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Abstract
Figure-ground segmentation is a process of separating regions of interest from
unimportant backgrounds. It is essential to various applications in computer vi-
sion and image processing, e.g. object tracking and image editing, as they are
only interested in certain regions of an image and use figure-ground segmenta-
tion as a pre-processing step. Traditional figure-ground segmentation methods
often require heavy human workload (e.g. ground truth labeling), and/or rely
heavily on human guidance (e.g. locating an initial model), accordingly cannot
easily adapt to diverse image domains.

Evolutionary computation (EC) is a family of algorithms for global optimi-
sation, which are inspired by biological evolution. As an EC technique, genetic
programming (GP) can evolve algorithms automatically for complex problems
without pre-defining solution models. Compared with other EC techniques, GP
is more flexible as it can utilise complex and variable-length representations (e.g.
trees) of candidate solutions. It is hypothesised that this flexibility of GP makes
it possible to evolve better solutions than those designed by experts. However,
there have been limited attempts at applying GP to figure-ground segmentation.

In this thesis, GP is enabled to successfully address figure-ground segmenta-
tion through evolving well-performing segmentors and generating effective fea-
tures. The objectives are to investigate various image features as inputs of GP, de-
velop multi-objective approaches, develop feature selection/construction meth-
ods, and conduct further evaluations of the proposed GP methods. The following
new methods have been developed.

Effective terminal sets of GP are investigated for figure-ground segmentation,
covering three general types of image features, i.e. colour/brightness, texture
and shape features. Results show that texture features are more effective than
intensities and shape features as they are discriminative for different materials
that foreground and background regions normally belong to (e.g. metal or wood).



Two new multi-objective GP methods are proposed to evolve figure-ground
segmentors, aiming at producing solutions balanced between the segmentation
performance and solution complexity. Compared with a reference method that
does not consider complexity and a parsimony pressure based method (a popular
bloat control technique), the proposed methods can significantly reduce the solu-
tion size while achieving similar segmentation performance based on the Mann-
Whitney U-Test at the significance level 5%.

GP is introduced for the first time to conduct feature selection for figure-
ground segmentation tasks, aiming to maximise the segmentation performance
and minimise the number of selected features. The proposed methods produce
feature subsets that lead to solutions achieving better segmentation performance
with lower features than those of two benchmark methods (i.e. sequential for-
ward selection and sequential backward selection) and the original full feature
set. This is due to GP’s high search ability and higher likelihood of finding the
global optima.

GP is introduced for the first time to construct high-level features from primi-
tive image features, which aims to improve the image segmentation performance,
especially on complex images. By considering linear/non-linear interactions of
the original features, the proposed methods construct fewer features that achieve
better segmentation performance than the original full feature set.

This investigation has shown that GP is suited for figure-ground image seg-

mentation for the following reasons. Firstly, the proposed methods can evolve

segmentors with useful class characteristic patterns to segment various types of

objects. Secondly, the segmentors evolved from one type of foreground object

can generalise well on similar objects. Thirdly, both the selected and constructed

features of the proposed GP methods are more effective than original features,

with the selected/constructed features being better for subsequent tasks. Finally,

compared with other segmentation techniques, the major strengths of GP are that

it does not require pre-defined problem models, and can be easily adapted to

diverse image domains without major parameter tuning or human intervention.
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Chapter 1

Introduction

Figure-ground image segmentation is a process of separating foreground
objects or regions of interest from unimportant backgrounds. In computer
vision and image processing, many tasks, e.g. object tracking, object recog-
nition and image editing, are only interested in certain regions of images
and use figure-ground segmentation as a pre-processing step to separate
these regions [184]. As the results produced by figure-ground segmen-
tation have important influence on the subsequent application tasks, it is
important to achieve accurate segmentation results. However, current seg-
mentation methods have limitations to perform well, especially on com-
plex images.

1.1 Problem Statement

Existing figure-ground segmentation approaches mainly include model-
based methods [62, 103, 105] and fragment-based methods [23, 24, 25].
Model-based methods commonly match a deformable model to an image
by minimising the image energy, which is calculated by a function of im-
age features [79]. Fragment-based methods extract a fragment set in the
training stage, which is a set that captures shape and appearance infor-
mation of the common object parts. Then each fragment’s figure-ground

1
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segmentation is generated and used to match objects in the test stage. In
general, model-based methods require much human intervention to locate
the initial models, and only when the initial models are located close to
the target objects are they likely to obtain accurate segmentation results.
Fragment-based methods require much work from researchers to collect
informative fragments.

As figure-ground segmentation is task-driven and uses prior knowl-
edge of objects of interest to guide the segmentation process, figure-ground
segmentation methods are normally supervised [180]. As supervised learn-
ing algorithms can learn solutions based on patterns in the input features
[101, 116], it is crucial to extract a suitable feature set that contains effec-
tive patterns to separate objects from backgrounds. However, features
extracted by existing feature descriptors can be irrelevant, redundant or
even noisy [101], which have negative impacts on the segmentation per-
formance. Feature selection and construction can help solve this problem
by providing more effective features than the original features.

Feature selection is a process of selecting a subset of features from a large
number of original features [51, 92, 181], thus removing/reducing irrele-
vant and redundant features, lowering computational cost and improving
performance of the later tasks, e.g. classification, data clustering or image
segmentation. It is beneficial to select useful features from a wide range
of image features to form an effective feature set for figure-ground image
segmentation. However, feature selection tasks often face the problem of
large search space [159], so powerful search methods are necessary to se-
lect the most informative features. In contrast, feature construction is a pro-
cess of transforming a given set of features to a new set of more powerful
features [159]. Since the constructed features consider the interactions be-
tween the original features, they can be more meaningful and effective. As
a good feature representation is important for any machine learning task
to obtain good performance, it is worthwhile constructing features for im-
age segmentation tasks. However, existing feature construction methods
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are restricted to assumptions and the constructed features are difficult to
interpret [127].

Evolutionary computation (EC) is a family of algorithms for global op-
timisation, including evolutionary algorithms (e.g. genetic algorithms, ge-
netic programming), swarm intelligence (particle swarm optimisation, ant
colony optimisation) and others (e.g. learning classifier systems) [13, 119].
EC techniques are stochastic search algorithms, yet additional heuristics
are incorporated for evaluating the fitness of individual solutions. Specif-
ically, candidate solutions are called individuals, which are coded by a
structure (e.g. binary string, tree or graph). A fitness function is defined to
evaluate each individual's performance. Initially, a population of individ-
uals is randomly created. During the evolutionary process, the population
is transformed by guided genetic operators (selection, crossover and mu-
tation), thus increasing the quality of solutions/individuals.

As one of the main EC techniques, genetic programming (GP) is con-
sidered a powerful and global search method, and can evolve algorithms
automatically for complex problems [16, 83, 135]. Therefore, it is promis-
ing for GP to solve the problems related to image segmentation. However,
there are only limited attempts at using GP in the field of image segmen-
tation. Hence, this thesis will make contributions to applying GP for this
important task.

1.2 Motivations

This section analyses the limitations or problems in the existing meth-
ods of figure-ground segmentation, GP based figure-ground segmentation
and feature selection/construction. Moreover, the potentials of GP to han-
dle the limitations or problems of the existing works are also described.



4 CHAPTER 1. INTRODUCTION

1.2.1 Limitations of Current Figure-ground Segmentation
Methods

Popularly-used figure-ground segmentation methods have two branches:
model based methods [62, 103, 105] and fragment-based methods [23, 24,
25]. Model-based approaches aim to use shape properties or constraints
to recover predefined object shapes/structures [105]. Deformable mod-
els, active shape models and active contour models are commonly used
models for image segmentation. However, these approaches require re-
searchers to guide the segmentation process by providing an indication of
the object location in an image. The indication is often a bounding box
around each object. Then by minimising an energy function, objects are
segmented [88]. In addition, the initial indication of the object location
must be close to the target, otherwise it is difficult to obtain accurate re-
sults [103].

Fragment-based methods utilise image fragments (or patches) to han-
dle the variability of shape and appearance within a certain class [25].
There are two stages: the training stage and the segmentation stage. In
the training stage, a fragment set is built from training images to cap-
ture possible shapes and appearance variances of the common object parts
within a given class. Then the figure-ground segmentation of each frag-
ment is generated manually or learned automatically. When segmenting a
new image, these fragments are used to match the objects, thus obtaining
the segmentation result. However, fragment-based methods require much
work to collect informative fragments.

Based on the above analyses, three specific problems exist in model-
based and fragment-based approaches.

1. They require a heavy workload from users.

2. As they rely heavily on human guidance/work and require fine-
tuning to segment specific objects of interest, it makes them difficult
to be applied to images in diverse domains.
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3. The more involvement of human work, the higher the probability of
introducing human bias. As involving too much human bias may
prevent machine learning techniques from obtaining better perfor-
mance, it should be avoided.

1.2.2 Why GP Is Hypothesised to Be Suited to Figure-ground
Image Segmentation

GP can evolve computer programs to solve problems automatically, which
does not require users to specify the form or structure of solutions [135].
If GP can be introduced to evolve segmentation algorithms, then GP based
methods will involve less human work than the model-based and fragment-
based approaches.

Note that other EC techniques (e.g. differential equation, partial swarm
optimization and especially genetic algorithms) have been applied for im-
age segmentation. These works [15, 19, 74, 78, 145, 150, 154] mainly com-
bine the EC techniques with the classic segmentation algorithms (e.g. thresh-
old, region growing and clustering), where the EC techniques are used to
optimise parameters for classic segmentation algorithms. Compared with
these techniques, GP can evolve segmentors automatically to avoid the
problems in the classic segmentation algorithms [135], such as the need of
heavy workload or human guidance (e.g. in setting the parameters). In ad-
dition, GP is more flexible [52, 167], as it can utilise complex and variable-
length representations, such as trees, in which various kinds of functions
can be used to combine input features in linear or non-linear forms. The
flexibility of GP makes it possible to evolve better solutions than those
designed by experts [133]. Moreover, as an evolutionary computation
technique, GP is considered as a powerful global search algorithm, which
helps handle large search spaces for the related tasks on images with high
variations.
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1.2.3 Limitations of Current GP based Figure-ground Seg-
mentation Methods

Existing works [47, 133, 140, 157, 160, 161] (to be described in Section 2.4.1)
have two approaches to the use of GP for image segmentation, i.e. nu-
merical operators1 based methods and image processing operators2 based
methods. Numerical operators based methods transform segmentation
problems to window (subimages) classification based tasks, where GP is
employed to evolve binary classifiers from image features (or pixel inten-
sities) and numerical operators [47, 96, 100, 133, 160, 161]. The evolved
classifiers can classify subimages as class foreground or background. In con-
trast, image processing operators based methods evolve segmentation al-
gorithms from raw images and image processing operators directly [140,
157]. Instead of working on classifying sub-images, image processing op-
erators based methods take whole images as inputs. As they need to pro-
cess images, these methods use image processing operators (e.g. thresh-
olding and filters) in the function set.

Even though existing GP based segmentation works produce promis-
ing results, there are still several limitations listed as follows.

1. They have only been tested on simple images in a limited number
of domains, including texture images [160, 161] and medical images
with relatively uncluttered backgrounds [133, 140, 157]. Therefore,
whether GP-evolved segmentors3 can deal with a wide range of im-
ages, especially complex images with cluttered backgrounds, is still
not clear.

2. Only intensities (pixel gray levels) [140, 157, 160, 161], intensity statis-
tics [133] and local binary patterns (LBP) [47] have been utilised by

1Operators that process numeric values, e.g. add and subtract.
2Operators that process raw images, e.g. image filters.
3Segmentors refers to segmentation algorithms evolved by GP based methods in this

thesis.
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GP to evolve segmentors. As the inputs of GP have a great influ-
ence on the performance of evolved solutions [83], it is anticipated
that if the terminal set contains advanced features, such as histogram
statistics and Gabor features, better performing segmentors will be
evolved.

3. GP based methods tend to evolve large/complex solutions that are
computationally expensive for evolution and later use, difficult to in-
terpret, and are likely to have low generalisation performance. This
phenomenon is often caused by bloat, where in an evolutionary pro-
cess, an increase in the average solution size and depth does not lead
to a corresponding increase in the solution fitness [112]. However,
existing methods have not addressed this problem for GP in figure-
ground segmentation.

4. It is still challenging to separate foreground objects on complex im-
ages with high variations (e.g. cluttered backgrounds), which re-
quires effective feature sets to capture the distinguishing information
between objects and backgrounds.

1.2.4 GP for Feature Selection/Construction

Feature selection (FS) and feature construction (FC) are crucial stages for
many image analysis tasks, such as image recognition, classification and
segmentation [32, 90, 142]. The goal of feature selection is to select a subset
of features, removing features that are redundant, irrelevant or have little
predictive information. In addition, feature construction is the process
of transforming a set of original features to a new set of more powerful
features.
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Problems in Current Feature Selection Methods

Till now it is still challenging to select an effective subset of features from
the original ones. As the number of possible subsets can be 2N for a prob-
lem domain of N dimensions, effective search methods are crucial for fea-
ture selection [104]. FS algorithms can be divided into three groups based
on the search method, i.e. exhaustive, sequential and random [104].

Feature selection based on the exhaustive search methods, e.g. breadth
first search, evaluates all possible combinations of the original features ex-
haustively, and then determines the best feature subset. The exhaustive
search has a high computational cost and may cause the overfitting prob-
lem [166]. Sequential search methods, such as forward selection and back-
ward selection [48], aim to produce a good solution in a reasonable time
by trading off accuracy and optimality for speed. Random search meth-
ods start with a randomly selected feature subset. Then one of two ways
is applied to proceed to obtain an optimal subset [92]. One is to use the
completely random manner to generate the next subset, such as the Las
Vegas algorithm [125]. The other is to include heuristic knowledge in the
search process, such as evolutionary computation techniques. The Las Ve-
gas algorithm is restricted to one assumption that the run time is always
finite, which may be not practical. However, evolutionary computation
techniques, e.g. GP, have potential to solve problems with large search
spaces efficiently, and can be applied to a wide range of global optimisa-
tion problems [177] (see Section 2.6).

GP Potentials and Challenges for Feature Selection

As GP can handle large search spaces by providing automated solutions
[167], it is promising to use GP as a search method for feature selection.
Note that other EC techniques have also been used for feature selection
by existing works: ant colony optimization (ACO) [31], genetic algorithm
[102, 175] and particle swarm intelligence [93]. As the focus of this thesis
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is to solve existing problems in figure-ground segmentation and improve
the segmentation performance, e.g. by discovering effective features for
complex images with high variations, it does not aim to investigate all
possible feature selection methods. Therefore, other EC techniques are not
investigated for feature selection in this thesis.

Not all features in the feature set have to be used in a GP tree solution,
which is the basis of feature selection using GP. Recent works [3, 41, 123,
158] of GP based feature selection perform well, as they produce feature
subsets with a smaller number of features and better performance for the
given tasks than the original feature sets.

However, there are still several issues that are listed as follows.

1. Most existing works on GP based feature selection address classifica-
tion problems, whereas other tasks (e.g. image segmentation) have
not been sufficiently investigated.

2. Due to GP’s characteristic that it can implicitly select features in the
evolutionary process, most existing works conduct embedded fea-
ture selection. However, GP’s ability for explicit feature selection,
i.e. filter4 and wrapper5 feature selection, has not been sufficiently
exploited.

3. Feature selection is a multi-objective task, maximising the perfor-
mance (e.g. classification accuracy and segmentation accuracy) based
on the selected features and minimising the number of selected fea-
tures. However, there are very few works that use multi-objective
GP to conduct feature selection for image segmentation.

Therefore, it is worth investigating feature selection using GP for figure-
ground segmentation tasks.

4Filter methods evaluate candidate solutions based on the general characteristics of
the training data rather than the feedback of an inductive algorithm [146].

5Wrapper methods employ an inductive algorithm to evaluate the goodness of can-
didate solutions [165].
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Problems in Current Feature Construction Methods

Commonly-used feature construction methods include principal compo-
nent analysis (PCA) [75] and linear discriminant analysis (LDA) [90], which
are linear statistical techniques. In PCA, an orthogonal transformation is
used to convert a set of possibly correlated variables into a set of linearly
uncorrelated variables (principal components) [75]. LDA (or Fisher’s dis-
crimination analysis) is a method to minimise the interclass scattering ma-
trix measure while maximising the intraclass measure, thus making fea-
tures belonging to different classes more discriminative [90].

Even though these methods are simple and nonparametric, they of-
ten involve certain assumptions and constraints [127]. For example, the
restrictions can be in terms of the discriminant functions or relationships
between features. In addition, it is difficult to interpret the constructed fea-
tures [127]. Take PCA as an example, the constructed features are linear
constructions of the original features, making it difficult to interpret the
constructed features. Moreover, as the scales of original features are not
comparable and the first principal component will be dominated by those
with high absolute variances [90], PCA often requires data normalisation,
which makes it even harder to interpret the new features.

GP’s Potential and Challenges for Feature Construction

For feature construction, GP can combine input features [20] to build linear
and/or non-linear feature transformations without predefining any mod-
els [4, 128]. It does not have the constraints of PCA/LDA, e.g. orthogonal
or linear transformations only. Moreover, to a limit of human patience for
large tree sizes, analysing the evolved programs by GP makes it possible to
deconstruct and interpret the new features. Therefore, GP is a well-suited
technique for feature construction.

Note that there are several works that use other EC techniques for fea-
ture construction, e.g. PSO [173] and GA [156]. Compared with these EC
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techniques, GP can utilise complex and variable-length representations,
such as trees, so it is more flexible [52] to combine primitive features in
linear or non-linear forms. Moreover, this thesis aims to solve existing
problems in figure-ground segmentation, e.g. the need for effective fea-
tures for complex images with high variations, so it does not intend to
investigate all possible feature construction methods. Therefore, other EC
techniques for feature construction are beyond the scope of this thesis.

The existing GP based feature construction works have the following
problems:

1. The constructed features of existing methods are mainly used for im-
age detection and classification tasks, whereas other problems (e.g.
segmentation) have not been extensively investigated.

2. It is still challenging to design an effective fitness function to measure
the goodness of the constructed features, especially for filter meth-
ods.

3. Existing works construct features by mixing different types of im-
age features homogeneously, which may lead to unnecessary inter-
actions of non-related features, lowering the effectiveness of con-
structed features.

Therefore, it is worth investigating feature construction using GP for
figure-ground segmentation.

1.2.5 Summary of Research Questions

Based on the analyses of this section, the issues/questions that deserve
investigation are described as follows, along with the corresponding goals.

1. As limited types of features (terminal sets) have been used as the
inputs to GP to evolve segmentors, it is undetermined what kind of
image information is necessary for GP to evolve capable segmentors.
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Therefore, one goal of this thesis is to analyse diverse image features
by using them as the inputs of GP to evolve segmentors, aiming to
determine the necessary information for GP to evolve capable seg-
mentors.

2. As GP based methods tend to evolve solutions with large sizes, the
issue “how to control the solution size in GP based methods for
figure-ground segmentation?” leads to another goal that is to design
multi-objective GP based methods for figure-ground segmentation
to balance the evolved solutions’ performance and sizes.

3. GP based feature selection is not sufficiently investigated for figure-
ground segmentation. Moreover, feature selection is a multi-objective
task (maximising the segmentation performance and minimising the
number of selected features), but few existing works consider this
issue. Therefore, it needs investigation: how to select effective fea-
tures using GP for figure-ground segmentation while considering
the number of selected features? Based on this question, another
goal of this thesis is to develop new feature selection methods using
GP for figure-ground segmentation that consider feature selection as
a multi-objective task with two objectives (i.e. the segmentation per-
formance and the solution size).

4. GP based feature construction has not been extensively investigated
for figure-ground segmentation. Moreover, existing methods mix
different types of features homogeneously, which may cause unnec-
essary interaction of features. The issues, “how to construct effec-
tive features using GP for figure-ground segmentation?” and “how
to avoid interaction of different types of features?”, deserve investi-
gation. Therefore, one goal of this thesis is to develop novel feature
construction methods using GP for figure-ground segmentation, in-
cluding methods that can construct new features separately from dif-
ferent types of features simultaneously.
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Note that detailed thesis goals will be provided in the following section.

1.3 Thesis Goals

The overall goal of this thesis is to investigate and improve GP's capac-
ity for figure-ground image segmentation on diverse image domains, es-
pecially on complex images with high variations, through evolving well-
performing segmentors and generating effective features. This goal is to
be investigated based on the following objectives and their sub-objectives:

1. Investigate diverse image features to determine what image infor-
mation is necessary for GP to evolve capable segmentors for a wide
range of image domains. It is anticipated that the evolved segmen-
tors can perform consistently well on various image domains, e.g.
binary images, texture images and object images.

To achieve this objective, the following research sub-objectives have
been set.

(a) Develop a GP based method for figure-ground segmentation by
transforming segmentation tasks to window classification prob-
lems.
Existing GP based segmentation methods fall into two categories,
i.e. numerical operators based methods (or window classifi-
cation based methods) and image processing operators based
methods. Specifically, numerical operators based methods trans-
form the segmentation tasks to window/subimage classifica-
tion tasks. They take features or pixel values of subimages as
inputs to evolve classifiers from numerical operators, e.g. arith-
metic and conditional operators [47, 133, 160, 161]. The evolved
classifiers can classify subimages as class foreground or background.
In contrast, image processing operators based methods evolve
segmentation algorithms from raw images directly [140, 157].
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As they need to process images, image processing operators
based methods use image processing operators (e.g. threshold-
ing and filters) in the function set. Since this objective is to in-
vestigate the effectiveness of image features for GP to evolve
capable segmentors, the window classification based methods
are suitable as they take image features as inputs of GP. There-
fore, the window classification framework will be employed to
develop a segmentation method using GP.

(b) Determine effective terminal sets for GP to evolve capable seg-
mentors by investigating a wide range of image features as in-
puts of GP.
A terminal set comprises inputs to GP based methods [16]. Poli
[133] claims that good terminal sets for image analysis should
be able to capture all image information at different scales. There-
fore, pixel values may not be sufficient for complex images (e.g.
real images with clustered background). Hence, a wide range of
terminal sets, which cover three general kinds of image features
(colour/brightness, texture and shape features), will be investi-
gated to determine effective terminal sets.

