
Learning to Disentangle the
Complex Causes of Data

by

Tony Butler-Yeoman

A thesis
submitted to the Victoria University of Wellington

in ful�lment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2017

Abstract
The ability to extract and model the meaning in data has been key to the
success of modernmachine learning. Typically, data re�ects a combination
of multiple sources that are mixed together. For example, photographs of
people’s faces re�ect the subject of the photograph, lighting conditions,
angle, and background scene. It is therefore natural to wish to extract these
multiple, largely independent, sources, which is known as disentangling
in the literature. Additional bene�ts of disentangling arise from the fact
that the data is then simpler, meaning that there are fewer free parameters,
which reduces the curse of dimensionality and aids learning.

While there has been a lot of research into �nding disentangled repre-
sentations, it remains an open problem. This thesis considers a number of
approaches to a particularly di�cult version of this task: we wish to disen-
tangle the complex causes of data in an entirely unsupervised setting. That is,
given access only to unlabeled, entangled data, we search for algorithms
that can identify the generative factors of that data, which we call causes.
Further, we assume that causes can themselves be complex and require a
high-dimensional representation.

We consider three approaches to this challenge: as an inference prob-
lem, as an extension of independent components analysis, and as a learn-
ing problem. Each method is motivated, described, and tested on a set
of datasets build from entangled combinations of images, most commonly
MNIST digits. Where the results fall short of disentangling, the reasons for
this are dissected and analysed. The last method that we describe, which
is based on combinations of autoencoders that learn to predict each other’s
output, shows some promise on this extremely challenging problem.

ii

Contents

1 Introduction 1
1.1 Disentangling Coherent Causes 1
1.2 Goals . 2
1.3 Credit . 4
1.4 Roadmap . 4

I Disentangling with Energy Models 5

2 Background on Energy Models 7
2.1 Generative Models . 7
2.2 Markov Chain Monte Carlo 9
2.3 Explaining Away . 11
2.4 Restricted Boltzmann Machines 12
2.5 Learning in RBMs . 14

2.5.1 Rewriting the Log Probability 14
2.5.2 Sampling from the Joint 16
2.5.3 Contrastive Divergence 18

2.6 RBM Variants . 19
2.7 What is a Cause? . 21
2.8 Related Work . 22

2.8.1 Bilinear Models . 22
2.8.2 RBMModels . 23

iii

iv CONTENTS

3 The Broadnet Model 25
3.1 Setting and Motivation . 25
3.2 Model . 26

3.2.1 Terms and Notation 27
3.2.2 Derivation . 29
3.2.3 Properties of the Model 31

3.3 Inference and Learning . 32
3.3.1 Posterior Inference . 32
3.3.2 Joint Inference . 35
3.3.3 Learning Algorithm 35

3.4 Discussion . 37
3.4.1 Alternative RBMs . 38

3.5 Results . 40

4 Understanding Broadnets 49
4.1 Calculating the Full Joint . 50
4.2 The Importance of Anti-Hebbian Initialisation 52
4.3 The Greedy Inference Problem 57

4.3.1 Experiments . 57
4.3.2 Discussion . 63

4.4 The Exponential Optima Problem 65
4.5 Attractiveness of the Disentangled Optimum 77
4.6 Discussion . 78

II Disentangling with ICA 81

5 Background on ICA 83
5.1 Blind Source Separation . 83
5.2 Independent Components Analysis 84

5.2.1 Maximising Non-Gaussianity 85
5.2.2 Kurtosis and Negentropy 85

CONTENTS v

5.2.3 The FastICA Algorithm 86
5.3 Information Theory . 87
5.4 Simulated Annealing . 89
5.5 Applicability to Disentangling 89

6 The Post-Processed ICA Algorithm 91
6.1 Motivation . 91
6.2 Estimating Mutual Information 93
6.3 The Postprocessed ICA Algorithm 95
6.4 Results . 96
6.5 Discussion . 101

III Disentangling with Neural Networks 103

7 Background on Neural Networks 105
7.1 Autoencoders . 105
7.2 Adaptive Gradient Optimisers 106
7.3 Adversarial Autoencoders . 108
7.4 Generative Adversarial Networks 109
7.5 Related Work . 110

8 Split Autoencoders 113
8.1 Preliminaries . 113

8.1.1 Motivation . 113
8.1.2 Choice of Neural Network 114

8.2 Benchmarking Models of Disentangling 115
8.3 The Additive Split Autoencoder 118
8.4 Training Details . 119
8.5 Results . 120
8.6 Discussion . 126

vi CONTENTS

9 Adversarial Networks 133
9.1 Rejected Approaches and Related Work 133
9.2 Discriminative Disentangling Networks 138

9.2.1 Description . 138
9.2.2 Practical Considerations 145

9.3 Experimental Setup . 147
9.3.1 Evaluating Results . 149

9.4 Results . 149
9.4.1 Simple MNIST . 149
9.4.2 Additive MNIST . 153
9.4.3 Occlusive MNIST . 157
9.4.4 MNIST . 161

9.5 Discussion . 163
9.5.1 The Importance of Split Encoders 163
9.5.2 Insights into the model 163
9.5.3 Conclusion . 165

10 Conclusion 167
10.1 Summary . 167
10.2 Conclusions and Future Work 169

Chapter 1

Introduction

1.1 Disentangling Coherent Causes

Real-world data is often created by the interaction of several complex pro-
cesses, such as the subject of a photograph and the lighting conditions
when that photograph was taken. If this is the case, a natural representa-
tion of the data is to model each cause separately, along with their method
of interaction. We wish to build models that �nd these disentangled repre-
sentations of the data.

Learning high quality abstract representations of data has emerged as
a critical factor in the success of modern machine learning algorithms [7],
and the advantage of �nding disentangled representations is signi�cant.
Not only can the causes of the data be manipulated individually, such as
generating a given face under new lighting conditions, but, by decompos-
ing the data correctly, the representation itself becomes very e�cient. For
example, if data is generated from 1000 faces under 1000 lighting condi-
tions, then there are a million possible combinations of faces and lighting.
A model that correctly disentangled these causes would only need to rep-
resent 2000 possibilities, each face and each lighting condition, rather than
all million combinations. More generally, modelling causes and their in-
teractions may simply be the correct representation of data. In fact Bengio

1

2 CHAPTER 1. INTRODUCTION

et al. [8] note that “one could even say the ultimate goal of AI research is to
build machines that can understand the world around us, i.e., disentangle
the factors and causes it involves”.

While a signi�cant body of literature on learning disentangled repre-
sentations exists, it remains an open problem. In particular, most success-
ful algorithms operate in a supervised or semi-supervised setting.

This thesis explores several methods for a particularly di�cult version
of this task: learning complex and coherent disentangled representations in an
entirely unsupervised setting. The ‘unsupervised’ portion of this statement
means the learner has access to nothing more than a dataset of entangled
examples; no labels associated with any cause are available, and the data
cannot be grouped so as to hold one cause �xedwhile the other varies (such
as the same face undermany lighting conditions). The ‘complex and coher-
ent’ portion of the statement refers to the ability to represent causes with
a model that is as complex as required, in contrast with some successful
unsupervised disentanglers, in which causes are limited to scalar values
[11]. This is perhaps the most di�cult form of the disentangling problem:
the model must discover and model complex causes of data with no more
information than the composite data itself.

This is an ambitious aim, and so we will limit our scope somewhat. We
will primarily, though not entirely, focus on the case of causes that interact
linearly. Additionally, we will only consider the case of two causes.

1.2 Goals

The overall goal of this thesis is a scienti�c exploration into new methods
for disentangling complex causes of data in a fully unsupervised setting.
We intend to explore three approaches to this problem, eachwith their own
motivations and speci�c goals as follows.

1.2. GOALS 3

1. Take a Bayesian perspective and view disentangling as an inference
problem, and construct energy models for the task. This approach is
motivated by the appealing theoretical properties of Restricted Boltz-
mann Machines (RBMs). Speci�cally, we will:

• Describe an algorithm for disentangling based on energy mod-
els, including a motivation of the design decisions of the model,
and a discussion of potential alternatives.

• Evaluate and analyse the model’s performance.

2. Explore the relation between disentangling and Independent Com-
ponents Analysis (ICA). This is motivated by the clear connection
between �nding independent components and �nding independent
causes. Speci�cally, we will:

• Analyse the applicability of standard ICA to the disentangling
problem, and options for extending it.

• Develop an algorithm using ICA to perform disentangling.

• Test that algorithm on simple data and analyse its limitations.

3. View disentangling as a learning problem, and construct unsuper-
vised neural networks for the task. This is motivated by the state-of-
the-art results achieved by neural networks on related disentangling
problems. Speci�cally, we will:

• Develop, test, and analyse a modi�cation to the architecture of a
standard autoencoder that implicitly encourages disentangling.

• Explore candidate loss functions that explicitly penalise entan-
glement.

• Develop, test, and analyse a disentangling algorithmwhose loss
explicitly penalises entanglement.

4 CHAPTER 1. INTRODUCTION

1.3 Credit

Credit for each contribution of this thesis is as follows.

• The core model presented in chapter 3 is largely the work of Frean
and Marsland. The subsequent development, testing, and analysis
are primarily my contribution.

• The analysis performed in chapter 4 was discussed jointly, and re-
�ned and performed by me.

• The content of chapters 6, 8, and 9 are primarily my contribution.

1.4 Roadmap

This thesis is organised into three parts, each focused on one of the three
approaches outlined in the goals. Due to the di�erent concepts required
for the three topics, the background and related work relevant to each ap-
proach is presented in the �rst chapter of each part.

Part I develops the Broadnet in chapter 3, which is an energy model
based on RBMs. While this model is super�cially appealing, unfortunately
it su�ers from issues that ultimately invalidate it as an approach to disen-
tangling. This is detailed and analysed in chapter 4. Part II considers the
link between disentangling and �nding independent components. We �nd
that a limited connection between the concepts can be made, and develop
a post-processing algorithm based on it, but this does not lead to a gener-
ally applicable algorithm. Part III explores the application of unsupervised
neural networks to the problem. Chapter 8 shows that a small structural
change to an autoencoder yields successful, but inconsistent, disentangling
of linearly entangled causes. Finally, chapter 9 then proposes a model us-
ing adversarial networks that improves the consistency of these results,
and leads to the �rst step towards non-linear disentangling.

Part I

Disentangling with Energy
Models

5

Chapter 2

Background on Energy Models

The �rst part of this thesis develops and analyses amodel for disentangling
based on Restricted Boltzmann Machines (RBMs). This chapter provides
the necessary background on generative modelling and RBMs, and dis-
cusses related work.

2.1 Generative Models

A generative model is a probabilistic description of how data is generated.
It is described by a set of random variables x � (x1, . . . , xn), and a joint
probability distribution over them, p (x). This distribution encodes both
the uncertainty present in the model and the dependence structure of the
random variables. The joint often contains quantities that are not random
variables, which are known as the parameters Θ. Because the joint is pa-
rameterised by Θ it is more correctly written pΘ(x), though the subscript
is commonly omitted.

In abstract, there are two operations of interest on a generative model.
The �rst is inference, which is the process of calculating the distribution over
latent (unknown) variables given observed variables. The second is learn-
ing, which involves optimising the parameters of the model to maximise
some quantity, often the probability of the dataset under the model.

7

8 CHAPTER 2. BACKGROUND ON ENERGY MODELS

Generative models come in two kinds: causal and acausal models. A
causal (or directed) model has a joint that models direct causality between
variables. Each random variable xi has a set of ‘parents’ Pi , and the con-
ditional distribution p (xi | Pi) fully describes that variable. If the values
of all parents are known, then xi can be sampled. A more intuitive view
of causal models is as a directed acyclic graph, where nodes are random
variables and edges describe conditional dependence [42]. In other words,
in a causal model the joint distribution factors into a product of conditional
distributions over each variable. This is the power of causal models: with
the right dependence structure, an unwieldy joint can be factored into a
compact representation comprised of conditional distributions.

In contrast, acausal models have a joint distribution that does not factor
into conditional distributions over each variable. This makes the class of
models very general and well-suited to describing cases where there is no
natural causality between variables. Acausal models are most commonly
described by their unnormalised joint, p∗(x), which can be normalised as
follows to �nd the true joint

p (x) �
p∗(x)∫

p∗(x � X) dX
. (2.1)

The denominator of equation 2.1 normalises p∗, and is known as the par-
tition function, Z. The normalised joint probability of an acausal model is
generally intractable to compute, which can be seen in the need to integrate
(or sum, in the discrete case) over all variables in order to calculate the par-
tition function. To disambiguate, p (x) will often be referred to as the full
or true joint.

Undirected models are also known as energy models, and have an asso-
ciated energy:

E � − log p∗(x). (2.2)

This separation of the full joint into an energy and a partition is natural,
in particular because inference can be performed by only considering the

2.2. MARKOV CHAIN MONTE CARLO 9

energy while learning requires evaluating the full joint. This will be dis-
cussed further in later sections.

In any generative model, it is often useful to divide the variables x into
two sets: the observed (or visible) variables v, and the latent (or hidden)
variables h. The observed variables are those that represent the data and
their values are almost always known. The latent variables include all other
variables in the model. Their values are generally not known, and can in-
tuitively be viewed as an ‘hypothesis’ about the data. With this convention
we can de�ne some useful terminology. The prior, p (h), describes the be-
lief about an hypothesis in the absence of data. The likelihood, p (v | h), de-
scribes how likely a particular observation is given an hypothesis. Finally,
the posterior, p (h | v), models how likely an hypothesis is given an obser-
vation. The posterior of a model is often the main quantity of interest, but
it is commonly di�cult to calculate. Unless otherwise stated, ‘inference’
generally refers to posterior inference.

2.2 Markov Chain Monte Carlo

It is often the case that computing or sampling from some distribution p (x)
cannot be performed exactly. This is a concern for inference in generative
models, which requires doing exactly that. The Markov Chain Monte Carlo
(MCMC) algorithm addresses this problem by providing a way to draw
samples that are, asymptotically, from p (x).

A Markov chain is a random process that transitions between di�erent
states over time. It is initialised to some (often arbitrary) state x0, and at
each step selects a new state to transition into from a transition distribution.
The initial state of the Markov chain a�ects its behaviour in future time
steps, but the magnitude of this e�ect lessens as the chain is run for more
steps. Every Markov chain has a stationary distribution, which describes
its behaviour in the absence of any e�ect from its initial state. When the
behaviour of a Markov chain very closely matches its stationary distribu-

10 CHAPTER 2. BACKGROUND ON ENERGY MODELS

tion, that chain is said to have mixed. Depending on the complexity of the
transition matrix and the quality of the initial state, mixing can take a very
long time.

Gibbs sampling [48] is a commonly usedMCMCalgorithm,which �nds
samples from p (x) by constructing a Markov chain with p (x) as its station-
ary distribution [48]. This is performed by, at each time step, selecting a
variable xi ∈ x � (x1, . . . , xn) and updating its value by drawing a sample
from its full conditional distribution:

xt+1
i ∼ p

(
xi

��� x
t
−i

)
, (2.3)

where x−i represents all variables except xi . In other words, hold all vari-
ables but xi �xed, and draw a new value for xi’s state. It can be shown that
the Markov chain underlying this process has p (x) as its stationary distri-
bution [21]. This is useful, as the full conditionals are often known and
easy to calculate. Variables do not need to be updated in any particular or
consistent order, so long as every variable is updated on every iteration. If
the full conditional distributions of two (or more) variables are indepen-
dent, then those variables can be updated simultaneously. This is known
as block sampling. Gibbs sampling is a special case of the more general
Metropolis-Hastings [51, 29] MCMC algorithm. This more general algo-
rithm is not necessary for our work, however, and will not be described
further.

A MCMC algorithm will eventually produce samples distributed ac-
cording to p (x) if and only if the underlying Markov chain is ergodic [37].
A chain is ergodic if all states with non-zero probability can be reached
from all other states with non-zero probability in a �nite number of steps.
However, few guarantees can be made about the mixing properties of the
Markov chain, that is, how long it must be run before samples approxi-
mately match p (x). The chain’s mixing time is determined by the shape
of the transition distribution, and pathological cases that cause very slow
mixing can easily be constructed. Two examples are when islands of high

2.3. EXPLAINING AWAY 11

probability are connected only by low probability paths, or when high-
dimensional distributions have almost �at probability [42].

2.3 Explaining Away

Explaining away [54] is the name given to a phenomenon in generativemod-
els in which latent variables that are independent in the prior become depen-
dent in the posterior. In other words, independent causes of data become
dependent when data is observed.

The canonical example of this e�ect [48] is the ‘burglars and earthquakes’
problem. Suppose a house alarm can be triggered by either an earthquake
or a burglary, and in the absence of an alarm, burglaries and earthquakes
are independent events. This leads to the causal generative model shown
in �gure 2.1. If one knows the house alarm has been triggered, then either
an earthquake or a burglary is likely to have occurred. However, if one also
knows that an earthquake has occurred, this ‘explains away’ the activation
of the alarm, and reduces the likelihood that a burglary has occurred. In
other words, the independent causes (burglary and earthquake) have be-
come dependent once the data (alarm) is observed.

Alarm

Burglary Earthquake

Figure 2.1: The classic example of explaining away. Two variables,
burglary and earthquake, can both cause an alarm to be triggered.
Without knowledge of the alarm, they are independent. With
knowledge that the alarm is active, and that one of the causes has
occurred, the likelihood of the other cause is reduced.

12 CHAPTER 2. BACKGROUND ON ENERGY MODELS

2.4 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are a popular type of undirected
model developed in an early form by Smolensky [59], and later re�ned by
Freund and Haussler [20]. A RBM is composed of binary variables, known
as units, structured in two layers: the hidden layer with units h j , and the
visible layer with units vi . We will universally use the subscript j to index
hidden units and i to index visible units. These are connected in a bipartite
graph structure; the two layers are fully inter-connected with weights W ,
but there are no connections between units in the same layer. This structure
can be seen in �gure 2.2.

h j

vi

WW

Figure 2.2: Diagram of the RBM model.

The connections between layers form a single matrix of weights W ji , in
which each row represents the connections of one hidden unit. Each hid-
den unit also has a bias parameter b j . Visible units traditionally also have a
bias parameter, but the work in the following chapters does not make use
of these so they are omitted here. The unnormalised joint of a RBM is

log p∗(v, h) �
∑

j,i

h jW jivi +
∑

j

b jh j . (2.4)

The partition function is
Z �

∑
v,h

p∗(v, h), (2.5)

2.4. RESTRICTED BOLTZMANNMACHINES 13

where the sum over v, h denotes the sum over the set of all possible binary
assignments to the hidden and visible units, of size 2|h|+|v|. In the context
of a RBM, we will refer to the quantity p (h) as themarginal, rather than the
prior. While it uses the same notation, p (h) cannot be correctly thought of
as a prior, because it shares parameters (the weights matrix W) with the
likelihood.

RBMs are particularly useful, and of interest to the problem of disentan-
gling, for their dependence structure. If the RBM were a directed model,
all hidden units would be independent in the prior, but dependent in the pos-
terior due to explaining away. In fact, the actual dependence structure is
precisely the opposite; hidden units are dependent in the marginal, but in-
dependent in the posterior. Note also that visible units are independent in
the likelihood.

The outcome of this is twofold. First, both the posterior and likelihood
factor into distributions over each variable:

p (h | v) �
∏

j

p
(
h j

��� v
)

p (v | h) �
∏

i

p (vi | h). (2.6)

This allows for e�cient sampling of either layer of units given the other.
Second, the fact that the marginal does not factor allows it to model a com-
plex distribution on the hidden units.

The observation that the marginal can model a complex distribution
facilitates a more intuitive view of the model. RBMs are machinery for
translating between a distribution in the visible space and a distribution
in the hidden space. The marginal is not factorial by design, so that it can
mirror a complex data distribution. The translation between distributions
is bidirectional, however, and a single set of weights is responsible for both
producing an informative hidden distribution, and reproducing the origi-
nal data distribution. This creates a tension between the ‘likelihood terms’
and the ‘posterior terms’ of the joint.

14 CHAPTER 2. BACKGROUND ON ENERGY MODELS

2.5 Learning in RBMs

This sections discusses learning inRBMmodelswith a focus onContrastive
Divergence (CD) [31, 34], the most commonly-used learning algorithm. As
with most generative models, learning in RBMs proceeds by gradient de-
scent on the probability of the dataset. Unfortunately, simply computing
the gradient is intractable, as it requires computing the partition function.
This motivates the need for an approximate gradient descent method. We
will eventually arrive at CD by �rst rewriting the log probability in a use-
ful form, then detailing a sampling algorithm, and then combining them
to �nd gradient estimates.

2.5.1 Rewriting the Log Probability

SupposingD is a dataset containing N elements, we wish to compute

∂
∂W ji

log p (D) ∝
∂

∂W ji

1
N

∑
v∈D

log p (v)

�
∂

∂W ji

1
N

∑
v∈D

(
log p∗(v) − logZ

)
�

∂
∂W ji

*
,
1
N

∑
v∈D

log p∗(v)+
-
−

∂
∂W ji

logZ. (2.7)

Consider the two terms individually. The �rst term is simply the expecta-
tion of log p∗(v) over the dataset. We will use the notation 〈·〉a∼b to denote
the expectation of · with a distributed according to b. The �rst term can
then be rewritten as

∂
∂W ji

*
,
1
N

∑
v∈D

log p∗(v)+
-
�

〈
∂

∂W ji
log p∗(v)

〉
v ∼ data

(2.8)

The second term can be manipulated into a similar form as follows.

∂
∂W ji

logZ �
1
Z

∂
∂W ji

Z

2.5. LEARNING IN RBMS 15

Substitute the de�nition of Z from equation 2.5.

�
1
Z

∂
∂W ji

∑
v,h

p∗(v, h)

�
1
Z

∑
v,h

∂
∂W ji

p∗(v, h)

�
1
Z

∑
v,h

[
p∗(v, h)

∂
∂W ji

log p∗(v, h)
]

�

∑
v,h

[
p (v, h)

∂
∂W ji

log p∗(v, h)
]

Finally, apply the de�nition of expectation.

�

〈
∂

∂W ji
log p∗(v, h)

〉
v, h ∼ p (v, h)

(2.9)

Note that each of these terms is a di�erent expectation over the gradient of
log unnormalised joint. This has a simple form:

∂
∂W ji

log p∗(v, h) � h j vi . (2.10)

Substituting equations 2.8, 2.9, and 2.10 into equation 2.7, the gradient cal-
culation can be rewritten as follows.

∂
∂W ji

log p (D) �

〈
h j vi

〉
v ∼ data
h ∼ p (h | v)

−

〈
h j vi

〉
v, h ∼ p (v, h)

(2.11)

These two terms are knownas theHebbian and anti-Hebbian steps of learn-
ing, respectively, and have an appealing interpretation.

If learning is considered to be the act of shaping the distribution over
hidden units, then the Hebbian term attempts to place probability mass
such that the data is represented well, and the anti-Hebbian term attempts
to make the posterior as �at as possible. This has the e�ect of encouraging
all data to be associated with a high probability optimum in hidden space,
and discouraging any high probability hidden optimum to be disassoci-
ated from the data. When the posterior and marginal are in agreement,

16 CHAPTER 2. BACKGROUND ON ENERGY MODELS

the data distribution is perfectly represented in the hidden space, the Heb-
bian and anti-Hebbian terms are equal, and learning ends.

In terms of computational e�ciency, the Hebbian term can be easily
computed because the posterior is factorial. However, the anti-Hebbian
step requires drawing samples from the joint, which is not factorial and
cannot be computed e�ciently. Instead, we turn to MCMC sampling to
draw approximate samples from a Markov chain, which can then be used
to approximate the expectation of the anti-Hebbian step.

2.5.2 Sampling from the Joint

Following the procedure from section 2.2, the full conditional distribution
on each variable must be calculated, which will be shown here for hidden
units. First, some notation is required. Let h− j denote the set of all hidden
units except h j , and let h j←a denote the set of all hidden units, where the
value of h j is �xed at a.

Consider the full conditional p
(
h j � 1 ��� v, h− j

)
, denoted p j for conve-

nience. This can be expanded to

p j � p
(
h j � 1 ��� v, h− j

)
�

p∗
(
h j←1, v

)
p
(
h− j , v

)
Z
. (2.12)

Now take the ratio of probabilities between the two possible states of h j .
Note that the probability of h j equaling 0 is 1− p j . Hence, the denominator
of equation 2.12 cancels in the ratio. An important consequence of this
is that the partition function Z does not need to be calculated to perform

2.5. LEARNING IN RBMS 17

posterior inference. This leaves

p j

1 − p j
�

p∗
(
h j←1, v

)
p∗

(
h j←0, v

)
�⇒ p j �

1

1 −
p∗

(
h j←1 ,v

)
p∗

(
h j←0 ,v

)
. (2.13)

It is convenient to perform this calculation in log space. Let σ(·) be the
logistic sigmoid function, de�ned as

σ(x) �
1

1 + e−x . (2.14)

Equation 2.13 can be re-written in log space using a sigmoid as follows.

p j � σ
*...
,

log
p∗

(
h j←1, v

)
p∗

(
h j←0, v

) +///
-

� σ
(
log p∗

(
h j←1, v

)
− p∗

(
h j←0, v

))
.

Substituting the de�nition of the energy from equation 2.4, all terms except
those involving h j cancel, yielding

p j � σ*
,

∑
i

W jivi + b j+
-
. (2.15)

This completes the Gibbs update for a single hidden unit. The Gibbs up-
date for visible units is derived in a similar fashion, and is

p (vi � 1 | v−i , h) � σ*.
,

∑
j

h jW ji
+/
-
. (2.16)

Because all hidden units are independent in the posterior, and all visible
units are independent in the likelihood, the Gibbs updates for all units
within a layer can be performed in parallel. This leads to an e�cient block
Gibbs sampling algorithm: �rst sample all hidden units, then sample all
visible units, and continue for as long as desired.

18 CHAPTER 2. BACKGROUND ON ENERGY MODELS

2.5.3 Contrastive Divergence

In brief, the CD algorithm estimates the gradient of the log probability of
the dataset by computing equation 2.11 using the MCMC sampling proce-
dures described previously to approximate the expectations over the pos-
terior and the joint.

In more detail, equation 2.11 requires expectations over the posterior
and the joint. CD �rst draws a sample from the exact posterior and com-
putes the Hebbian update. This sample is then used as the initial state for
a Markov chain performing block updates de�ned by equations 2.15 and
2.16. This chain is run for k steps, where k is a hyperparameter, and the
resulting visible and hidden assignments are used to compute the anti-
Hebbian update. This is also known as CD-k. A diagram of the Markov
chain is provided in �gure 2.3.

v

h

v

h
· · ·

v

h

Figure 2.3: Diagram of CD-k learning in a RBM. The �rst value of v
is shaded to indicate it is �xed by the data while the rest are found
by the model. Each arrow denotes a sample taken from p (h | v) or
p (v | h). The blue box (left) indicates the samples of v and h used
to compute the Hebbian update, and the red box (right) indicates
the samples used to compute the anti-Hebbian update.

It is clear that CD-k is not computing the gradient, as the anti-Hebbian
expectation over the joint is replaced by a single sample from a Markov
chain that may not have mixed. This is the key idea of CD: e�ective learn-
ing does not necessarily require a correct gradient, but rather a gradient

2.6. RBM VARIANTS 19

that is correct enough to move the model’s parameters in the right direc-
tion. Indeed, the most commonly used version of this algorithm is CD-1,
in which the Markov chain is run for only one step.

