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Abstract

This thesis is inspired by the observation that we have no good random model
for matroids. That stands in contrast to graphs, which admit a number of elegant
random models. As a result we have relatively little understanding of the properties
of a “typical” matroid. Acknowledging the difficulty of the general case, we attempt

to gain a grasp on randomness in some chosen classes of matroids.

Firstly, we consider sparse paving matroids, which are conjectured to dominate
the class of matroids (that is to say, asymptotically almost all matroids would be
sparse paving). If this conjecture were true, then many results on properties of the
random sparse paving matroid would also hold for the random matroid. Sparse
paving matroids have limited richness of structure, making counting arguments
in particular more feasible than for general matroids. This enables us to prove a

number of asymptotic results, particularly with regards to minors.

Secondly, we look at Graham-Sloane matroids, a special subset of sparse paving
matroids with even more limited structure - in fact Graham-Sloane matroids on
a labelled groundset can be randomly generated by a process as simple as inde-
pendently including certain bases with probability % Notably, counting Graham-
Sloane matroids has provided the best known lower bound on the total number of
matroids, to log-log level. Despite the vast size of the class we are able to prove

severe restrictions on what minors of Graham-Sloane matroids can look like.

Finally we consider transversal matroids, which arise naturally in the context of
other mathematical objects - in particular partial transversals of set systems and
partial matchings in bipartite graphs. Although transversal matroids are not in

one-to-one correspondence with bipartite graphs, we shall link the two closely



enough to gain some useful results through exploiting the properties of random
bipartite graphs. Returning to the theme of matroid minors, we prove that the
class of transversal matroids of given rank is defined by finitely many excluded
series-minors. Lastly we consider some other topics, including the axiomatisability

of transversal matroids and related classes.
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Chapter 1

Introduction

The initial inspiration for this thesis lay in the observation that, in contrast
to graph theory’s many well understood models for a random graph, there
exist no useful models for a random matroid, and matroid theory is corre-
spondingly poor in asymptotic-type results. By this we mean results of the

kind “asymptotically almost all matroids have property P”.

Definition 1.0.1. Let M be a minor-closed class of matroids and M,, the
members of M on n elements. A property P is said to hold for asymptotically
almost all matroids in M,, if the following holds:

i #{M € M,, : M has property P}
im —

1

Some progress on asymptotic questions has been made recently, especially
by Pendavingh and van der Pol who showed (amongst other things) that
asymptotically almost all matroids are k-connected [23], are not a truncation
[23], contain a large uniform minor [23], and contain minors isomorphic to

cach of a small collection of matroids [24].
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Although much of the work of this thesis is aimed at establishing asymptotic
results, it has grown to include a wider survey of three particular classes
of matroids, each of which was believed more accessible to random models
than the class of matroids at large. Within these classes we attempt to find
asymptotic results as well as answer other questions about the nature of the

classes.

In Chapter [2, we encounter sparse paving matroids. In terms of asymptotic
results, this may well turn out to be the most important subclass of matroids,

due to the following conjecture:

Conjecture 1.0.2 (Mayhew, Newman, Whittle, Welsh [17]). Asymptotically

almost all matroids are sparse paving.

This conjecture, which is weakly supported by computations of the numbers
of matroids and sparse paving matroids on up to 10 elements [I] [19], would
imply that statements of the kind described earlier could be implied sim-
ply by a proof that “asymptotically almost all sparse paving matroids have
property P”. We believe such proofs may be easier than their more general
counterparts, as the structure of sparse paving matroids has a more straigh-
forward characterisation than that of general matroids. In particular, their
only non-trivial circuits are all rank r, and these uniquely define the matroid.
This means that a rank-r sparse paving matroid on n elements corresponds
to an r-uniform hypergraph on n vertices. Moreover, there is a (less obvious)
correspondence between these circuits and vertices of the well-studied John-
son graph. Thus we can hope to draw on existing graph theoretical results

and techniques when studying sparse paving matroids.

The results in Chapter [2| are largely partial answers to the question “which

matroids are minors of asymptotically almost all sparse paving matroids”.



This builds upon work by Pendavingh and van der Pol [24] and we are able
to resolve the question for some specific matroids as well as classes of ma-
troids. Restricting to matroids of fixed rank, even more extensive results are

possible.

Chapter [3| focuses on a subclass of sparse paving matroids, the Graham-
Sloane matroids. These arise from a particular construction which Graham
and Sloane [6] developed based on an idea of Knuth [II]. Graham Sloane
matroids are noteworthy for providing (at least as far as log-log level) the best
known lower bound on m,,, the number of matroids on n elements (that said,
we show that Graham-Sloane matroids are heavily outnumbered by sparse

paving matroids at an absolute level).

Much of our interest in Graham-Sloane matroids is derived from the fact that,
although in some sense a very large subclass of sparse paving matroids, they
are quite different from other matroids in that class. Graham-Sloane ma-
troids are distinguished by their highly symmetric construction which places
substantial restrictions on which substructures can appear. In particular we
shall show that (in some sense) almost all Graham-Sloane matroids are non-
minors of almost all other Graham-Sloane matroids. Moreover, at least at
the fixed rank case, asymptotically almost all sparse paving matroids are not

a minor of any Graham-Sloane matroid.

Finally, Chapter [4] explores transversal matroids. These are the matroids
which arise from partial transversals of set systems; equivalently, from par-
tial matchings in bipartite graphs. Although each matroid may have more
than one “presentation” in the world of bipartite graphs, we can place some

controls on this in cases of fixed rank and / or principal transversal matroids.
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This means that we can exploit properties of random bipartite graphs to give

asymptotic bounds on the nature of these matroids.

As well as asymptotic questions, we explore some more general aspects of
transversal matroids, in particular taking an interest in the behaviour of min-
imally non-transversal matroids. This includes a proof that the number of
minimally non-transversal matroids of fixed rank is bounded. Minimally non-
transversal matroids are also used to demonstrate the non-axiomatisability
of transversal matroids in simple logical language, work which builds on an
equivalent result for representable matroids proved by Mayhew, Newman and

Whittle [20].

The three chapters are somewhat independent from one another, although
the chapter on Graham-Sloane matroids reprises some material from the
chapter on sparse paving matroids and we also find sparse paving matroids
to be a convenient source of examples in the chapter on transversal ma-
troids. Nonetheless there are common themes running through the work.
Large parts of all three chapters relate to the original motivation of finding
asymptotic results. Another theme is that of utilising correspondences be-
tween classes of matroids and classes of graphs. A third is questions of minor
inclusion and excluded or forbidden minors, which arise in all three chapters.
Throughout all chapters, much of the work is combinatorial in nature and

we shall frequently express problems in probabilistic terms.

The majority of work contained in this thesis is original; non-original results
are quoted with attribution and without proof. The only exception to this
is a few preliminary lemmas that were so fundamental and intuitive that
finding an attribution seemed impossible; in these cases we have generally

included our own improvised proof for completeness. Of the non-original



work presented, the most important sources are Pendavingh and van der Pol
[24] [23] [25], followed by Mayhew, Newman, Welsh and Whittle [17] [20].
Those authors are also the source of considerable inspiration for the work in
this thesis. We also borrowed some material and substantial guidance from

Bonin’s survey of transversal matroids [2].

1.0.1 Preliminaries and Notation

Familiarity with the fundamentals of matroid theory as outlined in Oxley [21]
is assumed, and as far as possible we follow the notation and terminology
defined therein. We also assume familiarity with basic graph theory and
probability. Several simple but potentially non-obvious results on probability
are detailed in Section and are primarily used in our work on transversal

matroids.

1.0.1.1 Special notation

In line with other literature, we write to represent the class of (labelled)
matroids of size n - which we shall always assume to have groundset [n] =

{1,...,n} - and the class of matroids of size n and rank r. We shall
also use fm,|= |M,,| and = |M,,,

Similar notation is used for subclasses of matroids. For example, we use

to denote the class of sparse paving matroids of size n and the class
of sparse paving matroids of size n and rank r. Likewise = |S,| and
= |S,.+|. Notation for other classes of matroids will be introduced as it

is needed.

We Writefor {1,2,...,n} andfor the r-subsets of [n] (and in general,
for the r-subsets of a set X). We also occasionally use the notation
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ol = {nn+1,....,m)
In graph theoretical contexts, we use [['(X)| to denote the closed neighbour-
hood of a vertex x, and [['(X)|to denote the closed neighbourhood of a vertex
set X (the more standard N(z), N(X) is avoided due to similarities with

some matroid notation). Closed in this context means simply that we in-

clude x € I'(z) and X C I'(X).

We use U to indicate disjoint union.

1.0.1.2 Special terminology and usages

A good deal of this thesis deals with asymptotic results - here we shall give
a formal, general definition of asymptoticness. Let M denote a class of
matroids and M,, be the restriction of M to matroids on groundset [n]. We
say that a property P holds for asymptotically almost all matroids in M
if

lim #{M € M,, : M has property P} _

1
n—00 #Mn

We note that asymptotic results in this thesis are split between results that
we shall loosely describe as being “general” and results that we describe as
“fixed rank”. The latter describes cases where M is restricted to matroids of
some fixed rank r. Results of this type are less powerful than general results,
but often easier to obtain. At the end of Chapter [2| we shall devote some time
to discussing the merits of this type of result and the challenge in extending

such results to the general case.

A collection of matroids on n elements is labelled if we distinguish between

matroids based on the labelling of their elements, and unlabelled if we do



not. In the latter case matroids that were isomorphic up to labelling would

be considered identical.

To some extent we shall rely on context to make it obvious whether we are
dealing with labelled or unlabelled matroids. Individual matroids and finite
collections of matroids are almost always unlabelled, that is to say we only
care about their structure. On the other hand when we deal with classes
and subclasses of matroids these always consist of labelled matroids. Note
however that we shall only be considering classes which are closed under

isomorphism.

We use the term non-basis to describe a dependent set of cardinality equal to
the rank of its matroid. In the case of sparse paving matroids, non-bases are
equivalent to circuit-hyperplanes (but we shall mostly avoid using the latter
term). Note that a matroid is uniquely defined by its groundset and non-
bases (this is equivalent to the more familiar fact that a matroid is uniquely
defined by its groundset and bases). We shall often use £(M) to denote the

collection of non-bases of M.

When discussing what graph theorists typically call independent sets of graphs,
we shall use the alternative term stable set. This avoids confusion with the
matroid theoretical definition of independent set and is consistent with other

matroid theoretical publications.

Definition 1.0.3 (Stable set). Let G be a graph and V(G) be its vertex set.
A set A C V(G) is stable if no pair of elements of A are joined by an edge of
G.

Finally, another recurring theme of this thesis is matroid minors. Unless
otherwise stated we are interested only in unlabelled minors, so by an “N-

minor” we really mean a minor isomorphic to N. We shall use the notation
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M > N to mean “M contains a minor isomorphic to N”. We make a distinc-
tion between the commonly (and often equivalently) used terms forbidden

minor and excluded minor.

Definition 1.0.4 (Forbidden minor). Let M be a class of matroids. A
matroid N is said to be a forbidden minor of M if and only if N is not a

minor of any matroid in M.

Definition 1.0.5 (Minor-closed class). A class of matroids M is minor-
closed if for every matroid M € M and every minor N of M, N is also in
M. A matroid N is said to be an excluded minor of M if N is minimally
non-M - that is to say, N is not a member of M, but every proper minor of
N is.

We shall also use the term ezcluded series-minors, defined as above with

“series-minor” everywhere replacing “minor”.



Chapter 2

Sparse paving matroids

2.1 Introduction and definitions

2.1.1 Motivation and background

As mentioned in the introduction, a key motivation for working with sparse
paving matroids is the conjecture of Mayhew, Newman, Welsh and Whit-
tle [I7] that asymptotically almost every matroid is sparse paving. This
conjecture formalises speculation that has existed at least since 1970 when
Crapo and Rota [3] suggested “paving matroids may predominate in any
asymptotic enumeration of matroids” (note this would imply sparse paving
matroids predominate). The conjecture has been cited in a number of subse-
quent research papers typically expressing some degree of confidence in the
conjecture. Much of the credibility of the conjecture is based on the catalogue
of matroids of small size. Blackburn, Crapo and Higgs [I] initially catalogued
matroids on up to 8 elements, in which we can observe a significant increase

in the proportion of paving matroids between n = 7 and n = 8; even at this

9
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stage the case is substantially strengthened by the results of Mayhew and
Royle [19] who used a computer program to determine the number of sparse
paving matroids in M,,, for n up to 9 (with partial results for n = 10). Some

of these results are shown in Table 2.11

Table 2.1: Comparison of m,, the number of matroids on n elements, with
Sn, the number of sparse paving elements on n elements. As n becomes larger
it appears sparse paving matroids start to dominate.

n Sn Mp % sparse paving
5) 6 38 15.8%
6 13 98 13.3%
7 35 306 11.4%
8 342 1724 19.8%
9 226864 383172 59.2%

Further motivation comes from a second conjecture of Mayhew, Newman,

Welsh and Whittle [17].

Conjecture 2.1.1. Let N be a sparse paving matroid. Asymptotically almost

all matroids have a minor isomorphic to N.

This conjecture, if combined with a positive resolution of Conjecture [1.0.2}
would essentially answer the question of which matroids are minors of asymp-

totically almost all matroids. Specifically:

Conjecture 2.1.2. Let N be a matroid. Then N is a minor of asymptotically

almost all matroids if, and only if, N is sparse paving.

If N is not sparse paving, it cannot be a minor of any sparse paving matroid

(since that class is minor-closed) and so would not be a minor of asymptoti-
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cally almost all matroids (in fact, it would be a non-minor of asymptotically

almost all matroids).

Previous progress [24] [23] has directly tackled the question of which matroids
are minors of asymptotically almost all matroids. We shall instead aim for
intermediate results, by using counting arguments to construct proofs that
certain matroids and classes of matroids are minors of asymptotically almost

all sparse paving matroids. These are shown in Figure [2.1| and include:

Uniform matroids

Sparse paving matroids of rank r whose non-bases all intersect in a

single set of r — 2 elements.

Sparse paving matroids whose non-bases are pairwise disjoint

o W3

If Conjecture were to be proven, then these results would automatically

extend to asymptotically almost all matroids.

- A &

Figure 2.1: Some matroids which we show are contained as minors in asymp-
totically almost all sparse paving matroids. Leftmost, matroids with all
non-bases pairwise disjoint; centre, matroids in which all non-bases intersect
in some (r — 1)-set; rightmost, the rank-3 whirl, W?3.

In the final part of the chapter we turn our attention to fixed-rank sparse

paving matroids, and use a different (Ramsey-theoretical) approach to prove
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an analogous fixed-rank result for a larger class of matroids, that in which
every non-basis contains an element unique to that non-basis. Note that
amongst fixed-rank matroids, sparse paving matroids do not predominate
(see Pendavingh and van der Pol [25]) so to extend these results to all ma-
troids, we would first need to extend to sparse paving matroids of general

rank (a problem which we shall discuss later).

2.1.1.1 Counting matroids in minor-closed classes (Pendavingh

and van der Pol’s work)

The most important previous work in this area is the paper of Pendavingh
and van der Pol [24] which shows that the following matroids are minors of
asymptotically almost all matroids: Usy (for k > 2), Usg, Ps, Qs, Rs. These
are shown in Figure Later work by the same authors [23] proved that

the same result holds for all uniform matroids.

EECIR

o o .
Uz i Us, Fs OF

Figure 2.2: Matroids which Pendavingh and van der Pol showed to be minors
of asymptotically almost all matroids. The general U is not shown; that
result was proven later and using different methods.

Notably the above list includes all the rank-3 matroids on 6 elements ex-
cept one, the rank-3 whirl W3, which Pendavingh and van der Pol were
unable to resolve. Although we do not answer the question of whether W3 is
contained in asymptotically almost all matroids, it is amongst the matroids

which we shall show to be a minor of asymptotically almost all sparse paving
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matroids.

The methods in Pendavingh and van der Pol’s paper were largely not reused
by this thesis. In particular they relied on the notion of cover complextiy.
This is the minimal size of flat cover - a collection of flats identifying the
non-bases of a matroid. By bounding the number of matroids with low cover
complexity it was possible to show that the number of matroids without an

N-minor was asymptotically small, where NN is one of the matroids shown in
Figure 2.2]

The final section of the paper included some results relating to Graham-
Sloane matroids, which Pendavingh and van der Pol suggest might provide
some evidence against Conjecture We shall discuss this part of the
paper in Chapter |3/ and in this case we shall be able to make use of the same
methods as Pendavingh and van der Pol to greatly extend their results. How-
ever, in doing so we also demonstrate that Graham-Sloane matroids, whilst
very interesting in their own right, are perhaps less relevant to Conjecture
(and other asymptotic results for sparse paving matroids) than previ-
ously thought.

Before we introduce any of our own work we shall thoroughly review the
definition of sparse paving matroids, and in particular the important corre-
spondence between the non-bases of sparse paving matroids and stable sets

in the Johnson Graph.

2.1.2 Preliminaries for sparse paving matroids

We recall first the definition of a sparse paving matroid.
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Definition 2.1.3 (Paving, Sparse paving matroid). A matroid is called
paving if all its circuits are of rank at least r(M). A matroid is sparse

paving if both it and its dual are paving.

For the purposes of this work the above is not the most useful definition of
a sparse paving matroid. In fact we shall demonstrate an equivalence that
enables us to think of sparse paving matroids in a different way, as structures

of circuit-hyperplanes.

First we note that the circuit-hyperplanes of a sparse paving matroid are
precisely the non-bases of M (the sets of size r(M) not contained in the
set of bases of M). In general we shall refer to non-bases rather than
circuit-hyperplanes. We use[C(M)]to denote the collection of non-bases of M.

The following two lemmas show that sparse paving matroids can be alter-
natively defined through a very simple condition on the intersection of non-
bases. This equivalent definition was realised by Knuth [11]. However the

proofs offered here are our own.

Lemma 2.1.4. Given any two non-bases C, D of a sparse paving matroid

M, we have |[CND| <r—2.

In other words, the non-bases cannot intersect in » — 1 elements. The result

is a consequence of the augmentation axiom of matroid theory (13):

I3:for I, I independent in M, with |I| < |I1|, there is always some e € I1\ 5
such that I U {e} is independent in M.

Proof. We prove the contrapositive: assume M has two non-bases C, D with
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C = XU{c}, D= XU{d}, for some X € [n]""Y. Note that since M is
paving, X must be independent. We proceed to show M cannot be sparse
paving. If M is paving then there must be some element e € E'\ X such that
X U {e} is independent (and therefore a basis) in M. This is true because
otherwise we can take I, to be X and I; to be any basis of M, and we have
a contradiction of I3. So such an e exists, and some basis B = X U{e}. But
now consider the set Z = E'\ (X U{¢, d}) in the dual matroid M*. Since M*
is paving then Z must be independent, since it has cardinality r(M*) — 1.
But then we can take [, = Z, [; = B¢ and we again have a contradiction of
I3: B¢\ Z = {c,d} but ZU {c} and Z U {d} are both non-bases of M*. So

M* cannot be paving and M cannot be sparse paving. [

More important still is the following lemma: that such a construction of non-

bases always defines a valid sparse paving matroids.

Lemma 2.1.5. Given a set E, let L be a collection of subsets of E such that
for any Ly, Ly € L we have |L1| = |La| and |Ly N Lo| < |Ly| —2 = |Ly| — 2.

Then L defines the non-bases of a sparse paving matroid.

Proof. Tt is easiest here to work with the axiomatisation of matroids by their
bases. This defines a matroid to be a pair (E, ), where B is a non-empty

collection of subsets of £ meeting the following conditions (B2):

B2: for distinct By, By € B, and x € By — By, we have some y € By — B
such that ((B; —z)Uy) € B

Let the sets in £ have cardinality r. We claim that B = E(™ \ £ satisfies
the above. Suppose it doesn’t. Then there is some By, By € B,x € By — By
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so that for any y € By — By, ((B1 — ) Uy) € L. Now we cannot have
|By — By| = 1, since then for any y € By — By, ((B; —x) Uy) = Bs. So we
can pick two elements y;,ys from By — B;. But now we have ((B; — z) U
y1),((B1 —x) Uys) € L - and this contradicts the condition that any two

members of £ must differ in more than one element. ]

We are now at the point where we may think of sparse paving matroids as
defined simply by a collection of subsets of E(") whose pairwise intersections
have cardinality at most r — 2. We can now note that these collections are in

direct correspondence with stable sets of the Johnson Graph [J(n,r)| which

we shall now introduce.

Definition 2.1.6 (Johnson Graph). The Johnson Graph J(n,r) is the graph
whose vertices are subsets of [n] of size r, with two vertices S1, S joined if

and only if |S; N Sy| =r — 1.

It follows from Lemmas [2.1.4] and [2.1.5] that stable sets of vertices in J(n, )

correspond to the collections of non-bases of sparse paving matroids on

groundset [n]. This link was first noted in a paper of Piff and Welsh [26].

2.2 Maximum extensions

The most important result of this section is an asymptotic lower bound on
the number of non-bases in a sparse paving matroid of fixed rank. As well as
being an interesting result in its own right, this bound also proves of great use
in the following section, where we consider questions of minor inclusion. An
analogous result for the general case already exists courtesy of Pendavingh

and van der Pol [23].
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To tackle this problem we find it convenient to work in the world of stable sets
in the Johnson Graph. Our strategy will be to define an extension on stable
sets of the Johnson Graph and show that each stable set has some unique
maximal stable extension. Since we have lower bounds on the cardinality
of a maximal stable set, we can apply well-known combinatorial lemmas to

achieve lower bounds on the size of asymptotically almost all stable sets of

J(n,r).

We consider stable sets in the Johnson graph J(n,r). Let Z(n,r) be the col-
lection of stable sets in J(n, ), which corresponds to sparse paving matroids
of groundset [n] and rank r. We use vy to mean the vertex in the Johnson

graph representing the set X.

Definition 2.2.1 (Extension, Maximal extension). Given a stable set I, let
J be an extension of I if J is stable, and I is contained in J. Such an

extension is maximal if J is maximal with respect to its stableness.

Definition 2.2.2 (Mother). We call an extension J of a stable set I the
mother of I if |J| is maximum with respect to all possible extensions and,
amongst all sets meeting this criterion, J appears first under a lexicographical

ordering of stable sets. We use m(I) to denote the mother of I.

Note that the nature of the ordering on stable sets does not matter, with a

lexicographical ordering being chosen purely for familiarity. The important

9

point is that we have some consistent “tie-breaker” on stable sets of equal

size, in order that every stable set have a unique mother.
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The following two theorems give basic lower bounds on the sizes of maximum
and maximal extensions.Recall that for X a collection of vertices in J(n,r),

we shall use I'(X) to denote the closed neighbourhood of X.

Theorem 2.2.3. Let I be a stable set in J(n,r) and let U =V (J(n,r))\I'().
U]

Then for any mazimum-sized extension J of I, we have |J| > [I| + 2
Since we are dealing with maximum-sized, rather than maximal, extensions,

the proof simply requires us to construct such an extension.

Proof. Let the vertices in our Johnson graph be labelled by elements of [n]™.
For each vertex v € J(n,r), let X, be the r-set represented by v. Similarly

for each r-set X € [n]™, let vx be the vertex representing X in J(n,r).

Fori=0,....,.n—1,let Uy ={u e U: Y x=1i modn} - that is to say,
all the vertices representing r-sets Whoszeeﬁéments sum to i. Clearly the U;
form a partition of U, and so for some ¢ we must have |U;| > |nﬂ But now
we claim [ U U; is a stable set. Clearly it is true that no member of U; is
adjacent to an member of I, and no two members of I are adjacent to each
other - these both follow from the definition of the problem. So it remains
to show that no two members of U; are adjacent. But adjacent vertices of
J(n,r) represent r-sets differing only be the replacement of a single element.
Say then that this is the case for some u,v € U, i.e. that X, = X, \ eU f.
We know e # f; without loss of generality we say e < f. Then we have

0<e<f<n—1l,andsol1 < f—e<n-—1. But also

f—e= Zx— szi—iz@ mod n

zeXy Xy

contradicting 1 < f —e < n — 1. So we cannot have u and v contained in

the same part U;. O
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The construction used in this proof is actually a generalisation of the con-
struction of Graham-Sloane matroids, which we shall discuss in depth later.
In particular, where I = (), the above argument becomes simply the Graham-

Sloane construction that gives us the current best lower bound on m, .

Theorem 2.2.4. Let I be a stable set in J(n,r) with |I| =k, |m(I)| =k+1t

Then for any mazimal extension J of I, we have |J| > k+ *

Proof. Let U =m(I)\ I. U is obviously a stable set and |U| =t. We claim
that at most r vertices of U can be in the neighbourhood of a given vertex
v € J(n,r). This follows fairly easily: v corresponds to a set of r elements,
and all of its neighbours represent r-sets formed by replacing a single element

in X,. This provides a natural partitioning of I'(v) into cliques:

I'(v) =vU |J (v

e
where I',(v) consists of all vertices u such that X, = X, \z Uy :y & X,.

But I';(v) is a clique, so its members are pairwise adjacent and no stable set

in ['(v) can have cardinality greater than r).

This leads to a proof of our lemma as follows: given any vertex v € J(n,r),
we must have |I'(v) NU| < r, else the above is contradicted. But now assume

we have a maximal extension J of I, with |J| < k + £. But now we have

t
F(J)ﬂU§r|J\[]<r;:t

So there is at least one vertex of U not contained in the neighbourhood of J,

contradicting the claimed maximality of J. [
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We now turn towards finding an asymptotic lower bound for the sizes of
a stable set in J(n,r). To do so we shall first identify a lower bound on
the size of maximal stable sets, and then show that asymptotically almost all

stable sets are at least almost half the size of their maximum-sized extensions.

Lemma 2.2.5. For any fized e > 0,7 € Nt all stable sets of J(n,r) that are

mazximal with respect to extension must have cardinality at least ﬁ(ﬁ)

Proof. As before, assume the vertices in our Johnson graph are labelled by
elements of [n], with X, being the 7-set represented by v, and vx being

the vertex representing X in J(n,r).

Suppose [ is maximal with respect to extension. Then I'(1) = V(J(n,r)).

But for any v € J(n,r) the neighbourhood of v contains only r(n —r) + 1

vertices. And [T(I)| < X [D'(v)| = (r(n —7) + D[] So |I] > ki (1) >
vel

r(n—r)+1 \r
i (1): .
Before we can extend this result to an asymptotic lower bound on stable sets,

we must introduce the concept of a shadow and prove a related lemma.

Definition 2.2.6 (Shadow). For A C X the shadow A of A is the set
system {B € XU~V : BU{i} € A, for some i ¢ B}.

Lemma 2.2.7 (Local LYM). For any set E and set family A C B,

[A] _ [04]
()~ (5

This is so-named for its relation to the famous LYM identity (independently
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proven by Lubell, Yamamoto and Meshalkin).

Proof. Each member of A corresponds to » members of 0.4. Each member

of A corresponds to at most n + 1 — r members of A. So

Al _n+1-r_ ()

|0A| — r (”)

r—1

and the result follows via some trivial rearranging. O

Finally, we need a result that formalises the fact that most subsets of a
maximal stable set are about half its size. The following lemma expresses a

well-known property of large sets.

Lemma 2.2.8. Let ,¢ > 0. Let X be a set of cardinality n and Y be drawn
uniformly at random from the subsets of X. Then there exists N := N(¢, )

such that if n > N, we have

Pr(|Y] € ((0.5—=9)n, (0.5+d)n)) > 1 —¢

There are many proofs, most somewhat dull and involving consideration of

binomial coefficients. For example:

Proof. Taken as given that binomial coefficients are unimodal peaking at n/2,
we can see that the number of subsets of X whose cardinality falls outside

the given interval is less than (1 — 26)”(“0‘5?5)@)' In turn,

(105 ) =) (ot e o o)
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o) (25 ()

Clearly the number of subsets of X with cardinality inside our interval is at

least (Ln% J>’ so we are done. O

We can now finally prove an asymptotic lower bound on the cardinality of

stable sets:

Theorem 2.2.9. Asymptotically almost all stable sets in the Johnson Graph
J(n,r) have cardinality at least (1—o0(1)) 52 (") FEquivalently, asymptotically

2rn \r

almost all sparse paving matroids of rank r have at least (1—o(1)) 5 (:) non-

bases.

The result still requires a little effort to obtain. Intuitively, it might seem
obvious - most subsets of a maximal stable set are about half its size - but
we have the complication that any given set has many maximal extensions.
This means we are required to assign each stable set I a unique maximal

extension - the mother m(I) as defined in Definition [2.2.2]

Proof of Theorem[2.2.9, Assume we are drawing [ uniformly at random from
the stable sets of J(n, ).

