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Abstract

IEEE 802.11 Wireless backhaul networks (WBNs) provide scalable and cost-
effective solutions for interconnecting small-cell networks and backbone
networks or Internet. With newer and farther reaching applications being
developed in IEEE 802.11 WBNs, such as smart grids and intelligent trans-
portation systems, users expect high goodput and better fairness. How-
ever, some performance issues in IEEE 802.11 protocols such as border
effect, exposed nodes and hidden nodes are exacerbated as network den-
sification occurs, leading to goodput degradation and severe unfairness
such as flow starvation (extreme low goodput). These issues may cause
an IEEE 802.11 WBN to form a bottleneck and impact the overall network
performance. Therefore, in-depth study is required in order to improve
the IEEE 802.11 WBN planning to achieve better goodput and fairness.

This research aims to improve IEEE 802.11 WBN planning through
goodput modelling and optimising channel assignment. A novel simple
goodput distribution model is proposed to predict goodput and fairness
in IEEE 802.11 WBNs. Simulation results show that the proposed goodput
model accurately predicts goodput with consideration of carrier sensing
effect and traffic demands. Based on this goodput model, a new interfer-
ence model is proposed to more realistically reflect both local and global
interference in IEEE 802.11 WBNs. With the proposed interference model,
two anti-starvation channel assignments have been developed to prevent
flow starvation. Simulation validations show that the new anti-starvation
channel assignments effectively prevent flow starvation and improve net-
work fairness in IEEE 802.11 WBNSs.

This research also optimises channel assignment to achieve desired



fairness and goodput. A multi-objective optimisation problem is formu-
lated and a new fitness function is designed to evaluate a channel allo-
cation with accurate prediction of goodput and fairness. Utilising the
new fitness function, two multi-objective channel assignments have been
developed to achieve both fairness and goodput. Compared with exist-
ing channel assignments through simulation, the proposed multi-objective
channel assignments provide a set of feasible solutions that meet desired
fairness and goodput.

This research helps network planners or service providers to improve
the IEEE 802.11 WBN planning from predicting network performance to
optimising goodput and fairness. The proposed goodput model, interfer-
ence model, and fitness function are also useful for node placement, and
optimising routing and scheduling in IEEE 802.11 WBN:Ss.



Acknowledgments

I would like to express my very great appreciation to my supervisors, Dr
Bryan Ng and A /Prof Peter Andreae, for their guidance, encouragement,
and support during the course of my PhD study. I am grateful for the Vic-
toria Doctoral Scholarship for the financial support during my PhD study.

I would like to thank Dr Xiaodan Gao for her guidance in critical think-
ing and writing. With her help, my English and writing has been im-
proved a lot. I am very lucky to have her support on this tough journey.

I would like to offer my thanks to Roman Klapaukh for helping me
from my PhD proposal to the final oral examination. Roman has always
been patient to listen to my questions and help me improve my research
skill and English in various ways. I appreciate all the help and support
from Boxiong Tan during the last stage of my PhD. Boxiong’s encourage-
ment helps me find the courage to finish my thesis. In my heart, they are
more than friends but my brothers as well.

Thank Alexander Deng, Alexandre Sawczuk da Silva, Arindam Bhakta,
Bing Xue, David Harrison, Deepak Singh, Denise Culhane, Hang Yu, Karen
Commons, Liang Yang, Michael Homer, Siyun Thompson, Timo Hoénig
and Wenlong Fu for their support and help in my research.

Thank my parents, my nephew Toby, and niece Tiffany who have al-
ways been offering their unconditional love and care.

Thank my examiners Dr Ian Welch, Dr Andreas Willig, and Dr Karina
Mabell Gomez for the suggestions that improve the quality of my thesis
and inspire me with new ideas for future work.

111



iv



Contents

l__Introductionl| 1
I ResearchGoals .......................... 3
.2 Contributions| . . ... ... ................... 4
1.3 List of Publicationsl . . ... .. ... ... ........... 5
(1.4 Organisationof Thesis| . . . ... ... ... .......... 7

2 Related Workl 11
2.1 Definitions of Key Terms| . . . . ... ....... ... ... 11
2.2 IEEE 802.11 Wireless Backhaul Networks| . . . .. ... ... 13

2.2.1  Architecture and Application Scenarios| . . . . . . . . 14
2.2.2  The Performance Issues and Network Planning| . . . 16

2.3  Goodput Modelling For Planning IEEE 802.11 WBNs| . . . . 18
2.3.1 Goodput Models Considering Structured Topology| . 19
2.3.2  Goodput Models Considering Carrier Sensing Mech- |

I ANISIMI. . . . .. 20
2.3.3 Goodput Models Considering Traffic Demand| . . . . 22
2.3.4 Summary of GoodputModels| . ... ... ... ... 23

2.4 Channel Assignment For Planning IEEE 802.11 WBNs|. . . . 24
2.4.1 Channel Assignment in IEEE 802.11 WBNs| . . . . . . 25
2.4.2 Trafticcunaware Channel Assignment| . . . . ... .. 26
2.4.3 Traftic-aware Channel Assignment{. . . . . . ... .. 33

5 Summary|. . .. ... ... 39




CONTENTS

vi
B Goodput Modelling for Planning IEEE 802.11 WBNS o
3.1 A Unified Goodput Distribution Model Formulation| . . . . 43
B.1.1 A Goodput Distribution Model For Saturated Traftic |
| Demand/ . . ... ... ... ... ... . ..., 45
3.1.2 A Goodput Distribution Model For Unsaturated Traf- |
ticDemand| .. ............ ... ...... 53
B.1.3 Summary| ............ ... ... 59
3.2 Simulation with Two-ray Model|. . . . . . ... ... ... .. 59
B.2.1 Saturated Traffic Demand| . . . .. ... ... ... .. 61
B.2.2 Unsaturated Traffic Demand| . .. ........... 65
3.3 Simulation with Two-ray Shadowing Model| . . . . ... .. 67
B.3.1 Saturated Traffic Demand| . . . . ... ......... 68
B.3.2 Unsaturated Traffic Demand| . . ... ......... 71
B4 Summary|. . . .. ... 72

4.1 A New Iraffic-aware Interference Modell. . . . . .. ... .. 77
411 Assumptions . ........ ... ... ... 77
#4.1.2  Detining Local Interference| . . . . . . ... ... ... 79
“4.1.3 Detining Global Interference| . . ... ... ... ... 79

“4.2.1 The Design of Tratfic-unaware Anti-starvation CA|. . 84
“4.2.2 Benchmark For Traffic-unaware Anti-starvation CAl . 92

#4.3.1 The Design of Trattic-aware Anti-starvation CA| . . . 112




CONTENTS vii

| Using Three Channels| . . . .. ... .......... 117
034 Valdah rTiaffce TR S CA l
Using Twelve Channels| . . . ... ... ... ..... 123
g

035 - I Traffic- iR SHCA . 126
B4 Summary|. . . . .. ... 127
5 Multi-objective optimisation of channel assignmen 129

] P g
.1 Fitness Function with CA Algorithm| . . . . .. .. ... ... 132

&

p.1.1 The Design of Fitness Function|. . . . . ... ... .. 132
.1.2  Validation of Traffic-unaware Fitness Function| . . . . 138
1 lidation of Traffic- re Fitness Function| . . . . . 143
p.1.4  Summary of Fitness Function| . . . . . ... ... ... 145
.2 A Trafficcunaware Multi-objective CA Algorithm|. . . . . . . 146

] g

0.2.1 The Design of Tratfic-unaware Multi-objective CA| . . 147
(5.2.2  Validation of Traffic-unaware Multi-objective CA| . . 150

©.3 A Tratfic-aware Multi-objective CA Algorithm| . . . . . . .. 154
.3.1 The Design of Tratfic-aware Multi-objective CA| . . . 155
.3.2  Validation of Traffic-aware Multi-objective CA| . . . . 157

B4 Summary|. . .. .. ... 161

6 Conclusions| 163

I Contributions| . .. ........... ... ....... ... 164

6.2 FutureWorkl . . . . ... .. . L 165
[6.2.1 Goodput Modelling| . ... ............... 166
.22 Interference Modell . . . ... ......... .. ... 166
(6.2.3 Channel Assignment with Fairness|. . . . . . ... .. 166
6.2.4 Fitness Functionl . . ... ... ... ... ....... 167

[6.2.5 Channel Assignment with Fairness and Goodput| . . 167




viii CONTENTS

[Appendix A TEEE 802.11 WBN Goodput Patterns with Effective vs. |

L__Ineffective CSMA| 169
A.1 Simulation Configurations| . . . . .. ... ........... 169
IA.2  Disk-graph Model Accurately Characterizes Goodput| . . . . 172

2.1 I TrafticDemand| . . . ... ... ... .... 173

[A.2.2 Unsaturated Traffic Demand| . ... ... ....... 174

IA.3 Disk-graph Model Fails to Characterize Goodput|. . . . . . . 176
1 I TrafticDemand| . . . ... ... ....... 176

2 Unsatur IrafticDemand| . . ... ......... 177

A4 Summary|. . . . . .. ... 179

|Appendix B Proof of The Proposed Goodput Distribution Model 181

[B.1 Goodput For Effective CSMA (Saturated Traffic) . . . . . .. 181
[B.2  Goodput For Inetfective CSMA (Saturated Traffic) . . . . . . 182
[B.3  Goodput For Effective CSMA (Unsaturated Traffic)| . . . . . 187
IAppendix C Additional Validation of Goodput Model| 189
(C.1 Simulation (Two-ray Model and 48Mbps)| . . . . . . .. . .. 189
(C.1.1 Saturated Traffic Demand| . . . .. ... ... ... .. 191

(C.1.2 Unsaturated Traffic Demand| . .. ........... 192

|C.2 Simulation (Two-ray Shadowing Model and 48 Mbps)| . . . . 195
(C.2.1 Saturated Traffic Demand| . . . ... ... ....... 195

(C.2.2 Unsaturated Traffic Demand| . ... .......... 196

[Appendix D Investigating Fairness with Channel Assignment 199

[D.1 Comparisonof Jain'sIndex| . . ... ... ........... 200
[D.2 Comparison of Starvation Link Ratio| . . . ... ... ... .. 201
[D.3 Comparison of Highest-to-lowest Goodput Ratio|. . . . . . . 202

[D.4 Jain’s Index vs. Starvation Link Ratiof. . . . .. ... ... .. 203




CONTENTS

ix

[Appendix E Investigating Goodput and Fairness 209
[E.1 Simulation Environments| . . . ... ... ... ........ 209
[E.2 Analysisof Fairness|. . . . .. .................. 210
[E.3 Analysisof Goodput| . . ... ... ... ... ... ... 211
E4 Discussionl . . . . . ... ... . 213
[Appendix F Additional Validation of Multi-objective Channel As- |
215
[F.1  Validation of TUMOCA in Random Topology|. . . . . . . .. 216
[F.2  Validation of TAMOCA in Random Topology|. . . . . . . .. 218
[F2.1  Validation of Traftic-aware Multi-objective Channel |

| Assignment (heavy traffic)) . . ............. 218
[F2.2  Validation of Traftic-aware Multi-objective Channel |

| Assignment (medium traffic)| . . . .. ... ... ... 219




CONTENTS



List of Abbreviations

WBN Wireless Backhaul Network
WLAN Wireless Local Area Network
CA Channel Assignment

CSMA/CA Carrier Sense Multiple Access Mechanism with Collision Avoidance
MAC layer Medium Access Control layer
PHY layer Physical layer

ITS Intelligent Transportation System

VoIP Voice over Internet Protocol

IPTV Internet Protocol Television

PCS Physical carrier sensing mechanism in IEEE 802.11 protocols
QoS Quality of service

MCMR Multi-channel multi-radio

SCSR Single-channel single-radio

TUASCA  Traffic-Unaware Anti-Starvation Channel Assignment
TAASCA  Traffic-Aware Anti-Starvation Channel Assignment
TUMOCA Traffic-Unaware Multi-Objective Channel Assignment
TAMOCA  Traffic-Unaware Multi-Objective Channel Assignment
SIR Signal-To-Interference-Ratio

SINR Signal-to-Interference-and-Noise-Ratio

ILP Integer Linear Programming

xi



xii

CONTENTS



List of Notations

Complete set of links in an IEEE 802.11 WBN

The number of links in the set of E

The set of available channels for E

Carrier sensing range

Maximum transmission range

The distance between the sender and receiver in a link
The independent set: the links out of R of a given link i
The conflict set: the links within R of a given link i

The number of links in the IS(7)

The distance between senders in two links

The distance between sender and receiver in two links
The distance between a link / and the left border link LB
The distance between a link I and the right border link RB
The left border link set in an IEEE 802.11 WBN

The right border link set in an IEEE 802.11 WBN

The dominant left border link set in an IEEE 802.11 WBN
The dominant right border link set in an IEEE 802.11 WBN
The middle-link set in an IEEE 802.11 WBN

The minimum global conflict clique

The distance between two border links in an IEEE 802.11 WBN
The inter-link distance interval

The normalized traffic demand of a link i

x1ii



Xiv

SIRthreshold

CONTENTS

The estimate of goodput for a link i in effective CSMA

The optimistic estimate of goodput for a link 7 in ineffective CSMA
The pessimistic estimate of goodput for a link i in ineffective CSMA
The initial global left border set

The initial global right border set

The global left border set

The global right border set

The global middle-link set

The local interference set of a given link i

Path loss exponent factor

The Starvation factor for flow starvation

Interference range

The threshold for Signal-To-Interference-Ratio (SIR)



Chapter 1
Introduction

Wireless backhaul networks (WBNs) have emerged as a practical solution
for bridging small-cell networks and backbone networks in lieu of wired
backhaul networks [24,61/142,157] when it is difficult to install wired links.
Such WBNs utilise wireless communications systems to connect an access
point or end user to a major network or backbone network such as the In-
ternet or the proprietary network of a large business, academic institution

or government agency [61,142].

The IEEE 802.11 protocols are an appealing choice for WBNs due to
cost-efficient deployment, flexibility, and easy installation and mainte-
nance, especially when an operator has a limited budget for the use of
dedicated links [43|49]. In recent years, due to low cost and easy installa-
tion, some new application scenarios have emerged in IEEE 802.11 WBNs
such as smart grids and intelligent transportation systems [56,97]. The
similarity among these new applications is that they appear in built envi-
ronments, such as the offices of the central business district (CBD), sub-
ways, or urban residential areas. These environments have a structured
topology like a line or a grid (see Figure [I.I). These densely populated
built environments bring greater needs for high Internet speed and stable
transmission [26,83,84,(112,131]. Therefore, IEEE 802.11 WBNs are fac-

ing unprecedented challenges to improve quality of service (QoS) in built

1



2 CHAPTER 1. INTRODUCTION

environments with limited wireless resources [26,83,84,98,105,147,153].

——— Wired link
"""" Wireless link

Internet

Right border link
Backhaul

Figure 1.1: An illustration of a point-to-point wireless backhaul network

in a linear layout

Ensuring QoS in a WBN using the IEEE 802.11 protocols has its unique
set of challenges. The IEEE 802.11 WBN in a densely populated environ-
ment may experience path loss and shadowing, multi-path fading, which
causes signal degradation and affects quality of service [6,96]. More-
over, the unlicensed frequency bands and broadcast channels used in the
IEEE 802.11 protocol suffer from interference and potential unfairness due
to the placement of nodes causing flow starvation (extremely low good-
put) [50,73,90,[132]. These performance issues lead to poor goodput and
fairness in IEEE 802.11WBNs [6,/61},89].

Some of the performance issues in IEEE 802.11 WBNSs can be traced
back to poor network planning [23,[120]. For example, existing IEEE 802.11
WBN planning is that planning strategies mainly focus on maintaining
coverage within some budget constraints [112,/146,[154]. Such planning
strategies do not explicitly consider the QoS requirements and may fail
to support QoS requirements for new-found uses such as smart grids and

intelligent transportation systems. Another weakness of poor WBN plan-



1.1. RESEARCH GOALS 3

ning is that existing goodput models are not designed specifically for guid-
ing the IEEE 802.11 WBN deployment in built environments.

To improve IEEE 802.11 planning, an accurate goodput model is essen-
tial by predicting the behaviour of wireless links in IEEE 802.11 WBNSs [145].
A channel assignment is another key element of the planning in IEEE
802.11 WBN s that is capable of allocating channels to radios [6,133]. A
channel assignment is the fundamental part of the medium access control
(MAC) layer and network layer to ensure fair sharing of channel resources
among nodes in IEEE 802.11 WBNSs [39,113,115,123], which is essential to
higher layer protocols. When a channel assignment sufficiently utilises the
channel resource in IEEE 802.11 WBNs, it can improve spatial reuse as well
as present an optimal network topology to other communication protocols
like routing and scheduling [5,125,112]. Such research will also help fulfil
the expectation of high QoS in built environments of IEEE 802.11 WBNs.

This research extends the state of the art by designing a new good-
put model and optimising channel assignment to improve network per-
formance in IEEE 802.11 WBNs planning stage. Through goodput mod-
elling and optimising channel assignment, this research contributes to bet-
ter management of channel resources, better goodput and fairness to net-
work users, and the ability to meet higher requirements in the future.

1.1 Research Goals

The goal of this research is to improve network performance (fairness
and goodput) for planning IEEE 802.11 WBNSs through goodput mod-
elling and optimising channel assignment.

To achieve the research goal, this research investigates the potential to
improve network performance by designing a goodput model and devel-
oping channel assignment algorithms in IEEE 802.11 WBNs. More specif-
ically, this research helps answer the following questions:
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e Goodput model:

How can a goodput distribution model provide an accurate predic-
tion of the behaviour of wireless links in a IEEE 802.11 WBN under
various scenarios such as exposed nodes, hidden nodes and border
effect?

e Channel assignment:

How can a channel assignment algorithm be designed to prevent
flow starvation and improve fairness in IEEE 802.11 WBNs?

How can a channel assignment algorithm be designed to achieve
predefined QoS requirements including fairness and goodput in IEEE
802.11 WBN5s?

1.2 Contributions

This work contributes to goodput modelling and channel assignment in
IEEE 802.11 WBNs. The contributions are listed as follows.

e A novel goodput distribution model providing accurate prediction
of the link-level goodput in IEEE 802.11 WBNs. Such a model consid-
ers geometry topology, different carrier sensing scenarios, and traffic
demands. This goodput model is the representative of IEEE 802.11
protocol and WBNs and also the fundamental basis of planning and
optimising IEEE 802.11 WBNSs.

o Traffic-unaware and traffic-aware channel assignment algorithms ef-
fectively preventing flow starvation and improving system fairness
in IEEE 802.11 WBNs. A new traffic-aware interference model based
on the new goodput model reflecting global interference (border ef-
fect) and local interference with respect to traffic load in IEEE 802.11
WBNE.
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e Traffic-unaware and traffic-aware multi-objective channel assignment
algorithms using new fitness functions to help guide network de-
signers with a set of feasible solutions. These feasible solutions guar-
antee to achieve predefined QoS requirements including fairness and
average goodput for a given IEEE 802.11 WBN. Traffic-unaware and
traffic-aware fitness functions based on the new goodput model eval-
uating the potential performance of the output from channel assign-
ment algorithms in a given IEEE 802.11 WBN.

All the above contributions help predict link quality and manage chan-
nel resource to improve fairness and goodput for planning IEEE 802.11
WBN:s.

1.3 List of Publications

The following publications relate to the discussion in Chapter 3:

¢ Y. Qu, B. Ng, The effect of carrier sensing mechanisms on wireless
mesh network goodput, in: Proceedings of International Telecom-
munication Networks and Applications Conference (Sydney, Aus-
tralia, 2015), ITNAC'15, IEEE, pp.106-113.

¢ Y. Qu, B. Ng, W. K. G. Seah, A goodput distribution model for IEEE
802.11 wireless mesh networks, in: Proceedings of the 34th Inter-

national Performance Computing and Communications Conference
(Nanjing, China, 2015), IPCCC’15, IEEE, pp. 1-8.

¢ Y. Qu, B. Ng, M. Homer, A Goodput Distribution Model for Planning
IEEE 802.11 WBNs in Built Environments, Journal of Network and
Computer Applications, Elsevier 99 (C) (2017) 28—46.

¢ Y. Qu, B. Ng, D. Singh, and L. Hao, Wireless backhaul performance
with IEEE 802.11, accepted by the International Conference on Telecom-
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munications and Communication Engineering (OSAKA, Japan, 2017),
ICTCE’17, ACM.

¢ Y. Qu, B. Ng, Goodput in wireless backhaul networks using IEEE
802.11: A MAC Irregularity perspective, Journal of Communications,
Wiley-Blackwell (Under review)

Goodput in wireless backhaul networks using IEEE 802.11: A MAC
Irregularity perspective The following publications are partially derived
from the work presented in Chapter 4.

¢ Y. Qu, B. Ng, H. Yu, Anti-starvation channel assignment with global
conflict set selection in IEEE 802.11 WMNs, in: Proceedings of the
12th ACM Symposium on QoS and Security for Wireless and Mo-
bile Networks (Malta, Malta, 2016), Q2SWine’16, ACM, pp. 103-110.
(Best poster award in MSWiM 2016)

¢ Y. Qu, B. Ng, W. Seah, A survey of routing and channel assignment
in multi-channel multi-radio WMNs, Journal of Network and Com-
puter Applications, Elsevier 65 (C) (2016) 120-130.

¢ Y. Qu, B. Ng, M. Homer, Optimisation of Channel Assignment For
Improving Fairness in IEEE 802.11 WMNSs, Journal of Computer Net-
works, Elsevier 129 (1) (2017) 215 - 231.

The following publication is partially derived from the work presented

in Chapter 5.

¢ Y. Qu, B. Ng, H. Yu, P. Andreae, W. Seah, Fitness evaluation for chan-
nel assignment algorithms in IEEE 802.11 WMNs, in: Proceedings of
the 14th Annual Consumer Communications & Networking Confer-
ence (Las Vegas, USA, 2017), CCNC’17, IEEE pp.361-364.

The papers listed above have additional authors, the principal work
and authorship was by the author of this thesis.
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1.4 Organisation of Thesis

This thesis has seven chapters and is organised as follows.

e Chapter 1: Introduction

Problem statement, research goal, research questions, thesis contri-
butions, publications, and the thesis organisation are presented in

this chapter.

e Chapter 2: Literature Review

This chapter presents a review of the literature about wireless back-
haul networks, goodput modelling, and channel assignment. It high-
lights the main limitations and current challenges that form the mo-

tivations of the thesis.

e Chapter 3: Goodput Modelling

In this chapter, a new goodput distribution model is proposed. This
model has been validated with various traffic demands and two prop-
agation models.

e Chapter 4: Channel Assignment For Improving Fairness in IEEE
802.11 WBNs

In this chapter, a novel traffic-aware interference model is proposed.
Two anti-starvation channel assignment algorithms are developed to
prevent flow starvation and improve fairness in IEEE 802.11 WBN5s
under saturated and unsaturated traffic assumptions. The perfor-
mance of two proposed channel assignment algorithms are validated

through simulations.

e Chapter 5: Multi-objective Optimisation of Channel Assignment For
Improving Fairness and Goodput in IEEE 802.11 WBNss
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In this chapter, two fitness functions and two new multi-objective
channel assignment algorithms are developed to find a set of feasi-
ble solutions to achieve the predefined requirements including fair-
ness and average goodput under saturated and unsaturated traffic
assumptions. The performance of two proposed channel assignment
algorithms is validated through simulation.

e Chapter 6: Conclusions

In this chapter, the conclusions and findings in each chapter have
been presented and summarised. It also describes the main future

research directions arising from the contributions of this work.

Chapter 3.
Goodput Model

le—— Part | : predicting performance

Part Il : improving fairness

Using a new interference I

|

[ Chapter 4. model reflecting local

I A t. t t. and global interference
nti-starvation

|

1=

Channel Assignment |

IUsing new fitness

|functions to evaluate Chapter 5. |
Ichannel assignment Multi-obj ective le— Part 111 : improving fairess and goodput

| Channel Assignment :

Figure 1.2: The connection between major contribution chapters in the the-

S1S

The connection between the major contribution chapters is shown in
this thesis in Figure The goodput model in Chapter (3| is the funda-
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mental contribution that provides the prediction of performance in IEEE
802.11 WBNs. Chapter 4 investigates flow starvation with existing inter-
ference models in channel assignment algorithms and designs a new in-
terference model based on the goodput model in Chapter 3| Using the
new interference model, anti-starvation channel assignment algorithms
improve fairness by preventing flow starvation. Chapter 5| investigates
the trade-off between fairness and goodput with channel assignment algo-
rithms. New fitness functions are developed based on the goodput model
in Chapter 3| Using the new fitness functions, multi-objective channel as-
signment algorithms improve both fairness and goodput for IEEE 802.11
WBNSs planning.
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Chapter 2

Related Work

This research investigates approaches to improve goodput and fairness
in IEEE 802.11 wireless backhaul network (WBN) planning. This chapter
starts with the definitions of key terms in this research and then intro-
duces IEEE 802.11 WBNSs including background, performance issues, and
planning problems. Then a survey of goodput modelling and channel as-
signment (CA) for planning IEEE 802.11 WBNs is presented. This chapter
summarises the issues in goodput modelling and CA that motivate this

research.

2.1 Definitions of Key Terms

This section introduces the definitions of some key terms used through the

whole thesis to facilitate the discussion.

e Quality of Service (QoS): From the perspective of a network, QoS
is to provide a certain level of assurance that its traffic and service
requirements can be satisfied [101]. Such QoS manages bandwidth
based on the traffic demands and the configuration of network set-
ting. Thus, the term “QoS” may include different aspects, ranging
from the user’s expectation to the carriers’ requirements. This re-

search studies two common aspects of QoS: goodput and fairness.

11
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e Goodput: In this thesis, goodput is used interchangeably with through-
put. Such “goodput” refers to the actual achieved successful packets
measured over the available links [7]. Goodput can be measured
from the view of over a network or an end-to-end flow.

e Fairness: In the context of IEEE 802.11 WBNs, fair refers to that all
nodes attain the fair media access, fairly share the bandwidth, the
QoS requirements of all nodes are equally satisfied [131]. Different
definitions of fairness have been used in the literature for wireless
networks. According to a survey of fairness in [131], fairness can be
classified as short-term and long-term fairness, and system and indi-
vidual fairness. Short-term fairness refers to the resource allocation
during a short time period while long-term fairness focuses on the
fair resource allocation during a longer time period of the life time
of a system. System fairness is observed from the perspective of a
whole system regarding the overall fairness among all nodes. Indi-
vidual fairness shows whether the system treats a certain node fairly
according to the traffic demand of this node. This research focuses
on studying long-term and system fairness in IEEE 802.11 WBNss.

o Flow starvation: In the context of IEEE 802.11 WBNs, flow starvation
results from the border effect attributable to node placement. Border
effect refers to the border links dominating the transmission in an
IEEE 802.11 WBN [54]. Because the border links only have neigh-
bouring links on one side, these border links experience less chan-
nel contention and are more likely to transmit more packets than
the middle links in between border links. Middle links have neigh-
bouring links on both sides and thus some middle links between the
border links may experience extremely low goodput (what is com-
monly called flow starvation). Flow starvation significantly impacts
network fairness [54].

o IEEE 802.11 carrier sensing mechanism: The IEEE 802.11 standard
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specification [2] mandates the use of a carrier sense multiple access
mechanism with collision avoidance (CSMA /CA), which is also called
physical carrier sensing. Physical carrier sensing detects any ongo-
ing transmission by listening to the physical medium. If a listen-
ing node detects carrier signal strength greater than a predefined
threshold, Carrier Sense Threshold, it defers its transmission and waits
for some back-off time until the channel is sensed idle. Note that
this research focuses on studying physical carrier sensing using Dis-
tributed Coordination Function (DCF) and does not consider virtual

carrier sensing mechanism.

2.2 TEEE 802.11 Wireless Backhaul Networks

IEEE 802.11 WBNSs are a popular backhaul technology in backhaul net-
works that utilise telecommunication networks to carry data between an
access point and backbone networks [43]. In recent years, cellular net-
works dominate telecommunication networks all over the world [44,/65].
With the rapid development of data-hungry applications and increasing
growth of traffic data, an efficient approach is to combine macro-cell cel-
lular networks with small-cell cellular networks to improve QoS and pro-
vide satisfactory users’ experience [4,35]43]. Such small-cell cellular net-
works provide coverage extension at some blind spots and enhance capac-
ity to ease congested macro-cell networks with the advantage of low cost
and easy installation [119].

With the increasing growth of small-cell networks, a backhaul solution
consequently needs to serve a large amount of small-cell stations deliver-
ing data between small cells and backbone networks [4,]119]. Generally,
these small-cell networks are deployed closer to end users since most of
the new data is being generated indoors e.g. in built environments such
as residential areas, subways, and offices [119,(157]. Hence, it may be chal-

lenging to install wired links in these densely populated built environ-
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ments, where there are likely many obstacles such as buildings [56|97].

IEEE 802.11 WBNSs are an appealing choice for bridging small cell net-
works and backbone networks in lieu of wired backhaul networks in densely
populated built environments [119]. Compared with dedicated solutions
such as microwave links or satellite providing high capacity and reliability
with high cost [142], IEEE 802.11 WBNs have many advantages and been
widely applied to small-cell networks due to its low cost, ease of installa-
tion and maintenance, operation in the unlicensed band, and reasonable
coverage range, especially when an operator has a limited budget for the
use of dedicated links [43,49].

2.2.1 Architecture and Application Scenarios in IEEE 802.11
WBNs

IEEE 802.11 WBNis can be classified into two main types of architecture: (i)
point-to-point IEEE 802.11 WBNs, and (ii) point-to-multipoint IEEE 802.11
WBNSs [4,[157]. Point-to-point IEEE 802.11 WBN provides the link only
between two nodes (see Figure 2.I). The point-to-point architecture is
conventionally used for the non-line-of-sight scenarios. These scenarios
usually use dedicated connections such as licensed spectrums to reduce
interference [4].

Point-to-multipoint architecture is deployed for the line-of-sight sce-
narios [4]. In a point-to-multipoint IEEE 802.11 WBN, one node provides
backhaul for several nodes, which looks like a hub connecting multiple
clients (see Figure 2.2). This architecture brings more flexibility in topol-
ogy than point-to-point architecture [4,157]. Licensed and unlicensed spec-
trum have been used in both point-to-point and point-to-multipoint archi-
tecture. Hence, IEEE 802.11 WBNSs can be used in both point-to-point and
point-to-multi- point architecture [4,157].

Over the last decade, IEEE 802.11 WBNs have been rapidly developing

and widely applied to small-cell networks such as enterprise networks,
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Figure 2.2: An example for a point-to-multipoint WBN

community networks, intelligent transport system networks, smart grids,
and healthcare and medical system networks due to cost-efficient deploy-
ment [6,38},(97,[142]]. These applications are typically deployed in a struc-
tured topology such as a line or a grid topology [4]. The grid topology
naturally occurs in built environments such as roads, railway tracks, and
buildings. Some studies concluded that this natural occurrence of grid

placement outperforms arbitrary placement in terms of coverage, connec-

tivity, and fair capacity allocation [16)/129].
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However, deployment in IEEE 802.11 WBNSs still has its challenges
[4,43,119,[151]. First, it is difficult to ensure QoS in high density envi-
ronments with high population and various obstacles. Second, these ap-
plications involve various traffic types with different requirements such
as voice calls, Internet Protocol television(IPTV) [69], and Voice over In-
ternet Protocol (VoIP) [3]. For example, IPTV needs to consider the delay
which impacts users experience. Therefore, the variability of traffic raises
substantial challenges to IEEE 802.11 WBN s [6,26,83,84].

The next sections will discuss the performance issues and network
planning in IEEE 802.11 WBN.

2.2.2 ThePerformance Issues and Network Planning in IEEE
802.11 WBN’s

With increasing volumes of data exchanged over networks and the need
to better interconnect small-cell networks, IEEE 802.11 WBNs will play a
more significant role in the coming years [119]. Serving the small-cell net-
works in built environments, where the traffic-growth leads to congestion,
IEEE 802.11 WBNSs need to not only extend coverage but also effectively
manage the limited channel bandwidth among links to achieve the satis-
factory level of goodput and fairness [6]. Users expect that all nodes or
links achieve desired goodput that is closed to the traffic demand [84]. In
addition, users expect fair sharing channel resource so that IEEE 802.11
WBNSs needs to maintain a long term system fairness [6]. Moreover, the
IEEE 802.11 WBN must not form a bottleneck of end-to-end connections
in built environments [83,84].

However, ensuring QoS in a WBN using the IEEE 802.11 protocol has
its unique set of challenges. First, the unlicensed frequency bands and
broadcast channels used in the IEEE 802.11 protocol suffer from interfer-
ence, which significantly influences goodput and fairness in IEEE 802.11
WBNSs [61]. These issues are well documented in [50,/61]. Second, the
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exposed nodes problem brings capacity contention that leads to severe
goodput degradation [152]. The hidden nodes problem causes collision
at the receiver nodes that result in the packet loss and low goodput [143].
Moreover, the border effect problem causes flow starvation (extremely low
goodput in some links) that leads to severe unfairness [54]. For example,
in the point-to-point WBN shown in Figure the border links
tend to have higher goodput due to lower contention levels, while links in

the middle are susceptible to extremely low goodput [61].

All these performance problems are related to the network topology of
an IEEE 802.11 WBN. Network topology is the arrangement of the various
elements such as nodes and links of a network, which forms the layout
of IEEE 802.11 WBNSs. Several studies demonstrated that the performance
of an IEEE 802.11 WBN is largely determined by its topology [16}(129].
Such a topology in the IEEE 802.11 WBN is determined in the planning
stage. Therefore, an investigation about IEEE 802.11 WBN planning with
network performance is needed [6].

Network planning for IEEE 802.11 WBNs has received very little at-
tention compared with other wireless networks such as 3G cellular net-
work [9,18/106]. It borrows strategies from other types of wireless network
due to cost constraints and the operation in unregulated spectrum [29,
111,119]. However, performance issues in IEEE 802.11 WBNs show that
the strategies from other networks may not be suitable for planning IEEE
802.11 WBNis due to the differences in the medium access control (MAC)
protocol in use [99]. Current practice of ad hoc placement of nodes in IEEE
802.11 WBNs may be able to improve the coverage but this strategy no
longer suffices for the requirements of QoS in dense environments, such
as networking in smart grids and intelligent transport systems [14]. In in-
door placement of wireless local area network (WLAN), introducing a new
access point may improve the wireless coverage and overall goodput [31].
However, adding a new access point does not necessarily translate to bet-

ter fairness because the new access point introduces additional contention
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or perhaps may cause severe unfairness like flow starvation [64]. There-
fore, the strategies from other networks are not suitable for planning IEEE
802.11 WBNss and thus it needs to further improve the planning to provide
better goodput and fairness.

These above issues have spawned a renewed interest in improving
IEEE 802.11 WBN planning with better performance. To address these is-
sues, a mathematical model is essential for planning and optimising IEEE
802.11 WBNSss [90]. A goodput model representing IEEE 802.11 protocols
will be convenient for analysing the performance problems in IEEE 802.11
WBNSs and improving protocol designs [145].

Another way to address these performance issues is to research CA [6,
112,146|]. Allocating channel resources, a CA manages topology, capac-
ity, and interference in IEEE 802.11 WBNs [115]. An efficient CA in IEEE
802.11 WBNs can improve network capacity significantly with manage-
ment of spatial reuse and interference and also optimise fairness by fairly
sharing channel resource among links in IEEE 802.11 WBNs [6]. Therefore,
a CA is a key element for planning IEEE 802.11 WBNs with high goodput
and fairness.

The next sections will review existing goodput models and CA algo-
rithms. This review will focus on how these research improve IEEE 802.11
WBN planning and fulfil the expectation of high goodput and fairness in
built environments of IEEE 802.11 WBN:Ss.

2.3 Goodput Modelling For Planning IEEE 802.11
WBNss

A suitable goodput model is crucial for planning IEEE 802.11 WBNSs be-
cause such a model abstracts the essence of the network such as the be-
haviour of wireless links and shows the interrelationships between key
factors [145]. Network planners use a goodput model to improve planning
by predicting network performance before deploying the network [157].
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Since a goodput model for planning IEEE 802.11 WBNs normally involves
topology, carrier sensing mechanism, and traffic demand, we will review
how existing goodput models consider topology, carrier sensing scenario,
and traffic demand separately.

2.3.1 Goodput Models Considering Structured Topology

The performance of an IEEE 802.11 WBN depends on its topology [16}129].
Moreover, node placement is an important task determined in the plan-
ning stage such as the number of nodes and the location of these nodes
in an IEEE 802.11 WBN. Hence, network topology is essential for goodput
modelling and network planning in IEEE 802.11 WBNSs [6].