In practice, the performance of CD is improved by using mean-�eld
values, i.e. the values p j rather than a Bernoulli sample, for the Hebbian
and anti-Hebbian updates. This results in an exact computation for the
Hebbian step, and has the e�ect of reducing noise in the anti-Hebbian step
that provides no additional bene�t [30].

Several modi�cations on CD learning exist, themost popular being Per-
sistent Contrastive Divergence (PCD) [63]. Under this scheme, the Heb-
bian phase of learning remains unchanged, but the samples used in the
anti-Hebbian phase are drawn from a collection of Markov chains whose
state persists between iterations of learning. These chains are intended to
provide a better estimate of the partition function, by remaining closer to
a mixed state at all times. On the assumption that each learning iteration
only changes the joint by a small amount, then the persistent chains should
be able to re-mix in a small number of steps.

2.6 RBM Variants

The basic RBM structure has been extended in a variety of ways, some of
which are presented here. Our work will primarily make use of Gaussian
RBMs.

Gaussian RBMs (GRBMs) [33] are the most simple extension of RBMs
to model real-valued visibles. The energy of a GRBM is

log p∗(v, h) �
∑

ji

h jW ji
vi

σ
−

1
2σ2

∑
i

v2
i +

∑
j

b j h j , (2.17)

where σ is a variance parameter. Note that we use the symbol ‘σ’ for two
concepts: σ(x) refers to the logistic sigmoid function, and σ refers to a vari-
ance. The energy of a GRBM di�ers from the energy of a standard RBM

20 CHAPTER 2. BACKGROUND ON ENERGY MODELS

only in the addition of a quadratic term, and a division of all occurrences
of the visible units by σ. GRBMs are often de�ned with a vector of variance
parameters, σi , but for our uses the variance parameters are mostly con-
stant. The addition of the quadratic term leaves the posterior unchanged,
but results in the following likelihood. If φ � hW , then

p (v | h) ∝ exp*
,

−
(
vi − φi

)2
2σ

+
-
, (2.18)

that is, a Gaussian centred on φ with variance σ. While the procedure for
sampling the visible units given the hiddens has changed, the learning rule
remains the same as in a standard RBM.

ReluRBMs [52] provide a clever way of introducing continuous hidden
units. Each hidden unit is replaced by an in�nite number of copies sharing
the same weight and bias, but with a stepped o�set added to the bias. This
is close to a closed form.

N∑
k�1

σ(Wv + b − k + 0.5) ≈ log
(
1 + eWv+b

)
(2.19)

The in�nite number of copies of a particular binary unit approximates
a smoothed ReLU unit, allowing for positive, real-valued states. This is
shown to signi�cantly improve the performance of RBMs, particularlywhen
used in conjunction with Gaussian visible units.

Mean-Covariance RBMs (mcRBMs) [32] extend GRBMs. They are mo-
tivated by the observation that hidden units e�ectively model the means
of input data, but poorly capture the covariance structure between visi-
ble units. A mcRBM partitions the hidden units into two types: mean
units, which are standard binary hidden units, and covariance units, which
model pairwise interactions between visible units. The mean units con-
tribute a Gaussian with complex mean and diagonal covariance, while the
covariance units contribute a zero-mean Gaussian with possibly complex
covariance. While the model is trained with CD as per a standard RBM,

2.7. WHAT IS A CAUSE? 21

the covariance matrix of p (v | h) is no longer diagonal, and requires a ma-
trix inverse to calculate. This presents a problem for learning, as this in-
verse must be computed on every learning iteration in order to sample the
likelihood [6]. For any reasonably large number of visible units, this is in-
tractable. An alternative hybrid Monte Carlo training algorithm has been
proposed, which avoids calculating the matrix inverse, but presents prob-
lems for training [13, 6].

Finally, Spike-and-Slab RBMs (ssRBMs) [13] replace each hidden unit
of a GRBM with the product of a pair of variables: a binary ‘spike’ and
real-valued ‘slab’. The most recent iteration of the model, the µssRBM [5],
includes two weight matrices which allow it to model some covariance in
the visible units as in a mcRBM. This gives rise to a somewhat complex
energy function. Let v denote the visible units, h the ‘spike’ hidden units,
s the ‘slab’ hidden units, and w j and b j denote the weight vector and bias
associated with spike and slab units j. Let Φ be the additional weights
matrix, α j a scalar parameter that penalises large values of s j ,Λ a diagonal
matrix that penalises large visible unit values, and µ j a scalar parameter
that models the mean of unit s j . The energy of the model is:

E(v, s, h) � −
N∑

j�1
vT w js jh j +

1
2vT*.

,
Λ +

N∑
j�1
Φ jh j

+/
-
v + 1

2

N∑
j�1
α j s2j

−

N∑
j�1
α jµ js j h j −

N∑
j�1

b jh j +
N∑

j�1
α jµ

2
j h j .

Unlike the mcRBM model, standard CD learning can be performed e�-
ciently in a ssRBM.

2.7 What is a Cause?

Before we discuss relatedwork, it is useful to have amore formal de�nition
of an ‘independent cause’ to hand. The intuitive meaning is fairly clear: a

22 CHAPTER 2. BACKGROUND ON ENERGY MODELS

cause is one of the independent processes, such as faces or lighting, that
create the data. To formalise this notion, we tentatively de�ne an indepen-
dent cause as a partition of latent variables such that the two partitions are
statistically independent. This de�nition fails to capture the nuance of the
problem, and will be developed further throughout the thesis. Neverthe-
less, we will take it as a working de�nition for the time being.

2.8 Related Work

This section discusses work related to the disentangling algorithm pro-
posed in the next chapter. Broadly, most existing algorithms for disentan-
gling causes use one of three methods: bilinear models, energy models,
or neural networks. This section discusses work related to bilinear models
and energy models. Approaches based on neural networks are discussed
in chapter 8.

2.8.1 Bilinear Models

One of the �rst approaches to disentangling factors of variation is the bi-
linear model, proposed by Tenenbaum and Freeman [61], which presents
a tool for separating ‘style’ from ‘content’. Style and content refer to two
underlying factors of the data, such as letters and their handwriting style,
or spoken words and the speaker’s accent. In a symmetric bilinear model,
elements of a data vector x are modelled by

xi � aTWib, (2.20)

where a is a latent style vector, b a latent content vector, and Wi a matrix
of weights. The collection of matrices Wi , one for each i, forms a map from
the content and style space to the data space which is bilinear; if one of the
vectors is held �xed, the model is linear in the other. However the con-
tent and style vectors interact multiplicatively to generate the data, allow-
ing for complex interaction between the two models. This approach has

2.8. RELATED WORK 23

been extended to n causes in multi-linear models [65] through the use of
tensors, and has been specialised for translation invariance [28] and image
sequences [53]. On data such as handwritten digits and faces, bilinear and
multilinear models have been shown to separate causes such as style and
content; or face, lighting, and pose. However training this class of models
requires an orderedmatrix of data containing all combinations of all causes.
This amounts to a strongly supervised problem, which is a simpler task
than the one we wish to solve.

2.8.2 RBMModels

RBM-basedmodels have a history of usage in disentangling problems,most
commonly in the form of ‘higher-order’ energy models that involve extra
latent parameters a�ecting the hidden units. This section discusses two of
the most successful RBM-based disentanglers.

Higher-Order Spike and Slab RBMs

An extension of Spike and Slab RBMs, Higher-Order Spike and Slab RBMs
(hossRBMs) [16] add partitioned latent variables that interact multiplica-
tively. The energy function of hossRBMs is complex, and the model is
better described by its parameters. The hidden units are grouped into k
stacked layers, with each stack gated by a latent variable fk . Two groups
of spike and slab hidden units are used, g and h, which interact multi-
plicatively. Along with v visible units, this results in a four-dimensional
(v × k × g × h) tensor of parameters. To reduce the size of the parameter
space, a block-sparsity pattern is imposed on g and h: each g parameter is
non-zero only across one row, and each h parameter is non-zero only down
one column.

hossRBMs are trained without labels, but on datasets where all com-
binations of the two factors of variation are present. On the Toronto Face
Database [60], there is some specialisation of the two sets of units (see �g-

24 CHAPTER 2. BACKGROUND ON ENERGY MODELS

ure 4 of Desjardins et al. [16]) into emotion and identity, but there is room
for improvement.

Disentangling Boltzmann Machines

Disentangling Boltzmann Machines (DisBMs) [55] are a model for disen-
tangling factors of variation that makes use of a partitioned hidden layer
like the one proposed in section 3.1. Starting with a standard RBM, the
hidden units are partitioned into two groups. In addition to the standard
RBM energy terms, multiplicative factors between all three groups of units
(two groups of hiddens, one group of visibles) are added. These factors
result in the two groups of hiddens being dependent in the marginal, mak-
ing posterior inference and Hebbian-phase learning intractable. Instead, a
variational approximation is used. The model can be used with full labels,
‘partial’ labels that only explain one of two factors of variation, or no la-
bels at all. The authors note that the model has poor performance when
no labels are used, but achieves “modest” disentangling when labels are
used.

ORBM

The ORBM model, proposed by Godfrey, Frean, and Marsland [23], is the
most closely related model to the one proposed in section 3.1. The ORBM
models two coherent, independent causes of binary data by constructing
an undirected model from two RBMs. More formally, the marginal is that
of two RBMs, and the likelihood of a given visible is the sigmoid of the
sum of the two causes’ outputs. The fact that the likelihood is nonlinear in
each cause creates the need for a ‘correction term’, which is intractable to
calculate but can be well approximated.

The ORBM model achieved some success in the context of inference
when RBMs are each pre-trained on a cause, but has not been tested on
full learning, i.e. disentanglement.

Chapter 3

The Broadnet Model

This chapter describes the Broadnet, an RBM-based algorithm for disen-
tangling complex causes. Section 3.1 motivates the use of RBMs, section
3.2 presents the model, section 3.3 develops its inference and learning al-
gorithms, section 3.4 discusses the model and explores some alternatives,
and section 3.5 provides experimental results.

3.1 Setting and Motivation

The task of disentangling coherent and complex causes has broad scope.
For that reason we will simplify the setting somewhat andmodel data that
is generated by two independent causes that are individually complex, but
which interact simply. Speci�cally, we will make the following assump-
tions.

• The data is real-valued.

• There are exactly two causes of the data.

• The two causes interact additively.

It is reasonable to question whether RBMs are the right tool for this task, as
their results are mostly inferior to modern neural networks. However the

25

26 CHAPTER 3. THE BROADNET MODEL

RBMmodel has a key propertywhich is present in neither directed genera-
tive models nor neural networks: not only are the hidden units dependent
in the marginal, but they are also discouraged from becoming factorial dur-
ing learning. In other words, the model is capable of describing a complex
latent distribution and is also discouraged from having units represent in-
dependent factors of variation. This would seem an ideal property for a
model of a coherent cause.

The inclination of an RBM to model a coherent cause provides the mo-
tivation for combining several RBMs to form a model of multiple causes.

3.2 Model

This section describes the Broadnet model, and will begin with a general
overview. We construct amodel for disentangling by placing several RBMs
in parallel, such that each has a set of hidden units, but share a common
set of visible units. We name this model the ‘Broadnet’, to show that its
complexity lies in the ‘width’ of several RBMs, in contrast with the struc-
ture of a deep net [25]. We intend for each of these RBMs to model a single
complex cause.

Wewill focus on the case of two causes, leading to themodel visualised
in �gure 3.1. As we wish to model real-valued data, the visible units will
be real-valued, making each RBM a GRBM. Each visible unit will be an
element-wise sum of the contribution from each GRBM, thus mirroring
the assumptions about how elements of the data are generated.

By rights, each constituent GRBM in the Broadnet model should have
its own noise parameter and visible bias vector, however we simplify the
Broadnet architecture by using a single noise parameter σ for all causes
and omitting the visible biases altogether. We treat σ as a hyperparameter
that is not learned, and so use of a shared value does not couple the causes.
It has been observed [30] that learning in GRBMs is often made more dif-
�cult by the presence of visible biases, and experiments suggest that this

3.2. MODEL 27

ha
j hb

j

xi

W V

A B

Figure 3.1: Diagram of the Broadnet model. The hidden units of
each cause, A and B, are shown boxed.

problem is exacerbated in Broadnets. Due to this we will never use visi-
ble biases, and they are omitted from the derivation for ease of exposition.
Hence, the parameters of a Broadnet are two weight matrices and two hid-
den bias vectors, and the variables are two hidden vectors and one visible
vector.

In similar fashion to other energy model-based disentanglers [16, 55],
Broadnets are intended to disentangle the causes of data via inference.
While the two causes are independent in the marginal, they are depen-
dent in the posterior due to explaining away. This dependency results in
the need for an MCMC inference procedure based on trading residuals
between the two networks. The procedure resembles ‘negotiation’ for re-
sponsibility of components of the data. We hypothesise that the bene�t to
the joint produced by each GRBMmodelling a single cause, enabled by the
process of negotiation, will drive the Broadnet to disentangle.

3.2.1 Terms and Notation

In the context of a GRBM, we use W to denote the weights matrix, b the
bias, h the hidden state and v the visible state. In the context of a Broadnet,
the notation is used as follows.

28 CHAPTER 3. THE BROADNET MODEL

• When combined in a Broadnet, each GRBM is referred to as a ’cause’.
These are individually referred to as the A and B causes.

• W and V denote the weights matrices of the A and B causes respec-
tively.

• ba and bb denote the hidden bias vectors of the A and B causes re-
spectively.

• ha and hb denote the state of the hidden units of the A and B causes
respectively.

• φa and φb denote the reconstructions from each cause, that φa � ha
·

W and φb � hb
· V .

• x denotes the state of the visible units.

• D denotes the input dataset as a whole.

• σ is the noise parameter. Note that σ is used to denote noise, and σ(x)
the logistic sigmoid function.

Some mathematical shorthand will also be used.

• If p (x) is a distribution then the statement
∑

x p (x) is more correctly
written

∑
X p (x � X). However, when the variable and its assignment

have the same name, we will use the simpler form.

• Whenever a norm’s subscript is left unspeci�ed, it refers to the 2-
norm squared: ‖·‖ � ‖·‖22 .

• In general, a or b superscripts never refer to powers, but to variables
related to causes A or B.

3.2. MODEL 29

3.2.2 Derivation

This section provides a more rigorous derivation of the Broadnet (BN)
model. Like other generative models, the Broadnet model is described by
its joint. First, observe that the joint can be decomposed into a likelihood
term and a marginal term, as in equation 3.1, which will be derived indi-
vidually. This is not a factorisation in the sense of a directed generative
model, as the terms share parameters.

pBN
(
x, ha , hb

)
� pBN

(
x ��� h

a , hb
)

pBN
(
ha , hb

)
(3.1)

A key model decision is that each cause is independent in the marginal, so
the second term can be factored into the product of each cause’s marginal.

pBN
(
x, ha , hb

)
� pBN

(
x ��� h

a , hb
)

pBN
(
ha) pBN

(
hb

)
(3.2)

As each individual cause is a GRBM, the marginal on a cause pBN(ha) is
simply a GRBM’s marginal pGRBM(h). Hence, we must derive two terms:
the likelihood of a Broadnet and the marginal on a GRBM.

Likelihood. The likelihood term describes how the visible pattern is
generated given the two hidden patterns. Since we wish to model real val-
ued data with additive causes, the natural choice is to model the likelihood
as a Gaussian centred on the sum of the causes. If φa � haW and φb � hbV
then

pBN
(
x ��� h

a , hb
)
� N

(
φa + φb , σ

)
�

1
√

2πσ2
exp*

,
−

1
2σ2

∑
i

(
xi − φ

a
i − φ

b
i

)2+
-
. (3.3)

Marginal. Next, we must �nd the marginal induced by a single GRBM.
Recall that the unnormalised joint of a GRBM is de�ned as

log p∗GRBM(h, v) �
1
σ

∑
ji

h jW jivi −
1

2σ2
∑

i

v2
i + b · h, (3.4)

30 CHAPTER 3. THE BROADNET MODEL

where σ is the noise parameter. De�ne φ � hW , the reconstruction of
the data from hiddens h and perform some rearrangement of the unnor-
malised log-joint:

log p∗GRBM(h, v) �
1
σ

∑
i

φivi −
1

2σ2
∑

i

v2
i + h·b

�
−1
2σ2

∑
i

[
v2

i − 2φiviσ
]
+ h·b

�
−1
2σ2

∑
i

[(
vi − φiσ

)2
− φ2

i σ
2

]
+ h·b

�
−1
2σ2

∑
i

(
vi − φiσ

)2 + 1
2

∑
i

φ2
i + h·b. (3.5)

Exponentiating log p∗GRBM(h, v) �nds the unnormalised joint, and includ-
ing the partition Z results in the normalised joint. Equation 3.6 shows this,
and is rearranged to emphasise that the joint is a product of Gaussians, and
some terms not involving vi .

pGRBM(h, v) �
1
Z

∏
i


exp*

,

−
(
vi − φiσ

)2
2σ2

+
-


exp*

,
1
2

∑
i

φ2
i + h·b+

-
(3.6)

Importantly, observe from its de�nition in equation 2.5 that the partition Z
is not a function of vi . This allows the visible units to be integrated out:

pGRBM(h) �
∫
∞

−∞

p (v, h) dv

�

∫
∞

−∞

1
Z

∏
i


exp*

,

−
(
vi − φiσ

)2
2σ2

+
-


exp*

,
1
2

∑
i

φ2
i + h·b+

-
dv

�
1
Z

∫
∞

−∞

∏
i


exp*

,

−
(
vi − φiσ

)2
2σ2

+
-


dv exp*

,
1
2

∑
i

φ2
i + h·b+

-

�
1
Z

∏
i



∫
∞

−∞

exp*
,

−
(
vi − φiσ

)2
2σ2

+
-

dvi


exp*

,
1
2

∑
i

φ2
i + h·b+

-

�
1
Z

√

2πσ2 exp*
,
1
2

∑
i

φ2
i + h·b+

-
. (3.7)

3.2. MODEL 31

Joint. Finally, the marginals and the likelihood can be combined to form
the joint. This leads to the following log unnormalised probability, which
is denoted J for convenience.

J �
−1
2σ

x − φa
− φb

 + 1

2

φa

 + 1

2

φ

b

 + ha
·ba + hb

·bb (3.8)

The partition function is simply the product of the factors in equations 3.3
and 3.7 outside of the exponential or, equivalently, the de�nition in equa-
tion 2.5 applied to equation 3.8. Denoting the partition in each of the two
marginals by Za and Zb ,

Z �
ZaZb
√

2πσ2

�

∑
ha , hb

∫
∞

−∞

J dx. (3.9)

This completes the derivation of the Broadnet model.

3.2.3 Properties of the Model

The construction of the Broadnet model has several notable properties. By
construction, the two constituent GRBMs are independent in the marginal,
but the units within each GRBM are dependent in the marginal. From a gen-
erative perspective, this dependence structure is ideal for a model of two
complex causes: the networks model independent concepts, but the units
within a network model related concepts.

In contrast, the two constituent GRBMs are dependent in the posterior,
pBN

(
ha , hb ��� x

)
. This is due to explaining away between the two causes;

each unit in one cause is dependent on all units in the other cause given
the data. This dependence is desirable, as it captures the entanglement of
the data: the potentially di�cult problem of calculating the posterior rep-
resents the work of disentangling the causes, and is why the model is said
to disentangle via inference. This dependence also means the posterior
cannot be computed in one step, in contrast to a GRBM.

32 CHAPTER 3. THE BROADNET MODEL

Fortunately, several other quantities are easily computed. As with a
GRBM, the likelihood pBN

(
x ��� h

a , hb
)
can be computed in one step, as visi-

ble units are independent givens the hiddens. Additionally, units within a
cause are independent given both the data and the units in the other cause.
As such, the posterior over a single cause pBN

(
ha ��� h

b , x
)
can be computed

in one step. These properties are used in the following section to create
tractable posterior and joint inference algorithms.

3.3 Inference and Learning

This section describes the algorithms used in training a Broadnet. We begin
with posterior and joint inference, and then present the learning algorithm.

3.3.1 Posterior Inference

As discussed previously, posterior inference is made di�cult by the de-
pendence between ha and hb given x. Instead of computing the posterior
exactly, as in aGRBM,we use a blockGibbs sampling algorithm to generate
samples from the posterior.

Following the procedure for Gibbs sampling in section 2.2, we �rst �nd
the full conditional distribution on each hidden unit p

(
ha

j � 1
���� x, h

b , ha
− j

)
,

denoted p j for convenience. This derivation is similar to a standard RBM’s,
taking advantage of that fact that units within a cause are independent,
and that the partition does not depend on the value of ha

j .

p j

1 − p j
�

p
(
ha

j � 1
���� x, h

b , ha
− j

)
p
(
ha

j � 0
���� x, h

b , ha
− j

)

�

p∗
(
ha

j � 1
���� x, h

b
)

p∗
(
ha

j � 0
���� x, h

b
)

3.3. INFERENCE AND LEARNING 33

Solving for p j gives a familiar form.

p j �
1

1 −
p∗

(
ha

j �1
���� x, h

b
)

p∗
(
ha

j �0
���� x, h

b
)

(3.10)

This can be converted into log space with the inclusion of a sigmoid.

p j � σ
(
log p∗

(
ha

j � 1 ��� x, h
b
)
− log p∗

(
ha

j � 0 ��� x, h
b
))

(3.11)

All terms not related to ha
j cancel inside the log, yielding the posterior in

equation 3.12. This process is symmetric for hb
j , which is also presented

below.

p
(
ha

j � 1 ��� x, h
b
)
� σ

(
W j·

(
x − φa))

p
(
hb

j � 1 ��� x, h
a
)
� σ

(
Vj·

(
x − φb

))
(3.12)

With the full conditional distribution in hand, Gibbs sampling can be per-
formed. Due to the fact that units within a cause are independent, each
whole cause can receive a Gibbs update at once. This results in a block
Gibbs sampling algorithm, presented in algorithm 1.

The iterative, residual-driven nature of posterior inference makes for an
appealing approach to disentangling. To infer the state of a cause, ha , one
calculates the residual from the other cause, x − φb . The standard GRBM
posterior calculation is then performed, but with the data term replacing
the residual term as seen in 3.12. This leads to an inference algorithm in
which each cause receives the components of the data not yet explained by
the other cause, and attempts to explain them aswell as possible. Through-
out inference, the two networks ‘trade’ these residuals in order to model
the data, in a process we liken to negotiation of responsibility for the data. This
negotiation is intended to perform the work required for posterior infer-
ence, made di�cult by explaining away, and thereby disentangle the data.

34 CHAPTER 3. THE BROADNET MODEL

Algorithm 1 Broadnet posterior inference
NB. The algorithm is presented as starting inference with the A network,
but the initial network should be chosen at random to avoid bias and the
algorithm adjusted accordingly.

parameters: Markov chain length l.

input: data element x.

xa
← sample fromN (x ·W, σ)

ha
← sample from Bernoulli(σ(xa))

for l iterations do

xb
← sample fromN ((x − xa) · V, σ)

hb
← sample from Bernoulli

(
σ
(
xb

))
xa
← sample fromN

((
x − xb

)
·W, σ

)
ha
← sample from Bernoulli(σ(xa))

returnmost recent samples ha and hb , or their mean-�eld values.

Algorithm 2 Broadnet joint inference
parameters: Markov chain length k.

input: initial values of ha and hb , likely the output of algorithm 1.

for k iterations do

xa
← sample fromN (ha

·W, σ)
ha
← Bernoulli sample from Bernoulli(σ(W · xa + ba))

xb
← sample fromN

(
hb
· V, σ

)
hb
← sample from Bernoulli

(
σ
(

V · xb + bb
))

returnmost recent samples xa , ha , xb , hb , or their mean-�eld values.

3.3. INFERENCE AND LEARNING 35

3.3.2 Joint Inference

Fortunately, sampling from the joint of a Broadnet is no harder than from
the joint of a GRBM. Because the two causes are independent when the
data is not �xed, separate Markov chains for each cause can be run inde-
pendently. These Markov chains are identical to those used in GRBM joint
sampling. Algorithm 2 provides details of drawing these samples.

3.3.3 Learning Algorithm

Learning in Broadnets proceeds by gradient descent, but su�ers the same
di�culty as standard RBMs: calculating the gradient in a Broadnet re-
quires calculating the gradient of the partition, which is intractable. We
circumvent this problem in the same manner as standard RBMs, and use a
Contrastive Divergence-based learning algorithm to estimate the gradient.

Analogous to the derivation in section 2.5, the gradient of the log prob-
ability of the dataset D with respect to some parameter θ can be rewrit-
ten in terms of expectations. Let the subscript ‘posterior’ denote x ∼ data
and ha , hb

∼ p
(
ha , hb ��� x

)
, and the subscript ‘joint’ denote x, ha , hb

∼

p
(
x, ha , hb

)
. The joint can then be rewritten as follows.

∂
∂θ

log p (D) �

〈
∂
∂θ

J
〉
posterior

−

〈
∂
∂θ

J
〉
joint

(3.13)

The derivatives of J with respect to a weight W ji and a bias ha
j are

∂
∂W ji

J � ha
j

(
xi − φ

b
i

)
∂
∂ha

j
J � ha

j . (3.14)

The derivatives with respect to Vji and hb
j are symmetric. Substituting into

equation 3.13 yields the learning rules in equation 3.15. These equations
are simpli�ed by the fact that, in the case of sampling from the joint, x �

36 CHAPTER 3. THE BROADNET MODEL

φa + φb and so xi − φb
i � φa

i .

∂
∂W ji

log p (D) �

〈
ha

j

(
xi − φ

b
i

)〉
posterior

−

〈
ha

j φ
a
i

〉
joint

∂
∂Vji

log p (D) �

〈
hb

j

(
xi − φ

a
i

)〉
posterior

−

〈
hb

j φ
b
i

〉
joint

∂
∂ha

j
log p (D) �

〈
ha

j

〉
posterior

−

〈
ha

j

〉
joint

∂

∂hb
j

log p (D) �

〈
hb

j

〉
posterior

−

〈
hb

j

〉
joint

(3.15)

These learning rules are the same as in aGRBM, save for the replacement of
xi with xi−φb

i or xi−φa
i . Here again the residual-based nature of themodel

is clear: each network receives a gradient only from parts of the input not
explained by the other cause.

Using the procedures for �nding posterior and joint samples detailed in
the previous two sections, CD learning can be applied to this update rule to
�nd an estimate of the true gradient. A key di�erence between GRBM and
Broadnet learning is that both posterior and joint samples are estimated by
Markov chains, which is shown diagrammatically in �gure 3.2, to be com-
pared with �gure 2.3. The �nal algorithm for a step of learning is provided
in algorithm 3.

Algorithm 3 Broadnet learning algorithm
input: data element x.

ha+, hb+
←mean-�eld posterior samples from algorithm 1

ha−, hb−, xa−, xb−
←mean-�eld joint samples from algorithm 2

Perform learning updates according to equation 3.15.