2. Design multi-objective GP based methods for figure-ground segmen-
tation to balance the evolved solutions’ performance and sizes. GP
based methods often have bloat problems, which tend to evolve com-
plex segmentors. Therefore, multi-objective GP based methods will
be designed by optimising the two objectives, i.e. improving the seg-
mentation performance of the derived solutions and minimising the
solution size. The proposed methods are expected to evolve a set of
non-dominated segmentors that are trade-offs between the segmen-
tation performance and the solution complexity6.

6The term “solution complexity” refers to complexity in terms of solution size in this
thesis.
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To achieve this objective, the following research sub-objectives have
been set.

(a) Develop new parsimony pressure based methods to set as a
benchmark comparison technique.
A popular approach for bloat control is the use of parsimony
pressure [163]. It incorporates the solution size as an additional,
but hidden, objective as a penalty term [163]. This will be com-
bined with standard GP to form a benchmark method to com-
pare with the proposed multi-objective approaches.

(b) Improve standard multi-objective techniques, i.e. NSGA-II and
SPEA2, and assimilate them into GP to create new multi-objective
GP based methods.
NSGA-II and SPEA2 are selected as the basic multi-objective
techniques since they are commonly-used techniques [37]. For
NSGA-II and SPEA2, a new Pareto dominance mechanism is to
be designed to incorporate preference information, helping pro-
duce a more fine-grained approximation of the most relevant ar-
eas on the Pareto front and/or reduce the computation time. By
applying the improved NSGA-II and SPEA2 to GP respectively,
two novel multi-objective GP methods will be developed.

3. Develop new feature selection methods using GP for figure-ground
image segmentation that consider feature selection as a multi-objective
optimisation task, i.e. maximising the segmentation performance
based on the selected features and minimising the number of se-
lected features. Compared with the original features, the feature sub-
sets produced by the proposed methods are anticipated to improve
segmentation performance while reducing the number of features.

To achieve this objective, the following research sub-objectives have
been set.
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(a) Develop a new single-objective feature selection method by com-
bining multiple objectives linearly to form a single objective.
Specifically, the parsimony coefficient technique7 is incorporated
with GP to include a penalty term based on the number of se-
lected features in the original fitness.

(b) Design and develop novel multi-objective feature selection meth-
ods by applying multi-objective techniques in GP.
Compared with the parsimony coefficient technique, which ag-
gregates two objectives together, the multi-objective methods
treat objectives independently. The evolved solutions of the
multi-objective methods are trade-offs along all the objectives.

4. Develop novel feature construction methods using GP to construct
single or multiple features from primitive image features for figure-
ground segmentation. Both single and multiple feature construction
methods will be investigated, which construct an individual feature
and multiple features respectively in a single GP run. As the con-
structed features are combinations of the original features generated
by linear or non-linear constructive operators (e.g. addition and di-
vision), they consider the interactions of original features. Therefore,
it is anticipated that the constructed features are more effective for
segmentation problems than the original features.

To achieve this objective, the following research sub-objectives have
been set.

(a) Develop new single feature construction methods using GP.
Both explicit feature construction approaches (i.e. filter and wrap-
per approaches) will be investigated. An entropy based fitness
function will be designed for filter methods, since it can mea-
sure the impurity of two classes separated based on the con-

7This is one parsimony pressure technique, and is originally used for bloat control by
decreasing the raw fitness by an amount dependent on the solution size [97].
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structed features, which can reflect the effectiveness of the con-
structed features.

(b) Design and develop novel multiple feature construction meth-
ods using GP.
Techniques, i.e. subtrees and cooperative coevolution techniques,
will be introduced in GP to design multiple feature construc-
tion methods. As subtrees rooted on the non-terminal nodes
of an evolved tree solution produce useful features for classifi-
cation tasks [4], subtrees will be used to construct features for
segmentation tasks. Subtrees-based methods conduct homoge-
neously combination of varied types of features, which leads to
the interactions of non-related features and may lower the ef-
fectiveness of constructed features. In contrast, the cooperative
coevolutionary technique allows GP to construct features from
different types of image features separately.

5. Further investigate the effectiveness and applicability of the proposed
GP methods in the field of figure-ground segmentation.

To achieve this objective, the following research sub-objectives have
been set.

(a) Investigate whether the proposed GP methods can perform well
on datasets containing more varied types of foreground objects.
Each benchmark dataset used in this thesis (to be described in
Section 2.5.1) is partitioned to contain one type of foreground
object. After GP is thoroughly investigated on these datasets by
the previous objectives, it is considered whether the proposed
GP methods can perform well on datasets containing multiple
types of foreground objects.

(b) Investigate whether the segmentors evolved from one type of
foreground objects can generalise well on other types of objects
by conducting “transfer validation tests”.
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It is hypothesised that GP can capture common characteristics
across a class of foreground objects, which will be tested on
datasets containing various foreground objects.

(c) Investigate whether the selected feature subsets or the constructed
features are more effective for figure-ground segmentation.
Feature selection and feature construction using GP will be in-
vestigated by the previous objectives. It is then necessary and
meaningful to conduct comparison between the selected fea-
tures and the constructed features for use in figure-ground seg-
mentation tasks.

(d) Investigate the proposed GP methods by comparison with other
non-EC segmentation techniques.
Traditional segmentation techniques (e.g. the thresholding method,
K-means clustering and region growing methods) and deep learn-
ing techniques, will be analysed to compare with the proposed
methods. The strengths and drawbacks of them in the field of
figure-ground segmentation will be discussed, as it is beyond
the scope of this thesis to experimentally verify all types of al-
ternatives.

1.4 Thesis Contributions

This thesis contributes to the following important aspects in the fields of
computer vision and evolutionary computation, specifically in GP based
figure-ground image segmentation. The overall structure of the contribu-
tions is shown in Figure 1.1.

1. This thesis conducted the first work on analysing the three general
types of image features, i.e. colour/brightness, texture and shape
features, which were used as the inputs of GP to evolve segmen-
tation algorithms (segmentors). It aimed to determine what kind of
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Figure 1.1: The overall structure of contributions.

image information is necessary for GP to evolve capable segmentors,
especially for complex images with high variations.

Results showed that intensity based features were not sufficient for
complex images, as they are not discriminative when foreground
and background patches have similar brightness levels. Shape fea-
tures were better than intensities, as they provide edge information;
however, only utilising edge information was still not enough to dis-
tinguish the foreground/background patches with similar pixel dis-
tributions. In contrast, texture features were the most effective, as
they are discriminative for different materials that foreground and
background regions normally belong to (e.g. metal or wood). More-
over, with the input of discriminative image features, the proposed
methods can be successfully applied to diverse image domains.

Part of the work has been published in the following papers.

(a) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “A super-
vised figure-ground segmentation method using genetic pro-
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gramming.” In Proceedings of European Conference on the Ap-
plications of Evolutionary Computation (EvoApplications 2015).
Copenhagen, Denmark, pp. 491-503. 2015.

(b) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Genetic pro-
gramming for evolving figure-ground segmentors from multi-
ple features.” Applied Soft Computing 51 (2017): 83-95. DOI:
10.1016/J.ASOC.2016.07.055.

2. This thesis proposed two new multi-objective GP methods to evolve
segmentors. Specifically, two Pareto dominance based multi-objective
techniques (NSGA-II [44] and SPEA2 [183]) are modified to incorpo-
rate preference information, which are then combined respectively
with GP to form the new multi-objective GP methods. Both meth-
ods had two objectives, one of which was related to the segmenta-
tion performance and the other was based on the solution complex-
ity, aiming to achieve good trade-offs between solution functionality
and complexity.

By optimising both the solution performance and complexity, the
proposed methods can significantly reduce the solution size while
achieving similar segmentation performance to a reference method
that did not consider complexity. Moreover, the proposed methods
were compared with a single-objective method based on a parsi-
mony pressure technique (a popular bloat control technique, which
aggregates the objectives into a scalar fitness function based on pre-
defined weights/coefficients). The proposed methods can produce
smaller solutions while performing similarly to the parsimony pres-
sure based method, as they are based on the Pareto dominance tech-
nique that is more flexible in the search for trade-offs between objec-
tives.

Part of the work has been published in the following papers.

(a) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Multi-objective
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genetic programming for figure-ground image segmentation.”
In Proceedings of Australasian Conference on Artificial Life and
Computational Intelligence (ACALCI 2016). Canberra, Australia,
pp. 134-146, 2016.

(b) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Figure-ground
Image Segmentation Using Feature-based Multi-objective Ge-
netic Programming Techniques.” Neural Computing and Ap-
plications. (accepted with minor revision)

3. This thesis introduced GP for the first time to build feature selection
methods that aimed to improve the segmentation performance, es-
pecially on complex images. As feature selection is a multi-objective
problem in nature (i.e. maximising the segmentation performance
and minimising the number of features), the parsimony coefficient
technique [163] and Pareto dominance techniques [44, 183] were in-
troduced in GP to design novel feature selection methods that can
optimise both objectives.

Note that parsimony pressure techniques are popular single-objective
techniques for bloat control, which aggregates two objectives into a
scalar fitness function. Specifically, the parsimony coefficient tech-
nique is incorporated with GP to include a penalty term based on
the number of selected features in the original fitness (e.g. segmen-
tation accuracy). The Pareto dominance techniques treat two objec-
tives independently, which can lead to good trade-offs between two
objectives. With high search ability and being likely to find the global
optima, the proposed methods produced feature subsets that lead
to solutions achieving better segmentation performance with lower
numbers of features than those of two traditional feature selection
methods and the original feature set.

Part of the work has been published in the following papers.

(a) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Figure-ground
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image segmentation using genetic programming and feature se-
lection.” In Proceedings of IEEE Congress on Evolutionary Com-
putation (IEEE CEC 2016). Vancouver, Canada, pp. 3839-3846.
2016.

(b) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Image fea-
ture selection using genetic programming for figure-ground seg-
mentation.” Engineering Applications of Artificial Intelligence
62 (2017): 96-108. DOI: 10.1016/J.ENGAPPAI.2017.03.009.

4. This thesis introduced GP for the first time to construct high-level
features from primitive image features, which aimed to improve the
image segmentation performance, especially on complex images. Both
single and multiple feature construction methods were designed based
on GP, termed as SFC (single feature construction) and MFC (mul-
tiple feature construction). Specifically, SFC methods combine dif-
ferent types of primitive features together to produce a single new
feature. The subtrees and cooperative coevolution techniques were
introduced in GP to develop new MFC methods. As the outputs of
subtrees can also provide useful information [4], the subtrees based
MFC method utilises the subtree outputs to produce multiple new
features that are also combined from different types of features.

Note that it was still unknown whether the homogeneous combina-
tion of different types of features in SFC and subtrees based meth-
ods are useful to construct effective features. Therefore, the coop-
erative coevolution technique was employed, which enables GP to
construct features from different types of features separately, and
conduct combination of the constructed features simultaneously. By
considering interactions of the original features, the constructed fea-
tures of the proposed methods achieved better segmentation perfor-
mance than the original features yet were fewer in number.

Part of the work has been published in the following papers.
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(a) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Feature
Construction Using Genetic Programming for Figure-Ground
Image Segmentation.” In Proceedings of The 20th Asia Pacific
Symposium on Intelligent and Evolutionary Systems (IES 2016).
Canberra, Australia, pp. 237-250. 2016.

(b) Yuyu Liang, Mengjie Zhang, and Will N. Browne. “Wrapper
Feature Construction for Figure-Ground Image Segmentation
Using Genetic Programming.” In Proceedings of Australasian
Conference on Artificial Life and Computational Intelligence
(ACALCI 2017). Melbourne, Australia, pp. 111-123. 2017.

5. This thesis further investigated the effectiveness of the proposed GP
methods in the field of figure-ground segmentation. This investiga-
tion has shown that GP is suited for figure-ground image segmen-
tation for the following reasons. Firstly, the proposed GP methods
can evolve segmentors with useful class characteristic patterns to
segment various types of objects. Secondly, the segmentors evolved
from one type of foreground objects can generalise well on visually
similar objects. Thirdly, both the selected and constructed features of
the proposed GP methods are more effective than original features,
with the selected features being better. Finally, compared with other
segmentation techniques, the major strengths of GP are that it does
not require pre-defined problem models, and can be easily adapted
to diverse image domains without major parameter tuning or human
intervention.

1.5 Thesis Organisation

The rest of this thesis is organised as follows. Chapter 2 presents the back-
ground information and related works. Chapter 3 to Chapter 7 present
major contributions of this thesis, aiming to achieve the corresponding
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objectives listed in this chapter. Note that Figure 1.1 provides the overall
structure of these contribution chapters. In addition, Chapter 8 presents
conclusions and future directions.

Chapter 2 provides an introduction of figure-ground image segmen-
tation, feature selection/construction and genetic programming. Existing
GP based works for figure-ground image segmentation and feature selec-
tion/construction are reviewed, which form the motivation of the work
in this thesis. In addition, background information about multi-objective
techniques, coevolution techniques and parsimony pressure techniques is
also introduced, which is used in the following chapters.

In Chapter 3, seven terminal sets that can cover three general types of
image features, i.e. colour/brightness, texture and shape features, are em-
ployed as inputs of GP to evolve segmentation algorithms. Results show
that texture features (e.g. Gabor features) are more effective than intensi-
ties and shape features. Moreover, the evolved segmentors can perform
consistently well on various image domains.

Since bloat problems are common for GP based methods that tend to
evolve complex segmentors (have large sizes, and are computationally
expensive and are difficult to interpret), multi-objective GP based meth-
ods are designed for figure-ground segmentation (described in Chapter
4). The aim is to balance the evolved solutions’ functionality and com-
plexity. Based on the findings of Chapter 3, Gabor features are used as in-
puts of GP. The proposed multi-objective GP methods can evolve a set of
non-dominated segmentors that are trade-offs between the segmentation
performance and the solution complexity. In addition, since the evolved
segmentors have smaller sizes, the fitness evaluation of individuals (seg-
mentors) in the evolutionary process is less time-consuming, leading to
the training and test time being reduced.

For complex images with high variations (e.g. containing cluttered
backgrounds), it is challenging to separate objects from the unimportant
backgrounds, which requires effective features to capture the discrimi-
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native information between object and background regions. Therefore,
Chapter 5 develops new feature selection methods using GP for figure-
ground image segmentation. Feature selection tasks are multi-objective
tasks: maximising the segmentation performance and minimising the fea-
ture numbers, thus the parsimony coefficient technique and multi-objective
techniques are introduced in GP to balance the solution performance and
the feature number. Results show that compared with the original fea-
tures, the proposed GP based methods can improve the segmentation per-
formance while reducing the feature numbers.

In addition to feature selection, feature construction is another type
of feature manipulation, which is a process of transforming original fea-
tures to a new set of more powerful features. Considering that GP is a
well-suited technique for feature construction, Chapter 6 investigates fea-
ture construction using GP for figure-ground segmentation. Both single
and multiple feature construction methods are developed, which produce
discriminative/effective features, helping improve the segmentation per-
formance.

To further investigate the effectiveness of the proposed GP methods,
the following four issues are addressed in Chapter 7. Firstly, whether the
proposed methods can perform well on datasets that contain various fore-
ground objects deserves investigation. Secondly, it deserves investigation
whether the segmentors evolved from images with one type of foreground
objects can generalise well on images with visually similar/different types
of foreground objects. Thirdly, the selected features are compared with the
constructed features of the proposed feature selection/construction meth-
ods. This aims to determine whether the selected or constructed features
are more effective for the given segmentation problems. Eventually, the
strengths and weaknesses of GP are discussed by comparing with alterna-
tive segmentation techniques.

Chapter 8 provides major conclusions to the objectives achieved in this
work along with several avenues for future research enabled by this thesis.
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Chapter 2

Literature Review

This chapter reviews the literature regarding the concepts that form the
background and support the motivations of this thesis. Specifically, the
basic concepts of figure-ground image segmentation, feature selection, fea-
ture construction, evolutionary computation techniques and genetic pro-
gramming (GP) are briefly discussed. In addition, existing GP methods for
figure-ground segmentation and feature selection/construction are dis-
cussed. Moreover, the experiment preparations, e.g. standard image datasets,
image features and evaluation methods, are also presented.

2.1 Computer Vision and Figure-ground Image
Segmentation

Computer vision is a major research area of artificial intelligence. A widely
accepted definition of computer vision is that “computer vision is an inter-
disciplinary field that deals with how computers can be made for gaining
high-level understanding from digital images or videos” [162]. Computer
vision tasks cover methods for acquiring, processing, analysing and un-
derstanding digital images [81]. Figure 2.1 shows major computer vision
tasks that are categorised to three levels (i.e. low-level, middle-level and

27
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high-level vision tasks), along with connections of different vision tasks.

Figure 2.1: Computer vision tasks (adapted from Wu’s work [172]).

• Low-level vision tasks include basic processing tasks on images and
videos. Figure 2.1 presents six low-level tasks, i.e. image matching,
optical flow computation, radiometry, motion analysis, texture anal-
ysis and colour analysis. Specifically, image matching is to establish
correspondences between two or more images [137]. Optical flow is
a type of image observation of motion, which can be used to esti-
mate camera motion or object motion [54]. Additionally, radiometry
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is a system of language, mathematics and instrumentation, aiming to
describe and measure the propagation of electromagnetic radiation
[117]. The images generated by low-level vision tasks can be used as
inputs to higher-level tasks, e.g. image segmentation.

• Middle-level vision has two major aspects, i.e. inferring geometric
and inferring motion information [172]. Firstly, multiview geome-
try, stereo vision and structure from motion (SfM) are fundamental
geometric vision tasks that infer three-dimensional scene informa-
tion from two-dimensional images. Based on these fundamental ge-
ometric tasks, geometric modelling aims to develop mathematical
description (models) of shapes for objects and scenes [63], which can
be used for 3D (dimension) reconstruction and image-based render-
ing. Secondly, to infer motion information, image segmentation is a
fundamental vision task, which can separate regions of interest (e.g.
moving objects) from images [80]. The results of segmentation can
then be used by subsequent vision tasks, e.g. visual tracking and mo-
tion capturing, to estimate two-dimensional and three-dimensional
motions.

• High-level vision tasks aim to infer semantic information. A basic
high-level task is object recognition that aims to identify specific ob-
jects in digital images or videos [139]. Higher level tasks are im-
age understanding and video understanding that deal with analysis
and interpretation of scenes based on images and videos respectively
[71, 172].

Real-world applications of computer vision tasks include animation, human-
computer interaction, robotics and multimedia analysis. For example,
analyses of multimedia contents rely on image/video understanding tasks.
In addition, computer vision tasks enable computers to recognise, inter-
pret and understand human actions/behaviours based on visual inputs
for human-computer interaction [172].
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In computer vision, many tasks, e.g. object tracking and image edit-
ing, are only interested in certain regions of images. Therefore, a pre-
processing step to separate these regions from unimportant backgrounds
is often required, which is termed as figure-ground image segmentation
[184]. Figure-ground image segmentation can be regarded as a special
case of image segmentation, as it only targets two well-defined parts: fore-
ground and background [138].

2.1.1 Image Segmentation

Image segmentation is a process of partitioning pixels of an image to per-
ceptually coherent regions (shown in Figure 2.2) [18, 80, 150]. For a seg-
mented image, pixels in one region are similar with each other accord-
ing to a homogeneity criterion, yet pixels in different regions are heterge-
neous. Since this process divides an image to several homogeneity regions
and helps to find regions of interest, images become easier to manipulate
and more meaningful for following higher-level tasks, e.g. feature extrac-
tion, object detection, image recognition and classification [80].

Figure 2.2: An example of image segmentation from BSDS500 (Berkeley
Segmentation Data Set and Benchmarks 500 [10]).
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2.1.2 Figure-ground Image Segmentation

Figure-ground image segmentation is a process of separating foreground
objects or regions of interest from the unimportant backgrounds [184].
A target image is labelled into two complementary sets of pixels, one of
which contains the pixels corresponding to foreground objects while the
other contains the background pixels [131] (shown in Figure 2.3). Figure-
ground image segmentation is an application-specific problem, as what
should be identified as foreground objects is dependent on the given ap-
plications. For example, moving objects, e.g. people, cars and horses, are
often regions of interest and regarded as foreground objects [149].

Figure 2.3: An example of figure-ground segmentation (the horse is the
region of interest, labelled as colour white; the background is labelled as
colour black).

Existing figure-ground segmentation methods mainly include model-
based and fragment-based approaches [176]. Both of them are task-driven
and use prior knowledge of objects of interest to guide the segmentation
process.

Model-based Figure-ground Segmentation Methods

Model-based segmentation methods aim to use shape properties or con-
straints to recover predefined object shapes/structures [105]. They nor-
mally match a deformable model to an image by minimizing the image en-
ergy that is a function of image features. Deformable models can be curves
or surfaces of target objects [17]. Commonly-used deformable models
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are active contour models (snakes) [179], level sets [169] and active shape
models (ASM) [33]. Specifically, when segmenting a test image, users are
required to guide the segmentation process by locating the initial model
on the test image [88]. The evolution of models is guided by the internal
and external energies. The internal energy controls the curves’ smooth-
ness, while the external energy aims to attract the model towards object
boundaries.

Zhang et al. [179] present an improved geometric active contour model.
A window function is introduced to obtain the mean information of each
pixel's neighborhood, and a novel pressure force function is created to
drive the contour towards the object boundary. Results show that the pro-
posed method can achieve satisfactory results when tested on images with
intensity inhomogeneity and fuzzy boundaries. However, prior knowl-
edge is used to place the initial curves accurately, which helps achieve
accurate results. In practice, prior knowledge is usually not available to
achieve accurate initial curves.

Wang et al. [169] develop a region-based level set framework, which
incorporates a local correntropy-based K-means (LCK) clustering method.
The LCK clustering is proposed to solve the problem that real-world im-
ages are often distorted by noise and intensity inhomogeneity, as this method
is robust to outliers. Experiments are conducted on synthetic and real im-
ages, and the proposed method outperforms several state-in-the-art meth-
ods (such as LBF+Order (a local order method based on Local Binary Fit-
ting) [170]) in noise sensitivity and segmentation accuracy. However, there
are two limitations: the proposed method is sensitive to the initialisation
as the LCK model is not convex, and this method may produce inaccurate
edges on images with cluttered objects (e.g. hair), as edge pixels can be
easily grouped as outliers.

Chen et al. [33] use active shape models (ASM) to develop a fully auto-
mated segmentation method to segment the common carotid artery (CCA,
a type of blood vessel). In the test stage, they use prior knowledge (CCA’s
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average diameter) to detect the centroid of CCA for placing the trained
model automatically. This method can produce accurate CCA contours.
However, the initialisation is based on an assumption that the best initial
position is the centre of CCA.