The recent developments in IEEE 802.11 WBNs have been closely linked
to the emergence of small-cell networks which are typically deployed in
a structured topology such as a line or a grid topology discussed in Sec-
tion[2.2.1] Hence, IEEE 802.11 WBNs may take advantage of the structured
topology and a goodput model for planning IEEE 802.11 WBNSs needs to
consider the structured layout in built environments [119]. However, ex-
isting goodput models do not explicitly take into account the geometries
of a structured topology which leads to inaccuracies in goodput predic-
tion [114,116].

Several studies have developed goodput models with consideration of
network topology [64,90,[104}149]. For example, the studies in [90,104]
utilise the topology information to select the interfering links and non-
interfering links of a given link that is used to calculate the goodput of the
given link. However, none of these goodput models focus on planning an
IEEE 802.11 WBN in a structured built environment. Therefore, develop-
ing a goodput model tailored to a structured topology with better accuracy
is desirable for IEEE 802.11 WBN planning in built environments.
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2.3.2 Goodput Models Considering IEEE 802.11 CSMA

Mechanism

For planning purposes, a goodput model needs to consider the IEEE 802.11
carrier sensing mechanism because goodput and fairness in IEEE 802.11
WBN:s rely heavily on the efficiency of the carrier sensing mechanism [48,
114}[159].

The IEEE 802.11 carrier sensing mechanism is designed to protect packet
transmission under effective carrier sensing condition, where all nodes are
within each other’s carrier sensing range and sense each other clearly [2].
In effective carrier sensing scenarios, the carrier sensing mechanism man-
ages the medium access and affects the bandwidth allocation and potential
collision at sender and receiver nodes, which is directly related to goodput

and fairness [59].

However, ineffective carrier sensing scenarios with exposed nodes and
hidden nodes are still common in real-world applications of IEEE 802.11
WBNSs [115,144,161]. In ineffective carrier sensing scenarios, not all nodes
are within each other’s carrier sensing range. The exposed nodes, hid-
den nodes, and border effect affect the protection of packet transmission
from the carrier sensing mechanism, which leads to goodput degradation
and unfairness [64,90,104,149]. Therefore, a goodput model for planning
IEEE 802.11 WBNSs needs to consider both effective and ineffective carrier

sensing cases to cover different scenarios.

A broad class of goodput models for IEEE 802.11 protocol under the
effective carrier sensing condition is based on the disk-graph model [68]
that has been widely used in modelling carrier sensing mechanism for
decades [37,[75]. Such a disk-graph model is a pairwise model in that the
interference between two nodes is determined by the distance between the
two nodes. The disk in the disk-graph model can be regarded as the in-
terference range of a given node. When two nodes are within each other’s

disk, they interfere with each other while when they are out of each other’s
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disk, no interference exists between them.

The disk-graph model can be traced back to Bianchi’s models [27} 28]
and Cali’s model [34] characterising goodput under the effective carrier
sensing condition. Both Bianchi’s and Cali’s models are based on single-
hop wireless networks. They found that goodput of the IEEE 802.11 WLAN
is related to the number of active nodes and minimum contention window

size.

Felemban et al. [57] refined Bianchi’s model by considering channel
state during the back-off period. Several others [45,55,94] extended Bianchi’s
model using IEEE 802.11 [2]. For these goodput models under the effec-
tive carrier sensing condition, they assumed that all nodes can share the
channel capacity equally as they can all sense the signal from each other
clearly. The goodput depends on the number of active nodes and the con-
figuration parameters of CSMA.

For ineffective carrier sensing scenarios, several studies have devel-
oped goodput models with consideration of exposed nodes, hidden nodes,
and border effect [62, 109,110, 134,|137,/141}|160]. Some findings under
the ineffective carrier sensing condition come to a similar conclusion to
those findings from models under the effective carrier sensing condition
i.e. goodput depends on the number of active nodes and the configuration
parameters of CSMA. Even though these goodput models are designed for
ineffective carrier sensing scenarios, they did not consider the structured
topology explicitly rendering these models less useful for planning the de-
ployment of IEEE 802.11 WBNSs in built environments.

Within the same area of studying ineffective carrier sensing scenarios,
some studies about goodput model considered topology in their mod-
els [30,64,72,173,190,(104,(127,149]. These models express throughput of
a given link as a proportion of the probability of a successful transmis-
sion. The probability of successful transmission for a given link depends
on many relevant probabilities such as the probabilities of packet arrival of
its neighbouring nodes. These studies introduce many unknown probabil-
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ities related to channel state and transmission, such as collision probability,
access attempt probability, leading to very high computation complexity.
Hence, it is difficult to apply these models to planning IEEE 802.11 WBNSs.

Even though many goodput models have been studied for IEEE 802.11
MAC protocols, none of these goodput models is suitable for planning
IEEE 802.11 WBNs in built environments. First, the models based on the
disk-graph model are simple and easy to use but many studies pointed
out that the disk-graph model is not accurate because this model defines
the carrier sensing effect as a binary function of distance [59,(162]. This
apparent binary outcome of the carrier sensing mechanism overly simpli-
ties the interaction among neighbouring nodes so this disk-graph model
cannot accurately reflect the actual behaviour of wireless links. Moreover,
disk-graph model cannot explain the goodput pattern in ineffective car-
rier sensing scenarios with exposed nodes, hidden nodes, and border ef-
fect. Hence, the disk-graph model is not suitable for planning IEEE 802.11
WBN:Es.

Second, those models for ineffective carrier sensing scenarios are also
not suitable for network planning as they either do not consider the struc-
tured topology or made unrealistic assumptions that all detailed flow level
information is known in advance. In the network planning stage, it is not
realistic to collect flow level information and also difficult to apply these
models to network planning.

2.3.3 Goodput Models Considering Traffic Demand

Traffic demand is another critical factor for a goodput model because it in-
fluences resource management and network performance in IEEE 802.11
WBN:s [115]. This goodput model must be generalisable to deal with var-
ious applications in network planning stage that matches with the real-
world application scenarios.

Saturated traffic demand has been used in Bianchi’s models [27, 28]
and Cali’s model [34] to simplify the analysis. To generalise the goodput
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model, other studies extended their studies with both saturated and un-
saturated traffic demands [45,55,94]. However, the studies about goodput
model with both saturated and unsaturated traffic demands did not con-
sider the other two factors, structured topology and carrier sensing mech-
anism at the same time.

Since traffic demand in real-world applications varies across different
domains, it would be desirable for a goodput model to be flexible with
both types of demands. Moreover, a goodput model is desirable to be
flexible for both saturated and unsaturated traffic demands with other key
factors.

2.3.4 Summary of Goodput Models

A goodput model plays an important role in IEEE 802.11 WBN planning
for ensuring QoS among heterogeneous services with increasing data de-
mands. Simplicity, usability and accuracy of a goodput model are three
elements common to a successful model for network planning. The ac-
curacy of a goodput model in IEEE 802.11 WBNSs is related to the three
key factors discussed before (structured topology, effective and ineffective
carrier sensing, and traffic demand).

From our survey of the literature, no goodput model has been studied
specifically for planning an IEEE 802.11 WBN in structured built environ-
ments. Specifically, existing studies do not link the goodput model with
three key factors discussed before (structured topology, effective and inef-
fective carrier sensing, and traffic demand). Moreover, they do not provide
insights to network wide performance —i.e. the performance is evaluated
on a single link or adjacent links only.

Among the above discussed goodput models, the disk-graph model is
the simplest model but it is not suitable for planning WBNs due to inac-
curacy. For improving IEEE 802.11 WBN planning, a simple and accurate
goodput distribution model is needed to provide network-wide perfor-

mance with consideration of various application scenarios.
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2.4 Channel Assignment For Planning IEEE 802.11
WBNs

IEEE 802.11 WBN:s started with single-channel single-radio (SCSR) system
due to the limitations of radio technology at the time [6]. In SCSR IEEE
802.11 WBN:s, all nodes use one radio with a common broadcast channel.
Therefore, channel capacity contention and interference remained a major
drawback in SCSR IEEE 802.11 WBNSs.

With the development of advanced radio technologies, multi-channel
multi-radio (MCMR) functionalities at each node provide effective approaches
to enhance network performance in IEEE 802.11 WBNSs [40, 53,/100]. In
MCMR IEEE 802.11 WBNSs, each node has multiple radio interfaces. Ra-
dio interfaces on nodes may transmit simultaneously because each ra-
dio has its own physical (PHY) layer and MAC layers. Compared with
SCSR, MCMR technologies significantly increase network capacity, pro-
vide flexible connectivity, and reduce the interference among neighbour-
ing links [6]. However, IEEE 802.11 WBNs may perform poorly due to
inefficient utilisation of the multiple available channels and the multiple
radios at its disposal [67,70].

Therefore, the protocols in MCMR IEEE 802.11 WBNs need more so-
phistication to regulate spatial resources and optimise network perfor-
mance. Various approaches have been studied in MCMR IEEE 802.11
WBNSs to optimise network performance, such as rate control [79}80,124],
MAC layer enhancement [19)21,[108], or cross-layer designs between rout-
ing, CA, and scheduling [22,/58, 76| 95|146,/150]. However, these studies
have not adequately addressed goodput and fairness from the aspect of
spatial utilisation and this is an increasingly prevalent problem in dense
WBN scenarios under heavy traffic conditions [46,60,78,[112,113]. Hence,
an investigation about spatial utilisation is necessary to improve perfor-
mance in IEEE 802.11 WBNs.

Among the above approaches, a CA plays a key role in managing spa-
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tial utilisation [6]. It also affects wireless connectivity and channel band-
width, and regulates fair sharing of a channel among nodes. Therefore,
a CA is essential to higher layer protocols such as routing protocol and
directly determines goodput and fairness in IEEE 802.11 WBNSs [7,.39,[115,
123}[133]

The main goal of CA algorithm is to allocate channels to the interfaces
at each node in order to maintain network connectivity and mitigate ca-
pacity contention and interference among co-channel links [71]. It is chal-
lenging to achieve connectivity and mitigate contention and interference
together because these two objectives are conflicting [115]. The problem
of CA has been shown to be a NP-hard problem [126].

To achieve maximum connectivity, a CA preserves the network connec-
tivity in the topology such that any pair of two nodes within transmission
range can communicate with each other if they are allocated a common
channel [133]. However, co-channel links within carrier sensing range
cannot transmit at the same time and have to share the channel capacity,
which contributes to high capacity contention. Concurrent transmission
using the same channel will cause collision by the interference from the
links within the interference range. Capacity contention and interference
lead to goodput degradation or unfairness. In this sense, a CA utilises the
variety of channel to reduce capacity contention and interference among
neighbouring links but it may reduce the network connectivity. Therefore,
maximising network connectivity and mitigating contention and interfer-
ence need to be balanced in CA [133].

This section will first introduce the category of CA algorithms in IEEE
802.11 WBNss and then discuss how CA algorithms are designed to achieve

goodput and fairness.

2.4.1 Channel Assignment in IEEE 802.11 WBNs

This research focuses on studying static CA as it is the most common type
in IEEE 802.11 WBN planning stage [71]. Static CA is one of the three
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types of CA and a simple approach to allocate channels. Such a static CA
allocates a channel to a node over an extended duration (in terms or weeks
or months) [133].

Under the category of static CA, CA algorithms can be further cate-
gorised into traffic-unaware and traffic-aware CA. This classification is
based on whether the CA algorithm considers the traffic load informa-
tion such as the effective bandwidth and traffic rate on the links. Traffic-
aware CA algorithms consider traffic load information and try to satisfy
some constraints (such as bandwidth requirement) while traffic-unaware
CA does not need to consider traffic [115,[133]. Traffic-unaware CA al-
gorithms allocate channels to the radios at each node based solely on the
distance between nodes in the topology [115}133].

Both traffic-aware and traffic-unaware CA have their own advantages
[115]. The advantage of considering traffic load is that traffic-aware CA al-
gorithms can reinforce QoS support initiated by routing algorithms lever-
aging traffic load information as its inputs, constraints, and objectives.
The advantage of not considering traffic is that the traffic-unaware CA
simplifies the problem since fewer factors are considered. Hence, IEEE
802.11 WBN planning should utilise the advantages of traffic-unaware and
traffic-aware CA algorithms achieving better fairness and goodput.

The next sections will discuss traffic-unaware and traffic-aware CA al-

gorithms regarding goodput and fairness in IEEE 802.11 WBNs.

2.4.2 Traffic-unaware Channel Assignment

Traffic-unaware CA algorithms allocate channel by using two popular ap-
proaches, graph theory (clique-based method) and network partitioning [11,
133]]. These two approaches guide CA with different strategies to maintain
connectivity and mitigate interference.

Graph-theory-based CA algorithms allocate channel based on theoreti-
cal concepts such as unit disk graph, topology, and conflict graph [11}[133].
These theoretical concepts are used to model the relationship between
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nodes and links in the network. A unit-disk graph [42] represents the in-
tersection of circles with an identical radius. In a unit-disk graph, the dis-
tance between connected vertices is less than the predefined transmission
range. Naively, one can draw a unit-disk graph without considering the
channel used on each link. However, the unit disk graph is not suitable
for MCMR scenarios because it cannot represent the different channels
used by different communication nodes, and the frequency of channels is
needed to establish network topology in MCMR IEEE 802.11 WBN s [133].
Building upon the simple unit-disk concept, topology models were intro-
duced in [102]. The extension was to simply require two nodes to share a
common channel in addition to being within transmission range of each
other to be deemed as a valid link. The concept of a conflict graph in-
troduced in [77,/133] is an intuitive method to model interference in IEEE
802.11 WBN . A conflict graph is derived from network topology and de-
pends on the following factors: (i) two links use the common channel; (ii)
two links transmit at the same time; (iii) the Euclidean distance between
two links; (iv) the interference model [133].

Figures and [2.5| illustrate the examples of unit-disk graph,
topology graph and conflict graph. The unit-disk graph in Figure
shows that five links connect four nodes A, B, C, and D according to the
geometric distance and transmission range. By considering channel in-
formation, three links exist among four nodes A, B, C, and D where two
channels 1 and 2 are available and only node A has two radios and other
three nodes have one radio (see Figure[2.4). Figure[2.5shows three vertices
representing three links AB, AC, and AD that are from the unit-disk graph.
Since links AC and CD using the channel 2 interfere with each other, one

edge connects the two corresponding vertices in the conflict graph.

Based on the above definitions and examples, unit-disk graph is inde-
pendent of channel information on each nodes while topology graph is
determined by the channel information with the unit-disk graph. Con-
flict graph is built up on the topology graph and an interference model.
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Figure 2.3: Unit-disk  Figure 2.4: Network  Figure 2.5: Conflict
graph topology graph

All of these three graphs are the fundamental basis of graph-theory CA
algorithms.

With the above three graphs, the common strategy in graph-theory-
based CA algorithms is allocating channels to radios at each node to achieve
a network topology that preserves every link in the unit disk graph or con-
flict graph, and reduces interference among the links in the conflict graph
by distributing non-overlapping channels [133].

Network partitioning is another approach used in traffic-unaware CA
algorithms. Partitioning is an intuitive method for solving the CA prob-
lem by dividing the network into disjoint sub-networks but this approach
has its own issue [133]. The network-partition-based CA algorithms first
divide the neighbouring nodes of a tagged node into I groups, where I is
the number of radios at a given node. The second step is to allocate chan-
nels to each group. By using different channels in different sub-networks,
these algorithms mitigate the interference among these sub-networks and
maintain the connectivity among the links within a sub-network. Usually,
each sub-network will select an edge node to maintain the connectivity
between different sub-networks. However, the limitation of connectivity
between different sub-networks appears to be problematic [133].

Next, trafficcunaware CA algorithms will be discussed from two as-
pects: design and evaluation. The design involves an objective and an in-
terference model while the evaluation relies on the selected measurement

metric.
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Table [2.1| shows the comparison of trafficcunaware CA algorithms ac-
cording to the objective, interference model, and measurement metric.
Four factors characterising the objective column in Table [2.1| are preserv-
ing connectivity (Con), maximising capacity (Cap), mitigating interference
(Inter), and maintaining fairness (Fair). Preserving connectivity (Con) refers
to the aim of providing maximum connectivity between nodes within a
given transmission range subject to the constraint of limited radios and
channels. The higher degree of connectivity among neighbouring nodes
leads to more choices of paths available for routing. It also increases the
reliability and robustness in IEEE 802.11 WBNSs. The objective of max-
imising capacity (Cap) refers to the process of satisfying disparate traffic
demands among competing nodes/flows. Basically, mitigating interfer-

ence (Inter) means reducing the interference among the links in an inter-

Table 2.1: Comparison of traffic-unaware channel assignment algorithms

Traffic-unaware Objectives Interference | Evaluation
CA Con Cap Inter Fair Model G FI FS

CLICA [102] v’ v’ Protocol v’
INSTC [140] v’ v’ Protocol v’
CTA [139] ? v’ Protocol v’
BFS-CA [122] v’ v’ Protocol v’
IGSA [52] ? v’ Protocol v’
NPS [126] v’ v’ Protocol v’
BFS-MaxNICA [138] ? v’ Protocol v’
FBDCA [158] v’ v’ Protocol v’
SCCA [155] ? v’ Protocol ?

TICA [36] ? v’ Protocol v v
PCU-CA [88] ? v’ Protocol v’
HCAP [92] ? v’ Protocol v’
SSCA [86] ? v’ Protocol v’
DGA [139] ? v’ Protocol v’

CCCA [51] ? v’ Protocol v Vv
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terence/conflict set. Maintaining fairness (Fair) refers to achieving the sys-
tem fairness among the links in the whole network.

Interference model includes protocol interference model and measurement-

based interference model (more discussion in Sections 2.4.2.2]and 2.4.3.2).

Evaluation metrics include goodput (G), Jain’s index [33] (FI), and flow
starvation (FS). The metric FS refers to identifying the occurrence of flow
starvation. A question mark is used to indicate that a CA does not explic-
itly contain the corresponding factor (but may use a surrogate factor that
is comparable).

The next sections will review traffic-unaware CA algorithms from the

objectives, interference models, and evaluation metrics.

2.4.2.1 Objectives of Traffic-unaware Channel Assignment Algorithms

Table[2.1|shows that traffic-unaware CA algorithms set their objectives to-
wards preserving connectivity and mitigating interference and do not ex-
plicitly consider capacity and fairness requirement in their objectives.

Firstly, trafficcunaware CA algorithms preserve connectivity in differ-
ent ways. Some algorithms aim to maximise connectivity. For exam-
ple, Connected Low Interference Channel Assignment (CLICA) [102] pre-
serves any link in the unit-disk graph and Minimum INterference Surviv-
able Topology Control (INSTC) [140] generalises the approach in CLICA [102]
with a K-connected topology in a unit disk graph. Another way to pre-
serve connectivity is to maintain the connectivity in the conflict graph such
as Centralised Tabu-based Algorithm (CTA) [139] and Improved version
of Gravitational Search Algorithm (IGSA) [52]. These two different strate-
gies maximise the different level of connectivity but yield different per-
formance because of the way constraints are expressed in their respective
objective (i.e. optimisation over conflict graph vs. optimisation over unit-
disk graph).

Among the graph-theory-based algorithms, the Breadth First Search
Channel Assignment (BFS-CA) [122] is the first algorithm to preserve the
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global connectivity over the entire network by allocating a common chan-
nel at each node. Even though a common channel helps achieve global
connectivity, using a common channel has the drawback that this BFS-
CA [122] is not flexible and strong co-channel interference exists among
neighbouring links.

Different from graph-theory-based approaches, network-partition-based
CA algorithms such as Neighbour Partitioning Scheme (NPS) [126] and
Clique-based clustering channel assignment (CCCA) [51] preserve con-
nectivity within a sub-network. Nodes in different sub-networks cannot
communicate with each other directly. Therefore, CA algorithms based on
network partitioning yield a poorer degree of connectivity in the network
compared with graph-theory-based CA algorithms.

Secondly, traffic-unaware CA algorithms tend to mitigate total inter-
ference level among the links in the whole network through a three step
process [115]. The first step is measuring the interference, then ranking
the links based on the measured interference, and finally allocating dif-
ferent channels among the adjacent links in the conflict graph to reduce
the interference. Most of these algorithms measure interference by using
link conflict weight that is the number of the links in an interference set.
The algorithms such as CLICA [102], CTA [139]], and INSTC [140] com-
pute the total number of edges with co-channels connecting the vertices in
the conflict graph and work backwards to allocate channels for minimis-
ing interference. CA algorithms using this metric choose the least-used
channel to reduce the total interference in the network. Some other CA
algorithms select different interference metrics such as interference cost in
Self-Stabilizing Channel Assignment (SSCA) [86] and Topology-controlled
Interference-aware Channel Assignment (TICA) [36]. The interference cost
used in SSCA [86] measures the interference level between two overlap-
ping channels with in an interference set. The interference cost used in
TICA [36] is calculated for each link as a function of distance. In all, these

traffic-unaware CA algorithms reduce total interference lever among the
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links in the whole network that leads to high goodput.

Traffic-unaware CA algorithms using graph-theory (clique-based) meth-
ods and network partition are easy to understand and solve network flow
problems. All surveyed traffic-unaware CA algorithms simplified the CA
problem without considering traffic load.

These traffic-unaware algorithms aim to preserve connectivity and mit-
igate interference but did not explicitly consider maximising capacity and
fairness in their objectives. Moreover, these algorithms do not take flow
starvation into account. Therefore, traffic-unaware CA algorithms may
not be able to achieve both goodput and fairness for IEEE 802.11 WBN
planning.

Since these traffic-unaware CA algorithms mainly consider interfer-
ence mitigation which is related to goodput in their objectives. The val-
idation of these algorithms mainly focuses on average goodput or total
goodput (see Table 2.1). Other similar metrics have been used to validate
traffic-unaware CA algorithms such as delay, interference degree, packet
delivery ratio. A few algorithms were validated with Jain’s index [33].
However, none of these traffic-unaware CA algorithms identify whether
flow starvation existed in the first place. Without identifying flow star-
vation, it is difficult to ascertain whether a CA algorithm resolves flow
starvation and achieves desired fairness. Therefore, further optimisation
and validation on traffic-unaware CA algorithms are needed to to improve
fairness and goodput for IEEE 802.11 WBN planning.

2.4.2.2 The Interference Models Used in Traffic-unaware Channel As-

signment

An interference model is the key element in CA algorithms because whether
the interference model is accurate or realistic directly influences the effec-
tiveness of CA algorithms in achieving desired goodput or fairness [112].
CA algorithms use the interference model to select an interference set and

estimate interference within the interference set. CA algorithms rely on the
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concept of an interference set to allocate available channels with the goal
of reducing contention levels in channels and reducing interference among
neighbouring link. The interference set of a link i is the set of neighbouring
links sharing a common channel and is within the interference range of
link 7 [115]. Generally, the interference range of a link is defined by the
interference model used in CA algorithms. Therefore, the interference set
and interference model are the key consideration in CA algorithms and
significantly influences the channel allocation for improving the spatial
reuse and the overall network performance.

Theoretical protocol interference model is widely used in traffic-unaware
CA algorithms to determine the interference set [133] (see Table 2.1). Gen-
erally, theoretical protocol interference model defines the interference range
of a receiver node represented as a disc (with radius R; = k x Dy) around
the receiver node where Dy, is the transmission range and k is a multi-
plicative constant. Widely documented theoretical models include proto-
col model, capture threshold model, and interference range model [75].
No packet transmission failures at a receiver node are assumed when its
interfering nodes are out of the interference range [41]. Generally, the-
oretical models are not realistic because they only consider the factor of
distance and ignore other factors such as transmission power level and
the cumulative effect of interfering signals.

Even though the traffic-unaware CA algorithms are simple and have
been widely used in IEEE 802.11 WBNSs for decades, these CA algorithms
still have some issues. For example, the protocol interference model may
not be accurate and realistic. Hence, the traffic-unaware CA algorithms
using the protocol interference model may estimate interference inaccu-
rately and lead to poor goodput and fairness in IEEE 802.11 WBNSs.

2.4.3 Traffic-aware Channel Assignment

Different from traffic-unaware CA algorithms, traffic-aware CA algorithms

allocate channels by considering traffic information [133]. Hence, traffic
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patterns are important to traffic-aware CA algorithms. Two common traf-
tic flow patterns, gateway pattern and peer-to-peer pattern, are used in
traffic-aware CA to suit different scenarios. A gateway pattern assumes
that most traffic flows are to or from gateway nodes. Unlike the gate-
way pattern, peer-to-peer pattern makes no assumption on the traffic flow
patterns and is more widely applicable. Utilising the gateway pattern sim-
plifies the CA algorithm but applying the CA algorithm for the gateway
pattern to a scenario with the peer-to-peer pattern may not yield a solution
(non-satisfiability) [133]]. In contrast, the CA for the peer-to-peer pattern is
more flexible. This research focuses on peer-to-peer traffic pattern that is
more suitable for planning IEEE 802.11 WBNSs to suit different scenarios.
Table compares trafficcaware CA algorithms with the same table
headings identical to Table2.Tjand the explanation appears in Section2.4.2]
The next sections will review traffic-aware CA algorithms from their
objectives, interference models, and evaluation metrics in the validation

separately.

2.4.3.1 Obijectives of Traffic-aware Channel Assignment Algorithms

Table[2.2]shows that most surveyed traffic-aware CA algorithms have their
objectives set towards maximising capacity (goodput) and mitigating in-
terference but maximising both goodput and fairness has not drawn enough
attentions [7,[12}115,/133].

First, to maximise capacity and mitigate interference without consid-
eration of fairness, the algorithms such as Cluster-based Multipath Topol-
ogy control and Channel assignment (CoMTaC) [107] and Joint Optimal
Channel Assignment and Congestion Control (JOCAC) [121] attempt to
maximise capacity by reducing the interference in the network. By choos-
ing the channel with the least aggregated traffic load or least interference
cost, these algorithms aim to mitigate interference and achieve the high-
est available channel capacity or the capacity greater than traffic demands.

These algorithms only target goodput and neglect fairness.
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Table 2.2: Comparison of traffic-aware channel assignment algorithms

Traffic-unaware Objectives Interference | Evaluation
CA Con Cap Inter Fair Model G FI FS
LA-CA [126] ? v’ v’ ? Protocol v’
BSCA [87] ? ? ? v’ Protocol v’
RCL [8] ? ? v’ Protocol v’
MCI-CA [32] ? v’ ? Protocol v’
MCAR [13] ? v’ v’ ? Protocol v’
MVCRA-R [15] ? v’ v’ ? SINR v’
BCS [93i ? v’ v’ Protocol v’
Hyacinth [125] ? v’ Protocol v’
DMesh [47] ? v’ v’ Protocol v’
CoMTaC [107] ? v’ Protocol v’
ITACA [128] ? v’ Protocol v’
G-PaMeLA [63] ? v’ v’ Protocol v Vv
JOCAC [121] ? v’ v’ SINR v’
TARICA [148] ? v’ Protocol v’
EXT-HMCP [85] ? v’ Protocol v Vv
MIN-INT [_85] ? v’ Protocol v Vv
MAX-CP [85] ? v’ v’ SINR v Vv
CRACA [74] ? v’ v’ ? Protocol v v
TMCA [67] ? v’ v’ Protocol v’
OTACA [103] ? v’ v’ ? Protocol 7V
GTA [135] ? v’ ? Protocol ?
MPFBCA [20] ? v’ v’ ? Protocol v 2

Some algorithms target maximising capacity with fairness considera-
tion as an auxiliary constraint [13,/15,32,[126]. For example, Load Aware
Channel Assignment (LA-CA) [126] and Maxflow-based Channel Assign-
ment (MCAR) [13] aim to satisfy traffic rate requirement for each link
with a “bandwidth conservation” principle. A defining characteristic of
the fairness optimisation is distributing the bandwidth equally subject to

the “bandwidth conservation” principle. For links using a common chan-
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nel within an interference set, the bandwidth conservation principle limits
the sum of allocated bandwidth below the channel capacity [8,87,(133].
The bandwidth conservation principle is derived on the assumption that
all nodes share the available capacity fairly. This constraint is valid in ef-
fective carrier sensing scenarios but it neglects the case of hidden nodes in
ineffective carrier sensing scenarios. Therefore, the algorithms using this
fairness constraint may lead to poor goodput and fairness in ineffective

carrier sensing scenarios.

Second, the closest studies to support fairness in the objectives are the
studies in [8,19,21}/63,187,(121]. Some channel assignment algorithms such
as Generalised Partitioned Mesh network traffic and interference aware
channel assignment (G-PaMeLA) [63] and Maximising Per-Flow Band-
width Channel Assignment (MPFBCA) [19] aim to achieve Max-Min Fair-
ness (MMF). For MMEF, the rate of each node or link cannot be increased
without decreasing the rate of any other node or link at the same time [19,
21,63]. Other algorithms such as Joint Routing, Channel Assignment,
and Link Scheduling (RCL) [121] and Balanced Static Channel Assign-
ment (BSCA) [87] related to fairness set their objectives as proportional
fairness (PF). The goodput performance of algorithms targeting MMF is
limited by the slowest link. In terms of PF, the studies surveyed impose a
fairness constraint A to each flow. In terms of PF, the metric is a fairness
constraint A = FGZ;—tZZ’ for every node or link, where G4, and Fj,0,,4 de-
note the actual goodput and the traffic demand. These CA algorithms aim
to achieve proportional fairness among flows instead of maximising the
overall goodput [8,87}[121].

Third, Traffic-aware CA algorithms preserve connectivity with differ-
ent purposes since connectivity is not the main goal of these traffic-aware
CA algorithms. These algorithms only maintain a certain level of con-
nectivity for the links given with a traffic demand instead of maximising
the connectivity in IEEE 802.11 WBNSs and therefore question marks are

put in Table Some algorithms meet the requirement of instantaneous
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routing demands by trading off maximum connectivity. For example, the
LA-CA [126], BSCA [87], and RCL [8] algorithms aim to solve the problem
of CA combined with routing. LA-CA [126] uses an iterative method that
repeats the process of CA and routing to find the solution until the allo-
cated flow rate satisfies the traffic demand. However, if traffic demand is
greater than the available link capacity, the LA-CA [126] algorithm does
not converge in polynomial time. MCI-CA [32] formulates the CA as a
Matroid intersection problem by finding a forest topology which is a suf-
ficient condition for a stable scheduling algorithm to achieve interference-
free link transmission between adjacent links. However, it may not be
possible for MCI-CA [32] to find feasible forest topology for all different
scenarios. MCAR [13] formulates the CA problem as a single commod-
ity flow problem to calculate the maximum throughput and the required
amount of flow rate on each link. Based on the required amount of flow
rate on each link, MCAR [13] divides links into groups and allocates dif-
ferent channels to different groups. Even though the interference problem
between groups is addressed, the interference reduction within a group is
not addressed [133].

Traffic-aware CA algorithms solve the channel allocation more realis-
tically than traffic-unaware CA algorithms by taking traffic information
into account, which also increase the complexity of formulating the prob-
lem [133]].

Most of the surveyed traffic-aware CA algorithms target capacity al-
location and interference mitigation as their objectives with fairness con-
straints. However, these traffic-aware CA algorithms did not explicitly
consider both goodput and fairness in their objectives. Therefore, traffic-
aware CA algorithms may not be able to achieve desired goodput and
fairness for IEEE 802.11 WBN planning.

Since these traffic-aware CA algorithms mainly focus on maximising
goodput instead of maximising goodput and fairness, most of them have

only been validated about the performance on achieving goodput (see Ta-
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ble . A few algorithms were validated with Jain’s index. However,
none of these traffic-aware CA algorithms identify whether flow starva-
tion exists in the first place. Without identifying flow starvation, it is dif-
ficult to ascertain whether a CA algorithm resolves flow starvation and is
able to achieve both goodput and fairness. Therefore, it is needed to fur-
ther optimise and validate traffic-aware CA algorithms to improve fair-
ness and goodput for IEEE 802.11 WBN planning.

2.4.3.2 The Interference Models Used in Traffic-aware Channel Assign-
ment

Traffic-aware CA algorithms used theoretical and measurement-based in-
terference models to select interference sets but these two models have
some shortcoming to model flow starvation in ineffective carrier sens-
ing scenarios. The theoretical interference models have been discussed
in Section Besides theoretical interference models, some CA al-
gorithms such as Minimum Variation channel and rate reassignment al-
gorithm (MVCRA-R) [15] and JOCAC [121]] use measurement-based inter-
ference model, SINR model, that are based on the measure of received sig-
nal [121]. Measurement-based interference models evaluate interference at
areceiver node by calculating signal-to-interference-and-noise-ratio (SINR)
or signal-to-noise-ratio (SNR) [37]. When SINR or SNR measured at a re-
ceiver node is below a specific threshold, this receiver node probably can-
not receive a correct packet and the transmission fails. This assumption is
based on massive simulations for mapping SINR to bite error rate. Note
that SINR threshold is defined based on different modulation and coding
mechanisms in different applications [2].

The difference between a theoretical model and a measurement-based
model is whether the interference model considers the interference power
or the additive effect from multiple neighbouring links or not [75]. Theo-
retical models assume that interference is a binary or pairwise conflict ef-

fect among concurrent transmitting links without consideration of power
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and additive effect [75]. Measurement-based models regard interference
as an additive effect from all other neighbouring links transmitting simul-
taneously since SINR calculates the sum of noise signal power and signal
power from all interfering nodes [75]. In summary, theoretical models
are simple but not realistic while measurement-based models are realistic
but complicated. Different interference models yield different interference
sets that lead to different channel allocations and fairness in IEEE 802.11
WBN:Es.

In all, these two models reflect the interference among neighbouring
links within an interference set. However, these two models cannot reflect
flow starvation caused by hidden/exposed nodes and border effects. Flow
starvation introduces severe unfairness [61]. The inaccuracy in the inter-
ference models may lead CA algorithms to poor goodput and fairness in
IEEE 802.11 WBNE.

2.5 Summary

IEEE 802.11 WBNs are a promising technology to provide high speed and
reliable connectivity to small-cell networks with low cost and efficient in-
stallation. However, using unlicensed spectrum in high density environ-
ments leads to big challenges to plan IEEE 802.11 WBNSs for achieving high
goodput and fairness.

The performance issues discussed in this chapter show that current
goodput model and CA still fall short of the requirements from IEEE 802.11
WBN planning, providing room for further improvement [112] (more dis-
cussions in Chapters [3| [ and [5). First, existing goodput models are not
suitable for planning IEEE 802.11 WBNs due to inaccuracy or complexity.
Second, most existing CA algorithms focus on maximising goodput but
fairness in WBNs has not received much attention. Especially, preventing
severe unfairness like flow starvation has not been explicitly considered
in CA and IEEE 802.11 WBN planning. Last but not least, optimising CA
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with both goodput and fairness is a timely research topic but it has not
been addressed by existing CA algorithms.

The end goal of this research is to improve goodput and fairness for
planning IEEE 802.11 WBNs through goodput modelling and optimised
CA algorithmes.

The next sections will discuss how to improve goodput and fairness
through goodput modelling and optimised CA.



Chapter 3

Goodput Modelling for Planning
IEEE 802.11 WBN s

The purpose of this chapter is to develop a goodput distribution model
for planning IEEE 802.11 WBNs. Such a goodput distribution model is
used to predict link-level goodput and help network planners resolve the
performance issues in IEEE 802.11 WBNs planning. Some of the perfor-
mance issues such as goodput degradation and flow starvation in IEEE
802.11 WBN's serving small-cell networks can be traced back to poor net-
work planning [23]. A suitable goodput model is needed for guiding the
deployment of IEEE 802.11 WBN’s to improve network performance.
Among the goodput models discussed in Chapter [2, the disk-graph
model is the simplest model that has been widely used in performance
modelling in IEEE 802.11 WBNs [37,[75]. To characterise the disk-graph
model, an investigation has been conducted under effective and ineffec-
tive carrier sensing scenarios through simulation (see Appendix [A). The
investigation shows that the goodput patterns in effective carrier sensing
scenarios match with the expectations from the disk-graph model. When
all nodes are within each other’s carrier sensing range, these nodes share
the channel capacity fairly. When all nodes are out of each other’s carrier

sensing range, each node occupies the whole channel capacity.

41
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However, some simulation results in ineffective carrier sensing scenar-
ios show an unexpected goodput pattern from the disk-graph model. Ac-
cording to the disk-graph model, links within the carrier sensing range of
a link should share channel capacity equally and the sum of goodput of
the links in any interference set is below 1. However, this conclusion does
not hold in the scenarios with border effect and flow starvation. Hence,
the disk-graph model cannot explain the flow starvation in the middle
link and the interaction between border links and middle link. Hence, due
to inaccuracy, the disk-graph model is not suitable for planning WBNs in
built environments.

An opportunity exists to shed light on IEEE 802.11 WBN planning
through a new goodput model to improve performance. Such a good-
put model plays a role in IEEE 802.11 WBN planning by representing the
essence of performance problem and reflecting the behaviour of wireless
links in IEEE 802.11 WBNs. Moreover, this goodput model brings conve-

nience for performance analysis and node placement.