3.4. DISCUSSION 37

x

· ·
·

ha

x

hb

x

ha

· · ·
x

ha

· · ·

x

hb

Figure 3.2: DiagramofCD-k learning in a Broadnet. The �rst x node
is shaded to denote it is �xed to the data, and the other x of the
Hebbian phase are half-shaded to denote x − φ. The nodes within
the blue box are used for theHebbian update, and the nodes within
the red boxes are used for the anti-Hebbian update.

3.4 Discussion

With the Broadnetmodel and training algorithmnowdetailed, we can take
a broader view of its properties as a model of disentanglement. The model
has several attractive traits: in the marginal the causes are independent,
and units within a cause are dependent. This is consistent with the idea of
complex, coherent, and independent causes. In the posterior, units within
a cause are independent, allowing for e�cient sampling, while the causes
are dependent, providing opportunity for negotiation. Both inference and
learning have an appealing similarity to their standard RBM counterparts,
with occurrences of the data being replaced by a residual from the other
cause.

38 CHAPTER 3. THE BROADNET MODEL

The core justi�cation for Broadnet’s disentanglement ability is the re-
stricted dependence structure of the hidden units. The model contains no
explicit incentive towards disentangling, but rather relies on the advan-
tages brought about by representing independent causes in each model,
which are recovered by the residual-trading inference algorithm. This al-
gorithm performs the non-trivial work of reversing the entanglement of
the causes.

Broadnets introduce one extra hyperparameter in addition to those of
a standard GRBM: the length of the Markov chain used to collect poste-
rior samples. Due to the presumed need for negotiation between the two
causes, we expect this Markov chain to require several iterations, making
the inference process slower than in a GRBM, though not intractable. It is
unclear how long the posterior and joint chains need to be but, as a conser-
vative estimate, both chains are generally run for 10 iterations.

3.4.1 Alternative RBMs

While GRBMs have been chosen as the basis of the Broadnet model, they
are known to have limited representation power [13] and are often di�-
cult to train. Ideally, they could be replaced with one of several popular
improvements on the basic GRBM model, but few are suitable for use in a
Broadnet. This section discusses some of the more common GRBM vari-
ants and their applicability to the Broadnet model.

ReluRBMs [52] show a signi�cant improvement in performance and, in
practice, ease of training when compared to GRBMs. This improvement
can be attributed to the fact that hidden units are now e�ectively contin-
uous, increasing representation power. Unfortunately this property also
makes ReluRBMs unsuitable for our purpose, because inference must be
performed on a hidden space that is rectilinear in W . Consider the be-
haviour of a Markov chain producing either joint or posterior samples. On
each iteration of the chain, unit activations are multiplied by W . If it is run
for n steps, the initial hidden activation is multiplied by Wn , the weights

3.4. DISCUSSION 39

matrix raised to the power of n. Unless all eigenvalues of W are exactly 1,
this results in hidden values either vanishing or exploding. This issue ex-
ists in standard ReluRBMs as well, but is avoided by only performing CD-1
training. This is not an option in a Broadnet, as it relies on long Markov
chains.

Mean-Covariance RBMs (mcRBMs) [32] also signi�cantly improve the
representation power of GRBMs, but it is not clear how to incorporate
their inference procedure into a Broadnet. Our inference algorithm re-
lies on sampling the likelihood of a single cause to approximate the poste-
rior, but likelihood calculations are intractable in these alternative models.
Their training algorithm avoids direct likelihood calculations by instead
sampling from p (x) [6] using a hybrid Monte-Carlo method, which rules
out the possibility of residual-trading inference algorithm of the kind pre-
sented here. While a model for disentangling could be constructed with
mcRBMs, it would be too far a departure from standard inference for us to
consider.

Spike-and-Slab RBMs (ssRBMs) [13, 5] are amore recentmodi�cation to
RBMs, and are noted as a “drop-in replacement” [13] for GRBMs. ssRBMs
do not have problemswith theirmodel that prevent their use in a Broadnet,
although the success of ssRBMs has been focused on convolutional mod-
els and data, with which we do not wish to complicate our model. These
are the best candidate replacement for GRBMs, though our experiments
indicate that, in practice, they can be as tricky to train as GRBMs. Initial
success with Broadnets made from GRBMs would motivate us to pursue
the use of ssRBMs further.

Finally, a clear issue with GRBMs is their requirement that the magni-
tude of their weights not only reconstruct the data well, but provide the
correct amount of uncertainty in hidden activations. This is an example of
the tension between likelihood and posterior terms as discussed in section
2.4: if the magnitude of the data is increased 10-fold, then increasing the
weights accordingly results in Wv increasing 100-fold, signi�cantly alter-

40 CHAPTER 3. THE BROADNET MODEL

ing the stochasticity of p (h | v). One solution would be to modify GRBMs
to only reconstruct the direction of a data vector, not its magnitude. This
could be achieved by constructing a model where

p (v | h) �
∫
∞

0
N (c ·Wv, σ) dc. (3.16)

Considering a simpli�ed case with σ � 1 and no hidden or visible biases,
this leads to the following log unnormalised joint.

log p∗(v, h) � k +
√

π

‖v‖
+ ‖hWv‖
‖v‖

(3.17)

Unfortunately, due to the quadratic term of the energy, neither posterior
nor likelihood inference can be performed in one step. Therefore, the in-
ference algorithm in a Broadnet made from thesemodels would require all
units to be sampled sequentially, rather than in blocks, making it very slow.
It appears that most models where magnitude is somehow controlled will
su�er from this problem.

3.5 Results

With the Broadnet fully derived, this section presents some results on three
tests of varying di�culties. In each test, a Broadnet is trained on data de-
rived fromMNIST. Broadnets have also been trained on several toy datasets
with simple causes, some examples of which are shown in �gure 3.3. Re-
sults on this data yield no additional information to themore di�cult cases,
and so are omitted.

The �rst test trains on 1000 MNIST 5’s added to a linear gradient across
the image. The gradient is determined by only one parameter, the angle
of increase across the image. The digits and gradients are both normalised
into the range [0, 1] before being added together. Figure 3.4 provides exam-
ples of this data, as well as the weights and reconstructions after training.

3.5. RESULTS 41

(a) A small circle and square independently take one of �ve locations and sizes.

(b) A combination of sine waves, generated from a single random variable, is
added to a linear gradient.

(c) Two lines are generated, the o�set and orientation of each line are generated
from a single random variable.

(d) A pattern of bars, in six locations, and blocks, in �ve locations, are generated
independently and added together. The requirement of an odd number of each
entangles the causes.

Figure 3.3: A sample of toy datasets used for testing. The experi-
ments of section 3.5 have been performed on these datasets, but re-
sults do not di�er from the more complex MNIST-based data and
so are not presented.

42 CHAPTER 3. THE BROADNET MODEL

(a) Samples from input data.

(b) Example reconstructions.

Figure 3.4: The �rst example of training a Broadnet on simple two-
cause data. Each input image, examples of which are shown in �g-
ure (a), contains a 5 fromMNIST added to a linear gradient. Figure
(b) shows �ve examples of the reconstructions throughout several
steps of inference. The top row displays the input image, and each
pair of columns displays image as reconstructed by one of the two
causes. The rows display the reconstructions throughout the �rst
�ve steps of inference. Despite the simplistic representation of a 5,
the causes appear to be fairly well disentangled.

3.5. RESULTS 43

Figure 3.5: Top 10 principal components of the data shown in �gure
3.4 (a). The �rst two principal components mostly represent the
linear gradient, and the remaining components represent the digit.

These show promising disentangling; one cause makes a poor representa-
tion of a 5, and the other a good representation of a gradient with only the
shadow of a 5 in it. However, two factors complicate matters.

First, this test case is less di�cult than it appears at �rst sight. As shown
in �gure 3.5, the gradient is in fact entirely represented by the �rst two
principal components of the data, and the following components represent
increasing detail of a 5. This means the outcome of the model has been
to imperfectly learn the �rst two principal components in one cause, and
perhaps the �rst three in the other; a less impressive feat than learning
independent causes.

Second, training is not robust to hyperparameters, and several tweaks
must be made for a successful outcome. Each cause of the data has been
normalised to the range [−1, 1], rather than [0, 1]. Additionally, the model
is extremely vulnerable to what could be called the ‘mean-optimum’, in
which all units represent a small fraction of the data mean, and none of
the variance. To combat this, an abnormally small minibatch size must be
used, no greater than 5. In addition, contrary to the standard recommen-
dation in RBM models [30], the Hebbian and anti-Hebbian updates must
use samples instead of mean-�eld unit activations. This introduces extra
noise that aids in escaping the mean optimum. If any of these tweaks are
not used the model will fail to train.

44 CHAPTER 3. THE BROADNET MODEL

The second test trains on 1000MNIST 3’s added toMNIST 7’s that have
been rotated by 90 degrees, both normalised to [−1, 1], as shown in �gure
3.6 (a). This is a much harder task than the previous one, and the causes do
not factor nicely into principal components. Signi�cant e�ort has been put
towards �nding a learning setup in which some sign of disentangling oc-
curs, but unfortunately this has not succeeded. Our e�orts focus on the im-
portant hyperparameters of learning: minibatch size, learning rate, value
of the noise parameter, Markov chain length, number of hidden units, ini-
tial bias value, initial weight scale, momentum coe�cient, and regularisa-
tion. We test both L1 regularisation, penalising the mean absolute weight
value, and L2 regularisation, penalising the mean squared weight value.

To provide evidence for the scope of this problem, a large grid search
has been performed. The tested combinations are listed in table 3.1 and,
while detailed results are not presented, no run disentangled. These tests
do not encompass all learning setups manually tested, as some restrictions
had to be made for computational practicality.

Detailed results of each test from table 3.1 are omitted. Instead, �g-
ure 3.6 (b) presents reconstructions from the test whose reconstructions of
each network individually had the smallest mean squared error with the
data’s constituent digits, across the whole dataset. Acknowledging that
mean squared error is not necessarily the correctmeasure of disentangling,
reconstructions from each networkwere alsomanually checked; nonewere
noticeably better than the one presented.

Additionally, several other tweaks to the learning setuphave been tested,
some of which will be discussed brie�y.

Bias initialisation. We have tested di�erent bias initialisation methods,
including random and constant initialisation, as well as ensuring all
biases are initially negative. This aims to solve the tendency for units
to bemostly active at initialisation, which can lead to degenerate solu-
tions. Empirically, early learning of high-quality hidden biases is one
of the most important factors for successful training. While careful

3.5. RESULTS 45

Table 3.1: Combinations of learning setups tested for disentangle-
ment in a grid search.

Hyperparameter Range of settings

Input data type Trivial with 2 visibles or a subset of MNIST
with 784 visibles.

Input data range [−n , n] and [0, n] for n ∈ {0.1, 1, 5}
Learning rate 0.00001 or 0.01
Momentum 0 or 0.9
Optimiser SGD
Minibatch size 1, 32, or 512
Regularisation L1 or L2 with coe�cient 0.01
Noise parameter 0, 0.1, or 1
(anti-)Hebbian chain length 10
Hidden units per cause 10 or 1000
Bias initialisation Constant values 0 or -1, or uniform in ranges

[−1, 1] or [0, 1].
Weight initialisation Uniform in ranges [−n , n] for n ∈ {0.01, 0.1}.

46 CHAPTER 3. THE BROADNET MODEL

(a) Samples from input data.

(b) Reconstructions after training.

Figure 3.6: Second example of training a Broadnet, using data con-
taining two digits added together. Sample inputs are shown in �g-
ure (a). The model consistently �nds an entangled optimum after
some training, such as the one shown in �gure (b), which is the low-
est error model from the grid search speci�ed in table 3.1. Figure
(b) shows the reconstructions over several iterations of inference in
the same manner as �gure 3.4.

3.5. RESULTS 47

initialisation makes training to a meaningful solution more reliable,
it has no e�ect on the disentanglement of those solutions.

Learning rates. Wehave testedusing separate learning rates for theweights
and biases. This is motivated by the same observation as the previ-
ous point: learning hidden biases quickly results in hidden units that
better model variation in the data. Empirically, biases can tolerate
signi�cantly higher learning rates than weights can, which improves
training, but does not cause disentanglement.

Adaptive optimisers. We have tested using adaptive gradient optimisers,
often with high learning rates and large amounts of momentum on
an annealing schedule. This is intended to allow the model to avoid
low-quality local optima thatmay be entangled. Aswith the previous
tweaks, this leads to better training, but no disentanglement.

Data preprocessing. We have tested normalising the causes of the dataset
(e.g. individual digits) to di�erent ranges, such as [−n , n] and [0, n],
as well as whitening the data. These measures attempt to allow com-
plex posterior distribution to be created more easily. Results indi-
cate that whitening the data lessens the model’s vulnerability to the
mean-optimum, likely due to the lack of visible biases. Any method
that ensures input data has both positive and negative pixels helps
prevent hidden units degenerating to always being active, which al-
lows for a more complex posterior and better representations. None
of these improvements result in disentangling.

The third test uses a simpler dataset, in which the causes are complex,
but only trivially entangled. This aims to remove any potential problems
created by the di�culty of �nding a disentangled representation, and test
whether the model is drawn towards disentangling at all. The data is cre-
ated by simply placing two MNIST digits next to each other, as seen in �g-
ure 3.7 (a). A similar suite of tests was performed to those shown in table

48 CHAPTER 3. THE BROADNET MODEL

(a) Samples from input data.

(b) Reconstructions after training.

Figure 3.7: Third example of training a Broadnet, using data with
complex causes that are trivially ‘entangled’. Each image contains
an MNIST ‘3’ and an MNIST ‘7’ placed side-by-side, as seen in �g-
ure (a). Despite the fact that disentangling is trivial on this dataset,
the model consistently converges to an entangled optimum. Figure
(b) shows such an optimum, presented in the same manner as in
�gure 3.4.

3.1. Reconstructions from the model with the best mean squared error are
shown in �gure 3.7 (b). Even in the case where disentangling is trivial, the
learning algorithm appears incapable of �nding a disentangled optimum.

The almost completely negative outcome on even easy test cases casts
doubt on the Broadnet as amodel for disentangling. This raises a question,
why don’t Broadnets disentangle? This is the subject of the next chapter.

Chapter 4

Understanding Broadnets

The previous chapter introduced the Broadnet model and algorithms for
disentangling data which, unfortunately, appears to have several funda-
mental issues that prevent successful disentangling. This chapter will ex-
plore these issues.

Datasets

Most of the experiments in this chapter have a common setup, which will
be described here. With the exception of some examples using toy models,
all models have 784 visible units and are trained on 1000 images derived
from MNIST. Each image contains two causes added together: an upright
digit, either a ‘0’ or ‘1’, and a digit rotated 90 degrees, either a ‘2’ or ‘4’.
Each cause’s image is normalised to the range [0, 1], so the resulting image
is in the range [0, 2]. Some examples are shown in �gure 4.1. Several exper-
iments in this chapter construct Broadnets from two individually trained
GRBMs. In this case, each is trained on one of the causes of the data.

Almost every experiment in this chapter has also been performed on
several simpler datasets, some of which were presented in the previous
chapter in �gure 3.3. The results on these datasets are not speci�cally dis-
cussed, as they are almost all consistent with the results on the more com-
plex data in �gure 4.1.

49

50 CHAPTER 4. UNDERSTANDING BROADNETS

(a) Left cause (b) Right cause (c) Both causes

Figure 4.1: Example images from the most commonly used dataset.

4.1 Calculating the Full Joint

Energymodels aremost commonly reasoned about using the unnormalised
joint, as the full joint requires computing the partition function. However,
the true joint allows for insight into the behaviour of themodel that is di�-
cult to attain otherwise, and several experiments in this chapter will make
use of it. This section will brie�y derive an analytic form of the loss. Recall
that the unnormalised joint and partition are

p∗
(
x, ha , hb

)
� exp

(
−
1
2

x −
(
φa + φb

)

 + 1
2

φa

 + 1
2

φ
b

 + ha

·ba + hb
·bb

)
Z �

∑
ha , hb

∫
∞

−∞

p∗
(
x, ha , hb

)
dx.

(4.1)

The integral in the partition function Z is a Gaussian integral and so is
analytic, leading to the following equation:

∫
∞

−∞

p∗
(
x, ha , hb

)
dx

�

∫
∞

−∞

exp
(
−
1
2X2 +

(
φa + φb

)
X −

1
2φ

aφb + ha
·ba + hb

·bb
)

dx

�
√

2π exp
(1
2

φa

 + 1
2

φ
b

 + ha

·ba + hb
·bb

)
. (4.2)

4.1. CALCULATING THE FULL JOINT 51

The true joint can then be found, as

p
(
x, ha , hb

)
�

p∗
(
x, ha , hb

)
Z

�

exp
(
−

x −
(
φa + φb

)

 +

φa

 +

φ
b

 + ha

·ba + hb
·bb

)
∑

ha , hb

√
2π exp

(
1
2

φa

 + 1
2

φb

 + ha·ba + hb·bb
) .

(4.3)

In this form the true joint can be computed exactly, as can the log evidence
as follows.

log p (D) �
∑
x∈D

log


∑
A,B

p
(
x, ha , hb

)
(4.4)

While the true joint can be calculated, it is exponentially costly to do so due
to the sum over all hidden con�gurations.

The form of the joint given in equation 4.3 is somewhat unwieldy, and is
more easily interpretedwhendecomposed into a likelihood and amarginal
term.

p
(
ha , hb

)
�

exp
(
1
2

φa

 + 1
2

φ
b

 + ha

·ba + hb
·bb

)
∑

ha ,hb exp
(
1
2

φa

 + 1
2

φb

 + ha·ba + hb·bb
)

p
(
x ��� h

a , hb
)
� exp

(
−
1
2

x − φ
a
− φb

)
(4.5)

The true joint and log probability of the data can then be written as

p
(
x, ha , hb

)
� p

(
x ��� h

a , hb
)

p
(
ha , hb

)
log p (D) �

∑
x∈D

log 1
√
2π

∑
ha ,hb

[
p
(
x ��� h

a , hb
)

p
(
ha , hb

)]
. (4.6)

Aswith a standardRBM, this partition is not a factorisation in the sense of a
directed generative model, as the two factors share parameters. Neverthe-
less the factors have intuitive interpretations. The likelihood term is simply
responsible for ensuring the data is reconstructed well, while the marginal

52 CHAPTER 4. UNDERSTANDING BROADNETS

termmust apportion probability mass so as tomirror the data distribution.
Much like an RBM, in combination these factors can be seen as requiring
that the model translates between the data and hidden distributions, using
a shared set of parameters for each translation.

4.2 The Importance of Anti-Hebbian
Initialisation

This section brie�y details an important point in the Broadnet training al-
gorithm: the hidden states used to initialise the two negative phaseMarkov
chains must come from the reconstruction of each individual GRBM. They
cannot be started at random values, or both initialised to the visible state
of one network. Doing so all but guarantees that the model will eventu-
ally diverge, an example of which is shown in �gures 4.2 and 4.3. This is a
counterintuitive outcome, and we will show that it is caused by a combi-
nation of bad mixing behaviour causing biased anti-Hebbian samples and
the Broadnets’ sensitivity to noise.

GRBMs can have bad mixing behaviour

Both GRBMs and Broadnets have the potential for bad mixing behaviour
during the anti-Hebbian Markov chain. In particular, they risk getting
‘stuck’ in a state with all hidden units inactive regardless of the joint distri-
bution. This can occur any time the initial visible pattern results in all hid-
den units being inactive. This behaviour will be discussed in the context of
a GRBMwith hidden units h, visible units v, and weights W . Superscripts
h(t) and v(t) are used to denote the iteration of the Markov chain.

An observation related to bad mixing is that almost all well-trained
GRBMs (and any other RBM-model with binary hidden units) have rel-
atively large negative hidden biases. This is necessary to compensate for
the e�ect of the logistic sigmoid function. Suppose a GRBM has all hid-

4.2. THE IMPORTANCE OF ANTI-HEBBIAN INITIALISATION 53

(a) Epoch 10

(b) Epoch 75

(c) Epoch 120

Figure 4.2: Typical pattern of training when using incorrect anti-
Hebbian initialisation. Each �gure visualises the weights at a par-
ticular epoch, with the �rst two rows representing W and the last
two representing V . By epoch 75 the model has learned a reason-
able, though entangled, representation of the data. By epoch 120,
the model has diverged. See also �gure 4.3.

54 CHAPTER 4. UNDERSTANDING BROADNETS

0 20 40 60 80 100
epochs

0.05

0.06

0.07

0.08

0.09

0.10

m
ea

n
ab

so
lu

te
 w

ei
gh

t v
al

ue

Figure 4.3: Plot of the mean absolute value of a weight in the net-
work from �gure 4.2 throughout training. Only the �rst 115 epochs
are shown, as the �nal epochs diverge rapidly.

den biases set to 0, and a visible pattern v is presented that is orthogonal
to W j , the weights vector associated with unit h j . The mean-�eld value of
p
(
h j

��� v
)
is then σ(0) � 1

2 . This is clearly undesirable, as a unit that does not
contribute to representing v will be activated half the time. This problem
is solved by negative hidden biases.

Consider the anti-Hebbianphase of aGRBM, inwhich theMarkov chain
is initialised with a visible pattern v(0) such that all elements of Wv(0) are
non-positive, that is, v(0) is not well modelled by any of the hidden units.
So long as the hidden biases have relatively large negative values, this will
lead to all hidden units h(0) being sampled as inactive with very high prob-
ability. Without visible biases, this will lead to the subsequent v(1) samples
having mean-�eld values of 0. If the variance parameter of the likelihood
is relatively small, then the resulting hidden values h(1) are likely to also
be entirely inactive. This cycle continues until a visible sample is lucky
enough to overcome the hidden bias and activate at least one hidden unit.

4.2. THE IMPORTANCE OF ANTI-HEBBIAN INITIALISATION 55

Our experiments indicate that one needs to use σ ≥ 5 for a Markov
chain run for 20 iterations to reliably overcome this bad initialisation on
GRBMs trained on data in the range (−1, 1) or (0, 1). This value of σ is
too large for e�ective training on data of this magnitude, as the signal-to-
noise ratio of the likelihood samples is very low. It should be noted that
this issue cannot be solved by changing the magnitude of the data, as the
learned weights and biases scale accordingly.

A consequence of this property is that bad initialisations of the anti-
Hebbian Markov chain produce biased samples of the joint.

Broadnets are sensitive to noise

Suppose a weight W ji erroneously increases in magnitude via the noise in-
troduced by CD. In a standard RBM, the next iteration of learning would
correct the error. However in a Broadnet, both networks receive a residual
and correct the error. This means W ji will decrease in magnitude, and the
correspondingweights V·i in the other networkwill increase inmagnitude.
The net result is that, once the two networks have re-aligned, all of W ji and
V·i have slightly increased in absolute magnitude. In short, the learning
dynamics in a two-cause model make parameters sensitive to noise.

This property can be seen experimentally. We construct a simple Broad-
net with one hidden unit in each cause, and one visible unit, and train on
the simple dataset D � [0, 3, 5, 8]. This network is initialised with the fol-
lowing parameter settings. For demonstration purposes, a bad initialisa-
tion is used intentionally.

W � 0.5 V � −0.5

a � 0 b � 0 (4.7)

Figure 4.4 shows a snapshot of several iterations of training, in which one
weight increases in size and both weights move to compensate.

56 CHAPTER 4. UNDERSTANDING BROADNETS

3990 3994 3998 4002 4006 4010
iterations

22.6

22.7

22.8

22.9

23.0
we

ig
ht

 v
al

ue
abs(W) - 4
abs(V)

Figure 4.4: Example of a Broadnet’s sensitivity to noise. The net-
work is initialised as in equation 4.7, and trained on a simple
dataset. The �gure shows a snapshot of the weights over 20 iter-
ations part-way through training. The weights have been adjusted
for display by taking the absolute value, and adding a constant such
that they are (almost) the same value at iteration 3990. After the W
weight spikes due to the noise at iteration 3992, the sensitivity of
the model to noise can be seen: both weights adjust to compensate
for the noise, resulting in an overall increase in both weights.

Broadnets diverge with bad anti-Hebbian initialisations

These two properties of Broadnets interact to make learning diverge. Bad
anti-Hebbian initialisations bias the samples towards zero, introducing a
consistent error to the anti-Hebbian update. In a standard GRBM, that er-
ror would be corrected for during the next iteration of learning, but the
residual-based nature of Broadnet learning prevents it from being entirely
corrected. As a result, errors that increase the absolute magnitude of the
weights compound throughout learning, eventually leading to divergence.

4.3. THE GREEDY INFERENCE PROBLEM 57

4.3 The Greedy Inference Problem

The Broadnet model is constructed to disentangle data via inference, that
is, the process of computing p

(
ha , hb ��� x

)
. By partitioning the hidden units

the �ow of information is restricted and the units that represent one coher-
ent cause should be placed in the same network. This emphasis on infer-
ence means we expect to see the two causes ‘negotiate’ responsibility for
an input that is not trivial to disentangle. Negotiation should take the form
of lively Markov chains during inference, that are active for several steps.
However, it appears that inference is almost entirely ‘greedy’; each cause
mostly ignores the changing residual from the other network, resulting in
inference that is generally unchanged after one step. Given that this is true,
there is little expectation that Broadnets will achieve proper disentangling.

This section presents some results detailing this unfortunate outcome.
We �rst show that inference provides a relatively good approximation of
the posterior, and then show that complex work is not performed by the
Markov chain during inference.

4.3.1 Experiments

Training

In order to focus on the inference algorithm, and factor out any issues with
learning, the Broadnets used in this section are not trained from random
initialisation. Instead, they are constructed by initialising their parameters
from twoGRBMs, each of which is trained on one of the causes that creates
the data, seen in �gures 4.1 (a) and (b). We name these GRBM initialised
Broadnets; they are also used extensively in section 4.4. The constituent
GRBMs are trained for 400 epochs of CD-10 learning with the following
hyperparameters: a learning rate of 0.01, minibatches of 64 images, and a
noise parameter σ of 0.1.

58 CHAPTER 4. UNDERSTANDING BROADNETS

Correctness

First, we must consider the possibility that the inference algorithm used
in Broadnets is not functioning as expected, in that samples drawn from
the Markov chain do not represent the true posterior well. Asymptotically,
this is not a concern as any ergodic Markov chain explores its distribution
correctly when run forever [37]. OurMarkov chain is ergodic so long as the
Broadnet’s graph structure remains connected when all connections with
zeroweight are removed. This is almost certainly the case. In practice, how-
ever, a distribution can cause bad mixing behaviour that makes drawing
representative samples di�cult within reasonable timeframes. Two causes
of bad behaviour are when distributions contain regions of high proba-
bility that are only connected via paths of very low probability, or when
high dimensional spaces have near-constant probability [42]. If theMarkov
chain used in inference is badly behaved, then the reasonably short chain
lengths used may lead to bad gradient estimates.

As theoretical analysis of the mixing behaviour of Markov chains is
di�cult, we present empirical evidence that the posterior is, in fact, well-
approximated by the inference procedure. In the case of a small number
of hidden units per cause, it is tractable to calculate the exact posterior for
a given input pattern. The true posterior can then be compared with sam-
ples from the Markov chain. These tests use six hidden units per cause,
yielding 4096 hidden unit con�gurations.

Figure 4.5 compares the true posteriorwith theMarkov chain’s estimate
for a pre-trained Broadnet. The blue points represent the log frequency of
10000 samples, with 10 steps of burn-in, and 10 steps between samples.
The results are positive: at least in this small case, the inference procedure
appears to be correct.