Based on the above analyses, the mentioned model-based methods
often require users to locate the initial model (generated in the training
stage) for testing. Moreover, the initial model must be located close to the
target object, otherwise it is difficult to obtain accurate segmentation re-
sults [103]. Therefore, it is desired to minimise human interaction in this
work to save associated costs.

Fragment-based Figure-ground Segmentation Methods

Fragment-based methods utilise image fragments (or patches) to handle
the variability of shape and appearance within a certain class [25]. There
are two stages: a training stage and a segmentation stage. In the train-
ing stage, a fragment set is built from training images to capture possi-
ble shapes and appearance variances of the common object parts within
a given class. Then the figure-ground segmentation of each fragment is
generated manually or learned automatically. In the segmentation stage,
fragments are detected to match objects in a test image.

Borenstein et al. [23] propose a fragment-based method for class-specific
segmentation. Firstly, it collects a representation of the object shapes of a
given class, which aims to capture the common characteristics of the ob-
ject shapes. Then it uses the pre-stored representation to guide the seg-
mentation process by generating a consistent cover of the object on a test
image. This cover determines a figure-ground map for this test image. The
proposed method is shown to be better than a normalised-cuts segmenta-
tion algorithm and can handle variations in object shapes. Nevertheless,
it is difficult to segment highly variable parts, such as the legs and tails of
horses. In addition, the collection of fragments is complicated and labour
intensive.



34 CHAPTER 2. LITERATURE REVIEW

Kuettel et al. [88] propose an overlapping window based method.
Firstly, all test and training images are decomposed into overlapping win-
dows that are likely to cover the foreground objects. Then the segmenta-
tion masks from training windows, which are similar to the test windows
visually, are transferred to test images. Next the transferred masks are
used to derive the unary potential of the energy function, which repre-
sents the possibility of a pixel being background or foreground. However,
the selection of windows is based on the intuition that visually similar
windows often contain similar segmentation masks.

Borenstein et al. [24] also develop a fragment based method. Its ma-
jor difference from other methods is that the fragment labelling can be
conducted automatically. However, the automatic labelling relies on an
assumption that the fragments generally have highly varied backgrounds,
yet homogeneous foreground regions, which is often not the case in prac-
tice.

Based on the above analyses, the major problem of fragment-based
methods is that they require fragment generation and fragment labelling,
which are labor intensive and time-consuming [23, 88]. Even though there
are works that can conduct automatic fragment labelling, they are restricted
to certain assumptions, e.g. the foreground regions should be homoge-
neous [24].

2.1.3 Edge Detection

Edge detection is a process of identifying pixels (or edges) in an image
where pixel values (or intensities) change sharply [91, 144]. The aim of
edge detection is to reduce the amount of information in an image, while
preserving the structural properties for subsequent image processing tasks,
e.g. image segmentation and feature extraction [91].

For image segmentation, edge based methods are one type of tradi-
tional segmentation techniques [80]. Specifically, the detected edges of
edge detection can be borders that separate pixels of an image into coher-
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ent regions with different intensities [144].
For figure-ground image segmentation, edge detection is rarely used.

Firstly, as figure-ground image segmentation aims to separate foreground
regions [131], the edges detected in background regions can be misleading.
Secondly, the results of figure-ground image segmentation are binary im-
ages that separate foreground and background regions on the pixel level
[131]; however, the results of edge detection are edge pixels based on in-
tensity changes [91]. Extra processes would be required to generate figure-
ground segmentation results based on the detected edges of edge detec-
tion. Therefore, it is not suitable to conduct figure-ground image segmen-
tation based on the results of edge detection directly by GP.

2.2 Machine Learning

To avoid the restrictions imposed by conventional approaches, the abilities
of machine learning approaches are considered. Machine learning is a
branch of artificial intelligence, which aims to enable computer systems
to learn from data automatically [7, 122]. Two widely accepted definitions
are as follows.

• “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its perfor-
mance at tasks in T, as measured by P, improves with experience E”
(Proposed by Tom Mitchell) [120].

• “The goal of machine learning is to develop methods that can auto-
matically detect patterns in data, and then to use the uncovered pat-
terns to predict future data or other outcomes of interest” (proposed
by Kevin P. Murphy) [122].

The construction of a proper training set, validation set and test set is
crucial for machine learning tasks. A training set is a set of examples used
for learning solution models for given problems [46]. A validation set is a
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set of examples used to estimate the performance of the trained models in
a training process to avoid overfitting to the data. In contrast, a test set is
a set of examples used only to assess the performance of trained solution
models. Therefore, training and validation sets are used in the training
process to learn solution models and control overfitting respectively, while
test sets are only used in a test process, in which the solution model must
not be further tuned. In addition, cross validation (used in Chapter 3) is
a technique to evaluate solution models by splitting the original training
set to a new training set to train a model and a validation set to evaluate it
[11].

Based on the feedback mechanism in the learning process, machine
learning algorithms fall into three major branches, i.e. supervised learn-
ing, unsupervised learning and reinforcement learning [143]. For unsu-
pervised learning, training data is not labelled, which means that the de-
sired outputs corresponding to the inputs in training data are not pro-
vided. Therefore, only the statistical properties of data itself is relied on
in the learning process [35, 46]. In contrast, for supervised learning, com-
pletely labelled training data is provided, based on which solution models
can inferred by mapping inputs to the desired outputs [35, 46]. For rein-
forcement learning, desired outputs of the training data are not directly
provided, and the feedback is in the form of rewards and punishments
[164].

As figure-ground segmentation is task-driven and uses prior knowl-
edge of objects of interest to guide the segmentation process, figure-ground
segmentation methods are normally supervised [180], which learn solu-
tions based on patterns in the input features [101, 116]. Therefore, it is
crucial to extract a suitable feature set, which contains effective patterns
to separate objects from backgrounds. However, features extracted by ex-
isting feature descriptors can be irrelevant, redundant or even noisy [101],
leading to negative impact on the segmentation performance. Feature se-
lection and construction can help solve this problem by providing more
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effective features than the original features.

2.2.1 Feature Selection

Feature selection (FS) is a process of selecting a subset of features from
original features [114, 126, 181]. The advantages that feature selection
brings to learning algorithms are threefold [14]: feature selection can help
learning algorithms reduce the computational complexity, avoid over-fitting1

and be robust to noisy features, thus improving their performance.
There are four major aspects in a general procedure for feature selection

(shown in Figure 2.4), i.e. generating subsets, evaluating subsets, choosing
the stopping criteria and validating the results [38].

1. Generating subsets: search methods are used to generate feature sub-
sets based on the original features.

2. Evaluating subsets: Two evaluation criteria are widely-used, i.e.
independent criteria (e.g. distance measures, information measures
and probability of error measures) and dependent criteria (e.g. clas-
sifiers). The former suits a filter model [24] that does not require a
learning algorithm to evaluate selected features. The latter suits a
wrapper model [165] that needs a predefined inductive algorithm.
Investigation into effective measures to evaluate feature subsets will
be conducted in this thesis (see Section 5.3).

3. Stopping criteria: general stopping criteria include that the search
reaches a predefined minimum number of features or maximum num-
ber of iterations; addition or deletion to the subset of features does
not obtain a significant difference in the performance.

1Over-fitting occurs when a solution model is over-trained to memorise the training
data at the expense of predictive performance on the unseen data with the same structural
regularities [9].
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4. Result validation: this step aims to check whether the subset of fea-
tures are valid. Even though this part does not belong to the feature
selection process, it is necessary to validate the selection method.

Figure 2.4: A general feature selection process (adapted from Kumar’s
work [92]).

Based on whether an inductive learning algorithm is needed to evalu-
ate selected feature subsets, feature selection methods can be divided into
three major branches [92], i.e. filter, wrapper and embedded methods.

Filter Approaches

Filter methods evaluate the selected feature subsets depending on the gen-
eral characteristics of the training data rather than the feedback of an in-
ductive algorithm [146] (shown in Figure 2.5). Without relying on a spe-
cific learning algorithm to direct the selection, filter approaches generally
have low computational complexity, which makes them fast. However,
the avoidance of inductive algorithms also makes it challenging to evalu-
ate the subsets in the search process, since they are not optimised with a
learning algorithm for specific tasks.

Figure 2.5: A filter model for feature selection.
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Wrapper Approaches

Wrapper methods employ an inductive algorithm to evaluate the good-
ness of the selected subsets [30] (shown in Figure 2.6). Even though the
selected subsets tend to be more effective, the computational complexity
of wrapper approaches tends to be higher than that of filter approaches.

Figure 2.6: A wrapper model for feature selection.

Embedded Approaches

Similar to wrapper methods, the selection of feature subsets for embed-
ded methods is directed by an inductive method, which is the learning
algorithm itself for a given task [60]. They select features in the training
process of building a learning model for the task [92]. In other words, em-
bedded methods select features and build a learning model in one step,
while filter and wrapper methods realise these in two steps: firstly select
features, then conduct the model learning.

They have the advantages of wrapper methods that the selection of
feature subsets has an interaction with the learning tasks, so the selected
features tend to be more effective than those generated by filter methods.
Furthermore, they are less computationally complex than wrappers, as
the feature selection is directly included in the construction of a learning
model during the training process [60]. However, they are more complex
conceptually, and modifications to the learning algorithm may cause poor
performance [113].
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2.2.2 Feature Construction
Feature construction (FC) is the process of transforming a set of original
features to a new set of more powerful features [20]. The same as feature
selection, feature construction methods can also be grouped into three cat-
egories: filter, wrapper and embedded approaches [4]. Filter approaches
do not use inductive algorithms for the evaluation of constructed features,
while wrapper approaches rely on inductive algorithms. Embedded ap-
proaches conduct FC in the process of building a learning model for a
problem at hand. The explicit description of filter, wrapper and embed-
ded approaches can be found in Section 2.2.1.

In addition, based on whether a single feature or multiple features
is/are constructed, there are single feature construction (SFC) [28] and
multiple feature construction (MFC) methods [129]. The constructed fea-
tures are linear or non-linear transformation of original features, which
takes the interactions of original features into consideration, thus making
the constructed features more effective than original ones. However, it is
likely that a single constructed feature does not contain sufficient informa-
tion for complex tasks and is not able to outperform the original feature
set [99]. In contrast, MFC methods generate multiple high-level features,
which is likely for them to contain more information than a single con-
structed feature.

2.3 Evolutionary Computation and Genetic Pro-
gramming

2.3.1 Evolutionary Computation Techniques
Evolutionary computation (EC) is a subfield of artificial intelligence, which
is inspired by biological evolution. EC techniques are commonly used
for continuous optimisation or combinatorial optimisation problems [49,
180]. In addition, they also have been successfully applied to many im-
age processing and computer vision problems, e.g. edge detection, image
segmentation, object detection, classification and recognition. The main
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advantage of evolutionary algorithms is that they are not hindered by
“preconceptions that limit human problem-solving to well-trodden paths”
[82]. EC techniques can mainly be categorised into three groups [49, 180],
i.e. evolutionary algorithms, swarm intelligence and others (as shown in
Figure 2.7).

Figure 2.7: Branches of EC algorithms.

EC algorithms have a similar framework, which is presented in Fig.
2.8. An EC algorithm generally includes four major steps [36]. Firstly, an
initial population of candidate solutions are created randomly. Secondly,
termination criteria (e.g. whether the ideal solution has been found) are
checked. Thirdly, a fitness function is pre-defined to evaluate the perfor-
mance of each candidate for a given problem, and certain candidates are
selected based on their fitness values. Fourthly, the selected candidates
are employed for reproduction to build a new, yet normally better, gener-
ation. Finally, when the termination criteria are met, the best-performing
solution in the population is output.

When applying EC algorithms to solve optimisation problems that have
multiple objectives to be optimised simultaneously, multi-objective tech-
niques are incorporated into EC algorithms. In addition, for complex
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Figure 2.8: The framework of EC algorithms (adapted from Zhang’s work
[180]).

problems, decomposing the original problems into several subproblems
is a possible way to solve them. Coevolutionary techniques employ this
divide-and-conquer strategy to solve complex optimisation problems [109].
Therefore, another engagement of EC algorithms is to be combined with
coevolutionary techniques to solve complex problems.

Multiobjective Techniques

Pareto dominance is a popular method to deal with multi-objective prob-
lems [115]. In Pareto based optimisation techniques, whether one solution
is better than another relies on the notion called dominance, which is de-
fined as follows. Given a set of objectives and two solutions (S1 and S2),
solution S1 is said to dominate solution S2, when S1 is not inferior to S2 in
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all objectives and S1 is better than S2 in at least one objective. As shown
in Figure 2.9, where there are two objectives in this example, solutions
that are not dominated by any others are called non-dominated solutions,
which form the Pareto front. The result of a Pareto based optimisation
method is the Pareto front, which are trade-offs along all the objectives
rather than one best solution.

Figure 2.9: Pareto dominance and Pareto front (for both objectives, the
higher the better; S1 and S2 refer to two candidate solutions).

There are many existing Pareto based multi-objective optimisation tech-
niques, e.g. niched-Pareto genetic algorithm (NPGA) [69], multi-objective
genetic algorithm (MOGA) [55], nondominated sorting genetic algorithm
(NSGA, NSGA-II [44]), strength Pareto evolutionary algorithm (SPEA and
SPEA2 [183]) and Pareto archived evolutionary strategy (PAES) [37]. Ac-
cording to Coello’s work [34], NSGA, NPGA and MOGA are considered
as the first generation multi-objective evolutionary algorithms that em-
phasize simplicity, while SPEA, SPEA2, PAES and NSGA-II are regarded
as the second generation algorithms that emphasise efficiency. The sim-
ilarities and differences of SPEA2, PAES2 and NSGA-II from the second
generation algorithms will be discussed in the following, because they are

2Note that there are different versions of PAES, the description of PAES in this thesis
refers to (1+1)PAES as it is the basic version.



44 CHAPTER 2. LITERATURE REVIEW

more advanced than other Pareto based multi-objective techniques. Note
that NSGA-III [43, 72] is proposed in 2014, which introduces the reference-
point-based nondominated sorting into the NSGA-II framework to solve
many-objective (having four or more objectives) problems. As the related
multi-objective problems in this thesis have only two objectives, NSGA-III
is not considered.

In addition to the Pareto dominance concept, all the three techniques
(SPEA2, PAES and NSGA-II) employ a secondary measure for the fitness
assignment to keep the diversity of the nondominated solutions [27]. The
major differences between these techniques lie in the way of preserving the
elite solutions and the way of keeping diversity in the evolutionary pro-
cess [34]. In terms of preserving the elite solutions, PAES uses a historical
archive to store non-dominated solutions. The archive is used as a refer-
ence set, against which each newly created solution is compared to deter-
mine the current solution for reproduction [37]. Similarly, SPEA2 also uses
an external archive elite solutions (mainly non-dominated solutions) [183].
The archive is combined with the current population to generate the next
archive, which is then used to produce the next generation. In contrast, in-
stead of creating an archive to hold elite solutions, NSGA-II combines the
previous population and current population to ensure elitism [44]. The
combined population is sorted based on nondomination to select parent
solutions for the creation of the next generation. In terms of keeping diver-
sity, PAES utilises a crowding procedure that divides the objective space
recursively, and NSGA-II introduces a crowding distance to estimate the
solution density around a specific solution. In contrast, SPEA2 employs a
strength value that is portional to the number of solutions around a spe-
cific solution.

Coevolutionary Techniques
Coevolutionary techniques are different from other evolutionary algorithms
in the methods of evaluating individuals, as individuals work in groups
rather than separately [110]. The fitness evaluation of an individual re-
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lies on its performance in the context of other individuals by competing or
cooperating with them, based on which co-evolution techniques fall into
two groups, i.e. competitive co-evolution and cooperative co-evolution.
In competitive co-evolution, an individual plays against other individu-
als within the same population (for one-population competitive coevo-
lution) or in another opponent population (for two-population competi-
tive coevolution) [110]. In cooperative coevolution, a problem is split into
multiple sub-problems, and multiple sub-populations are used with each
sub-population handling one sub-problem. As shown in Figure 2.10, an
individual is evaluated by combining it with one individual from each of
the other populations to form a complete solution. As the evaluation con-
text affects an individual’s fitness, coevolution techniques typically evalu-
ate an individual multiple times with a different set of other individuals (a
different context) each trial, and then computes the fitness based on the re-
sults of multiple trials. Therefore, coevolutionary techniques tend to have
high computational cost.

Figure 2.10: Fitness evaluation of an individual in cooperative coevolu-
tion.

2.3.2 Genetic Programming (GP)

GP can automatically creates computer programs/algorithms to solve com-
plex problems without pre-defined solution models [82]. Moreover, solu-
tion models for many complex problems may be unknown in practice.
Compared with other evolutionary computation techniques, GP is more
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flexible [52], as it can utilise complex and variable-length representations,
such as trees. The flexibility of GP makes it possible to evolve better solu-
tions than those designed by experts.

Figure 2.11 displays the flowchart of GP. Compared with Figure 2.8
(a general framework of EC techniques), the framework of GP does not
include optional steps, e.g. local search for memetic algorithms.

Figure 2.11: The framework of GP (adapted from Poli’s work [135]).

1. Initialise a GP population.
A variety of individuals are created randomly for subsequent evolu-
tion. There are three common structures used in GP: tree, linear and
graph structures [135]. Among them, the tree structure is the most
commonly used one, which will be described in Section 2.3.2. The
initialisation methods in tree based GP include full, grow and Ramped
half-and-half [135]. For the Ramped half-and-half, half of the initial pop-
ulation is constructed using the full method and half is constructed
using the grow method. This method tends to bring more diversity to
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the initial population than the full method or the grow method used
in isolation.

2. Execute each program and evaluate its fitness.
Execute each individual (program) on the target problem at hand.
A fitness function needs to be designed to evaluate how well each
individual has learned to solve the target problem.

3. Select individual(s) from the population based on the fitness value
to create usually better solutions through genetic operations.
There are various selection methods, e.g. fitness-proportional selection,
truncation selection and tournament selection [16]. The tournament se-
lection method is the most commonly used one. There are two steps
in tournament selection. Firstly, a set number of individuals are cho-
sen randomly from the population. Secondly, the selected individ-
uals are compared with each other and the best one is chosen to be
the parent. Therefore, individuals that have higher fitness values
are more likely to be selected for reproduction. For the crossover
operator, which needs two parents, two selection tournaments are
conducted.

4. Create new individual program(s) by applying genetic operations.
The initial population is likely to contain low fitness solutions, so the
evolution process is needed to transform the initial population by
genetic operators to a new (plausibly better) population generation
by generation. There are three principal genetic operators: crossover,
mutation and elitism. How the operators are performed will be pre-
sented in the Section 2.3.2.

5. Stopping criteria.
Two common stopping criteria are that a maximal number of gener-
ation is reached or an acceptable solution is found.
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Individual Representation in Tree based GP

Each program in the tree structure is built from primitives in the function
set and the terminal set. The terminal set contains the inputs (variables
or constants) to GP programs and the function set consists of operators,
functions and statements. Both the terminal set and the function set are
problem-specific and should be provided by users. Figure 2.12 presents
a tree-structured individual. The operators in the red circle are from the
function set, which form the internal tree nodes, while the terminal nodes
in the blue circle are from the terminal set.

Figure 2.12: An individual in tree structure (sin means Sine function; X, Y

are variables).

Genetic Operators in Tree based GP

This part discusses the three principal genetic operators: crossover, muta-
tion and elitism [134]. The crossover operation is shown in Figure 2.13a.
As can be seen, two parents are needed. Firstly, a crossover point is se-
lected randomly in each parent tree. Next, the offspring is created by re-
placing the subtrees rooted at the crossover point. The mutation operation
is shown in Figure 2.13b. There are also two stages: select a mutation
point and then replace the subtree rooted there with a subtree generated
randomly. The elitism operator selects the best individuals based on the
fitness and simply copies them to the next generation. Note that there has
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been much work on optimising genetic operators in GP (e.g. three parents
based crossover), but the well tested, understood and standard operators
are used here as an initial study into GP for figure-ground segmentation.

(a) Crossover operation.

(b) Mutation operation.

Figure 2.13: Genetic operators (sin means Sine function; X, Y are vari-
ables).
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Parsimony Pressure Techniques

GP based methods tend to evolve large/complex solutions that are com-
putationally expensive for evolution and later use, difficult to interpret,
and are likely to have low generalisation performance [152]. Parsimony
pressure is a simple and frequently used technique for bloat control in GP
[111].

One parsimony pressure technique is to penalise the fitness of pro-
grams by decreasing the raw fitness by an amount dependent on the solu-
tion size (parsimony coefficient methods) [97], or by balancing the fitness
and complexity of programs with a weight factor (weighted sum methods)
[98]. Note that parsimony coefficient methods and weighted sum methods
can also be employed for multi-objective optimisation problems by com-
bining multiple objectives linearly to form a single objective. However,
the selection of coefficients or weights is critical and difficult to achieve
good results, as they depend on the target problem, the function set and
terminal set, and parameters [135].

An alternative technique is lexicographic parsimony pressure that treats
the fitness of evolved programs as the primary objective and the solution
size as a secondary objective in a lexicographic order [111]. Specifically,
it uses a modified tournament selection operator to control solution size,
described as follows. To select an individual, two individuals are chosen
randomly, and their fitnesses are compared: if one of the individuals has a
superior fitness, it is selected; if both have the same fitness, the individual
with a smaller size is selected; if both have the same fitness and same size,
one individual is selected randomly.

2.4 GP for Figure-ground Segmentation

In this part, the existing methods of GP based figure-ground segmentation,
bloat control in GP, and GP based feature selection/construction will be
discussed.



2.4. GP FOR FIGURE-GROUND SEGMENTATION 51

2.4.1 GP based Figure-ground Segmentation Methods

The existing GP based figure-ground segmentation works can be divided
into two branches: 1) numerical operators3 based methods; 2) image pro-
cessing operators4 based methods. In the numerical operators based meth-
ods, segmentation problems are transformed to window (subimages) clas-
sification based tasks. These methods use GP to evolve binary classi-
fiers from image features (or pixel intensities) and numerical operators
[47, 96, 100, 133, 160, 161], which can classify subimages as class foreground
or background. In the image processing operators based methods, GP is
employed to evolve segmentation algorithms directly from raw images
and image processing operators [140, 157].