Define ) to be the collection of maximal stable sets of J(n,r), and let € > 0.

For any stable set J of J(n,r), let

o= (11 < (= g (i) = 1)

We have
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pr (111 < (- 05 ()) = S paprontn =

rn Jey

We shall show that as n — oo, p; becomes vanishingly small for any choice

of J. Firstly, Bayes’s Theorem gives us

 Pr(|I] < (1= g ()Pr(m(l) = T : 1| < (1= 6)2(7))
pr= Pr(m(I) = J)

Now we are close to applying Local LYM. Whereas in the previous proof we
constructed a family of sets each represened by a single vertex in the Johnson
graph, now we construct a family each of whose sets comprises r vertices in
the Johnson Graph. Specifically, fix a maximal stable set J C V(J(n,r))
and, for 0 < k < |J|, define the family Ay by

Ay ={J € J® :m(J) # J}

We observe that 0.A; C Aj_1. To see this, suppose J' € Ag. Then m(J') >
|.J], under the ordering we are using to define the mother (see Definition
2.2.2). But now suppose J” C J'. Clearly any extension of J' is also an
extension of J”, so |m(J")| > |m(J")| > |J|). Applying this reasoning to

members of 0A; tells us they must also be members of A;_;.

Also, by LYM we have % < ﬁ%k)' and so combining these two observations
k k—1

we obtain that

[Ae| _ [0A] _ [Ar]
() 7 ()~ ()

By recursion of the same argument, it is seen that for any | < k, we have
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()
This means that for any cardinality «, and considering I drawn uniformly at

random from the subsets of J, we have

Pr(m(I)=J:|I]| < «)
Pr(m(l) =J) =1

Since we know the cardinality of J is at least %(ﬁ), and this function is
unbounded, we may apply Lemma and (for example by setting a :=

(1—€)g (f)) we can see for sufficiently large n we must have

po=rr (111 < =05 (Mimtn = 1) <

2rn\r

And since this applies for all choices of J, we see

Pr (m <(1- e)1<“>> =S Pr(mI)=J)py<e> Pr(m(I)=J)=e

2rn \r Jey Jey

]

Although this result is sufficient for the purposes of our paper, it would be

nice to obtain a uniform bound across all values of r. Formally:

Conjecture 2.2.10. There exists a constant ¢ such that, for any value of
r, when drawing M uniformly at random from S, ,, asymptotically almost

certainly M has at least %(’:) non-bases.

We lack any compelling evidence for this conjecture, but it is encouraging
that, as implied by the proof of Theorem 5.3 in Pendavingh and van der Pol’s
paper [23], a result of this type holds when r is not fixed but rather r = an,
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for some constant 0 < oo < 1. Specifically, if drawing M uniformly at random
from S, on, asymptotically almost certainly M has at least %(:}) non-bases.
However this case is fundamentally different to the fixed rank case, in which

r/n— 0asn — oo.

We can see that one possible proof route runs into trouble. It would be nice
to say that the expected number of non-bases in a randomly chosen rank-
r, n element matroid M’ is greater than the expected number of non-bases
in a randomly chosen contraction M/A of a randomly chosen matroid M
of much higher rank down to n elements and rank r. And there is some
intuitive case for this: in the latter case, an r-set X C E(M/A) cannot be
a non-basis if (X U A) intersects in all but on element with a non-basis of
the original M - this “blocks” a lot of potential non-bases in M/A. However
in some cases (e.g. where M is Graham-Sloane) we may find that the only
non-bases not blocked are those from a single large stable set on E(M) \ A,
which forces the contracted matroid into an efficient structure of non-bases
within a single large set - whereas in the case of M’, having a free choice of
non-bases increases the chances that an inefficient structure will be adopted!
If most large matroids do have an efficient, Graham-Sloane type structure,

then the conjecture may turn out to be false.

2.3 Minors included in asymptotically almost
all sparse paving matroids
In [24], Pendavingh and van der Pol showed that asymptotically almost all

matroids contain an N-minor, for N one of the matroids Us , Us g, Ps, Q6 Or

Rg. In [23] they proved the same for all uniform matroids.
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Here we consider a related question.

Question 2.3.1. For which sparse paving matroids N can we say that asymp-

totically almost all sparse paving matroids contain an N-minor?

Interest in this problem is largely motivated by the conjecture of Mayhew,
Newman, Welsh and Whittle [I7] that asymptotically almost all matroids
are sparse paving. If true, the conjecture would imply that if asymptotically
almost all sparse paving matroids have an N-minor, then so must asymptot-

ically almost all matroids.

We note that the methods of Pendavingh and van der Pol in [23] would seem
to imply that the result holds for N uniform, although this is not noted. We
shall prove the uniform case by a different method, which also show that a
number of other matroids are contained as minors in asymptotically almost

all sparse paving matroids. As listed previously, these include:

e Sparse paving matroids of rank r whose non-bases all intersect in a

single set of r — 2 elements.

e Sparse paving matroids whose non-bases are pairwise disjoint

o V3

We note that the result could surely be extended to many more matroids
with simple structures of non-bases, but here we shall only explicitly prove

the four above cases.

Additionally, we show some matroids to be contained as minors in asymp-
totically almost all sparse paving matroids of fixed rank r (where obviously

r must be at least the rank of the target minor). This is a weaker statement
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but we can prove it for more target minors. Specifically, the statement holds
for all sparse paving matroids whose non-bases all contain at least one loose
element - meaning an element not contained in any other non-bases. We
also note one more case where this result holds, but that will be proved in
Chapter [3] since it forms part of an important result about Graham-Sloane

madtroids.

A very useful part of the apparatus used is the fact that asymptotically
almost all sparse paving matroids M € M, have at least (1 + 0(1))%(7,(7;4))

non-bases. This result was essentially shown by Pendavingh and van der Pol

[23] in their recent paper (included as Theorem in this thesis).

The following result is also fundamental.

Lemma 2.3.2. Forall0 < § < 1, asymptotically almost all n-element sparse

paving matroids have rank r in the interval I = ((0.5 — d)n, (0.5 4 6)n)

A similar result already exists in the general matroid case, and is included

in [13].

Proof. Let t,, be the number of sparse paving matroids on n with rank r ¢
I. The number of rank-r sparse paving matroids is bounded above by the

number of subsets of [n]") giving

t, < 22(2) <n- 2([(0.5716)71])
r&l

And we know from the class of Graham-Sloane matroids [6] that

s, > o (1n72))
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The latter clearly outgrows the former - for example, by considering binomial

coefficients as in the proof of Lemma [2.2.8| we get

n

logtn _ (o5 sm) _ (In/2))!([n/2])!
og 5 <1+0(1>>M = (14+o(D)n <(L(0-5 S ([(05 + 5)n1)!>

0o (i) (fares) (o3 o)
05—6/2>/
0.5+0/2

< (I4o(1)n <

which vanishes as n — 0. O

As observed earlier (Lemmas [2.1.4] and [2.1.5)), the collections of non-bases

of sparse paving matroids of size n and rank r are in direct correspondence
with the stable sets of the Johnson graph J(n,r). This was originally shown
in a paper of Piff and Welsh [26].

We now work towards an asymptotic lower bound on the number of non-bases

in a sparse paving matroid.

Let i(G) denote the total number of stable sets in the graph G.

Lemma 2.3.3. logi(J(n,7)) > (7)/n

This result is given by the construction of Graham and Sloane used in
[6].

By i(G, m) we shall mean the number of stable sets of G with size no greater

than m.

The following result was stated by Pendavingh and van der Pol as a lemma
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(Lemma 5.2 of [23]), in the course of showing a related theorem for the gen-
eral matroid case, but is directly useful to us as we deal with sparse paving

matroids.

Theorem 2.3.4 (Pendavingh, van der Pol). There exists € > 0 such that
log (J(n,'r’), %(ﬁ)) < (1—¢)logs,
Knowing this, we can make the following statement about sparse paving ma-

troids.

Corollary 2.3.5. Asymptotically almost all sparse paving matroids M € S,

have at least %( (” ) non-bases.

r(M)

Proof. Note that i(J (n,r), = (”)) counts the matroids in S, , which have

7 Bhn \r

no more than %( (” ) non-bases.

r(M)

Following from Theorem we get

- 1
log» i (J(n,r),5n<2>> < (1—¢)logs, + logn
r=1

2.3.1 A counting approach to the minor inclusion ques-

tion

Theorem [2.3.10| will provide a condition under which a matroid N will be
contained as a minor in asymptotically almost all sparse paving matroids.
Roughly, we will show that if the collection of non-bases of a sparse paving

matroid contains many separate substructures isomorphic to the collection
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of non-bases of N, then almost certainly at least one such instance forms an
N-minor (i.e. by containing no additional non-bases). A consequence of this
is that we only need to worry about replicating the non-bases of NV, and can
ignore the bases (or as they might be better considered in this situation, the

non-non-bases!)

We need to make precise what we mean by “separate substructures”.

Definition 2.3.6 (Line-structure). A line-structure £ of rank r is defined
to be a collection £ of equicardinal sets (“lines”) obeying the rule that for
distinct Ly, Ly € £ we have |Ly N Ly| < |L1| — 2 = |Ls| — 2. We say a line-
structure has rank r if its members have cardinality r. By a substructure of

a line-structure we mean simply a subset of its lines.

Isomorphism between line-structures is in fact defined by isomorphism be-
tween hypergraphs (where each line-structure can be viewed as a hypergraph
on the union of its elements, with lines as hyperedges). The definition we
give is equivalent, albeit expressed somewhat differently, and in terms of
line-structures.

Definition 2.3.7. Line-structures £; andL, are isomorphic if there exists a

bijection ® : £; — L5 such that if £’ is some subset of £, then

=] &)

LeL!

(L

LeLl!

We say a line-structure £, contains a copy of Ly (and write Lo C L) if a
substructure of the lines of £; is isomorphic to £5. Note this can only occur

when £; and L, are of equal rank.

The relation to sparse paving matroids is hopefully obvious: the collection
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of non-bases of a sparse paving matroid M forms a line-structure, which we
denote by £(M). Equally, by Lemma [2.1.5] every line-structure £ defines a
sparse paving matroid whose non-bases are isomorphic to £, with groundset
exactly the union of those non-bases. A sparse paving matroid and its line-

structure are depicted in Figure [2.3]

Definition 2.3.8 (Element-disjoint). line-structures £; and Ly are element-
disjoint if no element appears in both. In other words, the unions of the

elements in their lines are disjoint:

(U L)H(U L)—@

As already noted, we shall be using “contains a copy” in the sense of line
substructures; in other words, by “£(M/A) contains a copy of L7 we mean
that £(M/A) contains a substructure £ isomorphic to £. We note that this
is not equivalent to M/A containing £ as a minor, since £(M/A) might
contain additional lines on the elements of £’ (equivalently, M /A contains

additional non-bases).

Definition 2.3.9 (Abundant). We say that a line-structure £ of rank r is
abundant in sparse paving matroids if, for any m € N, the following holds:
drawing M uniformly at random from S,,, asymptotically almost certainly
there exists a set A C [n], with |A| = (M) — r, such that £(M/A) contains

m element-disjoint copies of L.

Theorem 2.3.10. Let N be a fized sparse paving matroid of rank r. If L(N)

is abundant in sparse paving matroids, then asymptotically almost all sparse
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‘/0 ‘/1 Vm—l

Figure 2.3: A rank-3 matroid N on 7 elements and its line-structure L£(V).
Below is a sketch depicting a hypothetical line-structure (not realistic) of a
large rank-3 matroid whose non-bases contain m copies of £(N). This ma-
troid represents a possible M/A (as described in the proof of Theorem[2.3.11]),
where we have identified disjoint sets Vg, - - - V,,,_1 such that |V;| = 7 = |E(N)|
and L((M/A)|V;) contains a copy of L(N). If any L((M/A)|V;) contains no
lines other than the lines in its £(N)-copy, then we have M = T;(M) (as
defined in proof of Theorem and (M/A)|V; = (T;(M)/A)|V; 2 N. In
other words, M contains an N-minor. In the above picture this is indeed the
case for ¢+ = 1: the only lines wholly contained within V; are the two lines of
the L(N)-copy.
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paving matroids contain N as a minor.

It is easier to prove directly the following theorem, of which Theorem [2.3.10

is an immediate consequence.

Let N be a fixed sparse paving matroid of rank rx and let S,, ,,, ;v denote the
collection of matroids M € S,, for which there exists A C [n], |A| =r(M)—rn
such that £(M/A) contains m element-disjoint copies of L(N).

Theorem 2.3.11. Let N be a fixed sparse paving matroid and let M be a

matroid drawn uniformly from S, , N

For any € > 0, there exists m(e) such that if m > m(e), then, with probability

at least (1 —€), M will contain N as a minor.

Proof. Assume without loss of generality that e < 1.

We aim to assign to M a series of parent matroids Ty, ..., T},—1 € S, m N, SO
that every choice of M has precisely one choice of parent series. We shall
show that every parent contains an N-minor, and that asymptotically almost

certainly M is equal to one of its parents.

Let ry denote the rank of N, ny := |E(N)| the number of elements of N
and rqg =r(M) —ry.

Fix a total ordering +(n,74) on [n]"®). Write A >* B if A is above B in this

ordering.

Now take some A € [n]") and consider the matroid M \ A. Imagine taking

a collection

U={Uy, L), .., Un-,Lm1)}



34 CHAPTER 2. SPARSE PAVING MATROIDS

where the U; denote a collection of pairwise disjoint ny subsets of [n] \ A
and the £; denote m pairwise element-disjoint copies of the line-structure
L(N) on [n]"™~)such that, for each pair (U;, £;), the lines of £; are contained
in UZ-(TN ). We define Uy,.m,n to be the universe of all possible collections of
this type. Note that if M € S,,,, y, then there exists A such that £(M/A)

contains a collection U € U,y -

Fix some total ordering *(n,m, L(N)) on the set Uy, m o(n). For ease we say

that U >* W if U is above W in this ordering.

The reason for all this careful preparation will be to ensure each matroid
has a single well defined series of parents, which means we avoid duplicate
counting in the later steps of our proof. Note we can be as careless as we like
over the actual orderings: any total ordering will do (although it is probably

most intuitive to imagine that the orderings are of a lexicographical nature).

Now, we know there exists some A € [n]"@) such that L£(M/A) contains m
disjoint copies of L(NN). We can assume without loss of generality that A
be the maximal such set under our ordering relation >*. Now (assuming
that n(M) —rq > mny), we also have some V' € U, ,, n contained in M/A.
Let V' be the maximal such collection under >* and denote its members (the
ny-subsets) as (Vo, Lo), - -, (Vin—1, Lm—_1), ordered lexicographically.

The goal is to show that asymptotically almost certainly there is some 0 < ¢ <
m—1 such that L((M/A)|V;) = L, - if this is the case, then ((M/A)|V;) = N,
forming an N-minor in M. The sketch in Figure loosely illustrates this
strategy; the proof that now follows requires a little more rigour than is

included there!

With some care we define
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S ={AUS:85 eV

Each ¥; represent a collection of possible non-bases and provide a simple
condition for M to contain an N-minor - we simply require one of the ¥; to

contain no non-bases of M other than those of form AU : [ € L,.

We now can set the i-parent T;(M) of M to be the matroid formed from M
by relaxing all non-bases in ¥; except those which are part of £; (in Figure

2.3 these non-bases - after contraction by A - are the red lines within V;).

The i-parent of a matroid has some significant properties. Let T = T;(M)

for some choice of M. Then:

Claim 2.3.11.1. T;(M) = N
Proof. (T;(M)/A)|V; = N. O

Now let W;i(T') = {M' € Sy mn : T;(M') = T}. Recall that s, , denotes the

number of rank-r sparse paving matroids on n elements.

Claim 2.3.11.2. Ty(M) € Wi(Ty(M))); i.e. Ty(T}(M)) = T;(M)

Proof. The relaxation of the non-bases strictly does not affect the primacy

of A or V in their respective orderings. ]

Claim 2.3.11.3. \Wi(T;(M))| < Spyrn

Proof. Every matroid in W;(7T;(M)) can be constructed from T;(M) by adding
non-bases strictly within V;. Clearly the number of ways to do this is bounded
above by the number of rank-r sparse paving matroids we can construct on

groundset V;. ]
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We shall show that, asymptotically almost certainly, M = T;(M) for some

0 <i<m—1, and therefore M contains an N-minor.

Although the remainder of our proof is strictly speaking a counting argu-
ment, it perhaps is more naturally understood in the language of probability,
which is how we shall proceed. Recall that we are considering M drawn

uniformly at random from §,, ,, n.

Let X; be the event that M = T;(M) and X; the complement; let Z;, =

XoU---UXj. We claim that for all i € {0,...,m — 1} the following holds:

Pr(Z,) < <W>”1 (2.1)

SnN TN

This is sufficient to prove our theorem: for any € > 0 we could now achieve
Pr(M % N) < e simply by setting m(e) > —loge/(log(sny — 1) — log(sny))-

We use the general identity

Pr(An B) = Pr(A|B)Pr(B)

which tells us that

PI’(Zl) = PY(XZ N Zifl) = Pr(Xi]Zi,l)Pr(Zi,l)

Repeated application gives
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Pr(Z;) = I Pr(X;lZ;-1)

0<j<i

Therefore we are done if we can show for all 7 that

nn,” _1
Pr(X;|Zi_1) < Snyry T 4

Snyrn

Equivalently we can (and will) show that Pr(X;|Z;) > —!

— Sanon
Let S, :={M €S, N : M # T;(M) for j < i}, i.e those matroids for which
Z;—1 holds. Note that M € §; <— T;(M) € S;.

Consider some matroid 7' € §;. If T is an i-parent, we have already seen

that [Wi(T')| < $py.ry- Moreover T € W;(T), so we have

1

Pr(X;|T;(M) =T) =

SnN:T'N

Since this holds for any 7' that is an i-parent, we have

Pr(Xi|Z )= S Pr(X,|Ty(M)=T)Pr(Ty(M) =T)
T TES;
an ¢ parent

1 1

> >, Pr(Ti(M)=T)=

Snn,rn TeS; Sny,ry
T an i parent

We may cancel the sum of probabilities because each matroid has a well-
defined i-parent, meaning it is counted precisely once in the above summa-

tion. ]

Note that the above method can be easily adapted to provide an equivalent
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result restricted to matroids of any given rank r > ry, by requiring that we
contract by a set A of given size. In particular, if we do not contract at all,

we get the following result:

Theorem 2.3.12. Let N be a fized (sparse) paving matroid. Let M be a ma-
troid drawn randomly from those matroids in S, ., which contain m element-

disjoint copies of L.

For any € > 0, there exists m(e) such that if m > m(e), then M will contain

N as a minor with probability at least 1 — €.

We state this because it proves useful to be able to quote the theorem in this

form when pursuing results for matroids of fixed rank in Section [2.3.2]

2.3.1.1 Abundant minors

Recall our earlier definition of abundance:

Definition 2.3.13 (Abundant). A rank-r line-structure £ is abundant in
sparse paving matroids if for any m € N, for asymptotically almost all n-
element sparse paving matroids M there exists a set A € [n]"*)=") such

that £(M/A) contains m element-disjoint copies of L.

Definition 2.3.14 (Extremal density). The extremal density in S,,, of a

line-structure L of rank r is

ex(n, £) = max{p : IM, |L(M)] < p (1 (”)) L(M) B L}

n\r

taken over matroids M € S, .
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In simpler terms, it is the maximal density of non-bases a sparse paving

matroid can have before its non-bases must contain a copy of L.

We wish to show that certain conditions of extremal density can imply abun-
dance. That enables us to say that any sparse paving matroid whose line-
structure meets those conditions will be abundant, and therefore a minor of

asymptotically almost all sparse paving matroids.

Theorem 2.3.15. Let L be a line-structure of rank v, on n, elements, and k
any integer. Let LF denote the line-structure consisting of k element-disjoint

copies of L. Then

. B\ 1
lim ex(n, £7) = lim ex(n, £)

Proof. Our proof is inductive. Suppose that

. E—1y _ 1: o
lim ex(n, L877) = lim ex(n,L) =p

Clearly ex(n, L¥) > ex(n, L), so we need to show that for any € > 0, there
exists n(e) such that n > n(e) = ex(n, LF) < p+e. Let M be an n-element

sparse-paving matroid of rank r, with density of non-bases (the fraction of

all r-sets of M which are non-bases) being p%e, and suppose that n is large
enough that ex(n, £F71) ex(n, L) < p + €/2. So L(M) must contain some

copy of L. But the number of non-bases intersecting with a line in our copy

) ( " ) (see argument in Lemma |3.1.4]). For large

of £ is at most n, ( oo

n—rr

enough n, this is less than = (" ), and so even relaxing all these non-bases,
2n \rp

we are left with a density of non-bases greater than ex(n, £*~!). Hence we

must also contain some copy of £F~! disjoint to our copy of £, and the union

of these is a copy of L*. O
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Lemma 2.3.16 (Abundance Lemma). Let N be a sparse paving matroid.
Suppose the following holds: e > 0,3nyg € N, such that for any n > ng
we have ex((n,L(N))) < 75 — €. Then N is abundant in the sparse paving

matroids.

Proof. Firstly, by Lemma [2.3.15] we can assume without loss of generality

that for n > ng we have ex((n, (L(N))™)) < 15 — €.

We know from Corollary that asymptotically almost all M € S,,, have

o> ()

and that also for any 0 > 0 asymptotically almost always (% — 5) n <
r(M) < (% + 5) n (Lemma [2.3.2

Consider only sparse paving matroids M that meet the above two conditions.
Contracting M by r — ry randomly chosen elements, the expected density of
non-bases in our new matroid is equal to the density of non-bases in M, so

there must be some set A of » — rn elements such that

cara> (o))

Now set § > 5¢/2 and n > %, son' > ng.

where n =n+ry — 1.

n' \ry

car/a) > (15-¢) (1)) > exter )

And M /A has to contain a copy of (£(V))™, and hence m copies of L(N). [
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We can now identify various matroids which have line-structures abundant
in the sparse paving matroids, and hence (by Theorem [2.3.10]) are contained

as a minor in asymptotically almost all sparse paving matroids.

Firstly, using the fact the £(Uyx) is empty and so trivially abundant in the

sparse paving matroids:

Theorem 2.3.17. For any positive integers t < k, the uniform matroid Uy,

s contained as a minor in asymptotically almost all sparse paving matroids.

For other cases we shall present a proof of abundance; the minor-inclusion is
asymptotically almost all sparse paving matroids follows as a trivial corollary

thanks to Theorem 2.3.10

Theorem 2.3.18. Let N be a sparse paving matroid of rank r in which all
non-bases are pairwise disjoint. Then L(N) is abundant in the sparse paving

matroids.

Proof. Clearly any matroid with non-zero density of non-bases contains a

single non-basis. Apply Lemma [2.3.15] [

Corollary 2.3.19. Let N be any sparse paving matroid of rank r in which
all non-bases are pairwise disjoint. Asymptotically almost all sparse paving

matroids contain N as a minor.

Theorem 2.3.20. Let N be a sparse paving matroid of rank r in which all
non-bases meet in a set of size r —2. L(N) is abundant in the sparse paving

matroids.
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Proof. Suppose N is a sparse paving matroid on ny elements with rank ry
and all its lines intersect in one (ry — 2)-subset of [ny]|. Let M be an n-
element sparse paving matroid of rank ry with density of non-bases being =,

for some € > 0. Now given any (r — 2)-subset of [n], the expected number of

n+2—ry)

; ), so there must be some

non-bases of M which contain that set is i((

(ry — 2)-subset A such that

N R

For large enough n this number will be greater than |[L(N)|, and hence

ex((n, L(N))) < e. O

Corollary 2.3.21. Let N be any sparse paving matroid of rank r in which
all non-bases meet in a set of size r — 2. Asymptotically almost all sparse

paving matroids contain N as a minor.

We next consider the rank 3 whirl, 3.

Theorem 2.3.22. There exists a matroid N, containing W3 as a minor,

such that L(N) is abundant in the sparse paving matroids.

Proof. Let N be the rank-12 matroid formed by 9 free extensions on W3,
Clearly N = W3. We shall show that for ¢ = % (% — 1—11), and large enough
n, ex((n,L(N))) < 75 — €. Consider a matroid M in S(n,12) with at least

density ({5 — €) of non-bases.

Imagine choosing at random a set of 10 elements {a}, aj, ..., a},} from our
groundset. Let Y be the random variable denoting the number of non-bases

which contain the chosen set. We note that
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E)= (559 (57)

Now consider separately drawing at random a non-basis L = {a4, ..., a2} €
L(M), and randomly discarding one element (ajs, say) to form the set
L= = {ay,...,a11}. For each i € {1,...,11}, let X; be the derived vari-
able given by the number of non-bases of M containing L~ \ a; (a set of size

10).

Now for any choice of i we have E(X;) = /E(Y2): This is because we
are essentially performing the same count as before, except that each 10-
element set is selected with probability proportional to the number of non-

bases containing it. So

= T2 (3 (5

with the first inequality due to Jensen’s inequality. But then, assuming large

enough n,

1 1 n— 10 n
B X) > (1455) (") > 5 +11
2 20) \" 2 2

(of course 11 is completely arbitrary here, we could equally say greater than
5 + ¢ for any positive constant c. We have written 11 because this accounts

for the 11 times our original C' will have been counted.)

So there is some choice of L = {ay,...,a12} and L~ (which we shall again

assume without loss of generality to be {ay,...,a;1}) such that
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Y Xi>n/2+11

a; €L~

This means then that there are more than n/2 distinct ways to construct a
non-basis other than L itself. But each of these involves adding two elements,
so by the pigeonhole principle we must have some element b ¢ L such that b
is added more than once - that is to say, M contains more than one non-basis

of form

C_{al%ai}u{bay}aie {17a11}7y¢0

Note that the choices of deleted a; must be different, else the non-bases would
intersect in 11 elements. Say without loss of generality we have non-bases
L' ={ay,...,a10,b,c} and L” = {aq,...,ag,a11,b,d}. So the line-structure
L ={L,L' L"} has extremal density less than %o — ¢ and is abundant in the

sparse paving matroids. But £ = L(N) so we are done. O

Corollary 2.3.23. Asymptotically almost all sparse paving matroids contain

W3 as a minor.

- A A

Figure 2.4: Some classes of matroids contained as minors in asymptotically
almost all sparse paving matroids: leftmost, matroids with all non-bases
pairwise disjoint; centre, matroids in which all non-bases intersect in some
(r — 1)-set; rightmost, the rank-3 whirl, W3.
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We could continue in this vein, addressing target minors one by one, and
doubtless there are many which would fall to arguments like the above (albeit
perhaps increasingly complicated arguments!) For now we shall leave that
area open - however in Conjecture we shall give some indication of

which cases we believe may be accessible.

2.3.2 A Ramsey-theoretical approach for the fixed-rank

case

We have already noted that sparse paving matroids can be identified with
hypergraphs whose edges are the non-bases of the matroid. Moreover the
independent (or dependent) sets of any given rank can be viewed as a hy-
pergraph. This opens up varied possibilities for using Ramsey-theoretical

techniques as a means to answering minor-inclusion questions.

The relevant result of Ramsey theory is the general Ramsey Theorem for

hypergraphs.

Definition 2.3.24 (Hypergraph, r-uniform hypergraph). An r-uniform hy-
pergraph consists of a pair (V, ), where V is a set (the vertices) and £ C V")
(the hyperedges).

Definition 2.3.25 (Complete hypergraph). The complete hypergraph K
is an r-uniform hypergraph n vertices containing every possible hyperedge.

In other words, |V| =n and € = V).

Theorem 2.3.26 (Ramsey). Let G be a r-uniform hypergraph on n vertices
with edges k-coloured - that is, each hyperedge is labelled with one of k colours
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C1,Coy...,Cx. Then for any positive integers ty,tq, ..., ty there exists some
number ng(ty,ta, ..., tg) such that if n > ng then for some i € {1,2,... k},

G contains a c;-coloured Kt(:)—subhypergmph.

2.3.2.1 Uniform matroids

In the previous section we proved at length that various matroids, including
all uniform matroids, are contained in asymptotically almost all sparse paving
matroids. However the result for uniform matroids can also be achieved al-

most immediately using Ramsey theory.

Theorem 2.3.27. For any positive integers t < k, asymptotically almost all

sparse paving matroids contain Uy as a minor.