4.3. THE GREEDY INFERENCE PROBLEM 59

3500 3600 3700 3800 3900 4000
hidden states (ordered)

16

14

12

10

8

6

4

lo
g

pr
ob

ab
ilit

y

Figure 4.5: Comparison of the true posterior of a GRBM-initialised
Broadnet and the sampling procedure. Each x value corresponds to
one of 4096 possible hidden states, ordered by their posterior value.
Only the most common 596 are shown, as all others are never sam-
pled. The red line shows the true log-posterior values, and the blue
points show the log-normalised-frequency of samples from each
hidden state.

60 CHAPTER 4. UNDERSTANDING BROADNETS

Time to Convergence

Next, we explore the more meaningful metric of how long the dynamics
of inference take to settle into a steady state. When running any Markov
chain, one can expect an initial period of high activity as the chain mixes,
followed by a constant amount of activity once the chain has reached its
equilibriumdistribution. If negotiation is occurring in the inferenceMarkov
chain, we expect to initially see several iterations of abnormally high activ-
ity as the two networks trade responsibility for the data before the chain
mixes. The activity in a Broadnet’s inference chain can be measured by
recording the di�erence in the mean-�eld hidden activations between suc-
cessive steps of inference. Letting ha t and hb t represent the mean-�eld hid-
den activations after iteration t, de�ne

activityt �
∑

j

���h
a t

j − ha t−1
j

��� +
∑

j

����h
b t

j − hb t−1
j

����, (4.8)

where |·| is the absolute value. At t � 0, that is, before the �rst step of
inference, let the activations all be 0.5.

This experiment uses GRBM-initialised Broadnet with 50 hidden units
and a noise parameter σ � 1, trained on the MNIST-like data in �gure 4.1.
Figure 4.6 plots the value of equation 4.8 across 10 iterations of inference.
As expected, the �rst iteration sees signi�cant change to the activations
of both networks. From the second iteration onwards, however, the acti-
vations change by a near-constant amount indicating that the chain has
mixed. From this, we can draw the conclusion that inference in Broadnets
is e�ectively single-step and negotiation does not occur. This removes the
possibility of inference-based negotiation.

4.3. THE GREEDY INFERENCE PROBLEM 61

1 2 3 4 5 6 7 8 9 10
iterations

0

5

10

15

20

25

ac
tiv

ity

A network
B network

Figure 4.6: Measurement of activity during the �rst 10 iterations
of the inference Markov chain. Activity is measured as in equation
4.8. Lightly coloured lines plot activity for 10 examples from the
dataset, and the thick lines with dots plot the mean activity across
all elements of the dataset.

62 CHAPTER 4. UNDERSTANDING BROADNETS

Factors A�ecting Inference

Inference is strongly a�ected by two factors: the model’s noise parameter
and the magnitude of the input patterns. This section will brie�y investi-
gate whether these factors play a signi�cant role in the speed of inference.

When the noise parameter σ is large, then the downward step of Gibbs
sampling is very noisy, resulting in more variation in the hidden units in
the following upward step. Figure 4.7 shows the total activity per iteration
(as in �gure 4.6) for several settings of σ. The Broadnets used have 50 hid-
den units per cause, and are trained on data in the range [−1, 1]. Changing
σ, unsurprisingly, determines the magnitude of the constant activity when
at equilibrium, but also has a minor e�ect on convergence rate. As σ tends
to 0 the amount of activity in the second iteration does increase; there is
approximately one more unit (out of 100) changing state than would be
expected at equilibrium. This does not qualify as negotiation.

In order to reconstruct the data well and thereby satisfy the likelihood
term of the joint, the weights matrices W and V must produce reconstruc-
tions of a similar magnitude to the input data. Due to this, one would
expect larger weights in a network trained on data in the range [−2, 2] than
one trained on data in [−1, 1]. However, as the size of theweights increases,
σ(Wx) tends towards 0 or 1, decreasing the stochasticity of the hidden sam-
ples. Figure 4.8 shows the result of running inference in pre-trained Broad-
nets built from GRBMs trained on data that has been scaled into di�erent
ranges. Each constituent GRBM has 50 hidden units, and σ is set to 0.1 for
all runs. As the magnitude of the data increases (green), the mean activity
of the network at equilibriumdecreases due to the decrease in stochasticity.
Additionally, as the magnitude increases the second iteration of inference
becomes very slightly more active than would be expected at equilibrium.
On average, slightly less than one unit changes state. As with the previous
experiment, this e�ect is minor enough to be ignored.

To summarise, if inference-based negotiation occurs, one would expect
to see several iterations of abnormally high activity compared to when the

4.3. THE GREEDY INFERENCE PROBLEM 63

1 2 3 4 5 6 7 8 9 10
iterations

0

10

20

30

40

50

ac
tiv

ity

Figure 4.7: Measurement of activity for various σ across 10 iterations of
inference. Activity is measured as the mean across the dataset of equation
4.8. Each of the 30 values of σ is represented by a colour, starting with red
at σ � 0 and ending with green at σ � 3.

Markov chain has reached equilibrium. Empirically, the two major factors
a�ecting the dynamics of inference have, at best, only a minor e�ect on
activity of theMarkov chain during its �rst few iterations. From thiswe can
conclude that neither factor signi�cantly changes the result that inference
is largely a one-step process.

4.3.2 Discussion

The motivation for Broadnets rests, in large part, on the need for the two
causes to ‘negotiate’ responsibility for the input, because the model con-
tains no explicit incentive for disentanglement. Contrary to expectations,
the Markov chains run during inference appear to perform no more work
after the �rst step of inference than once they have converged. In combi-
nation with evidence that inference approximates the posterior fairly accu-

64 CHAPTER 4. UNDERSTANDING BROADNETS

1 2 3 4 5 6 7 8 9 10
iterations

0

10

20

30

40

50

60
ac

tiv
ity

Figure 4.8: Measurement of activity using various data magnitudes across
10 iterations of Broadnet inference. For each plot, inference is performed
with a Broadnet that is constructed from two GRBMs trained on a scaled
dataset. This dataset is initially in the range [−1, 1], and then multiplied by
some scaling factor α. Each of the 20 plots uses a value of α indicated by
the plot’s colour, with red being α � 0.1 and green being α � 5. Activity is
measured as the mean across the dataset of equation 4.8.

rately, this indicates that inference is simple enough to not require negoti-
ation. This leaves us with little expectation of disentangling.

However, the fact that inference in Broadnets does not perform as ex-
pected does not imply that disentanglement is impossible. Perhaps even
one-step inference in a model with partitioned hidden units provides in-
centive for disentangling. The following two sections will explore more
damning problems of Broadnets.

4.4. THE EXPONENTIAL OPTIMA PROBLEM 65

4.4 The Exponential Optima Problem

The previous two sections have shown the inadequacies of Broadnet mod-
els in terms of inference, and of learningwith contrastive divergence-based
gradient estimates. However neither of these problems is necessarily in-
surmountable; simple inference does not necessarily imply lack of disen-
tanglement, and alternative gradient estimate algorithms could be used.
This section evaluates Broadnets purely as an optimisation problem, where
gradient descent is performed on a loss, and draws conclusions about the
complexity of the loss surface. This removes the complications added by
gradient estimates and approximate samples.

Performing gradient descent limits our analysis to small cases because,
like the joint itself, the gradient of the joint is analytic but exponentially
costly to compute. For reference, the exact gradient is provided in equa-
tion 4.9. In practice it is tractable to learn with this exact gradient in mod-
els containing up to �ve hidden units per cause, which we will use for all
models in this section.

∂
∂W a

ji
log p

(
x, ha , hb

)
�

ha
j

(
xi − φ

b
i

)
−

√
2π
Z

∑
ha , hb

exp
[1
2

φa

 + 1
2

φ
b

 + ha

·ba + hb
·bb

]
φa

i ha
j (4.9)

Training from Random Initialisation

The most simple use of gradient descent is to perform standard training:
initialise a Broadnet at random weights, perform gradient descent until
convergence, and observe whether a disentangled optimum is found. The
log probability over epochs for 30 trial runs, along with example visualisa-
tions of the weights, are shown in �gure 4.9.

The Broadnets in this experimentwere trained for 50 epochs on the data
in �gure 4.1 (c), and used the following hyperparameters: A learning rate
of 0.1, minibatches of size 64, Glorot initialised weights [22], and a σ value

66 CHAPTER 4. UNDERSTANDING BROADNETS

of 1. Other settings were also tested, notably all learning rates within two
orders of magnitude, all power-of-two minibatch sizes between 1 and 128,
and manually set initial weight ranges of 0.1 and 1. None of these adjust-
ments visibly improved the results, thoughmanywere signi�cantly worse.

Figure 4.9 presents the log probability throughout training for each
trial, as well as visualisations of selected networks. None of the 30 trained
Broadnets exhibit any sign of disentangling, in either their weight visuali-
sations or their reconstructions, though most �nd visibly di�erent optima.
Commonly, networks �nd an optimum in which one network becomes a
bias while the other represents all variation in the data. Across the 30 runs,
this happened 83% of the time. The training process of the models itself is
also consistently fast, mostly reaching convergence after 20 epochs.

The lack of disentanglement under gradient descent is strong indica-
tion of the problems of Broadnets, but this is not a conclusive result in and
of itself. It is uncertain whether this result generalises to networks with
more hidden units. Testing this is impractical, as standard RBMs often use
several thousand units to represent MNIST data well. In addition, the rea-
son why the gradient descent does not �nd a disentangled optimum has
yet to be answered.

Optimality of the GRBM Initialisation

After the failure of gradient descent to uncover a disentangled optimum, it
is reasonable to wonder whether a disentangled, GRBM initialised Broad-
net is in fact an optimum at all. To test this, we take the same training setup
as in the previous section, but initialise the Broadnet with two GRBMs that
have been pre-trained with CD-1 learning on one of the causes, �gures 4.1
(a) or (b), each. The results of 30 trial runs are shown in �gure 4.10.

Eachmodel’s log probability sees amarginal increase throughout train-
ing that is consistent with the extra �ne-tuning provided by gradient de-
scent on a mostly converged model. The pre-training and post-training
�gures provided are representative of all runs, in that there is little dis-

4.4. THE EXPONENTIAL OPTIMA PROBLEM 67

0 10 20 30 40 50
epochs

120

110

100

90

80

70

60

50

40
lo

g
pr

ob
ab

ilit
y

(a) Log probability throughout training.

(b) Four sample visualisations of learned parameters.

Figure 4.9: Results of training small Broadnets from random initial-
isation with gradient descent. Each curve in �gure (a) corresponds
to the loss over training for one of 30 runs. Figure (b) shows four
example visualisations of weight matrices from training. Each net-
work is visualised with two rows of weights, the top row is W and
the bottom row is V . The bar on the right of each image indicates
the scale of the weights matrices.

68 CHAPTER 4. UNDERSTANDING BROADNETS

cernible di�erence after gradient descent. This suggests that a disentan-
gledGRBM initialisation is indeed an optimum for a Broadnet, which leads
to a question: if disentangled optima exist, why does gradient descent not
�nd them?

Existence of Many Optima

The previous sections have established that disentangled optima exist, but
training with gradient descent does not �nd them. We hypothesise that,
for every GRBM initialisation, there exist an exponentially large number
of other optima which are not disentangled. Combined with the assumption
that all disentangled Broadnet optima can be found by training GRBMs
individually, this leads to an explanation of the bad convergence behaviour
of Broadnets. This section presents a chain of reasoning and experimental
evidence to support this hypothesis.

Our argument beginswith aGRBM initialisation and then constructs an
exponential number of unique, entangled optima from it. The experiments
performed are computationally expensive, and so will only be performed
on a single GRBM initialisation, the parameters of which are visualised
in �gure 4.11. This model was arrived at through a tweaked CD-k training
procedure for eachGRBM, to avoid the tendency for RBMmodels to under-
utilise their representational power by making some hidden units a bias.
Normally models are trained with enough hidden units that this is not an
issue; however, when training with only 10 units total we wish to make full
use of the model. Each GRBM was trained for 400 epochs with CD-5. For
the �rst 300 epochs, a learning rate of 0.1 is used, along with momentum
with coe�cient ρ � 0.9. For the �nal 100 epochs, the learning rate is cut
to 0.01 and no momentum is used. This consistently results in all hidden
units being used to represent variation in the data.

Starting with a GRBM initialised Broadnet and ignoring the original
separation of units into two causes, we consider all possible partitions of

4.4. THE EXPONENTIAL OPTIMA PROBLEM 69

0 10 20 30 40 50
epochs

42.5

42.0

41.5

41.0

40.5

40.0

39.5

39.0
lo

g
pr

ob
ab

ilit
y

(a) Log probability throughout training.

(b) Example 1, before (top) and after
training (bottom).

(c) Example 2, before (top) and after
training (bottom).

Figure 4.10: Result of gradient descent on GRBM initialised Broad-
nets. Figure (a) shows the improvement to log probability for 30
runs of training, with each curve representing a run. Figures (b)
and (c) visualise randomly selected examples of the weights of the
model before and after training. Networks weights are visualised
as in �gure 4.9.

70 CHAPTER 4. UNDERSTANDING BROADNETS

Figure 4.11: Visualisation of the GRBM initialised Broadnet used as
the basis for all unit con�guration experiments. The top row shows
the W matrix and the bottom row the V matrix.

units into two equally-sized causes. More formally, let

U �



W
V


c �

[
a b

]
. (4.10)

De�ne I ⊂ {1, . . . , 2N } as an index set such that |I| � N , and further
de�ne J � {1, . . . , 2N } \ I. The units are partitioned into two groups

W �



UI1
...

UIN



V �



UJ1
...

UJN



(4.11)

a � [cI1 . . . cIN] b � [cJ1 . . . cJN],

which then form aBroadnet. Each value ofI is called a ‘unit con�guration’.
The experiments in this section will operate on the set of 120 possible unit
con�gurations of the GRBM-initialised Broadnet whose parameters are vi-
sualised in �gure 4.11. Our interest lies in the optima of the parameter
space, and so we will �rst re-train each unit con�guration to convergence.
This provides a set of converged models throughout loss space, all based
on the original disentangled optima.

Tangentially, a point of interest is that most unit con�gurations are not
themselves optima before training. Changing the con�guration does not
a�ect the error term of the log probability under a corresponding con�g-
uration of A and B, but can signi�cantly change the marginal term. As a

4.4. THE EXPONENTIAL OPTIMA PROBLEM 71

unit configurations, ordered.

65

60

55

50

45

40

lo
g

pr
ob

ab
ilit

y

Figure 4.12: Log probability of data under all 120 possible unit con-
�gurations of a Broadnet at the disentangled optima, with no train-
ing after rearranging the units. Con�gurations are ordered by log
probability. The dashed red line indicates the log probability of the
original disentangled optima.

result, the log probability of a unit con�guration is almost always much
worse than the original con�guration. To support this, the log probabili-
ties prior to training are plotted in �gure 4.12. Hence, re-training the unit
con�gurations is a necessary step.

The following experiments require ameans of comparing the similarity
of two models. Two models can be compared while ignoring symmetry by
�nding the L2 distance between onemodel and the best permutation of the
other model’s units. That is, if W (1) and V (1) represent the parameters of
one model and W (2) and V (2) the parameters of the other, de�ne

di� � min
i

(

permi

(
W (1)

)
−W (2)

)
+min

i

(

permi

(
V (1)

)
− V (2)

)
, (4.12)

where permi (X) is the i-th permutation of the rows of X. We call this mea-
sure the ‘model di�erence’.

72 CHAPTER 4. UNDERSTANDING BROADNETS

In summary, the following experiments show that, while each of the
unit con�gurations is not immediately optimal, training them to conver-
gence is a process of ‘�ne-tuning’ that does not meaningfully change the
weights. This implies that each model is a unique optima. We analyse four
properties of the collection of trained units con�gurations: the quality of
each optima, howmany models have returned to the original optima, how
many of the optima are unique, and how many are disentangled.

Optima quality. Figure 4.13 shows the log probability of each model
throughout 20 epochs of training, as compared to the loss of the disentan-
gled optima. While not identical, all optima have very similar log proba-
bility, and notably there are some optima that are superior to the original
optima. Two of these high quality optima are compared with the original
optima in �gure 4.13, showing they are not disentangled.

Di�erence to original optima. Figure 4.14 shows the model di�erence
between the disentangled optima and all unit con�gurations after training,
and provides a comparison between the disentangled optima and the three
closest post-training models. It is evident that none of these models return
to the disentangled optima.

Number of unique optima. Tomeasure the uniqueness of each optima,
for each model we compute the minimum model di�erence between that
model and all others. This is shown in �gure 4.15, along with examples of
the nearest pairs ofmodels. None of the optima are near enough each other
to be considered the same, implying that every unit con�guration results
in a unique model.

Number of disentangled optima. Finally, �gure 4.16 presents exam-
ples of the parameters of some unit con�gurations pre- and post-training.
While only a handful of the con�gurations are presented, they exhibit an
important property: the post-training model is almost imperceptibly dif-
ferent from the pre-training model, and so are not disentangled. We have
manually veri�ed this is the case for all unit con�gurations.

From these experiments, we can draw the conclusion that the tested

4.4. THE EXPONENTIAL OPTIMA PROBLEM 73

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

65

60

55

50

45

40

lo
g

pr
ob

ab
ilit

y

(a) Log probabilities throughout training.

(b) Original GRBM initialisation, as
seen in �gure 4.11.

(c) Best unit con�guration post-
training. Units 4 and 5 of cause A
are exchanged with units 3 and 5 of
cause B.

(d) Second-best unit con�guration
post-training. Units 4 and 5 of cause
A are exchanged with units 2 and 5
of cause B.

(e) Third-best unit con�guration
post-training. Units 4 and 5 of cause
A are exchanged with units 1 and 2
of cause B.

Figure 4.13: Results of training each of the 120 unit con�gurations.
Figure (a) shows the log probability over time, with each blue line
representing a con�guration and the dashed red line the log proba-
bility under the disentangled con�guration. The remaining �gures
compare the disentangled con�guration to the two con�gurations
with highest log probability, showing they are not disentangled.

74 CHAPTER 4. UNDERSTANDING BROADNETS

trained unit configurations, ordered0

50

100

150

200

250

300
m

od
el

 d
ist

an
ce

 fr
om

 o
rig

in
al

 o
pt

im
a

(a) Model distance to disentangled optima.

(b) Original disentangled optima, as
seen in �gure 4.11.

(c) Closest con�guration, A unit 5 ex-
changed with B unit 3.

(d) Second closest con�guration, A
unit 4 exchanged with B unit 3.

(e) Third closest con�guration, A
unit 1 exchanged with B unit 5.

Figure 4.14: Comparison of disentangled optimum to all unit con-
�gurations post training. Figure (a) shows the model di�erence
between the disentangled optima and all unit con�gurations post-
training. The remaining images compare the weights of the disen-
tangled optima to the three nearest con�gurations post-training.

4.4. THE EXPONENTIAL OPTIMA PROBLEM 75

0 20 40 60 80 100 120
trained unit configurations, ordered

0

10

20

30

40

50

m
od

el
 d

ist
an

ce
 fr

om
 c

lo
se

st
 o

th
er

 m
od

el

(a) Distance between each trained unit con�guration and its closest other model.

(b) Comparison of the closest pair of
trained unit con�gurations.

(c) Comparison of the second closest
pair of trained unit con�gurations.

Figure 4.15: Comparison of the distance between converged mod-
els. Figure (a) shows, for each model (x-axis), the minimummodel
distance to all other models, ordered by increasing distance. The
remaining sub�gures compare two of the closest pairs of models,
showing they are su�ciently di�erent to be considered di�erent
optima.

76 CHAPTER 4. UNDERSTANDING BROADNETS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

65

60

55

50

45

40

lo
g

pr
ob

ab
ilit

y

Figure 4.16: Log probability of all unit con�gurations throughout
20 epochs of training. Each blue line represents a model, and the
red dashed line indicates the log probability of the original disen-
tangled optimum. The majority of con�gurations achieve a similar
log probability to the disentangled optimum, and several even �nd
better optima.

4.5. ATTRACTIVENESS OF THE DISENTANGLED OPTIMUM 77

GRBM initialisation can be used to construct an exponentially large num-
ber of unique optima that are not themselves disentangled, and are of a
similar quality to the disentangled optimum. While these experiments
have only been performed on one GRBM initialisation, it seems likely that
this result generalises to all GRBM initialisations. If that is the case, we
reach the conclusion that there exist exponentially more entangled optima
than disentangled, GRBM initialised optima.

Finally, we must consider the possibility that there exist disentangled
Broadnet optima that arenot optima for the constituentGRBMswhen trained
only on one cause. These optima could not be constructed from the process
detailed in this section, and so the evidence of an exponential number of
associated unique optima would not apply. However, we deem this pro-
cess unlikely for two reasons. First, it seems intuitively unlikely that, if each
GRBM represents only one cause, then that GRBM is not an optima for that
cause. Second, we have yet to observe any disentangled optima other than
a GRBM initialisation, whether through training or manual con�guration.
For these reasons we believe this is unlikely.

While the hypothesis in this section has some unresolved assumptions,
there is strong evidence for the hypothesis concerning why Broadnets do
not disentangle: optimisation is fraught with so many entangled optima
that �nding a disentangled one is highly unlikely.

4.5 Attractiveness of theDisentangledOptimum

As an addendum, it is possible to gain some intuition for how attractive the
disentangled optimum is. This is accomplished by observing how much
the disentangled optimum can be modi�ed before it converges to a di�er-
ent optimum when trained. As previously, start with a GRBM-initialised
Broadnet. Instead of swapping units, select a unit j from the A cause and
k from the B cause, and interpolate between them. That is, de�ne the in-

78 CHAPTER 4. UNDERSTANDING BROADNETS

terpolated model as

W′

j � αW j + (1 − α)Vk a′j � αa j + (1 − α)bk

V′k � (1 − α)W j + αVk b′k � (1 − α)a j + αbk . (4.13)

By running gradient descent on models with varying values of α, we can
�nd the point at which the model does not return to the original optima.
Di�erence from the original optima is measured via model di�erence. Fig-
ure 4.17 presents the results of this process for six randomly selected pairs
of units, one from each cause. The results show converged models only
return to an optima similar to the original model when α < 0.5. When
α > 0.5, the model converges to an optimum near the original model with
the selected units entirely swapped. This can be seen in both the plot of
model di�erence, and by inspecting the weights themselves. From this ev-
idence, it seems likely that the disentangled optimum is not particularly
attractive and, in particular, is no more attractive than the exponentially
large number of other, entangled optima.

It is clear from �gure 4.17 that trained models do not return exactly to
the original optimum, or its swapped version. Instead, they converge to an
entangled optimum that is a combination of the two. This is evidence that
there are many more entangled optima than have been shown to exist in
the arguments of this chapter. In fact, it seems likely that a continuum of
optima exist.

4.6 Discussion

This chapter has investigated several properties of Broadnets in order to
understand why they are incapable of disentangling additive data with
complex causes. The �rst section described the importance of good anti-
Hebbian initialisations to avoid a pathological case during learning. The
second section showed that the inference procedure in GRBM initialised

4.6. DISCUSSION 79

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
od

el
 d

iff
er

en
ce

(a) Model distance from original model over α values, for six
pairs of units.

(b) Example of the �lters of the selected unit pair as α is in-
creased. Each column shows one value of α.

Figure 4.17: Comparison of the optima found by training interpolated
models and the original disentangled optimum from which they were de-
rived. Six randomly chosen pairs of units (one from each cause) are used
to create interpolated models with �ve values for α according to equation
4.13, resulting in 30 models overall. Each model is then trained to conver-
gence. In �gure (a), each blue plot shows the model di�erence between
the original model and the interpolated models created from one pair of
units. The red plot shows the mean model di�erence for each value of α.
Figure (b) shows an example pair of units, after convergence, for each α
value tested.

80 CHAPTER 4. UNDERSTANDING BROADNETS

networks does not perform a complex process of disentangling, which un-
dermines much of the motivation for the Broadnet model. The third sec-
tion argues that, in smallmodels, the probability surface contains exponen-
tiallymore entangled optima than disentangled optima, making successful
training under gradient descent unachievable.

The generative properties of the Broadnet model are seemingly a per-
fect �t for the problem of disentangling: causes are independent in the
marginal, inference provides a mechanism for meaningful computation,
and learning is tractable. In light of this chapter’s analysis, however, the
prospects for Broadnets are dim: not only do the lacklustre results of infer-
ence put the motivation of the model into question, but learning is faced
with the task of �nding a not particularly attractive disentangled optimum,
while avoiding an at least exponentially larger set of false optima of similar
quality. To solve these issues would, in e�ect, reinvent the model.

From one perspective, these results show that Broadnets su�er from
a number of practical issues. From another perspective, the magnitude
of these problems suggests that Broadnets are simply not a model of in-
dependent causes at all. This approach was motivated by the propensity
of RBMs to learn non-factorial posterior distributions, that is, distributions
where units do not represent independent factors of the data. This could be
interpreted as a model of a ‘coherent cause’. If several RBMs are placed in
parallel, one solution that enables this property is to make the fundamen-
tal independencies in the data lie between the constituent RBMs. Each RBM
can then model a complex, non-factorial cause, and disentangling would
result. However, this is only one of many ways to achieve non-factorial
posteriors, which indicates the objective optimised by a Broadnet is much
weaker than disentangling. We can conclude that Broadnets are perhaps a
model of coherent causes but not independent causes, and are therefore not a
model of disentangling.

With this conclusion in hand, we focus our e�orts on other approaches
to the disentangling problem, which are explored in the coming chapters.

Part II

Disentangling with ICA

81

Chapter 5

Background on ICA

The task of disentangling the underlying causes of data certainly bears
some relation to blind source separation, and its principal algorithm In-
dependent Components Analysis (ICA). Part II of this thesis explores the
suitability of ICA to our task, and develops a new algorithm using it. This
chapter presents the necessary background on information theory, simu-
lated annealing, and ICA itself; the relationship between ICA and disen-
tangling is then discussed.

5.1 Blind Source Separation

Blind Source Separation (BSS) [4] is a task closely related to disentangling,
with origins in signals processing. It aims to recover several latent sources,
known in our terminology as causes, that combine linearly to form a num-
ber of observed signals. The observed signals are denoted by x, the un-
known sources by s, and the mixing matrix that combines them by A. In a
simple setting without time or noise, this relationship is expressed by

x � As. (5.1)

The task of BSS is to recover A or A−1. To simplify this description we will
assume the number of sources and signals are equal, and that the mixing

83

84 CHAPTER 5. BACKGROUND ON ICA

matrix is invertible, though these requirements are often relaxed in prac-
tice.

5.2 Independent Components Analysis

ICA [35] is one of the most widely used algorithms for BSS problems. The
basic formulation of ICA rests on a generative model expressed by equa-
tion 5.1 [36], but with one extra constraint: the sources are de�ned as being
statistically independent given the data. As such, the rows of the mixing ma-
trix are referred to as independent components. This restriction makes ICA
interesting in the context of disentangling, as it is a model of the indepen-
dent causes of data. It is important to note that statistical independence
accomplishes more than uncorrelatedness, and is non-trivial to calculate.
It is for this reason that all variants of the ICA algorithmmust operate with
statistics of a higher order than the covariance.