Simplicity, usability and accuracy of a goodput model are three ele-
ments common to a successful model for network planning. In developing
a goodput model, a good approach is to begin with a very simple version
and then move towards more elaborate models that more nearly reflect the
complexity of the real problem. The usability of a goodput model needs
to satistfy the purpose of developing the model, and in this research, the
purpose is about planning IEEE 802.11 WBNs. The accuracy of a goodput
model is related to the three key factors influencing the performance in
IEEE 802.11 WBNs: structured topology, effective and ineffective carrier

sensing, and traffic demand (more discussion in Section 2.3 on page 18).

The goal of this research in this chapter is to develop a simple and
accurate goodput distribution model for planning IEEE 802.11 WBNs (a
metric that reflects network-wide performance) with consideration of a

structured topology for various application scenarios.

This chapter explains the development of a goodput model for IEEE
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802.11 WBNSss through a two step process. First, a goodput distribution is
derived based on the disk-graph model to cover effective and ineffective
carrier sensing scenarios. Such a goodput model predicts link level good-
put based on network topology and traffic demands. Finally, this model is
validated through simulations under different traffic demands and differ-

ent radio propagation models that reflect typical built environments.
The objectives of this chapter are to:

1. Derive a goodput distribution model to predict link level goodput
based on the topology of a given IEEE 802.11 WBN and traffic de-
mand.

2. Validate the proposed goodput distribution model through simula-

tions.

The rest of this chapter is organised as follows. Section 3.1 explains the
derivation of the proposed goodput model. Sections [3.2] and [3.3| validate
the model through simulation followed by the summary in Section

3.1 A Unified Goodput Distribution Model For-

mulation

In this section, a unified goodput distribution model is developed for plan-
ning IEEE 802.11 WBNSs in built environments. Such a goodput distribu-
tion model conserves the disk-graph model for effective carrier sensing
scenarios and also extends to the unexpected goodput pattern in ineffec-
tive carrier sensing scenarios (see Appendix[A). This model will also take
the structured topology in built environments into account, and it will be
flexible for both saturated and unsaturated traffic demands.

Several variables are defined to facilitate the discussion. The symbols
for these variables together appear with a brief explanation in Table
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Table 3.1: Notation: symbols and their meanings.
Symbol Explanation
E Complete set of links in an IEEE 802.11 WBN
N The number of links in the set of E
Res Carrier sensing range
Dpax Maximum transmission range
Dy, The distance between the sender and receiver in a link
I1S(i) The independent set: the links out of R.s of a given link i
(i) The conflict set: the links within R of a given link i
x(7) The number of links in the I5(7)
ds s The distance between senders in two links
ds s The distance between sender and receiver in two links
dirB The distance between a link ! and the left border link LB
d; rB The distance between a link I and the right border link RB
GCS;p  The left border link set in an IEEE 802.11 WBN
GCSgp  The right border link set in an IEEE 802.11 WBN
GCS’t g The dominant left border link set in an IEEE 802.11 WBN
GCS’rp  The dominant right border link set in an IEEE 802.11 WBN
GCSp. The middle-link set in an IEEE 802.11 WBN
A GMC The minimum global conflict clique
D The distance between two border links in an IEEE 802.11 WBN
d The inter-link distance interval
f(i) The normalised traffic demand of a link i
G(i) The estimate of goodput for a link 7 in effective CSMA
Go (i) The optimistic estimate of goodput for a link i in ineffective CSMA
Gp(i) The pessimistic estimate of goodput for a link 7 in ineffective CSMA
o The starvation factor for flow starvation

The next subsections will explain the proposed goodput distribution

model with saturated and unsaturated traffic demands separately. To help

understand the new goodput model, examples will be provided to explain

how to use this model to calculate goodput distribution with a given topol-

ogy and traffic demand.
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3.1.1 A Goodput Distribution Model For Saturated Traffic

Demand

The formulation for goodput model with saturated traffic is based on the
disk-graph model and our previous work [114].
First, the assumptions for the model with saturated traffic demand are

listed as follows:

Assumption 1. All nodes are configured with identical parameters and saturated

traffic is assumed.

Assumption 2. A single-channel single-radio IEEE 802.11 WBN is configured
with a linear uniform and symmetric topology.

Assumption 3. If the distance between two border links is less than the carrier
sensing range, this scenario is regarded as the effective carrier sensing scenario.
All links share the channel capacity equally in this effective carrier sensing sce-

nario.

Assumption 4. If the distance between two border links exceeds the carrier sens-
ing range, this scenario is regarded as the ineffective carrier sensing scenario and
border effect exists.

Assumption 5. Starvation occurs to a link when the link is within carrier sens-
ing range of two border links. In this research, a starvation link is defined as that
the achieved goodput of a link is below a X Gayerage, Where a € [0.0,0.2] is the
starvation factor and Ggyerage is the average goodput in E.

Assumption 6. The propagation delay between neighbouring nodes is zero.
Assumption 7. Capture effect and packet losses caused by collision are ignored.
Assumption 8. Acknowledgements are obtained instantaneously.

Assumptions 1 and 2 simplify an IEEE 802.11 WBN as a single-channel
single-radio system with a structured topology and an identical configu-

ration for all nodes. Assumptions 3, 4, and 5 are the conclusions that have
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been validated through well-known studies such as [27,28,61}/64,90,114].
Assumptions 6, 7, and 8 simplify the analysis by neglecting the propaga-
tion delay, capture effect and interference caused by collision.

The next section defines the goodput formulations for saturated traffic
demand in effective and ineffective carrier sensing scenarios. Finally, an

example illustrates the applications of this model.

3.1.1.1 Goodput Distribution Model For Saturated Traffic Demand in

Effective Carrier Sensing Scenarios

Simulation results show that the disk-graph model can predict goodput
pattern accurately in effective carrier sensing scenarios with saturated traf-
fic demand (see Appendix [A). Hence, Def. [I] establishes the goodput de-
fined by typical disk-graph models in effective carrier sensing scenarios

where all nodes are within each other’s carrier sensing range.

Definition 1. The goodput in effective carrier sensing scenarios with satu-
rated traffic: Assume that the channel capacity shared among the links in E has
normalised as capacity 1 with respect to the maximum net bandwidth. The good-
put G(i) of a tagged link i is defined as the ratio between goodput and maximum
net bandwidth.

G(i) = = , when D < Rgs, (3.1)

whereby R is the carrier sensing range, D is the Cartesian distance between two
border links, and N is the number of links in the E.

The proof is given in Appendix[B.T|and is immediate by Def. [Tjand induc-
tion on the number of links in an IEEE 802.11 WBN.

3.1.1.2 Goodput Distribution Model For Saturated Traffic Demand in
Ineffective Carrier Sensing Scenarios

For ineffective carrier sensing scenarios where not all nodes are within

each other’s carrier sensing range, the theorem is defined relating good-



3.1. GOODPUT DISTRIBUTION MODEL FORMULATION 47

put with the notions of independent set and conflict set of a given link 1.
The theorem [1| expresses the goodput for each link i as a function of inde-
pendent set and conflict set. The theorem [1{is based on the observation in
Appendix|A.3

Theorem 1. Goodput of a tagged link i in ineffective carrier sensing scenarios
(D > Rcg) is a function of 1S(i) and y(i).

Definition 2. Independent set: Let E denote the complete set of links in an
IEEE 802.11 WBN. For a tagged link i in E, the independent set,

IS(Z) — {l € E \ {Z} | dS,S > RCS llnd ds/r > RCS} . (3.2)

whereby d; s is the distance between two senders in link | and link i, ds , is the
distance between the sender in link | and the receiver in link i, R is the carrier
sensing range.

Definition 3. Conflict set: The conflict set of a tagged link i,
y(i) ={l € E\{i} | dss < Res 0r ds;s > Res, dsr < Res} . (3.3)

whereby d; s is the distance between two senders in link | and link i, d , is the
distance between the sender in link | and the receiver in link i, R is the carrier
sensing range and it is clear that 1S(i) U y(i) Ui = E.

To derive the goodput model, the border-link sets (GCS; g and GCSgp),
the dominant border-link sets GCS’; g and GCS’rp, and the middle-link set
(GCSpr) are defined as follows based on our previous studies [116}[117].

Definition 4. Border-link sets GCS; g and GCSgp:
Let E denote the complete set of links in an IEEE 802.11 WBN. For E, the left
border-link set GCSy p and right border-link set GCSgp,

GCSi = {l €E | dl,RB > Rcs}r

(3.4)
GCSgrg = {l € E |d;1p > Res},
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whereby d; 1 g is the distance between a link | and the left border link, d; rp is the
distance between a link | and the right border link, and R is the carrier sensing
range. Note that the assumed topology will be a linear uniform and symmetric
topology. The left and right border links are selected corresponding to the largest
dimensions of the bounding box of all nodes in a given topology.

Definition 5. Middle-link set GCSyyy, : Let E denote the complete set of links
in an IEEE 802.11 WBN. For E, the middle link set GCSyyy,

GCSymr = {l € E \l € GCS;p or GCSyp }, (3.5)

Definition 6. Dominant Border-link sets GCS’; g and GCS’gp
Let E denote the complete set of links in an IEEE 802.11 WBN. For E, the left
dominant border-link set GCS’ g and right dominant border-link set GCS’rp,

GCS'1g = {l € GCS;p | dl,i > Rgs {Z S GCSRB} },

(3.6)
GCS'RB = {l € GCSRB | dl,i > Res {Z € GCSLB} },

whereby d ; is the distance between sender nodes in link | and link i, and Res is
the carrier sensing range.

The above global border-link sets and middle-link set are used to iden-
tify the occurrence of flow starvation in a given IEEE 802.11 WBN. In an
ineffective carrier sensing scenario, the links in the border-link sets have
fewer conflicting links than those links in the middle-link set. Therefore,
border effect brings potential risk of flow starvation to the links in the
middle-link set. Some links in the border-link sets have the priority to oc-
cupy the spatial resource that influences the occurrence of border effect,
which are selected to be the dominant border-link sets.

The topology shown in Figure 3.T]illustrates how to select these border-
link sets and middle-link set. Based on the Def. Def[3.5, and Def.
the border-link sets and middle-link set are selected and shown in Fig-
ure Two red circles represent the carrier sensing range from two bor-
der links L1 and L9. First, the left border-link set is selected as GCS;p =
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Dominant left Dominant right
border-link s&t  border-link set

Left border-link set Middle-link set I Right border-link set

Figure 3.1: An example of border-link sets, dominant border-link sets, and
middle-link set

{L1,L2, L3} and the right border-link set is selected as GCSgrp = {L7, L8, L9}.
Middle-link set is GCSy;, = {L4,L5,L6}. The distance between link L3
and L7 is less than the carrier sensing range. Then, the dominant border-
link sets are selected as GCS’;p = {L1,L2} and GCS'grp = {L8, L9}.

Next, the minimum global conflict clique 7*MC is defined to calculate
the spatial capacity in an IEEE 802.11 WBN. Different from the effective
carrier sensing scenario without spatial reuse, spatial reuse exists in an
ineffective carrier sensing scenario. Because the border links are out of
each other’s carrier sensing range and cannot sense each other, these links
can transmit at the same time using an identical channel. Therefore, from
the perspective of the whole network, the spatial capacity may exceed 1.
The minimum global conflict clique 7“MC is used to estimate the spatial
capacity from the global view of a network.

For a graph E, a minimum global conflict clique is defined as a set of
conflict sets (i) that contains all the links in E following the constraint in
Def.[Z1

Definition 7. Minimum global conflict clique v“™C: For a network E,

yOMC . Lii € E,j € E: IS(i) NIS(j) = @} (3.7)
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whereby 1S(i) is the independent set of link i.

In the topolopgy in Figure a minimum global conflict clique is
{L1,L9}. The conflict sets of links L1 and L9 are y(L1) U y(L9) = E and
the corresponding independent sets are IS(L1) N IS(L9) = @. Then in this
topology, the maximum spatial capacity will be |y“M¢|= |{L1, L9}|=2.

The goodput distribution model is proposed with a pessimistic good-
put Gp(i) and an optimistic goodput Gp (i) in ineffective carrier sensing
scenarios. This idea arises from two distinct situations. The first situation
is that the conflicting links of a given link are within each other’s R (e.g.
all conflicting links of L1 are within each other’s R.s in Figure . In this
case, the sum of goodput of a tagged link i and all conflicting links will be
1, G(i) + ey G) = 1.

The second situation is that the conflicting links of a given link are not
all within each other’s R (e.g. L5’s conflict set is {1,2,3,4,6,7,8,9} but
L1 and L9 are out of each other’s R.s). Unlike the previous case, the sum
of goodput of L5 and its conflicting links L1 — L9 may exceed the total
channel capacity 1,i.e. 1 < G(i) + ¥Ljey (i) G(j) < |y CME),

To address the two distinct situations, the pessimistic and optimistic
estimate of the goodput are proposed for a given link i. For the pessimistic
estimate of goodput for a tagged link, the lower bound of the achievable
goodput is restricted such that Gp(i) + Ljc,(;) Gp(j) = 1. This goodput is
regarded as the pessimistic goodput estimate.

In terms of the optimistic estimate of the goodput, the goodput is cal-
culated by using the conflict set of the border link for the links within the
conflict set of the border link. The border link attains the highest goodput
and has the fewest number of links in its conflict set. Hence, using the con-
flict set with the least number of links, the upper bound of the achievable
goodput is restricted such that Go (i) + Ljc,(8) Go(j) = 1. This goodput
is regarded as the optimistic estimate of the goodput.

Next, the pessimistic and optimistic goodput Gp(i) and Gp(i) of a link
i in the ineffective carrier sensing scenarios are defined as follows.
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Definition 8. Pessimistic goodput for ineffective carrier sensing scenarios
with saturated traffic Gp(i) : The pessimistic goodput is defined as the ratio
between goodput and maximum net bandwidth,

0 ,1 € GCSp1,
’,YGMC|
Gp(i) =< x(i) x <1 —|GCSpm| & x — ) (3.8)
. - ,otherwise,
X(0) + Lieqy i) X (/)

subject to Gp(i) + Ljcqi) Gp(j) = 1, where x(i) is the number of links in a
given 1S(i), y(i) is the conflict set of link i, |GCSpy| is the cardinality of the
global middle link set GCSpyp, |yOMC| is the cardinality of the minimum global
clique vOMC, N is the number of links in E and a is the starvation factor.

Definition 9. Optimistic goodput for ineffective carrier sensing scenarios
with saturated traffic Go(i) : The optimistic goodput is defined as the ratio
between goodput and maximum net bandwidth,

|y EME]
o X N , i€ GCSy,
GO(i) = x (i) (3.9)
, otherwise,

X (1) + Ljeqy) X ()

subject to Go(B) + Ljeq () Go(j) = 1, where «y(B) is the conflict set of the
border link B in which the link i is and x (i) is the number of links in a given
1S(i), |yOMC| is the cardinality of the minimum global cliqgue v*MC, N is the
number of links in E and « is the starvation factor.

Proofs of the pessimistic and optimistic goodput are by definition and
induction on the number of links in an IEEE 802.11 WBN and is given in
Appendix Note the starvation factor a ranging from 0.0 to 0.2 in the
pessimistic and optimistic goodput equations is the empirical value from

simulation results.
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3.1.1.3 Example: Using the Mmodel with Saturated Traffic Demand

For saturated traffic demand, an example demonstrates the utility of the
proposed goodput model shown in Figure Figure shows a lin-
ear, uniformly spaced and symmetric topology that the network size D is
800 m and the inter-link interval d is 100 m. The network E for this scenario
is E = {L1,L2,...,L9}. The transmitter-receiver separation of all links D,
is 50m. The propagation model is the two-ray propagation model and
carrier sensing range R is 515m. The traffic demand of each link is con-
figured as 24 Mbps (for saturating the wireless link).

TTTYTTYTY
§>é>é>é>é>é><‘><?

D

Figure 3.2: Nine Links deployed in a d = 100m, 800 x 50 m? IEEE 802.11
WBN

First, the independent set IS(i) and conflict set y(i) are calculated for
all links based on the topology information and the given R (see Ta-
ble[3.2). According to the results tabulated in Table links L4 to L6 are
within the R of both border links L1 and L9 and these middle links have
no independent links as {@}. Links 4 to 6 are predicted to achieve “zero”
goodput for pessimistic goodput (and hence are called starving links). We

calculate 7M€ = {[;,19} and |y®MC¢| = 2. For starving links (assume
GMC
| | = 0.044.

For the non-starving links, the weight is assigned to each link based

« = 0.2), their optimistic goodput is calculated as « x

on definition of x (7). For example, link L3’s independent set has only one
link L9, thus link L3’s weight is assigned as 1, and same for link L2 with
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Table 3.2: Independent sets, conflict sets, and goodput of individual links
Linki  IS(i) 7(0) x(i) Geli) Goli)

1 {789} {2,3,4,5,6} 3 0433 0500
2 {8,9} {1,3,4,5,6,7} 2 0248 0333
3 {9} {1,2,4,56,7,8) 1 009 0.167
4 {?}  {1,2,3,56,7,89} 0 0000 0.044
5 {?}  {1,2,3,46,7,89} 0 0000 0.044
6 {®}  {1,2,3,4,57,89} 0 0000 0.044
7 {1} {2,3,4,5,6,89} 1 009 0.167
8 {1,2} {3,4,5,6,7,9} 2 0248 0333
9  {1,2,3}  {3,4,5,6,78} 30433 0500

weight 2. Using Def. [8|and Def.[9] the pessimistic and optimistic goodput
Gp(i) and Gp(i) are calculated for this example listed in Table

3.1.2 A Goodput Distribution Model For Unsaturated Traf-
fic Demand

This subsection derives the goodput model with unsaturated traffic de-
mand. With unsaturated traffic demands, whether starvation would hap-
pen depends on the traffic demands among border links (see the discus-
sion in Appendix [A). When unsaturated traffic demands of border links
do not exceed channel capacity, middle links may not get starved. The as-
sumptions for ineffective carrier sensing scenarios with unsaturated traffic
demand are the same as those in Section except the Assumption 4.
For unsaturated traffic demand, border effect may not exist even if the
distance between two border links exceeds the carrier sensing range.
The occurrence of the border effect depends on the traffic demand from
the border link sets.

The next subsections define the goodput model for effective and inef-

fective carrier sensing scenarios followed by an example.
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3.1.2.1 Goodput Distribution Model For Unsaturated Traffic Demand

in Effective Carrier Sensing Scenarios

Simulation results show that the disk-graph model can predict the good-
put pattern accurately in effective carrier sensing scenarios with unsat-
urated traffic demand (see Appendix [A). Hence, Def. [10] establishes the
goodput defined by typical disk-graph models in effective carrier sensing
scenarios where all nodes are within each other’s carrier sensing range.

Definition 10. Goodput distribution for effective carrier sensing scenarios
with unsaturated traffic: The goodput G(i) of a tagged link i is defined as the
ratio between goodput and maximum net bandwidth.

1
G(i) = N ,when YicE f(l> > 1, (3.10)
f(0) ;when  Ycp f(i) <1,

whereby N is the number of links in the E, and f (i) denotes the normalised traf-
fic demand of a link i with respect to the maximum net capacity. Note that the
maximum net capacity in this thesis refers to goodput defined in Section

The proof for the goodput Def.[10]is given in Appendix

3.1.2.2 Goodput Distribution Model For Unsaturated Traffic Demand

in Ineffective Carrier Sensing Scenarios

The expected goodput pattern from the disk-graph model is observed dif-
ferently from simulation results in ineffective sensing scenarios with un-
saturated traffic demand (see Appendix[A). Complex interactions between
border links and middle links exist in ineffective carrier sensing scenario.
Therefore, correction factors need to be introduced to this scenario with a
new criterion.

For ineffective carrier sensing scenario, two criteria, A and B, are de-

tined to refine the possible combinations of unsaturated traffic demands.
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First, criterion A is the sum of traffic demands of the links in the dominant
border-link sets GCS’r g and GCS’gp, and this is expressed as:

f) =1 (3.11)
jEGCS L pNGCS'rp

Criterion A is to evaluate whether border effect occurs. If the criterion
A holds, border effect potentially exists and the border links will occupy
the channel and middle links will have very little chances to transmit pack-
ets that lead to flow starvation. If not, border effect and flow starvation
will not exist.

Criterion B is the sum of traffic demands of the links in the left or right
border links with the links in its conflict set y(B), and this is expressed as:

£G) > 1. (3.12)
jEBNY(B)

Criterion B is to evaluate whether the channel capacity is sufficient for
the border link and the links in its conflict set. If criterion B holds, the
channel capacity is not sufficient and the border link will have priority to
occupy the channel over its conflicting links. If not, the border link and its
conflicting links will share the channel capacity fairly.

We list four possible combinations of unsaturated traffic demands with
two criteria A and B in Table For each condition, different equations
are used to calculate goodput distribution. For example, if the traffic de-
mands among all links satisfy condition #2, Def. [11] and Def. [12] will be
used to calculate the goodput distribution.

Definition 11. Pessimistic goodput for conditions #1 and #2 with unsatu-
rated traffic Gp(i) : The pessimistic goodput of a tagged link i is defined as the
ratio between goodput and maximum net bandwidth.

0 , 1€ GCSpyy,

\'YGMC|

. . i)x(1-ax|GCS )
{mm(f(l),X()X(X(i)izjeyxg((xj) A )) , otherwise,

Gp(i) = (3.13)
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Table 3.3: Four unsaturated traffic demands in ineffective carrier sensing

scenarios
Condition Criterion A | Criterion B | Predicted goodput
Condition #1 True True Def.[11]and Def. |12
Condition #2 True False Def.|11{and Def.[12
Condition #3 False True Def.|13|and Def.|14
Condition #4 False False Def. [15

whereby |GCSpr| is the cardinality of the middle-link set GCSpp, f(i) is the
normalised traffic demand of a link i with respect to the maximum net capacity,
x (i) denotes the number of links in a given 1S(i) and -y (i) is the conflict set of a
tagged link i, | yOMC| is the cardinality of the minimum global cligue yMC, & is
the starvation factor and N is the number of links in E.

Definition 12. Optimistic goodput for conditions #1 and #2 with unsatu-
rated traffic Go(i) : The optimistic goodput of a tagged link i is defined as the
ratio between goodput and maximum net bandwidth.

‘,)/GMC|

. a X , 1€ GCSmr,
Gol(i)= N)((i)

o , (3.14)
min(f (i), W) , otherwise,

whereby GCS . is middle-link set, x (i) denotes the number of links in a given
IS(i) and y(B) is the conflict set of the border link LB or RB, f(i) is the nor-
malised traffic demand of a link i with respect to the maximum net capacity,
|vOMC| is the cardinality of the minimum global clique y*MC, w is the starvation
factor and N is the number of links in E.

Definition 13. Pessimistic goodput for condition #3 with unsaturated traf-
fic Gp(i) : The pessimistic goodput of a tagged link i is defined as the ratio between
goodput and maximum net bandwidth.
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0.9 % min(f (i), etn Uy , i€ GCSy,

Gp(i)= 0.9 x £(i) i € GCS'1p or GCS'ga,

. N X(O)x(1=YEjeces g (7))
0.9 x min(f (i), X(i)+2167(i)and§zGCi‘B X(f))

, otherwise,

(3.15)
whereby GCS’L g and GCS’rp are border-link sets, x(i) denotes the number of
links in a given 1S(i), (i) is the conflict set of a link i, |GS By | is the cardinality
of the set GCSp, and f(i) denotes the traffic demand of a link i with respect
to the maximum net capacity. Note the factor “0.9” in the pessimistic goodput

equations is the empirical value from simulation results.

Definition 14. Optimistic goodput for condition #3 with unsaturated traf-
fic Go (i) : The optimistic goodput of a tagged link i is defined as the ratio between

goodput and maximum net bandwidth.

. ~ 1=Xico(m Gplj ,
min(f (i), s 0) i€ GCSu,
Go(l) = ({(E) | , 1€ GCS'1g or GCS'gp,
i i x()x(1-Yjecespf() .
mm(f(l)z X T Ticy@anigacs § X(j)) , otherwise,

(3.16)
whereby |GSBpr| is the cardinality of the middle-link set GCSpr, x (i) is the
number of links in 1S(i), f(i) denotes the traffic demand of a link i with respect
to the maximum net capacity, and «y(B) is the conflict set of the left or right border
link.

Definition 15. Pessimistic and optimistic goodput for condition #4 with
unsaturated traffic : The goodput of a tagged link i is defined as the ratio between

goodput and maximum net bandwidth.

Gp(i) =Go(i) = f(i), (3.17)

whereby f (i) denotes the traffic demand of a link i with respect to the maximum
net capacity.
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3.1.2.3 Example: Using the Model with Unsaturated Traffic Demand

Here, an example is used to explain how to calculate goodput distribu-
tion with unsaturated traffic demand with the topology in Figure Fig-
ure 3.2/shows a linear, uniformly spaced and symmetric topology that the
network size D is 800 m and the inter-link interval d is 100 m. The network
E for this scenario is E = {L1,L2, ..., L9}.

Table 3.4: Goodput estimation of individual links
Linki | f(i) Gp(i) Goli) | f()) Gr(i) Goli)

0.8 0433 0500 | 01 0.100 0.100
08 0248 0333 | 0.1 0.100 0.100
08 0.09% 0167 | 0.1 0.100 0.100
0.8 0.000 0.044 | 01 0.100 0.100
0.8 0.000 0.044 | 01 0.100 0.100
0.8 0.000 0.044 | 01 0.100 0.100
08 0.09 0167 | 0.1 0.100 0.100
08 0248 0333 | 0.1 0.100 0.100
0.8 0433 0500 | 01 0.100 0.100

O 0 N O U = W N =

In Table[3.4] two traffic demands f (i) for all links are selected as 0.8 and
0.1 (normalised traffic demand with respect to the maximum net capacity).
For f(i) = 0.8, the traffic demands of all links satisfy the condition #1 in
Table The border effect exists and the channel capacity is not sufficient
to satisfy the traffic demand for all the links. Hence, Def. [11] and Def.
are selected to calculate Gp(i) and G (i) where « is assumed as 0.2.

For f(i) = 0.1, the traffic demands of all links satisfy the condition #4
in Table The border effect does not exist and the channel capacity is
sufficient to satisfy the traffic demand for all the links. Def. [15is selected
to calculate Gp(i) and Gp (7).
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3.1.3 Summary

This section introduces the derivation of a unified goodput distribution
model covering effective and ineffective carrier sensing scenarios. This
unified goodput model provides link-level goodput distribution with the
given inputs: (i) topology, (ii) carrier sensing range, (iii) traffic demand.
The next sections will discuss the validation of the proposed goodput
model through simulations using different propagation models.

3.2 Simulation Validation with Two-ray Propa-

gation Model

This section validates the accuracy of the proposed goodput model through
simulation with the two-ray ground model [66]. All the simulations are
conducted in QualNet 5.2. Table 3.5/ lists the main configuration param-
eters. Note that in this thesis, only physical carrier sensing (PCS) is used
without using virtual carrier sensing.

The theoretical maximum transmission range D?* in this simulation
is approximately 207 m. This value is calculated by QualNet’s radio range
utility with the simulation scenario as input. Moreover, physical carrier
sensing range R is defined by a triplet consisting of (i) the minimum re-
ceiver sensitivity of —78 dBm, (ii) maximum transmission power of 18 dBm
(based on Alcatel Lucent WaveLAN card), and (iii) the two-ray propaga-
tion model, which yields the distance of 515 m.

To match the assumptions in Section 3.1} the simulation was conducted
following: (i) all nodes are configured with identical parameters and choose
constant bit rate (CBR) unicast transmission as the application with satu-
rated and unsaturated traffic demands(see Table(3.5); (ii) all nodes are con-
figured with one radio interface and the same channel. Node placement
is based on a linear topology (see Figure 3.3); (iii) transmitter-receiver sep-

aration is chosen as 50 m to guarantee collision-free transmissions (based
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on the findings from [156]]).
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Table 3.5: Simulation configuration parameters

Parameter Name Value
Transmission Power 18 dBm
Receiver Sensitivity -78 dBm
Path Loss Model Two-Ray
Shadowing and Fading Model None
Physical Layer IEEE 802.11a
Data Rate 24 Mbps
MAC Layer PCS
Routing Static Routing
Transportation Layer UDP

Packet Size 1500 Bytes
Inter-packet Interval for Saturated Traffic 0.5ms
Inter-packet Interval for Unsaturated Traffic | 0.5-3.45ms

-—O

O—:-O
o e

y

Figure 3.3: The topology used in simulations

The topologies will cover effective and ineffective carrier sensing sce-
narios ranging from 200 x 50m? to 800 x 50m? (see Figure . When
the border distance D is less than the carrier sensing range, the scenario
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is regarded as an effective carrier sensing scenario, while when the border
distance D is greater than the carrier sensing range, the scenario represents
the ineffective carrier sensing scenario.

To validate the accuracy of our analytical model, the goodput model
will be used to predict goodput distribution and compared with the simu-
lation mean value. If the mean value of simulation result falls between the
prediction of the proposed model, the goodput model predicts the good-
put accurately. If not, the error ratio ER is calculated as follows.

Definition 16. Error Ratio ER
Let E denote the set of links in an IEEE 802.11 WBN,

_ (Gs(i) -G c ose(i))
ER = GSM ! ,

(3.18)

where Gg(i) is the mean goodput of a link i from simulation, Gpyejose (i) is the
closest goodput prediction from the goodput model.

Part of the results in the following subsections appears in our previ-
ous work [114}[116]]. Simulation results shown in this section are averages
from 100 randomly seeded simulation runs. All averages of simulation re-
sults shown are reported with confidence interval of 95% with the range of
[2.746,34.359] kbps under the assumption that the averages are normally
distributed. Note that the above range of confidence interval is calculated
among all the simulation results that include the examples listed in this
chapter.

The next subsections categorise the simulation results into two parts,

saturated and unsaturated traffic demands.

3.2.1 Saturated Traffic Demand

For saturated traffic demand, the sender of each link in the simulation
attempts to transmit packets at the maximal data rate 24 Mbps. Due to
space, two simulation results are listed as examples for effective and inef-

fective carrier sensing scenarios. For the effective carrier sensing scenario,
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the topology in Figure is selected with the border distance D as 200 m,
where all nodes are within each other’s R.;. This example is selected based
on the wind turbines connected to the smart grid in Brooklyn, Wellington,
New Zealand. Each wind turbine is installed with a wireless router to

exchange data, such as generated energy and error logs (see Figure [3.4).

Figure 3.4: An example of the IEEE 802.11 WBN in a smart grid system
representing two-ray ground propagation model

N
VN K

y

0

Figure 3.5: An example of the IEEE 802.11 WBN in an intelligent trans-

portation system representing two-ray ground propagation model
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For the ineffective carrier sensing scenarios, the topology in Figure
is selected with the border distance D as 800 m , where two border links are
out of each other’s carrier sensing range. This example is to model the in-
telligent transportation system (ITS) along the rail track between Welling-
ton and Petone in New Zealand (see Figure 3.5). The ITS collects data on
train load and train delays, and feeds it into a data portal for storage and
analysis.

In Tables[3.6]to[3.7] the first column refers to the link index in the topol-
ogy (see Figure[3.3). Goodput Gs(i) refers to the simulation mean value of
goodput. Goodput G(i), pessimistic goodput Gp(i) and optimistic good-
put Go(i) are the predictions from the proposed goodput model. ER
denotes the difference between Ggs(i) and the closest goodput prediction
from the new goodput model (see Def. [16).

Table 3.6: Goodput of five links in a 200 x 50 m? topology with two-ray
propagation model using saturated traffic

Linki Gg(i) G(i) ER

1 0.230* 0.200 0.130
2 0.161 0.200 -

3 0.152  0.200 -

4 0.161 0.200 -

5

0.231* 0.200 0.134

In effective carrier sensing scenario with saturated traffic demand, the
results in Table show that different links achieve different goodput.
We mark the simulation results that slightly exceed the prediction from
the new model with (¥). In the new goodput model, we assume that all
links share the channel capacity, which matches with the expectation from
disk-graph model. However, in practice there is a small variation in good-
put among all the links. In this case, border links achieve higher goodput

than the middle links. It implies that in effective carrier sensing scenarios,
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the randomised binary exponential back-off scheme used in IEEE 802.11
carrier sensing may result in a slight difference among the goodput of
neighbouring links rather than achieving extreme equal goodput for each
link [10]. The overall difference ratio is below 13.5%.

For the ineffective scenario, the topology is chosen with a fixed bor-
der distance, D = 800m to ensure that the two border links are always
out of each other’s R.s and border effect should occur. Table displays
the comparison between the results from simulations and those from the
new goodput model. The grey cells in these two tables denote the links

identified as starving links.

Table 3.7: Goodput of nine links in a 800 x 50 m? topology with two-ray

propagation model using saturated traffic

Linki Gg(i) Gp(i) Go(i) ER

0.502* 0.433 0.500 0.004
0.309 0.248 0.333 -
0.146 0.096 0.167 -
0.009 0.000 0.040 -
0.008 0.000 0.040 =
0.009 0.000 0.040 =
0.146 0.096 0.167 -
0.309 0.248 0.333 -
0.501* 0.433 0.500 0.002

O 00 NI O O b= W N =~

The data in Table 3.7|shows the new model predicts starving links cor-
rectly (the starvation factor « is selected as 0.2). For the non-starving links,
all the simulation mean values fall between the range of the predictions
from the new model. In ineffective carrier sensing scenarios with sat-
urated traffic demands, the proposed goodput model provides accurate

prediction of starvation and goodput.
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3.2.2 Unsaturated Traffic Demand

To validate the new model with unsaturated traffic demand, four unsatu-
rated traffic demands are selected by using different inter-packet intervals.
The traffic demands f(7) at the application layer can be normalised as 0.8,
0.6, 0.4, and 0.1 with respect to the maximum net capacity by using the
configuration parameters in Table 3.5/ Similar to the above subsection, two
topologies are chosen to represent effective and ineffective carrier sensing

scenarios.

Table 3.8: Goodput of five links in a 200 x 50 m? topology with two-ray

propagation model using unsaturated traffic

Linki | f(i) Gs(i) G(i) ER | f(i) Gs(i) G(i) ER

0.8 0.230* 0.200 0.130 | 0.6 0.230* 0.200 0.130

1 0.8 0.231* 0200 0.134 | 0.6 0.230* 0.200 0.130
2 0.8 0160 0.200 - 0.6 0161 0.200 -
3 0.8 0153 0.200 - 0.6 0152 0.200 -
4 0.8 0161 0.200 - 0.6 0161 0.200 -
5

Table 3.9: Goodput of five links in a 200 x 50 m? topology with two-ray

propagation model using unsaturated traffic-continued

Linki | f(i) Gs(i) G(i) ER | f(i) Gs(i) G(i) ER

1 04 0230* 0200 0130 | 01 0.100 0.100 -
2 04 0161 0.200 - 01 0100 0.100 -
3 04 0153 0.200 - 01 0100 0.100 -
4 04 0160 0.200 - 0.1 0.100 0.100 -
5

04 0.231* 0200 0.134| 01 0100 0.100 -

The results of the effective carrier sensing scenario (D = 200m) are
listed in Tables [3.8] and The function f(i) refers to the normalised
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traffic demand with respect to the maximum net capacity while goodput
Gs(i) and Gp(i)/Go(i) denote the simulation goodput mean values and
the predicted goodput from the new model.

The results show the same goodput pattern as that in saturated traffic
demand. Only in the case f(i) = 0.1, all links achieve the same goodput.
For other traffic demands, there is a small variation in goodput among all
the links. Along the same lines of explanation in Section in effec-
tive carrier sensing scenarios, the randomised binary exponential back-off
scheme used in IEEE 802.11 carrier sensing may result in a slight difference
among the goodput of neighbouring links rather than achieving extreme
equal goodput for each link [10]. The overall error is below 13.5%.

Table 3.10: Goodput of nine links in a 800 x 50 m? topology with two-ray
propagation model using unsaturated traffic

f(i)=08 f(i) =06
Linki | Gs(i) Go(i) Gp(i) ER | Gs(i) Go(i) Gp(i) ER

1 0.502 0433 0500 0.004 | 0501 0433 0.500 0.002
2 0301 0.248 0.333 - 0310 0.248 0.333 -
3 0.146 0.096 0.167 - 0.146 0.096 0.167 -
4 0.009 0.00 0.044 - 0.009 0.00 0.044 -
5 0.008 0.00 0.044 - 0.008 0.00 0.044 -
6 0.009 0.00 0.044 = 0.009 0.00 0.044 =
7 0.146 0.096 0.167 - 0.146 0.096 0.167 -
8 0.309 0.248 0.333 - 0.309 0.248 0.333 -
9 0501 0433 0500 0.002 | 0.502 0.433 0.500 0.004

Tables [3.10/ and 3.11] list the results with unsaturated traffic demands
in the ineffective carrier sensing scenarios where D is selected as 800 m
and d as 100 m. Results in Tables and show that most of the sim-
ulation mean values fall between the prediction range, proving the pro-
posed model predicts starvation and goodput distribution accurately. The

overall error is below 6%. Overall, the proposed goodput model performs
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Table 3.11: Goodput of nine links in a 800 x 50 m? topology with two-ray

propagation model using unsaturated traffic-continued

f(i) =04 f(i) =01
Linki | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER
1 | 0395 0360 0400 - | 0100 0100 0100 -
2 | 0352* 0248 0333 0054|0100 0100 0.100 -
3 | 0143 00% 0167 - | 010 0100 0100 -
4 0026 000 0044 - | 0100 0100 0100 -
5 0025 000 0044 - |0100 0100 0100 -
6 0026 000 004 - |0100 0100 0100 -
7 | 0143 00% 0167 - | 0100 0100 0100 -
8 | 0352+ 0248 0333 0054 | 0100 0100 0100 -
9 | 0395 0360 0400 - |0.100 0100 0100 -

well in the effective and ineffective carrier sensing scenarios using two-
ray ground propagation model with saturated and unsaturated traffic de-
mands.

