP take a
large amount of time. In addition, along with the growth of the program
size, the procedure of calculating the desired semantics in SB in AGSGP
and SCR in ADGSGP becomes more costly, particularly in SB which needs
to propagate backward from the root node to the selected node in the tree.
In the worst case, it needs to backpropagate through almost the whole tree.
In SCR, only one step propagation is needed after the root node of the con-
text is decided. This explains why the computational cost in ADGSGP is
much smaller than that in AGSGP. Another important reason is the much
smaller program size in ADGSGP than AGSGP. ADGSGP needs additional
expense for the angle-awareness in selection and breeding process. How-
ever, compared with the much higher cost in searching for the desired
contexts (or the desired subtree in AGSGP), this additional cost can be ne-
glected.

5.4.5 Analysis of Evolved Models

A further examination of the models evolved by the three GP methods
is conducted (since the models evolved by GSGP are too large to show
and analyse, they are omitted from the analysis). We randomly pick two
examples of the evolved models from the 50 GP runs on Keijzer14, where
the target function is known, and both AGSGP and ADGSGP achieve good

learning and generalisation performance. To make the analysis clearer, we
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also present the mathematically simplified form of these models. The two
forms of models are displayed in the second and the third columns of Table

5.6, respectively.

Table 5.6: Examples of GP Individuals on Keijzer14: 8.0/(2 + z* + y?)

Method ‘ Evolved Model ‘ Simplified Model
GP +(%o(+(Yo(+(%(*(X, +(x, +(X, X)), -C+H-(F+EF, ), ), V), %y, | (6% +zy?) (z+223y3 +
+05 YY) V) HBCEY ), ¥), CECEEE ), Y, - | 20N @R + vt + 2?) +
(%06, +(y, %), %), %, +-(, 7), %)), (-7, %(-(%(x, x), -(x, X)), | 2z*y®)/(x(3y> -
V), +(+#(y, (=%, ¥), X)), *((%(y, y), *(x, y), +(y, YD), %(y, 1)(2y + 228%y3 +
Y, Y0, Y)Y, S, Y), %y, y), +C(y, ), %y, S+ (Y, | @)yt + oy +
Y)Y YN, Y, +(y %(*(+(X, X), X), -(x, Y, +H%(*(X, ), | #2))+((3z? (22 -
“(+H( %%y, +(¥, V), ¥ ), *FHECE, X), *(X, X)), %y X)), ¥), | ¥2)/(wsy + 2% —
Yo(+(%(*(x, ), -(*(x, %(y X)), Y)), H%o(*(x, X), *(*(+(y, %(%(*- | =) + (y(z — v)(2y* +
(%, %), %), *(%, ¥)), +(y, YD), ¥), Y, YD), YN, *(+(y, %(y, X)), y))), y + 3)/(1 + y) +
CECEEEG YL Y)Y %y ), H%B(H((%(X, X), X), %), | (doy(z — y)/day? —
(+H%(y, ¥), %y, *+%(y, ¥), ¥) Y, V), *(+(%(%(y, ¥), y), | 287y — 2z — wy +
%(y, *(+(y, ¥), Y))) ))) 2y% — 4a?y3)) /(222 +
zy — y?)(3y* — 1)) +
1.5z(x — 1)(y + 1) +
3y(y+2))/(1.5y(y+2))
AGSGP | %(%(3.96, ), -(*(%(x, +(*(-(%(%(x, -(*(*(x, +(*(%(y, ), %(x, | «2/((x/((«3/(2.33 —
%(-(2.33, y), X)), X)), %Y, Y)), Y), (v X), +(x, X)), %lx, | y) + 2 — y)(wy —
%o(+CF(-(+(*(y, x), %(x, X)), %(x, %(y, %(x, Y)))), YC*(*(-(x, y), | 2z)) — (zzy(2.178332 —
+(y, X)), X), -(+(-(x, y), *(%(x, 0.459), x)), ), *(x, *C(x, %), | ¥)/((z® + y* -
X)), %%, Y))), +((%(%(*(%(+(x, +(5.107e-15, %(*(1.156, ), | z2)(«® — xy?) +
%(%(X, ), X)), %(%(1.108, *(x, y)), %(x, ), +(*(x, ¥), *(y, | #*y?(2.178z% — y))) *
x))), *(-(+(x, X), *(X, x)), *(+(+(x, 0.999), *(x, X)), X))), +(*(-(+(*(y, (1.805z4y(1.1561y +
x), B(*-(+(y, y), -y, ¥)), *(+(y, y), *(x, Y, -(-(*(x, x), *(y, ), | = +
%(%(y, ¥), (% X)), %(X, %(y, %o(x, Y)))), %(*(-(*(x, x), *(y, y)), | 5.107E~1%)/(z3(a? —
X), *(-(%(x, -(*(y, %), +(x, X)), -(-(*(y, 3.291), +(y, X)), %(+(y, ¥), | v*)/(W*(1/(y — 2) —
%(X, X)))), %(-(+(%(y, X), %(y, Y)), %o(-(¥, X), X)), *(%(%(y, 0.5), | 0.291y+z)*(z+y+1)+
(%, X)), +(%(x, X), +(x, Y))))), *(x, +(5.107e-15, x)))), X), X)), | (z? + 5.107e"152))) +
*(x, Yo%, (*(*(x, X), %(y, Y)), %(y, *(x, *(*(%(x, 1.663), +(y, y)), | =) + 2z'y/(2z'y —
YIN)), %), -0.232)) 1.663)) + 0.232
ADGSGP| *(*(%(106.146, *(3.893, +(-0.004, *(106.653, *(0.069, +(0.066, | 7.99/(2 + z2 + y?) *
*(4.357, +(0.123, *(0.115, +(0.368, *(0.483, +(0.581, *(1.914, | (124.49/(2+z2 +¢?)—
+(*(3, ), 50 NMMM)N)), +(-0.027, *(15.572, %(0.066, *(0.258, | 0.027) * (1/(0.0175 +
*(0.069, +(0.066, *(4.357, +(0.123, *(0.115, +(0.368, *(0.483, | 0.004/(z2 + 32)))
+(0.581, *(1.914, +(*(y, y), *(x, )))MNN)), *(25.004, %(0.04,
#(0.011, *(1.064, +(0.341, *(0.603, %(+(0.581, *(1.914, +(*(y, y),
*(x, x)))), +(*(y, ), *(x, X))))))))

Continued on next page
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Table 5.6 — continued from previous page
Method ‘ Evolved Model ‘ Simplified Model

GP (H((-((+H(B(-(%((+(+(+(x, X), X), Wo(%(+(X, %(+(y, ), *@¥, | (¥*  + =?  +
X)), X), W 4@ YN, X W%+, Blx, Xy, %y, X)), %), | 3z)/y + ((2z%y +
(%, (%, X), +%, X)), -(+H%(-(%(*(+(x, X), X), ), X), ¥), | z+y)/ (> (2a3y +y? +
%(x, %(x, +(-(x, +(X, *(%, Y)), -, +(-(x, ), ), B¢y, | 23)*(z(1—y®)(2z+
- YD), ~(%(%(x, X), *(y, *(y, X)), %(y, +(y, *%(x, X), YD), | y —a* — xy))/(2aty —
YN, Po(So(*(+(-(+(X, y), +(-(-(x, ¥), %y, X)), %ox, *(7, YD), %), | (1 —y3) 2z +y —x? —
“(%(%(x, %), *(y, <0< ), ), X, +(x, X)), ¥), *x +H%(y, X), | zy)((2z+y—227)*(1—
V), -(H%((B((+, ¥), %), X), ¥), %), %((+(-(+(x, y), *(+(y, | ¥2(z+y))/(zy+y?) -
X), X)), X), ~(%(%(x, X), *(y, %y, Y, ¥)) X)), X), b (+-(+(x, | 22))) — = + y/(2z +
¥), *(+(x, X), X)), X), -(%(%(X, X), *(¥, +(, +0 D), Y)), ), *@, | y) + 22

X)), ¥), (%, +(x, %(y, *(+(+(x, ), X), X)), %(%(*(+(-(+(x, y),
(0%, y), Yoy, X)), %(x, X)), X), (%(%(X, y), *(¥, -(x, *(+(X, X),
X)), %y, ¥))), X), +(X, X)))

AGSGP | +(-(-(x, %(+(-0.007, y), *(y, X)), -(-(+(*(x, x), X), %(+(0.003, y), | (4.391z

*(y, X)), %(%(0.276, *(x, %(%o(%o(+(%(%(+(x, %(%(+(x, %(x, | 4.358y — 3zty
V), 25 Y0 YD), -G (%l X, +-(x, ), X)), X)), %(*(x, x), | 2.722%y?)/(zy(3z
(3, Y))), +(X, %(%(+(x, X), *(¥, X)), %(1.018, *(y, y))))), %(1.018, | 2.72y)) —((0.48x(y
“(%o(+(y, ), -0 +(06, ¥), *( X)), Bolx, %0, %), *y, y)), | D(y® — =2)(2z2y
B¢y %), -0 YD) X), YD, +H %oy, *C4(y, *(%(y, X), +(x, ), | zy? — 23))/ (3 (*
X)), %(+(y, ¥), %(y, X)), %(1.018, *(%(%(+(y, ¥), *+¥, ¥), | y+1+zy?(y® — 2?)
%(y, YN, X), %(%o(+(¥, ¥), X), X)), Y, *(%e(+(y, y), *(%(y, | 1.96y3(y* — =z?)) «
X), +(¥, Y, O CCCCEY, ¥), @ ), x B(%(+x, | (4x?y + (y 4 1)(22%y —
x), 1481), %(x, %(1.29, )))), ), ¥), ¥), ¥), YD), %(3.523, | ay? —a?)))

YB(*(%(y, *(y, ), %(+(y, ¥), *(y, Y)), *(%(%(%(+(x, x), 1.481),
%(0.736, y)), *(%(%(%o(%(+(X, X), %(*(%(%(+(X, x), 1.481), %(x,
%(y, X)), X), *CC(, y), X, X)), %(%e(-(+(x, x), -(%(y, 0.368),
X)), *¢-¢ y), *C x), Y, (Y, ¥), %+, y), & YO,
Yo(*(X, X), *(%(+(y, y), -C((+(x, X), (y, X)), %(x, %(*(x, X), *(y,
Y, Do (-(+(x, X), +(y, X)), X), Y)), YN, ¥), ¥), %e(%o(X, X), +(y,
Y, Yo(%o(%(+(x, X), -(*(y, *(%(y, X), +(X, X))), X)), %(*(X, X),
*iy, YD), Y))))

ADGSGP| %(8543.368, +(-0.003, *(2290.162, *(0.004, +(0.007, *(8543.193, | 8.11/(2.01 + 22 + y?)
*(0.062, +(0.039, *(1.649, +(-0.257, *(101.807, +(-0.056, *(0.019,
+(3.206, *(0.069, +(*(y, y), *(x X))

oA+

It is clear that the evolved models in ADGSGP are much simpler than
those in AGSGP. The difference between the simplified models, which in-
dicate the behaviour of the evolved models, is even more apparent. In the
two examples, the functions/models in ADGSGP not only have a higher
smoothness than their counterparts in standard GP and AGSGP, but also
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are much more similar to the target functions (ADGSGP actually finds the
most important building block 22+ y* on Keijzer14, and the only difference
from the target function is in the coefficients of the models). The difference
on the simplified models of AGSGP and ADGSGP also indicates that the
reasons why the two GSGP methods can outperform standard GP might
be different. The advantage of AGSGP over standard GP might come from
the same strength as ensemble learning, while ADGSGP is able to find the
target model, which not only has better learning performance but also can

generalise very well.

5.5 Further Analysis

To further investigate the effect of the three proposed angle-driven oper-
ators, PC with standard tournament selection (PC-SS), PC with the pro-
posed ADS (PC), and RSM are tested individually. They are compared
with exact GSGP and AGSGP. Therefore, in this section, the tested GSGP
methods are: GSGP, AGSGP, PC-SS, PC, and RSM. The evolutionary plots
of these five methods on the training and test RMSEs are shown in Figure
5.6 and 5.7, respectively

As shown in Figure 5.6, on the four synthetic datasets, PC-SS, PC and
RSM all have significantly better training performance than GSGP. Com-
pared with AGSGP, on Keijzer11l, PC-SS and PC have significantly larger
training RMSEs, while RSM has slightly larger training RMSEs. On the
other three synthetic datasets, PC-SS, PC and RSM all have better training
performance than AGSGP. On Nguyen?, the differences between them are
not significant, while on the other two training sets, PC-SS, PC and RSM
all have significantly better training performance than AGSGP.

On three of the four real-world datasets (except for DLBCL), PC-SS, PC
and RSM all have notable improvement on the training performance than
GSGP, but are much worse than AGSGP. On DLBCL, PC-SS and PC have
slightly larger training errors than GSGP, which are not significant. RSM
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Figure 5.6: Evolutionary Plots on the Training RMSEs of the Best-of-
Generation Models in GSGP, AGSGP, and GSGP with three operators
solely.

has significantly better training performance than GSGP. On DLBCL, PC-
SS, PC and RSM all have better training performance than AGSGP. While
PC-SS has slightly better performance, the advantage of PC and RSM over
AGSGP is significant.

The evolutionary plots on the generalisation performance in Figure 5.7
show that the overall pattern on the four synthetic test sets is very similar
to that on the training sets. PC-SS, PC and RSM all have better general-
isation performance than GSGP and AGSGP. On Keijzerll, AGSGP loses
the advantage on the generalisation performance. PC has similar gener-
alisation performance to AGSGP, while RSM has the best generalisation
performance. On the four real-world datasets, the pattern is very differ-
ent from that on the training sets. On the four datasets, where AGSGP
suffers from serious overfitting, PC-SS, PC and RSM generally generalise
well. Among the five GSGP methods, PC has the best test performance on
BHouse and Wine, while on the other two datasets, RSM is the winner.
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Figure 5.7: Evolutionary Plots on the Test RMSEs of the Best-of-Generation
Models in GSGP, AGSGP, and GSGP with three operators solely.

In summary, GSGP with any of the three proposed operators solely can
outperform GSGP on most of the examined datasets on both the learning
performance and the generalisation ability. When compared with AGSGP,
they have comparable learning ability but much better generalisation per-
formance. PC and RSM have comparable training and generalisation per-
formance, which are much better than PC-SS. The only difference between
PC-SS and PC is in the selection operator. PC which employs the pro-
posed ADS can improve the performance of GSGP much better than PC-
SS (where standard tournament selection is used). This is a good evidence
for the effectiveness of ADS. In addition, as can be seen from Figures 5.4
to 5.7 (using the performance of GSGP and AGSGP as baseline for com-
parison), compared with employing PC or RSM individually, combining
them (i.e. ADGSGP) has a better effect on promoting both the training and
generalisation performance of GP.
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5.6 Chapter Summary

The goal of exploring the geometric properties of geometric operators to
obtain a greater generalisation gain in GP for symbolic regression has been
achieved by developing an angle-awareness driven crossover, mutation
and selection. The proposed angle-driven geometric operators gain an
impressive generalisation improvement for GP. With angle-awareness, the
error of the child programs produced by PC is bounded by their best par-
ents, and RSM provides a small variation to the parent programs but con-
sistently move towards the target semantics. These new geometric prop-
erties offer a productive leverage for approximating the target semantics

in each operation.

A comprehensive comparison among ADGSGP, exact GSGP and ap-
proximate GSGP (AGSGP) has been conducted. To the best of our knowl-
edge, this is the first work filling the gap of the comparison between these
two variants of GSGP. Standard GP was used as a baseline for the compar-
ison. Compared with GP, the GSGP methods generally evolved models
with better learning performance and generalisation ability. However, the
worse learning and generalisation performance (than standard GP) in ex-
act GSGP on some datasets and the overfitting trend in AGSGP on the
real-world datasets also indicate that introducing the semantics into the
evolutionary process does not always bring benefits. The way to utilise
the semantic information is the key factor influencing on the performance
of GP. The angle-aware geometric operators remove the potential inef-
fectiveness in GSGP and increase the chance of effective breeding, which
make ADGSGP advance exact GSGP and AGSGP dramatically on learn-
ing performance with a much faster learning speed. More importantly,
in ADGSGP, RSM is less greedy than RDO in approximating the target
semantics and brings a smaller variation to the parent programs. The se-
mantic context replacement consistently produces much simpler/smaller

programs, which are more likely to contain the right structure than the
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state-of-the-art GSGP methods. All these characteristics make the solu-
tions more resistant to overfitting and generalise better on unseen data.