The standard derivation of ICA makes several assumptions about the
data. The mixing matrix must be invertible, the data contains no noise
and has zero mean and, most importantly, that sources are non-Gaussian
[45]. In practice, some of these assumptions can be relaxed; ICA can be
performed with a non-square mixing matrix and still functions well in the
presence of noise. The zero mean requirement is also easy to ful�ll, as
data is almost always whitened prior to running ICA. The assumption that
sources are non-Gaussian is the cornerstone of the ICA algorithm. In fact,
it can be shown that the mixing matrix can be inferred if and only if this is
a case [36]. Finally, note that ICA can only recover the mixing matrix up to
scalar multiples and re-ordering of the independent components. The lack
of ordering is an important part of themotivation for the coming algorithm,
and is discussed further later in the chapter.

ICA can be derived from multiple perspectives, notably either as an
algorithm to maximise non-Gaussianity, or the likelihood of a generative
model [36]. The following sections summarise the �rst approach.

5.2. INDEPENDENT COMPONENTS ANALYSIS 85

5.2.1 Maximising Non-Gaussianity

The key observation behind the ICA algorithm is that independent compo-
nents should be less Gaussian individually than when they are summed,
so long as they are themselves non-Gaussian. Consider an example where
two signals x � [x1 x2] are generated by x � As. Let y � w1x1 + w2x2 be
some linear combination of those signals. Formost settings ofw � [w1, w2],
y is a linear combination of the sources s, which are independent random
variables. This is only not the case when w is a row of the inverse of the
mixing matrix, that is, when y is one of the independent components.

The central limit theorem states that, in most circumstances, the sum of
independent random variables is more Gaussian than the variables them-
selves. This is true in the example; any setting ofw that leads to more than
one source in s having a non-zero contribution to y must result in y being
more Gaussian than if only one source made a contribution. Therefore, we
can attempt to �nd settings of w that maximise the non-Gaussianity of y,
and take these as the independent components.

If the independent components of data can be found by maximising
non-Gaussianity, then a measure of non-Gaussianity is required. The fol-
lowing section brie�y discusses two common choices.

5.2.2 Kurtosis and Negentropy

Perhaps the simplest estimate of non-Gaussianity is kurtosis. Kurtosis is
the fourth moment of a distribution, which we will de�ne as

kurt(x) � E
{
x4

}
− 3

(
E

{
x2

})2
, (5.2)

where E{·} denotes the expectation of · over the distribution. Intuitively,
kurtosis measures the ‘heaviness’ of the tails of a distribution. A Gaussian
has a kurtosis of 0, a positive kurtosis implies heavier tails than a Gaussian,
and negative implies lighter tails. Most non-Gaussian distributions have
non-zero kurtosis, making it a simple and suitable measure of Gaussianity.

86 CHAPTER 5. BACKGROUND ON ICA

However kurtosis is an imperfect approximation, in particular because it is
vulnerable to outliers which can dominate and obscuremore subtle signals
of non-Gaussianity.

An alternative approach to maximising non-Gaussianity involves con-
sidering the entropy of the sources. It is known that, for a given variance,
a Gaussian has the maximum entropy among all distributions of that vari-
ance. This property leads to a quantity called negentropy, denoted J, de-
�ned as

J � H
(
xgaussian

)
− H(x), (5.3)

where H is the entropy (see section 5.3) and xgaussian is a Gaussian ran-
dom variable with the same variance structure as x. The negentropy is 0
if x follows a Gaussian distribution, and positive otherwise. This means
maximising the negentropy of the source values can be used to maximise
non-Gaussianity, in the same way as the kurtosis, and therefore �nd inde-
pendent components.

However, calculating the entropy is generally intractable and so an ap-
proximation must be used. The most common approximation uses two
‘non-polynomial moments’, generally hyperbolic functions, providing a
very cheap though not necessarily accurate estimate of the entropy. In prac-
tice though, negentropy is a much more robust measure than kurtosis.

5.2.3 The FastICA Algorithm

Both of thesemeasures of non-Gaussianity are di�erentiable, meaning gra-
dient ascent can be performed to maximise them. The situation is compli-
cated, however, by the need to orthogonalise the rows of the mixing matrix
at each step of gradient ascent, so as to ensure that no two sources come
to represent the same independent component. This central idea, gradi-
ent ascent with orthogonalisation, leads to the FastICA algorithm. There
are two major variants of FastICA, known as the de�ationary and symmetric
versions.

5.3. INFORMATION THEORY 87

The de�ationary FastICA algorithm iteratively �nds individual inde-
pendent components as follows. For the desired number of components,
randomly initialise a unit norm vector w and perform gradient ascent to
maximise non-Gaussianity. After each iteration, orthogonalise the current
vector with all previously found independent components using Gram-
Schmidt method. In contrast, the symmetric FastICA algorithm �nds all
independent components at once. This is achieved by gradient ascent on
the entire mixing matrix, with a symmetric orthogonalisation step after
each iteration.

5.3 Information Theory

Information theory [58] provides a general theory of communication and
the information content of messages. This section will describe several
of the fundamental quantities in information theory, which will be used
throughout this chapter and the following two. All of these quantities con-
cern the information or uncertainty of distributions, and can be de�ned in
terms of either discrete or continuous randomvariables. De�nitionswill be
given for the continuous case, as it is most applicable to the coming work,
but some examples will be given in more intuitive discrete settings.

The di�erential entropy, which we will call the entropy, of a univariate
distribution p (x) intuitively measures the uncertainty of that distribution.
Entropy is high when probability mass is spread across many values of x,
and low when concentrated on a few. For example, if p (x) were a discrete
distribution then entropy is maximised when p is uniform and minimised
when all probability mass is placed on one state. The entropy is de�ned as

H(x) � −
∫

p (x) log p (x) dx. (5.4)

Several variants of the entropy extend it to other types of probability distri-
butions. The joint entropy, denoted H(x , y) ormore generally H(x), extends

88 CHAPTER 5. BACKGROUND ON ICA

the concept to multivariate distributions. We will often relax the terminol-
ogy and refer to the joint entropy simply as the entropy, as multivariate
distributions are generally the object of interest. The conditional entropy,
denoted H

(
x �� y

)
, measures the uncertainty present in a variable when an-

other is known. De�nitions of these two quantities can be found in most
literature on information theory and so are not presented here. These ba-
sic forms of entropy can be manipulated with the chain rule for entropies,
showing they behave similarly to log probabilities.

H(x, y) � H
(
x �� y

)
+ H(y) (5.5)

The mutual information of two groups of variables x and y measures the
amount of shared information present in the two groups of variables. It is
de�ned as

I
(
x;y

)
�

∫ ∫
p
(
x, y

)
log

p
(
x, y

)
p (x)p

(
y
) dx dy. (5.6)

More intuitively, it is the “reduction of uncertainty of one variable due to
knowledge of the other” [14], and as such can be rewritten as

I
(
x;y

)
� H(x) − H

(
x �� y

)
. (5.7)

Mutual information is symmetric, non-negative, and zero if and only if x
and y are statistically independent. This property makes mutual informa-
tion of signi�cant interest in the context of disentangling, as it provides a
concrete measure of statistical independence.

Finally, mutual information can be generalised to conditional mutual in-
formation, denoted I

(
x;y �� z

)
which again describes the shared information

present in x and ywhen z is known. It can be de�ned and characterised as
follows.

I
(
x;y �� z

)
�

∫ ∫ ∫
p
(
x, y, z

)
log

p
(
x, y �� z

)
p (x | z)p

(
y �� z

) dx dy dz

� H(x | z) − H
(
x �� y, z

)
(5.8)

5.4. SIMULATED ANNEALING 89

5.4 Simulated Annealing

Simulated Annealing [41] is a stochastic optimisation algorithm useful in
cases where several minima exist. It aims to minimise some cost function
`(x), where x are the modi�able variables, as follows. First, initialise x to a
random state. Then, iteratively generate a proposed state x′ from the current
state x. If the proposed state has a smaller cost than the current state, accept
it as the new state. Otherwise, accept it with a probability related to the
di�erence in costs. This stochasticity is intended to make the optimisation
procedure less vulnerable to local minima by allowing the algorithm to
climb out of minima.

In an e�ort to �nd a high qualityminima, it is desirable to readily accept
inferior proposed states at the start of optimisation, and gradually transi-
tion to only accepting states with a lower cost. Ideally, this allows the algo-
rithm to explore the optimisation space during early iterations, and exploit
a goodminima during later iterations. This is achieved by the addition of a
temperature variable, denoted T, that modi�es the probability of accepting
an inferior state. The temperature is initially high and is annealed towards
zero over time in what is known as a temperature schedule.

These concepts are formalised as follows. Supposing T is the current
temperature, a proposed state x′ is accepted from a current state x with
probability

p
(
accept x′

)
�




1 if `(x′) < `(x)

exp `(x)−`(x′)
T t otherwise

� min
{
1, exp `(x) − `(x′)

T t

}
. (5.9)

5.5 Applicability to Disentangling

ICA is the traditional algorithm most closely aligned to the task of disen-
tangling; it �nds independent components that combine linearly to gener-

90 CHAPTER 5. BACKGROUND ON ICA

(a) Entangled data.

(b) Visualisation of the independent components (rows of the
mixing matrix) found by FastICA on the entangled data.

Figure 5.1: Example of running FastICA on linearly entangled data.
Each component mainly represents part of one cause, either an up-
right or rotated digit. However, the components are not grouped
according to their associated cause.

ate the data. However ICA cannot be seen as an algorithm for disentangling
coherent causes. Each component found by ICA is indeed independent,
but a single coherent cause can have several independent components and
no distinction is made between components that should be attributed to
di�erent causes. Due to this, it is not possible to reconstruct only one of
the causes. Figure 5.1 illustrates this by �nding independent components
of two MNIST digits added together. The result shows no distinction be-
tween components attributable to each digit.

We are unaware of any attempts to extend ICA to model independent,
coherent causes.

Chapter 6

The Post-Processed ICA
Algorithm

This chapter presents the main contribution of part two of the thesis: a
new algorithm for disentangling complex causes that leverages ICA. Sec-
tion 6.1 motivates the algorithm and provides an outline, which is then
re�ned through sections 6.2 and 6.3. Section 6.4 presents experimental re-
sults, and section 6.5 concludes the chapter.

6.1 Motivation

This section motivates our simple adaptation of ICA to perform coherent-
cause disentangling.

Given our previous work on the problem, a tempting approach to ex-
tending ICA to perform disentangling is to partition the sources. This
could yield a model such as

x � As + Br, (6.1)

where s and r are the two groups of sources intended to be causes. Unfortu-
nately, this does not result in a realistic ICA-based algorithm; ICA does not
compare sources to one another, but rather computes a quantitymeasuring

91

92 CHAPTER 6. THE POST-PROCESSED ICA ALGORITHM

Gaussianity of each component individually. This makes partitioning the
sources irrelevant, and leaves little room for disentangling causes during
the ICA algorithm.

Instead, we consider a di�erent approach. Two observations can be
made of ICA’s output: the independent components related to one cause
are not grouped together, but if the components are truly independent then
no component should contain signi�cant contributions from both causes at
once. Both of these properties can be seen in �gure 5.1. It would seem
that this second property in fact encompasses most of the work of disen-
tangling; if no component contains contributions from both causes, then
all that remains is to divide the components into meaningful groups.

To �nd a separation of independent components into causes, somemea-
sure of the quality of a separation is required. For this, we turn to infor-
mation theory and consider the shared information between the values of
the independent components. However this idea runs afoul of theory. If
ICA performs perfectly then each of its independent components is indeed
statistically independent, implying all components have zero mutual infor-
mation, and making it a useless measure. In practice, however, �nding
truly statistically independent components of complex data seems a di�-
cult task and one which ICA will solve imperfectly. If this is the case, it
stands to reason that making two components statistically independent is
easier when they are rightly attributed to di�erent causes, rather than the
same cause. This is because the causes interact linearly, while independent
components within a cause must attempt to account for the nonlinear in-
teractions present in complex data. Hence, this proposedmechanism relies
on ICA performing more poorly in cases where correlations in the data are
complex than it does in cases where the correlations are simple. When that
is the case, examining the shared information between components should
yield information on their membership of complex causes.

For a given separation of components, two simple information theoretic
measures of quality present themselves; the shared information between

6.2. ESTIMATING MUTUAL INFORMATION 93

the two causes, or the shared information between units of the same cause.
The �rst quantity can be measured by the mutual information between the
two causes, whichwewouldwish tominimise. The second case amounts to
computing the total correlation [67] between all units within a cause, which
wewouldwish tomaximise. Neither of these options is clearlymore useful
than the other, but total correlation is at least as di�cult to compute as mu-
tual information, and has received less focus in the literature. Due to the
general di�culty of computing information theoretic quantities on con-
tinuous variables (such as independent components), we favour the �rst
option.

This leads to the following concept for an algorithm. Taking the output
of ICA, assign membership of each ‘independent’ component to a cause
by minimising mutual information. We view this as an optimisation prob-
lem over a set of binary membership variables, which we will optimise with
simulated annealing. A diagram of the model is provided in �gure 6.1.

6.2 Estimating Mutual Information

The algorithmoutlined in the previous section involvesminimisingmutual
information, but this is no simple task. In general, mutual information is
intractable to compute and, in the case of continuous variables such as ours,
requires an integral over all values as seen in equation 5.6. Therefore some
approximation is required. Fortunately our optimisation method will only
requiremeasuringmutual information, rather than calculating its gradient.
This section will select a tractable estimate that is suitable for our use case.

The simplest approximation is to discretise the variables into k equal-
width bins, and then compute discrete mutual information. The accuracy
of this measure depends on a careful setting of k [43, 18], and leads to no-
ticeably worse results if used in the coming algorithm.

Instead, we will make use of the Kraskov MI estimator [43], which is
based on density estimation via �nding k-nearest neighbours and hasmin-

94 CHAPTER 6. THE POST-PROCESSED ICA ALGORITHM

m0 m1 . . . mn

s0 s1 . . . sn

x

A

Figure 6.1: Diagram of the modi�ed ICA model. Each mi is a bi-
nary membership variable, each si is a source variable, and x is the
observed data vector. Our proposed algorithm only modi�es the
membership variables, shown boxed. Note that while this has the
appearance of a PGM, we do not interpret it as such.

imal bias. We also add very low-amplitude noise to points to prevent incor-
rect results when several data points have the same coordinates. It should
be noted, however, that the Kraskov estimator assumes that the probabil-
ity density is close to uniform in the neighbourhood of each data point.
This assumption is violated in cases where the joint distribution over both
causes lies on a low-dimensionalmanifold, an extreme example beingwhen
the causes have a functional relationship. Fortunately this is the opposite
case to the one in which we require a high-quality estimate; when two
causes are nearly disentangled there is almost no relationship between a
and b. Some numerical experiments indicate that the estimator becomes
exact for independent distributions [43]. Hence, we can have some con�-
dence that the Kraskov estimator behaves as expected where it counts.

Finally, note that while truemutual information cannot be negative, the
Kraskov estimate can be and often is.

6.3. THE POSTPROCESSED ICA ALGORITHM 95

6.3 The Postprocessed ICA Algorithm

With an approximation of mutual information now chosen, we derive the
algorithm itself. Our strategy, as outlined in section 6.1, is to perform sim-
ulated annealing to optimise a set of membership variables. We begin by
de�ning a cost function on membership variables. Let S be a dataset size×
source dimension matrix that represents the recovered source values of all
observed vectors in the dataset. That is, if X denotes the dataset, S � AX.
Denote the binary membership variables bym. The cost is then de�ned as
follows:

`(m) � Î(Sm; S(1 −m)), (6.2)

where Î denotes the Kraskov mutual information estimator. In words, the
cost function measures the estimated mutual information between the val-
ues of independent components assigned to cause A, and those assigned
to cause B. The membership variables are not independent, and so simu-
lated annealing is performed by iteratively updating individual variables
m j . This uses the standard simulated annealing update in equation 5.9,
and occurs on a temperature schedule, with T t denoting the temperature
on iteration t. Letting mt

j←k denote the value of m at time t with m j set to
k, each membership variable is updated according to the following proba-
bility.

α � mt−1
j

p
(
mt

j � 1 − α
)
� min



1, exp

`
(
mt−1

j←α

)
− `

(
mt−1

j←1−α

)
T t




(6.3)

We are using a simple decaying temperature schedule as follows. Suppos-
ing the algorithm begins at iteration 1,

T t
�

(
1 +

⌊
t
|m|

⌋)−1
. (6.4)

96 CHAPTER 6. THE POST-PROCESSED ICA ALGORITHM

The temperature is started at 0.1, rather than a higher value, because mu-
tual information estimate values tend to only have small di�erenceswhen a
single membership variable is changed. Empirically this provides enough
stochasticity. In sum, this leads to the algorithm presented in algorithm
4. Importantly, note that this algorithm modi�es only the membership
variables, the independent components themselves remain �xed. If the al-
gorithm leads to a state where all components are attributed to the same
cause, then the mutual information between the two causes is unde�ned.
This is an error state of the algorithm, but has never been observed in prac-
tice and so we choose to ignore it.

Algorithm 4 The Postprocessed ICA algorithm

Perform ICA on the input, producing a matrix S of source assignments
for each input.

Initialise binary vectorm randomly.
Set T ← 1

for iterations t ← 1 to N do
Randomly select membership variable m j .
Update the value of m j according to equation 6.3.
Update T according to equation 6.4.

6.4 Results

This section tests the Postprocessed ICAalgorithmon some complex entan-
gled data based on MNIST. The dataset consists of 5000 composite images,
each containing the sum of an upright digit and a rotated digit as seen in
�gure 6.2. Prior to addition, the two constituent datasets are normalised
into the range [0, 1].

We present the results of the algorithm in two cases, which di�er only
in the number of sources ICA is instructed to �nd. The �rst case uses 50

6.4. RESULTS 97

(a) Left cause (b) Right cause (c) Input data

Figure 6.2: Example images from the tested dataset. Figure (c)
shows the dataset, which is created by a linear combination of an
upright 0, 1, or 2 MNIST digit with a rotated 3, 4, or 5 MNIST digit
as in �gures (a) and (b).

components and the second 200.
The 50 source test provides our �rst hint of success at fully-unsupervised

disentangling of coherent causes. Figure 6.3 presents an example com-
ponent separation found by the algorithm, along with data reconstruc-
tions using one or both causes. The postprocessing algorithm itself per-
formswell: most components representing upright digits are grouped into
cause A, and rotated digits into cause B. The single-cause reconstructions
in �gure 6.3 also generally show one digit dominating each reconstruction.
However, the reconstructions with only 50 independent components are
rather lowquality. In addition, the single-cause reconstructions have some-
what messy background, seemingly components from the other cause are
required to cancel out some artifacts.

These results are consistent across 30 trials of the algorithm. Figure 6.4
plots the mutual information score across iterations for 30 runs of the al-
gorithm, each postprocessing a di�erent run of ICA on the same data. The
small mutual information suggests that the postprocessing is consistently
successful at disentangling the units, and this has been con�rmed byman-
ual checking of the resulting separation.

However, the results changewhen the number of sources is increased to
200, as shown in �gure 6.5. First, ICA itself now�ndsmore visually impres-
sive reconstructions of the input data, which contain sharply de�ned digit
shapes. Unfortunately the postprocessing algorithm largely fails to sepa-
rate causes, despite achieving a low mutual information estimate. While

98 CHAPTER 6. THE POST-PROCESSED ICA ALGORITHM

(a) Recovered A components

(b) Recovered B components

(c) Data reconstructions.
Each row is an input,
and the four columns
are: input, reconstruc-
tion with only A cause
components, recon-
struction with only
B cause components,
reconstruction with all
components.

Figure 6.3: Results of the postprocessed ICA algorithm on the data
from �gure 6.2 when set to �nd 50 sources. The components are
well-separated into two causes, but the performance of ICA with
only 50 sources is unsatisfactory.

6.4. RESULTS 99

0 25 50 75 100 125 150 175 200
iterations

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

m
ut

ua
l i

nf
or

m
at

io
n

es
tim

at
e

Figure 6.4: Estimatedmutual information score across iterations for
30 runs of a PPICA algorithm. Each blue line represents a run. Gen-
erally, scores below zero result in visible disentangling.

some single-cause reconstructions in �gure 6.5 (c) achieve a level of disen-
tangling, such as in the third and tenth example, there is no clear grouping
of independent components into their associated causes.

During the collection of the results in this section, we have found that
the performance of the postprocessing algorithm is sensitive to the degree
of convergence ICA has achieved. If ICA is run until the desired estimated
entropy value is achieved minus a particular tolerance, disentanglement
is best achieved when the tolerance is strict enough to ensure no compo-
nent contains contributions from both causes, but relaxed enough to leave
some shared information between components within the same cause. The
previous experiments have been performedwith amanually optimised tol-
erance within this range.

100 CHAPTER 6. THE POST-PROCESSED ICA ALGORITHM

(a) Recovered A components

(b) Recovered B components

(c) Data reconstructions.
Each row is an input,
and the four columns
are: input, reconstruc-
tion with only A cause
components, recon-
struction with only
B cause components,
reconstruction with all
components.

Figure 6.5: Results of the postprocessed ICA algorithm on the data
from�gure 6.2when set to �nd 200 sources. Figures (a) and (b) only
show 30 randomly selected components attributed to each cause, of
the 200 total. Compared to �gure 6.3, ICA itself performs better but
the components are no longer well separated into their true causes.

6.5. DISCUSSION 101

6.5 Discussion

The postprocessed ICA algorithm has shown our �rst success in disentan-
gling complex causes in the linear case; the separation of components in
�gure 6.3 is compelling. However this success is limited, and disentangle-
ment ability diminishes with the number of sources. This presents a prob-
lem for the algorithm as a whole, as ICA’s simple linear model appears
to require hundreds of components to represent moderately complex data
well. Perhaps this is unsurprising, as ICA’s success is commonly within
the setting of signals processing, where sources and signals are often low
dimensional compared to our test case.

Fortunately, the root cause of these shortcomings is clear. The main as-
sumption made by the post-processing algorithm is that making two com-
ponents statistically independent is noticeably more di�cult when they
aremembers of the same cause. When stringent convergence requirements
are placed on ICA, all components become more statistically independent,
and it is unsurprising that the noticeable distinctions in mutual informa-
tion disappear. Of more interest is the case of a large number of sources.
When many components are available, some components seemingly spe-
cialise into modelling speci�c subcomponents of the data, such as a partic-
ular stroke, as can be seen in �gure 6.5. When components represent the
data at this level of granularity, it is of no surprise that mutual information
becomes uninformative.

While the limited ability to group independent components into com-
plex causes is interesting, it does not lead to the general method for dis-
entangling that we are searching for. As such, the next two chapters will
explore di�erent approaches based on neural networks.

102 CHAPTER 6. THE POST-PROCESSED ICA ALGORITHM

Part III

Disentangling with Neural
Networks

103

Chapter 7

Background on Neural Networks

Modern neural networks have risen to dominance on most tasks in ma-
chine learning [25] and are the forefront of representation learning prob-
lems [7, 24]. This motivates the topic of the �nal part: disentangling with
unsupervised neural networks. This chapter provides background and re-
lated work.

7.1 Autoencoders

Autoencoders are the most common type of neural network used for un-
supervised representation learning problems [7]. An autoencoder is com-
posed of two neural networks: an encoder that maps the input, X, into a
code, z, and a decoder that maps z to the output Y which is of the same
dimension as X. The goal of the autoencoder is to reconstruct the input
as well as possible, that is, make Y � X. However the z is generally of
much lower dimension than the input, and so forms a ‘bottleneck’ through
which only limited information can pass. Figure 7.1 provides a diagram
of this network. In order to reconstruct the input well, the encoder must
distill the most important features of the data into a high-quality represen-
tation in the code layer. Much of thework inmodern autoencoders involves
manipulating the structure of this representation.

105

106 CHAPTER 7. BACKGROUND ON NEURAL NETWORKS

More precisely, let f (X) denote the encoder network and g(z) the de-
coder network. Generally, f and g are standard dense feedfoward net-
works with ReLU nonlinearities. The reconstruction loss is de�ned as

`(X) �

X − g(f (X))

. (7.1)

A standard autoencoder trains the parameters of f and g by minimising
the reconstruction loss via gradient descent.

x z y
f g

Figure 7.1: Diagram of an autoencoder. The input is x, the code z,
and the output y. The function f (x) denotes the encoder, and g(z)
the decoder.

The notation in this description, particularly �gure 7.1, is common to all
work in the coming chapters: x, y, and z denote the input, output, and
hidden code, and f and g denote the encoder and decoder.

7.2 Adaptive Gradient Optimisers

In its most simple form, gradient descent entails iteratively moving param-
eters to minimise a loss. Supposing W (t) is some parameter of a model at
time t and ` a loss, this can be written as

W (t)
←W (t−1)

− η
∂
∂W

`, (7.2)

where η is the learning rate. Generally, ` is computed on a minibatch of
the data as full-batch learning is unnecessary and expensive. A momen-
tum term is often added to the gradient update, which adds a fraction ρ of
the gradient at time t to the gradient at time t + 1. This yields a modi�ed

7.2. ADAPTIVE GRADIENT OPTIMISERS 107

learning algorithm as follows.

g (t)
�

∂
∂W

` + ρ g (t−1)

W (t)
←W (t−1)

− η g (t) (7.3)

Inmodern neural networks, however, training amodel by gradient descent
is rarely as simple as in the previous two algorithms. Most modern optimi-
sation techniques fall into the category of adaptive gradient optimisers, which
can be thought of as standard gradient descent, but with additional factors
that dynamically control the learning rate throughout training. Though
many such optimisers exist, we will only discuss RMSprop [64] and Adam
[38] in detail.

RMSprop aims to provide a degree of normalisation to the gradient,
by dividing it by a decaying average of past gradient magnitudes. Letting
γ < 1 be the decay factor, RMSprop is de�ned as follows.

g (t)
�

∂
∂W

`

v (t)
�

g (t)

2
+ γ n (t−1)

W (t)
←W (t−1)

−
η

√

v (t) + ε
g (t) (7.4)

Adaptive Moment Estimation [38], known as Adam, can be thought of as
RMSprop combined with momentum, where momentum takes the place
of the decaying sumof previous gradientmagnitudes [17]. This is achieved
by estimating both the �rst and second moments of the gradient, denoted
v (t) and m (t). Thesemoment estimates are initially set to zero, resulting in a
bias towards zero which, in particular, can adversely a�ect the early stages
of learning [57]. This is compensated for by calculating bias-corrected ver-

108 CHAPTER 7. BACKGROUND ON NEURAL NETWORKS

sions, denoted v̂ (t) and m̂ (t). The full algorithm is as follows.

g (t)
�

∂
∂W

`

m (t)
� β1m (t−1) +

(
1 − β1

)
g (t)

v (t)
� β2v (t) +

(
1 − β2

) (
g (t)

)2
v̂ (t)

�
v (t)

1 − βt
2

m̂ (t)
�

m (t)

1 − βt
1

W (t)
←W (t)

−
η

√

v̂ (t) + ε
m̂ (t) (7.5)

7.3 Adversarial Autoencoders

Adversarial autoencoders (AAEs) [49] are a method for applying a prior
to the code layer of a standard autoencoder. This is achieved by playing
an adversarial game between the encoder f (x) and a discriminator network
d(z). The discriminator receives as input either a value of z, or a sample
from the desired prior p(z), and its binary classi�cation task is to distin-
guish between the two. In addition to minimising reconstruction error, the
goal of the encoder is to fool the discriminator network. From the encoder’s
perspective, this is best achieved by making its code distribution indistin-
guishable from the prior p(z). The architecture of an AAE is drawn in
�gure 7.2.