3.3 Simulation Validation with Two-ray Shadow-

ing Propagation Model

This section uses the two-ray shadowing propagation model [66] in the
simulations to demonstrate the generalizability of the new model. The
simulation results are presented in two parts: saturated and unsaturated
traffic demands.

Two application scenarios are selected from the applications in the in-
door built environments. The topology in Figure (3.6]is based on the sce-
nario of the WiFi network at a building in the Kelburn campus of Victo-
ria University of Wellington, Wellington, New Zealand. All the routers

are placed within each other’s carrier sensing range. Another applica-
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tion scenario in Figure 3.7|is based on the smart grid in a residential area
in Wellington, New Zealand. The whole area exceeds the carrier sensing
range.

i

=)

(14,

Figure 3.6: An example of the IEEE 802.11 WBN in a building representing
two-ray shadowing ground propagation model

For two-ray ground shadowing model, three shadowing attenuations
¢ are selected as 2, 4, and 6. The greater number of shadowing attenuation,
the more obstacles exist in the propagation path. The higher the value of
shadowing attenuation J is, the greater the number of obstructions along
the propagation path is assumed to be. The carrier sensing range Rcg for
0 as 2,4,and 6 is 430 m, 340 m, and 270 m respectively.

3.3.1 Saturated Traffic Demand

For saturated traffic demand, two topologies are selected representing ef-
fective and ineffective carrier sensing scenarios. Table shows the re-
sults of an effective carrier sensing scenario (D = 200 m). The results show
that adding a shadowing factor in the propagation model does not change
the goodput pattern observed in two-ray propagation model. We found
that the links in the effective carrier sensing scenario do not share the

channel capacity equally. There is a small variation in goodput among
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Figure 3.7: An example of the IEEE 802.11 WBN in central business dis-
trict of Wellington representing two-ray shadowing ground propagation
model

all the links. Along the same lines of explanation in Section in effec-
tive carrier sensing scenarios, the randomised binary exponential back-off
scheme used in IEEE 802.11 carrier sensing may result in a slight difference

among the goodput of neighbouring links rather than achieving extreme

Table 3.12: Goodput of five links in a 200 x 50 m? topology with two-ray
shadowing propagation model using saturated traffic

Shadowing (6 = 2) | Shadowing (6 = 4) | Shadowing (§ = 6)
Linki | G(i) | Gs(i) ER Gs(i) ER Gs(i) ER
1 0.200 | 0.229* 0.127 0.203* 0.015 0.185 -
2 0.200 | 0.158 - 0.174 - 0.180 -
3 0.200 | 0.156 - 0.176 - 0.199 -
4 0.200 | 0.159 - 0.174 - 0.181 -
5 0.200 | 0.229* 0.127 0.203* 0.015 0.185 -
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Table 3.13: Goodput of six links in a 500 x 50 m? topology with two-ray
shadowing propagation model using saturated traffic

Shadowing (5 = 2) Shadowing (5 = 4) Shadowing (6 = 6)
Linki | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER
1 0.837 0.733 1.000 - | 0.628 0578 0667 - | 0.571* 0450 0.500 0.124
2 0.044 0.000 0.067 - | 0277 0217 0333 - | 0217* 028 0.333 0.318
3 0.039 0.000 0.067 - | 0026 000 0067 - | 0.168* 0.111 0.167 0.006
4 0.039 0.000 0.067 - 0.026 0.00 0.067 - | 0.168* 0.111 0.167 0.006
5 0.044 0.000 0.067 - | 0275 0217 0333 - | 0.218* 0.286 0.333 0.312
6 0.837 0733 1.000 - | 0.629 0.578 0667 - | 0.570* 0450 0.500 0.124

equal goodput for each link [10]. In Table the overall error is below
13%.

For ineffective scenarios, the topology is chosen with the fixed border
distance, 500 m and 4 as 100 m. Table shows that the proposed model
predicts starvation and goodput distribution accurately except the case
6 = 6 that has the average error ratio of 16%. It implies that the high
shadowing factor brings more interaction between border links and mid-
dle links.

Table 3.14: Goodput of five links in a 200 x 50 m? topology with two-ray
shadowing propagation model using saturated traffic(d = 4)

Linki | f(i) Gs(i) G(i) ER | f(i) Gs(i) G(i) ER

0.8 0203 0200 0.013 | 0.6 0.204* 0.200 0.020

0.8 0174 0.200 - 06 0173 0.200 -
0.8 0.174 0.200 - 06 0175 0.200 -
0.8 0.174 0.200 - 0.6 0174 0.200 -

9l = W N =

0.8 0204 0200 0.020 | 0.6 0.204* 0.200 0.020
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Table 3.15: Goodput of five links in a 200 x 50 m? topology with two-ray

shadowing propagation model using saturated traffic (6 = 4)-continued

Linki | f(i) Gs(i) G(i) ER | f(i) Gs(i) G(i) ER
1 04 0203* 0200 0015| 01 0100 0100 -
2 | 04 0174 0200 - | 01 0100 0100 -
3 | 04 0175 0200 - | 01 0100 0100 -
4 |04 0174 0200 - | 01 0100 0100 -
5 | 04 0203 0200 0015| 01 0.100 0100 -

3.3.2 Unsaturated Traffic Demand

For unsaturated traffic demand, only the results with shadowing attenu-

ation ¢ as 4 is listed due to space. Shadowing attenuation 6 = 4 is the

default value in QualNet 5.2 that refers to the common indoor environ-

ments with four walls.

Table 3.16: Goodput of six links in a 500 x 50 m? topology with two-ray

shadowing propagation model (6 = 4)

f(i) =038 £(i) =06
Linki | Gs(i) Go(i) Gp(i) ER | Gs(i) Goli) Gp(i) ER
1 | 0629 0578 0667 - | 0592 0540 0600 -
2 | 0276 0217 0333 - | 0276 0217 0333 -
31002 0000 0067 - | 0035 0000 0067 -
4 | 0026 0000 0067 - | 0.034 0000 0067 -
5 | 0275 0250 0333 - | 0276 0217 0333 -
6 | 0629 0578 0667 - | 0592 0540 0.600 -

Tables to list the results from the effective carrier sensing sce-
nario (D = 200m). When the sum of traffic demands of all links exceed

the channel capacity, the difference of goodput between middle links and

border links exists. The overall error is below 2%.
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Table 3.17: Goodput of six links in a 500 x 50 m? topology with two-ray
shadowing propagation model (6 = 4)-continued

f(i) =04 f(i) =01
Linki | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER
1 ]0395 0360 0400 - | 01 0100 0100 -
2 | 0311 0217 0333 - | 01 0100 0100 -
3 10099 009 010 - | 01 0100 0100 -
4 0099 009 0100 - | 01 0100 0100 -
5 | 0311 0217 0333 - | 01 0100 0100 -
6 | 039 0360 0400 - | 01 0100 0100 -

For the ineffective carrier sensing scenario (D = 500m and d = 100 m),
the proposed model can predict starving links and goodput distribution
correctly in Tables to

Overall, the proposed goodput model performs well in the effective
and ineffective carrier sensing scenarios using two-ray shadowing ground
propagation model with saturated and unsaturated traffic demands. The
prediction of starvation is accurate. Some errors exists in the prediction of
goodput in effective carrier sensing scenarios. It implies that even in ef-
fective carrier sensing scenarios, the carrier sensing scheme cannot control

the media access among neighbouring links fairly.

3.4 Summary

This chapter aims to answer the first research question : “How can a good-
put distribution model provide an accurate prediction of the behaviour
of wireless links in an IEEE 802.11 WBN under various scenarios such
as exposed nodes, hidden nodes and border effect?”.

To improve IEEE 802.11 WBN planning, a new goodput distribution

model is developed with consideration of topology, both effective and in-
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effective carrier sensing conditions, and saturated and unsaturated traf-
fic demands. The proposed goodput model has been validated in dif-
ferent scenarios through simulation (see more validations using different
data rate in Appendix [C|and more validations using random topologies
in [118]). The results from simulations show that the new goodput model
can predict correctly the dominating border links and the extent of starva-
tions as well with different propagation models and network sizes.

Such a goodput model is useful for network planning in IEEE 802.1
WBNs from different aspects. First, the proposed model is simple and
accurate to predict potential performance such as goodput and fairness in
an IEEE 802.11 WBN. Moreover, this model can be easily integrated into
a network design tool. Second, this model helps guide node placement to
prevent flow starvation in the planning stage. Finally, this model is useful
for optimising the IEEE 802.11 protocols such as channel assignment and
routing with an accurate prediction of link quality.

The next sections will apply this goodput model to optimise channel

assignment for improving fairness and goodput.
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Chapter 4

Channel Assignment For
Improving Fairness in IEEE 802.11
WBNs

Numerous scenarios about flow starvation have been studied extensively
in Chapter[3|and our previous work [117]. Such flow starvation influences
network fairness and users’ experience. With an increasing number of
intelligent devices and the increased volume of transmitted data in IEEE
802.11 wireless backhaul networks (WBNs), users expect to gain a fair level
of quality of service (QoS) such as bandwidth [112,131]. Hence, fairness
becomes an important issue to be addressed in IEEE 802.11 WBNss.

The purpose of this chapter is to resolve flow starvation and improve
fairness via optimised channel assignment (CA) algorithms in IEEE 802.11
WBN:Ss.

Fairness in IEEE 802.11 WBNs depends on how wireless resources are
allocated among the nodes in the networks since the relevant resources,
such as wireless spectrum, are scarce [71]]. If the wireless resources are al-
located unfairly among the nodes in IEEE 802.11 WBNs, resource starva-
tion can happen and leads to severe QoS degradation [131]. For example,
flow starvation caused by border effect in IEEE 802.11 WBNs leads to un-

75
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fair sharing of a channel among nodes [54,90,(116]. Hence, it is necessary
to resolve unfairness problems like flow starvation for improving fairness.
Note that in this research, fairness in IEEE 802.11 WBNs is defined as the
long term fairness measured from the system perspective.

Investigating flow starvation with CA algorithms is closely linked to
the interference models. An interference model is embedded within CA
algorithms to determine the level of interference between nodes or links.
The estimation of interference is used for allocating channels to the nodes
in IEEE 802.11 WBNs. An accurate and realistic interference model di-
rectly contributes towards the effectiveness of CA algorithms in estimating
interference, eliminating border effect and flow starvation, and achieving
desired QoS. Hence, it is necessary to examine interference models used
by existing CA algorithms.

To better understand the root cause of flow starvation, an investigation
has been conducted to study flow starvation with three different interfer-
ence models used in CA algorithms (see Appendix D). This investigation
aims to identify the shortcoming of existing interference models to guide
CA algorithms to prevent flow starvation. The analysis in Appendix [D|
shows that flow starvation leads to severe unfairness, which is caused by
global interference between border links and middle links. CA algorithms
cannot prevent flow starvation in ineffective carrier sensing scenarios be-
cause the interference models used in CA algorithms only consider local
interference between a link and its neighbouring links. Hence, CA algo-
rithms need a new interference model reflecting global interference to pre-
vent flow starvation and improve fairness.

The objectives of this chapter are to:

1. Design a new traffic-aware interference model that extends existing
interference models to reflect global interference (border effect) with

consideration of traffic information.

2. Design a traffic-unaware anti-starvation channel assignment (TU-
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ASCA) algorithm using the new interference model under saturated
traffic assumption and validate the TUASCA algorithm.

3. Design a traffic-aware anti-starvation channel assignment (TAASCA)
algorithm based on the TUASCA algorithm under unsaturated traf-
fic assumption and validate the TAASCA algorithm.

The rest of this chapter is organised as follows. Section 4.1| introduces
a new traffic-aware interference model. Sections 4.2 and [4.3] describe the
proposed TUASCA and TAASCA algorithms followed by the summary in
Section

41 A New Traffic-aware Interference Model

This section introduces the design of a new traffic-aware interference model.
Different from existing interference models that only reflect “local” inter-
ference among neighbouring links (see the discussion in Appendix [D.5),
the new traffic-aware interference model leverages the concept of global
and local interference and forms the basis for optimised CA algorithm to
prevent flow starvation and improve fairness. The reason for taking traffic
information into account is that a wireless network may or may not ex-

perience global interference that depends on the traffic information (more

details in Section 3.1.2 on page 53).

Next subsection introduces the assumptions for the new interference
model and the definitions of local and global interference embedded in
the new model with an example. In the end, a discussion demonstrates
the effect of local and global interference on fairness in IEEE 802.11 WBN's.

4.1.1 Assumptions

For mathematical tractability of the new interference model, several as-
sumptions are necessary to facilitate the discussion. The symbols for a
few variables together appear with a brief explanation in Table.
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Table 4.1: Notation: Symbols and their meanings.

Symbol Explanation

E The complete set of links in an IEEE 802.11 WBN

N The number of links in E

M The set of available channels for E

P The topology information of links in E

Eorder The set of links in E ordered by a method

Res Carrier sensing range

R; Interference range

SIRpreshora  The threshold for Signal-To-Interference Ratio (SIR)

Dy The Cartesian distance between a sender and a receiver in the same link

drp The Cartesian distance between a link and the left border link based on the senders’ location
drs The Cartesian distance between a link and the right border link based on the senders’ location
ds, The Cartesian distance between a sender and a receiver from two different links
ds s The Cartesian distance between two senders from two different links

d The inter-link distance interval

D The Cartesian distance between two border links based on the senders’ location
GIS' 1 The initial global left border set

GIS’rp The initial global right border set

GISyp The global left border set

GISgrp The global right border set

GISp The global middle-link set

yi(i) The local interference set of a given link i

B Path loss exponent factor

() The traffic demand of link i

Assumption 9. A single-radio single-channel IEEE 802.11 WBN is assumed.

Assumption 10. All links share the channel capacity equally in the effective

scenario with saturated traffic demand.

Assumption 11. In ineffective carrier sensing scenarios, border effect may exist
that depends on the traffic demands.

Assumption 12. Capture effect and packet losses caused by collision are ignored.

Assumption 9 simplifies the multi-channel multi-radio (MCMR) prob-

lem as a single-channel single-radio (SCSR) system. Hence, a MCMR sys-

tem can be regarded as the combination of multiple SCSR systems using
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different non-overlapped channels. Generally, no interference exists be-
tween non-overlapped channels and thus the new interference model does
not need to consider the influence among different SCSR systems using
different channels. Assumptions 10 and 11 are the conclusions that have
been validated through well-known studies such as [27,28,114]. Assump-
tion 12 simplifies the problem by neglecting the interference caused by
collision.

4.1.2 Defining Local Interference

In this research, the local interference generalises the geometric interfer-
ence models discussed in Chapter |2l Such local interference refers to the
interference between a link and its neighbouring links. Note that this re-
search mainly focuses on the interference caused by capacity contention
and neglect the interference caused by collision in Assumption 12. A link
and its neighbouring links constitute an interference set and contend for
channel capacity. Hence, local interference is defined by an interference

set as in Def.[I7/and Eq. (£.1).

Definition 17. Local interference set y|
For a given link i in E of an IEEE 802.11 WBN, the local interference set,

")’L(Z) = {l E E \ {l} | ds/s < RCS or dS,S > RCS/ ds’r S Rcs} . (4.1)

where ds s is the Cartesian distance between the sender nodes of link | and link i,
ds ; is the Cartesian distance between the sender of link | and the receiver of link
i, and R is the carrier sensing range.

4.1.3 Defining Global Interference

Different from the local interference, global interference is observed from
the perspective of the whole network and reflects the potential interfer-
ence between border links and middle links in an IEEE 802.11 WBN in

ineffective carrier sensing scenarios.
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In the proposed interference model, global interference is a function
of both geometric distance and traffic demand. There are two necessary
and sufficient conditions for global interference to occur. First, when the
distance between border links is greater than carrier sensing range, a sub-
set of nodes are not within each other’s carrier sensing range and hidden
nodes exist.

D > Res, (4.2)

where D is the border distance and R is the carrier sensing range in the
given IEEE 802.11 WBN.

Second, if the sum of normalised traffic demands of the links in border-
link sets (i.e. GIS;p and GISgp) exceeds the normalised channel capacity
1. Note that the normalised traffic demand is calculated with respect to
the maximum net capacity. Note that the maximum net capacity in this
thesis refers to goodput defined in Section This implies that border
links will occupy the whole channel capacity and middle links may not
get any opportunity to access the media.

The second condition is expressed as:

Y, fih=1, (43)
j€{GIS N GISrp}

where GIS;p and GISgp are the global left and right border sets in the
given IEEE 802.11 WBN. Note that normalised channel capacity and nor-
malised traffic demand with respect to the maximum net capacity are used
in Eq.(4.3) here. The global left and right border sets are defined in Def.

More details about GIS; g and GISgp can be found in [117].
Initial global border sets (GI1S; p and GIS*grp), global left and right bor-
der sets (GISrp and GISgp) and global middle-link set GIS); are defined

as follows:

Definition 18. Initial Global Border sets GIS'; g and GIS'gp:
Let E denote the complete set of links in an IEEE 802.11 WBN. For E, the left
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initial border set GIS’y g and right initial border set GIS’grp,

GIS 1 g = {l € E | dl,RB > Rcs}z

(4.4)
GIS'gg = {l € E | dl,LB > Rcs}/

whereby d; 1 p is the distance between a link I and the left border link, d, rp is the
distance between a link | and the right border link, and R is the carrier sensing

range.

Global left and right border sets (GIS;p and GISgp) are defined based
on the initial global border sets (GIS;p and GISrp) as follows.

Definition 19. Global Border sets GIS; g and GISgp
Let E denote the complete set of links in an IEEE 802.11 WBN. For E, the left
global border set GIS| p and the right global border set GISgpg,

GISLB = {l € E\{Z c GISIRB} | dl,i > Rcs};

(4.5)
GISgp = {l €E \ {l € GISILB} | dl,i > Rcs} .

whereby d, ; is the Cartesian distance between sender nodes in link | and link i
that belong to the left border set and right border set, R.s is the carrier sensing
range.

Definition 20. Global Middle-link set GIS )y, : Let E denote the complete set
of links in an IEEE 802.11 WBN. For E, the middle link set GIS 1,

GISy = {l S E\{Z € GIS;gor € GISRB} } (4.6)

Note that the above global border sets and middle-link set are inherited
from the border-link sets, the dominant border-link sets, and the middle-

link set (see definitions in Section 3.1.1.2 on page 46). To help understand

global interference sets, an example illustrates the selection of the three
global interference sets in the topology shown in Figure In this sce-
nario, border distance D is 1000 m and the link interval d is 100 m. The car-
rier sensing range Rcg is 710 m. Based on Def. GISt g = {L1,L2,L3},
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Global left | (Global right
border set

border set

| Global middle-link set

Figure 4.1: Selecting global interference sets

and GIS'gp = {L9,L10,L11}. Based on Def. [19 and Def. GIS;p =
{L1,L2}, GISgg = {L10,L11}, and GISp;. = {L3 — L9}. In Figure
two red circles denote the carrier sensing range of GIS;g and GISgg. The
set of middle links GIS),; is defined to be within the carrier sensing ranges
of both GIS; g and GISgp. GIS; g and GISgp are out of each other’s the car-
rier sensing range. The global interference sets GIS;p, GISgrp, and GISyr.
will be used in the proposed CA algorithm to improve fairness. This sce-
nario satisfies the first condition D > Rcg in Eq. If the sum of the traf-
fic demands among the links in the global border sets satisfies Eq.( (£.3)),
both local and global interference exist. If Eq.( (4.3)) does not hold, only
local interference exists and global interference does not exist.
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4.1.4 Local and Global Interference with Fairness and Chan-

nel Assignment

Different from existing interference models, the proposed interference model
reflects both local and global interference (border effect) with considera-
tion of traffic demand. This subsection discusses the effect of local inter-
ference and global interference on fairness and how CA algorithms need
to deal with local and global interference.

In effective carrier sensing scenarios, all nodes can sense each other so
only local interference exists. Without global interference, border effect
does not exist and flow starvation would not happen. The local inter-
ference between a link and its interfering links normally causes the varia-
tion of goodput among these links rather than severe fairness degradation.
Hence, CA algorithms only need to mitigate local interference by utilising
the diversity of channels.

For ineffective carrier sensing scenarios where not all nodes are within
each other’s carrier sensing range, if the sum of the traffic demands among
the links in the global border sets satisties Y jc(crs,, nGrsg,) f(7) = 1in
Eq. (4.3), both local and global interference exist. The global interference
may cause flow starvation that can lead to significant fairness degrada-
tion. Therefore, global interference is the main cause of unfairness in IEEE
802.11 WBNss compared with local interference. To achieve better fairness
in IEEE 802.11 WBNs, CA algorithms need to first resolve flow starva-
tion caused by global interference and then alleviate local interference. If

Yie{cisisNGisgs}y f(7) = 1in Eq. does not hold, CA algorithms only
need to mitigate local interference as global interference does not exist.

The proposed interference model is based on the goodput model de-
fined in Chapter 3l The validation of the goodput model shows that this
goodput model can accurately identify flow starvation. This validation
can be used to prove that this interference model can accurately model

global interference (flow starvation).
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Next sections will apply the new traffic-aware interference model to
design new CA algorithms to prevent flow starvation and improve fair-
ness in IEEE 802.11 WBNSs.

4.2 A Traffic-unaware Anti-starvation Channel As-

signment Algorithm For Improving Fairness

In this section, a new traffic-unaware Anti-Starvation Channel Assign-
ment (TUASCA) algorithm is designed to resolve flow starvation and im-
prove fairness among the links under saturated traffic assumption in an
IEEE 802.11 WBN. The reason to select saturated traffic demand is to sim-
plify the problem that all links are equally configured with such saturated
traffic. Saturated traffic demand can also be regarded as the extremely
heavy traffic scenario. With saturated traffic demands, border effect is
very likely to exist in ineffective carrier sensing scenarios (more details
in Section [4.1.3).

Next subsections first introduce the design of this TUASCA algorithm
and then validate TUASCA algorithm through simulation. The pros and
cons of TUASCA algorithm will be discussed in the end.

4.21 The Design of Traffic-unaware Anti-starvation Chan-

nel Assignment Algorithm

The TUASCA algorithm is designed as a static CA algorithm to prevent
flow starvation and improve fairness for optimising IEEE 802.11 WBN
planning. The inputs of the TUASCA algorithm are: (i) available chan-
nel set C, (ii) network link set E, and (iii) node position P with fixed Rgs.
The output is the channel allocation of all links in E.

Figure 4.2/ shows the logic flow of the TUASCA algorithm. Firstly, the
TUASCA algorithm checks whether the border distance D of a given IEEE
802.11 WBN is greater than carrier sensing range Rcg. If this WBN is an
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effective carrier sensing scenario (D < Rcg), the TUASCA algorithm al-
leviates local interference without spatial reuse by using a partition CA
algorithm. The purpose of using a partition CA algorithm is to allevi-
ate interference and achieve the fairness among subgroups using different
channels.

If the given IEEE 802.11 WBN is an ineffective carrier sensing scenario
(D > Rcs), the TUASCA algorithm needs to check whether global interfer-

ence exists or not. Under saturated traffic assumption, global interference

exists in ineffective carrier sensing scenarios (see Section(3.1.1 on page 45).
Next, the TUASCA checks whether the capacity condition is satisfied or
not. The capacity condition is expressed as:

[y(B)|+1<m, (47)

where 7(B) is the local interference set of a border link B and m refers to
the normalised capacity of all available channels. If |y(B)| +1 < m in
Eq.(f.7) holds, it means the available channels are sufficient to directly
address the potential global interference. Then the TUASCA algorithm
solves global and local interference with spatial reuse.

If |v(B)| +1 < m in Eq.([4.7) does not hold, the available channel ca-
pacity is not sufficient to directly address the potential global interference.
Next, the TUASCA algorithm starts to solve for both global and local in-
terference with partial spatial reuse. According to the discussion in Sec-
tion CA algorithm needs to first resolve flow starvation caused by
global interference and then alleviate local interference.

To solve the global interference in ineffective carrier sensing scenarios,
the TUASCA algorithm first selects the global interference sets and for-
mulates the objective function to achieve the fairness among global border
sets and middle-link set as an Integer Linear Programming (ILP) problem
in Def. The objective is defined to achieve the maximum fairness by
minimising the difference of average goodput between the global border
sets and middle-link set.
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Inputs: Linkset E, Node position P, Channel Set C, Carrier
sensing range Rcs, Fainress threshold Flthreshold
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local interference 1 local interference interference
with spatial reuse Solve giobal and without spatial reuse | |without spatial reuse

local interference
With partial spatial reuse

> End |«

Figure 4.2: The logic flow of the TUASCA algorithm

In Def. 21} y is the variable that refers to the number of channels for the
border set. M, |GISg|, and N are three constant values from CA inputs de-
noting the number of available channels, the number of links in the global
border set and the number of links in the whole network respectively.

Definition 21. Objective function: Let E denote the complete set of links in an
IEEE 802.11 WBN. The objective is to:

maximise Fairness in E via minimising the expression in[4.9] (4.8)

min <|G;’SB\ - N—é\iTgISBO ’
s.t. yezr,
O<y<M-1,
0<y<|GISg|.

(4.9)
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whereby M is the available channel number, y is the channel number for
border sets, GISp is the link number of one global border set, and N is the
link number in E.

To achieve fairness among three global interference sets, the TUASCA
algorithm finds a y representing the channel number allocated to the global
border sets, which can minimise the difference of average goodput be-
tween global border sets and middle-link set in Eq.( by satisfying the
constraint that y is no more than the available channel number M and the
number of links in the global border set |GISg].

The formulation of the objective function in Def.21|is essentially an In-
teger Linear Programming (ILP) problem seeking a y that maximises fair-
ness. Because the objective function has a single variable and is bounded
by M — 1, therefore the complexity of the ILP formulation is O(M — 1)
where M is the number of available channels [91].

Note that for a special case that the border set has very few links and
the middle link set has a great amount of links, the solution from the ILP
may lead to a low fairness. For example, M = 3, |GISg| = 1, N = 13, in
this case, the solution is y = 1. The Jain’s index could be around 0.5.

To address this extreme case, the TUASCA algorithm adds a fairness
condition to check whether the Jain’s index from ILP’s solution will meet
a satisfactory level of fairness (Flijyesnorg).- This fairness condition is ex-

pressed as:

M +y)?
FIp = ( Y) > Flinreshold, (4-10)

y (M—y)?
N X (2 X 51551 + N=2x16155])

whereby FI, is the estimate of potential Jain’s index, M is the available
channel number, y is the channel number for border sets from ILP, GISp
is the link number of one global border set, Fljjespo14 is to guarantee the
TUASCA with a Jain’s index above the pre-defined threshold, and N is the
link number in E.

If Eq.( does not hold, the potential fairness is not satisfactory so
that the TUASCA algorithm will use the partition CA algorithm to pre-
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vent flow starvation and achieve better fairness. If Eq.( holds, the
TUASCA algorithm use the solution from the ILP function to preallocates
the channels to the global border sets and middle link set. The strategy to
solve flow starvation in the TUASCA algorithm is to allocate distinct chan-
nels to global border sets and middle-link set. After that, the TUASCA al-
gorithm selects a partition method to allocate preallocated channels to the
links within each global interference set. The purpose of using a partition
CA algorithm is to achieve the fairness among each links in each global

interference set.

The design of the TUASCA algorithm is listed in Algorithrn First, the
TUASCA algorithm orders with all links within E based on Def. [19|with an
increasing order (lines 3 of Algorithm|I). The local interference set of each
link is selected based on Def. In line 6 of Algorithm (I} the TUASCA
algorithm calculates the network size D. If border distance D < Rc¢g (an
effective carrier sensing scenario), the TUASCA algorithm uses a partition
method in Algorithm 2| to divide link set E into subgroups based on the
allocated channel number (see line 8 of Algorithm I).

If border distance D > Rcg (an ineffective carrier sensing scenario), the
TUASCA algorithm first checks the capacity condition (see line 10 of Al-
gorithm I). If the capacity condition holds, the TUASCA algorithm reuses
the spatial resource to address global interference and reduce local inter-
ference by selecting the least used channel in the local interference set to
each link (see lines 11 — 13 of Algorithm ). If the capacity condition does
not hold, the TUASCA algorithm selects the global interference sets (see
lines 15 of Algorithm [I). The logic for constructing the global interfer-
ence sets is listed in Algorithm [3| that first selects two global border sets
in E based on Def. [19|and then adds the remaining links to GISys. Sub-
sequently, the TUASCA algorithm searches the optimal channel number
y to satisfy the ILP objective function in line 16 of Algorithm (I} Then the
TUASCA algorithm checks the fairness condition (see lines 17 of Algo-
rithm [I). If the fairness condition holds, the TUASCA algorithm preallo-
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Algorithm 1: Pseudo code for the TUASCA algorithm

Input : C,E, P, Fly,
Output: Channel allocation of all the links in E

1 begin

2 foreach linki € E do

3

4

Ereorder < link i (F;_1 < F; < Fjyq see Def. ;
Select v (i) (see Def. ;

5 end
6 Calculate D = |E;porder[1ast] — Eyeorder | first]|;
7 if D < R.; then

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Apply a partition algorithm to E,.y4er (See Algorithm [2);

Ise

if |v(B)|+1 < m then
foreach linki € E,,y;4.r do
‘ Select the least used channel in 7 (i);
end
else

Select GIS; 3, GISrp, and GISy; (see Algorithm ;

~ i y _ __ M-y :
Calculate y to achieve min ( GISs] ~ N=2x[GISs] ) ;
if (M+y)?

Nx(2x

V2 = > Flipreshora then
[GI55] T N-2x[GI5g]
Randomly select channels y € C to GISyp and GISgp;
Select channels Z € C\ {y} to GISp;

Apply a partition algorithm to GIS; g, GISgp, and

GISp1 (see Algorithm 2);

else

Apply a partition algorithm to E,.qger ;
end

end

25 end

26 end
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Algorithm 2: Pseudo code for a partition CA algorithm from [130]

Input : C, E,corier
Output: Channel allocation of all the links in E, oz,
1 begin
2 Divide E,,p4er into subsets
Ereorder (i), indexed by channel index i € C;
3 foreach Channel i € C do

4 ‘ Allocate channel i to E,ppger (1) ;
5 end
6 end

cates distinct channels to global border sets and middle-link set (see lines
18 — 19 of Algorithm . Within each global interference sets, the TUASCA
algorithm uses the partition method (see Algorithm [2from [130]) to divide
each global interference set into subgroups based on the allocated channel
number (see line 20 of Algorithm [I). If the fairness condition does not
hold, the TUASCA algorithm uses the partition method to allocate chan-
nels to the links in E 40, (see line 22 of Algorithm [I)).

For ineffective carrier sensing scenarios with global interference and
insufficient channel capacity, in the first phase, the TUASCA algorithm
solves global interference by partitioning the global border sets and middle-
link set with different channels and allocates identical channel to GIS; g
and GISgp to improve spatial reuse while in the second phase, the TU-
ASCA algorithm minimises local interference within each global interfer-
ence set.

The TUASCA algorithm utilises a simple partition method (c.f. Algo-
rithm [2) to reduce the local interference. In Algorithm 2, the inputs are
the link set E, 4., and the available channel set C and output is the chan-
nel allocation of the links in E,..4,. This partition CA algorithm divides
the link set E, ;4. into groups where the number of groups is equal to
the number of available channels (line 2 of Algorithm [2) and allocate each
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Algorithm 3: Selecting global interference sets GIS; g, GISgp, and
GISmr

1 foreach link i € E,,,,4,, do
2 Select link j = E, o0, [last];
3 if di,j > R then

4 GIS;g +1
5 end
6 end

7 foreach link i € E,,,,4,, do
8 Select link j = E,po,er [ first];
9 if di,j > R.s then

10 GISgp <1
11 end
12 end

13 foreach linki € GIS; 3 do

14 | foreachlinkj € GISgp do

15 if d,-,j < R then

16 Remove link i from GIS; p;
17 Remove link j from GISgp ;
18 end

19 end

20 end

21 foreach linki € E, ;) 40, dO

22 if linki € GIS; g U GISgp then
n | | GISup « i

24 end

25 end
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group with different channels (lines 3 — 5 of Algorithm 2). By using differ-
ent channels in different groups, the partition CA algorithm mitigates the

channel contention among different groups.

The next sections discuss the validation of TUASCA algorithm through

simulation.

4.2.2 Benchmark For Traffic-unaware Anti-starvation Chan-

nel Assignment Algorithm

A standard clique-based CA algorithm INSTC [140] discussed in Chap-
ter 2| is selected as the benchmark for the TUASCA algorithm. The IN-
STC algorithm integrates three interference set selections based on three
common interference models. The reason to select the clique-based CA
algorithm is that clique-based CA algorithm is a common method among

trafficcunaware CA algorithms discussed in Section 2.4.2 on page 26/ In

this thesis, we only borrow the strategy of channel assignment in [140] for
minimising interference without considering the maintenance of topology

to simplify the problem.

Here, three interference set selections are defined based on three dis-
tinct interference models. Two categories of interference set selection strate-
gies we select are: (i) carrier sensing oriented and (ii) packet reception
oriented strategies. The carrier sensing oriented strategy focuses on the
capacity contention between transmitter nodes while the packet reception
oriented strategy pays particular attention to the interference at a receiver
node from neighbouring nodes during the packet reception. With the car-
rier sensing oriented strategy, 4 is defined as carrier sensing oriented
interference set. For the packet reception oriented strategy, two distinct in-
terference sets, yp and ¢ are defined as follows. The definitions of these

interference sets are listed below:
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4221 Carrier Sensing Oriented Strategy

Definition 22. Interference set y 4
Let E denote the complete set of links in an IEEE 802.11 WBN. For a tagged link
i in E, the interference set,

’YA(I) — {l E E \ {Z} | dS,S S RCS or ds’r S Rcs}, (4.11)

whereby d; s is the distance between the sender nodes of link I and link i, ds , is the
distance between the sender of link | and the receiver of link i, R¢s is the carrier
sensing range.

4.2.2.2 Packet Reception Oriented Strategies

Definition 23. Interference set yp
Let E denote the complete set of links in an IEEE 802.11 WBN. For a tagged link
i in E, the interference set,

ve(i) = {l € E\{i} | dsy < Rp}, (412)

whereby ds , is the distance between the sender of link | and the receiver of link i,
R is the theoretical interference range (R; = k X Dy, k > 0).

Definition 24. Interference set yc
Let E denote the complete set of links in an IEEE 802.11 WBN. For a tagged link
i in E, the interference set,

B
. . d
ve(i) = { 1€ E\ {i} | (E) < SIRyye ¢, (4.13)

whereby ds , is the distance between the sender of link | and the receiver of link
i, Dy, is the transmitter-receiver separation of link i, B is the path loss exponent
factor, SIRyy,, is the SIR threshold for a successful transmission subject to the
used modulation and coding scheme.



94 CHAPTER 4. CHANNEL ASSIGNMENT IMPROVING FAIRNESS

Figure 4.3: Visualising interference Figure 4.4: Visualising interference

set y4 set B

4.2.2.3 Example: Selecting Interference Sets

To help understand the difference between three different interference set
selection strategies, Figures4.3/and 4.4{demonstrate the selections of these
interference sets. The node highlighted in red is in conflict with the node
in blue assuming both nodes use the same channel.

Carrier sensing oriented interference set 4 mainly focuses on the ca-
pacity contention between sender nodes when they attempt to transmit
packets concurrently. In Figure according to Def. of interference
set y4, va(L1) = {L2} because sender S2 of link L2 is within the carrier
sensing range of sender S1 in link L1.

The packet reception oriented interference sets yp and ¢ focus on
the potential interference at the receiver node during the packet recep-
tion from its sender. The interference sets given by <p is based on a the-
oretical interference model while the interference set ¢ is based on the
measurement-based interference model. In Figure ve(L1) = {L2} be-
cause sender S2 of link L2 is within the interference range R; of receiver
R1 of link L1.

Figure [4.4] can also explain the selection of the interference set y¢c. As-

sume that a scenario matches with the two-ray ground propagation model [66]
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and IEEE 802.11b 2Mbps is used for applications in which = 4 and
SIRy,. = 10. According to Def. dsy < 1.78 X Dy,. In Figure
vc(L1) = {L2} if sender S2 of link L2 is within the interference range
R; = 1.78 x Dy (L2) of receiver R1 of link L1.

