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Abstract

The human visual attention system (HVA) encompasses a set of intercon-
nected neurological modules that are responsible for analyzing visual
stimuli by attending to those regions that are salient. Two contrasting bi-
ological mechanisms exist in the HVA systems; bottom-up, data-driven
attention and top-down, task-driven attention. The former is mostly re-
sponsible for low-level instinctive behaviors, while the latter is responsible
for performing complex visual tasks such as target object detection.

Very few computational models have been proposed to model top-
down attention, mainly due to three reasons. The first is that the func-
tionality of top-down process involves many influential factors. The sec-
ond reason is that there is a diversity in top-down responses from task to
task. Finally, many biological aspects of the top-down process are not well
understood yet.

For the above reasons, it is difficult to come up with a generalized top-
down model that could be applied to all high level visual tasks. Instead,
this thesis addresses some outstanding issues in modelling top-down at-
tention for one particular task, target object detection. Target object detection
is an essential step for analyzing images to further perform complex visual
tasks. Target object detection has not been investigated thoroughly when
modelling top-down saliency and hence, constitutes the may domain ap-
plication for this thesis.

The thesis will investigate methods to model top-down attention
through various high-level data acquired from images. Furthermore, the
thesis will investigate different strategies to dynamically combine bottom-
up and top-down processes to improve the detection accuracy, as well as



the computational efficiency of the existing and new visual attention mod-
els. The following techniques and approaches are proposed to address the
outstanding issues in modelling top-down saliency:

1. A top-down saliency model that weights low-level attentional features
through contextual knowledge of a scene. The proposed model assigns
weights to features of a novel image by extracting a contextual de-
scriptor of the image. The contextual descriptor plays the role of tun-
ing the weighting of low-level features to maximize detection accu-
racy. By incorporating context into the feature weighting mechanism
we improve the quality of the assigned weights to these features.

2. Two modules of target features combined with contextual weighting to im-
prove detection accuracy of the target object. In this proposed model, two
sets of attentional feature weights are learned, one through context
and the other through target features. When both sources of knowl-
edge are used to model top-down attention, a drastic increase in de-
tection accuracy is achieved in images with complex backgrounds
and a variety of target objects.

3. A top-down and bottom-up attention combination model based on feature
interaction. This model provides a dynamic way for combining both
processes by formulating the problem as feature selection. The fea-
ture selection exploits the interaction between these features, yield-
ing a robust set of features that would maximize both the detection
accuracy and the overall efficiency of the system.

4. A feature map quality score estimation model that is able to accurately
predict the detection accuracy score of any previously novel feature map
without the need of groundtruth data. The model extracts various local,
global, geometrical and statistical characteristic features from a fea-
ture map. These characteristics guide a regression model to estimate
the quality of a novel map.



5. A dynamic feature integration framework for combining bottom-up and
top-down saliencies at runtime. If the estimation model is able to pre-
dict the quality score of any novel feature map accurately, then it is
possible to perform dynamic feature map integration based on the
estimated value. We propose two frameworks for feature map inte-
gration using the estimation model. The proposed integration frame-
work achieves higher human fixation prediction accuracy with min-
imum number of feature maps than that achieved by combining all
feature maps.

The proposed works in this thesis provide new directions in modelling
top-down saliency for target object detection. In addition, dynamic ap-
proaches for top-down and bottom-up combination show considerable
improvements over existing approaches in both efficiency and accuracy.
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Chapter 1

Introduction

1.1 Chapter introduction

Humans have a remarkable ability to handle various complex vision prob-
lems effectively and efficiently through a process called visual attention.
Visual attention is a cognitive process that attempts to sample and ana-
lyze certain regions of a visual field while ignoring irrelevant areas [4].
Initial studies in human vision suggest the existence of a fast, data-driven,
bottom-up (BU) influence and a slower, task-specific, top-down (TD) influ-
ence that contribute collectively to guiding visual attention [5]. The active
involvement of both influences results in a more effective attention strat-
egy and efficient saccadic movement. Saccade is defined as the process of
transferring the fixation from one point to another in a certain pattern [5].

More recently, researchers have devoted their efforts in modelling vi-
sual attention to proposing various bottom-up and top-down computa-
tional models that mimic some of the functionalities of a human visual
attention system. These models have been widely used in many real-time
applications such as but not limited to object recognition [6–8], medical
images analysis [9], image compression [10], object tracking [11] and tar-
get object detection [12].

Most of the work is dedicated towards modeling BU influence, while
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2 CHAPTER 1. INTRODUCTION

fewer contributions have been made to model the TD influence and how
to combine it with BU influence to maximize both effectiveness and effi-
ciency of a specified visual task.

As a result of neurobiological studies, it has been hypothesized that
most of the complex visual tasks performed by humans are driven by
high-level top-down signals generated from certain areas of the visual cor-
tex that are dependent on the nature of the task itself [5]. Furthermore, the
nature of such signals and the factors controlling the initiation of those
signals are not completely known. Hence, it is very challenging to devise
a universal computational model for explaining the nature of such top-
down influence for each visual task.

An even more challenging research question is how both TD and BU
influences are combined during a complex visual task. What role does
the BU play in such a high-level task? Since the BU process is responsible
for detecting regions of the images that are deemed interesting (in visual
attention literature these are also known as salient regions), its contribu-
tion in more demanding scenarios such as target object recognition is not
elusive.

Hence, the main goals of this thesis are twofold. The first is to propose
a TD saliency model effective for one specific visual task: target object
detection. We define a target object as an object of interest to be searched
for in an image where the objective is simply to locate that object. Hence,
the proposed TD saliency model would effectively detect the target ob-
ject with high accuracy and a minimum number of saccadic movements.
Secondly, we propose a computational model that will combine the BU
process with the TD process to maximize the detection of the target object.

1.2 Scope

An active research area in visual attention is to describe sampling strate-
gies of a visual field under the influence of a task [13–15]. Because of the
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diversity in visual tasks, research in this area has not yielded a general-
ized model. One particular task that has been focused upon more often is
a guided search for target object detection [16, 17], which is also the focus
of this research work. It is well known that while in a guided search mode,
a variety of processing takes place before detecting the target object [18].
Only those candidate objects or regions are sampled that exhibit pertinent
visual characteristic with respect to target object.

Previously, modelling of task-driven visual attention has been stud-
ied from three perspectives: the features required to encode a task, the
methodology and formulation of the task-driven attention and finally the
interaction between data-driven and task-driven attention factors.

Current implementations of task-driven visual attention rely on very
high level computationally expensive features [19]. In addition, the per-
formance of these methods degrades when the target object is present in
complex scenes with cluttered background and distracting objects. Fur-
thermore, among these implementations, very few models combine both
task-driven and data-driven process to boost the efficiency and efficacy of
the attention system.

To tackle the issues presented above, ”intelligent” approaches are
needed to build a generalized visual attention system that aims at detect-
ing a generic target object. This needs to maintain a balance between de-
tection accuracy and computational efficiency to be feasible for practical
purposes.

1.3 Motivations

There exist several biological plausible data-driven models and techniques
(also known as saliency or bottom-up (BU) based approaches) that are
directly or indirectly inspired by cognitive concepts. One of the leading
works in biologically inspired bottom-up saliency is by Itti et al. [1]. This
model has been the basis of later models and the standard benchmark for
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comparison. The model begins by extracting low level features followed
by a centre-surround normalization mechanism. This process results in
generating feature maps. These maps are then integrated and normalized
at different scales to yield the conspicuity. Finally, the conspicuity maps
are combined linearly to build the final saliency map.

1.3.1 Top-down saliency modelling through feature

weighting

One category of task-driven (also known as top-down (TD)) modelling
is performed by appropriately weighting these bottom-up Itti features
[20–26]. This type of modeling is inspired by the cognitive fact that low-
level signals generated by a fast bottom-up process are amplified by stim-
ulating signals that are triggered when performing a task [27]. In previ-
ous approaches, these weights were computed or learned without con-
sidering high-level knowledge of the target, background, distractors and
other prior knowledge of the scene. One such critical high-level informa-
tion contained in images is the context. Contextual information provides
a holistic description of the contents on an image.

For instance, when searching for a red ball within an image containing
circular patterns, the colour should have a higher weight than orientation
in order to detect it. However, the same is not true when searching for
the same object in an image having rectangular red background patterns.
As a result, when learning weights without considering high-level visual
structure of a scene, the approach fails to adapt to scenes with contextual
variation. As a result, a novel dynamic contextual based bottom-up fea-
ture weighting mechanism is needed to model TD attention and improve
the accuracy of detecting the target object.

Another aspect of modeling TD influence through weighting is the set
of features used for generating the final saliency map. The basic model of
Itti which is used as a framework for feature weighing utilize three prim-
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itive features of colour, intensity, and orientation. For instance, a model
proposed by Frintrop [20] called VOCUS learns the weights of these prim-
itive features by taking the ratio of the average saliency of the most salient
region and the saliency of the rest of the regions. Since the model uses only
primitive features, it only predicts regions that are likely to contain the tar-
get. As an extension to their work, an additional step of classification was
introduced where high-level descriptors were used to learn classifiers that
are tuned to detect the target object under consideration [21].

1.3.2 High-level features in top-down saliency

In many extensions to the basic model, other high-level features such as
text [28], face [28] and motion [29] are used to complement the basic fea-
tures, mostly to predict human fixation. In majority of cases, these fea-
tures are computationally expensive and require longer processing time
than the low-level features, thus affecting the efficiency of the model.

This indicates that modeling TD saliency by weighting the currently
used primitive features has limitations in detecting the target object.
Hence, a richer set of various low to mid-level features that are both com-
putationally efficient and useful for generic target object detection is re-
quired to model TD influence through weighting to avoid the use of high
level computationally demanding features.

In some cases, it becomes inevitable to use target specific features com-
plemented by various low-level bottom-up features (e.g., face detector
along with basic Itti features [28]) when searching for faces. Target spe-
cific features are a priori more likely to be effective in searching for the
target than low-level features. Bottom-up features collectively produce a
map that highlights interesting regions of an image while target specific
TD features yield a map that identifies regions of interest with respect to
the target object. When both are combined, a final saliency map is gener-
ated that combines both detections.
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1.3.3 Top-down and bottom-up saliency integration

Another research direction in modelling TD saliency is therefore how and
when to combine it with BU saliency to improve the detection. In high-
level visual tasks, it could be argued that TD features have the major role
in detecting the target object [30]. However, this is not always true, as low-
level BU features can sometimes identify regions of the image that may
contain the target object more effectively than those extracted by target
specific TD features [31]. Similarly, low level BU features might effectively
eliminate potential targets identified by a more complex TD feature.

Current techniques that attempt to combine both saliency processes
lack a dynamic combination strategy. The two saliency processes are either
combined statically [20, 22, 24] or through a pre-defined spatio-temporal
function that weighs TD process more that BU [23]. A major disadvan-
tage of such approaches is that no information regarding the interrelation
between both the two processes is available.

It is possible that certain BU features do not contribute directly to target
detection, but when combining them with certain TD features could lead
to an improvement in the detection accuracy. In addition, depending on
the contextual information of individual images, the level of interaction
between the features of both types vary.

A dynamic framework for combining both influences as well as avoid-
ing computation of irrelevant features belonging to either of the two in-
fluences is needed to understand such interactions. The dynamic strat-
egy allows irrelevant features to be removed on an image by image basis.
The inclusion of unimportant or redundant features has two main disad-
vantages. First, the efficiency degrades because of the extra computation
of such features, and secondly, the detection performance could degrade
due to too large search space. A dynamic solution to this problem could
be addressed by formulating the problem as a feature selection through
optimization in such a manner that all the features belonging to either TD
or BU are pooled together for the selection process.



1.3. MOTIVATIONS 7

When TD and BU features are combined through the feature selection
process by either certain optimization criteria or just through a static com-
bination process, the result is assumed to work on all images within a
dataset. However, the performance could vary from image to another. For
instance, Ehinger et al. [3] suggested that to maximize detection of pedes-
trians in a dataset of outdoor images, three types of features need to be
combined through a visual attention setup for all the images. Although
the achieved results supported their hypothesis, the optimum set of fea-
tures varied from image to image and was not exploited in their work.

A dynamic mechanism is needed to combine various features on an
image basis. Several techniques have been proposed in the past to han-
dle this problem [32]. These techniques select or ignore a feature from
the combination process on-line. Whenever a feature is computed (either
belonging to TD or BU), and before the final integration, an intermediate
map is generated which is called the feature map. The feature map high-
lights activation points deeming salient in an image according to that fea-
ture. By inspecting the visual characteristic of the feature map, a decision
is made to whether to keep or drop that feature from the combination pro-
cess. Depending on the properties of such feature maps, it will be either
selected or ignored for the final combination process.

Previous methods of feature map selection are highly dependent on the
particular measure of compactness and its variant [32, 33]. Feature maps
that exhibit high compactness score are favored to go into the combina-
tion process. For salient object detection, compactness is typically found
to be very effective in measuring a quality score of a map [34]. However,
this measure might not work when considering feature maps for fixation
as they exhibit visual characteristic that are considerably different from
salient object detection feature maps. In addition, compactness scores are
computed directly from the map itself and no intelligent learning is in-
volved, which makes such approaches rather static.

A new approach is needed that can precisely estimate a quality mea-
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sure of fixation feature maps. This is possible by extracting useful infor-
mation from the feature maps. The information should describe the visual
attributes of such maps. Furthermore, for any novel feature map, in order
to dynamically estimate how good it is for target object detection (mea-
sured through some quality score), a model is needed that would associate
the visual attributes to a quality score value. If this is achieved accurately,
it would be possible to combine only good quality feature maps dynami-
cally on individual image basis.

1.4 Thesis Statement

The main theme of this thesis is to model the task-driven cognitive influ-
ence and propose machine learning approaches by which it is integrated
with data-driven influence to maximize both accuracy and efficiency of
the system in detecting target objects.

1.5 Goals

The goal of this thesis is to primarily develop a generalized visual atten-
tion system that incorporates both task-driven and data-driven saliency
factors for detecting a generic target object. The thesis does not aim at
mimicking human visual attention model, but rather to come up with
computational attention models that achieve the desired goal of target ob-
ject detection effectively and efficiently. There are a number of issues that
will be addressed in this thesis to achieve the overall goal. The main goal
is divided into the following objectives:

1. To develop a generalized framework of task-driven influence that
incorporates high-level knowledge of the scene into the system for
better generalization over images with diverse visual content. In or-
der to achieve this objective, the following tasks are performed:
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• Model task-driven influence through weighting of low-level
features that are tuned for a particular target object. For the
model to generalize over a variety of images containing the tar-
get object, a scene context element needs to be introduced that is
used to dynamically assign appropriate weights to the features.

• Compare the proposed contextual based feature weighting vi-
sual attention model with traditional attention models that per-
form plain weighting of features without incorporating high-
level knowledge into the system.

2. To explore various low to mid-level features to be added to the exist-
ing feature weighting based TD models that previously utilized only
primitive set of features. Expanding the set of low-level features will
increase the effectiveness of the model in describing the target object
without the need for high-level target specific detectors.

3. To incorporate knowledge of the target into the contextual based TD
saliency weighting. This is to be done by only considering low-level
features without opting for high-level target specific feature for an
efficient attention system.

4. To design an approach that combines good features from both TD
and BU influences for maximizing the detection accuracy over a
dataset of images. This requires formulating the problem as feature
selection problem through optimizing an objective function to select
important and relevant features from both categories. Such a design
will enable features from both categories to interact with in order to
maximize target detection accuracy.

5. To develop a mechanism through which a feature map is selected
or removed from the feature map integration process to perform a
dynamic feature map integration on individual image basis. This
will improve the efficiency and boost the detection accuracy of the
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model. The implementation of this approach will consist of the fol-
lowing tasks:

• Extract efficiently computed characteristic features from the fea-
ture map that describes its visual attributes. The features gather
geometrical, local, global, statistical and spatial information of
the feature map.

• Learn a regression model that estimates a utility score of any
feature map based on the characteristic features extracted from
these maps. A decision on the selection or exclusion of the fea-
ture map from the integration process is made based on the es-
timated quality score.

1.6 Major contributions

By achieving the above objectives, this thesis will provide the following
major contributions in modeling task-driven saliency for target object de-
tection in the field of visual attention:

1. A new TD feature weighting saliency model is proposed that learns
feature weights through the contextual information within an indi-
vidual image. This model provides a dynamic mechanism to tune
the feature weights based on the context of a novel image. This mod-
elling will show the superiority of incorporating contextual informa-
tion in tuning the feature weights over those models that do not use
contextual information while learning such weights.

The model includes additional low-level features apart from the Itti
features. These features demonstrate that a better target detection ac-
curacy is achieved than those primitive low-level features commonly
used in previous TD attention models. The features are computation-
ally efficient and a marginal increase in processing time is observed.
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Part of the research work in this chapter is published in the following
conference and journal:

• Ibrahim Rahman, Christopher Hollitt, and Mengjie Zhang, ”In-
formation Divergence Based Saliency Detection with a Global
Center-Surround Mechanism”, in proc. of the International Con-
ference on Pattern Recognition (ICPR), Stockholm, Sweden, Au-
gust 2014, pp. 3428 – 3433.

• Ibrahim Rahman, Christopher Hollitt, and Mengjie Zhang,
”Contextual-based top-down saliency feature weighting for tar-
get detection”, Machine Vision and Applications, vol. 27, no. 6, pp.
893 – 914, August 2016.

2. A new approach is proposed that combines target information
through low-level features with the contextual information. In our
knowledge, this is the first model that combines the contextual infor-
mation, target feature and a recognizer that is tuned for a particular
target object. The model is based on attentional modules that learn
two separate weight vectors which are tuned by the contextual infor-
mation and the target object information. We show that the detection
accuracy in the form of F-measure score is always boosted when in-
corporating target information (in the form of target features or a
target tuned recognizer). The model is tested and analyzed on seven
challenging datasets with 12 different objects contained in complex
and cluttered background scenes to establish the merits of the pro-
posed approach. In addition, the model is very efficient as it only
utilizes low-level features in performing target object detection.

3. A new approach of combining TD and BU influences by exploiting
the interaction between various features from both categories is pro-
posed. A novel formulation of the problem is performed as feature
selection using particle swarm optimization (PSO). The features from
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both categories are pooled into the same set from which the selec-
tion takes place, rather than by considering them as separate chan-
nels. The obtained results show that the proposed model outperform
state-of-the-art saliency techniques in combining both processes for
detecting the target object. Furthermore, the model provides fea-
ture importance profiles that are interpretable as they describe the
features that are useful from both categories and those which are ir-
relevant to the task.

Part of the research work in this chapter is under revision after pass-
ing the revision round in the following journal:

• Ibrahim Rahman, Christopher Hollitt, and Mengjie Zhang,
”Task Driven Feature Selection for Top-down Visual Attention”,
Information Sciences, 2017, Conditionally accepted.

4. A new dynamic feature map integration strategy is proposed. The
proposed approach is based on estimating a quality score of a fixa-
tion feature map through regression from a set of characteristic fea-
tures that are used to visually describe a fixation feature map. The
following contributions are made:

• A new set of 29 features are proposed that extract geometrical,
statistical, local and global information from a feature map and
would describe the visual appearance of the map. The features
are very computationally efficient and can be used in runtime
applications.

• A new approach for estimating the quality score of a feature
map is proposed based on a regression problem. The proposed
random forest regressor learns a model from the features ex-
tracted from a feature map (called characteristic features) to es-
timate a quality score of a novel feature map accurately without
the need of the groundtruth data.
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• Two new feature map integration frameworks are proposed that
utilizes the estimation model for a dynamic feature map inte-
gration. By integrating our proposed approach with a two sim-
ple proposed feature map integration frameworks, we demon-
strate that our model achieves a higher human fixation predic-
tion accuracy and efficiency than that achieved by combining
all feature maps.

Part of the research work in this chapter is published in a conference
proceeding and another under revision after passing the first revi-
sion round in a journal:

• Ibrahim Rahman, Christopher Hollitt, and Mengjie Zhang, ”A
dynamic feature map integration approach for predicting hu-
man fixation”, in proc. of the International Conference on Image
and Vision Computing New Zealand (IVCNZ), Palmerston North,
New Zealand, November 2016.

• Ibrahim Rahman, Christopher Hollitt, and Mengjie Zhang, ”A
feature map quality score estimation through regression”, IEEE
Transactions on Image Processing, Submitted.

1.7 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 presents
a background discussion on visual attention systems with emphasis on
task-driven attention modeling. Chapters 3 to 6 establish the main con-
tributions of the thesis. Finally, the thesis conclusion and potential future
extensions are presented in chapter 7.

In chapter 2, various attention systems are discussed with emphasis
on TD saliency. Previous works related to attention system combination,
feature selection and proto-object models for target object detections and
their shortcomings are highlighted in detail.
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To perform a more controlled weighting of low-level features to model
TD saliency for target detection, chapter 3 introduces a novel approach
that incorporates contextual information into the weighting mechanism to
model TD saliency for target object detection. In addition, various effi-
ciently computed features are discussed in the chapter to address object
detection generalization through low-level features without using target
specific features. A thorough analysis performed on different challenging
datasets and comparison with various state-of-the-art techniques is pre-
sented in the chapter.

To see how target information can be incorporated into a contextual
based TD saliency model, chapter 4 provides a mechanism to combine
both sources of information to maximize the detection accuracy of the tar-
get object. The chapter also discusses how to utilize a target tuned recog-
nizer to boost the detection accuracy of the context/target attention model.

Chapter 5 introduces a generalized framework that combines impor-
tant and relevant features from both TD and BU saliencies for target ob-
ject detection. The framework utilizes PSO capability to effectively per-
form feature selection from a pool of features consisting of both TD and
BU features. The objective function represents the agreement between the
final produced saliency map through some feature combination and the
ground-truth maps over the entire training dataset. A comparison with
state-of-the-art TD attention models is performed both in terms of detec-
tion accuracy and speed of detection that is established by the number of
fixations required to reach to the target object.

A feature map quality score estimation approach is proposed in chap-
ter 6. The model consists of extracting visual characteristic features from
a feature map to describe its visual attributes. Furthermore, a regression
model that estimates a quality score of any novel feature map through the
characteristic features is explained in this chapter. Finally, two dynamic
approaches to incorporate the quality estimation model and a feature map
integration framework are presented in this chapter to predict where hu-
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man fixate on when searching for pedestrians. The results are compared
with a popular fixation feature map combination strategy and a compre-
hensive analysis and observations are provided in the chapter.

Finally, chapter 7 summarizes the thesis objectives and how they have
been achieved through the proposed models. Furthermore, thesis contri-
butions are highlighted along with possible future works in this domain.
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Chapter 2

Literature Survey

2.1 Chapter introduction

This chapter provides an overview of the biological working of human vi-
sual attention system and the existing computational saliency models. The
chapter is divided into two parts. The first part provides a broad spec-
trum of topics related to active vision, particularly visual attention. For
a better understanding of the concept of saliency associated with visual
attention, a description of bottom-up saliency along with a brief discus-
sion on various computational models of bottom-up saliency is presented.
The chapter also concentrates on one particular application of active vi-
sion systems which is object detection (or target object detection). Because
the thesis uses machine learning techniques to achieve the overall goal,
an overview of machine learning concepts, parameters, tasks being used
for and paradigms are discussed briefly. As part of machine learning, the
feature selection process is also discussed here, as some objectives of the
thesis coincide with it.

The second part of the chapter highlights those topics required to un-
derstand the direction of the research work of this thesis. A thorough dis-
cussion on top-down saliency and its relevance to high-level tasks is given
in this chapter. This discussion also highlights the limitations of the ex-

17
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isting saliency methods in successfully performing high level visual tasks
such as target object detection. Finally, the chapter also discusses vari-
ous approaches and their limitations to combine both types of saliency to
maximize the detection accuracy of target objects.

2.2 Background

The goal of this chapter is to provide a generic information about some
areas of active vision and machine learning relevant to the thesis topic.

2.2.1 Active vision

In the machine vision domain, active vision describes systems that are ca-
pable of dynamically manipulating the viewpoints of scene acquisition de-
vices [34, 35]. Unlike passive computer vision techniques, where there is
no control over the data acquisition process, the active vision systems ex-
hibit a non-trivial degree of decision making during the image acquisition
process. Passive vision techniques do not account for dynamic nature of
the real world scene and the problems associated with it, whereas active
vision techniques have a great ability to cope with such challenges [35].

An astonishing active vision system in existence that can perform com-
plex vision tasks simultaneously is the visual attention system in primates,
particularly human visual attention (HVA). Human vision has a remark-
able ability to handle various complex vision problems effectively and ef-
ficiently through a process called visual attention [13]. Visual attention is
a cognitive process that attempts to sample and analyze a visual field by
attending to certain parts of the visual area through a selective and guided
search mechanism [4]. It seeks to optimally schedule sensory resources of
the neurological system to areas of an input that are deemed most impor-
tant. Subsequent attention is then preferentially devoted to those areas,
whether it is in the form of further observations, or ongoing analysis to
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better determine the nature of the image [36].

Nearly all active vision techniques try to mimic the functionality of
human visual attention system. These techniques have been applied to
a broad range of real-world problems in robotics, military, education and
security. Hence, in order to better understand the human visual attention
system, the next section provides a discussion on biological components
of HVA and their functionality.

2.2.2 The human visual attention (HVA) system

Neurobiologists, psychologists, and engineers have investigated the
working of visual attention system in primates and specifically humans
from different perspectives. These studies have resulted in a better funda-
mental understanding of the system, along with considerable applications
in various fields. However, many secrets of this system can not yet be
explained or remain to be explored.

There are two directions in the literature concerning HVA, one fol-
lowed by the neurobiologists and psychologists that constitutes the field of
Computational Neuroscience which deals with the theoretical study of the
brain and its functionality and association with vision. The other direction
is the development of computational models of the HVA. The term biolog-
ical HVA and computational HVA will be used to describe these directions
respectively. There are many good literature surveys that cover detailed
aspects of both directions such as [4,37] for biological HVA and [18,19,38]
for the computational modelling of HVA.

2.2.2.1 Biological attention

This section will give a brief overview of how the visual information pro-
cessing takes place inside the HVA system [18].

Retina:
The retina reduces the huge amount of information coming from the exter-
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nal sources through a linear operation called the centre-surround mecha-
nism. The retinal ganglion cells are responsible for performing this oper-
ation through specialized receptive fields called ON cells and OFF cells.
The ON cells increment the light intensity in the centre of the receptive
field and OFF cells decreases it. Most of the computational models repli-
cate this mechanism through a linear The difference of Gaussian (DoG)
operation.

Lateral Geniculate Nucleus (LGN):
The LGN receives signals directly from retinal ganglion cells via the optic
tract and from the Reticular Activating System (RAS). The RAS is respon-
sible for arousal control and sleep-wake transitions. The LGN directs the
incoming signals to the V1 and V4 visual cortex (explained next). How-
ever, the precise function of the LGN is relatively poorly understood.

Visual Cortex:
The visual cortex is the part of the cortex responsible for processing visual
information. It is located in the occipital lobe and accounts for a large
proportion of the human brain. It contains many sub-areas and can be
grouped into two main parts, the primary visual cortex or V1 area, and
the Extrastriate visual cortex such as V2, V3, V4 and V5. The functionality
of each sub-area is given below:

Primary visual cortex (V1): V1 is the best-studied area of the visual
system. It has the ability to process information about static objects and
perform pattern recognition. The V1 neurons are tuned to extract specific
features from the input information such as visual orientations, spatial
frequencies, and colours. However, the initial responses of V1 consist of
sets of selective spatio-temporal cells equivalent to Gabor transform and
is responsible for extracting many spatio-temporal features.

These cells (sometimes called edge detectors) are sensitive to various
orientations. When a light of certain orientation is projected onto the
retina cells, the signals from these cells are forwarded to the V1 cells
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through the thalamus layer. Only those V1 cells that exhibit a high
response to that specific orientations are activated. More interestingly,
researchers found that the number of such cells and their wiring are very
sensitive to past experience [18]. For instance, a subject exposed to vertical
patterns more often than horizontal patterns is more likely to have more
vertical cells in the V1 area than horizontal cells. Hence, these cells tune
themselves with experience.

The V2 area: This area exhibits feedforward connections that deliver
the signals from V1 area to V3, V4 and V5 areas. The cells contained in
V2 area act as storage points and have the ability to convert short-term
memory into long-term [39].

The V3 area: V3 is located in front of the V2 area. It receives the in-
puts from V1 and V2 and projecting them to the Posterior Parietal (PP)
cortex. Some studies indicate that the area is responsible for the handling
of global motion covering large portions of the visual field.

The V4 area: The exact functionality of the V4 remains a question,
however, some studies suggest that it has similar functionality as V1 but
can also handle complex features such as geometric shapes.

The V5 area: Also known as MT region of the Extrastriate visual cor-
tex in humans, plays an important role in the perception of motion
and orientations of some eye movements. It is also responsible for the
integration of local motion signals into global perceptions. V1 provides
the most important input to the MT. However, recent studies show that
MT is capable of responding to various visual information even after V1
is disabled, emphasizing that there are other specialized signals entering
this region before even entering the V1 region.
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2.2.2.2 Functionality of the visual attention system

Out of the huge visual information bombarding the human retina, only a
small region of the scene being focused on is processed. We say that the
focused region has been a candidate for attention. Anzai defined attention
as ”the mental ability to select stimuli, responses, memories, or thoughts
that are behaviorally relevant among many others that are behaviorally ir-
relevant” [39]. This attention is derived by two factors, namely, the bottom-
up process and the top-down process. The bottom-up process, also known
as a data-driven process, is derived solely from the input stimuli. This
process leads to a focus of attention on regions having features different
from other parts of a scene. These regions are known as salient regions.
Many researchers have concluded that bottom-up influence is not volun-
tarily suppressible and highly salient regions, therefore, capture the focus
of attention (FOA) regardless of any other factors involved [40].

The top-down or task-driven process is a slow goal and task oriented
mechanism performed by parts of the intraparietal cortex and superior
frontal cortex. A more detailed discussion on this influence is covered in
section 2.3.2.

It is important to note that while bottom-up saliency and attention have
been thoroughly investigated at biological and computational levels, this
is not the case for top-down saliency. One reason might be that the data-
driven factors are easier to control and understand than cognitive top-
down factors. In addition, bottom-up factors are used in either studying
the ability of humans to detect salient regions/objects or to study where
humans fixate their eye during a random search within a scene. A more
challenging study which has not been explored as broadly is how humans
perform high-level recognition of scenes and objects through knowledge
and goals which are a topic of top-down influence on the attention for de-
tection and recognition tasks. Also, it is likely that the mechanisms used in
different top-down tasks are different. There may not be a single unified
theory of top-down attention to accommodate all these tasks.
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The mechanisms involved in selective attention still remain open in
the field of perception research. New discoveries indicate that many ar-
eas of the brain share the processing of information from different senses
and are multi-sensory in nature. Additionally, the two biological processes
mentioned earlier do not take place independently, particularly in goal di-
rected search but instead, they work in a complementary way.

2.2.3 Attention models and categorization

A visual attention computational model is an approximation of the HVA
system that describes how the attention in humans or a function works.
The existing models usually consider the following aspects: (i) a formal
problem statement (ii) the algorithmic and mathematical considerations
and, (iii) the implementation level. In [38], the authors made a taxonomy
of the current existing computational attention models (bottom-up or top-
down) as described next.

2.2.3.1 A taxonomy of computational models

This taxonomy provides a link between the biological and computer vi-
sion communities’ view of attention. The computational branch is the
intersection between the biological vision and the computer vision tech-
niques. Four classes of models were recognized. Here, we only discuss
one specific class (i.e., the saliency map) as most of the previous works fall
into this category. Furthermore, all the work in this thesis belongs to this
category.

2.2.3.1.1 The saliency map

By far the most well-explored area of the HVA and most of the compu-
tational models fall into this category. The models from this class are ei-
ther pure bottom-up, pure top-down or the combination of both saliencies.
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However, as mentioned earlier, the bottom-up models dominate the liter-
ature, while very few models exist for the top-down approach.

The saliency hypothesis arose from the famous integration theory of
Treisman and Gelade [41] and was first described algorithmically by Koch
and Ullman [42]. The basis of these models are the following five elements:

1. An early representation of stimuli in the form of features.

2. A topographic map called the saliency map which encodes the com-
bined details from these extracted features.

3. A normalization operation performed on a saliency map to account
for different modalities across the features (i.e., different range of val-
ues in the features).

4. A winner-Take-All (WTA) network implementation based on the
conspicuity, similarity, and domination of the detected salient region.

5. An inhibition of return (IOR) mechanism which ensures progressive
shifting of attention to the next best location and prevents fixation on
the most salient region.

In addition, there are various other details apart from these five basic ele-
ments such as the centre-surround mechanism, feature maps, conspicuity
maps which are discussed in section 2.3.1.2.1.

Many computational models follow the Koch and Ullman’s algo-
rithmic model with different variations [1, 43–48]. The most noticeable
amongst all with the highest number of citations in this research domain
is the work by Itti et al. [1]. From now on, we refer to this model as
the Itti model of attention. More about Itti model will be covered in sec-
tion 2.3.1.2.1.
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2.2.4 Object detection

Object detection is one of the essential tasks in image processing and com-
puter vision. In the context of computer vision, the term object refers to an
entity having attributes which makes it distinct from the background [49].
This distinction comes from pre-existing knowledge of such entities (e.g,
boundary, uniformity, shape, etc.). Depending on the application, the defi-
nition of object detection varies. If the goal is to determine all the instances
of generic objects and their locations, then the detection becomes generic
object detection or class-generic detection. More recently, such detection in-
volves a measure (called objectness) of how likely an image window con-
tains an object of any class. This kind of detection involves the utilization
of object appearance cues such as edges, pixel straddling and location pri-
ors [50].

The classic definition of object detection, which is followed throughout
the thesis is to find all instances in an image belonging to a particular class,
such as pedestrians, faces or planes. Hence, the identity of the object is de-
fined by its class, which in turn depends on the hierarchy of discriminative
classes being employed [49]. Typically a small number of object instances
is present in an image. In fact, in most of cases, only one is present. This
is typically the case in many classification and recognition datasets such
as Caltech-256 [51] and PASCAL VOC 07 [52]. Note that alternatively, a
slightly modified term for object detection that will be used in rest of the
thesis is target object detection where the term target corresponds to the ob-
ject of interest to be searched for in an image.

Object detection is the first step that allows gathering further informa-
tion about the object itself or other content of the scene. It has been used in
many applications such as human-computer interaction [53], tracking [54],
image retrieval [55] and autonomous vehicles [56]. The scope and chal-
lenges associated with object detection are, in turn, defined by the partic-
ular applications’ requirements.

In previous decades, an immense amount of research has been ded-
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icated to addressing challenging issues in object detection. A compre-
hensive review of such developments in object recognition can be found
in some of the survey literature [49]. A good object detection technique
should be robust to viewpoint variation, occlusion, scale, clutterness, and
deformation.

Two broad categories of models exist for object detection, generative
and discriminative models. Generative models follow a probabilistic ap-
proach where the detection is usually conditioned over the appearance,
pose or the visual attributes of the object [57]. The posterior probabilities
characterize the likelihood of a region containing a target object. No infor-
mation about the non-object class (usually the background) is required in
this kind of modelling.

In discriminative models, a classifier is learned that can discriminate
between the object of interest and non-object regions. The tuning param-
eters of the classifier are chosen to maximize the detection accuracy [57].
Both models are machine learning based and require some model training
to find the optimized parameters for the detection.

2.2.4.1 Research in object detection

In this section, a critical review of passive approaches to the object detec-
tion is given here. A common feature of these techniques is that they lack
purposeful control over the data acquisition process (hence being passive).

2.2.4.1.1 Deformable or part based detection

This approach deals with the question of whether the humans recognize
objects by initially detecting sub-parts of it or the object as a whole in a
single shot [58]. In part based methods, localization of important parts of
the object play an important role in detecting the whole object. Part based
models have proven to be effective in scenarios with partially occluded
objects [59]. The limitation of these techniques is the difficulty in extracting



2.2. BACKGROUND 27

and learning part representations from 2D images. In addition, the process
is time consuming, particularly for objects that appear in small scales.

2.2.4.1.2 Appearance based detection

Early works in appearance-based detection used global low-level image
descriptors based on colour and texture histograms to describe a vari-
ety of object poses. However, such approaches were sensitive to illumi-
nation conditions and did not perform well in non-ideal imaging condi-
tions. With the introduction of principal component analysis (PCA), a
much more compact and robust representation of the varying appearances
was achieved [60].

2.2.4.1.3 Local feature-based detection

This is the most popular approach that gained popularity in image clas-
sification problems. This is due to its robustness cluttered backgrounds,
occlusions and viewpoint variation. In these approaches, local features
are extracted at a dense grid from different image locations. This is fol-
lowed by building a descriptor from these features that are used by a clas-
sifier. Scale-invariant feature transform (SIFT) features is an example of lo-
cal features in which various interest points based on local orientation are
extracted from an image using Difference-of-Gaussian (DoG) like opera-
tors, and further transformed in a descriptor [61]. Other example features
include the histogram of gradient (HOG) features [62], speeded up robust
features (SURF) [63] and Harris corner detectors [64].

Another major contribution in the local feature approach was the in-
troduction of the concept of ‘‘bag-of-word’’ by Sivic and Zisserman [65]
which was widely adopted by the research community in computer vision.
The process initiates by extracting local features from different patches
of the image using some descriptor (e.g., SIFT, Harris, etc.). The feature
vectors are converted into codewords which are feature representation of
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similar patches. This is typically performed using a clustering technique.
Finally, a histogram of codewords generates the final representation of the
image or region of the image. The bag-of-word approach is very effective
in detecting a single object but not robust when multiple instances of a
target is present.

2.2.4.2 Sampling strategies in object detection

A key element in object detection is where to select a region from an image
for detecting the object of interest. An ill structured sampling strategy may
result in detection accuracy degradation and increase in processing time.
The following strategies are adopted.

2.2.4.2.1 Contextual priming

Extensive works exist on how to exploit contextual knowledge of the scene
to sample relevant regions of the image [66–68]. For example, in order to
detect the sun, it would be more appropriate to search for in the sky rather
than on the ground. Contextual priming reduces the number of regions to
be processed for further detecting the target object.

2.2.4.2.2 Sliding window

This particular sampling strategy is considered by most object detection
systems that use local features and bag-of-words approach [69]. An ex-
haustive search is applied throughout the image at different scales and
locations. The most critical part of this strategy is the classifier which de-
termines the likelihood that a given patch at a [1]particular scale contains
the object. The classifier is comprehensively trained over all possible patch
scales and sizes. Although this approach is effective when used iteratively
for detecting the object, it is computationally demanding.
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2.2.4.2.3 Attention based sampling

This strategy is based on sampling an image through attending to regions
of the image that deem most salient [70, 71]. This approach is very effi-
cient as the process involved in generating feature maps is typically very
fast. Furthermore, this approach tends to effectively capture regions of
the image that are likely to contain the object in two different modes, a
bottom-up and a top-down saliency modes. In the latter, those objects that
capture the attention are sampled (not necessarily the object of interest).
When high-level object knowledge is imposed, the sampling is conducted
through a top-down mode that more likely to sample regions with higher
probability than that sampled during the bottom-up mode [6]. This area of
research is relatively new, particularly for object detection and constitutes
the main goal of this thesis.

2.2.4.3 Performance evaluation

In machine learning, standard evaluation measures and procedure exit in
order to evaluate the performance of an algorithm [72]. In this section, we
highlight some of these evaluation criteria but in the context of saliency
for object detection. Note that in attention based detection, once a saliency
map is generated (the outcome in machine learning term), its is compared
with the groundtruth map (labelled data). The comparison is done in two
dimensions as both the outcome and the labelled data are images (i.e.,
maps).

2.2.4.3.1 Kullback-Leibler (K-L) divergence and correlation coefficient

To compare two saliency maps, two common similarity measures exist.
The first using the Pearson correlation coefficient with the maximum coef-
ficient of one indicating a perfect match and zero indicating lowest similar-
ity. The second uses the unbounded K-L divergence where a value of zero
indicates a perfect match. For instance, in Fig. 2.1, the first two images (a,b)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Comparison of two saliency maps: (a) The original image (b) Groundtruth
as fixation points, (c) Groundtruth as continuous saliency map (d) Heatmap saliency
groundtruth overlaid on top of the original image (e,g) Saliency maps generated through
two different techniques (f,h) The corresponding heatmaps respectively.

show the sample image and the groundtruth fixation point overplayed on
it respectively. It is a common practice to convert the discrete points into a
continuous groundtruth map by convolving these points with a 2D Gaus-
sian filter [73]. The resultant continuous fixation groundtruth map from
this operation is shown in Fig. 2.1(c). For visual purposes, this map is rep-
resented by a heat map overlaid on the original image and (see Fig. 2.1(d)).

The figure shows two saliency maps generated by two different
saliency techniques (see (e) and (g)). When the K-L divergence is com-
puted between the groundtruth map (i.e., Fig. 2.1(c)) and the two maps
separately, the obtained divergence values are 3.33 and 7.06 respectively.
This shows that the map in (e) is better in predicting fixation than the map
in (g) when the reference groundtruth map is (c).

2.2.4.3.2 Receiver operating characteristic (ROC) and precision-recall
curves

Another performance measure commonly used in the saliency literature is
the receiver operating characteristic (ROC) analysis. In this method [74],
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(a) (b) (c) (d) (e)

Figure 2.2: Fixed threshold segmentation of a saliency map (a) with a threshold percent-
age of (b) 90, (c) 60, (d) 40, and (e) 20 respectively.

the groundtruth saliency map is thresholded using a fixed threshold value
to convert it into a binary map M1 (if it is not already in that form). Higher
the threshold value, the more pixels from the saliency map having higher
intensities are retained as shown in Fig. 2.2. The same thresholding is per-
formed on the saliency map generated by the predicting technique. How-
ever, this threshold is different in the sense that threshold values are sys-
tematically moved between the minimum and the maximum values of the
map and binary maps Mq are generated where q = 1, . . . , U such that U is
the number of thresholded maps. From a pair of M1 and Mq, the following
four parameters are found: true positives (TP), the false positives (FP), the
false negatives (FN), and the true negatives (TN).

Once the above mentioned four parameters are acquired, two different
plots are generated. The first one is called the receiver operating charac-
teristic (ROC) which is the FP rate (FPR) as a function of the TP rate (TPR)
or recall. The second plot is the precision-recall curve. These entities are
given as:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

FPR =
FP

FP + TN

(2.1)
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Typically for ROC curves, the area under ROC (AUC) is calculated in-
dicating the overall performance of the saliency map. Higher the AUC
value, better would be the performance. Similarly for the precision-recall
curve, the higher the curve, and in particular, for low values of recall, the
better would be the saliency map in identifying the correct saliency loca-
tions with respect to the groundtruth map.

Figure 2.3 shows two sample saliency maps along with the
groundtruth map (see (b-d) in the figure). The precision-recall and ROC
curves are plotted for these two maps using different threshold values.
The blue curves that correspond to the saliency map shown in (c) indicate
a better performance than those associated with the feature map in (b) in
terms of detecting the salient region.