In more detail, the training algorithm of an AAE is as follows. On each
iteration, perform a step of standard autoencoder learning: change the en-
coder anddecoder parameters tominimise reconstruction error. Then, con-
struct a supervisedminibatch of (z, y) pairs, where half the elements are en-
codings of elements from the dataset pairedwith a y � 1 label, and half are
samples from the prior paired with a y � 0 label. Perform a step of training
tominimise the classi�cation loss (often cross entropy) with the parameters

7.4. GENERATIVE ADVERSARIAL NETWORKS 109

x z y

prior or c

f g

d

Figure 7.2: Diagram of an AAE. The f and g functions form a stan-
dard autoencoder. The discriminator network, denoted d, receives
either encodings or samples from a prior, and outputs a classi�ca-
tion c that attempts to distinguish between them.

of the discriminator. Finally, perform a step of training tomaximise this error
with the parameters of the encoder.

The AAE model is of interest in our context due to the concept of an
adversarial game played between two networks.

7.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [24] are an unsupervised net-
work for synthesisingdata that is convincingly similar to the dataset. GANs
learn through an adversarial game played between a generator network and
a discriminator network. The discriminator receives as input either samples
from the dataset, or output from the generator, and attempts to distinguish
between them. The goal of the generator is to fool the discriminator. A di-
agram of this model is provided in �gure 7.3. This general approach has
yielded impressive results on a variety of tasks [9, 46, 69].

The details of the GAN learning algorithm are not important for our
purposes, but two interesting properties are. First, GANs are a second ex-
ample of an adversarial game played between two networks. Second, stan-
dard GANs are generation-only networks; one cannot easily encode data
points into a code space.

110 CHAPTER 7. BACKGROUND ON NEURAL NETWORKS

z y

x

or c

g

d

Figure 7.3: Diagram of a GAN. The code is denoted, z, is mapped
into the data space by generator g. The discriminator receives either
output from the generator, y, or elements of the data x, and outputs
a classi�cation c that attempts to distinguish between them.

7.5 Related Work

This sectionwill discuss neural networks that perform tasks related to ours.
Disentanglement problems have received attention from the computer

graphics community, in order to produce latent codes that meaningfully
represent a single component of a scene, such as lighting or pose [68]. The
Deep Convolution Inverse Graphics Network (DC-IGN) [44] is a recent and
successful example of disentanglement that is specialised towards disen-
tangling the causes of three-dimensional scenes. It is based on a convolu-
tional variational autoencoder, with a structure imposed on the code layer:
before training, some code units are selected to represent components of
the scene, such as pose or lighting, and some are left free to represent re-
maining variation in the image. This is named the ‘graphics code’. A care-
ful training procedure is used to disentangle these factors. On each itera-
tion, a minibatch is selected in which only one of the pre-de�ned factors
of variation changes. Code units describing that factor are trained as nor-
mal, and all other neurons receive a gradient towards the mean activation
across that minibatch. Results on 3D faces and chairs show impressively
disentangled and interpretable code variables, that successfully generate
images with unseen cause combinations. However, the training regime re-
quires complete and fully labelled data.

7.5. RELATED WORK 111

A signi�cant body of work on �nding disentangled representations in
supervised or semi-supervised contexts exists. Much of this work focuses
on �nding ‘invariant features’, i.e. factors of variation that are relevant or
irrelevant to a supervised signal. For example, the content of a handwritten
digit is important for classi�cation, but the handwriting style is irrelevant.
Rifai et al. [56] train a semi-supervised convolutional network inwhich hid-
den units are split into two groups. Among other terms, the loss function
includes an incentive for units in one group to be insensitive to directions of
variation in the input for which units in the other group are sensitive. Che-
ung et al. [12] train semi-supervised variational autoencoders, where the
code space is partitioned into a scalar y and a vector z, where y is trained
to represent all information relevant to the class label, and z the remaining
variation in the input. A cross-covariance penalty is added to the loss to
separate these two groups of variables. More recently, Mathieu et al. [50]
construct a generative model that incorporates both generative adversar-
ial networks and variational autoencoders to separate class-relevant and
class-irrelevant factors. In summary, the algorithm trains by viewing two
inputs with the same class label, and �nding factors in one image that are
either predictive or not predictive of the class label of the other. This yields
a somewhat complex model, involving three uses of an encoder, four uses
of a decoder, and two adversarial networks, but achieves impressive re-
sults. Kingma et al. [40] perform a similar task with modi�ed variational
autoencoders [39], which are supplied with the input data as well as a one-
hot vector of class information. Adversarial autoencoders [49] can also be
modi�ed for a semi-supervised setting, and can learn to represent class in-
formation in a categorical code variable and other information in standard
code units.

Chen et al. [11] propose an unsupervised approach to modelling factors
of variation based on GANs. This approach, named InfoGAN, creates a
GANwhose generator receives as input a code vector z, alongwith a source
of incompressible noise. The standard loss function of a GAN is modi�ed

112 CHAPTER 7. BACKGROUND ON NEURAL NETWORKS

to include a term intended to maximise the mutual information between
the code and the output. This is achieved bymaximising a lower bound on
mutual information, known as Variational Information Maximisation [3].
The e�ect of this extra term is to make each code unit represent an inde-
pendent factor of variation in the data. This is the most successful work
on unsupervised disentangling in the literature. However, this method is
limited by the simplicity of its latent codes; each code unit zi comes to rep-
resent a single factor of variation, and so the representation of a cause is
limited to a single scalar (or categorical) value.

To summarise, a large body of work exists related to �nding disentan-
gled representations with neural networks. However, almost none of this
work attempts to address our particularly di�cult version of the task: fully
unsupervised learning of high-dimensional, coherent factors of variation.

Chapter 8

Split Autoencoders

This chapter approaches the disentangling problem using autoencoders,
with the central idea of encouraging disentangled representations through
creating a split in the network architecture. Section 8.1 motivates the use
of neural networks in general and, speci�cally, autoencoders. Section 8.2
develops a set of measures and test cases that will be used to benchmark
disentanglingmodels. Section 8.3 proposes theAdditive Split Autoencoder
model, and section 8.5 tests themodel against our test suite. Finally, section
8.6 provides a conclusion and next steps.

8.1 Preliminaries

8.1.1 Motivation

Much of the motivation for Broadnets rested on the careful restriction of
the �ow of information: units within a cause are dependent and able to
form complex distributions, while units between causes are independent
and communicate only via ‘negotiation’. While Broadnets have proven un-
successful, this is largely due to issues in the practicalities of learning and
does not necessarily discount this motivation as an important part of the
disentangling problem. It stands to reason, then, that applying the intu-

113

114 CHAPTER 8. SPLIT AUTOENCODERS

ition of restricting the �ow of information to a simpler andmore successful
learning algorithm may yield good results. This is the motivation for our
�rst attempt at a disentangling autoencoder.

The Broadnet algorithm functioned on the idea that the posterior of one
cause was highly dependent on the other. That is, knowing one cause as
well as the data immediately allows the other cause to be found. This im-
plies that disentangling is primarily an inference problem, and suggests an
inference algorithm where better estimates of one cause allow for better
estimates of the other. However, another perspective is available: the goal
of disentangling is to �nd parameterisations such that each cause can be
retrieved from the data with no knowledge of the other. In other words,
disentangling is the task of �nding parameters where causes are indepen-
dent in the posterior, as well as the prior. This re-frames disentangling as
a learning problem; �nding a parameterisation is di�cult but, once known,
disentangling causes is simple.

8.1.2 Choice of Neural Network

Our disentangling models are based on standard autoencoders, but other
choices for the underlying unsupervised neural network are available. Us-
ing Variational and Adversarial Autoencoders would allow for direct sam-
pling of the code space, butwould also increase the complexity of themod-
els without contributing to the main objective of disentangling. GANs are
a promising candidate, particularly due to their use in the InfoGANmodel
[11], which is one of the most impressive examples of disentangling in the
literature. However GANs have a major drawback: hidden states can be
sampled from the prior, but data cannot be encoded into a hidden state.
Apart from being a useful feature for a disentangling network to have,
this alsomakes quantitative comparison of di�erentmodels di�cult. GAN
models are often compared by Gaussian Parzen window sampling [24] to
�nd a lower bound on the log likelihood of the test set under the model.
However, this has been noted to be a “deeply �awed” [49, 62] measure.

8.2. BENCHMARKING MODELS OF DISENTANGLING 115

Moreover, in this context reconstruction quality is of far less importance
than the level of disentangling. If data cannot be encoded into a hidden
state, measuring disentanglement is di�cult.

8.2 Benchmarking Models of Disentangling

This section discusses the experimental setup used to test the models in
this chapter and chapter 9. Our metric of success is the level of disentan-
gling achieved by these models, and other factors such as reconstructions
error and training time are of secondary importance. As such, we require
a robust setting in which to measure disentanglement.

Datasets

Over the next two chapters, wewill benchmark ourmodels on four datasets
with increasingly complex methods of entanglement. MNIST has been
chosen as the basis for most datasets as, despite being a mostly solved
problem in a supervised setting, it is a common test for autoencoders [39,
49, 24, 47, 10, 66] and provides su�cient di�culty for disentangling. The
base MNIST images contain entirely binary-valued pixels. Details of each
dataset are listed below, and examples from each are shown in �gure 8.1.

Simple MNIST. A trivially ‘entangled’ dataset of 25000 images, size 56 ×
28 pixels. Each image contains two digits from MNIST placed side-
by-side. This tests whethermodels are at all drawn towards disentan-
gling, without the confounding factor of how di�cult disentangling
is.

Additive MNIST. Each image, size 28 × 28, contains two MNIST digits
added together, and divided by 2 to staywithin the [0, 1] range. 25000
images total. This testswhethermodels can disentangle linearly com-
bined causes where some work is required to separate causes.

116 CHAPTER 8. SPLIT AUTOENCODERS

Occlusive MNIST. Each image, size 28 × 28, contains two MNIST digits
pixel-wise unioned together. 25000 images total. This tests whether
models can disentangle non-linearly combined causes, a signi�cantly
more di�cult task.

MNIST. The standardMNISTdataset. 50000 images total. This testswhether
models can�nd independent factors of variation in natural data, where
disentangling is a di�cult task.

In the �rst three datasets, two MNIST digits are somehow combined.
Care has been taken in these cases to ensure that each image in MNIST is
used no more than once, resulting in a truly unsupervised problem, but
a dataset of only half the size. In all datasets, prior to combination each
component image is normalised into a range such that, after combination,
images in the dataset are in the range [0, 1].

Measuring Entanglement

In the literature, disentangling is commonly evaluated qualitatively through
by-eye observations ofwhether individual variables can be changed tomod-
ify one factor of variation while others remain constant [12, 50, 55, 65, 11,
44]. This is less useful in a context where causes are high-dimensional, and
is also less precise than a quantitative measure of disentanglement. Un-
fortunately, there are no standard quantitative benchmarks for evaluating
disentangling [12, 50], so this section will propose some.

To gain a quantitative estimate of disentangling, we reuse the approach
proposed in section 6.2 for the postprocessed ICA algorithm. Since the
mutual information between causes is zero when they are statistically in-
dependent, we will use the Kraskov estimate [43] for mutual information
to measure disentangling. Despite being more complex, the advantages
over using a simple binning scheme are signi�cant in this context; experi-
ments indicate that the bias of discretised mutual information obscures a

8.2. BENCHMARKING MODELS OF DISENTANGLING 117

(a) Simple MNIST

(b) Additive MNIST

(c) Occlusive MNIST

(d) MNIST

Figure 8.1: Example images from each dataset used to test disen-
tangling.

118 CHAPTER 8. SPLIT AUTOENCODERS

surprising amount of detail of themutual information, andmakes compar-
ison betweenmodels di�cult. Additionally, the number of bins used plays
enough of a role that it must be tuned almost on a per-experiment basis
to achieve reasonable results. The Kraskov estimator su�ers from none of
these problems.

8.3 The Additive Split Autoencoder

This section presents a surprisingly simple tweak to a standard autoen-
coder that allows it to perform some disentangling on additive data.

We construct an Additive Split Autoencoder (ASAE) by placing two
standard autoencoders in parallel, each supplied with the same data, and
adding their outputs together to form the ASAE’s output. More formally,
if x is the input data, and f A(x) and f B (x) are standard autoencoders, we
de�ne an ASAE network as y � f A(x) + f B (x). The two code layers are de-
noted zA and zB, and the code units are referred to as ‘causes’ in this con-
text. When discussing the output of each autoencoder individually they
are denoted yA and yB. See �gure 8.2 for a diagram.

x

zA

zB

+ y

Figure 8.2: Diagram of the ASAE model. Each solid line denotes a
neural network, and the small + node denotes element-wise addi-
tion. The dashed line indicates the transform has no parameters.

We hypothesise that the split nature of the network will enable disen-
tangling, and that each constituent autoencoder will represent one cause.
If this is the case, then causes can be reconstructed separately by taking

8.4. TRAINING DETAILS 119

the output of f A or f B alone. The potential for disentangling in the ASAE
model is based on the restricted �ow of information between the two net-
works. In a standard autoencoder, one expects units in the code layer to be
combined in a complex, nonlinear way by the decoder to produce output.
In anASAE, if two units are to both represent components of data requiring
complex decoding, they must be within the same cause in order to partic-
ipate in that decoding. In other words, the limitation of units in di�erent
causes being unable to ‘talk’ to each other should incentivise the codes to
represent factors of variation that require no discussion. We expect that
relatively deep networks will be required for this e�ect to be signi�cant.

As an ASAE is only a minor change to a standard autoencoder, the op-
tions for the training algorithm are identical to a standard autoencoder.

8.4 Training Details

This section brie�y outlines the training setup for the ASAE model. For
all experiments, and for each split network, our architecture has a single
1000-unit hidden layer between the input and the code, and the code and
the output. A ReLU is added after each hidden layer. In the same fashion
as variational and adversarial autoencoders [39, 49], we take the sigmoid
of the network’s output, ensuring it is in the same range as the data. That
is, the architecture of each constituent autoencoder is

input size→ 1000→ relu→ N → 1000→ relu→ input size→ sigmoid,

where N is the size of the code layer and is varied per experiment. Gradient
descent details are as follows.

• RMSprop [64] is used to train the network. This is due to the tendency
of vanilla SGD to only learn the mean input image when small code
sizes are used.

• A learning rate of 0.001 is used, which is the largest learning rate (to
within an order of magnitude) without convergence issues.

120 CHAPTER 8. SPLIT AUTOENCODERS

• Minibatches of 128 are used, but all multiples of 2 between 8 and 256
yield similar results.

8.5 Results

This section presents results of the ASAE network on the Simple MNIST
and Additive MNIST datasets. As the network can only model additive
causes, we do not test on Occlusive MNIST or standard MNIST. In gen-
eral, for each dataset we train 30 models, and present example reconstruc-
tions from three of them. The images used in the reconstructions are ran-
domly selected from the dataset, but consistent across the three models.
We also provide a plot of estimated mutual information throughout train-
ing for each run. Reconstruction error plots are not provided, as achieving
state-of-the-art reconstructions is not our goal, and reconstruction quality
is more easily evaluated by simply looking at reconstructions.

Simple MNIST with Small Causes

It appears that this simple network is successful at disentangling simple
data. Figure 8.3 shows examples from three successfully trained ASAE
networks using two units per cause. In every example, each network re-
constructs one digit acceptably and reconstructs a constant value for the
other. The digit reconstructions are imperfect, though they are not signi�-
cantly worse than those achieved by a standard or variational autoencoder
when a 2 unit code layer is used. As the model is so simple, and standard
autoencoders certainly do not exhibit this behaviour, it is likely that the
restricted �ow of information resulting from a split network does indeed
encourage the modelling of coherent causes.

Seemingly each network acts as a bias for the other, and the negative of
the bias can be seen to some degree behind each well-reconstructed digit.
This is perhaps unsurprising, since the bias does not require the shared in-
formation that likely binds together units modelling the same cause. This

8.5. RESULTS 121

(a) (b) (c)

Figure 8.3: Examples from three successfully trained two-unit
ASAE networks on Simple MNIST. Each row is an example. The
four columns are as follows: input images, reconstruction from left
network yA, reconstruction from right network yB, reconstruction
from both networks y � yA + yB.

also holdswith our de�nition of independent causes, as the two code layers
are still representing independent things. While this situation is reminis-
cent of the diverging positive and negative weights in a Broadnet, no such
issues were apparent during training.

However, despite several successful examples being presented in �gure
8.3, convergence to a disentangled optimum is not guaranteed. Figure 8.4
shows the inter-cause mutual information estimate across training for 30
runs of an ASAE with the same setup as previously. There is a division
between runs; some models converge to a mutual information near 0 after
an initial spike while others stay relatively high. This division is exactly
mirrored in by-eye analysis of the networks; the model in each run dis-
entangles the data exactly when its mutual information is near 0, though
the measure can get as high as perhaps 0.1 without visibly worse results.
Hence, despite the success, even in this simple case there is clearly room
for improvement. However the agreement between by-eye analysis and the

122 CHAPTER 8. SPLIT AUTOENCODERS

0 5 10 15 20 25 30 35 40
epochs

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ut

ua
l i

nf
or

m
at

io
n

Figure 8.4: Mutual information estimate over epochs for 30 runs of
training the two-unit ASAE network on Simple MNIST. Each blue
line represents a run, and the red line the mean across all runs.
Roughly, a �nal value of less than 0.2 corresponds to a ‘limited suc-
cess’ in terms of visual disentangling, and a �nal value of less than
0.1 is a full success.

mutual information estimate provides some con�dence that the estimate
is a good measure of disentanglement.

Given that Broadnets su�ered from optima that were at times higher
quality despite being entangled, it is worth checking this is not the case in
ASAEs. Figure 8.5 shows thatmutual information and reconstruction error
are positively correlated, that is, the better the disentangling the better the
reconstruction.

Simple MNIST with Large Causes

While the results in the previous section are encouraging, our goal is to
model complex and coherent causes, and using two units per cause only
barely meets the de�nition of ‘complex’. To show this, the same experi-
ments as the previous section are performed, but with 10 units per cause.

8.5. RESULTS 123

23 24 25 26 27 28 29
reconstruction error

0.5

1.0

1.5

2.0

m
ut

ua
l i

nf
or

m
at

io
n

Figure 8.5: Mutual information estimate plotted against reconstruc-
tion error for 30 runs of the ASAE model on Simple MNIST. Each
blue point is a run, and the regression line is shown in red.

Figure 8.8 shows the mutual information over time, �gure 8.6 shows four
successful runs, and �gure 8.7 shows two failed runs. Unsurprisingly, the
reconstructions are of signi�cantly higher quality in all cases, but of the 30
runs, only four converged to optima which could be considered disentan-
gled. In the cases where a entangled optima is found, each cause tends to
represent di�erent ‘strokes’ of each digit.

Additive MNIST

Lastly, we move to the more di�cult Additive MNIST dataset. We use 10
units per cause, and perform the standard 30 runs. Figure 8.9 plots themu-
tual information estimate, and �gure 8.10 provides reconstructions from
three successful runs. The failure cases are not particularly informative,
and so are omitted.

Clearly, the model is capable of �nding disentangled representations:
though the reconstructions are imperfect, two causes are recognisable as
individual digits. Surprisingly, convergence to a disentangled optimum

124 CHAPTER 8. SPLIT AUTOENCODERS

(a) (b)

(c) (d)

Figure 8.6: Examples reconstructions from four successfully trained
10-unit ASAEnetworks on SimpleMNIST. The runs shownhave the
four lowest mutual information estimates among all 30 runs. Each
image has the same format as in �gure 8.3; a row is an example, and
the columns are: input, left cause, right cause, both causes.

8.5. RESULTS 125

(a) (b)

Figure 8.7: Example reconstructions from two failed runs of the
10-unit ASAE network on Simple MNIST. The runs shown have
the two highest mutual information estimates among all 30 runs.
Each image has the same format as in �gure 8.3. In these examples,
each cause can be seen to model some of the strokes composing
each digit. Note that the reconstructions using both causes are vi-
sually less convincing than in the successful cases in �gure 8.6, in
large part because the strokes from di�erent causes match up im-
perfectly.

126 CHAPTER 8. SPLIT AUTOENCODERS

0 5 10 15 20 25 30 35 40
epochs

0

1

2

3

4

m
ut

ua
l i

nf
or

m
at

io
n

Figure 8.8: Mutual information estimate over epochs for the 30 runs
of training the 10-unit ASAE network on Simple MNIST. Each blue
line represents a run, and the red line the mean across all runs.
The four runs with the lowest value are visually disentangled, the
remaining runs exhibit varying degrees of failure.

is seemingly more common in this test case than on the Simple MNIST
dataset. In �gure 8.9, runs appear to split into two categories, one above the
red line, and one below. Roughly, all runs with lower mutual information
than the mean show some level of visual disentangling, though of course
quality improves as mutual information decreases. It is also notable that
no run achieves zero estimated mutual information.

8.6 Discussion

Negative Results

In the process of the previous experiments, many of the tweaks commonly
applied to autoencoders were tested and found to, at best, have no e�ect.
The most interesting results are related to encouraging sparsity in either
the weights or activations. It seems reasonable that sparsity, particularly in

8.6. DISCUSSION 127

0 5 10 15 20 25 30 35 40
epochs

0

1

2

3

4

m
ut

ua
l i

nf
or

m
at

io
n

Figure 8.9: Mutual information estimate over epochs for the 30 runs
of training the 10-unit ASAE network on Additive MNIST. Each
blue line represents a run, and the red line themean across all runs.

the encoders, would promote better disentangling by providing an explicit
incentive for units in the code layer to each represent only small compo-
nents of the input. Three methods well known for inducing sparsity were
tested: L1 regularisation (applied to either weights or activations), denois-
ing autoencoders, and dropout. In particular, using a denoising loss func-
tion has an extra appeal in this context: by adding noise, the networks may
be encouraged to represent the signal as compactly as possible, perhaps
leading to independent causes. Unfortunately none of these sparsitymeth-
ods improved disentangling, and dropout yielded surprisingly bad results
in all cases.

It is unclearwhy sparsity does not improve the results, but some conjec-
ture can be made. As there is no explicit incentive towards disentangling
in the loss function, it may be the case that adding noise or regularisation
terms obscures the already fragile signal leading to disentangling. The case
against dropout is more compelling; by requiring that units need not rely
on other units, the representation is made more redundant and, to some
extent, the entire concept of a ‘complex and coherent cause’ is defeated.

128 CHAPTER 8. SPLIT AUTOENCODERS

(a) (b) (c)

Figure 8.10: Examples reconstructions from three successfully
trained 10-unit ASAE networks on AdditiveMNIST. The three runs
shown were randomly selected from the runs with lower than av-
erage estimated mutual information. Each image has the same for-
mat as in �gure 8.3. For display, the middle two columns have had
their pixel values doubled, so that the brightness of each column is
within the same range.

8.6. DISCUSSION 129

0 10 20 30 40
epochs

0.5

1.0

1.5

2.0

2.5

m
ut

ua
l i

nf
or

m
at

io
n

Figure 8.11: Example of a common outcome when training an
ASAE network with a low learning rate. The plot shows the mu-
tual information estimate across epochs. After the initial phase of
rapid learning, the mutual information slowly rises as the network
�ne-tunes its optimum.

The Role of Optimisers

The RMSprop optimiser was chosen for these experiments, and used a
somewhat higher learning rate than is usual on this data. This combina-
tion was arrived at experimentally, which led to two observations: lower
learning rates lead to worse disentangling, and both SGD and Adam are
consistently less successful than RMSprop.

The case for large learning rates is twofold. First, they prevent the opti-
miser from performing true gradient descent and add some unpredictabil-
ity to the network’s movements. Much like momentum, this may allow the
network to skip over undesirable, entangled optima. Second, high learning
rates work to prevent the process of �ne-tuning that occurs once a network
is trapped in an optima. It appears that this �ne-tuning process oftenworks
to re-entangle the causes, which can be seen as a slow rise in the mutual
information such as in �gure 8.11.

130 CHAPTER 8. SPLIT AUTOENCODERS

The performance of RMSprop is commonly found to be superior to SGD
(with or without momentum) [38, 1], particularly in the case of autoen-
coders [2]. As such the improved performance of RMSprop over SGD is
unsurprising. The bad performance of Adam is surprising, however, as not
only is it often found to perform at least as well as RMSprop [38, 1] it is also
a fairly similar algorithm; it is e�ectively RMSprop with momentum and
some correction terms. There is some evidence that, in autoencoders train-
ing on similar data, RMSprop performs a more extensive search across the
non-linearities in the loss space than both SGD and Adam [2]. It is unclear
whether this is the cause of RMSprop’s success.

Conclusion and Next Steps

The ASAE architecture is a minor tweak to a standard autoencoder, and
does not explicitly encourage �nding disentangled causes. Nevertheless,
the model performs full but unreliable disentangling on both easy and dif-
�cult datasets with additive causes. This behaviour is certainly not present
in a standard autoencoder, and so can be attributed entirely to the restricted
�ow of information between the two networks. This validates one of the
original motivations for the Broadnet: complex causes are best represented
when all related units are allowed complex interactions, to the extent that
units should self-organise across the ‘information gap’ between the two
causes.

However, there is clearly room for improvement: the model does not
always converge to a good optimum, and estimated mutual information
never reaches zero on data that is di�cult to disentangle. Moreover, the
ASAE model is limited to representing causes that interact linearly, giving
it a similar scope to ICA and making impossible the representation of the
truly complex causes present in natural data.

While the results are somewhat positive in and of themselves, of more
interest is the insight they provide into the behaviour of autoencoders on
the disentangling problem. On all benchmarks, networks converged to

8.6. DISCUSSION 131

both entangled and disentangled optima, and that distinction is generally
noticeable after the �rst few epochs of training. It is well known that neu-
ral networks are highly non-convex, and can have a number of optima that
increases exponentially with depth [15]. In more traditional settings it ap-
pears that most optima to which a network converges are su�ciently high-
quality that the non-convexity of the loss space is not an issue. The results
of this chapter indicates that we are not so fortunate in the case of disen-
tangling. Disentangled optima exist, and are seemingly higher quality, but
the loss surface is polluted by many entangled optima.

In summary, the limitations of the ASAEmodel point to the di�culty of
the optimisation problem, rather than �aws in themodel itself. While the core
idea of a split autoencoder is sound, the loss surface becomes su�ciently
treacherous on di�cult tasks that disentangling is inconsistent. This sug-
gests a direction for further improvements: change the loss to remove the
entangled optima from the loss surface. The following chapter explores a
method for achieving this.

132 CHAPTER 8. SPLIT AUTOENCODERS

Chapter 9

Adversarial Networks

This chapter seeks to extend the work on split autoencoders from chapter
8, and progress towards a more powerful neural network-based model ca-
pable of consistently disentangling complex causes, even when the causes
combine non-linearly. Our approach is to create a model with a loss func-
tion that explicitly encourages disentangling.