4224 A Clique-based Channel Assignment algorithm

The inputs of the clique-based INSTC CA algorithm are: (i) available chan-
nel set C, (ii) network link set E, and (iii) node position P with fixed R,

Rj, and SIRy,,. The output is the channel allocation of all links in E.

Algorithm 4: Pseudo code for a clique-based INSTC CA algo-
rithm from [140]

Input : C,E, P

Output: Channel allocation of all the links in E

1 begin

2 foreach linki € E do

3 ‘ Select yx (i) (see Algorithm ,where X € {A,B,C};

4 end

5 Eorger < links in E orted with an non-increasing order based on
[rx(D)];

6 foreach linki € E, 4., do

7 ‘ Select the least used channel in C among the links in yx(i);

8 end

9 end

The INSTC CA algorithm has three main steps: (i) selecting the inter-
ference set for each link in E, (ii) ordering links, and (iii) allocating chan-
nels to links in E,.4,. In the first step (in lines 2 — 4 of Algorithm [4),
the CA algorithm selects the interference set of each link i as yx where
X € {A,B,C} denotes the different strategies listed in Algorithm |5, In

the second step, the link set E,, 4, is sorted in a non-increasing order of
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Algorithm 5: Constructing interference set yx (i)

1 foreach linki € E do

2

3

4

10

11

12

13

14

15

16

17

18

19

20

foreach link j € E\ {i} do
switch X do
case A do
if d;s < R then
| vai)
end
end
case B do
if d;, < Rj then
ETORS
end
end
case C do
if (dDL;:)ﬁ < SIR;;, then
| vc(i) «
end

end

end

end

21 end

the Link Potential Interference (LPI) that is defined as the number of links

within the interference set (line 5 of Algorithm[). A simple bubble sorting

algorithm is used to order the links in E;, 4, because our focus is the in-

fluence of the interference set selection on network fairness instead of the

ordering method. Next, the CA algorithm allocates channels to the links in
the ordered E,, ., (lines 6 — 8 of Algorithm E[) The channel allocation strat-

egy is such that the least frequently used channel within the interference
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set of a link i is allocated to this link. Such a channel allocation strategy
has been widely used in CA algorithms to reduce the interference among
the links within an interference set.

Next subsections discuss the validation of the TUASCA algorithm with
the above benchmark through simulation.

4.2.3 Validation of Traffic-unaware Anti-starvation Chan-

nel Assignment Algorithm with Three Channels

This subsection shows the validation of the TUASCA algorithm with the
benchmarks through simulation using three channels. The benchmarks
are the clique-based algorithm using three different interference set selec-
tions 7y 4, v, and ¢ (see Section [£.2.2).

4.2.3.1 Simulation Configuration and Measurement Metrics

The inputs of the TUASCA algorithm and the INSTC CA algorithm in-
clude available channel set, link set, and network topology. First, the avail-
able channels are set as C = {1, 2,3} to show how the TUASCA effectively
prevent flow starvation and improve fairness with limited channels.
Second, grid topologies and random topologies are used ranging from
small border distance D = 200 m to large border distance D = 800 m. The
link set ranges from 5 single-hop links to 17 single-hop links. The grid
topologies used in this section deploy links with a constant interval d of
50m (see Figure £.5). Random topologies we use are generated by a R
script. With a given area and given link number, the node position and
link length are generated randomly according to uniform distribution.
The simulation parameters are in Table With the parameters in
Table Res is calculated as 515m, Rj is defined as 2 x D* (D is
207m), B as 4, and SIRy,. as 13dB [1]. Transmitter-receiver separation
for all the links in simulation is selected as 50 m to guarantee collision-free

transmissions (based on the findings from [156]) whereby it was found
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that carrier sensing mechanism can protect packet transmission against
collision when the transmitter-receiver separation is less than 0.56 x D}
(D}® denotes maximum transmission range). To simplify the analysis,
all nodes are identically configured with saturated traffic generators. The
threshold of Jain’s index for the TUASCA algorithm is set as 0.8 that we

assume it is a satisfactory level of fairness.

Figure 4.5: The grid topology used in the example

With the above inputs and the parameters in Table the TUASCA
algorithm and its benchmark yield different channel allocations. Those
channel allocations are implemented into the simulation tool, Qualnet 5.2.
The average goodput of each links is calculated from 100 randomly seeded
simulation runs. All averages of simulation results shown are reported
with confidence interval of 95% with the range from [5.2,15.66] kbps un-
der the assumption that the averages are normally distributed.

In order to evaluate the performance of the TUASCA algorithm, the

validation considers four metrics:
e Jain’s index [33]:

Definition 25. Jain’s index FI
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Table 4.2: Simulation Parameters

Parameter Name Value
Transmission Power 18 dBm
Receiver Sensitivity -78 dBm
Path Loss Model Two-Ray
Shadowing & Fading Model | None

MAC Layer PCS
Routing Static Routing
Transportation Layer ubDbp
Physical Layer IEEE802.11a
Data Rate 24 Mbps
Packet Size 1500 Bytes
Interpacket Interval 0.5ms

Let E denote the set of links in an IEEE 802.11 WBN,

_ (Cer G0
A N eGP .

where G (i) is the normalised goodput of a link i with respect to the maxi-

mum net capacity from simulation, N is the number of links in E.

Jain’s index FI provides an indication of the overall system fairness.
The range of Jain's index is between 0 and 1. The system is fairer

when the Jain’s index is closer to 1.

e Starvation link ratio SR: The starvation link ratio SR that is the ratio
between the number of starvation links and the number of all links
in an IEEE 802.11 WBN. Starvation link ratio reflects the percentage
of starvation links among all links. In this research, a starvation link
is defined as that the achieved goodput of a link is below & X Ggerage,
where « € [0.0,0.2] is the starvation factor and Gaeerage is the average
goodput in E.
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Definition 26. Starvation link ratio SR
Let E denote the set of links in an IEEE 802.11 WBN,

SR — |Esta%ation| , (4.15)

where |Egiaroation| is the number of links that are predicted to have flow

starvation, N is the number of links in E.

e Highest-to-lowest goodput ratio HLG [131]: Highest-to-lowest good-
put ratio is the ratio between the highest achieved goodput and the
lowest achieved goodput among all the links in an IEEE 802.11 WBN.

Definition 27. Highest-to-lowest goodput ratio HLG
Let E denote the set of links in an IEEE 802.11 WBN,

HLG = Crmax (4.16)

4
Gmin

where Gmax and Gmin are the maximum and minimum goodput values

among all links in E respectively.

e Normalised average goodput AG: the normalised average goodput
is a common metric to evaluate CA algorithms (see Section [2.4).

Definition 28. Normalised average goodput AG
For a given E of an IEEE 802.11 WBN,

Yick Gs(i)
AG = =/——"—+ 417
G N (4.17)
where Gg(i) is the normalised goodput of a link i with respect to the maxi-

mum net capacity from simulation, N is the number of links in E.

The next subsections will validate the TUASCA algorithm with the

benchmark from the view of different fairness measures.
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4.2.3.2 Comparison of Jain’s Index

Figures [4.6|and 4.7 show the comparison of Jain’s index with correspond-
ing 95% confidence interval among the clique-based CA algorithm using
interference set selections 7y 4, v, and ¢, and TUASCA algorithm in grid
and random topologies respectively. In Figures 4.6{and the X axis de-
notes the border distance in Figure[4.5/from 200 m to 800 m while the Y axis
refers to the achieved Jain’s index of the channel allocations from differ-
ent algorithms. The 95% confidence interval is also plotted in Figures
and [4.7]but the value of confidence interval is very small.

1 L I i
< 0.8} 1
S
<06+ 1
w
£04 8
<

<
0.2+ |

0

200 400 600 800
Border distance in meters

Figure 4.6: The comparison of Jain’s index using three channels in grid
topologies

In Figure when the border distance is less than R (i.e. 200 m
and 400 m, the effective carrier sensing scenarios), all four CA algorithms
achieve similar Jain’s index. When the border distance is greater than R
(i.e. between 600 m and 800 m, the ineffective carrier sensing scenarios),
the TUASCA algorithm achieves better Jain’s index than other three CA
algorithms.

Figure 4.7 shows a similar trend as that in Figure In effective car-
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Jain's index
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Figure 4.7: The comparison of Jain’s index using three channels in random

topologies

rier sensing scenarios, the clique-based CA using the interference sets y 4
and 7p achieve the same Jain’s index as the TUASCA, while the clique-
based CA using the interference set selection <y achieves a lower Jain’s in-
dex. In ineffective carrier sensing scenarios, TUASCA algorithm achieves
the highest Jain’s index among all CA algorithms. In the case D as 600 m
in Figure we find one exception that the channel allocation from the
clique-based CA using the interference set selection 7y 4 achieves 0.94.
Overall, in ineffective carrier sensing scenarios, the TUASCA algorithm
achieves 34-92% better fairness compared with the selection strategy 7y 4

(the overall highest among three interference sets) in terms of Jain’s index.

4.2.3.3 Comparison of Starvation Link Ratio

Figures|4.8land 4.9|show the comparison of starvation link ratio with corre-
sponding 95% confidence interval among the clique-based CA algorithm
using interference set selections 7y 4, v, and ¢, and TUASCA algorithm
in grid and random topologies respectively. In Figures 4.8/ and the X
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axis denotes the border distance in Figure[4.5 while the Y axis refers to the

starvation link ratio of different CA algorithms.
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Figure 4.8: The comparison of starvation link ratio using three channels in

grid topologies
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Figure 4.9: The comparison of starvation link ratio using three channels in

random topologies
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In Figures and when the border distance is less than R (i.e.
200 m and 400 m, the effective carrier sensing scenarios), the starvation
link ratios of all CA algorithms are zero, which means starvation does not
exist. When the border distance is greater than R (i.e. between 600 m
and 800 m, the ineffective carrier sensing scenarios), only the TUASCA
algorithm remains the starvation link ratio as zero while flow starvation
exists in the channel allocation of other CA algorithms. In the case that
random network size is 600 m in Figure the channel allocation of the
clique-based CA algorithm using interference set selection y 4 experiences
no starvation. It explains why the fairness index of the clique-based CA al-
gorithm using interference set selection -y 4 is higher than the clique-based
CA algorithm using interference sets yp and ¢ in 600 m (see Figure .

The zero starvation link ratio of TUASCA algorithm explains the cor-
responding high Jain’s index in Figures 4.6l and .7 It also shows that
preventing flow starvation contributes towards better fairness.

4.2.3.4 Comparison of Highest-to-lowest Goodput Ratio

The results in Figure 4.10| and 4.11| show the comparison of highest-to-

lowest goodput ratio with corresponding 95% confidence interval among
the clique-based CA algorithm using interference set selections y4, 5,
and yc, and TUASCA algorithm in grid and random topologies respec-
tively. In Figure and the X axis denotes the border distance in
Figure [£.5|while the Y axis refers to the highest-to-lowest goodput ratio of
different CA algorithms.

In Figure and when the border distance is less than R (i.e.
200 m and 400 m, the effective carrier sensing scenarios), the highest-to-
lowest goodput ratios of all CA algorithms are very small. When the bor-
der distance is greater than R (i.e. between 600 m and 800 m, the inef-
fective carrier sensing scenarios), the highest-to-lowest goodput ratio of
the TUASCA algorithm remains very small compared with the other three
algorithms. The small highest-to-lowest goodput ratio explains the high
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Figure 4.10: The comparison of highest-to-lowest goodput ratio using
three channels in grid topologies
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Figure 4.11: The comparison of highest-to-lowest goodput ratio using
three channels in random topologies

Jain’s index in Figures [4.6|and 4.7}
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4.2.3.5 Comparison of Average Goodput
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Figure 4.12: The comparison of average goodput using three channels in
grid topologies
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Figure 4.13: The comparison of average goodput using three channels in
random topologies

To further evaluate the performance of the TUASCA algorithm, the
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TUASCA algorithm is compared with the other three CA algorithms in
terms of average goodput. Figures 4.12| and 4.13| are the results of aver-

age goodput with corresponding 95% confidence interval from the clique-
based algorithm using interference set selections 4, vg, and ¢, and TU-
ASCA algorithm in grid and random topologies. In Figures and
the X axis denotes the border distance in Figure 4.5 while the Y axis refers
to the average goodput of different CA algorithms.

In Figures and when the border distance is less than R (i.e.
200 m and 400 m, the effective carrier sensing scenarios), the TUASCA al-
gorithm achieves the same average goodput as that of the clique-based
CA algorithm using interference sets 74 and yg. When the border dis-
tance is greater than R (i.e. between 600 m and 800 m, so called ineffec-
tive carrier sensing scenarios), the TUASCA algorithm decreases 3-42% in
average goodput compared with the best result from the clique-based CA
algorithm using interference set selection 4. The reason for the clique-
based CA algorithm using interference set selections y4 and 7y achieving
higher goodput than TUASCA is that the clique-based algorithm using
interference set selections 4 and 7y reuse all the channels in the ineffec-
tive carrier sensing scenarios. But the TUASCA algorithm partially reuses
the channels to eliminate border effect and flow starvation that leads to a

lower average goodput.

4.2.4 Validation of Traffic-unaware Anti-starvation Chan-

nel Assignment Algorithm with Twelve Channels

In this subsection, the TUASCA algorithm is validated with the bench-
marks using twelve channels through simulation. The example using twelve
channel shows that flow starvation still exists in some scenarios even though
the available channel is increased to 12.

The grid topologies used in this subsection deploy links with D =
1000m, Dy = 50m and constant interval d of 30m (see Figure . The
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simulation configurations is in Table[4.3} The number of available channels
is twelve and the carrier sensing range is 675 m according to the configu-
ration in Table All averages of simulation results shown are reported
with confidence interval of 95% with the range from [3.6,53.1] kbps under
the assumption that the averages are normally distributed.

The TUASCA algorithm is validated from four aspects, overall Jain’s
index, starvation link ratio, highest-to-lowest goodput ratio and average
goodput.

Table 4.3: Simulation Parameters

Parameter Name Value
Transmission Power 20dBm
Receiver Sensitivity -85 dBm
Path Loss Model Two-Ray
Shadowing and Fading Model | None

MAC Layer PCS

Routing Static Routing
Transportation Layer ubDbP
Physical Layer IEEE 802.11a
Data Rate 6 Mbps
Packet Size 1500 Bytes
Inter-packet Interval 2ms

Figures to show the results of Jain’s index, starvation link ra-
tio, highest-to-lowest goodput ratio, average goodput with corresponding
95% confidence interval in the grid topology (D = 1000m in Figure [4.5).

In Figure the TUASCA algorithm achieves the highest Jain’s index
among all CA algorithms. Even though using twelve channels in such a
dense topology, the clique-based CA algorithm using interference sets 7y 4,
B, and ¢ still experience flow starvation but TUASCA algorithm effec-
tively prevents flow starvation (see Figure [4.15). This shows that existing
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interference models still drive CA algorithm to flow starvation and poor
fairness with more channels available because they only consider local in-

terference.
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Figure shows that the TUASCA algorithm outperforms the other
CA algorithms in terms of highest-to-lowest goodput ratio. This matches
with the trend in Jain’s index in Figure For average goodput, the
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TUASCA algorithm achieves more than the clique-based algorithm using
interference set selection <y but the clique-based algorithm using interfer-
ence sets 4 and -y achieves higher goodput than TUASCA. Along the
same lines of explanation in Section #.2.3.5, the clique-based algorithm us-
ing interference set selections y4 and -yp fully reuse the twelve available
channels for the links in the topology but the TUASCA algorithm partially
reuse these channels to separate border sets and middle sets with different
channels that sacrifices average goodput. The interference set selection ¢
utilises fewer channels due to its selection strategy.

4.2.5 Discussion About Traffic-unaware Anti-starvation Chan-

nel Assignment Algorithm

Through simulation validation, the TUASCA algorithm achieves overall
best fairness compared with the clique-based CA algorithm using three
interference set selections. In both effective and ineffective carrier sensing
scenarios, the TUASCA algorithm yields high Jain’s index, “zero” star-
vation link ratio, and low highest-to-lowest goodput ratio with 3 and 12
available channels. Even with 12 available channels, the channel alloca-
tion from the clique-based CA algorithm still leads to flow starvation and
poor fairness. It further proves the conclusion in Section 4.1|that the inter-
ference model used in CA algorithm needs to consider global interference
for preventing flow starvation and improving fairness.

However, the TUASCA algorithm attains lower average goodput com-
pared with the clique-based CA algorithm using interference set selec-
tions 74 and yp. To prevent flow starvation and improve fairness, the
TUASCA algorithm partitions the border sets and middle-link set with
different channel to improve fairness, sacrificing spatial reuse and yields
lower average goodput.

Next section will explain how to extend the TUASCA algorithm to re-
solve flow starvation and improve fairness with unsaturated traffic de-
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mand.

4.3 A Traffic-aware Anti-starvation Channel As-

signment Algorithm for Improving Fairness

This section explains the development of a Traffic-Aware Anti-Starvation
Channel Assignment (TAASCA) algorithm to resolve flow starvation and
improve the fairness among the links with consideration of traffic demand.
The TAASCA algorithm is improving fairness by explicitly considering
traffic demand in IEEE 802.11 WBN planning. The proposed traffic-aware
anti-starvation CA (TAASCA) algorithm builds upon the TUASCA algo-
rithm in Section

The next sections introduce the design of this TAASCA algorithm and
validate TAASCA through simulation.

4.3.1 The Design of Traffic-aware Anti-starvation Channel

Assignment Algorithm

The TAASCA algorithm considers traffic demand and the inputs are link
set E, node position P, available channel number m, and traffic demand
f. In addition, fixed carrier sensing range Rcg is given. The output of
TAASCA is the channel allocation of all links.

The TAASCA algorithm follows the same logic as that in the TUASCA
algorithm to prevent flow starvation and improve fairness (see Figure[4.18).
However, with a new input of traffic demand, the TAASCA algorithm has
two main changes on the TUASCA algorithm. One is the global interfer-
ence condition. Another change in the TAASCA algorithm is the capacity
condition.

Firstly, the TAASCA algorithm calculates the border distance D and
checks whether D is greater than the carrier sensing range Rcs. For an
effective carrier sensing scenario (D < Rcg), the TAASCA algorithm al-
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Figure 4.18: The logic flow of the TAASCA algorithm

leviates local interference without spatial reuse by using a partition CA
algorithm. The purpose of using a partition CA algorithm is to allevi-
ate interference and achieve the fairness among subgroups using different
channels.

For an ineffective carrier sensing scenario (D > Rcg), the TAASCA al-
gorithm will first check the global interference condition to identify the
potential existence of global interference (border effect). Under unsatu-
rated traffic assumption, the existence of global interference depends on
the global interference condition (see Section [4.1). The global interfer-
ence condition is defined as: };c(cis,, N GIsgs} f (/) = 1, where GIS p and
GISgp are the global left border set and right border set in the given IEEE
802.11 WBN, f(j) is the normalised traffic demand of link j with respect to
the maximum net capacity.
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If the constraint }ic(Grs,,nGisgs} f(/) = 1 holds, global interference
potentially exists. The TAASCA algorithm checks whether the capacity
condition is sufficient to prevent flow starvation with spatial reuse. Differ-
ent from using the link number in the TUASCA algorithm, the TAASCA
algorithm expresses the capacity condition as: }jc g ()} f(j) < m, where
v(B) is the local interference set of a border link B and m refers to the nor-
malised capacity of all available channels, f(j) is the normalised traffic
demand of link j with respect of the maximum net capacity.

If the constraint }jc (g, (p)} f(j) < m holds, the available channels are
sufficient to directly address the potential global interference with spatial
reuse. The TAASCA algorithm solves global and local interference with
spatial reuse. If } ic pry ()1 f (j) < m does not hold, the available channel
capacity is not sufficient to resolve global interference with spatial reuse.
The TAASCA algorithm invokes the TUASCA algorithm to solve for both
global and local interference. The TUASCA algorithm solves global in-
terference by partitioning the global border sets and middle-link set with
different channels and allocates identical channel to GIS; g and GISgp to
improve spatial reuse.

The outline of TAASCA is listed in Algorithm|[6] The structure of TAASCA
is the same as that of TUASCA. The difference between them is that the
TAASCA algorithm change the condition expressions in line 10 and line

16 according to new global interference and capacity conditions.

4.3.2 Benchmark For Traffic-aware Anti-starvation Chan-

nel Assignment Algorithm

The benchmark algorithm for the TAASCA algorithm is selected with the
balanced static CA (BSCA) algorithm [87] discussed in Section
(see Algorithm [7) with three different interference set selections
Ya, B, and yc (see Section #.2.2). The BSCA algorithm represents the
traffic-aware channel assignment with consideration of fairness that is sim-
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Algorithm 6: Pseudo code for the TAASCA algorithm
Input : E, P, m, f(i), Res
Output: Channel allocation of all the links in E

1 begin

2 foreach linki € E do

3 Ereordger < link i (F;_q1 < F; < Fj11 see Def.;
4 Select v (i);

5 end

6 | Calculate D = |E,eorder[1aSt] — Ereorder | first]|;

7 if D < R.; then

8 Apply a partition algorithm to E,pger ;

9 else

10 Select GIS; g, GISgrp, and GISy; ;

u if Y jeGis,snGrsgs f(j) = 1 then

12 if Y jepny (B)f(j) < m then

13 foreach linki € E,,,, 4., do

14 ‘ Select the least-loaded channel in 7y (7);
15 end

16 else

17 Apply the TUASCA algorithm to E, o4, (see

Algorithm [1));

18 end

19 else

20 foreach linki € E,,y;4.r do

21 Select the least-loaded channel in 7 (i);
22 end

23 end
2 end

25 end
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ilar to RCL [121] (more details in Section 2.4.3 on page 33). In this thesis,
we only borrow the basic strategy of channel assignment in [87] for min-

imising interference to simplify the problem.

The BSCA algorithm used in this thesis has the same inputs and out-
puts as TAASCA. The logic of BSCA algorithm is listed in Algorithm [7]
The difference between the BSCA and the clique-based INSTC CA algo-
rithms in Section is that they use different allocation strategy. The
clique-based INSTC CA algorithm allocates the least used channel to each
link that is based on calculating the total number of interfering links in the
interference sets. The BSCA algorithm allocates the least traffic-load chan-
nel to each link that is based on calculating the sum of the traffic demands

of interfering links in the interference sets.

Algorithm 7: Pseudo code for the BSCA CA algorithm from [87]
Input : C,E, P, f
Output: Channel allocation of all the links in E

1 begin

2 foreach linki € E do

3 ‘ Select yx (i) (see Algorithm ,where X € {A,B,C};

4 end

5 E eorder < links in E sorted with a decreasing order based on
Yievi) f()

6 foreach link i € E,,;, 4., do

7 ‘ Select the least-loaded channel;

8 end

9 end
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4.3.3 Validation of Traffic-aware Anti-starvation Channel

Assignment Algorithm Using Three Channels

The inputs of the TAASCA and BSCA algorithms and simulation config-
urations are the same as those in Section4.2.3.1l Four traffic demands are
selected as 0.4 and 0.6 representing medium traffic, and 0.8 and 1.0 repre-
senting heavy traffic. These four traffic demands are the normalised traffic
demands with respect to the maximum net capacity.

All averages of simulation results shown are reported with confidence
interval of 95% with the range from [5.2,15.66] kbps under the assumption
that the averages are normally distributed.

Since flow starvation is not present in the effective carrier sensing sce-
narios, the results are listed from an ineffective carrier sensing scenario
(D = 800m, d = 50m, Dy, = 50m in Figure using three channels
as the examples. The TAASCA algorithm is validated from four aspects,
overall Jain’s index, starvation link ratio, highest-to-lowest goodput ratio
and average goodput (see the definitions in Section 4.2.3.1).

4.3.3.1 Comparison of Jain’s Index

Figures [4.19| and 4.20| show the comparison of Jain’s index with corre-

sponding 95% confidence interval using three channels among different
CA algorithms in grid and random topologies respectively. In Figures
and the X axis denotes the normalised traffic demand with respect to
the maximum net capacity while the Y axis refers to the achieved Jain’s
index of the channel allocations from different algorithms.

In Figures and the TAASCA algorithm achieves the highest
Jain’s index with four traffic demands. The Jain’s index of the BSCA algo-
rithm using interference sets <y 4 and <yp increases when the traffic demand
decreases. It is because the global interference reduces when the traffic
demands of the border links decrease. However, the BSCA algorithm us-

ing interference ¢ yields low Jain’s index for heavy and medium traffic



118 CHAPTER 4. CHANNEL ASSIGNMENT IMPROVING FAIRNESS

1

0.8+ i
x
[0}
E 0.6+ .
04
c = i
- — - ’I‘
5 =TA
L . B
0.2 B,
0 | ITAASCA

0.4 0.6 0.8 1.0
Traffic demand

Figure 4.19: The comparison of Jain’s index using three channels in a grid
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Figure 4.20: The comparison of Jain’s index using three channels in a ran-
dom topology

demands because they did not fully utilise the three available channels.
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4.3.3.2 Comparison of Starvation Link Ratio

Figures {.21] and £.22] show the results of starvation link ratio with cor-
responding 95% confidence interval among four CA algorithms using 3
channels in grid and random topologies respectively. In Figures[.2Tjand [4.22}
the X axis denotes the normalised traffic demand while the Y axis refers to

the starvation link ratio of different CA algorithms.
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Figure 4.21: The comparison of starvation link ratio using three channels

in a grid topology

In Figures and the TAASCA algorithm achieves “zero” star-
vation link ratio with four traffic demands. As the TAASCA algorithm re-
solves the global interference, flow starvation does not exist that explains
the high Jain’s index in Figures and The flow starvation ratio of
the the BSCA algorithm using interference sets y 4 and g has a decreasing
pattern with the decrease of the traffic demand. That is why their Jain’s in-
dex increases with the decrease of the traffic demand. The BSCA algorithm
using interference set selection ¢ remains a constant starvation link ratio
with four traffic demands. It implies that flow starvation does not reduce

in these two channel allocations when the traffic demands decrease.
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Figure 4.22: The comparison of starvation link ratio using three channels
in a random topology

4.3.3.3 Comparison of Highest-to-lowest Goodput Ratio

Figures and show the comparison of highest-to-lowest goodput
ratio with corresponding 95% confidence interval among four CA algo-
rithms using three channels in grid and random topologies respectively.
In Figures and the X axis denotes the normalised traffic demand
while the Y axis refers to the highest-to-lowest goodput ratio of different
CA algorithms.

In Figures and the TAASCA algorithm remain low highest-
to-lowest goodput ratios with four traffic demands. That matches with the
high Jain’s index in Figures and The highest-to-lowest goodput
ratios of the BSCA algorithm using interference sets y4, yp, and ¢ have
a decreasing pattern with the decrease of the traffic demand. That also

matches with their Jain’s index patterns.
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Figure 4.23: The comparison of highest-to-lowest goodput ratio using
three channels in a grid topology
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Figure 4.24: The comparison of highest-to-lowest goodput ratio using
three channels in a random topology

4.3.3.4 Comparison of Average Goodput

Figures and show the average goodput with corresponding 95%
confidence interval from four CA algorithms using three channels in grid
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and random topologies respectively. In Figures and the X axis
denotes the normalised traffic demand while the Y axis refers to the nor-
malised average goodput from different CA algorithms with respect to the

maximum net capacity.

In Figures and the average goodput of the TAASCA algo-
rithm is less than those of the BSCA algorithm with 4 and 5. The same
as the TUASCA algorithm, the TAASCA algorithm resolves the global in-
terference by partitioning the border sets and middle link set with different
channels that sacrifices a part of spatial reuse. The BSCA algorithm with
74 and g fully reuse the spatial resource. The BSCA algorithm with ¢
does not utilise the whole available channels and yields the lowest average

goodput.
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Figure 4.25: The comparison of average goodput using three channels in a
grid topology
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Figure 4.26: The comparison of average goodput using three channels in a
random topology

4.3.4 Validation of Traffic-aware Anti-starvation Channel

Assignment Algorithm Using Twelve Channels

In this subsection, the TAASCA algorithm is validated with the bench-
mark using twelve channels through simulation. The inputs and simula-
tion configurations are the same as those in section With more avail-
able channels, four CA algorithms are expected to be more effective on
preventing flow starvation and fairness than using less channels. The grid
topology used in this subsection deploy links with D = 1000m, Dy, = 50 m
and constant interval d of 30 m (see Figure 4.5).

The simulation parameters are listed in Table The number of avail-
able channels is twelve and the carrier sensing range is 675m accord-
ing to the configuration in Table All averages of simulation results
shown are reported with confidence interval of 95% with the range from
[3.6,53.1] kbps under the assumption that the averages are normally dis-
tributed.

The TAASCA algorithm is validated from four aspects, overall Jain’s
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index, starvation link ratio, highest-to-lowest goodput ratio and average
goodput.

Figures to show the results of Jain’s index, starvation link ra-
tio, highest-to-lowest goodput ratio, average goodput with corresponding
95% confidence interval in the grid topology (D = 1000m in Figure |4.5).
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Figure 4.27: The comparison of fairness index using twelve channels in a
grid topology
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Figure 4.28: The comparison of starvation ratio using twelve channels in a
grid topology

In Figure the TAASCA algorithm maintains a high Jain’s index

for four different traffic demands. Even though using twelve channels,
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the BSCA algorithm using interference set selections 4 and -y still lead
to flow starvation in such a dense topology. The TAASCA and BSCA al-
gorithms using interference set selection <y effectively prevent flow star-
vation (see Figure[4.28). This shows that existing interference interference
set selections y4 and 7y still drive CA algorithm to flow starvation and
poor fairness with more channels available because they only consider lo-
cal interference.
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Figure 4.29: The comparison of high-to-low goodput ratio using twelve
channels in a grid topology
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Figure 4.30: The comparison of average goodput using twelve channels in
a grid topology
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In Figure the result shows that the TAASCA algorithm and the
BSCA algorithm using interference set selection yp outperform the other
CA algorithms in terms of highest-to-lowest goodput ratio. This matches
with the trend in Jain’s index in Figure For average goodput, the
BSCA algorithm using interference set selection y4 achieves higher good-
put than TAASCA. Along the same lines of explanation in Section
the BSCA algorithm using interference set selection 4 fully reuse the
twelve available channels for the links in the topology but the TAASCA
algorithm partially reuses these channels to separate the global border sets
and middle-link set with different channels that sacrifices average good-
put. The BSCA algorithm using interference set selection -yp achieves less
average goodput than the TAASCA algorithm. The BSCA algorithm us-
ing interference set selection ¢ selects fewer channels and does not fully

utilise the available channel capacity.

4.3.5 Discussion about Traffic-aware Anti-starvation Chan-

nel Assignment Algorithm

Simulation validation shows that the TAASCA algorithm effectively re-
solves flow starvation with different traffic demands and achieves overall
best fairness compared with the BSCA CA algorithm using three interfer-
ence set selections. In both effective and ineffective carrier sensing sce-
narios, the TUASCA algorithm yields high Jain’s index, “zero” starvation
link ratio, and low highest-to-lowest goodput ratio with 3 and 12 available
channels. Even using 12 available channels, the channel allocation from
the BSCA CA algorithm still leads to flow starvation and poor fairness. It
turther validates the conclusion in Section |4.1] that the interference model
used in CA algorithm needs to consider global interference for preventing

flow starvation and improving fairness.

However, the TAASCA algorithm has the same weakness as TUASCA
that it attains lower average goodput compared with the BSCA CA algo-
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rithm using interference set selection 7y 4. The reason is that the TAASCA
algorithm partitions the border sets and middle-link set with different
channels to prevent flow starvation. But this strategy sacrifices the util-
isation of spatial resource and yields lower average goodput. Overall, the
TAASCA algorithm achieves better performance in fairness and goodput.

4.4 Summary

This chapter aims to answer the second research question : “how can a
channel assignment algorithm be designed to prevent flow starvation
and improve fairness in IEEE 802.11 WBNs? ”.

First, existing interference models used in CA algorithms is the cause
of flow starvation and poor network fairness in WBNs. These interfer-
ence models only reflect the local conflict among adjacent links and lack
the consideration of global conflict between border links and middle links.
Hence, CA algorithms using these interference models fail to prevent star-
vation and yield poor fairness.

Addressing the shortcomings of existing interference models, a novel
interference model is proposed to account for both global and local in-
terference. Using the new interference model, the newly proposed TU-
ASCA and TAASCA algorithms are designed to prevent flow starvation
and improve fairness under saturated and unsaturated traffic assumptions
respectively. Simulation results show that the TUAASCA and TAASCA
algorithms effectively prevent flow starvation and achieve better fairness
compared to the benchmark CA algorithms.

The weakness of TUASCA and TAASCA algorithms is that they focus
on improving fairness in ineffective carrier sensing scenarios that sacri-
fice a part of channel reuse and lead to lower goodput compared to the
benchmark CA algorithm. The next chapter will optimise CA algorithms
to achieve desired fairness and goodput together.
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Chapter 5

Multi-objective optimisation of
channel assignment for

improving fairness and goodput
in IEEE 802.11 WBN’s

The purpose of the research presented in this chapter is to improve both
fairness and goodput via optimised channel assignment (CA) algorithms.
This chapter builds on the Chapter i which improves fairness by prevent-
ing flow starvation.

Fairness and goodput are two essential factors of quality of service
(QoS) in IEEE 802.11 WBNs because users not only expect high Internet
speed (goodput) but to fairly share the bandwidth (fairness) as well [4,
35,43]]. Hence, fairness and goodput is equally important in IEEE 802.11
WBN planning. However, in high density environments, it is challenging
to maximise both fairness and goodput with limited channel resources [26),
83,84].

To better understand fairness and goodput with limited channel re-
source, an investigation has been conducted to identify the trade-off be-
tween fairness and goodput (see Appendix [E). The analysis shows that

129
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high goodput is an outcome of channel reuse while fairness is governed
by the presence of flow starvation. The analysis herein indicates that high
goodput and high fairness are a dichotomy with two seemingly oppo-
site goals. Besides the trade-off between goodput and fairness, the anal-
ysis in Appendix [E| also shows that different CA algorithms have differ-
ent focuses on achieving either goodput or fairness. However, existing
CA algorithms only target a single objective and do not explicitly target
multi-objective optimisation. To achieve both goodput and fairness, the
CA should be formulated as a multi-objective optimisation problem.

In a multi-objective optimisation problem, a fitness function is a key
element. Such a function is used to measure how close a solution is to
the set goal. CA algorithms can iteratively search the solutions that yield
desired goodput and fairness based on the evaluation of the fitness func-
tion. The fitness function can also be a form of feedback in a closed-loop
design [17,(136]. However, existing CA algorithms lack a fitness function
to evaluate the output of channel allocation with the set goal and there-
fore they cannot justify whether the channel output can meet the desired
requirement or not before deployment.

Hence, this chapter explains how to evaluate CA algorithms by intro-
ducing a new fitness function. Such a function expresses the fairness and
goodput from a channel allocation that is representative of the IEEE 802.11
protocol and WBNs. A suitable fitness function provides accurate predic-

tion of performance to evaluate CA algorithms.

With the new fitness function, a multi-objective CA framework is de-
signed to search a set of feasible solutions to meet pre-defined require-
ments including fairness and goodput. Such a framework allows the inte-
gration of different algorithms to utilise their strengths in achieving fair-
ness and goodput. To guarantee the solutions meet the requirements, this
framework utilises the fitness function to evaluate the performance of the
channel allocation and select the feasible solutions.

One advantage of this multi-objective framework is that the solution
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includes the channel allocation and the prediction of potential goodput,
fairness and starvation that have not been explored previously. Another
advantage is that the solution set may have multiple feasible solutions in-
stead of one feasible solution, which brings more flexibility to network de-
signers to make the deployment plan. Last but not least, this framework is
easy and flexible to integrate new CA algorithms in CA component with-

out influencing the existing components in the framework.

Finally, this framework is applied to develop traffic-unaware and traffic-
aware MOCA algorithms combined with the fitness function to improve
both fairness and goodput for planning IEEE 802.11 WBNs.

The objectives of this chapter are to:

1. Design fitness functions for evaluating the performance of traffic-

unaware and a traffic-aware CA algorithms.

2. Apply fitness function to design a traffic-unaware multi-objective
channel assignment (TUMOCA) to improve both fairness and good-
put under the assumption of saturated traffic and validate the TU-
MOCA algorithm through simulation.

3. Apply fitness function to design a traffic-aware multi-objective chan-
nel assignment (TAMOCA) to improve both fairness and goodput
under the assumption of unsaturated traffic and validate the TA-
MOCA algorithm through simulation.

The rest of this chapter is organised as follows. Section 5.1 introduces
new QoS fitness functions for evaluating CA algorithms. Sections[5.2]land[5.3]
describe the proposed TUMOCA and TAMOCA algorithms followed by
the summary in Section
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5.1 Fitness Function with Channel Assignment

Algorithms

This section introduces new fitness functions for evaluating the perfor-
mance of CA algorithms. Such new fitness functions are the fundamental
basis of multi-objective optimisation of CA. The next sections first explain
the design of the proposed fitness functions and the validation through
simulation. A discussion in Section explains how to utilise the fitness

function for evaluating and optimising CA algorithms.