In order to evaluate the performance of a particular technique for
saliency detection, these curves are plotted across all the images in a
dataset. For each threshold value, the computed values in averaged over
all the saliency maps, resulting in much smoother curves than that plotted
for a single saliency map (see Fig. 2.3(g,h) that are plotted over the entire
dataset).

2.2.4.3.3 The F-score

Another common performance measure is the F-measure which is a func-
tion of precision and recall. It can be calculated over a set of threshold val-
ues as in AUC-ROC or precision-recall curves, or over a single threshold
value. A single threshold value is usually selected adaptively depending
on the input image for which the saliency is calculated. Higher F-measure
values correspond to better performance. The F-measure is given as:

Fβ =
(
1 + β2

)
· precision · recall

(β2 · precision) + recall
(2.2)

where β is an importance factor for weighting either precision or recall. A
common value for β2 is 0.3 [74] in the saliency literature.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 2.3: Precision-recall and ROC performance measure curves, (a) Input image (b)
Saliency map by AIM [75] (c) Saliency map by Context Aware [76] (d) Groundtruth (e)
Performance measure of both the techniques on the original image through precision-
recall curve and (f) ROC curve (g) Precision-recall curve for both techniques on the ASD
dataset and same for (h) ROC curve.
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There are many ways to select the adaptive threshold value. The most
common one is based on the method proposed by Achanta et al. [74]. Ini-
tially a saliency map is segmented using mean-shift segmentation with the
help of the original image. The segmentation technique has three param-
eters, σS , σR and σmin which are set to the values 7, 10 and 20 respectively
as chosen in [74]. Once the map is segmented, it is thresholded using an
adaptive threshold value Ta given as:

Ta =
2

W ×H

W−1∑
x=0

H−1∑
y=0

S(x, y) (2.3)

where W and H are the width and height of the saliency map respectively
and S(x, y) is pixel intensity of the saliency at position (x, y). This thresh-
old value is used to binarize the saliency map.

There are many other measures for saliency performance evaluation,
however, in this chapter, we include only those that will be used through-
out the thesis for evaluating the performance of the proposed models. For
a comprehensive survey of saliency evaluation techniques, refer to the
work by LeMour et al. [77].

2.3 Related work

This section provides a detailed information about bottom-up and top-
down saliency and previous computational models of both processes.

2.3.1 Bottom-up saliency

The purpose of the bottom-up saliency models is to generate bottom-up
maps that either highlight the most salient regions in a scene or to predict
where human fixate while free viewing the image. The maps generated
from the former category are typically called saliency maps and fixation
maps from the latter. Although the research work in this thesis is con-
cerned with modelling top-down saliency, it is essential to understand the
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working of bottom-up saliency as it will assist in perceiving the signifi-
cance of top-down saliency.

2.3.1.1 Saliency and human fixation maps

This section briefly explains the visual difference between the two types
of maps through an example. The three sample images in Fig. 2.4 (see the
first row) are selected from two datasets. The first image (i.e., Fig. 2.4(a))
is chosen from a fixation dataset while the other two are drawn from a
salient object detection dataset. In addition, the second row of the im-
age represent the corresponding groundtruth maps of the sample images
for reference. The final row shows the corresponding saliency or fixation
maps generated through the following techniques, from left to right, the
fixation prediction technique proposed by Judd and Torabla [73], the fix-
ation prediction technique proposed by Bruce and Tsotsos [75], and the
salient object detection technique by Achanta [74].

The map produced by the object detection technique (see Fig. 2.4(i))
is smooth, compact and highlights the salient objects as a whole. The
intensity of a point on the map reflects its saliency level. Furthermore,
the groundtruth maps for those datasets used to evaluate the performance
of salient object detection techniques represent segmented regions (e.g.,
Fig. 2.4(f)).

The fixation maps as shown in Fig. 2.4(g) tends to be blurry and scat-
tered and mostly used to predict human fixation in a free viewing task.
The groundtruth fixation maps (see Fig. 2.4(d)) represent discrete fixation
points that are gathered from subjects who were asked to view images
freely. Note that concentrations of fixation points are most likely within
salient regions.

A fixation prediction technique such as the one proposed by Bruce
and Tsotsos [75] can also serve the purpose of salient object detection (see
Fig. 2.4(h)). Most fixation techniques can perform well in detecting salient
objects because humans tend to fixate at the most salient region of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.4: Saliency and fixation maps: (a) –c) Original images (d) –(f) Groundtruths, and
the saliency maps generated by the following techniques (g) Judd and Torabla [73] (h)
AIM [75] (i) Achanta [74].
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image when free viewing. However, even then, the visual appearance is
blurry compared to those produced by salient object detection techniques.

2.3.1.1.1 Saliency datasets

There exist various saliency and fixation datasets for performance evalua-
tion. The complexity of the datasets varies in terms of background clut-
ter, multiple saliency objects, the size of objects, position of the salient
regions and blurriness level of the salient objects. The saliency datasets
are used explicitly for evaluating the performance of bottom-up saliency
techniques, where the objective is to detect salient objects.

Most of these datasets have some shortcoming. For instance, the salient
objects are typically located at the centre of the image. These salient ob-
jects are well photographed and focused. In addition, they lack saliency
competitiveness which means that in these datasets, there is often a lack
of non-salient distractors sharing similar features to the salient objects. Ta-
ble 5.1 summarizes the most popular datasets for both saliency and fixa-
tion prediction.

2.3.1.2 Biological inspired bottom-up techniques

Many biological plausible bottom-up saliency models and techniques
have been proposed in the past. Almost all these models are directly or
indirectly inspired by the cognitive concepts. One of the leading works
in biologically inspired bottom-up saliency is by Itti et al. This model has
been the basis of later models and the standard benchmark for compar-
ison. Some of the proposed top-down saliency models in this thesis are
based on the general structure of Itti model.

2.3.1.2.1 The Itti model of attention

As shown in Fig. 2.5 [1], the model takes the input image and creates nine
scales using dyadic Gaussian pyramids [84]. Sub-sampled images are pro-



38 CHAPTER 2. LITERATURE SURVEY

Table 2.1: Saliency and fixation datasets

Name Type Groundtruth Size Description Reference

Benchmark Fixation N/A 300

These natural images with eye tracking data from 39 ob-
servers are used by the fixation community to evaluate
the performance of any newly proposed fixation technique.
The ground truth is no available publicly. It is considered
the benchmark dataset for fixation

Judd et al. [78]

MIT Fixation
Fixation points
and continuous

maps
1, 003

It is purely meant for fixation. Many images in this dataset
do not have salient objects. The ground truth data are con-
structed by collecting eye tracking data of 15 viewers

Judd et al. [73]

Toronto Fixation
Fixation points
and continuous

maps
120

The images are viewed by 11 subjects with free-viewing
task. The images are both from outdoor and indoor scenes.
A large portion of images do not contain particular regions
of interest or salient regions.

Bruce and Tsotsos [75]

MSRA Saliency Rectangle boxes
20, 000

and
5, 000

This is a huge dataset containing two sets, a smaller con-
taining 5, 000 images and the larger with 20, 000 images.
The labeling is done by nine and three subjects respectively

Tie Liu et al. [79]

ASD/MSRA-
1000

Saliency
Segmented

objects (Binary
maps)

1, 000
This is the most popular dataset for saliency. The images in
this dataset contain a single salient object per image.

Achanta et al. [74]

ImagSal Saliency
Segmented

objects (Binary
maps)

235

The 235 images are divided into six different categories.
These categories contain images with large, medium and
small objects. Also some images contain repeating dis-
tractors, multiple salient objects, cluttered background and
salient regions with different sizes

Jian Li et al. [80]

IRCCyN IVC
Berkeley

Eyetracker

Saliency
and

fixation

Pixel-wise
ground truth,
fixation points

and importance
maps

80

These images are collected from the Berkeley segmentation
database. 80 of these images were selected and 24 ob-
servers viewed these images and an eyetracking device was
used to collect the eye tracking data.

Wang et al. [81]

SOD Saliency
Pixel-wise

segmentation
300

This dataset is a collection of salient object boundaries
based on Berkeley Segmentation Dataset (BSD). Seven ob-
jects are asked to choose the salient object(s) in each image.
Each subject is shown randomly a subset of the Berkeley
segmentation dataset as boundaries overlapped on the cor-
responding images.

Movahedi and Elder [82]

SED Saliency
Pixel-wise

ground truth
200

This dataset contains two sets of images each of 100 im-
ages. The first one contains images having a single salient
object while the other set contains images with two salient
objects.

Alpert et al. [83]
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duced by performing a progressive low pass filtering on these images.

This is followed by extracting three types of features (we call them
channels) using various filters. These are colour, intensity and orienta-
tion features. The features are computed through biologically inspired
phenomena known as the centre-surround mechanism akin to the visual
receptive fields found in the visual cortex (refer to section 2.2.2.1 for the
On-OFF neuronal response in the retina region). The centre-surround is
implemented as the difference between fine and coarse scale features. The
centre pixels are always chosen at the scales belonging to 2, 3, 4 and the
surround at 5, 6, 7, 8.

The difference between two features is performed across-scales, yield-
ing a multi-scale feature extraction. The features are calculated with vary-
ing parameters within a channel. For colour features, two contrast fea-
tures are calculated, the red/green and blue/yellow. Only one feature is
extracted for intensity. Finally, for orientation, Gabor filters are used to
extract the orientations at 0o, 45o, 90o and 135o. The following equations
summarize the feature extraction across scales:

I(c, s) = I(c)	 I(s) for intensity

R/G(c, s) = |(R(c)−G(c))	 (G(s)−R(s))| for R/G contrast

B/Y(c, s) = |(B(c)− Y (c))	 (Y (s)−B(s))| for B/Y contrast

O(c, s, θ) = O(c, θ)	O(s, θ) for orientation

(2.4)

where c and s represent the centre and surround scales whereas θ is the
angle used in computing the local orientation using Gabor pyramids. The
operator	 represents the across scale difference. In total, we have 42 maps
(referred to as feature maps (FM)) produced from the multiscale feature
extraction process, six for intensity, 12 for colour and 24 for orientation.

The obtained feature maps consist of values that differ from one cat-
egory to another and their modalities become incomparable. As a result,
Itti et al. proposed a normalization operation that globally promotes maps
having unique or strong peaks. The operator indicated as N (.) finds the
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Figure 2.5: Itti attention model for fixation. This diagram is a redrawing of the model
presented in [1].
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global maximum M in a map and computes the average m̄ at other local
maxima, and then globally multiplies the map by (M − m̄)2.

The feature maps are combined through across scale addition opera-
tion (⊕) to yield the conspicuity maps (CM) as follows:

Ī =
4⊕
c=2

c+4⊕
s=c+3

N
(
I(c, s)

)
for intensity CM

C̄ =
4⊕
c=2

c+4⊕
s=c+3

[
N
(
R/G(c, s)

)
+N

(
B/Y(c, s)

)]
for colour CM

Ō =
∑

θ∈(0o,45o,90o,135o)

N
( 4⊕
c=2

c+4⊕
s=c+3

N
(
O(c, s, θ)

))
for ori. CM

(2.5)

The reason for having different conspicuity maps each normalized in-
dependently because similar features compete strongly while different
features vary in their contribution toward building the final saliency map
[1].

Finally, the saliency map is generated by combining the three maps
using any operator. The default is through summation but various other
versions exist and have been followed in other models that are based on
the Itti model. The saliency map generation is followed by winner-take-
all(WTA) and inhibition-of-return (IOR) mechanisms for fixation and gaze
shift respectively.

WTA network is a computational principle in neural network models
by which neurons compete with each other for activation. In the context of
saliency maps, those areas having higher activation (i.e., intensity values)
stays active while all others shut down. The focus of attention (FOA) is
shifted to the location of the winner neuron. The WTA is complemented
by another process called the inhibition of return (IOR). In IOR, suppres-
sion of processing of previously inspected locations takes place. This al-
lows the next most salient location to subsequently become the winner. It
also prevents FOA from immediately returning to the previously attended
location.
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(a) (b) (c) (d) (e)

Figure 2.6: The conspicuity and the final saliency maps of Itti model, (a) Original image
(b) Conspicuity colour map (c) Conspicuity intensity map (d) Conspicuity orientation
map (e) Final saliency map.

As an example of the saliency map and the fixation locations from this
model, Fig. 2.6 shows the three conspicuity maps and the final saliency
map of the image in Fig. 2.6(a). Figure 2.7 shows four fixations at consec-
utive times modeled by the WTA-IOR network on the image of Fig. 2.6(a).
The first row of the figure i.e., (a–d) shows the first four saccade shifts dis-
played on the original image. The four WTA saliency maps (i.e., maps
after suppressing the locations not attended to by IOR) representing the
current fixation is shown in the second row of the figure i.e., (e–h).

The third row of Fig. 2.7 shows the most prominent feature map at
a particular scale that contributed to the construction of the WTA map
for a fixation (see i.e., (i–l)). For instance, for the first WTA map, the
Blue/Yellow feature of the colour channel at a scale of (7− 3) contributed
the most amongst all other features at different scales to yield the WTA
map shown in Fig. 2.7(e).

By default, the Itti model is entirely data-driven. However, if weights
are associated with the features at the feature conspicuity levels, then it can
be tuned for a specific task. More about this is covered in section 2.3.2.2.

Finally it is worth mentioning that all the terminologies used by Itti et
al. to describe various components, processing steps and entities are com-
monly used in visual attention literature. Since our proposed techniques,
specifically in chapters 3-5, are highly dependent on the Itti model, we
have adhered to the same terminologies. A slightly different terminology
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is followed in chapter 6 which is highlighted in section 6.1.1.

Three of the terminologies are extensively used throughout the thesis.
Feature maps (FM) are referred to 2-D maps that are generated after apply-
ing a centre-surround and normalization mechanism at multiple scales on
the extracted features. On the other hand, conspicuity maps (CM) are also
2-D maps that are generated by combining FMs belonging to similar cat-
egory features at multiple scales (e.g. Red, green and blue feature maps
are combined together to yield a colour conspicuity map). Note that more
than one FM exist and at different scales. However, only a single CM ex-
ist at one particular scale. When different conspicuity maps are combined
followed by a normalization process, a (saliency map) (SM) is generated.
Hence, SM is a 2-D the final product map that highlights various regions
of interest.

2.3.1.3 Other biologically plausible techniques

Inspired by Itti’s work, many of the works followed this model both
in bottom-up and top-down saliency calculation. In this section, only
bottom-up saliencies are discussed. In [43], authors proposed a similar
structure model and incorporated other features such as contrast sensitiv-
ity functions, perceptual decomposition and visual masking with a similar
centre-surround mechanism. They further improved their model by incor-
porating achromatic, chromatic and temporal information [44]. Bian and
Zhang proposed a biologically inspired technique but in the frequency do-
main [45]. The model was much faster than Itti model as the spatial do-
main was avoided. They used Laplacian pyramids and overlapping local
patches to generate the centre-surround effect.

In addition to the conventional features, in [85], authors used the
symmetry features for finding salient regions. They developed three
symmetry-saliency operators based on the isotropic symmetry, radial sym-
metry, and colour symmetry. They showed that their model performed
significantly better on symmetric stimuli than the method of Itti.
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Figure 2.7: WTA-IOR network for consecutive time fixations, (a–d) Estimated final fixa-
tion regions (e–h) WTA-IOR final maps (i–l) WTA feature map having the most prominent
contribution at an instance of time.
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Recently sparse coding techniques have been used for feature extrac-
tion. In [46], using a set of Independent Component Analysis (ICA) filters,
features are extracted by convolving these filters with the input stimuli.
The basis functions are learned through the eye-fixation patches from an
eye-tracking dataset. Clutter and local contrast features along with ICA
features were also used. A similar technique employed sparse coding for
feature extraction in aerial images [47].

The main advantage of biologically plausible models is that they accel-
erate the understanding of computational principles and methods that are
found in HVA system for complex processes such as object detection and
recognition.

2.3.1.4 Computational bottom-up techniques

Most of the proposed techniques for bottom-up saliency are purely com-
putational in nature. However, many of them have structures similar to
the biological ones (i.e., feature extraction and integration based). The
computational techniques for saliency are inspired by various engineering
and computer science areas, such as but not limited to machine learning,
evolutionary computation, signal processing, image analysis and infor-
mation theory. Some of the previous bottom-up computational saliency
techniques are given below.

Starting with techniques which are implemented in frequency domain,
Achanta et al. work is probably the most popular [74, 86]. They use low-
level colour and luminance features based on the CIELab colour space.
With the help of the centre-surround mechanism, lower or higher fre-
quencies are retained depending on the size of the centre-surround filter
being used. Another fast and simple frequency-based technique was pro-
posed by Hou and Zhang [87]. Their model is independent of features,
categories, or other forms of prior knowledge of the objects. A spectral
representation was extracted from an image through the use of the log-
spectrum. Most of the frequency based saliency techniques are fast. How-
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ever, one main disadvantage is that such techniques capture the contours
and edges of the salient objects only and not the whole salient region.

Another set of techniques uses Bayesian models to use prior knowl-
edge of the scene such as context to find regions of interest. Examples
of this class include the work of Jinhua Xu [88] in which the bottom-up
saliency is defined as the joint probability of the local feature and con-
text at a location in an image. The Bayesian Surprise theory of Itti and
Baldi [89] is another Bayesian model that defines saliency as a deviation
from what is expected based on a set of internal local visual features. They
measured the surprise element using the KL divergence metric.

Machine learning techniques played a significant role in improving the
saliency detection by learning the saliency parameters through different
learning procedures [90], [73].

Another important class of computational models uses graphical tech-
niques for saliency extraction. In [91] for instance, the authors used a
graph-based technique to perform the normalization of the feature and
conspicuity maps acquired from Itti model. They show that their nor-
malization method produces better saliency maps than Itti’s normalization
method.

Global and local region-based techniques have greatly captured the in-
terest of many for saliency detection. In [92], authors proposed a salient
detection and segmentation technique that uses local colour contrast his-
togram along with spatial region histogram for object detection. Other
techniques use some metrics to find the similarity between image patches
[76,93,94]. In [76], patches are extracted from the original images and dis-
similarity measure consisting of centre, spatial and colour distances are
used to distinguish a salient region from a non-salient one with the help
of context within the neighborhood of each patch.

Some models are information theoretic. Information theoretic concepts
are closer to interpreting biological approaches for bottom-up saliency. It
can be hypothesized that a region or an object is salient for an individual
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if it contains more useful information than the other regions or objects
in an image. This hypothesis has a biological flavor as a salient region
could be any region that may differ from an individual’s perspective. This
difference of choice could be seen as an information variation [6] or as an
element of surprise [89].

There are a number of existing approaches on saliency based on in-
formation theoretic concepts. In [75], the authors proposed a method
based on information maximization. The information is computed based
on Shannon’s self-information. In [95], a novel approach combining both
graph based and information theory is proposed.

One disadvantage of these information theoretic models is that only
self-information was considered of a region or feature and no difference
of information was considered. To overcome this disadvantage, authors
in [96] considered the difference of information between patches using
the KL divergence. They called this information difference information di-
vergence. Their method is based on extracting features through ICA and
then applying the information divergence in a centre-surround mecha-
nism. Their model has achieved good results on both saliency and fixa-
tion datasets. A thorough discussion about this model will be presented
in chapter 3.

A comprehensive detail about these techniques and many other
bottom-up classical saliency techniques are given in [97] and in the MIT
saliency benchmark report [78]. In recent years, research in bottom-up
saliency has flourished considerably. A review on some of the current
state-of-the-art techniques for bottom-up saliency detection can be found
in [27].

2.3.2 Top-down saliency

This section gives an outline of the previous work in top-down saliency
and the combination strategies with the bottom-up saliency. Furthermore,
the section briefly highlights the target object detection task in the context
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of top-down visual attention.

2.3.2.1 Neurological studies on top-down saliency

Most of the work in top-down influence is in the experiment phase. Var-
ious experiments have been conducted to study the behavior of this in-
fluence particularly in high-level tasks such as object detection and recog-
nition. The top-down influence is a voluntary task-driven process that is
initiated from high-level areas within the visual cortex. However, there is
no existing model that describes the exact behavior of this influence ade-
quately. In this section, some of the experimental studies in the past are
discussed.

In [30], the authors indicate that the target template and the context of
the scene can be utilized by the visual system from the beginning of the
scene viewing to effectively search for the target. The more detailed the
representation of the target, the more efficient the ensuing search. Differ-
ent experiments were performed based on placing target objects at differ-
ent locations with and without consideration of image context. The ex-
perimental results through gaze and fixation monitoring supported their
hypothesis. In [98], the authors conducted six experiments based on the
representation level of the target. They also concluded that information
about the identity of the target plays an important role in how fast the
top-down influence changes the selection process. Hence templates or
top-down knowledge biases the visual attention system towards targets
having similar information.

However, in [99], the authors concluded that subjects set up the target
in their brain in a more detailed and precise way rather than in a semantic
way. Hence, the top-down influence can be modelled either through a
precise description of the target or through a semantic representation.

Another set of studies is concerned with the nature of the top-down in-
fluence in the presence of distractors. In [100], experimental studies were
conducted to analyze the complexity of finding the letter ’N’ amongst re-
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versed ’N’ distractors and vice versa. A dense array of distractors was
used with a single unique target. Observers usually located the target in
half a second in both scenarios. In this experiment, the researchers con-
cluded that the bottom-up influence is responsible for discriminating the
target amongst the distractors. However, they also indicated that there is a
slight delay in getting to the target due to the interference of the top-down
knowledge at the time of fixation over the target.

Hence, they concluded that the bottom-up influence is responsible for
detecting the target whereas the top-down has a negative impact on the
detection. In the second experiment with less dense search array, the clash
between top-down and bottom-up was less obvious as the top-down nor-
mally dominated the search while bottom-up has a weaker influence. It
is obvious from this experimental work that the nature and the density of
distractors play an important role not only in finding the target but also in
judging the clash between both influences.

In another work [101], the authors studied the effect of distractors on
detecting the targets from density, spatial distance, and specificity of the
referential task point of view. They concluded a similar hypothesis as the
one made by the authors in [100].

In [102], the authors suggested that there are some limitations in these
studies. For instance, it is not known whether combining all these in-
formation would facilitate search or not, and if it does, then how these
sources of extra information are utilized. Through experiments, they con-
cluded that the visual system treats template information and scene con-
text independently. How these two are combined with the bottom-up
saliency to facilitate the search for a target remains elusive.

As is evident from the previous paragraph, the interaction between
the top-down influences and the bottom-up influences remains one of
the most controversial topics in attention. Several researchers have made
an effort to explain the nature of such interaction. In [103], the authors
demonstrated that the top-down influence in a task-driven search can
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rapidly override the bottom-up saliency i.e., within first few fixation, and
the role of the bottom-up influence after that diminishes.

In [40], the authors hypothesized that the top-down influence no mat-
ter what the task is, cannot override the attentional capture through the
bottom-up influence. They emphasized that at every stage in the search
mechanism, both influences interact with each other actively, and the in-
fluence of the bottom-up cannot be neglected at any point.

The nature of attentional selection in scenes is a dilemma, and re-
searchers have different opinions. For instance, in [104], authors argued
that the subjects when viewing a scene tend to fixate on the centre of the
objects. They provided evidence that saliency does not drive the attention
directly, but it is always in association with the objects. Hence, it is not
the saliency which is the driving force but rather the objects. Einhauser et
al. [105] also explored an alternative hypothesis in which they suggested
that the bottom-up saliency maps based on early features such as orienta-
tion, colour, and contrast do not drive the attention directly particularly in
high-level tasks such as object detection. The observers instead attend to
interesting object, suggesting that the objects themselves predict fixations
and not the saliency.

To summarize the direction of the past studies on top-down influence,
the majority of the work is experimentally based with many contradictory
views. The main questions that the authors addressed are as follows:

1. How the top-down influence is described in term of the guidance
sources (e.g., context, template, saliency, etc.).

2. How low-level signals are modulated under the influence of a task.

3. How the guided search for a target is affected by the presence of
various kinds of distractors.

4. What role does the bottom-up influence play in the visual search for
a target and in recognition.
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5. Finally how both bottom-up and top-down saliencies interact with
each other and what is the nature of this interaction.

Based on these experimental studies, several attempts to implement
various approaches and models were seen in the past. In the next sections,
we explore these various approaches in detail.

2.3.2.2 Weighting of bottom-up features

Several computational models exist that describe the top-down influence
through weighting the bottom-up features. These model are influenced
by the biological behavior within the visual cortex, where certain signals
have a modulatory effect on other signals during a high-level task such as
object detection.

Probably the most prominent model in this category is the Visual Ob-
ject Detection with CompUtational attention System (VOCUS) proposed
by Frintop [21,106,107]. The model follows Itti’s the approach in extracting
bottom-up features. However, some computational differences include
the conversion of the colour space into Lab and normalizing the features
maps through dividing the maps with m such that m is the total number
of maxima that exceeds some threshold value. This is done to ensure that
the detection with highest values pop-out as the most important region
of the image. Once the bottom-up saliency is computed by combining the
conspicuity maps, the top-down weights are learned in the learning phase.

In the learning mode, regions-of-interest (ROI) from various training
images are extracted either through a classifier or manually. These ROIs
contain the target object to be searched for in the search phase. This is fol-
lowed by the computation of the bottom-up saliency again of the training
images and the most salient region (MSR) within the ROI. The weights
of individual features and conspicuity maps are calculated by taking the
ratio of the average saliency of the MSR and the saliency of rest of the re-
gions (background) for that feature or conspicuity map. The weights are
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averaged over some training images (i.e., those having best detection per-
formance and the worst detection performance).

Once the weights are learned, and before finding the top-down
saliency map, these weights are further categorized into two classes, those
which belong to the excitation map (i.e., weights with values greater than
one representing effective features) and those belong to inhibition map
(i.e., weights with values less than one representing inhibitory features).
Hence, these two maps are found by applying the weights to the bottom-
up features separately to get the excitation and inhibition maps. The final
top-down saliency is the absolute difference of the maps.

There are two shortcomings of this model. First, the weights cannot
be generalized for different images with various backgrounds and targets.
Secondly, there is no context information being incorporated into the sys-
tem. Hence, in the learning phase, one single set of weights is found for
the entire dataset.

Another popular weighting model was proposed by Navalpakkam
and Itti [22, 108]. This model considers the knowledge of the distractor
along with the target to calculate the weights. For bottom-up saliency
features, they used the Itti model. The weights are further optimized to
get the top-down saliency. The optimization problem is constructed as
maximizing the signal to noise ratio (SNR) such that the signal represents
expected saliency energy of the target and the expected saliency energy
of the distractors is regarded as noise. The weights are calculated within
feature dimension indicated by gi,j (i.e., sub-feature j of a feature channel
i) and across features gj (i.e., conspicuity maps) where j is the conspicuity
map. The optimized values of these weights are given as [22]:

gi,j =
SNRij

1
n

∑n
k=1 SNRkj

(2.6)

gj =
SNRj

1
N

∑N
k=1 SNRk

(2.7)
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where n is the number of sub-features within a feature channel and N is the
number of conspicuity maps. These weights are calculated in the training
phase by averaging the weights over 50 training images. Hence, a feature
is relevant and receives a high weight if it renders the target more salient
than the distractors, and irrelevant otherwise.

Although this model has good performance when tested on 750 differ-
ent artificial and natural images, it has some drawbacks. First, as in case
of VOCUS, the weights cannot be generalized particularly because both
training and testing of the proposed model were done on similar scenario
and background images. For instance, in both training and testing phases,
the distractors and targets were set in a grid of 9×9 by varying the position
of the target and distractors with slight change of background orientation,
jitter, and colour. Hence, the overall background and context of the scene
were static. Furthermore, this model does not make a distinction between
the inhibition and excitation weights as in the VOCUS model.

In another approach [109], the authors proposed a saliency measure
called the Composite Saliency Indicator (CSI). This indicator judges the
worth of an area within the generated saliency maps for a particular fea-
ture map to be a true candidate salient region. In other words, it is used
to weight the feature maps according to the quality of the saliency map.
Two parameters are used to measure the quality: spatial compactness and
saliency density. The compactness is measured through the spatial relation
of the salient points in a map and the pixel values are used to measure the
density. Based on these measures, related and unrelated maps are sepa-
rated based on some threshold value.

Only the related maps are considered when generating the final
saliency map. Furthermore, weights based on the two previously calcu-
lated measures are assigned to each related map for a final linear combi-
nation strategy to generate the saliency map.

This approach is a dynamic mechanism for eliminating unimportant
features. However, there are two main disadvantages of this approach.
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First, although this approach is dynamic, the dynamicity of weights are
not learned, but rather evaluated from the current saliency maps. Hence,
the calculated weights are generated based on local feature maps and no
other information. Secondly, the compactness and density may not truly
measure the quality of the saliency map alone. Other measures such as
shape, size and edges profile can play a significant role in measuring the
quality of a saliency map.

A recent work in weighting is proposed by Benicasa et al. [24]. This
work uses the basic features of Itti model along with some mid-level fea-
tures such as size, recognition indicator, and location. In addition, the
weights are not learned but adjusted manually to get the desired result.
The proposed work follow the object based saliency models [104,105]. The
authors claim that the model could be generalized to detect target objects
as well. Furthermore, the recognition indicator is used to indicate the like-
lihood of a segmented region belonging to an object which is deemed to
be salient.

This recognition indicator is generated from a high-level classifier
tuned to detect different objects. Furthermore, the model is heavily de-
pendent on a segmentation technique as a preprocessing step. Finally,
the authors used a similar excitation and inhibition operations to create
maps as in the VOCUS model. The major drawback of this model is that it
lacks quantitative performance analysis. Furthermore, the weights are not
adjusted manually and there are many tuning parameters need to be ad-
justed before generating the final saliency map. In addition, the modified
weights belong to the conspicuity maps and not the sub-features.

In the work produced by Palomino et al. [110], the authors proposed
a model for a practical application for finding balls in mobile robots. The
model extracts various low and high-level features including shape fea-
tures, proximity features and target specific colour features and combine
them to generate the final saliency map. The model does not follow the
multi-scale feature combination as strategy opted by Itti, instead the fea-
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ture are extracted, weighted and then directly combined. The weights of
the features are tuned manually for detecting the target balls. The model
lacks automation as the weights are not learned.

2.3.2.3 Combining bottom-up and top-down saliencies

Some models exist that combine both the saliencies to maximize the de-
tection of the target. There is no clear evidence from the theoretical point
of view on how the combination takes place and how the combination
process benefits the visual search and the recognition task in particular.
For instance, if the purpose is to have a vision mechanism only to predict
the target in scene, then no attention based visual processing is needed
(i.e., no saccadic movement or shift of attention). This requirement is very
much the norm in most bottom-up saliency techniques. In this situation,
it would be a simple matter of combining the two saliencies linearly or
using some predefined combination strategy. However, and keeping in
mind that bottom-up strategy is meant for detecting salient regions while
top-down for more specific high-level target detection, it remains a contro-
versial question that how would bottom-up saliency benefit the top-down
influence as it seems that only top-down is enough for object recognition
without the need of bottom-up.

For an active visual search system (e.g., an active vision-based robot)
capable of performing saccade movement, fixation and object search, an
attention based processing for understanding the scene and further inter-
acting with it is needed. Furthermore, in this case the recognition task is
accompanied by gaze shift from one location to another depending on the
current objective. For instance, if the purpose is to search for a ball but
the at the same time look for other interesting objects, then the bottom-up
saliency would actively participate in the combination process.

If the objective is to find the target without attending to other regions,
then the bottom-up would less obviously be needed to participate in the
combination process. Hence, how and when the saliencies are combined
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depends on the requirement.
In [106], Frintrop et al. applied a simple time gain on both the maps by

linearly combining them to get the final saliency map. So the final saliency
map is given as:

Sf = [(1− T )× SBU ] + [T × STD] (2.8)

where Sf is the final saliency map generated by combining the top-down
saliency map (STD) with the bottom-up saliency map (SBU ). This approach
varies the contribution of each map on the overall saliency map manu-
ally by setting a value of T. Hence the approach is static, predefined and
does not account for the dynamics of the situation in hand. However, the
authors demonstrated the effectiveness of such a combination strategy in
detecting balls in real world situations [21].

In [22], the authors did not use any time function, and hence simply
combined the two maps linearly. In [109], the bottom-up saliency was to-
tally ignored and only the learned weights were used to generate the top-
down saliency maps. Another work by Rasolzadeh et al., [111], also used
a linear combination of the two maps. However, the weights associated
with the two saliency maps were dependent on the relative importance of
these maps. They formulated a time varying tempo-differential equation
to adjust the weight according to the following criteria:

dk

dt
= −c · k(t) + a ·

(EBU(t)

ETD(t)

)
, k =


1, k > 0

k, 0 ≤ k ≤ 1

0, k < 0

(2.9)

where the E represents an E-measure map which is a formatted saliency
map after computing the CSI indicator [109] described earlier in sec-
tion 2.3.2.2. The weight k is weight used in the linear combination of the
bottom-up and top-down maps. The parameters c and a are the concentra-
tion (devotion on the visual search task) and the alertness (susceptibility
for any bottom-up attention) respectively. Equation (2.9) suggests that the
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top-down saliency factor come into consideration whenETD is sufficiently
greater than EBU . When this is the case, the condition is equivalent to a
situation when the target object is visible and the top-down saliency dom-
inates the attention.

2.3.2.4 High-level features as top-down saliency

In this section, other top-down techniques based on high-level features,
specialized descriptors, scene context and other variant approaches are
discussed. High-level features have been rarely used in the past to define
the top-down influence. In a very recent work [112], authors used high-
level semantic information extracted from the input images to describe
the top-down saliency. They argued that previous top-down saliencies
used high-level descriptors tuned for particular objects. In case of natural
images, it is difficult to have a descriptor for each object. Instead, a gen-
eralized high-level semantic information is used based on natural words
similar to the visual word concept in text semantics.

In the training phase, the procedure for top-down starts with multi-
level segmentation, followed by constructing a neighborhood similarity
matrix based on some existing link-based similarity technique. Once
these, high-level links are obtained, in the testing phase, a tagging mech-
anism is applied to each over segmented region, and finally the tag infor-
mation of the segmented regions are added at multi levels to obtain a final
likelihood measure of a region belonging to a foreground or background.

The bottom-up saliency is calculated through finding spatial, colour
and complexity contrast using entropy measure of the segmented regions.
However, the proposed model does not describe how the two saliency
maps are combined. Furthermore, the purpose of the proposed model is
to find salient regions and it is not meant for the task-based recognition
problems. Finally, as described in section 2.3.2.1, many authors asserted
that subjects set up the target in a more detailed and precise way and not
in a semantic way [99].
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In a more precise high-level scenario, the authors in [28] used a special-
ized face descriptor as top-down influence combined with other low-level
features as bottom-up influence. They used the famous Viola and Jones
algorithm to locate the faces. By testing their proposed method with a
bottom-up fixation graph-based technique [91], they show fixation perfor-
mance improvement in those images containing faces.

In images without faces, there was no significant degradation in false
fixation points. Hence, they show that an inclusion of a high-level channel
improves the fixation/saliency performance. Their work was an attempt
to define the top-down influence in terms of precise high-level descriptors,
in this case, faces descriptor, but in the context of fixation/saliency and not
object recognition.

A popular model in top-down saliency is the SUN model based on
natural image statistics [113]. This model describes the bottom-up saliency
using self-information of a low level feature, and the top-down saliency as
a likelihood function of the target feature selected amongst the low level
features. The model combines both saliencies in a Bayesian framework
and it is given as:

log sz = − log p (F = fz)︸ ︷︷ ︸
(BU)

+ log p (F = fz|C = 1)︸ ︷︷ ︸
(TD)

(2.10)

where z indicates the patch for which saliency is calculated, s is the
saliency, F is the random variable representing a feature, and C is the ran-
dom variable indicating the presence or absence of the target feature. The
authors consider only the performance evaluation of their model in the ab-
sence of the top-down saliency term in Eq. (2.10). This models indicates a
mutual information between the general saliency detection and the target
detection.

Furthermore, when only bottom-up saliency is involved i.e., the first
term in Eq. (2.10), the model implies the rarer the feature, the more salient
it becomes. Hence the objective of this model is to maximize saliency by
maximizing the self-information in case of free-viewing and maximize the
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self-information along with maximizing the log-likelihood function for a
specific target feature.

The authors used two methods to extract features, one through the
DoG filters and the other using ICA filter. Both these filters are learned
from natural images. The model has a good performance when tested for
fixation and saliency. However, no results were shown for target recogni-
tion.

In [114], the authors proposed an interactive attention system that com-
bines the top-down with bottom-up in an interactive way to suppress
unimportant salient regions generated by the bottom-up process. The
bottom-up saliency is generated by extracting edges and symmetry fea-
tures along with colour and intensity features from an input image. This
is followed by applying ICA filters on the extracted features to get the final
bottom-up saliency map. After that, an ART network is trained to interac-
tively suppress the false salient regions through a human-feedback to the
ART model.

Hence in the training phase, the ART model is trained to select the most
salient regions in an image and suppressing the unimportant ones. In the
testing phase, after finding the bottom-up saliency map, the input from
the ART network act as a top-down influence by proving inhibition and
excitation regions to the bottom-up saliency similar to those considered
in [24, 106].

2.3.2.5 Top-down saliency and classification

In this category of models, the objective is to incorporate the knowledge of
the object recognizer through classification to identify each salient region
contain the target object or not. These models are dependent on the clas-
sifiers that are particularly tuned for detecting certain target objects in the
image.

Previous work shows a strong interaction between the saliency and
classification tasks. This interaction can be grouped into two main cate-
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gories; saliency as ROI extractor for improving classification and learning
the saliency through feedback from a classifier.

In the first category, the saliency mainly acts as a sampling procedure
to extract ROI effectively and pass them to a classifier. The complexity
of the classifier depends on the quality of the extracted ROI’s. In many
previous works, this domain was explored. In [71], the authors extracted
the salient regions through the Itti model. This was followed by keypoint
extraction from these salient regions suing SIFT and C2 features. These de-
scriptors are matched with stored features from training images through a
similarity measure based on Hungarian method. Furthermore, k-nearest-
neighbors was used to find k best matches. Finally classification label was
assigned. Results show a great improvement by including the saliency as
ROI over some state-of-the-art classification techniques.

A similar approach was followed by Rutishauser et al. [31]. They inves-
tigated to what extent a pure bottom-up saliency technique can be useful
in extracting meaningful ROI for the unsupervised learning of objects from
unlabeled images. For movie shot classification, authors used saliency
along with Support Vector Machine (SVM) to classify the shots from a
video. Salient regions are extracted using contextual and geometric fea-
tures. Results have shown a good performance in movie shot classification
for all movie genres.

In another work, the ROI were extracted from two sets of feature pool-
ing mechanism, a general bottom-up saliency-based followed by a high-
level indoor scene based [115]. Itti model was used to discover visual-
structures regardless of position importance (i.e., context). This was fol-
lowed by another bottom-up saliency extraction of the salient regions us-
ing AIM. Furthermore, key point extraction and representation using SIFT
descriptors was done on the bottom-up salient regions. For a better effi-
ciency, the SIFT descriptors were applied to ICA for dimensionality reduc-
tion. Finally, SVM classifier has been used to classify the indoor scenes.

In the second category of classification based saliency, the bottom-up
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saliency maps were typically learned through a feedback from the clas-
sifier which was trained on human eye fixation datasets. However, the
availability of reliable groundtruth fixation data and the computational
resources of the existing techniques impose practical limitations.

A comprehensive review of different techniques in which saliency is
learned is given in [116]. For instance, in [117], complex features tuned to
specific class of objects were learned by a classifier and the initial bottom-
up saliency belief was modified through these learned features. Further-
more, a discernment feature selection procedure was used before updating
the saliency map through information content of the features.

2.3.3 Chapter summary

This chapter has covered various topics related to visual attention and its
application in computer vision, particularly for target object detection. Re-
searchers in the past have proposed techniques to accelerate the under-
standing of human visual attention system, mimicking some of its func-
tionality and applying them to solve real time problems.

A detailed description of the human visual attention system from a
biological perspective was given to have in-depth understanding of dif-
ferent areas of the brain responsible for performing a dynamic attentional
shift from one location to another. Furthermore, the difference between
two processes, namely a fast data-driven bottom-up process/saliency and
a slower task driven top-down process/saliency was explored. Each pro-
cess has its own merits and drawbacks when performing a high-level task
such as object detection and recognition.

The chapter has also explored various performance measures com-
monly used in saliency and visual attention literature. These measures
are based on comparing the generated saliency maps (bottom-up or top-
down) with the groundtruth map (for salient object or fixation). Along
with these measures, the chapter has provided some details about existing
state-of-the-art bottom-up computational models for salient object detec-
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tion.

Because the main objective of this thesis is to model top-down saliency
and how to combine it with bottom-up saliency, the chapter has explored
current techniques and approaches in modelling top-down saliency for
target object detection. Very few computational techniques exist that de-
scribe the fine details of this process compared to a well studied and ex-
plored bottom-up process.

Four different types of contribution are made in modeling top-down
process. First is the modulation of bottom-up features through learned
weights that are specifically tuned for a particular task. Second, is the use
of various high-level features such as face detectors, text detectors and
target specific descriptors to model top-down saliency. Third, is to apply
classification and object recognition techniques specifically for those vi-
sual attention applications that involve visual search for the target object.
Finally, how to combine bottom-up with top-down process to maximize
the detection of the target with minimum resources.

The limitations of the existing approaches for top-down saliency that
constitutes the motivations are summarized below:

1. Top-down models that perform target object detection through ap-
propriate weighting of low-level features fail to adapt to scenes with
content variation. This is because such models do not utilize any
high-level information of the scene while learning these weights. As
a result, a contextually based feature weighting that extracts high-
level gist information from a scene is required to improve the accu-
racy of detecting the target object in complex scenarios.

2. Top-down models that implicitly use target specific features tend to
be computationally demanding as specialized detectors are used for
this purpose (e.g., pedestrian or text detectors). Furthermore, these
models while considering target features do not associate them with
contextual information. As a result, a model is needed that uti-
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lizes low-level features instead of specialized detectors for better ef-
ficiency. In addition, contextual information combined with target
features have not been considered previously while modelling top-
down saliency.

3. Most of the models that combine top-down and bottom-up saliency
treat both influences separately and do not consider which type of
saliency is important for a task. This results in performance degra-
dation as combining both saliencies does not always result in the best
detection performance. Hence, a model is needed that can interac-
tively and dynamically decide which saliency or feature to combine
that would maximize the detection accuracy.

4. Existing models that combine both saliencies for target object detec-
tion learn a single combination rule which is applied to all the images
in a particular dataset. This static approach does not always provide
the optimum combination solution for each image in a dataset. A
dynamic framework is needed that provides a run-time evaluation
mechanism to decide upon which feature maps to exclude from the
combination process on image basis.
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Chapter 3

Contextual Top-Down Feature
Weighting

3.1 Chapter introduction and motivations

A detailed description of the first biological inspired visual attention
model proposed by Itti et al. [1] was presented in the previous chapter.
Various extensions to this model have been proposed, mainly to weight
the features before integration to yield the final saliency map [20–24].