Numerical Operators based Methods

Poli [133] regards image segmentation as a filtering problem, and GP is
employed to evolve image filters. The terminal set contains constants and
average intensity values of square masks with different sizes, which can
be calculated beforehand and stored to speed up GP’s evolution process.
The function set consists of four arithmetic functions (addition, subtract,
multiply and division) and four mask shifting operators (left, right, up and
down). The evolved algorithm is tested on two medical images, achieving
much higher scores in sensitivity and specificity than an artificial neural
network approach. However, two images are not sufficient for testing;
moreover, the images are relatively simple with clean backgrounds.

Song et al. [160, 161] employ GP to segment texture images. The
segmentation problems are formulated as cutout (window) classification
based problems, and the cutouts are sampled from various textures on
training images. Only raw pixel values of cutouts are used in the terminal
set; the function set consists of arithmetic and logic operators, e.g. bigger

3Operators that process numeric values, e.g. add and subtract.
4Operators that process raw images, e.g. image filters.
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than, smaller than and equal. Results on bitmap patterns and Bradatz tex-
tures show that the method can identify boundaries accurately, including
irregular boundaries (such as curves). As the method used raw pixel val-
ues as input directly, it is a hundred times faster than traditional segmen-
tation methods (with feature extraction) for testing. However, the training
time for GP to evolve classifiers is quite long, e.g. from hours to days.
Moreover, the cutout related parameters (e.g. cutout size) are required,
which rely on expertise or trail-and-error.

Dong et al. [47] employs GP to evolve segmentors to segment the cor-
pora lutea on 30 medical images. The terminal set contains features ex-
tracted by rotation invariant local binary patterns, and the function set
includes arithmetic (e.g. +,�, ⇤, /, log,max), logical (e.g. and &&) and re-
lation (e.g. <,>) operators. Even though the segmentation accuracy is
similar to a level set based method, the proposed method is fully auto-
matic and five times faster. However, the proposed method is only tested
on 30 medical images with clean backgrounds.

Image Processing Operators based Methods

Singh et al. [157] use GP to evolve Matlab programs from images and
primitive image operators for image segmentation, which produce consis-
tently good results on cell images. The solution representation is a linear
sequence of image operations in Matlab. The proposed method is used to
segment cells on biological images (30 images for training and 100 images
for testing). Results show that the proposed method achieves a higher
segmentation accuracy and a higher cell count rate than a genetic algo-
rithm based segmentation method. However, this work is only tested on
relatively simple biological images that have clean backgrounds, and the
linear sequence representation is less flexible than non-linear representa-
tions, e.g. trees.

Roberts [140] introduces GP to solve computer vision and image pro-
cessing problems. To reduce the high computational cost, a caching mech-
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anism is designed in the GP based system, which decreases the number of
fitness evaluation by 66 % at most, leading to a 52 % decrease in evolution
time. It suggests that the caching system can be used to solve real-world
problems. This method performs well in the segmentation of pigmented
skin lesions (moles) on images. As the segmentation performance is not
the primary focus, extensive experiments are not conducted.

Challenges

The works described above achieve promising results; however, there are
several drawbacks/challenges listed as follows.

• The existing works only test a limited number of image domains, in-
cluding texture images [160, 161], and medical images [133, 140, 157].
As the tested medical images all have clean backgrounds, they are
considered as “simple images”. Therefore, whether GP-evolved seg-
mentors can deal with a wide range of images, especially “complex
images” with high variations, is still not clear.

• Compared with image processing operators based methods, numer-
ical operators based methods are more efficient [140], as numerical
operators require much less computational cost than image process-
ing operators. Moreover, the numerical operators based approaches
use a window classification based segmentation framework that is a
common way to use GP in image-related tasks. Therefore, the win-
dow classification based framework will be employed as the basic
approach to apply GP in figure-ground segmentation in this thesis.
However, window related parameters (e.g. sizes and shifting steps
of windows) in the framework are required. As the window related
parameters rely on human expertise to be set, which are difficult for
users, improvements on the window classification based framework
for employing GP in figure-ground segmentation deserve investiga-
tion.
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• Only intensities [140, 157, 160, 161], intensity statistics [133] and lo-
cal binary patterns (LBP) [47] have been used as input features to
evolve segmentors. As the input of GP has a great influence on its
performance, it is hypothesised that if the terminal set contains cer-
tain kinds of features, such as histogram statistics and Gabor fea-
tures, better performing segmentors will be evolved.

• Bloat problems are common for GP based methods that tend to evolve
large/complex solutions [160, 161]. The evolved complex solutions
are computationally expensive for evolution and later use, difficult
to interpret, and are likely to have low generalisation performance.
Therefore, new GP based methods, aiming to evolve segmentors bal-
anced between the segmentation performance and the complexity in
terms of solution size, deserve to be investigated.

• Even though promising results have been achieved by existing works,
the selected image datasets are relatively simple. When segment-
ing images with high variations, effective feature sets are required
to capture the distinguishing information between objects and back-
grounds. Feature manipulation, e.g. feature selection and feature
construction, can help produce more effective feature sets from prim-
itive features extracted by existing image descriptors.

2.4.2 Bloat Control in GP

Bloat is a common problem in GP based methods, which is that the in-
crease of the average tree size and depth does not lead to a corresponding
increase in the solution fitness [112]. There are three commonly used tech-
niques that have been introduced in GP to control bloat. The most com-
mon approach of bloat control is to place constraints on the depth of the
evolved programs [21, 112]. For example, in Koza’s work [83], children
with a depth more than 17 are rejected and their parents are copied to the
next generation. In addition, a popular approach is parsimony pressure,
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which incorporates the solution size as an additional, but hidden, objec-
tive [163].

An alternative approach for bloat control is to employ multi-objective
optimisation techniques in GP to produce trade-off solutions between the
solution functionality and the complexity in terms of the solution size
[21, 98, 147, 152, 168]. For multi-objective optimisation methods, each ob-
jective is treated separately and independently, aiming to evolve a Pareto
front of trade-off solutions based on all the objectives. Compared with
parsimony pressure techniques (parsimony coefficient and weighted sum
methods) that aggregate the objectives into a scalar fitness function based
on pre-defined weights or coefficients, multi-objective methods treat each
objective separately and independently. Therefore, multi-objective meth-
ods search the space of two independent objectives, while the objective
space of parsimony pressure based methods are restricted to only a part
of that for multi-objective based methods, where the two objectives suit a
linear relation determined by the weights or coefficients.

Wang et al. [168] propose a multi-objective GP approach (MOGPA) to
identify implicit and explicit relationships in a given set of data. MOGPA
has two objectives, the complexity of the expressions reflected by the max-
imum depth of solutions and the mean error. The performance of the
evolved expressions are tested on four examples, i.e. Colebrook-White
Formula, one circle and two elliptic curve equations. The proposed multi-
objective GP method produces solutions that have smaller mean errors
with lower sizes than methods from previous studies [40]. This reflects
that GP has potential to solve problems with multiple objectives properly
by incorporating with multi-objective techniques.

Shao et al. [152] developed a multi-objective GP method to evolve
global feature descriptors for image classification tasks. The proposed
MOGP method has two objectives, i.e. the classification error and the
number of tree nodes. Better classification accuracies were achieved than
other state-of-the-art hand-crafted feature extraction techniques, e.g. LBP
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(local binary patterns) and Gabor filters (to be described in Section 2.4.2).
However, the new MOGP method needs a long evolution time, e.g. 7.6
hours on Caltech-101 dataset.

Sarro et al. [147] exploited GP to estimate software development ef-
fort. They compared the single-objective GP (SOGP) with five different
fitness functions, e.g. mean magnitude of relative error, and the MOGP
that considers the five functions simultaneously. The result shows that the
selection of the fitness function affects the estimation accuracy in single-
objective GP significantly. Moreover, only SOGP with certain fitness func-
tions can achieve similar results with those produced by MOGP.

Bleuler et al. [21] used a multi-objective technique in GP to reduce the
effects of bloating by considering the program size as a separate objec-
tive. They combine GP and the multi-objective technique SPEA2 (strength
Pareto evolutionary algorithm). The new method was compared with four
other strategies (i.e. standard GP, Two Stage, constant parsimony, adaptive
parsimony). The “Two Stage” method has two stages of fitness evaluation:
optimise the functionality first and then the solution size. The proposed
MOGP in paper [21] is claimed to outperform the four strategies to reduce
bloat in regard with the convergence speed and the program size. How-
ever, this MOGP method was only tested on a simple parity problem.

In summary, placing constraints on the solution depth/size is simple,
yet this technique makes the population tend to be filled up with large in-
dividuals on the edge of the constraints. Parsimony pressure techniques
are effective, but the coefficients or weights of the penalty term in the fit-
ness function are required. In addition, multi-objective techniques treat
solution performance and complexity measures separately and indepen-
dently. Compared with parsimony pressure techniques, multi-objective
techniques do not require parameters (e.g. coefficients or weights) in the
fitness evaluation. which do not require parameters in the fitness eval-
uation. Therefore, multi-objective techniques will be investigated in this
thesis to solve multi-objective problems.
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2.4.3 GP based Feature Selection/Construction Methods

This section analyses the existing works that specifically use GP to se-
lect/construct features, and presents the drawbacks and possible improve-
ments. Figure 2.14 and Figure 2.15 show the general flowcharts of using
GP for feature selection and construction respectively.

Figure 2.14: Filter Feature Selection/Construction based on GP.

GP based Feature Selection Methods

Recent works [3, 41, 124, 158] on GP based feature selection are described
as follows, which shows GP’s potential for feature selection (FS).

Nag et al. [124] apply embedded feature selection in designing classi-
fiers using a multi-objective GP method. In this method, feature selection
is conducted in the population initialisation, crossover and mutation op-
erations of the GP’s evolutionary process. To achieve this, a new initialisa-
tion method and new crossover and mutation operators are created. This
method is tested on eight micro-array and eleven text datasets. Compared
with seven FS methods (e.g. ReliefF [141] and Consist [39]), the proposed
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Figure 2.15: Wrapper Feature Selection/Construction based on GP.

method is better for 80% of the cases. However, this method may be inef-
ficient for problems with a large number of samples or classes.

Smart et al. [158] apply GP to design a filter based method to select
features for pattern classification problems on functional magnetic reso-
nance imaging (fMRI) and intra-cranial electroencephalogram (iEEG) sig-
nals. The nearest neighbor classifier is employed for classification with the
selected features. On fMRI dataset, over 60% median sensitivity and over
60% median selectivity are achieved, while on iEEG dataset, both median
sensitivity and median selectivity are over 65%. One drawback is that this
method requires parameter setting in the fitness function, and the param-
eter settings are not guaranteed optimal.

Davis et al. [41] present a two-stage genetic programming (GP) frame-
work for feature selection. Firstly a subset of features is selected using GP
based on its built-in feature selection process (embedded approach). Then
GP is used again to evolve classifiers from the selected features. Due to the
resultant smaller size of the feature subset, GP evolves smaller programs
that are easier to interpret than using the complete feature set. In addition,
this two-stage method obtains better classification results and faster con-
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vergence rates than standard GP. However, the first stage just aims to find
discriminant features and the evolved classifiers are discarded, then the
second stage produces the final classifiers using the selected features. As
the evolutionary process of GP is time-consuming, this two-stage process
may be inefficient.

Ahmed et al. [3] take advantage of GP’s implicit feature selection abil-
ity (or embedded feature selection, see Section 2.1.3). They use GP to
evolve classifiers, and only certain features are used by the classifiers. Fur-
ther processing is conducted. Specifically, the features selected are sorted,
then as several top features perform better than all the selected features,
less capable features are further reduced. Compared with other feature
selection methods (e.g. linear Support Vector Machine Recursive Features
Elimination, SVM-RFE) and original features, the results show that the
proposed method achieves higher biomarker detection rates. This reflects
that GP can implicitly select useful features, which will be investigated for
figure-ground image segmentation in this thesis.

There are several issues in the existing works. Firstly, due to GP’s char-
acteristic that can implicitly select features in the evolutionary process,
most existing works conduct embedded feature selection, while GP’s abil-
ity for explicit feature selection, i.e. filter and wrapper feature selection,
has not been sufficiently exploited. Secondly, feature selection is a multi-
objective task, maximizing the effectiveness of the selected feature subset
and minimizing the number of selected features. However, there are few
multi-objective GP works for feature selection.

GP based Feature Construction Methods

GP is a well-suited technique for feature construction (FC) [20]. As GP
can utilise complex and variable-length representations, such as trees and
graphs, it can combine input features to form linear or non-linear interac-
tions. Meanwhile, GP searches the new feature space and helps generate
high performing feature subsets. Moreover, it is possible to interpret and
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understand the new features constructed by GP evolved transformations.
Existing works [4, 20, 28, 64, 65, 129] are described as follows, which show
GP’s potential for feature construction.

Guo et al. [64, 65] develop feature construction methods using GP,
whose fitness measure is based on Fisher criterion5. One of their works
[65] presents a nonlinear feature construction method using GP for two-
class and multi-class recognition problems. The new feature set is tested
by k-nearest neighbour (KNN) and minimum distance classifier (MDC).
In another work [64], a new approach is presented using GP to construct
features for breast cancer diagnosis. The original features consist of con-
stant values and 30 real-valued cancer attributes. A novel feature mea-
sure, modified Fisher linear discriminant analysis (MFLDA), is developed
to measure the scattering of different classes. A neural network and a
support vector machine are used to test the new features. As one GP run
can produce one best solution, from which one feature can be constructed,
these methods reduce the original feature set to only one dimensional fea-
ture set. However, it may not be sufficient to use only one feature for
certain tasks, e.g. classification [127].

Neshatian et al. [129] employ GP to build a multiple feature construc-
tion system for classification problems, which construct one feature for
each class, so the number of constructed features equals to the number of
classes. The system is a filter method, which uses an entropy based fitness
function. To construct multiple features, they propose a decomposable
fitness function, which is based on a certain class that a feature is being
constructed for. Therefore, each GP run can only build one feature for one
class, and the construction of multiple features requires multiple GP runs,
which is inefficient.

Bishop et al. [20] present a wrapper construction method using GP
for image classification. As applications in image search, compression and

5 Fisher criterion is a discriminant criterion function that is the ratio of the between-
class scatter to the within-class scatter [95].
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photography require the information of image aesthetic quality, it is neces-
sary to construct features that can predict the aesthetic quality of an image.
The fitness function is the classification accuracy. The constructed features
outperform the original features in terms of the classification accuracy.
Even though the features constructed by this GP-based wrapper approach
are suitable for image aesthetics classification, it is not clear whether they
can be generalised to other image domains.

Ahmed et al. [4] propose an embedded approach to construct multiple
features using GP. Compared with common GP based FC methods, which
only take the output of root node as the single constructed feature, they
consider that the output of subtrees are also useful features, thus one GP
tree solution can generate multiple features. The fitness function combines
Fisher criterion5 and p-values6 to measure the discriminating informa-
tion between different classes. The features constructed by the proposed
method are more effective than original features on eight different mass
spectrometry data sets in classification performance. The major drawback
of this work is that the proposed method has not been compared with re-
lated feature construction methods.

Cano et al. [28] present a Pareto-based multi-objective genetic pro-
gramming algorithm to extract feature and visualise data for both bal-
anced and unbalanced high-dimensional data. It aims to optimise the
classification performance and data visualisation simultaneously. The pro-
posed algorithm is evaluated sufficiently by comparison with 11 well-
acknowledged feature extraction methods (e.g. linear discriminant analy-
sis, and random projection) on 22 balanced and 20 imbalanced data sets.
The results show that accurate classification performance and good vi-
sualisation measures for both balanced and imbalanced data have been
achieved.

Even though promising results have been achieved by the existing GP

6p-values measure the between-class and within-class separability, which are calcu-
lated based on the one way analysis of variance test [4].
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based feature construction works, there are still several issues. Firstly, it
is still challenging to design an effective fitness function to measure the
goodness of the constructed features, especially for filter methods. Sec-
ondly, existing works construct features by mixing different types of im-
age features homogeneously, which may lead to unnecessary interactions
of non-related features, lowering the effectiveness of constructed features.
Therefore, it is necessary to further investigate the potential of GP for fea-
ture construction.

2.5 Standard Image Datasets, Features, Segmen-
tation Measures and GP Settings

2.5.1 Standard Image Datasets

Images from four databases, i.e. bitmap patterns [161], Brodatz texture
database [67], Weizmann horse database [22, 24] and Pascal Visual Object
Classes 2012 (Pascal VOC2012) dataset [53], are used to develop and test
the novel methods in this work. These four datasets are selected as they
cover diverse image domains and are increasingly difficult for the segmen-
tation task. In practice, grayscale, large-sized and images with high vari-
ations in objects/backgrounds are more complex than binary, synthetic or
small-sized images for segmentation tasks [133]. Note that once GP has
been investigated on these datasets, other datasets (e.g. SED2 [8]) are used
for further investigation (see Chapter 7).

Figure 2.16 shows a bitmap pattern image, a texture image and exam-
ple images from Weizmann and Pascal datasets, along with their ground
truth (foreground objects are in white colour and backgrounds in black
colour). Specifically, there are two bitmap images, named as “Rectangu-
lar” and “Butterfly”, whose sizes are 256 by 256 pixels. They are synthe-
sised from two bitmap patterns, P14 and P24. The two images are syn-
thetic binary images, which are relatively simple. One example texture
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image, D24vs34, is a grayscale image synthesised from two Brodatz tex-
tures that are D24 and D34. Its size is 320 by 160 pixels. In addition, im-
ages from the Weizmann and Pascal databases are object images that are
relatively difficult segmentation tasks, as there exist high variations (e.g.
varied object shapes and cluttered backgrounds) and some images have
low quality.

The Weizmann horse dataset [25] consists of 328 horse images, among
which certain images (e.g. horse219 and horse227 in Figure 2.16) have
varying horse poses and cluttered backgrounds. Moreover, there are im-
ages (e.g. horse264) containing noise that lowers the image quality and
makes segmentation tasks more challenging. Therefore, Weizmann im-
ages are regarded as difficult segmentation tasks. From the ground truth
of Weizmann images (Figure 2.16), it can be seen that each image contains
one target object (a horse). The average size of Weizmann images is around
250 ⇥ 200 pixels.

The Pascal VOC challenges [53] were developed from 2005 to 2012.
Pascal VOC2012 is the updated version, and the images of the aeroplane
class are selected in this thesis. Note that only one class of images are
selected as GP is mainly investigated to segment specific classes of objects
in this thesis. As the GP methods are developed to be applicable to a wide
range of images, after GP is fully studied on images with specific classes
of objects, the proposed GP methods will also be tested on other classes in
Pascal and other datasets with various classes of images (see Chapter 7).

Specifically, Pascal VOC2012 has 178 aeroplane images, which are highly
varied in object sizes, object shapes (e.g. airliners and fighter aircrafts)
and locations. Moreover, there are images with cluttered backgrounds,
e.g. image 2011 001880, and certain images have low quality, e.g. im-
age 2007 001761 (blurred by motion) and image 2010 002939 (containing
noise). Therefore, Pascal aeroplane images are considered as difficult seg-
mentation tasks. According to the ground truth of Pascal images in Figure
2.16, except for object pixels (in white colour) and background pixels (in
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black colour) there are also gray pixels, which are “void” pixels. To reduce
the labelling time of the ground truth, this dataset treats the bordering re-
gion with a width of five pixels as “void” pixels that may contain both
object and background pixels. In addition, the ambiguous or heavily oc-
cluded objects and small regions (too small to be labelled) are also labelled
as “void” pixels. The “void” pixels are excluded for being selected as train-
ing samples and being used for the result evaluation. The average size of
Pascal images is around 500 ⇥ 350 pixels.

2.5.2 Image Features

Texture features, e.g. Gabor [178], local binary patterns (LBP) [132] and
mean/median features, are widely-used for feature extraction in image
analysis tasks. They will be described in this section.

The Gabor features are one of the most powerful edge descriptors,
and are generated from the convolution response of Gabor filters to an
image. A Gabor filter with specific parameters (scale and orientation)
can capture information at the certain scale and orientation [178]. Fil-
ters generated from five scales (4, 4

p
2, 8, 8

p
2, 16) and eight orientations

(0, ⇡8 ,
2⇡
8 ,

3⇡
8 ,

4⇡
8 ,

5⇡
8 ,

6⇡
8 ,

7⇡
8 ) are commonly used.

LBP is a simple and effective method for extracting texture features
[130]. It can transform an image to an array of integer labels that can
represent the small-scale appearance of the image [132]. In addition, the
mean filter and the median filter are commonly used to remove noise in
images, and are also employed to extract local statistical features. Specifi-
cally, for each pixel, the mean filter (or the median filter) studies its neigh-
bors, which are captured by a window centered at this pixel, and then
replaces the pixel value with the average value (or the median value) of
the neighboring pixels.
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D24 D34 D24vs34
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2007 001761 2009 000032 2010 002939 2010 003127 2011 001880

Figure 2.16: Example images.

2.5.3 Evaluation Methods

Three evaluation methods for evaluating segmentation result images will
be described in this section. The first evaluation method is the segmenta-
tion accuracy (Equation 2.1). This measure is simple and commonly used,
but it is insufficient to assess segmented results. For example, when objects
take up a small proportion of an image, even though the whole image is
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segmented as background, the segmentation accuracy would still be quite
high. Therefore, another two evaluation methods, F1 measure (Equation
2.2) and NRM (negative rate metric, Equation 2.3), are also selected to com-
pensate this measure.

Segmentation Accuracy =
TP + TN

Total.P ixel.Number.of.All.T est.Images
(2.1)

F1 score combines precision and recall together, which is a relatively
unbiased measure. In addition, NRM takes mismatches between a pre-
diction and the ground truth into account [12], and it is a single measure
combining false negative rate and false positive rate. F1 reaches its worst
at 0 and best value at 1, while NRM is worst at 1 and best at 0.

F1 = 2⇥ Precision⇥Recall/(Precision+Recall)

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

(2.2)

NRM = (FNR + FPR)/2

FNR = FN/(TP + FN)

FPR = FP/(FP + TN)

(2.3)

where TP , TN , FP and FN stand for true positives, true negatives, false
positives and false negatives respectively. To get the average segmentation
accuracy, F1 score and NRM score on a test set, TP , TN , FP and FN are
calculated based on all the test images. Specifically, TP means the number
of object pixels that are correctly segmented as objects across all the test
images; FP means the number of background pixels that are incorrectly
segmented as objects across all the test images; and so forth for the TN

and FN .