Proof. Let M € S,, be a randomly chosen sparse paving matroid. Note that
asymptotically almost certainly ¢ < r(M) < 3n/4 (due to Lemma [2.3.2))
and we may consider only these cases. We shall show that for all values of
r in this range, matroids in S, , must contain a U, minor. For M € §,,
consider M /A, where A = {1,2,...,(r —t)}. Now M/A has at least n/4
elements. Now we are done if, on some set of k elements, M/A contains no
non-bases. But now the set £(M) of non-bases of M /A is a hypergraph, and
hence by Ramsey if n/4 is sufficiently large (specifically, n > 4R,.(r + 1,k))
then £(M) must contain either a clique K,(,:r)l or stable set E,S"). The former
case is impossible, as the elements of the clique would form a hyperplane of

cardinality r + 1 in M /A, contradicting sparse pavingness. So there is some

set B of k elements on which £(M) is empty. Then (M/A)|B = Uyy. O

The next definition enables us to describe (and prove) a minor-inclusion result

for a substantial class of matroids. This results represents the broadest class
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for which we shall prove a result of asymptotically almost certain minor
inclusion (albeit in the limited case of fixed-rank sparse paving matroids). It
is also notable that the proof requires several unusual applications of Ramsey-

theoretical methods.

2.3.2.2 Loose elements and tied non-bases

Definition 2.3.28 (Loose element, Tied non-basis). Let M be a sparse
paving matroid. An element x in a non-basis L of M is called loose if no
other non-basis of M contains x. Moreover, a non-basis L is called tied if it

contains no loose elements.

Due to the freedom offered by a loose element, we suggest that the highest
barrier to proving Conjecture may be the case where the target minor
has no loose elements. In particular, we conjecture that the following relax-

ation of Conjecture may be more accessible.

Conjecture 2.3.29. Let N be a sparse paving matroid. Suppose that every
minor of N has a loose element in at least one non-basis. Then asymptotically

almost all sparse paving matroids have an N-minor.

The main theorem of this chapter is weaker still, and only applies to sparse
paving matroids of fixed rank, but still represents a significant advance on

past results.

Theorem 2.3.30. Let N be a rank-r sparse paving matroid with no tied
non-bases. Then asymptotically almost all sparse paving matroids of rank r

contain N as a minor.

The proof will use Ramsey theory to establish that all sparse paving matroids
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Figure 2.5: A 4-element fort in a matroid with rank » = 3. The fort is those
elements within the dashed circle. Every collection of r — 1 elements within
the fort forms a non-basis with an r-th element outside the fort. These r-th
elements are not necessarily distinct, as illustrated by the element e which
appears in two lines. In a moat, there are no non-bases of this kind.

of sufficient size and rank r must fall into at least one of two categories, within
each of which asymptotically almost all matroids contain N as a minor. One
category is those matroids which contain (as a subhypergraph of the non-
bases) sufficiently many copies of £(N), which we show by demonstrating
the inclusion of a structure which we shall call a fort. The other is matroids
some contraction of which contains sufficiently many copies of a structure
which we shall call a moat (with some additional requirements). We shall

first define those structures.

Definition 2.3.31 (Fort). Let M be a sparse paving matroid of rank r. A
collection of elements X forms a fort of M if for every A € X~V 3L €
LM):L=AUe,e¢ X.

An example of a fort is shown in Figure [2.5]

Definition 2.3.32 (Moat). Let M be a sparse paving matroid of rank r. A
collection of elements X forms a moat of M if for every A € X=Y AL €
LM):L=AUe,e¢ X.

So forts and moats are in some sense inverse to one another - in one case,



2.3. MINORS OF ALMOST ALL SPARSE PAVING MATROIDS 49

we have maximised the number of non-bases intersecting with X in precisely
r — 1 elements; in the other, we have minimised it. In either case, the
structure provides a somewhat controlled space in which to demonstrate
the asymptotically almost certain existence of minors. For moats, we have
created a sort of vacuum free from outside interference, within which we can
show that there is a non-vanishing chance of an £(N) copy occurring. In the
case of forts, we want the lines of the fort themselves to contain an L(N)
copy; in each line, the single element outside the fort corresponds to the loose
element in a non-basis. The main challenge here is showing that we don’t

have any unwanted intersections between those elements.

Our proof will proceed by demonstrating that given it contains a sufficient
number of element-disjoint moats of sufficient size, a matroid will asymptot-
ically almost certainly contain an N-minor; we then show something similar
for forts. Finally we shall apply a Ramsey argument to prove that a suf-
ficiently large matroid will contain a sufficient collection of either moats or

forts.

We'll first address the case of moats. The usefulness of moats is that if we
can fix some moat and everything outside the moat, then we can allow any
legitimate structure of non-bases within the moat (i.e. those contained en-
tirely within the moat X ') and the whole structure will remain sparse paving.
However in this instance we will want to make further restrictions on the

interior of the moat.

Definition 2.3.33 (Empty moat). Let M and N be sparse paving matroids
of rank r. We say a moat X of M is empty if there are no non-bases in the
interior of the moat, that is to say X contains no non-bases of M. We also

shall say X is sub-N if the non-bases of M contained in X are isomorphic to
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a subhypergraph of the line structure L(V).

We note that an empty moat X is sub-N for any choice of N.

Lemma 2.3.34. Let N be a sparse paving matroid with ny elements and
rank r. We let S, . n denote the members of S,,, which contain at least m
pairwise disjoint sub-N moats of size ny. Let € > 0. Then there exists an
integer m(e) such that for large enough n the following holds: let m > m(e)
and M be drawn randomly from S, .. n. With probability at least (1—¢), M

contains N as a minor.

The proof of this is very similar to Theorem [2.3.11] The main difference is
that we are now demanding that our moats contain a substructure of £(N),

whereas in Theorem [2.3.11| we required superstructures of L(IV).

This proof relies on (M) being equal to r(N). If (M) > r(N) then we would
be required to work within M /A, for some set A. But in that environment we
cannot freely add non-bases within a moat, since there might be non-bases
in M (before contraction by A) that “block” such a move. It turns out that,
in the wider context of proving Theorem [2.3.30} this is the only reason we

require a fixed rank.

Proof. Assume without loss of generality that e < 1.

We aim to assign to M a series of parent matroids Ty, ..., T,,—1 € S;m.n, SO
that every choice of M has precisely one choice of parents. We show then
that for any series of parents, at most proportion e of their shared children
are free of N-minors. The same will then be true for the union of offspring

of all series of parents, which is of course equal to the entirety of S,, ;. ,,, n-

Imagine taking a collection U = {(Up, Ly), - , (Um—-1, Lm—1)} where the U;

denote a collection of pairwise disjoint ny subsets of [n] and the £; denote m
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copies of the line-structure £(N) on [n]"~) such that, for each pair (U;, £;),
the lines of £; are strictly contained in UZ-(T). We define U, ,, n to be the

universe of all possible collections of this type.

Let *(n,r,m, N) be a total ordering on U, , ., v - as before, any total ordering
will do, although some kind of lexicographical ordering is most intuitive. Say

that V' >* W it V is above W in this ordering.

Now, we have at least one collection of m element-disjoint sub-N moats in
M - call them Vq,...,V,,_1 - which means that we also have a collection
Lo,...,Lm_1, where each L£; denotes an L(N) copy within V;, such that
L(M|V;) C L;. Let’s assume that V = {(Vo, Lo), ..., (Vin—1,Lm-1)} is the

maximal such collection under our ordering >*.

Define the i-parent T;(M) of M to be the matroid whose line-structure is
L(M)UL;, such that L(T;(M)|V;) = L;, and L(T;(M)|([n]\Vi)) = LM |([n]\
Vi)). In other words, T;(M) is identical to M except on V;, where its line-
structure is now equal to L;.

Clearly T;(M) = N. Moreover, if Wi(T) = {M' € S, un : Ti(M') = T},
then T;(M) € Wi(Ty(M)), and [W;(T;(M))| < 21FW,

Let X; be the event that M = T;(M) and X; be the converse. Further, let
Zr = XoU--- U X}. Note that in the event M is N-free, Z,,_1 is implied.

We aim to show that:

oL — 1\ ™
> (2.2)

Pr(Z,-1) < <2|L(N)|

Having shown this we will be done: for any € > 0 we can achieve Pr(M %

N) < e. We simply need m > —log ¢/(log(2/FMI — 1) —log(2/*™M1)) and this
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provides our value for m(e).

To prove (2.2)) we continue as in the proof of Theorem [2.3.11} it suffices to

show that, forall 0 < k <m — 1,

1

PI'(Xk|Zk_1) Z W

Let S; :== {M € S,pmn : M # T;(M) for j < i}, i.e those matroids for
which Z;_; holds. Note that M € §; < T;(M) € S;.

Consider some matroid T € S;. Since T € W;(T) and |[W;(T)| < 2FMI we

have

1
21£(N)|

Pr(X;|Ti(M)=T) >

Since this holds for any 7' that is an ¢-parent, we have

Pr(X;|Zi-1) = Z Pr(X;|T;(M) = T)Pr(T;(M) = T)

TeS;

1 1
2 SEm] Tz;g Pr(Ti(M) =T) = QL))

i
T an i parent

where again we may only cancel the sum of probabilities because our careful
definition of a unique i-parent ensures that each matroid is counted precisely

once in the summation. O

Note that though we have chosen only to prove the result for sparse paving
matroids, we believe the same result could be proven for general matroids in

essentially the same way.
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Now we want to deal with forts. Recall our earlier definition: let M be a

sparse paving matroid of rank r. A collection of elements X forms a fort of

M if for every A€ XUV 3L € L(M): L=AUe,ed X.

For any fort X we shall use the notation £y to denote the collection of non-
bases of M which contain » — 1 elements of X. Note that we may also apply
this notation to any subset A C X, since A is itself a fort. We want to show

the following.

Lemma 2.3.35. Suppose X is a fort of size n in a sparse paving matroid
M of rank r. Then for any m > r, there exists n(m,r — 1) such that n >
n(m,r — 1) implies that there exists X' C X,|X| > m, such that no two

elements of Ly, intersect outside of X'.

That is to say that given an arbitrarily large fort in a sparse paving matroid
M of rank r, we can find an arbitrarily large subset X’ of that fort on which
each (r—1)-sets of X’ can be matched with a unique element of M\ X’ to form
a non-basis of M. These unique elements of M \ X’ form the loose elements
in a copy of L(NV); since every (r — 1)-subset of X’ is paired with such an
element, we can readily choose |£(N)| of them isomorphic to the non-bases

of N minus their loose elements, and so have a copy of L(N).

First we need to prove a result that is in some sense anti-Ramsey, that is
to say we want to demonstrate the existence of polychromatic cliques in a

hypergraph, given sufficient size and one simple condition.

Definition 2.3.36 (Polychromatic). Let G be an r-uniform hypergraph and
L(G) denote the collection of hyperedges of G. Let ¢ : L(G) — N be a
colouring of the hyperedges of G. A subhypergraph H of G is polychromatic
under c if for any edges A, B € L(H), we have A # B = ¢(A) # ¢(B).
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In the following section we treat X as the complete r-uniform hypergraph

with vertex set X.

Lemma 2.3.37. Let X be a set of n elements. Say we have a function
c: XM - N such that A/B € X" |[ANB| =r—-1 = c(A4) # c¢(B).
Then for any m > r, there exists n(m,r) such that n > n(m,r) = 3IX’' C

X,|X'| = m, such that (X")") is polychromatic under c.

We note that our condition is equivalent to specifying that c¢ is a vertex-
colouring of the Johnson graph J(n,r). However it makes more sense for us

to view ¢ as a hyperedge-colouring of the r-uniform hypergraph.

Proof. We prove this by (transfinite) induction on m and r, ordering on r
first. Thus we say (k,s) < (m,r) if either s < r, or s = r and k < m. We
take as our inductive hypothesis that n(k, s) exists for all (k, s) < (m,r). We
can see easily enough that n(k,1) = k and n(1,r) = r, which covers all base
and limit cases in our ordering. Next we use our inductive hypothesis and

proceed to demonstrate the existence of n(m,r) in the case m,r # 0.

The proof will take an element x € X and demonstrate, for large enough n,
the existence of nested sets (X \z) 2 X; O Xy O X3 with | X3] = m —1such
that:

for A,Be (X,Uz)":2€ A,z € B = c(A) # c¢(B)
for A,B€ (XoUz) 2 € Az g B = c(A) # c¢(B)

for A,B€ (XsUz)" o0 g Az g B = c(A) # c(B)
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Taken together, and considering the nestedness of X7, X5 and X3, the above
conditions imply that for A, B € (X3 U 2)") we have c¢(A) # ¢(B), and

therefore X3 U x satisfies our requirements.

First we choose some element x; € X. We can induce a colouring ¢ :
(X \ 2)"Y — N as follows: for any A’ € (X \ 2)"V let ¢/(A) = c(A' Ux).
Now, we invoke (by inductive hypothesis) the existence of n(K,r — 1) (for
all K)to say that if | X| > n(K,r — 1) + 1 then there must exist some set
X; C (X \ x) with |X;| > K such that for distinct A, B’ € XU we must
have ¢/(A’) # /(B’) Therefore ¢(A’ U x) # ¢(B' U x).

Now in X; we can say that for distinct A', B’ € X", we have d(A) #
(B'). Morcover, if B € X\" and A’ € X"V we have A’ C B = ¢/(A') #
¢(B) (since otherwise ¢(B) = ¢(A" Ux). But |[BN (A" Uz)| =r —1, so the

conditions of the proof would be contradicted). We claim the following:

Claim 2.3.37.1. For any K’, given | X| sufficiently large, we can find Xy C
X, with |X3| = K’, such that for B € X and A € X{" we have
d(A") # ¢(B).

Proof of claim. Since every (r — 1)-set of X; takes a different value under ¢,
we have that for any B € X", there can be at most 1 choice of A’ € X\"™!
such that ¢(B) = ¢/(A"). Moreover, if such an A’ exists, then |A"\ B| # 0, i.e.
there exists some element e € A"\ B (suppose not: then ¢(A’Uz) = ¢(B).
But [(A"Ux)N B| =r — 1, contradicting our conditions). Consider drawing
some random X, € X 1(K,) (for understanding the probabilistic argument, it
may be easier to imagine this process happens by randomly permuting the

labels of elements X, and setting X5 to the first K’ elements). Now define

the variable
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Z:=|{BeXx{ 34 e x{'V «(B) = (A)}|

Meanwhile, let Z5 be a variable taking value 1 if 34’ € X{"™Y, c(B) =d(4),

and value 0 otherwise. Now

>, Zs

Bex{"

But for any choice of B, the probability that Zp takes value 1 is low: specifi-

cally, we know that if a valid choice of A" exists in X 1(r71)

e € A"\ B, and then

, then there is some

K/
Pr(Zgp=1) <Pr(e€ X3) < X
1
K/ K/ (K/>r+1
E < E Z P <
> wzm= 5 rize=0s () )<

Bex/{" Bex{"

If | X;| > (K')"™ then E(Z) < 1, so there exists some choice of X3 such that

Be X" A eXx{V = J(A)#c(B)

as required. O

Now we are ready to complete the proof of Lemma Using the existence
of n(m — 1,7) we let |X| > n((n(m — 1,r))"™* r — 1)) + 1. Then choosing
some x we can find X, Xy using the process already described, with X, C

X C (X \x), such that | X;| > (n(m—1,7))""" and hence | X5| > n(m—1,r).

Now, since |X3| > n(m — 1,r) we can find X3 C X, with [X3] > m — 1
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such that for distinct A, B € X" we must have ¢(A) # ¢(B). But now
consider the set X3 U z. Clearly | X3 U x| = r. We claim that for distinct
A, B € (X3U )" we must have ¢(A) # ¢(B). We have three cases to con-

sider:

Firstly, the case where x € A, x € B. The claim is clearly satisfied for
this case: (A \ z) and (B \ z) are both members of XY and X5 C X,
and so by the construction of X; we have ¢(A) = ¢/(A\z) # ¢(B\z) = ¢(B).

Secondly, the case where x is contained in only one of A and B. Say without
loss of generality z € (A\ B). Then A\ z is a member of XY and B is

a member of Xér). But X35 C X5, and so by the construction of X, we have

c(A) =d(A\ z) # ¢(B).

Finally, the case where x ¢ A,z ¢ B. Clearly then A, B € Xg(f) and so by
the construction of X3 we have c¢(A) # ¢(B).

So n(m,r) exists and is bounded above by n((n(m—1,7))"",r—1))+1. O

Finally, we can complete the proof of Lemma [2.3.35] Let’s first restate the

lemma:

Lemma 2.3.35. Suppose X is a fort of size n in a sparse paving matroid
M of rank r. Then for any m > r, there exists n(m,r — 1) such that n >
n(m,r — 1) implies that there exists X' C X,|X| > m, such that no two

elements of Ly, intersect outside of X'.

Proof of Lemma[2.3.35 For any set L~ € X1 we have some unique ele-
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ment e;- such that L~ U e;- is a non-basis of M. Define ¢ : X1 — N
by ¢(L~) = er-. Lemma guarantees the existence of n(m,r — 1) such
that if n > n(m,r — 1) there will exist X’ C X with |X’| = m and every
(r — 1)-subset of X’ taking a different value under c¢. This X’ satisfies our

conditions. ]

Corollary 2.3.38. Let N be a rank-r sparse paving matroid on ny elements
with no tied non-bases. Suppose X is a fort of size k in a sparse paving
matroid M € S,,,. For any A C X, Let L, be the collection of non-bases of
M which contain r—1 elements of A. There exists K(N) such that k > K(N)
implies that L(M) contains a substructure L isomorphic to L(N), such that
for every line L € L, we have |[LNX| =1 —1.

The intuition behind the proof has already been hinted at, but we shall prove
it formally.

Proof. Apply Lemma|2.3.35 with m = ny—|L(NV)| and force K > n(m,r—1).
We obtain a set X’ with |X'| = ny — |L(N)| such that for any (r — 1)-subset
A of X’ we have an element f € E(M), unique to A, such that (AU f) is a

non-basis of M.

Now, for each L € L(N) we can choose some loose element ef. Define

X”:E(N)\( U eL)

LeL(N)

Now relabel the elements of X’ identically to those of X”. For any L € L(N),
let Az be the (r — 1)-subset of X’ with elements labelled by the elements
of L'\ er. There exists some element f;, € E(M) such that (AL U fr) is a
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non-basis of M. But now define £ C L£(M) to be the collection of all such
non-bases. Then £ = L(N) as required. O

And finally:

Proof of Theorem [2.5.30. Recall this theorem stated that for any rank-r sparse
paving matroid Nwith no tied non-bases, asymptotically almost all sparse

paving matroids of rank r must contain N as a minor.

Let n(m,r) be defined as in Lemma [2.3.35

Fix ny = |E(N)|. Let M € S,, and allow n to grow arbitrarily large. We
consider the (r — 1)-uniform hypergraph on [n| formed by including a hy-
peredge if and only if it is contained in a non-basis of M. Note firstly that
a stable set in this hypergraph represents a moat. On the contrary, sup-
pose we have a (sufficiently large) complete subhypergraph. Now consider
the restriction of the r-uniform hypergraph L£(M) to the elements of that
subhypergraph, and apply Ramsey in a similar manner to Theorem to
find a stable set within that space. This then forms a fort which of course
can be forced to be arbitrarily large by increasing the size of the complete

subhypergraph.

So, by applying Ramsey to the (r — 1)-uniform hypergraph defined above,
given a sufficiently large n we are eventually able to find find either a moat of
size R.(r+ 1,ny) or a fort of size n(ny — |L(N)]|,r). Specifically we require

n > ng, where ng is at most R,_1(R.(r+1,nx), R.(r+1,n(ny —|L(N)|,7))).

Now we imagine that n is truly enormous, say n = Kng.Then [n] can be

divided into intervals
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[1,m0], [no + 1, 2n], ..., [(K = 1)ng + 1, K'ng]

We note that by Ramsey each of these intervals must contain either a fort
of cardinality n(ny — |L£(N)|,r) or a moat of cardinality R,(r + 1,ny). In
the former case we have a copy of L(N), by Corollary . In the latter
case we must have (again by the argument of Theorem some U,
minor within our moat - and this then forms an empty moat (and hence
also an sub-N moat) on those ny elements! So by making K large enough
we can force that M contains either arbitrarily many copies of L(NV), or
contains arbitrarily many sub-N ny-moats (moreover being element-disjoint,
in either case). Then by applying either Theorem or Lemma
respectively we can see that asymptotically almost certainly M will contain

N as a minor. N

Corollary 2.3.39. Let N be a sparse paving matroid with no tied non-bases,
and r > ry. Then asymptotically almost all sparse paving matroids of rank

r contain N as a minor.

Proof. 1t suffices to observe that N is contained as a minor of a matroid of
rank r which also has no tied non-bases. To see this, simply form N’ by
adding the set of elements A = {aj,as,...,a,_,,} to the groundset of N,
and define L(N') ={LUA:Le L(N)} O

So far all our results, in both the general rank and fixed rank case, have
involved minors with no tied non-bases. In the closing section of the next
chapter we shall prove that a particular family of matroids are minors of

asymptotically almost all sparse paving matroids of equal rank to them-
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selves. The matroids in this family each have four non-bases, two of which
are tied non-bases. This result has particularly significant consequences in
relation to Graham-Sloane matroids, because matroids in this family cannot
be a minor of any Graham-Sloane matroid. We shall briefly introduce the

theorem here, and prove it at the end of the next chapter.

Theorem 2.3.40. Let N be a sparse paving matroid with 4 non-bases of form
X U{a,b}, XU{c,d}, Y U{d, b}, Y U{c,d}, where | X|=|Y|=r(N)—2 and
I X NY| <r(N)—4. Then asymptotically almost all sparse paving matroids

of rank r(N) contain N as a minor.

One such matroid is illustrated in Figure 2.6

Figure 2.6: An example of the matroids described in Theorem [2.3.40

2.3.3 Extending fixed rank results to general rank re-

sults?

Imagine M is a minor-closed class of matroids. Let M,,, :== M NM,,,.We

make the following conjecture:
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Conjecture 2.3.41. Fix r > 0,allow n — oo. Suppose N is a minor of
asymptotically almost all matroids in M,, .. Then N is a minor of asymp-

totically almost all matroids in M.

This conjecture, if true, would enable us to extend our fixed-rank results from
Section to more general results for all sparse paving matroids. Although
we cannot find much strong evidence either way on this conjecture,there are
some relevant existing results. These are discussed in Pendavingh and van
der Pol’s guest post at the Matroid Union blog [22]. In particular, they show

the following two theorems.

Theorem 2.3.42. [Pendavingh, van der Pol] Suppose M is a class of ma-

troids closed under deletion. Then for any n > r

log (1 + [M,|) < log (1 + [M;—1,|)
G )
Repeated applicaton of (the statement dual to) Theorem [2.3.42| gives the

following result:

Theorem 2.3.43 (Pendavingh, van der Pol). Suppose M is a class of ma-

troids closed under deletion. Then for anyn >1r >k

log (1+ [Mo]) _ log (14 [Mosi)
O (:h)

Why is this theorem useful? Essentially, the power of this result lies in the

fact that that, for all r,

1(n
10g mn,r Z log Sn,r 2 ( )
n\r
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therefore, if we could show for any r that log|M,, .| < %(’:) then that
would imply that asymptotically all members of S, (and M,,) were not in
M. Of course this effectively requires us to show that our minor-closed
class (in this case the class of N-free sparse paving matroids, for some target
minor N) is smaller that the class of sparse paving at a log-level which our
methods do not achieve. (Pendavingh and van der Pol [23] have managed
to achieve such a result for N-free matroids where N is a uniform matroid,
providing a neat proof that asymptotically almost all sparse paving matroids,

and asymptotically almost all matroids, contain N).

Although it is not of direct use, this result may appear to be a source of en-
couragement, as it suggests that at least sometimes general results are easily
implied by fixed-rank results. However we recommend some caution: it is
perhaps a little too easy to believe that something similar to the log-level
result will hold at the absolute level. In situations like this intuition can turn

out to be a poor guide.

For example, let M and N be minor-closed classes of matroids, with N C M.

Then we might reasonably conjecture the following;:

Conjecture 2.3.44 ((false)). Let M and N be minor-closed classes of ma-
troids, with N C M. Then for anyn >r >k

|Nn,r| < |Nn—k,r—k|
|Mn,7"| o |Mn—k,7’—k|

This conjecture, if it were true, would have been very useful to us - imagine
N is a sparse paving matroid which is contained in asymptotically almost all

rank-r sparse paving matroids, for even just one value of r. Then applying
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Conjecture with M as the class of sparse paving matroids, and AN as
the class of N-free matroids, would imply that N is contained in asymptoti-
cally almost all sparse paving matroids (and also in asymptotically all sparse

paving matroids of rank s, for fixed s > r).

And the conjecture is pleasing to our intuition: after all, every minor of
a matroid in N is also in N, whereas a minor of a matroid in M \ N
is not necessarily in M \ N, so we might expect the former to dominate
more as rank and size decrease. However that intuition is incorrect. The
conjecture fails if we choose M to be the class of all matroids, and N to
be the class of sparse paving matroids. Numerous counterexamples arise
in Mayhew and Royle’s [19] computations : for example, we can see that
N73|/IMz3| = 14/108 ~ 0.13 whereas |Ng4|/|Msa| = 270/940 =~ 0.29.
In fact it seems likely that the conjecture is abjectly far from the truth - we
suspect (Conjecture that asymptotically almost all matroids are sparse
paving, yet we know that asymptotically almost all matroids of rank r are
not sparse paving when r = 2, and discussion in recent work of Pendavingh
and van der Pol [25] includes a persuasive case that the same will be true for
r = 3. From this we might guess, as they do, that the same will hold for any
fixed 7.

There is another approach we might consider for extending fixed-rank results
to a general case. If we consider the finite class S,,,,, can we always find
N, R large enough that for n > N,r > R a matroid in S, , will contain as
minors at least csy,,, members of S,,,,7 This would give us our desired
result: if N is a minor of asymptotically almost all sparse paving matroids
of rank 79, we can find ng such that N is a minor of at least (1 — ¢)Su, .1,
members of S, ,,. Then when n,r sufficiently large, we would have that

every matroid in S, , contained an N-minor.
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Of course this is false, as easily demonstrated by the uniform matroid U,
which will only contain one member of S, ,,, as a minor - the uniform matroid
Uvryme- But uniform matroids are a weird case, as are all sparse paving ma-
troids with very few non-bases. What if we restrict to members of S,,,, which
contain a reasonable number of non-bases, as almost all of them do? Unfor-
tunately the answer is still no. The class of Graham-Sloane matroids, which
we shall explore in the next chapter, includes matroids with a large number
of non-bases, and yet asymptotically almost all sparse paving matroids of

rank rg are forbidden minors in the class of Graham-Sloane matroids.

2.4 Other applications of counting methods

Although our focus has been very much on questions of minor inclusion, we
believe the methods we have used might be adapted to tackle various other
asymptotic questions. This section describes one such use. We shall show
that the non-bases of a sparse paving asymptotically almost certainly exhibit

a property which we shall call blocking.

Definition 2.4.1 (k-blocked). We say a (sparse paving) matroid M is k-
blocked if for any k-subset S of E(M), there is a non-basis of M containing

S as a subset.

The main focus of this section is Theorem in which we prove asymp-

totically almost all sparse paving matroids are k-blocked, for arbitrary k.

Theorem 2.4.2. Let M be a matroid drawn uniformly at random from sparse

paving matroids on n elements. Then for any k € Nsg, M is k-blocked.

Before starting a proof, we have one preliminary result to cover.



66 CHAPTER 2. SPARSE PAVING MATROIDS

Lemma 2.4.3. Let o be a positive real number. Then

fla)=a(l=1/a)* =0 as a = oo

Proof of Lemma. We consider first the function g(z) = (1 — x)
It is relatively easily checked that for 0 < x < 1,¢g(z) < % If not, then

2
h(0) = 1,h(1) = 2, and I/(z) = 1 — (4) log2 > 1 —log2 > 0, which shows

2

for some x we obtain (l)x +x < 1. But letting h(z) = (%)x + x, we get

this to be impossible.

We now see (by letting z = 1/a) that for @« > 1,(1 — 1/a)* < So

1
3

fla) <a (%)a which clearly vanishes as v — 0. O

With that out of the way, we can proceed with an argument for proof of the

main theorem.

Proof of Theorem [2.4.3. We take the strategy of considering a single k-set of
elements (say {1,...,k}) and showing that asymptotically almost all sparse
paving matroids on [n] have a non-basis containing those elements. If we can
show this to be true, and to approach the limit sufficiently quickly (i.e. quick
enough to dominate the number of choices of k-set, which is (Z)) then we

will be done.