The main challenge in feature weighting is how the weights can be
dynamically assigned to the features for a specific task. While different
weight learning approaches have previously been adopted, most of these
approaches suffer from being static. This means that the learned weights
could only work in similar types of examples/images and would fail when
the examples/images are different in content (e.g., objects, background,
etc.).

It has been shown experimentally that the inclusion of contextual infor-
mation improves the efficiency and accuracy of discriminating the target
object from the background distractors [30, 118, 119], though the context
idea has not previously been applied to TD saliency and feature weight-
ing.

65
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In this chapter a mechanism that utilizes the contextual information of
an image to dynamically assign appropriate weights to the BU features
is introduced. Such weighting allows the demands of a particular task
to modulate the bottom-up responses which results in a top-down model
particularly tuned for that task. The BU features used are the typical low-
level features commonly used in attention models such as orientation, in-
tensity and colour. The inclusion of contextual information for BU feature
weighting has not been considered in previous works. Hence, such dy-
namic feature weighting for target object detection constitutes the main
contribution of this chapter.

The proposed model referred to as top-down contextual weighting
(TDCoW) mainly consists of three functional parts. Each part has its own
significance in building the proposed model, however only the part re-
lated to contextual information extraction, clustering and matching con-
stitute the major contribution of this chapter. Justifications are provided
in the corresponding sections for the inclusion of these parts in the overall
model.

The first part is concerned with the bottom-up approach used for
saliency map generation. This itself contributes towards having a bet-
ter bottom-up saliency generation mechanism than existing state-of-the-
art bottom-up techniques. However, as mentioned above, this does not
constitute the major contribution of the chapter, but rather contributes to-
wards building a better top-down saliency model.

The second part of the model is concerned with computing the weights
that will be assigned to feature and conspicuity maps. An approach based
on Jensen-Shanon Divergence JSD is used to allow better weight represen-
tation than previously proposed signal-to-noise SNR approach. Again this
part only provides a better way to compute the weights but does not play
a direct role in the contextual based dynamic weight assignment.

The final part represents the core contribution of this chapter. It con-
sists of the actual construction of a contextual descriptor of images, con-
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textual clustering based on the similarity between these descriptors and
matching a contextual descriptor of a novel image with the clusters’ de-
scriptors for weight assignment.

3.1.1 Bottom-up model modification

Our proposed model uses a similar structure to the Itti model for bottom-
up saliency map generation. However, a number of modifications are
necessary before proceeding with the contextual information incorpora-
tion into our model. These modifications are essential to generate better
saliency maps than those generated by the Itti model for the purpose of
target object detection. In addition, the justification for each modification
step is provided below:

1. Modification 1:
To build the final TD model, the first step is to have a set of good
features to perform the weighting on. Hence, instead of using the
traditional Itti features, a richer set of low to medium level features
that can be useful in the target object detection task are used to ex-
pand the domain of feature weighting. These features will have a
direct impact on the quality of the generated saliency map. Because
the effectiveness of the TD model depends on the feature weights,
which in turn depend on the feature themselves, a good set of fea-
ture is likely to establish a good TD saliency model.

2. Modification 2:
The features are computed over a single scale instead of using mul-
tiple scales and different Gaussian filters to speed up the process of
generating the final saliency map. In addition, the multiple scale ap-
proach of the Itti model is necessary because of its use of contrast
features. This is not appropriate for many of the features used in the
proposed approach.
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3. Modification 3:
The contrast based centre-surround mechanism is replaced by an in-
formation theoretic approach called Information divergence proposed
in [120]. The centre-surround proposed in Itti model is a biologi-
cal mechanism that is implemented through multi-scale difference
of Gaussian operation. Since we do not compute features on multi-
scale, a different computational based mechanism is required. The
information divergence based centre-surround mechanism is not
only more computationally efficient than the contrast based ap-
proach but also has achieved a very good performance in saliency
detection comparable to state-of-the-art techniques for single scale
features [120].

4. Modification 4:
The final conspicuity map integration is done through multiplica-
tion operation rather than the summation as it has been proven to
yield a higher precision in detecting the target object or region of in-
terest [121]. This implies that salient targets must exhibit a range of
features, rather than just having values for one feature.

3.1.2 Chapter objectives and overview

The overall objective of this chapter is to show that a better weighting of
features can be achieved when contextual information is considered dur-
ing feature weight learning. To achieve this objective, the following tasks
are performed,

1. Calculation of the feature weights using the Jensen-Shanon Diver-
gence (JSD)
Weight calculation is an essential part of the feature weighting
model. Previously the SNR approach was used for weight calcu-
lation [22]. However, SNR calculation gives unbounded weight val-
ues. In addition, SNR is calculated by finding the ratio between the
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mean saliency values of the target region and that of the background
region. This could lead to inverted weight assignment to a feature
map in situations when the target region has lower intensity values
than the background. A better approach is to use the difference be-
tween the distributions of both regions. JSD is chosen as the appro-
priate measure as it is bounded.

2. To construct a contextual descriptor for an image
Different contextual descriptors were previously used to provide a
holistic description of images such as the envelope gist descriptor [2]
and the bag-of-visual-words based descriptor [122]. These descrip-
tors tend to be computationally demanding particularly when per-
forming descriptor matching. A new contextual descriptor is pro-
posed that is constructed through probability density estimation of
some of the selected low level features from the modified version of
the Itti model.

3. Clustering of training images based on their contextual informa-
tion
A contextual descriptor is generated for each image and then simi-
lar contextual images are clustered during the training phase. Dis-
tinct weights are computed for each cluster and used in the testing
phase. For a new test image, the context information is extracted
and matched to the context of each cluster. The feature weights of
the best-matched cluster are assigned to the test image.

The following steps briefly explain how to assign weights to the feature
and conspicuity maps dynamically of a novel image using the proposed
model TDCoW:

1. Split the dataset into training and testing sets.

2. For each training image, compute its feature and conspicuity maps
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using the proposed bottom-up approach (refer to section 3.3 on how
to generate these maps using a modified version of the Itti model).

3. Using the groundtruth maps of the training images, highlight the
target and not-target regions on the feature and conspicuity maps
obtained from the previous step.

4. Compute the weights of the feature and the conspicuity maps with
the help of the highlighted target object region using the JSD ap-
proach (refer to section 3.4.2 for details). Note that at this stage, for
each training image, we have two sets of weights, the feature map
weights (a single weight value for one feature map) and conspicuity
map weights (a single weight value for one conspicuity map).

5. Extract a contextual gist descriptor for each training image (refer to
section 3.4.1 for details).

6. Construct clusters using k-mean clustering technique. This is per-
formed based on a distribution similarity measure between these de-
scriptors (refer to section 3.4.3) for details. Each cluster will have a
centroid descriptor representing the gist content of the images be-
longing to that cluster.

7. The feature and conspicuity map weights of individual images be-
longing to the same cluster are combined by averaging their values.
In this way a single set of feature and conspicuity maps weights are
generated for that cluster. This step is repeated for all the clusters.

8. For In order to dynamically assign feature and conspicuity map
weights for a novel image from the test set, initially its contextual
gist descriptor is constructed.

9. The contextual descriptor of the novel image is compared with that
of the stored centroid clusters that are obtained in the training phase.
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The comparison is performed using JSD approach. The feature and
conspicuity map weights of the best matched cluster are chosen.

10. The selected weights are used on the feature and conspicuity maps
to construct the final saliency map through the saliency generation
process described in section 3.3. In this way, weights are dynamically
assigned to the corresponding maps of the image (i.e., top-down fea-
ture weighting) that would maximize the detection of the target ob-
ject.

3.2 The proposed model: top-down contextual

weighting (TDCoW)

In the proposed model the contextual information represents only the gist
of the image. Hence, gist and context are used interchangeably. The pro-
posed model, referred to as Top-down Contextual Weighting (TDCoW),
is used in two phases, the training and testing phases. As shown in
Fig. 3.1(a), the first step of the training phase (labelled ’component 1’ in
the figure) starts with feature extraction followed by a centre-surround
measure called Information-Divergence Measure (IDM) to yield feature maps
(CM). Note that we use the same terminology that was used in the orig-
inal Itti model to describe various components of the saliency generation
model. In the Itti model, the feature maps represented the centre-surround
differences at a number of scales. In this proposed model, feature maps re-
fer to simple features that are extracted from an image at a single scale fol-
lowed by a different type of centre-surround measure applied on a single
scale feature. More about this centre-surround is discussed in section 3.3.2.
Again just to be consistent with the notation followed in the Itti model,
when similar type of features are combined together (e.g., colour features)
followed by a normalization process, conspicuity maps (CM)are gener-
ated. The FMs and CMs are generated for Q instances in the training set.
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In the second step labelled as ’component 2’, the computation of the
feature weights for each training image takes place. Two sets of weight
are computed for each image, the weights computed from the FMs and the
weights computed from the CMs. The weights are calculated by finding
the Jensen-Shanon Divergence (JSD) of the target object with respect to the
background. The details about how this calculation is performed is given
in section 3.4.2.

The third step labelled as ’component 3’ in the training phase involves
contextual information extraction. The contextual data of the entire image
is extracted except from the target region. This is because target objects are
not considered to be part of the overall gist of a scene (mostly the back-
ground represents this information). To exclude the target object from the
contextual computation, the image is masked with the groundtruth map
so that the context is only extracted from the background region. This is
followed by the creation of the feature descriptor from the background re-
gion. The descriptor acts as a context identifier for the image which can
later be used for contextual matching. Hence each training image is associ-
ated with FM weights, CM weights and a contextual descriptor as shown
in Fig. 3.1(a).

In the fourth step labelled as ’component 4’ of the training phase,
grouping of the training images into R clusters is performed. The group-
ing is done according to the contextual similarity amongst images using
unsupervised k-mean clustering. For each cluster, a contextual descrip-
tor is calculated as the average of the individual contextual descriptors of
the images belonging to that cluster. Similarly, the weights of the individ-
ual images in a cluster are averaged to yield consolidated weights for that
cluster. Hence, in the figure (see ’component 4’ of the training phase), the
contextual GIST descriptor represents the GIST of that cluster while CM
or FM weights are the weights associated with that cluster.

The second phase of the model is the testing phase in which a new
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(a)

(b)

Figure 3.1: The proposed TDCoW model: (a) Training phase (b) Testing phase.
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image is processed. As shown in Fig. 3.1(b), the process begins by creat-
ing a contextual descriptor for the test image (’component 1’)). However,
now the context must be calculated over the whole image without any
target masking due to unavailability of the groundtruth. This will cause
some perturbation in the contextual descriptor but it is anticipated to be
minor as long as the ratio of target region to the background is small. This
contextual descriptor is compared with the centroid descriptor of each
learned cluster using an appropriate information theoretic distance met-
ric as shown in ’component 2’ of Fig. 3.1(b). The cluster with the lowest
distance corresponds to the best match for the test image. Accordingly, the
matched cluster’s weights are selected to be used as the TD weights for the
test image. In this way, appropriate weights are assigned to the FMs and
CMs of the test image.

If the contextual information of a set of images is diverse, the cluster-
ing will still take place but now the clusters’ contextual information will
have high variance with respect the contextual information constituting
that cluster. In order for this clustering to be meaningful, a good contex-
tual agreement between the images of a dataset is essential.

The final component represents the process of generating a saliency
map as before, but now the FMs and the CMs are weighted by the weights
that were learned in the training phase. A more detailed description of
each step in the training and testing phases is described in the next section.

Note that multiple sets of weights and contexts are learned during the
training phase, one for each cluster. The test phase acts as a context tem-
plate matching process that results in a best possible weight assignment
to the FMs and CMs of the test image. Because the weights are assigned
to the test image based on its contextual information, the weights become
dynamic whenever the contextual information changes. Hence, for two
images, if their context is different, they will be assigned different weights.
Unlike previous approaches in top-down weight learning where a unified
set of weights are learned for all the images in the dataset [22, 106], the
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weight is dynamically assigned here depending on the context of the im-
age.

3.3 Saliency map generation process

3.3.1 Bottom-up feature extraction

The initial step in generating the saliency maps is feature extraction. Eight
features are extracted as shown in Fig. 3.2. These features are colour (C),
intensity (I), orientation (O), contrast (Co), centre-bias (Cb), principal
component analysis features (PCA), edges (Ed) and frequency based fea-
tures (MSS) with each feature category having sub-features. The features
range from low-level features such as colour and intensity to higher level
features such as edges and PCA features.

There are two reasons to have many extracted features. First, some
high-level features such as PCA, edges and frequency are assumed to give
insight to valuable information about the structure and behavior of the
image. Such information can be very useful for better saliency estimation
and target detection. Secondly, some targets may require additional fea-
tures or different subsets of features in order to detect them. Itti’s basic
features might not be sufficient for target detection. On the other hand,
there is no specific number or type of features that are assumed to be suf-
ficient for a general target detection. As a reasonable set of features for
target detection, the above mentioned features are used which is a combi-
nation of low, high and efficiently computed features.

3.3.1.1 Colour features

The colour feature has four sub-features; red (r), green (g), blue (b) and
the quantized colour feature (q). The quantization is performed as follows
[92]: assuming an input colour RGB image is of size H × W × 3 with
eight bits colour depth, the first step is to quantize the colour range by
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Figure 3.2: Feature extraction and saliency map generation procedure.

selecting 12 uniformly distributed levels for each colour channel. This will
yield 1, 728 different possible colours. Furthermore, only 5% of the most
occurring colours in natural images are retained. This is done by observing
the most frequent colours from a large database of natural images. The
images are quantized with these levels yielding a palette of 85 colours.
The quantization is done to reduce the histogram space from 2563 to only
85 for the subsequent IDM calculation.

The intensity feature has a single sub-feature denoted as I and the ori-
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entation features are extracted at 0o, 45o, 90o using Gabor filters. Contrast
sub-features are also computed as they have good performance in saliency
detection [76, 92, 94], which includes the Red-Green (rg), Blue-Yellow (by)

and Hue (h). These sub-features are given as:

rg =
r − g

max(r, g, b)

by =
b−min(r, g)

max(r, g, b)

h =
180

π
arctan

(√
3(g − b)

2r − g − b

) (3.1)

It is worth mentioning here that the colour features are object-level fea-
tures and more suited for object detection whereas colour contrast is more
effective for saliency detection. This is the reason for including both types
of features.

3.3.1.2 PCA based features

The next feature is the PCA based features. PCA is a statistical approach
that transforms a set of correlated observations/features into orthogonal
uncorrelated segments called principal components (PCs). Irrelevant de-
tails and noise are neglected while finding these PCs. The obtained PCs
are assumed to describe important features contained in the images. Pre-
viously, PCA was used for extracting useful features for salient object de-
tection [94, 113, 120]. One way to implement PCA on the input image is to
consider square patches of the input image and then to extract the PCs of
the patches separately [120]. However, in this work PCA is applied colour
wise rather than patch wise for better efficiency as the number of patches
L� 3, where three colour channels are considered.

An input colour image of sizeH×W×3 is reshaped so that each colour
layer is transformed into a column vector of length H × W , denoted xi.
After concatenating the three layers column wise, we get a reshaped layer
matrix X representation of the image such that X = [x1, x2, x3].
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The mean value of each column in X is subtracted from the correspond-
ing column. This is followed by the computation of the covariance matrix
of X and then the eigenvectors. Each eigenvector represents one of the
PCs of a total of three PCs denoted as d1, d2 and d3. These components
are ordered according to the magnitude of their eigenvalues such that d1
is associated with the highest eigenvalue. In the experiments, it has been
observed empirically that only the first two components prove useful.

3.3.1.3 Edge feature

The next feature is the edge map which is extracted in vertical, horizontal
and diagonal directions. Although there are four sub-features for the edge
feature, these are considered as a single sub-feature denoted as ’Ed’ for the
reason mentioned later in this section.

3.3.1.4 Centre-bias feature

A centre-bias factor is added as an additional feature which is represented
by a 2-D Gaussian function centered at (W

2
, H

2
) and controlled by the stan-

dard deviation value of the function. The centre-bias behavior models
human prior knowledge that the centre of photographs tends to contain
salient targets. However, in the test examples, this factor exhibits low
weight value, which suggests that the datasets used did not exhibit strong
centre-bias.

3.3.1.5 Frequency based feature

The final feature called maximum symmetric surround denoted as (MSS)
is basically a saliency detection technique proposed by Achanta and
Sabine [86]. The idea behind their approach was to use different band-
pass filters on a local region of the image by varying the low-frequency
cut-off. The variation is based on the location of a pixel with respect to
a symmetric local region surrounding that pixel. By making assumptions
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about the scale of the object to be detected based on its position in the
image, those pixels that are positioned far from the salient object’s bound-
aries need small cut-off frequencies to be successfully detected. Through
this approach, low-frequency components and majority of the high fre-
quencies of the object are retained.

Once the features are extracted, the FMs are generated by calculating
the IDM of various patches of the image as proposed in [120] and elabo-
rated below. Information-Divergence Measure is a centre-surround the mech-
anism that exploits the element of surprise by finding the divergence of in-
formation between various regions of the image. Hence, it is responsible
for generating the FMs that highlight the possible salient regions within a
feature.

3.3.2 Information divergence based centre-surround

This procedure is the same for all the sub-features except for the edge and
the centre bias. The process starts by dividing a feature image into smaller
regions by uniformly segmenting it into square non-overlapping patches
of size n×n. The total number of complete patches is L = bH/nc×bW/nc.
For instance, if an image has the dimension of 12×12, and if the patch size
is 5× 5, then we will have only L = 4 complete patches which are indexed
as i = 1, 2, 3, 4. These patches are denoted by pji (k) where i = 1, 2, . . . , L

represent the patch index, k is the feature notation for which the FM is to
be generated and j is the sub-feature notation for the respective feature.
For instance, pr1(C) is the first patch for the sub-feature red belonging to
the colour feature.

The IDM is calculated for each patch by finding the divergence of the
distributions between two patches for a particular sub-feature. The first
patch (centre patch) is one of the patches from pji (k) where as the second
patch (surround patch) is the collection of the remainder of the patches as
illustrated in Fig. 3.3. If G and S represents the kernel density estimated
(KDE) distributions for the feature values of the centre and surround re-
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Center Surround

Figure 3.3: Global centre-surround patches. The patch within the red square represents
an active centre patch selected amongst the green squares. The collective surround patch
is highlighted by the blue region.

gions respectively, a patch saliency is found by:

IDM(i, j, k) =

∑
Gj
i (k) log

(
Gj
i (k)

Sji (k)

)
(3.2)

The centre-surround concept introduced in the Itti model mimics the
visual attention behavior in humans where visual neurons are highly sen-
sitive in a small concentrated region at the attention location (the centre)
and weaker in the surround region concentric to the centre. Itti modelled
this behavior using multi-scale difference using the difference of Gaussian
(DoG) filters were higher scales represent the centre (fine details) and the
surround represents lower scales (coarse detail) [1]. In the proposed ap-
proach, the concept of centre-surround is equivalent to the one proposed
in the Itti model, but with the following exceptions.

First, the mechanism is performed on a single scale. Secondly, it uses
a more information theoretic approach using IDM instead of difference.
Third, the surround region does not necessarily be concentric to the centre
as shown in Fig. 3.3. Hence, it is assumed that once a patch is attended to
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(centre logically), the rest of the regions of the image (in a non-concentric
manner) become the surround. Finally, we go one step ahead of the notion
of centre-surround by using IDM. Unlike Itti’s centre-surround approach
that assumes higher sensitivity of the centre to the surround for any at-
tended location, the IDM based approach, on the other hand, assumes
that the centre is more sensitive than the surround only when it carries
information that is highly diverged from the surround. If it is not, then the
centre is not sensitive or important to attend. As we will see in the result
section, this has a positive impact on the saliency map either detection of
the salient object or the target object.

For the centre bias, the FM is the feature image itself and there is no
need to evaluate the IDM. In addition, for the edges, the IDM is calcu-
lated in the same way but not directly on the sub-feature edge images.
Initially a histogram of edge orientation is evaluated for each patch from
the four sub-feature binary edge images. This is followed by IDM calcula-
tion but now on discrete edge histograms. The reason for computing IDM
on the histogram of edge orientation rather than the binary edge map di-
rectly is because the latter does not carry any useful information about
the edges importance in the image. Instead, the orientation of these edges
carry more useful information about the distribution/frequency of such
edges in the image.

3.3.3 Conspicuity map combination

The CMs are generated by summing the weighted sub-features within a
feature. Finally the weighted CMs are combined by multiplying them to-
gether to yield the final saliency map. Multiplication of CM is better than
adding them when combining different types of features as the maps tend
to have different spatial distributions and thus common regions of interest
from each map are needed. The map integration procedure can be sum-
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marized by the following equation:

SM =N
 8∏
k=1

Wu(k)

v(k)∑
j=1

w
u(k)
j

(
FM

u(k)
j

)


u = (C, I,O,Co, PCA,Cb, Ed,MSS)

v = (4, 1, 4, 3, 2, 1, 1, 1)

(3.3)

where wu(k)
j is the weight associated with each FM and Wu(k) is the CM

weight. The tuples u and v represent the feature symbol tuple and the
number of sub-feature tuple corresponding to each feature respectively.
Note that N indicates a normalization step before acquiring the final
saliency map to promote very strong peaks and suppress the rest. This
step is essential to obtain a saliency map with only the most dominant
salient region being highlighted.

3.4 Contextual feature representation and fea-

ture weighting

This section describes how contextual information is extracted and then
used to assign dynamic weights to the low-level features. In addition, an
effective weight calculation procedure is explained that depends on the
JSD between a target and rest of the image.

3.4.1 Contextual descriptors

Contextual based image descriptors are commonly used in classification
problems [71, 123] where such a descriptor gives a global representation
of a scene content. For instance, the descriptor proposed by Oliva and
Torralba [2] provides a perceptual distribution of various parameters in
a scene such as naturalness, roughness and ruggedness. However, one
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drawback of such a descriptor and many others is that they are computa-
tionally demanding. As a result, a more compact global descriptor is re-
quired to improve the efficiency of the overall system, particularly when
performing descriptor matching.

As a result, a contextual descriptor of distributions for an image is cre-
ated using colour, intensity, orientation, contrast and PCA features. The
distribution is estimated using KDE for a fixed number of sample points.
Hence, the size of the descriptor depends on the KDE number of estima-
tion points. A large number of sample points corresponds to large descrip-
tors that will impose relatively high computational demands for contex-
tual matching. At the same time, we want to avoid under-sampling which
can produce inaccurate results. Empirically the number of sample points
is set to 1000. Figure 3.4 shows the complete procedure for generating the
contextual descriptor.

3.4.2 Feature weighting

Previously in [22], weights were evaluated by calculating the signal (the
target) to noise (distractors) ratio from the FMs. There are two shortcom-
ings of the SNR weighting mechanism. First, the weighting information is
extracted from the sub-features directly and not from the FMs. The value
of the weight is highly dependent on how the FMs are generated. For in-
stance for a particular sub-feature, if the corresponding FM is generated
inaccurately (the target region is less highlighted than the background re-
gion), then according to the SNR Eq. (2.6) and Eq. (2.7), such an FM will
receive a low weight whereas it should be assigned a high value. Hence, a
poor FM generation algorithm could result in a wrong weight assignment
to the feature when SNR approach is used.

Secondly, the SNR is calculated by finding the ratio between the mean
pixel intensity values of the target region and that of the background re-
gion. Again this could lead to an inverted weight assignment to a CM
in situations when the target region has lower intensity values than the
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Figure 3.4: An example of contextual descriptor construction. From left to right: input
image, extracted features, masking regions (the green region is excluded and the blue
region is the gist region for which a descriptor is created), distributions of the gist regions,
concatenation of the distributions and the final contextual descriptor vector.

background within the CM. This is because the ratio/difference is taken
between two single values (i.e., the mean values of the two regions).

To overcome the problems associated with the SNR based approach,
a distribution based weight calculation approach is adopted using JSD.
Jensen-Shanon Divergence is a bounded dual version of the IDM. The di-
vergence between the target region having a distribution hT and the back-
ground region with distribution hB is calculated directly from the sub-
features rather than the FM to avoid the involvement of the FM generation
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algorithm. The weight is calculated as follows:

JSD (T ||B) =
1

2
(ZIDM (T ||M) + ZIDM (B||M))

hM =
1

2
(hT + hB)

ZIDM (T ||M) = hT log2

(
hT
hM

)
ZIDM (B||M) = hB log2

(
hB
hM

)
(3.4)

where hM is the histogram of the intermediate region M . The terms
ZIDM (T ||M) and ZIDM (B||M) are the target/intermediate and the back-
ground/intermediate regions’ IDMs respectively. Because the Jensen-
Shanon Divergence computation is a symmetrized and smoothed version
of the KL-divergence between the target and background regions, it re-
quires an intermediate distribution denoted by hM and to go with the re-
gion convention, the intermediate term M is given a region notation that
is arbitrary.

It is worth mentioning here that a statistically high JSD value for a
particular sub-feature suggests that the target region is highly different
from other regions of the image. This indicates the importance of that
sub-feature for the target detection and should be assigned a high weight.
As an example, Fig. 3.5 shows how the weights vary due to the statisti-
cal information difference of the target and the background for some sub-
features and this can be reflected in the corresponding weighted FMs. For
instance, the distributions of the target, background and the intermediate
region M for the red/green sub-feature have high variation. Hence, the
assigned weight to this sub-feature is relatively high (i.e., 0.64). This can
be observed by the corresponding FM which highlights the target red ball
better than the other two sub-features.
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Figure 3.5: JSD based top-down weight calculation example for three sub-features, red,
blue/yellow and red/green that can be seen to the left of the blue arrows. Distributions of
target (T), background (B) and the intermediate region (M) for the respective sub-features
are shown on the right column. According to the variation in distribution, a weight
value is calculated using Eq. (3.4) as 0.163, 0.066 and 0.642 respectively for the three sub-
features. The images on the left of the red arrow shows the impact of the weights on
the FMs. For this example, the best map in detecting the target red ball is the red/green
feature which is assigned the highest weight value compared to the other sub-features.
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3.4.3 Clustering and contextual matching

The main objective of TDCoW is to allocate the test image appropriate
weights according to the similarity of its contextual contents with that of
the training images. This could be done by matching the contextual de-
scriptor of the test image with the training images. However, increasing
the number of training images would then increase the processing time for
matching. As a result, an attractive alternative would be to cluster similar
images together to reduce the search space for matching according to the
contextual similarity.

The clustering approach is similar to the classical k-means clustering
except for the distance measure calculation. The clustering is done on
the contextual descriptor of the training images over several iterations.
After every iteration, clusters are created by measuring the JSD between
descriptors. The reason for using JSD and not the traditional Euclidean
distance is that the distance is measured between distributions. Further-
more, once clusters are created after a single iteration, a mean descriptor
for that cluster (called a centroid descriptor) is re-calculated from the indi-
vidual contextual descriptors of the images belonging to their respective
clusters. This is achieved by considering the joint distribution of the indi-
vidual descriptors of the cluster.

After the final iteration, the centroid of each cluster represents the fi-
nal contextual descriptor for the corresponding cluster. Furthermore, the
learned weights of the individual images of a cluster are averaged to yield
a single set of weights for that cluster. Hence, at the end of the clustering
process, R number of descriptors and weights are produced, one for each
cluster.

When a test image is given, the ultimate objective is to assign appro-
priate weights to the features to produce the final TD saliency map. The
following steps are considered:

1. Creating a contextual descriptor for the test image by following the
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same procedure applied to a training image, as explained in sec-
tion 3.4.1.

2. The contextual descriptor of a test image is matched with the con-
textual descriptor of each of the clusters being created in the training
phase. The distance computation to perform the matching is accom-
plished using JSD. Note that JSD here is used for another purpose.
Previously in the training phase JSD is used to calculate the weight of
FM or CM based on finding the target and background distributions.
However, here JSD is now used to find the information distance be-
tween the contextual descriptor of the test image and that of each
cluster. Note that the same JSD Eq. (3.4) is used. The only difference
is that the target distribution is replaced by the contextual distribu-
tion of the test image and the background distribution is replaced
with the contextual distribution of one of the clusters for which the
matching is taking place.

3. The cluster having the lowest JSD value corresponds to the best
match to the input image.

4. The precomputed weights of the FM and CM of the best match clus-
ter are assigned to the input image.

5. The final TD saliency map using the selected weights is computed
to produce the final result by following the procedure described in
section 3.3.

By this procedure, a dynamic weighting of BU features is achieved
based on the contextual content of the image. Figure 3.6 shows a sam-
ple of 43 training images being grouped into nine clusters by the above
method. Furthermore, a sample test image is matched with the centroids
of each cluster using JSD.
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Figure 3.6: Contextual based image clustering illustration. 43 images are clustered into
nine groups using the proposed k-mean contextual clustering technique. The similarity
of images within a cluster using the contextual features can be seen in some clusters e.g.
cluster four and five. An input test image is contextually matched to these clusters using
JSD with cluster three being the best match (lowest JSD value (see the bottom plot).
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3.5 Results and analysis

The experiments are divided into three parts. In the first part, the ad-
vantages of using the proposed features along with global IDM centre-
surround mechanism are demonstrated over the traditional features and
the centre-surround mechanism proposed in the Itti model. This evalua-
tion is carried out for salient object detection. The results show that the
detection accuracy of the salient objects on a benchmark dataset by the
proposed features and the centre-surround mechanism outperform some
state-of-the-art techniques in saliency detection including the Itti model
[1].

The second part of the experiment shows that the proposed JSD
weighting calculation produces higher precision, recall and F-measure val-
ues on a dataset that contains a cricket ball as the target object than that
achieved by JSD. These three measures are indicative of the accuracy in
detecting the target object (higher the better).

The last experiment shows the overall target object detection accuracy
of the proposed TDCoW over four datasets and the importance of the con-
textual information in BU feature weighting for target object detection.

3.5.1 Experiment 1: bottom-up saliency performance

Two benchmark saliency datasets were used to demonstrate the effective-
ness of the BU features used along with the global IDM approach of the
proposed model for saliency detection. The first dataset called ASD or
MSR-1000 is the leading benchmark dataset for saliency used by most re-
searchers in this area [74]. It consists of 1000 images, each containing one
salient object. The second dataset of 300 images is the SOD dataset, which
is a collection of salient objects based on Berkeley Segmentation Dataset
(BSD) [82]. According to the saliency survey paper [124], this is one of the
most difficult and challenging datasets for salient object detection.

The precision-recall curve is used to evaluate the performance at dif-
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ferent threshold values. The proposed method that utilizes different fea-
tures and an IDM based centre-surround mechanism called IDM (multi-
features) or simply IDM (Multi) is compared with 12 state-of-the-art fix-
ation and saliency detection techniques as well as seven classical tech-
niques. The Itti attention model is the baseline technique to compare
against. The proposed saliency detection technique referred to as IDM-
PCA [120] that utilizes the PCA for dimensionality reduction is also in-
cluded for comparison. The rest of the techniques are abbreviated as fol-
lows:

• Classical: MSS [86], CA [76], Rare [125], SWD [94] and GBVS [91]

• State-of-the-art: BSL [126], CAU [127], RRWR [128], UFO [129],
SIA(GC) [130], RC and HC [92], QCUT [131], IILP [33], HDCT [132],
GMR [133] and FET [134]

The first set of methods (termed classical) are those methods that
achieved good performance in saliency detection in the first two decades
of the history of computational techniques for salient object detection. The
state-of-the-art techniques are those that achieved the highest performance
in salient object detection in recent years (refer to the survey papers on
salient object detection techniques [27]).

Figure 3.7 shows the precision-recall curves obtained for both datasets.
The obtained curves clearly show how IDM (Multi-features) outperforms
all classical techniques for saliency detection. IDM-PCA has a good perfor-
mance on both the datasets, however it uses a single colour feature with
dimensionality reduction as opposed to IDM (Multi-features) which uses
various effective and efficient features. In addition, the results also sug-
gest the effectiveness of the features and the proposed IDM based centre-
surround mechanism over those being used by the Itti model.

When comparing the proposed BU model with state-of-the-art tech-
niques, it is obvious that the former has a very high precision value (higher
than all other techniques) at low recall values (approximately below 0.4
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which correspond to low threshold) on the ASD dataset. The precision af-
ter this point degrades considerably. There are two reasons for this degra-
dation in performance. Firstly, it is observed that the saliency maps gen-
erated by the proposed method typically highlight the salient object, only
partially when the size of the salient region is large (a typical characteristic
of the salient objects contained in this dataset). Secondly, most of the re-
gions that are highlighted by the proposed technique exhibit low intensity
values compared to other techniques. For this reason, when the threshold
increases, the precision becomes low as the true positive value is small.

In the more difficult SOD dataset, it can be observed that the proposed
technique comfortably outperforms all other state-of-the-art techniques
for low recall values (approximately 0.5 and below). For high recall values,
the degradation in performance is less obvious compared to the degrada-
tion occurring on the ASD dataset.

To visualize the maps generated by the proposed BU technique and
other state-of-the-art techniques, Fig. 3.8 shows eight sample images taken
from ASD and SOD datasets. The saliency maps generated by the all the
techniques except for FET, HC and RC exhibit very high precision and
low false negatives. Hence on this dataset, we can see from these sample
images that almost all the techniques including the proposed IDM (Multi-
features) were able to detect the salient object accurately if compared to the
groundtruths (see second row of the figure). On the other hand, from the
SOD dataset, four challenging images are selected in which they contain
either more than one salient region to be detected (e.g., the last two images
in this dataset) or the background and the salient region exhibit similar
visual features (e.g., the first and the last image in this dataset).

In the first image from the SOD dataset, the groundtruth indicates that
the salient region is the ladder in front of the rocky mountain. Note that
the visual attribute of the background (mountain) and the salient region
(ladder) are visually very similar. As a result, the pixel association and
propagation based models such as CAU, GMR, IILP and RRWR assign
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Figure 3.8: Qualitative comparison of the bottom-up saliency maps generated by vari-
ous state-of-the-art techniques and the proposed IDM (Multi-features) on ASD and SOD
datasets.
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same pixels association values to the background and the salient region.
Contrast based methods such as RC and HC also fail to produce satisfac-
tory results as the contrast attributes between the two regions are similar.
Even high-level features such as objectness in UFO was not able to sepa-
rate the two regions. The best effort on this image was delivered by the
proposed model (see the last row of the figure). Using an information
theoretic approach to various low and mid-level features, the proposed
model was able to highlight the salient region which is deemed to have
certain irregularities or element of surprise from these features which in
turn captured by the model. A similar visual analysis is applicable on rest
of the images from this dataset.

The proposed BU saliency model highlights part of the salient object
and mostly with low intensity, however, it retains the contour or the over-
all structure of the object. This is because one of the features used in this
model is the MSS frequency content based on the method proposed in [86].
As mentioned earlier, the MSS technique has a very good segmentation
performance on benchmark datasets [124].

Hence, to demonstrate the segmentation capability of the proposed BU
model, the mean shift adaptive segmentation approach proposed in [74]
is applied on the generated saliency maps to produce segmented binary
saliency maps. The mean shift adaptive segmentation uses an adaptive
threshold value for segmenting and binarizing the saliency map. Once
this is done, the binarized map is compared with the groundtruth map
and three parameters are computed, the precision, recall and F-measure
(please refer to section 2.2.4.3 for the calculation equations). F-measure
requires a β2 parameter which is set to 0.3 (a common value found in
saliency literature which gives more importance to precision than recall)
[74].

From Fig. 3.9, we can clearly see that in both datasets, the proposed
model has low recall values compared to other classical and state-of-the-
art techniques. On the contrary, the proposed model exhibits high preci-
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sion and in turn F-measure values. In the ASD dataset, the precision and F-
measure values are comparable to most of the state-of-the-art techniques.
In the SOD dataset, the proposed model has second largest precision and
F-measure values after the QCUT technique. Although the recall values of
the proposed model are low, the potential strength of the model lies in its
ability to detect the salient object/s with a high precision.

Since the proposed BU model has a good performance for BU saliency
detection, we would expect this proposed BU approach to perform well
when modelling TD saliency as the TD weights are assigned directly to
the features of this model.

3.5.2 Experiment 2: JSD weighting performance

In this experiment, the proposed JSD weighting calculation method is
compared with the previously proposed SNR for TD feature weighting.
For this experiment, the same setup being followed by the authors in
[22] (i.e., same features and centre-surround mechanism based on the Itti
model) is used to avoid any additional processing biases. The objective of
this experiment is to show that JSD is a better option for feature weight
calculation than SNR.

The TD weights are calculated with the two approaches once with the
proposed JSD method and with the SNR method. A challenging dataset
using cricket balls as the target is created for testing. The dataset consists
of 400 images which are taken both indoors and outdoors with variation
in the size of the target object, illumination, distracting objects and back-
ground. In addition, some internet images containing the cricket ball were
included in the dataset. The reason for including internet images is to in-
clude natural images containing cricket balls (e.g. in well-known cricket
grounds, with players, from different matches, etc.). The created dataset
is split into two groups of 200 images each, where the first set contains
images in which the target object is salient and the second in which the
target is non-salient and distracted by other objects. They are referred to
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as salient and distractor datasets respectively.

For this experiment, 100 images (50 from each set) are selected ran-
domly in total from both sets to construct a test to train instance ratio
of 1 : 3 (a common ratio followed in machine learning techniques). The
experiment is repeated 10 times using a different random train/test im-
age selection for each run. An average result is obtained in the form of
precision-recall curves. As explained in section 3.4.2, the weights are cal-
culated for the training images separately. These weights are then aver-
aged to obtain a final single set of feature weights which are in turn uni-
versally applied on the testing images as there is no contextual or cluster-
ing involved in this experiment. The objective of this experiment is only
to show that JSD is a better choice than SNR for weight calculation.

Figure 3.10 shows the average precision-recall curve for both the JSD
and SNR based TD weighting along with the BU (i.e., no weighting) op-
tion. As expected, the highest precision value for the BU approach is very
poor (approximately 30%). This is due to the fact that 50% of the test im-
ages are those in which the target is non-salient, and hence poorly detected
by the BU approach. As it is evident, the SNR based TD weighting has im-
proved the detection but only by approximately 10% of the maximum pre-
cision value. On the other hand, the JSD approach has a maximum preci-
sion value of 58% and clearly outperforms the SNR based approach. Note
that the precision is still low due to the absence of contextual information
when generating the feature weights. Figure 3.10 also shows a representa-
tive sample image and the obtained TD saliency maps from SNR and JSD
respectively. As it is evident for this example, the JSD version has fewer
false positive regions compared to the SNR alternative. This behavior was
typical across the majority of the images in this dataset.

From the two experiments mentioned above, the effectiveness of the
proposed features along with the global centre-surround mechanism and
the JSD weight calculation procedure for both saliency and target detec-
tion is evident.
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Figure 3.10: Comparison between JSD and SNR based weight calculation methods. The
right column shows an example of a test image (top image) and the saliency map gen-
erated when applying SNR (middle image) and JSD (bottom image) as feature weight
calculation procedure.

3.5.3 Experiment 3: TDCoW for target detection

In this experiment the efficacy of the proposed TDCoW and the importance
of the contextual based clustering is explored. The model is tested on four
datasets for target object detection. The first two are the same salient and
distractor datasets discussed earlier for cricket ball target detection. The
other two are selected from the Graz-02 dataset which is commonly used
for object classification or recognition [135]. The Graz-02 dataset contains
images with objects of high complexity and a high intra-class variability
on highly cluttered backgrounds. There are three classes in this dataset,
however, only two are considered for target detection i.e., bikes and per-
sons as they are more difficult to be classified than the car class.

The images from each of the four datasets were split into equal halves,
one for training and the other for testing. In addition, different cluster
sizes were used. Figure 3.11 shows the average area under the curve
(AUC) of the Receiver Operating Characteristic (ROC) achieved when
varying the number of clusters in each dataset. It is clear from Fig. 3.11
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Figure 3.11: Cluster size variation affect on the accuracy of the proposed model.

that as the number of clusters is increased, a better AUC performance is
achieved. The drawback of increasing the number of clusters is higher
computational load in matching the contextual descriptor of the test im-
age with that of the centroid contextual descriptors of the clusters. To be
within a reasonable limit, empirically the number of clusters is chosen to
be 30 for the salient and distractor datasets and 45 for the bike and person
datasets.

3.5.3.1 Quantitative analysis

The model is tested by generating the TD saliency maps and finding
the accuracy of detection using both precision-recall curves and the F-
measure. A comparison is made between TDCoW and TD weighting
without the contextual information or clustering. Figure 3.12 shows the
results for the salient, distractor, bikes and persons datasets from left to
right columns respectively where the top row is the precision-recall result
and the bottom row is for the F-measure. The proposed TDCoW shows a
better performance both in terms of precision-recall and F-measure curves
across all four datasets. However, some observations and patterns need
more elaboration.

Starting with the salient dataset, the BU (i.e., IDM (Multi-features) with
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Figure 3.12: Precision-Recall and F-measure performance evaluation of TDCoW for the
salient, distractor, bikes and persons dataset from left to right. The comparison is con-
ducted with the BU model and the TD weighting without context. The top row is for
Precision-Recall and the bottom one is for F-measure.

flat weighting on the features) has a reasonable performance in the ac-
curacy of detecting the target (see the first column of Fig. 3.12). This is
expected as we have seen the capability of the IDM (Multi-features) in sec-
tion 3.5.1 in detecting salient objects, and this dataset has the target cricket
ball being the most salient object in the image. When applying the weights
without the use of context, the improvement is noticeable. For the distrac-
tor dataset, the BU approach gives a very poor performance as the target
object is not salient and being distracted by other similar type of objects.
Furthermore, weighting the features without the contextual knowledge re-
sults in a considerable improvement in the accuracy performance for this
dataset. Finally, for the last two datasets, we can clearly see that weighting
the features without the context has no affect in performance improvement
over the BU approach. When using the proposed model (i.e., TDCoW) the
performance is boosted considerably in all the four datasets.

Note that in the Graz-02 (bike) and (persons) datasets there is almost
no difference in performance between the BU and the TD without context.
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In fact, for some high threshold values, the F-measure values are higher
for the BU than the TD without context. This suggests that for these two
datasets in particular and in the absence of contextual information, the av-
eraging over the examples is merely a random procedure and produces
flat weights over all the features. This happens because the images in
this dataset exhibit a very high inner-class contextual variability, which re-
sults in inaccurate weighting of the features when averaging the weights.
This, in turn, leads to a degradation in target detection performance, as
can be seen strikingly in the F-measure graph in third and fourth columns
of Fig. 3.12 (compare the BU curves with the ’TD without context’ curves).

From the three set of curves (precision-recall or F-measure) in all four
dataset in Fig. 3.12, we can clearly see that learning weights through the
incorporation of contextual information (TDCoW model) always outper-
forms both plainBU approach and feature weighting without context in
terms of target detection accuracy performance.