2.5.4 Koza’s GP Settings

John Koza is known for pioneering the use of genetic programming for op-
timisation of complex problems. Default parameter settings of GP in this
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thesis follow the settings of Koza’s works [83, 84, 85]. Table 2.1 presents the
major GP parameters. Specifically, the number of generations is 51 and the
population size is 1024. The initialisation method is Ramped half-and-half
that builds initial individuals using the grow method based on the proba-
bility for grow (0.5), otherwise using the full method. In the full method,
nodes are chosen randomly from the function set until this maximum tree
depth is reached, and then only terminals can be chosen. In contrast, in the
grow method, nodes are selected from both the function and terminal sets
until the depth limit is reached, then only terminals may be chosen. The
minimum depth of initial individuals is two and the maximum depth of
initial individuals is six, while the maximum individual depth in the evo-
lutionary process cannot exceed 17. In addition, the tournament selection
method is used to select individuals for reproduction in the evolutionary
process, which randomly selects individuals from the population to con-
struct tournaments (tournament size: seven), and the winners of which
are then selected. Moreover, the crossover and mutation operators are re-
production methods, whose rates are 0.90 and 0.10 respectively.

Table 2.1: Koza’s GP Settings.

Parameter Setting Parameter Setting
Generation 51 Population Size 1024
Initialiser Ramped half-and-half Probability for grow 0.5
Min-depth for Initialiser 2 Max-depth for Initialiser 6
Maximum Tree Depth 17
Selection Tournament Tournament size 7
Crossover Rate 0.90 Reproduction (elitism) Rate 0.10

2.6 Chapter Summary

This chapter briefly described the basic concepts of figure-ground image
segmentation, feature selection/construction, evolutionary computation
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techniques and especially the GP algorithm. In addition, the existing works
of GP based segmentation and GP based feature selection/construction
were also reviewed. The limitations of the existing works were discussed,
which leads to the motivations of this thesis. The overall motivation of
applying GP for figure-ground segmentation is that GP has been success-
fully used to conduct figure-ground segmentation, and GP has the charac-
teristics that make it suited for figure-ground segmentation, i.e. involving
less human work, being flexible (e.g. variable-length representations), and
having powerful search ability.

However, there are only a limited number of works investigating figure-
ground segmentation using GP, and challenges/limitations still exist. There-
fore, it is worth further investigating GP’s potential for segmentation tasks.
Specifically, the limitations of existing works and the motivations of this
thesis are summarised as follows.

• Only intensity based features and LBP features have been employed
as inputs of GP to evolve segmentors. Since the inputs have a great
influence on the performance of evolved solutions [83], it is assumed
that if the terminal set contains certain kinds of image information
(e.g. texture) known to suit target image domains, better perform-
ing segmentors will be evolved. Therefore, it is worth investigating
what image information is necessary for GP to derive effective seg-
mentors.

• GP based methods often face bloat problems that cause large/complex
solutions being evolved. The complex solutions are computationally
expensive for evolution and later use, difficult to interpret, and likely
to have low generalisation performance. Therefore, it is important to
control bloat in GP when applying it to solve segmentation prob-
lems.

• GP has been applied to feature selection, and promising results have
been achieved. However, there is no work that introduces GP based
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feature selection for figure-ground segmentation tasks. Moreover,
feature selection is a multi-objective task, maximizing the effective-
ness of the selected feature subset and minimizing the number of se-
lected features, but existing GP based feature selection works rarely
consider the number of features.

• GP is well-suited for feature construction. Even though promising
results have been achieved by existing GP based feature construction
works, there are still several issues. Firstly, the constructed features
of existing methods are mainly used for detection and classification
problems, other tasks (e.g. segmentation problems) have not been
extensively investigated. Secondly, it is still challenging to design an
effective fitness function to measure the goodness of the constructed
features, especially for filter methods. Thirdly, existing works con-
struct features by mixing different types of image features homoge-
neously, which may lead to unnecessary interactions of non-related
features, lowering the effectiveness of constructed features.

• GP’s potential in different aspects for figure-ground image segmen-
tation will be further investigated, e.g. by testing on datasets con-
taining various types of foreground objects and by conducting trans-
fer validation tasks. Moreover, comparison among the proposed GP
methods and with non-EC methods deserves further investigations.

The following chapters will investigate those issues. Specifically, what
kind of image information that GP determines necessary to evolve capable
segmentors will be investigated in Chapter 3. A parsimony pressure and
multi-objective techniques will be introduced in standard GP to design
new segmentation methods, which are expected to balance the solution
functionality and complexity in terms of the solution size, in Chapter 4.
In addition, GP will be employed for the first time to develop feature se-
lection methods for figure-ground segmentation tasks in Chapter 5, where
feature selection will be treated as a multi-objective task: maximizing the
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segmentation performance based on the selected features and minimiz-
ing the number of selected features. Moreover, GP will be applied for the
first time to construct high-level features to improve the segmentation per-
formance in Chapter 6. Specifically, a new entropy based fitness function
will be developed for filter methods, and the cooperative coevolution tech-
nique will be introduced in GP to construct features from different types
of features separately. The potential of proposed GP methods will be fur-
ther investigated, and comparison among the proposed methods and with
non-EC methods will be conducted in Chapter 7.



Chapter 3

GP for Evolving Segmentors from
Diverse Image Features

Figure 3.1: The overall structure of contributions.

Although GP has already been introduced in the field of image seg-
mentation since the 1990s, there are only a limited number of related works.
Therefore, GP has not been sufficiently investigated for image segmenta-

71
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tion. As the inputs of GP have a great influence on the performance of
evolved segmentors, it is necessary to investigate diverse types of image
features, aiming to determine what image information is necessary for GP
to evolve capable segmentation algorithms (segmentors).

3.1 Introduction

GP is developed to evolve segmentation algorithms from diverse image
features in this chapter. This is because GP has only been applied by a
limited number of segmentation works, i.e. numerical operators based
methods [47, 133, 140, 160, 161], and image processing operators based
methods [140, 157] (see Section 2.4.1), in a limited number of image do-
mains. Moreover, even though the inputs of GP have a great impact on the
performance of evolved solutions, the existing work had only investigated
several image features as the inputs of GP. Therefore, it is worthwhile in-
vestigating what image information is necessary for GP to derive effective
segmentors on a wide range of image domains.

3.1.1 Chapter Goals

The aim is to determine what kind of image information is necessary for
GP to evolve capable segmentors. Diverse types of image features are in-
vestigated, which cover three general types of image properties (i.e. colour
or brightness, texture and shape). Note that these types of features are
tested individually rather than in combination as this chapter focuses on
testing the effectiveness of each individual type of feature for GP based
figure-ground segmentation. A combination of features may be better
than a single feature alone, but this has not been tested in this chapter. In
addition, images with different difficulty levels for segmentation are se-
lected to test GP evolved segmentors, including simple bitmap, synthetic
texture images and complex object images with high variations.
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Specifically, this chapter will investigate the following objectives:

1. quantify the effectiveness of different image features that are used to
evolve segmentors by GP,

2. investigate whether the GP evolved segmentors can have a consis-
tent performance across a wide range of image domains,

3. investigate whether the proposed method can outperform widely-
used conventional segmentation techniques.

3.1.2 Chapter Organisation

The rest of this chapter is organised as follows. The framework of the
window classification based segmentation using GP, and seven feature
descriptors selected for feature extraction are described in Section 3.2. Ex-
periment preparations, e.g. image datasets and experiment design are in-
troduced in Section 3.3. In addition, Section 3.4 and Section 3.5 discuss
results on the selected image datasets, and conduct comparisons between
the evolved segmentors and with conventional segmentation techniques
respectively. Section 3.6 summarises the contributions of this chapter.

3.2 GP based Figure-ground Segmentation

The GP based figure-ground segmentation method in this chapter em-
ploys the window classification based segmentation framework, where
GP is used to evolve subimage classifiers. The framework and settings
of the GP method are described as follows.

3.2.1 Window Classification based Segmentation Framework

As displayed in Figure 3.2, there are three major steps in the window clas-
sification based segmentation framework.
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Firstly, a classifier is evolved by GP. Specifically, an equal number of
foreground and background cutouts (subimages) are captured by a pre-
defined window (see Section 3.3.2 for settings) from training images. For
example, as shown in Figure 3.2, five foreground cutouts and five back-
ground cutouts are captured on each training image. For each cutout, fea-
ture extraction is conducted to form a training sample, which is labelled
as class A (foreground) or B (background) based on the ground truth, e.g.
f1, f2, f3, ... A. Details of feature extraction methods are provided in Sec-
tion 3.2.2. The training samples are input to GP so that it can evolve a
classifier that can classify cutouts/subimages as class A or B.

Secondly, a sliding window (the same size as the window in the first
step) is used to sweep across a test image. Specifically, the sliding window
starts from the top-left of a test image, sweeping across to the bottom-right
of the image with the moving step of dx and dy in horizontal and vertical
directions respectively. Cutouts are captured by the sweeping window,
and then feature extraction is conducted on the cutouts to form the test
samples, which are then input to the evolved classifier in the first step. The
evolved classifier categorises the cutouts as class A or B, based on which
a class label is assigned to all pixels of each cutout. For example, if one
cutout from the test image is categorised as class A, the pixels belonging
to this cutout are all assigned a class A.

Thirdly, as the sweeping window has overlaps, most pixels in the test
image have more than one assigned label, e.g. P (⇤, ⇤)A;A;B;A.... The
number of the assigned labels for each pixel is determined by the loca-
tion of this pixel and window related parameters, i.e. the window size
and the moving steps (dx, dy) (see Section 3.3.2 for settings). Therefore, a
majority voting process is employed to obtain the final estimated label for
each pixel in the test image (a random selection is applied to cases with
an equal number of labels for each class, e.g. A;A;B;B). Eventually, fore-
ground pixels are assigned a gray-level value of 255 and background ones
are given 0, based on which the segmentation result (a binary image) can
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be generated.

Figure 3.2: The window classification based segmentation using GP: sub-
images captured by green and red windows are from class foreground (A)
and background (B) respectively; windows in green, red and yellow hold
the same size; f1 means an extracted feature with its index as 1, and so
forth; C and P stand for cutout and pixel respectively; C(0,0) is the cutout
with (0,0) as the coordinate of its top-left pixel, and so forth; P(0,0) is the
pixel with (0,0) as its coordinate; dx and dy are the moving steps of the
shifting window on test images in horizontal and vertical direction respec-
tively; H and W are the height and width of a test image.
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3.2.2 Terminal Set

Table 3.1 displays seven terminal sets (i.e. seven types of features) as GP
inputs. As shown in Table 3.2, the features include raw pixel values as the
brightness features; histogram statistics, GLCM (gray level co-occurrence
matrices) statistics, LBP, Fourier power spectrum and Gabor features as
texture features; “spatial moments + gradient statistics” as shape features.
These features are selected as they are commonly-used and cover three
general feature types, i.e. brightness, texture and shape.

Table 3.1: Terminal sets (GLCM refers to gray level co-occurrence matrices;
LBP stands for local binary patterns).

Name Description
Terminal Set 1 Raw Pixel Values
Terminal Set 2 Histogram Statistics
Terminal Set 3 GLCM Statistics
Terminal Set 4 LBP Features
Terminal Set 5 Fourier Power Spectrum
Terminal Set 6 Gabor Features
Terminal Set 7 Moments+Gradient Statistics

Specifically, intensities are the gray levels of pixels. The histogram
statistics are first order measures [133] and six histogram statistics are
used, i.e. mean, variance, skewness, kurtosis, energy and entropy. GLCM
is a second-order statistical method that considers the spatial dependence
of pixels [50]. Four types of statistics are derived from GLCM, i.e. con-
trast, correlation, energy and homogeneity. LBP descriptor transforms an
image to an array of integer labels, which can represent the small-scale ap-
pearance of the image [132]. The Fourier power spectrum of an image or a
region is the square of the magnitude of its Fourier transform [70]. Gabor
filters [77] can extract image information in different scales and orienta-
tions, so they are one of the most powerful local appearance descriptors.
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The first and second order spatial moments can describe the distribution of
image regions [155]. Image gradients are directional changes in intensities
or colour in an image, and are able to encode edges and local contrast [57].
Three gradient statistics, the maximum, minimum and average gradient
of a region, are extracted.

Table 3.2: Description of features (M1 and M2 are the first order moment
and the second order moment respectively; Min, Max and Ave mean the
the maximum, minimum and average gradient respectively).

Category Feature Description or Parameter
Brightness Raw Pixel Values -

Texture

Statistical Histogram Statistics
Mean, Variance, Skewness,
Kurtosis, Energy, Entropy

GLCM Statistics Contrast,Correlation,Energy,Homogeneity

Methods LBP
P=8, R=1(P is the number of sampling
points in a region with the radius R.)

Structural FourierPowerSpectrum -
Methods Gabor scale = 5, orientation = 8, d1 = 4, d2 = 4

Shape
M1 =

Pn
i=1 f(xi,yi)⇤d(xi,yi)

n

Moments + Gradient Statistics M2 =
Pn

i=1(f(xi,yi)⇤d(xi,yi)�M1)2

n

Min,Max,Ave Gradient

Equations or parameters in Table 3.2 are based on the following defi-
nitions. For Gabor features, scale = 5 means the number of filter scales is
five; orientation = 8 represents the number of filter orientations is eight;
d1 = 4, d2 = 4 means the down-sampling ratio in row and column respec-
tively. For moments, given a square region with the size of n ⇤ n, f(x

i

, y
i

)

is the pixel value; d(x
i

, y
i

) is the distance of the pixel (x
i

, y
i

) to the top left
corner of the region.

3.2.3 Function Set

Table 3.3 displays the function set, including four arithmetic and five con-
ditional/relational operators. These operators are simple and efficient;
moreover, they are sufficient to evolve both linear and non-linear classi-
fiers.
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Table 3.3: Function set of GP based figure-ground segmentation.

Function Name Definition Type
Add(a1, a2) a1 + a2 Arithmetic
Sub(a1, a2) a1 � a2 Arithmetic
Mul(a1, a2) a1 ⇤ a2 Arithmetic

Div(a1, a2)

(
a1/a2 if a2! = 0

0 if a2 == 0
Arithmetic

IF(a1, a2, a3)

(
a2 if a1 is true.
a3 if a1 is false.

Conditional

<= (a1, a2)

(
true if a1 <= a2

false if otherwise
Relational

>= (a1, a2)

(
true if a1 >= a2

false if otherwise
Relational

= (a1, a2)

(
true if a1 == a2

false if otherwise
Relational

Between(a1, a2, a3)

(
true if a2 <= a1 <= a3

false if otherwise
Relational

3.2.4 Other GP Settings

Classification accuracy (Equation 3.1) is selected as the fitness function,
because the segmentation problem has been transformed into a window
classification based task in this chapter, and the classification accuracy is
an efficient and commonly-used measure for binary classification tasks [5].

Classification Accuracy =
Number of correctly classified samples

Number of total training samples
⇤100%.

(3.1)
Most GP set-up parameters follow Koza’s settings (e.g. the number of

generation (51), the crossover rate (90%), the reproduction rate (10%) and
the maximum tree depth (17)), which are commonly used in his works [83]
(see Section 2.7.4 for details). In addition, considering the goal of this chap-
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ter is to investigate the effectiveness of different features for GP rather than
quantitative evaluation, a subset of images are selected from benchmark
datasets. Moreover, larger population sizes can lead to higher computa-
tional cost and time cost. Therefore, the population size is set to 500 (Koza
set it to 1024), which is considered sufficient for the given segmentation
tasks.

3.3 Experiment Preparation

3.3.1 Training and Test Images

Four image datasets are selected in this chapter, i.e. bitmap patterns [161],
Brodatz texture images [67], Weizmann horse dataset [22, 24] and Pascal
aeroplane dataset [53] (see Section 2.5.1 for details), as they cover a wide
range of image domains and have different difficulty levels for segmen-
tation. Since this chapter focuses on determining effective image features
for GP to evolve capable segmentors rather than conducting the quanti-
tative performance evaluation, a subset of images are randomly selected
from the four datasets in this chapter, i.e. two bitmap images, one texture
image, ten Weizmann images and eight Pascal images. The images are
displayed in Table 3.4.

Note that images with larger sizes and/or with high variations are
more complex than those with smaller sizes and/or with low variations,
and grayscale images are more complex than binary ones for segmentation
tasks [133]. In Table 3.4, the two bitmap images (named as “Rectangular”
and “Butterfly”) are synthesised from two bitmap patterns (P14 and P24),
which are relatively simple. The texture image (D24vs34) is a grayscale
image and is synthesised from two Brodatz textures (D24 and D34). In
addition, the Weizmann and Pascal images are complex object images and
have high variations. Specifically, the Weizmann horse images (248 by 211
pixels) are varied in horse positions (e.g. standing, running and eating).
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Each Weizmann image contains one object (horse), and all the horses are
located in the center of images. The eight passenger air plane images from
the Pascal dataset are the largest images (500 by 350 pixels). There are Pas-
cal images that contain more than one object, and the object shapes and
sizes on Pascal images vary greatly. Therefore, Pascal images are consid-
ered to be the most difficult for segmentation.

Table 3.4: Four types of images.

Database Images

Bitmap

P14 P24 Rectangular Butterfly

Brodatz

D24 D34 D24vs34

Weizmann horse006 horse010 horse027 horse110 horse119

horse121 horse122 horse159 horse165 horse317

Pascal 2007 000033 2007 000256 2007 000738 2007 001288

2007 001761 2007 002099 2007 002266 2007 002376

3.3.2 Experiment Design
For bitmap (or texture) images, there are two different bitmap patterns (or
textures) in each image, so one pattern (or texture) is chosen as class fore-
ground and the other as background randomly. The training set has 2000
samples, equally from two patterns (or textures), with class label back-
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ground/foreground. In addition, as only ten Weizmann images and eight
Pascal images are used, the leave-one-out (LOO) cross validation [89] is
employed on both datasets. The cross validation is on image level. Specifi-
cally, for a given set of images, one image is used as the training image and
the others are used as test images. For Weizmann images, each training
image provides 200 training samples, consisting of 100 foreground sam-
ples and 100 background samples. As Pascal images are larger than Weiz-
mann images, each Pascal training image provides 500 samples, equally
generated from foreground and background regions.

Window related parameters, i.e. the size of the window and its shift-
ing steps, are set based on our initial experimental tests. Specifically, the
window size is set to 4 for bitmap images and 16 for other images. As the
window captures subimages, the window size must guarantee that each
subimage contains sufficient information to distinguish itself from those
belonging to other classes. Considering a big shifting step of the window
may cause inaccurate results, yet a small step involves a high computa-
tion cost, both shifting steps (dx in the horizontal direction and dy in the
vertical direction) are set to 2 for the four datasets.

Each experiment is run 30 times due to the stochastic nature of GP. In
addition, three evaluation methods are employed to evaluate the segmen-
tation results, i.e. the segmentation accuracy, F1 score and negative rate
metric (NRM) (see Section 2.5.3 for details). For the segmentation accu-
racy and F1 scores, the higher the better; for NRM scores, the lower the
better.

3.4 Results and Discussions

3.4.1 Results on Bitmap Images
As bitmap images are binary images, bitmap patterns can be distinguished
by raw pixel values. Therefore, only intensities (raw pixel values) are used
to evolve segmentation algorithms (segmentors) by GP for the bitmap im-
ages. In Table 3.5, result images show that regions of different patterns
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are segmented accurately. Not only the linear boundaries of the “Rect-
angular” image but also the curve boundaries of the “Butterfly” image
have been detected precisely. Based on the evaluation measures, high seg-
mentation accuracies, high F1 scores and low NRM scores are obtained for
both images. For example, the segmentation accuracy and F1 score reach
98.81% and 0.99 respectively on the “Rectangular” image, while the NRM
reaches 0.12 on the “Butterfly” image.

Table 3.5: Test Results of segmentors evolved from intensities on bitmap
images.

Ground Truth Result Examples Accuracy(%) F1 NMR

98.81± 0.22 0.99 ± 0.01 0.20 ± 0.01

95.96± 1.27 0.96 ± 0.01 0.12 ± 0.00

3.4.2 Results on Brodatz Texture Images

According to Table 3.6, the performance of segmentors evolved from the
seven feature sets is generally good on the texture image, as most segmen-
tation accuracies are over 90% and F1 scores are over 0.90. Specifically,
intensities achieve the highest scores in the accuracy (94.26%) and F1 score
(0.94), while the histogram features achieve the highest F1 score (0.94) and
lowest NRM score (0.07). The results reflect that on the relatively simple
texture images, pixel intensities are sufficient for GP to derive capable seg-
mentation algorithms.

3.4.3 Results on Weizmann Horse Images

Example result images in Table 3.7 show that the segmentors evolved
from intensities, histogram statistics and Gabor perform better than those
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Table 3.6: Test Results of segmentors evolved from different features on a
Brodatz texture image.

Feature Result Examples Accuracy(%) F1 NMR

Ground Truth - - -

Intensity 94.26± 2.75 0.94±0.00 0.15± 0.01

Histogram Statistics 93.98± 2.30 0.94 ±0.00 0.07 ±0.00

GLCM Statistics 92.67± 1.45 0.92± 0.02 0.15± 0.01

LBP 66.82± 10.06 0.53± 0.07 0.35± 0.05

Fourier Power Spectrum 91.16± 0.94 0.90± 0.04 0.13± 0.00

Gabor 90.91± 0.72 0.90± 0.01 0.15± 0.02

Moments + Gradient 92.02± 2.11 0.92± 0.00 0.39± 0.02

from other features, as they locate horses accurately and generate clearer
boundaries. The segmentors generated from LBP, Fourier power spectrum
and “moments + gradient statistics” perform unsatisfactorily, since there
are more false positive or negative pixels on the result images. The results
based on the evaluation measures in Table 3.8 verify that histogram statis-
tics and Gabor based segmentors obtain the best scores. They are followed
by the histogram features. In contrast, the intensities that perform well on
bitmap and texture images do not achieve statisfactory scores, with 3.88%
lower, 0.04 lower and 0.05 higher than those of Gabor features. This re-
flects that for complex object images, employing only intensities is not suf-
ficient. Instead, the inclusion of higher-level texture features (e.g. Gabor
and histogram features) are necessary for GP to evolve effective segmen-
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tors.

Table 3.7: Result examples on Weizmann images (GT: ground truth; Inten:
intensity; Hist: histogram; FPS: Fourier power spectrum; MG: moments +
gradient statistics).

Name
006 010 027 110 119 121 122 159 165 317(Prefix:

horse)

GT

Inten

Hist

GLCM

LBP

FPS

Gabor

M.G.