5.1.1 The Design of Fitness Function

To evaluate CA algorithms, a fitness function uses the channel alloca-
tion from a CA algorithm as an input and calculates the potential perfor-
mance indicators such as fairness and goodput of the channel allocation
before deployment (see Figure[5.1). This fitness function is a cost-effective
method for network designers to save time and effort on doing the evalu-

ation through simulations or site survey.

, Channel - | Performance
CA Algorithm Allocation Indicators

Figure 5.1: evaluating a CA Algorithm with a fitness function

The new fitness function is designed based on the goodput model de-
tined in Chapter 3|and the work in [118]. The similarity between the pro-
posed goodput model and the new designed fitness function is that both
of them calculate goodput distribution to evaluate network performance.
The difference between them is that the goodput model assumes only one

channel is used and the fitness function is flexible for multiple channels.
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The next section starts with a traffic-unaware fitness function with sat-
urated traffic assumption to simplify the calculation of performance and
then a traffic-aware fitness function is developed as an extension with con-
sideration of unsaturated traffic demands.

5.1.1.1 Traffic-unaware Fitness Function

The traffic-unaware fitness function does not take traffic demand into ac-
count. This function is designed based on the goodput model with satu-
rated traffic assumption in our previous study [116,(118] and Chapter
This traffic-unaware fitness function inherits the assumptions from the

goodput model with saturated traffic assumption in Section[3.1.1 on page 45|

This traffic-unaware fitness function focuses on capacity contention and
ignores capture effect and packet losses caused by collision. All links are
assumed to share channels fairly in effective carrier sensing scenarios and
border effect exists in ineffective carrier sensing scenarios under saturated
traffic assumption.

The inputs of traffic-unaware fitness function are: (i) network link set E,
(ii) node position P, (iii) channel allocation CA,ytput, (iv)available channel
set C, and (v) the channel sensing range (R.s) determined by the given
physical layer parameters and selected propagation model. The outputs
are: (i) goodput distribution for all the links in E, (ii) average goodput
range AGpry, (iii) Jain’s index range Flpr4, and (iv) starvation link ratio
SRrra.

Definition 29. Normalised average goodput range AGrpa
For a given E of an IEEE 802.11 WBN,

AGFEA — EiEEZ\C[;P(l) , ZiEEZ\CI;O(Z) ,

where Gp(i) and Go(i) are the normalised pessimistic and optimistic goodput

(5.1)

predictions of a link i with respect to the maximum net capacity in ineffective
carrier sensing scenarios. For effective carrier sensing scenarios, Gp(i) and Go (i)
are the same, N is the number of links in E.
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Definition 30. Jain’s index range Flrrx
For a given E of an IEEE 802.11 WBN,

[ (Ciee Gp(i))? (Xice Go(i))?
Flres = | N % Crer Go(? ' N x Lok Goli | 52

where Gp(i) and G (i) are the normalised pessimistic and optimistic goodput

predictions of a link i with respect to the maximum net capacity in ineffective
carrier sensing scenarios, For effective carrier sensing scenarios, Gp(i) and Go (i)
are the same, N is the number of links in E.

Definition 31. Starvation link ratio SRrga
For a given E of an IEEE 802.11 WBN,

| Estarvation |
SRy = —————, 53
FEA N (5.3)

where | Egtaryation | is the number of links that are predicted to have flow starvation
and N is the number of links in E. A starvation link is defined as that the achieved
goodput of a link is below & X Ggyerage Where a € [0.0,0.2] is the starvation factor
and Ggerage 15 the average goodput in E.

The logic flow and the pseudo code of the traffic-unaware fitness func-
tion are shown in Figure [5.2] and Algorithm [§ First, the fitness function
groups the links according to the allocated channel (see line 3). Second,
the fitness function calculates the goodput distribution in each group sep-
arately. For the links in each group using an identical channel, the fitness
function calculates the border distance D (see lines 4).

Third, comparing border distance D with the carrier sensing range R,
the fitness function checks whether the topology of the current channel
group belongs to effective or ineffective carrier sensing scenarios (see line
5). For an effective carrier sensing scenario, the fitness function will cal-

culate goodput distribution using the goodput model defined in Eq.

in Section [3.1.1.1 on page 46| (see line 5). For an ineffective carrier sens-

ing scenario, the fitness function will calculate goodput distribution using
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|Inputs: E, P, CA,C,Rcs |

!

CA — CA(i), i €C
I |
v

Calucate D in each CA(i)

¥

< Rcs
Y
y
Calculate goodput using the | | Calculate goodput using the
equation for effective CSMA equation for ineffective
with saturated traffic CSMA with saturated traffic
in Section 3.1.1.1 in Section 3.1.1.2

A 4
Calculate performance
indicators

Figure 5.2: The logic flow of traffic-unaware fitness function
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Algorithm 8: Pseudo code of traffic-unaware Fitness function

1

2

3

4

5

10

11

Input : E, P, CAutput, C, and Res

Output: {G(i)or|Go(i), Gp(i)],i € E}, AGgea, FIpa and SRpea

begin

foreach channeli € C do

LC(i) <+ the set of links allocated with channel i in CA oyt pus;

Calculate the border distance D among the links in the LC(i) ;

if D < R, then calculate the goodput G(j), j € LC(i) with
Eq. in Section[3.1.1.1 on page 46}

else calculate the goodput Go(j) and Gp(j), j € LC(i) with
Eq. and Eq. EI) in Section(3.1.1.2 on page 46}

end
Calculate average goodput range AGpea in E;
Calculate Jain’s index range Flrg4 in E;

Calculate starvation link ratio SRgg4 in E;

end




136 CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION OF CA

the goodput model defined in Eq. and Eq. in Section 3.1.1.2 on
(see line 6). In the end, the fitness function calculates the perfor-

mance indicators AGrga, Flpr4 and SRppy based on the goodput distribu-

tion information (see lines 8-10).

5.1.1.2 Traffic-aware Fitness Function

Different from the above traffic-unaware fitness function, the traffic-aware
titness function will consider traffic demand to calculate the performance
indicators. The traffic-aware fitness function is designed based on the
goodput model with unsaturated traffic assumptions that the occurrence
of the border effect depends on the traffic demand from the border link

sets (see Section[3.1.2 on page 53).

The inputs of traffic-aware fitness function are: (i) network link set E,
(ii) node position P, (iii) channel allocation CAyytput, (iv) traffic demand
f, and (v) available channel set C, and (vi) fixed R.s. The outputs are: (i)
goodput distribution for all links in E, (ii) average goodput range AGrga,
and (iii) fairness index range FIrr4, and (iv) starvation link ratio SRyga.

The logic flow and the pseudo code of the traffic-aware fitness func-
tion are shown in the Figure and Algorithm 9 The main difference
between the traffic-aware fitness function and traffic-unaware fitness func-
tion is that the traffic-aware fitness function calculates goodput distribu-
tion with consideration of traffic demand in both effective and ineffective
carrier sensing scenarios.

First, the fitness function groups the links according to the allocated
channel (see line 3). Second, the fitness function calculates the goodput
distribution in each group separately. For the links in each group using
an identical channel, the fitness function calculates the border distance D
(see lines 4). Third, comparing border distance D with the carrier sensing
range R, the fitness function checks whether the topology of the current
channel group belongs to effective or ineffective carrier sensing scenarios

(see line 5).
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|Inputs: E,P,CA,f, C,Rcs I

[ ca—capiec |

Calucate D in each CA(i)
< Rcs N
Y
A 4
Check traffic condition Check traffic condition
for effective CSMA for ineffective CSMA
Calculate goodput using the Calculate goodput using the
equation for effective CSMA equation for ineffective CSMA
with unsaturated traffic with unsaturated traffic
in Section 3.1.2.1 in Section 3.1.2.2

y
Calculate performance
indicators

Figure 5.3: The logic flow of traffic-aware fitness function

For an effective carrier sensing scenario, the traffic-aware fitness func-
tion will check the traffic condition (Ljcrc(;) f(j) > 1 where LC(i) is a
group of links using an identical channel i and f(j) is the traffic demand).
This condition checks whether the channel capacity is sufficient for the
traffic demands among those links using channel i. Then the fitness func-
tion calculates goodput G(j) of a link j by using corresponding Eq.

with the outcome of the traffic condition in Section|3.1.2.1 on page 54| (see
line 5).

For an ineffective carrier sensing scenario, two criteria, A and B, are de-
fined to refine the possible combinations of unsaturated traffic demands.
First, criterion A is to evaluate whether border effect occurs. It is defined
as the sum of traffic demands of the links in the dominant border-link sets
GISpp and GISgp, and expressed as: Y iccrs,,nGisgs f (/) = 1. Criterion
B is the sum of traffic demands of the links in the global left or right bor-
der links with the links in its conflict set (B), and this is expressed as:
YieBry(B) f(j) = 1. The criterion B is to evaluate whether the channel ca-
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Algorithm 9: Traffic-aware Fitness function

Input : E, P, CAoutput, f(i), C,and R

Output: {G(i)or[Go(i), Gp(i)],i € E}, AGra, FIrpa and SReea
1 begin

2 foreach channeli € C do
3 LC(i) <+ the set of links allocated with channel i in CAoutput;
4 Calculate the border distance D among the links in the LC(i) ;
5 if D < R, then calculate the goodput G(j), j € LC(i) with
Eq.[3.10|in Section[3.1.2.1 on page 54;
6 else calculate the goodput Gp(j) and Gp(j), j € LC(i) with
Eq.[3.13|to Eq.[3.17|in Section [3.1.2.2 on page 54;
7 end
8 Calculate average goodput range AGpea in E;
9 Calculate Jain’s index range Flpg4 in E;
10 Calculate starvation link ratio SRgg4 in E;
11 end

pacity is sufficient for the border link and the links in its conflict set. More

details can be found in Section [3.1.2.2 on page 54|

According to the above two criteria, the fitness function calculates the
goodput distribution with Eq.[3.13|to Eq.[3.17)in Table[3.3]in Section [3.1.2.2
(see line 6).

In the end, the fitness function calculates the performance indicators
AGrra, Flppa and SRppy based on the goodput distribution information
(see lines 8-10).

5.1.2 Validation of Traffic-unaware Fitness Function

This subsection validates the proposed traffic-unaware fitness function
through simulation from two aspects. First, we validate the accuracy of
the evaluation of the traffic-unaware fitness function in the scenarios us-

ing different topologies compared with simulation results. Second, we
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Table 5.1: Simulation Parameters

Parameter Name Value
Transmission Power 18 dBm
Receiver Sensitivity -78 dBm
Path Loss Model Two-Ray
Shadowing & Fading Model | None

MAC Layer PCS
Routing Static Routing
Transportation Layer ubDbp
Physical Layer IEEE802.11a
Data Rate 24 Mbps
Packet Size 1500 Bytes
Interpacket Interval 0.5ms

compare the traffic-unaware fitness function with two evaluation metrics
TID [81,102,/140] and CDALos [82] through all simulations. These two
evaluation metrics have been commonly used to evaluate the performance
of CA algorithms [81].

The channel allocations used in the validation are from a standard
clique-based CA algorithm INSTC [140] (see Section4.2.2 on page 92)).

The validation is conducted in QualNet 5.2 simulator. The correspond-
ing values for the input parameters are given in Table With the sim-
ulation configuration, R is calculated as 515 m and Dj}}** is calculated as
207m. The interference range R; is defined as 2 x DJ** (D} is 207 m).

The channel indices C as {1,2,3}. All links are configured as unicast
constant-bit rate transmission with saturated traffic demand (24 Mbps).

All averages of simulation results shown are reported with confidence
interval of 95% with the range from [2.716,34.359] kbps under the assump-

tion that the averages are normally distributed.
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5.1.2.1 Different Network Sizes

The grid topologies used in this subsection range from D = 200m to 800m
with a constant interval d of 50 m (Fig.[5.4).

Figure 5.4: A topology representing a point-to-point IEEE 802.11 WBN

In Tables 5.2/ and performance indicators calculated by the traffic-
unaware fitness function are compared with simulation results. Perfor-
mance indicators include AGrga, SRrga, and Flps while AGg, SR, and
FI; represent corresponding simulation results (see definitions in
lon page 97). We mark the cases that the simulation result does not match
with the prediction from the fitness function with *. The error ratio is cal-

culated based on Def. |16 on page 61}

The proposed fitness function performs well in the grid topologies with
accurate prediction of average goodput, and starvation ratio. All simula-
tion results of average goodput and starvation link ratio match with the
prediction from the fitness function. In terms of Jain’s index, in ineffec-
tive carrier sensing scenarios (600 m and 800 m), the simulation results are
slightly higher than the prediction from the fitness function and the overall
error of the prediction is below 7.5%. The reason for the error in the 600 m
case is that carrier sensing range is not a binary function and the irregu-
larity of carrier sensing exists. However, in the proposed goodput model,

the carrier sensing range is fixed without considering the irregularity.
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Table 5.2: Validation of average goodput in grid topologies with the IN-
STC CA

Network Size AG; AGpgp TID CDALgost
200m 0.5998 0.600 5 0.577
400m 0.333 0.333 9 0.000
600m 0.291 [0.285,0.308] 25 0.577
800 m 0.335 [0.322,0.353] 66 0.577

Table 5.3: Validation of fairness in grid topologies with the INSTC CA

Network Size SR, SRgs  FI Flpy TID  CDALgst
200m 0.000 0.000  0.900 0.900 5 0.577
400 m 0.000 0.000 1.000 1.0000 9 0.000
600 m 0231 0231 0548* [0.492,0508] 25  0.577
800 m 0412 0412 0539* [0482,0502] 66 0577

5.1.2.2 Different Evaluation Metrics

This subsection compares the proposed fitness function with another two
CA evaluation metrics, TID and CDALy:. The calculation of TID metric
is defined based on Algorithm (10| according to the definition in [81]]. The
metric TID calculates the total sum of the number of interfering links for all
links in an IEEE 802.11 WBN. In this thesis, the interfering link is defined
based on the R; (see Def. . The CDALyst metric was proposed in [82]
as part of a larger algorithm for channel distribution across links. The last
part of Algorithm 1 in [82] is used to calculate the CDALos; metric. The
metric CDAL.ys: calculates the number of links allocated to the same chan-

nel and then derives the standard deviation among the available channels.

Definition 32. Interfering set yp
Let E denote the complete set of links in an IEEE 802.11 WBN. For a tagged link
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i in E, the conflict set,

ve(i) = {l € E\{i} | dsy < Rp}, (54)

whereby d; , is the distance between sender and receiver in link | and link i respec-
tively, is the theoretical interference range (R = k x D*, k = 2).

Algorithm 10: TID Calculation From [81]
Input : LC(i), P
Output: TID of an IEEE 802.11 WBN

1 begin
2 TID = 0;
3 foreach link j € LC(7) do
4 foreach link k € LC(i) \ {j} do
5 Calculate dk,j (see Def. ;
6 if dk,j < Rj then
7 ‘ vB(j) < link k
8 end
9 end
10 TID = TID + Length(ys(j));
11 end
12 end

The metrics TID and CDA Lost compare with goodput and fairness indi-
cators for all above scenarios in Tables and Both TID and CDA L.yt
cannot reflect the trends of average goodput, starvation link ratio, and
fairness index with different network sizes. For example, in the 400 m and
800 m scenarios, goodput values from simulations are similar but TID and
CDAL.yst have different values. In the 200 m and 600 m scenarios, CDA Lt
values are the same but the goodput, starvation link ratio, and Jain’s in-
dex are much different. These two metrics are not sensitive to the trend of
average goodput, starvation link ratio, and Jain’s index. Hence, these two
metrics are not suitable for evaluating CA algorithms.
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Overall, the proposed traffic-unaware fitness function provides accu-
rate prediction of the performance of channel allocation and outperforms

the other two evaluation metrics.

5.1.3 Validation of Traffic-aware Fitness Function

This subsection validates the proposed traffic-aware fitness function through
simulation from the same two aspects as those in the above Section. The
simulation tool, configuration, topologies, and benchmark performance
metrics are defined as same as those in Section5.1.2l A balanced static CA
(BSCA) algorithm [87] is selected to generate channel allocations for simu-

lation (see Algorithm [7|in Section 4.3.2 on page 114) to generate the chan-

nel allocations. Five normalised traffic demands with respect to the max-
imum net bandwidth are selected as 1.0, 0.8, 0.6, 0.4, and 0.1 representing
different level of traffic conditions. All the traffic demands are calculated
at application layer. All averages of simulation results shown are reported
with confidence interval of 95% with the range from [2.746,34.359] kbps
under the assumption that the averages are normally distributed.

5.1.3.1 Different Network Sizes

Table 5.4: Validation of average goodput in grid topology D = 400 m with
the BSCA CA

Traffic Demand AG; AGga TID CDALcyst

1.0 0.333 0.333 9 0.000
0.8 0.333  0.333 9 0.000
0.6 0.333 0.333 9 0.000
0.4 0333 0.333 9 0.000
0.2 0.200  0.200 9 0.000
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Table 5.5: Validation of fairness in grid topology D = 400 m with the BSCA
CA

Traffic Demand SRy SRppy FI; Flgga TID  CDALcost

1.0 0.000 0.000 0996 0999 9 0.000
0.8 0.000 0.000 099 0999 9 0.000
0.6 0.000 0.000 099 0999 9 0.000
0.4 0.000 0.000 0996 0999 9 0.000
0.2 0.000 0.000 0999 099 9 0.000

Here, two network sizes are used as examples to show the validation of
the traffic-aware fitness function. One network size is 400 m belonging to
the effective carrier sensing scenario and another one is 800 m belonging

to the ineffective carrier sensing scenario.

Tables 5.4 to[5.7 show that the evaluation from the traffic-aware fitness
function is very close to the simulation results. It proves that with differ-
ent traffic demands, the traffic-aware fitness function can provide accurate

performance evaluation of CA algorithms.

Table 5.6: Validation of average goodput in grid topology D = 800 m with
the BSCA CA

Traffic Demand AG; AGpp TID  CDALcost
1.0 0.333 [0.324,0.353] 66 0.577
0.8 0.333 [0.324,0.353] 66 0.577
0.6 0.330 [0.258,0.330] 66 0.577
04 0.291 [0.254,0.318] 66 0.577
0.2 0.200 [0.200,0.200] 66 0.577
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Table 5.7: Validation of fairness in Grid Topology D = 800m with the
BSCA CA

Traffic Demand SRy SRpa  FI Flppa TID CDALcys:
1.0 0.294 0.294 0.665 [0.585,0.635] 66 0.577
0.8 0.294 0.294 0.665 [0.585,0.635] 66 0.577
0.6 0.294 0.294 0.681 [0.642,0.653] 66 0.577
04 0.000 0.000 0.861 [0.858,0.858] 66 0.577
0.2 0.000 0.000 0.999 [0.999,1.000] 66 0.577

5.1.3.2 Different Evaluation Metrics

In Tables to two metrics TID and CDALs: keep the constant value
for the channel allocation with different traffic demands. It implies that
TID and CDALcos are not sensitive to the change of traffic demand. The
proposed traffic-aware fitness function outperforms TID and CDALcs; in
predicting three performance indicators.

5.1.4 Summary of Fitness Function

This section introduces two fitness functions to evaluate the performance
of CA algorithms under saturated and unsaturated traffic conditions. Sim-
ulation results show that two fitness functions provide accurate prediction
of performance indicators for evaluating CA algorithms. Moreover, the
new fitness functions are compared with other two evaluation metrics in
terms of average goodput, starvation link ratio, and fairness index. The
proposed fitness functions outperforms these two evaluation metrics for
all performance indicators.

Besides accuracy, simplicity is another strength of the proposed fitness
functions. The computational complexity of the proposed fitness function
is O(N), where N is the number of links in the given IEEE 802.11 WBN.

With low computational complexity, the calculation of the proposed fit-
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ness function will be efficient.

With advantages of simplicity and accuracy, these new fitness func-
tions are useful to evaluate CA algorithms in the planning stage. Besides
using the fitness function to evaluate CA algorithms, the performance in-
dicators from the fitness function can be fed back to CA algorithms and CA
algorithms can adjust the computation with this feedback (see Figure[5.1)).

The next section will use the new fitness functions to design multi-
objective CA algorithms to improve fairness and goodput in IEEE 802.11
WBNE.

5.2 A Traffic-unaware Multi-objective Channel As-
signment Algorithm For Improving Fairness

and goodput

This section aims to develop a trafficcunaware multi-objective CA (TU-
MOCA) algorithm to improve both fairness and goodput. Different from
other CA algorithms discussed in Chapter [2, the proposed TUMOCA al-
gorithm aims to address both fairness and goodput. This TUMOCA algo-
rithm takes pre-defined requirements into account and aims to find a set
of feasible solutions of channel allocation to meet the predefined require-
ments for a given IEEE 802.11 WBN. The predefined QoS requirement in-
cludes starvation link ratio and Jain’s index as fairness requirements, and

average goodput as goodput requirements.

The next subsections introduce the design of the TUMOCA algorithm

and validate it through simulation.
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5.2.1 The Design of Traffic-unaware Multi-objective Chan-

nel Assignment Algorithm

The reason for ignoring the traffic pattern is to simplify the problem, and
also that the traffic pattern is unknown at the planning stage. Therefore,
saturated traffic assumption is used representing the heaviest traffic con-
dition in this section.

The discussion in Section [5.1.4]stated that developing a CA algorithm
with the evaluation from a fitness function can help improve the perfor-
mance of CA algorithms. Hence, the new TUMOCA algorithm is designed
based on a joint framework (see Figures[5.1and 5.5).

[————]
| CA Integration |

Channel
Assignment | |
| CA Allocations | |
l | S ——— —— ——)

Fitness Function | |
\
\
\

Fitness
Evaluation

Iteration

\

\
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Assessment ¢
Increase Channel
——p
Count

Figure 5.5: The joint framework

The new joint framework has three main components: CA compo-
nent, fitness evaluation component, and performance assessment com-
ponent. The CA component embeds different CA algorithms to utilise
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different strengths. The fitness evaluation component uses fitness func-
tion to calculate the performance indicators of the channel allocation gen-
erated from the CA component. The performance assessment compo-
nent assesses whether the potential performance of a channel allocation
meets pre-defined performance requirements. If the channel allocation
does meet the requirements, the allocation is put into a solution set. If
not, the system will iterate increasing the channel count until the channel
count reaches the maximum number of available channels. In the worse
case, the TUMOCA yields an empty solution set without any feasible solu-
tion. In this case, to find feasible solutions, the user of TUMOCA algorithm
needs either to relax the pre-defined performance requirement or increase

the number of available channels.

|Inputs: Cmax, E, P, Rcs, QoSthre |

| INSTC | |NPCA| |TUASC:H

[ R NS S —— | ——
l - v -

Traffic-unaware
Fitness Function
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Fitness
Evaluation

l
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Y
e— A 4
Assessment |End | CAi — CAF

Figure 5.6: The logic flow of TUMOCA algorithm

Iteration

Next, this joint design structure is applied to the TUMOCA algorithm.
In the TUMOCA (see Figure[5.6), the CA component embeds three CA al-
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gorithms, INSTC [140] (see Section |4.2.2.4 on page 95), NPCA [130] (see
Section 4.2.1 on page 84), and TUASCA (see Section |4.2.1 on page 84).
Simulation analyses show that these three CA algorithms have different

strengths in achieving higher goodput, better fairness or preventing flow
starvation (see Appendix [E4). In effective carrier sensing scenarios, all
three CA algorithms achieve identical goodput and fairness because car-
rier sensing mechanism manages the medium access without exposed nodes,
hidden nodes, and border effect. However, in ineffective carrier sensing
scenarios, INSTC algorithm achieves the highest goodput but poor fair-
ness. NPCA algorithm achieves highest fairness but poor goodput while
TUASCA algorithm maintains high fairness and medium level of goodput
between INSTC and NPCA.

The fitness function in the TUMOCA algorithm is using the traffic-
unaware fitness function defined in Section The inputs of TUMOCA
algorithm are link set E, node position P, maximum channel number Cpax,
and predefined QoS threshold QoSty,, including AGryye, Flrnse, and SRy,
The output of TUMOCA algorithm is a set of channel allocations that meet
the QoStye and the performance indicators of each channel allocation.

The pseudo code of the TUMOCA algorithm is shown in Algorithm 11}
At the beginning, TUMOCA initialises channel number c (see line 2) and
then starts the iteration of c. For each iteration, TUMOCA has two steps.
First, TUMOCA algorithm runs three CA algorithms with the current value
of ¢ and yields three channel allocations that form a set of temporary so-
lution CA¢emp in lines 4 — 7. In the second step, TUMOCA runs the traffic-
unaware fitness function to calculate the performance indicators QoSrra
line 9. In lines 10 — 12, TUMOCA algorithm compares the lower bound
of QoSrpa with the pre-defined QoS threshold QoSty.. If the QoSrr4 is
greater than QoSty,., TUMOCA accepts the channel allocation as a feasi-
ble solution. If not, TUMOCA algorithm increases ¢ by 1 in line 13 and
goes to the next iteration. The TUMOCA stops and outputs the solution

set CAr when c is greater than the maximum channel number Cpax.
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Algorithm 11: Pseudo code for the TUMOCA algorithm
Input : Cmax, E, P,R¢s,Q0STppe
Output: a solution set CAf

1 begin

2 Initialise ¢ = 2;

3 do

4 run the INSTC algorithm to E — CAnsTC ;

5 run the NPCA algorithm to E — CAnpca ;

6 run the TUASCA algorithm to E — CATyasca ;
7 CAtemp = {CAnsTc, CAnpca, CATuasca};

8 foreach i € CAtenp do

9 run the traffic-unaware fitness function — QoS (i) ;
10 if QoSrpa(i) >= QoSty,. then

1 | CA;— CAp;

12 end

13 c=c+1;
14 while ¢ < Cpax;

15 end

5.2.2 Validation of Traffic-unaware Multi-objective Chan-

nel Assignment Algorithm

This subsection validates the TUMOCA algorithm through simulation. As
goodput and fairness are satisfactory in effective carrier sensing scenar-
ios (more details see Appendix [E), the examples are listed in this section
mainly to show the validation in ineffective carrier sensing scenarios. The
topology used as an exampleisa D = 800m, d = 50m and Dy, = 50m in
Figure The maximum channel number is selected as 3, 4, 6.

The simulation runs with Qualnet 5.2 by using IEEE 802.11a param-
eters in Table All links are configured to unicast transmission with

constant bit rate carrying maximum traffic (i.e saturated link assumption).
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With the above configuration, the TUMOCA algorithm is validated by
using different channel numbers and different performance requirements.
The method of validation is to calculate the performance of the channel al-
locations from the TUMOCA in simulations. If the simulation results meet
the performance requirement, the TUMOCA algorithm meets the expec-
tation. In addition, the TUMOCA algorithm will be compared with three
CA algorithms in Appendix [E|to show the difference between them.

All averages of simulation results shown are reported with confidence
interval of 95% with the range from [3.6,16.962] kbps under the assump-
tion that the averages are normally distributed.

Table 5.8: Simulation Parameters for validating TUMOCA

Parameter Name Value
Transmission Power 18 dBm
Receiver Sensitivity -78 dBm
Path Loss Model Two-Ray
Shadowing & Fading Model | None

MAC Layer PCS
Routing Static Routing
Transportation Layer uDP
Physical Layer IEEE802.11a
Data Rate 24 Mbps
Packet Size 1500 Bytes
Interpacket Interval 0.5ms
Transmission Range 50m

First, the predefined QoS requirement is set as SRty = 0.0, Flry,e =
0.7, and AGrypy, = 0.2. The results from the TUMOCA algorithm using 3
and 4 channels are listed in Tables 5.9/ to [5.12l These four tables list the
solution set from the TUMOCA algorithm with goodput and fairness re-

quirements respectively. The Ch,,.,; column represents the channel count



152 CHAPTER 5. MULTI-OBJECTIVE OPTIMISATION OF CA

needed in the corresponding allocation. The “Validation” column shows

whether the solution in the row meets the corresponding requirement.

Table 5.9: The solution set for a D = 800 m grid topology with three avail-
able channels and goodput requirement
Index | Chyeet | AGpea AGs AGqy, Validation

TUMOCA#1 | 3 | [0229,0235 0223 02 v

Table 5.10: The solution set for a D = 800m grid topology with three

available channels and fairness requirements

Index | Chyeq | SRia  SRe SRpy, Validation | Flpy FI,  Flpy,. Validation

TUMOCA#1 | 3 | 0000 0000 0.0 v | [0897,0911] 0895 07 v

Table 5.11: The solution set for a D = 800 m grid topology with four avail-

able channels and goodput requirements

Index | Chyeed | AGpa AGs  AGqy, Validation
TUMOCA#1 | 3 | [0229,0235] 0223 0.2 v
TUMOCA#2 | 4 | [0.224,0235 0218 0.2 v
TUMOCA#3 | 4 | [0.285,0294] 0276 0.2 v

For this scenario (D = 800 m) with three channels, the TUMOCA al-
gorithm yields one solution that the channel count needed is 3. When the
count of available channels is increased from three to four with the same
QoS requirement and this time TUMOCA yields three channel allocations
in Tables5.11]and 5.121

Simulation results show that all the solutions from the TUMOCA al-

gorithm meet the pre-defined QoS requirements. When four channels are
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Table 5.12: The solution set for a D = 800 m grid topology with four avail-

able channels and fairness requirements

Index | Chyea | SRa SRe  SRpy, Validation | Flpy FI,  Flp,, Validation
TUMOCA#1 | 3 | 0000 0000 0.0 v (0.897,0.911] 0.895 0.7 v
TUMOCA#2 | 4 | 0.000 0000 0.0 v (0.991,0991] 0983 0.7 v
TUMOCA#3 | 4 | 0000 0000 0.0 v 0.975,0980] 0977 0.7 v

available to the algorithm, the TUMOCA algorithm also includes the so-
lution using three channels into the new solution set. The TUMOCA al-
gorithm finds a set of feasible solutions instead of one feasible solution.
Third, the prediction of goodput and fairness from the fitness function
embedded in the TUMOCA algorithm is very close to the simulation re-

sults.

Table 5.13: The solution set for a D = 800 m grid topology with six avail-

able channels and goodput requirements

Index | Chueed | AGma AG; AGry,, Validation

TUMOCA#1 5 [0.341,0.353] 0.336 0.3 v’
TUMOCA#2 6 [0.335,0.353] 0.355 0.3 v’
TUMOCA#3 6 [0.397,0.412] 0.410 0.3 v’

Table 5.14: The solution set for a D = 800 m grid topology with six avail-

able channels and fairness requirements

Index | Chyea | SRea SRe SRy Validation | Flea FI,  Flpy, Validation
TUMOCA#1 | 5 | 0000 0000 0.0 v [0.977,0979] 0973 0.8 v
TUMOCA#2 | 6 | 0000 0.000 0.0 v [0.974,0977] 0977 0.8 v

TUMOCA#3 6 0.000 0.000 0.0 v [0.961,0.967] 0.957 0.8 v’
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In the next set of results, a higher QoS requirements is set as SRty =
0.0, FItye = 0.8, and AGrye = 0.3 by using six channels. Tables
to list the solution set from the TUMOCA algorithm with six chan-
nels. First, the TUMOCA algorithm starts to find new solutions to meet
the higher QoS requirement. The simulation results show that all solu-
tions meet the predefined QoS requirement and the prediction from the
titness function is accurate. In addition, the main difference from existing
CA algorithms is that the TUMOCA algorithm meets the desired outcome
of finding multiple feasible solutions.

Besides the examples listed here, the TUMOCA algorithm has been
validated with different sizes of grid topologies ranging from 200m to
900m and the maximum channel number ranging from three to twelve
non-overlapped channels with different QoS requirements. The simula-
tion results in Appendix[F.I|show that TUMOCA algorithm performs well
in random topologies. Overall, all the channel allocations from TUMOCA

are feasible to meet the predefined QoS requirements.

5.3 A Traffic-aware Multi-objective Channel As-
signment Algorithm For Optimising Fairness

and Goodput

This section develops a traffic-aware multi-objective CA (TAMOCA) al-
gorithm based on the TUMOCA algorithm in Section The TAMOCA
algorithm aims to improve fairness and goodput considering traffic load.

Similar to the TUMOCA algorithm, the goal of this TAMOCA algo-
rithm is to find a set of feasible solutions of channel allocation to meet
a predefined QoS requirements for a given IEEE 802.11 WBN. The pre-
defined performance requirements include fairness requirements as star-
vation link ratio and Jain’s Index, and goodput requirement as average

goodput.
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The next sections introduce the design of the TAMOCA algorithm and

then validate it through simulation.

|Inputs: Cmax, E, P, Rcs, f, QoSthre

Channel F
Assignmente— | BSCA | |NPCA| |TAASCAI
-

| S R N S S ——— | —
- v -

Fitness Traffic-aware
Evaluation Fitness Function

Iteration

Performance
Assessment

Y
A 4
|End | CAi — CAF

Figure 5.7: The logic flow of the TAMOCA algorithm

5.3.1 The Design of Traffic-aware Multi-objective Channel
Assignment Algorithm

The TAMOCA algorithm follows the same idea of the multi-objective CA
frame with three main components in Figure The inputs of the TA-
MOCA Algorithm are link set E, node position P, maximum channel num-
ber Cmax, traffic demand f(i), and predefined QoS threshold QoSty,.. The
output of the TAMOCA Algorithm is a set of channel allocations that meet
the QoSty,e and the performance indicators of each channel allocation.
The logic flow and the pseudo code of the TAMOCA algorithm are
shown in Figure 5.7|and Algorithm (12| The structure of TAMOCA is simi-
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lar to that of TUMOCA, that is, to find the feasible solutions by using iter-
ation. At the beginning, TAMOCA initialises channel number c (see line 2)
and then starts the iteration of c¢. For each iteration, TAMOCA runs three
CA algorithms with the current value of ¢ and yields three channel alloca-
tions that form a set of temporary solution CA¢epp in lines 4 — 7. Next, TA-
MOCA runs the traffic-aware fitness function to calculate the performance
indicators QoSrga line 9. In lines 10 — 12, TAMOCA compares QoSrg4
with the pre-defined QoS threshold QoSty,,. If the QoSrE 4 is greater than
QoSthre, TAMOCA accepts the channel allocation as a feasible solution. If
not, TAMOCA increases c by 1 in line 13 and goes to the next iteration.
TAMOCA stops and output the solution set CAr when c is greater than

the maximum channel number Cp,ax.

Algorithm 12: Pseudo code for the TAMOCA algorithm
Input : Chax, E, P,Rcs,Q0S1hye
Output: a solution set CAr

1 begin

2 Initialise ¢ = 2;

3 do

4 Run the BSCA algorithm to E — CAgsca ;

5 Run the NPCA algorithm to E — CAnpca ;

6 Run the TAASCA algorithm to E — CAta4scA ;
7 CAtemp = {CApsca, CAnpca, CAtaascalt;

8 foreach i € CAtemp do

9 Run the traffic-aware fitness function — QoS (i) ;
10 if QoSrpa(i) >= QoSty,e then

11 ‘ CA; — CAg;

12 end

13 c=c+1;
14 while ¢ < Cax;

15 end




5.3. A TRAFFIC-AWARE MOCA ALGORITHM 157

The differences between TUMOCA and TAMOCA are: (i) TAMOCA
considers traffic demand f, (ii) the integrated CA component in TAMOCA
contains traffic-aware CA algorithms BSCA [87] (see Section4.3.2 on page 114),
TAASCA (see Section[4.3.T on page 112), and NPCA [130] (see Section[4.2.1]
fon page 84), and (iii) TAMOCA uses the traffic-aware fitness function in-
stead of the traffic-unaware fitness function in TUMOCA.

5.3.2 Validation of Traffic-aware Multi-objective Channel
Assignment Algorithm

This subsection validates the TAMOCA algorithm through simulation. Sim-
ilar to the validation of the TUMOCA algorithm, the examples of the TA-
MOCA algorithm only show the validation in ineffective carrier sensing
scenarios. The topology used as an exampleisa D = 800m, d = 50 m, and
Dy, = 50m in Figure The simulation runs with Qualnet 5.2 by using
the parameters in Table The maximum channel number is selected as
4 and 6.

All averages of simulation results shown are reported with confidence
interval of 95% with the range from [3.6,16.962] kbps under the assump-
tion that the averages are normally distributed.

As TAMOCA algorithm is a traffic-aware CA algorithm, the validation
will be conducted in heavy traffic condition (f(i) = 0.8) and medium traf-

fic condition (f(i) = 0.4) separately.

5.3.2.1 Validation of Traffic-aware Multi-objective Channel Assignment
in Heavy Traffic Condition (f (i) = 0.8)

This subsection validates the TAMOCA algorithm by selecting the traffic
demand as 0.8 that is the normalised traffic demand with respect to maxi-
mum net bandwidth.