Now to compare the proposed TDCoW model with existing state-of-
the-art saliency techniques, again the PR and the F-measure curves are
plotted to evaluate the performance of the proposed model. Furthermore,
the model is compared with the model proposed by Judd et al. (LPH) [73].
This model is close to the proposed weighting model as it learns weights
of various features from eye fixation data through an SVM classifier. Since
the four datasets used in the experiments lack eye fixation groundtruth,
it is not possible to train the weights over these datasets. Instead, from
the segmented groundtruth region, a random sampling of points is per-
formed to form an approximation of eye fixation data so that the model
parameters can be learned from the training examples.

The precision-recall and F-measure curves are replotted in Fig. 3.13
from Fig. 3.12 for TDCoW to demonstrate the comparison with other state-
of-the-art techniques. As before, the first row of Fig. 3.13 shows the
precision-recall performance and F-measure values are plotted in the sec-
ond row for all four datasets. On the first dataset (i.e., salient), it is evident
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that TDCoW has better performance than rest of the state-of-the-art tech-
niques. Despite the cricket ball being salient in most of the images in this
dataset, the BU state-of-the-art techniques could not perform as good as
the proposed model.

The most striking performance of TDCoW can be seen for the distractor
dataset. A huge performance difference between TDCoW and rest of the
state-of-the-art techniques on this dataset confirms the capability of the
proposed model in detecting the target object when it is not salient (see
the first and second row of column two in Fig. 3.13). Since the distractor
dataset contains distracting objects which are mostly salient, the poor per-
formance of these techniques is reflected due to the fact that they falsely
detected the most salient regions rather than the target object in majority
of the examples on this dataset.

In the bike dataset, we can see similar performance by TDCoW to the
one achieved on SOD dataset. Most of the images in this dataset contain
the target object (i.e., bike) that are salient. As before, TDCoW has better
performance on low threshold values than other techniques but degrades
with increasing threshold. Similarly, the target object in the person dataset
is also salient in most of the images. TDCoW has a moderate performance
in this dataset. The best performance is achieved by LPH as the model
uses high-level face and pedestrian detectors as features.

3.5.3.2 Visual analysis

Figure 3.14 shows representative examples of the saliency maps (shown
by heatmaps) generated by various models including the proposed TD-
CoW model. The last three columns shows results produced when only
using BU (i.e., the proposed BU IDM (Multi-features)), TD weighting but
without context (TD (NC)), and finally the TD proposed model TDCoW.
Three representative sample images are selected from each dataset.

As an example from the salient training image, the ball in the second
image is salient, though it exhibits low contrast and is partially occluded
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by the grass. TDCoW was able to detect the target with high accuracy with
a result comparable to HDCT and BSL. The rest of the techniques failed to
detect the target precisely. In the distractor sample images, we can see that
the proposed model outperforms the rest of the techniques in detecting the
target with a small number of false positive regions.

The bike in Graz-02(bike) dataset was detected partially by TDCoW
and not as a whole object. Despite the partial detection, the visual results
compared to other techniques show very high target detection precision.
As an example, in the third image, only the proposed model was able to
detect the target with minimal false positive regions. On the other hand,
the rest of the techniques detected the yellow object as it deemed more
salient than the bike. In the person dataset, we can see a reasonable detec-
tion performance by the proposed model. For instance, in the last image,
the object was detected but with far more false negative regions compared
to more accurate results by other techniques.

When comparing the proposed model which is based on contextual TD
weighting of features with the BU version (i.e., no weighting) and the TD
weighting without context, we can clearly mark the visual improvement
in locating the target object when using context (i.e., by TDCoW model)
over the other two approaches (see the last three columns of Fig. 3.14). In
the majority of these sample images, we clearly see that pure BU has poor
performance in detecting the targets, particularly in the distractor and bike
datasets. Little improvement is achieved when performing TD weighting
of features over all the training examples without the inclusion of context.
Ultimately, upon incorporating the context, the detection performance is
obvious. In some situations, for instance (the improvement in second and
third image of the distraction and person datasets respectively), the incor-
poration of context does not have a significant improvement over the TD
weighting without context. In other occasions, a noticeable improvement
is achieved when using the context to modify the TD weighting either by
increasing the precision in detecting the target (e.g., the first image int the
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bikes dataset) or reducing the number of false positive regions (e.g., the
first image in the distractor dataset).

3.5.4 Limitations of TDCoW

Although the model utilizes the image context for a better feature weight
assignment, the knowledge of the target features is missing. Target fea-
tures remain an important factor for more accurate weighting of features.
In addition, other sources of visual guidance such as task encoding, long-
term memory of previously attended objects and location priors can be
used for a finer tuning of the feature weights. However, such high-level
information of the scene requires more processing time. Hence, a trade-off
exists between the choice of information sources that could assist in target
object detection and the efficiency of the system.

3.6 Chapter summary

Modelling top-down saliency by appropriately weighting the bottom-up
features for target detection is a non-trivial research topic in active vi-
sion. The major challenge in top-down saliency modelling is how to dy-
namically assign weights to the bottom-up features. Most of the existing
techniques do not consider high-level information within an image when
weighting the features. As a result, the learned weights from example im-
ages only work well when the test images are similar in their context or
background to the training images.

To overcome this problem, the proposed Top-down Contextual Weight-
ing (TDCoW) model learns contextual structures from the training images
and applies them to the test images in order to dynamically assign weights
to the features. A clustering approach is used for appropriately cluster
similar types of images in the training phase. The cluster weight is as-
signed to the test image that corresponds to the best match to the test
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image context. Upon doing the context based weighting, the proposed
model (TDCoW) outperforms many state-of-the-art BU techniques as well
as top-down weighting without context in detecting the target object in
four challenging datasets. The results obtained by the proposed model
in all four datasets show a considerable target detection performance im-
provement through precision-recall and F-measure values over feature
weighting without context.

Hence, the major contribution of this chapter is to highlight the im-
portance of contextual information for top-down saliency modelling by
feature weighting for target detection. Furthermore, in order to achieve
the mail goal of this chapter, the following sub-contribution were made:

1. A new proposed bottom-up salient object detection technique called
information divergence of multi-features (IDM-(multi-features)) was
proposed to produce saliency maps that better detected salient ob-
jects than many state-of-the-art bottom-up saliency techniques in
benchmark datasets.

2. A new information theoretic based technique for computing the fea-
ture weights. The proposed approach based on Jensen Shannon
divergence JSD produces bounded and more accurate weights for
modelling top-down saliency in detecting target objects than those
produced by conventional signal to noise (SNR) method proposed
in [22].

3. A new descriptor is proposed based on the feature distributions that
accurately extracts the gist content of an image.

As highlighted in section 3.5.4, contextual information is not the only
source of tuning the attentional feature weights for modelling top-down
saliency. In the next chapter, we incorporate a target information to the
contextual model through two different mechanisms without using any
high-level information of the target object.



Chapter 4

Modelling Top-Down Visual
Attention Through Target and
Contextual Information

4.1 Chapter introduction and motivations

As demonstrated in the previous chapter, weighting low-level attention
features to accommodate target object visual search can be improved
through the use of contextual information contained in an image. How-
ever, contextual information is not the only possible source of guidance
when performing target object detection [30]. Target object features play
an essential role in guiding the attention towards the object of interest.
This is evident in many passive computer vision techniques [136], active
vision techniques [34] and computational visual attention models [8].

The biological phenomenon of visual attention suggests that when
searching for a target object, a lot of information of the scene such as spa-
tial distribution, contextual information, bottom-up attention and prior
knowledge of the target features act simultaneously in guiding the search
towards the target [4, 37]. It has been speculated that when a candidate
region of interest is sampled, a recognition process is triggered to identify

109
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the region as target or non-target [37]. This suggests that two levels of
the target feature involvement exist when performing a top-down visual
search; one during top-down sampling of a visual scene and the other
when performing the final recognition of the sampled region.

Modeling TD attention by utilizing both guidance source (i.e., contex-
tual information and target features) could result in regions of interest that
are more likely to contain the target object than that acquired from any in-
dividual sources. Previous models have only considered target features
either during the attention phase or at the recognition stage when mod-
elling top-down saliency [71, 99]. As a more comprehensive top-down at-
tention system, in this chapter we combine contextual information and
target feature at the attention phase (from now it is referred to as attention
target features (ATF) and again use target features at the recognition phase
(referred to as recognition target features (RTF) to model TD saliency.

Figure 4.1 shows the three modules in this work and how they interact
with each other. Both the contextual and ATF modules produce maps rep-
resenting regions of interest to be attended to. By contrast, the RTF module
processes these maps by inspecting each region to find the likelihood of it
containing the target object. While it is clear from the figure that the target
features used by RTF and ATF share the same type of features, the ways
they utilize them are different.

At this stage it is important to distinguish between the purposes of the
contextual and ATF modules and the RTF module for recognition. The
first two modules are the key elements of the whole model because they
are responsible for generating saliency maps that are likely to contain the
target object. The RTF module only inspects the salient regions to confirm
the detection process. Hence, the RTF is a generalized module that can be
applied to any saliency map which is fed to.

While the main contribution of the chapter is the integration of the con-
textual and the target features to maximize detection accuracy, the recog-
nition module can be considered as a secondary contribution of this chap-
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Figure 4.1: A block diagram of the proposed framework for modeling top-down attention
feature weighting for target object detection. The model consists of three modules, two
for generating saliency maps and one is for the recognizing the target object.
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ter because it utilizes the same basic information used in the ATF module
effectively and efficiently without opting for complex computer vision rec-
ognizers. Similar to chapter 3, in this chapter, there are various implemen-
tation details that either directly or indirectly contribute towards building
the final model. However, the major contribution of this chapter is the
incorporation of the target information through target controlled weight-
ing mechanism (i.e., the ATF module). This contribution beside being a
proof of concept, provides a way to incorporate target information into
the attention system using low level feature without opting for high level
target specific features. To our knowledge, such an approach has not been
considered previously in visual attention based object detection.

4.1.1 Chapter objectives and overview

The objective of this chapter is to improve the target detection accuracy of
the existing top-down feature weighting attention model through the in-
corporation of both contextual and target information into the system. In
order to achieve this goal, three modules of the overall system are intro-
duced and the following tasks are considered,

• To learn low-level weights for the features (indicated as w1) that
maximize the detection accuracy of the target object through fea-
ture space optimization. For this purpose, the state-of-the-art par-
ticle swarm optimization (PSO) global search technique is used. The
optimization of weights is performed over individual images. Thus
each image will have its own optimized set of weight vectors.

• Compute the contextual information of an image. Three different
contextual descriptors are used to explore the ability of these descrip-
tors to summarize the holistic information within an image, which in
turn would be reflected in the quality of feature weighting. This par-
ticular objective extends the previous work on contextual descriptors
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presented in the chapter 3 by using a set of more effective descrip-
tors.

• To learn a model that accurately exploits patterns between the w1

weight vectors and the contextual descriptors from a set of training
images. Later, this model will be used to predict w1 from the contex-
tual descriptor of a novel image.

• To learn a separate set of weight vectors referred to as target object
weight vectors (w2). The weight vector is based on extracting low-
level features from the target object to be searched for. This weight
differs from w1 as it maximizes the detection accuracy by consider-
ing only target related features. The w1 weight vector does not con-
sider any target related information. Another difference is that w2

represents a single weight vector that is applied on all the images in
a dataset whereas by contrast, w1 is the set of weight vectors that is
learned for each image separately.

• Formulate a mechanism to extract candidate regions from the
saliency map followed by applying recognition to determine the like-
lihood that the region contains a target object.

Briefly, the below procedures are followed to build the final model for
integrating target and contextual information for object detection,

1. Split the data into training and testing sets.

2. For each image from the training set, learn an optimized feature
weight vector using PSO (for details refer to section 4.2.1.1).

3. Compute the contextual information of each image using one of the
three contextual extraction techniques provided in section 4.2.1.2.

4. Using a hetero-associative single layer neural network, learn an as-
sociation model between the weights from step 2 and the contextual
descriptors obtained from step 3.
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5. For all the training images collectively compute a single set of
weights (target weights) from the ATF module by extracting low-
level features (for details refer to section 4.2.2). Note that this set of
weights is different from the weights in step 2 as the latter represent
a single set of weights for the target object in all the training images.

6. From the same low-level features extracted in from previous step,
learn a Naive Bayes classifier for binary classification (i.e., target and
non-target) (for details refer to section 4.2.4). This is the optional RTF
module which represents the second level of target detection after
ATF.

7. For a novel image from the testing dataset, compute its contextual
descriptor.

8. Apply the hetero-associative model on the descriptor to yield the
first set of weights (we refer to it as contextual based weights).

9. Compute the saliency map through Itti model using the weights ob-
tained from the previous step. We refer to this saliency map as con-
textual based saliency map.

10. Using the target based weights obtained in step 5, generate another
saliency map through the Itti model. We refer to this saliency map as
target based saliency map.

11. Combine both saliency maps to form the combined saliency map us-
ing one of the combination operations given in section 4.2.3.

12. Segment the obtained combined map using a mean-shift segmenta-
tion technique.

13. For each salient region in the segmented map, apply the Naive Bayes
classifier to classify these regions to either belonging to the target or
non-target object.
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14. The final output of the model is a saliency map containing regions
that most likely contain the target object to be detected.

4.2 Model structure

The proposed model is based on generating various saliency maps that
are computed through different feature weighting mechanisms. Each set
of learned weights tunes the attention features differently, yielding maps
that highlight a variety of potential regions that are likely to contain a tar-
get object. The basic Itti features are used to compute the saliency maps [1].
Referring to Fig. 2.5, these features are red/green (R/G) and blue/yellow
(B/Y) representing opponent colour contrasts, intensity (I) and four ori-
entation features computed at 0o, 45o, 90o and 135o using Gabor filters.
Furthermore, the same centre-surround and normalization operations are
used as in the original Itti model.

4.2.1 Module 1: contextual weighting

The purpose of this module is to learn a set of weights for the above men-
tioned features that maximizes the detection accuracy of the target object.
Similar to the weight vector used for TDCoW in section 3.2, a weight is as-
sociated with each feature map. In addition to the feature weights, weights
are associated to conspicuity maps as well. Thus, with the basic Itti fea-
tures, we have a total of 10 weights, three for each conspicuity map and the
remainder for the feature maps in the corresponding feature sub-channels.
So the set of weights to be learned represents a feature vector w1 repre-
sented as:

w1 =
[
wR/G, wB/Y , wI , w0o , w45o , w90o , w135o , wC , wI , wO

]
(4.1)

where the last three weights are the conspicuity map weights for colour,
intensity and orientation respectively.
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As shown in Fig. 4.2, for each image in a dataset of K images, we learn
an optimum feature weight vector wi

1 separately through optimization.
The optimization block takes two inputs, the image i for which we want
to learn the weights and its groundtruth mask.

The optimizer selects values for wi
1 weight vector in such a way that

when the weights are used on the feature and conspicuity maps to yield a
saliency map, it best matches the groundtruth map. This agreement or de-
tection accuracy is measured through F-measure score. Furthermore, The
optimization takes place simultaneously for the whole weight vector. This
is different from previous approaches for optimizing saliency features [23],
where the same type of sub-channels features (not the conspicuity maps)
are assumed to be independent and hence optimized separately (e.g., the
set of weights for colour are optimized separately than those associated
with orientation for instance). Because such optimization is performed on
separate sub-channel features, and because some of the existing valuable
dependency and interaction between these sub-channel features are not
considered, the resultant weights would be far from being optimized and
would affect the detection performance. For this reason, in the proposed
optimization approach, all the sub-channel features are optimized simul-
taneously. Note that at this stage, we are not concerned with splitting the
dataset into training and testing sets, instead, weights are pre-learned for
each image to ease computation in the successive training phase for learn-
ing contextual association.

The selection of the optimization technique is a design issue that de-
pends on the requirement. For instance, the authors in [111] chose con-
strained non-linear programming as it is fast to implement. However, this
technique tends to provide solutions that are non-optimal. In the case of
optimizing the weights for maximizing detection accuracy, the require-
ment for the optimizer is to provide near optimal solutions (in this case
weights). A non-optimal weight will not only affect the contextual weight-
ing module but also affect the overall performance of the model’s target



4.2. MODEL STRUCTURE 117

Figure 4.2: The procedure for generating w1 weight vector for all the images in a dataset.
The optimization is performed independently for each image.
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detection accuracy. Furthermore, because our proposed model can be ex-
panded to any number of features, the optimizer should be capable of
searching very large spaces of possible solutions.

There is a family of optimizers that can effectively search complex and
high dimensional feature space to yield solutions that coincide more often
to global optima [137]. The particle swarm optimization (PSO) is one such
technique that falls into this category and fulfills the above mentioned
requirements. Since the search space structure for the current problem
is complex and not known, we can not make any assumptions about it
(which is sometimes required by optimizers). PSO fits such problems as it
does not require any prior assumption of the search space as it is a pop-
ulation based [138, 139]. In addition, PSO is easy to implement and has a
fast convergence rate.

4.2.1.1 Particle swarm optimization for feature weighting

Particle swarm optimization (PSO) is an evolutionary computation tech-
nique that uses particles or agents to describe different possible solutions
in a search space [138]. Each particle k is described by three entities, its
current position in the search space denoted as xk, its velocity denoted
by vk and the its fitness value fk. Usually, these entities are described in
a vector of length D where D is the dimensionality of the search space.
The fitness value of a particle is evaluated using some fitness or objective
function.

The basic principle of PSO is that after every iteration, the particles
update their velocities and positions in that the overall flow is towards a
particle/s having the best overall previous fitness value. That particle is
called the global best (Gbest) and its position is denoted as g. In addition,
each particle records its personal best position (Pbest) denoted as pk (i.e, the
position having the best fitness value). Note that g and pk are also vectors
of dimension D.

At each iteration t, the particles update their velocity and positions
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according to the following equations for the standard PSO [140]:

vtkl = wvt−1kl + c1r1(pkl − xt−1kl ) + c2r2(gl − xt−1kl ) (4.2)

xtkl = xt−1kl + vtkl (4.3)

where c1, c2 and w are various scalar parameters for performance tun-
ing of PSO. The random numbers r1 and r2 are generated from a uni-
form distribution between zero and one. The variable l is used to index
the elements of the vectors such that l = 1, 2, . . . , D. The update pol-
icy can be either global (i.e., each particle in the search space acts as an
informer to other particles) or local (i.e., particles belonging to the same
group update each other only in a ring topology) [140]. This formation
of such structural grouping is referred to as the neighborhood topology.
A global mesh topology has the disadvantage of providing a local op-
timum solution whereas local ring topologies are used to overcome this
problem [141, 142].

In the context of the weighting problem, each particle is represented by
a weight vector w1 and hence, the search space isD = 10 dimensional such
that the weights have bounded values between zero and one. In order to
evaluate the fitness value of a particle, the detection accuracy is computed
as follows,

• For a given weight vector that represents a particle position, the
saliency maps is computed after weighting the feature and conspicu-
ity maps with the corresponding weights from the weight vector.

• The saliency maps is compared with the groundtruth map of the im-
age in consideration. Any saliency detection accuracy measurement
can be used from section 2.2.4.3. Since we would like to balance
between precision and recall, the F-measure score is used. The F-
measure score is computed by first thresholding the saliency map us-
ing a single adaptive thresholding value and then computing the F-
measure score using Eq. (2.2) between the thresholded saliency map
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and the groundtruth map. The F-measure score represents the final
fitness value of the particle. An example of computing the fitness
value of a particle is demonstrated in Fig. 4.3.

As a result, the objective function of optimization is to maximize the
F-measure value or equivalently to minimize 1− fk. The optimization pro-
cess is performed over multiple runs. Each run is a complete optimization
that is performed over a number of iterations. In each run, the seed (and
the population initialization) is different which results in diversity in solu-
tions. Each run produces a winner solution (i.e., a Gbest particle having the
best fitness value). The final set of optimum weights is selected having the
best fitness value over all runs. We have chosen the best solution instead
of taking average over runs as the latter may result in weight variation on
certain features, particularly when the search space in not convex. As a
result, if the weights vary on certain features vary considerably from the
best solution weight vector, the accuracy of the generated saliency map
will be affected.

Note that the whole process described for acquiring an optimum
weight vector is performed on a single image and it is repeated for the all
the images in the dataset separately to obtain an optimum weight matrix
given as:

Wopt
1 =

[
w1

1,w
2
1, . . . ,w

K
1

]T (4.4)

As will be discussed in section 4.2.1.3, this weight matrix is further used
in the contextual association step to learn a pattern between the context of
the image and these weight vectors.

4.2.1.2 Contextual information extraction

The weight vector wi
1 of an image i represents the optimum set of weights

that maximizes the detection accuracy for that particular image. Hence,
applying the same weight to a different image will cause a performance
change (mostly degradation), unless the structure, content and visual at-
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Figure 4.3: The procedure for computing fitness value of a particle through an example.
A particle (shown as a red circle) is encoded as a weight vector. The weight vector is used
to weight the corresponding feature and conspicuity maps to yield a top-down saliency
map. The generated map is compared with the groundtruth map through an adaptive
threshold value to yield the final F-measure value. This value represents the fitness func-
tion of that particle.
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tributes of the image remain the same. This can be demonstrated by in-
specting some images shown in Fig. 4.4. By viewing the four images, we
can roughly categorize the images by their visual similarity. For instance
(from left to right of the first row of the figure), the first and second image
exhibit similar background as are the third and fourth. For each image, a
weight vector w1 is learned through the optimization procedure described
above.

For instance, when the saliency map of the third image was generated
through its optimized learned weight vector (i.e., w3

1), a detection accuracy
value of 0.422 was achieved (as measured through F-measure segmented
evaluation procedure described in section 2.2.4.3). When the saliency map
of the same image was produced by the optimized weight vectors ob-
tained for the first and second images, a poor detection performance was
resulted (F-measure values of 0.068 and 0.107 respectively). When w4

1 was
used, a performance of 0.336 was achieved. In fact, by looking at the four
saliency maps, those produced by the weight vectors of the first two im-
ages are similar in visual characteristics whereas as the one produced by
w4

1 is highly similar to the one achieved by the optimum weight vector for
this image (i.e., w1

1).

The example suggests that when the visual attributes of the images
are similar, then the weights learned for one image can be applied to an-
other to achieve similar detection performance. For a novel image, because
there is no groundtruth map indicating the location of the target object, its
feature weights are assigned with the help of those examples that exhibit
high similarity in contextual information to that of the novel image. For
this reason, and motivated by this observation, the contextual information
needs to be extracted from the image that would give a holistic gist repre-
sentation of its contents and serves as a content visual descriptor for that
particular image.

Note that the concept of weighting the features based on the contex-
tual information has already been introduced in chapter 3 when propos-
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Figure 4.4: The impact of using optimized weights learned from contextually different
and similar types of images. A sample of four images are used to demonstrate this con-
cept. When an optimized weight vector that is learned specifically for the candidate
image (in this example images 1 and 3), the best performance in F-measure was achieved
(see the highlighted saliency map by a dashed red box). When other optimized weights
are applied on these two images, the weights learned for those images that are contextu-
ally similar achieved comparable performance to that achieved by the default ones.
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ing TDCoW. However, one of the major limitations of that model is the
implementation practicality due to the extensive and computationally de-
manding contextual matching process. As a result, a more efficient way of
assigning weights to the image features based on the contextual informa-
tion is needed.

In this chapter, two types of contextual descriptors are explored. The
first descriptor is the gist descriptor proposed by Oliva and Torralba [2]
referred to as envelope gist. This descriptor provides a structure of the real
world scenes through a spatial envelope that is characterized by various
scene attributes such as naturalness, roughness, and openness. Model-
ing of these attributes is carried out using the discrete Fourier transform
(DFT) and the windowed Fourier transform (WFT). The descriptor itself
is constructed using Gabor filters. Given an input image, a descriptor is
constructed by convolving the image with 32 Gabor filters (if we consider
four scales and eight orientations) producing 32 feature maps. By default,
each map is divided into 4 × 4 grid and then the average over all feature
map values within each grid is performed. If more detailed information is
required, the grid size can be decreased for finer contextual extraction at
the expense of computational complexity.

Concatenating the 16 averaged values over the grids for all 32 feature
maps results in the final descriptor of length 512. Intuitively, this descrip-
tor summarizes the gradient information for different parts of an image
and provides a rough description of the scene. An important property
of this descriptor is that the envelope attributes ignore local object infor-
mation contained in a scene. Figure 4.5 shows a sample image and the
visualization of its contextual descriptor using the local energy spectrum
at each spatial location. Note the similarity in energy spectrum of regions
of the image is contextually similar.

The second type of context descriptor is less complex and easier to
compute than the envelope gist descriptor. Proposed by Rasolzadeh et
al. [23], this descriptor basically extracts the low-level attentional features
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1×1 2×2 4×4 8×8

Figure 4.5: A visualization of the Gist descriptor proposed by Oliva and Torralba [2].
As the number of blocks is increased, a more detailed contextual information can be ex-
tracted at the expense of increase in the length of the descriptor. The energy spectrogram
is constructed from four image scales with eight bin representation at each scale.

for the whole image by providing a global distribution of the low-level fea-
tures across the entire image. Ideally, the descriptor should be a histogram
of the features over all the attentional sub-channels and conspicuity maps.
Instead a much simpler approach was considered for efficient computa-
tion. The descriptor represents the total energy contained in the feature
maps. If the dimension of a feature map is M ×N , the the energy content
of the feature map is computed as follows:

ci =
M×N∑
j=1

((f ji )2) (4.5)

where f ji represents a feature map value at location j for the sub-channel
feature i. With a total of seven sub-channel features described earlier, this
becomes the dimension of this descriptor.

Although this descriptor is computationally efficient, it has a limita-
tion. A feature map describes the spatial saliency location of an image.
Equivalently, this descriptor computes the total saliency of a feature map.
Hence, the contextual description is coming through saliency description
rather than the actual content of the image. To overcome this limitation,
we modify this descriptor by computing the energy directly from the fil-
tered features (i.e., before applying the center-surround and normalization
mechanisms). This will provide a better description of the image using
the raw low-level features. We only compute the energy of the features at
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three scales for efficiency since the filtering is performed on nine different
levels. Hence, the descriptor length becomes 7 × 3 = 21. We refer to the
contextual descriptor proposed by Rasolzadeh et al. as attentional gist and
to the proposed modified version as modified attentional gist.

To see the descriptive quality of the three contextual descriptors, two
sample images are selected from a pool of 22 images and shown in Fig. 4.6.
All three contextual descriptors are computed and compared with the re-
spective descriptors for all the images in the pool (excluding the two se-
lected sample images). The comparison is performed by calculating the
Euclidean distance between the vector of descriptors. The image that cor-
responds to the minimum distance is selected as a match to the test im-
ages, indicating a contextual similarity. When envelope gist is used, we can
clearly see that the best match images for the two test images exhibit vi-
sual and background similarity. The same can be said about the modified
attentional gist descriptor. Note that the best matches differ in both cases
but still exhibit high similarity to the test images. By contrast, the atten-
tional gist on both examples produced matches that are visually unrelated
to the test images, supporting the previous analysis that the descriptor is
based on the saliency contents of an image rather than its gist content.

The above observation is not only confined to the two sample images
but can be generalized to any set of images. The descriptive power of these
three contextual descriptors will be evident when the target detection ac-
curacy performance is discussed in the result section.

4.2.1.3 Contextual association

In order to generate the saliency map of a novel image, the set of opti-
mized weights is required. However, because the groundtruth map is
unavailable, this weight vector needs to be predicted. For images with
groundtruth map (training images), the optimized weight vector and the
contextual descriptor for that particular image are acquired. So the objec-
tive here is to generate a near-optimal weight vector w1 for a novel image
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through knowledge of its contextual information.

One way to do so is to compare the context of the new image with the
contextual descriptor of the seen images used as training examples. The
weight vector associated with the best match is assigned to the new im-
age. This is the approach that was followed when performing contextual
feature weighting in TDCoW model through prior clustering in chapter 3.
The disadvantage of this approach is that it requires an exhaustive match-
ing with the contextual descriptors of all the training images. The ap-
proach becomes computationally demanding when the number of train-
ing images is large or when the contextual descriptor has a large dimen-
sion. The advantage of using the clustering approach is that it produces
accurate matching particularly when the number of clusters is large (best
result is achieved when there is one image per cluster). For this reason, in
TDCoW model, to have a better matching accuracy was preferred but at
the expense of an increment in processing time.

An alternate solution to this problem is to use a pattern learning proce-
dure instead. As it will be evident below, this model associates the input
(contextual descriptor) and the output target (weight vectors) in a linear
combination manner. This makes the prediction of a weight vector very
efficient for a novel image through its contextual descriptor.

For this purpose, a hetero-associative neural network is used to exploit
a relation between the contextual descriptor and the optimized weight
vector. We use a single layer linear neural network for this purpose where
as the inputs to this network represent the contextual descriptor whereas
the output represent the optimized weight vector as shown in Fig. 4.7. We
refer to this as a hetero-associative network because the two variables are
different (i.e., the input and the target to predict represent different en-
tities). The network is trained using Widrow-Hoff weight/bias learning
function (also known as the delta or least mean squared (LMS) rule).

The hetero-associative neural network has 512, 21 and seven input
units representing the contextual descriptor dimension when envelope gist



4.2. MODEL STRUCTURE 129

(a)

Envelope gist input Attentional gistModified attentional gist input

(b)

Figure 4.7: The neural network hetero-associative model: (a) A general single layer net-
work with n inputs as contextual descriptor and m outputs as the optimized weights w1

(b) Three types of inputs to the model corresponding to envelope gist, modified attentional
gist and the attentional gist.

with default parameters, modified attentional gist and attentional gist are
used. The number of output units is fixed to seven as shown in Fig. 4.7(b).

The final output of this module represents an optimized weight vec-
tor that is tuned contextually to maximize the detection accuracy. When
these weights are applied to the feature and conspicuity maps through the
saliency generation process, a top-down saliency map is produced which
is referred to as contextual top-down saliency map (SMTDC). Note that this
module does not consider any target based information or features. The
next section describes how to utilize target object information for generat-
ing another type of top-down saliency map.
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4.2.2 Module 2: attention target features (ATF)

In this section, we consider the second source of information (i.e., target
knowledge) for learning the weights of the features. This kind of weight
learning is different from the one learned in the contextual module as the
latter does not consider any target object features while performing the
optimization. This weighting is explicitly learned by investigating those
features that would best describe the target object. This is achieved by
exploiting the variation within feature sub-channels instead of performing
an optimization over an objective function.

Figure 4.8 shows the detailed process of generating the target feature
based attention weights in a training phase. Note that the dimension of
the weight vector is higher than w1 as the weights are computed over var-
ious scales of the feature channels. Inspired by the idea proposed in [143]
for acquiring candidate target regions, a BU saliency map is generated for
an image through an Itti model. When the saliency map hits a target ob-
ject (i.e., part of the target object with reference to the groundtruth map is
detected through the saliency map), L number of locations are randomly
sampled from the salient region at the location of the target object region.
Since each pixel location of a saliency map is produced through the combi-
nation and normalization of various feature maps at different scales, each
point can be summarized as a vector of feature values, one from each fea-
ture map scale. For the seven feature maps discussed earlier, each feature
map is generated through six scales (the default number of scales in Itti
model). Hence, a single point on a saliency map can be represented by a
vector of dimension 6× 7 = 42 of normalized feature values.

For the points that lie within the groundtruth region, referred to as a
view (v), the accumulation of these points produces the target object view
of a single instance image (instance view (V)). Similarly by accumulating
all such views from K number of images/instances, we establish a target
object feature representation that we refer to as object view (O) and can be
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summarized as follows:

vi =
[
f i1, f

i
2, . . . , f

i
42

]
where i = 1, 2, . . . , L

Vj =
[
vj,1,vj,2, . . . ,vj,L

]T where j = 1, 2, . . . , K

O =
[
V1,V2, . . . ,VK

]T (4.6)

where f is a sub-channel feature value. Note that the features’ indices in
Eq. (4.6) are in sequence with respect to the scale number. For instance,
f1, f2, . . . , f6 correspond to the feature map values of R/G computed at
scale one to six respectively. Similarly f7, f8, . . . , f12 is for the B/Y feature
map at the same six scales in order and so on for the remainder of the
features.

Once the object view O is generated for a particular target object, the
mean µk and variance σ2

k of its sub-channel feature maps are computed
independently where k is the index of the sub-channel at some scale as
explained previously. A sub-channel feature is hypothesized to be relevant
if its mean feature is high while the variance is low. For a target object, a
high mean of a sub-channel is desirable to generate a saliency map that
has high activation at the target object location. If the variance is high,
then this is an indication that the sub-channel feature is inconsistent in
producing good activation points within the target region. High variance
suggests that the sub-channel feature is not a good representative of the
target object and less relevant. Concretely, a sub-channel feature weight is
computed by taking the ratio of the two factors as follows:

w2 =
[
w1

2, w
2
2, . . . , w

k
2 , . . . , w

42
2

]
wk2 =

µ(O(fk))

σ2(O(fk))

(4.7)

where w2 represents the target object weight vector. Note that the length
of this weight is greater than that of w1 as describing the objects requires
more fine grained in-depth features and this is achieved by gathering fea-
ture information at various scales. In addition, w2 represents a generic
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single weight vector tuned for a specific target object and can be applied
to any image for detecting the same target object.

To assign conspicuity map weights, the maximum weight value over
all sub-channels belonging to the same conspicuity feature channel is se-
lected. This criterion guarantees that a conspicuity feature receives impor-
tance if any of its sub-channel features at any scale is important and vice
versa.

4.2.3 Map combination

The saliency maps generated by the two modules are combined before
being processed by the RTF module. Two combination approaches are
followed which are given as follows:

SMC
TD =

SMw1
TD + SMw2

TD

2
or SMC

TD = AND(SMw1
TD, SM

w2
TD) (4.8)

whereSMw1
TD is the saliency map generated by the first module after con-

verting it into a binary map using a threshold value and SMw2
TD is for the

second module. The way the two saliency maps are combined will not
only have an impact on the quality of the generated combined saliency
map SMC

TD but will also affect the final output of the RTF module. The first
combination strategy assumes that both saliency maps highlight saliency
regions that differ spatially. Hence, to incorporate all these regions into
final saliency map, the arithmetic mean is used. The benefit in doing so
would be to have a better precision over the detected target object region.
On the other hand, the second combination strategy which is based on
performing logical AND operation assumes that the common saliency re-
gion in both maps are more likely to contain the target object whereas the
remainder of the saliency regions represent false positives.
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4.2.4 Module 3: recognition target features (RTF)

This module acts as a post-processing step of recognizing the target object
and can be considered an optional step for improving the detection accu-
racy of the target object. The input to this module is the combined map
generated by the other two modules. The combined map provides can-
didate regions of interest that are likely to contain the target object. The
purpose of this module is to reduce the number of false positive regions
established by the combined saliency map through classification. For a
given saliency map, the module pays attention to each candidate region,
extracts some features and classifies it as belonging to the target object
class or a non-target class.

The sequence of visiting the attention region becomes unimportant if
the purpose is to exhaustively process all the regions. For an active vi-
sion application, it is preferable to attend to regions that are highly salient
or to apply a winner-take-all and inhibition-of-return for progressive and
dynamic attention selection. Since the objective here is to eliminate false
positive regions for a better saliency map, the sequential approach is ap-
plied. Note that if the combined saliency map fails to sample the target
region, then the recognition module becomes ineffective. Hence this mod-
ule is dependent on the target object detection accuracy by the preceding
process of weight selection.

Referring to Fig. 4.1, the module directly learns target object represen-
tation through features that are extracted in the ATF module. As it is obvi-
ous in Eq. (4.6), a target object can be represented as a combination of the
views of its various instances which is summarized by O. As depicted in
the ATF module, O is created from K images that contain the target object
during the learning phase. All such views and the combined O matrix rep-
resent a positive class cj = 1 feature matrix. Furthermore, from the sameK
images, a negative class feature matrix is constructed by gathering random
views of non-target regions. To make an equal number of views from both
classes, L×K number of views construct the negative class feature matrix
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represented as N where the views of this negative class class cj = 0 follow
the same feature pattern as vi given in Eq. (4.6). Note that the views of the
negative class are diverse as they cover different scene contents including
background, non-target objects, and distracting objects. This could result
in an increase in the misclassification rate of the negative views. However,
this is a generic approach that can be improved by fine-tuning the nega-
tive class into sub-classes. All the experiments related to this module are
performed over two classes (i.e., j = 1 and 2) only.

To learn a classifier, various assumptions are made to simplify the
problem. First of all, it is assumed that each view from either class is
equally likely. Secondly, for simplification, the sub-channel features at the
scales mentioned earlier are assumed to be independent. Although this
could be true for the sub-channels features (e.g., orientation at 45o is inde-
pendent from R/G contrast), the independence of scale features belonging
the same sub-channel might be arguable. If the dependency factor is con-
sidered, more computation of joint probabilities and other dependency
parameters need to be considered. Hence to avoid that, we assume in-
terdependency at all scales and sub-channel features. Finally, for a given
class and as an approximation, it is reasonable to consider the sub-channel
features as random variables that follow a normal distribution. If Xk is a
random variable of sub-channel features (fk belonging to either O or N

and approximated by a normal distributionXk ∼ N (µk, σ
2
k) where µk and

σ2
k represent the sub-channel feature mean and variance respectively, then

for Xk to belong to a class C = cj where as before cj is either zero or one
for binary classification, we use the Bayes rule as follows:

Pr
(
C|X = (X1, X2, . . . , X42)

)
=

Pr
(
X = (X1, X2, . . . , X42)|C

)
Pr
(
C
)

Pr
(
X
)

(4.9)

Ideally the likelihood function Pr(X|C) should follow a multivariate
Gaussian distribution with a sub-channel feature mean and covariance
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matrix. However, with the feature interdependency assumption, each sub-
channel feature is treated as a separate univariate Gaussian distribution
and given as:

Pr
(
Xk|C

)
=

1

σk
√

2π
e−(xk−µk)

2/2σ2
k (4.10)

Note that the independence assumptions made above may affect the clas-
sification accuracy as it would fail to exploit certain structures in the fea-
ture space but it would not be that significant.

To predict the posterior probability Pr(C|X), Naive Bayes classifier is
used as it perfectly matches the interdependency assumption imposed on
the sub-channel features. So equation 4.9 can be written as:

Pr
(
C|X

)
=

Pr
(
C
)∏42

k=1 Pr
(
Xk|C

)
Pr
(
X
) (4.11)

Hence the objective of the Naive Bayes classifier is to maximize the poste-
rior probability over the two classes:

arg max
C

Pr
(
C|X

)
= arg max

C
Pr
(
C
) 42∏
k=1

Pr
(
Xk|C

)
(4.12)

Upon generating the saliency map of a novel image, each obtained
saliency region is processed for the likelihood of that region to contain the
target object. Various views are extracted from each region of the saliency
map to be classified by the learned Naive Bayes model. Unlike in the train-
ing phase where L views were extracted, here all the views/points are
extracted and classified instead. Note that each view is classified indepen-
dently by the classifier. Although the model learns an object level feature
distribution, it classifies on the basis of individual views. Because there
is a possibility that a candidate region sampled by the saliency generation
process contains view from both negative and positive classes, combin-
ing both views for an object level classification would create confusion to
the classifier as it would be trained only on purely negative and purely
positive object views.
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Once all the view points at a saliency region are classified using
Eq. (4.12), a decision is made on the attended region based on the pre-
dicted labels of its views. The first decision approach shown in Fig. 4.9 is
based on the majority ranking of the views. If B represents a vector of pre-
dicted class labels of all the views within an attended region in a saliency
map, then the majority ranking decision can be written as follows:

B̂ =

c1, if |Bc1| ≥ |Bc2 |

c2, otherwise
(4.13)

This approach is useful in eliminating false positive regions that were se-
lected by the saliency combination process. However, one disadvantage of
this approach is that it does not discriminate between high and low view
separation ratios. For instance, if |Bc1| = |Bc2| − 1, then the majority rank-
ing will label the region as negative class and would eliminate that region.
It is possible that this highlighted region contains both the target and non-
target views. Because the number of views belonging to non-targets is
slightly greater than that for the target, the region is eliminated and hence
the precision is degraded.

To handle the above mentioned problem, another decision approach is
used that is based on weighting the region by the number of views being
classified as positive as follows:

wuR =
Number of positive views

|Ru|
where u = 1, 2, . . . , S (4.14)

where S is the number of salient regions in a saliency map and |Ru| is the
total number of views in the uth saliency region. The obtained weights are
associated to each region of the saliency map to yield the final top-down
saliency map as demonstrated through an example shown in Fig. 4.10.
This approach does not eliminate the region if the number of predicted
view label is low. However, it penalizes it by weighting the region with
a small weight. A limitation of this approach is that if a region is a non-
target and has been weighted by a low weight, it will still be considered as



138 CHAPTER 4. TARGET SPECIFIC TOP-DOWN SALIENCY

1

2

3

4

5
7

6

Attend to location

Segment

RTF Module

Labelled regions

Majority decision

Labelled views

Attended regions

Labelled regions

0

0

1

0 1
0 0

0
0

0

Region removal

F
in

a
l 
S

a
li
e
n

c
y
 

m
a
p

Recognized objects

Input saliency map

Figure 4.9: The majority ranking decision making for generating the final top-down
saliency map. Each attended location is recognized by the RTF module by classifying
the views within that region to either target or non-target class. The majority ranking
decision labels an attended region based on the majority class of the views within that
region. Non-target classified regions are eliminated from the final saliency map.
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Figure 4.10: The region weighting decision making for generating the final top-down
saliency map. As in majority ranking, the RTF module performs view classification of
each attended location. The weighting decision assigns weights to each region which is
computed as the ratio between the number of positive views being classified and the total
number of views within region. The number of views in each region varies depending
on the size of the region. Note that in the actual RTF model, exhaustive view extraction
takes place from each region whereas in the figure, and for visualization purpose, sample
views are considered. The red ′+′ sign indicates a positive view.

a region containing the target but with small probability. Hence, there is
a trade-off between the two approaches and so both are used to evaluate
the performance of our proposed model.

4.2.5 Training and testing phases

This section summarizes the functionality of the three modules from the
perspective of training and testing phases. From a dataset of 2×K images,
K images are selected for training various parameters of the modules as
follows:

1. For each image from the training set, learn an optimized set of at-
tention feature weight vector wi

1 where i = 1, 2, . . . , L and the length
of wi

1 is D = 10. Seven of these are the weights for the sub-channel
FMs and three for the CMs. The weight learning is performed us-
ing PSO with the objective/fitness function is to maximize the F-



140 CHAPTER 4. TARGET SPECIFIC TOP-DOWN SALIENCY

measure score between the SM of the image that is generated by this
weight vector and its groundtruth map.

2. Compute the contextual information of each image using one of the
three contextual extraction techniques provided in section 4.2.1.2 to
produce a contextual descriptor ci of length U .