Another interesting finding is that the models in the GSGP methods are
generally generalise well but overcomplex, which conflicts with the com-
mon claim that complex programs are difficult to generalise well. The bet-
ter generalisation gain of these complex models might come from the same
strength as ensembles. Furthermore, the simplified form of the evolved
models in ADGSGP are closer to the target model (e.g. containing the
most important building blocks) and represent the correct pattern, thus
generalise well on unseen data.

The chapter addresses the generalisation issue in GP for symbolic re-
gression when the learnt model has poor generalisation performance but
no overfitting occurs. On the datasets used in the experiments, the canon-
ical GP does not overfit the training data. The distance between its gen-
eralisation error and training error becomes larger or keeps the same. As
expected, GSGP can not only help the evolutionary/learning process to
be more effective but also generalise better on unseen data. This confirms
that incorporating semantics and geometry (angle-awareness in geomet-
ric space) into GP is a good alternative approach for improving the gen-
eralisation of GP, which can cover the scenario when approaches focus on
counteracting overfitting (e.g. approaches proposed in Chapters 3 and 4)

do not work.



Chapter 6
Conclusions and Future Work

This chapter provides conclusions for each of the research objectives of
this thesis and presents main findings from each individual chapter, and
then highlights potential research areas for future work.

This thesis focuses on genetic programming (GP) for symbolic regres-
sion tasks. The overall goal was to investigate and enhance the gener-
alisation ability of GP for symbolic regression by developing new GP ap-
proaches which can evolve models exhibiting an impressively good gener-
alisation ability for symbolic regression. The goal was successfully achieved
by proposing three new GP approaches to selecting highly important fea-
tures, measuring the true complexity and expected errors of the evolved
regression models, and incorporating semantics and geometric measures
into GP to guide the evolutionary process. The proposed methods were
examined and compared with state-of-the-art methods on a range of sym-
bolic regression tasks of varying difficulty. The results have shown clearly
that our proposed GP methods achieve a significantly higher generalisa-
tion gain than standard GP and state-of-the-art GP variants.

6.1 Contributions
This thesis has achieved the following research objectives,

179
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e Proposes a new feature selection method to GP for high-dimensional
symbolic regression. The proposed GP based feature selection method
utilises GP’s build-in feature selection ability and incorporates the
permutation importance to score features. By selecting features with
a positive permutation importance value, which are assumed to have
a positive contribution on reducing the regression errors, the pro-
posed feature selection method can successfully discard irrelevant
or noisy features while effectively identifying the truly relevant fea-
tures. Moreover, it leads to a significantly smaller feature space. GP
for symbolic regression on this relatively smaller feature space is
able to reduce/eliminate overfitting effectively and achieves notably
better generalisation performance than on the whole set of features,
since the evolved models are prone to contain truly relevant features
while having a lower chance to incorporate the noisy/irrelevant fea-
tures. The proposed method also outperforms two commonly used
feature selection methods, which use random forests and C5.0 for
feature selection. Compared with these two feature selection meth-
ods, the proposed method generally selects a smaller number of fea-
tures while keeping the truly relevant features. Further compar-
isons on the regression performance of GP using the features selected
by the examined feature selection methods confirm the superiority
of the propose method on promoting the generalisation of GP and

evolving more compact models containing only relevant features.

e Introduces VC-dimension and structural risk minimisation (SRM)
to GP for estimating the generalisation error of the evolved mod-
els during the evolutionary process to improve their performance on
unseen data. This represents the first method that implements SRM
by extending an experimental method to measure the VC-dimension
for regression models and makes SRM available by the experimen-
tal method for a mixture of linear and nonlinear regression mod-

els in GP in the literature. In the proposed method, SRM provides
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a reliable prediction on the generalisation performance of GP solu-
tions by taking both the training error and the confidence interval
based on the VC-dimension value into consideration. GP then se-
lects solutions with a lower estimated generalisation error to survive
and breed. The SRM based fitness function drives the evolutionary
process towards a good trade-off between the training accuracy and
the model complexity, which makes GP more resistant to overfitting,
and hence can enhance the generalisation of GP. Moreover, the pro-
posed method has been shown to be more effective than the exist-
ing generalisation estimating methods for GP in detecting overfit-
ting and evolving much simpler models containing useful building
blocks.

e Proposes a novel GSGP approach with angle-awareness for symbolic
regression. Three new angle-awareness driven geometric operators,
i.e. angle-awareness driven selection, crossover and mutation, have
been developed to effectively utilise the geometric properties in the
semantic space to search for models with promising performance.
The new geometric properties of the three new geometric operators
offer a more productive leverage for approximating the target se-
mantics in each operation. The new angle-aware selection operator
and geometric crossover operators increase the chance of effective
breeding and eliminate the potential ineffectiveness in the existing
geometric crossover operators, while the new geometric mutation
operator brings a smaller variation to the parent programs and is less
greedy in approximating the target semantics. The new method to
fulfil the semantic requirement also utilises angle-awareness, which
leads to a much smaller model with satisfied semantics. All these
characteristics make the proposed GSGP method advance standard
GP and two state-of-the-art GSGP methods dramatically on learn-
ing better and faster on training data and gaining a better generalise

performance on unseen test data.
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6.2 Main Conclusions

Overall, this thesis finds that the generalisation of GP for symbolic regres-
sion, which is still an open issue in GP community, can be effectively ad-
dressed by performing feature selection, measuring program complexity
with VC-dimension and developing effective search operators (geometric
semantic operators).

This section presents the main conclusions for the three research ob-
jectives drawn from the three contribution chapters (Chapter 3 to Chapter
5).

6.2.1 Feature Selection in GP for High-dimensional Sym-

bolic Regression

A new feature selection approach to GP for high-dimensional symbolic
regression is proposed in Chapter 3.

Feature Selection to Improve the Generalisation of GP

It is found that feature selection can significantly influence the learning
and generalisation of GP when tackling high-dimensional symbolic re-
gression tasks.

A good feature selection method adopts effective search strategies and
appropriate feature evaluation criteria. Feature selection in this method
identifies the relevant features and discards irrelevant/noise features, which
can dramatically reduce the size while improving the quality of the fea-
ture space. The reduction of feature space shrinks the search space of GP
meanwhile decreases the production of solutions with irrelevant features.
Thus, with a higher chance, the evolutionary process is guided towards
solutions with relevant features. Thus, GP needs less effort to converge to
(near) optimal regression models, particularly when tackling the regres-

sion data with a substantially high dimensionality.
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Permutation to Further Evaluate features selected by GP

This thesis confirms that GP is able to automatically explore the search
space to detect relevant features, which is considered as a built-in feature
selection ability. Based on this built-in ability, a two-stage GP for sym-
bolic regression method, where the first stage selects features appearing
in the best evolved models and the second stage uses the selected features
for symbolic regression, can have significant improvement on the learning
and generalisation performance over standard GP using the same compu-
tational effort. Comparisons between GP-based feature selection (collect-
ing features appearing in the evolved models) with and without permu-
tation on enhancing the generalisation of GP confirms the effectiveness of
permutation importance on further utilising the build-in feature selection
ability. Measuring the importance of features with the proposed permu-
tation based method can help identify the truly important features and
further shrinks the search space of GP for symbolic regression. This is
particularly useful when the data is high-dimensional and contains many

noisy features.

GP-based Feature Selection Method

The proposed GP-based feature selection method outperforms the decision-
tree based feature selection methods (both C5.0 and random forests) on se-
lecting a smaller set of features while keeping the truly relevant features.
It is difficult for C5.0 to identify the relevant features in some cases, and it
might discard import/relevant features. Meanwhile, due to the random-
ness and constructing multiple decision trees, the ensembles in random
forests contain redundant features. GP for symbolic regression based on
the features selected by the new method outperforms the features selected
by C5.0 or random forests on both the learning performance and gener-
alisation gains. The superiority of the proposed feature selection method

indicates that GP models with a continuous property learn more than the
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stepwise function of decision trees for regression, thus leading to a better
ability in detecting important features.

6.2.2 Introducing Structural Risk Minimisation into GP

Chapter 4 proposes a SRM-driven GP method introducing a generalisa-
tion estimation based fitness function to guide the evolutionary process
towards a trade-off between the training accuracy and the model com-

plexity.

Training Accuracy, Model Complexity and Generalisation Performance

It is found that the training accuracy and model complexity (which is mea-
sured by VC-Dimension) are generally in conflict with each other. During
the evolutionary process, the training error consistently decreases along
with the increase of the model complexity. Moreover, due to this conflict,
when introducing an underlying objective of restricting the model com-
plexity into GP, its training performance can become worse than that pro-
duced by GP without restriction on model complexity, particularly when
over-complex models with smaller training errors and smoother models

with larger training errors are competing in the GP population.

This thesis finds that a good trade-off between the training error and
the model complexity can lead to significantly better generalisation perfor-
mance. SRM is able to guide GP to well handle this trade-off. SRM-driven
GP evolves models with a lower complexity, which have a lower inter-
val between the training and generalisation errors. When learning from a
relatively small number of training instances, models generated by SRM-
driven GP can generalise well on unseen data while models evolved by

standard GP suffer from the overfitting issue.
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Indicators of Generalisation Performance

It is found that the structural risk is more reliable than the empirical risk
and the variance error as an indicator of generalisation performance. The
empirical risk/training error is not a good indicator of the generalisa-
tion performance in many scenarios, particularly when the number of in-
stances in the training set is small or the learning process overfits the train-
ing data. The structural risk/error, which considers both the empirical risk
and the confidence interval, usually guides the evolutionary process to be
free from overfitting. Moreover, SRM makes GP less greedy on chasing a
lower training error and enhances the exploration of GP. Hence the struc-
tural risk is more reliable than the empirical risk.

This thesis also confirms the advantage of SRM over bootstrap on es-
timating the generalisation ability of GP solutions, particularly when the
number of training instances is small. In this case, it is difficult for Boot-
strap to provide a good estimation of the generalisation performance since
the bootstrap sets and the training set have a high potential to overlap with
each other, i.e. usually have instances in common. BGP, which relies on
extracting information from the training set during the evolutionary pro-
cess, often loses the advantage in this case. SRM, which does not rely on
the information from the training set to estimate the generalisation error,
is able to provide reliable estimation in this case. Due to this advantage,
structural risk is superior to variance error given by bootstrap methods as

an indicator of generalisation performance.

Estimation of VC-Dimension

This thesis finds that a better estimation ability on the VC-dimension of
evolved models can lead to a lower generalisation error. For measuring the
VC-dimension of GP solutions experimentally, compared with the method
under uniform setting, the method under optimised non-uniform setting

brings improvement on decreasing the difference between the theoretical
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and the experimental maximum deviation of errors and reducing the ran-
dom variability of the measured VC-dimension, which can obtain a more
accurate VC-dimension of the evolved models, and accordingly leads to a
tighter generalisation bound. SRM-driven GP under the uniform setting
can obtain much better generalisation performance than under uniform

setting in many cases.

6.2.3 Geometric Semantic GP

A novel angle-awareness driven GSGP method is proposed in Chapter 5.
The angle-awareness is introduced into geometric operators along with a
new method to fulfil the semantic requirements. Angle-awareness driven
GSGP achieves promising improvement on both the learning and gener-

alisation performance.

Generalisation of GSGP

This thesis finds that with semantic-awareness, GSGP methods can have
impressively better learning and generalisation performance than the canon-
ical form of GP. However, introducing the semantics into the evolutionary
process does not always bring benefits. The way to utilise the semantic in-
formation has a high influence on the performance of GP. When the num-
ber of instances becomes larger, which leads to a high-dimensional seman-
tic space, the ineffectiveness in exact GSGP and the overfitting trend in ap-
proximated GSGP become more obvious and lead to a worse generalisa-
tion performance. Introducing angle-awareness into the evolutionary pro-
cess to further explore the geometry properties of geometric operators is
able to increase the chance of effective breeding and reduce/eliminate the
ineffectiveness. Moreover, angle-awareness driven GSGP is less greedy in
approximating the target semantics and brings a smaller variation to the
parent programs which make it more resistant to the trend of overfitting,

and hence obtaining an impressive generalisation gain.
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Model Complexity in GSGP

This thesis has an interesting finding that the evolved models in GSGP
generally generalise well but over-complex. A further examination of the
evolved models (including the mathematically simplified form of these
models) in GSGP methods and standard GP confirms that, compared with
standard GP, GSGP methods generally evolve much more complex mod-
els. However, these over-complex models generally have significantly bet-
ter generalisation performance than their simpler counterparts in standard
GP. This somehow conflicts with the well-known theories, such as the Min-
imum Description Length principle [189] and Occam’s razor [214], which
claim that it is difficult for complex programs to generalise well. A possi-
ble explanation is that not only the size/complexity of the programs mat-
ters, but also the way how they are generated is also important for the
generalisation ability. These theories might not hold among models that

are produced in different manners.

It is also found that with angle-awareness, our new GSGP approach
can produce smooth models, which are much smoother than those in the
existing GSGP methods. In some cases, they are even smoother than mod-
els in standard GP. These simpler/smoother models are able to generate
important building blocks in the target models and behave much more

similar to the target functions than in the ones evolved by the existing
GSGP and standard GP.

6.3 Future Work

During the study we identified several areas of research that particularly
deserve further investigation. Below we enumerate the most important

ones.
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6.3.1 Feature Selection in GP for High-dimensional Sym-

bolic Regression

A number of interesting directions on feature selection in GP for high-
dimensional symbolic regression deserve further investigation in the near

future.

Permutation for Identifying Important Features

The ability of permutation based feature selection to identify the truly rel-
evant features is only confirmed on two synthetic datasets (since only the
two datasets have known relevant features available) in this thesis. We
would like to find more real-world datasets, in which the truly relevant
features are known in advance, to further investigate the feature selection
ability of the proposed permutation based method on various types of

problems.

Permutation Based Feature Selection for Regression Algorithms

We also intend to investigate whether the proposed feature selection method
is able to promote the performance of other regression algorithms, such as
random forests for classical regression/classification. It is also worth ex-
ploring the effect of feature selection based on Gini importance in random
forests [31] to enhance the prediction ability of regression/classification
trees.

Feature Selection Based on Permutation Importance of a Subset of Fea-

tures

In this thesis, the permutation importance is measured for each single fea-
ture and a feature is selected if its importance value is above a predefined
threshold. However, the interaction between features is also important but

challenging in feature selection. In the proposed feature selection method,
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interactions between features is considered, since the permutation impor-
tance is measured on the increase of regression error committed by the
evolved model containing a subset of features. However, it performs in
an implicit way. It is deserved to explore the potential of permutation im-
portance and some other measures on a subset of features. It involves ex-
plicitly considering the interaction between features. Accordingly, a new

feature selection method can be developed in near future.

6.3.2 Structural Risk Minimisation in GP
Improving the Efficiency of SRM-Driven GP

The overall computational cost of SRM-driven GP methods is much higher
than standard GP. In future work, we will try to solve this problem to
speed up SRM-driven GP. We plan to develop a context-aware mechanism
to estimate the number of solutions to evaluate for VC- dimension. The
new mechanism is expected to save effort on the unnecessary measure of

VC-dimension while maintain the effectiveness of SRM in GP.

Model Size and Model Complexity

This thesis touches the difference between model size and complexity, but
has not analysed the difference in a very deep level, which is very chal-
lenging. We will conduct a comprehensive comparison between SRM-
driven GP and some bloat control methods, such as the parsimony method

on the model size and model complexity.

Implementing SRM in Other Machine Learning Algorithms

We focus mainly on the benefit of SRM with the experimentally measured
VC-dimension of GP individuals in this work. However, SRM should be
effective for more domains with the demand of measuring the model com-
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plexity (e.g. decision trees). This study opens the door for further investi-
gations of SRM and VC-dimension in other related learning machines.

6.3.3 Angle-awareness Driven GSGP

Several interesting directions on geometric semantic GP for symbolic re-

gression deserve further investigation.

Semantic Library

Since the major expense of the proposed GSGP method is in maintaining
and searching in the semantic library, introducing improvement to this as-
pect is a sensible way to enhance the efficiency of the GSGP method. When
searching for the desired subtrees from the semantic library, instead of ex-
haustive search used in the proposed GSGP method, a heuristic search
method will be explored to improve the efficiency while not decreasing
the effectiveness of this process.

Selection Operator

The proposed selection operator is based on an indirect manner, i.e. select
candidate parents by trial and error, the angle-distance between candidate
parents is obtained until the one has big enough is found. We will consider
to measure the distribution of the population and select the GP individuals
according to their angle distributions around the target semantics in the

future.