As in previous problems, our tactic is to fix as much as possible and reduce
the problem to one of relatively simple counting. By Lemma [2.3.2| we may
assume without loss of generality that we are operating in S,, and that
n/4 < r < 3n/4, and prove that the proportion of non-k-blocked matroids

vanishes uniformly across all values of r in this range.



2.4. OTHER APPLICATIONS OF COUNTING METHODS 67

Suppose we have a collection of sets Sy, ...,S; € [n]™ such that V0 < i <,

we have S; D [k], and for all 0 < i < j <[ we have |S;NS;| <r —3.

Let ¥; be the neighbourhood of S; in J(n,r) :that is, ¥; = {U € [n]®) :

Observe that the ¥; are disjoint; in other words, no element of »; can be a

neighbour of 5;, unless j = 4.

For 0 <i <[ we define T;(M) to be the matroid obtained from M by relaxing

all non-bases in ;. So

Let Wi(T) = {N €S, : T;(N) = T}. Consider the matroid T}(M) formed
from T;(M) by adding S; as a new non-basis. Clearly T7(M) € W;(T;(M)).
Also T}(M) contains a non-basis, .S;, with [k] as a subset.

Claim 2.4.3.1. W;(T;(M)) contains at most (n — r + 1)* matroids without a

non-basis containing [k]

Proof. Consider that every matroid in W;(T;(M)) consists of T;(M) tightened
by the inclusion of some collection of non-bases from ;. These non-bases
are necessarily each of the form S; \ eU f, where e € [k] and f & S;. Clearly
no choice of e can be repeated (else we get two non-bases intersecting in
r — 1 elements, contradicting sparse pavingness) and for each choice of e we
have at most n — r choices of f (plus the possibility that no such non-basis
is included). Since the same is true for all choices of e, the total choice is

(n—r+ 1)~ O

Let X; be the event that some member of L(M) N 3; contains [k]. Let Y; be

the negation of this.
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Recall M is drawn uniformly at random from S, ,. We first seck to show

that:

() (e

It suffices to show that for any 0 < i < [, we have Pr(X;|YoN---NY;_1) > n~*k.

Let N .= {N €8S,, : forj <i,dL € L(IM)NYX; : [k] C L}, ie. those
matroids for which Yp, ..., Y; ; hold. Note that M € N; < T;(M) € N,.

For fixed T we have an upper bound of (n—r+1)* on the number of members
of W;(T) with no non-basis containing [k, and a lower bound of 1 on the
number of members of W;(T') that do have a non-basis containing [k]. This

gives us

1 > —k

PrX[T(M) =T) 2 (n—r+0f+1="

So we have shown the probability that no non-basis of M contains all the

elements of [k] is at most (1 — n=F)+1,

More generally we are required to consider all possible choices of k elements.

So:

Pr(M not k-blocked) < (Z) (1 —n™F)F < pk(1 — k)it

But hang on! What we have now looks suspiciously related to the function
in Lemma 2.4.3] In fact, we are done if we can show that we can choose
So, ..., S; such that [ + 1 > n?~.

Contracting by [k] we see this to be equivalent to finding a set S of at least n?*

vertices in J(n—k, r—k), such that no two vertices share a common neighbour
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(put another way, each pair of vertices represent (r — k)-sets intersecting in
at most (r — k) — 3 elements). If we can achieve this, then we can form S; by
adding the elements of [k] to the i-th member of S (relabelling the elements
of the latter so they fall in [k + 1, n]).

As k diminishes in regard to r and n, we may again assume n/4 < r < 3n/4.

We form a collection of vertices in J(n — k,r — k) (read sets in [n — k"))

as follows: letting n’ = |(n — k)/2| and " = | (r — k)/2], we define:

S;={Sem)":Y s=i modn'}

ses

(Note: this is related to the construction of Graham-Sloane matroids, which

we meet in the next chapter.)

Any pair S;,S; (i # j) must intersect in at most 7' — 2 elements (else the

sums of their elements can not be congruent modulo n').

Now clearly the S;” form a partition of [n']"") so we have some i with |S;| >
%(:f,/) Let’s say without loss of generality that Sy is such a collection. Now
we place an ordering on the sets of S and also an ordering on the distinct
([(r—Fk)/2])-sets of [n'+1,n— k. Form a new collection S of (r — k)-sets in
[n — k] by uniting the i-th elements of the respective lists. Clearly there are
at least % (’;,/) elements in each list, so |S| > % (f:) > n?* for large enough n
and r. Finally any two members of S intersect in at most " — 2 elements on
[n'] and also differ [n'+ 1, n — k| - therefore intersecting in at most (r — k) —3

elements in total. O

A more careful analysis could no doubt improve this result significantly (i.e.
replacing k by a non-constant function) however we shall not include this as

our main motivation was to illustrate the wider applications of the counting
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approach developed earlier in the chapter.



Chapter 3

Graham-Sloane Matroids

3.1 Introduction

In 1974 Donald Knuth identified that a sparse paving matroid M with a
large numbers of non-bases would give rise to a family of sparse paving ma-
troids, obtained only by relaxation of non-bases of M, that would contain a
very large number of matroids. Knuth [I1] constructed such a matroid with
enough non-bases to provide a new lower bound on m,,, the number of ma-
troids on groundset [n]. Later Graham and Sloane [6] devised a construction
that guaranteed a matroid with twice as many non-bases as Knuth’s, and
today that construction continues to provide the best general lower bound

on m,.

Graham and Sloane’s construction was as follows

Definition 3.1.1 (Graham-Sloane matroid). A matroid M on n elements is
Graham-Sloane (or GS) if and only if there is some labelling o : E(M) — [n]
and m € {0,1,...,n — 1} such that for every non-basis L of M,

71
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Y o(i)=m modn

i€L
We note that GS matroids are closed under duals (easily checked) but not
under minors. This latter fact is not so obvious, but can be checked by
observing the two matroids in Figure [3.1] In that illustration, the sparse
paving matroid M has 8 elements - which we label 1,2--- 8 - and its non-
bases are precisely every trio of elements {a,b,c} C {1,2,...,8} such that
a+b+c=0 modS8 However if we delete the element labelled “2” then
the matroid M’ that we obtain has 7 elements, 5 non-bases and one ele-
ment e (that which was formerly labelled “6”) which appears in only one
non-basis (a “loose element”). This is not a GS matroid. To see this, allow
any labelling of the vertices with {1,2,...,7}. For each m € {1,2,...,7}
let Lizjm = {{a,b,c} C{1,2,...,7} :a+b+c=m mod 7}. Now if M’ is
GS, £(M') must be a substructure of some L7 ,,,. But this is impossible: for
each m, L7, has only 5 lines, therefore we must have £(M') = L7, for
some m. But no L7, contains a loose element (easily checked by computer;

in fact, the M, are pairwise isomorphic).

Figure 3.1: A Graham-Sloane matroid M and its non-GS minor M' = M \
{2}. Under the labelling shown, the elements in each line (non-basis) of M
sum to 0 mod 8.

In this chapter we shall consider challenges of counting GS matroids, and
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show that they vanish in the sparse paving matroids (this is not irreconcilable
with them providing the best lower bound, since that bound is typically

considered only at a log-log level).

We shall then consider the question of minor inclusion between GS matroids,
inspired by the paper of Pendavingh and van der Pol [24] which identified
M (K4) and the Vamos matroid as being forbidden minors in GS matroids
of odd size (recall that we use “forbidden minor” without the implication of
minimality that sometimes accompanies the term - so “M is forbidden in M”
means simply that no matroid in M has an M-minor). We shall exhibit a
family of matroids whose p-th member is a forbidden minor in GS matroids
except those of size divisible by p, for prime p. By showing however that
such a matroid is contained in asymptotically almost every GS matroid on
np elements, we are able to develop a surprising result - essentially stating
that almost every GS matroid is forbidden as a minor in almost all other GS

madtroids.

In the final part of the chapter, we shall exhibit a class of sparse paving
matroids which are forbidden minors of the entire class of GS matroids. In
particular we shall then show that, for r > 4, asymptotically almost all
sparse paving matroids of rank r contain one of these sparse paving matroids
as a minor. This then implies that asymptotically almost all sparse paving

matroids of rank r are forbidden minors of the class of GS matroids.

Constructing GS matroids from the Johnson graph

Given a stable set in the Johnson Graph J(n,r), any subset of this set is also
stable. In particular, if our stable set has size «, then its subsets are 2¢ in

number. Since each of these defines a (sparse paving) matroid, constructing
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large stable sets in the Johnson graph is a highly effective method of gener-
ating large collections of matroids. This route was first pursued in 1974 by
Knuth [II] who found a construction that guaranteed, for general n and r,
a stable set of size at least i(?) This was later improved upon by Graham
and Sloane [6] whose construction, which we shall describe, guarantees %(f)
In particular, where r = [ 7], this generates a collection of matroids so big

that it provides the best known general lower bound on m,, the number of

matroids on groundset [n].

Before returning to the Graham-Sloane construction, we shall put it in the
context of theoretical bounds on the size of stable sets in the Johnson Graph

J(n,r), and introduce another important source of large stable sets.

Definition 3.1.2 (Steiner system). A Steiner system S(t,k,n) on the ele-
ments [n| consists of a collection of k-element subsets of [n], such that every
t-element subset of [n] is contained in precisely one member of the Steiner

system.

Note that the existence of Steiner systems is only possible when certain con-

ditions upon ¢, k and n are met, and even then is not guaranteed.

Definition 3.1.3 (Independence number). The independence number a(QG)

of a graph G is the cardinality of the largest stable set in G.

The following result is well-established in design theory.

Lemma 3.1.4. For alln and 0 < r < n we have

a(J(n,1)) < 1(”)

n+1l—r\r
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Proof. Let I be a stable set of J(n,r). Each set in [n]"~" can only be
contained in one member of I, since any two r-sets containing the same
(r — 1)-set are necessarily adjacent in the Johnson Graph. Moreover, the

number of (r — 1)-sets contained in each r-set is . This gives

o< 1(,") =i () - = ()

where the middle expression is arrived at by considering the expansions of

(1) and (,")). O

Equality is achieved by the case where the vertices of the stable set corre-

spond to the members of the Steiner system S(r — 1,7, 1), when that exists.

We can now show that the Graham-Sloane construction finds a large stable
set in J(n,r) - thereby proving that it does indeed define a sparse paving

matroid, and that ths matroid has a large number of non-bases.

Define a function f : [n]™ — [n] such that f(X) = Y x mod n. Note that
zeX
in every rank-r GS matroid on [n], the non-bases must all take the same

value under f.

Claim 3.1.4.1. If f(X) = f(Y) then X Y’ that is to say X and Y are not
adjacent in the Johnson Graph J(n,r).

Proof. Suppose X,Y adjacent in the Johnson graph. Then there exist x,y
with # # y such that X —Y =2,V — X = y. But then G(X) — G(Y) =

xr—y #0 mod n, since |z —y| <n and z # y. O
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Therefore, by partitioning the vertices of J(n,r) according to the value they

take under f, we will split the Johnson graph into n stable sets, at least

one of which must have size greater than or equal to %(:f) And now every

subset of the vertices in this part correspond to the non-bases of a distinct
n

GS matroid. From this, setting » = |5 |, we obtain a lower bound on m,,,

the number of rank-r matroids on n elements:

log my, , > i({n%J)

We note that the Graham-Sloane method, whilst powerful and currently pro-
viding the best general lower bound on the size of the largest stable set in
J(n,r), is not optimal for all n,r. It is beaten by the construction where
members of the stable set correspond to members of the Steiner system
S(r — 1,r,n), whenever that exists. For fixed r, Keevash’s [I0] result on
the existence of designs guarantees the existence of such systems for arbi-
trarily large n. However in the important case of r = |n/2|, such systems
are only known to exist for n = 7 and n = 12 (the first of these gives rise
to the Fano plane) and we do not know if these systems exist for arbitrarily
large n. If they were to exist, they would provide stable sets roughly twice
the size of those found in the Graham-Sloane construction. This would be a
significant result as it would give, at least for sporadic values of n, a lower
bound on the number of matroids m,, that asymptotically approaches the

current upper bound at a log-log level.
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3.2 Counting Graham-Sloane Matroids

This section is preparation for later work in which we show the Graham-
Sloane matroids to have remarkable minor-forbidding properties. The argu-
ments later on will make use of the results proved in this section. Here we
seek to get a grip on the problem of counting GS matroids across all possible
orderings of elements. The motivation of this work is to facilitate the exten-
sion of results from the class of GS matroids defined on a particular labelling

o of [n] to all GS matroids with groundset [n].

We first want to define some notation:

Let define the collection of all GS matroids on groundset [n], and set
= |K,|.
Let o : [n] — [n] be any permutation on n elements and m any integer in

[n]. We define:

Kpom|:={M €K, : forall L € L(M), Za(z’) =m mod n}

1€l

Finally define = Kol

In particular we shall frequently refer to K,, ;4 and k,, 4, where id denotes the

identity permutation.

Counting the set K, iq is straightforward. What about the set K,, of all GS

matroids on groundset [n]? This becomes complicated because of the pos-
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sibility that individual matroids may arise separately under many different

permutations of [n].

In order be able to count effectively in K,,, we need to control the likelihood
of matroids arising under more than one permutation. We first shall show
that permutations on [n] can be split into a number of equivalence classes
that we shall call addition-equivalent. We write o0y = 09 when oy, 0, are

in the same addition-equivalent class. We shall show that, for a randomly

chosen M € K, ,, the following holds:
Pr(3¢': 0’ 20,M €K, ) > 0asn — o
The lemma we shall establish is of importance for later theorems in this the-

sis as it enables us to effortlessly extend results proved on K, iq to Kp.

We first need to define addition-equivalence for permutations:

Definition 3.2.1 (Addition-equivalent). Permutations 7 and o9 on [n] are

addition-equivalent if, for any X, Y C [n] with | X| = [Y|, the following holds:

Y oi1(z) =Y o1(y) mod nif and only if > oa(z) = D 02(y) mod n

rzeX yey zeX yey

It’s easy to see that addition-equivalence defines an equivalence relation on
permutations (reflexivity and symmetry are immediate; transitivity follows
by composition of permutations). We also note the relevant implication of

this definition: if o; and o, are addition equivalent, then K, ,, =K, ,,
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Lemma 3.2.2. Permutations o and o' on [n| are addition-equivalent if and
only if, for all x € [n], o'(x) = ao(zx) + B where « is coprime to n, and

g €{0,...,n—1}. (We are working modulo n, son =0.)

Note that if o(z) = ax + § for a not coprime to n, then o is addition-

preserving, but not a permutation!

Proof. Without loss of generality we may assume o = id.
Firstly, suppose o’(x) = ax + 8 for permissible «, 5.

Take sets X, Y of size r with 3,y 0(z) = X ey 0(y) mod n.

Y@ =ad z+rf=ad y+rf=> o'(y) modn

zeX zeX yey yey

So ¢’ is addition-equivalent to id. Conversely, assume ¢’ is addition equivalent
to id. Then for any zy,xs9,y1,y2 € [n| such that x; + o = y; + yo, we
have o'(z1) + o'(y1) = o'(x2) + 0’(y2). But in that case, for any « we have
odx)+dx+1) = dx—-1)+d(x+2) and o'(x + 2) + o'(xz — 2) =
o'(z+1)+0'(x—1). Continuing, some straightforward algebraic manipulation

gives us:

o' (x)+o' (z+1)+o' (2+2)+0'(x—2) = o' (x—1)+0' (2 +2)+0' (z+1)+0'(x—1)

o(z)+o(x —2)=20(x—1)
odx)—d(x—1)=0c(xr—1)—0d'(z—2)

A simple induction then gives:
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So if we set a := ¢’(1) — ¢’(0) and 5 := ¢’(0) we have what looks like the
desired form for ¢’. It only remains to check that o = ¢’(1) —o’(0) is coprime
to n. But this must be the case, else there would be some k£ < n such that
ak = 0 mod n. And that would imply ¢’(k) = ¢’(0), which cannot be the

case since o’ is a permutation of [n]. O

Corollary 3.2.3. Let 01 and oy be permutations of [n] that are not addition

equivalent. Then there exist x1,%2,y1,y2 € [n] such that o1(x1) + o1(x2) =

o1(y1) + o1(y2) but o2(x1) + 2(22) # 02(y1) + 02(y2)-

Proof. Suppose not, then we can argue as in the latter part of our proof of

Lemma [3.2.2|in order to show o; and oy are addition equivalent. O

Corollary 3.2.4. The number of addition equivalent classes of permutations

is at least (n — 2)!

Proof. There are n! possible permutations and each addition equivalent class
has size at most n(n — 1), as determined by the maximum number of choices

of a, . n

Another requirement for our probabilistic argument is a result that binds

asymptotically almost all GS matroids on [n] to rank approximately n/2.

Lemma 3.2.5. For any 0 < § and € < 1 there is some N(¢) such that, for

anyn > N and o : [n] — [n]:

HM €K, : (0.5 =0)n <r(M)<(0.5+)n}| > (1 —e)k,,
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That is to say, asymptotically almost all matroids in K,, , have rank close to

n/2.

Proof. Suppose r < @. We can say that

() (105 = 8)n) + V(05 = &)n) +2)- - (In/2))
(7)) (Tn/2] + 1)([n/2] + 2)--- ([(0.5 + 6)n])

_(05=8/2\"" _ (1=5\""
—\0.5+6/2 S \1+6

Let k,,, denote the number of rank-r matroids in K, ,. A crude upper

bound for this is 2(Z>, which is the number of subsets of [n]™. Now we can

say

log( Z k[n]«m) glog( Z 2(:))
)n r<(

r<(0.5—¢ 0.5—d)n

<logn + <L(0.5715)nj> <logn+ (1;?)6"/2 (L,,Z/l%)

1—90

on/2
PN 1 kna n

= (1 +0(1))n<

Clearly then for large enough n we have

€
Z k[n],a,r S §kn,a,\_n/2j S
r<(0.5—=d)n

kn,a

DO ™

Since K, is self-dual, we can obtain a similar result for » > (0.5 + ¢) and

these together imply the desired result. ]
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Finally we need a lemma to express a somewhat obvious property of the
Graham-Sloane construction. The construction partitions J(n,r) into n sta-
ble sets, and it is intuitively clear that these stable sets have roughly equal
size. For our purposes it suffices to simply put a crude lower bound on the
size of these stable sets. Since we only use this result once, the bounds chosen

are somewhat arbitrary.

Lemma 3.2.6. Let X C [n] such that | X| > 9n/10+ 6 and let 4n/10 + 3 <
t <6n/10. Choose m € {0,1,...,n—1}. Let

Z={TeXW:Y r=m modn}

€T

For large n, we must have |Z| > 44/10

Proof. In accordance with our needs, the proof is somewhat crude. For any
m € {0,1,...,n — 1}, we know X contains at least 4n/10 pairs of form
(z,m — ) (subtraction modulo n). Start to build T € X® as follows: if ¢ is
even then choose a pair (x7, z5) of elements in X such that 29 = m —x;, and
add this pair to 7. If t odd then choose any xg, z1, x9 so that 9 = (m—2xq)—x;
and add this triplet to 7. Now in either case we are able to complete T by
adding only pairs of form (z,—x) - we have at least 4n/10 such pairs to
choose from and are choosing at least 2n/10 pairs and at most 3n/10 such
pairs. So the number of choices for T is at least (4"/ 10) > 44n/10 m

n/10

Now for the main lemma and proof.

Lemma 3.2.7. Let o be any permutation of [n]. Choose M wuniformly at

random from K, ..
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For any 0 < € <1, there is some N (€) such that if n > N:

Pr(30': 0" 20,M €K, ) <€

Proof. We may assume without loss of generality that ¢ = id, so we are
drawing M uniformly at random from K,, ;4. We also impose the condition
that ¢ < (M) < % Let m € {0,...,n — 1} be the unique choice so that
M € K, jam-

Suppose there is some ¢’ such that ¢’ 2 id, but M € K,,,». By Corollary
we can choose some x1, Z2,y1,y2 € [n] such that z1 + y; = x5 + y2 but
o'(x1)+0'(y1) # o'(x2) +0'(y2). Since M € K,, ,» we know that there cannot
exist non-bases Ly, Ly of M such that L1\ Ly = {x1, 25} and Lo\ Ly = {y1, 2}
We want to show that, within K, ;q, the chances of such a quartet x1, z2, y1, ¥2

existing are vanishingly small..

Consider the family F of ordered sets {x1, 2o, 91,12} € [n]® such that z; +
Ty = y1 + 32 mod n. Clearly |F| < n'. Let F' C F be the collection of
sets {1, %2, y1,y2} € F asuch that no pair L;, Ly of non-bases of M with
Li\ Ly = {x1, 22} and Ly \ Ly = {y1,y2}. Now

E(|F'))= Y Pr(X € F')<n'P

XeF

where P is simply the probability that, given a randomly chosen set {1, o, y1, 92} €
F, there will not exist non-bases Ly, Ly of M with Ly \ Ly = {x1,22} and

Ly \ L, = {y1, 3/2}-

But for any given choice of {x1,x2, 41, y2} the number of candidates for such
a Ly, Ly is determined by the choice of the intersection U = L; N Ly. Since

%L < r(M) < % then we can apply Lemma m to see that we have at
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447/10 choices for U such that the sum of elements in U is equal to

least
(m — xy — y1) modulo n. In each case, consider the resulting pair of sets

UU{xy, 22} and U U{y1,y2}. These form a pair of non-bases with probabil-

1)4471/10.

ity i. So the probability of no such pair of non-bases existing is (1 — ;

Now this probability shrinks much faster than n=*, that is to say E(|F’|) — 0

as n — 00, so Pr(|F’| >0) — 0 as n — oo.

Now given any 0 < € < 1 the chances of a matroid being generated under a
different permutation can be made less than § by choice of n And similarly
Lemma says that for large enough n at least (1 — $)k;, iq of GS matroids

. Taking n large enough to satisfy both of the

4n 6n
on [n] have rank 15 <7 < 35

above gives the desired result. O]

Corollary 3.2.8. For positive integers n,

My > Ky > (14 0o(1))(n — 2)127 (1n/21)

Proof. This follows from Lemma [3.2.7| and the lower bound on the number

of addition preserving classes given in Corollary [3.2.4] O

We are also now able to prove that asymptotically almost all sparse paving

matroids are not GS.

Theorem 3.2.9. Let M be chosen uniformly at random from S,. Asymp-
totically almost certainly M is not GS.

Note this obviously implies the same is true when M is taken from M.

Proof. Let K7 be defined as follows: M € K if for some m € {0,...,n—1}
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we have some permutation ¢ of [n] and precisely one non-basis L € L(M)

such that

> o(e) Zm modn

ecL

and, for every other non-basis, the elements of that non-basis under o sum
to m( mod n). In other words, matroids in K} are like GS matroids with
a single rogue non-basis. Define K\ and K to be those matroids for
which this condition holds with ¢ and m respectively.

In general all the results we have shown so far for K,, apply equally to K -

we shall use some of these results without proof, since the proofs would be

essentially identical to those already exhibited.

Let @ define a many to many correspondence between K,, and K as follows:
we say (M, M') € @ if and only if there exists o, m such that M € K, ,,, and
M e Kf

n,0,m)

and M’ can be obtained from M by adding a single non-basis L

and relaxing all non-bases of M that intersect with L in (M) — 1 elements.

By a double counting argument we shall show that for any choice of o we

have, as n — oo,

k:n,a
K3 o]

n,o

By Lemma [3.2.7 (and its obvious equivalent for K;\) it is enough to show

that, as n — oo,

So, if M € K, o, then how many choices of M’ do we have such that



86 CHAPTER 3. GRAHAM-SLOANE MATROIDS

(M, M'") € ®? This is simply equal to the number of choices of a non-basis L
whose elements do not sum to m under o. We know (e.g. due to the upper
bound on the number of matroids) that at most %(:}) choices of L can have

elements summing to m, so the number of choices of L is (1 + o(1)) (’Z)

If M' e KF

n,0,Mm

then how many choices of M do we have such that (M, M) €
®7? It is clear which non-basis we have to relax, but we have a choice of
which non-bases we add back in. There are r possible non-bases that could
be added (delete an element of L, and replace it with the element that makes
the elements of our new non-basis sum to m). We have a free choice of

whether or not to include each of these non-bases, giving us a total choice of

2 (M).

And by Lemma (and its obvious equivalent for K ;) we can assume
that (M) =r(M') ~n/2, so

ki o 2"
— = — 0

Kiol  (1+0(1)(7)

as n — oo. O

Although this does show that GS matroids are heavily outnumbered by non-
GS matroids (and indeed the bounds would vanish even more quickly if we
considered matroids with a larger number of rogue non-bases) it seems that
this line of argument is not by itself sufficient to provide an increase on the

lower bound for m,, at a log-log level.



3.3. MINOR INCLUSION & PARTIALLY GS-FORBIDDEN MINORS 87

3.3 Minor inclusion & partially GS-forbidden

minors

Definition 3.3.1 (Partially GS-forbidden). A matroid M is said to be par-
tially GS-forbidden if there exists at least one integer n such that no matroid

in K,, has an M-minor.

In [24], Pendavingh and van der Pol notably showed that M (K,) and the
Vamos matroid were forbidden minors in GS matroids of odd size. They did
this by showing that the relations between the non-bases of these matroids
forced an equation in modular arithmetic that could only be solved if 2|n.
By extending this idea we shall later construct a sequence of GS matroids,
the p-th member of which is a forbidden minor in GS matroids of size not

divisible by p.

We first outline the argument of Pendavingh and van der Pol, as used for

M(K,).

Figure 3.2: M(K,). On the right hand side we have labelled the elements as
0,1,---5 such that for every L € L(M(K,)) we have > i =0 mod 6

ieL
Theorem 3.3.2 (Pendavingh, van der Pol 2014). M(Ky) is not a minor of

any GS matroid on an odd number of elements.

We note that M (K,) certainly can be a minor of GS matroids on even num-

bers of elements - indeed it is itself a GS matroid, as can be seen from the
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labelling on the right hand side of Figure 3.2

Proof. Let M be a GS matroid in K,,. Without loss of generality we may
assume M € K, ;q and that for all L € £L(M), ;Lz =0 mod n.

Suppose M (K,) is a minor of a M - then there exists disjoint sets A, B C
E(M) such that M/A\ B = M(K,). Let’s suppose the elements of M/A\ B
take the labelling shown in the left hand part of Figure[3.2] Assuming without
loss of generality that A is independent, we now have non-bases of M that

are equal to AU{a, b, c}, AU{a,e, f}, AU{b,d, f}, AU{c,d,e}. The elements

in each non-basis sum to 0 mod n, so we find that

at+tbtc=a+e+f=b+d+f=c+d+e=-> i modn
i€EA

(a+b+c)+(a+e+f)—(b+d+f)—(c+d+e)=0 modn

2(a—d)=0 modn

If n were odd then 2 would be coprime to n, so we obtain nja — d. But a
and d are distinct elements of [n], so a —d # 0 mod n, a contradiction. So

n can only be even. O

It turns out M (K,) is the smallest member of a much larger class, which we

shall explore in the following section.
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3.3.1 A class of partially GS-forbidden matroids

Let H, be a sparse paving matroid of rank three defined on the set of elements

{a,b} U{z;,y; : 0 <i < p} by its set of non-bases:

‘C(Hp) = U {{aaxivyi}v{bvxiayi-‘rl}}

0<i<p

where addition of indices is modulo p. An example of this configuration is
given in Figure[3.3] It is simple to check - and easily seen from a line drawing

- that H,, is indeed a sparse paving matroid.

T

a

Figure 3.3: Hj

Although Hy = M(K4) and is therefore GS we find that for p > 2, H,, is not

GS. Suppose it were, then we may derive that

Yo=Y =Y3— =" =Yp—Yp1 =Y1 —Yp=0a—0b mod 2p+ 2

But then
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p p
pla—b)=> "y —> y;, =0 mod 2p+2

=1 i=1

which is impossible, since p does not divide 2p + 2.

Let H = {H, : p prime}. For primes p > ¢, H, ¥ H,, so H is an antichain

under minor inclusion. Although this can be shown directly it will also be

implied by (and not used in the proofs of!) Lemmas|3.3.3| and (3.3.6]

Lemma 3.3.3. For any prime p, the matroid H, cannot be contained as a

minor in any GS matroid whose size is coprime to p.