3. FormK pairs of examples consisting of the optimized weight and the
contextual descriptor (i.e., (ci,wi

1) and feed it to a hetero-associative
single layer neural network that learns an association between the
input and the output variables.

4. For each of the K training images, compute the sub-channel features
at six different scales to generate the BU saliency map. Each activa-
tion point on the saliency maps is a vector of length 42.

5. Compare the saliency map with the groundtruth map. If a hit is de-
tected, extract L sample activation points (called views) to construct
a target feature descriptor of dimension L × 42. Combine this data
with similar views from other examples to construct an object view
as given in Eq. (4.6).

6. Compute the sub-channel feature mean and variance of the object
view and take their ratio using Eq. (4.7) to construct a target feature
weight vector w2 of length 42.

7. Perform the previous step but now on various negative (non-target)
views of the training images.

8. Represent the two set of views (i.e., belonging to either negative or
positive class) through a univariate Gaussian distribution for each
sub-channel feature using Eq. (4.10).

9. Assuming independence of the feature channels, learn a Naive Bayes
binary classifier from the distributions obtained from the previous
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step using Eq. (4.11) to maximize the classification accuracy using
the objective function given in Eq. (4.12).

For a novel image from the testing dataset, the final top-down saliency
map denoted as SMTD that highlights regions of the image that are most
likely to contain the target object is generated as follows:

1. Compute the contextual descriptor of the novel image using one of
the three techniques mentioned earlier.

2. From the learned hetero-associative model (should be learned on the
same contextual descriptor used in the testing phase), compute the
optimized set of weights wopt,new

1 .

3. Compute the saliency map through Itti model through weighting the
feature and conspicuity maps with the learned wopt,new

1 weight vector
from the previous step. The generated saliency map from this step is
denoted as SMw1

TD.

4. Compute the target object based saliency map denoted as SMw2
TD by

again weighting the attentional features of the Itti model but now
with the learned target object feature weight vector w2.

5. Combine both saliency maps obtained from steps three and four to
form the combined saliency map denoted as SMC

TD using one of the
combination operations given in Eq. (4.8).

6. Segment SMC
TD using mean-shift-segmentation approach to generate

a binary image containing candidate regions that likely to contain the
target.

7. Attend to each of these regions separately in any sequence. Once
a region is attended to, views are extracted in the same way as in
the training phase but now for every activation point within the at-
tended region.
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8. Classify the views individually to either belonging to the target or
non-target object using the learned Naive Bayes classifier.

9. Apply either a weighting (using Eq. (4.14)) or majority ranking (us-
ing Eq. (4.13)) approach to the classified views from each attended
location to reduce or eliminate the false positive regions and ulti-
mately generate the final top-down saliency map SMTD.

4.3 Experiment design

4.3.1 Dataset

To validate the performance of the proposed model, the model is evalu-
ated on seven self-created datasets that vary in terms of the target object to
be detected, background, object view, illumination and clutterness. Since
the proposed model is an attention based, these datasets have the charac-
teristic of variation in the degree of saliency of the target object which lacks
in many object recognition, detection, and visual search datasets [144].
Each dataset contains 100 indoor images with varying background com-
plexity. Table 4.1 gives a brief description of each dataset.

The last dataset comprises of 14 objects arranged randomly with either
uniform or cluttered background. In some instances, the objects are par-
tially occluded by other distracting objects. Six objects are selected as tar-
get objects to be searched for. These objects are listed in Table 4.1 and rep-
resent objects that have certain characteristics. For instance, DS-7(Spoon)
represents an object that is distinguished by its colour as its main charac-
teristic feature. In DS-7(Plate) the object size is large compared to other ob-
jects and exhibit typical orientation characteristics. For a part-based object,
DS-7(Train) has an object with multiple parts with different colour and
visual characteristics. The diversity in DS-7 objects establishes a frame-
work to study the effectiveness of the ATF and RTF modules in describing
the target object through primitive attentional features. The groundtruth
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maps for these datasets represent fully segmented binary maps that high-
light the target objects.

4.3.2 Parameter values

All experiments are performed under the parameter values summarized
in Table 4.2. Each experiment is carried out 50 times (splits) and the mean
performance is reported along with the standard error in the sample mean.
In each split, a random selection of training/testing images from a dataset
is considered. Repeating the experiments over multiple splits provides a
confidence about the validity of the obtained results.

4.4 Result and analysis

In this section, target detection accuracy and the computation efficiency of
the proposed model is presented.

4.4.1 Contextual weighting performance

In this section, we analyze the contextual module of the model from two
perspectives. The first is the optimization accuracy of PSO in producing
an optimum or near optimum set of weights. Secondly, we perform a de-
tection accuracy comparison of the three contextual descriptors discussed
previously. The performance of this module depends on three factors, the
optimized weight vector learned through PSO, the contextual descriptor,
and the neural network associative model.

For the first factor, to see how optimum the learned weight vectors are,
the average F-measure score of the saliency maps generated by these op-
timized weight vectors is compared to that generated by random weight
vectors (we refer to them as brute-force weight vectors). The F-measure
score, which is also used as the fitness value of PSO, is indicative of the
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Table 4.2: The simulation parameters used throughout the experiments in this chapter.

Simulation Parameter Value

PSO population size 1000

PSO maximum number of iterations 100

PSO inertia weight 0.768

PSO acceleration constants c1 = c2 = 1.49

PSO number of runs 40

PSO fitness function arg maxw1
F-measure(SMw1)

Number of experiments (splits) 50

Random brute-force combination 5, 000, 000

Number of recognition classes Binary (2)
Number of datasets six and one with six objects
Train/test ratio 0.5

F-measure β2 value 0.3

Candidate region hit ratio (T1) and (T2) 0.1 and 0.5 respectively
Percentage of view points per region 70%

detection accuracy of the target object. A common value for β2 found in
the saliency literature when computing F-measure is 0.3 [74].

In the random brute-force strategy we initially generate random fea-
ture weight vectors such that the weight values are between zero and one.
Because it is impossible to perform an exhaustive search over the feature
space due to the continuous nature of the weights, a very large number
(5, 000, 000) of these random weight vectors are chosen to approximate a
true brute-force strategy.

A saliency map is generated from each weight vector. This is followed
by calculating an F-measure corresponding to the generated saliency map.
Hence, for a single image in a dataset, we have a total of 5, 000, 000 F-
measure scores, one for each random feature weight vector. The one with
the highest F-measure score is selected. The corresponding weight vector
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represents the best possible feature weight combination achieved for that
image. The process is repeated for the rest of the images in a dataset. The
average F-measure score provides the target detection accuracy for that
dataset when the random-brute-force is applied. This score is compared
to that achieved by the optimized weight vector learned through PSO.

Generating large number of random weight vectors to some extent
replicate a brute-force combination of weight vectors. Hence, we would
expect that the brute-force approach yield good performance. Hence, the
objective of this experiment to see how good the PSO learned weights are
compared to brute-force approach. In PSO, only 1000× 100 weight combi-
nations are used whereas 50 times more weights are used in the brute-force
approach. In addition, we have used 100, 000 sample size to establish an
equal number of evaluation samples. This is because PSO optimization is
carried out by evaluating the fitness value of 100, 000 particles in total (see
Table 4.2 for the simulation setup).

As shown in Fig. 4.11, we can see that PSO has achieved a consistently
comparable performance in finding the optimized set of weight vectors
when compared to the average F-measure score achieved by the brute-
force strategy with 5, 000, 000 samples, despite the lower number of weight
vectors being used in PSO than brute-force. The performance gain (i.e.,
ratio between the F-measure of brute-force with 5, 000, 000 samples and
the optimized approach using PSO) is almost constant across the datasets.
In some of the more difficult datasets in which searching for the target
object is more demanding (e.g., DS-4), the optimized weight vector has a
better performance than the random brute-force approach with 5, 000, 000

samples. Infact, when equal number of samples were used in the brute-
force approach (i.e., 100, 000 samples), PSO outperforms the brute-force
across all the datasets. Hence it is concluded that the optimized learned
weights through PSO are highly optimized (but perhaps not optimal) for
performing the association.

Next, we investigate the descriptive power of the three contextual
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descriptors and accordingly, select the one that is most suitable for our
model. In order to achieve this, the F-measure is computed between the
saliency map SMw1

TD and the groundtruth map over the test images for all
the splits for each descriptor. The obtained F-measure profile shown in
Fig. 4.11 gives an insight on the detection accuracy of these descriptors.

The y-axis in Fig. 4.11 represents the average F-measure score over the
entire splits. This average score is obtained as follows,

• For each test image in a split, a saliency map is generated using the
feature weights generated by one of the five approaches (indicated
by a different colour bar in Fig. 4.11).

• The generated saliency map from the above step is compared with
the groundtruth map to yield an F-measure score.

• The F-measure scores of all the images in a split are averaged. This
represents a single sample of the population on which a statistical
operation is performed.

• The mean value of the average F-measure scores obtained from the
splits is shown in Fig. 4.11.

• The figure also shows the standard error in the sample mean by
setting the confidence interval to 95% using t-distribution. By in-
specting the distributions of the average F-measure scores, we found
that they approximate a normal distribution and they are not highly
skewed.

The five weighting approaches used in Fig. 4.11 are the brute-force,
ideal PSO optimized weight and the learned weights when using envelope
gist, modified attentional gist and attentional gist. To analyze the detection
accuracy of the three contextual descriptors, we compare their average F-
measure scores to that obtained when applying ideal weights from PSO.

The envelope gist descriptor has higher F-measure value than both at-
tentional gist and the proposed modified attentional gist descriptor on all
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datasets except DS-1 (the reference point is the F-measure score generated
by the ideal PSO based weighting). attentional gist has the lowest score
compared to the scores of the two other descriptors apart from the DS-1
dataset in which it has comparable performance. Finally, the F-measure
scored by the proposed modified attentional gist descriptor is slightly lower
than the envelop gist descriptor.

Hence, either envelope gist or modified attentional gist descriptors repre-
sent possible contextual choices that would yield a good detection accu-
racy performance. Although envelope gist has slightly better performance
than modified attentional gist, the latter is more computationally efficient.
For this reason, we prioritize efficiency at the expense of slight degrada-
tion in detection accuracy performance by choosing modified attentional gist
in our model for contextual information extraction.

Once the contextual descriptor is extracted from a novel image, the
hetero-associative model makes a best effort to predict a weight vector
with least mean square error (i.e., between the predicted and the actual
groundtruth weight vector). Concretely, if the contextual descriptor of a
test image is exactly the same as one of the contextual descriptors used
in the training phase, the hetero-associative model will output the exact
optimized weight vector. However, if the mapping between the contextual
descriptor and the predicted weight performed by the hetero-associative
model is such that it takes it far from the actual optimized weight, the
prediction error will increase.

Hence, a key element in the hetero-associative model is the contextual
descriptor upon which the prediction is made. Since, both envelope gist
and modified attentional gist descriptors describe the images through their
holistic contents, they outperform attentional gist in detection accuracy as
the latter provides less descriptive details. To elaborate this assertion, an
experiment is performed that inspects the quality of the produced weights
by these descriptors.

In all the datasets, except DS-1, while acquiring the images (100 in each
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Figure 4.11: Target detection performance as characterized measured by the average F-
measure score of the saliency maps that are generated when different contextual descrip-
tors are used. In addition, the accuracy of the optimized weight vector learned through
PSO is compared with the weights obtained through random brute-force weight assign-
ment to show the efficacy of PSO based feature weighting. The results are shown for a)
the datasets DS-1 to DS-6 and b) DS-7 dataset with six different objects.
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dataset), explicitly 10 types of visually similar content categories were cre-
ated. In other words, the first 10 images of a dataset exhibit similar con-
tent i.e., background but with different rotation, view, illumination and
distance from the image acquisition equipment. For the second 10 im-
ages, the background becomes different from the first category while es-
tablishing the same variations as in the first 10 images and so forth for the
other categories. Each image belonging to a certain category is labelled as
groundtruth.

With the above contextual level groundtruth information, we perform
the following,

• For each test image in a split, its contextual information is extracted
using one of the three descriptors.

• This contextual descriptor is fed to the learned hetero-associative
model to predict a weight vector.

• The obtained weight vector is compared with the optimum set of
weight vectors that were learned through PSO excluding the test im-
age optimum weight. For comparison, we use normalized Pearson
correlation.

• The image corresponding to the best match (i.e., highest correlation
coefficient) is selected.

• The contextual label of the selected image is identified.

• The above steps are repeated for all the test images for the entire
split.

The final output of the above steps is a set of contextual labels for all the se-
lected images. These labels when compared to the groundtruth contextual
labels establish a success accuracy S defined as:

S =
Number of correct labels

Total number of test images
(4.15)
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Table 4.3: Success accuracy when using the three descriptors shown for six datasets.

Dataset

Descriptor DS-1 DS-2 DS-3 DS-4 DS-5 DS-6

Envelope gist 100% 73% 79% 68% 86% 91%

Modified attentional gist 100% 70% 75% 69% 83% 88%

Attentional gist 100% 53% 46% 41% 64% 60%

Table 4.3 shows the success accuracy when using these descriptors for the
first six datasets. In all the datasets except DS-1, the success accuracy is
highest when using envelope gist followed by modified attentional gist. The
success accuracy is very low when considering attentional gist. In some
datasets, it is below 50%.

A high success accuracy indicates a high contextual agreement, at least
visually according to the image category criteria, between the test images
and the images corresponding to the learned weight vectors. Intuitively,
because the contextual agreement is high, so will be the weights (i.e., the
optimum weight for the test image and the learned weight). On the con-
trary, low success accuracy (as when using attentional gist) indicates that
the hetero-associative maps the contextual descriptor into a weight that is
very different from the optimum weight.

The reason that attentional gist performs well in DS-1 is because this
is the only dataset where the background remains the same across all the
images and hence there is no visually discriminative contextual difference.
This explains why we have 100% success rate for this dataset as all the
images have the same label (see Table 4.3). For this reason, we can see that
the detection performance of this descriptor is comparable to that achieved
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by the other two descriptors.

To complement the above results, a visual example is shown in
Fig. 4.12(a). Two sample images one from DS-1 and the other belong-
ing to DS-5 are selected for demonstration. Next to these two images,
the optimum weight vectors learned through PSO are shown (indicated in
the figure as ’optimized weight’). The predicted weight vectors by the
hetero-associative model when using the three descriptors is indicated
in the figure as ’Learned weight’. Note that for DS-5 sample image, the
learned weight vectors exhibit high similarity to the optimized weight
vector when using envelope gist and modified attentional gist descriptors and
low similarity when using attentional gist.

The implication of the weight variation is shown in the saliency maps
generated by these learned weights. For DS-5, the saliency maps pro-
duced by the learned weights from envelope gist and modified attentional
gist descriptors exhibit high precision in detecting the target object (the
red ketchup bottle) with few false negative regions. The saliency map
generated by the attentional gist weights produces high number of false
positives.

Additionally, the obtained learned weights from each descriptor are
compared to all the optimum weight vectors used in training the hetero-
associative model using Pearson correlation. Figure 4.12(b) shows the best
correlation coefficient values and the corresponding training images. Note
the contextual label similarity between the test image and the matched
images through envelope gist and modified attentional gist descriptors. The
label is different when using attentional gist descriptor for DS-5 sample
image.

For DS-1 sample image, the learned weights from all the descriptors
are highly similar to the optimum weight vector because all the images in
this dataset have an almost constant background. This is also reflected by
the generated saliency maps and the matched images (all having the same
label as the test image).
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From the detection accuracy performance shown in Fig. 4.11, the suc-
cess accuracy result provided in Table 4.3 and the visual example in
Fig. 4.12, it is obvious that the selection of a contextual descriptor plays
a major role in learning an appropriate hetero-associative model for a cor-
rect weight vector prediction. Both envelope gist and modified attentional
gist can be considered for this purpose. Our design selection prefers modi-
fied attentional gist over envelope gist as it is computationally more efficient
than the former, despite having slightly less detection accuracy than that
produced by envelope gist descriptor.

4.4.2 Target object feature weighting

A detailed analysis of the target based feature weighting is provided in
this section. Since we want to focus on studying target objects and their
relevant features, we eliminate any involvement of the intra-contextual
variation between datasets. For this reason, only DS-7 is considered as all
the six objects under study are contained within the images of this dataset.

For each of the six objects in DS-7, the best features are examined
and how would they affect the generation of the target object weighted
saliency map SMw2

TD. In addition, the descriptive power of the features
used to characterize the target object is explored. We mean by descriptive
power is the extent to which such low-level features can describe the target
object. Furthermore, we would like to see whether this kind of weighting
is able to detect the target object or not. Finally, it is important to assess the
independence of the target features that establish the target object weight
from the contextual content of an image and to which extent w2 is different
from w1.

4.4.2.1 Target feature importance and interpretation

Figure 4.13 shows the target object weight w2 profile of the six objects in
DS-7. The weights are averaged over all the train/test splits. There are
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Figure 4.12: An example showing the impact of the contextual descriptor on the predicted weight vector by the
hetero-associative model. a) two images are chosen, one from DS-1 and the other from DS-5. These two images are
labelled contextually according to the criteria mentioned in section 4.4.1. The first image has a label of 3 and the
second one is labelled 1. The ’optimized weight’ column represents the optimized weight vectors that are learned
through PSO. The ’Learned weight’ column gives the predicted output weight vectors of the hetero-associative model
when using the three descriptors. This is followed by the final top-down saliency maps generated through the corre-
sponding learned weights. b) To access the learned weights from these descriptors, the learned weights are compared
with all the optimized weight vectors of the training images using Pearson correlation. The image corresponds to the
highest correlation result is shown. Compare the label of these matched images with that of the test images for each
descriptor used in the process.
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Figure 4.13: Target object feature weighting profile of DS-7 dataset. The plot is divided
into seven partitions, each corresponds to the weight profile of a sub-channel feature at
various scales. The x-axis in a partition represents the scale number whereas the y-axis
is the actual weight value computed using Eq. (4.7). Only the average weight over the
training splits is shown in the figure.

seven partitions in the figure where each split represents the weight profile
of a sub-channel feature. Furthermore, there are six plots in each partition
that corresponds to the weight profiles of the six objects. Each plot has
six points such that each point on the plot is a single weight value of a
sub-channel feature at a particular scale. The points correspond to the
six scales are in order (i.e., scale-1,scale-2,...,scale-6). For instance, for DS-
7(banana), the weight values of all the sub-channel features for the first
scale is [0.44, 0.67, 0.36, 0.15, 0.37, 0.15, 0.10] (see the first point value of the
black plot in each of the seven partitions).

As different feature scales carry different information about the feature
and would affect the mean and variance of the sub-channel feature, and
potentially the weight value, the weight variation within scale for any sub-
channel feature is obvious. In all our experiments, we use six scales as was
originally proposed in the Itti model [1].
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For any particular scale, it is easy to extract the important features
based on the individual weight values. For instance, in DS-7(banana), only
by considering the first scale, we can see that the B/Y feature is the most
important and receives high weight value. This is expected as the yellow
colour is the obvious feature of this object. Note that the R/G receives a
moderate importance as the object does not exhibit a pure yellow colour
and some mixture of other colours triggers the R/G channel. Interestingly,
the orientation at 45o has higher weight values than the other orientation
features. Similarly at 135o, 0.32 weight is assigned to this sub-channel fea-
ture at scale-5. These two features capture the geometric structure of the
object because if we consider the angle of the two ends of a banana, they
are approximately apart by 90o. Hence, roughly, if the banana is positioned
at any angle, one end will direct towards 45o and the other toward 90o.

Table 4.4 summarizes the three most important sub-channel features
based on the maximum weight value at any scale for the objects in dataset
DS-7. Hence the table provides the most descriptive features that charac-
terize these target objects. The colour conspicuity is obviously the main
driving feature that clearly captures some characteristics of the target fea-
tures. Of course, this is true when the object has colour contrast features
close to either R/G or B/Y. The importance of such features remains promi-
nent when the objects’ colour contrast does not match these two contrast
features (e.g., the DS-7(wallet) object).

The intensity sub-channel is amongst the important features for five
datasets. This feature although generates high weights on some objects,
the feature does have the characteristic of being classified as a target fea-
ture. Because the intensity reflects pixel contrast, which in turn depends
on the content of the image, intensity does not qualify to be a target fea-
ture. This can be seen in the intensity conspicuity map generated for two
images from DS-7 where the object under study is the white power bottle
(see Fig. 4.14). From the table, the intensity feature has the most impor-
tance (approximately 0.46 weight value as the maximum over scales (see
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Table 4.4: Three most important features in DS-7 dataset for the six objects. The impor-
tance is based on the individual weight values assigned to these features when learning
the target weight vector w2.

Feature rank Banana Plate Remote Powder Wallet Train

First feature B/Y R/G I I I R/G

Second feature R/G I Ori. 45o B/Y Ori. 0o B/Y

Third feature Ori. 45o B/Y Ori. 135o Ori. 135o Ori. 135o I

Fig. 4.13)).

For the first image, when the intensity contrast is high due to a dark
background, the object is highlighted accurately, giving rise to high weight
value on this features. However, when the same object is presented in
a much brighter background, its saliency is low. This inconsistency is
mainly attributed to background contrast with respect to the object and
does not provide any descriptive influence on the target. Despite this be-
havior on the intensity feature, if the context and illumination conditions
are kept the same in both training and testing phases (i.e., constrained
visual condition), the feature can be associated with the target characteris-
tics.

The orientation feature, has a more complex structure that depends on
the geometry of the object. Although it takes small weight normally, it
has high importance in certain objects (e.g., DS-7(banana) at 45o and 135o).
However, this importance could be misleading in categorizing the feature
as a target feature (e.g., DS-7(remote) at 45o and 135o).

To understand this contradictory behavior through an example, two
images are selected to study the geometric structure of the two objects as
shown in Fig. 4.15. To have a more detailed visual view on the feature
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Figure 4.14: Sample images showing intensity variation due to background contrast vari-
ation.

response to these two images, the Gabor pyramid response is shown at
45o and 135o angles.

Note the consistency of the responses at both orientations in the case
of the banana object (positioned at two different angles). The responses of
both features capture the two ends of the object consistently (see the green
circle in both images). The response to the remote control object is weak
and inconsistent on the same images (indicated by the red rectangles).

In the second image, the response is very strong along the direction
of 135o. This is due to the position of the object at this angle. For the
same object, the response is very weak (almost negligible) at 45o, although
Fig. 4.13 shows a good weight value on both features for this object. Simi-
larly in the first image, when the object is nearly vertically positioned with
reference to the angle of the acquisition device, the response of both fea-
tures are insignificant. Hence, the orientation at these two angles to some
extent represents target features for the banana object whereas for the re-
mote control, they respond to object’s positional angle rather than being
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Figure 4.15: Sample images showing the extent to which orientation features can be con-
sidered as target object features. The green circle indicates the banana object while the
red rectangle is for the remote control object.

true object features.

In summary, the results discussed above suggests that the target fea-
ture weighting is influenced by the low-level features of the object that
vary in importance. The descriptive power of these low-level features
varies accordingly. In most of the datasets discussed above, the colour fea-
ture is considered to be the most prominent features that would describe
the target object amongst these low-level features. Intensity, is a contrast
based feature and varies with the background illumination and hence, it
is considered to be a week descriptive feature. Finally, the orientation has
limited descriptive capability that varies with the geometric structure of
the object itself.

4.4.2.2 Target object weighted saliency map SMw2
TD

From the weight profile discussed in the previous section, it is clear that
the primitive Itti model features used for target object weighting have lim-
ited capability. Despite the limitation, this kind of weighting frequently
samples locations from images that are likely to contain the target objects
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Figure 4.16: The descriptive nature of the learned features for the target object. Each map
is generated by weighting the attentional features by the learned target object weight
vector w2. The activation regions in each map explains the nature of the target features
and their contribution in detecting the target object.

if the important features are weighted highly. Concretely, if a particular
feature is weighted highly (e.g., R/G), then all the objects characterizing
by the same feature will be highlighted along with the target object. For
instance, in Fig. 4.16, when multiplying the features with weights that are
learned for the banana object, and because one of the important target fea-
tures describing this object is B/Y, the target object is detected but along
with blue colour shades from two other objects. Similarly, the R/G feature
has high weight values (see Fig. 4.13) and as a result, the wheel of the toy
train is also highlighted albeit lower less saliency.

For the remote control object, the most important according to Table 4.4
represents the intensity feature whereas the orientation features are in-
significant for the reason discussed earlier. Similarly as we hypothesized
earlier, intensity features cannot be considered a target object feature un-
less we have constrained visual setup. This is reflected by the saliency map
generated for the remote control object as shown in Fig. 4.16. The remote
control does not exhibit a high intensity contrast due to the background
as it is the case with the plate object, thus results in conspicuity decrease
for this object as shown by a very small and weak activation region in the
map. Similar reasoning and feature analysis can be performed with other
objects in the figure.

In summary, based on the features used throughout the proposed
model, these features are effective in detecting the target object only if they
are being detected with high conspicuity and being further weighted ap-
propriately by the important features. In addition, if a target feature has a
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high weight, it will generate false positives if other objects or regions share
the same features.

4.4.2.3 Relation between w1 and w2 weights

We have seen that the target based feature weighting makes the best at-
tempt to give importance to features that are better descriptive of the target
object. In the case of w1, the optimization process performs similar tuning
of weights but through an objective function that aims at giving weights
to the most important features that are best suited for the candidate im-
age only. Hence, it is very likely that the optimizer gives high weights to
features that receive importance by the target weighting process. How-
ever, it is also possible that it tunes the weights differently to maximize
the detection accuracy without attaining to the target object features.

To emphasize this point, a correlation between the target object weight
vector w2 and the optimized weights vector w1 is performed. For a fair
comparison, the dimension of w2 is reduced to only 10 to match that of
w1. This is done by first averaging the weight values obtained from all the
train/test splits. Furthermore, for each sub-channel feature, the weights
obtained for the six scales are averaged to produce a single weight for
the corresponding sub-channel feature, and hence yielding a seven sub-
channel feature weight vector. A similar averaging is performed over the
CM feature weights and when concatenated with the sub-channel features
weight, the weight vector length becomes 10.

Figure 4.17 shows the Pearson correlation coefficient between the target
weight vector and the individual image optimized weight vector (total of
100 images in the DS-7 dataset). The correlation will give us evidence of
the level of similarity between the two types of weights that we expect
to be low. If both weights are highly correlated, then this means that the
weights are redundant.

Note that the correlation coefficient is very low in many examples from
the six target object correlation profiles, and in only few examples this co-
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efficient exceeds 0.6. A low coefficient suggests that the weights from the
optimization process tunes the weights differently from that performed by
the target feature process. For all six datasets, the correlation profile pro-
vides enough evidence that the values of both weight vectors are different.
The result justifies the use of two different types of weighting mechanisms
as they capture different aspects of the detection process and they are not
redundant.

To complement the correlation result obtained above, Fig. 4.18 shows
six sample images that are selected from the wallet and train objects to give
an insight on the values of these two types of weights. For each of these
images, the corresponding saliency maps generated by w1 and w2 weight
vectors are shown. The six examples are those that yielded the best, aver-
age and worst correlation coefficient values. Note that the w1 values vary
in the six examples while w2 remain the same for the images belonging to a
particular object type as it represents the target object features weight vec-
tor. In addition, the CM weights of w2 do not exactly follow the previously
discussed procedure of assigning the CM weights through the maximum
value over the sub-channel feature. Instead, the CM values are averaged
over all the splits as with the sub-channel feature weights.

Starting with the worst correlation example for the train object, the cor-
responding correlation coefficient value is approximately −0.522 suggest-
ing that the weight vectors are highly uncorrelated (see the weight vectors
shown in Fig. 4.18 for the worst case train object image). The weight con-
tribution on the individual sub-channel feature in w2 supports our previ-
ous observation regarding the important features for the train object (refer
to Table 4.4 and Fig. 4.13). The R/G, B/Y and I received higher weights
than the orientation features as expected. The feature that yields the tar-
get object detection in this example is the R/G (visually observe the red
wheels of the train). If we look at the w1 weight vector, we can see differ-
ent weight values on the sub-channel features as well as the CM features.
The weight profile shows very high weights on the orientation and inten-
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(a) Banana target object
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(b) Plate target object
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(c) Remote target object
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(d) Powder target object
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(e) Wallet target object

Image index

1 10 20 30 40 50 60 70 80 90 100

P
e
a
rs

o
n

 c
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(f) Train target object

Figure 4.17: The Pearson correlation coefficient between the weight vectors w1 and w2

for all the individual images in the DS-7 dataset for all six target objects. The w2 weight
vector is formatted by taking the average of sub-channel feature weights over the entire
training splits to reduce its dimension to 10 to equal that of w1 for a fair correlation.
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Figure 4.18: Sample images from the wallet and train objects showing the obtained
weight vectors w1 and w2 with the corresponding saliency maps generated by these
weights for the images having the lowest (abbreviated in the figure as ’L’), average (’A’)
and the highest (’H’) correlation coefficients between the two weight vectors. Note that
for either object, there is only a single w2 vector the represents the target object feature
weights. The last three weights in a vector shown in red correspond to the CM features
weights. The saliency maps are generated using the respective weights.
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sity sub-channel and CM features (more than 0.9). In contrast, both the
colour sub-channels and their CM feature received lower weight with re-
spect to those assigned to orientation features. The weight distribution is
opposite to the weight distribution over the features when w1 is used.

The impact of this weight difference is very obvious in the saliency
map generated by w1. Because the intensity feature receives a very high
weight value, most of the high-intensity regions of the image are activated
in the saliency map SMw1

TD (e.g., the powder and the plate objects). Even
for the target object itself, the dominant features in detection is the in-
tensity rather than the colour. Since the objective was to maximize the
detection accuracy only for the image under consideration, considerable
variation in weight importance exists in w1. Hence, for this image, in-
tensity yielded the highest detection accuracy even higher than the R/G
feature that represents one of the target object features.

In another example, the weight vectors of the best-matched (with a
correlation coefficient of 0.748) wallet object image are analyzed. Because
of the high agreement between w1 and w2 weight values, the resultant
saliency maps generated by the two weight vectors also exhibit high agree-
ment in terms of the salient regions. As depicted from Table 4.4 and
Fig. 4.13, the important features for this object are the intensity and ori-
entations at 0o and 135o. This can also be noticed in the w2 weight vector
of the best-matched image, as these features receive higher weight values
than the colour sub-channel w2 features. A similar weight pattern is found
in w1. The intensity feature receives the maximum possible weight value
of one. Both colour sub-channel features receive low weights compared
to the intensity weight. The orientation feature weight is very low except
for the orientation at 0o which is slightly higher. Although the weight on
the orientation CM is relatively high (0.726), it has no major effect on the
final saliency map as already the importance is suppressed by the low sub-
channel features’ weights.

The remainder of the sample images can be analyzed in a similar man-
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ner as above. In one case (i.e., the worst correlation for the wallet object),
the saliency map does not have any activation regions. Despite the sub-
channel features having high weight values, all the CM weights are zero,
which results in no salient regions being selected on the map. The saliency
map generated by w2 produced a saliency map with many false positives
but without detecting the target (precision is zero). The target features for
this object were learned over many examples where the intensity along
with some of the orientation features were chosen to be the best available
features. However, these features failed to highlight the target object.

PSO was able to overcome this limitation during the optimization
search. During the optimization process, no such features were found
that could detect the target object. As a result, the optimum solution
was achieved by assigning zero values to the CM weight. Although this
weighting reduces the precision to zero, it avoids generating unnecessary
false positive region as it is the case with w2 weights.

Typically, from the two proposed feature weighting approaches used
in our model, one through optimization process (i.e., w1) and the other
through target object feature extraction (i.e., w2), we can see a prominent
difference between the two weight values and the important features. For
the individual images on the datasets, very low correlation coefficients
were noticed when correlation was performed between the two weight
vectors. On some occasions, the weight obtained from the optimization
process agreed with the target object weights. As a result, the generated
saliency maps from both weightings approaches highlight regions of the
image that represent different information. Even for the target object re-
gion, both weights highlight the region differently which could be benefi-
cial when combining both maps as we will see in the coming sections.

4.4.2.4 Object recognition analysis

As mentioned previously in section 4.2.4, the RTF module is an optional
step in recognizing the target object from the candidate salient regions de-
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termined by the other two modules. In this section, we briefly discuss
the recognition accuracy of the module without comparing it with current
state-of-the-art computer vision object recognition techniques. This is be-
cause the purpose of this module is to reduce the number of false positives
that is introduced when combining the two saliency maps from the other
two modules. One of the main advantages of the proposed recognition
module is that it is very efficient as no extra computational overhead is
needed. Unlike the state-of-the-art recognition methods that require very
complex descriptors in order to perform recognition, the proposed mod-
ule reuses the same basic features that are extracted from the image for
saliency map generation (see section 4.2.4).

In section 4.2.4, we have described how views are extracted from a
saliency map and based on these views, a Naive Bayes (NB) classifier is
learned that classifies target and non-target views. A single view repre-
sents a vector of feature values of length 42. The location of a view on a
saliency map is determined by the activation regions in that saliency map.

During the test phase, once the saliency map is generated by combin-
ing SMw1

TD and SMw2
TD, the most salient regions are kept by performing

an adaptive segmentation procedure typically applied on saliency maps
(refer to section 2.2.4.3.3 for the mean-shift adaptive segmentation for
saliency maps). All the resultant activation points on the segmented bi-
nary map are potential view locations that need to be classified by the NB
classifier.

To evaluate the accuracy of the recognition module, two classification
accuracies are computed. The first accuracy is determined at the ’views
level. This is equivalent to the number of views that are classified correctly
(either target or non-target) with the help of the groundtruth map. The
groundtruth map determines the actual locations on the image belonging
to the target object. If TPv represents the total number of true positives
views (i.e., correctly labelled as target by the NB classifier), and TNv as
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true negatives, then this accuracy is given as:

View accuracy =
TPv + TNv

Total number of views
(4.16)

The second accuracy is computed at the salient region level. This ac-
curacy is used to evaluate the performance of the majority ranking deci-
sion approach in eliminating false negatives. A salient region on a seg-
mented binary saliency map is defined as the activation points that are
8-connected. Two activation points are said to be 8-connected when they
are immediately adjacent to each other in any direction [145]. A region
is labelled to be a target object (or to contain a target object) if it fully or
partially coincides with the groundtruth according to a hit criteria.

The hit criteria is defined by two threshold values (T1 and T2). If |Ru|
represents the total number of activation points in a segmented binary
salient region u, and |R̂| is the number of pixels of the target object, then
the hit criteria is defined as follows:

Lu =

1, if
(

TPu

|R̂| ≥ T1

)
and

(
FPu

|Ru| ≤ T2

)
0, otherwise

(4.17)

where Lu is the label of the salient region u. TPu represents the overlapped
region between the groundtruth map and the salient region uwhereas FPu
is the non-overlapped region between them. Hence, the above procedure
for labelling regions in the saliency map yields region based groundtruth
labels for a saliency map.

This hit criteria approach labels the region as negative if it coincides
with the target object region, but should not have a large false positive
region with respect to the size of the region itself. Also, if the region’s
false positive is small, but its TP region is very small with respect to the
actual size of the target object (|R̂|), then it does not pass the hit criteria
and will be assigned a negative (i.e., non-target) label. For this reason, T2
is chosen to be 0.5 to pass the first condition and T1 is kept low (in all the
simulations, it is kept at = 0.1) to fulfill the second condition.
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When majority ranking is applied to the salient regions, a region takes
the label of the majority class label of the views within that region. We refer
to this label as region based predicted labels and it is denoted as L̂u. So the
region based accuracy becomes:

Region accuracy =
TPL + TNL̂

Total number of salient regions
(4.18)

where L and L̂ are the region based groundtruth and the predicted la-
bel vectors for all the salient regions of the entire test images respectively.
Note that the region based classification accuracy given by Eq. (4.18) is
computed over all the candidate regions from the entire test image set
across all the splits.

Figure 4.19 shows two types of confusion matrices along with the clas-
sification accuracy for nine datasets, DS-1, DS-2, DS-4 and the six objects
from DS-7. The values in the confusion matrix in order from top-left to
bottom-right represent True positive rate (TPR), false negative rate (FNR),
false positive rate (FPR) and true negative rate (TNR) respectively.

The view based results show how well the classifier and the recogni-
tion features determine the class label of a single view from any location
of the image (either belonging to a target or non-target). The region based
recognition result depends on the view based result as the latter imposes
an additional decision about whether a collection of predicted views be-
longing to an attended region. It is important to understand that the ma-
jority ranking decision dictates the final output by eliminating the false
negatives, while the purpose of providing view based recognition results
is to give a sense on the effectiveness of the classification approach and the
proposed recognition features.

From both sets of confusion matrices shown in Fig. 4.19 (where the left
of the figure gives the view based results while the regions based results
are on the right), we can observe that TPR is normally very high except
for the train object (bottom right in the figure) in which the TPR is lower
than that in the other datasets. The TNR is good but in some datasets, the
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performance is poor (e.g., DS-7(train) and DS-7(powder)). Furthermore,
because the majority ranking decision is dependent on the accuracy of the
view based recognition, its performance follows that of the view-based
approach. In some occasions, the overall classification accuracy is boosted
when majority ranking is considered (e.g., dataset DS-2). This implies that
the majority decision-making approach provides a higher possibility in
eliminating false negative regions even if many of they views are classified
incorrectly.

Where the TNR is low in the view based recognition (e.g., in DS-
7(powder)), it implies that the recognition feature space for the two classes
is complex and not well separable. This could be attributed to the object
itself as it might not be possible to describe the target object using the ba-
sic set of features used here, hence making it difficult to distinguish from
other non-target regions.

For the powder object specifically, the classifier yields high TPR values.
This is because one of the most important features for this object is the in-
tensity. The classifier was able to classify most of the positive views be-
longing to the target object and exhibiting high-intensity values correctly.
Many other views that are sampled from various regions of the dataset are
also being classified positively as these views have similar feature profile,
at least in intensity, to those being classified positively. As a result, the FPR
is high, resulting in classification accuracy degradation.

When the majority ranking decision is employed, in some datasets the
TPR reaches the theoretical maximum (i.e., 100%). This implies that if a
saliency map detects a target object along with some false positives, it is
guaranteed that the classifier would not eliminate the correctly detected
regions. As a result, the detection accuracy would never be degraded by
the RTF module. Either it will be improved by eliminating false negatives
or remain the same. When TPR is less than 100%, it suggests that in some
examples, the positively detected regions are eliminated incorrectly by the
classifier. However, as we will see in the detection accuracy section that
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follows, in practice the overall performance over all the splits and exam-
ples are improved by the classifier.

4.4.2.5 Detection accuracy performance

The final output of all the modules is a top-down saliency map SMTD that
is intended to highlight the target object with high likelihood. In order to
evaluate the detection accuracy performance, the F-measure is computed
by calculating the average precision and recall values between the top-
down saliency map and the groundtruth map at different scales over all
the test examples in a particular split. Table 4.5 summarizes the obtained
F-measure scores in all 12 datasets and for various saliency maps includ-
ing the final saliency output SMTD. Note that the recognition is performed
on the combined map (either the arithmetic or AND based) that has higher
mean F-measure value. In addition, all the results presented in this table
are based on using the proposed modified attentional gist contextual descrip-
tor.

In many datasets, particularly those associated with DS-7, the mean
F-measure is very low (e.g., DS-7(plate) and DS-4). A low detection accu-
racy suggests that the basic attention features used throughout the three
modules are insufficient for detecting the target objects contained in these
datasets. On other datasets, e.g., DS-1, the performance is high because the
target object (red cricket ball) is well characterized by the R/G sub-channel
features used in the model.

Typically, the maps generated through the contextual optimization
weighting w1 have higher detection accuracy compared to those gener-
ated by w2. Also, the combination strategy based on AND operation yields
higher F-measure values than those produced by the arithmetic mean ap-
proach. Furthermore, whenever the recognition process is applied to the
combined map, the performance is always improved by either using the
majority ranking or the weighted approaches.

To have in-depth analysis of the results in Table 4.5, we analyze DS-
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Table 4.5: The target detection accuracy performance of the proposed model using F-
measure score. The performance of the final top-down saliency map output of the model
is indicated in last two columns for either majority or weighted recognition approaches.
Performances of the individual modules of the model are also presented for comparison
along with the performance when only BU Itti model is used. The saliency map that gives
the best accuracy performance for each dataset is highlighted in red.

Dataset BU w1 w2 Arith. AND Best Majority Weighted

DS-1 0.33 0.56 0.48 0.55 0.71 AND 0.77 0.73

DS-2 0.06 0.12 0.10 0.13 0.18 AND 0.30 0.31

DS-3 0.04 0.14 0.13 0.16 0.19 AND 0.29 0.29

DS-4 0.02 0.03 0.06 0.05 0.05 AND 0.0983 0.10

DS-5 0.15 0.36 0.33 0.35 0.41 AND 0.55 0.50

DS-6 0.24 0.41 0.31 0.38 0.45 AND 0.2967 0.42

DS-7(banana) 0.02 0.08 0.06 0.07 0.06 Arith. 0.24 0.23

DS-7(plate) 0.23 0.36 0.25 0.30 0.31 AND 0.42 0.40

DS-7(remote) 0.02 0.05 0.04 0.05 0.04 Arith. 0.10 0.08

DS-7(powder) 0.05 0.12 0.07 0.10 0.13 AND 0.17 0.19

DS-7(wallet) 0.05 0.08 0.08 0.08 0.09 AND 0.19 0.17

DS-7(train) 0.03 0.15 0.09 0.13 0.13 AND 0.13 0.13
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1 dataset starting from the bottom-up (BU) accuracy performance. Note
that the bottom-up Itti process generates the saliency map by assigning
uniform weights to all the sub-channel features as well as the CM maps.
The bottom-up saliency gives a good mean F-measure of 0.33 because the
target objects are mostly salient in this dataset with backgrounds that are
almost uniform without clutter.

A considerable boost in performance is achieved when w2 weights are
used. An even better performance can be seen when the contextually op-
timized weights w1 are used. When the maps generated from these two
weighting approaches are combined with the arithmetic mean approach,
the performance is slightly degraded from that achieved by w1 weights
alone. However, when the AND combination was used, a substantial im-
provement to 0.71 was achieved.

Normally, if the F-measure score by the arithmetic mean approach is
lower than either of that from w1 or w2 weighting, it is likely to be that
the false positives produced by the two weighting techniques are differ-
ent, thus resulting in an increase in the false positives in the combined
map. For AND based combination strategy, diversity in false positive re-
gions does not degrade the performance as they will be eliminated in the
combined map. Furthermore, improvement through the AND combina-
tion strategy also suggests a high agreement between the two maps in de-
tecting the target object (i.e., high precision in both w1 and w2 generated
maps).

When the recognition process is applied to the combined map through
AND operation, the majority ranking approach was able to slightly im-
prove the final performance. This is expected as the FPR is high as seen in
the region based confusion matrix for this dataset shown in Fig. 4.19. As
a result, it is possible that any false positive regions that are present in the
combined map are classified as positive regions by the classifier and hence
marginally affect the detection performance.