6.3.4 Transfer Learning in GP for Symbolic Regression

This thesis focuses on improving the generalisation of GP for symbolic re-
gression, which has an underlying assumption that the distribution of fu-

ture data will be the same as that of the training data. However, in many
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real-world applications, this assumption does not hold. Moreover, the la-
belled data of the target domain might be difficult collect and even after
being collected, the data may be easily outdated. Thus, it is desired to
make the best use of the related data, i.e. data in the source domain. The
model/solution trained in the source domain is expected to adapt well
to different but similar target domains. Transfer learning [140, 174], which
allows the domains, tasks and distributions used in the training set and
the test set to be different, is desired in these scenarios. Although transfer
learning has received considerable attention from the machine learning
community, research on transfer learning in GP for symbolic regression
is far from enough. We plan to investigate and develop novel GP based

transfer learning methods to solve various real-world problems.



192 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Bibliography

[1]

2]

ABRAHAM, A., GUO, H., AND L1u, H. Swarm intelligence: founda-

tions, perspectives and applications. Springer, 2006.

AFzZAL, W., AND TORKAR, R. On the application of genetic pro-
gramming for software engineering predictive modeling: A system-
atic review. Expert Systems with Applications 38, 9 (2011), 11984-
11997.

AGAPITOS, A., BRABAZON, A., AND O’NEILL, M. Controlling
overfitting in symbolic regression based on a bias/variance error
decomposition. In Parallel Problem Solving from Nature-PPSN XII.
Springer, 2012, pp. 438—-447.

AGGARWAL, V., AND O’REILLY, U.-M. Design of posynomial mod-
els for MOSFETs: symbolic regression using genetic algorithms. In
Genetic Programming Theory and Practice IV. Springer, 2007, pp. 219-
236.

AGRAWAL, R., IMIELINSKI, T., AND SWAMI, A. Mining association
rules between sets of items in large databases. In ACM SIGMOD
Record (1993), vol. 22, ACM, pp. 207-216.

AHMAD, F., Isa, N. A. M., HUSSAIN, Z., OSMAN, M. K., AND
SULAIMAN, S. N. A GA-based feature selection and parameter op-
timization of an ann in diagnosing breast cancer. Pattern Analysis
and Applications 18, 4 (2015), 861-870.

193



194

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

AHMED, S., ZHANG, M., AND PENG, L. Enhanced feature selection
for biomarker discovery in LC-MS data using GP. In IEEE Congress
on Evolutionary Computation (CEC) (2013), pp. 584-591.

AKAIKE, H. Statistical predictor identification. Annals of the Institute
of Statistical Mathematics 22,1 (1970), 203-217.

AL-SAHAF, H., ZHANG, M., AND JOHNSTON, M. Binary image
classification: A genetic programming approach to the problem of
limited training instances. Evolutionary Computation 24, 1 (2016),
143-182.

ALBINATI, J., PAPPA, G. L., OTERO, F. E., AND OLIVEIRA, L. O. V.
The Effect of Distinct Geometric Semantic Crossover Operators in
Regression Problems. In Genetic Programming. Springer, 2015, pp. 3—
15.

ALPAYDIN, E. Introduction to machine learning. MIT press, 2014.

AMARI, S.-1., AND WU, S. Improving support vector machine clas-
sifiers by modifying kernel functions. Neural Networks 12, 6 (1999),
783-789.

AMIL, N. M., BREDECHE, N., GAGNE, C., GELLY, S., SCHOE-
NAUER, M., AND TEYTAUD, O. A statistical learning perspective
of genetic programming. In EuroGP (2009), Springer, pp. 327-338.

ARCHETTI, F., LANZENI, S., MESSINA, E., AND VANNESCHI, L.
Genetic programming for computational pharmacokinetics in drug

discovery and development. Genetic Programming and Evolvable Ma-
chines 8, 4 (2007), 413-432.

BABOVIC, V., AND KEIJZER, M. Genetic programming as a model
induction engine. Journal of Hydroinformatics 2 (2000), 35-60.



BIBLIOGRAPHY 195

[16] BACK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Evolutionary com-
putation 1: Basic algorithms and operators, vol. 1. CRC press, 2000.

[17] BANZHAF, W., NORDIN, P., KELLER, R. E., AND FRANCONE, E. D.
Genetic Programming—An Introduction: On the Automatic Evolu-
tion of Computer Programs and Its Applications, dpunkt. verlag
and Morgan Kaufmann Publishers. Inc., San Francisco, California
(1998).

[18] BARRON, A., RISSANEN, J., AND YU, B. The minimum description
length principle in coding and modeling. Information Theory, IEEE
Transactions on 44, 6 (1998), 2743-2760.

[19] BATES, D. M., AND WATTS, D. G. Nonlinear regression: iterative esti-

mation and linear approximations. Wiley Online Library, 1988.

[20] BEADLE, L., AND JOHNSON, C. G. Semantically driven crossover

in genetic programming. In IEEE World Congress on Computational
Intelligence (2008), pp. 111-116.

[21] BEADLE, L., AND JOHNSON, C. G. Semantic analysis of program
initialisation in genetic programming. Genetic Programming and
Evolvable Machines 10, 3 (2009), 307-337.

[22] BELLMAN, R. E. Dynamic Programming. Dover Publications, Incor-
porated, 2003.

[23] BEMARDO, J. M., AND SMITH, A. Bayesian theory. Chichester: John-
Wiley and Sons, Ltd (1994).

[24] BEYER, H.-G., AND SCHWEFEL, H.-P. Evolution strategies—A com-
prehensive introduction. Natural computing 1,1 (2002), 3-52.

[25] BisHOP, C. M., ET AL. Pattern recognition and machine learning, vol. 4.
springer New York, 2006.



196 BIBLIOGRAPHY

[26] BLUM, C., AND L1, X. Swarm intelligence in optimization. Springer,
2008.

[27] BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH,
M. K. Occam’s razor. Information processing letters 24, 6 (1987), 377-
380.

[28] BORGES, C. E., ALONSO, C. L., AND MONTANA, J. L. Model selec-
tion in genetic programming. In Proceedings of the 12th annual confer-
ence on genetic and evolutionary computation (2010), ACM, pp. 985-986.

[29] BOSER, B. E., GUYON, I. M., AND VAPNIK, V. N. A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory (1992), ACM, pp. 144-152.

[30] BRAMEIER, M., AND BANZHAF, W. A comparison of linear genetic
programming and neural networks in medical data mining. Evolu-
tionary Computation, IEEE Transactions on 5,1 (2001), 17-26.

[31] BREIMAN, L. Random forests. Machine learning 45, 1 (2001), 5-32.

[32] BREIMAN, L., FRIEDMAN, J., STONE, C. J., AND OLSHEN, R. A.
Classification and regression trees. CRC press, 1984.

[33] BREZMES, J., CABRE, P., ROJO, S., LLOBET, E., VILANOVA, X., AND
CORREIG, X. Discrimination between different samples of olive oil

using variable selection techniques and modified fuzzy artmap neu-
ral networks. IEEE Sensors Journal 5, 3 (2005), 463—-470.

[34] BURKE, E. K., GUSTAFSON, S., AND KENDALL, G. Diversity in ge-
netic programming: An analysis of measures and correlation with
fitness. Evolutionary Computation, IEEE Transactions on 8, 1 (2004),
47-62.



BIBLIOGRAPHY 197

[35] BURKE, R., GUSTAFSON, S. M., AND KENDALL, G. A Survey and
Analysis of Diversity Measures in Genetic Programming. In Proceed-

ings of the 17th Annual Conference on Genetic and Evolutionary Compu-
tation Conference (GECCO) (2002), vol. 2, pp. 716-723.

[36] BURKS, A. R., AND PUNCH, W. F. An efficient structural diversity
technique for genetic programming. In Proceedings of the 2015 An-
nual Conference on Genetic and Evolutionary Computation (2015), ACM,
pp- 991-998.

[37] BURKS, A. R., AND PUNCH, W. F. An analysis of the genetic marker

diversity algorithm for genetic programming. Genetic Programming
and Evolvable Machines (2017), 1-33.

[38] CAIl, W., PACHECO-VEGA, A., SEN, M., AND YANG, K. Heat trans-
fer correlations by symbolic regression. International Journal of Heat
and Mass Transfer 49, 23 (2006), 4352—4359.

[39] CASEY, J. Exploiting Curvature. Wiesbaden, Germany: Vieweg 7, 51
(1996), 176.

[40] CASTELLI, M. Measures and methods for robust genetic programming.
PhD thesis, Universita degli Studi di Milano-Bicocca, 2012.

[41] CASTELLI, M., MANZONI, L., SILVA, S., AND VANNESCHI, L. A
comparison of the generalization ability of different genetic pro-
gramming frameworks. In IEEE Congress on Evolutionary Computa-
tion (CEC) (2010), IEEE, pp. 1-8.

[42] CASTELLI, M., MANZONI, L., SILVA, S., AND VANNESCHI, L. A
quantitative study of learning and generalization in genetic pro-
gramming. In Genetic Programming. Springer, 2011, pp. 25-36.

[43] CASTELLI, M., VANNESCHI, L., AND SILVA, S. Prediction of high

performance concrete strength using genetic programming with ge-



198

[44]

[45]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

ometric semantic genetic operators. Expert Systems with Applications
40, 17 (2013), 6856-6862.

CASTILLO, F., KORDON, A., SWEENEY, J., AND ZIRK, W. Using
genetic programming in industrial statistical model building. In Ge-
netic programming theory and practice I1. Springer, 2005, pp. 31-48.

CAVARETTA, M. J.,, AND CHELLAPILLA, K. Data mining using
genetic programming: The implications of parsimony on general-
ization error. In IEEE Congress on Evolutionary Computation (CEC)
(1999), vol. 2, IEEE, pp. 1330-1337.

CHAN, K. Y., KWONG, C., DILLON, T. S., AND TSIM, Y. Reducing
overfitting in manufacturing process modeling using a backward
elimination based genetic programming. Applied Soft Computing 11,
2(2011), 1648-1656.

CHELLAPILLA, K. Evolutionary programming with tree mutations:
Evolving computer programs without crossover. Genetic Program-
ming (1997), 431-438.

CHEN, L., CHU, C., HUANG, T., KONG, X., AND CAI, Y.-D. Predic-
tion and analysis of cell-penetrating peptides using pseudo-amino
acid composition and random forest models. Amino acids 47, 7
(2015), 1485-1493.

CHEN, Q., XUE, B., MEI, Y., AND ZHANG, M. Geometric semantic
crossover with an angle-aware mating scheme in genetic program-
ming for symbolic regression. In European Conference on Genetic Pro-
gramming (2017), Springer, pp. 229-245.

CHEN, Q., XUE, B., NIU, B., AND ZHANG, M. Improving gen-
eralisation of genetic programming for high-dimensional symbolic
regression with feature selection. In IEEE Congress on Evolutionary
Computation (CEC) (2016), pp. 3793-3800.



BIBLIOGRAPHY 199

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

CHEN, Q., XUE, B., SHANG, L., AND ZHANG, M. Improving gener-
alisation of genetic programming for symbolic regression with struc-
tural risk minimisation. In Proceedings of the 2016 on Genetic and Evo-
lutionary Computation Conference (2016), ACM, pp. 709-716.

CHEN, Q., XUE, B., SHANG, L., AND ZHANG, M. New geo-
metric semantic operators in genetic programming:perpendicular
crossover and random segment mutation. In Proceedings of the 2017
on Genetic and Evolutionary Computation Conference (2017), ACM,
pp- 223-224.

CHEN, Q., XUE, B., AND ZHANG, M. Generalisation and domain
adaptation in GP with gradient descent for symbolic regression. In
IEEE Congress on Evolutionary Computation (CEC) (2015), pp. 1137-
1144.

CHEN, Q., ZHANG, M., AND XUE, B. Feature selection to improve
generalization of genetic programming for high-dimensional sym-
bolic regression. IEEE Transactions on Evolutionary Computation 21, 5
(2017), 792-806. doi:10.1109/TEVC.2017.2683489.

CHERKASSKY, V., AND M4, Y. Comparison of model selection for
regression. Neural computation 15,7 (2003), 1691-1714.

CHERKASSKY, V., AND MULIER, F. M. Learning from data: concepts,
theory, and methods. John Wiley & Sons, 2007.

CHERKASSKY, V., SHAO, X., MULIER, F. M., AND VAPNIK, V. N.
Model complexity control for regression using vc generalization
bounds. IEEE transactions on Neural Networks 10,5 (1999), 1075-1089.

CHO, J. H., AND KURUP, P. U. Decision tree approach for classifi-
cation and dimensionality reduction of electronic nose data. Sensors
and Actuators B: Chemical 160, 1 (2011), 542-548.



200 BIBLIOGRAPHY

[59] CHUANG, L.-Y., CHANG, H.-W., Tu, C.-J., AND YANG, C.-H. Im-
proved binary pso for feature selection using gene expression data.
Computational Biology and Chemistry 32,1 (2008), 29-38.

[60] COHN, D., ATLAS, L., AND LADNER, R. Improving generalization
with active learning. Machine learning 15, 2 (1994), 201-221.

[61] CORTES, C., AND VAPNIK, V. Support-vector networks. Machine
learning 20, 3 (1995), 273-297.

[62] COSTELLOE, D., AND RYAN, C. On improving generalisation in ge-

netic programming. In Genetic Programming. Springer, 2009, pp. 61—
72.

[63] CRAVEN, P., AND WAHBA, G. Smoothing noisy data with spline
functions. Numerische mathematik 31, 4 (1978), 377—-403.

[64] DAsH, M., AND Liu, H. Feature selection for classification. Intelli-
gent data analysis 1, 3 (1997), 131-156.

[65] DAVIDSON, J., SAVIC, D. A., AND WALTERS, G. A. Symbolic and

numerical regression: Experiments and applications. Information
Sciences 150, 1 (2003), 95-117.

[66] DEVROYE, L. Bounds for the uniform deviation of empirical mea-
sures. Journal of Multivariate Analysis 12,1 (1982), 72-79.

[67] Dick, G. Bloat and Generalisation in Symbolic Regression. In Sim-
ulated Evolution and Learning. Springer, 2014, pp. 491-502.

[68] Dick, G., RIMONI, A. P., AND WHIGHAM, P. A. A re-examination
of the use of genetic programming on the oral bioavailability prob-
lem. In Proceedings of the 17th Annual Conference on Genetic and Evo-
lutionary Computation Conference (GECCO) (2015), ACM, pp. 1015-
1022.



BIBLIOGRAPHY 201

[69] DOMINGOS, P. A unified bias-variance decomposition for zero-one
and squared loss. AAAI/IAAI 2000 (2000), 564-569.

[70] DORIGO, M., AND BIRATTARI, M. Ant colony optimization. In En-
cyclopedia of Machine Learning. Springer, 2010, pp. 36-39.

[71] DRUCKER, H., BURGES, C. J., KAUFMAN, L., SMOLA, A., VAPNIK,
V., ET AL. Support vector regression machines. Advances in neural
information processing systems 9 (1997), 155-161.

[72] EFRON, B., AND TIBSHIRANI, R. Improvements on cross-validation:
the 632+ bootstrap method. Journal of the American Statistical Associ-
ation 92, 438 (1997), 548-560.

[73] EFRON, B., AND TIBSHIRANI, R. J. An introduction to the bootstrap.
CRC press, 1994.

[74] EKART, A., AND NEMETH, S. Z. A metric for genetic programs and
titness sharing. In Proceedings of the 3rd European conference on Genetic
Programming (EuroGP) (2000), Springer, pp. 259-270.

[75] FARIS, H., SHETA, A., AND OZNERGIZ, E. Modelling hot rolling
manufacturing process using soft computing techniques. Interna-
tional Journal of Computer Integrated Manufacturing 26, 8 (2013), 762-
771.

[76] FERREIRA, C., AND GEPSOFT, U. What is Gene Expression Program-
ming, 2008.

[77] FITZGERALD, J., AZAD, R., AND RYAN, C. A bootstrapping ap-
proach to reduce over-fitting in genetic programming. In Proceedings

of the 15th Annual Conference on Genetic and Evolutionary Computation
Conference (GECCO) (2013), pp. 1113-1120.

[78] FITZGERALD, J., AND RYAN, C. On size, complexity and generalisa-
tion error in gp. In Proceedings of the 16th Annual Conference on Genetic



202 BIBLIOGRAPHY

and Evolutionary Computation Conference (GECCO) (2014), pp. 903—
910.

[79] FOGEL, D. B. Ewvolutionary computation: toward a new philosophy of
machine intelligence, vol. 1. John Wiley & Sons, 2006.

[80] FOGEL, L. J. Intelligence through simulated evolution: forty years of
evolutionary programming. John Wiley & Sons, Inc., 1999.

[81] FoLINO, G., P1zzUTI, C., AND SPEZZANO, G. Ensemble techniques
for parallel genetic programming based classifiers. In Proceedings of
the 6th European conference on Genetic Programming (EuroGP) (2003),
Springer, pp. 59-69.