Proof. Say we have M a GS matroid on n elements. Working as in the

Pendavingh / van der Pol proof for M (K}) we obtain that there is an equation

(a+zo+yo)+- - +(atazp_1+Yyp-1) = (b+xo+y1)+- -+ (ataz,-1+y) modn

which reduces to

pa + Z (x; +yi) =pb+ Z (x; +y;) modn

0<i<p 0<i<p

which in turn gives p(a — b) = 0 mod n, providing a contradiction to the

uniqueness of a and b except in the cases where p|n. O
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3.3.2 Most Graham-Sloane matroids are partially GS-
forbidden

Definition 3.3.4 (Density). We say a set X C N has density d in the integers
if

X
L XU

n—oo n

=d

In this section we show that most (in some sense) Graham-Sloane matroids
are forbidden as minors in the Graham-Sloane matroids of certain sizes. We
achieve this by showing that with high probability they contain as a minor
some member of our class H. We shall present progressively stronger versions

of this result, culminating in the following.

Theorem 3.3.5. Define X, C N as follows: n € X, if and only if there
exists some set M of density at least 1 — € in the integers, such that for any

m € M, at least (1 — €)k,, matroids in K,, are forbidden minors of K,,.
Then X, has density 1 in N.

Which roughly says that most Graham-Sloane matroids are forbidden as a

minor in Graham-Sloane matroids of most sizes.

Lemma 3.3.6. Fix a prime p and let n — oo. Consider GS matroids in
Kppo where o is any permutation of [np|. Uniformly across all choices of o,

asymptotically almost all GS matroids in K, , contain H, as a minor.

Proof. Imagine drawing M uniformly at random from rank-r matroids in
Kopom- Without loss of generality we may assume that np/4 < r(M) <
3np/4 (by Lemma [3.2.5)). As usual we can also assume that o = id.
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The proof relies on describing a set X, of 2p + 2 elements and showing that
with high probability (uniform across all m,r) there is some set S such that

(M/S)|X, = H,. We claim that

Pr(M = H,) >1—¢

Now, any r-set of [np] whose elements sum to m is included in £(M) with
independent probability % Let X, = {a,b,x1, %2, ..., ), Y1, Y2, .., Yp} Where
a:=mn,b:=2n,x; :=in— 1,y := (p—1—1)n+ 1. Note that V1 < i < p,
we have a +x; +y; = b+ x; + y;»1 = 0 mod np, where the addition in the

subscript is modulo p.

We seek a set S with

S Cnp)\ X,,|S|=7—-3,> s=m mod np

seS

Claim 3.3.6.1. For sufficiently large n, the number of choices of S is at least

()

Proof of claim. Firstly if m (mod n) ¢ {—1,0,1}, include m in S. Else
include m — 3 and 3 in S. Now we have either » — 4 or » — 5 spaces to fill in
S, without loss of generality we may assume this number to be even (if not
we can include np in S). This leaves at least 7 — 6 elements remaining to be

chosen in S, from at least np — 2p — 5 elements in [np]. We complete S by

np/2—2p—>5

"p/8—3 ) choices

including pairs of the form (s,np — s): we have at least (

of these pairs. O
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np/2—2p—5

R ) > n and so we can find at least n
p/8—3

For large enough n we have (

sets satisfying our conditions for S, label these candidate sets Sy,.5,, ..., 5,.

Let Z; be the event that (M/S;)|X, = H,. But consider a set X € X1§3).
If ¥ exo(x) =0 mod n then S; U X is a non-basis of M with probability
%, independent of the other non-bases of M - otherwise S; U X cannot be a

non-basis of M.

It is clear then that each possible choice of (M/S;)|X, is equally likely and

2p+2)

the number of possible choices is bounded above by 2(*5). Moreover, one

possible choice is to include as non-bases precisely the sets of form {a, z;, y;}

and {b, x;, y;11} - in which case (M/S)|X, = H,. So

2p+2)

Pr(Z) > 2~ ("
Since the Z; arise independently, we have that, as n — oo,

2p+2

Pr(ZiUZU--UZ)>1—(1—2" )

We can extend this result to all GS matroids:

Theorem 3.3.7. Let K, be the class of matroids not containing H, as a
minor. For any prime p and 0 < € < 1 there exists N(e) such that, for

n> N, Ky MKyl < chnp.

Proof. Lemma [3.2.7| showed that for sufficient n almost all GS matroids in
K,p o are not in K, ,» for any ¢’ # o. So for any 0 < € < 1, by choosing N

large enough we can ensure that for any n > N, the following hold:
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(i) For each permutation o of [np], at most $k,,, matroids in K,;,, do

not have an Hy,-minor.

(ii) For each permutation o of [np], at least (1 — §)knp, GS matroids are

unique to K, ,.

So, taking S([np]) to be the set of all permutations of [np|, the number of

matroids in K, that have an Hp-minor is at least

Z (1 —€)knpo = (1 —¢) knpo < (1 — €)knp
a€S([np]) aeS([np])

We can also achieve the following result.

Theorem 3.3.8. Fiz any 0 < € < 1 and define X, C N to be the set of
n € N such that the number of non-partially GS-forbidden matroids in K,, is

at most ek,,.
X, has density 1 in N.

Put more informally, for almost every integer n, almost every GS matroid on

[n] is partially GS-forbidden.

Proof. Let € be fixed and ¢ vary freely, 0 < § < 1. Pick an initial sequence

of the primes, Is = py,...,ps such that

=pi—1
<4
izl_[l Di
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That is to say, the density of multiples of these primes is at least 1 — 4.
This is of course possible, since the limit of the density is 1 (every number is

divisible by a prime number!). Let the set of these multiples be

Xs=J{neN:pn}

pEls

Clearly X; has density at least 1 — ¢ in the natural numbers.

For each prime p;,1 < i < s, we have by Theorem [3.3.7 some N; such that
for any n > N; with p;|n, the number of non-partially GS-forbidden matroids
on groundset [n] is at most €k,. Set N(J,¢€) to be the largest such INV;. Now
if n > N(d,¢),n € X5 then n € X.. So X, has density 1 in X;, and hence
density at least 1 — 0 in the integers. And since the value of § was freely

chosen from (0, 1], the density of X, in the integers must be 1. O

In fact, we can strengthen this further. This requires more definitions.

Definition 3.3.9 (B-smooth). Let B be an integer. A positive integer is

called B-smooth if none of its prime factors are greater than B.

Lemma 3.3.10. For any integer B, the set of B-smooth integers has density

0 in the integers.

This is a well-established result with many possible proofs. Here is one:

Proof. Suppose € > 0. Let B be the set of B-smooth integers. We shall
show that the density of B must be less than e. For this it suffices to show
that for sufficiently large IV, the density of B on [IV,2N] is less than e. Set
N > (B!)leeB-logc Then if we have n € BN [N,2N], we can see that there
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must be some prime factor of n with multiplicity at least log B — loge. So

B
BN
|Bﬂ Z (log B—loge) < 9(log B—loge) =eN
O]
This means that we can pick a new sequence of primes p),...,p. ,the den-

sity of whose multiples is at least 1 — €, and such that p; > B. Now we
can strengthen our condition so that our matroids are not only partially GS-
forbidden, but in fact forbidden as minors in GS matroids on all integers
except some set of density less than e: This is the result previously stated in

Theorem [3.3.5, which we can now restate and prove.

Theorem 3.3.5. Define X, C N as follows: n € X, if and only if there
exists some set M of density at least 1 — € in the integers, such that for any

m € M, at least (1 — €)k,, matroids in K,, are forbidden minors of K,,.

Then X, has density 1 in N.

Proof. As in Theorem but instead of picking an initial sequence of the

primes, we pick an initial sequence of the set of primes greater than B, where

B:% O

Casually we might phrase this as “For almost every choice of m,n € N,

almost every GS matroid on groundset [m] is a forbidden minor of the GS

b

matroids on [n]”.



3.4. TOTALLY GS-FORBIDDEN SPARSE PAVING MATROIDS 97

3.4 Sparse paving matroids that are totally
forbidden in GS matroids

In this section we establish that some sparse paving matroids are forbidden as
minors in any GS matroids. Moreover, we shall show that there exist classes
N, of these matroids so that each member of N, is a minor of asymptotically
almost all sparse paving matroids of rank r. This means that asymptotically
almost all sparse paving matroids of rank r are forbidden as minors in GS

matroids.

Theorem 3.4.1. There exists a sparse paving matroid which is not a minor

of any GS matroid.

Once again we use an argument similar to that used in Lemma and

originally in the paper of Pendavingh and van der Pol [24].

Proof. Let N be the sparse paving matroid on the groundset

/
{ava 7ba ¢, daxlaanyhyQ}

with non-bases

[’(N) = {{G, b7 Iy, ‘1'2}7 {a/7 b? Y1, y?}a {Ca da X1, 1’2}, {Ca d7 Y1, ?/2}

We claim that N is not a minor of any GS matroid. A diagram of N is

provided in Figure (3.4

The proof proceeds by contradiction. Assume the claim is false, so N is in
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Figure 3.4: The matroid N described in the proof of Theorem [3.4.]|

fact a minor of some GS matroid M. Without loss of generality we may
assume that M is defined on groundset [n]. Then we can label each of
{a,d’,b,c,d, x1, 29,91,y } with distinct values from [n] such that the sum of
elements in each non-basis of N is the same, modulo n. From the non-bases
{c,d,x1, 25} and {c, d, y1,y2} we obtain that x1 4+ 3 = y; + 32 mod n. Then
from the non-bases {a,b, 1,22} and {a’,b,y1,y2} we obtain z1 + 23 + a =
1 + y2 + @ mod n. Combining these two equations we find that a =

mod n, a contradiction, since a and @’ must take distinct values in [n]. O

3.4.1 Fixed rank sparse paving matroids

We have shown the existence of a single sparse paving matroid forbidden as
a minor in all GS matroids. However we can extend this result by showing
that asymptotically almost all sparse paving matroids of fixed rank r (for
r > 4) contain a minor that is GS-forbidden - and hence are themselves GS

forbidden.

Definition 3.4.2. For » > 4, let N, be the collections of rank-r matroids
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defined by the following description: M is a member of N, if and only if its

groundset can be written as

E(M) :={a,d',b,c,d} U(XUY)

(where | X|=|Y|=r—-2and | X NY| <r—4])

and its non-bases as

L(M) = {(X U{a,b}), (X U{c,d}), (Y U{d,0}), (Y U{c,d})}

We note that the N defined in the proof of Theorem is the sole member
of Nj.

By an argument similar to the proof of Theorem [3.4.1] a matroid in N, can-
not be a minor of any GS matroid. We will have shown that asymptotically
almost all sparse paving matroids of rank r are GS-forbidden if we can show
that asymptotically almost all of them contain an A,-minor. We prove that

result now.

Theorem 3.4.3. Let M be drawn uniformly at random from the collection
S of rank-r sparse paving matroids on [n]. Asymptotically almost certainly

M has a minor in N,.

To prove Theorem [3.4.3| we shall need to consider a new class of structure,
which we shall call concertinas. It will be easiest just to view these as a
line-structure, although we should remember that every line-structure corre-

sponds to the non-bases of a sparse paving matroid.
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Definition 3.4.4 ((r, k)-concertina). Imagine we have a sparse paving ma-
troid M. Let £(M) be the collection of non-bases of M and a, b, ¢, d be

elements not in the groundset of M. Define a line-structure

L={{a,b}UL:Le L(M)}U{{c,d}UL:LeL(M)}

We say a line-structure £ which can be constructed in this way is a concertina.
In particular we may call £ an (r, k)-concertina where r = r(L) = r(M) + 2,

and k = |L(M)| (note that |L| = 2k).

We shall call a, b, ¢, d the roots of the concertina. The root pairs are {a, b}

and {c,d}. The hinge sets of L are the non-bases of the original M.

An Nj-matroid and a (4,3)-concertina (with disjoint hinge sets) can be viewed

in Figure [3.5]

Note the relation between the structures: for example, if we fuse @ and a’ in
our drawing of the Nj-matroid (meaning precisely that we identify those two

vertices in the line-structure) then we get a (4,2)-concertina.

As we work towards a proof of Theorem [3.4.3] we shall say that a line-

structure £ contains an N, -substructure if it has a substructure isomorphic

to L(N), for some matroid N € N,.

The following theorem, presented earlier as Theorem [2.2.9, enables us to
assume that our sparse paving matroid M has a fairly large number of non-

bases.

Theorem 3.4.5. Let r be a fized integer. Asymptotically almost all sparse

paving matroids M € S,, . have at least (1 — 0(1))%(“"]\/[)) non-bases.

Continuing to view the collections of non-bases of sparse paving matroids
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Figure 3.5: A (4, 3)-concertina (left) and an Ny-matroid. The “lines” are
depicted as faces here, and each contain 4 elements. Note that although the
hinge sets shown here are disjoint, this is not necessarily the case in higher
ranks, where they are only required to obey a sparse paving structure.

as line-structures, we shall show that when M € S, , has sufficiently many
non-bases, then £(M) contains either a large number of N, -substructures or
an arbitrarily large number of arbitrarily large concertina substructures. We
can then by a simple two-way counting argument show that occurrences of

the former case are heavily outnumbered by the latter.

Of course substructures isomorphic to L(N) do not necessarily represent in-
stances of N-minors, since the restriction to the elements of the substructure

might contain other lines (non-bases). However we are able to make use of

the following theorem (seen earlier as Theorem [2.3.10)).

Theorem 3.4.6. Let N be any sparse paving matroid. Suppose that for
any integer m, for asymptotically almost every sparse paving matroid M
of rank r(N), we have L(M) contains at least m pairwise element-disjoint
substructures isomorphic to L(N). Then N is a minor of asymptotically

almost every sparse paving matroid.

We have now covered all the relevant pre-existing results. The next lemma
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represents the first stage in the proof proper of Theorem [3.4.3, We say that
concertinas £, and Ly are root-disjoint if they share no roots (they may still

intersect in other elements).

Lemma 3.4.7. For rank r > 4, for any positive integer m and constant

ay > 0, there exists N € N and ay > 0 such that the following holds:

For alln > N, and all M € S,,, with at least oy (% (f)) non-bases, L(M)
contains either at least m pairwise element-disjoint N,.-substructures, or at

r73)

least aan root-disjoint (1, agn -concertinas.

Proof. We show that if £(M) does not contain m pairwise element-disjoint
N, -substructures, then it must contain ayn or more root-disjoint (r, apn’3)-

concertinas (for some constant as(r, m, aq)).

We can assume without loss of generality that m = 1 since, supposing
some greater value of m offers a counterexample, then we can construct
a counterexample with m = 1. This is because we could remove all N,-
substructures, by deleting only o(n) elements and o(: (’Z)) non-bases. Specif-
ically, we need only delete every element in the (up to) m—1 pairwise element-
disjoint N,-substructures, since if a copy was left after that, it too must have
been pairwise element-disjoint with the others, contradicting the premise that
L(M) contains fewer than m of the N,-substructures. Every time we delete
the elements of an N,-substructure we remove at most 2r + 1 elements, and
each element can only be contained in at most % (Z:D lines, so we remove
at most (m — 1)(2r + 1)n"~2 = o(L (:f)) lines.

n

Now, imagine we construct a bipartite graph G such that V(G) = Vi UV,
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with V] representing pairs of elements of (M), and V5 representing (r — 2)-
sets of F(M). Two vertices in opposite parts are linked if and only if the

combined elements they represent form a non-basis of M.

Imagine choosing v := {ey, ..., e, o} uniformly at random from the members
of V5. Let d, denote the degree of v in GG, and p,, denote the number of distinct

2-paths in G whose midpoint is v. Now, using our assumption that there are

1

at least ay (E(ﬁ)) non-bases, we can see that

Ba) = 2 (") ") = (o)

Calculating E(p,) is a little trickier - the total number of 2-paths, counted

by their central vertex, is 3 3°,cy, du(d, — 1), s0

>

where the first inequality is due to Jensen’s inequality [9].

The total number of 2-paths with a midpoint in V5 is at least

ValE(pe) = (1+0(1) (( " 2) a8n> o) < an )

r—2)!

Now, imagine y and z are vertices of V; representing pairs of elements which
intersect in one element, and suppose some other vertex x is the origin of
2-paths finishing at y and z respectively. Call these paths xuy and xvz and
observe then that x Uwu, x Uv, u Uy and v U z are non-bases of M which

together form an N, -substructure of £(M) (note u cannot equal v, else the
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final two non-bases described intersect in r — 1 elements, contradicting sparse
pavingness; similarly u and v cannot intersect in more than r — 4 elements,

else the first two non-bases described would contradict sparse pavingness).

We can have at most n/2 pairs of elements before some pair intersect, so each
vertex can have multiple 2-paths leading to at most n/2 other vertices. Also,
if we have paths zuy and xvy, the vertices u and v cannot intersect in more

than r — 4 elements, since again this would contradict sparse pavingness. So

n

r—2) 2-paths leading to each other vertex,

each vertex can have at most %(

meaning each vertex is contained in at most ( ”2) 2-paths total. Now, the

r—
2,7
aln
8

the total number of 2-paths is at least (1 + o(1)) which for large enough

2,7
aln
9 -

N is greater than

Now, let ¢ = %ﬁ be a constant. We already know that for large enough n the
number of 2-paths with midpoints in V5 is at least en”. So some vertex of V;
must be contained in at least 2cn”~2 of them, and that vertex must have at
least 4cn” 3 2-paths with the same endpoint - which is to say, it must be a

root of a (r, 4cn”~3)-concertina in L(M).

We require concertinas to be root-disjoint, but since removing two root pairs
will remove at most (:2> 2-paths from consideration, for any constant ¢y we
can remove cen pairs of root pairs whilst only removing o(n") 2-paths from
consideration.

404%
9(r—2)!"

So it suffices to set ap := 4c =

Corollary 3.4.8. For fixed r > 4 and m € N, let M be chosen uniformly at
random from 'S, . Suppose that L(M) does not contain m pairwise element-
disjoint N,.-substructures. Then there exists o > 0 such that asymptotically

almost certainly L(M) contains at least an pairwise root-disjoint (r,an™3)-
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concertinas.
Proof. This follows straight away from Theorem [3.4.5(and Lemma [3.4.7, [

Theorem [3.4.3| is now within reach. The final lemma in our proof requires

the introduction of more notation.

Definition 3.4.9. For 0 < k < m, let A(k,n,r,«) denote the collection
of those matroids M € S, such that £(M) contains at least an pairwise

7“73)

root-disjoint (7, an”~?)-concertinas. and precisely k pairwise element-disjoint

N, -substructures (that is to say, we can find k pairwise element-disjoint N,.-

substructures, but not k + 1).

To complete the proof of Theorem |3.4.3|we now need only show the following;:

Lemma 3.4.10. Fiz o > 0,7 > 4 and k € N. Let A, := A(k,n,r, «)
Then, as n — oo, we have

| Al

—Qn0'5
] )

where we use Omega notation in the sense defined by Knuth, such that f(x) =
Qg(z)) <= g(x) = O(f(x)).

In particular we note that this implies that for any fixed m € N we have

which in turn implies that asymptotically almost all rank-r sparse paving

matroids contain m or more N,-substructures. Since there are finitely many
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N,-matroids, and m can be made arbitrarily large, by a pigeonhole argument
asymptotically almost all rank-r sparse paving matroids contain at least an
arbitrarily large number m’ of L(N)-substructures, for some N € N,. Theo-
rem then follows by a simple application of Theorem [3.4.6[and the fact
that A, matroids are GS-forbidden.

Proof of Lemma[3.4.10. Our strategy is to build a many-to-many correspon-
dence between a non-vanishing subset of A, and a vanishing subset of A ;.
Counting arguments will then show the size of these two subsets to differ by
at most a constant, thereby demonstrating that |Ay| vanishes with respect

to |Ags1]. Recalling that our groundset is just [n],

Let B;, C A be the subset of matroids in A;, with the additional condition

5

"=3)-concertinas must have a root labelled less than n%".

that one of the (r, an

Let C, C Aj be the subset of matroids in A, with the additional condition
that in any collection of k pairwise element-disjoint A,-substructures, one

must contain an element labelled less than n°°.

It is readily seen that asymptotically almost all matroids in A are also in
By.. Imagine drawing M uniformly at random from Aj. Then M has at least

r—3)

4am distinct roots of (r, an"?)-concertinas, call these e;, ..., €j4an . For any

given 1 < i < 4an we have Pr(e; < n%%) = n%°/n = n=%° Now

Pr(M & B;) < Pr(e; >n"> A~ A €l4an| > n%®) < (1 — p~05)lHan]

< (1/6) [4a/n] < 6174a\/ﬁ

where we have used the inequality (1 —z71)* < e ! for z > 1.
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Conversely, asymptotically almost every member of Ay, is not contained in Cj:
the number of elements forced to appear in any collection of element-disjoint
N,-substructures can be no greater than the number of vertices contained in
one such collection, which is equal to (2r+1)k, so the chance that a randomly

chosen matroid in A will also be in C}, is at most (2r + 1)kn=%5.

In particular, the above two observations imply that, defining Dy = By \ Ck,

asymptotically almost every member of Aj is in Dy.

We shall now construct a correspondence ® C D; x Cky; and by a double-

counting argument demonstrate that |D|/|Cri1]| = O(1).

We say that (M, M') € ® if and only if £L(M") can be constructed from £(M)

as follows:

Firstly, take the first (under some order, e.g. lexicographical) set of k pairwise
element-disjoint AV,-substructures in £(M) and ignore (temporarily relax) all
lines intersecting any of the elements in these substructures. This has a neg-
ligible effect on the density of remaining lines, so we may still assume we have

"=3)-concertina in £(M) such than some root is

the ability to find an (r,an
labelled less than n°?; take the smallest such root and label it b (we are
aiming to build a N,-structure with labels as in Figure 3.5)). Let (¢, d) be the
lexicographically first pair that form a root pair opposite b in some (r, an”3)-
concertina, and let a be the other root of that concertina (well defined, since
if there are distinct elements ay, as with (a1, b) and (ag,b) both forming root
pairs in (r, k)-concertinas (any k) with the root pair (¢, d), then we would
have a N,-substructure including the element b, contradicting M € Dy). We
may now adjust M to produce M’ € Cy,q in the following way: firstly pick
any element that is not a root of our concertina, and label this element a’.

Now pick some line of our concertina that contains b but not a’. Label the

hinge set as Y. There is one very specific, obscure condition that we must
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place on our choice of Y if there is exactly one hinge set Z so that Z U {a'}
is a subset of some line of of £(M), then we must not choose Y = Z! (The

necessity of this condition will be made apparent later.)

We relax the line (Y U {a,b}) and insert a new line (Y U {a’,b}), whilst
relaxing any existing line containing any r — 1 elements from Y U {d’, b}
(in order to preserve sparse pavingness). Preserving sparse pavingness only
requires us to relax at most most » — 1 more lines, each containing r — 1
elements of Y U {d/,b} (note that there are up to r such lines, but that
includes (Y U{a, b}), which we already relaxed). Finally, we restore the lines
that we temporarily ignored at the start of the process. This is the end of

the process; the resulting matroid is our M’.

Note that M’ is certainly in Cj,; - we can now choose any other hinge set
from our concertina, label this X = {z1,...,2,-2}. Then £(M') contains
an N, -substructure when restricting to X UY U {a,d’, b, c,d} (arranged in a

configuration similar to that shown in Figure |3.5)).

Furthermore, we cannot have added more than one new disjoint N -structure,
since we only added one line - so any collection of £+ 1 element-disjoint copies
of N must include one containing the non-basis (Y U{a’,b}) which of course
includes the element b with its label less than logn. Thus M’ is in Cy; and

we have shown that ® is well defined.

Consider M € Dj. To how many elements in C,1 does M correspond under

o7

This is a simple counting argument: note that we had O(n"~%) choices of the
first line containing b (i.e. our choice of the hinge set Y), and O(n) choices

of a’, meaning that M corresponds to Q(n"~2) members of Cj; under @,
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To how many members of Dj, does a matroid M’ € Cy,1 correspond under
®? We have at most a constant 4(k + 1) choices for the single line to be
relaxed, and at most a constant r choices of “b” within that line. Similarly

we have only r — 1 choices for a’, and this determines Y uniquely.

Moreover, ¢, d, and a are now uniquely determined. To see this take the first
(under same ordering as before) set of k pairwise element-disjoint copies of
N,-matroids in M excluding the element b, and as before temporarily relax
lines intersecting any of these elements. We can now surely determine (c, d)
to be the lexicographically first pair such that (¢, d) is a root pair opposite b
in a (r,cn—1)-concertina, and Y U{C, d} is a non-basis of M’ (again, if there
were some other option, we could derive that M contained a N,-substructure
including the element b, contradicting M € Dy). And (again assuming M’
actually is in correspondence with a member of Dy ), our choice of a will also

be clearly determined.

Reversing the construction necessarily requires us to make the above-mentioned
relaxation of (Y U{a’,b}) and the inclusion in its place of (Y Ua,b). We may
also include a new line containing Y U {d’,b} \ {y} for all y € Y. There are
up to n choices for each of the r — 2 lines we can include here. Finally, we
might be able to add some new line containing Y U {a’,b} \ {b}. However
we contend that if we can, the number of choices for this is limited to a
constant. To prove this, suppose that we can add such a line. Then there
is some other hinge set of elements X such that £(M’) (and £(M)) contain
lines (X U{c,d}), (X U{a,b}), (X U{d, e}) for some element e - since if this
was not the case, we must have violated the obscure condition given for our
choice of the hinge set Y. We now claim that we can only include a line of
form (Y U{d’, f}) if either f = e or if f is necessarily contained in a line of

any collection of k+ 1 pairwise element-disjoint N, -substructures IN £(M’).
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Suppose not, and we can add some other non-basis (Y U {a/, f}). Then in
L(M) we have non-bases (Y U{c,d}), (X U{c,d}), (X U{d,e}),(YU{d, f})
which form a MN,-substructure. Moreover, this is element-disjoint to the ex-
isting k& N,-substructures. Thus, except for (2r + 1)k + 1 choices of f, we
arrive at a contradiction of the assumption that M € A;. So M’ corresponds

r—2

to at most cn members of Dy, for some constant c.

So under ® we have that each member of Dy, corresponds to (n"~?) members
of Cy1 and each member of Cy 4 corresponds to (at most) O(n"~?) members
of Dy, so we obtain that |Cyy1]/|Dk|) = Q(1). But also |Dy|/|Ax| = Q(1),
and [Ap1|/|Cea| = O(n™?), so

|Ags1]  [Akm]  |Cu+ 1] |Dyl 0.5
= X X = 0(n”
Al (Gl © D A 00

as required. O

This completes the proof of Lemma [3.4.10} and (via an immediate application
of Lemma 3.4.6|) the proof of Theorem [3.4.3] Combining with the arguments
in the proof of Theorem [3.4.1], we finally obtain our desired result:

Corollary 3.4.11. Let r > 4. Asymptotically almost all sparse paving ma-

troids of rank r are not a minor of any GS matroid.

3.4.2 Other cases

We have shown that for all » > 4, asymptotically almost all sparse paving
matroids of rank r are forbidden as a minor of GS matroids. What can we

say for smaller values of r? For r =1 or r = 2 it is easy to observe that all
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sparse paving matroids are GS. The case for r = 3 is less clear

We know that not all rank 3 sparse paving matroids are GS and in fact at
least some are not a minor of any GS matroid. For example, consider the
non-Fano matroid £, shown in Figure . This cannot be a minor of any
GS matroid (suppose it is a minor of a matroid in K,,; we obtain the equality
2a = 2b = 2¢ = 2d mod n, which has no solutions for distinct a,b, ¢, d).
However, the non-Fano matroid contains no loose elements and as noted in
Chapter [2l we believe this may present a serious impediment to results of the
kind “asymptotically almost all sparse paving matroids of rank r contain an

F -minor”.

Figure 3.6: The non-Fano matroid F; . Note that F; \ {e} = F; \ {f} =
F\{g} = M(K,); from these three minors respectively we can deduce that,
if I were a minor of a GS matroid in K,,, then 2a = 2b mod n, and 2a = 2¢
mod n, and 2a = 2d mod n.

However it turns out we do have a rank-3 matroid which meet the stronger
criteria (see Conjecture that every minor has a loose element, and is
GS-forbidden. This matroid is shown in Figure [3.71 Although its structure
is rather more complicated that that of A,-matroids, we believe it is likely
to yield to a similar counting argument, and hence conjecture with some

confidence that asymptotically almost all rank-3 sparse paving matroids are

GS-forbidden.



112 CHAPTER 3. GRAHAM-SLOANE MATROIDS

Conjecture 3.4.12. Let M be drawn uniformly at random from'S,, 3. Asymp-
totically almost certainly M is GS-forbidden.

Figure 3.7: A rank-3 sparse paving matroid whose minors all contain a loose
element, that is GS-forbidden. Suppose it is a minor of a GS matroid on
[n]: by considering the non-bases (z,a,b) and (z,a’,b’) we can obtain that
a+b=a +0b modn. But then considering the 4 non-bases involving 1,
we get (a+c¢)+ (b+d) = (a/+ )+ (b +d) modn. Cancelling, this
gives c +d = ¢ +d mod n which in turn implies that e = ¢/ mod n, an
impossibility.