3.4.4 Results on Pascal Aeroplane Images

Considering Table 3.9, the result examples based on intensities and GLCM
features are visually the worst, since they contain more false positives
and/or false negatives than results based on other features. In Table 3.10,
Gabor and Fourier features perform best with similar segmentation scores,
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Table 3.8: Test Results of segmentors evolved from different features on
Weizmann images (the best result is in bold)

Feature Accuracy (%) F1 NRM
Intensity 74.41± 8.37 0.62 ±0.03 0.47 ± 0.01
Histogram Statistics 77.37± 9.09 0.84 ±0.02 0.47±0.02
GLCM Statistics 76.74± 3.92 0.68 ± 0.01 0.47 ±0.01
LBP 66.19± 10.95 0.52 ± 0.04 0.48 ± 0.03
Fourier 68.38± 7.38 0.61 ± 0.02 0.50 ± 0.02
Gabor 78.29±5.40 0.66 ± 0.02 0.42± 0.01
Moments + Gradient statistics 65.04± 10.39 0.58 ± 0.06 0.50 ± 0.04

among which Gabor features are slightly better. They are followed by the
histogram and “moments + gradient statistics” features. The remaining
features, i.e. intensities, GLCM and LBP features, perform worst. For ex-
ample, compared with that of Gabor features, the performance of GLCM
features decreases by 8.21% and 0.13 in the segmentation accuracy and
F1 respectively, while it also increases by 0.06 in the NRM. Therefore,
even though the intensities perform well on relatively simple images, e.g.
bitmap and texture images, they are not sufficient for GP to evolve effec-
tive segmentors for complex object images. Moreover, the shape features
perform better, yet still not the best type of features. In contrast, certain
texture features, e.g. Gabor and histogram features, are the best when
used as inputs of GP to evolve segmentation solutions.

3.5 Analyses of Evolved Segmentors

To determine the influence of input features on the GP segmentation method,
the performance of its evolved segmentors based on different features are
compared. In addition, the well-performing evolved segmentors are also
compared with four traditional segmentation techniques, i.e. thresholding
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Table 3.9: Result examples on Pascal images (GT: ground truth; Inten: in-
tensity; Hist: histogram; FPS: Fourier power spectrum; MG: moments +
gradient statistics).

Name
0033 0256 0738 1288 1761 2099 2266 2376(Prefix:

2007 00)

GT

Inten

Hist

GLCM

LBP

FPS

Gabor

MG

[2] and ACM [1] from the Matlab R2014b document examples, a region
growing method from Kroon [87] and a K-means method from Fonseca
[56].

3.5.1 Comparison between Evolved Segmentors

Figure 3.3 shows the performance of the segmentors evolved from dif-
ferent features on three datasets. On the texture image (Figure 3.3a), most
evolved segmentors achieve over 90% accuracy, over 0.9 F1 score and around
0.1 NRM score, except for LBP and “moments + gradient statistics” based
ones. On complex Weizmann images (Figure 3.3b), two kinds of segmen-
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Table 3.10: Test Results of segmentors evolved from different features on
Pascal images (the best result is in bold)

Feature Accuracy (%) F1 NRM
Intensity 71.39± 10.63 0.49 ± 0.05 0.50 ± 0.05
Histogram Statistics 74.56± 6.89 0.61 ±0.03 0.50 ±0.02
GLCM Statistics 67.39± 9.60 0.49 ±0.04 0.52 ±0.03
LBP 63.75± 14.07 0.54 ± 0.07 0.50 ± 0.05
Fourier 75.10± 7.90 0.61 ± 0.04 0.46 ±0.03
Gabor 75.60±8.10 0.62 ±0.04 0.46 ± 0.03
Moments + Gradient statistics 74.53± 7.83 0.59 ±0.05 0.48 ±0.03

tors (using histogram statistics and Gabor features) are the best. In ad-
dition, on the most complex Pascal images, Figure 3.3c shows that four
kinds of segmentors (histogram statistics, Fourier power spectrum, Gabor
and “moments + gradient statistics” based ones) produce higher scores
than others.

The analyses show that from simple texture images to complicated
object images, certain texture features based segmentors (e.g. histogram
statistics and Gabor features) produce consistently better results than oth-
ers. In contrast, intensities based segmentors perform well on texture im-
ages, yet they fall far behind on the complex images, i.e. Weizmann and
Pascal images. Moreover, the shape features cannot produce as good re-
sults as the histogram statistics and Gabor features generally.

3.5.2 Comparison with Traditional Methods

Four traditional segmentation techniques are selected for comparison, i.e.
thresholding [2], active contour model (ACM) [1], a region growing method
[87] and a K-means method [56]. As the segmentors evolved from the Ga-
bor features achieve consistently good results on Weizmann and Pascal
images, they are selected to compare with the four conventional methods.
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(a) Results on the Brodatz images.

(b) Results on the Weizmann images.

(c) Results on the Pascal images.

Figure 3.3: Comparison of GP evolved segmentors from different features
(the higher the better for the accuracy and F1 score; the lower the better
for NRM).
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Figure 3.4 displays the performance of both the four traditional meth-
ods and the proposed GP method using Gabor features, termed as GP(Gabor).
On Weizmann images (Figure 3.4a), ACM performs best with the highest
accuracy, highest F1 score and lowest NRM score. It is well known that
ACM relies heavily on the initial contour placement [106]. Only when
initial contours are set near objects of interest, could ACM produce accu-
rate results. GP(Gabor) and K-means clustering rank second with slightly
worse results. According to Figure 3.4b on the more complex Pascal im-
ages, GP(Gabor) performs best, followed by thresholding, while K-means,
region growing and ACM are much worse. Note that the thresholding
method is only suitable for images with high contrast between objects and
backgrounds. In contrast, the proposed GP based method can evolve seg-
mentors matching different types of images, leading to satisfactory results
consistently.

To reveal how GP affects the segmentation performance, Figure 3.5 dis-
plays the average training performance of the segmentors evolved in each
generation by GP. Note that the initial segmentors (segmentors in genera-
tion one) are generated randomly, and the segmentors in later generations
(generation two, three and so forth) are evolved by GP based on the initial
ones. Figure 3.5 shows that the training accuracy increases with increas-
ing generations on all the three datasets. In addition, Table 3.11 presents
the average training performance of the derived segmentors at generation
one and 51. Based on the Mann-Whitney U-Test [118] at the significance
level 5%, the training accuracy on all the datasets rises significantly from
generation one to generation 51. Meanwhile, the deviation of the accuracy
drops. For example, on Brodatz dataset, the accuracy rises from 82.13% to
95.21% significantly, along with the decrease of the deviation from 2.46%
to 0.97%. The analyses show that GP can improve the initial segmentors
to produce ones with better segmentation performance.

Therefore, the GP based method can perform consistently well on the
two complex datasets (the Weizmann and Pascal datasets), while some
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(a) Results on the Weizmann images.

(b) Results on the Pascal images.

Figure 3.4: Comparisons of different methods on Weizmann and Pascal
images (the higher the better for the accuracy and F1 score, and vice versa
for NRM; GP(Gabor) means that the GP based segmentation method uses
Gabor features).

of the four traditional techniques (i.e. the thresholding and ACM meth-
ods) show unstable performance, and others (i.e. the K-means and re-
gion growing methods) are not effective to segment the real images. It can
be claimed that the proposed method can outperform the conventional
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(a) On Brodatz images.

(b) On Weizmann images.

(c) On Pascal dataset.

Figure 3.5: Average training performance of GP evolved segmentors from
Gabor features.
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Table 3.11: Average training performance of GP evolved segmentors from
Gabor features (solutions in generation one are created randomly; genera-
tion 51 is the final generation).

Dataset Generation Training Accuracy (%)

Brodatz
1 82.13± 2.46

51 95.21± 0.97

Weizmann
1 63.89± 1.29

51 74.41± 0.61

Pascal
1 73.65± 1.85

51 81.90± 0.38

commonly-used segmentation techniques on the given image datasets based
on the Gabor features.

3.5.3 Example Segmentors

To understand why the evolved programs can be used as good segmen-
tors, example programs are listed in Figure 3.6 and Figure 3.7. The solution
in Figure 3.6 evolved for the texture image “D24vs34” (displayed in Table
3.3.1) is taken as an example.

Figure 3.6: A GP tree solution evolved from histogram statistics for texture
image “D24vs34” (F0 is a feature with 0 as its index, and so forth).

Figure 3.6 displays a solution derived from the histogram statistics,
which consist of six input features, i.e. mean (F0), variance (F1), skewness
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(F2), kurtosis (F3), energy (F4) and entropy (F5). The functions include
add (+), subtract (-), multiply (*), divide (/), no bigger (<=), no smaller
(>=), equal (==), if (IF) and between (Bwt), which are described in Section
3.2.3. This tree solution can be equivalently expressed in Lisp S-expression
format, shown in Equation 3.2 that can be simiplified to Equation 3.3. In
addition, Equation 3.4 describes the classification strategy of GP.

(�(/ F4 F5)(⇤ F3 F5)) (3.2)

GP Output = F4/F5 � F3 ⇤ F5 (3.3)

Class =

(
A if GP Output < 0

B if GP Output � 0
(3.4)

As the texture image “D24vs34” contains two pattens, “D34” and “D24”,
which are set as class A and class B respectively. Equation 3.5 can be gen-
erated based on Equation 3.3 and Equation 3.4 to classify subimages in a
test image. Specifically, Equation 3.5 shows that the evolved segmentor
uses three features, i.e. F3 (kurtosis), F4 (energy) and F5 (entropy). Since
texture “D34” should have lower energy, higher kurtosis and higher en-
tropy than texture “D24” in reality, it is more likely for texture “D34” to
obtain F4 < F3 ⇤F 2

5 , while texture “D24” to obtain F4 � F3 ⇤F 2
5 . Therefore,

subimages with “D34” and “D24” textures can be correctly categorised as
class A and B respectively.

Class =

(
A(D34) if(F4 < F3 ⇤ F 2

5 )

B(D24) if(F4 � F3 ⇤ F 2
5 )

(3.5)

3.6 Chapter Summary

This chapter investigated a wide range of image features as inputs to GP,
aiming to determine what image information is effective for GP to evolve
capable segmentation algorithms. The contributions of this chapter are as
follows.
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Firstly, this chapter investigated seven types of image features as GP
inputs (terminal sets) to evolve segmentors, covering three general feature
categories (brightness, texture and shape). The effectiveness of different
image features on the performance of evolved segmentors was studied.
Results show that segmentors evolved from texture features (e.g. Gabor
and histogram statistics) perform consistently well, better than the shape
feature (i.e.“image moments + gradient statistics”) and the intensities, es-
pecially on complex object images. This shows that texture features are
more effective than shape features and raw intensities for GP to derive
capable segmentors for these datasets.

Secondly, this chapter tested the evolved segmentors on four types of
images (e.g. bitmap, texture and two object datasets) that have increasing
difficulty levels for segmentation. The segmentors evolved by the pro-
posed GP method using texture features perform generally well on all the
four datasets. This indicates that given proper inputs (e.g. texture fea-
tures), the proposed methods can handle segmentation tasks on diverse
image domains.

Thirdly, the best-performing segmentors derived based on Gabor fea-
tures were compared with four conventional segmentation techniques,
i.e. thresholding, K-means clustering, region growing and active contour
model. The results show that the GP-evolved segmentors achieve con-
sistently good performance, while traditional methods perform worse or
cannot maintain good performance on the datasets. The results suggest
that the proposed GP method with proper features, e.g. Gabor features,
can outperform the conventional techniques.

Based on the achievements in this chapter, Gabor features will be em-
ployed as inputs to GP methods in the following chapters. Note that in-
creasing the variety of available features worsens the problem that meth-
ods based on EC techniques, especially GP, tend to evolve complex solu-
tions. They have large sizes, are computationally expensive and difficult
to interpret. Therefore, the next chapter will consider reducing the solu-
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tion complexity while retaining/improving the solution functionality for
GP based segmentation methods.



Chapter 4

Multi-objective GP for Evolving
Segmentors

Figure 4.1: The overall structure of contributions.

GP is shown to be able to evolve capable segmentors for a wide range
of image domains in Chapter 3. However, GP based methods tend to
evolve large solutions, which is mainly caused by bloat. Therefore, new

97
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GP based methods to control bloat will be investigated in this chapter.

4.1 Introduction

Based on the evolved segmentors in Chapter 3, their sizes can be more than
300 nodes for the segmentation task on a simple texture image, which is
caused by bloat. Solutions with large sizes have several problems: being
computationally expensive for evolution and later use, difficult to inter-
pret, and likely to have low generalisation performance [135]. However,
there has been no work that seeks to control bloat in GP for segmentation
problems to date. Therefore, it is worth investigating GP based figure-
ground segmentation methods that can evolve segmentors balancing be-
tween the segmentation performance and the complexity in terms of solu-
tion size.

4.1.1 Goals for Multi-objective GP Evolved Segmentors

The aim of this chapter is to control bloat for the GP based segmentation
methods. Compared with the simple tree depth constraint method, parsi-
mony pressure and multi-objective techniques are more effective for bloat
control. Therefore, they are introduced in standard GP to design new seg-
mentation methods. To investigate whether the new methods can per-
form well, they will be tested on a sequence of figure-ground segmenta-
tion problems with increasing difficulty. Moreover, the proposed methods
will be compared with a reference method that is based on the standard
GP and does not consider the solution size.

Specifically, the following objectives will be investigated:

1. whether the proposed methods can reduce the complexity in terms
of solution size while maintaining or improving the segmentation
performance,

2. whether the proposed GP methods can outperform the reference method,
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3. whether the solutions produced can elicit useful operators and fea-
tures for figure-ground segmentation.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 4.2 in-
troduces the proposed GP based methods, i.e. one parsimony pressure
method and two multi-objective methods, which aim to balance the solu-
tion functionality and complexity. Experiment preparations are described
in Section 4.3, including descriptions of the terminal set and the function
set, the parameter settings and the experiment design. In addition, Section
4.4 discusses parameter settings based on experiments and the results of
the proposed methods. The summary of this chapter is provided in Sec-
tion 4.5.

4.2 Proposed Methods

Two multi-objective techniques (NSGA-II and SPEA2, see Section 2.3.1)
are selected as basic multi-objective techniques to incorporate into GP to
develop new methods with the aim to balance the solution functionality
and complexity. NSGA-II and SPEA2 are selected as they are well un-
derstood and commonly-used techniques [42]. In addition, a parsimony
pressure technique (weighted sum method, see Section 2.3.2) is selected
for comparison, which is a popular bloat control technique in the GP com-
munity.

All the three techniques have to be applied in an efficient manner to
be able to solve figure-ground segmentation tasks. As the window clas-
sification based framework used by the numerical operator based meth-
ods is more efficient than the whole image based framework used by the
image processing operator based methods (see Section 2.4.1), the former
framework is a popular way to apply GP to image segmentation tasks.
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Therefore, the window classification based framework (see Section 3.2.1
for details) is employed in this chapter.

4.2.1 Weighted Sum GP Method

For weighted sum methods, the fitness function combines a performance
measure with a penalty term (based on the solution size) linearly using
a weight factor. Equation 4.1 shows the fitness function designed for the
weighted sum GP method. As the window classification based segmen-
tation approach transforms segmentation tasks into binary classification
problems, the classification accuracy (Equation 4.2) is employed to mea-
sure the solution performance. The classification accuracy falls into the
value range of [0, 1].

The exponential function (exp(�size)) is employed as the base tech-
nique to measure the solution complexity. This function is selected as the
contribution to the worth of the solution monotonically decreases with the
increase in size and is in the range of [0, 1), which makes it suitable to be
linearly combined with the classification accuracy. Figure 4.2a depicts the
curve of the exponential function, which approaches zero when the solu-
tion size grows above six. Note that the sizes (number of nodes) of the
evolved solutions of standard GP based methods (see Chapter 3) can be
tens or hundreds, such that this function would have no influence on com-
plexity control. Therefore, a scaling factor � is introduced to the solution
size contribution, thus forming the complexity measure (exp(�� ⇤ size)),
where � is set to 0.01. Thus the complexity measure captures the differ-
ences in solution size in an appropriately large range (from tens to hun-
dreds) effectively. The curve of the complexity measure is shown in Fig-
ure 4.2b. As � enables a large size range to be covered, the complexity
measure is effective for different problem domains without tuning.

fitness = ↵⇥classification accuracy+(1�↵)⇥complexity measure. (4.1)
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classification accuracy =
Number of correctly classified samples

Number of total training samples
. (4.2)

complexity measure = exp(�� ⇥ size). (4.3)

where ↵ is a weight factor that reflects how much importance the fitness
evaluation addresses the two terms, i.e. the solution performance (mea-
sured by the classification accuracy) and the solution complexity. A higher
↵ means more importance is attached to the solution performance, while
less importance is attached to the solution complexity. As the segmenta-
tion performance is preferred over the solution complexity, ↵ is set to 0.95
based on initial experiments. In addition, size represents the solution size
(the number of the solution tree nodes).

(a) exp(�size) (b) exp(�0.01 ⇤ size)

Figure 4.2: The complexity measure (size means solution size (the number
of terminal and function nodes); exp stands for the exponential function;
the higher the output of the complexity measure the better, which relates
to lower solution sizes).

4.2.2 Multi-objective GP Methods

NSGA-II and SPEA2 are selected as the basic multi-objective techniques to
be incorporated with GP in order to develop the two new multi-objective



102CHAPTER 4. MULTI-OBJECTIVE GP FOR EVOLVING SEGMENTORS

GP methods. Both methods have two objectives, one of which is the clas-
sification accuracy (Equation 4.2) and the other is the complexity measure
(Equation 4.3), which are the same as the two terms in the fitness function
of the proposed weighted sum method.

Between the two objectives, the classification accuracy is preferred, but
different from the weighted sum method, a preference weighting is not as-
sumed beforehand. This kind of preference information can be utilised to
focus on searching an area on the Pareto front specified by a user’s inter-
est, thus helping produce a more fine-grained approximation of the most
relevant areas on the Pareto front and/or reduce the computation time
[26]. To incorporate the preference information, a new dominance mecha-
nism (shown in Algorithm 1) is designed to guide the search to solutions
with outstanding performance in the objective of the classification accu-
racy. Specifically, if solution A has a higher classification accuracy than
solution B by a value defined by the DominanceThreshold parameter, A
dominates B without comparing their scores in the other objective – the
complexity measure.

The adapted NSGA-II and SPEA2 that use this new dominance mech-
anism are called INSGA-II (improved NSGA-II) and ISPEA2 (improved
ISPEA) respectively. By employing the INSGA-II and ISPEA2 in GP re-
spectively, two new multi-objective approaches are developed, which are
INSGP (improved non-dominated sorting GP, shown in Algorithm 2) and
ISPGP (improved strength Pareto GP, shown in Algorithm 3) respectively.

4.3 Experiment Preparation

4.3.1 Terminal Set

Gabor filters are widely-used to extract texture image features (see Section
2.5.2 for details), which are employed in this chapter. Twenty Gabor filters
with popular scales and orientations (five scales: 4, 4

p
2, 8, 8

p
2 and 16,
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input : Solution A and B;
DominanceThreshold.

output: Dominance result (i.e. A dominates B; B dominates A; A and
B do not dominate each other).

1 Execute each solution and evaluate it based on two objectives (the
accuracy (Equation 4.2) and the complexity measure (Equation
4.3));

2 if A.accuracy � B.accuracy > DominanceThreshold (or B.accuracy

� A.accuracy > DominanceThreshold) then
3 A dominates B (or B dominates A)
4 else
5 Apply the original dominance mechanism:
6 if A is not inferior to B in all objectives and A is better than B in at

least one objective then
7 A dominates B
8 else if B is not inferior to A in all objectives and B is better than A in

at least one objective then
9 B dominates A

10 else
11 A and B do not dominate each other
12 end
13 end
14 Return the dominance result.
Algorithm 1: Pseudo-code of the new Pareto dominance mechanism.

and four orientations: 0, ⇡

4 , 2⇡
4 and 3⇡

4 ) are selected.

Figure 4.3 shows the process of extracting Gabor features from one
subimage (class object), which form one training/test sample. Specifically,
for a given image, it is filtered by the 20 Gabor filters to produce 20 fil-
tered images. The magnitudes of the filtered images are used as the Gabor
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input : G: the maximum number of generations;
N: the population size;
The terminal set, function set and GP setting parameters (described in

Section 4.3).
output: Pareto front.

1 Create an initial population at iteration zero (P0) of GP trees using the Ramped
half-and-half method;

2 g  0

3 // Q is the child population of P; C means the combined

population of P and Q;
4 while g < G� 1 and the ideal solution is not found (the solution with accuracy == 1

and solution size == 1) do
5 begin
6 // different procedures for generation 0 and

generations onward // k records the index of the child

generation to be created

7 if g == 0 then
8 Sort P0 by non-dominated sorting based on the new Pareto dominance

mechanism;
9 k  g;

10 else
11 Cg = Pg

S
Qg ;

12 Sort Cg by non-dominated sorting based on the new Pareto dominance
mechanism;

13 Pg+1 = Cg[0 : N � 1]; // choose the first N elements;
14 k  g + 1;
15 end
16 Create a child population Qk from Pk:
17 begin
18 Set Qk empty;
19 Assign each solution of Pk a fitness value equal to its non-dominance

level;
20 for i = 0 to N-1 do
21 Select parent(s) by tournament selection from Pk;
22 Generate children by mutation operation or crossover operation;
23 Add the children to Qk;
24 end
25 end
26 g  g + 1;
27 end

28 Return Pareto front (non-dominated solutions in the latest child population Qg).

Algorithm 2: Pseudo-code of INSGP (GP procedure is in red and
NSGA-II procedure is in blue; detailed descriptions can be found in
paper [44] for NSGA-II and paper [135] for GP).
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input : G: the maximum number of generations;
N: the population size;
N̄ : the archive size;
The terminal set, function set and GP setting parameters (described in

Section 4.3).
output: Pareto front.