[82] FORTIN, F.-A., RAINVILLE, F.-M. D., GARDNER, M.-A., PARIZEAU,
M., AND GAGNE, C. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research 13, Jul (2012), 2171-2175.

[83] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. The elements of sta-
tistical learning, vol. 1. Springer series in statistics Springer, Berlin,
2001.

[84] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. Regularization

paths for generalized linear models via coordinate descent. Journal
of statistical software 33, 1 (2010), 1.

[85] FRIEDMAN, J. H. Multivariate adaptive regression splines. The an-
nals of statistics (1991), 1-67.

[86] FRIEDMAN, J. H. On bias, variance, 0/1loss, and the curse-of-

dimensionality. Data mining and knowledge discovery 1, 1 (1997), 55—
77.

[87] FUNAHASHI, K.-I. On the approximate realization of continuous
mappings by neural networks. Neural networks 2, 3 (1989), 183-192.



BIBLIOGRAPHY 203

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

GAGNE, C., SCHOENAUER, M., PARIZEAU, M., AND TOMASSINI,
M. Genetic programming, validation sets, and parsimony pressure.
In Proceedings of the 9th European conference on Genetic Programming
(EuroGP) (2006), Springer, pp. 109-120.

GALVAN-LOPEZ, E., CODY-KENNY, B., TRUJILLO, L., AND KAT-
TAN, A. Using semantics in the selection mechanism in genetic
programming: a simple method for promoting semantic diversity.
In IEEE Congress on Evolutionary Computation (CEC) (2013), 1IEEE,
pp- 2972-2979.

GANDOMI, A. H., AND ALAVI, A. H. A new multi-gene genetic
programming approach to nonlinear system modeling. Part I: ma-

terials and structural engineering problems. Neural Computing and
Applications 21, 1 (2012), 171-187.

GEMAN, S., BIENENSTOCK, E., AND DOURSAT, R. Neural networks
and the bias/variance dilemma. Neural Computation 4,1 (1992), 1-58.

GEMAN, S., BIENENSTOCK, E., AND DOURSAT, R. Neural networks
and the bias/variance dilemma. Neural Networks 4,1 (2008).

GHEYAS, I. A., AND SMITH, L. S. Feature subset selection in large
dimensionality domains. Pattern recognition 43, 1 (2010), 5-13.

GIusTOLIsI, O., AND SAVIC, D. A symbolic data-driven technique
based on evolutionary polynomial regression. Journal of Hydroinfor-
matics 8, 3 (2006), 207-222.

GOLBERG, D. E. Genetic algorithms in search, optimization, and
machine learning. Addion wesley 1989 (1989).

GOLDBERG, D. E., AND HOLLAND, J. H. Genetic algorithms and
machine learning. Machine learning 3, 2 (1988), 95-99.



204

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

BIBLIOGRAPHY

GONGCALVES, 1., AND SILVA, S. Experiments on controlling overfit-
ting in genetic programming. In 15th Portuguese conference on artificial

intelligence (EPIA 2011) (2011), pp. 978-989.

GONCALVES, I., SILVA, S., AND FONSECA, C. M. On the generaliza-
tion ability of geometric semantic genetic programming. In Genetic
Programming. Springer, 2015, pp. 41-52.

GONALVES, 1., AND SILVA, S. Balancing learning and overfitting in ge-
netic programming with interleaved sampling of training data. Springer,
2013.

GONALVES, 1., SILVA, S., MELO, J. B., AND CARREIRAS, ]J. M. Ran-
dom sampling technique for overfitting control in genetic program-
ming. In Genetic Programming. Springer, 2012, pp. 218-229.

GRANITTO, P. M., FURLANELLO, C., BIASIOLI, F., AND GASPERI, F.
Recursive feature elimination with random forest for PTR-MS analy-
sis of agroindustrial products. Chemometrics and Intelligent Laboratory
Systems 83, 2 (2006), 83-90.

GREFENSTETTE, J. J., AND FITZPATRICK, J. M. Genetic search
with approximate function evaluations. In Proceedings of an Interna-
tional Conference on Genetic Algorithms and Their Applications (1985),
pp. 112-120.

Gu, S., CHENG, R., AND JIN, Y. Feature selection for high-
dimensional classification using a competitive swarm optimizer. Soft
Computing (2016), 1-12.

GUO, G., AND DYER, C. R. Simultaneous feature selection and clas-
sifier training via linear programming: A case study for face expres-
sion recognition. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition(CVPR) (2003), pp. 346-352.



BIBLIOGRAPHY 205

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

GUSTAFSON, S., BURKE, E. K., AND KRASNOGOR, N. On improv-
ing genetic programming for symbolic regression. In Evolutionary
Computation, 2005. The 2005 IEEE Congress on (2005), vol. 1, IEEE,
pp- 912-919.

GUYON, I., AND ELISSEEFF, A. An introduction to variable and
feature selection. The Journal of Machine Learning Research 3 (2003),
1157-1182.

HAERI, M. A., EBADZADEH, M. M., AND FOLINO, G. Improving

GP generalization: a variance-based layered learning approach. Ge-
netic Programming and Evolvable Machines 16, 1 (2015), 27-55.

HARMAN, M., J1A, Y., KRINKE, J., LANGDON, W., PETKE, J., AND
ZHANG, Y. Search based software engineering for software product
line engineering: a survey and directions for future work. In Proceed-
ings of the 18th International Software Product Line Conference-Volume 1
(2014), ACM, pp. 5-18.

HARVEY, D. Y., AND TODD, M. D. Automated feature design
for numeric sequence classification by genetic programming. IEEE
Transactions on Evolutionary Computation 19, 4 (2015), 474-489.

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., HASTIE, T., FRIEDMAN,
J., AND TIBSHIRANI, R. The elements of statistical learning, vol. 2.
Springer, 2009.

HOLLAND, J. H. Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial intelli-
gence. MIT press, 1992.

HOOPER, D. C., AND FLANN, N. S. Improving the accuracy and
robustness of genetic programming through expression simplifica-

tion. In Proceedings of the 1st annual conference on genetic programming
(1996), MIT Press, pp. 428-428.



206 BIBLIOGRAPHY

[113] JAIN, A. K., DUIN, R. P. W., AND MAO, J. Statistical pattern recog-
nition: A review. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 22,1 (2000), 4-37.

[114] JOHNSON, C. G. Artificial immune system programming for sym-
bolic regression. In Genetic Programming. Springer, 2003, pp. 345-353.

[115] JOHNSON, M. E., AND NACHTSHEIM, C. J. Some guidelines for
constructing exact d-optimal designs on convex design spaces. Tech-
nometrics 25, 3 (1983), 271-277.

[116] KEIJZER, M. Improving symbolic regression with interval arith-
metic and linear scaling. In Proceedings of the 6th European conference
on Genetic Programming (EuroGP) (2003), pp. 70-82.

[117] KEIJZER, M. Alternatives in subtree caching for genetic program-
ming. In Genetic Programming. Springer, 2004, pp. 328-337.

[118] KENNEDY, J., KENNEDY, J. F., AND EBERHART, R. C. Swarm intelli-
gence. Morgan Kaufmann, 2001.

[119] KENNEDY, R. J. and eberhart, particle swarm optimization. In Pro-
ceedings of IEEE International Conference on Neural Networks 1V, pages
(1995), vol. 1000.

[120] KOHAVI, R., AND JOHN, G. H. Wrappers for feature subset selec-
tion. Artificial intelligence 97, 1 (1997), 273-324.

[121] KOLMOGOROV, A. Sulla determinazione empirica di una lgge di
distribuzione. Inst. Ital. Attuari, Giorn. 4 (1933), 83-91.

[122] KOTANCHEK, M., SMITS, G., AND VLADISLAVLEVA, E. Pursuing
the Pareto paradigm: tournaments, algorithm variations and ordi-
nal optimization. In Genetic Programming Theory and Practice IV.
Springer, 2007, pp. 167-185.



BIBLIOGRAPHY 207

[123] KOwALIW, T., AND DOURSAT, R. Bias-variance decomposition in
genetic programming. Open Mathematics 14,1 (2016), 62-80.

[124] KozA, J. R. Genetic programming: on the programming of computers by
means of natural selection. The MIT Press, 1992.

[125] KRAWIEC, K. Learnable embeddings of program spaces. In European
Conference on Genetic Programming (2011), Springer, pp. 166-177.

[126] KRAWIEC, K., AND LICHOCKI, P. Approximating geometric
crossover in semantic space. In Proceedings of the 11th Annual con-
ference on Genetic and evolutionary computation (2009), ACM, pp. 987-
994.

[127] KRAWIEC, K., AND PAWLAK, T. Approximating geometric
crossover by semantic backpropagation. In Proceedings of the 15th an-
nual conference on Genetic and evolutionary computation (2013), ACM,
pp- 941-948.

[128] KRAWIEC, K., AND PAWLAK, T. Locally geometric semantic
crossover: a study on the roles of semantics and homology in re-
combination operators. Genetic Programming and Evolvable Machines
14,1 (2013), 31-63.

[129] KUHN, M., WESTON, S., COULTER, N., AND QUINLAN, R. C50: C5.
0 decision trees and rule-based models. R package version 0.1. 0-21,
URL http://CRAN. R-project. org/package C 50 (2014).

[130] KUSHCHU, I. Genetic programming and evolutionary generaliza-
tion. Evolutionary Computation, IEEE Transactions on 6, 5 (2002), 431—
442,

[131] LArprAS, G. Estimating the size of neural networks from the num-
ber of available training data. In International Conference on Artificial
Neural Networks (2007), Springer, pp. 68-77.



208

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

BIBLIOGRAPHY

LEE, Y.-S., AND TONG, L.-I. Forecasting energy consumption us-
ing a grey model improved by incorporating genetic programming.
Energy conversion and Management 52,1 (2011), 147-152.

LEw, T., SPENCER, A., SCARPA, F., WORDEN, K., RUTHERFORD,
A., AND HEMEZ, F. Identification of response surface models using

genetic programming. Mechanical Systems and Signal Processing 20, 8
(2006), 1819-1831.

LEYS, C., LEY, C., KLEIN, O., BERNARD, P., AND LICATA, L. De-
tecting outliers: Do not use standard deviation around the mean,

use absolute deviation around the median. Journal of Experimental
Social Psychology 49, 4 (2013), 764-766.

L1, W. W., AND JEFF WU, C. Columnwise-pairwise algorithms with
applications to the construction of supersaturated designs. Techno-
metrics 39, 2 (1997), 171-179.

L1, Y., ZHANG, S., AND ZENG, X. Research of multi-population
agent genetic algorithm for feature selection. Expert Systems with
Applications 36,9 (2009), 11570-11581.

Liaw, A., AND WIENER, M. Classification and regression by ran-
domforest. R news 2, 3 (2002), 18-22.

LICHMAN, M. UCI machine learning repository, 2013.

Liu, H., AND YU, L. Toward integrating feature selection algo-
rithms for classification and clustering. Knowledge and Data Engi-
neering, IEEE Transactions on 17, 4 (2005), 491-502.

Lu, J., BEHBOOD, V., HAO, P., ZUuO, H., XUE, S., AND ZHANG,
G. Transfer learning using computational intelligence: a survey.
Knowledge-Based Systems 80 (2015), 14-23.



BIBLIOGRAPHY 209

[141] LUKE, S., AND PANAIT, L. A comparison of bloat control methods
for genetic programming. Evolutionary Computation 14, 3 (2006), 309—-
344.

[142] LUKE, S., PANAIT, L., BALAN, G., PAUS, S., SKOLICKI, Z.,
Porovici, E., SULLIVAN, K., HARRISON, J., BASSETT, J., HUBLEY,

R., ET AL. A java-based evolutionary computation research system.
Online (March 2004) http://cs. gmu. edu/" eclab/projects/ecj (2004).

[143] MAHLER, S., ROBILLIARD, D., AND FONLUPT, C. Tarpeian

bloat control and generalization accuracy. In Genetic Programming.
Springer, 2005, pp. 203-214.

[144] MAJEED, H., AND RYAN, C. A less destructive, context-aware
crossover operator for gp. Genetic Programming (2006), 36—48.

[145] MAJEED, H., AND RYAN, C. On the constructiveness of context-
aware crossover. In Proceedings of the 9th annual conference on Genetic
and evolutionary computation (2007), ACM, pp. 1659-1666.

[146] MCCONAGHY, T. Ffx: Fast, scalable, deterministic symbolic re-

gression technology. In Genetic Programming Theory and Practice IX.
Springer, 2011, pp. 235-260.

[147] MCDERMOTT, J., WHITE, D. R., LUKE, S., MANZONI, L.,
CASTELLI, M., VANNESCHI, L., JAskowskil, W., KRAWIEC, K.,
HARPER, R., DE JONG, K., ET AL. Genetic programming needs bet-
ter benchmarks. In Proceedings of the 14th annual conference on Genetic
and evolutionary computation (2012), ACM, pp. 791-798.

[148] MCPHEE, N. F., AND HOPPER, N. ]J. Analysis of genetic diversity
through population history. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (1999), vol. 2, Citeseer, pp. 1112-1120.



210

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

BIBLIOGRAPHY

MCPHEE, N. F., OHS, B., AND HUTCHISON, T. Semantic building
blocks in genetic programming. In European Conference on Genetic
Programming (2008), Springer, pp. 134-145.

MEI, Y., NGUYEN, S., XUE, B., AND ZHANG, M. An efficient fea-
ture selection algorithm for evolving job shop scheduling rules with
genetic programming. IEEE Transactions on Emerging Topics in Com-
putational Intelligence 1, 5 (2017), 339-353.

MENZE, B. H., PETRICH, W., AND HAMPRECHT, F. A. Multi-
variate feature selection and hierarchical classification for infrared
spectroscopy: serum-based detection of bovine spongiform en-
cephalopathy. Analytical and bioanalytical chemistry 387, 5 (2007),
1801-1807.

MITCHELL, T. M. Machine learning. 1997. Burr Ridge, IL: McGraw
Hill 45 (1997).

MOHRI, M., ROSTAMIZADEH, A., AND TALWALKAR, A. Foundations
of machine learning. MIT press, 2012.

MONTANA, J. L., ALONSO, C. L., BORGES, C. E., AND DE LA DE-
HESA, J. Penalty functions for genetic programming algorithms. In
Computational Science and Its Applications-ICCSA 2011. Springer, 2011,
pp- 550-562.

MOORE, J. H., HILL, D. P., SAYKIN, A., AND SHEN, L. Exploring
interestingness in a computational evolution system for the genome-

wide genetic analysis of alzheimers disease. In Genetic Programming
Theory and Practice XI. Springer, 2014, pp. 31-45.

MORAGLIO, A., KRAWIEC, K., AND JOHNSON, C. G. Geometric se-

mantic genetic programming. In Parallel Problem Solving from Nature-
PPSN XII. Springer, 2012, pp. 21-31.



BIBLIOGRAPHY 211

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

MOUSAVI ASTARABADI, S. S., AND EBADZADEH, M. M. Avoiding
overfitting in symbolic regression using the first order derivative of
GP trees. In Proceedings of the Companion Publication of the 2015 on Ge-
netic and Evolutionary Computation Conference (2015), ACM, pp. 1441-
1442.

MUuNI, D. P, PAL, N. R., AND DaAs, J. Genetic programming for
simultaneous feature selection and classifier design. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics 36, 1 (2006),
106-117.

MURSALIN, M., ZHANG, Y., CHEN, Y., AND CHAWLA, N. V. Auto-
mated epileptic seizure detection using improved correlation-based

feature selection with random forest classifier. Neurocomputing 241
(2017), 204-214.

NAG, K., AND PAL, N. R. A multiobjective genetic programming-
based ensemble for simultaneous feature selection and classifica-
tion. IEEE Transactions on Cybernetics 46, 2 (2016), 499-510.

NESHATIAN, K., AND ZHANG, M. Pareto front feature selection:
using genetic programming to explore feature space. In Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computation
Conference (GECCO) (2009), pp- 1027-1034.

NETER, J., WASSERMAN, W., AND KUTNER, M. H. Applied linear

regression models.

NEUNER, H. Design of artificial neural networks for change-point
detection. In The 1st International Workshop on the Quality of Geodetic
Observation and Monitoring Systems (QuGOMS’11) (2015), Springer,
pp. 139-144.

NGUYEN, H. B., XUE, B.,, AND ZHANG, M. A subset similar-

ity guided method for multi-objective feature selection. In Aus-



212

[165]

[166]

[167]

[168]

[169]

[170]

[171]

BIBLIOGRAPHY

tralasian Conference on Artificial Life and Computational Intelligence
(2016), Springer, pp. 298-310.

NGUYEN, Q. U., NGUYEN, X. H., AND O’NEILL, M. Semantic
aware crossover for genetic programming: the case for real-valued
function regression. In Genetic Programming. Springer, 2009, pp. 292—
302.