Section 9.1 discusses existing work relevant to constructing a disentan-
gling loss function, and also explores and rejects some alternative options.
Section 9.2 presents the new model itself, which is the main contribution
of the chapter. Section 9.3 describes our experimental setup, and section
9.4 provides results and analysis on several benchmarks. Finally, section
9.5 discusses some interesting properties of the model and provides a con-
clusion.

9.1 Rejected Approaches and Related Work

This section discusses several candidate approaches for creating a ‘disen-
tangling loss function’ that promotes independent causes. We will con-
tinue to use the de�nition of independent causes from section 2.7: causes
are independent when they are statistically independent.

133

134 CHAPTER 9. ADVERSARIAL NETWORKS

Existing Approaches

The scope for a penalty on statistical dependence is large. Most simply, it
could take the form of a covariance penalty between causes, which would
encourage them to beuncorrelated. This has been applied to semi-supervised
autoencoders in the form of the XCov penalty [12], in order to separate
class-relevant and class-irrelevant signal. The autoencodermodel to which
the XCov penalty is applied bears some similarity to ours, as the code layer
is separated into two blocks. However, as discussed in relation to ICA, un-
correlated causes are not necessarily independent causes. Because covariance
only models pair-wise interactions between units, it does not capture the
full dependence structure of the data [36]. Our experiments indicate that
having zero covariance is not su�cient for disentangling.

Another approach is to ignore (statistical) moments altogether, and to
prevent units in di�erent causes from being sensitive to the same input
units. This is roughly the strategy used by Contractive Discriminant Anal-
ysis (CDA) [56], part of a pipeline for semi-supervised disentangling using
autoencoders. The autoencoder used in CDA is very similar to the ASAE:
the encoder and decoder are both split, and combine additively to form
the output. However, their model uses tiedweights in a one-layer network.
The two causes are encouraged to represent di�erent variation in the data
by the following regularisation term. Supposing za and zb are the causes
and x the input,

J �

∑
jk

(
∂
∂x

za
j
∂
∂x

zb
k

)2
. (9.1)

This term puts a penalty on cases where two code units in di�erent causes
are sensitive to variations in the same input elements. The term is promis-
ing, because, if no code units are sensitive to the same input units, then
the causes certainly represent di�erent things. However, this method has
two drawbacks. First, its performance appears to diminish as deeper net-
works are used. Second, in non-trivial entangling problems there are cases
where both causes should be sensitive to a particular xi , but this is strongly

9.1. REJECTED APPROACHES AND RELATED WORK 135

penalised by J . Both of these limitations are ameliorated in the original
context of CDA by its use in a larger feature-extraction pipeline.

MaximumMean Discrepancy

This section explores the use ofMaximumMeanDiscrepancy (MMD), also
known as the two-sample test [26], as a disentangling loss. This is moti-
vated by the fact that MMD can be seen as measuring the di�erence be-
tween all statistical moments of two sets of samples. This may enable it to
succeed where simple covariance penalties fail.

MMD is a statistical estimate of whether two sets of samples are drawn
from the samedistribution. Let {xi }N and {y j }M be two sets of samples, both
subsets of some data space X. Let F be the class of functions f : X → R.
The MMD statistic is:

MMD � sup
f ∈F

1
N

∑
i

f (xi) −
1
M

∑
j

f
(
y j

)

. (9.2)

As noted by Li et al. [47], setting f as the identity function results in mea-
suring the di�erence between sample means, and other settings measure
the di�erence of higher order moments. The kernel trick can be applied
to equation 9.2, most commonly with a Gaussian kernel, to �nd a closed
and di�erentiable form. Under a Taylor expansion, this form yields a term
for the di�erence between every statistical moment of the two sets of sam-
ples. As such, minimising MMD can be seen as minimising the di�erence
between every statistical moment of the two sets of samples. MMD is non-
negative and zero if and only if the two underlying distributions are equal
[27].

Most recently, MMD has seen success in Generative Moment Matching
Networks (GMMNs) [47], in which a network is constructed to take in-
put drawn from a simple distribution, such as a Gaussian, and transform
it into the data space. This network is trained to minimise MMD between
the data and output of the network. If successful, the network is able to use

136 CHAPTER 9. ADVERSARIAL NETWORKS

easily obtainable samples to produce a distribution over data that is indis-
tinguishable from the dataset. Additionally, a similar model can be used
to model the code layer of an autoencoder. In this case, an autoencoder
is trained normally, and as a post-processing step a GMMN is trained to
model the distribution of the code layer.

Given that MMD is a di�erentiable measure of the di�erence between
two distributions, and considers all moments of those distributions, MMD
is a super�cially attractive measure of entanglement. This could be ap-
plied, for example, by learning to predict one cause’s distribution from the
other with a GMMN. However this is misguided. The ability or inabil-
ity to construct one cause’s distribution from the other has no bearing on
whether individual pairs of samples from the two distributions aremutually
informative. The view provided by MMD is too general, as it operates at
the level of the entire distribution, whereas we require as detailed a view
of the entanglement of single data points as possible.

This is exempli�ed by the fact that almost any distribution can be trans-
formed into almost any other. If a GMMN is trained to construct the distri-
bution of one cause given the other, it can almost alwaysminimise itsMMD
loss and achieve a convincing reconstruction of the target distribution re-
gardless of both the original distribution, and the level of disentanglement.
An example of this ability is shown in �gure 9.1. This shows the outcome of
a GMMN learning the code distribution of a pre-trained autoencoder. The
input to the GMMN is drawn from a spherical Gaussian, which is entirely
uninformative of the complex code distribution of the autoencoder. Nev-
ertheless, the GMMN can make a reasonable approximation of the code
distribution and achieve a low MMD loss. The implication for the cause
prediction setting is that a predictor can minimise its MMD loss regardless
of the level of disentanglement.

9.1. REJECTED APPROACHES AND RELATED WORK 137

(a) GMMN input, spher-
ical Gaussian

(b) GMMN output, at-
tempting to match the
target

(c) Target code distribu-
tion from autoencoder

Figure 9.1: Example of a GMMN approximating an arbitrary code
distribution well from spherical Gaussian input. As GMMNs are
able to construct arbitrary distributions from uninformative input,
MMD is not an e�ective measure of disentangling.

MeanNN Estimate

An ideal loss function would be one that directly measures the mutual in-
formation between the causes. The properties ofmutual information are ap-
pealing; it takes into consideration the entire statistical structure, and is 0 if
and only if the causes are statistically independent [36]. However, optimis-
ing mutual information is a fraught process as it requires a di�erentiable
estimate. The most successful estimates are based either on discretising
data or on k-nearest neighbour density estimates, including the Kraskov
estimator used for measuring mutual information discussed in chapter 8.
Neither of these operations are di�erentiable, making them inapplicable
in the context of optimisation.

The MeanNN estimator [18] presents a clever way to �nd a di�eren-
tiable mutual information estimate by taking the sum of individually non-
di�erentiable kNN estimators. MeanNN is built on the key observation
that a kNN estimator of di�erential entropy can use any value of k, and
so an average over all k also produces an estimator. The main term in a
kNN estimator is

∑
i log εi , where εi is the distance between xi and its k-th

138 CHAPTER 9. ADVERSARIAL NETWORKS

nearest neighbour. Taking the sum over all k simpli�es this to the sum of
the distances between all pairs of data points. This yields the following
estimator.

Hmean � const + C
∑
i, j

log

xi − x j

 (9.3)

While Hmean is less accurate than a normal kNN estimator with a well-
chosen k, it has the advantage of being di�erentiable. Applying an identity,
the mutual information of two sets of variables X and Y can be estimated
by

Imean(X;Y) � Hmean(X) + Hmean(Y) − Hmean(X,Y). (9.4)

MeanNN has in fact been used to approximate mutual information in
a clustering setting [19]. Unfortunately, our experiments with MeanNN
indicate that disentangling is not successful on anything but the most sim-
ple, low-dimensional datasets. We hypothesise that the estimator is simply
not accurate enough to tease apart �ne dependence structures in high di-
mensional data. This is consistent with the fact that the estimator appears
remarkably smooth (see �gure 2 in Faivishevsky andGoldberger [18]), and
most of its success has been on relatively low-dimensional datasets.

9.2 Discriminative Disentangling Networks

This section presents the main contribution of this chapter: a neural net-
work model for explicitly disentangling complex causes of unsupervised
data, named the Discriminative Disentangling Network (DDN). We �rst
describe the model and training algorithm in section 9.2.1, and then dis-
cuss some of the practicalities of training in section 9.2.2.

9.2.1 Description

In short, we draw inspiration from GANs and AAEs, and create an adver-
sarial setting where some networks encode the data into causes, and some

9.2. DISCRIMINATIVE DISENTANGLING NETWORKS 139

networks try to predict one cause given the other.

x

za

zb

f a

f b

qbaqab

Figure 9.2: The basic DDN model. The input, x, is received by two
independent encoders, f a and f b , which output codes za and zb .
The two predictive networks, qab and qba , take one code as input
and try to predict the other.

Figure 9.2 provides a diagram of the model architecture. Begin with two
encoder networks, denoted f a and f b , which receive input x and produce
codes (also known as causes) za and zb . Beyond receiving the same input,
the encoders are entirely independent from one another. Next, add two
predictor networks, denoted qba and qab . Each network receives as input
one of the causes, and attempts to predict the value of the other. qba takes
zb and produces za , while qab takes za and produces zb .

Our goal is to train the predictor networks to take advantage of any in-
formation about the target cause that is present in the input cause. In tan-
dem, we wish to train the encoder networks to fool their predictors. There
is one infallible solution for the encoder networks: make the causes statis-
tically independent. It is our hope that this process will �nd that solution.
To achieve this, we de�ne two predictive losses as

`P
ba (x) �

 qba

(
zb

)
− za

`P
ab (x) �

 qab

(
za

)
− zb

, (9.5)

140 CHAPTER 9. ADVERSARIAL NETWORKS

where za � f a (x) and zb � f b (x). Each predictor network is trained to
minimise its corresponding loss. Ideally, we would then train each encoder
network to maximise the loss of its predictor. This would result in two sim-
ple min-max games being played between the four networks. However,
this is not practical. The predictive losses are squared errors with no up-
per bound, and themost e�ectiveway for an encoder tomaximise the error
is to make its encodings very large. This invariably results in the networks
diverging.

We solve this problem by de�ning alternative losses to be minimised
(rather than maximised) by the encoder networks. These are named the
encoding losses and are simply dot products.

`E
a (x) � za

· qba
(
zb

)
`E

b (x) � zb
· qab

(
za

)
. (9.6)

The encoder networks must be matched with their losses carefully: en-
coders attempt to fool the predictor for which their code is the output, not
the input. That is, the parameters of f a are used to minimise `E

a and the
parameters of f b are used to minimise `E

b . For completeness, equation 9.7
lists each set of parameters and their associated losses.

parameters of f a : `E
a � za

· qba
(
zb

)
parameters of f b : `E

b � zb
· qab

(
za

)
parameters of qab : `P

ba �

qba

(
zb

)
− za

parameters of qba : `P
ab �

qab
(
za

)
− zb

. (9.7)

It is interesting to note that our model’s adversarial setting has a key
di�erence to that of AAEs and GANs: the networks are playing an adver-
sarial game based on regression, rather than classi�cation. This is the reason
why we require di�erent losses for the encoder and predictor, while AAEs
and GANs do not. While regression is generally a more di�cult task than
classi�cation, it is uncertain whether this makes ‘solving’ the adversarial
game more di�cult.

9.2. DISCRIMINATIVE DISENTANGLING NETWORKS 141

An Interpretation of the Encoding Losses

As adigression, the encoding losses have an appealing interpretation. Con-
sider the encoding loss of encoder f a and, for simplicity, let ẑa � qba

(
zb

)
.

The loss is a dot product, which can be rewritten as a quadratic with two
terms removed like so:

`E
a � ẑa

· za
� −

1
2

[

ẑ
a
− za

 −

ẑ
a

 −

z
a

]
.

During learning, the gradient of `E
a is taken with respect to parameters W

of f a . The ‖ẑa
‖ term depends only on qba and f b , not f a . Hence,

∂
∂W

`E
a �

1
2
∂
∂W

[

z
a

 −

ẑ
a
− za

]
. (9.8)

As such, the encoding losses can be thought of as having two terms: a
squared error to maximise, and a regularisation term to minimise. There
is no need for a coe�cient λ on the regularisation term, as λ � 1 is the only
viable setting. If λ < 1, then the squared error grows faster than the regu-
larisation and the model still explodes, and if λ < 1 then the regularisation
grows faster than the squared error and the model collapses.

For a loose link to a more principled perspective, recall the view of dis-
entangling as a learningproblem, inwhichwe aim to�ndposteriors encod-
ings that are independent from one another given the data. In this context,
we wish to minimise the conditional mutual information I

(
za ; zb ��� x

)
, rather

than standard mutual information, as the data is known. Conditional mu-
tual information can be rewritten as two entropy terms as follows.

I
(
za ; zb ��� x

)
� H

(
za ��� x

)
− H

(
za ��� z

b , x
)

(9.9)

If one supposes that ‖za
‖ is an approximation of the entropy H

(
za ��� x

)
, and

‖ẑa
− za
‖ an approximation to the conditional entropy H

(
za ��� z

b , x
)
, then

the encoder loss function could be considered an approximation of condi-
tional mutual information.

142 CHAPTER 9. ADVERSARIAL NETWORKS

The encoding losses in equation 9.6 are meant to prevent divergence
when minimised, but are still not bounded below; an encoder could pro-
duce a code of the opposite sign to its predictor’s output, yielding a nega-
tive loss, which would allow for divergence. Fortunately the dynamics of
the model prevent this situation from ever occurring. So long as the pre-
dictive networks have a sensible training setup, a change in the sign of the
encoder’s output will be quickly followed by a change in sign of the pre-
dictor’s output. At worst, if the predictor is incapable of any prediction at
all, it will output 0. This process is very reliable, and divergence has never
been observed.

Learning Without Reconstruction

The DDN model has a surprising feature: it contains no decoder, and its
loss does not include a term related to reconstruction error. This the justi�-
cation behind the ‘discriminative’ in DDN; in contrast to traditional gener-
ative modelling, as well as ‘generative’ neural networks such as variational
autoencoders [39] and GANs, our training algorithm is unrelated to gen-
erating or even reconstructing data.

In order to provide useful output, we train decoder networks as a sec-
ond stage of training after the training of the encoders and predictors is
complete. Three decoder networks are trained: one receives both za and
zb as input, one receives only za , and one receives only zb . The decoders
are labelled gab , ga , and gb respectively, and are trained on the gradients
of the following reconstruction errors.

parameters of ga : `R
a (x) �

 ga

(
za

)
− x

parameters of gb : `R
b (x) �

 gb

(
zb

)
− x

parameters of gab : `R
ab (x) �

 gab

(
za , zb

)
− x

 (9.10)

This extended network is drawn �gure 9.3, and leads to the training proce-
dure in algorithm 5. The signi�cance of this architecture is that no assump-
tions aremade about themethod bywhich causes combine. As a result, the

9.2. DISCRIMINATIVE DISENTANGLING NETWORKS 143

model is in theory capable of representing causes that interact non-linearly,
in contrastwith the approaches fromprevious chapters, which sought only
to model causes that combine linearly.

The two networks that only receive one cause allow for the causes to
be reconstructed independently. However, the idea of reconstructing one
cause without the other is not well-formed in general. For example, in
the case of faces and lighting, a face cannot be reconstructed without some
lighting condition. One would hope that, if za contains information about
only faces and not lighting, a decoder from za would use some average
lighting condition in order to make good reconstructions. Nevertheless,
all three decoders are useful for example output.

x

za

zb

yab

ya

yb

Learning stage 1 Learning stage 2

Figure 9.3: Diagram of the extended DDN model. The �rst stage
of the model contains the encoders and predictive networks, and is
identical to �gure 9.2. The second stage of the model contains three
decoders, all attempting to reconstruct the input data. One receives
only za , one receives only zb , and one receives both za and zb . As
described in algorithm 5, these two stages are trained separately.

Given the fact that the encoder is not trained on reconstruction error, it is
valid to question whether the encodings will contain su�cient informa-

144 CHAPTER 9. ADVERSARIAL NETWORKS

tion about the input for the decoders to make good reconstructions. As
a point of comparison, if a randomly initialised autoencoder has only its
decoder trained, reconstructions are very bad. Surprisingly, training with
the encoding loss actually does result in codes that are useful for recon-
struction. To see why, consider various cases for f a . Upon initialisation,
f a contains signi�cant information about both causes, as can be seen by
the high mutual information prior to training in the results in this chapter
and the last. f a cannot ignore the input completely, as that would result
in a constant output that is trivially predictable. In order to make itself
predictable, the only option available to f a is to make its output highly de-
pendent on some facet of the data ignored by f b . Consequently, signi�cant
information about a cause is available in the encodings of a well-trained
DDN. This does not guarantee those encodingswill be easy for the decoders
to use for reconstruction, or that theywill model all components of a cause,
but some reconstruction ability is likely.

Algorithm 5 The DDN training algorithm
hyperparameters: standard autoencoder hyperparameters.

learning stage 1: encoders and predictors
for some number of epochs do

Generate a minibatch of data.
Perform the four types of gradient updates listed in equation 9.7,
which train the encoders and predictors.

learning stage 2: decoders
for some number of epochs do

Generate a minibatch of data.
Perform the three types of gradient updates listed in equation 9.10,
which train the three decoders.

9.2. DISCRIMINATIVE DISENTANGLING NETWORKS 145

9.2.2 Practical Considerations

The previous section described the basic DDN model and training algo-
rithm. Unsurprisingly, however, several ‘tweaks’ can or must be made to
achieve good performance. This section details those tweaks.

Setting learning rates with care

At the core of the learning algorithm are two min-max games played be-
tween f a and qba , and f b and qab . These are games of ‘cat and mouse’,
where the predictor is trying to catch the encoder. It is vital that the predic-
tor learnsmore quickly than the encoder, otherwise the encoder can simply
evade the predictor by moving its encoding around the code space faster
than the predictor can catch up. An example of this curious behaviour
is shown in �gure 9.4. Fortunately, preventing this issue is simple: make
the learning rate of the predictor network larger than the learning rate of
the encoder network. Experiments indicate that a predictor learning rate
roughly twice as large as the encoder learning rate is su�cient, though we
tend to increase by an order of magnitude.

End-to-end �ne-tuning

The two-stage training procedure in algorithm 5 has acceptable reconstruc-
tion quality, however it is not competitive with the reconstruction quality
of well-trained standard autoencoders. To partially bridge this gap, a third
‘end-to-end’ training stage can be added, in which the encoders, predic-
tors, and decoders are all trained at once. During this stage, we modify the
encoding losses as follows. Supposing g

(
za , zb

)
is the decoder network,

`E
a (x) � za

· qba
(
zb

)
+ α

g

(
za , zb

)
− x

`E
b (x) � zb

· qab
(
za

)
+ α

g

(
za , zb

)
− x

. (9.11)

That is, we add in a reconstruction loss term with a small coe�cient α.
While α has not been carefully optimised, α � 0.1 appears to be a good

146 CHAPTER 9. ADVERSARIAL NETWORKS

(a) za at epoch 20 (b) za at epoch 22 (c) za at epoch 24

(d) prediction of za at
epoch 20

(e) prediction of za at
epoch 22

(f) prediction of za at
epoch 24

Figure 9.4: Visualisation of the outcome of using equal learning
rates for the encoders and predictors. A DDN is trained with two
code units per cause on Simple MNIST, using SGD with a learning
rate of 0.01. Each �gure in the top row plots the encoding of all
elements of the dataset, and each �gure in the bottom row plots the
prediction of those encodings using the other cause’s encodings.
The encodings are two-dimensional as the causes have two units
each.

The �gures show the encoder evading the predictor by simplymov-
ing its encodings around the code space faster than the predictor
network can catch up. This is possible because the two networks
learn at the same speed, and is solved by ensuring the encoder’s
learning rate is smaller than the predictor’s.

9.3. EXPERIMENTAL SETUP 147

value. It is important to note that using the losses in equation 9.11 during
the �rst stage of training yields signi�cantly worse results; the reconstruction
term interferes with disentangling, and mostly results in failed training.
Therefore, this is best used a �ne-tuning step.

Denoising

The speed and quality of disentangling both see a minor but consistent im-
provementwhen adenoising component is added to the predictornetworks.
That is, the predictive losses are modi�ed to be:

`P
ba (x) �

qba

(
zb + ε

)
− za

`P
ab (x) �

qab

(
za + ε

)
− zb

, (9.12)

where ε is i.i.d. noise. We use spherical Gaussian noise with σ � 0.1.

Algorithm 6 The extended DDN training algorithm, including tweaks
hyperparameters: standard autoencoder hyperparameters, end-to-end
tuning coe�cient α, and denoising parameter σ.

Perform the �rst two stages of learning as described in algorithm 5.

learning stage 3: end-to-end �ne-tuning
for some number of epochs do

Generate a minibatch of data.
Perform gradient updates for the encoders as listed in 9.11.
Perform gradient updates for the decoders as listed in 9.10.
Perform gradient updates for the predictors as listed in 9.12.

9.3 Experimental Setup

This section details the training procedure used for all experiments in sec-
tion 9.4. The network architecture varies slightly between experiments, in

148 CHAPTER 9. ADVERSARIAL NETWORKS

particular the number of hiddens units per cause, denoted N , and the num-
ber of layers in each network, denoted by L with a subscript. With these
two variables in mind, the two encoders have the architecture:

input dimension→ 1000→ relu→ . . .→ 1000→ relu︸ ︷︷ ︸
Le layers total

→ N. (9.13)

The encoder has L total hidden layers, each followed by a ReLU. Each pre-
dictor network has the form:

N → 1000→ relu→ . . .→ 1000→ relu︸ ︷︷ ︸
Lp layers total

→ N. (9.14)

Finally, each of the three decoder networks has the form:

N or 2N → 1000→ relu→ . . .→ 1000→ relu︸ ︷︷ ︸
Ld layers total

→ input dim→ sigmoid.

(9.15)
In the case where the decoder has both causes as input, the input size is
2N , otherwise it is N . As with the experiments on the ASAE model from
chapter 8 we sigmoid the outputs, in a similar fashion to variational au-
toencoders and adversarial autoencoders, as our data is within the range
[0, 1]. In sum, we will describe a particular architecture by specifying N ,
Le , Lp , and Ld .

All networks are trained according to algorithm 6 unless speci�ed. The
RMSprop optimiser is used for all networks during all stages of learning.
The encoders are trained with learning rate 1e−4 andmomentum 0.9, and
the predictors with a learning rate 1e−3 andmomentum 0.9. The decoders
are trained with same hyperparameters as the predictors. The denoising
parameter σ is set to 0.1 and, during the �ne-tuning stage, α is also set to
0.1. All weights use Glorot initialisation [22] and biases are initialised at
zero. Training is performed with minibatches of 128 data points.

9.4. RESULTS 149

9.3.1 Evaluating Results

For all experiments, we evaluate the results with �gures similar to those
in the previous chapter. First, we provide a plot of the Kraskov mutual
information estimate throughout training. We plot the mutual informa-
tion throughout stages 1 and 3 of learning, that is, encoder learning and
end-to-end �ne-tuning. We omit the mutual information during decoder
training, as it remains constant throughout this stage. Second, we select
three of the 30 runs randomly, and present reconstructions from the three
decoders: using only za , only zb , or using both. As a second visualisation
of the networks, we will also present ‘cross plots’. These take 10 images
from the dataset, encodes each, and then decodes all 100 pairings where
za is taken from one image and zb from another. These are presented in a
grid.

We do not present a comparison between our method and others be-
cause, as previously discussed, we are unaware of any neural network-
based disentanglers built for our task.

9.4 Results

This section tests the DDN model on the benchmarks described in section
8.2: simple MNIST, additive MNIST, occlusive MNIST, and �nally MNIST.

9.4.1 Simple MNIST

Our �rst set of results are on the Simple MNIST dataset, which aims to
show that the model is capable of disentangling when the work required is
trivial. We train DDNs in the fashion described in section 9.3, with 10 hid-
den units per cause, and one hidden layer each for all encoders, decoders,
and predictors. That is, N � 10, and Le � Lp � Ld � 1. We perform 35
epochs of encoder-only training, 10 epochs of decoder-only training, and
�ve epochs of end-to-end �ne-tuning. Figure 9.5 shows the mutual infor-

150 CHAPTER 9. ADVERSARIAL NETWORKS

0 5 10 15 20 25 30 35 40
epochs

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
m

ut
ua

l i
nf

or
m

at
io

n

Figure 9.5: Estimated mutual information across 30 runs on the
Simple MNIST dataset. Each blue plot is a run, and the mean is
shown in red. The associated reconstruction and generation exam-
ples are provided in �gures 9.7 and 9.6.

mation throughout training for all 30 runs, generation examples are pro-
vided in �gure 9.6, and reconstruction examples are provided in �gure 9.7.

Compared to the performance of the ASAE networks, these results are
strongly positive. The DDN achieves disentangling on every run, indicat-
ing a consistency that was not present in the ASAE model. This is seen
both in the mutual information estimate, and by-eye in the reconstructions
and cross plot. It should be noted that the DDN model is succeeding in a
more di�cult setting than the ASAE as, unlike the ASAE, it has no built-in
knowledge of the fact that causes combine additively. From this we can
conclude that, at least in simple cases, the DDNmodel is capable of disen-
tangling and is not vulnerable to being trapped in entangled optima like
the ASAE network. While our focus is not on achieving state-of-the-art

9.4. RESULTS 151

Figure 9.6: Generation examples from one model trained on the
Simple MNIST dataset, shown as a cross plot. This shows the com-
binations of di�erent causes from di�erent inputs. The top-most
row and left-most column show 10 input images each, and the cen-
tral grid is comprised of reconstructions from the network. Each
image in the grid is found by decoding yab using the za encoding of
the corresponding input image in the top row and the zb encoding
of the corresponding image in the left column. Hence, all recon-
structions in a given column are created from the same za value,
and all in a given row share the same zb value. The associated mu-
tual information plots and reconstruction examples are provided in
�gures 9.5 and 9.7.

152 CHAPTER 9. ADVERSARIAL NETWORKS

Figure 9.7: Sample reconstructions from two randomly selected
runs on the SimpleMNIST dataset. For each run, the �rst column is
the input, the second column is the reconstruction ya that uses only
za , the third column is the reconstruction yb that uses only zb , and
the fourth column is the reconstruction yab that uses both za and zb .
The associated mutual information plots and generation examples
are provided in �gures 9.5 and 9.6

9.4. RESULTS 153

Figure 9.8: Cross plot for a trained DDN model on Simple MNIST
without end-to-end �ne-tuning, to be comparedwith �gure 9.6. The
disentangling is similarly as good as when �ne-tuning is used, but
reconstructions are of a somewhat lower quality.

reconstruction, the results in �gure 9.7 are loosely comparable with the re-
constructions from an equivalent standard autoencoder.

As a point of comparison, the previous test has been repeated without
end-to-end training, and a cross plot is presented in �gure 9.8. In this case,
the mutual information is minimised in a near-identical fashion to the pre-
vious results, but the reconstructions are of a slightly lower quality. This is
consistent with the motivation for including the end-to-end training step.