In DS-7(powder), the detection performance profile given in Table 4.5
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is similar to that of DS-1 except that the detection accuracy is low in each
type of map. Another noticeable difference is the weighting decision per-
forms better than the majority ranking recognition decision (F-measure
score of 0.17 in the latter and 0.19 in the former). Table 4.6 shows some
statistical information on the weight values of both datasets to clarify this
difference.

In DS-1, the mean weight on the candidate salient regions that corre-
spond to target object is 0.86 and 0.51 on non-target region. Approximately
60% of the total non-target regions have weights greater than 0.5 (see the
number in parenthesis). This means that the majority of the weights of
the non-target regions are close to the target weights. In contrast, in DS-
7(powder), the average weight on the target regions is high. The aver-
age weight on non-target region is low and further apart from the target
weight. The further these two weights are apart, the closer would be the
performance of the weighted approach to the majority ranking or even
better as it is the case in DS-7(powder).
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In dataset DS-7(train) (see Table 4.5), we find that the best performance
is achieved by the optimized weight vector w1 before applying the recog-
nition procedure. This performance is better than even when either com-
bination strategies is applied. Since the recognition is applied to the com-
bination strategy that yields the best performance (in this case the AND
approach) when either the majority or weighted recognition approaches
is used, the performance does improve over that achieved by the com-
bination approach but does not improve beyond w1 performance. This
suggests that the performance of the recognizer is bound to the quality of
the saliency map to which the recognition process is applied. Note that
because this object (train) comprises multiple parts with different shapes
and colours, both w1 and w2 highlight different parts of the target region
and yield diversity within the generated maps as hypothesized in sec-
tion 4.4.2.3. Because of this diversity, it is very likely that the AND based
combination strategy removes the candidate target object region from the
combined map. If the candidate region is not available for the recognizer,
its function would be limited to only classifying the false negative regions.

As a final example, note that in dataset DS-6, the best detection per-
formance is achieved by the AND combination strategy, which yields an
F-measure of 0.4493. When the recognition was applied, there was a con-
siderable degradation in performance which is unlike any other example.
This example suggests that the classifier has highly misclassified both the
non-target and target regions. The TPR and the TNR for this dataset (not
included in the confusion matrix figure) are 54.6% and 59.6% respectively.
This poor classification is consistent with the observation we made earlier
regarding the complexity of the train object.

To conclude the observations made in this section, typically, when all
the modules are combined, the detection accuracy of the target object is
boosted. The detection accuracy depends on the complexity of the tar-
get object and the extent to which the basic attentional features are able
to describe such target objects. The optimal combination strategy and
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the recognition decision making are design choices that vary from dataset
to another. The main focus of the results presented in this section was
to show the importance of target object features in modelling top-down
saliency. When the contextual information is combined with target object
information, the detection accuracy is improved over applying BU process
or when using only the contextual information.

4.4.2.6 Qualitative detection accuracy

Figure 4.20 shows the qualitative saliency maps produced by the proposed
model which includes the maps generated by each module and the final
top-down saliency map produced by the model. The sample images in-
clude one representative image from each dataset. The final three rows of
the figure represent the segmented candidate regions that are highlighted
by the groundtruth map (denoted as Seg1), the weighted based recognition
map (Seg2) and the majority ranking based recognition map (Seg3). The
saliency maps generated by the arithmetic mean combination approach,
the weighted recognition and the majority ranking recognition are abbre-
viate in the figure as Arith., RecW and RecR respectively.

From these images, we can deduce that the proposed model on many
occasions was able to detect the target objects with high precision and with
very low FPR. For instance, the pink ball in DS-2 sample image was de-
tected by the weighting and the majority ranking with a very high preci-
sion. The maps generated by w1 and w2 weighting schemes lack accuracy
despite the target object being detected. This is because there are too many
false positive regions. When the arithmetic mean combination strategy is
used, many false positives still remained in the map. On the other hand,
when the AND operation was applied, the false positive region reduced
considerably. The recognizer was able to classify the one remaining false
positive region correctly, resulting in high precision target object detection
(compare the last three segmented images for this instance).

In the first image chosen from DS-1, the cricket ball is quite salient and
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the background is uniform. Despite this being a simple detection example,
the final maps generated by both the majority ranking and the weighting
approaches were unable to detect the target object with perfection. Along
with the cricket ball, a false negative region sharing a similar R/G contrast
profile to that of the target cricket ball has also being detected. The recog-
nizer misclassified the region as the target.

The above example explains why the FPR for this dataset indicated in
the confusion matrix is high. The majority of the false positive regions
generated in this dataset share high feature similarity to the target object.
These regions are classified incorrectly by the recognition module.

In another example from DS-6, the weighting recognition performed
better than the majority ranking approach, showing the effectiveness of
the weighting approach over majority ranking. The classifier misclassified
the false positive region as well as majority of the views from the candidate
target region that were highlighted by the AND combination map. As
a result the majority decision removed the candidate target region from
the final saliency map resulting in accuracy degradation. The weighting
decision approach assigned a weight value of less than 0.5 to the candidate
target region but did not eliminate the region totally.

From the above three example and the remainder of the images, We can
visually confirm that the effectiveness of our model in detecting the target
object. The proposed target and contextual weighting approaches when
combined maximizes the detection accuracy even in complex scenarios
with cluttered background and in the presence of distracting objects. The
recognition model was able to eliminate the false positives successfully
and sometimes failed to do so as can be seen in some of the examples.

4.4.2.7 Efficiency of the proposed model

In order to generate the final top-down saliency map of a new test image,
it has to go through six computational steps. For a typical image having a
resolution of 519× 346, the approximate processing time for each of these
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steps is as follows:

• (0.08 seconds) to extract and store the seven Itti attentional features
at all scales.

• (0.01 seconds) to construct the contextual descriptor of the image.
The processing time is given when the modified attentional gist de-
scriptor is constructed. When envelop gist is used, around 0.7 seconds
is required. The reason for the low processing time when modified
attentional gist is used is because it simply utilizes the attention fea-
tures extracted from the first step to constructing the descriptor and
no additional feature extraction is required.

• (0.004 seconds) to predict the optimized weight vector w1 from the
contextual descriptor using the hetero-associative model. This pro-
cess is also very efficient as it simply computes the output weight
through a linear combination of the contextual information as dis-
cussed in section 4.2.1.3.

• (0.006 seconds) to generate either of the two saliency maps SMw1
TD

SMw2
TD from the optimized weight vector w1 and w2 respectively.

Note that the target weight does not need to be predicted as w1 be-
cause it is directly loaded from the learned target features. Whether
w1 or w2 is used to generate the saliency map, they are simply mul-
tiplied by the previously computed attentional features. Hence, the
processing time is low and identical for either of the two saliency
map generation processes.

• (0.0001 seconds) to combine the two maps using either of the ap-
proaches discussed earlier.

• (0.001,0.16 seconds) the first time represents the time required to pre-
dict a label of a single view from a candidate region by the recogni-
tion module. The second time represents the average time required
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to process a single saliency map with all its views across all the can-
didate regions.

From the above processing time profile, we can clearly see that only the
recognition process takes most of the time while the other modules are
very efficient. For an image dimension of 519× 346 the total average pro-
cessing time to produce the final saliency map is approximately 0.26 sec-
onds. All the experiments are conducted on a single Intel core i7-4790 @
3.60GHz machine with 8Gb memory and running on Linux operating sys-
tem. The simulations are performed using MATLAB R2016b.

4.5 Chapter summary

The main objective of this chapter was to show whether the target object
information can be useful when modelling top-down saliency. Further-
more, how to incorporate target information to the saliency model estab-
lishes a key element in modelling top-down saliency.

In this chapter, a novel top-down saliency model is proposed that com-
bines both contextual and target information of the image. The model
is based on attentional modules that learn two separate weight vectors
which are tuned by the contextual information and the target object in-
formation. The model incorporates target information in two stages, one
through target specific feature weighting and the other through a Naive
Bayes recognition model. Hence, the proposed model consists of three
modules, one for incorporating contextual information and the other two
for target related information.

The model was tested and analyzed on seven challenging datasets
with 12 different objects contained in complex and cluttered background
scenes. The detection accuracy in the form of F-measure score is always
boosted when incorporating target information, either through target fea-
ture weighting or through the proposed target recognition module. In ad-
dition, the proposed model is flexible as each of the three modules can be
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used separately for detecting the target object. However, the best detection
is gained when all three modules are combined.

The proposed model only utilizes low-level features for detecting the
target object. In all three modules, basic attentional low-level features
comprising of colour, intensity and orientation are used. With this sim-
ple set of features, our model was able to detect complex objects with high
precision. In some occasions, when the target object is very complex (e.g.,
part-based object), the proposed model fails to detect the object. This es-
tablishes a limitation on the proposed model as the low-level features pro-
vide less description of certain complex target objects.

The proposed approach represents a generalized model for a generic
target object detection. Although for some complex objects, the detection
accuracy decreases, this could be overcome by introducing more features
into the model. Finally, the proposed model is very efficient. For an image
of resolution 519 × 346, it only takes 0.26 seconds to generate the final
saliency map that would highlight regions of the image likely to contain
the target object. Hence, the model is suitable for real-time active vision
applications.
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Chapter 5

Modelling Visual Attention
Combination Through Feature
Selection

5.1 Chapter introduction and motivations

As mentioned in chapter 2, both theoretical and computational studies on
visual attention provide significant understanding on the nature and func-
tionality of top-down (task-driven) and bottom-up (data-driven) factors.
However, as highlighted in section 2.3.2.3, the modalities and contribu-
tion of the two influences become less obvious when combined. This is
typically the case in target object detection where it is not clear how the
bottom-up influence complement the top-down influence. Some theoret-
ical studies on human visual attention system also rule out the involve-
ment of bottom-up influence in such high level tasks, and it is merely the
top-down influence that dictates the process.

In computational literature on combining both influences, the most
widely used approach is to combine them statically [23, 24, 28]. Hence,
regardless of the content of the scene and for any target detection task,
both saliency maps generated by the two processes are computed and

185
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combined in some way to yield the final saliency map. Two major draw-
backs exist in combining both saliencies statically. First, in many cases the
bottom-up saliency would not be effective in detecting the target object
and might generate many false positive regions. Thus when combined
with the top-down saliency, the accuracy would degrade. Secondly, if
the first situation is true, then computing bottom-up saliency establishes a
computational overhead and reduces the efficiency of the system.

It is well established that bottom-up saliency detects the most salient
regions of an image. However, it is not always the case that the target
objects are within these salient regions. In images where the saliency at-
tributes coincide with that of the target object or when the target object
lies within the sampling regions generated by a bottom-up process, the
effectiveness of the bottom-up process in task-driven scenarios becomes
more prominent. Furthermore, typically the bottom-up process has an
edge over top-down because of the processing speed while the latter is
more accurate in detecting the target object while performing a guided
search.

Hence, motivated by the limitations of the current combination ap-
proaches and by the nature of both the influences, there is a need to devise
a mechanism that would combine the two influences dynamically to max-
imize the detection accuracy while minimizing the computational over-
head.

In this chapter, we formulate the combination problem as a features se-
lection process that dynamically selects either top-down saliency, bottom-
up saliency or both depending on the scene content. Modelling the com-
bination process through feature selection will ensure a fair contribution
of both top-down and bottom-up processes in detecting the target object
effectively and efficiently. Despite the simplicity nature of our proposed
approach in solving the combination problem, it can be generalized to any
number of bottom-up and top-down saliencies. In addition, the proposed
approach provides a way to understand and analyze how and when the
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bottom-up saliency positively participates in detecting the target object.
Finally, our approach establishes a gateway for building more sophisti-
cated and dynamic visual attention systems for target object detection.

5.1.1 Chapter objectives and overview

The main objective of this chapter is to propose a model that combines
both top-down and bottom-up processes dynamically to maximize the
detection accuracy of the target object and to improve the efficiency of
the system. This is performed by proposing a mechanism to select either
top-down saliency, bottom-up saliency or both depending on the scenario.
Because any of these two processes consists of multiple features that con-
tribute in generating the final saliency map (e.g., the Itti model), our se-
lection is performed over the features rather than the final saliency maps.
Thus, multiple features form bottom-up and top-down saliencies compete
for the selection. Such a setup provides a better flexibility in combining
both processes. For instance, if the selection is over the saliency maps, and
as an example, if the bottom-up saliency is not selected, then all the fea-
tures that contribute in generating the bottom-up saliency map will not be
selected as well. It might be possible that certain features of the bottom-up
saliency when combined with certain features of the top-down saliency
would give the best solution. However, selection over saliency maps in
this case would not yield an optimum solution.

For the above reason, our model formulates the problem as feature se-
lection problem rather than saliency map selection problem for combining
saliencies. The proposed model referred to as Feature Selection based Top-
down Saliency Model (FS-TDSM) dynamically selects an optimized set of
features belonging to either top-down, bottom-up saliencies or both. Our
model follows the Itti model structure. The only difference between our
structure and the Itti model is in the number and type of features being
used. We explicitly include features that directly describe the visual prop-
erties of the target object which we refer to as top-down features. More
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about the nature of the top-down and bottom-up features are discussed in
section 5.2.1.

To study the effectiveness of our model, we used five datasets. The
target object to be searched for in each dataset represent a red cricket ball.
Each dataset has specific visual characteristics (see section 5.3.1 for de-
tails). Hence, our feature selection model would select the best set of fea-
tures that would maximize the detection accuracy of the target cricket ball
for that dataset. Hence, a limitation of the current model is that it works
within similar type of visually correlated images (i.e., in terms of back-
ground, illumination, clutterness, etc.). For each dataset, we provide a
comprehensive study on the selected features and the contribution of the
bottom-up and top-down saliencies in detecting the target object.

Note that in this chapter, we only demonstrated the effectiveness of
our model on a single target (i.e., the cricket ball) and limited number of
features. We have used the roundness and redness as top-down features
as to some extent they describe the visual characteristic of the target cricket
ball. Although we could have used more dynamic ways of extracting the
target object features (e.g, using convolutional neural networks (CNN))
but that does not constitute the objective of this chapter. Hence, given a
set of features that either belong to top-down or bottom-up saliencies (the
number of features and the way they are produced are not important), our
approach should be able to combine them using the set of best selected
features from both saliencies.

The following steps provide a working summary of our proposed
model:

1. Split the dataset under study into training and testing sets.

2. Apply the feature selection process using binary particle swarm op-
timization (BPSO) technique on the training set. After running the
BPSO, the final product is a set of selected features having the best
detection performance.
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3. Repeat the BPSO selection process number of times (each implemen-
tation is called a run) on the same training set but with different seed
initialization for repeatability.

4. Each BPSO feature selection run will produce a set of best selected
features along with its achieved detection accuracy. Select the set of
features yielding the best detection accuracy as the final solution. If
more than one solutions exist (i.e., in case of equal detection perfor-
mance), select the solution that comprises of minimum number of
features.

5. Apply the selected features from the previous step on the images of
the test set.

The following steps provide a brief overview of the BPSO feature se-
lection process:

1. The objective function of the feature selection process is to maximize
the F-measure score, which represent the detection accuracy of the
target object.

2. Each particle is encoded by a D-bit where 1 indicates selection of a
feature and 0 for a non-selection. A total of 15 features are used in
the proposed work.

3. Once a particle’s encoded in determined, its fitness value is com-
puted. This is done by generating the saliency map only using the
selected features through Itti framework. This is followed by com-
paring the saliency map with the groundtruth map to yield the F-
measure score.

4. Step 4 is repeated for each image in the training set resulting in F-
measure scores for each image in the training set for one particle.
The F-measure scores are averaged to yield the final fitness value of
that particle.
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5. Step 5 is repeated for all the particles and constitutes a single itera-
tion of BPSO.

6. The optimization is performed over number of fixed iterations (re-
ferred to as maximum number of iterations). This establishes a sin-
gle run of the feature selection process. By the end of a run, the D-bit
code of the particle having the highest fitness value is selected as the
best feature combination for that run.

5.2 Feature selection based top-down saliency

model (FS-TDSM)

The proposed model works in two phases, feature extraction and feature
selection. Once the features are selected in the training step, they are used
to generate saliency maps of a given novel image. The model tries to en-
sure that the selected features can lead to an optimized solution that would
maximize the detection accuracy using minimum number of features.

In majority of existing models that combine BU and TD processes, the
BU and TD process are treated separately and at the end combined stat-
ically. For the feature weighting based models (e.g., [20, 22, 23]), the TD
factors are used to tune the BU feature weights. These factors are not con-
sidered directly to decide whether such factors are important for a task or
not. Similarly, in models where TD features are combined directly with
BU features (e.g., [3, 28, 106]), the combination is static and again does not
consider the importance and interaction between the two sets of features.
Hence, the lack of interaction between the TD and BU processes typically
results in feature redundancy, leading to poor accuracy and lower effi-
ciency.

In FS-TDSM, we exploit the interaction between the features of both
processes through feature selection modeling. Target object detection is
chosen as an example to evaluate the performance of the model. A set of
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BU and TD features are chosen therefore that make sense in the context of
target object detection. The proposed model works in three steps: feature
extraction, feature selection and saliency generation using the selected fea-
tures. These steps are discussed below in detail.

5.2.1 Feature extraction

The mechanism used for feature extraction and integration is based on
the Itti model [1]. However, instead of using three basic features, other
features are included as shown in Fig. 5.1. The reason for using more fea-
tures than Itti features is to have a richer collection of bottom-up features
to perform a selection from, as a small number of features might not cap-
ture the interaction between the features. Furthermore, an investigation
on whether (and how) the bottom-up features being used in this model
generate better saliency maps than using the Itti model features is carried
out.

There are two types of features being used in the proposed model,
bottom-up features and top-down target specific features. The bottom-
up features denoted as Xi for i = 1, 2, . . . , P , where P is the number
of bottom-up features responsible for attending to salient regions of an
image. A total number of 13 features are used as bottom-up features:
red/green contrast, blue/yellow contrast, intensity, orientation measured
at 0, 45, 90 and 135 degrees, green colour, blue colour, two principal com-
ponent analysis (PCA) based features and two symmetry features.

Previously it has been shown that PCA features are very effective for
detecting salient regions [76,94,120]. The process used in [120] is followed
to extract PCA features from an image. Please refer to section 3.3.1.2 for
details regarding the extraction of PCA features from a colour image. Em-
pirically, the two principal components with the highest eigenvalues (de-
noted as d1 and d2) are selected.

The symmetric features are extracted using a local radial symmetry
transform [146]. The symmetry is calculated over a circular window with
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Figure 5.1: The proposed feature extraction and integration model for saliency map gen-
eration.
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two radius values of 5 and 10 pixels resulting in extracting two symmetric
features. The symmetric features serves two purposes. First, humans tend
to fixate at objects in natural images that have certain geometrical symme-
try as it has been hypothesized theoretically in [4, 85]. Furthermore, this
feature in particular also acts as a target specific feature because the ob-
ject under study in this work (i.e., the cricket ball) exhibits some level of
symmetry around its seam (refer to sample images of the cricket balls in
Fig. 5.7).

The second set of features are the top-down features indicated by Yi,
where i = 1, 2, . . . , Q, and Q is the number of top-down features. These
features are chosen for a specific task. The target object to be detected is
either characterized partially or fully by such top-down features.

As the target object to be detected is the red cricket ball, two target
specific features are used, redness and roundness. Although these two
features might not be sufficient to completely describe the target, the ob-
jective is to demonstrate the top-down process by a selection process be-
tween some bottom-up and top-down features. Note that how these two
features describe the target object (i.e., the red cricket ball) compared to
the bottom-up features as the red cricket ball is characterized by its colour
(i.e., red) and shape (i.e., round).

In order to measure the roundness of objects in an image, the images
are initially segmented using a contour based hierarchical segmentation
technique [147]. Initially this technique extracts fine contours using a high
performance contour detector that combines local and global image infor-
mation. This is followed by a method to transform these contours into a
hierarchy of homogeneous regions while maintaining the contour struc-
ture.

An upper size threshold and a lower size threshold are imposed on the
thresholded image to eliminate those regions that might be generated due
to noise, over segmentation or background uniformity. For each filtered
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Original Contour Segmented

Size

threshold

Roundness

threshold

Figure 5.2: The steps for roundness feature extraction from an input image.

segmented region, the roundness is measured as follows:

Roundness =
4πA

P 2
(5.1)

where A and P are the area and perimeter of the segmented region re-
spectively. The segment is a perfect round object if the ratio given by
Eq. (5.1) equals to one. Finally, after evaluating the roundness of the seg-
mented region, these regions are further filtered using a threshold value
for roundness. Any segmented region having a roundness value less than
the threshold is removed. Figure 5.2 demonstrates the above-mentioned
steps to generate the roundness feature for a sample image.

Once the features are extracted, the corresponding feature and con-
spicuity maps are produced as described in the Itti model.

5.2.2 Binary particle swarm optimization for feature selec-

tion

The second phase of the proposed model performs the feature selection
over the set of top-down and bottom-up features. In the previous chapter,
we have seen how particle swarm optimization (PSO) was able to suc-
cessfully perform feature weighting to model contextual based top-down
saliency. We again use PSO for the optimization process but now for fea-
ture selection. However, in this work, we use a different variant of PSO,
referred to as binary PSO (BPSO) to perform feature selection [148].
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Particle swarm optimization (PSO) was originally introduced for con-
tinuous search spaces, but Kennedy and Eberhart proposed another ver-
sion of PSO that deals with discrete valued problems [149]. In the litera-
ture on feature selection, BPSO has been considered one of the successful
techniques in performing features selection in a high dimensional feature
space [148, 150].

BPSO considers the position vector to have binary valued elements
(i.e., either zero or one). In addition, the velocity given by Eq. (4.2) is
normalized to a value between zero and one using a sigmoid function. Fi-
nally the position update equation given by Eq. (4.3) is replaced by the
following:

xtkl =

1, if S(vtkl) > Z

0, otherwise
(5.2)

where S is a sigmoid function applied to the velocity and Z is some thresh-
old value between zero and one. Note that the position vector of a particle
represents the selected features while the velocity of a particle is one of the
algorithm’s characteristics that simulates the movement of a particle in the
search space.

5.2.2.1 Feature selection

Binary PSO based feature selection considers the vector of positions to
be a D-bit string where each bit controls whether a feature is included
in the selection or not. When the values is one, it means that the feature
is selected whereas zero means the feature is not selected. Many effective
BPSO based feature selection algorithms have previously been proposed
[148,150]. However, due to the small dimensionality of the search space in
the this problem (15 features in total), a simple BPSO setup is sufficient for
the task. Since the proposed model is extensible, increasing the number of
features in the future might require a more effective BPSO algorithm.
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5.2.2.2 Objective function

Figure 5.3 shows an example of generating a saliency map from the se-
lected features and demonstrates how the fitness value is computed for a
single image. The fitness function represents a saliency accuracy measure
for evaluating the quality of the saliency map. As in chapter 4, we use the
F-measure score for target detection evaluation. In the proposed model,
the performance of a particle in BPSO (i.e., selected feature) is evaluated
by calculating the F-measure of the saliency map generated from such par-
ticles. The pre-computed features for the corresponding image is loaded
for each training image from the training dataset. Furthermore, only the
selected features encoded by theD-bit string for the particle is used for the
computation of the final saliency map. Note that the pre-computation of
features for the training images is performed to make the objective func-
tion computation more efficient.

Once the saliency map is generated, it is segmented using an adaptive
threshold value based on Otsu’s method [151]. We use the Otsu’s method
instead of the adaptive mean-shift segmentation method used previously
when computing the F-measure score (see page number 32 of chapter 2),
for the following two reasons. First, Otsu’s method is faster than the mean-
shift segmentation as the latter performs an extra step of predicting a seg-
mented region from the saliency map whereas no such step is required
in Otsu’s method. Secondly, as we will show in the results section that
when the adaptive mean-shift segmentation is used, the selected features
are different from those selected when Otsu’s method is applied. When
using the selected features from the mean-shift segmentation method on
the test images, the detection accuracy was lower than that achieved by
Otsu’s method based features.

Once the saliency map is segmented, it is compared with the
groundtruth to evaluate the precision and recall values. Finally, the F-
measure between 0 and 1 is computed using Eq. (2.2) where the value of
β2 is set to 0.3 [74]. The F-measure calculation is repeated for all the images
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Figure 5.3: Fitness evaluation based on the selected features. The example demonstrates
how the features, feature maps, conspicuity maps and the final saliency map are gener-
ated from the selected features. The example input image is from dataset five for which
the set of selected features are redness, roundness, orientation 0o, orientation 135o and
PCA-2.
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and an average value is taken as the fitness value of the particle. Hence,
the fitness function is the average F-measure over all the training images.
Hence, the optimization problem is to maximize the F-measure value over
all R examples in a training set.

This is different from the approach followed in the previous chapter
when learning the optimized set of weights (i.e., the contextual based
weight learning). In this model, the F-measure score is computed over all
the images in the training set whereas in the contextual weight learning,
the optimization of feature weights was performed on each image sepa-
rately. Because we needed to perform a contextual association between
the learned weights and the contextual descriptors of individual images,
each image was considered for separate optimization during the training
phase. In this model, because we want to have a single set of selected fea-
tures for the entire dataset, we computed the average score over all the
images in the training set. As a result, we expect that the time requires to
evaluate the fitness of the particle in this setup is greater than that when
performing individual image optimization.

5.2.2.3 Testing phase

In the testing phase, once the features are selected, they are used on the
test images to produce the saliency maps in the same manner as in the
training images. The F-measure is averaged over the testing images for a
particular dataset to evaluate the models performance.

5.3 Simulation setup

5.3.1 Dataset

The proposed model is tested on five datasets with varying complexity
and background content. The images in these datasets are a combina-
tion of self-created images and images collected from the internet. Each
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dataset is split into two subsets, 50% for training and 50% for testing. These
datasets contain the target object (which is the red cricket ball) in different
sizes, numbers, background and illumination conditions as described in
Table 5.1.

In all five datasets, we only consider one type of target (i.e., the red
cricket ball). Since we need to have certain explicit characteristic target
features as top-down features, we confined our study to one simple object
(i.e., the red cricket ball) which is well described by two features; the red-
ness and roundness. More complex objects (for instance those considered
in the seven datasets investigated in chapter 4) would require additional
specific high-level features, however, this is not the objective of this chap-
ter. Since the overall model is generic and independent of the object itself,
we believe that it can be extended to any target object provided that a set of
target specific top-down features are included in the optimization process.

To justify the creation of these additional datasets for our experiments,
we investigated some of the existing standard datasets used in computer
vision. In object recognition datasets (e.g., PASCAL VOC [52]) or salient
object detection datasets (e.g., ASD [74]), the variation in the location of
the target object and the contextual complexity is not considered. For in-
stance, in salient detection datasets, mostly the objects are located in the
centre of the image, whereas in the recognition datasets, the contextual
and background content is rather simple as argued by the authors in [144].
Both these factors are considered in these five datasets, and hence they are
suitable for analyzing the visual search process from both top-down and
bottom-up perspectives.
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5.3.2 Roundness parameters

As discussed is section 5.2.1, in order to extract the roundness feature from
an image, various threshold values need to be set. The optimum values for
these parameters are listed in Table 5.2. For both size parameters (i.e., up-
per bound (SSUB) and lower bound (SSLB)), the values are selected by
computing the average ratio between the size of the target object and the
size of the image in the respective datasets. For the roundness sensitiv-
ity parameter (RS), we have chosen a high sensitivity value so that the
segmented region is only considered as a potential target cricket ball only
when it has high roundness geometry. We have tested various values be-
tween 0.7 and one, and empirically came with the values listed in Table 5.2
that would maximize the detection accuracy.

5.3.3 PSO parameters

Table 5.3 summarizes the BPSO parameters used in the simulation. In
[139], the authors used a population size of 100 particles to achieve good
results in feature selection for classification with a number of features
varying from 13 to 617 features. To have a better exploration of the search
space with 15 features, we have increased the population size to 500. In the
proposed model, it is more important to find a close to optimum solution
with certainty than to get quickly to a local optimum solution.

Another parameter which is set for PSO is the neighborhood fraction
(NF). The neighborhood fraction represents the fraction of the total pop-
ulation that participate in the update process for each particle. A small
fraction of 0.1 is used to avoid stranding at local minima [142].

Each complete experiment was repeated 20 times with a random equal
split of the training and testing sets. In each experiment, the process of fea-
ture selection using BPSO was repeated 30 times (i.e., the number of runs).
Hence a total of 600 (20×30) experiments were performed on each dataset.
The optimization at each run was executed for the complete number of al-
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Table 5.2: Roundness feature extraction parameters. These parameters are learned for
each dataset. The parameters are roundness sensitivity (RS), size sensitivity upper bound
(SSUB) and size sensitivity lower bound (SSLB).

Dataset RS SSUB SSLB

Dataset one 0.85 0.12 0.0050

Dataset two 0.80 0.10 0.0050

Dataset three 0.80 0.08 0.0005

Dataset four 0.80 0.30 0.0100

Dataset five 0.80 0.15 0.0005

Table 5.3: BPSO simulation parameters for feature selection.

Simulation Parameter Value

Population size 500

Maximum number of iterations 50

Inertia weight 0.768

Acceleration constants c1 = c2 = 1.49

Neighborhood fraction 0.1

Number of runs 30

Number of dataset partitions 20

Objective Feature selection
Fitness function Average F-measure
Stopping criteria Fitness value of 1
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lowed iterations (i.e., 50 iterations). For these experiments, the MATLAB
optimization toolbox was used to implement PSO.

At each run, the best solution was evolved in the form of selected fea-
tures. The overall best features having the best fitness value and the min-
imum number of features from all the runs are selected as the ultimate
solution for the problem. The selected features can be pure top-down,
pure bottom-up or any combination of both categories of features. The
basic aim of BPSO is to remove the redundant features from the selection
and exploit the interaction between various types of features to yield an
optimum set of features having the best objective value.

In some datasets, the selected features slightly varied from experiment
to experiment. In such situation, the best-selected features from each ex-
periment were ranked according to the number of occurrences. When a tie
occurs, the feature with the highest reported fitness value was chosen.

5.4 Target detection results and discussion

The proposed model was tested on the five datasets and a group of fea-
tures with highest F-measure fitness value are selected. The performance
of the selected features was evaluated through their accuracy in detecting
the target object. Figure 5.4 shows the best-selected features in each data
set and the corresponding average F-measure fitness value reported on the
training set.

5.4.1 F-measure fitness function results

Figure 5.4 shows the average F-measure score of various features when
used to generate the saliency map on the test images. Higher F-measure
scores indicate better detection of the target object. The figure shows the
scores for all 15 features when used individually. In addition, the perfor-
mance of the following feature combination is presented: all BU features,
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(a) Dataset one
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(b) Dataset two
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(c) Dataset three
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(d) Dataset four
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(e) Dataset five

Figure 5.4: Feature profile of various feature combinations. The best selected features
in each dataset are shown at the top left of each sub-figure. The fitness value of the
best selected features are compared with that of individual features, when all the BU
features are combined, when all the features (TD and BU) are combined and with Itti
model features.

all features, Itti features and the selected features (referred in the figure as
best features) obtained through the feature selection process. In addition,
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the figure also mentions the selected features in each dataset.

This result enables us to see the effect of combining BU and TD features
in an ”optimal” way and compare the performance with that of either pure
TD, pure BU or a naive combination of both. In all datasets, it is evident
from the figure that features selected by the proposed model exhibit high-
est F-measure score than all other feature combinations.

Amongst the selected features, there is at least one TD feature and more
than one BU features that contribute in the detection of the target in each
dataset. For instance, either redness or roundness is selected in the first
three datasets, whereas both the TD features are selected in the last two
datasets. Typically, in more complex images (e.g., in dataset five), TD fea-
tures become more effective than BU features in detecting the target object.

To understand the level of interaction between TD and BU features, in
Fig. 5.4 the F-measure score of the individual features from the set of best
selected features are compared with that when they are combined. For the
first and second datasets, the F-measure score achieved when using the se-
lected features are 0.613 and 0.560 respectively. When only the redness TD
feature is considered, the score are 0.512 and 0.460. respectively. Hence, an
improvement of approximately 0.1 is achieved when certain BU features
are added to the TD redness feature. In all other datasets, we observe
a similar pattern and conclude that the performance is always improved
when certain BU features are combined with the TD features. This shows
the importance of BU features in detecting the target object.

Note that in the first two datasets, the TD roundness feature is not
amongst the selected features. When this feature is considered solely, it
achieves a good detection performance compared to the other features.
Despite this, it has not been selected. This could be due to the fact that
many distracting objects in these two datasets exhibit round geometrical
structure and are falsely detected as target objects by this roundness fea-
ture. This is also evident when comparing with the ’All TD features’ (i.e.,
redness and roundness features). Hence, adding roundness to the redness
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feature degrades the performance slightly as many distracting objects in
these two datasets are round in shape. Furthermore, when only the BU
features are used (see the ’All BU features’ in Fig. 5.4 (a and b)), the per-
formance is degraded considerably, which suggests that pure BU is not a
good option for target object detection in this case. Similarly, when all fea-
tures are used, a slight improvement is achieved over the BU features, but
the performance achieved is far from that of the optimized features.

In the third dataset, although similar results are achieved, there are a
number of interesting points to be highlighted. First, the overall fitness
(i.e., F-measure score) values achieved by the best features is lower than
those achieved on the first two datasets. We expect this to happen as the
background in this dataset is more complex and the size of the target object
varies considerably. Secondly, the dominant TD feature here is roundness
rather than redness as in the previous two datasets. The obtained fitness
value when only the roundness feature is used is 0.223. This fitness is al-
most doubled when the best selected features are used (F-measure score
of 0.430). This happens when certain BU features (orientation 135o, PCA-1
and Symmetric-1) are combined with the roundness feature. This partic-
ular example shows how BU features can play a pivotal role in detecting
the target object when appropriately combined with certain TD features.

As the complexity of the images through target location, the target
view and the background complexity increases, the requirement to have
more TD features increases. This is evident for dataset five in which both
TD features are selected (see Fig. 5.4(f)). The significance of the BU fea-
tures, in this case, is less than that in the first three datasets. Only an
improvement of 0.092 is achieved when the TD roundness and other BU
features are added to the redness feature. This result suggests that when
the search for the target object becomes complex, TD factors become more
effective in performing guided search than the BU ones.

Dataset four contains salient target objects with mostly simple back-
ground and no other distracting object. We expect that BU achieve good
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performance as these features are effective in detecting salient objects. As
it is evident in Fig. 5.4(d) for some of the BU features (e.g., PCA-1, PCA-
2, R/G). Even some of the BU features that have poor performance in
other datasets exhibit better performance in this dataset (e.g., symmetry
and green features). Although dataset four is less challenging than other
datasets, both TD features are selected. This shows that even if the visual
search for the target is simple, some influence of the TD targeted features
saliency is normally useful.

Note that the performance of the best selected features outperform that
of ’All TD features’ in all datasets. This observation suggests that pure TD
influence/features might not be the optimum solution when it comes to
target object detection and some level of BU influence/feature might be
needed to maximize the detection accuracy of the target object.

Finally, Fig. 5.5 examines the variation in the average fitness value
over all the experiments for both training and testing datasets. The figure
shows the average F-measure score along with the minimum and maxi-
mum scores across the datasets.

For all the datasets, the fitness variation and the reported average fit-
ness values are consistent across the training and testing sets. The fig-
ure further shows that there is a small variation in the fitness values in
dataset one, two and four for the different experiments. This is because
both datasets one and two exhibit high visual contextual similarity. For
dataset four, although the background of the images are typically differ-
ent, the target always remains salient. If the target object is always salient,
the selected features will be able to detect the salient object in most of the
instances of the dataset because the target is usually located at the centre
of the image. By contrast, considerable variation can be seen in dataset
five which reflects the variability of the image contents in this dataset.
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Figure 5.5: Average fitness value over all the training and testing images. The error bars
span the range of minimum to maximum F-measure across the dataset. The maximum
and minimum achieved fitness values is measured over all the optimization experiments
with a different sampling of training and testing images.

5.4.2 Precision-recall accuracy results

The precision-recall curve obtained with the selected features from the
proposed model is compared with that for all features and with the pop-
ular top-down VOCUS model. When implementing the VOCUS model,
instead of using only the original three BU Itti features, the BU features
of the proposed model were used to ensure a fair comparison. Further-
more, the learned weights were averaged over all training examples and
not over limited examples as discussed in [106]. This is because the aver-
age of F-measure values in the proposed model is taken over all the train-
ing examples. Finally, the combination factor T in Eq. (2.8) is set to 0.5 to
ensure the equal involvement of both TD and BU maps when combined
linearly.

Figure 5.6 shows the average precision-recall curves obtained over all
the test images. In each dataset, we can see that the best selected features
from the proposed model FS-TDSM outperforms the BU features and the
VOCUS model. The VOCUS model performed poorly in all datasets other
than the relatively easy dataset four. As mentioned earlier, this could be
due to the method of modeling TD through feature weighting of the BU
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features without including any target specific features. Similarly, when
all the features are used, we hypothesize that the performance degrades
due to the presence of redundant features or because of the negative in-
teraction between certain features. Such feature redundancy is reduced by
the proposed model by exploiting the interaction between features. The
precision-recall performance achieved by the proposed model in the last
two datasets is lower than the performance in the first two datasets due to
contextual variation of the images in those datasets.

5.4.3 Qualitative target detection results

To supplement the quantitative results, Fig. 5.7 shows examples from the
datasets, the corresponding saliency maps and the adaptively segmented
maps using the approach of [151]. Two examples are selected from each
dataset. For the first dataset (see the first two rows), the target object is
distracted by other objects positioned at random positions. The target in
both images is slightly occluded by the non-uniform surface. Distracting
objects in these two images (and normally in all the images belonging to
this dataset) do not exhibit high visual attribute similarity to the target ob-
ject. The baseline Itti model was able to fixate on the target object but with
many false positive (FP) regions, as shown by the corresponding saliency
and segmentation maps. A similar visual outcome can be seen from VO-
CUS model, which produces fewer FP regions but assigns the target only
low saliency. The proposed model was able to detect the target in both
images with high precision and accuracy.

The next two images from the second dataset contain cluttered distract-
ing circular structured objects and can, therefore, be expected to be more
challenging. Furthermore, the target in the first of these two images is
non-salient whereas, in the second one, it is slightly salient. From the in-
formation about the selected features in this dataset, the roundness feature
is not selected because most of the distracting objects are round. The pro-
posed model was able to detect the target easily in the second of these two
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Figure 5.6: The precision-recall curve of the proposed model FS-TDSM, the top-down
VOCUS model and the all BU feature combination for all the datasets. The proposed
model outperforms the other two approaches in all the datasets.
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images, however in the first image, apart from detecting the target, those
objects having some level of redness are also been selected (see last two
images of the third row in Fig. 5.7). This particular example shows that in
any attention system, if the objective is to detect a target object, then the
type of TD target specific features that are required for detection depends
on the image content (e.g., nature of distractors, context, etc.).

In the images drawn from dataset three the target size is relatively
small compared to other objects. In both images (see row five and six),
by comparing the segmented image produced by both Itti and VOCUS
models with the respective groundtruths, we can see completely scattered
regions of interest that contain the target but also a high number of false
positives. The proposed model, on the other hand, was able to detect the
target more accurately. The saliency map generated by FS-TDSM for the
first image of this dataset contains five regions of interest including the
target. The false alarm regions do not have any visual appearance reflect-
ing the redness. This is true as redness is not amongst the selected features
(see Fig. 5.4(c)). The selection of these false regions are due to some of the
selected BU regions and the TD roundness feature.

All the techniques performed well in the two images from dataset four.
This is due to the simplicity of the dataset and because the target object
is salient. Since all the models (including FS-TDSM) use the Itti model
structure which is based on the centre-surround difference of Gaussian
procedure at various scales, the saliency maps are blurry and provide blob
type fixation regions rather than object based regions.

For the above reason, the generated saliency maps in this dataset ex-
hibit low recall values due to large false negative regions (e.g., saliency
map produced by FS-TDSM for the image in row seven). Large false neg-
ative are resulted due to large spatial regions the target object occupy (e.g,
the image in row seven).

Finally, the last two images, drawn from dataset five are the most chal-
lenging ones in Fig. 5.7. For instance, both Itti and VOCUS models were
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not able to locate the target due to clutterness in the background in the
last image. The proposed model effectively located the target using the
appropriate selected features.

5.5 Fixation and visual search results

In this section, the capability of the proposed model in performing a visual
search for the target object is discussed.

5.5.1 Quantitative visual search results

From the previous results, it is evident that the proposed model is able to
select an optimized set of features containing both TD and BU features.
Furthermore, the selected features indicate that a positive interaction of
various levels exists between both BU and TD factors depending on the
nature and the contents of images. Although these results are sufficient
to make a conclusion about the usefulness of both TD and BU factors in a
high-level target object detection task, it remains unclear whether the de-
tected region of interest containing the target is due to TD or BU features.

The optimized selected features for a particular dataset only provides
the information that certain features give an overall good detection result
over all the examples in that dataset by minimizing the false negative re-
gions and maximizing the true positive ones. It does not say which of the
selected features contribute the most in localizing the target region.

In some occasions, the saliency map produced by the proposed model
highlights the target region but with a low associated saliency value
(e.g., the saliency map generated by FS-TDSM for the fifth row image in
Fig. 5.7). This result suggests that if the attention and fixation are applied
to this image based on the saliency map, then the target is not detected in
the first fixation. However, the target could be well detected in the sub-
sequent fixations. Hence, one of the results to be discussed in this section



214 CHAPTER 5. FEATURE SELECTION BASED ATTENTION

is the number of fixations and saccadic movements required to get to the
target (i.e., to perform an effective guided search) by the proposed model.

Two well known biologically inspired operations called winner-take-
all (WTA) and the inhibition-of-return (IOR) are used to control the gaze
shift from one attended location to another on the basis of a saliency
map [18] (refer to section 2.3.1.2.1 for details about these two mechanisms).
By applying these two operations on the final saliency map, we get the
winner location that has the maximum activation in a particular sample
region within the saliency map. We use the same WTA and IOR approach
proposed in the Itti model [1]. Once a region is selected through the WTA
network and IOR, a region growing based segmentation technique is ap-
plied to estimate and segment the selected region. This process is repeated
for different regions of the image according to the saliency map. Each win-
ner represents a fixation region whereas the estimated path between any
two consecutive fixations represents the saccade or the scan path.

Table 5.4 compares the visual search accuracy for the proposed model
with that of the VOCUS model. The number of fixation represents the
number of regions that have been attended when the statistics are calcu-
lated. For instance, with a single fixation, we are concerned only with the
first attended region generated by the WTA and IOR operations on the
saliency map. Typically, as the number of fixations increases, the chance
of detecting the target also increases. The detection accuracy is measured
by the hit rate, which is defined as a region of fixation that overlaps with
50% or more of the groundtruth map.