What about the general rank case?

Conjecture 3.4.13. Asymptotically almost all sparse paving matroids are

GS-forbidden

We strongly suspect this to be true, as it would follow from Theorem [3.4.1]and
a proof of the widely-believed conjecture of Mayhew, Newman, Welsh and
Whittle [I7] that every sparse paving matroid is a minor of asymptotically
almost all sparse paving matroids. However this seems substantially harder to
prove: for example, in our proof of Theorem [3.4.3] we are highly reliant on M
being of the same rank as the target minors. Otherwise the correspondence
defined by ® could involve up to r(M) — 1 forced relaxations outside of our

control.

Finally we note that results in the following chapter shall imply that asymp-

totically almost all transversal matroids of fixed rank, and asymptotically
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almost all principal transversal matroids, are GS-forbidden. Since both these
classes of matroids are yet to be defined, we shall save a formal statement of

this theorem for later.
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Chapter 4

Transversal Matroids

4.1 Introduction

Transversal matroids are interesting to us both for their non-matroidal “pre-
sentations” - which can take the appearance of set systems, bipartite graphs,
or points in a simplex - and the opportunities these provide to obtain results
through examining the non-matroidal objects. Let’s first make clear what
they are; we shall start with the most common definition, although it is the

one we shall use the least.

Definition 4.1.1 (Partial transversal, transversal). Let A = {Ay, As, ..., Ax}
be a set system. A set S of size r is a partial transversal of A if and only if
there is some labelling {z, 2, ..., 2.} of the elements of S such that for all

1 <i<r, wehave z; € A;. (If r = k, we simply call X a transversal of A).

Definition 4.1.2 (Transversal matroid). A matroid M on groundset E is

transversal if and only if there exists some set system A on E such that the

115
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following holds: any set S C FE is independent in M if and only if S is a

partial transversal of A.

Equivalently, we can define transversal matroids through the language of
partial matchings in bipartite graphs. Unfortunately, whilst each bipartite
graph defines a single transversal matroid, the reverse is not true, so we can-
not simulate a random transversal matroid by generating a random bipartite
graph. However, there are two special cases in which we may effectively do
this. The first is transversal matroids of fixed rank r. These each can be rep-
resented by (one or more) bipartite graphs with r elements on one side. We
shall show that asymptotically almost all such bipartite graphs are the sole
representative of a transversal matroid. this enables us to extend asymptotic

results from bipartite graphs to rank-r transversal matroids.

The second special case is principal transversal matroids, also sometimes
called fundamental transversal matroids or simplicial matroids. These are
actually a fairly interesting class in their own right; unlike the class transver-
sal matroids, the class of principal transversal matroids is self-dual and they
hold an important place in the universe of gammoids (see Definition ;
all gammoids are a minor of a principal transversal matroid. Strict gammoids
are precisely those matroids which are contractions of principal transversal
matroids whilst transversal matroids are precisely those matroids which are
restrictions of principal transversal matroids, meaning principal transversal

matroids sit within the intersection of those two classes.

Principal transversal matroids correspond precisely to those matroids with
a presentation in a particular class of bipartite graphs; whilst a principal
transversal matroid may have other presentations we shall show that al-
most all such principal presentations are the sole principal presentation of

a transversal matroid. Furthermore a correspondence exists between prin-
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cipal presentations of rank-r matroids on n elements, and bipartite graphs
with parts of cardinality » and n — r. These two facts combined enable
us to extend asymptotic results on bipartite graphs to principal transversal

matroids.

Later in the chapter we drift away from randomness and consider a variety
of other interesting questions related to transversal matroids. Transversal
matroids are not minor-closed, but they are closed under taking series minors
(matroids obtained by a sequence of deletions and series contractions, which
we shall define in more detail). This enables us to consider excluded series-
minors for the class of transversal matroids. There are known to be infinitely
many excluded series-minors of transversal matroids, however we shall show
that there are finitely many of any given rank. We shall also catalogue the

excluded series-minors

Finally we consider axiomatisability of classes. Previously Mayhew, Newman
and Whittle [20] have defined a subset of formulas MSOL called M -logic and
showed that representable matroids are not axiomatisable in M-logic; this
involved constructing representable and non-representable matroids that can
be shown to be indistinguishable in M-logic. By a similar method we are
able to show transversal matroids are not axiomatisable in M-logic; we also
make the observation that the matroids constructed in the original paper are
also (respectively) gammoids and non-gammoids, thereby showing gammoids

are not axiomatisable in M-logic.

4.1.1 Preliminaries

Definition 4.1.3. A gammoid is a matroid M which arises in the following

way: let there be a graph G with vertex set V(G), and let S and T be subsets
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(not necessarily disjoint) of V(G). Set E(M) := T and define a set 7" C T
to be independent in M if there is a collection of |7”| vertex-disjoint paths

of G originating at vertices in S and ending at vertices in 7".

If there exists such a construction of M where T' = V(G), we say M is a

strict gammoid.

Note that every gammoid is a restriction of a strict gammoid.
We make extensive use of some simple probabilistic results.

In particular, the well-known linearity of expectation:

Theorem 4.1.4 (Linearity of Expectation). Given random variables X1, ..., X,,

we have

E(X;+- -+ X,) =EX))+--- +E(X,)

Also, the following simple result.

Lemma 4.1.5. Let X be a random variable taking non-negative integer val-

ues. Then

Pr(X > 0) < E(X)

Proof. Say Pr(X >0)=p. Then Pr(X >1)=p,so E(X)>p-1=p. O

Typically such an X naturally appears as the sum of random variables
Xi,...,X, each taking value 0 or 1. In this case, the lemma tells us that the

probability of at least one event happening is less than the expected number
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of events which happen.

Combining the above theorem and lemma gives the following.

Lemma 4.1.6. Let X,..., X, be random variables taking values 0 or 1. Let

X =Y X,. Then

i=1

Pr(X >0) < iPr(Xi =1)

i=1
Proof. We first apply Lemma to say Pr(X > 0) < E(X). Applying
linearity of expectation to the right hand side we have E(X) = i E(X;).
Then since each X; takes only values 0 and 1, we know that for eacfll < <
n, we have E(X;) = Pr(X; = 1). Substituting this into the original equation
gives the desired result. ]

The above results will be used on several occasions and generally without

quotation.

4.1.2 Transversal matroids and bipartite graphs

We show that our original definition of transversal matroids, in terms of
partial transversals of set systems, can in fact be expressed in terms of partial

matchings in bipartite graphs.

We say a bipartite graph G has parts X, Y to mean that V(G) = X UY with

every edge of G containing a vertex from X and a vertex from Y .

Definition 4.1.7 (Partial matching, matching). Imagine we have a bipartite
graph G with parts X,Y. A set A C X forms a partial matching with Y
if there exists B C Y, with |A| = |B| and there is a bijection f : A — B
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such that for any v € A, there is an edge in G between v and f(v). In other
words, we can draw |A| edges from A to B such that no two edges share a

vertex. In the case where B =Y, we simply call it a matching.

We work from our original definition: A matroid M on groundset F is
transversal if and only if there exists some set system A on E such that
the following holds: any set S C F is independent in M if and only if S is a

partial transversal of A.

Imagine a bipartite graph G with parts X := F and Y := A. That is to say,
the vertices of X represent elements of E, and the vertices of Y represent
sets in A. For any x € X,y € Y, the edge xy exists if and only if x € y. It
therefore follows directly from the definition that a set S C E' is independent
in M if and only if S is in a partial matching with a subset of Y. So, we can

give an equivalent definition:

Definition 4.1.8 (Transversal matroid). A matroid M on groundset F is
transversal if there exists such a bipartite graph G = F 'Y such that any
set § C FE is independent in M if and only if S forms a partial matching

with some subset of Y.

Looking at the other side:

Definition 4.1.9 (Presentation). Let M be a transversal matroid on ground-
set E. A bipartite graph G, one of whose parts is E, is said to be a presenta-
tion of M if and only if M arises from G in the manner described above. Such
a presentation is maximal if we cannot create any bipartite graph G' D G,

on the same elements and parts, such that G’ is also a presentation of M.
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Figure 4.1: Two bipartite graphs, G; and G5, which are each presentations
of the same matroid M

Bonin’s excellent survey [2] covers several basic facts and results about pre-
sentations. Foremost amongst them is the fundamental result that any set

system (respectively, any bipartite graph) defines a transversal matroid.

Theorem 4.1.10 (Edmonds, Fulkerson [4]). Let G be a bipartite graph on
parts X, Y. Then G is a presentation of a transversal matroid on groundset

X.

Transversal matroids do not necessarily have only a single presentation, even
up to isomorphism. For example, consider a rank-3 matroid M on 4 elements
with a single non-basis. Figure shows this matroid along with two very
different bipartite presentations of the matroid. One of these graphs has only
5 edges, whilst the other has 9. In fact there are 10 distinct presentations
up to isomorphism! Since such a small matroid has so many presentations,
we might be forgiven for thinking that larger matroids have huge numbers of
presentations. However for matroids of fixed rank, this is certainly not the
case - matroids with more elements tend to have more dependencies, which
greatly limit our ability to change presentations without changing matroids.
In fact we shall show later that asymptotically almost all rank-r transversal

matroids have only one bipartite presentation.



122 CHAPTER 4. TRANSVERSAL MATROIDS

4.2 Maximal presentations and the fixed-rank

case

Maximal presentations are of great interest due to the following result.

Theorem 4.2.1 (Mason [14]). Let M be a rank-r matroid on groundset
E. Consider bipartite graphs on vertex set comprising parts X = E and
Y =A{v1,...,u-}. Amongst these graphs there exists precisely one maximal

presentation of M (up to labelling of Y ).

An accessible proof is given in Theorem 3.8 of Bonin’s survey [2].

Unfortunately in general most presentations aren’t maximal, nor is there
any obvious way to randomly generate maximal presentations. However we
shall find that for transversal matroids of fixed rank, the situation is much

happier.

From this point onwards we shall, for a bipartite graph G, use to de-
note the transversal matroid of which G is a presentation. We shall also use
E(Q) to describe the collection of edges of the graph G (not to be confused

with somewhat similar notation used to denote the groundset of a matroid).

Lemma 4.2.2. Suppose we have bipartite graphs G,G', G" each on the vertex
set V.= X UY such that E(G) C E(G") C E(G"), and My (G") = My(G).
Then MT(G/) == MT(G)

Proof. We give a proof by contradiction. Since £(G) C E(G’), every match-
ing in G is also a matching in G’, and so every matching set in G is also

a matching set in G’. This means that every independent set in Mz (G)
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is an independent set in M7 (G’). And by a similar argument every inde-
pendent set in Mp(G') is an independent set in M7(G"). But now suppose
Mr(G') # Mr(G). This implies there must be some independent set in
Mz (G') (resp. matching set in G') that is not independent in Mr(G) (resp.
not matching in G). Then this set will also be independent in mz(G”, so

Mr(G") # Mr(G). O

4.2.1 Random transversal matroids

Consider the random bipartite graph model [G(n, m,p)| in which we have
parts X of cardinality n and Y of cardinality m, and for x € X,y € Y,

the edge {z,y} is included with probability p. We note that the case p = %
gives a uniform distribution over , the class of (n, m)-part bipartite
graphs.

We allow each graph drawn from this model to give rise to a transversal ma-
troid, taking X to be the groundset of the matroid and the partial matchings
in the graph to be the independent sets of the matroid. Let My (G) be the

transversal matroid derived from the bipartite graph G in this way.

We are interested in the case of transversal matroids of fixed rank r. Our
aim is to show that asymptotically almost all presentations of rank-r pre-
sentations are maximal, enabling us to effectively treat a random fixed-rank

transversal matroid as arising from a random bipartite graph.

First, a quick theorem.

Theorem 4.2.3. Let G be a bipartite graph drawn from G(n, m), where m is
fized. As n grows, asymptotically almost certainly G will contain a matching

of size m, meaning that r(Mr(G)) = m.
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Proof. Let X and Y be the parts of cardinality n and m respectively. Crudely,
split X into parts Xy, - - - X, each of size [ | or [ |+1. Let Y = {y1, " Ym }-
We show that almost certainly there exists xy € X;, ..., x,,, € X,, such that
Vi e {1,---m}, x;y; is an edge. To do this we shall show that the probability

of the negation is vanishing:

Pr(3i e {1,...,m} Ve € X;,x 4 y;)
<E({i:Vr e Xi,z £ y}])
<m.Pr(Vz € X,z o y1)
< mo-lzl

(where we have assumed without loss of generality that [Xi| = []).

Clearly for all fixed m we have m.27lwl — 0 as n — oo, and so we are

done. O

We also quote the following theorem; again Bonin’s survey [2] has a proof.

Theorem 4.2.4. Any transversal matroid of size n and rank r has a pre-
sentation in r sets; equivalently, in a bipartite graph with parts of size n, r

respectively.

Theorem 4.2.5. Asymptotically almost all bipartite graphs in G(n,r) are a

mazximal presentation of a transversal matroid.

Proof. We show that if drawing a matroid from the model G(n,r, %), the

probability that it is not maximal vanishes.
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Let G be drawn from G(n,r, %), and let X, Y be the parts of cardinality n,r

respectively. We have

Pr(G not maximal) = Pr(Je € £(G) : Mp(GUe) = Mp(G))

<E({yeY:3ze X\I'(y), Mr(GUxy) = Mr(G)})

yey

<Y Pr(3z € X \I(y) : Mp(GUay) = Mr(G))

Fix some y € Y define

py :=Pr(3z € X\ I'(y) : Mr(G U xy) = Mp(G))

Since the number of choices of y is a constant factor r, we are done if we can

show that, for any choice of y, we have p, — 0 as n — oo.

Let Z = X \I'(y). Now suppose we have disjoint sets A, B C Z such that A
and B each have a matching with Y — y. Then for any edge zy, x € Z, we
have M7 (GUzy) # Mp(G) (since A and B are disjoint, at least one of them
does not contain x; say without loss of generality that A does not). Then
AU z is independent in Mz(G U zy) but not in Mp(G). So if we can show

that such sets A, B almost certainly exist, then p, — 0 and we are done.

Now asymptotically almost always we have |I'(y)| < 3n/4, so we can ignore
the case where |Z| < n/4. Now assuming |Z| > n/4, we can split Z arbi-
trarily into parts Za, Zp with |Z4|,|Zg| > [n/8]. We want to show that
asymptotically almost certainly there exists A C Z4, B C Zg such that A

and B are in matching with ¥ — y. But since n/8 — oo as n — oo, and
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Y —y| =r — 1 is fixed, Theorem applies and we are done. O

Theorems 4.2.4] and [4.2.5| give rise to the following corollary.

Corollary 4.2.6. Asymptotically almost all transversal matroids of rank r
have a single presentation in G(n,r), up to the labelling of the vertices in the

bipartite graph.

Proof. The number of n-element transversal matroids of rank r is asymp-
totically equal to the number of maximal presentations in G(n,r), whereas
the number of transversal matroids with multiple presentations is bounded

above by the number of non-maximal presentations in G(n,r). O

We also note that asymptotically almost all transversal matroids have exactly
r! presentations when labelling is taken into account - these are the r! possible
labellings of the vertices in the non-groundset part of the bipartite graph (it
is easily seen that the probability of automorphism under permutation of the

labelling vanishes!).

Having proven Theorem it is now easy to use probabilistic methods to

prove various results for fixed rank transversal matroids.

Theorem 4.2.7. Let N be a transversal matroid of rank rq. For any fixed
rank r > ro, asymptotically almost all transversal matroid of rank r contain

N as a minor.

This is not a surprising result, since we are now effectively working in the
world of random graphs, where subgraph and minor inclusion results are
straightforward. We split the proof, first showing a lemma then following

that with the rest of the argument. By an induced subgraph of G we mean a
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graph obtained from G by vertex deletions, with no additional edge deletions.

Lemma 4.2.8. Let H be a bipartite graph with r vertices in one part. Asymp-
totically almost every bipartite graph G € G(n,r) contains an induced sub-
graph H' isomorphic to H, with the r-part of H' corresponding to the r-part
of H.

Proof. Let H contain r elements in one part and m in the other - call these
parts Hg and Hy4 respectively. Now let G be a graph drawn uniformly at
random from G(n,r) - call the n-part G4 and the r-part Gg. Now from
G 4 choose disjoint subsets Ay,..., Aj,/m| each of size m. Now take each
A; and consider the probability that G(A; U Gg) is isomorphic to H (with
the vertices of G corresponding to the vertices of Hg). This probability
is at least 27", But now the probability that G does not contain H as a
subset (with Gz corresponding to Hp) is at most (1 —27"™)*/™~1 which duly

vanishes, since n is the only non-constant factor. ]

Proof of Theorem[[.2.7. We first show that there exists a matroid of rank r
that contains N as a minor. This is simple: let G be a presentation of N.
Now form G’ by adding r — ry vertices to each part of G such that the new
vertices are in a matching, but there are no edges between the new vertices
and G. Now contracting M7(G")/E(G'\G) = N, so Mr(G') = N, and clearly
M7 (G') is of rank r.

Now take M to be our matroid of rank r containing N as a minor. Let
H be a presentation of M. Asymptotically almost every bipartite graph
in G(n,r) contains a subgraph H' isomorphic to H, with the r-part of H’
corresponding to the r-part of H (by Lemma [4.2.8)). But now contracting by

the elements not contained as vertices in the n-part of H', we are left with
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a matroid isomorphic to M’. So asymptotically almost all bipartite graphs
in G(n,r) give rise to a transversal matroid containing M (and hence N) as
a minor. Now by Theorem the same is true for asymptotically almost
every maximal presentation, and hence asymptotically almost all transversal

matroids of rank r contain N as a minor. OJ

4.2.2 Likelihood of matchings

For working with bipartite presentations of matroids, we shall want to con-
sider the likelihood of the existence of a matching between two sets of vertices.
We first familiarise ourselves with Hall’s condition, which is necessary and

sufficient for a bipartite graph to contain a matching.

Definition 4.2.9 (Hall’s condition). Let G be a bipartite graph on parts
X, Y. Aset X' C X meets Hall’s condition if, VS C X', |['(S)| > |S|.

Theorem 4.2.10 (Hall’s marriage theorem [7]). There is a matching from

X' C X tosomeY' CVY if and only if X' meets Hall’s condition.

In particular if |X| = |Y| and Hall’s condition holds for X itself, we have
a total matching from X to Y (by which we mean a matching that spans
all vertices in G). The following result is well-known and somewhat trivially

proved.

Theorem 4.2.11. Let X and Y be two sets of elements with | X| = |Y| = n.
Form a bipartite graph G on X UY by independently including each edge
xy :x € X,y € Y with fived probability % Let p, be the probability that G

does not contain a total matching. Then p, — 0 as n — oo.
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However, we shall actually prove a more general result (this is useful later).

Theorem 4.2.12. Fiz § > 0 and let € > 0. let X and Y be two sets of
elements with |X| =n,|Y| =r. Let G be drawn uniformly at random from
all bipartite graphs on parts X,Y . Let p,, be the probability that there exists
some X' € X" such that X' is not in matching with any subset of Y. There

exists n(e) such that, for n > n(e) and r > n/2 + on we must have p,, < €.

In other words, as n — oo, asymptotically almost all bipartite graphs with
parts |X| of cardinality n and |Y| of cardinality at least n/2 + on have
matchings from every |Y|-subset of X to Y. In the context of bipartite
presentations, this actually says that for r > n/2+dn, asymptotically almost
all bipartite graphs G € G(n,r) have Mp(G) = U, ,.

Proof. We assume without loss of generality that ¢ < 0.1

We can model drawing G uniformly at random by including the edges {zy :

z € X,y € Y} independently with probability 3.

For such an X’ to exist, by Hall’s conditions, requires some A € X, B € Y
such that 1 < |A| <rand |B| =7+ 1—|A| and, for all z € A,y € B there

is no edge xy.

Firstly we shall show that asymptotically almost certainly there are no such
cases where |A| > dn/2,|B| > on/2. This is easy enough to see; let Z be the

number of such cases. Then

=5 () 1)

But for any 6n/2 <i <r 41— dn/2 we have
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n r 2~i(r+17i) < nnrn27(6n/2)2
1)\t —1 -

— E(Z) < n(n”r"?‘<5”/2)2 — 0

For |B| < én/2, we must consider a different measure of failure. If | B| < dn /2
then |A| > n/2+ dn/2. This means that we must have |I'(B)| < n/2 —dn/2.
We shall show that in fact there is asymptotically almost certainly no vertex

y € Y with [T'(y)| < n/2 — dn/2. Letting yo be any fixed vertex in Y,

PrEye Y : M) < &~ 2) <B({ye Y : M)l < &~ )
n  on
< r.Pr(I'(yo)| < 5~ 7)

Now |I'(yo)| may be seen as the sum of n independent trials taking value 1
or 0 - where each trial corresponds to the inclusion or non-inclusion of an
edge from 1y to a particular vertex in X. This makes it a binomial variable
with parameters n,0.5). We now apply Hoeffding’s inequality for binomial

distributions

Theorem 4.2.13 (Hoeffding). Suppose Z ~ Bin(n,p). Then

Pr(Z < k) <exp (—Z(Tlpn_k)Q>

Applying Hoeffding with p = % and k= 5 — %" we find
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on/2)? )
Pr(JyeY :[I'(y)| <k)<rexp (—2%) <re 2

Finally, the case where |A| < dn/2. In this case we find that I'(A) < on/2.
Unsurprisingly this is implausible: we apply the same method as in the

previous case to find

_ 2 ,
Pr(3z € X : |I'(x)] < dn/2) < n.exp <_2(n/25n/2)> = n.e” (1702
n

]

(The choice to use Hoeffding’s inequality rather than the more obvious Law
of large numbers was because the latter is not usually given with an explicit
bound on the rate of convergence, and our cases required a probability of

o(r=1) and o(n~!) respectively.)

When n > 2r, it is clear that no such result holds: there will almost certainly
exist a vertex y € Y such that y has degree strictly less that n/2. But then
X \ I'(y) does not meet Hall’s condition.

4.3 Principal transversal matroids

As previously mentioned, we are interested in principal transversal matroids
due to their important place in the universe of gammoids. Every gammoid is
a minor of a principal transversal matroid; in fact we can make two stronger
statements. Firstly, every gammoid is a restriction of a strict gammoid, and
every strict gammoid is a contraction of a principal transversal matroids.

Secondly, and dual to the first statement: every gammoid is a contraction
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of a transversal matroid, and every transversal matroid is a restriction of a
principal transversal matroid. A sketch of this worldview is show in Figure

4.2

DUALITY )

Figure 4.2: A view of the world of gammoids. Contraction and deletion
may occur along the diagonal axes as indicated; duality is a reflection in the
vertical axis. Size and rank are not shown. (Based on an original sketch by
Ingleton.)

We begin this section by putting transversal matroids in a different context,
from which principal transversal matroids might seem more naturally de-

fined. Firstly we need some definitions:

Definition 4.3.1 (Cyclic flat). A flat I of a matroid M is called cyclic if
the matroid M|F has no coloops. We use to denote the collection of
cyclic flats of M.

Note that we are talking about coloops of the matroid M|F; this is not

equivalent to saying F' contains no coloops of M.
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€1

€4
€3 €3 €2 M
€9 €2

Figure 4.3: Two presentations of a matroid M on the simplex. This is actually
the same matroid as seen in Figure 4.1, with the same two presentations in
geometrical rather than graphical form. We see the left hand presentation is
principal, but the right is not.

We can now offer yet another rephrasing of the definition of a transversal

matroid.

Definition 4.3.2 (Transversal matroid). A matroid is transversal if it can
be represented geometrically as points on a simplex, such that each cyclic
flat of the matroid corresponds to the points in a particular face (of any

dimension) of the simplex.

Essentially, geometric and graphical representations are in direct correspon-
dence - where an element is adjacent to a particular collection of vertices in a
bipartite graphical presentation, in the corresponding geometrical represen-

tation it lies in the face containing precisely that collection of vertices.

Definition 4.3.3 (Principal transversal matroid, principal presentation). A
transversal matroid is principal if it has a geometrical representation on a
simplex, such that at least one element lies at each vertex of the simplex.

Such a representation is called a principal presentation.

Figure[4.3|shows two geometrical representations of a matroid on the simplex,

one of which is principal.

Returning to the bipartite graphical context, this means a transversal ma-
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troid is principal if it has a presentation such that each vertex in the non-

groundset part of the graph is adjacent to at least one leaf.

Note that a principal transversal matroid may have non-principal presenta-
tions - in fact an example of this can be seen in Figure [{.1] where G is a
principal presentation of M, but G (along with 8 other presentations of M)

is not.

Principal transversal matroids have a number of nice properties.

Theorem 4.3.4 (Las Vergnas [12]). The dual of a principal transversal ma-

troid is necessarily principal transversal.

We note the following obvious corollary. Let PP, , denote the collection of

rank-r principal transversal matroids on n elements.

Corollary 4.3.5. For fized n and all 0 <71 <n, |P,,| = [Ppn_r|.

A matroid can have more than one principal presentation. For example the
matroid in Figures and clearly has multiple principal presentations,
since the elements ey, e3, e4 are interchangeable in the principal presentation.
However we can show that any two distinct principal presentations cannot

share the same set of leaves.

Theorem 4.3.6. Every principal transversal matroid M has a unique prin-
cipal presentation, up to labelling of the r-part of the graph and choice of a
collection B of r(M) leaves.

Proof. We work in the graphical context. We only consider presentations in



4.3. PRINCIPAL TRANSVERSAL MATROIDS 135

which a given collection of r elements (without loss of generality say the first
r elements) of our groundset are leaves with distinct neighbours (so they will
form a matching with the r-part of our principal presentation graph). Let us

call this collection B and label its members [y, ...,[,.. Note that B is a basis

of M.

Consider a principal presentation G : V(G) = X UY, with X the groundset
part of GG, and let us label the vertices in Y as 1, ..., ¥, such that for each
ie{l,...,r}, yi ~ ;. Now let G’ be a different principal presentation, with

the same collection of leaves B, and let the vertex adjacent to [; be labelled
Yi-
Given a vertex z € X, let B, be the collection of leaves in B adjacent to

neighbours of x in G. Let B!, be the collection of leaves adjacent to neighbours

of ¢ in G'.

Since G and G’ are different, there is some vertex x € X \ B such that
Fg(x) # T'er(x), and so B, # B..

Now consider the smallest circuit of Mp(G) contained in B U x - this is
B, Uz. And the smallest circuit of My (G’) contained in BUz is B, Uz. So
C(Mr(G)) # C(Mr(G")) and thus Mr(G) # Mr(G'). O

So we have just shown that different principal presentations of the same ma-
troid cannot share a collection of r leaves in matching with the r-part. Our
goal now is to show that, whilst principal transversal matroids may have
multiple principal presentations with different leaf sets, asymptotically al-
most always they do not. Proving this requires a number of intermediate

results.
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Lemma 4.3.7. Let G be drawn uniformly at random from principal pre-
sentations of rank-r matroids on [n] elements with parts X := [n] and Y.
Suppose there exists € > 0 such that r > (1 + ¢€)log(n —r) and n —r > en.

Then asymptotically almost certainly X only contains r leaves.

Proof. This is a counting argument. Let B(G) be the collection of leaves of
G and B,in(G) = {ly, ..., 1.} be the first r leaves in X. Clearly every choice
of G has a forced choice of By, (G), so by identifying G with B, (G) we
can partition all principal presentations G € G(n,r). Now, for any choice of

B e X)) we have

Pr(|B(G)| > 7 : Buin(G) = B) < E((|B(G) \ Buin(G)]) : Bpin(G) = B)

<(n-r)-r-27"

since r - 27" is the probability that any given vertex in X is a leaf.

But 27" < ((n—7r)r)~17¢, so the probability of more than r leaves is bounded

by (en)~¢ which vanishes as n — oo.

Since this is true for all choices of B, we have

Pr(|B(G)|>r)= Y Pr(|B(G)| > r: Bunin(G) = B)Pr(Bn(G) = B)

Bex(r)

< (en)™¢ Z Pr(Bpin(G) = B) = (en) < = 0

Bex(r)
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Theorem 4.3.8. Fix any 0 > 0. Let G be chosen uniformly at random
from all principal presentations of transversal matroids on [n]. Asymptoti-
cally almost certainly (0.5 — d)n < r(Mp(G)) < (0.5 + d)n. Moreover, G

asymptotically almost certainly contains only r(Mr(G)) leaves.