First, the predefined QoS requirements is set as SRty = 0.0, Flp,, =
0.7, and AGry,, = 0.2. Tables to provides the list of the solu-
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tion set from the TAMOCA algorithm with goodput and fairness require-
ments using four channels respectively. The Ch,,.,; column represents the
channel count needed in the corresponding allocation. The “Validation”
column shows whether the solution in the row meets the corresponding

requirement.

Table 5.15: The solution set for a D = 800 m grid topology with four avail-
able channels and goodput requirements (f(i) = 0.8)

Index ‘ Chyeed ‘ AGrga AGs AGry, validation
TAMOCA#1 3 [0.229,0.235] 0.223 0.2 v’
TAMOCA#2 4 [0.224,0.235] 0.218 0.2 v’
TAMOCA#3 4 [0.285,0.294] 0.277 0.2 v’

Table 5.16: The solution set for a D = 800 m grid topology with four avail-

able channels and fairness requirements (f (i) = 0.8)

Index | Chyed | SR SRs SRpy, Validation | Flpa FI, Flpy, Validation
TAMOCA#1 | 3 | 0000 0000 0.0 v (0.897,0911] 0894 0.7 v
TAMOCA#2 | 4 | 0000 0000 0.0 v (0.991,0991] 0983 0.7 v
TAMOCA#3 | 4 | 0000 0000 0.0 v (0.975,0980] 0977 0.7 v

TAMOCA yields three solutions using four channels. When the traf-
fic demand is set as f(i) = 0.8, this ineffective carrier sensing scenario
(D = 800m) still has the potential risk of border effect and flow starva-
tion. Simulation results show that all the solutions from the TAMOCA
algorithm meet the pre-defined QoS requirement with accurate prediction
from the fitness function. The same as TUMOCA, the TAMOCA algorithm
also includes all the feasible solution in the solution set. In addition, the
TAMOCA algorithm meets the desired outcome of finding multiple feasi-
ble solutions.

In the next set of results, a higher QoS requirement is set as SRy, =
0.0, FIrpe = 0.8, and AGry,, = 0.3 by using six channels. Tables
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Table 5.17: The solution set for a D = 800m grid topology with six avail-
able channels and goodput requirements (f(i) = 0.8)

Index ‘Chmd‘ AGprep AGs; AGry, validation

TAMOCA#1 5 [0.341,0.353] 0.336 0.3 v
TAMOCA#2 6 [0.335,0.353] 0.355 0.3 v’
TAMOCA#3 6 [0.397,0.412] 0.410 0.3 v’

Table 5.18: The solution set for a D = 800 m grid topology with six avail-
able channels and fairness requirements (f (i) = 0.8)

Index | Chyes | SRea SRe SRy Validation | Flpe FI, Fly,, Validation
TAMOCA#1 | 5 | 0000 0000 0.0 v (0.977,0979] 0973 0.8 v
TAMOCA#2 | 6 | 0.000 0.000 0.0 v (0.977,0974] 0977 0.8 v
TAMOCA#3 | 6 | 0.000 0.000 0.0 v [0.961,0967] 0957 0.8 v

to provide the list of the channel allocation from TAMOCA with six
channels. Simulation results show that all the solutions from TAMOCA
meet the predefined QoS requirements and the prediction from the fitness

function is accurate.

5.3.2.2 Validation of Traffic-aware Multi-objective Channel Assignment
in Medium Traffic Condition (f (i) = 0.4)

This subsection validates TAMOCA by selecting the normalised traffic de-
mand with respect to the maximum net bandwidth as 0.4 for all links in a
given IEEE 802.11 WBN.

First, the predefined QoS requirements as SRy, = 0.0, Flpp,, = 0.7,
and AGry,, = 0.2. Tables 5.19| and [5.20| provides the list of the solution
set from the TAMOCA algorithm and the three CA algorithms embedded
in the TAMOCA algorithm with goodput and fairness requirements using
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four channels respectively.

Table 5.19: The solution set for a D = 800 m grid topology with four avail-
able channels and goodput requirements (f(i) = 0.4)

Index | Chyews |  AGpa AGs  AGry,, Validation

TAMOCA#1 3 [0.254,0.318] 0.291 0.2 v’
TAMOCA#2 3 [0.229,0.235] 0.222 0.2 v’
TAMOCA#3 4 [0.306,0.365]  0.34 0.2 v’
TAMOCA#4 4 [0.224,0.235]  0.218 0.2 v’
TAMOCA#5 4 [0.285,0.294] 0.276 0.2 v’

Table 5.20: The solution set for a D = 800 m grid topology with four avail-
able channels and fairness requirements (f (i) = 0.4)

Index | Clhyea | SRa SRe  SRpy, Validation | Flpy FI, Fly,, Validation
TAMOCA#1 | 3 | 0000 0000 0.0 v (0.858,0.858] 0.861 0.7 v
TAMOCA#2 | 3 | 0000 0000 0.0 v (0.897,0912] 0.894 0.7 v
TAMOCA#3 | 4 | 0000 0000 0.0 v [0.952,0.966] 0955 0.7 v
TAMOCA#4 | 4 | 0000 0000 0.0 v (0.991,0991] 0983 0.7 v
TAMOCA#5 | 4 | 0000 0000 0.0 v [0.976,098] 0977 0.7 v

For this scenario (D = 800 m) using four channels, the TAMOCA algo-
rithm yields five solutions and simulation results show all solutions meet
the desired performance. With the decrease of traffic demand, the capac-
ity contention reduces so that the TAMOCA algorithm finds more suitable
solutions.

Besides the examples listed here, we also validate TAMOCA with dif-
ferent sizes of grid topologies ranging from 200 m to 900 m and the maxi-
mum channel number ranging from three to twelve non-overlapped chan-
nels with different QoS requirements. The simulation results in Appendix[F2]
show that TAMOCA algorithm performs well in random topologies with
heavy and medium traffic demands. Overall, all the channel allocations
from TAMOCA are feasible to meet the predefined QoS requirements.
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54 Summary

This chapter aims to answer the third research question : “How can a
channel assignment algorithm be designed to achieve predefined QoS
requirements including fairness and average goodput in IEEE 802.11
WBNs?”.

Two new fitness functions are designed to evaluate CA algorithms with
saturated and unsaturated traffic assumptions. Simulation results show
that the proposed fitness functions provide accurate prediction of good-
put distribution, average goodput, starvation link ratio, and fairness index
with a given channel allocation in IEEE 802.11 WBNs. Compared with ex-
isting evaluation metrics of CA algorithms, the proposed fitness function
is more suitable for evaluating the performance of CA algorithms.

A multi-objective joint framework combines the fitness functions and
CA algorithms to achieve both fairness and goodput. This framework in-
troduces a novel and flexible approach for optimising CA with multiple
objectives.

Applying the multi-objective joint framework, two new multi-objective
channel assignment algorithms, TUMOCA and TAMOCA, are designed
to achieve desired outcome of fairness and goodput in IEEE 802.11 WBNSs.
Simulation results show that the proposed TUMOCA and TAMOCA algo-
rithms provide a set of feasible channel allocations with an accurate pre-
diction of performance to meet the predefined QoS requirements. Multi-
ple feasible solutions from TUMOCA and TAMOCA provide useful and
flexible information for network planners to plan IEEE 802.11 WBNs with
better fairness and goodput.
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Chapter 6
Conclusions

This thesis focuses on improving the planning in IEEE 802.11 WBNSs. The
overall goal is to improve network performance (fairness and goodput)
through goodput modelling and optimising channel assignment.

This research started from goodput modelling in Chapter 3l A uni-
fied goodput distribution model is designed to provide link-level pre-
diction of goodput. In Chapter 4, Based on the goodput model, traffic-
unaware and traffic-aware anti-starvation channel assignment algorithms
are designed with a new traffic-aware interference model. These two anti-
starvation channel assignment algorithms effectively prevent flow star-
vation and improve fairness under saturated and unsaturated traffic as-
sumptions. To improve fairness and goodput in IEEE 802.11 WBNSs, in
Chapter 5, we designed traffic-unaware and traffic-aware multi-objective
channel assignment algorithms combined with new fitness functions that
accurately evaluate the performance of a channel allocation. Both traffic-
unaware and traffic-aware channel assignment algorithms output a set of
feasible solutions to achieve the desired fairness and goodput. Simulation
results are shown to validate the proposed goodput model, fitness func-
tions, and channel assignment algorithms throughout the whole thesis.

The new goodput model and proposed channel assignment algorithms
help improve IEEE 802.11 WBN planning and guide network designers

163
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with better evaluation of performance and better channel management.

6.1 Contributions

This thesis investigates different aspects regarding goodput modelling and
channel assignment in IEEE 802.11 WBNSs. The contributions presented in
this thesis are listed as follows.

1. A new goodput distribution model provides accurate prediction of
the link-level goodput in IEEE 802.11 WBNs. Such a goodput model is
useful for node placement at the network planning stage and also for op-
timising interference model, channel assignment, scheduling, and routing
with the prediction of the potential performance.

2. A new traffic-aware interference model based on the new good-
put model reflects global interference (border effect) and local interference
with respect to traffic pattern in IEEE 802.11 WBNSs.

3. Traffic-unaware and traffic-aware channel assignment algorithms
using the new interference model effectively prevent flow starvation and
improve system fairness in IEEE 802.11 WBNSs.

4. Traffic-unaware and traffic-aware fitness functions based on the new
goodput model predict the potential performance of the output from chan-
nel assignment algorithms in a given IEEE 802.11 WBN. These fitness func-
tions are useful for optimising channel assignment algorithms with evalu-
ation of channel allocation on network performance.

5. Traffic-unaware and traffic-aware multi-objective channel assign-
ment algorithms help guide network designers with a set of feasible so-
lutions. These feasible solutions guarantee to achieve the predefined QoS
requirements including fairness and average goodput for a given IEEE
802.11 WBN.

The above major contributions are built up on each other towards ad-
dressing the research goal in Figure The goodput distribution model

is the fundamental contribution. The proposed interference model and
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Figure 6.1: Illustration of thesis contributions

the fitness function are based on the goodput distribution model. The
anti-starvation channel assignment algorithms based on the interference
model improve fairness. Based on the anti-starvation channel assignment
algorithms and the fitness function, multi-objective channel assignment
algorithms optimise two factors in QoS: fairness and goodput. All the con-
tributions help provide the better management of channel resources, and
better fairness and goodput for planning IEEE 802.11 WBNs. Moreover,
the contributions can be used to optimise other protocols such as routing
and scheduling to meet higher requirements in the future.

6.2 Future Work

Due to the scope of this research, there are still some areas for potential

extensions and future work. This section will briefly give some directions
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to readers for the study of each chapter.

6.2.1 Goodput Modelling

One of the limitations in this research is that the proposed goodput model
is based on a linear single-hop topology and all nodes are configured with
the identical traffic demand. This is the way to simplify the modelling and
reduce the complexity. However, in real-world applications, the multi-hop
topology with inequal traffic demands is more common. Therefore, future
work could explore how the goodput model predicts the performance in
multi-hop topology with different traffic demands in IEEE 802.11 WBN .
In addition, test-bed experiments could be used to further validate our
model. With more results, the goodput model could be refined to provide
more accurate prediction of link quality in IEEE 802.11 WBN:.

6.2.2 Interference Model

The interference model is based on the goodput model. With the improve-
ment of the goodput model, the interference model will also be refined to
be more accurate and flexible to multi-hop IEEE 802.11 WBNs with differ-
ent traffic demands in different links. Moreover, the interference model
will consider the accumulated interference from multiple interfering links
instead of a pair-wise interference. With the improvement of accuracy, the
interference model can help optimise channel assignment algorithms and

other approaches with higher performance.

6.2.3 Channel Assignment with Fairness

One of the limitations in the anti-starvation channel assignment algorithms
is that these two algorithms only considered the feature of multi-channel
without considering multi-radio. Future work could add the feature of

multi-radio to extend the anti-starvation channel assignment algorithms.
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By considering the features of multi-channel and multi-radio, the anti-
starvation channel assignment algorithms can be more effective for plan-
ning IEEE 802.11 WBNss with better performance. Moreover, with the im-
provement of the goodput model and the interference model, these anti-
starvation channel assignment algorithms can be optimised to be more
realistic to further improve fairness in multi-hop IEEE 802.11 WBNSs. Test-
bed experiments can be used to validate the anti-starvation channel as-
signment algorithms and provide feedback to enhance these two algo-

rithms.

6.2.4 Fitness Function

The proposed fitness function is designed based on the goodput model.
With the improvement of the goodput model, the fitness function will also
be refined to be more accurate and flexible to multi-hop IEEE 802.11 WBNs
with different traffic demands. Moreover, the fitness function will consider
the feature of multi-radio. With the improvement of accuracy and usabil-
ity, the fitness function can help optimise channel assignment algorithms
and other approaches with better performance.

6.2.5 Channel Assignment with Fairness and Goodput

Future work could extend the multi-objective channel assignment algo-
rithms to multi-channel and multi-radio IEEE 802.11 WBNs and thus the
multi-objective channel assignment algorithms can be more adaptive for
optimising IEEE 802.11 WBN planning. With the improvement of the fit-
ness function, these multi-objective channel assignment algorithms can be
improved with better accuracy. Since genetic algorithm has been widely
used in multi-objective optimisation, Genetic algorithm may be used to
solve the optimisation on fairness and goodput in IEEE 802.11 WBNs and
validate this idea through simulation. In addition, test-bed experiments

can further validate and optimise multi-objective channel assignment.
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Appendix A

IEEE 802.11 WBN Goodput
Patterns with Effective vs.

Inetfective Carrier Sensing

This chapter investigates goodput patterns through simulation in an IEEE
802.11 WBN and discusses the difference between simulation results and
expectations from the disk-graph model under effective and ineffective
carrier sensing scenarios. Among the goodput models discussed in Chap-
ter 2} the disk-graph model [68] is the simplest model that has been widely
used in performance modelling in IEEE 802.11 WBNSs [37,[75]. The inves-
tigation aims to identify how the disk-graph model reflects the behaviour
of wireless links in IEEE 802.11 WBNSs.

A.1 Simulation Configurations

To characterise the difference of goodput between disk-graph model and
simulation, two typical carrier sensing scenarios are selected with struc-
tured linear topologies and two types of traffic demands. Two typical car-
rier sensing scenarios cover effective and ineffective carrier sensing sce-

narios.
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Figure A.3: The three-link scenario representing ineffective CSMA with
border effect

The effective carrier sensing scenario is selected with a two-link sce-
nario (see Figures and [A.2), which is a building block of any WBNSs.
In Figure four nodes S1, R1, S2, and R2 are within each other’s car-
rier sensing range. In Figure two links L1 and L2 are within each
other’s carrier sensing range. The ineffective carrier sensing scenario is
selected with a three-link scenario (see Figure that can be regarded
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as the combination of three two-link scenarios and includes many typical
issues in IEEE 802.11 WBNs such as border effect.

Two types of traffic demands considered include saturated and unsatu-
rated traffic demands. Saturated traffic represents heavy traffic across the
IEEE 802.11 WBN (e.g. dense urban area, providing Internet access via an
IEEE 802.11 WBN) and unsaturated traffic represents the heavy, medium
and light traffic across an IEEE 802.11 WBN (e.g. sensor network informa-
tion exchange, machine-to-machine communication and traffic from the
Internet of Things). These two scenarios and two traffic demands try to
cover the characteristics of various application scenarios in IEEE 802.11
WBN:Es.

Table A.1: Simulation configuration parameters

Parameter Name Value
Transmission Power 18 dBm
Receiver Sensitivity -78 dBm
Path Loss Model Two-Ray
Shadowing and Fading Model None
Physical Layer IEEE 802.11a
Data Rate 24 Mbps
MAC Layer PCS

Routing Static Routing
Transportation Layer uDP

Packet Size 1500 Bytes
Inter-packet Interval for Saturated Traffic 0.5ms
Inter-packet Interval for Unsaturated Traffic | 0.5-3.45ms

All the simulations are conducted in QualNet 5.2. Table lists the
main configuration parameters. Note that in this thesis, only physical car-

rier sensing (PCS) is used without using virtual carrier sensing. The the-

max

oretical maximum transmission range D}

in this simulation is approx-
imately 207 m. This value is calculated by QualNet’s radio range utility

with the simulation scenario as input. Moreover, physical carrier sensing
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range R is defined by a triplet consisting of (i) the minimum receiver sen-
sitivity of —78 dBm, (ii) maximum transmission power of 18 dBm (based
on Alcatel Lucent WaveL AN card), and (iii) the two-ray propagation model,
which yields the distance of 515 m.

Part of the results in the following subsections appears in our previous
work [114}116]. Simulation results shown in this section are averages from
100 randomly seeded simulation runs. All averages shown are reported
with confidence interval of 95% with the range of [2.746, 34.359] kbps un-
der the assumption that the averages are normally distributed.

The next sections will discuss the simulation results and how the re-
sults match up with the predictions from the disk-graph model under ef-

fective and ineffective carrier sensing conditions separately.

A.2 A Disk-graph Model Accurately Character-
izes Goodput Distribution Under Effective
Carrier Sensing in IEEE 802.11 WBN’s

This subsection shows that the disk-graph model accurately characterizes
goodput distribution in effective carrier sensing by using the simulation
results in a two-link scenario. The two-link scenario is a simple single-
radio single-channel IEEE 802.11 WBN scenario (see Figures and[A.2).
There are two pairs of nodes denoted by (S1, R1) and (52, R2) in the net-
work and communicating pairs are connected through wireless links L1
and L2 respectively. A constant bit rate (CBR) traffic generator sending
packets at 24 Mbps encapsulated with UDP is chosen as the application
for the senders. All nodes are configured with identical parameters and
wireless links L1 and L2 utilise the same channel.

For effective carrier sensing scenario, two links L1 and L2 are either
within each other’s carrier sensing range or out of each other’s carrier

sensing range. As links L1 and L2 are like “mirror” links in the two-link
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scenario, the aggregated goodput of links L1 and L2 is used in the analysis
instead of individual goodput for both saturated and unsaturated traffic
demands.

A.2.1 Saturated Traffic Demand

Our previous paper [114] studied the two-link scenario with saturated
traffic demand and reported: (i) For distance D, = 50m < 0.5D[}®, very
few collisions occur; (ii) when two links are within each other’s carrier
sensing range, they share channel capacity equally; (iii) when two links

are out of each other’s carrier sensing range, they appear as two separate

networks.
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Figure A.4: Comparison of aggregated goodput between simulation and
disk-graph model for Dy = 50 m (PCS mechanism)

An example using PCS mechanism is used to help readers understand
the above findings in Figure PCS mechanism refers to physical car-
rier sensing mechanism without using virtual carrier sensing mechanism.
In Figure the X axis refers to the distance between two links L1 and
L2 denoted by dL1,2 (see Figure and Y axis presents the aggregated
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goodput of links L1 and L2. The two lines in the figure refer to the simu-
lation result and the expectation from the disk-graph analytical model.

The expectation from disk-graph analytical model is that within carrier
sensing range, two links L1 and L2 fairly share the channel capacity. Out of
each other’s carrier sensing range, two links L1 and L2 occupy the channel
capacity. The simulation results match with the expected goodput pattern
form disk-graph model. The aggregated goodput over a range of dL1,2
shows two distinct trends in Figure a step-like goodput response is
observed with increasing dL1,2. We notice that the simulation results are
slightly higher than the prediction from the analytical model. It implies
that even all nodes are within each other’s carrier sensing range, carrier
sensing mechanism may allow concurrent transmissions for a short term
that leads to a slightly higher goodput in the simulation than the analytical
prediction.

A.2.2 Unsaturated Traffic Demand
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Figure A.5: Comparison of aggregated goodput between simulation and
disk-graph model with unsaturated traffic demands for dr;, = 100 m in

the two-link scenario

For unsaturated traffic demand in two-link scenario, the focus is the
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goodput pattern when the two links are within each other’s carrier sensing
range. Hence, the topology in Figure is configured as where the dis-
tance between links L1 and L2, d; , = 100m. Five traffic demands are se-
lected for links L1 and L2, 17.39 Mbps, 13.91 Mbps, 10.43 Mbps, 6.96 Mbps,
and 3.48 Mbps calculated at application layer. These five traffic demands
are not greater than 17.39 Mbps that is the net capacity excluded overhead
calculated from simulation results. The traffic demands (plotted as red
bars) is compared with the actual aggregated goodput of links L1 and L2
(plotted as blue bars) and the prediction from the disk-graph analytical
model (plotted as yellow bars) in Figure

The expectation of the disk-graph model is that when the sum of the
traffic demands of two links exceeds the net capacity, they will share the
capacity equally, while two links can achieve the desired goodput if the
sum of the traffic demands on both of them are less than the net capacity.
These simulation results match with the expectation from the disk-graph
model.

In this figure, when the sum of the traffic demands of these two links L1
and L2 exceeds the channel capacity, both links cannot achieve their traffic
demands and have to share the channel capacity fairly (see 17.39 Mbps,
13.91 Mbps, 10.43 Mbps in Figure [A.5). For example, when the traffic de-
mand rate of links L1 and L2 is 13.91 Mbps, the sum of the traffic demand
of these two links is 27.82 Mbps that exceeds the net capacity. Because links
L1 and L2 are within each other’s carrier sensing range, each link has to

share the channel capacity and can only achieve about 8.5 Mbps goodput.

When the sum of the traffic demands of these two links is less than the
channel capacity 17.39 Mbps (see 6.96 Mbps, and 3.48 Mbps in Figure[A.5),
each link achieves their traffic demands. For example, when the traffic
demand rate of links L1 and L2 is 6.96 Mbps, the sum of the traffic demand
of these two links is 13.92 Mbps that is less than the net capacity and both
links can achieve their traffic demands.
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A.3 A Disk-graph Model Fails to Characterize Good-
put Distribution in Ineffective Carrier Sens-
ing in WBNs

This subsection will discuss the disk-graph model fails to characterize the
goodput distribution in ineffective carrier sensing scenario. The effective
carrier sensing scenario is changed into the ineffective carrier sensing sce-
nario by adding a third link to the two-link scenario (see Figure[A.3). This
scenario is a typical example for border effect where links L1 and L3 are
the two border links that are beyond each other’s carrier sensing range.
Link L2 is in the middle and within the carrier sensing range of both links
L1 and L3.

A.3.1 Saturated Traffic Demand

For saturated traffic demand in ineffective carrier sensing scenario, our
previous paper [116] reported that when the distance between two border
links exceeds each other’s carrier sensing range, border effect exists and
causes flow starvation in the middle link.

An exampl in Figure explains border effect and flow starvation
in which the disk-graph model fails to characterize the goodput pattern.
In the three-link scenario (see Figure [A.3), as links L1 and L3 are out of
each other’s carrier sensing range, they do not interfere with each other.
Two pairs of links L1 and L2, links L2 and L3 are still within each other’s
carrier sensing range. From the perspective of link L2, links L1 and L3
are with its carrier sensing range. According to the disk-graph model,
the expectation is that three links will share the channel capacity equally
(see Figure[A.6). However, the simulation results show a different pattern
in that two border links L1 and L3 utilise the spatial resource to achieve
highest goodput based on the sacrifice of the goodput in link L2. These

results do not match with the expection from the disk-graph model.
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Figure A.6: Comparison of goodput between simulation and disk-graph
model in three-link Scenario D = 800m with saturated traffic demands

A.3.2 Unsaturated Traffic Demand

For unsaturated traffic demand in the three link scenario, five traffic de-
mands are selected for the links L1, L2 and L3, as 17.39 Mbps, 13.91 Mbps,
10.43 Mbps, 6.96 Mbps, and 3.48 Mbps, which are lower than the net ca-
pacity 17.39 Mbps.

We list the comparison between traffic demands and the actual good-
put of three links L1, L2 and L3 in Figure The X axis denotes the
traffic demand rate of each link, the red bar represents the traffic demand
rate and the blue, brown, and pink bars represent the actual goodput of
the links L1, L2 and L3 respectively. The yellow bar refers to the predic-
tion from the disk-graph analytical model.

The expectation of the disk-graph model is that three links will share
the channel capacity from the perspective of the middle link L2. There-
fore, when the sum of the traffic demands of the three links exceed the net
capacity, these three links will share the capacity equally. If the sum of the
traffic demands of these three links is less than the net capacity, these links
achieve the desired goodput.
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Figure A.7: Comparison of goodput between simulation and disk-graph

model in three-link scenario D = 800m with unsaturated traffic demands

In Figure simulation results do not totally match with the predic-
tion from the disk-graph model. When the sum of the traffic demands of
two border links L1 and L3 exceeds the channel capacity, starvation exists
at link L2 and two border links L1 and L3 occupy the channel capacity.
For example, when the traffic demand rate of three links is 13.91 Mbps,
the sum of the traffic demand of three links is 41.73 Mbps that exceeds the
net capacity. The two border links L1 and L3 achieve the desired good-
put while the middle link L2 achieves very little goodput. In addition, the
sum of three links exceed the channel capacity that implies spatial reuse
exists in ineffective carrier sensing scenarios. These goodput patterns are
unexpected from the disk-graph model.

When the sum of the traffic demands of the two border links L1 and
L3 is less than the channel capacity (see 3.48 Mbps in Figure [A.7), starva-
tion does not exist and these three links achieve the traffic demand. These

simulation results match the expectation from the disk-graph model.
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A4 Summary

Based on the above observations, the goodput patterns in effective carrier
sensing scenarios match with the expectations from the disk-graph model.
When all nodes are within each other’s carrier sensing range, these nodes
share the channel capacity fairly. When all nodes are out of each other’s
carrier sensing range, each node occupies the whole channel capacity.

However, some simulation results in ineffective carrier sensing scenar-
ios show an unexpected goodput pattern from the disk-graph model. Ac-
cording to the disk-graph model, links within the carrier sensing range of a
link should share channel capacity equally and the sum of goodput of the
links in any interference set is below 1. However, this conclusion does not
hold in the scenarios with border effect and flow starvation. Hence, the
disk-graph model cannot explain the flow starvation in the middle link
and the interaction between border links and middle link.

In a larger network, the main reason for unfairness between border
links and middle links is that the border links and the middle links sense
the channel state differently due to the layout of IEEE 802.11 WBNs and
CSMA mechanism. The border links have fewer neighbouring links than
the links between borders and they are likely to transmit more packets.
The transmission attempt of links in the middle have to contend with the
border links and are more likely to back off until the channel is released
by the border links. Therefore, this asymmetric back off leads to unfair
sharing of channel among the links in IEEE 802.11 WBNs and some middle
links may starve.

In all, the disk-graph model is a simple model that predicts the good-
put pattern in effective carrier sensing scenarios but it fails to predict the

goodput pattern in ineffective carrier sensing scenarios.
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Appendix B

Proof of The Proposed Goodput
Distribution Model

B.1 Goodput For Effective Carrier Sensing with

Saturated Traffic Assumption

Proof. Let N denote the number of links in a given IEEE 802.11 WBN and
f(i) the normalised traffic demand of a given link i with respect to the
maximum net capacity.

For N = 1, then there is one link L; in the IEEE 802.11 WBN. If the traffic
demand of this link f(L;) = 1, then L; achieves the full capacity:

G(Ly) = % =1
For N = 2, there are two links L1 and L, in the IEEE 802.11 WBN. If the
traffic demand of these two links is f(L1) = f(Lp) = 1, the sum of the
traffic demands of these two links exceeds the capacity f(L1) + f(L2) > 1,
then these two links have to share the capacity and achieve goodput:
G(L1) = G(Lp) and G(L1) + G(Lp) = 1.

1
Therefore, G (L;) = N Vi € N.
For N = k, there are k links L1, ... and L; in the IEEE 802.11 WBN. If the

181
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traffic demand of these k links is f(L1) = ... = f(Lx) = 1, the sum of the
traffic demands of these k links exceeds the capacity Y jc; f(j) > 1, then
these k links have to share the capacity and achieve:

G(L1) = G(L1) ... = G(Lx) and YLjer f(j) > 1.

1
Therefore, we have G (L;) = N’ Vi e N.
By induction on N, the goodput for a given link for saturated traffic de-

mand in effective carrier sensing scenario in Def. ]

B.2 Pessimistic and Optimistic Goodput Under
Ineffective CSMA with Saturated Traffic As-
sumption

Proof. Let N be the number of links in a given IEEE 802.11 WBN, f (i) is the
normalised traffic demand of a given link i with respect to the maximum

net capacity, IS(i) and (i) are the independent set and conflict set of a

given link 7 (see Definitions in Section 3.1.1.2 on page 46).

Figure B.1: A three-link IEEE 802.11 WBN

Let N = 3, there are three links L1, L,, and L3 in the IEEE 802.11 WBN
(see Figure B.1). By Def.[3] the conflict set of each link i, i € {1,2,3} are:



B.2. GOODPUT FOR INEFFECTIVE CSMA (SATURATED TRAFFIC)183

v(L1) = {L2}, v(L2) = {L1,Ls}, v(Ls) = {L»}, and by Def. 2| the inde-
pendent set of each link i is:

IS(L1) = {La}, IS(L3) = {L1}, IS(L2) = {@}.

Let the traffic demand of each link be the saturated traffic as f(i) = 1.
As link L; is conflict with links L; and L3, we calculate the pessimistic
goodput of link L, with the optimistic goodput of links L1 and L3. Because
L, has no link in its independent set the goodput is zero i.e. Gp(L,) = 0.0,
it follows that links L; and L3 will occupy full capacity:

Go(Ly) = [IS(L1)]
ONV T IS (L) + [1S(La)] 7
GolLs) = [IS(Ls3)|

 [IS(Ls)| + [1S(La2)|
Go(L1) + Gp(L2) = 1and Go(L2) + Gp(L3) = 1.

By Def. @ AOMC = 111, L3} and |[yMC| = 2. By Def. @, the optimistic

goodput of starving link L, is:
7M€

Go(Lp) = o X = 0.133 where « is selected as 0.2,
which implies that starving link achieves a non-zero goodput. Since starv-
ing link L, may achieve non-zero goodput but very low goodput, links L;
and L3 cannot occupy the whole capacity. Thus, the pessimistic goodput
of links L; and L3 will be :

Goll) = (g oo (1~ Go(L2))

PV TIS(Ly) |+ [1S(Ly)] O\m2/
|IS(L3)|

Gp(Lg) = X (1 — Go(Lz))

- IS(L2)] + |1S(Ls))
From the perspective of links L and L3, the sum of goodput in their con-

flict sets follows: Go(Ly) + Gp(L1) = 1 and Gp(L;) + Gp(L3) = 1.

Let N = 4, there are four links in Figure By Def. 3 the conflict set
of each link i,i € {1,2,3,4} are:

v(L1) = {L2}, v(L2) = {L1,Ls} , v(L3) = {L2, L}, v(L4) = {Ls}
and by Def. 2| the independent set of each link i is:



184 APPENDIX B. PROOF OF THE GOODPUT DISTRIBUTION MODEL

Figure B.2: A four-link IEEE 802.11 WBN

IS(L1) = {Ls, L4}, IS(L3) = {L1}, IS(Ls) = {L1}, IS(Ls) = {L1, L2}.
Thus, by Def.(8) no link will be starved because no link is within the carrier
sensing range of two border links. It follows that two subgroups {L1, L, }
and {L3, L4} occupy full capacity for the optimistic situation because two
border links are out of each other’s carrier sensing range. In each sub-
group, the optimistic goodput of a link will be proportional to the number
of links in its independent set and the capacity contention is only consid-
ered within the conflict set of border link:

Go(Ly) = [IS(L1)|
OV T IS(Ly)[ + [18(Ly)] 7
Go(Lp) = 15(L2) ,

 [IS(Ly)[ + [IS(Lo)]
Go(L1) + Go(L2) =1.

Similarly, the goodput for the other two links are:

Go(Ls) = [IS(Ls)|
OV IS (L) +11S(Ly)]
Go(Ly) = [IS(L4)| ,

~ IS(La)| + [I1S(Ly)]
Go(Ls) + Go(Ly) = 1.
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By Def. [7] y6MC = {L;,Ls} and 4y®MC = 2. Since in this four-link
WBN, there is no starving link. So the pessimistic goodput of links are
the same as their optimistic goodput following the same assumption that
goodput is proportional to the number of links in the independent set.
For left border link L1, the pessimistic goodput follows Gp(L1) + Gp(L2) =
1 and is:

[1S(Ly)]|

O = S IS )]

For link Ly, v(Ly) = {L1,L3}. The pessimistic goodput follows Gp(L1) +

Gp(Lz) + Gp(L3) = 1and is:

Gp(Ly) = |IS(Ly)|
P IS (L) | + 11S(La) + [1S(Ls)|

Similarly, the pessimistic goodput of links L3 and L4 are:

(L) [1S(L3)]|
PASSI IS (L) + [IS(La) [+ [IS(Ly)|
[IS(Ly)|
Gp(Ly) =

[IS(Ls)| + [IS(L4)|

Figure B.3: A five-link IEEE 802.11 WBN

Let N = 5, there are five links in Figure By Def. 3] the conflict set
of each link i,i € {1,2,3,4,5} are:

v(L1) = {L2, Ls}, v(L2) = {L1, L3, La}, ¥(L3) = {L1, L3, La, L5}, ¥ (La) =
{L2,Ls, Ls}, v(Ls) = {Ls, La}.
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and by Def. 2 the independent set of each link i is:

IS(L1) = {Ls Ls}, IS(L2) = {Ls}, IS(Ls) = {@}, IS(Ls) = {L1},
IS(Ls) = {L1, L2}

Assuming f(i) = 1, by Def., link L3 will be starved because L, has
no link in its independent set i.e. Gp(L3) = 0.0, It follows that two sub-
group {Ly, Lo} and {L3, L4} occupy full capacity for the ideal case because
two border links are out of each other’s carrier sensing range. In each sub-
group, the optimistic goodput of a link will be proportional to the num-
ber of links in its independent set, and the corresponding expressions for

goodput are:
[IS(L1)l|
Go(Lq) = ,
olb) = IS (L) [+ 15(Lo)]| + 115(Ls)]
[IS(Ly)|
G L == 7
o) = 1S TL T+ 115(La) + T15(Ls)]
Go(L1) + Go(L2) +Gp(L3) = 1.
Similary, for the remaining subgroup:
[IS(Ly)|
Go(Lg) = ,
o(L) = 15T + 115 (La)| + 115 (L5)]
[IS(Ly)|
Go(Ls) = ,

- [IS(Ls)| + [IS(La)[ + [IS(Ls)|
Go(Ls) + Go(Ls) + Gp(Ls) = 1.
and this yields the solution we call the optimistic goodput.
By Def.[7, yMC = {L;,Ls} and |[y®MC| = 2. By Def.[] the optimistic

goodput of starving link L3 is:
|y EME]
= 0.08 where « is selected as 0.2.

Go(Ls) = & X
Since the starving link achieves non-zero goodput, the pessimistic good-
put of other links need to consider it. For left border link L, its pessimistic
goodput follows Gp(L1) + Gp(Lz) + Gp(L3) = 1 and is:
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[1S(L1)|

Grl) = T 8L T 118 (L))~ (1~ Colka))

For link Ly, v(L) = {L1,L3,Ls}. We need to calculate the pessimistic
goodput of link L2 with consideration of the effect of link Ly. Gp(L1) +
Gp(L2) + Gp(L3) + Gp(Ly) = 1.

[1S(Ly)]

Grile) = ST+ 1L + 18 ()] + 115(Lay] < 1~ Colka)) -

With the same reasoning, the pessimistic goodput of links L4 and Ls are:

[1S(Ls)]

GrlLs) = ST T 115 (La)| T 115(Ly)] (1~ Colka)) -

For link Ly, v(Ls) = {Lp, L3, Ls}. We need to calculate the pessimistic
goodput of link L, with consideration of the effect of link L.

[1S(Ly)]

GrLs) = 15Ty + 115 (La)] + 18 (La)] + 15(L)] < 1~ Golka)) -

By induction on N, we define the pessimistic and optimistic estimate of
the goodput Gp(i) and Go(i) for a given link for saturated traffic demand
in ineffective carrier sensing scenario in Def[8|and Def[9)] O

B.3 Goodput For Effective Carrier Sensing with

Unsaturated Traffic Assumption

Proof. Let N be the number of links in a given IEEE 802.11 WBN and f (i)
the normalised traffic demand of a given link i with respect to the maxi-

mum net capacity.
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For N = 1, then there is one link L; in the IEEE 802.11 WBN. Since the
normalised traffic demand of this link f(L;) < 1, then L; achieves the
desired goodput:

G(Ly) = £(i).
For N = 2, there are two links L; and L, in the IEEE 802.11 WBN. If the
sum of the normalised traffic demands of these two links exceeds the ca-
pacity f(Ly) + f(L2) > 1, then these two links have to share the capacity

and achieve the goodput as :

G(L1) = G(Lp) = %: 0.5.

Therefore, G (L;) = % , Vi € N.

If the sum of the traffic demands of these two links does not exceed the
capacity f(L1) + f(Lz) < 1, then these two links achieve the desired good-
put:

G(L1) = G(Lp) = f(i) and G(L1) + G(Lp) < 1.