NGUYEN, Q. U., NGUYEN, X. H., AND O’NEILL, M. Examining
the landscape of semantic similarity based mutation. In Proceedings
of the 13th annual conference on Genetic and evolutionary computation
(2011), ACM, pp. 1363-1370.

NGUYEN, Q. U., NGUYEN, X. H., O’'NEILL, M., AND AGAPITOS,
A. An investigation of fitness sharing with semantic and syntactic
distance metrics. In Genetic Programming. Springer, 2012, pp. 109-
120.

NGUYEN, Q. U., PHAM, T. A., NGUYEN, X. H., AND MCDERMOTT,
J. Subtree semantic geometric crossover for genetic programming.
Genetic Programming and Evolvable Machines 17,1 (2016), 25-53.

NIE, F., HUANG, H., CAI, X., AND DING, C. H. Efficient and robust
feature selection via joint 2, 1-norms minimization. In Advances in
neural information processing systems (2010), pp. 1813-1821.

NIKOLAEV, N. Y., AND IBA, H. Regularization approach to induc-

tive genetic programming. Evolutionary Computation, IEEE Transac-
tions on 5, 4 (2001), 359-375.

OLIVEIRA, L. O. V., OTERO, F. E., AND PAPPA, G. L. A disper-
sion operator for geometric semantic genetic programming. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference 2016,
pp- 773-780.



BIBLIOGRAPHY 213

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

OLTEAN, M., AND GROSAN, C. Evolving Digital Circuits us-
ing Multi Expression Programming. In Evolvable Hardware (2004),
pp- 87-90.

O’NEILL, M., VANNESCHI, L., GUSTAFSON, S., AND BANZHAF,
W. Open issues in genetic programming. Genetic Programming and
Evolvable Machines 11, 3-4 (2010), 339-363.

PAN, S.]J., AND YANG, Q. A survey on transfer learning. Knowledge
and Data Engineering, IEEE Transactions on 22,10 (2010), 1345-1359.

PARROTT, D., L1, X., AND CIESIELSKI, V. Multi-objective techniques
in genetic programming for evolving classifiers. In Evolutionary
Computation, 2005. The 2005 IEEE Congress on (2005), vol. 2, IEEE,
pp. 1141-1148.

PAWLAK, T. P., AND KRAWIEC, K. Semantic geometric initializa-
tion. In European Conference on Genetic Programming (2016), Springer,
pp- 261-277.

PAWLAK, T. P., WIELOCH, B., AND KRAWIEC, K. Review and com-

parative analysis of geometric semantic crossovers. Genetic Program-
ming and Evolvable Machines 16, 3 (2015), 351-386.

PAWLAK, T. P.,, WIELOCH, B., AND KRAWIEC, K. Semantic back-
propagation for designing search operators in genetic program-
ming. [EEE Transactions on Evolutionary Computation 19, 3 (2015),
326-340.

PENG, H., LONG, F., AND DING, C. Feature selection based on
mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27, 8 (2005), 1226-1238.



214 BIBLIOGRAPHY

[180] PENNACHIN, C. L., LOOKS, M., AND DE VASCONCELOS, J. A. Ro-
bust symbolic regression with affine arithmetic. In Proceedings of the
12th annual conference on Genetic and evolutionary computation (2010),
ACM, pp. 917-924.

[181] PETROWSKI, A. A clearing procedure as a niching method for ge-
netic algorithms. In Evolutionary Computation, 1996., Proceedings of
IEEE International Conference on (1996), IEEE, pp. 798-803.

[182] PIATETSKY-SHAPIRO, G. Discovery, analysis, and presentation of
strong rules. Knowledge discovery in databases (1991), 229-238.

[183] POLL, R., AND LANGDON, W. B. On the search properties of differ-
ent crossover operators in genetic programming. Genetic Program-
ming (1998), 293-301.

[184] PoLi, R., LANGDON, W. B., MCPHEE, N. F., AND KozA, J.R. A
field guide to genetic programming. Lulu. com, 2008.

[185] QUINLAN, J. R. Induction of decision trees. Machine learning 1, 1
(1986), 81-106.

[186] QUINLAN, R. Data mining tools See5 and C5.0.
[187] QUINLAN, R.J. C4.5: Programs for machine learning.

[188] REDMOND, M., AND BAVEJA, A. A data-driven software tool for en-

abling cooperative information sharing among police departments.
European Journal of Operational Research 141, 3 (2002), 660-678.

[189] RISSANEN, J. Modeling by shortest data description. Automatica 14,
5 (1978), 465-471.

[190] Rosca, J. P. Generality versus size in genetic programming. In
Proceedings of the 1st annual conference on genetic programming (1996),
MIT Press, pp. 381-387.



BIBLIOGRAPHY 215

[191] ROSENWALD, A., WRIGHT, G., CHAN, W. C., CONNORS,
J. M., CamPO, E., FISHER, R. 1., GASCOYNE, R. D., MULLER-
HERMELINK, H. K., SMELAND, E. B., GILTNANE, J. M., ET AL. The
use of molecular profiling to predict survival after chemotherapy for
diffuse large-b-cell lymphoma. New England Journal of Medicine 346,
25 (2002), 1937-1947.

[192] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence: A Modern
Approach, 2 ed. Pearson Education, 2003.

[193] RYAN, C. Pygmies and civil servants. In Advances in Genetic Pro-
gramming (1994), MIT Press, pp. 243-263.

[194] RYAN, C., AND KEIJJZER, M. An analysis of diversity of constants of
genetic programming. In EuroGP (2003), Springer, pp. 404-413.

[195] SAMUEL, A. L. Ai, where it has been and where it is going. In IJCAI
(1983), pp- 1152-1157.

[196] SANDIN, I., ANDRADE, G., VIEGAS, F., MADEIRA, D., ROCHA, L.,
SALLES, T., AND GONCALVES, M. Aggressive and effective feature

selection using genetic programming. In IEEE Congress on Evolution-
ary Computation (CEC) (2012), pp. 1-8.

[197] SARIDEMIR, M. Genetic programming approach for prediction of
compressive strength of concretes containing rice husk ash. Con-
struction and Building Materials 24, 10 (2010), 1911-1919.

[198] SCHMITT, M. Radial basis function neural networks have super-
linear VC dimension. In International Conference on Computational
Learning Theory (2001), Springer, pp. 14-30.

[199] SEBER, G. A., AND LEE, A.]. Linear regression analysis, vol. 936. John
Wiley & Sons, 2012.



216 BIBLIOGRAPHY

[200] SEMENKIN, E., AND SEMENKINA, M. Empirical study of self-
configuring genetic programming algorithm performance and be-

haviour. In IOP Conference Series: Materials Science and Engineering
(2015), vol. 70, IOP Publishing, p. 012004.

[201] SHAO, X., CHERKASSKY, V., AND LI, W. Measuring the VC-
dimension using optimized experimental design. Neural computation
12, 8 (2000), 1969-1986.

[202] SHAWE-TAYLOR, J., BARTLETT, P. L., WILLIAMSON, R. C., AND
ANTHONY, M. Structural risk minimization over data-dependent
hierarchies. IEEE transactions on Information Theory 44, 5 (1998), 1926—
1940.

[203] SHEN, K.-Q., ONG, C.-]., L1, X.-P., HUI, Z., AND WILDER-SMITH,
E. P. A feature selection method for multilevel mental fatigue

eeg classification. IEEE Transactions on Biomedical Engineering 54, 7
(2007), 1231-1237.

[204] SHIBATA, R. An optimal selection of regression variables. Biometrika
68,1 (1981), 45-54.

[205] SIEDLECKI, W., AND SKLANSKY, J. A note on genetic algorithms for

large-scale feature selection. Pattern recognition letters 10, 5 (1989),
335-347.

[206] SILvA, S., AND COSTA, E. Dynamic limits for bloat control in ge-
netic programming and a review of past and current bloat theories.
Genetic Programming and Evolvable Machines 10, 2 (2009), 141-179.

[207] SmiTS, G., AND VLADISLAVLEVA, E. Ordinal pareto genetic pro-
gramming. In IEEE Congress on Evolutionary Computation (CEC)
(2006), IEEE, pp. 3114-3120.



BIBLIOGRAPHY 217

[208] SmiTs, G. F.,, AND KOTANCHEK, M. Pareto-front exploitation in
symbolic regression. In Genetic programming theory and practice II.
Springer, 2005, pp. 283-299.

[209] SMOLA, A. J., ET AL. Regression estimation with support vector
learning machines. Master’s thesis, Technische Universit at M unchen
(1996).

[210] SMOLA, A.J., AND SCHOLKOPF, B. A tutorial on support vector
regression. Statistics and computing 14, 3 (2004), 199-222.

[211] STIJVEN, S., MINNEBO, W., AND VLADISLAVLEVA, K. Separating
the wheat from the chaff: on feature selection and feature impor-
tance in regression random forests and symbolic regression. In Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Com-
putation Conference (GECCO) (2011), pp. 623-630.

[212] SUGUMARAN, V., MURALIDHARAN, V., AND RAMACHANDRAN, K.
Feature selection using decision tree and classification through prox-
imal support vector machine for fault diagnostics of roller bearing.
Mechanical systems and signal processing 21, 2 (2007), 930-942.

[213] SzZUBERT, M., KODALI, A., GANGULY, S., DAS, K., AND BONGARD,
J. C. Reducing antagonism between behavioral diversity and fitness
in semantic genetic programming. In Proceedings of the 2016 on Ge-
netic and Evolutionary Computation Conference (2016), ACM, pp. 797-
804.

[214] THORBURN, W. M. The myth of Occam’s Razor. Mind 27,107 (1918),
345-353.

[215] TIBSHIRANI, R. Regression shrinkage and selection via the LASSO.
Journal of the Royal Statistical Society. Series B (Methodological) (1996),
267-288.



218

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

BIBLIOGRAPHY

TRAN, B., XUE, B., AND ZHANG, M. A new representation in PSO
for discretization-based feature selection. IEEE Transactions on Cy-
bernetics PP, 99 (2017), 1-14. doi:10.1109/TCYB.2017.2714145.

TRUJILLO, L., SILVA, S., LEGRAND, P., AND VANNESCHI, L. An em-
pirical study of functional complexity as an indicator of overfitting
in genetic programming. In Genetic Programming. Springer, 2011,
pp- 262-273.

Uy, N. Q., HIEN, N. T., HoAI, N. X., AND O’NEILL, M. Improv-
ing the generalisation ability of genetic programming with semantic
similarity based crossover. In Genetic Programming. Springer, 2010,
pp. 184-195.

Uy, N. Q., HoaAl, N. X., AND O’NEILL, M. Semantics based mu-
tation in genetic programming: The case for real-valued symbolic

regression. In 15th international conference on soft computing, Mendel
(2009), vol. 9, pp. 73-91.

Uy, N. Q., Hoa1l, N. X., O'NEILL, M., McKAy, R. I., AND
GALVAN-LOPEZ, E. Semantically-based crossover in genetic pro-
gramming: application to real-valued symbolic regression. Genetic
Programming and Evolvable Machines 12, 2 (2011), 91-119.

VALIANT, L. G. A theory of the learnable. Communications of the
ACM 27,11 (1984), 1134-1142.

VALIGIANI, G., FONLUPT, C., AND COLLET, P. Analysis of GP im-
provement techniques over the real-world inverse problem of ocean
color. In Genetic Programming. Springer, 2004, pp. 174-186.

VANNESCHI, L., CASTELLI, M., MANZONI, L., AND SILVA, S. A
new implementation of geometric semantic GP and its application
to problems in pharmacokinetics. In European Conference on Genetic
Programming (2013), Springer, pp. 205-216.



BIBLIOGRAPHY 219

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

VANNESCHI, L., CASTELLI, M., AND SILVA, S. Measuring bloat,
overfitting and functional complexity in genetic programming. In
Proceedings of the 12th annual conference on Genetic and evolutionary
computation (2010), ACM, pp. 877-884.

VANNESCHI, L., CASTELLI, M., AND SILVA, S. A survey of semantic
methods in genetic programming. Genetic Programming and Evolvable
Machines 15,2 (2014), 195-214.

VANNESCHI, L., SILVA, S., CASTELLI, M., AND MANZONI, L. Ge-
ometric semantic genetic programming for real life applications. In
Genetic Programming Theory and Practice XI. Springer, 2014, pp. 191-
209.

VANNESCHI, L., TOMASSINI, M., COLLARD, P., AND CLERGUE, M.

Fitness distance correlation in structural mutation genetic program-
ming. In EuroGP (2003), vol. 2610, Springer, pp. 455-464.

VAPNIK, V., LEVIN, E., AND LECUN, Y. Measuring the VC-
Dimension of a learning machine. Neural Computation 6, 5 (1994),
851-876.

VAPNIK, V. N., AND CHERVONENKIS, A. Y. On uniform conver-

gence of the frequencies of events to their probabilities. Teoriya
Veroyatnostei i ee Primeneniya 16, 2 (1971), 264-279.

VAPNIK, V. N., AND KOTZ, S. Estimation of dependences based on
empirical data, vol. 40. Springer-verlag New York, 1982.

VAPNIK, V. N., AND VAPNIK, V. Statistical learning theory, vol. 1.
Wiley New York, 1998.

VLADIMIR, V. N., AND VAPNIK, V. The nature of statistical learning
theory, 1995.



220

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

BIBLIOGRAPHY

VLADISLAVLEVA, E. J., SMITS, G. F., AND DEN HERTOG, D. Order
of nonlinearity as a complexity measure for models generated by

symbolic regression via pareto genetic programming. Evolutionary
Computation, IEEE Transactions on 13, 2 (2009), 333-349.

VLADISLAVLEVA, E. Y. Model-based problem solving through symbolic
regression via pareto genetic programming. CentER, Tilburg University,
2008.

WHIGHAM, P. A., ET AL. Grammatically-based genetic program-
ming. In Proceedings of the workshop on genetic programming: from
theory to real-world applications (1995), vol. 16, pp. 33-41.

WOLD, S., ESBENSEN, K., AND GELADI, P. Principal component
analysis. Chemometrics and intelligent laboratory systems 2, 1-3 (1987),
37-52.

WONG, P., AND ZHANG, M. Algebraic simplification of GP pro-
grams during evolution. In Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation Conference companion(GECCO)
(2006), ACM, pp. 927-934.

XU, Z.,SHI, X., WANG, L., LUO, J., ZHONG, C.-]., AND LU, S. Pat-
tern recognition for sensor array signals using fuzzy artmap. Sensors
and Actuators B: Chemical 141, 2 (2009), 458-464.

XUE, B., ZHANG, M., AND BROWNE, W. N. Single feature ranking
and binary particle swarm optimisation based feature subset rank-
ing for feature selection. In Proceedings of the Thirty-fifth Australasian
Computer Science Conference-Volume 122 (2012), Australian Computer
Society, Inc., pp. 27-36.

XUE, B., ZHANG, M., AND BROWNE, W. N. Particle swarm opti-
mization for feature selection in classification: a multi-objective ap-
proach. IEEE transactions on cybernetics 43, 6 (2013), 1656-1671.



BIBLIOGRAPHY 221

[241]

[242]

[243]

[244]

[245]

[246]

[247]

XUE, B., ZHANG, M., AND BROWNE, W. N. Particle swarm op-
timization for feature selection in classification: A multi-objective
approach. IEEE Transactions on Cybernetics 43, 6 (2013), 1656-1671.

XUE, B., ZHANG, M., BROWNE, W. N., AND YAO, X. A survey
on evolutionary computation approaches to feature selection. IEEE
Transactions on Evolutionary Computation 20, 4 (2016), 606—626.

YU, L., AND L1U, H. Feature selection for high-dimensional data: A
fast correlation-based filter solution. In ICML (2003), vol. 3, pp. 856—
863.

ZAMALLOA, M., BORDEL, G., RODRIGUEZ, L. J., AND
PENAGARIKANO, M. Feature selection based on genetic algo-

rithms for speaker recognition. In Speaker and Language Recognition
Workshop, 2006. IEEE Odyssey 2006: The (2006), IEEE, pp. 1-8.

ZELINKA, 1., OPLATKOVA, Z., AND NOLLE, L.  Analytic
programming-Symbolic regression by means of arbitrary evolution-

ary algorithms. Int. J. of Simulation, Systems, Science and Technology 6,
9 (2005), 44-56.

ZHANG, B.-T., AND MHLENBEIN, H. Balancing accuracy and parsi-

mony in genetic programming. Evolutionary Computation 3,1 (1995),
17-38.

ZHANG, M., WONG, P., AND QIAN, D. Online program simplifica-
tion in genetic programming. In Asia-Pacific Conference on Simulated
Evolution and Learning (2006), Springer, pp. 592-600.