Proof. We shall assume without loss of generality that § < 0.1.

Let N, := N(n,r) be the number of principal presentations G' such that
M7 (G) has rank r. Without loss of generality we may ignore permutations of
the non-groundset part of the graph. Imagine first choosing r leaves, and then
choosing any arrangement of edges on the remainder of the graph. Certainly
every presentation is generated in this way, and by a similar argument as in
Lemma we have asymptotically almost all choices producing a unique
presentation for suitable ranges of r - in particular when (0.5 — d)n < r <

(0.5 4 d)n. So we have

N, < ")t
AT
asymptotically approaching equality when (0.5 — 0)n < r < (0.5 + 0)n.

This function is a product of two functions, each symmetrically unimodal in
r with peak at n/2, and so is itself symmetrically unimodal about that point.

Letting I denote the interval [(0.5 — d)n, (0.5 + §)n] we have

Y N, < (n—=26)N|(05-6)n
r&l

Now, for | (0.5 —3d)n] <r < |n/2]| we have
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n—r
N, r—+1

(%)

So

Nios-omit1 o [(0:5+8)n] o5 S g2om
NL(O.S—(S)nJ L(05 - 5)7” +1
20n
= Nyos-sn)+1 > 2" N|(0.5-5)n] > > N,
n — 20 el

Thus as n — oo, we have

N, N, _
(Zr&[ r) < ( Zr&[ r ) < n 2625 0
>rer Ni N (0.5-6)n|+1 220m

in other words: asymptotically almost all principal presentations G on n
elements give r(M7(G)) in the range [(0.5 — 0)n, (0.5 + d)n]. Since we can
easily choose ¢ to satisfy the conditions of Lemma [4.3.7| we can also say that

asymptotically almost certainly G only contains r(Mz(G)) leaves. O

Theorem 4.3.9. Let M be drawn uniformly at random from principal transver-
sal matroids on [n]. Asymptotically almost certainly (0.5 — d)n < r(M) <
0.5+ 6)n.

This will require a preparatory lemma, which is a“Law of large numbers”
type result showing that in a random bipartite graph, asymptotically almost
certainly the size of the neighbourhoods of all small vertex-sets approach the

expected value.
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Lemma 4.3.10. Fizk € N, § > 0 and let € > 0. Suppose we have a bipartite
graph G' chosen uniformly at random from G(n,r) with parts X of cardinality
n and Y of cardinality r. There exists n(e) such that when n > n(e) and

n/2 <r < 2n, we have

Pr(3X’ € XW - |[D(X")| = r(1 = 278)| > or) < e

Proof. This is more or less identical to the arguments for the final cases in
Theorem The size of the neighbourhood of a given set is a binomial
variable with parameters r,1 — 27% and the size of their complements is

binomial with parameters r,27%. So we apply Hoeffding to get

Pr(3X’ e X® . DX <r(1-27%-9)) < <Z

) exp(—20°r) — 0

and, symmetrically,

Pr(3X' ¢ XW . N(X")| >r(1 —27"-9)) < <”

k‘) exp(—26°r) — 0

Combining these asymptotic bounds gives the desired result. O

Proof of Theorem [{.5.9. We shall assume without loss of generality that § <
0.01. Subject to that, we show the following claim:

Claim 4.3.10.1. Let (0.5 — d)n < r < (0.5 + 0)n and draw G uniformly
at random from principal presentations of rank-r transversal matroids on

[n]. Asymptotically almost certainly G is the only principal presentation of

M (G).

Given this claim, the number of principal transversal matroids with rank in
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this range is asymptotically equal to the number of principal presentations
with rank in this range. And the number of principal transversal matroids
with rank outside this range is clearly bounded by the number of principal
presentations with rank outside this range. And since by Theorem [4.3.8
asymptotically almost all principal presentations have rank in this range, so

must asymptotically almost all principal transversal matroids.

We shall prove the claim firstly for the subset of cases where r < n/2. Let
B be the leaf set of our presentation G (note by Lemma and Theorem
we can assume there is only one such choice). Now by Theorem m
we know this is the only principal presentation of Mp(G) with this leaf set.

What are the chances another leaf set exists?

Suppose as usual that G has parts X and Y. By Lemma [4.3.10 we can as-
sume that every vertex in € (X \ B) has neighbourhood of size between
0.4r and 0.6r, and each pair z1,x9 € (X \ B) has |I'(z1, 22)| > 0.7r. Similarly
each y € Y has at least 0.4(n — r) neighbours, and each pair y;,y» € Y has
at least 0.7(n — r) neighbours, in X \ B. We may consciously neglect any

presentations for which these conditions do not hold.

Now, we want to show GG asymptotically almost certainly does not have an
alternative principal presentation G’ with leaf set B’. We first show that
asymptotically almost certainly G does not have an alternative presentation
G’ with leaf set B’ such that |B’N B| < 0.35r. Suppose it did, then take x €
X\ (BUDB'). Let B, C B denote those leaves in G which share a neighbour
with z. By assumption 0.4r < |B,| < 0.6r. But now |B,\ B'| > 0.05r > 2, so
we can find vertices l1,ly € B, \ B’. And since B, Uz is dependent in M (G)
we must also have |I'¢/(B, Uz)| < 0.6r. But I'e/(B, Uz) 2 T'er({l1,12}) and
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by assumption we have |I'¢/({l1,l2})| > 0.7r, a contradiction.

So, we can assume |B N B’| > 0.35r. But now we also have | X \ (B U
B")| > 0.35r. We claim that asymptotically almost certainly there exist
r € X\ (BUDB'), € B\ B such that = and [ share a neighbour in G. If
|B\ B'| > 2 then we can find y;,y2 € Y each adjacent to a leaf in B\ B'.
But now (again using our earlier assumptions about neighbourhood sizes) we
have (X \ B\ T'c({y1,92})| < (n—7r) = 0.7(n —r) = 0.3(n — r) < 0.35r, so
Ta({y1,y2}) N X\ (BUB') # () and we are done. The remaining case is when
B\ B’ is a single element [. But now we already have | X\ (BUB')| = n—r—1;
letting y be the neighbour of [ in G, y has at least 0.4(n — r) neighbours of
which some must clearly be in X \ (BU B’).

So, we have some z € X \ (BUB’),l € B\ B’ sharing a neighbour in G. Now
let B, C B be the leaves of G adjacent to neighbours of x. By assumption
we have in G that [I'¢(B,Uz)| < 0.6r. And clearly B, Uz is a dependent set
of M7 (G) = Mr(G) and so in G’ too we must have |I'¢/ (B, Ux)| < 0.6r. But
Pe(B,Uz) 2 T'er({l,2}) and since [,z € X \ B’ we also have by assumption

that |Te/ ({l,x})| > 0.7r, and a contradiction is reached.

We now note that having proved the result for r < n/2, it automatically
holds for » > n/2. This is easy to see: by Corollary the number of
principal transversal matroids [P, | is symmetric about r = n/2, and so is

the number of principal presentations N,.. So

Poyl =1 =0(1)N, = [Pppr|=(1—0(1)) Ny

and thus we are done for r > n/2 also. O

Combining Theorems 4.3.8 and 4.3.9 yields the following corollary.
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Corollary 4.3.11. Let M be drawn uniformly at random from principal
transversal matroids on [n|. Asymptotically almost certainly M has only one

principal presentation.

Proof. Theorems 4.3.8 and imply that asymptotically almost all prin-
cipal presentations on n elements are unique. The number of transversal
matroids with a unique principal presentation is by definition equal to the
number of unique principal presentations, whereas the number of princi-
ple transversal matroids without a unique principal presentation is bounded
above by (half) the number of non-unique principal presentations. Thus we
can see that the proportion of principal transversal matroids without a unique
principal presentation is bounded above by (half) the proportion of principal

presentations that are not unique. Therefore it too is vanishing. O

Theorem 4.3.12. Let M be drawn uniformly at random from principal
transversal matroids. Asymptotically almost certainly M contains a circuit

of size /2| + 1 or smaller.

Proof. Corollary tells us that it suffices to prove the result for a ran-
domly chosen principal presentation. Let this presentation be G with parts
X and Y and leaf set B as usual. For each vertex in X \ L, the degree of the
vertex will be /2] or less with probability at least 3. And so as n — oo
almost certainly there will be some x € X \ L with d(z) < |r/2]. Now letting
B, be those leaves adjacent to neighbours of =, we see that L, Ux is a circuit

of size at most |r/2] + 1. O

We can now state a nice theorem for general transversal matroids.
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Theorem 4.3.13. Let N be a transversal matroid. Asymptotically almost

all principal transversal matroids contain an N-minor.

Proof. Without loss of generality we may assume a principal transversal ma-
troid M has a unique principal presentation G with parts X := E(M), Y
and leaf set B C X as in all previous examples, and we may also assume
that |Y| > n/3 and | X \ B| > n/3. Let M be drawn uniformly at random
from principal transversal matroids on [n] meeting these assumptions. Due
to symmetry we can assume without loss of generality that B = [r(M)] -
choosing M is now equivalent to generating a random bipartite graph on

parts Y and X \ B = [r(M) + 1,n].

Let H be a bipartite presentation of N. By Lemma [4.2.8 our random bi-
partite graph asymptotically almost certainly contains an induced subgraph
isomorphic to H. Let the vertices of this subgraph be X’ € X \ B and
Y’ CY. Let B C B be the leaves in B adjacent to a vertex in Y’. Then
(M/(B\ B"))| X' = N. O

For the next corollary it may help to recall the universe of gammoids as

shown in Figure [4.2]

Corollary 4.3.14. Let N be a gammoid. Asymptotically almost all principal

transversal matroids contain an N-minor

Proof. We know every gammoid is a minor of a transversal matroid . Let
N’ be a transversal matroid with an N-minor. Asymptotically almost all

principal transversal matroids contain an N’-minor, and thus an N-minor.

[
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We can now tie the results of this chapter nicely to the work at the end
of the previous chapter. Recall that we defined (Definition a class
N, illustrated in [3.4] such that every N € N, was a forbidden minor of
GS matroids. We claim that any such matroid N is also transversal. We
shall prove this in the following section (Claim as the simplest proof

requires techniques yet to be introduced.

That enables us to say the following:

Theorem 4.3.15. (i) Forr > 4, asymptotically almost every rank-r transver-

sal matroid is a forbidden minor in GS matroids.

(ii) Asymptotically almost every principal transversal matroid is a forbidden

manor in GS matroids.

Proof. Let N € N. N is a forbidden minor of GS matroids, therefore so is
any matroid containing an N-minor. But N is a transversal matroid of rank

4. Therefore:

(i) By Theorem 4.2.7] for r > 4, asymptotically almost all rank-r transver-

sal matroids contain an /N-minor.

(ii) By Theorem 4.3.13], asymptotically almost all principal transversal ma-

troids have an N-minor.

and hence, in either case, are GS-forbidden. O

The latter case is also trivially implied by Theorem 4.3.12

Finally, we can also link principal transversal matroids with fixed-rank transver-

sal matroids.
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Theorem 4.3.16. Asymptotically almost every transversal matroid of rank

r 18 principal.

Proof. Tt suffices to show asymptotically almost every bipartite graph G in
G(n,r) is a principal presentation. Let the r-part of G be Y = {y1,...,y.}.
Let p; be the probability that there is no leaf adjacent to ;. This is equal to
(1 —27")™. And the probability that G is not a principal presentation is at

most >.I_; p; = r(1 —27")", which clearly vanishes as n grows. O

4.4 Minimal non-transversal matroids

In this section we shall classify the rank-3 matroids which are minimal non-
transversal under taking series minors (i.e. every deletion or series contraction
of the matroid is transversal). For brevity we shall refer to these as series-

minimal non-transversal matroids.

Throughout the chapter we shall use the term [line to mean a circuit of size

3.

4.4.1 A useful function for determining transversal-
ity

Before tackling this classification it will be helpful to introduce a new way of
determining whether or not a matroid is transversal. The natural definitions
of transversal matroids do not give rise to simple tests of transversality;

instead we shall use a function described by Bonin [2] based on a related
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function of Mason [I5]. This function is defined recursively on subsets of the
groundset, mapping them to an integer (not necessarily positive) value. For
X a subset of E(M), let the value of be equal to the rank of M minus
the rank of X minus the sum of the values taken by  on the cyclic flats
(strictly) containing X . Formally,

Definition 4.4.1. Let M be a matroid, and for all X C E(M) define recur-

sively:

YEZ(M):XCY
where we recall that Z(M) is the collection of cyclic flats of M.

Since the g function is defined separately on each matroid, we may sometimes

use [y7(X) to mean the § function defined on M.

We note the following two lemmas associated with the g function. The first
is a simple consequence of applying the 5 function to the rank-0 cyclic flat;

the second is shown in, for example, Bonin’s survey [2].

Lemma 4.4.2. For any matroid M, Y. p(Y)=r(M).

Proof. Let Yy be the rank-0 cyclic flat. Then since every other cyclic flat

contains Yy, we have

> 6<Y>=< > 6<Y>)+5<Y0>

YeZ(M) YEZ(M):Y DX

:< (Z 5(Y))+(T(M)_T(Yo)— > 5(Y))

M):Y DY, YeZ(M):Y DY
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=r(M) —r(Yo) = r(M)

Lemma 4.4.3. A matroid M is transversal if and only if for all X C
E(M),5(X) = 0.

The second lemma is central to Mason [I4] and Ingleton’s [§] celebrated

characterisation of transversal matroids.

In combination Lemmas4.4.2]and |4.4.3| give us some easy checks for transver-

sality. If we can find any subset of F(M) which takes a negative value under
B, we know M is not transversal. Similarly, since every circuit-hyperplane
takes value 1, a transversal matroid M can have at most r(M) circuit-

hyperplanes.

As promised earlier, we can use the g function to demonstrate the transversal-
ity of matroids in the class N,., as defined at the end of the previous chapter
(Definition for all » > 4. This proof presents a nice illustration of
the usefulness of the [ function for quickly computing whether a matroid is

transversal.

Claim 4.4.3.1. Let N € N,. Then N is transversal.

Proof. N has non-bases X U {a,b}, X U{c,d},Y U{d,b},Y U{c,d}, where
| X NY| < r(N)—4. Since N is sparse paving, the only cyclic flats are its
non-bases, which each take value 1 under the 5 function. No three non-bases
of N intersect, so every subset X € F(NN) is either a subset of no cyclic flat,
a subset of one cyclic flat, a subset of two cyclic flats, or the empty set. In

cach case we shall see that 5(X) > 0. In the first case we have f(X) =
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r(N) —r(X) > 0. In the second case we have > B(Y) =1 and
YeZ(N):XCY
r(N)—r(X) >1,s0 5(X) > 1. In the third case we have > BY) =
YeZ(N):XCY
2and r(N)—r(X) > r(N)—|X| > 2 by sparse pavingness of N, so 5(X) > 0.
In the final case we have > BY)=4and r(N) —r(X)=7r(N) >4
YeZ(N):XCY
by definition, so 5(X) > 0. ]

4.4.2 Excluded series-minors of rank-3 transversal ma-

troids

(Classifying the series-minimal members of the class of non-transversal ma-
troids involves considering a number of possible cases. We shall consider

separately simple and non-simple matroids of rank 3.

The following lemma enables us to assume that circuits may only intersect

in at most one element in the simple case.

Lemma 4.4.4. Let M be a simple rank-3 series-minimal non-transversal

matroid. For any rank-2 flat F' of M, we have |F| < 3.

Note that this condition is equivalent to saying M is co-paving.

Proof. Suppose not, and let F' be a hyperplane in M of cardinality |F| > 4.
Note that every 3-subset of F' must be a circuit of M. Now let M’ = M — e,
for some e € F. We know M’ is transversal. Considering that every 3-subset
of F'— e is also a 3-subset of F', it must be a circuit of M’. In a geometrical
representation of M’, all the elements of F' — e must therefore be arranged
on a single “side”. Since there can be at most one element at each of the two
vertices in that side, and F' — e has at least 3 elements, there must be some

f € F — e such that f is freely placed within that side.
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=t IR iacy

Figure 4.4: All the series-minimal non-transversal matroids of rank 3

Now, consider adding e to our geometrical representation. If we can do this,
then M is transversal, which is a contradiction. So there is no place we can
add e. But then removing f cannot make it possible to add e, so M — f is

non-transversal, contradicting minimality. [

4.4.2.1 Simple matroids

We shall break down the class of simple rank-3 matroids into three further
subclasses. We shall use “lines” to refer to the circuits of size 3 (i.e. the

non-bases).
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e é e é
e f € f e f
Fr E F7

Figure 4.5: The possible minors restricting to the union of lines incident with
e. Note that in each of the bottom row, the element f can be deleted to leave
M (K,), which is itself series-minimal non-transversal. We have labelled the
well-known Fano and Non-Fano matroids.

We first consider the class &’ of those simple matroids in which a single

element e is contained in at least three lines. Note this immediately ensures

a matroid M € &' is non-transversal. To see this, consider that each of the

three lines are also circuit-hyperplanes and hence take value 1 under the

function. Now > B(Y) > 3, since the § function takes no negative
YEZ(M):ecY

values whilst M is transversal. But then f({e}) < r(M) —r(e) — 3 =

3—1—3=—1,s0 M cannot be transversal.

Considering the restriction to the 7 elements contained in those three lines,
there are 6 possible arrangements, which are shown in Figure Three of
these matroids are minimal non-transversal; in the remaining cases, a single
element (highlighted) may be removed, which leaves us with M(K}) (also
non-transversal). Clearly if M € &', M must contain one of these minimal

arrangements (note that this is not quite an exact characterisation of &',

since M (Ky4) ¢ §').

We now consider 8" the class of simple matroids which are not in &’ - i.e.

in which no element is contained in 3 lines - and in which every line has at
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Figure 4.6: The series-minimal non-transversal members of S”

least one “loose” element (i.e. not contained in any other lines). We might
reasonably consider drawing this class as a graph - each line can be viewed as
an edge of the graph, with a loose element effectively being ignored (although
we shall represent it as a point in the middle of the line), and the remaining
two elements making up the vertices of the edge. Since we additionally have
the condition that no element may be contained in three lines, S” corresponds

to disjoint unions of paths and cycles in our graphical representation.

The following lemma characterises the series-minimal non-transversal mem-

bers of §”

Lemma 4.4.5. M € §" is series-minimal non-transversal if and only if M

has exactly four lines.

Proof. Clearly a matroid M € §” is transversal if and only if it has three or
fewer lines, since these can then be laid out on the three sides of a rank-3
simplex, whereas 4 lines cannot. Now if M € S” has 4 lines, any deletion
removes at least one line, so M is series-minimal. But if M has 5 or more
lines, we may delete a loose element to get a proper series-minor of M which

still has 4 or more lines. O

These matroids are easily catalogued; there are 7 of them, shown in Figure

4.6l
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The remaining simple matroids are characterised by having no elements in
three lines, but at least one line C every element of which is contained in
another line. We call such a line tied or say it has no loose elements. So
there are at least 4 lines - consider the restriction to the elements spanned by
these 4 lines; there are 7 possibilities, shown in Figure Note that each
of these must be non-transversal, as we have at least 4 circuit-hyperplanes.
4 of these turn out to be minimal non-transversal, and the other 3 reduce to

cases already covered.

Thus we have described 14 series-minimal non transversal simple matroids.

Pl Sagl 2ol b

Figure 4.7: The 7 possibilities when restricting to the union of lines incident
with a tied line. The 4 in the top row are series-minimal non-transversal.

4.4.2.2 Non-simple matroids

Next we consider non-simple matroids, i.e. matroids containing at least one
parallel pair. First we shall consider the class N’ of non-simple matroids
where no member of a parallel pair is contained in a line. Consider that
we can certainly fit three parallel pairs, or one parallel pair and one line,
into our simplex. Therefore we will completely classify the series-minimal
non-transversal minors of N if we can show that all matroids of N/ contain-

ing 4 parallel pairs, or two parallel pairs and a line, or a parallel pair and
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two lines, are non-transversal. Again by considering the restriction to the
elements spanned by the relevant parallel pairs and lines, we can show that
all such matroids contains one of four minors (Figure 4.8)), each of which is

easily verified to be series-minimal non-transversal.

$ 3 s 3 $ $
—o—o
| *——o—o

Figure 4.8: Minors which must be contained in non-transversal members of
N’. These are all series-minimal non-transversal.

Finally we consider the remaining non-simple matroids, in which at least one
parallel pair is contained in a line. Note there can be at most three lines,
and these cannot intersect at a point, since the deletion of a single element

from a parallel pair must leave a transversal matroid.

If we have three parallel pairs in a line, that alone forms a series-minimal

non-transversal matroid.

If we have a line containing two parallel pairs, there cannot be a line disjoint
to that, else we can reduce to one of the non-transversal cases in N’. Similarly
we cannot have 4 parallel pairs. With those conditions in place there are still
13 possibilities, but it is easily verified that all these are either transversal or
reduce to the case of three parallel pairs in a line (via a series contraction), so
we have no series-minimal non-transversal matroids containing two parallel

pairs in a line.

Finally we consider the case where no line contains more than one parallel
element. It’s easily see that there must be three lines, else our matroid is
transversal. Note also that if we have two lines not containing a parallel

element, they must both intersect with the line that does, else we can delete
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a loose element from that line to reduce to a case from N’. These conditions
reduce us to 8 cases, of which two are transversal, and the other six all reduce

to one of two new series-minimal non-transversal cases.

Thus in tidying up the remaining cases we have found a final three series-

minimal non-transversal matroids, which are shown in Figure [4.9,

—

Figure 4.9: All the series-minimal non-transversal matroids in which at least
one parallel pair is contained in a line

Thus we have completely catalogued the excluded series minors for non-
transversal matroids of rank 3 - there are 21 of them. We shall now turn our

attention to the general case of rank-r transversal matroids.

4.4.3 Excluded series-minors of rank-r transversal ma-

troids

Theorem 4.4.6. For any rank r, the class of transversal matroids has finitely

many excluded series-minors of rank r.

We shall make use of the following result, which is well established (see for
example Bonin [2]). Transversal matroids may be defined as those matroids
which can be represented on a simplex such that each cyclic flat of the ma-
troid corresponds to a face of the simplex, and the following lemma is an

immediate consequence of this.

Lemma 4.4.7. A transversal matroid of rank r contains at most 2" cyclic
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flats.

We also state and prove the following lemma. By elements free in a cyclic
flat, we mean elements such that any set spanning that element must also
span the cyclic flat - or to look at it another way, e is free in F' if the only

cyclic flats containing e are F' and supersets of F.

Lemma 4.4.8. Suppose M is a series-minimal non-transversal matroid. Any
cyclic flat F' of M can have no more than r(F) + 1 elements free within that
cyclic flat.

Proof. Suppose otherwise: there are free elements zq,...,x,.0 € F, and
consider M \ z1, a transversal matroid. We shall show that M \ x; cannot be
transversal by demonstrating that the deletion of x; cannot increase the
value of any subset of E(M). Recall that the 5 function is defined recursively
by

YEZ(M):XCY

We shall have to separately consider possible changes to r(M), r(X) and
X AY).
Firstly, since x; is contained in a cyclic flat, it cannot be a loop of M, and

sor(M\ z;) =r(M).
Claim 4.4.8.1. Suppose {z1 -+, 2,41} C X, or zy ¢ X. Then ry(X) =
T M\z, (X \ xl)'

Proof of claim. The latter case (x1 ¢ X) is trivial. For the former, suppose

deleting x; reduces the rank of X - then any basis B of M|X must contain
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x1, and any B cannot contain all of zs, . .., 2,15 since they along with z; form
a dependent set. So there is some i € {2,3,...,7+ 1} such that x; € B, and
x; must be in the closure of B\ zy, else (B \ x1) U x; would be independent
of rank ry/(X). But if z; is spanned by B\ x; then (since z; is free in F') so

is every other element of F', including x1, so B cannot be a basis. O

Claim 4.4.8.2. Suppose X is a cyclic flat of M. Then X or X \ x; is a cyclic
flat in M \ z.

Proof of claim. Since z; is free in F', all cyclic flats of M are either supersets
of F', or do not contain x;. Again the latter case is trivial; for the former case,
X \ z; still contains x5, ..., x,42. Now, none of these x; can be a coloop in
(M \ z1)|(X \ z1) because {xa, ..., T4} \ z; is a basis thereof). And suppose
there is some element f € F'\ {zy,..., 7,2} that becomes a coloop upon the
deletion of z1. Then we must have a circuit Cy of M|X with f,z; € C;. But
also {x1,..., 2,41} is a circuit of M|X. We can now invoke one of the circuit
axioms for matroids - the circuit exchange axiom C3. Let denote the

collection of circuits of M.

C3(strong):

01,02 € C(M),G € ClﬂC’z,f € 01\02 — d(C5 € C(M) (5 C ((C1U02)\€),f € (s

Applying C3 on M|X with Cy := {z1,...,2,41} and e := z; we obtain a
circuit in M|X that contains f but not z;. This then must also be a circuit

in (M \ z1)|(X \ #1), meaning f is still not a coloop. O

Claim 4.4.8.3. Suppose {z1- - 242} € X, or 1 ¢ X. Then By (X) =
BM\xl (X\QJI)
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Proof of claim. The proof is by top-down recursion. We have already estab-
lished that r(E(M)) = r(M) is unchanged. Suppose the statement holds
for all sets of size greater than k meeting the conditions, and consider a set
X of size k. Again we remind ourselves of the recursive definition of the [

function.

BX)=r(M)—r(X)— >,  BY)

YEZ(M):XCY

We have already shown in previous claims that r(M) and r(X) are un-

changed. Now we also note that > B(Y') is unchanged: all cyclic
YeZ(M):XCY

flats containing X are still cyclic, and they are sets of size greater than

k that meet the conditions, so by assumption their own [ values are un-

changed. Finally there cannot be some cyclic flat Y of M such that X ¢ Y

but (X \ z1) C Y (this is clearly impossible when z; ¢ X, so we must have

{z1-++ , 2,42} C X, and then for example x5 € Y, but since x5 is free in F

we have Y D F,sox; € Y. O]

Now, since the [ function on M \ z; must never take a negative value, we see
that any set X € F(M) with £y/(X) < 0 cannot have By(X) = Bana, (X \
x1), and so such an X must satisfy z; € X. But by a similar argument we also
have that o € X, and so on. Therefore we must have {z;---  z,0} C X.
But then our earlier claims tell us that Sy (X) = Bang, (X \ #1), so we have

reached a contradiction. O

Proof of Theorem [{.4.6. We shall demonstrate that series-minimal non-transversal
matroids of rank r are bounded in size, and hence number. To do this we
shall suppose M is series-minimal non-transversal and show that M contain-

ing a large number of elements would force either some deletion M \ f to
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contain too many cyclic flats (violating the condition of Lemma [4.4.7)), or M
to contain too many free elements in a cyclic flat (violating Lemma [4.4.8)).

In particular, we show that |[E(M)] < r(2%" —1).

Suppose M is a series-minimal non-transversal matroid of rank r, and con-
sider the matroid M \ e formed by the deletion of an element e. By definition
M is not transversal, but M \ e must be. Consider a presentation of M \ e
on the simplex, and define the parent face of an element f to be the unique
minimal face of the simplex in which f is contained in this presentation. Note
that this face represents a cyclic flat of M \ f except in the case where the
face has dimension 1 (i.e. is a vertex of the simplex) and contains no elements
other than f. We can effectively ignore this case, because we are only inter-
ested in faces containing a large number of elements. Now, the elements of
M \ e may be partitioned by parent face; necessarily (pigeonhole principle) a
large number of elements will share the same parent face, which means that
- if the number of elements in M is sufficiently large - M \ e can be forced
to contain many free elements within a single cyclic flat. Specifically, if M
contains n elements, then some cyclic flat of M \ e must contain at least
(n —1)/(2" — 1) free elements. In particular if n > r(2%" — 1) + 1, we have

that

1
2r—1

(n—1)/(2"=1) = (r(2* —1)) =r(2"+1)

Now suppose we have some set Y of k free elements in a cyclic flat F' of M\ e.
Either F' or F'U e must be a cyclic flat in M (in either case the argument
is very similar: we shall prove the case for F'), and since by Lemma m
this is not to contain more than r(F) + 1 free elements, there must be at

least k — r(F) — 1 elements of Y each contained in a cyclic flat of M, that
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is not a cyclic flat of M \ e. The only way such a cyclic flat could arise is if
it contains e, so we have at least k — r(F') — 1 members of Y appearing in
cyclic flats with e. However, if we have r(F') members of Y appear in the
same cyclic flat with e, then that cyclic flat spans F' and so does not reduce

the freedom of any element in F'. So there must be a collection L of at least

k—r(F)—1
r(F)—1

G € L, there are at least k — r(F) + 1 elements in Y\ G.

cyclic flats each containing e and some members of Y, and for any

Now we want to count pairs (G, f) where G € £ and f is an element of Y

that is “missed” by G, i.e. e f € Y\ G. The number of pairs is at least

kE—r(F)—1

(k—r(F)+1) P~ 1

and there are k elements in Y, so we can see that there must exist some

element f € Y such that

(k—r(F)+ )k —r(F)—1)  (k—r(F))* -
GeLl: G} > —
feetfra= K () = 1) e
But now M \ f must contain at least (kor(B)"—1 (:((5))_2171 cyclic flats. In particular, if

k> 2"(r—1)+2r+1, then the number of cyclic flats in M\ f will be strictly
greater than 2", meaning that by Lemma M \ f cannot be transversal,

thereby contradicting minimality of M.