Therefore, G (L;) = f(i), Vi € N.

For N = k, there are k links L, ... and L; in the IEEE 802.11 WBN.
If the sum of the traffic demands of these k links exceeds the capacity
Yjee f(j) = k > 1, then these k links have to share the capacity and achieve

the goodput as:

G(Ly) = ... = G(Ly) = %: % and G(Ly) + ...+ G(Ly) = 1.

Therefore, G (L;) = %, Vie N.

If the sum of the traffic demands of these k links does not exceed the ca-

pacity Y icg f(j) = k < 1, then these k links achieve desired goodput as:
G(L1) =..=G(Ly) = f(i) and G(L1)+..+G(Ly) <1

Therefore, G (L;) = f(i), Vi € N.

By induction on N, the goodput for a given link for unsaturated traffic

demand in effective carrier sensing scenario in Def. O
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Additional Validation of the
Proposed Goodput Model Using
IEEE 802.11a 48 Mbps

The chapter discusses the validation of the proposed goodput distribution

model defined in Chapter |3 on page 41| by using a different data rate of
IEEE 802.11a 48 Mbps. The reason to choose IEEE 802.11a 48 Mbps is to

validate the accuracy of the proposed goodput model in a higher data rate.
The next sections are the simulation results with two-ray and two-ray

shadowing propagation models.

C.1 Simulation validation of the goodput model
with two-ray propagation model using IEEE
802.11a 48 Mbps

This section validates the accuracy of the proposed goodput model through
simulation with the two-ray ground model [66].
The configuration parameters are listed in Tables Similar to the

validation in Section 3.2 on page 59 (i) all nodes are configured with iden-
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tical parameters and choose constant bit rate (CBR) unicast transmission
as the application with saturated and unsaturated traffic demands(see Ta-
ble ; (ii) all nodes are configured with one radio interface and the same
channel. Node placement is based on a grid topology (see Figure
; (iil) transmitter-receiver separation is chosen as 20m to guaran-
tee collision-free transmissions (based on the findings from [156]). Car-

rier sensing range Rcg is calculated as 435 m with the configuration in Ta-

blelC.1l

Table C.1: Simulation configuration parameters

Parameter Name Value
Transmission Power 16 dBm
Receiver Sensitivity -69 dBm
Path Loss Model Two-Ray
Shadowing and Fading Model None
Physical Layer IEEE 802.11a
Data Rate 48 Mbps
MAC Layer PCS
Routing Static Routing
Transportation Layer UDP

Packet Size 1500 Bytes
Inter-packet Interval for Saturated Traffic 0.25ms
Inter-packet Interval for Unsaturated Traffic | 0.25-4.26 ms

The results shown for the average goodput in this section are calculated
from 100 randomly seeded simulation runs. All averages shown are re-
ported with confidence interval of 95% given by the range of [0.013,36.56]
kbps under the assumption that the averages are normally distributed.

The next sections categorise the simulation results by using two-ray
propagation model are into two parts, saturated and unsaturated traffic

demands.
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C.1.1 Saturated Traffic Demand

Due to space, two simulation results are listed for effective and ineffective

carrier sensing scenarios. For the effective carrier sensing scenario, the

topology in Figure|3.3 on page 60)|is selected with the border distance D as

200 m, where all nodes are within each other’s R.s. For ineffective carrier
sensing scenarios, the topology in Figure (3.3 is selected with the border
distance D as 600 m , where two border links are out of each other’s carrier

sensing range.

Table C.2: Goodput of five links in a 200 x 20 m? topology with two-ray

propagation model

Linki Ggs(i) Gp(i)/Gol(i) ER

1 0.161 0.200 -
2 0.213* 0.200 0.059
3 0.248* 0.200 0.195
4 0.216* 0.200 0.073
5 0.162 0.200 -

Table C.3: Goodput of six links in a 600 x 20 m? topology with two-ray

propagation model

Linki Gs(i) Gp(i) Go(i) ER

0.614 0552 0.667 -
0328 0250 0333 -
0.034 0.000 0.067 -
0.034 0.000 0.067 -
0328 0250 0333 -
0.616 0.552 0.667 -

N TG = W N -

In effective carrier sensing scenarios with saturated traffic demand, the
results in Table show that different links achieve different goodput.
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We mark the simulation results that slightly exceed the prediction from
the new model with (*). In the new goodput model, we assume that all
links share the channel capacity, which matches with the expectation from
disk-graph model. However, in practice there is a small variation in good-
put among all the links. In this case, middle links achieve higher goodput
than the border links. It implies that even in effective carrier sensing sce-
narios, the carrier sensing scheme cannot control the media access among
neighbouring links fairly. The overall different ratio is below 20%.

For the ineffective scenario, the topology is chosen with a fixed bor-
der distance, D = 600m to ensure that the two border links are always
out of each other’s R and border effect should occur. Table displays
the comparison between the results from simulations and those from the
new goodput model. The grey cells in these two tables denote the links
identified as starving links.

The data in Table|C.3{shows the new model predicts starving links cor-
rectly. For the non-starving links, all the simulation mean values fall be-
tween the range of the predictions from the new model. In ineffective car-
rier sensing scenarios with saturated traffic demands, the proposed good-
put model provides accurate prediction of starvation and goodput.

C.1.2 Unsaturated Traffic Demand

To validate the new model with unsaturated traffic demand, three unsatu-
rated traffic demands are selected by using different inter-packet intervals.
The traffic demands f (i) at the application layer can be normalised with
respect of the maximum net bandwidth as 0.8, 0.6, 0.4, and 0.1 with the
above inter-packet intervals and the configuration parameters in Table[C.1]
The results of the effective carrier sensing scenario (D = 200m) are
list the results in Tables and The function f (i) refers to the traf-
fic demand while goodput Gs(i) and Gp(i)/Gp (i) denote the simulation
goodput mean values and the predicted goodput from the new model.

The results show the same goodput pattern as that in saturated traffic
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Table C.4: Goodput of five links in a 200 x 20 m? topology with two-ray
propagation model

Linki | f() Gs(i) Ge(i)/Goi) ER | f(i) Gs(i) Gpli)/Goli) ER

1 0.8 0.161 0.200 - 0.6 0.161 0.200 -
2 0.8 0.214* 0.200 0.065 | 0.6 0.214* 0.200 0.065
3 0.8 0.249* 0.200 0.197 | 0.6 0.251*% 0.200 0.203
4 0.8 0.214* 0.200 0.065 | 0.6 0.214* 0.200 0.065
5 0.8 0.162 0.200 - 0.6 0.161 0.200 -

Table C.5: Goodput of five links in a 200 x 20 m? topology with two-ray
propagation model—-continued

Linki | f(i) Gs(i) Gp(i)/Go(i) ER | f(i) Gs(i) Gp(i)/Go(i) ER

1 04 0.162 0.200 - 0.1 0.100 0.100 -
2 04 0.214% 0.200 0.065 | 0.1 0.100 0.100 -
3 04 0.253% 0.200 0209 | 0.1 0.100 0.100 -
4 04 0.212% 0.200 0.057 | 0.1 0.100 0.100 -
5 04 0.160 0.200 - 0.1 0.100 0.100 -

demand. Except the case f(i) = 0.1 that all links achieve the same good-
put, for other traffic demands, small variation exists among all the links.

Along the same lines of explanation in Section |3.2.1 on page 61|, in effec-

tive carrier sensing scenarios, the randomised binary exponential back-off
scheme used in IEEE 802.11 carrier sensing may result in a slight difference
among the goodput of neighbouring links rather than achieving extreme
equal goodput for each link [10]. The overall error is below 21%.

Tables [C.6] and [C.7 list the results with unsaturated traffic demands

in the ineffective carrier sensing scenarios where D is selected as 600 m
and d as 120m. Results in Tables [C.6] and [C.7] show that most of the



194APPENDIX C. ADDITIONAL VALIDATION OF GOODPUT MODEL

Table C.6: Goodput of six links in a 600 x 20 m? topology with two-ray

propagation model

f(i)=08 f(i) =06
Linki | Gs(i) Go(i) Gp(i) ER | Gs(i) Go(i) Gp(i) ER
1 | o641 0552 0667 - |05997 0486 0.600 -
2 | 0328 0250 0333 - |0339% 0250 0333 0.018
3 10016 0000 0067 - | 0026 0000 0067 -
4 | 0016 0000 0067 - | 0027 0000 0067 -
5 | 0327 0250 0333 - |0339* 0250 0333 0018
6 | 0641 0552 0667 - | 05997 0486 0.600 -

Table C.7: Goodput of six links in a 600 x 20 m? topology with two-ray

propagation model-continued

f(i) =04 F(i) = 0.1

Linki | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER
1 | 0400 0360 0400 - | 01 0100 0100 -
2 | 035 0300 0400 - | 01 0100 0.100 -
3 10094 009 0170 - | 01 0100 0100 -
4 0093 009 0170 - | 01 0100 0100 -
5 0355 0300 0400 - | 01 0100 0100 -
6 | 0400 0360 0400 - | 01 0100 0100 -

simulation mean values fall between the prediction range, proving the

proposed model predicts starvation and goodput distribution accurately.

When f(i) = 0.6, in links 2 and 5, a small difference between the simula-

tion results and the prediction from the new model. The overall error is

below 2%.
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C.2 Simulation validation with two-ray shadow-
ing propagation model using IEEE 802.11a
48 Mbps

This section uses the two-ray shadowing propagation model [66] in the
simulations to demonstrate the generalizability of the new model. The
simulation results are presented in two parts: saturated and unsaturated
traffic demands.

For two-ray ground shadowing model, three shadowing attenuations
0 are selected as 2, 4, and 6. The greater number of shadowing attenuation,
the more obstacles exist in the propagation path. The higher the value of
shadowing attenuation J is, the greater the number of obstructions along
the propagation path is assumed to be. The carrier sensing range Rcg for
0 as 2,4,and 6 is 340 m, 270 m, and 215 m respectively.

C.2.1 Saturated Traffic Demand

Table C.8: Goodput of five links in a 200 x 50 m? topology with two-ray
shadowing propagation model

Propagation Model | Shadowing (6 =2) | Shadowing (6 = 4) | Shadowing (5 = 6)
Link i Gp(i)/Go(i) Gs(i) ER Gs (i) ER Gs (i) ER
1 0.200 0.157 - 0.156 - 0.166 -
2 0.200 0.223* 0.103 0.226* 0.115 0.219* 0.087
3 0.200 0.238* 0.160 0.236* 0.153 0.230* 0.130
4 0.200 0.226* 0.115 0.224* 0.103 0.219* 0.087
5 0.200 0.156 - 0.116 - 0.166 -

For saturated traffic demand, three topologies are selected representing
effective and ineffective carrier sensing scenarios. Table shows the
results of effective carrier sensing scenario (D = 200 m). The results show
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Table C.9: Goodput of six links in a 500 x 50 m? topology with two-ray
shadowing propagation model

Shadowing (J = 2) Shadowing (6 = 4) Shadowing (5 = 6)
Linki | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER

1 0.616 0552 0667 - | 0.647 0552 0.667 - 0.515 0.450 0.500

2 0328 0250 0333 - | 0330 0250 0333 - 0.314 0286 0.333 -

3 0.034 0.000 0.067 - | 0.012 0.000 0067 - | 0.171* 0111 0.167 0.023
4 0.034 0.000 0.067 - 0.012 0.000 0.067 - 0.170* 0.111 0.167 0.018
5 0328 0250 0333 - | 0329 0250 0333 - 0.314 0286 0.333

6 0.616 0.552 0.667 - 0.648 0.552 0.667 - 0.515 0.450 0.500

that adding a shadowing factor in the propagation model does not change
the goodput pattern observed in two-ray propagation model. The links
in the effective carrier sensing scenario do not share the channel capacity
equally. Middle links achieve higher goodput than the border links. But
in Table the overall error is below 16%, which is lower than that in the
two-ray propagation model. It could be the interaction between border
links and middle links decreases with shadowing effect.

For ineffective scenarios, the topology is chosen with the fixed bor-
der distance, 500m and d as 100m. Tables shows that the proposed
model predicts starvation accurately and few errors happen in the scenar-

ios where shadowing attenuation is configured as 6. The overall error is
below 2.5%.

C.2.2 Unsaturated Traffic Demand

For unsaturated traffic demand, only the results with shadowing attenu-
ation ¢ as 4 is listed due to space. Shadowing attenuation 6 = 4 is the
default value in QualNet 5.2 that refers to the common indoor environ-
ments with four walls.

Tables to list the results from effective carrier sensing sce-
nario (D = 200m). When the sum of traffic demands of all links exceed
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Table C.10: Goodput of five links in a 200 x 20 m? topology with two-ray

shadowing propagation model (J = 4)

Linki | f(i) Gs(i) Gp(i)/Go(i) ER | f(i) Gs(i) Gp(i)/Goli) ER
1 0.8 0.154 0.200 - 0.6 0.156 0.200 -
2 0.8 0.225* 0.200 0.111 | 0.6 0.224* 0.200 0.107
3 0.8 0.239* 0.200 0.163 | 0.6 0.237* 0.200 0.156
4 0.8 0.224* 0.200 0.107 | 0.6 0.228* 0.200 0.123
5 0.8 0.157 0.200 - 0.6 0.156 0.200 -

Table C.11: Goodput of five links in a 200 x 20 m? topology with two-ray

shadowing propagation model (6 = 4)—continued

Linki | f() Gs(i) Gp(i)/Goli) ER | f() Gs(i) Gp(i)/Goli) ER
1 04 0.154 0.200 - 0.1 0.100 0.100 -
2 04 0.226* 0.200 0.115 | 0.1  0.100 0.100 -
3 04 0.239* 0.200 0.163 | 0.1  0.100 0.100 -
4 04 0.226* 0.200 0.115 | 0.1  0.100 0.100 -
5 04 0.155 0.200 - 0.1 0.100 0.100 -

Table C.12: Goodput of six links in a 425 x 20 m? topology with two-ray

shadowing propagation model (6 = 4)

£(i) =08 £(i) =06
Linki | Gs(i) Go(i) Gp(i) ER | Gs(i) Go(i) Gp(i) ER
1 | 0648 0552 0667 - | 0600 0486 0600 -
2 0.329 0.250 0.333 - 0.344* 0.250 0.333 0.032
30012 0000 0067 - | 0023 0000 0067 -
4 | 0012 0000 0067 - | 0023 0000 0067 -
5 | 0330 0250 0333 - |0344* 0250 0333 0.032
6 0.647 0.552 0.667 - 0.600 0.486 0.600 -
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Table C.13: Goodput of six links in a 425 x 20 m? topology with two-ray
shadowing propagation model (§ = 4)-continued

f(i) =04 f(i) =01
Linki | Gs(i) Gp(i) Go(i) ER | Gs(i) Gp(i) Go(i) ER

1 0400 0.360 0.400 - 0.1 0.100 0.100 -
2 0.366 0300 0.400 - 0.1 0.100 0.100 -
3 0.084* 0.090 017 0.071 0.1 0.100 0.100 -
4 0.084* 0.090 0.17 0.071 0.1 0.100 0.100 -
5 0366 0.300 0.400 - 0.1 0.100 0.100 -
6 0.400 0.360 0.400 - 0.1 0.100 0.100 -

the channel capacity, the difference of goodput between middle links and
border links exists. The overall error is below 20%.

For the ineffective carrier sensing scenarios (D = 425m and d = 85m),
the proposed model can predict starving links correctly in Tables [C.12]
to Few simulation results of non-starving links are out of the range
of the prediction from the new model. The overall error is below 7.5%.



Appendix D

Investigation Flow Starvation
with Interference Models and
Channel Assignment in IEEE
802.11 WBNs

This chapter investigates fairness with three different interference models
used in channel assignment (CA) algorithms. By analysing fairness with
different interference models, we discuss the relationship between flow
starvation and interference models. The discussion aims to identify the
shortcomings of these interference models to guide CA algorithms to pre-
vent flow starvation. The findings in this chapter inform the design of the
proposed interference model in Chapter

Here, a clique-based channel assignment INSTC algorithm [140] is se-
lected and defined in Section 4.2.2.4 on page 95 The INSTC algorithm

integrates three interference set selections based on three common inter-

ference models defined in Section 4.2.2 on page 92 The inputs of the IN-

STC algorithm and simulation configurations are the same as those in Sec-
tion|4.2.3.1 on page 97|

Simulation results shown in this section are averages from 100 ran-

199
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domly seeded simulation runs. All averages shown are reported with
confidence interval of 95% with the range of [5.2,15.66] kbps under the
assumption that the averages are normally distributed.

The next sections will investigate how different interference set selec-
tions influence network fairness from the view of different fairness mea-
sures, Jain’s index [33], starvation link ratio, and highest-to-lowest good-
put ratio [131] defined in Section|4.2.3.1 on page 97|

D.1 Comparison of Jain’s Index

Figure show the results of Jain’s index from the clique-based CA algo-
rithm using interference set selections <y 4, g, and ¢ in grid topologies. In
Figure the X axis denotes the border distance D from 200 m to 800 m
while the Y axis refers to the achieved Jain’s index of the channel alloca-
tions from the clique-based CA algorithm using different interference set

selections.
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Figure D.1: The comparison of Jain’s index with different interference sets
in grid topologies
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In the figure, when border distances D is less than R (i.e. 200m and
400m, all nodes are within each other’s carrier sensing range, so called
effective carrier sensing scenarios), the Jain’s indexes of the clique-based
CA algorithm using three interference set selections 4, vp, and ¢ are
similar that are between 0.9 and 1.0.

When border distances D is greater than R (i.e. 600 m and 800 m, not
all nodes are within each other’s carrier sensing range, so called ineffec-
tive carrier sensing scenarios), the Jain’s indexes from the clique-based CA
algorithm using three interference set selections y4, yp, and ¢ decrease
to between 0.4 and 0.7.

Overall, in effective carrier sensing scenarios, fairness index is satis-
factory because carrier sensing mechanism manages the medium access
among links well and border effect does exist. With the increase of bor-
der distance, the Jain’s index of three interference set selections decreases
significantly with the increase of border distance in grid topologies. In
ineffective carrier sensing scenarios, exposed nodes, hidden nodes, and

border effect bring more influences in fairness.

D.2 Comparison of Starvation Link Ratio

Figure shows the results of starvation link ratio from the clique-based
CA algorithm using interference set selections 4, yp, and ¢ in grid
topologies. In Figure the X axis denotes the border distance while
the Y axis refers to the starvation link ratio from the clique-based CA al-
gorithm using different interference set selections.

In the figure, when border distance D is less than R (i.e. 200m and
400 m, the effective carrier sensing scenarios), the starvation link ratios of
three interference set selections 4, g, and 7y are zero, which means flow
starvation does not exist.

When border distance D is greater than R (i.e. 600m and 800m, the

ineffective carrier sensing scenarios), the starvation link ratio from y4, v,
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Figure D.2: Starvation link ratio with different interference sets in grid

topologies

and <yc increases up to 0.45. The trend of starvation link ratio is opposite
to that of Jain’s index. The higher starvation link ratio is, the lower Jain’s

index is. It implies flow starvation contributes toward poor fairness.

D.3 Comparison of Highest-to-lowest Goodput
Ratio

Figure shows the results of highest-to-lowest goodput ratio from the
clique-based CA algorithm using interference set selections 74, yp, and
¢ in grid topologies. In Figure the X axis denotes the border dis-
tance while the Y axis refers to the highest-to-lowest goodput ratio from
the clique-based CA algorithm using different interference set selections.
In the figure, when the border distance D is less than R (i.e. 200 m and
400 m, the effective carrier sensing scenarios), the highest-to-lowest good-

put ratios of three interference set selections 7y 4, v, and ‘yc are very small.
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Figure D.3: Highest-to-lowest goodput ratio with different interference

sets in grid topologies

When the border distance D is greater than R. (i.e. 600m and 800m,
the ineffective carrier sensing scenarios), the highest-to-lowest goodput
ratio from 4, v, and 7 increases up to over 60. The high highest-to-
lowest goodput ratio in Figure shows a different trend compared with
the Jain’s index in Figure It matches with the expectation that high
highest-to-lowest goodput ratio indicates a low Jain’s index.

D.4 Jain’s Index vs. Starvation Link Ratio

To explore the relation between Jain’s index and starvation link ratio, we
use a scatter plot in Figure In Figure the X axis denotes the Jain’s
index while the Y axis refers to the starvation link ratio.

In the figure, the Jain’s index is not proportional to the starvation link
ratio. Overall, the greater starvation link ratio, the smaller Jain’s index.
when starvation ratio is 0, Jain’s index is between 0.9 and 1.0. The points

have starvation link ratios around 0.3 but their Jain’s indexes are quite
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different. The points have Jain’s index around 0.54 and their starvation
link ratios are much different. It implies that Jain’s index is not sensitive

to flow starvation and evaluating fairness needs both metrics.
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Figure D.4: Jain’s index vs starvation ratio with different interference sets

in grid topologies

D.5 Discussing Flow Starvation with Interference

Set Selections

Based on the above analysis under saturated traffic assumption, we will
discuss flow starvation with the three interference set selections used in
the clique-based CA algorithm from two aspects. The first aspect is the
fairness pattern in IEEE 802.11 WBNs and the second aspect is the root
cause of unfairness (flow starvation) with respect to the interference set
selections.

In terms of fairness, three interference set selections yield similar pat-
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terns in both effective and ineffective carrier sensing scenarios. In effective
carrier sensing scenarios, all interference set selections yield high Jain’s in-
dex, “zero” starvation link ratio, and low highest-to-lowest goodput ratio.
Because flow starvation does not exit in effective carrier sensing scenarios,
fairness is satisfactory. However, in ineffective carrier sensing scenarios,
all interference set selections yield poor Jain’s index, high starvation link
ratio, and high highest-to-lowest goodput ratio compared with those in

effective carrier sensing scenarios.

To analyse the root cause of unfairness with interference set selections,
we need to look into flow starvation. In effective carrier sensing scenar-
ios, flow starvation does exist and the border effect (we call it as global
interference) between border links and middle links does exit. The inter-
ference exists locally among neighbouring links. Hence, the clique-based
CA algorithm effectively manages the network fairness by using three in-

terference set selections reflecting local interference among neighbouring
links.

In ineffective carrier sensing scenarios, three interference set selections
in the clique-based CA algorithm failed to prevent flow starvation that
leads to poor fairness. It is because these interference set selections used
in the CA algorithm only reflect local interference but not the global inter-

ference.

Next, we further explain why the existing interference set selections fail
to prevent flow starvation and yield poor network fairness in ineffective

carrier sensing scenario.

We use an example to explore the reason. Figures to show how
the clique-based CA algorithm using interference set -y 4 allocates channels
to links L1 to L11 in the 1000 x 100m? topology (See Figure [1.5). Assume
that carrier sensing range Rcg is 710m. In Figure the CA algorithm
starts from link L1 and selects the least-used channel 1 in red within link
L1’s conflict set as none of the channel has been used before.

In Figure the CA algorithm checks link L2’s interference set and
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Figure D.7: Step 3: allocate a channel to link L3

selects channel 2 in blue because channel 1 has been used. As same as
links L1 and L2, link L3 has been allocated with the least used channel 3
in green (see Figure In the end, all the links have been allocated with
the least used channel within its interference set (see Figure .

In Figure we only list the links allocated with channel 1 from Fig-
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Figure D.9: The starvation example in channel 1

ure Among all the links using channel 1, links L1 and L9 are the two
border links that are out of each other’s carrier sensing range. Hence, bor-
der effect exists and causes flow starvation on the middle links L4 and L7
between two border links. Once starvation exists, the fairness of this WBN
degrades significantly.

In all, we find that: (i) flow starvation leads to severe unfairness that
is caused by global interference between border links and middle links,
and (ii) CA algorithms cannot prevent flow starvation in ineffective carrier
sensing scenarios if the interference model used to select interference sets
only consider local interference between a link and its neighbouring links.
Hence, CA algorithms need a new interference model reflecting global in-
terference to prevent flow starvation and improve fairness.
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Appendix E

Investigation Goodput and
Fairness with Channel
Assignment Algorithms in IEEE
802.11 WBN’s

This chapter investigates the trade-off between goodput and fairness with
limited channel resources in IEEE 802.11 WBNs. By analysing goodput
and fairness through simulation with different CA algorithms, we discuss
the trade-off between goodput and fairness and identify the strengths of
these three CA algorithms in achieving goodput and fairness. The find-
ings in this section inform the design of the proposed multi-objective CA
algorithm in Chapter

E.1 Simulation Environments

Three classes of CA algorithms are selected to represent different strate-
gies of channel allocation: (i) a standard clique-based CA algorithm IN-
STC [140] (more details in Section 4.2.2.4 on page 95), (ii) network par-
titioning CA (NPCA) algorithm [32}[130] (more details in Section4.2.T),

209
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and (iii) the traffic-unaware anti-starvation CA (TUASCA) algorithm [117]]
(more details in Section4.2.1)).

The inputs of the three CA algorithms and simulation configurations
are the same as those in Section The measurement metrics of net-
work goodput and fairness include normalised average goodput and total
goodput, Jain’s index [33]], and starvation link ratio. Their definitions are

listed in Section4.2.3.1 on page 97|

The results shown for the average goodput in this section are calcu-
lated from 50 randomly seeded simulation runs. All averages shown are
reported with confidence interval of 95% given by the range of [5.2,15.66]
kbps under the assumption that the averages are normally distributed.

The next sections analyse fairness and goodput with the three selected
CA algorithms through simulation.

E.2 Analysis of Fairness

Figure are the results of Jain’s index from three CA algorithms with
95% confidence interval in grid topologies. When the border distance is
less than the carrier sensing range (e.g. 200 m and 400 m), three CA algo-
rithms achieve similar fairness that is between 0.9 and 1.0. It shows that
in effective carrier sensing scenarios, fairness remains a high level because
the carrier sensing mechanism provides a fair sharing of channel resource
among all links.

However, in ineffective carrier sensing scenarios, the NPCA and TU-
ASCA algorithms achieve high Jain’s index while INSTC achieves lowest
Jain’s index.

Figure is the result of link starvation ratio of three CA algorithms
to further study fairness. NPCA and TUASCA do not have any flow star-
vation and thus explain their high fairness in Figure However, flow
starvation exists in INSTC algorithm in ineffective carrier sensing scenar-

ios that leads to low Jain’s index.
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Figure E.1: The comparison of fairness index in grid topologies
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E.3 Analysis of Goodput

In this section, we compare two goodput metrics of three CA algorithms.
Figure [E.3|is the results of average goodput and total goodput from three
CA algorithms with corresponding 95% confidence interval. In the fig-
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ure, the X axis refers to the network size while the Y axis represents the
normalised average goodput and total goodput with respect of the max-
imum net capacity. In the effective carrier sensing scenarios (e.g. 200 m
and 400 m), the total goodput remains constant and three CA algorithms
achieve the same average goodput for four network sizes. The results
meets the expectation that all nodes share the channel capacity without
channel reuse in effective carrier sensing scenarios. Also, the average
goodput reduces with the increase of link number.

For ineffective carrier sensing scenarios (e.g. 600m and 800m), Fig-
ure [E.3|shows a different pattern from effective carrier sensing scenarios.
The total goodput of INSTC algorithm gradually increases while NPCA
algorithm remains a constant total goodput and TUASCA is the middle
between INSTC and NPCA in the 800 m scenario. The corresponding av-
erage goodput has the same pattern, INSTC is the highest, and TUASCA is
medium and NPCA is the lowest. The INSTC algorithm achieves the high-
est goodput because it reuses three channels and the total goodput reaches
to the two times of three channel capacity. TUASCA partially reuses chan-
nel resources and achieves higher goodput than NPCA that does not reuse
any channel resource.
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E.4 Discussion

From the simulation results, we find that the trade-off exists between good-
put and fairness. High goodput is a function of channel reuse while fair-
ness is governed by the presence of flow starvation. The analysis herein
indicates that high goodput and high fairness are a dichotomy with two
seemingly opposite goals under limited channel condition.

Different CA algorithms have different strengths and weakness in achiev-
ing goodput and fairness. In effective carrier sensing scenarios, all three
CA algorithms achieve identical goodput and fairness. However, in the
ineffective carrier sensing scenario (D = 800 m), INSTC achieves the high-
est goodput but poor fairness, NPCA achieves highest fairness but poor
goodput while TUASCA'’s performance is somewhere in the middle (20%
higher goodput compared to NPCA and 32% higher fairness compared
to INSTC). Moreover, these three CA algorithms lack a fitness function to
evaluate the potential performance of the output of channel allocation and
cannot justify whether the output can meet the desired QoS requirement
or not.

Ideally, we can evaluate the performance of the three different CA al-
gorithms and tune them for fairness and goodput that is superior to each
CA algorithm individually.
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Appendix F

Additional Validation of
Multi-objective Channel
Assignment Algorithms in

Random Topologies

This chapter discusses the validation of the traffic-unaware and traffic-
aware multi-objective channel assignment algorithms using random topolo-
gies. Random topologies we use are generated by a R script. With a given
area and given link number, the node position and link length are gener-
ated randomly according to uniform distribution. The network size of a
random topology is set as D = 800 m with 17 links and the transmitter-
receiver separation is less than 50 m.

The inputs of the three CA algorithms and simulation configurations

are the same as those in Section 5.2.2 on page 150, Simulation results

shown in this section are averages from 100 randomly seeded simulation
runs. All averages of simulation results shown are reported with confi-
dence interval of 95% with the range of [7.5,10.24] kbps under the assump-
tion that the averages are normally distributed.

The next sections discuss the validation of TUMOCA and TAMOCA in
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random topologies separately.

E1 Validation of Traffic-unaware Multi-objective

Channel Assignment in Random Topologies

First, the predefined QoS requirement is set as SRyp,, = 0.0, Flrp, =
0.7, and AGrye = 0.2. The results from the TUMOCA algorithm using
three and four channels are listed in Tables|[E.1|to These four tables list
the solution set from the TUMOCA algorithm with goodput and fairness
requirements respectively. The Ch,,,,; column represent the channel count
needed in the corresponding allocation. The “Validation” column shows

whether the solution in the row meets the corresponding requirement.

For this scenario (D = 800 m) with three channels, the TUMOCA yields
one solution that the number of used channels is three. When the count
of available channels is increased from three to four with the same QoS

requirement and this time TUMOCA algorithm yields three channel allo-
cations in Tables[E3]and

The simulation results in this section show that TUMOCA algorithm
performs well in random topologies. First, simulation results show that
all the solutions from the TUMOCA algorithm meet the pre-defined QoS
requirements. When using four channels, the TUMOCA also selects the
solution using three channels into the solution set. The TUMOCA finds
a set of feasible solutions instead of one feasible solution. Third, the pre-
diction of goodput and fairness from the fitness function embedded in the
TUMOCA algorithm is very close to the simulation results.
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Table F.1: The solution set for a D = 800 m random topology with three

available channels and goodput requirement
Index | Chyees | AGma AGs  AGry,, Validation

TUMOCA#1 | 3 | [0.226,0236] 0246 0.2 v

Table E2: The solution set for a D = 800 m random topology with three

available channels and fairness requirements

Index | Chyees | SRea SRe  SRpy, Validation | Flms FI, Flyy,, Validation

TUMOCA#1 | 3 | 000 000 00 v | [0826,0835] 0824 07 v

Table E3: The solution set for a D = 800 m random topology with four

available channels and goodput requirements
Index ‘ Chyeeq ‘ AGEea AGs  AGry, Validation

TUMOCA#1 3 [0.229,0.235]  0.223 0.2 v’
TUMOCA#2 4 [0.224,0.235]  0.218 0.2 v’
TUMOCA#3 4 [0.285,0.294] 0.276 0.2 v’

Table F4: The solution set for a D = 800 m random topology with four

available channels and fairness requirements

Index | Chyeq | SR SRe  SRyy. Validation | Flpe FI,  Flp,, Validation
TUMOCA#1 | 3 | 0.000 0000 0.0 v [0.897,0911] 0895 0.7 v
TUMOCA#2 | 4 | 0.000 0000 0.0 v [0.991,0991] 0983 0.7 v
TUMOCA#3 | 4 | 0.000 0000 0.0 v [0.975,0980] 0977 0.7 v
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E2 Validation of Traffic-aware Multi-objective Chan-

nel Assignment in Random Topologies

This section shows the validation of the TAMOCA algorithm in random
topologies through simulation. Similar to the validation of TUMOCA al-
gorithm, the examples of the TAMOCA algorithm only show the valida-
tion in ineffective carrier sensing scenarios (D = 800 m with 17 links). The
simulation runs with Qualnet 5.2 by using the parameters in Table

As TAMOCA algorithm is a traffic-aware CA algorithm, the validation
will be conducted in heavy traffic condition (f (i) = 0.8) and medium traf-
fic condition (f (i) = 0.4) separately.

F2.1 Validation of Traffic-aware Multi-objective Channel
Assignment in random topologies under heavy traffic
condition (f (i) = 0.8)

Table E.5: The solution set for a D = 800m random topology with four
available channels and goodput requirements (f(i) = 0.8)
Index | Clyews |  AGpa AGs  AGry, Validation

TAMOCA#1 3 [0.226,0.235] 0.223 0.2 v’
TAMOCA#2 4 [0.224,0.235]  0.218 0.2 v’
TAMOCA#3 4 [0.285,0.294] 0.277 0.2 v’

This subsection validates the TAMOCA algorithm by selecting the traf-
tic demand as 0.8 that is normalised traffic demand with respect of maxi-
mum net bandwidth.

First, the predefined QoS requirements is set as SRy, = 0.0, Flry, =
0.70, and AGry,e = 0.2. Tables [E5] to [F.6| provides the list of the solution
set from the TAMOCA algorithm with goodput and fairness requirements
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Table F.6: The solution set for a D = 800m random topology with four
available channels and fairness requirements (f (i) = 0.8)

Index | Chyes | SRea SRe SRpy, Validation | Flpeq FI,  Flpy, Validation
TAMOCA#1 | 3 | 0000 0000 0.0 v [0.826,0.835] 0.894 0.7 v
TAMOCA#2 | 4 | 0000 0000 0.0 v [0.991,0991] 0983 0.7 v
TAMOCA#3 | 4 | 0000 0000 0.0 v [0.975,0980] 0977 0.7 v

using four channels respectively. The Ch,,,,; column represent the channel
count needed in the corresponding allocation. The “validation” column
shows whether the solution in the row meets the corresponding require-
ment.

The TAMOCA yields three solutions using four channels. When the
traffic demand is set as f(i) = 0.8, this ineffective carrier sensing scenario
(D = 800m) still has the potential risk of border effect and flow starva-
tion. Simulation results show that all the solutions from the TAMOCA
meet the pre-defined QoS requirement with accurate prediction from the
fitness function. The same as TUMOCA algorithm, the TAMOCA algo-
rithm also includes all the feasible solution in the solution set. In addition,
the TAMOCA algorithm meets the desired outcome of finding multiple
teasible solutions.

F2.2 Validation of Traffic-aware Multi-objective Channel
Assignment in random topologies under medium traf-
fic condition (f (i) = 0.4)

This subsection validates the TAMOCA by selecting the normalised traffic
demand with respect to the maximum net bandwidth as 0.4 for all links in
a given WBN.

First, the predefined QoS requirements as SRry,, = 0.0, Flp,, = 0.7,
and AGry,, = 0.2. Tables[F.7]and [F.8 provides the list of the solution set
from the TAMOCA algorithm with goodput and fairness requirements us-
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ing four channels respectively.

Table E.7: The solution set for a D = 800 m grid topology with four avail-
able channels and goodput requirements (f(i) = 0.4)
Index | Clyews |  AGpa AGs  AGry, Validation

TAMOCA#1 3 [0.207,0.224] 0.232 0.2 v’
TAMOCA#2 4 [0.306,0.365]  0.340 0.2 v’
TAMOCA#3 4 [0.224,0.235]  0.218 0.2 v’
TAMOCA#4 4 [0.285,0.294] 0.283 0.2 v’

Table E.8: The solution set for a D = 800 m grid topology with four avail-

able channels and fairness requirements (f (i) = 0.4)

Index | Clhyed | SRa SRe  SRpy, Validation | Flpy FI, Flpy,, Validation
TAMOCA#1 | 3 | 0000 0000 0.0 v [0.900,0.930] 0.895 0.7 v
TAMOCA#2 | 4 | 0000 0000 0.0 v [0.958,0.965] 0957 0.7 v
TAMOCA#3 | 4 | 0000 0000 0.0 v [0.991,0991] 0964 0.7 v
TAMOCA#4 | 4 | 0000 0000 0.0 v [0.907,0917] 0896 0.7 v

Using four channels, the TAMOCA algorithm yields four solutions and
simulation results show all solutions meet the desired performance for
planning IEEE 802.11 WBNs. With the decrease of the traffic demand, the
capacity contention reduces so that the TAMOCA algorithm finds more
suitable solutions for IEEE 802.11 WBN planning.

The simulation results in this section show that TAMOCA algorithm
performs well in random topologies with heavy and medium traffic de-

mands. All the solutions meet the pre-defined requirements.
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