As shown in Table 5.4, when a single fixation is considered, the VOCUS
model operated at T = 0.5 achieves a 32% hit rate on dataset one. When
the number of fixations is extended to three, a big jump to 88% is achieved
followed by a 100% success rate when the attention is observed over five
fixations. These numbers show the effectiveness of VOCUS model in find-
ing target objects in a small number of fixations. However, a more im-
pressive performance is achieved by the proposed model FS-TDSM. In
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a single fixation, the proposed model was able to achieve 96% hit rate.
This confirms the effectiveness and efficiency (i.e., fewer fixations) of the
model when performing a visual search on this dataset. A similar perfor-
mance is observed on dataset two for the proposed model. In both these
datasets, we can observe that for the proposed model, the first fixation typ-
ically produces high success rate and reaches the maximum rate of 100%

within three fixations. Such behavior reflects the high quality of the initial
saliency map generated by FS-TDSM.

For dataset three, the first fixation hit rate is low compared to the first
two sets when FS-TDSM is used. When the number of fixations is in-
creased (i.e., three, five and seven), the success rate is almost constant.
This could be due to two reasons. First, since the majority of success is at-
tained with a single fixation, mostly the other WTA/IOR regions are false
alarm regions. Secondly, the maps generated by the proposed model for
this dataset are concise. Few regions of interest exist that mostly belong to
the target region and being already captured by the first fixation.

Hence, by increasing the number of fixations, false positive regions
or regions that have already been explored by previous fixations are ac-
cessed. Revisiting a target region by increasing the fixations still counts
as a single hit. This could be the reason why there is no considerable im-
provement beyond the first fixation.

In dataset five, the proposed model clearly outperforms the VOCUS
model with a maximum hit rate of 96% from the fifth fixation and beyond.
Even with the clutterness and background complexity of this dataset, the
model was able to search and locate the target quickly. In all the discussed
datasets, as expected, we can see that FS-TDSM achieves high success rates
within the first seven fixations and outperforms the VOCUS model.

In dataset four, we can observe a different behavior. The hit rate
achieved by FS-TDSM is almost the same throughout for all the fixations.
Although this is a simple dataset in which the target object is salient and
clear, the maximum achieved hit rate is 80% which is low if we consider
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the simplicity of the dataset. A hit rate of 100% is achieved in some of the
datasets more complex than this one.
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Such performance on this particular dataset could be due to the follow-
ing reasons. The way the saliency is computed (based on the multiple scale
DoG centre-surround mechanism), tends to make the maps blurry while
fixating on the centre of the region of interest. Hence, such techniques par-
tially highlight the object of interest with high intensity at the centre and
lower values in the surrounding region. This is also reflected in Fig. 5.6(d)
where it is clearly evident that the precision is very high for low threshold
values and drops significantly at an approximately 0.6 recall value. This
typical behavior occurs when some parts of the object of interest are de-
tected with high saliency and other parts with low saliency. Furthermore,
when the size of the target object is relatively large with respect to image
dimension, only a small part of it is detected with high saliency. Other
parts of the object are detected as false negatives.

Only a small part of the target is extracted when the segmentation step
is performed. Since the hit is counted only when 50% of the target is de-
tected, those small extracted regions of the target are ignored. Similarly,
the performance of the VOCUS model is low because of the previously
mentioned reason (since it is also based on Itti model) as well as due to the
many false positive regions in the saliency map.

The target objects in the fourth dataset are salient but with varying
sizes. For instance, in the example shown in Fig. 5.7 (see row seven and
eight), the ratio of the target size and image size is different. By inspecting
the saliency maps generated by FS-TDSM across this entire dataset, it is
found that the target was detected accurately with high precision but low
recall when the target size is large and again detected accurately with high
precision and high recall when the target is small. We can verify this by
comparing the saliency maps generated by FS-TDSM for the two images
belonging to dataset four in Fig. 5.7.

Finally, for the maximum achieved hit rate in each dataset, Table 5.4
also shows the percentage of the hits being due to either BU win-
ners/features or TD winners/features. This information reveals which
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process (BU or TD) has the main contribution in finding the target.
For instance, in dataset one, 40% of the success can be attributed to the

selected BU features (i.e., either orientation0, R/G or PCA-2) whereas 60%

is contributed by the TD redness feature.
By observing the results in the other datasets, we can see that the high-

est BU contribution of 46% is in the saliency dataset. This comes as no
surprise because BU factors always play an important role in saliency de-
tection (for target or non-target objects). The BU contribution is typically
smaller when the images are complex. This is when TD factors become
more effective in a more guided search for a target rather than simply us-
ing BU features to attend to locations which are deemed to be interesting.
However, despite the low contribution of the BU factors in such images,
there is always a positive role of such factors in detecting the target (e.g.,
25% and 19% hit rate by BU features in dataset three and five respectively).

5.5.2 Qualitative visual search results

As an example of the level of contribution made by individual BU or TD
features in searching for the target, Fig. 5.8 supplemented by Table 5.5
show the fixation at various locations of the images and the winner feature
at each fixation region. A total of seven fixations and six saccadic move-
ments are shown such that the saccadic sequence is displayed next to the
respective saccade path. In addition, when the fixated region produces a
hit, a black contour is drawn through a region growing segmentation pro-
cedure otherwise it is shown in yellow. The winning feature that produces
a hit is highlighted in bold in the table. Five different images from the
datasets are chosen to investigate various scenarios. The proposed model
is compared with Itti model, all BU features and VOCUS model.

In the first image, all four approaches successfully found the target but
after a different number of fixations. Both the Itti and the VOCUS models
located the target in the third fixation and with a similar saccadic profile.
When all the BU features are used (i.e., no redness or roundness features),
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Figure 5.8: Saccadic movement examples during a visual search for the target object. The
images exhibit different level of complexity through background clutterness, distracting
objects, target location and size. A black contour shows a hit when the target object
is located. The qualitative performance is compared amongst (a) Itti model (b) All BU
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the search process took longer to locate the target (i.e., sixth fixation) which
suggests that some of the BU features used might have a negative impact
on the search process. The proposed model, on the other hand, was able to
locate the target twice during the search process; on the first fixation and
revisited the target on the fifth fixation. On both occasions, the winner
feature is the TD redness. Furthermore, this example by no mean suggests
that the false attended regions before fixating on the target are due to any
of the BU features. For instance, the first two false fixation regions by FS-
TDSM are due to TD redness and BU PCA-2 features respectively.

Going through the second image in Fig. 5.8, when the proposed model
was used, only two regions are attended. The target object is detected
alternatively between these two regions as shown in the figure (see the
fourth image in the second row of Fig. 5.8). Interestingly, the winning
feature changes as shown in Table 5.5. In the first two hit occasions, the TD
roundness feature is responsible for the detection whereas the orientation
135o and PCA-1 BU features corresponds to the third and fourth positive
fixations on the target.

In the previous two images, the TD features for the proposed model
dominated the successful fixation on the target object. The third image, on
the other hand, reveals an important point regarding the BU features and
their possible contribution to the visual search. Regardless of the number
of fixations required to locate the target, in the all BU features, the VOCUS
model and FS-TDSM, the winning feature responsible for detecting the
target is PCA-2 (see Table 5.5 and the corresponding fixation in Fig. 5.8).
In addition, we can clearly see that the first fixation that located the target
in the proposed model is due to a BU feature and not a TD feature.

In the fourth image, which has a more complex background, we can
observe that neither VOCUS nor the Itti model was able to fixate on the
target during the first seven fixations. The all BU features detected the
target in the last fixation through the PCA-2 feature. By contrast, FS-TDSM
was able to effectively detect the target on three occasions, fixation one and
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six due to roundness feature and the last fixation due to PCA-2.

In the final image which is probably the most complex example in this
figure, all the approaches struggled to find the target within the first three
fixations. The contrast R/G feature produces a hit in both the Itti and
the VOCUS models but in the last two fixations respectively. Although
the R/G feature in both these models has different set of features to in-
teract with, in both cases such interaction resulted in the detection of the
target. Furthermore, a better performance is achieved by the proposed
model in locating the target in the fourth fixation. Since R/G feature was
not amongst the selected features for this image which belongs to the fifth
dataset, no target fixation based on this feature is evident when FS-TDSM
is applied.

Finally, from the fixation and visual search experiments, we clearly see
that the proposed model produces a high success rate in all the datasets
when performing a saccadic guided search for the target, outperforming
both the VOCUS and the Itti models. Furthermore, on most occasions, the
proposed model was able to locate the target within the first few fixations.
This shows the effectiveness and efficiency of the model in locating the
target as quickly as possible. Furthermore, although TD features play a
more significant role in the search for the target than BU features, there
is clear evidence both qualitatively and quantitatively that BU features are
more effective than TD features in some scenarios particularly in the visual
search process.

5.6 Chapter summary

In this chapter, an attentional model is proposed that combines bottom-up
and top-down saliency processes to improve the target object detection ac-
curacy over using either of the individual processes. The proposed model
called Feature Selection based Top-down Saliency Model (FS-TDSM) for-
mulates the combination process as a feature selection problem. Several
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top-down target specific and bottom-up attentional features are included
in the pool of features to perform the selection upon.

The model is tested on five datasets containing cricket balls as target
objects with varying image content complexity. The detection accuracy
is evaluated through the average F-measure score over all the images in
the test set. In addition, the visual search accuracy and efficiency is deter-
mined through the number of fixations required to get to the target object.
The proposed combination model is compared to one of the state-of-the-
arts visual attention model referred to as VOCUS [20] that combines top-
down and bottom-up processes statically.

With a set of two target specific top-down features and 13 bottom-up
features, our proposed model outperformed the VOCUS model both in
detecting the target object as well as achieving higher efficiency (fewer
number of fixations to get to the target object) while performing a visual
search. The scope of the model is valid only when target specific features
are combined with low level bottom-up features through feature selection
process. If only bottom-up or top-down features are considered during the
selection process, then it does not address the visual attention combination
problem.

The proposed model provides high interpretability of the selected fea-
tures. From the obtained selected features in each dataset, it has been
observed that the features from both processes are amongst the selected
features. The selected features in all datasets do not have features that
are purely belonging to either bottom-up or top-down. Hence we con-
clude that, both processes contribute actively while performing a visual
search for the target object. The level of contribution varies depending on
the contents of the image. With images with moderate complexity (low
cluttered images) with few or no distracting objects, the contribution of
bottom-up features increases. This contribution decreases in more com-
plex background images but do not diminish. In such cases, top-down
features are more effective in detecting the target objects.
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Our model is only tested on a single object (i.e., the cricket ball), and
could be potentially generalized to any object provided that a set of dis-
tinct top-down and bottom-up features are available. Furthermore, our
feature selection approach for combining top-down and bottom-up salien-
cies can be used to construct a more complex and efficient visual attention
systems for any target object detection. As a future work, to see the effec-
tiveness of our model, it would be interesting to apply it to various types
of objects.
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Chapter 6

Dynamic Feature Map Integration
for Visual Attention

6.1 Chapter introduction and motivations

In the previous chapter, a feature selection approach was proposed to
combine top-down (TD) and bottom-up (BU) saliency features. The pro-
posed model provided set of features to include in the combination pro-
cess. When a test image is processed, the previously selected features are
used to generate the saliency map. In fact, the same selected features are
used for all the images in a dataset. With this approach, there is no guar-
antee that the selected features represent the optimized solution for each
individual image. To overcome this problem, a revised model is needed
that can decide which features to combine and when to combine them on
an individual image basis. In this way, a dynamic approach of combining
top-down and bottom-up saliency features can be achieved.

In the work described in this chapter, we seek to find an approach to
estimating a quality measure value of a saliency or feature map by extract-
ing some useful information from the map. That is, we attempt to find
whether the nature of the map is itself indicative of its quality. Further-
more, we show that if the quality of a feature map is predicted accurately,

227
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a dynamic feature map integration can be achieved. A dynamic feature
map integration adds more efficiency to the visual attention system in ad-
dition to improving the detection accuracy.

As described in chapter 2, a saliency or feature map is a 2D topological
map on which high activation points correspond to novel regions that are
deemed pertinent to the machine’s intended task. One might intuitively
expect that the form of the map should be meaningful. For example, a very
diffuse map would likely be poor for guiding future choices, as it would
not do a good job at identifying areas of particular interest. Similarly, maps
that exhibit a multitude of isolated salient regions are not particularly in-
formative.

If we could characterize the quality of a map by examination of the
map itself, then we have the capacity to dynamically improve the saliency
map when combining BU and TD features (later we will refer to them as
feature maps). For instance, features of the image could be incorporated
(or removed) until the saliency map assumes a suitable form (i.e., a good
quality saliency map). Using this approach we would no longer be tied
to using the potentially unnecessarily expensive set of predefined features
(as it was the case when formulating the combination process through fea-
ture selection), but could instead develop a feature set in real time.

Determining the quality of a saliency map has been addressed in the
previous literature on active vision [12, 32, 109, 152]. However, our model
learns a quality metric of a saliency map unlike other techniques that use
deterministic methods to measure the quality of a saliency map. In ad-
dition, the proposed model can be used to determine the quality of any
saliency map, whether it belongs to BU or TD saliency map. Note that
in all our previous proposed models presented in chapters 3-5, once a
saliency map is generated, there is no mechanism that would examine how
good the generated map is for target object detection.

Typically the saliency map produced by a proposed set of features is
compared to some groundtruth map and characterized by a metric such as
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(a) (b) (c) (d) (e)

Figure 6.1: Visual difference between object detection saliency maps and fixation maps.
Fixation maps tend to be blurry and dispersed as in (d) [91] and (e) [134]. On the other
hand, object detection saliency maps are compact and sharp as in (b) [92] and (c) [133].

the area under the receiver operating curve (AUC-ROC). A saliency map
that exhibits a high agreement with the groundtruth map is considered
a good map. Such a comparison is only applicable when the groundtruth
map is available. In the absence of a groundtruth map, estimating a quality
metric value of a saliency map becomes a challenging task. Therefore, our
goal would be to estimate an AUC-ROC score of a given saliency map of
a novel image.

There are many active vision tasks that might potentially benefit from
the quality estimation approach, but unfortunately, that diversity pro-
duces a wide range of differing practical details. However, irrespective
of the task or the application, the visual appearance of a saliency map
is highly dependent on the process itself for generating the saliency map
(e.g., see the visual difference of the four saliency maps in Fig. 6.1). Hence,
rather than directly tackling the full range of potential problems, in this
chapter, we therefore confine ourselves to a single case study to establish
the merits of the approach.

We have selected the pedestrian detection problem treated in [3] be-
cause of the well-characterized set of features used to derive the saliency.
Hence, the main objective of this chapter is to show that a dynamic feature
combination process for detecting the target object is possible on run time
if we are able to estimate the quality of a saliency map.
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6.1.1 Terminology

In this chapter, various overlapping terminologies are used to describe dif-
ferent aspects of the proposed work. To avoid confusion, in this section we
explicitly define these terms. The scope of these terms are only within this
chapter. When an image is presented to the proposed model, various fea-
tures are extracted. We refer to features as those values that are extracted
from images such as Gabor filter based orientation features, pedestrian de-
tection features and contextual features. This term is not frequently used
in this chapter.

More importantly, when these features go through some post process-
ing, 2D topological maps are generated that we refer to as feature maps.
Throughout this chapter, we will be using three types of feature maps
based on the model proposed by Ehinger et al. [3]. It is possible that a
single feature map is generated through various features (depending on
the type of the feature map). When all the feature maps are combined,
a saliency map is generated, which also represents a 2D topological map.
Note that for instance, if two feature maps are combined, the resultant is
still referred to as a feature map because it exhibits the same 2D topologi-
cal structure as a single feature map or a saliency map.

The main objective of the model is to estimate a quality score of any
map (either feature or saliency map). To achieve this, a set of different
kind of features are extracted from a map. To distinguish these features
from the features discussed earlier, we refer to the latter as characteristic
features. Hence, features are extracted from the original image to help in
constructing the feature maps whereas characteristic features are extracted
from the feature maps or the saliency maps for estimating their quality.

Note that extracting the characteristic features, the process does not dif-
ferentiate between a a feature or saliency map because both are 2D topo-
logical maps. Hence, unless mentioned explicitly, we use the term feature
map throughout the chapter to indicate that the characteristic features are
extracted from such maps and can be generalized to saliency maps as well.
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Finally, we use the descriptive term visual attributes to explain the vi-
sual look of a feature or saliency map. In this work, we hypothesize that
the visual attributes of a map can summarized by extracting the proposed
characteristic features of these maps.

6.1.2 Chapter objectives and overview

This chapter examines two main aspects of the overall problem,

1. Do the visual attributes of a feature or saliency map provide any in-
formation about its goodness through some defined quality metric?

2. If the visual attributes of a feature or saliency map are informative
of its quality, then how effectively can this knowledge be used for
dynamic selection of such maps?

In order to achieve the above two objectives, we perform the following:

1. We posit a set of characteristic features that potentially encapsulate
desirable visual attributes of a feature map. In subsequent testing,
we establish a subset of these characteristic features that are most
useful for our application.

2. From the characteristic features of a feature map, we learn a regres-
sion model in a supervised framework that estimates the quality of a
novel feature map. The regression model is learned from a large set
of training examples.

3. We conduct a study to demonstrate how the visual attributes of fea-
ture maps can be used in dynamic feature map selection. The regres-
sion model is incorporated into a feature map integration framework
proposed by [3] in order to validate its effectiveness for dynamic fea-
ture map selection. In contrast to the approach in [3], which always
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combines three constituent feature map subsets, we construct a sys-
tem that progressively builds the saliency map and allows a shortcut
as soon as the saliency map is of adequate quality.

Hence, the proposed work in this chapter establishes the following im-
portant contributions to the field of active vision:

1. Propose a set of effective characteristic features that are used to cap-
ture the visual attributes of a feature map.

2. Propose an approach that can estimate a quality score of a feature
map using random forest regressor through characteristic features.

3. Analyze the learned regression model along with the characteristic
features by investigating their importance and their relation with the
estimated variable on the fixation dataset.

4. Use the proposed estimation approach with a feature map integra-
tion framework to validate its effectiveness in dynamic feature map
selection.

6.2 Previous quality prediction techniques

Several techniques have previously been proposed to estimate the quality
of a saliency map for either fixation or salient object detection. Probably
the initial attempt in addressing the quality of a saliency map could be
seen in the Itti model itself [1]. In this model, the normalization process
prior to feature map integration acts as a way to suppress those feature
maps that have homogeneous activation regions. At the same time, the
normalization process promotes maps that contain small number of acti-
vation points.

In another set of techniques referred to as complementary saliency
maps choose one or more feature map/s having the best performance.
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Such selection varies from one image to another. For example, Gopalakr-
ishnan et al. [152] proposed a saliency usefulness measure called the
saliency index (SI) that is computed from two characteristic features, com-
pactness, and connectedness. Inspired by this work, Cheng et al. [130]
introduced global cues that utilize the compactness characteristic feature
of the SI measure for feature selection through a soft image abstraction
procedure. A more sophisticated compactness measure was proposed by
Kim et al. [32] that combined various map information including bound-
ary, location, brightness and background priors for selecting the best map.

Hu et al. [109] proposed a saliency measure called the Composite
Saliency Indicator (CSI) that is used to assess whether an area within a
generated feature map is likely to be a true candidate salient region. The
indicator is a combination of two characteristic features extracted from a
feature map, the spatial compactness, and the saliency density. Feature
maps with a CSI value lower than a threshold are removed from the fea-
ture map integration process. Finally, each feature map is weighted by its
CSI value and the feature maps are combined together to form the saliency
map.

In all these techniques, the compactness is used as one of the promi-
nent characteristic features for measuring the quality of a saliency map in
salient object datasets. In these datasets [74, 82, 153], the salient objects are
located at the center of the image and are highly focused. As a result, the
generated saliency maps tend to be compact and localized [27]. However,
not all saliency maps having high-level compactness correspond to good
prediction capability. A map that has a false positive region with high
compactness establishes a poor detection performance. In addition, since
fixation maps are mostly spatially diverse, the compactness characteristic
feature becomes less effective in describing the quality of these maps.

To illustrate this issue, we performed an experiment to show that com-
pactness does not necessarily provide true information about the quality
of a saliency map. As shown in Fig. 6.2, a saliency detection technique [33]
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Score: 1.17 Score: 1.32 Score: 1.80 

Salient object Fixation

Figure 6.2: Compactness measure for the saliency and fixation maps. The example shows
that compactness does not always correspond to good detection performance, particu-
larly in fixation maps. The fixation map does not provide a good detection although it
received the highest compactness score of 1.80 compared to the other two saliency detec-
tion maps.

based on measuring the compactness of a map was employed on two
images from a saliency object dataset [74] and another from a fixation
dataset [3]. As it is evident from the maps of the saliency object detec-
tion images, a higher compactness score corresponds to a better quality
saliency map and in turn better detection performance (compare the but-
terfly map with that of a Rubik’s cube). In the third image, although it is
evident that the saliency map displays a poor detection performance (the
groundtruth represents the people in the image), it receives the highest
compactness score.

In another approach developed by Li and Itti [12], a machine learn-
ing technique was used to classify small patches extracted from a large
satellite image as positive (indicating the presence of a target) or negative
classes. After generating the saliency map of a patch, two sets of features
called saliency and gist features were extracted. From these sets of fea-
tures, a feature vector of 238 dimensions is constructed that captures the
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local and global visual attributes of a single feature map. The visual at-
tributes are a combination of low-level information (intensity, orientation,
and junction points) and statistical information (mean, standard deviation,
the number of local maxima points and the Euclidean distance between
them). A binary classifier was trained from these feature vectors from var-
ious training chips using support vector machines (SVM) for target pres-
ence or absence in each patch. The authors show promising performance
in detecting different target objects accurately in various satellite images.

The Li and Itti method does not explicitly describe the quality of a
saliency map but rather summarizes a saliency map using a feature de-
scriptor which is further used for target detection through binary classifi-
cation. Although the model can be applied to both saliency and fixation
maps, it has two limitations. First, it is computationally expensive to con-
struct the feature descriptor as it uses the attention model proposed by
Itti et al. (the Itti model), which is slow due to multi-scale processing and
multi-level centre-surround operation [1]. Secondly, the authors did not
consider any geometrical or positional features in their descriptor and hy-
pothesized that the descriptor is position, scale, and rotation invariant.
This could be valid for a small region of an image (i.e., as a local descrip-
tor), but can not be generalized globally.

6.3 Case study

Specifically, we investigate our proposed model under a feature map inte-
gration framework proposed by Ehinger et al. [3]. This framework belongs
to a category of feature map integration technique called saliency aggre-
gation. The initial version of this technique integrated several BU feature
maps to improved salient object detection accuracy. Each BU feature map
is different in the sense that it is generated through a different algorithm.
Each feature map captures a different aspect of the salient region.

Ehinger et al. [3] on the other hand asserted that by combining differ-



236 CHAPTER 6. FEATURE MAP QUALITY ESTIMATION

(a) (b) (c) (d)

Figure 6.3: An example of visual appearance of the three source maps generated by
Ehinger et al. [3]: (a) original image (b) bottom-up saliency map (c) target map and (d)
contextual map.

ent types of feature maps (e.g., bottom-up, top-down, target and contex-
tual maps), better accuracy in predicting human fixation can be achieved.
Their assumption is based on the notion when human analyze a visual
scene, they perform multiple incremental perceptual tasks, each having
its own importance [154].

As a demonstration, three feature maps were used to predict where
humans fixate when searching for people in outdoor images. Figure 6.3
shows a typical visual appearance of these three feature maps generated
for an image [3]. The first source is a pure data-driven bottom-up feature
map generated through a statistical saliency model proposed by Torralba
et al. [119]. This map captures what is deemed unique or interesting in a
scene.

The second feature map is a pure top-down map called the target fea-
ture map (TM). Since the objective of the guided search in this application
is to look for pedestrians, a high-level state-of-the-art pedestrian detector
proposed by Dalal and Triggs was used [62]. The produced map reflects
the probability that a pedestrian is present within a particular search win-
dow. More information about the features, training setup, classification
model and other tuning parameters for detecting pedestrians can be found
in [3, 62].

The final feature map is the scene context (CM), which describes the
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overall holistic appearance of a scene. Based on the framework proposed
by Oliva and Torralba [2] and Torralba et al. [119], an overall represen-
tation through global features that describes the spatial frequencies and
orientations of images was developed for scene context. Influenced by
top-down constraints, the generated map captures regions that have high
likelihood of containing people (e.g., sidewalks or roads rather than sky or
trees). The visual appearance of the map shows a horizontal strip that cor-
responds to a region where people can most often be found. After learning
appropriate weights for each feature map, the weighted feature maps are
summed to form the final saliency map.

Ehinger et al. hypothesized that the performance in predicting human
fixation is maximized by integrating the three feature maps [3]. This is
true when the performance is averaged over all the images in a dataset.
However, we found that when inspecting individual images, combining
all feature maps does not always provide the best solution. For instance,
Fig. 6.4 shows that the AUC-ROC score and the hit ratio of TM alone, CM
alone and TM combined with CM are higher than the combination of all
maps (see section 6.4.1 for details of the AUC-ROC metric).

We hypothesize that if an appropriate combination of maps on an in-
dividual image basis is exploited, the overall prediction accuracy will be
increased as irrelevant or misleading feature maps will be excluded from
the combination process. Hence, in this chapter we explore how an esti-
mated quality score of a feature map can be used to achieve more effective
and dynamic combination of feature maps.

6.4 The proposed approach for feature map

quality estimation

In this section, we investigate two key components of our proposed ap-
proach for estimating a quality score of a feature map. The first is the
characteristic features that are extracted from a feature map and used to
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CM map

AUC-ROC: 0.9232 (12/17)

TM map

AUC-ROC: 0.9433 (15/17)

(TM + CM) map

AUC-ROC: 0.9670 (15/17)

All maps (BU + TM + CM) 

Hit fixation points

Miss fixation points

AUC-ROC: 0.8865 (8/17)

Figure 6.4: A visual comparison between all and partial feature map combination. The
number between brackets shows the ratio between the human groundtruth fixation
points (green points) that overlap with the predicted saliency region and the total fix-
ation points.
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Figure 6.5: The training and testing phases of the proposed feature map quality estima-
tion approach.

train a regressor. The second component is the regression model itself us-
ing a random forest regressor.

6.4.1 General structure of the proposed approach

The novelty of our proposed approach lies in presenting the problem as a
regression problem where the outcome variable represents the AUC-ROC
value of a feature map. As mentioned before, the AUC-ROC score repre-
sents the quality metric used to measure the goodness of a feature map.

Figure 6.5 illustrates the training and testing phase of our approach.
In the training phase, N feature maps of some type are generated from N
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training images. A set of D characteristic features are extracted from each
feature map to form a characteristic feature vector xi = [xi1, x

i
2, . . . , x

i
D]

where i is the training image index. The empirical AUC-ROC of a feature
map is computed as a function of threshold θ and given by:

FAR(θ) =
FP

FP + TN
, DR(θ) =

TP

TP + FN

y = area(FR,DR)

(6.1)

where false positive (FP), true negative (TN), true positive (TP) and false
negative (FN) are information extracted from the feature map by compar-
ison with groundtruth. The false alarm rate (FAR) and detection rate (DR)
are computed over several threshold values given by θ and area is a func-
tion to estimate the area under the parametric ROC curve as θ is varied.

Hence, given a training dataset D = (xi, yi), i = 1, . . . , N , the regressor
learns a model H such that ŷ = H(x̂) for a set of characteristic features x̂

from a novel feature map. In the next section, we explore the regression
model itself in more detail.

6.4.2 Characteristic feature extraction

One of the key elements of the proposed approach is the characteristic
features extraction process. The characteristic features should be simple,
efficiently computed and should collectively capture the spatial distribu-
tion, geometrical structure and positional information of the feature map
both in the local and global sense.

To acquire such data from a feature map, a total of 29 characteristic
features (F1, F2, . . . , F29) are extracted and a characteristic feature vector
of length D = 23 + 6P is constructed (f1, f2, . . . , fD) where P represents
the number of local patches used. Out of 29 characteristic features, 23

characteristic features are extracted over the entire feature map. The other
six characteristic features are extracted from P patches of the feature map,
yielding 6× P characteristic features, one for each patch.
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Patches represent rectangular non-overlapping regions in a feature
map as shown in Fig. 6.6. Extracting characteristic features at the patch
level provides local information in a map. Increasing the number of
patches results in extracting finer local details from a feature map. How-
ever, increasing the number of patches reduces the efficiency of the char-
acteristic feature extraction process. In all our simulations, various patch
sizes were used, however, P = 9 is considered to balance between fine in-
formation extraction (and better representation) and computational speed.

As shown in Fig. 6.6, the characteristic features are extracted from two
maps, the actual feature map and its segmented version. The feature map
is segmented by applying a fixation threshold value K to retain the most
salient regions. This threshold represents the fraction of the feature map
area that needs to be retained (i.e., to be segmented). Once the K percent
activation points from the entire feature map are retained, the saliency
map in converted into a binary map using a binarization threshold value.
This value is set to the smallest value of the retained activation points. Any
activation point on the feature map less than this value is set to zero and
one otherwise. Note that the value of the activation points in the feature
map is normalized between zero and one. As in [3], we select K = 10 in
all our experiments. The details about the characteristic features are given
below. Each characteristic feature has its significance in determining the
quality of a feature map.

1. Geometric global statistics: these characteristic features are used to
describe a geometrical shape of the overall map from the segmented
salient regions. A single mean value over all the salient regions for
each characteristic feature belonging to this category is computed.
These characteristic features are:

• Normalized mean size of the salient regions (F2). The size of
a salient region is measured by the number of pixels within a
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segmented salient region.

• Normalized mean major axis length of the salient regions (F3).
It is a scalar quantity that measures the length of the larger axis
of an ellipse that encloses the salient region. The ellipse and
the segmented salient region have the same normalized second
central moment.

• Normalized mean minor axis length of the salient regions (F4).
This is same as F3 but for the minor axis of the ellipse.

• Dominant orientation of the map (F5). Orientation of a salient
region is the angle measured between the major axis of the
salient region and the horizontal axis. The dominant orienta-
tion represents the overall orientation of the map as shown in
Fig. 6.6. It is calculated by constructing a weighted histogram
of salient regions’ orientations similar to that constructed in
histograms of oriented gradients (HoG) descriptor [62]. The
weights represent the normalized area of the salient regions.

• Normalized mean circumference of the salient regions (F6).

All the size based characteristic features (i.e., F2, F3, F4 and F6) pro-
vides information about the average size of the target object to be
searched for. For instance, in the dataset used in our experiments,
the target object (i.e., pedestrians) are relatively small with respect
to the size of the image. In addition, the major and minor axis of a
pedestrian follow certain proportion. In a similar manner, the dom-
inant orientation characteristic feature provides the angle at which
the target object is usually found. In case of pedestrians, they are
usually found in an upright position.

2. Pixel level global statistics: this set of characteristic features gathers
pixel level intensity information of the whole map. The following
characteristic features were considered:
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• Global density (F8). We use the same density extraction mecha-
nism proposed by the authors in [109] which is given as:

F8 =
1

|S|

∑
z∈S

∑
r∈Sp |G(z)| − |G(r)|

|Sp|
(6.2)

where S is the set of most salient points in a feature map, Sp
is the set of all the neighboring salient points to p and G rep-
resents pixel intensity value. This measures the density of a
feature map according to the saliency intensity within a pixel
neighborhood.

• Mean saliency intensity (F25) and standard deviation of the in-
tensity values (F26).

• Global entropy (F27). It measures randomness of a feature map.
High global entropy feature maps indicates high contrast in the
map.

• Pixel intensity kurtosis (F28) and skewness (F29) are used as
higher order moments to capture some information regarding
the shape of the saliency distribution of a feature map.

These global pixel wise characteristic features are useful in describ-
ing the overall visual attributes of the feature map. These charac-
teristic features do not describe the actual desired visual attributes
of the target object. For instance, we would typically expect a good
feature map to have high contrast with high entropy and to be more
dense.

3. Geometric MSR/LSR statistics (F9−18): this category of characteris-
tic features is similar to the global version except that the features are
not computed over all salient regions but rather on the most salient
region (MSR) and least salient region (LSR) separately. The most
salient region is defined as the segmented region having the high-



6.4. QUALITY ESTIMATION MODEL 245

est mean intensity. For instance, the blue region in Fig. 6.6 has the
highest mean pixel intensity whereas the green region is the LSR.

The reason for considering MSR and LSR is that if the target object
represents the most salient region of the image, then these character-
istic features would explicitly capture its saliency attributes. In the
contrary, LSR characteristic features are useful only when the target
object exhibits the least saliency in the entire image. So MSR and
LSR characteristic features consider special saliency cases of the tar-
get object.

4. Pixel level local statistics: this characteristic feature set is computed
as in the global version but on a smaller local region defined by a
patch. Certain regions/patches in a feature map may contain more
useful characteristic features than those extracted the whole feature
map. In addition, saliency information may vary from patch to
patch. For instance, if the object of interest is located in the center
of the image, then the center patch would be more informative than
the surrounding patches. Hence, each patch may have different vi-
sual attributes that could be useful in feature map representation.

Apart from mean pixel intensity (F20), standard deviation of the in-
tensity (F21), entropy (F22), kurtosis (F23) and skewness (F24) calcu-
lated at the patch level, another characteristic feature is introduced
that measures the straddle of all the salient regions over a patch (F19).
This characteristic feature describes the saliency attributes of a patch
through salient regions in the segmented map. It is given as:

F j
19 =

area

(
Z⋃
i=1

(Si ⊂ lj)

)
Patch area

(6.3)

where j is the index of a patch l and Si represents a particular seg-
mented salient region from a total of Z salient regions. Equation 6.3
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represents the fraction of the patch that contain salient regions. The
area of the salient regions that straddle into the patch is divided by
the size of the patch.

Along with the straddle characteristic feature, Fig. 6.6 shows other
sample characteristic feature values extracted from some of the
patches. Note that only saliency straddle is computed on the patches
of the segmented feature map (see patches five and six) whereas the
rest are extracted from the patches of the original feature map (see
the third patch). The reason for having patch wise characteristic fea-
tures because it provides information about each region of the image.
For instance, in many cases, the lower three patches of the images in
this dataset are more likely to contain the street or the path on which
the target pedestrians could be located, but less likely in the upper
left or right corner for instance.

5. Other characteristic features (F1 and F7):

• The number of segmented salient regions.

• Average Euclidean distance between the centers of segmented
salient regions and the centre of the image (F7).

These two characteristic features again capture the spatial distribu-
tion of the salient regions. Too many salient regions are not desir-
able and indicate presence of noise or distracting objects. Similarly,
salient regions in close vicinity are more desirable as they might in-
dicate different parts of the target object.

All the above-mentioned characteristic features are single valued ex-
cept for the patch-based characteristic features where a characteristic fea-
ture is represented by a vector of length P . Hence, when concatenating
all the characteristic feature values we get a characteristic feature vector of
length 77 when nine patches are used.
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6.4.3 The regression model

There exist numerous regression models that have shown great success in
various fields. However, some of these state-of-the-art techniques have
shown very promising results, particularly in active vision applications
[155–157]. Random forest is one such powerful technique that gained pop-
ularity in many vision applications [158]. For some of the reasons pro-
vided in section 6.4.3.2, we have chosen random forest regression in this
work.

6.4.3.1 Random forest regressor

Influenced by the early work of Amit and Geman on feature selection
[159], Breiman’s random forest technique emerged as one of the state-of-
the-art techniques for handling a very large number of features [160]. Ran-
dom forest is an ensemble based learning technique that utilizes the classi-
fication and regression tree (CART) structure [161] to produce a collection
of random trees (called a random forest). Random trees are constructed in
four steps:

1. Generate B bootstrap data by sampling a dataset independently
with or without re-substitution. Each bootstrap sample will be used
to construct a single tree. This choice of B has computational sig-
nificance as too many trees requires more tree evaluation. However,
according to the Strong Law of Large Numbers and tree structure, by
increasing the number of trees, a limiting value of the generalization
error is produced with little over-fitting [160].

2. For each bootstrap dataset, select a random set of features/variables
indicated as mt with the same distribution from D number of fea-
tures such that mt � D. This is a key performance parameter for
tuning random forest, which has more significance when the num-
ber of features is large.
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3. Construct a deep CART tree using the above two parameters without
pruning to a maximum tree size (i.e., a fixed terminal node size A).
Growing a deep tree reduces the bias as more degrees of freedom are
introduced.

4. Aggregate the results from individual ensembles (i.e., trees) to pro-
duce the final predicted value.

A single decision tree with L leaf nodes divides the feature space into
L rectilinear regions in the feature space indicated by Rl where 1 ≤ l ≤ L.
For a given ensemble, the prediction model is given as:

hj(x,Θj) =
L∑
l=1

(
cl1(x, Rl)

)
Θj

(6.4)

where Θj is an independent identically distributed random vector that
characterizes the jth random forest tree using the splitting variable and
the threshold cutting points at each node. The cl values are computed by
fitting a constant model independently at each region Rl. For regression
this corresponds to the mean of the response variable y (i.e., AUC-ROC
score) of samples belonging to region Rl. The indicator function 1 returns
one if x ∈ Rl and zero otherwise.

Since the final prediction of a forest is the average of the ensemble pre-
dictions, the prediction model of the forest is given as:

H(x) =
1

B

( B∑
j=1

hj(x,Θj)
)

(6.5)

Biau has shown theoretically that the main driving force behind the
convergence of random forest technique is the strong set of features used
during the learning phase [162]. The Random forest technique has the
ability to identify such features by assigning an importance value to each
feature. Out-of-bag (OOB) data (i.e., around 37% of the sample data used
in each bootstrap) is used as validation set to compute the feature impor-
tance. The procedure for computing feature importance is as follows:
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1. In a particular tree, a single out-of-bag sample is run down the tree
and when it encounters a feature node split for which importance
needs to be evaluated, a random branch is chosen. This process is
repeated for all the out-of-bags samples and over all the trees for a
particular feature.

2. The noisy prediction error PEn for the feature computed over all
out-of-bag examples. The whole process is repeated with the correct
branching at the split point to estimate true prediction error PE.

3. Finally the importance of a feature F is given as:

Imp(F ) = PEn − PE (6.6)

6.4.3.2 Why choose random forest?

The selection of a suitable regression model is dependent on the problem.
Apart from being one of the state-of-the-art techniques, there are several
reasons of selecting this model for our problem. The first is its ability to
identify the important characteristic features of a feature map. This is par-
ticularly useful to establish a holistic description of the quality of a feature
map. Secondly, tuning the model parameters is easy to perform as no
separate test validation step is required. Instead, OOB error is estimated
internally during the run.

Random forests are able to deal with unbalanced and missing data as
our feature space has more AUC-ROC values greater than 0.5 than less
than 0.5. In addition, when inspecting the characteristic features of the
feature maps in the dataset, we have found that the data is noisy and scat-
tered. The complexity of the data can be visualized in Fig. 6.7 for all three
types of feature maps (i.e., BU, TM and CM). The characteristic features are
extracted from the feature maps followed by a dimensionality reduction
using t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm to
a single projected dimension. This would roughly approximate the scat-
tered nature of the data in a higher dimension.
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Figure 6.7: D-dimensions characteristic feature projection over a single dimension using
t-SNE algorithm [163]. The projection is performed for the characteristic features of all
three feature maps.

We would expect that a linear model would not perform well in this
data. Normally, tree-based models in principle can fit data with any shape
at the expense of over-fitting. In contrast, the random forest approach
is able to discover more complex dependencies within the data with lit-
tle over-fitting [160]. However, random forest may not be able to pre-
dict beyond the range of the independent variable values in the training
data [162].

6.5 Feature map integration

In the previous section, we proposed a model that can estimate the qual-
ity score of any given novel feature map. To associate the model with an
application, we have chosen the feature map integration framework pro-
posed by Ehinger et al. [3] for predicting human fixation. As mentioned
earlier in section 6.3, in this framework three different types of feature
maps are generated. This is followed by integrating them to yield the final
saliency map to predict where human fixate in images when searching for
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pedestrians.
Based on Ehinger’s feature map integration framework, we propose

two approaches for feature map integration that incorporate the feature
map quality estimation procedure described in section 6.4. Both ap-
proaches are based on imposing a fixed threshold value for feature map
selection.

6.5.1 First approach: combined map with dual threshold

(CMDT)

The model comprises of H iterative stages where each stage corresponds
to a single feature map computation as illustrated in Fig. 6.8(a). The input
to any stage i consists of the original image I and the output of the previ-
ous stage Qi−1 such that Q0 is an initial map of all zero. In addition, upon
achieving a ’stop’ criterion, the iterative procedure stops and the output of
the stage becomes the final output saliency map J = Ci, where Ci is some
combination of maps performed in stage i. Otherwise, the procedure con-
tinues to produce an intermediate result (map) Qi.

Figure 6.8(b) shows the detailed steps in a stage. The procedure starts
by computing a feature map Mi through some technique denoted as
’feature map computation’ i. From Ehinger’s set of feature maps, this
could be either a BU, TM or CM map generation technique. The next
two modules belong to the feature map quality estimation model which
extracts characteristic features from a map and feeds it to the regressor
model to output an estimated AUC-ROC value yi. A decision on the esti-
mated value is performed as follows:

Action =


Stop and J = Ci, if yi ≥ ts

Continue wi = 1, o/p = Qi if ts > yi ≥ tc

Continue wi = 0, o/p = Qi otherwise

(6.7)

wherewi is a weight assigned to the map if the ’continue’ criteria is selected.
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(a)

(b)

Figure 6.8: The proposed combined map with dual threshold (CMDT) approach for fea-
ture map integration. The overall block diagram is shown in (a) for H stages. In this
scenario, H = 3 as we have only three feature maps. The modules of a stage is shown in
(b).

When the predicted value yi exceeds an upper limit threshold value ts, the
procedure stops and the combined map for the stage becomes the final
output map. However, when yi is less than the lower threshold value tc,
the map is removed by assigning it a zero weight. Similarly, when yi is be-
tween the two threshold values, it is retained. Ultimately the final output
of a stage is the combination of the weighted map wiMi and the previous
stage map Qi−1.

It is obvious that the quality estimation model is applied to the com-
bined feature map Ci and not directly on the computed feature map Mi.
The combined feature map could belong to any of the possible 2H − 1

combinations. Hence, we train separate regression models for each com-
bination. The reason for using a separate model for each combination is
because the visual attributes of these maps are different (see Fig. 6.3).
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Figure 6.9: A single stage of winner map with single threshold (WMST) for feature map
integration.

6.5.2 Second approach: winner map with single threshold

(WMST)

In this approach, a single feature map is selected with the best estimated
AUC-ROC value yj to represent the final fixation map where j is the in-
dex of a stage. As shown in Fig. 6.9, at each stage, the estimated AUC-
ROC value yj is compared with the AUC-ROC value of the previous stage
winner feature map Uj−1. The current feature map Mj becomes the win-
ner feature map only if its estimated value exceeds yj−1. If the estimated
AUC-ROC value of the winner feature map exceeds a fixed threshold tu,
the process stops; otherwise it continues to the next stage.