222 BIBLIOGRAPHY



Appendix A

Improving Generalisation of
Genetic Programming for
High-Dimensional Symbolic

Regression with Feature Selection

[This is a short version of the paper:

Qi Chen, Bing Xue, Mengjie Zhang. “Improving Generalisation of Genetic
Programming for High-Dimensional Symbolic Regression with Feature
Selection”. Proceedings of 2016 IEEE World Congress on Computational Intel-
ligence/ IEEE Congress on Evolutionary Computation (WCCI 2016 /CEC2016).
Vancouver, Canada. 24-29 July, 2016. pp. 3793-3800.]

A.1 Introduction

Recent years, the dimensionality of real-world data is becoming increas-
ingly higher as the data collection techniques evolve. The properties of
high-dimensional data can affect the ability of learning algorithms to ex-

tract useful information from original data. Furthermore, many issues

223



224 APPENDIX A. GPWFS

arise when learning from high-dimensional data, for example, the curse
of dimensionality [22], risk of overfitting, and high computational cost.
In addition, learning from all these features does not necessarily perform
well, since noise is more likely to accumulate during the observation of
too many features. Feature selection is a process of identifying relevant
features that are necessary to describe the output variables. When learn-
ing from high-dimensional data, feature selection is desired. A plethora
of contributions have already been devoted to feature selection. How-
ever, most of them are developed for classification. When using Genetic
Programming (GP) [124] for symbolic regression (SR), feature selection is
seldom considered, and no research on feature selection has been reported
for high-dimensional symbolic regression tasks.

Generalisation measures the performance of learned models on unseen
data. Learning algorithms with good generalisation capability can pro-
duce models with similar performance on unseen data as obtained from
the training data. While generalisation has been considered as an impor-
tant aspect in many fields in machine learning for a long time [91, 210, 12,
60], it has not received enough attention as it deserves in GP for symbolic
regression. Prior to Kushchu’s work on generalisation of GP in 2002 [130],
most of the contributions on GP based symbolic regression did not investi-
gate the performance on the unseen test sets. Since then, growing attention
has been devoted to promote the generalisation of GP [218, 42, 98]. How-
ever, contributions to the generalisation in GP have not developed near
enough compared with the fast development of GP for symbolic regres-

sion. Thus, generalisation remains an open issue on GP [173].

A.1.1 Goals

This work aims to develop a new feature selection method in GP for high-
dimensional symbolic regression problems and investigate whether GP

with the new feature selection method can enhance its generalisation capa-
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bility. Specifically, this work will investigate the following research ques-

tions:

e whether the new feature selection method can increase the learning
ability of GP on training data,

e whether the new feature selection method can promote the general-

isation performance of GP on unseen data, and

e how the feature selection method influences the size and number of

features of the models evolved by GP.

A.2 The Proposed Method

The new feature selection method proposed in this work is based on the
fact that GP can explore the search space to detect important/informative
features automatically. We assumed that relevant features must present in
high fitness individuals even though not all the features present in these
individuals are relevant. Features present in highly fitted individuals can
be a candidate subset for selecting good features to construct desired mod-
els.

Base on this assumption, we propose a new method which is named
genetic programming with feature selection (GPWFS) to improve the natural
feature selection ability of GP by introducing a very simple mechanism.
The flow chart for describing GPWEFS is shown in Fig. A.1.

In GPWES, the population of candidate solutions will be virtually di-
vided into two groups based on their fitness values: the good individuals
and the not good enough individuals. The split of individuals depends on
the value of a parameter o (o« € (0,1)), which refers to the proportion of
population to be considered to be good. For example, when the parame-
ter « is set to be 0.1, it means GPWEFES will treat the top 10% of the indi-
viduals in the population to be good and the rest 90% are not good enough
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Stage I: Feature Selection <Initia|ize the Population>
Process

|

Evaluate Candidate
Individuals

Y

Collect All the Distinguished
Breed the.Next Features on the Top a
Generation Percent Individuals

A

S Generation fol
Replace Not Good
nough Individugls

R Y -
Stage I1: Evolutionary Replace the Not Good
Process After Feature Enough (1-a) Percent
Selection Individuals
Breed the Next | Evaluate Candidate
Generation " Individuals

A

Meet the Stopping
Criteria

Figure A.1: Flow Chart of GPWFS.

individuals. While o should neither be too small, in which case too many
individuals in the population will be treated as not good enough ones, and
potentially good features will be missed since they have a higher prob-
ability to appear in not good enough individuals, nor be too large, which

will lead to an excessive number of selected features thus degrades the
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effectiveness and efficiency of feature selection.

In addition, GPWES splits the whole evolutionary process into two
stages. The first stage is the feature selection process. During this stage,
on every generation, all the distinguished features present in the good in-
dividuals are collected. At the end of the feature selection process, a set
of selected features F, is formed, which is a subset of original features.
The second stage is a standard GP evolutionary process with an addi-
tional component. The component is that, at the start generation of the
second stage, the population of GP is reinitialised by replacing the not good
enough individuals with an equal number of randomly initialised individ-
uals, while keeping the good individuals. The features used to reinitialise
the new individuals are all from F, instead of the original features. Then a
standard GP evolutionary process will perform on the reinitialised popu-
lation generation by generation until the stopping criterion is met.

A parameter Gy defines how to split the evolutionary process into two
stages. The first G generations belong to the feature selection process
and the rest generations are used for evolutionary process after feature
selection. The value of G/ relies on the maximum number of generations.
It should be neither too small nor too large. When G} is too small, the
number of generations will not be enough for GP to find good features by
searching the feature space. When G/ is too close to the end generation, the
number of generations for evolving the newly reinitialised population is
too small, and there will not be enough time for GP to converge to optimal
(near optimal) solutions. A good trade-off of the two stages of GPWEFS
relies on the setting of G.

A.3 Experiment Design

This work uses standard GP as a baseline for comparison. Both GPWFS
and standard GP were tested on six real-world high-dimensional regres-
sion datasets.
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A.3.1 Evaluation Measure — Fitness Function

The performance of models evolved by GPWEFS and standard GP are eval-
uated by the Normalised Root Mean Square Error NRMSE) on both the train-
ing set and the test set. The fitness function is shown in Equation (A.1).

NRMSE = —TMEE (A1)

Yma:c - Ymin

where Y}, — Y, is the range of the target outputs and RM SE is the root
mean square error and is denoted in Equation (A.2).

=1

N
RMSE = J T (X - iy (A2)

where N is the number of instances, f(X;) is the output(s) of the candidate

models and Y; is the target output(s).

A.3.2 Parameters

The parameters for GPWEFS and standard GP are summarised in Table D.2.
GPWEFES has two key parameters: the parameter o which refers to the

proportion of good individuals in the candidate population and the param-

eter Gy which refers to the number of generations to split the two stages
of GPWFS.

a is set to be 0.05 since the size of population (which is 512) is relatively
large, top 5% individuals of the population (the number of which is 25)
are enough for represent the good individuals and contain enough good
tfeatures. The parameter Gy can not be either too small or too large. Since
the maximum number of generations in this work is 100, the reasonable
values for Gy are 40, 50 and 60. The results of a few trails show that setting
G to 60 is a good choice to achieve a good trade-off between the two
stages of GPWFS.
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Table A.1: Parameters for GP

parameter Values
Population Size 512
Generations 100
Crossover Rate 0.9
Mutation Rate 0.1
Elitism Rate 0.01
Maximum Tree Depth 17
Initialisation Ramped-Half&Half
Minimum Initialisation Depth 2
Maximum Initialisation Depth 6
Function Set +, —, *, Y%oprotected
X Features, Random Con-
Terminal Set
stant € [-1.0, 1.0)
Fitness Function NRMSE
Generation for Feature Selection — Gy | 60
Percentage of Top Individuals — « 5%

A.3.3 Test Problems

Since GP does not have any benchmark dataset designed for the research
of generalisation specifically, this work took six real-world datasets from
previous contributions on generalisation of GP for symbolic regression
[14, 226, 224] and UCI [138]. These six datasets are all have a large di-
mensionality of the feature space for regression tasks and feature selection
for the datasets seems to be desired. The number of features and instances
of the six datasets are shown in TABLE A.2.

The first two datasets tackle problems in the field of pharmacokinet-
ics. The task of these two datasets is to predict the value of two different
pharmacokinetics parameters. While the first dataset is to predict the hu-
man oral bioavailability (represent as %F), the second one is to predict the
median lethal dose (LD50). These two datasets have been used in many
recent works [14, 226, 224, 223, 68] (For %F, we understand from [68], some
features in this dataset are redundant/useless. We would like to investi-
gate whether the proposed GP method can automatically select relevant
features for regression, so we include this dataset in this work). For more

information of these two datasets, readers are referred to [14, 68].
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Table A.2: Benchmark Problems

Name 4 Features #Iotal In- | #Iraining #lest In-
stances Instances stances
%F 241 359 251 108
LD50 626 234 163 71
DLBCL | 7399 240 180 60
CCUN 124 1994 1395 599
CCN 122 1994 1395 599
RLCT 384 53500 37450 16050

The third dataset is the Diffuse Large-B-Cell Lymphoma (DLBCL), which
was collected from Rosenwald et al. [191]. The task of this dataset is to pre-
dict the survival time of patients who have diffuse large-B-cell lymphoma
and received chemotherapy.

The rest three datasets are taken from UCI [138]. Two of the datasets
are about communities and crime within the United States. They are the
Communities and Crime unnormalised dataset (CCUN) and the Commu-
nities and Crime normalised dataset (CCN). These two dataset were used
in [188] and both of them are to predict the per capita crimes. As shown
in TABLE A.2, the number of instances of the two datasets used in this
work is different from the original data. The values are based on the dis-
card of the instances which have missing values of features and the output
variable. The last dataset is the Relative location of CT slices on axial axis
(RLCT). The task of RLCT is to predict the relative location of the CT slice
on the axial axis of the human body.

A.3.4 Training sets and Test sets

In this work, each dataset is split into a training set and a test set in or-
der to investigate the generalisation performance of the evolved model of
standard GP and GPWEFS on unseen data. The numbers of instances on
the training sets and the test sets are shown in TABLE A.2. Among the
six datasets, DLBCL is the only one on which the training set and test set
are provided. All the experiments conducted on the other five datasets are
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Figure A.2: Distribution of NRMSE of the 100 best-of-runs individuals.

with 70% of instances randomly selected from the dataset for training and
the other 30% instances forms the test set, since this is a common way in
many previous research [226, 175, 200].

The experiments of each method have been conducted for 100 inde-
pendent runs on every dataset. Therefore, 1200 (i.e. 2*6*100) experiments
have been run for the two methods on six datasets and 2400 (i.e. 1200*2)
training and test results are used here to discuss the feature selection per-
formance and generalisation of GPWEFS for high-dimensional SR.

A.4 Results and Discussions

The experimental results of GPWFS and standard GP are presented and
discussed in this section. The results will be presented in terms of com-
parisons of NRMSEs on the training sets and the test sets, the size of the
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Figure A.3: The evolution plots of the median NRMSE of 100 runs of the
best individual on every generation on the Training Sets.

100 best-of-run models, and the number of features and distinguished fea-
tures used to construct these models. The comparison of computational
time on the six datasets between the two methods will also be provided.
Fig. D.2 shows the distribution of NRMSEs of the 100 best-of-run in-
dividuals on the six datasets. Each dataset has two boxplots, one for the
training set and the other for the test set. Each boxplot consists of a pair of
whiskered boxes, the first one displays the results of standard GP and the
second one shows its counterpart of GPWEFS.
The evolution plots of the training sets are shown in Fig. A.3, while
Fig. A.4is for their counterparts on the test sets. Since the median value is
suggested to be more robust to outliers [98], it is preferred over the mean

value in this work and the evolution plots are drawn using the median
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values of the best individuals of 100 runs on every generation.

The Wilcoxon test, which is an non-parametric statistical significant
test, is used in this work to compare the NRMSE values of 100 best-of-
run programs of standard GP and GPWFS both on the training sets and

the test sets. The significance level is 0.05.

A.4.1 Results on the Training Sets

The evolution plots of the median NRMSE of best individuals of 100 runs
on training sets on every generation are shown in Fig. A.3. As it shows,
GPWES generally achieves better training performance than standard GP
on all the six problems. While GPWES has slight better training perfor-
mance on %F, LD50 and RLCT, on the other three datasets (DLBCL, CCUN
and CCN), it has a quite dramatic improvement on training performance
over standard GP. The statistical test results are that on five of the six
datasets, GPWES can have significant better training performance (except
for LD50 which is slightly better but not significant).

The training boxplots in Fig. D.2, which display the distribution of
NRMSE of the 100 best-of-run individuals on the training sets, also con-
firm the advantage of GPWES on the training sets.

The training results suggest that GPWFS, which is equipped with fea-
ture selection and the reinitialisation of a big proportion of individuals in
the population using the selected features, could incorporate more use-
ful information in the training set, thus have a positive effect on enhanc-
ing the learning/training /optimisation ability of GP. The feature selection
process can effectively explore the search space and automatically collect
good features from the good individuals by GPWES.

A.4.2 Results on the Test Sets — Generalisation

Fig. A.4 presents the evolution plots of the median NRMSE of 100 best-of-

generation individuals on the test sets. It is easy to observe that the overall
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Figure A.4: The evolution plots of the median NRMSE of 100 runs of the
best individual on every generation on the Test Sets.

pattern on the test sets is very similar to the training sets. GPWEFS is still
superior to standard GP on all the six datasets. The results of statistical
test on the test errors of 100 best-of-run individuals show that, on four of
the six datasets, GPWFS has significant better generalisation performance
than standard GP, except for %F and LD50 where GPWES is slightly better
but no significant differences have been found.

On the first two datasets (%F and LD50), overfitting happens. The issue
of overfitting might be due to the small ratio of instances over the num-
ber of features in the two datasets that does not provide enough useful
information to the evolutionary process. Although both methods have in-
creasing test errors over generations, GPWFS can still have lower NRMSE
on both tasks, i.e., better generalisation ability than standard GP.
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On the other four datasets, GPWFS has much better generalisation per-
formance, which differs from the first two benchmarks. On these datasets,
the pattern on the test sets is the same as the training set. On the first three
datasets — DLBCL, CCUN and CCN, comparing to standard GP, GPWEFS
has a dramatical generalisation gain, which is significant (p-values of the
three benchmarks are: DLBCL=0.008, CCUN=6.15E-10, CCN=2.05E-10).
It is notable that, while standard GP has overfitting problem on DLBCL,
GPWES can eliminate overfitting effectively and has a dramatical general-
isation gain. On the task of RLCT, GPWES can also have significant better
generalisation ability than standard GP (p-value=5.12E-7), although the
distance of NRMSE between the two methods looks much smaller than
that on the other three datasets.

On most of the six datasets, GPWEFS contributes a positive effect on en-
hancing the generalisation performance of GP. When overfitting happens
(e.g. %F, LD50), the feature selection process tends to select features that
is possibly unique to the training set, thus the positive effect of GPWFS
on improving generalisation may decrease. In the future, we will find an

effective way to avoid this kind of overfitting.

A.4.3 Further Analysis — Result on Program Size, Number

of Total Features and Distinguished Features

TABLE A.3 shows the average program size of the best-of-run individuals,
the average number of features and the average number of distinguished
features for constructing these individuals. It can be observed that the
average program size of GPWES is smaller than GP on all the six datasets.
It is obvious that GPWEFS can evolve more compact models than GP, which
are generally faster in execution and easier to interpret.

As it is shown in TABLE A.3, comparing to the original number of fea-
tures, there is a dramatic drop in the average number of features on all the

six benchmarks on both methods. The trend on the number of features is
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Table A.3: Program Size, Number of Features and Distinguished Features

#Orici #Nod 4Teat #Distinguished
eatures
Dataset F rlgma]Method (MO e:tSt n (Mean=-Std) Features
n ean
eatures e (MeanzStd)
oF 011 GP 260.02+86.35 | 55.014+24.76 | 11.72+4.58
¢ GPWEFS | 242.0+70.52 52.77420.9 13.41+4.77
LD50 626 GP 295.12+£79.98 | 75.374+25.25 | 16.29+5.27
GPWES | 286.72+73.75 | 74.984+24.45 | 17.8645.64
GP 160.08+84.89 | 40.49+22.89 | 4.16+2.22
DLBCL | 7399
GPWFS | 155.12+78.13 | 38.96+21.46 | 6.02+2.8
P 113. R .74429.72 4742,
CCUN | 124 G 3.06+85.9 33.74429 3.47+2.33
GPWES | 108.8+71.45 30.134+22.71 | 5.142.88
GP 105.36+78.33 | 30.99+29.63 | 3.54+2.23
CCN 122
GPWFS | 93.76+62.6 26.844+21.37 | 5.47+2.99
P 251.61+76.22 144222 11. .87
RLCT 384 G 51.6+76 51.4+ 9+3.8
GPWES | 235.41+64.36 48.48+17.64 | 13.5143.82

the same as the program size. Compared with standard GP, GPWES uses
a smaller number of features to construct the best-of-run individuals.