1 Create an initial population at iteration zero (P0) of GP trees using the Ramped
half-and-half method;

2 Create an empty archive (P̄0);

3 g  1

4 while g < G� 1 and the ideal solution is not found (the solution with accuracy == 1

and solution size == 1) do
5 Fitness assignment: sort Pg by non-dominated sorting based on the new

Pareto dominance mechanism; assign each solution a fitness value equal to
its non-dominance level;

6 Copy all non-dominated solutions in Pg and P̄g to ¯
Pg+1:

7 begin
8 if | ¯

Pg+1| > N̄ then
9 Reduce ¯

Pg+1 to N̄ by the truncation operator;
10 end
11 if | ¯

Pg+1| < N̄ then
12 Fill ¯

Pg+1 to N̄ with dominated solutions in Pg and P̄g ;
13 end
14 end
15 Create Pg+1 from ¯

Pg+1:
16 begin
17 Set Pg+1 empty;
18 for i = 0 to N-1 do
19 Select one/two parent(s) by tournament selection from ¯

Pg+1;
20 Generate one child/two children by mutation operation or crossover

operation;
21 Add the child/children to Pg+1;
22 end
23 end
24 g  g + 1;
25 end

26 Return Pareto front (non-dominated solutions in the latest population Pg).

Algorithm 3: Pseudo-code of ISPGP (GP procedure is in red and
SPEA2 procedure is in blue; detailed descriptions can be found in
paper [183] for SPEA2 and paper [135] for GP).
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features. For a subimage (16 ⇥ 16 pixels) captured on the original image,
a magnitude array (16 ⇥ 16 values) can be obtained on the identified lo-
cation from each filtered image. Considering the high dimension of each
magnitude array that leads to slow performance, down sampling is con-
ducted on each magnitude array from 16 ⇥ 16 to 4 ⇥ 4 values, which are
concatenated to a 16 dimension feature vector. By concatenating all the
20 feature vectors (from the 20 filtered images), a feature vector with 320
features (16 ⇥ 20) is obtained along with its class label (class object or back-
ground), which forms one Gabor feature sample. Therefore, the terminal
set consists of 320 Gabor features.

Figure 4.3: Gabor features extracted from one subimage (f1 means a fea-
ture value with 1 as its index, and so forth; A/B represents class ob-
ject/background respectively).

4.3.2 Function Set

Table 4.1 is the function set, including four arithmetic operators (+,�, ⇤, /),
one conditional operator (IF ) and four relational operators (<=, >=,==
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, Between). These operators can be combined to form both linear and non-
linear transformations, so they are effective to evolve binary classifiers.

Table 4.1: Function set (x, y, z stand for the variables required by the func-
tions).

Function Name Definition Function Name Definition
+(x, y) x+ y -(x, y) x� y

*(x, y) x ⇤ y /(x, y)

(
x/y if y! = 0

0 if y == 0

IF(x, y, z)

(
y if x is true
z if x is false

<= (x, y)

(
1 if x <= y

0 if otherwise

>= (x, y)

(
1 if x >= y

0 if otherwise
== (x, y)

(
1 if x == y

0 if otherwise

Between(x, y, z)

(
1 if y <= x <= z

0 if otherwise

4.3.3 Parameters

GP Parameters

The population size is set to 512, and crossover and mutation are used
as reproduction operators, where their rates are set to 90% and 10% re-
spectively. Other GP parameters (e.g. the number of generations (51), the
minimum (1) and maximum (17) tree depths) follow the settings used by
Koza [83] (see Section 2.5.4 for details).

Other Parameters

The window related parameters (i.e. the size of the window and the shift-
ing steps) in the window classification based segmentation framework are
crucial in capturing sub-images. Specifically, the window size must guar-
antee that the captured subimages contain sufficient information to distin-
guish itself from those belonging to other classes. In addition, a big shift-
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ing step of the window may cause inaccurate results, yet a small step in-
volves a high computation cost. Based on initial experiments, the window
size is set to 16 by 16 pixels, and both shifting steps (dx in the horizontal
direction and dy in the vertical direction) are set to two.

4.3.4 Experiment Design

A reference method with the same GP settings but without considering
the solution size is used for comparison. In this chapter, the aggregated
Pareto fronts over 30 runs are plotted for INSGP and ISPGP, while single
best solutions from 30 runs (one best solution from each run) are plotted
for the reference and weighted sum methods. Each experiment has 30 runs
for statistical analyses due to the stochastic nature of GP.

For texture image segmentation, the training set consists of 1000 sam-
ples, including 500 samples extracted from each texture pattern (D23 or
D34). The evolved segmentor is tested on one texture image, named D23vs34
(Section 2.5.1). On the Weizmann dataset, there are 328 horse images in to-
tal. Two thirds of all images (218 images) are used as training images, and
the remainder (110 images) are used as test images. From each training
image, 20 samples are extracted (10 from the foreground; 10 from back-
grounds), so there are totally 4360 training samples. On the Pascal dataset,
there are 178 aeroplane images. As suggested by Pascal VOC2012 [53], 88
images are for training and 90 images for test. There are 50 samples (25
from the foreground; 25 from backgrounds) extracted from each training
image, as Pascal images are larger than the Weizmann images. In total,
there are 4400 training samples.

Table 4.2 shows the number of foreground/background samples in the
test sets, along with their rates. It can be seen that the Brodatz test set is
balanced with an equal number of foreground and background samples.
In contrast, the Weizmann and Pascal test sets are unbalanced with more
background samples than foreground samples.
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Table 4.2: Information on the test sets (the number of fore-
ground/background samples are counted across the whole test set; Rate is
calculated by dividing the number of foreground samples by that of back-
ground samples).

Dataset
Number of Number of

Rate
Foreground Samples Background Samples

Brodatz Test Set 5184 5184 1
Weizmann Test Set 321912 946797 0.34
Pascal Test Set 467339 3115593 0.15

4.3.5 Performance Measures

Two measures are selected to assess the proposed methods, i.e. F1 score
(see Section 2.5.3) [148] and the hypervolume indicator [182]. As in some
test images the objects only occupy a small portion of the whole image,
F1 score is employed. Compared with alternative measures, e.g. the seg-
mentation accuracy, F1 score is relatively less biased for such cases with
unbalanced classes. It reaches its worst at 0 and best at 1. In addition,
the hypervolume indicator is popular for the performance assessment of
the multi-objective optimisation algorithms [182]. It represents the relative
size of the objective space correctly classified by the Pareto front solutions.
The hypervolume measure is selected to evaluate INSGP and ISPGP. It
reaches its worst at 0 and best at 1.

4.4 Results

In this section, the performance of the proposed methods (the weighted
sum method, INSGP and ISPGP) is compared with each other and also
with the reference method. Moreover, the evolved solution trees are stud-
ied to determine how they function.
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4.4.1 Determination of Parameter DominanceThreshold in
INSGP and ISPGP

INSGP and ISPGP are created by introducing a new Pareto dominance
mechanism in NSGA-II and SPEA2. This new mechanism is designed to
assist in discovering solutions with extreme performance in the classifica-
tion accuracy yet relatively large sizes and to enable them to survive in the
evolutionary process. An important parameter, DominanceThreshold, is
required by the new dominance mechanism (see Algorithm 1) to set the
degree of dominance acceptable for increased accuracy.

The training performance of standard NSGA-II and SPEA2 based GP
methods (termed as NSGP and SPGP) is shown in Figure 4.4 for compari-
son. It can be seen that solutions evolved by NSGP and SPGP have much
smaller sizes than those of the reference method. For NSGP, its solutions
can dominate those produced by both the reference and weighted sum
methods in the majority of cases across the three datasets. However, this
is not the case for SPGP. This figure shows that SPGP has a small search
area, which does not include the solutions with relatively large sizes and
high accuracies. For example, on the Weizmann dataset (Figure 4.4b), the
biggest size of the non-dominated solutions is 19. For difficult segmen-
tation tasks on the Weizmann dataset, solutions with small sizes may be
too simple to produce accurate results. That is why solutions evolved by
SPGP can rarely compete with those from the reference and weighted sum
methods in terms of the classification accuracy.

To tackle this problem, INSGP and ISPGP are created by introducing
the new Pareto dominance mechanism (Algorithm 1). Different domi-
nance thresholds using ISPGP are tested on the Pascal dataset, i.e. 0.1%,
0.5%, 1%, 3%, 5%, 7%, 10%, 20%. The smaller the threshold, the more
the search process is biased towards the objective of classification accu-
racy. The bigger the threshold, the more equally the search process treats
the two objectives. As shown in Figure 4.5, if the threshold is too small
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(a) On Brodatz dataset

(b) On Weizmann dataset

(c) On Pascal dataset

Figure 4.4: Training performance of NSGP and SPGP (different scales are
used on the vertical axis of the figures to show the variation on the Pareto
fronts).
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(e.g. 0.1%, 0.5%, 1% and 3%), there are no solutions with smaller sizes
produced. If the threshold is too big (e.g. 10% and 20%), the search area
almost corresponds to that of SPGP. Algorithms with the medium thresh-
olds (5% and 7%), produce the most satisfactory training performance.
They cover the search area of SPGP and extend to the area where solutions’
sizes are relatively large, which suits the aim. Eventually, the threshold 5%
is selected for the following experiments of INSGP and ISPGP.

4.4.2 Proposed Methods vs Reference Method

Figure 4.6 and Figure 4.7 present the performance on the training sets
and the test sets respectively. The non-dominated solutions of aggregated
Pareto fronts over the 30 runs are plotted for INSGP and ISPGP, whereas
single best solutions of 30 runs are plotted for the reference and weighted
sum methods. In Table 4.3, the results are the average performance of the
non-dominated solutions for INSGP and ISPGP, while results are the aver-
age performance of 30 single best solutions for the weighted sum and the
reference methods.

Figure 4.6 presents the performance on each training set. As can be
seen, the three proposed methods (the weighted sum, INSGP and ISPGP
that consider the solution complexity), can generally evolve programs with
smaller sizes than those produced by the reference method that does not
address the complexity. Moreover, INSGP and ISPGP solutions can dom-
inate those of the reference and weighted sum methods in the majority of
cases. This means that with the same size, INSGP and ISPGP solutions
have higher accuracies; or with the same accuracies, INSGP and ISPGP
solutions have smaller sizes.

Figure 4.7 shows the performance on the test sets. For INSGP and
ISPGP, each of the Pareto front solutions produced in the 30 runs is tested
on the test set, and the average F1 value of each solution is calculated.
Then the non-dominated solutions on the test sets are found and shown
in Figure 4.7. Similar to the training performance, INSGP and ISPGP
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: ISPGP training performance on Pascal dataset with different
dominance thresholds (ISPGP0.1 means the threshold in ISPGP is 0.1%
and so forth).
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(a) On Brodatz dataset

(b) On Weizmann dataset

(c) On Pascal dataset

Figure 4.6: Training performance of proposed methods and the reference
method.
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solutions generally can dominate those of the other two methods on all
three datasets. On the simple texture image (Figure 4.7a), INSGP solutions
can dominate others, including the ISPGP solutions. On the two difficult
datasets, the two multi-objective methods produce similar non-dominated
sets in the objective space.

Table 4.3 provides the statistical results in terms of the training accu-
racy, the F1 score on the test set, the solution size, the training time and test
time. For INSGP and ISPGP, the results are the average of the aggregated
Pareto front solutions of 30 runs; while for the reference and weighted sum
methods, the results are the average of best solutions of 30 runs. Based on
the Mann-Whitney U-Test [118] at the significance level 5%, the three bloat
control methods are compared with those of the reference method.

In regard to the training performance, INSGP and ISPGP show no sig-
nificant difference from the reference method generally. In the test per-
formance (F1 score), the three bloat control methods achieve generally
similar performance to the reference method, with better results on Bro-
datz dataset for INSGP and on Pascal dataset for ISPGP and INSGP. This
suggests that the three bloat control methods (weighted sum, INSGP and
ISPGP) are able to produce capable solutions as the reference method.
More importantly, compared with the reference method, which does not
address the solution complexity, the three bloat control methods evolve
solutions with much smaller sizes (around 10 to 20 times smaller). For
example, on the Pascal dataset, the average size is 298 for the reference
method, while 23, 13 and 14 for the three proposed methods respectively.
Among the proposed methods, INSGP and ISPGP can further reduce so-
lution sizes over the weighted sum method, which is especially obvious
on the Weizmann dataset. With the simplification of evolved solutions,
the training time and the test time decreased for the complexity control
methods.

The analyses in this part show that the complexity control methods
(INSGP, ISPGP and the weighted sum method) can evolve solutions much
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(a) On Brodatz dataset

(b) On Weizmann dataset

(c) On Pascal dataset

Figure 4.7: Test performance of proposed methods and the reference
method.
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Table 4.3: Results (B., W. and P. refer to Brodatz, Weizmann and Pascal
datasets; W.S. refers to the weighted sum GP method; s represents sec-
onds).

Method
Training Test

Size
Train Time Test Time

Accuracy(%) F1 Per Run(s) Per Image(s)

B.

Reference 95.21± 0.98 0.93± 0.011 275± 90 150.239± 14.733 0.042± 0.012
W.S. 93.48± 0.75 0.93± 0.011 29± 9 28.851± 6.120 0.010± 0.002

INSGP 94.97± 1.71 0.94± 0.016 22 ± 8 26.779± 6.389 0.008± 0.000
ISPGP 94.84± 1.45 0.93± 0.008 19± 5 24.582± 5.210 0.007±0.001

W.

Reference 74.41± 0.62 0.61± 0.008 344 ± 98 3163.465 ±100.002 0.055 ±0.009
W.S. 73.82± 0.53 0.61± 0.009 74 ± 25 1776.693 ±88.252 0.025 ±0.006

INSGP 74.22± 1.27 0.62± 0.012 35± 12 1031.147±58.793 0.013±0.003
ISPGP 74.13± 1.16 0.62± 0.014 35± 11 588.822±21.773 0.010±0.002

P.

Reference 81.81± 0.37 0.57± 0.005 298±92 767.406± 27.338 0.110±0.010
W.S. 81.04± 0.30 0.56± 0.007 23± 6 249.424±17.956 0.026±0.005

INSGP 81.92± 1.31 0.57± 0.007 13±4 235.692±19.254 0.029±0.008
ISPGP 81.50± 1.67 0.57± 0.005 14± 4 148.162±13.064 0.023±0.009

smaller than those of the reference method, leading to the training and test
time being reduced significantly. Moreover, compared with the weighted
sum method, the multi-objective methods (INSGP and ISPGP) can fur-
ther reduce the solution size. Meanwhile, their performance on the test
set is similar or even better than the reference method. Therefore, this
reflects that multi-objective methods guided by the solution functionality
and complexity measures can effectively explore the Pareto front to obtain
a set of trade-off solutions between the two objectives.

To further show that the proposed methods with modified Pareto dom-
inance outperform the methods with standard Pareto dominance, Figure
4.8 shows the test performance of ISPGP and SPGP on the Weizmann
dataset. The non-dominated solutions of the aggregated Pareto fronts of
30 runs are depicted for ISPGP and SPGP. It shows that ISPGP solutions
can generally dominate the SPGP solutions. Moreover, ISPGP provides
more solutions with higher F1 scores yet larger solution sizes than SPGP,
which is because the modified Pareto dominance leans towards solutions
with outstanding segmentation performance.
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Figure 4.8: The comparison of ISPGP and SPGP on Weizmann dataset.

4.4.3 INSGP vs ISPGP

Figure 4.9 presents selected image results. For Brodatz images, the results
are visually accurate with objects correctly detected. For difficult images
on the Weizmann and Pascal datasets, the results are relatively less ac-
curate with some body parts of the objects incorrectly detected as class
background and/or some background parts incorrectly detected as class
object. This may be because the Gabor feature is not sufficiently precise to
exactly capture object edges, and other types of features, e.g. colour, may
be necessary to distinguish the objects from backgrounds. However, given
the high variations in the test images, the results are still promising. From
the result examples, no obvious difference can be seen in the performance
of INSGP and ISPGP.

Table 4.4 compares the INSGP and ISPGP in terms of the hypervolume
and the average solution size, which are based on the aggregated Pareto
front solutions of 30 runs. For the hypervolume score, INSGP is a little
higher on the training set (0.001 higher on Brodatz; 0.038 higher on Weiz-
mann; 0.039 higher on Pascal) than ISPGP, while both methods produce
generally similar scores on the test set (the same on Brodatz; 0.032 lower
on Weizmann; 0.039 higher on Pascal). This reflects that solutions evolved
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Images

B.
G.T. INSGP ISPGP

W.

G.T.

Name horse229 horse298 horse317 horse318 horse320

INSGP

ISPGP

P.

GT

Name 2007 001884 2007 002376 2007 002619 2010 003915 2010 005888

INSGP

ISPGP

Figure 4.9: Result examples (B., W. and P. refer to Brodatz, Weizmann and
Pascal datasets;).

by INSGP and ISPGP can achieve similar segmentation performance. In
addition, both methods evolve solutions with similar sizes, which reflects
that they can reduce the solution complexity at a similar level.

The ability of preserving diversity can be shown by Figure 4.6, which
depicts the non-dominated solutions produced by INSGP and ISPGP on
the training set. Diversity refers to how well the solutions are distributed
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along the Pareto Front. The solution diversity is important because a good
distribution gives a better idea of the Pareto front shape that shows differ-
ent options of trade-offs between objectives, and increases the chance to
find a desired trade-off [107]. Figure 4.6 shows that INSGP solutions have
a better spread along the whole frontier than the ISPGP solutions. The rea-
son is that SPEA2 focuses more on solutions in the middle region, while
NSGA-II tends to emphasise the edge points of the current non-dominated
solutions and thus produce solutions along the whole frontier [44].

Based on the analyses, INSGP tends to evolve solutions that have sim-
ilar performance as ISPGP solutions. Both methods can reduce solution
sizes at a similar level. However, INSGP has a higher ability to preserve
solution diversity than ISPGP for the given segmentation tasks.

Table 4.4: Comparison of ISPGP against INSGP (HV means hypervolume).

Dataset Method
HV HV Solution Size

(Training Set) (Test Set) (Test Set)

Brodatz
INSGP 0.967 0.973 22 ± 7
ISPGP 0.966 0.973 19 ± 6

Weizmann
INSGP 0.791 0.741 35 ± 19
ISPGP 0.758 0.773 35 ± 13

Pascal
INSGP 0.910 0.913 13 ± 5
ISPGP 0.866 0.874 14 ± 6

4.4.4 Further Analysis

In this part, the solutions on the Pareto front produced by both INSGP
and ISPGP will be analysed to reveal the mechanism of how they function
to distinguish objects from backgrounds. One test image (Figure 4.10a) is
taken as an example. Three cutouts (A: object with a horizontal edge; B:
object with an edge that has an angle around ⇡

4 ; C: background without
edges) are highlighted on this image. Figure 4.10b shows the Gabor filters
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used to extract features, along with the feature index. There are 20 Gabor
filters, including filters with five scales (4, 4

p
2, 8, 8

p
2 and 16) and four

orientations (0, ⇡

4 , 2⇡
4 and 3⇡

4 ). Each filter contributes 16 feature values to
the final 320-dimension feature vector of each cutout.

(a) (b)

Figure 4.10: Tree analysis on an image (a. Image “2007 002266” from Pas-
cal dataset with cutout A, B and C; b. Gabor filters ([0...15] represents
f0, ..., f15 extracted by the filter with the scale of 4 and the orientation of 0,
and so forth)).

Figure 4.11 shows two solutions produced by INSGP and ISPGP re-
spectively, which are non-dominated based on the segmentation perfor-
mance (F1 score) on the test set. Both solutions have a size of five, which
is regarded as a small size as the given segmentation tasks are complex.
Based on INSGP and ISPGP, if the value of the root value is smaller than
zero, the cutout is considered as class object; otherwise it is considered as
class background. In Figure 4.11, the values of terminal nodes are features
extracted by the filter being applied to the image, which are subsequently
used to calculate the result at the root node. Both solutions have the same
structure that contains a comparison operation and then a subtract op-
eration (comparison-subtract structure) even though they were evolved
completely separately.

An INSGP solution (Figure 4.11a) is taken as an example. It is known
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that a Gabor filter produces high responses when it meets edges at the
same orientation as itself. For cutout A (contains a horizontal edge), this
solution (Figure 4.11a) considers the difference of edge information at three
orientations (⇡4 , 2⇤⇡

4 and 3⇤⇡
4 ). As the feature f170 (2⇤⇡4 orientation) is smaller

than the feature f242 (3⇤⇡4 orientation), the comparison operation produces
zero. In this case, as Gabor features used in this paper are all larger than
zero, the root value will be negative after conducting the subtract oper-
ation, thus categorizing cutout A correctly as class object. For cutout B
(contains an edge with an angle at ⇡

4 ), as feature f221 in the solution (Fig-
ure 4.11a) is oriented at ⇡

4 , feature f221 has a high value (larger than 1). In
this circumstance, no matter the result of the comparison operation, the
root value will be negative, classifying cutout B correctly as class object.
As cutout C (background) does not contain edges, Gabor features may not
be enough to describe it, yet the INSGP solution correctly detects it as class
background by studying the pixel values. It reflects that the evolved tree
structure and certain features used are effective for given segmentation
tasks and not created by chance.

(a) INSGP solution (b) ISPGP solution

Figure 4.11: Analyses of small solutions non-dominated on Pascal test set
(A, B and C represent the three cutouts in Figure 4.10a; value means the
value of the tree root node).

Figure 4.12 shows two relatively large solutions produced by INSGP
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and ISPGP, compared with solutions in Figure 4.11. They are also non-
dominated solutions based on the test performance. The same tree struc-
ture (comparison-subtract structure) that is used by small solutions can
also be seen in the large trees. The solution in Figure 4.12a can be sim-
plified as rootnode = (Subtree1 + Subtree2) � f212 � f252. The subtree1
and subtree2 are of a similar comparison-subtract structure. The solution
in Figure 4.12b can be simplified as rootnode = (Subtree1 + Subtree3 +

Subtree4+Subtree5)�Subtree2. The subtree1, subtree3, subtree4 and sub-
tree5 hold the comparison-subtract structure. Compared to the small so-
lutions in Figure 4.11, these large solutions add more operations (multiply
and addition) and more features to construct new features. For example,
the subtree2 in Figure 4.12b conducts multiply and addition operations
with three input features (f182, f243, f315), both of which are extracted by
filters at orientation 3⇤⇡

4 . In this way, a new feature is produced, which
provides more accurate information at this orientation. It is concluded
that the larger solutions tend to conduct feature construction to produce
more effective features to improve segmentation performance.

To further testify that the proposed methods (INSGP and ISPGP) can
evolve solutions with certain patterns (e.g. to detect edges), the Pascal
training images are rotated by 90 degrees. A new training set is extracted,
from which INSGP and ISPGP evolve new solutions. Figure 4.13 shows
four non-dominated solutions on the Pascal test set. For the small trees
(Figure 4.13a and Figure 4.13b), they contain the same comparison-subtract
structure as the small solutions (Figure 4.11a and Figure 4.11b) evolved
from the original training set. The large trees (Figure 4.13c and Figure
4.13d) also use the comparison-subtract operation as their major structure,
and similar with the large solutions (Figure 4.12) evolved from the orig-
inal set, they employ more operations (e.g. multiply) and more features.
This shows that the proposed methods search for solutions with certain
patterns that are effective for the given segmentation tasks.
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(a) INSGP solution

(b) ISPGP solution

Figure 4.12: Analyses of large solutions non-dominated on Pascal test set.