9.4.2 Additive MNIST

Next, we test the DDNmodel on Additive MNIST. This is the �rst true test
of the model’s disentangling ability, because the causes have non-trivial
(but still linear) entanglement. The networks again use the setup from sec-
tion 9.3, with 10 hidden units per cause, encoders and predictors with two
hidden layers, and decoders with one hidden layer. That is, N � 10, Le � 2,
Lp � 2, and Ld � 1. We perform 60 epochs of encoder-only learning, 10
epochs of decoder-only learning, and 40 epochs of end-to-end �ne-tuning,
leading to the changing character of the mutual information plots. Figures

154 CHAPTER 9. ADVERSARIAL NETWORKS

0 20 40 60 80 100
epochs

0.0

0.2

0.4

0.6

0.8
m

ut
ua

l i
nf

or
m

at
io

n

Figure 9.9: Estimatedmutual information across 30 runs on the Ad-
ditive MNIST dataset. Each blue plot is a run, and the mean is
shown in red. The �rst 60 epochs shown are encoder-only training,
and the �nal 40 are end-to-end�ne-tuning, explaining the changing
character of the curves before and after epoch 60. The associated re-
construction and generation examples are provided in �gures 9.11
and 9.10.

9.9, 9.10, and 9.11 present results of 30 runs of training.

These results are imperfect but positive. Across all runs, the individual
digits in the data are clearly visible in the reconstructions from each cause,
and the cross plot shows structure in both the rows and columns. Similarly,
every run achieves a small mutual information between causes according
to the Kraskov estimate. This is a signi�cant improvement over the results
of the ASAE model, both in terms of the quality and reliability of disen-
tangling. At least in the case of linear combinations, the DDN shows some
promise in the unsupervised disentangling of complex causes.

9.4. RESULTS 155

Figure 9.10: Generation examples from one model trained on the
Additive MNIST dataset. These are shown in a cross plot, see the
caption of �gure 9.6 for explanation. The associated mutual infor-
mation plots and reconstruction examples are provided in �gures
9.9 and 9.11.

156 CHAPTER 9. ADVERSARIAL NETWORKS

Figure 9.11: Reconstruction examples from three randomly selected
runs on the Additive MNIST dataset. See the captions of �gure 9.7
for explanation. The associated mutual information plots and gen-
eration examples are provided in �gures 9.9 and 9.10.

9.4. RESULTS 157

Interestingly, the �ne-tuning stage of learning impacts the character of
mutual information curves in a way not seen in the Simple MNIST experi-
ment. The predictive loss has unsteady convergence properties, as the pairs
of networks seemingly do not stop responding to one another even when
an optima is found. Including a reconstruction error term appears to help
smooth the loss, as well as cause a slight increase in mutual information.

9.4.3 Occlusive MNIST

Our third experiment benchmarks the model using the Occlusive MNIST
dataset. This is a signi�cantly more challenging task than the previous
two, as it is the �rst dataset in which causes combine non-linearly. More-
over, the combination results in some loss of information about the causes.
Our experiments use 10 units per cause, with two hidden layers in the en-
coder, and three in the predictor and decoder. That is, in the notation of
section 9.3, N � 10, Le � 2, Ld � 3, and Lp � 3. We perform 50 epochs of
encoder-only learning, 10 epochs of decoder-only learning, and 50 epochs
of end-to-end �ne-tuning. The same �gures as the previous experiments
are produced in �gures 9.12, 9.13, and 9.14.

Surprisingly, these results are also positive. The mean mutual informa-
tion estimate at the end of training is slightly higher than in the additive
test, but is still close to zero. The reconstructions from a single cause show
that one cause is consistently modelled by each network, although quality
su�ers due to the fact that reconstructions from a single cause are not well-
de�ned when causes interact non-linearly. The cross plot shows that cause
information from two examples can be combined to form new images with
some consistency, however the network does not handle the more di�cult
cases particularly well.

158 CHAPTER 9. ADVERSARIAL NETWORKS

0 20 40 60 80 100
epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ut

ua
l i

nf
or

m
at

io
n

Figure 9.12: Estimated mutual information across 30 runs on the
Occlusive MNIST dataset. Each blue plot is a run, and the mean is
shown in red. The �rst 50 epochs shown are encoder-only training,
and the last 50 are end-to-end �ne-tuning. The associated recon-
struction and generation examples are provided in �gures 9.14 and
9.13.

9.4. RESULTS 159

Figure 9.13: Generation examples from one model trained on the
Additive MNIST dataset. These are shown in a cross plot, see the
caption of �gure 9.6 for explanation. The associated mutual infor-
mation plots and reconstruction examples are provided in �gures
9.12 and 9.14.

160 CHAPTER 9. ADVERSARIAL NETWORKS

Figure 9.14: Reconstruction examples from three randomly selected
runs on the Occlusive MNIST dataset. See the captions of �gure
9.7 for explanation. The associated mutual information plots and
generation examples are provided in �gures 9.12 and 9.13.

9.4. RESULTS 161

9.4.4 MNIST

The �nal experiment runs on the standard MNIST dataset, with no modi-
�cations. As this is not a synthetic benchmark with known, ground-truth
causes, the desired outcome of a disentangling algorithm is not entirely
clear. However, in the literature, MNIST is most commonly decomposed
into factors representing the digit itself, and the handwriting style it is
drawn in. The latter factor is generally a combination of the slope of the
digit and the width of the stroke. From one view this test is easier than
Occlusive MNIST, because the method by which causes combine does not
destroy nearly as much information. However, the fact that causes are far
more entangled than in previous experiments presents a di�erent chal-
lenge for the model.

We train aDDNnetwork onMNISTwith 10 hidden units, and two layer
encoders, predictors, and decoders. That is, N � 10 and Le � Lp � Ld � 2.
We have found that our standard training setup is not particularly success-
ful on this problem. However, results are improved by performing a large
amount of end-to-end �ne-tuning, throughout which the α hyperparam-
eter is annealed to increase the contribution of reconstruction error over
time. An initial stage of encoder-only learning is still required for a solution
with low mutual information. In sum, our training procedure involves 20
epochs of encoder-only learning, 10 epochs to decoder-only learning, and
100 epochs of annealed �ne-tuning.

Figure 9.15 provides an example cross plot from a DDN trained in this
fashion. The results show minor success: the network has, to a degree,
separated what would normally be label information from handwriting
style, and is able to transfer these causes. However the ‘style’ cause models
only whether strokes are thick or thin, and ignores �ner style properties.
This leads to many reconstructions looking similar regardless of the style
cause. This network achieved a �nal estimated mutual information score
of −0.01, and convergence to a low mutual information solution was con-
sistent across �ve runs. While these are preliminary results of only limited

162 CHAPTER 9. ADVERSARIAL NETWORKS

Figure 9.15: Generation examples on the standard MNIST dataset
shown in cross plot. The examples used in this plot have beenman-
ually selected to display a range of digits and handwriting styles.
The model achieves a minor degree of disentangling, but one cause
primarily encodes whether the strokes are thick or thin rather than
more complete style information.

9.5. DISCUSSION 163

success, they suggest that adversarial networks have the capacity to per-
form unsupervised disentangling of complex, non-linear causes in natural
data.

9.5 Discussion

9.5.1 The Importance of Split Encoders

Since the DDN model is driven to disentangle by its loss function, rather
than its architecture, it is reasonable to question whether two separate en-
coders are required. Alternatively, they could be replaced by a single en-
coder f that outputs both za and zb . This has been tested, and the split
encoder is vital to the stability of training. The problem is as follows: if
any parameters e�ect both za and zb , then a change to minimise `E

a has an
unintended e�ect on zb , which has an unintended e�ect of qba , resulting
in a change to `E

a that is not accounted for by gradient descent. In other
words, gradient descent computes an incorrect gradient because it cannot
account for the changes to the predictive networks. The consequence of
this is highly unstable learning.

9.5.2 Insights into the model

Throughout the process of performing this chapter’s experiments, several
observations have been made about the conditions required for successful
disentangling.

Empirically, the most important single factor in successfully training
a DDN is selecting the right number and size of layers in the encoders,
predictors, and decoders. Our observations can be encapsulated in three
rules, two of which are intuitive and one surprising. The �rst rule is that
the decoder networks generally must be deeper and more powerful than
one would expect. For example, representing additive data was most suc-
cessful with a decoderwith two hidden layers. A likely explanation for this

164 CHAPTER 9. ADVERSARIAL NETWORKS

is that the �rst stage of learning is not directly incentivised to make the in-
formation necessary for decoding easy for a decoder to �nd. This problem
is lessened by end-to-end �ne-tuning, but potentially is not entirely �xed.

The second rule is that the predictors must be at least as ‘powerful’ as
the encoders. Intuitively, this is unsurprising. If the encoders have an ad-
vantage in representational power, they may be able to hide information
about other causes in their encodings in such a way that a predictor can-
not uncover. In the adversarial game played between two networks, the
encoder has available to it a winning solution that is infallible regardless
of the power of the predictor: zero mutual information between causes. By
making the predictors as powerful as necessary, the encoder is unable to
win by other means.

The third rule is troubling: encoders have a ‘Goldilocks zone’ of repre-
sentational power. If the architecture is too shallow or too deep then dis-
entangling does not occur. The explanation for too-shallow networks is
clear: a certain amount of power is required to extract disentangled repre-
sentations from data generated by a complex or lossy entangling process.
This is exempli�ed by the need for deeper encoders with OcclusiveMNIST
and standard MNIST than with the simple or additive datasets. However,
if the encoder network is too deep, then the causes are not visually dis-
entangled even when matched with a predictor of equal or greater depth.
Concerningly, although by-eye disentangling does not occur, the mutual
information estimate is still nearly zero. The fact that mutual information is
minimised suggests that this is not a direct issue with training, such as a
vanishing gradient problem in a too-deep network. Rather, we conjecture
that this behaviour results from a fundamental complexity of the problem
of disentangling.

Originally, independent causes were de�ned as a partitioning of latent
factors such that the partition is statistically independent and, by implication,
has zero mutual information. However, this de�nition does not capture
the full scope and complexity of the disentangling problem, because com-

9.5. DISCUSSION 165

plex and independent causes of data are themselves likely to have independent
causes. For example, in the case of faces and lighting, faces could be con-
sidered to be caused by an interaction of independent factors such as age
and gender. More concretely, signi�cant literature and the results of this
chapter indicate that unmodi�ed MNIST can be decomposed into ‘style’
and ‘content’ factors, that are largely independent. In that case, a dataset
such as Additive MNIST can just as correctly be seen as the result of four
independent causes, two style and two content, rather than two indepen-
dent digits. If one is attempting to partition latent factors into two inde-
pendent groups, a solution that partitions the data into a style cause and
content cause is equally as valid as a solution that partitions into two digits.
Nevertheless, only the partition into digits is intuitively correct. From the
perspective of a model seeking only to �nd some independent partition of
latent factors, what distinguishes the intuitively correct solution from all
other possible combinations?

One answer is that grouping Additive MNIST into digits is the simplest
explanation of the data. Phrased in computational terms, one could say it is
a more e�cient representation than modelling digits and modelling styles.
Therefore, we conjecture that amodel is incentivised towards the intuitively cor-
rect partition of independent factors because it is the most e�cient representation
of the data. This, �nally, provides an explanation of behaviour seen when
the encoder of a DDN is too deep: if the encoder is too powerful, the extra
e�ciency provided by the correct partition is meaningless, as the model is
powerful enough to easily represent incorrect partitions. This leads to zero
mutual information, but no obvious disentangling.

9.5.3 Conclusion

This chapter has presented the Discriminative Disentangling Network as
a model for disentangling complex causes by using adversarial games to
penalise predictability. In our experiments, the model is capable of consis-
tently achieving very low estimatedmutual information between causes, as

166 CHAPTER 9. ADVERSARIAL NETWORKS

was its original goal. This translates into moderately successful by-eye dis-
entangling. To the best of our knowledge, these are the �rst disentangling
results for neural networks in an entirely unsupervised setting, where the
causes are not limited in their complexity to a single scalar value. How-
ever, the DDN model is clearly not a complete solution to the disentan-
gling problem. Rather, we present it as a proof-of-concept that shows the
promise of disentangling with predictive adversarial networks. We believe
that a more thorough analysis of the encoding loss as an approximation of
conditional mutual information is themost promising direction to improv-
ing the algorithm further, but we leave this as future work.

Chapter 10

Conclusion

10.1 Summary

This thesis has explored the problem of unsupervised disentangling of the
complex causes of data. This is a di�cult task; successful disentangling
requires teasing apart the fundamental independencies in data, using no
information beyond the data itself. Indeed, when the independent causes
of data are themselves comprised of independent causes, the problem is
somewhat ill-de�ned.

We have investigated three methods for disentangling. Part I took a
Bayesian approach, and viewed disentangling as an inference problem.
This led to the development of the Broadnet model, which represents data
with several RBMs in parallel. Fromagenerative perspective, this approach
has several appealing qualities as a model of independent causes of data.
Unfortunately, analysis suggests that this perspective is �awed, and Broad-
nets are not capable of learning disentangled representations.

167

168 CHAPTER 10. CONCLUSION

Part II analysed and built on the connection between ICA and our prob-
lem. This was motivated by the similarity of ICA’s task to ours. As mod-
ifying ICA itself to �nd complex causes seems unlikely, we developed a
post-processing algorithm on ICA’s output intended to group independent
components into their natural causes using an estimate of mutual informa-
tion. This algorithm is successful to a degree in our test case: so long as the
number of independent components is not too large, components repre-
senting one cause can be separated from another. However, when the data
is modelled with too many components, the mutual information measure
becomes uninformative, and the method breaks down. The fact that there
is residual mutual information present in the solutions found by ICA, and
that it can be used to cluster independent components into independent
causes, is an interesting result. However the limitations of this method do
not make for a general algorithm for �nding disentangled representations.

Part III approached disentangling as a learning problem, and investi-
gated the use of unsupervised neural networks. We �rst proposed the
Additive Split Autoencoder model, which is a simple structural change to
an autoencoder. Experiments showed that the model is capable of disen-
tangling, and can achieve convincing reconstructions of linearly combined
causes. This method shows promise, though the inconsistency of its con-
vergence limits its usefulness.

Finally, part III also investigated methods for directly encouraging dis-
entangled representations. Our chosen approach, the Discriminative Dis-
entangling Network, uses a pair of adversarial games to make two repre-
sentations of the data unpredictable from each other. The DDN is novel in
that the majority of its learning does not make use of reconstruction error,
and stands apart from our other work due to its ability to model complex,
non-linear combinations of causes. This model has shown some success
when applied to our test suite, in that it can consistently �nd representa-
tionswith lowmutual information. This translated to a degree of disentan-
gling, even on natural data, but there is certainly room for improvement.

10.2. CONCLUSIONS AND FUTURE WORK 169

10.2 Conclusions and Future Work

Perhaps the most signi�cant conclusion of this work is that unsupervised
disentangling is extremely di�cult to even de�ne, let alone perform. The
problem is signi�cantly more complex than other independence-related
tasks, such as �nding independent components or factors of variation rep-
resented by a scalar. When causes are themselves composed of causes,
there is little to di�erentiate the correct grouping beyond an argument
for representational e�ciency. As such, successful disentangling entails
discovering and modelling the underlying generative process of data, cer-
tainly a more involved task than �nding standard representations. As dis-
cussed by Bengio et al. [8], this could be considered one of the ultimate
goals of AI, or at least representation learning.

Part of the value of unsupervised disentangling is its similarity to learn-
ing in the real world: causes are complex, and labels are not provided.
However, it is unclear whether even humans are capable of this. In reality,
we have ample exposure to data in which one cause is �xed while another
varies; we often see the same scenes from multiple angles, for example.
More concretely, on simple cases such as two MNIST digits unioned to-
gether, distinguishing the underlying causes is often impractical even with
years of exposure to the individual digits.

Despite the singular di�culty of the task, ourwork provides some indi-
cations that it is in fact possible: the results of chapter 9 show promise for the
use of adversarial networks in �nding disentangled representations, even
in the case of natural data with a complex entanglement process.

Aside from our core challenge, this work has raised a number of ques-
tions about the models and algorithms used. Part I made extensive use of
GRBMs, which are infamous for their limited representational power and
temperamental training. While many extensions, most notably ssRBMs,
convincingly improve representational power, our experience is that they
are similarly as tricky to train. This appears to be a common trait among

170 CHAPTER 10. CONCLUSION

energy models, though it is unclear why.
The experiments in part III put into focus the complexities of using

neural networks in practice. For example, split autoencoder networks are
clearly vulnerable to entangled optima, whichmakes a case for using a gra-
dient descent method that performs a degree of exploration, rather than
strict gradient descent. However, the fact that RMSprop succeeds where
Adam fails is mysterious, and suggests that the optimisation problem at
hand is more complicated than it initially seems.

In the context of DDNs, even semi-successful disentangling requires a
�ne balance of almost every tunable attribute of the model: networks must
be balanced in terms of their representational power and training speed, a
speci�c optimiser must be used, and the di�erent losses in the model must
be introduced at di�erent points throughout training. In part, this is likely
indicative of de�ciencies in the model itself. However, our experience also
echoes the well-known stability issues with GANs. As the use of adversar-
ial networks has only come to prominence recently, it seems likely that the
dynamics of adversarial settings are generally not well understood.

We believe the most promising launching point for future work into
unsupervised disentangling is, unsurprisingly, based on neural networks.
More speci�cally, the preliminary success of adversarial networks suggests
several avenues for further development. A more principled approach to
autoencoder-like networks has potential; a concrete formulation of predic-
tive networks as an approximation to mutual information may yield a loss
function with fewer practical issues. Combining this with GANs could be
productive, which may be made possible by recent work that enables one
to �nd representations with GANs, as well as generate examples. From
the understanding gained in this thesis we believe this is worthy of future
research, and could well provide a solution to the unsupervised disentan-
gling problem.

Bibliography

[1] MarcinAndrychowicz,MishaDenil, SergioGomez,MatthewWHo�-
man, David Pfau, Tom Schaul, and Nando de Freitas. Learning to
learn by gradient descent by gradient descent. In Advances in Neural
Information Processing Systems, pages 3981–3989, 2016.

[2] David Balduzzi, Brian McWilliams, and Tony Butler-Yeoman. Neu-
ral Taylor approximations: Convergence and exploration in recti�er
networks. arXiv preprint arXiv:1611.02345, 2016.

[3] David Barber and Felix V Agakov. The IM algorithm: A variational
approach to informationmaximization. InAdvances in Neural Informa-
tion Processing Systems, pages 201–208, 2003.

[4] Adel Belouchrani, Karim Abed-Meraim, J-F Cardoso, and Eric
Moulines. A blind source separation technique using second-order
statistics. IEEE Transactions on signal processing, 45(2):434–444, 1997.

[5] Yoshua Bengio, Aaron C Courville, and James S Bergstra. Unsuper-
vised models of images by spike-and-slab RBMs. In Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pages
1145–1152, 2011.

[6] Yoshua Bengio, AaronCCourville, and Pascal Vincent. Unsupervised
feature learning and deep learning: A review and new perspectives.
CoRR, abs/1206.5538, 1, 2012.

171

172 BIBLIOGRAPHY

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1798–1828, 2013.

[8] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Bet-
ter mixing via deep representations. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-1), pages 552–560, 2013.

[9] David Berthelot, Tom Schumm, and Luke Metz. Began: Bound-
ary equilibrium generative adversarial networks. arXiv preprint
arXiv:1703.10717, 2017.

[10] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance
weighted autoencoders. arXiv preprint arXiv:1509.00519, 2015.

[11] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever,
and Pieter Abbeel. InfoGAN: Interpretable representation learning
by information maximizing generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 2172–2180, 2016.

[12] Brian Cheung, Jesse A Livezey, Arjun K Bansal, and Bruno A Ol-
shausen. Discovering hidden factors of variation in deep networks.
arXiv preprint arXiv:1412.6583, 2014.

[13] Aaron C Courville, James Bergstra, and Yoshua Bengio. A spike and
slab restricted boltzmann machine. In Proceedings of the 14th Interna-
tional Conference on Arti�cial Intelligence Systems, pages 233–241, 2011.

[14] Thomas M Cover and Joy A Thomas. Elements of information theory.
John Wiley & Sons, 1991.

[15] YannNDauphin, RazvanPascanu, CaglarGulcehre, KyunghyunCho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the
saddle point problem in high-dimensional non-convex optimization.

BIBLIOGRAPHY 173

In Advances in Neural Information Processing Systems, pages 2933–2941,
2014.

[16] Guillaume Desjardins, Aaron Courville, and Yoshua Bengio. Disen-
tangling factors of variation via generative entangling. arXiv preprint
arXiv:1210.5474, 2012.

[17] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[18] Lev Faivishevsky and Jacob Goldberger. ICA based on a smooth es-
timation of the di�erential entropy. In Advances in Neural Information
Processing Systems, pages 433–440, 2009.

[19] Lev Faivishevsky and Jacob Goldberger. Nonparametric information
theoretic clustering algorithm. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 351–358, 2010.

[20] Yoav Freund and David Haussler. Unsupervised learning of distribu-
tions of binary vectors using two layer networks. Advances in Neural
Information Processing Systems, 1992.

[21] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IEEE Transactions
on pattern analysis and machine intelligence, (6):721–741, 1984.

[22] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of
training deep feedforward neural networks. In Aistats, volume 9,
pages 249–256, 2010.

[23] Max Godfrey. Richer Restricted Boltzmann Machines. Honours re-
port, Victoria University of Wellington.

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in Neural Information Process-
ing Systems, pages 2672–2680, 2014.

174 BIBLIOGRAPHY

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[26] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard
Schölkopf, and Alex J Smola. A kernel method for the two-sample-
problem. In Advances in Neural Information Processing Systems, pages
513–520, 2007.

[27] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Schölkopf, and Alexander Smola. A kernel two-sample test. Journal
of Machine Learning Research, 13(Mar):723–773, 2012.

[28] David B Grimes and Rajesh PN Rao. Bilinear sparse coding for invari-
ant vision. Neural computation, 17(1):47–73, 2005.

[29] W Keith Hastings. Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1):97–109, 1970.

[30] Geo�rey Hinton. A practical guide to training restricted Boltzmann
machines. Momentum, 9(1):926, 2010.

[31] Geo�rey E Hinton. Training products of experts by minimizing con-
trastive divergence. Neural computation, 14(8):1771–1800, 2002.

[32] Geo�rey E Hinton. Modeling pixel means and covariances using fac-
torized third-order Boltzmann machines. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages 2551–2558.
IEEE, 2010.

[33] Geo�rey E Hinton and Ruslan R Salakhutdinov. Reducing the di-
mensionality of datawith neural networks. science, 313(5786):504–507,
2006.

[34] Geo�rey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learn-
ing algorithm for deep belief nets. Neural computation, 18(7):1527–
1554, 2006.

BIBLIOGRAPHY 175

[35] Aapo Hyvärinen and Erkki Oja. Independent component analysis:
algorithms and applications. Neural networks, 13(4):411–430, 2000.

[36] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent compo-
nent analysis, volume 46. John Wiley & Sons, 2004.

[37] John G Kemeny, James Laurie Snell, et al. Finite markov chains, volume
356. van Nostrand Princeton, NJ, 1960.

[38] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980, 2014.

[39] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[40] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and
MaxWelling. Semi-supervised learningwith deep generativemodels.
In Advances in Neural Information Processing Systems, pages 3581–3589,
2014.

[41] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization
by simulated annealing. science, 220(4598):671–680, 1983.

[42] Daphne Koller, Nir Friedman, Lise Getoor, and Ben Taskar. Graphical
models in a nutshell. Introduction to statistical relational learning, pages
13–55, 2007.

[43] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Esti-
mating mutual information. Physical review E, 69(6):066138, 2004.

[44] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh
Tenenbaum. Deep convolutional inverse graphics network. In Ad-
vances in Neural Information Processing Systems, pages 2539–2547, 2015.

[45] Dominic Langlois, Sylvain Chartier, and Dominique Gosselin. An in-
troduction to independent component analysis: InfoMax and FastICA

176 BIBLIOGRAPHY

algorithms. Tutorials in Quantitative Methods for Psychology, 6(1):31–38,
2010.

[46] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. arXiv preprint
arXiv:1609.04802, 2016.

[47] Yujia Li, Kevin Swersky, and Richard S Zemel. Generative moment
matching networks. In Proceedings on the International Conference on
Machine Learning, pages 1718–1727, 2015.

[48] David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[49] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfel-
low, and Brendan Frey. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

[50] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh,
Pablo Sprechmann, and Yann LeCun. Disentangling factors of varia-
tion in deep representation using adversarial training. In Advances in
Neural Information Processing Systems, pages 5041–5049, 2016.

[51] NicholasMetropolis, AriannaWRosenbluth, Marshall N Rosenbluth,
Augusta H Teller, and Edward Teller. Equation of state calculations by
fast computing machines. The journal of chemical physics, 21(6):1087–
1092, 1953.

[52] Vinod Nair and Geo�rey E Hinton. Recti�ed linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on machine learning (ICML-10), pages 807–814, 2010.

BIBLIOGRAPHY 177

[53] Bruno A Olshausen, Charles Cadieu, Jack Culpepper, and David K
Warland. Bilinearmodels of natural images. InElectronic Imaging 2007,
pages 649206–649206. International Society for Optics and Photonics,
2007.

[54] Judea Pearl. Bayesian networks. Department of Statistics, UCLA, 2011.

[55] Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning
to disentangle factors of variation with manifold interaction. In Pro-
ceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 1431–1439, 2014.

[56] Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and
Mehdi Mirza. Disentangling factors of variation for facial expression
recognition. Computer Vision–ECCV 2012, pages 808–822, 2012.

[57] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

[58] Claude Elwood Shannon. A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications Review, 5(1):
3–55, 2001.

[59] Paul Smolensky. Information processing in dynamical systems: Foun-
dations of harmony theory. Technical report, DTIC Document, 1986.

[60] Josh M Susskind, Adam K Anderson, and Geo�rey E Hinton. The
toronto face database. Department of Computer Science, University of
Toronto, Toronto, ON, Canada, Tech. Rep, 3, 2010.

[61] Joshua B Tenenbaum and William T Freeman. Separating style and
content. Advances in Neural Information Processing Systems, pages 662–
668, 1997.

178 BIBLIOGRAPHY

[62] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on
the evaluation of generative models. arXiv preprint arXiv:1511.01844,
2015.

[63] Tijmen Tieleman. Training restricted Boltzmann machines using ap-
proximations to the likelihood gradient. In Proceedings of the 25th Inter-
national Conference on Machine learning, pages 1064–1071. ACM, 2008.

[64] Tijmen Tieleman and Geo�rey Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude. COURS-
ERA: Neural networks for machine learning, 4(2), 2012.

[65] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis
of image ensembles: Tensorfaces. In European Conference on Computer
Vision, pages 447–460. Springer, 2002.

[66] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-AntoineManzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising crite-
rion. Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

[67] Satosi Watanabe. Information theoretical analysis of multivariate cor-
relation. IBM Journal of research and development, 4(1):66–82, 1960.

[68] William Whitney. Disentangled representations in neural models.
arXiv preprint arXiv:1602.02383, 2016.

[69] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Un-
paired image-to-image translation using cycle-consistent adversarial
networks. arXiv preprint arXiv:1703.10593, 2017.