6.6 Results and discussion

In this section, we discuss and analyze the results from three different
perspectives. First, we examine how effectively our proposed approach
estimates an AUC-ROC quality score of a feature map evaluated by the
mean square error between the actual groundtruth score and the estimated
score. Secondly, we see which characteristic features are important in each
type of feature map. Finally, we illustrate how effective our approach is
in the dynamic feature map integration process for predicting human fix-
ation.
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6.6.1 Properties of the dataset

The dataset we have used for all our experiments consists of 912 real world
outdoor images of urban environments that is assembled by Ehinger et
al. [3] for a visual search task. Half of the dataset contained the target
pedestrian and the target was absent in the other half. In these colour
images of dimension 600 × 800, on average the target roughly occupied a
region of dimension 64 × 31. The background varies in complexity and
consists of objects such as streets, cars, road signs and buildings. For the
pedestrian-present images, the targets were spatially equally distributed
across the images’ four quadrants and at an angle range of 2.7o− 13o from
the centre of the images [3].

After generating the three feature maps for all images, the AUC-ROC
score is computed. It has been observed that the majority of these values
have a moderate to high AUC-ROC value with only relatively few having
low quality (below 0.5) in all three feature maps.

This suggests that the data is biased towards average to good maps
with very few examples of low-quality maps. This may also suggest that
the random forest regressor is very likely not to be trained to a range of
values of the characteristic features from the low-quality feature maps. As
a result, generalizing to cases with completely new data from low-quality
feature maps would be problematic. Hence, we might expect the regres-
sion model to exhibit poor estimation performance on low-quality feature
maps.

6.6.2 Simulation and parameter setting

From the outdoor images dataset assembled by Ehinger et al., 100 images
were used to train the pedestrian detector and another 100 to train the
contextual model. None of these images were used to train or test our
model. The remaining 712 images were divided equally for the training
and testing phases. We used the online code by Ehinger et al. for gen-
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erating the three feature maps without altering the parameters for map
generation [164].

In order to select the best parameters for the random forest regressor,
we empirically tested the regression model over a grid ofmt andB values.
We have noticed no significant improvement in the out-of-bag prediction
error beyond 10, 000 trees in any of the three feature maps. Hence in all our
experiments, B is fixed at 10, 000 trees. For mt, Table 6.1 shows the best-
selected values for all three feature maps. In addition, each experiment is
conducted 30 times. Along with the mean results, the margin of error with
confidence interval of 95% is reported. Table 6.1 lists the parameter values
used in our experiments.

All the experiments are conducted on a single Intel core i7-4790 @
3.60GHz machine with 8Gb memory and running the Linux operating sys-
tem. The simulations are performed using MATLAB R2015b.

6.6.3 AUC-ROC estimation performance

To find the performance of our proposed approach in estimating the AUC-
ROC score, we report the average mean-square-error (MSE) and the mar-
gin of error for a 95% confidence interval between the estimated AUC-
ROC scores and the groundtruth scores of the testing images over 30 runs
per experiment.

6.6.3.1 Feature map analysis

Table 6.2 shows the achieved MSE results for different feature maps. The
’+ indicates the combination of maps. Note that for notation, the term to
the left of ′/′ represents the training feature map type whereas to the right
is the testing feature map type.

From the table it can be observed that the performance varies as the
training and testing feature maps vary. When the training and testing fea-
ture maps are similar, our proposed approach performed very well and
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Table 6.1: Parameter values used in the experiments.

Description Notation Value
Characteristic features

# of characteristic features R 29

characteristic feature vector length D 77

# of patches P 9

Random forest regressor
# of random trees B 10, 000

# of tree characteristic features mt BU:5,TM:10,CM:8
terminal node size A 5
Bootstrap sample size O 0.632×N = 225

Bootstrap re-substitution - Applied
Miscellaneous

# of experiments - 30

# of train/test images N 356 each
Fixation threshold K 10%

# of feature maps H 3 (BU, TM and CM)

the MSE is lowest (see the diagonal values of the table). Small MSE indi-
cates that the regression model was able to estimate the quality of a feature
map accurately.

For instance, when the regression model is trained and tested over
(BU+TM) feature maps (we denote it as (BU+TM)/(BU+TM)), an MSE
of 0.0063 is achieved. On the other hand, when testing on different fea-
ture maps (e.g., all MSE values in the fourth column of the table other
than BU+TM), the MSE values increase due to the difference in visual at-
tributes between the training and testing feature maps. The same can be
observed in all the columns of the table.

As discussed in section 6.3, the visual appearance of the three types of
feature maps (i.e., BU, TM and CM) are different. The extracted charac-
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teristic features from the features maps form certain patterns in a high di-
mensional space that vary with the type of feature map. As a result, when
trained on one type and tested on another, the estimation performance is
degraded. In a similar manner, when two or more feature maps are com-
bined, the resultant feature map has different visual attributes than the
feature maps that contribute in its combination.

For instance in Table 6.2, when training over the composite feature map
(BU+TM), the average MSE is 0.0094 and 0.0236 for testing over BU and
TM respectively. Both values are high compared to that achieved by test-
ing over (BU+TM) feature map (i.e., 0.0063). This is because the combined
feature map exhibits different visual attributes from those feature maps
used in constructing the combined map. In fact, it can be typically ob-
served from the table that the characteristic features extracted from the
composite feature maps are better in describing the map’s visual attributes
than those extracted from single feature maps.

For a single trained and tested feature maps (i.e., BU/BU, TM/TM
and CM/CM), the average MSE achieved by the proposed ap-
proach is 0.0072, 0.0060 and 0.0087 for BU, TM and CM feature
maps respectively. In contrast, for the composite feature maps
(see (BU+TM/BU+TM), (BU+CM/BU+CM), (TM+CM/TM+CM) and
(BU+TM+CM/BU+TM+CM)), the MSE is normally lower than those for
single feature maps. The best result of 0.0044 is achieved when all feature
maps are combined. This suggests that when feature maps are combined,
the characteristic features become more effective in describing the maps.

According to the result presented in Table 6.2, it is clear that the com-
bination of the extracted characteristic features and the random forest re-
gressor was able to estimate the quality score of a novel feature map ac-
curately under specific training and testing limitations. This limitation
restricts the feature maps to be of similar type in both phases. If this con-
dition is satisfied, our proposed model can estimate a quality score of any
feature map with high precision.
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6.6.3.2 Estimation performance comparison

In the previous section, we have seen that our model accurately estimates
the AUC-ROC score of a given feature map. To justify our selection of the
characteristic features and the random forest regressor, in this section we
compare the average MSE achieved by our selection with other possible
choices and show that our model is a suitable choice for the estimation
problem.

We have compared the random forest regressor with the following al-
ternative regression techniques: decision tree bagging [165], least square
boosting (LS Boost) [166], a fitted linear model, and Kernel-SVM. The com-
parison is performed over BU/BU, TM/TM and CM/CM cases. As shown
in Fig. 6.10(a), random forest regressor outperforms all other techniques in
all three cases. Perhaps the most competitive technique to the random for-
est is tree bagging. This is expected as bagging is similar to random forest
except that no feature sampling is performed in the former. As a result,
some level of variance exists in the generated trees and is reflected by the
MSE values when compared with those of random forests.

To validate the effectiveness of the characteristic features we used (see
the 29 set of features described in section 6.4.2), we compare its perfor-
mance with some other set of characteristic features proposed previously
for saliency map quality estimation. Specifically, we compare the perfor-
mance of our characteristic features with Kim et al. features (we call these
prior features) [32], Hu et al. CSI indicator [109] and the features for satellite
images (satellite features) proposed by Li and Itti [12]. For a fair compari-
son, all these features are used with random forest regressor.

As shown in Fig. 6.10(b), our characteristic features (we refer to as the
proposed features in the figure) achieved the smallest mean square error
in all the feature maps. In contrast, the CSI indicator performed poorly in
estimating the AUC-ROC scores. Since the CSI indicator concretely relies
on the compactness characteristic feature which is less effective in fixa-
tion maps, it gives high MSE values. Prior features is more effective than
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Figure 6.10: Average mean-square-error (MSE) of the proposed model using random for-
est regressor. The error bars represent the margin-of-error with confidence interval of
95%. The error is computed when the model is trained and tested on the same type of
feature maps. The performance of our model is compared with other regression models
shown in (a). In addition, when the random forest regressor is trained with different set
of characteristic features, our proposed characteristic features has the smallest MSE in all
three feature maps as shown in (b).
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Figure 6.11: The MSE quality score estimation performance comparison between random
forest regressor and an average model over a range of AUC-ROC values for BU, TM and
CM feature maps.

CSI indicator, despite using compactness because it also uses some other
useful characteristic features such as brightness and darkness priors. The
characteristic features proposed by Li and Itti for satellite images have a
comparable performance to our characteristic features in all three feature
maps. However, these characteristic features are computationally expen-
sive particularly in large images.

Because random forest performs an averaging operation (i.e., fitting a
constant model) within a rectilinear region in the feature space, it would
be interesting to compare its performance against a simple average model.
Figure 6.11 shows the break-up of MSE of estimation at various AUC-ROC
splits for both random forest regressor and an average model. The aver-
age model simply computes a quality score by averaging the AUC-ROC
values over all the examples.

In all three feature maps, it is evident that random forest is far bet-
ter than a simple average model in estimating an AUC-ROC value. This
performance varies from one split to another. Because the majority of the
feature maps in all three cases have AUC-ROC values greater than 0.7, the
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average model performs slightly better within this range than the range
less than 0.7.

The results presented in this section confirms the viability of the ran-
dom forest regression techniques and the set of characteristic features for
the type of feature maps used in our model.

6.6.3.3 Visual results

Figure 6.12 shows three types of visual examples (i.e., best, worst and a
typical estimated AUC-ROC score) from BU/BU, TM/TM and CM/CM
cases respectively. For the best performance achieved in both TM and BU
maps, the absolute difference between the actual groundtruth value (in
green) and the estimated value (in red) is around 0.006 and 0.007 respec-
tively, indicating highly accurate estimation. For the CM feature map, this
difference is also low (around 0.023). However, in most typical maps (see
the sample image selected as an example), the CM feature map error is
around 0.089. As the MSE for BU and TM feature maps reported in the
previous paragraphs is lower than that of CM, a small difference between
the actual and the estimated value can be observed from the typical sam-
ple images for BU and TM feature maps.

6.6.4 Feature importance

As mentioned in section 6.4.3.1, the random forest technique has the ability
to determine the importance of each characteristic feature in the regression
problem using Eq. (6.6). Figure 6.13 gives a complete importance profile
for BU/BU, TM/TM and CM/CM measured using a decrease in the Gini
index value. This value is directly proportional to the importance of the
characteristic feature.

For both BU and TM feature maps, the most important characteristic
feature is the global mean intensity of the map (f73). This characteristic
feature describes the overall brightness of a feature map and it is one of the
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main characteristic features used by Kim et al. in the prior features) [32]. In
addition, the global entropy (f75) of the BU feature map is also important
as it captures the scatteredness of the fixation map. In contrast, the TM
feature map is inherently scattered due to the way these maps are gener-
ated [62], and hence, it does not receive high importance. All single val-
ued individual characteristic features have moderate importance in both
the feature maps except for the global density which is least important.
Again this characteristic feature is taken from CSI indicator and has more
significance in salient object maps than for fixation or TM feature maps.

Patch based characteristic features have almost uniform importance
over all the patches in both the feature maps. Some exceptions suggest
that certain patches are more important than other patches, for instance,
the patch saliency straddle for BU feature maps. A particular importance
pattern can be observed (i.e., patches 1,2,4,5,7 and 8) which indicates that
the upper half of the maps are more dense in salient regions than the lower
part, and hence more important. Roughly, this gives an overall picture of
the regions of interest highlighted by the BU feature maps.

It can be seen from Fig. 6.13 that the feature importance of BU charac-
teristic features is highly correlated with that of TM. Despite this similarity,
the estimation performance for TM feature maps is better than BU feature
maps as discussed in the previous section (see Table 6.2). This is due to
the way these characteristic features behave in high dimension and due to
their level of dependency that varies from a feature map to another when
learning an estimation model.

For the CM feature maps, local patch-based characteristic features have
received high importance by random forest regressor along with the global
statistical characteristic features (f73 − f77). The contextual feature map
is visually a strip of uniform intensity, so the local characteristic features
capture this spatial distribution. Furthermore, in contrast to BU feature
maps, the pattern of the patch importance suggests that the lower part
of the map is more important. Similarly, the distance from the center of
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Figure 6.13: Characteristic feature importance profile determined by random forest re-
gressor for (a) BU/BU feature maps, (b) TM/TM feature maps and (c) CM/CM feature
maps. In order to interpret this figure, it should be viewed in colour.
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the map (i.e., f7) is also given an importance because it provides location
information of the salient strip. Note that no shape based characteristic
features (i.e., geometrical) are given importance as such information does
not matter when considering a single rectangular horizontal strip.

Note that some of the characteristic features discussed in section 6.4.2
would be redundant in some feature maps (i.e., exhibiting low impor-
tance) and relatively important in other type of feature maps. For instance,
f1 − f28 have least importance in CM/CM but exhibit more importance in
both BU/BU and TM/TM cases (see Fig. 6.13).

Typically, for important characteristic features, we expect that such
characteristic features when considered solely would have comparable es-
timation accuracy to that achieved when all features are considered. To
elaborate this point through example, we visualize the impact of character-
istic feature importance on the MSE estimation performance by fitting two
regression models on the data. The first model is learned when only global
mean intensity (f73) is extracted from all the BU feature maps whereas the
second model is learned from the CM feature maps when using normal-
ized size of LSR (f10). As shown in Fig. 6.14, when only using f73, a better
fit to the data is achieved than f10. The MSE between the fitted model
and the groundtruth AUC-ROC values is 0.0113. Since f73 is the most im-
portant characteristic feature in BU feature maps, the achieved MSE of
estimation is close to that achieved when all 77 characteristic features are
used (i.e., 0.0072).

In contrast, f10 in CM feature maps has a very low importance which
is can be visualized by the fitted model (see Fig. 6.14(b)). The majority of
the values for this characteristic feature spans a very small range which
is centralized around 0.1 with the corresponding AUC-ROC values rang-
ing from 0.35 to 0.93. Only some examples have their values outside this
range. As a result, by fitting a model that is solely learned from this charac-
teristic feature on the data, the MSE of estimation is very high (i.e., 0.0324

compared to 0.0087 when all the characteristic features are used). This
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Figure 6.14: Model fitting on the data when learned from (a) An important BU feature
map characteristic feature f73 and (b) f10 from CM feature map with low importance.
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means that for the CM feature map, the normalized size of LSR (f10) does
not capture any structure with the AUC-ROC and would result in poor
estimation performance if considered alone.

The important characteristic feature profile provides a way to select
those characteristic features that would be most useful in estimating a
quality score of a feature map. These characteristic features vary in impor-
tance from one feature map to another. Note that such feature importance
does not consider the interaction between features and only performs the
selection based on individual performance. Ideally, we would perform a
feature selection over the set of characteristic features to acquire a set of
selected characteristic feature to maximize both accuracy and efficiency.
However, this is not considered in this work and can be allocated for fu-
ture work.

6.6.5 Characteristic feature analysis

In this section, we investigate the nature of some of the characteristic
features and their relation with the estimated AUC-ROC values. This is
achieved by producing partial dependency plots of characteristic features.
These plots are generated by assigning various possible values to the can-
didate characteristic feature and averaging the response from all the trees
in the random forests over all the examples. We haven chosen six interest-
ing characteristic features from each feature map for discussion.

The characteristic features from left to right in Fig. 6.15 are
f1, f2, f15, f73, f74 and f75 respectively for BU/BU (i.e., when train on BU
and test on BU feature maps) (see first row), TM/TM (second row) and
CM/CM (third row).

The first characteristic feature is the number of salient regions in a fea-
ture map. Normally having more salient regions is not a desirable visual
attribute in a feature map as it accounts for more regions of interest. This
behavior is clearly captured by the dependency plot for BU feature map.
For TM feature maps, no obvious relation can be deduced. This might
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TM (second row) and CM (third row) feature maps.

be due to the procedure by which such target maps are constructed (i.e.,
upright rectangular shaped regions). For CM feature maps, since we are
dealing with a single strip of region, the relation is simply a constant. This
explains why this characteristic feature has low importance in the CM fea-
ture maps.

In the next characteristic feature which represents the average size of
the salient regions (f2), all the dependency plots show that larger salient
regions in a feature map indicate a better quality map than smaller re-
gions. Moving to the next characteristic feature, which is the normalized
orientation of the most salient region (f15), the normalizing is performed
such that the value of one represents 90◦ orientation and−1 is−90◦. How-
ever, the partial dependency plot for this characteristic feature shows the
feature values ranging from zero to one (i.e., the x-axis).

Although this characteristic feature has low importance, it has some in-
teresting information. Both BU and TM maps show that a map of its most
salient region having an orientation close to 90◦ is more desirable. This
observation is in an accordance with the visual task of finding pedestrians
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that usually are found in an upright position in natural scenes. In contrast,
the CM feature maps show a different preference of horizontal orientation.
This is not surprising as most of the contextual regions (mostly roads or
pavements) in this dataset are located horizontally.

In all feature maps, for the saliency global intensity characteristic fea-
ture (f73), a nearly linear relation exists between the values of this charac-
teristic feature and the estimated AUC-ROC values. The average intensity
of a feature map corresponds to the brightness of the map. Good fea-
ture map exhibits low overall brightness (see the partial dependency plot
for (f73)) and high contrast (captured by standard deviation of the fea-
ture map (f74)). High contrast feature map yields high AUC-ROC value
which is again captured by the partial dependency plots for f74. Finally,
the global entropy f75 measures the randomness of a feature map. The par-
tial plots show that higher the entropy, lower becomes the quality of the
feature map. Hence, a good feature map is characterized by low saliency
randomness.

The above examples show that we can deduce a holistic description
of the quality of a feature map from the individual characteristic features
through the partial dependency plots.

6.6.6 Feature map integration performance

To evaluate the performance of our feature map integration approaches,
we present the final AUC-ROC value achieved when combining the fea-
ture maps used the proposed CMDT and WMST combination approaches.
This AUC-ROC value will evaluate the overall system’s performance for
predicting human fixation. We show that both approaches yield higher
accuracy in prediction human fixation and better efficiency than that
achieved by combining all feature maps.



6.6. RESULTS AND DISCUSSION 271

6.6.6.1 CMDT performance

In CMDT approach, a key factor in performing the decision making on
the estimated value by the regressor is the selection of the upper ts and
lower tc threshold values. We test CMDT on a grid of different threshold
values between 0.5 and 0.95. Values less than 0.5 were not applied as they
correspond to chance (or worse). For each threshold pair, we compute the
average AUC-ROC of the final fixation map generated by CMDT for all
the test images. Further averaging was performed over 30 experiments
for repeatability.

A performance improvement is observed when higher threshold val-
ues are used. Higher threshold values impose a constraint over premature
stopping and results in higher AUC-ROC values. However, this is not the
only factor that regulates the performance of the system. If the quality es-
timation model exhibits a high average MSE, then this will cause a wrong
estimation of the AUC-ROC values at each stage of the CMDT procedure.
This leads to a random error propagating from one stage to another. Even
if an optimum set of thresholds is used, the decision will be made on false
estimated AUC-ROC values.

To analyze the performance of CMDT, we have selected two points on
the grid, the first having tc = 0.7 and tc = 0.9 and the second with tc = 0.7

and tc = 0.8. The corresponding final average AUC-ROC prediction value
is 0.8867 and 0.8703 respectively. The average MSE over all the stages and
for all the test images is 0.0058 and 0.0069 respectively. Furthermore, the
average processing time of a single image through the CMDT stages takes
approximately 4.03 and 3.85 seconds respectively. Hence, a trade-off exists
between the two points. Higher prediction accuracy is achieved at the
expense of more processing time.

From the results obtained through these two points, we can assert that
as MSE is decreased (i.e., better quality score estimation), the overall av-
erage AUC-ROC value of the final fixation map is improved. Hence, the
overall performance of CMDT is dependent on the threshold values as
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Table 6.3: The impact of quality estimation performance on the overall performance of
CMDT which is evaluated using the average AUC-ROC value and the average processing
time.

Method Avg. MSE Avg. AUC-ROC Avg. time

Random forest 0.0069± 0.0004 0.8703± 0.026 3.85± 0.07

DT Bagging 0.0093± 0.0006 0.8171± 0.017 3.97± 0.06

LS-boost 0.0121± 0.0004 0.7828± 0.028 4.01± 0.08

Linear 0.0148± 0.0005 0.7634± 0.031 4.03± 0.04

well as the performance of the regression model.
In order to see the impact of the estimation process on the overall per-

formance of CMDT, we fix the thresholds to (ts = 0.8, tc = 0.7) to rule out
its contribution and vary the regression model. Apart from random for-
est regressor, we use decision tree bagging [165], least square boosting (LS
Boost) [166] and a linear model. Table 6.3 shows that the performance of a
regression model for estimating a quality score is directly proportional to
the overall fixation prediction accuracy. In addition, as the MSE goes high,
decision is made on false estimated values. As a result, more stages are re-
quired to reach the stopping criteria, which requires increased processing
time.

6.6.6.2 WMST performance

As in CMDT approach, various threshold values were used to evaluate
the performance of WMST. For instance, when fixing the value of tu to
0.84, an AUC-ROC of 0.8640 was achieved. When increasing the threshold
to 0.9, even higher human fixation prediction was achieved (AUC-ROC of
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Table 6.4: The importance of feature map computation sequence in improving the effi-
ciency of WMST approach. The threshold value is fixed to tu = 0.9.

Sequence of source Average AUC-ROC Processing time (s)

BU, TM, CM 0.8771± 0.014 4.03± 0.01

BU, CM, TM 0.8765± 0.015 4.01± 0.02

TM, BU, CM 0.8770± 0.012 3.74± 0.04

TM, CM, BU 0.8767± 0.015 3.14± 0.04

CM, BU, TM 0.8765± 0.017 3.37± 0.05

CM, TM, BU 0.8769± 0.013 3.12± 0.04

0.8771). Note that WMST operates on a single winner map that has an es-
timated AUC-ROC value exceeding a threshold value. Thus, the sequence
of computing the feature maps impacts the efficiency of the approach.

Table 6.4 shows how changing the sequence of feature map computa-
tion can have an impact on the efficiency of the process. A considerable de-
crease in processing time from 4.03 seconds when the map manipulation
sequence is (BU,TM,CM) to only 3.12 seconds with unnoticeable degrada-
tion in accuracy performance by reversing the order.

6.6.6.3 Performance comparison with various approaches

Table 6.5 compares the performance of the proposed approaches with var-
ious other approaches. The terms ’preferred’ and ’best’ refer to the perfor-
mance when using tc = 0.7, tc = 0.8 and tc = 0.7, tc = 0.9 in the context of
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CMDT respectively. For WMST, they correspond to the performance when
tu = 0.9 for the sequence ’BU,TM,CM’ and ’CM,TM,BU’ respectively.

When all feature maps are used (i.e., Ehinger’s approach), the average
AUC-ROC is 0.8524 and the time required to compute all the feature maps
is 4.02 seconds. Our proposed CMDT and WMST approaches (whether
it is ’preferred’ or ’best’) achieve higher fixation prediction accuracy. The
’best’ approaches in CMDT requires slightly longer processing time, oth-
erwise, the processing time is lower than computing all feature maps. The
ideal case represents the best possible combination of feature maps that
achieves the highest AUC-ROC value on individual images. Our pro-
posed approaches, particularly CMDT (best) has a comparable prediction
accuracy result with that of the ideal case. Note that the time required for
estimating the quality score of a single feature map is only 0.01 second.

Finally, in order to demonstrate that the quality of the learned regres-
sion model has a major impact on the dynamic feature map selection pro-
cess and hence, in human fixation prediction accuracy, we used other re-
gression models with the WMST framework and reported the achieved
AUC-ROC values. It is clearly evident that as the average MSE of esti-
mation over all three stages increases, the AUC-ROC fixation prediction
value decreases (see Table 6.6).

6.7 Chapter summary

One of the challenging tasks in visual attention systems is to identify the
quality of a novel feature map based on its visual appearance. This pro-
cess is particularly useful for integrating multiple feature maps of good
quality to maximize the detection accuracy of a target object. Most of the
previous approaches use compactness as the main parameter for quality
evaluation. Compactness can be useful for evaluating the quality of fea-
ture maps when performing salient object detection but fail to describe
the characteristic of fixation maps. In addition, these approaches address
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Table 6.5: Human fixation prediction and processing time comparison between the pro-
posed feature map integration approaches and other static combination of feature maps.
τ is a very small value due to variation in machine speed.

Method Avg. AUC-ROC Avg. time

Only BU 0.7933± 0.014 3.70± τ

Only TM 0.8094± 0.020 0.18± τ

Only CM 0.8415± 0.018 0.14± τ

BU + TM 0.8042± 0.023 3.88± τ

BU + CM 0.8414± 0.019 3.84± τ

TM + CM 0.8436± 0.024 0.32± τ

All sources 0.8524± 0.027 4.02± τ

Ideal 0.8986± 0.020 3.97± 0.09

CMDT (preferred) 0.8703± 0.026 3.85± 0.07

CMDT (best) 0.8867± 0.021 4.03± 0.02

WMST (preferred) 0.8769± 0.013 3.12± 0.04

WMST (best) 0.8771± 0.014 4.03± 0.04
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Table 6.6: The impact of feature map quality estimation on the overall performance of
WMST through the average AUC-ROC value. The threshold value tu is fixed to 0.84 for
all the experiments. The margin-of-error is computed from the standard error of sample
mean and t-distribution critical value with confidence interval of 95%.

Method Avg. MSE Avg. AUC-ROC

Random forests 0.0068± 0.00013 0.8640± 0.012

DT Bagging 0.0092± 0.00024 0.8129± 0.023

Kernel SVM 0.0113± 0.00009 0.7903± 0.012

Linear 0.0120± 0.00089 0.7754± 0.018

LS-boost 0.0131± 0.00050 0.7553± 0.027

the problem as a binary classification based on some criteria and do not
provide an actual estimate of the quality measure.

In this chapter, we have proposed an approach that estimates a quality
score of any novel feature map for fixation feature maps. The novelty of
the proposed approach is twofold. The first is the proposed set of simple,
efficient and effective features referred to as characteristic features that are
extracted from a feature map to attain a visual description of the map. The
second is to use these characteristic features to learn a regression model
using random forests that estimates a quality score (i.e., AUC-ROC value)
of any novel feature map. Targeting one particular dataset of 900 outdoor
pedestrian images [3], we show that our approach has estimated the AUC-
ROC score of three types of feature maps (i.e., bottom-up (BU), target map
(TM) and contextual map (CM)) with high accuracy.

The proposed characteristic features provide a better description of the
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feature maps than three state-of-the-art previously proposed features used
as feature map visual descriptors. By applying the random forest regres-
sion model on these three features, we found that the mean-square-error
(MSE) of AUC-ROC estimation is higher than that achieved when using
our proposed characteristic features on all three types of maps.

When training and testing the regression model over similar type of
feature maps, our approach achieved the highest accuracy in estimating
the AUC-ROC quality score. The effectiveness of the characteristic fea-
tures is highly coupled with the structure of these features in the high
dimensional feature space. Some of these complex relations are captured
by the feature importance and the partial dependency plots. From this
information, it is concluded that the proposed characteristic features, par-
ticularly the important ones in each type of feature map, can provide a
rough visualization of a good feature map for fixation.

Finally, by integrating our proposed approach with a two simple pro-
posed feature map integration frameworks, we demonstrated that our
model achieved a higher human fixation prediction accuracy than that
achieved by combining all feature maps adopted by Ehinger et al. [3]. In
the first approach called the combined map with dual threshold (CMDT),
the best average AUC-ROC prediction value is 0.8867 when the upper and
lower threshold values are 0.7 and 0.9 respectively. Similarly, in the second
approach, called winner map with single threshold (WMST) the best result
is 0.8771 when the threshold value is 0.9. In both cases, the fixation pre-
diction accuracy of the proposed approaches is higher than that achieved
by integrating all feature maps which is 0.8524 at the expense of a minor
increase in the processing time.
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Chapter 7

Conclusions and Future Work

The primary goal of this thesis was to model top-down saliency and to
combine it with bottom-up saliency to maximize the detection accuracy of
an object detection task. This goal was successfully achieved by proposing
a number of new approaches and methods for attentional feature weight-
ing, feature selection and dynamic combination of bottom-up and top-
down saliencies. The effectiveness of these methods was evaluated with
two criteria; the accuracy of detecting a variety of target objects and the
efficiency of the methods for practical purposes.

All these methods were evaluated using standard benchmark datasets
for salient object detection and object recognition. In addition, a number
of self-created challenging datasets for target object detection were used.
The reason for having such datasets was to investigate the ability of the
proposed methods to handle target objects with varying degree of saliency,
which could not be performed on the available benchmark datasets.

In this thesis, four main contributions (in the form of proposed meth-
ods) are made in modeling task-driven visual attention. The first contribu-
tion is modelling of top-down saliency through feature weighting mecha-
nism using contextual information. The second contribution is the intro-
duction of a two-phase target features to the contextual based weighting
mechanism. The third contribution is the development of a dynamic top-
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down and bottom-up combination strategy through feature selection. The
final contribution is the estimation of a quality score of a novel feature map
for dynamic feature map integration.

7.1 Achieved objectives

The following research objectives have been accomplished that contribute
towards achieving the overall goal of the thesis:

1. The first objective was to incorporate high-level knowledge of the scene when
modelling top-down saliency to improve the feature weighting process.
This has been achieved by proposing a novel approach for modelling
top-down saliency that utilized contextual information about an im-
age in learning the attentional feature weights. To our knowledge,
this work represents the first of its kind in learning top-down atten-
tional feature weights for target object detection using contextual in-
formation. The contextual information represent the gist content of
the image and constructed through a feature distribution estimation
technique. The model performs a contextual matching between a
novel image and a set of learned contextual information through un-
supervised clustering. The proposed model referred to as top-down
contextual weighting (TDCoW) assigns appropriate weights to the
features that would maximize the detection accuracy of the target
object. The model achieves higher detection accuracy than those that
do not utilize contextual information for feature weighting.

2. The second objective was to improve the detection capabilities of the contex-
tual top-down features weighting approach in more complex and challeng-
ing target scenarios.
This objective was achieved by proposing a low-level target feature
representation combined with contextual weighting. To our knowl-
edge, incorporating low-level target and contextual information to



7.1. ACHIEVED OBJECTIVES 281

model top-down attention has not been considered before for target
object detection. Two levels of target specific features were intro-
duced, one through target based feature weighting and the other us-
ing a target object recognizer. The novelty at both levels comes from
their ability to describe and hence detect complex target objects using
multi-scale low-level features. Because targets are detected through
low-level features, the model is computationally very efficient as no
high-level target tuned descriptors or handcrafted features are re-
quired. When this two-level target information is combined with the
contextual weighting, the detection accuracy is better than a pure
contextual based top-down saliency approach.

3. The third objective was to combine top-down and bottom-up saliencies in a
more interactive way to improve the efficiency and detection accuracy over
the static combination strategy.
This objective was effectively completed by devising an approach
that we refer to as feature selection based top-down saliency model
(FS-TDSM). This approach attempts to combine top-down and
bottom-up saliencies in a unique way by formulating the combina-
tion procedure as a feature selection problem. Such an approach en-
sures that the contribution of both saliencies is considered depend-
ing on their importance in detecting the target object. Performing
a selection from a pool of features belonging to either top-down or
bottom-up saliencies results in a more efficient (a smaller number of
features) and more accurate (only relevant features) detection of the
target. On several challenging datasets, FS-TDSM has a better per-
formance than those approaches that combine both saliency features
statically.

4. The fourth objective was to dynamically integrate important feature maps
on image basis to avoid the integration of all feature maps for each image.
This objective was achieved by proposing a novel model to estimate
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a quality score of a feature map through a regression approach. This
approach extracts various characteristic features from a feature map
that describes its visual attributes and feeds it to a regressor. The
learned regression model, in turn, estimates a quality score for the
feature map. When this proposed estimation model was applied to a
feature integration approach for predicting human fixation, the num-
ber of feature maps required was reduced and the human fixation
prediction accuracy was boosted. This yielded a dynamic feature
map integration mechanism on image basis.

7.2 Conclusions

This section provides important findings, conclusions and limitations of
each proposed work in this thesis.

7.2.1 Contextual based top-down saliency weighting

Weighting of top-down attentional features by considering high-level gist
information of a scene was introduced for the first time while modelling
top-down saliency. The final model achieves better feature weighting than
models without context for target object detection.

Each component of this model represents a sub-contribution, which
collectively yields the main contribution of this research work. The first
sub-contribution was to develop a bottom-up saliency technique based on
the Itti model of attention. This technique utilizes a new information theo-
retic centre-surround mechanism called information divergence measure
(IDM) to yield normalized feature maps. This bottom-up saliency tech-
nique was tested on two benchmark datasets for salient object detection.
The precision-recall accuracy curves confirm the superiority of our pro-
posed bottom-up saliency technique over several state-of-the-art bottom-
up techniques. The reason for proposing a new bottom-up saliency is
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to have a set of effective features along with a good bottom-up saliency
generation mechanism, which is essential in modelling top-down saliency
through feature weighting.

The second sub-contribution is the weight computation techniques
used in TDCoW. We show that more accurate weight values can be pro-
duced by computing the weights using Jensen-Shannon divergence JSD
rather than the conventional SNR method. It has been shown the JSD is
less sensitive to variation in target saliency compared to SNR approach.
The average precision-recall curve revealed the effectiveness of JSD over
SNR when tested over a dataset of 400 images of cricket balls.

The third sub-contribution is in the form of a contextual clustering
framework for assigning feature weights to a novel image. By varying the
cluster size for grouping training images with similar context (based on
a contextual descriptor matching technique), the detection performance is
affected. The average area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) shows that as the number of clusters is increased
(equivalent to fewer images in a cluster), a better AUC performance is
achieved (i.e., better detection accuracy). However, increasing the number
of clusters reduces the efficiency of the system because of increase in the
number of contextual matchings required for a new image.

TDCoW is the complete solution that combines the above-mentioned
components in an effort to use the contextual information for proper
weight assignment to the features. The model was evaluated on four
datasets, two of cricket balls and the other two from the Graz-02 dataset
of persons and bikes. The precision-recall and F-measure scores confirms
the effectiveness of incorporating contextual information while perform-
ing top-down weighting for target object detection. In addition, the model
outperforms state-of-the-art bottom-up saliency techniques that model at-
tention in the absence of contextual information.

This model can be generalized to any dataset of images with moderate
inter-image content variability. However, if the images in a dataset ex-
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hibit high variation in their content (particularly in their background), the
learned weights tend to produce uniform weights across all features. This
proves to be a potential limitation of this model. Furthermore, the contex-
tual descriptor used in TDCoW is large because it is constructed through
a kernel density estimator. This reduces the efficiency of the model in
the testing phase, particularly when performing descriptor matching with
many clusters.

7.2.2 Target information for top-down saliency

Detecting target objects with complex visual attributes is a challenging
task. In such scenarios, contextual based attention that provides seman-
tic knowledge of the scene becomes ineffective. More precise knowledge
of target characteristics is needed to guide attention towards targets. A
model was proposed that combines target information through low-level
features with the contextual information in two stages, one through target
specific feature weighting and the other through a Naive Bayes recogni-
tion model.

The model was tested and analyzed on seven challenging datasets with
12 target objects with varying visual complexity. The results show that the
detection accuracy in the form of the F-measure score is always boosted
when incorporating target information. When the model uses both stages
of target knowledge along with the contextual information, the detection
accuracy is maximized.

The proposed model is very efficient as it only utilizes low-level fea-
tures at multiple scales for describing a target object. These features along
with the two stage target feature modelling was able to effectively sample
the target objects with high precision. In some occasions, when the target
object is very complex (e.g., a multi-part object), the proposed model fails
to detect the object. This establishes a limitation on the proposed model
as the low-level features provide less description of certain complex target
objects.
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The proposed approach represents a generalized model for generic tar-
get object detection. However, for some complex objects, the detection ac-
curacy decreases due to insufficient features for target description. This
could be resolved by introducing more features into the model. Despite
this limitation, the recognition module was often able to eliminate false
positive regions that were triggered by the model as target objects even
when the target was not detected.

7.2.3 Feature selection based saliency combination

An attentional model was proposed that combines bottom-up and top-
down processes interactively. The model referred to as feature selection
based top-down saliency model (FS-TDSM) combines those features be-
longing to either top-down or bottom-up features by maximizing the F-
measure score of target detection.

The model is tested on five datasets containing cricket balls as target
objects. The detection accuracy is evaluated by averaging the F-measure
score over all the images in the test set. The performance is also evaluated
through the number of fixations required to get to the target object. The
proposed combination model is compared with one of the state-of-the-arts
visual attention model (referred to as the VOCUS model) that combines
top-down and bottom-up processes statically.

The selected features by the proposed model achieve higher detection
accuracy when compared to the VOCUS model. The proposed model also
requires a smaller number of fixations to reach the target object than those
required by the VOCUS model.

A key element in the proposed feature selection approach for combin-
ing both saliencies is to put all the features (belonging to either bottom-up
or top-down) into a single pool to perform the selection from. This will
ensure that the detection of the target is contributed by both saliency pro-
cesses. This approach also considers those top-down or bottom-up fea-
tures that are relevant for a detection task. Hence, those features that have
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a minimal contribution in detecting the target object are removed.
From the obtained selected features, we conclude that both processes

contribute actively while performing a visual search for the target object.
This contribution is image content dependent. In images with uncluttered
backgrounds and few distracting objects, the bottom-up features are pre-
ferred. On the other hand, the contribution of these bottom-up features
decreases in more complex background images while the importance of
top-down features is more prominent. This is in accordance with some
of the biological studies that suggest that top-down influence dominates
visual search when the target is less discriminant with respect to the back-
ground.

The model can be generalized to any target object detection approach
provided that appropriate set of top-down target tuned features are con-
sidered in the pool of features. Despite the simplicity of the approach, it
successfully performed a dynamic combination of top-down and bottom-
up saliencies at the features level. We claim that this model is an initial
investigation of combining both saliencies dynamically. Hence, the pro-
posed model can be used to build a more complex and dynamic visual
attention system for combining top-down and bottom-up saliencies.

7.2.4 Dynamic saliency integration

The main objective of this work was to show whether it is possible to iden-
tify the quality of any feature map based on its visual attributes, and how
it is possible to perform a dynamic feature map integration for predicting
human fixation based on a quality estimation of the feature map.

This objective was successfully achieved by proposing a novel ap-
proach for estimating the quality of a feature map (i.e., estimating the
AUC-ROC score) through a regression technique. The proposed approach
extracts 77 computationally efficient characteristic features from a feature
map. These characteristic features describe local and global visual at-
tributes of a feature map through statistical and geometrical information.
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A random forest regressor learns a model from these characteristic fea-
tures to estimate a quality score of a novel feature map accurately without
the need of the groundtruth data.

The model was tested on 912 outdoor urban images for predicting hu-
man fixation when searching for pedestrians. Particularly, the model was
applied to three types of feature maps, a bottom-up map, a target map and
a contextual map. The average mean-square-error between the estimated
AUC-ROC score and the groundtruth score suggests that our model per-
forms accurate estimation of the AUC-ROC for a given feature map pro-
vided that the regression model is trained and tested over a similar type
of feature maps.

The model is also flexible in the sense that it extends the estimation to
any combination of the above-mentioned feature maps. For any combina-
tion of the three feature maps, the model is able to accurately estimate the
AUC-ROC score with a high accuracy (i.e., low average MSE), provided
that the train/test data type condition mentioned above is not violated.

For each type of feature map, a set of important characteristic features
can be inferred by random forest regressor. These characteristic features
vary in importance and predictive power from one type of feature map to
another. Typically in all three feature maps, it has been found that global
statistical characteristic features have the most significance in describing
the visual attributes of these feature maps.

The effectiveness of the characteristic features is highly coupled with
the structure of these characteristic features in the high dimensional fea-
ture space. Some of these complex relations are captured by the feature
importance and the partial dependency plots. From this information, it
is concluded that the proposed characteristic features, particularly the im-
portant ones in each type of feature map, can provide a rough representa-
tion of a good feature map for fixation.

The random forest regressor and the proposed set of characteristic fea-
tures is well suited for the type of feature maps used in this work. The
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random forest regressor was compared with the kernel based SVM, tree
bagging and tree boosting regression techniques. In addition, various pre-
viously proposed characteristic features that were used in predicting the
quality of feature maps are compared with the proposed set of character-
istic features. The average MSE achieved by our model is less than those
achieved by other regression techniques and characteristic features, and
hence show the effectiveness of our selection for this particular problem.

By integrating our proposed approach with a two simple proposed fea-
ture map integration frameworks (CMDT and WMST), we demonstrated
that our model achieved a higher human fixation prediction accuracy than
that achieved by combining all feature maps. In addition, the proposed
integration framework along with the estimation model improves the effi-
ciency of the system as it is not required to compute all three feature maps
every time the target object (i.e., pedestrians) is searched for. The model
is dynamic as it combines only those feature maps that exhibits high es-
timated AUC-ROC score on a run time depending on the characteristic
features of a feature map.

One limitation of the current estimation model is that it requires the
training and testing maps to be similar. instances. This imposes a practical
limitation in the CMDT feature map integration framework as it requires
a model for each feature map combination. When the number of feature
maps increase, it would become impractical to have a regression model
trained for each type of feature map combination.

7.3 Future work

Because top-down saliency in this thesis has been modelled for a particu-
lar visual task (i.e., target object detection), the selection of target relevant
features is critical. In chapter 4, only low-level features were used whereas
in the combination model (see chapter 5), handcrafted top-down target
specific features were used. For the models to generalize for any complex
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target object, a mechanism is needed that can generate constructed fea-
tures from a set of basic low-level and some high-level features to yield
more robust, generalized and powerful features automatically. This could
be achieved through feature construction and could be considered as a
future work.

One limitation with the proposed estimation model is that it has not
been tested on scenarios and feature maps other than the case study that
comprises of only three feature maps and their combination. Although
the characteristic features that are extracted from a feature map represent
generalized visual attributes of any given feature map, it is worth inves-
tigating the effectiveness of the proposed model on a variety of scenarios
and different types of feature maps. It would be interesting to use trans-
fer learning approaches through techniques such as genetic programming
[167] and deep neural networks [168] to mitigate the similar instances lim-
itation of the proposed feature map quality estimation model.

Finally, all the proposed works in this thesis aim at modelling top-
down saliency without considering the spatial importance of regions of
the image. The proposed techniques perform selection over the entire im-
age. These models therefore ignore the fact that different regions of the
image might require different attention in terms of what features to ex-
tract, what regions to attend to and what features to extract from the next
attended region. An active visual attention model is needed that learns
the state of the next attended location from the previously attended loca-
tions. In this way, efficiency could be further improved by not attending
to irrelevant regions of the image and by only computing the features that
would best suit the attended location.
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