If FUe rather than F'is a cyclic flat in M, the argument proceeds identically,
save for specifying that F'U E should not be considered a member of L.

Hence in either case we have a bound on the possible size, and therefore

possible number, of series-minimal non-transversal matroids of rank r.  [J
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4.4.4 The antichain of excluded series-minors for transver-

sal matroids

In the general transversal case, i.e. not restricting to a fixed rank, it is easily
seen that we have an infinite number of forbidden minors. Specifically, for
any n > 3, we can construct a series-minimal non-transversal matroid M, of
rank n as follows: take elements E(M,) = {a1,...,an,b1,...,b,} and define

the matroid by its circuits:

C(M,)={{er,...,en} ;i €{ai,b}} U{{ar,bi},...,{an,bp}}

This is in fact the graphic matroid with graphical representation consisting
of an n-cycle with doubled-up edges. The class {M,, : n € Nyo} forms an

infinite antichain under inclusion of series minors.

—

Figure 4.10: M3, a forbidden series minor for transversal matroids

Question 4.4.9. Let A be the antichain of excluded minors for the class of

transversal matroids. Is A maximal?

This question is equivalent to saying “Is every transversal matroid a series mi-
nor of an excluded series minor of transversal matroids”. The corresponding
question for minors has already been answered in the affirmative for matroids
representable over an infinite field (Mayhew, Newman and Whittle [I8]) and
for gammoids (Mayhew [16]). Both were proven using a similar constructive
strategy in which by a series of steps the original target minor could be built
up to contain an awkward collection of hyperplanes that “just” blocked them

from the original class, thereby forming a minimal excluded minor.

The first steps in this strategy involve showing that the target minor is a mi-
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nor of another matroid in the same class whose elements can be partitioned
into 2 disjoint bases. Then we aim to show that the target minor is a minor
of another matroid in the same class whose elements can be partitioned into
2 disjoint hyperplanes. We shall show that the first of these steps is easily
proven for transversal matroids, but provide a counterexample to the sec-
ond, casting considerable doubt on whether this kind of strategy is viable for

transversal matroids.

In this section we shall make extensive use of bipartite presentations in our
arguments, and so it is wise to regather our intuition in this arena, in par-
ticular regarding the effects of deletions and series contractions. Let G be a
bipartite graph and M7 (G) the transversal matroid of which G is a presenta-
tion. Let X and Y be the parts of G, with X corresponding to the groundset
of Mr(G).

The deletion operation is straightforward - a deletion of element x from M
corresponds to deleting the same element (vertex) e from G. In the other
direction, we may reverse the process (an extension) only by adding an ele-
ment (vertex) x’ to X, and linking it to some collection of vertices in Y to

form a new graph G’. Then M is obtained from My (G") by the deletion of .

Series contractions are rather more subtle. A series pair {z,x2} is parallel
in the dual matroid, so they must link to the same vertices in G. Moreover,
the complement of our series pair forms a hyperplane, so there must be one
vertex in Y (call it y) that only links to x; and xs. A series contraction cor-
responds to deleting y and either x; or xo. The reverse (a series extension)

can only be achieved by picking an element (vertex) x in X, and adding new
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elements (vertices) 2’ to X and y to Y. Then we must link x to y, and 2
to precisely the same vertices as x, to form our new graph G’. Then M is

obtained from M7 (G') by contracting the series pair (z, z’).

Theorem 4.4.10. Let M be a transversal matroid. Then M is a series minor
of a transversal matroid M’ such that the groundset of M’ can be partitioned

into two bases.

Proof. Let B be a basis of M, and let S = E(M) \ B. Suppose M has size
n and rank r; then let S = {s1,...,5, ,}. Add elements T'= {t1,...,t, .}
such that each ¢; is a series extension of s;. Call the resultant matroid M”.
Now imagine a presentation of M"” as a bipartite graph G with parts X =
E(M) and Y. Clearly there are vertices vy, ..., v, in Y that match with B
and vertices uq,...,u,_, in Y which can be ordered such that u; links only
to the pair (s;,¢;). Now form a new bipartite graph G’ by adding to the
groundset new vertices wy, ..., w, such that each w; links only to v;. Finally
we define M’ := Mp(G"). Note that M’ has rank n and that by construction
one basis of M"is E(M)=BU{s1,..., Sy}

We claim that M’ satisfies our theorem. Firstly, M is a series minor of M’;
that is clear since we can retrieve M by deleting wy, ..., w, and contracting
the series pairs (s1,t1),. -, (Sn_r,tn_r). And E(M') can be partitioned into
sets E(M) and {wy, ..., w,,t1,...,t,_}. We have already seen that the first
of these is a basis - since each w; matches to v;, and each ¢; matches to wu;,

the latter is also a basis. O

However we shall introduce a transversal matroid which provides a coun-

terexample to the analogous claim for hyperplanes.
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Theorem 4.4.11. Let N be the 6 element matroid of rank 3 whose non-
trivial circuits are precisely three disjoint parallel pairs (also the graphic ma-
troid induced by a path of length 8 with doubled-up edges). Suppose M is a
transversal matroid containing N as a series minor. Then the groundset of

M cannot be partitioned into two hyperplanes.

A B c
bl Vq (%) Ve
a1 $ C1
s bo s Gn
an (6]
ai a2 by by €1 C2

Figure 4.11: The matroid N. On the left, N drawn in conventional format.
On the right, the only bipartite presentation of N (with components labelled
for reference).

For the proof we shall largely consider the (maximal) bipartite presentations
of N and M, which we shall denote Gy and Gy. In Figure [4.11] we can
see G, the maximal bipartite presentation of N (in fact the only bipartite
presentation: removing any edge creates a loop, and adding any edge relaxes

a parallel pair). We’ve labelled the three components as A, B and C.

Proof. Suppose we have an M such that the groundset E(M) partitions into
two hyperplanes, H; and H,. Let G(M) be a bipartite presentation of M
with parts F' and F = E(M). Since H, is a hyperplane of M, there must be
some vertex f; € F' such that every element (vertex) of Hj links to fi, and
by a symmetrical argument there must also be some f5 € F' linked to every
element (vertex) of Hy. In other words, there must exist vertices f; and f,

which cover all of the elements (vertices ) in F (meaning that the union of

neighbourhoods I'(f1) UT'(f2) is equal to E.
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Recall that M is obtained from N by a sequence of single-element moves,
each of which is either an extension (reversing a deletion), or a series ex-
tension (reversing a series contraction), and recall that we discussed earlier
in this section what those moves look like in the context of bipartite pre-
sentations. We shall show that, however we extend the graph Gy to form
G, there can be no pair of vertices which covers the 6 elements (vertices) of
E(N). Plainly there is no such pair in Gy, since any two vertices from the
top part of the graph cover only 4 elements (vertices) of E(N). Moreover, we
note that any series extension does not involve adding any edges including
elements (vertices) of F(NN), nor does it introduce new vertices that elements
(vertices) of E(N) might later be linked to. This means that if we did obtain
an M in which two vertices of G covered all of E(NV), the same would hold
true even if we reversed all the extension. So without loss of generality we

may assume that M is obtained from N only by series extensions.

Every series extension introduces one new vertex to the top half of the graph
(increasing the rank of our putative M by 1) and one to the bottom half (the
groundset of our putative M ). We claim that if the only moves we may make
are to add series pairs, and to update the graph to a maximal presentation,
then the three components of Gy (labelled A, B,C in Figure cannot
be connected. If this is the case, then clearly no pair of vertices can link to
all three components, and so no pair of vertices can cover all the elements

(vertices) of E(N).

Consider that so long as the components remain pairwise disconnected, each
series pair must be created using an existing element from only one of the

components. Let’s focus on what happens to a single component, A, whilst
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keeping the others fixed. We’ll use the notation F(X) to denote V(X) N
E(M(X UBUCQ)), i.e. the “bottom part” of X.

Claim 4.4.11.1. Let A’ be formed from A by recursively forming series pairs
from a new element and an existing element. Then F(A’) is a circuit of the

matroid induced by the graph G' = AU B U C.

Proof of claim. This can be shown with a simple inductive proof. Clearly
in the base case F(A) is a circuit of Gy. Suppose then that A” is a rank
(r — 1) circuit of M(A” U BU C) and we obtain A’ from A’ by adding a
series pair formed of an existing element (vertex) e € E(A”), a new element
(vertex) €’ and a new vertex f in the upper part of our bipartite presentation.
The component A’ now consists of r + 1 elements (vertices) in E(A’) and r
vertices in the top part, so there is clearly no matching from the bottom part
to the top, and hence it is dependent in the induced matroid. It remains
to show that every r-element subset of the E(A’) is independent, i.e. has a
matching to the top part. We can divide this into two cases, firstly where
the subset contains €', and secondly where it contains everything except €.
In either case, the subset contains either ¢’ or e together with r — 1 elements
from E(A"). Since E(A") is a circuit, the r — 1 elements from E(A”) are in
matching with the top part of A”. We can then complete the matching from
E(A") by adding the edge from either ¢’ or e to the new vertex f. O

Clearly adding series pairs does not by itself connect any pair of components,
and it is now clear that updating to obtain a maximal presentation cannot do
so either (although it will certainly add more edges within the components, in
fact making each of them complete). For example, linking from the bottom
part of A’ to the top part of another component would relax the circuit E(A")

in the induced matroid. So the three components must remain separate, and
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no pair of vertices can cover all six elements of E(N). O]

Note that although this kind of argument presents an obstacle to reusing the
methods of Mayhew, Newman and Whittle, it is not necessarily strong evi-
dence of the result itself being false for transversal matroids, and it is possible
that other angles of attack might prove more fruitful. For example, although
our matroid N proved resistant to this approach, it is almost trivially a series
minor of an excluded series minor for transversal elements (simply add two

new elements in a parallel pair, as seen in the leftmost matroid of Figure

13).

4.4.5 Sparse paving excluded series minors of transver-

sal matroids

It is relatively straightforward to characterise the sparse paving series-minimal
non-transversal elements of rank . Sparse paving matroids are entirely de-
fined by a collection of non-bases of cardinality r, of which any pair can
intersect in at most r — 2 elements. These non-bases are the only cyclic flats
in a sparse paving matroid, which means calculating 5 values becomes fairly
straightforward - if £(M) is the set of non-bases of a sparse paving matroid

M, then for any X € E(M) we have

B(X)=r(M)—r(X)—|{Le L(M): X C L}

This means that a negative  value is obtained if and only if we have some
X C E(M) such that X is in the intersection of at least r(M) — | X| + 1
members of £(M). Note that X can be empty, in which case the condition

is equivalent to having r 4+ 1 non-bases. This situation makes sparse paving
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matroids a convenient realm in which to answer questions about transversal

madtroids.

One question we might ask is what is the minimal value that $ might take on
a series-minimal non-transversal matroid. Since the minimum value of § on
a matroid is always lower for non-transversal matroids than for transversal
matroids, it might be viewed as some kind of measurement of how non-
transversal a matroid M is. Naturally we might expect series-minimal non-
transversal matroids to be only “a little bit” non-transversal, since any single
deletion is enough to make them transversal. In other words, we might ex-
pect that for any series-minimal non-transversal M, the minimum value of
Bar(X) is close to zero - for example, in all the series-minimal non-transversal
matroids of rank 3, we have min (5y(X)) = —1. In fact however we shall

XCE(M)
show the following result:

Lemma 4.4.12. For any integer m, there exists a series-minimal non-transversal

matroid M such that By (0) = —m

Proof. We choose M to have rank 2m and groundset {1,...,6m}. Let M
be sparse paving with non-bases precisely the sets of form {2k + 1,2k +
2,...,2k + 2m}, where 0 < k < 3m, and addition is modulo 6m. There
are 3m non-bases (remember the cyclic flats of a sparse paving matroid are

precisely its non-bases), so

Bu(@) =r(M) =r(@) = > Bu(Y):Y #0

YEZ(M)

=2m—-0—3m = —m

It remains to show that M is minimally non-transversal. M has no series
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pairs, so we need only consider deletions, and the symmetry of M means
that every deletion gives an isomorphic matroid. Without loss of generality,
assume we delete the element labelled 6m giving a new matroid M ~. There
remain 2m non-bases, so 5y~ (0) = 0. The only other sets which could take
negative 3 value are those which are strict subsets of one or more non-basis
of M~. Let X be such a set. Note that since M~ is sparse paving, X must
be independent, so r(X) = |X|. Each non-basis covers the elements in an
interval of width 2m under our labelling, and that interval must include both
the minimum labelled and maximum labelled member of X. So {Y : Y €

ZM7),XCY} <m-— (%1, in turn giving

X
Bua-(X) 2 r(017) () = m + [ = P 5 0
with the last inequality following from the fact that X is strictly contained

in a non-basis, so | X| < 2m. O

4.5 Axiomatisability of transversal matroids

Another interesting (and little explored) topic relating to transversal ma-
troids is that of axiomatisability. In the light of recent results for related

classes [20] we shall try to obtain similar results for transversal matroids.

Conjecture 4.5.1. The class of transversal matroids is not axiomatisable in

MSOL (Monadic Second-Order Logic) for matroids.

Although we believe this conjecture to be true, and have been unable to find
a sentence that characterises transversal matroids, this seems to be difficult

to prove. For example, methods involving EF games seem to run into great
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difficulty.

We can however prove non-axiomatisability in the language of M -logic, as
defined in the paper of Mayhew, Newman and Whittle [20]. In this paper it
is shown that the class of representable matroids cannot be axiomatised by

a finite set of sentences in M-logic.

Firstly, let’s define MSOL and M-logic.

Monadic Second Order Logic for matroids, hereafter referred to as MSOL,
is described in detail in Section 2 of [20]. The introduction we offer here
is slightly less formal, with the aim only of providing a clear enough expla-
nation for the reader to understand the subsequent work. So, in simplified

terms, MSOL consists of the following:

Variables x1,x9,--+; X1, X, -
Constants F; §; 0,1,2, - --
Functions |- |, {-},~, (), +, U, N
Relations =, €, C, <

Logical symbols —, V, A, 3,V

Terms in MSOL are divided into 3 classes: firstly £, which is the infinite
set of variables x1,xs, -+ and corresponds to the groundset of a matroid.
Secondly &, which corresponds to subsets of the groundset, is the smallest

collection of expressions satisfying:

(i) E,0 €S
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(i) X1, Xa--- €S

(iv) X,Y €S = X, XUuY,XnYcS

Finally we have A, representing non-negative integers, the smallest collec-

tion of expressions such that:

i) 0,1,---eN
(i) Xe$S = |X|,r(X)eN

(iii) p,g e N = p+qeN

Any z;, X; that appear in a term are called variables of the term (a more for-
mal definition is given in [20]). We can now define atomic formulas, formulas

and free variables.

Atomic formulas are statements in the following four categories:

(i) ‘e=y forz,ye &
(i) X=Y or XCVY, for X,YeS§
(iii) ‘p=q orp<gq, for pge N

(iv) ‘e e X' forz e £and X € S

The variables of an atomic formula are simply the union of the variables in
the terms which are used in the atomic formula. These variables are all con-

sidered free variables in the atomic formula, however for defining formulas
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we shall need to distinguish between the set Var(P) of variables, and the set
Fr(P) of free variables, of a formula P. A formula is an expression which

can be arrived at by finite application of the following rules:

(i) every atomic formula P is a formula, with Fr(P) = Var(P)

(ii) If P is a formula, then ‘=P’ is a formula, with the same variables and

free variables as P

(iii) If P and @ are formulas and Fr(P) N (Var(Q) \ Fr(Q)) = 0 = Fr(Q) N
(Var(P)\Fr(P)), then ‘PAQ’ and ‘PV(Q’ are formulas, with Var(PAQ)
= Var(P VvV Q) = Var(P) U Var(Q) and Fr(P A Q) = Fr(PV Q) =
Fr(P) U (Q)

(iv) If P is a formula and X; € Fr(P), then 3X;P and VX,;P are formulas
with the same variables as P, and Fr(3X;P) = Fr(VX;P) = Fr(P) \
{Xi}

(v) If P is a formula and z; € Fr(P), then Jz;P and Vz;P are formulas
with the same variables as P, and Fr(3x;P) = Fr(Vz,; P) = Fr(P) \ {x;}

Finally, a sentence in MSOL is a formula P satisfying Fr(P) = ().

Now we need to understand what it means for a matroid M to satisfy a
formula P. There is nothing particularly surprising to this definition; indeed
it roughly means that P is true when we interpret the notation of MSOL in
the most obvious way with respect to matroid theory and drawing variables
from E(M). However we ought to offer a more formal definition (and note

that even this is somewhat abbreviated: see [20] for more).

An interpretation of P is a set F and a pair (¢g, ¢s) of maps such that



172 CHAPTER 4. TRANSVERSAL MATROIDS

¢g : Fr(P)NE — E and ¢s : Fr(P)NS — P(E), where P(E) denotes
the power set of E. Let Py, 4, denote the expression created by taking P
and replacing every variable in x € Fr(P) N E with ¢g¢(x) and every variable
X € Fr(P)NS with ¢g(X).

When evaluating the expression Py, 4, we may understand all symbols of

MSOL to take their usual meaning with respect to matroid theory.

Suppose we have a structure M (which we shall assume is a matroid) equipped
with a groundset E(M) and a rank function r on the power set of E(M). We
shall say M satisfies a formula P if there exists an interpretation (E(M ), ¢, ds)

such that the following conditions are met:

(i) If P is an atomic formula, then Py, 4, is true
(i) If P = 3X;Q for X; € S, then there is some subset X C F(M) such
that Q¢£U(Xi7X1{)7¢S is true; if P= VXlQ for Xz S 8, then Q¢£U(Xi7X1{)7¢S
is true for all X! C F(M)
(iii) If P = Ju;Q for z; € &, then there is some element z; C E(M) such
that Qpeue;a).ps 18 true; it P =Vr;Q) for X; € S, then Qp,uw;a!).5 18
true for all 2 C E(M)

(iv) If P = —Q then Qu, 45 is not true

(v) If P = QAR then Qy, ¢ and Ry, 4 are true; if P = QV R then Qy, 45

or Ry, ¢ is true.

Finally, we can introduce M-logic, defined as a subset of the formulas of

MSOL.
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Definition 4.5.2 (M-logic). A formula in MSOL is in M -logic if it takes

one of the following forms:
(i) 3X;---3X, 3z -+ - 32, P
(i) 3Xy---3IX Ve, - - -V, P
(iii) vXq---VX,3xq - 2, P

(iv) VX - VX V2 - Va, P

where in each of the above L, m may be any non-negative integer, Xi,...,X]
are sets of elements, x1,...,x,, are elements, and P is a quantifier-free for-

mula over those variables (meaning that 3 and V are not used in P).

We note that M-logic is reasonably powerful: in particular, it is sufficient to
define any minor-closed class with finitely many excluded minors (Corollary
3.3 in [20]). This includes many significant classes of matroids such as sparse
paving matroids, and - due to the recent proof of Rota’s Conjecture by Gee-
len, Gerards and Whittle [5] - the class of matroids representable over any

given finite field.

Theorem 4.5.3. The class of transversal matroids is not axiomatisable in

M -logic

Proof. To prove this we must show that there is no k-variable sentence
that axiomatises transversal matroids. We shall construct two rank-r sparse
paving matroids on n elements such that one is transversal and the other is
not; we then demonstrate that no k-variable sentence in M-logic can distin-

guish between these.

Let r > 22" and n > 2r? and let M, M’ be rank-r sparse paving matroids on
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groundset [n], defined by their non-bases as follows:

LM)={1,....vY, {r+1,....20}, ... . {r* —r+1,...,7%}

LMY =L(M)U{{r*+1,...,r" +7r}}

We note that M’ is non-transversal (since |L(M)| = r + 1 and so B(0) =
—1), and the tightening of M by any non-basis C', chosen from subsets of
{r?+1,...,2r%} is isomorphic to M’. We also claim that M is transversal, and

note that the relaxation of any non-basis in M’ gives a matroid isomorphic

to M.

(The transversality of M is easily established: there are r disjoint non-bases
which we may label Ly, ..., LC,. A bipartite presentation of M is thus given
by the graph with parts F(M) and {1, ..., y,} where for z € E(M) we have
x ~y; if and only if = & L;.)

There are 4 cases to consider, corresponding to the 4 structures of sentences
in M-logic. In each case we shall show that we can find matroids isomorphic
to M and M’ such that the truth of the sentence does not change, thereby

demonstrating that M and M’ cannot be distinguished between by a k-

variable sentence in M-logic.

In proving that no case can axiomatise transversal matroids, we shall make

use of sigma algebras.

Definition 4.5.4 (Sigma algebra). Let S = {S1,...,S5,} be a collection of
sets. The sigma algebra ¥(S) of S is the closure of S under operations of

complement, intersection and union.

For a finite collection S we have
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2(8)] < 22°

To see this, let £ be the set of elements contained in the union of all sets in
S. Partition the elements of E by the collection of sets which contain them.
There are at most 2{|S| nonempty parts in this partition. And members
of the sigma algebra of S correspond precisely to subsets of this partition,

2lS]|

giving at most 2 members.

Definition 4.5.5 (Hamming distance). Given a set E and subsets Si, Sy C
E, the Hamming distance dy(S1,S2) between S; and Sy is the size of the

symmetric difference:

i (Sh, ) = |S1AS,]

Lemma 4.5.6. Fiz some integers k,m. Then for sufficiently large n, given
any collection of k subsets Sy, ..., Sk C [n], we can find some subset X C [n]

such that for any 1 < i <k, we have dg(S;, X) > m.

Proof. Draw X uniformly at random from subsets of n. There are 2" possible
choices of X; however if the symmetric difference X AS; has size j, there are

only (?) choices for it. So as n — oo we have (for any 0 <i < k)

Pr(du(X, S) < m) < 21,1 3 (?) S0
j=1

But
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Now we return to the four cases of the main proof:

Case (i)

Suppose we have axiomatised transversal matroids with a k£ variable sentence

of form

Ele s EIXlﬂxl cee E'l’mp

with [ +m = k and P quantifier-free. Since M is transversal, we are able to
find some X1,...,X; and z1, ..., x,, satisfying our quanitifier-free formula P.
However our sentence can only make statements about the rank, and indepen-
dence of sets in the sigma algebra of { Xy, ..., X;,{z1},...,{zn}} This sigma
algebra has at most 22" members. This means that provided n is sufficiently
large we can certainly find some r-element subset X C E(M) that is not in
the sigma algebra - in fact we can further specify that X C F(M)\ U L.
If we now “tighten” M by defining such an X to be a non-basis, Lvseﬁ (ge)t a
matroid isomorphic to M’, i.e. that is non-transversal. But since the rank
and independence of every set other than X is unchanged, M’ must also sat-

isfies our formula. And so a formula of this kind cannot distinguish between

M and M’.

Case (ii)

Suppose we have a k variable sentence of form
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E|X1 cee E|le1)1 < meP

with [ +m = k and P quanitfier-free, that axiomatises transversal matroids.

Again assume we have satisfied the existence quantifiers, that is we have
found X7,...,X; C E(M) that satisfy our formula. In this case we have to
find an r-set X that is not only not in the sigma algebra of {Xy,..., X;},
but has Hamming distance at least m 4 1 from any set in the sigma algebra
- since P can only describe sets in the sigma algebra, perturbed by at most
m elements xq, ..., x, (see Proposition 5.2 in [20]). By Lemma we can
choose such an X, provided n is sufficiently large. Now we tighten M by
defining X to be a non-basis. The matroid we arrive at is isomorphic to M’
- without loss of generality suppose it is M’. But now our formula will still
be satisfied for M’, since the rank and independence has only changed in
the set X, which cannot be described by P. Hence again we are unable to

distinguish between M and M’.

Cases (iii) and (iv) are very similar to Cases (i) and (ii). In Case (iii) we
start with M’ and assume the converse of our formula holds - this reverses the
quantifiers and from this point the argument is similar to Case (ii), except
that we first relax by a non-basis, and in the second step tighten by a non-
basis. Similar in Case (iv) the converse has the same pattern of quantifiers
are Case (i), and again the proof only differs in that we first relax and then

tighten. ]

4.5.1 Axiomatisability of gammoids

We also note that the construction given by Mayhew, Newman and Whit-

tle [20] shows gammoids to be non-axiomatisable. Essentially our work will
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amount to showing that the representable matroids given by that construc-
tion are also gammoids, and so the argument will also show gammoids to be

non-representable.

Theorem 4.5.7. The class of gammoids is not axiomatisable in M -logic.

The argument used by Mayhew, Newman and Whittle relies on describing
three closely related matroids. The first is the Kinser matroid, Kin(r), which
is representable over infinite fields, when r > 4. The second, formed by relax-
ing a circuit-hyperplane of Kin(r), is not representable over any field, and the
third, formed by the further relaxation of a second hyperplane, is again rep-
resentable over an infinite field. They then show that any sentence in M-logic
will, for sufficiently large r, be unable to describe the first and third matroids
without also describing the second, thereby proving that representability is
not axiomatisable in M-logic. Clearly we can prove an equivalent result for
the class of gammoids if we can show that the second matroid does not fall

in this class, but the first and third do.

Proof. Clearly the second matroid described above, being not representable
over any field, will also not be a gammoid. We thus only need to show
that the first and third matroids are gammoids (which we shall in fact do
by showing them to be minors of transversal matroids). Let’s now describe

those matroids and show they are both gammoids.

To define the Kinser matroid Kin(r) we first define a rank-r + 1 matroid,
M, 1. In fact M, is defined to be a transversal matroid. We define the
elements of M, ,; to be partitioned into r pairwise disjoint sets Hy, ..., H,,
such that Hy, - - - H, each have cardinality r —2, and H, has cardinality 2 (we
shall say H, = {e, f}). Now define the set system Ay, Ay, ..., A, by



4.5. AXIOMATISABILITY OF TRANSVERSAL MATROIDS 179

L4 A0:H1U"'UHT:E(MT+1>
L AT:HT

o fori e {1,....,r—1}, A, = E(M,4;) — (H, U H;_y U H;) where the

subscript is calculated modulo r — 1.

We define Kin(r) to be the truncation of M, ; - that is to say, F(Kin(r)) =
E(M,;1) and X C E(Kin(r)) is independent in Kin(r) if and only if | X| <,

and X is independent in M, ;.

A truncation may simply be viewed as the addition of a free element followed
by contracting by that element. The addition of a free element to a transver-
sal matroid is clearly still transversal, and the contraction of any transversal
matroid is a gammoid, therefore Kin(r) - as the truncation of our transversal

matroid M;, - is a gammoid.

The third matroid described by Mayhew, Newman and Whittle is the matroid
M formed from Kin(r) by relaxing the circuit-hyperplanes (H; U H,.) and
(H._1UH,), where s € {1,...,7 —2}. In order to show this is representable
over an infinite field, they demonstrate that it can be constructed from M,
as follows: construct M’ on the groundset E(M, 1)\ {e, f}) U {p, ¢} where
p, q are distinct elements not in F(M, ). Let M’ be the transversal matroid
defined by sets A, A}, ..., Al_, where fori € {1,...,s} we have A, = A;Up,
and for i € {s+1,...,r — 1} we have A, = A; Uq.

From M’ we can (as described in the original paper) construct M by freely
adding elements e, f to the line spanned by p and ¢, and then deleting p and
g. This can actually be achieved by the following steps: firstly form M” from
M’ by series extensions on the elements p and ¢, giving series pairs (p, p’) and

(¢,q"). This is now a transversal matroid with p’ and ¢’ sitting at vertices of a
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simplex presentation of M”. Now if we add e, f freely to the line between p’
and ¢’ this clearly forms a presentation of a new transversal matroid. Finally
we can reach M by contracting down by p’, ¢’ and then deleting p and ¢. This

makes M a minor of a transversal matroid, and therefore a gammoid. O
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