As already mentioned, the reason for the overfitting on the first two
datasets (%F and LD50) might be that the ratio of instances over the num-
ber of features is small. From TABLE A.3, the extremely large average
program size, the numbers of features and distinguished features of the
best individuals on these two datasets, which are much higher than the
other four datasets, can also confirm the reason. On the DLBCL, GPWFS
can effectively select a small but sufficient number of good features from
the very large number of original features (i.e. 7399), which shrinks the
search space for the evolutionary process in the second stage, and poten-
tially prevents the training/evolutionary process from being overfitted to
the training set.

In terms of distinguished features, it is interesting to note that GP-
WES has a slightly larger average number of distinguished features in
the evolved models on all the six problems, which is different from the
number of features. This phenomenon may be due to the feature selec-
tion process, which reduces the number of features while keeping the rele-
vant/informative features. Thus these distinguished relevant/informative
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features have more opportunities to be selected into the candidate pro-
grams instead of the building blocks used in standard GP. In these build-
ing blocks, a feature might be manipulated several times in order to get

enough information.

A4.4 Computational Cost

TABLE A .4 shows the average computational time of the 100 runs in mil-
liseconds on the six datasets. As it shows, GPWEFS has a lower compu-
tational cost than standard GP which is around 10% lower on all the six
datasets. It is not very intuitive. Compared with standard GP, GPWFS
needs additional computational cost for feature selection process which
including ranking the individuals and collecting features from the good in-
dividuals. However, the smaller program size of GPWEFS (as showing in
TABLE A.4) is a reason for the decrease of computational cost. For the
smaller models, evaluation cost which is the major cost of evolutionary
process will be much smaller than their bigger counterparts. The lower
evaluation cost of the smaller programs should be the major reason for the
efficiency of GPWES.

Table A.4: Program Size and Computational Time

Time (Millisec-
#Node
Dataset | Method ond)
(Mean45td)
(Mean=+Std)
%F GP 260.02+86.35 | 7806.23+2891.83
’ GPWFS | 242.0+70.52 7339.25+2703.76
LD50 GP 295.124+79.98 | 7188.16+3124.71
GPWES | 286.72+73.75 | 6610.9+2624.44
DLBCL GP 160.08+84.89 | 3537.37+2146.43
GPWFS | 155.12+78.13 | 3221.97+1647.59
GP 113.06+85.9 1.76E4+1.44E4
CCUN
GPWES | 108.8+71.45 1.51E4+1.09E4
CCN GP 105.36+78.33 | 1.65E4+1.22E4
GPWFS | 93.76+62.6 1.41E4+9330.36
RLCT GP 251.64+76.22 1.81E6+5.22E5
GPWES | 235.4+64.36 1.67E6+4.53E5
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A.5 Conclusions and Future Work

This work proposed a new method — GPWEFS, which is a feature selection
method to GP, and investigated how it can influence the generalisation
of GP for high-dimensional symbolic regression tasks. For this purpose,
a series of experiments have been conducted on six real-world symbolic
regression datasets with a large dimensionality of the feature space.

The results show that GPWFS can evolve more compact model for all
the datasets. It uses more distinguished features to construct the mod-
els while keeping the number of features small. Compared with models
evolved by standard GP, these compact models can have not only signif-
icantly better regression performance on the training sets but also huge
generalisation gains on the unseen data. Furthermore, GPWFS generally
spend less computational time than standard GP since it can reduce the
size of models effectively.

The results of the experiments provided strong evidence for the im-
portant role of feature selection in enhancing the generalisation of GP.
However, further analysis and explanation of the evolved solutions will
be needed. So in the future, we are intending to investigate more detail
of the evolved models. Furthermore, we plan to incorporate an overfitting
detecting mechanism, for example using a validation set, and /or introduc-
ing model complexity measurement to GPWFS. It is expected to improve
the generalisation of GP in a more effective way. Last but not least, we
also plan to do a more comprehensive comparison between the generali-
sation ability of GPWEFS with some other generalisation approaches in the
previous publications for GP, such as validation set [88], semantic based

crossover [218], GP with linear scaling and no same mate [62].



Appendix B

Analysis on the Correlation of
Features on the Real-world Data
in Chapter 3

Previous research shows that permutation importance in random forest
performs poorly when features in the dataset are highly correlated. It
is worth to have an analysis on how correlated the features are in the
four real-world datasets in our work. However, it is difficult to analyse
the correlation of a set of features in these high-dimensional regression
datasets. Thus, we have analysed the pairwise correlation of features. We
obtained the correlation matrices using Pearson correlation measure and
visualised them in correlation plots, which are shown in Fig.B.1, where
the red colour represents the highly correlated relationship and the green
colour means weak correlation between the features. As it shows, the
first plot, which shows the correlation values between features in LD50,
which contains large areas of red colour. It indicates features in LD50 are
highly correlated. On the other three datasets, compared with the large
number of available features, the number of highly correlated features is
small. In the later three plots, most of the values are showing in green

colour, which means that most of the correlation values are around zero.
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Figure B.1: The Correlation Plots.

No much highly correlated features have been found in any of the other

three datasets.



Appendix C

Derivations of the Formula in
Chapter 4

C.1 Derivation of the Theoretical Formula of the

Maximum deviation

To estimate a bound on the expectation of the maximum deviation be-
tween errors (here are the errors obtained on two independently gener-
ated paired datasets), we need to formulate this maximum deviation at
first. For a set of indicator functions /(.X, a) with a VC-dimension h, given
a set of samples Z?" = X1,Y1, X5, Ys,..., Xo,, Ya, where X; is the input
vector and Y; € (0, 1) is the label, let Pe;(Z*") denote the error rate on the
first n samples, Pey(Z?") denote the error rate on the other n samples. The

error rate is obtained by:

Pei(Zan,0) = © (Z Y - I(Xpa)l) i€ (1,2) (C1)
j=1

Then the maximum derivation between the errors obtained by I(X, «) is
defined as:
e(n) = sup [Per(Z°",a) — Pey(Z°", )] (C2)
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where ¢(n) stands for the maximum deviation and sup is the supremum
(least upper bound) of the set of derivations. Assume there exist an up-
per bound for the maximum deviation, and consider the bound of under
following three cases [228]:

Case 1. When the number of instances is extremely small (# <= 0.5), a
trivial bound is used, i.e.

E{e(n)} <1
Case 2. When the number of instances is small (0.5<%<u, u is small), ac-

cording to [228], the following conditional expectation of ¢(n) valid:

4 [In(2n/h)+1 1— P(Cs)
T

E{e(n)[Cs} <

where Cj is the condition denoted by:

Pe (Z%",a) — Pey(Z%", )
[Pe(Z? «)+1/2n][1 + 1/2n — Pe (Z?", «)]

>0

P(Cjs) is the probability of Cs , and

_ Pey(Z°",a) + Pey(Z27", )

2n
Pe (Z ,a) 5

When the n/h is not large, usually 6 > 0.5 and P(C;) approaches 1. In
this scenario, according to the conditional expectation, the maximum

deviation is bounded as follows:

In(2n/h) + 1

Blefn)} < G

where (] is a constant.

Case 3. When there are sufficient instances(n/h is large), according to in-
equality defined in [230] (P172)

P(e(n) > 0) <3 (%)h exp (—6°n)
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so that, .
E{e(n)} < / 46 +3 <2h”e>
0

the right side of the inequality is smaller than

h  roo
2
w+3 ( Ze> / exp (—fwn) dd

/ exp (—9211) de

w

which equals to

2ne\" 1
w+3<h> @emp(—wn)

In(2n/h)+1
For w = /C2/E,
2 1 2 1
E{e(n)} < /M + 5 < Oy [/ 1
n/h Vnh[in(2n/h) + 1] n/h
where (5 is a constant.
Then we have the bound as:
1 if 7 <=0.5
E{e(n)} < { Cy e 0.5 < <=u (C.3)
o/ REMVEL i 2>y

Using a continuous approximation, the right side of the bound is rep-
resent as
1 if 7 <=0.5

n
(I)(i) = n(en n_
h a% < 1+ 1352’1%)?1 + 1> otherwise.

h

(C.4)

where the parameters a and b respectively determine the small and larger
regions of n/h , i.e. the role of v in Case 2 and Case 3. The values of
a and b are found by fitting Equation (C.4) to the experimental values of
the maximum deviation of linear models, the VC-dimension of which are
known. Accordingly, it found that a« = 0.16 and b = 1.2 [228]. The third
parameter k in Equation (C.4) is chose to keep the continuity at $(0.5), i.e.
to make ¢(0.5) = 1.
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Inspired by the bound for small n/h (i.e. the bound in Case 2), ®(#) has

a simpler formula:
oy In(2n/h+1)
()= d(n/h) +d—05
Applying this simpler formula for linear models, it is easy to get d = 0.39.
In addition, it also found that this formula performs well for a small n/h

(up ton/h = 8). That is why u ~ 8.



Appendix D

Geometric Semantic Crossover
with an Angle-aware Mating
Scheme in Genetic Programming

for Symbolic Regression

[This is a short version of the paper:

Qi Chen, Mengjie Zhang, Bing Xue. “Angle-aware Geometric Semantic
Crossover in Genetic Programming for Symbolic Regression”. Proceedings
of the 20th European Conference on Genetic Programming (EuroGP 2017). Lec-
ture Notes in Computer Science, Vol. 10196. Amsterdam, The Nether-
lands. 18-21 April 2017. pp. 229-245. ]

D.1 Introduction

In recent years, semantic genetic programming (GP) [149, 225], which in-
corporates the semantic knowledge in the evolutionary process to improve
the efficacy of search, attracts increasing attention and becomes a hot re-

search topic in GP [124]. One popular form of semantic methods, geomet-
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ric semantic GP (GSGP), has been proposed recently [156]. GSGP searches
directly in the semantic space of GP individuals. The geometric crossover
and mutation operators generate offspring that lies within the bounds de-
fined by the semantics of the parent(s) in the semantic space. The fitness
landscape that these geometric operators explore has a conic shape, which
contains no local optimal and is easier to search. In previous research,
GSGP presents a notable learning gain over standard GP [226, 223]. For
the generalisation improvement, GSGP shows some positive effect. How-
ever, while the geometric mutation is remarked to be critical in bringing
the generalisation benefit, the geometric crossover is criticised to have a
weak effect on promoting generalisation for some regression tasks [98].
One possible reason is that of the target output on the test set is beyond
the scope of the convex combination of the parents for crossover [171] in
the test semantic space. Another possible reason is that crossover might
operate on similar parents standing in a compact volume of the seman-
tic space, which leads to generating offspring having duplicate semantics
with their parents. In this case, the population has difficulty to converge to
the target output, no matter the target semantic is in or out of the covered
range. Thus, the offspring produced by the geometric crossover is difficult
to generalise well. Therefore, in this work, we are interested in improving

the geometric crossover by addressing this issue.

The overall goal of this work is to propose a new angle-aware mat-
ing scheme to select for geometric semantic crossover to improve the gen-
eralisation of GP for symbolic regression. An important property of the
geometric semantic crossover operator is that it generates offspring that
stands in the segment defined by the two parent points in the semantic
space. Therefore, the quality of the offspring is highly dependent on the
positions of the two parents in the semantic space. However, such im-
pact of the parents on the effectiveness of geometric semantic crossover
has been overlooked. In this paper, we propose a new mating scheme to

geometric crossover to make it operats on parents that are not only good
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at fitness but also have large angle in terms of their relative positions to the
target point in the semantic space. Our goal is to study the effect of the
newly proposed mating scheme to geometric crossover operator. Specific

research objectives are as follows:

e toinvestigate whether the geometric crossover with angle-awareness

can improve the learning performance of GSGP,

e to study whether the geometric crossover with angle-awareness can
improve the generalisation ability of GSGP, and

e to investigate how the geometric crossover with angle-awareness in-
fluences the computational cost and the program size of the models
evolved by GSGP.

D.2 Angle-aware Geometric Semantic Crossover
(AGSX)

In this work, tree based GP is employed, and we propose a new angle-
aware mating scheme for Geometric Semantic Crossover (AGSX). This
section describes the main idea, the detailed process, the characteristics
of AGSX, and the fitness function of the GP algorithm.

D.2.1 Main Idea

How the crossover points spread in the semantic space is critical to the
performance of GSGP. A better convergence to the target point can be
achieved if the convex combinations cover a larger volume when the con-
vex hull is given. AGSX should be applied to the parents that the target
output is around the intermediate region of their semantics. Given that
the semantics of the generated offspring tend to lie in the segment of the
semantics of the parents as well, AGSX is expected to generate offspring
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Figure D.1: AGSX in two Dimension Euclidean Semantic Space.

that is close to the target output. To promote the convex combinations to
cover a larger volume, the two parents should have a larger distance in the
semantics space.

The semantic distance between the parents can be used here, but it
often leads to a quick loss of semantic diversity in the population and then
results in a premature solution. Therefore, we utilise the angle between
the relative semantics of the parents to the target output to measure their
distance in the semantic space. Specifically, suppose the target output is
T”, and the semantics of the two parents are 51 and S,, the angle a between

the relative semantics of the two parents to the target output is defined as
S, —T)- (S, —T
Q= arccos ( (§1 _,) <5:? _,) ) (D.1)
1Sy =T - |52 = T

where (S; — T) - (S, — T) = Yora(s1 — ti) - (52 — t;) and IS — T =
V2, (si — t;)?. i stands for the ith dimension in the n—dimensional se-

follows:

mantic space. sy;, s2;, and ¢; are the values of S, S, and T in the ith dimen-
sion, respectively.

Fig.D.1 illustrates the mechanism of AGSX in a two-dimensional Eu-
clidean space, which can be scaled to any n-dimensional space. Each point
represents the semantics of one individual in GP. As shown in the figure,

there are four individuals py, ps, ps and p4, which can be selected as the par-
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ents of AGSX. Assume p; (in blue colour) has been selected as one parent
and the mate, i.e. the other parent, needs to be selected from p,, p; and p4
to perform AGSX. a4, oy, and a3 show the angles in the three pairs of par-
ents, i.e. (p1,p2), (p1,pa) and (p1, ps), respectively. The three green points,
S(01), S(02), and S(o3), show the three corresponding offspring of the three
pairs of parents, and the green lines indicates their distances to the target
point. It can be seen from the figure that the pair of parents (p;, p3) has a
larger angle, i.e. a3, and the generated offspring S(o3) is closer to the target
output. In the ideal case where the yellow point S(bp,) is the second par-
ent, the generated offspring is very likely to be the target point. In other
words, if the parents have a larger angle between their relative semantics
to the target output, the generated offspring tends to be closer to the tar-
get output. Therefore, we need to select parents with a large angle in their

relative semantics to the target output.

To achieve this, we develop a new mating scheme to select parents with
a large angle in their relative semantics to the target output. First, a list of
candidate parents called the WaitingSet is generated by repetitively ap-
plying a selection operator (e.g. tournament selection) to the current pop-
ulation. The size of WaitingSet is determined by the population size N
and the crossover rate Ry, i.e. [waitingset| = N - Rx. Then, the parents for
each AGSX operation are selected from WaitingSet without replacement
so that the angles between the relative semantics of the selected parents
can be maximised. The detailed process of AGSX is given in Section D.2.2.

D.2.2 The AGSX Process

The pseudo-code of AGSX is shown in Algorithm 6. The procedure of
finding the mate having the largest relative angle for a given parent p; is
shown in Lines 3 — 18. The angles are calculated according to Equation

(D.1), as shown in Line 6.
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Algorithm 6: Pseudo-code of AGSX
Input : WaitingSet[iy, is, ..., i,,| consists of m individuals on which

will perform crossover. 7' is the target semantics point.
Output: The generated offspring

while WaitingSet is not empty do
p1 = is the first individual in WaitingSet;

remove p; = from WaitingSet;

maxangle = 0; /*i.e. the maximum angle that has been found */
top is an empty list;

for each individual p in W aitingSet do

calculate the angle between the relative semantics of S(py),
S(p) to T according to Equation (D.1);

if angle is equal to 180, i.e. p is the optimal mate for p; then
| top=p;

else

if angle is larger than maxangle then

maxangle = angle;

top=p;

else

if angle is equal to the maxangle then
| add p to top;

end

end

end

end
randomly select an individual, py, from top;

perform geometric crossover on p; and p;

remove p; and p, from WaitingSet.
end

D.2.3 Main Characteristics of AGSX

Compared with GSX, AGSX has three major advantages. Firstly, AGSX
employs an angle-aware scheme, which is flexible and independent of the
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crossover process itself and can be applied to any form of the geometric
semantic operator. Secondly, AGSX operates on distinct individuals in
the semantic space. This way, the generated offspring are less likely to
be identical with their parents in the semantic space. That is, AGSX can
reduce semantic duplicates. Thirdly, by operating on parents with large
angles between their relative semantics to the target output, AGSX is more
likely to generate offspring that are closer to the target output.

D.2.4 Fitness Function of the algorithm

The Minkowski metric L(X,Y) = {/Si, [z — ui/*, which calculates the dis-
tance between two points, is used to evaluate the performance of individ-
uals. Typically, two kinds of Minkowski distance between the individual
and the target could be used. They are Manhattan distance (L, by setting
k = 1in Ly(X,Y)) and Euclidean distance (L;). According to previous
research [10], Euclidean distance is a good choice and is used in this work.
The definition is as follows:

D(X,T) = \| > |zi — ti]? (D.2)
=1

where X is the semantics of the individual and 7' is the target semantics.

D.3 Experiments Setup

To investigate the effect of AGSX in improving the performance of GP, a
GP method implements the angle-awareness into one recent approximate
geometric crossover, the locally geometric semantic crossover has been
proposed and named GPALGX. A comparison between GPALGX and GP
with locally geometric semantic crossover (GPLGX) has been conducted.
We have a brief introduction of LGX in previous section. For more de-
tails of the GPLGX, readers are referred to [128]. Standard GP is used as
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Table D.1: Target Functions and Sampling Strategies.

Benchmark ‘ Target Function ‘ Training ‘ Test

Keijzerl 0.3zsin(2mx) 20 ponits 1000 ponits
Koza2 (x® — 223 + X) x=mesh((-1:0.1:1]) | z=Rnd[-1.1,1.1]
Nonic >0t

R1 (x+1)3/(x2 =z +1) 20 ponits 1000 ponits

R2 (2% — 323 +1) /(22 + 1) | x=mesh((-2:0.2:2]) | z=Rnd[-2.2,2.2]
Mod _quartic | 4z* + 323 + 222 + =

a baseline for comparison as well. All the compared methods are imple-
mented under the GP framework provided by Distributed Evolutionary
Algorithms in Python (DEAP)[82].

D.3.1 Benchmark Problems

Six commonly used symbolic regression problems are used to examine
the performance of the three GP methods. The details of the target func-
tions and the sampling strategy of the training data and the test data are
shown in Table D.1. The first two problems are the recommended bench-
marks in [147]. The middle three are used in [177]. The last one is from
[36] which is a modified version of the commonly used Quartic function.
These six datasets are used since they have been widely used in recent re-
search on geometric semantic GP [177, 213]. The notation rnd[a,b] denotes
that the variable is randomly sampled from the interval [a, b], while the
notation mesh([start:step:stop]) defines the set is sampled using regular in-
tervals. Since we are more interested in the generalisation ability of the
proposed crossover operator, the test points are drawn from ranges which
are slightly wider than that of the training points.

D.3.2 Parameter Settings

The parameter settings can be found in Table D.2. For standard GP, the
fitness function is different from that of GPLGX and GPALGX. Since the

primary interest of this work is the comparison of the generalisation abil-
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Table D.2: Parameter Settings

Parameter Values Parameter Values
Population Size 512 Generations 100
Crossover Rate 0.9 Reproduction Rate 0.1
#Elitism 10 Maximum Tree Depth 17
Initialisation Ramped-Half&Half || Initial Depth range(2,6)
Maximum tree depth in Library-AM | 3 Neighbourhood Number-K | 8
Function Set , —, *, protected %, log, sin, cos, exp
Fitness function Root Mean Squared Error (RMSE) in standard GP

Euclidean distance in GPLGX and GPALGX

ity of the various crossover operators, all the three GP methods only have
crossover operators. No mutation operator has taken apart. The values
of the two key parameters M and K in implementing LGX, which repre-
sent for the maximum depth of the small size tree in the library and the
number of the closest neighbouring trees respectively, are following the
recommendation in [128].

Overall, the three GP methods are examined on six benchmarks. Each
method has 100 independent runs performed on each benchmark prob-
lem.

D.4 Results and Discussions

The experiment results of GP, GPLGX and GPALGX are presented and
discussed in this section. The results will be presented in terms of com-
parisons of RMSEs of the 100 best models on the training sets and their
corresponding test RMSEs. The fitness values of models in GPLGX and
GPALGX are calculated using Euclidean distance. However, for com-
parison purpose, the Root Mean Squared Error (RMSE) of models are
also recorded. The major comparison is presented between GPLGX and
GPALGX. Thus, we also compare the angle distribution of GPLGX and
GPALGX. The computational time and program size are also discussed.
The non-parametric Wilcoxon test is used to evaluate the statistical signif-
icance of the difference on the RMSEs on both the training sets and the test
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sets. The significance level is set to be 0.05.
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Figure D.2: Distribution of Training RMSE and the Corresponding Test
RMSE of the 100 best-of-run individuals.

D.4.1 Overall Results

The results on the six benchmarks are shown in Fig.D.2, which displays
the distribution of RMSEs of the 100 best-of-the-run individuals on the
training sets and the test sets. As it shows, on all the six benchmarks,
GPALGX has the best training performance among the three GP methods.
For every benchmark, GPALGX has a better training performance than
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GPLGX and GP, by the smaller median value of the 100 best training errors
and the much shorter boxplot. This indicates the training performance
of GPALGX is superior to the other two methods in a notable and stable
way. The results of statistical significance test confirm that the advantage
of GPALGX over GPLGX and GP are all significant on the six training sets.

The overall pattern on the test sets is the same as the training set, which
is GPALGX achieves the best generalisation performance on all the bench-
marks. On each benchmark, the pattern in the distribution of the 100 test
errors is also the same as that on the training set. GPALGX has the shortest
boxplot which indicates the more consist generalisation error among the
100 runs. GPLGX has a larger distribution than GPALGX, which is still
much shorter than standard GP. A significant difference can be found on
the six benchmarks between GPALGX, GPLGX and GP, i.e. GPALGX gen-
eralises significantly better than GPLGX, while the two geometric methods
are significantly superior to GP. The generalisation advance of LGX and
ALGX over standard crossover is consistent with the previous research on
LGX. In [128], the generalisation gain of LGX has been investigated and
confirmed. This generalisation gain has been justified to own to the li-
brary generating process which helps reduce the semantic duplicates. The
further generalisation gain of ALGX over LGX might lie in the fact that the
angle-awareness helps extend the segment connecting each pair of parents
for crossover, thus can reduce the semantic duplicates more intensively,
and enhance the exploration ability of LGX to find better generalised so-
lutions.

D.4.2 Analysis on the Learning Performance

The evolutionary plots on the training sets are provided in Fig.D.3. To
analysis the effect of ALGX on improving the learning performance of GP.
These evolutionary plots are drawn using the mean RMSEs of the best-of-

generation individuals over the 100 runs.
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Figure D.3: Evolutionary plot on the training set.

As expected, GP with ALGX achieves the best learning performance.
It is superior to the other two GP methods from the early stage of the
evolutionary process, which is generally within the first ten generations.
The advances of the two geometric GP methods over standard GP on the
learning performance confirms that searching in the geometric space is
generally much easier, since the semantic space is unimodal and has no
local optimal. The comparison between the two geometric GP methods
indicates ALGX is able to generate offspring which is much closer to the
target point in the semantic space from the very beginning of the search-
ing process. On all the six benchmarks, GPALGX not only has signifi-
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cantly smaller training RMSEs but also has higher average fitness gain
from generation to generation. On Kozas and R;, the two geometric GP
methods can find models which are excellent approximations (the RMSE
of which is smaller than 0.001), and GPALGX converges to the target se-
mantics much faster than GPLGX. This might be because ALGX performs
crossover on individuals having larger angles than GPLX, thus produces
offspring closer to the target in the semantic space in an effective way. In
this way, it will increase the exploitation ability of LGX and find the tar-
get more quickly. For the other four benchmarks, although none of the
two geometric GP methods finds the optimal solution, on three of them,
the increasingly larger difference between the two methods along with
the increase of generations indicates the improvement that ALGX brings
is increasing over generations. One of the possible reasons is that, over
generations, compared with LGX, ALGX will perform on individuals hav-
ing smaller relative semantic distance with target output in larger angle

pairs, which will generate even better offspring.

D.4.3 Analysis of the Evolution of Generalisation Perfor-

mance

Compared with the training performance, we are more interested in the
generalisation performance of GP with ALGX. Therefore, further analysis
on the generalisation ability of GPALGX and a more comprehensive com-
parison between the generalisation of the three methods is carried out. In
Fig.D.4, the evolutionary plots on the test sets are reported along genera-
tions for each benchmark on the three GP methods. These plots are based
on the mean RMSEs of the corresponding test errors obtained by the best-
of-generation models over 100 runs. (On each generation, the test per-
formance of the best-of-generation model obtained from the training data
has been recorded, but the test sets never take apart in the evolutionary

training process)
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Figure D.4: Evolutionary plot on the test set.

The evolution plots confirm that GPALGX has a better generalisation
gain than the other two methods on all the test sets of the considered
benchmarks, which is notable. On all the six benchmarks, GPALGX can
generalise quite well, while its two counterparts suffer from the overfitting
problems on some datasets. On the six problems, GP overtfits the training
sets. The test RMSEs increase after decreasing over a small number of gen-
erations at the beginning. Also, GP generally has a very fluctuate mean
RMSE on most test sets. It indicates that training the models on a small
number of points (20 points), while testing the models on a larger number

of points (1000 points) distributed over a slightly larger region is difficult
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for GP. GPLGX can generalise much better than GP but still encounters
overfitting problems on three benchmarks, i.e., on Keijzerl, Nonic and
Mod_quartic. On these three datasets, GPLGX has an increasing RMSEs
on the last ten generations. On other three datasets, GPLGX generalises
well. Overall, GPALGX generalises better than GPLGX and GP, shown as
obtaining lower generalisation errors and having a smaller difference with

its training errors.

The excellent generalisation ability of geometric crossover can be ex-
plained by the fact that the geometric properties of this operator are in-
dependent of the data to which the individual is exposed. Specifically, the
offspring produced by LGX and ALGX lie (approximately) in the segments
of parents also hold in the semantic space of the test data. Since this prop-
erty holds for every set of data, no matter where the test data distributes
in, the fitness of the offspring can never be worse than the worse parent.
In the population level, this property can not guarantee to improve the
test error on every generation for every benchmark (in fact, we can find
on the last several generations, LGX has an increasing test error on three
benchmarks), but during the process it surely has a high probability of
generalisation gain on the test set and only a few times of getting worse
generalisation over generations. That is why LGX has the ability to control
overfitting and generalise better than the regular crossover.

This interpretation has a direct relationship on why ALGX is less likely
to overfitting and generalises better than LGX on the test sets. In other
words, ALGX puts more effect on selecting parents which consequently
limits the probability of having not good enough parents to crossover, so
it can lead to a large number of offspring with better generalisation at the
population level. AIGX shares the same benefit with LGX, which is the
geometric property leading to offspring never worse than parents on the
test set. More importantly, the angle-awareness in ALGX makes the large
angle between the parents also holds in the test semantic space. This leads
to a higher probability to have a good process on the test data at the pop-
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Figure D.5: Distribution of Angles of the Parents for Crossover.

ulation level. The details of the angle distribution will be discussed in the
next subsection.

D.4.4 Analysis of the Angles

To investigate and confirm the influence of ALGX to the distribution of
angles of the parents, the angles between each pair of parents which per-
forms crossover have been recorded in both GPLGX and GPALGX. In
Fig.D.5, the density plots show the distribution of the angles in the two
GP methods. The green one is for GPLGX, and the one in orange colour
is for GPALGX. The density plots are based on around 2, 250, 000(~ 225 x*
100 * 100) values of angles in each method. While the x-axis represents the
degree of angles, the y-axis is the percentage of the corresponding degree
in the 2, 250, 000 recorded values.

From Fig.D.5 we can see that the distribution of angles of parents in
GPALGX is different from GPLGX in two aspects. On the one hand, ithas a

much smaller number of angles which are zero degrees. While in GPLGX,
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the peak of the distribution is at the zero degrees on all the six datasets,
in GPALGX, the angle-awareness can stop the pairs of individuals with
zero degrees from performing crossover. The direct consequence of this
trend is the elimination of semantic duplicates, and the higher possibility

of generating better offspring.

On the other hand, GPALGX has a larger number of larger angles. Most
of its angles are over 90 degrees. The peak of the distribution is all around
120 degrees on the six datasets, specifically on the last four datasets. At
the first several generations, the larger angles with similar (or the same)
vectors will lead to better offspring, which is represented by a shorter vec-
tor. At the last several generations, larger angles along with the shorter
vectors will lead to a population of even better offspring. This can explain
why the distance between the training error and test error of GPLGX and
GPALGX increases over generations on most of the benchmarks.

Table D.3: Computational Time and Program Size.

Benchmarks | Method Time(in second) | Program size (Node) | Significant Tes.t
Mean=5td Mean=+£Std (on program size)
. GPLGX 523+83.8 90.524+-28.72
Keijzerl =
GPALGX | 14004317 87.74+23.85
GPLGX 560+105 72.66+£29.93
Koza2 +
GPALGX | 13304232 93.824-24.18
R1 GPLGX 523+84.5 88.82+27.07 B
GPALGX | 12504253 92.18+31.71 -
RO GPLGX 5244-83.9 89.624+27.41 B
GPALGX | 12504218 83.8+28.6 N
. GPLGX 571+112 84.54+32.62
Nonic +
GPALGX | 12504212 101.5+39.33
Mod " GPLGX 5544105 99.984+-38.25 B
OC-AUAHE | GPALGX | 1420369 105.384:37.29 -
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D.4.5 Comparison on Computational Time and Program

Size

The comparison between the computational cost and program size of the
evolved models have been performed between the two geometric meth-
ods. Table D.3 shows the computational time in terms of the average
training time for one GP run in each benchmark. The average program
size represented by the number of nodes in the best_of_run models in each
benchmark is also provided. The statistical significance results on the pro-
gram size are also listed in the table. While “-” means the program size of
the evolved model in GPALGX is significantly smaller than GPLGX, “+”
indicates the significant larger program size of GPALGX. “=" represents

no significant difference can be found.

As shown in Table D.3, on all the six benchmarks, the average compu-
tational time for one run in GPALGX is much higher than GPLGX, which is
generally around two times as that of GPLGX. This is not surprising since
GPALGX needs more effort to identify the most suitable pairs of parents
during the crossover process. The longer computational time can be de-
creased by reducing the population size in GPALGX. Moreover, the com-
putational time for each GP run in both methods is short, which is hun-
dreds to two thousand second. Thus, the additional computational cost of
GPALGX is affordable.

In term of the program size, on four benchmarks, i.e., Keijzerl, R1, R2,
and Mod_quartic, the two methods have a similar program size and no
significant difference has been found. On the other two datasets, ALGX
produces offspring which are significantly larger than LGX. However, it
is interesting to note that these much more complex models in term of
program size still can generalise better than its simpler counterparts on
the two test sets, while the simpler model of GPLGX slightly overfits on
the Nonic problem.
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D.5 Conclusions and Future work

This work proposes an angle-aware mating scheme to select parents for
geometric semantic crossover, which employs the angle between the rela-
tive semantics of the parents to the target output to choose parents. The
proposed ALGX performs on parents having a large angle so that the seg-
ment connecting the parents is close to the target output. Thus, ALGX can
generate offspring that have better performance. To investigate and con-
firm the efficiency of the proposed ALGX, we run GP employed ALGX on
six widely used symbolic regression benchmark problems and compare
its performance with GPLGX and GP. The experimental results confirm
that GPALGX has not only better training performance but also signifi-
cantly better generalisation ability than GPLGX and GP on all the exam-
ined benchmarks.

Despite the improvement ALGX brings on performance, it generally
is computational more expensive than GPLGX. In the future, we aim to
improve the angle detecting process. Instead of using the deterministic
method to calculate the angle between two individuals iteratively, we can
introduce some heuristic search methods to find the best parent pairs to
reduce the computational cost. We also would like to explore a further
application of ALGX, for example, to introduce the angle-awareness to
other forms of geometric crossover, such as the exact geometric semantic
crossover [156] and Approximate geometric crossover [126], to investigate
their effectiveness. In addition, this work involves solely crossover and
no mutation. The effect of angle-awareness to mutation and using both

crossover and mutation are also interesting topics to work on.