4.5 Chapter Summary

In this chapter, a parsimony pressure technique (weighted sum) and two
multi-objective techniques (NSGA-II and SPEA2) were introduced in stan-
dard GP to design new segmentation methods, which are expected to re-
duce the solution complexity. Specifically, standard NSGA-II and stan-
dard SPEA2 were improved by including preference information to en-
able GP to focus on searching the area on the Pareto front of a user’s inter-
est, which are termed as INSGA-II (improved INSGA-II) and ISPEA2 (im-
proved SPEA2). INSGA-II and ISPEA2 were incorporated with GP to de-
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(a) INSGP Solution (b) ISPGP Solution

(c) INSGP Solution

(d) ISPGP Solution

Figure 4.13: Solutions (evolved from a rotated Pascal training set) non-
dominated on Pascal test set.

velop two new segmentation methods (INSGP and ISPGP). The weighted
sum method considers both the segmentation performance and the solu-
tion complexity, but combines them into a single objective. In contrast, the
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multi-objective methods treat two objectives (i.e. the segmentation per-
formance and the solution complexity) independently, aiming to achieve
good trade-offs between the two objectives. Subsequently, the proposed
methods were tested on three benchmark image datasets, i.e. Brodatz tex-
ture, Weizmann and Pascal datasets, and were compared with a reference
method (based on standard GP without complexity control).

The results show that the proposed methods (the weighted sum method,
INSGP and ISPGP) can significantly reduce the solution sizes while achiev-
ing similar segmentation performance to the reference method. Moreover,
INSGP and ISPGP can evolve solutions with further reduced sizes. This
reflects that the proposed multi-objective methods (INSGP and ISPGP) can
evolve effective trade-off solutions between the solution functionality and
complexity. When comparing ISPGP with INSGP, solutions evolved by
both methods have similar segmentation performance and similar size
levels. However, INSGP solutions have higher diversity than ISPGP so-
lutions for the segmentation tasks in this chapter. Further analysis on
the evolved solutions reveals that certain patterns are captured to detect
edges.

Even though promising results were achieved in this chapter, it is still
challenging to achieve accurate segmentation on complex images with
high variations (e.g. cluttered backgrounds and/or varying objects). Ef-
fective image features that can capture difference between object pixels
and background ones are necessary. Feature selection can help remove
noisy/redundant features. Thus introducing feature selection could im-
prove the segmentation performance. Similarly, feature construction can
produce new features that consider interactions of the primitive features.
The constructed features are anticipated to be more distinctive than prim-
itive features. Therefore, feature selection and construction will be inves-
tigated in the following chapters.



Chapter 5

GP for Feature Selection in
Figure-ground Segmentation

Figure 5.1: The overall structure of contributions.

Diverse types of image features with the aim to determine what image
information is necessary for GP to evolve capable segmentors were inves-
tigated in Chapter 3. Results show that texture features based GP methods
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perform better for figure-ground segmentation than those using raw pixel
values and shape features. Thus, based on the Gabor features, the parsi-
mony pressure and multi-objective techniques were introduced in GP to
design new methods with the aim to balance the solution functionality
and complexity in terms of solution size (see Chapter 4).

Even though well-performing solutions with smaller sizes are achieved,
it is still challenging to segment images with high variations, which re-
quires effective feature sets to capture the distinguishing information be-
tween objects and backgrounds. Therefore, feature selection and construc-
tion will be investigated to produce effective feature sets in the following
chapters (see Chapter 5 and Chapter 6 respectively). This chapter focuses
on feature selection first as removing features from primitive features is
more straightforward than constructing new features.

5.1 Introduction
In figure-ground segmentation, one challenge is to segment images with
high variations (e.g. containing a cluttered background) [96, 98], which re-
quires effective feature sets to capture the distinctive information between
objects and backgrounds. GP has been applied to feature selection [41, 121,
124, 158], and promising results have been achieved. However, there is
no work that introduces GP based feature selection for figure-ground seg-
mentation tasks. Moreover, feature selection is a multi-objective task, max-
imizing the effectiveness of selected features and minimizing the number
of selected features, but existing GP based feature selection works rarely
consider the number of features. Therefore, it is necessary to further in-
vestigate GP based feature selection for figure-ground segmentation.

5.1.1 Chapter Goals
The aim of this chapter is to design feature selection methods using GP
for figure-ground segmentation tasks, which are expected to maximise the
segmentation performance based on the selected features and minimise
the number of selected features. To achieve this goal, the parsimony co-
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efficient technique and two multi-objective techniques are introduced in
GP to develop new feature selection methods. Note that the parsimony
coefficient technique is popular for bloat control, which penalizes the fit-
ness of candidate solutions by decreasing the raw fitness by an amount
dependent on the tree size [97]. It is employed to handle multi-objective
optimisation in feature selection by penalizing the fitness of selected fea-
ture subsets based on the number of features that they contain. On the
other hand, the multi-objective techniques treat the two objectives inde-
pendently. These techniques are selected to develop new methods since
they are popularly used to handle multi-objective optimisation problems.

Specifically, the following objectives will be investigated:

1. explore whether the proposed methods can select effective feature
subsets for complex image segmentation tasks,

2. investigate which one of the proposed methods performs better, e.g.
in terms of segmentation performance, the number of selected fea-
tures and the training/test time.

5.1.2 Chapter Organisation

The rest of the chapter is organised as follows. Section 5.2 introduces the
overall structure of feature selection using GP for figure-ground segmen-
tation tasks. Three new methods that consider the number of selected fea-
tures, i.e. the parsimony pressure based method and two multi-objective
GP methods, are described in Section 5.3. In addition, Section 5.4 and
Section 5.5 provides the experimental preparation and results with dis-
cussions. In Section 5.6, the contributions of this chapter is summarised.
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5.2 Overall Structure of GP based Feature Selec-
tion

Figure-ground segmentation tasks are formulated to window classifica-
tion based problems in Chapter 3 and Chapter 4. However, there are two
issues: the window related parameters are required, e.g. the window size
and the number of the window shifting steps, which rely on users’ exper-
tise for setting; the window classification based methods tend to produce
inaccurate object boundaries due to the overlapping of moving windows
and the voting scheme. Therefore, in this chapter, a pixel classification
based segmentation framework is developed. It does not need window
related parameters and the voting scheme, which are required by the win-
dow classification based framework.

Note that the term “pixel classification” does not mean classification
based on isolated pixels on an image. It is used to differentiate from
“window classification” in two aspects. Firstly, for the pixel classification
based framework, features are extracted based on the neighbourhood of
each pixel to treat each pixel independently from others when conduct-
ing classification, and the predicted class label is assigned to this pixel.
In contrast, for the window classification based framework, features are
extracted based on an image patch and each image patch is treated as
an individual sample when conducting classification, and the predicted
class label is assigned to all pixels of this image patch. Secondly, for the
pixel classification based framework, each pixel has one predicted class la-
bel; while for the window classification based framework, each pixel may
have multiple predicted labels due to overlapping of the shifting windows
(details are in Chapter 3).

In this chapter, based on the pixel classification framework, a feature
selection process is introduced, aiming to select effective feature subsets
for improving the segmentation performance.
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5.2.1 Pixel Classification Based Figure-ground Segmenta-
tion

The framework of the pixel classification based segmentation with feature
selection (shown in Figure 5.2) includes four major steps. Firstly, features
are extracted from the training, validation and test image sets to form a
training set, a validation set and a test set respectively. Secondly, the train-
ing set and the validation set (instances with extracted features) are used
as inputs to a proposed GP based feature selection method, which selects
a feature subset. Thirdly, the training and test sets are transformed based
on the selected feature subset. A standard classifier (e.g. Naı̈ve Bayes)
is trained using the transformed training set, and then the trained classi-
fier categorises the transformed test samples as class object or background.
Eventually, based on the ground truth and certain measures (e.g. the seg-
mentation accuracy), the segmentation performance based on the selected
feature subset and the classifier can be generated.

5.2.2 Feature Selection using GP based Methods

Figure 5.3 illustrates how feature subsets are generated in the evolution-
ary process of GP. For each GP evolved program, its terminals are col-
lected, and the unique features that occur in the terminals form the se-
lected feature subset. For example, the left tree solution in Figure 5.3 con-
tains four terminals [f0, f3 f1, f3], in which there are three unique fea-
tures [f0, f1, f3]. Therefore, the feature subset selected by this solution is
[f0, f1, f3].

5.2.3 Feature Extraction

For the pixel classification based figure-ground segmentation, the task of
separating the object from background is to distinguish the object pixels
from the background ones. Feature extraction is necessary to describe im-
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Figure 5.2: Framework of the pixel classification based figure-ground seg-
mentation with feature selection (f0 is a feature with 0 as its index and
so forth; A and B represent class object and background respectively; (0,0),
(0,1) and (H,W) are the coordinates of pixels; H and W are the test image’s
height and width).

age pixels for accurate classification performance.

Given an image with the aeroplane as the region of interest (Figure
5.4), several pixels are highlighted, i.e. pixels a, b, c (class object) and pixels
d, e, f (background) pixels. Different information is required to distinguish
different pixels. For pixels c and e, as they have different colours, the
colour information could be effective to separate them. For pixels b and f,
they have a similar colour and a similar grayscale value, and both are edge
pixels, so pure colour or intensity values would not work and higher-order
information, e.g. grayscale statistics, is needed. For pixels a and d, as a is
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Figure 5.3: Feature subset generation (f0 is a feature with 0 as its index and
so forth).

an edge pixel while d is not, edge features could be used to distinguish
them easily. Therefore, features that contain edge information, colour and
grayscale statistics information will be extracted from the neighborhood
of an image pixel to describe it. Note that texture features (edge features
and grayscale statistics) and colour features are used, while shape features
are not included as they are suitable to describe image patches rather than
individual pixels.

Figure 5.4: Distinguishable image information.

Figure 5.5 shows the feature descriptors employed in this chapter to ex-
tract the features mentioned above. The feature descriptors include Gabor
filters, the mean and the median filters, LBP (local binary patterns) op-
erators and pixel intensities. Specifically, Gabor filters are powerful edge
descriptors [178], LBP operators are powerful texture descriptors that can
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represent the small-scale image appearance [132], and the mean and the
median filters can extract local statistical features. Details of feature de-
scriptors can be found in Section 2.5.2.

As can be seen in Figure 5.5, there are in total 53 features to represent
each pixel, and all the extracted features are normalized to [0, 1]. Forty Ga-
bor filters are applied, generated from five common scales (4, 4

p
2, 8, 8

p
2, 16)

and eight common orientations (0, ⇡8 ,
2⇡
8 ,

3⇡
8 ,

4⇡
8 ,

5⇡
8 ,

6⇡
8 ,

7⇡
8 ), hence there are

a total of 40 Gabor features. The mean filter, median filter and LBP are
employed to extract local statistical features. Three window sizes are em-
ployed, i.e. 3 ⇥ 3 pixels, 5 ⇥ 5 pixels and 9 ⇥ 9 pixels, which can capture
information at different scales.

Figure 5.5: Extracted features and their dimension indexes (f0 is a feature
with 0 as its index and so forth).

5.3 Proposed Feature Selection Methods

To balance the effectiveness and the number of features of the selected
feature subsets, a parsimony pressure technique (i.e. the parsimony coef-
ficient technique) is introduced in GP to develop the parsimony pressure
GP method for feature selection, termed as PGP-FS. In addition, two multi-
objective techniques, i.e. NSGA-II and SPEA2, are combined with GP to
form two novel multi-objective GP methods for feature selection, termed
as NSGP-FS (nondominated sorting GP feature selection) and SPGP-FS
(strength Pareto GP feature selection).
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5.3.1 The Parsimony Coefficient GP Method

The parsimony coefficient technique is used to combine with GP to de-
velop the feature selection method (PGP-FS) in this section, aiming to bal-
ance the effectiveness and the number of selected features. In PGP-FS, the
fitness function introduces a penalty term based on the number of selected
features to the classification accuracy. Specifically, the classification accu-
racy can measure the effectiveness of selected feature subsets, while the
penalty term can be designed to favour the feature subsets with smaller
numbers. The classification accuracy is based on the Naı̈ve Bayes algo-
rithm as it is a robust and well understood classifier, although other clas-
sification methods could be substituted without changing the proposed
method.

The fitness function is shown in Equation 5.1, where c means the parsi-
mony coefficient that can reflect how much importance the fitness evalua-
tion addresses the penalty measure (see Section 5.5.1 for the setting of c),
and penalty(number) refers to a penalty measure based on the number of
selected features in a GP solution.

fitness = classification accuracy � c ⇤ penalty(number). (5.1)

The sigmoid function (Sigmoid(x) = 1
1+exp(�x) ) is selected as the basic

penalty measure. This is because it rises monotonically with the increase
of the input, which leads to higher penalties to solutions with larger num-
bers. Moreover, the output of this function is within the value range of (0,
1), which makes it suitable to be combined linearly with the classification
accuracy (within [0, 1]). Note that other functions that suit the two criteria
can also be employed.

Note that the fitness function (Equation 4.1) uses an exponential func-
tion (Equation 4.3) rather than the sigmoid function as the complexity
measure of evolved solutions. That is because the function (Equation 4.1)
is a weighted sum of the classification accuracy and the compelxity mea-
sure based on the solution size. Therefore, to penalise the solutions with
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large sizes, the complexity measure should decrease with the increase of
the solution size. As the exponential function suits the above requirement,
it is selected as the complexity measure in the fitness function (Equation
4.1).

The curve of the sigmoid function (Figure 5.6a) shows that it can trans-
form the solution number into a value in range [0, 1), and with the increase
of the number, its output value rises, thus increasing the penalty. How-
ever, the output value calculated by the sigmoid function approaches 1
with a small solution number (around 6 from Figure 5.6a). Based on the
experimental observation, without the penalty term, the solution number
can be hundreds. Therefore, a scaling factor, � = 0.01, is applied to the
solution number to make the penalty measure effective for solutions with
numbers being hundreds (see Section 4.2.1 for the details of beta setting).
The penalty measure is presented in Equation 5.2, with its curve in Figure
5.6b.

(a) Sigmoid(number)=1.0/(1+exp(-
number))

(b) penalty(number)=1.0/(1+exp(-
0.01⇥number))

Figure 5.6: Penalty measure (number refers to the number of features se-
lected in a GP solution; for tree based GP, it is the number of distinctive
terminal nodes).

penalty(number) =
1

1 + e(��⇤number)
, (� = 0.01). (5.2)
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5.3.2 The Multi-objective GP Methods

Feature selection is considered to contain two objectives, i.e. minimizing
the number of selected features and maximizing the segmentation per-
formance. Therefore, feature selection can be formulated to be a multi-
objective optimisation problem. Pareto dominance is a popular way to
deal with multi-objective problems by treating two objectives indepen-
dently, which can search the space of two independent objectives to pro-
duce trade-offs along all objectives rather than one best solution for par-
simony pressure based methods. In contrast, parsimony pressure tech-
niques aggregate the objectives into a scalar fitness function based on pre-
defined weights or coefficients [134]. Thus, the objective space of par-
simony pressure based methods is restricted to a part of that for Pareto
dominance multi-objective based methods, i.e. where the two objectives
suit a linear relation determined by the weights or coefficients.

There are many existing Pareto-based multi-objective optimisation tech-
niques, i.e. nondominated sorting genetic algorithm (NSGA and NSGA-
II [44]), strength Pareto evolutionary algorithm (SPEA and SPEA2 [183])
and Pareto archived evolutionary strategy (PAES) [37]. For similar rea-
sons to selecting NSGA-II and SPEA2 as base multi-objective optimisation
techniques in Chapter 4 (see Section 4.2), they are also chosen for feature
selection in multi-objective GP.

NSGA-II and SPEA2 are combined with GP to develop the NSGP-FS
(nondominated sorting GP feature selection) and the SPGP-FS (strength
Pareto GP feature selection) respectively. NSGP-FS and SPGP-FS take the
same two objectives: the classification accuracy based on Naı̈ve Bayes (the
same as the PGP-FS method) and the number of features (the number of
terminal nodes) used in a GP solution. Both algorithms aim to maximise
the classification accuracy of Naı̈ve Bayes while minimizing the number
of features, thus they are expected to provide solutions that can improve
the segmentation performance while reducing the processing time. The
Pseudo codes of NSGP-FS and SPGP-FS are provided in Algorithm 4 and
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Algorithm 5 respectively.

5.4 Experiment Preparations

5.4.1 Benchmark Methods for Comparison

Since sequential forward selection (SFS) and sequential backward selec-
tion (SBS) are two standard and state-of-art feature selection methods that
are widely used [30, 174, 153], they are selected to compare with the pro-
posed methods. SFS and SBS methods are provided by the Weka package
[66], in which the Naı̈ve Bayes is used to evaluate the subsets in the pro-
cess of feature selection as it is a robust and well understood classifier.

5.4.2 Image Datasets

Two benchmark image segmentation datasets (see Section 2.5.1 for details)
are selected, i.e. the Weizmann horse dataset and the Pascal VOC2012
aeroplane dataset. The Weizmann dataset contains 328 horse images. Two
thirds of all images are used as training/validation images (148 images for
training and 70 for validation), and the remainder (110 images) are used
for testing. From each training/validation image, 20 samples are extracted
(10 from objects; 10 from background). The Pascal VOC2012 segmenta-
tion dataset has 178 aeroplane images. As suggested by Everingham et al.
[53], 88 images are for training and 90 images for testing. The 88 training
images are further divided into a new training set (60 images) and a vali-
dation set (28 images). Since Pascal images are larger than the Weizmann
images, 50 samples (25 from objects; 25 from background) are extracted on
each training/validation image.
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input : G: the maximum number of generations;
N: the population size;
The terminal set, function set and GP setting parameters (Section 5.4.3).

output: Solutions (feature subsets).

1 Create an initial population at iteration zero (P0) of GP trees using the
Ramped half-and-half method;

2 g  0

3 while g < G� 1 and the ideal individual (the individual with
classification accuracy == 1.0 and #selected features == 1) is not found do

4 begin
5 // different procedures for generation 0 and

generations onward; k records the index of the

child generation to be created

6 if g == 0 then
7 Sort P0 by nondominated sorting based on the Pareto dominance

mechanism;
8 k  g;
9 else

10 Cg = Pg
S
Qg ; // Cg is the combined population of the

gth generation;
11 Sort Cg by nondominated sorting based on the Pareto dominance

mechanism;
12 Pg+1 = Cg[0 : N � 1]; // choose the first N elements;
13 k  g + 1;
14 end
15 Create a child population Qk from Pk:
16 begin
17 Set Qk empty;
18 Assign each individual of Pk a fitness value equal to its

nondominance level;
19 for i = 0 to N-1 do
20 Select parent(s) by tournament selection from Pk;
21 Generate children by mutation operation or crossover operation;
22 Add the children to Qk;
23 end
24 end
25 g  g + 1;
26 end
27 Get Pareto front individuals (nondominated individuals in the latest child

population Qg);
28 Return feature subsets (one feature subset consists of features that are

terminals of one Pareto front individuals).
Algorithm 4: Pseudo-code of NSGP-FS (GP procedure is in red
and NSGA-II procedure is in blue).
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input : G: the maximum number of generations;
N: the population size;
N̄ : the archive size;
The terminal set, function set and GP setting parameters (Section 5.4.3).

output: Solutions (feature subsets).

1 Create an initial population at iteration zero (P0) of GP trees using the
Ramped half-and-half method;

2 Create an empty archive (P̄0);
3 g  1

4 while g < G� 1 and the ideal individual (the individual with
classification accuracy == 1.0 and #selected features == 1) is not found do

5 Fitness assignment: sort Pg by nondominated sorting based on the Pareto
dominance mechanism; assign each individual a fitness value equal to
its nondominance level;

6 Copy all nondominated individuals in Pg and P̄g to ¯
Pg+1:

7 begin
8 if | ¯

Pg+1| > N̄ then
9 Reduce ¯

Pg+1 to N̄ by the truncation operator;
10 end
11 if | ¯

Pg+1| < N̄ then
12 Fill ¯

Pg+1 to N̄ with dominated individuals in Pg and P̄g ;
13 end
14 end
15 Create Pg+1 from ¯

Pg+1:
16 begin
17 Set Pg+1 empty;
18 for i = 0 to N-1 do
19 Select one/two parent(s) by tournament selection from ¯

Pg+1;
20 Generate one child/two children by mutation operation or

crossover operation;
21 Add the child/children to Pg+1;
22 end
23 end
24 g  g + 1;
25 end
26 Get Pareto front individuals (nondominated individuals in the latest

population Pg);
27 Return feature subsets (one feature subset consists of features that are

terminals of one Pareto front individuals).
Algorithm 5: Pseudo-code of SPGP-FS (GP procedure is in red
and SPEA2 procedure is in blue).
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5.4.3 GP Settings

The GP set-up parameters employ the default settings used in Koza’s works
[83] (see Section 2.5.4 for details) except for the population size. Compared
with 1024 set by Koza, the population size is set to 500, which is sufficient
to solve the related problems while also reducing the computational cost.

The function set, including four standard arithmetic operators and five
conditional/relational operators, is displayed in Table 5.1. All the opera-
tors are simple and efficient to calculate. In addition, the terminal set con-
sists of the input features to the GP based system. Based on the description
in Section 5.2.3, there are 53 features in the terminal set, including 40 Ga-
bor, three colour, three mean, three median, three LBP and one intensity
features.

Table 5.1: Function set of GP based feature seletion methods.

Function Name Definition
+(a1, a2) a1 + a2

-(a1, a2) a1 � a2

*(a1, a2) a1 ⇤ a2

/(a1, a2)

(
a1/a2 if a2! = 0

0 if a2 == 0

IF(a1, a2, a3)

(
a2 if a1 is true
a3 if a1 is false

<= (a1, a2)

(
1 if a1 <= a2

0 if otherwise

>= (a1, a2)

(
1 if a1 >= a2

0 if otherwise

== (a1, a2)

(
1 if a1 == a2

0 if otherwise

Between(a1, a2, a3)

(
1 if a2 <= a1 <= a3

0 if otherwise
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5.4.4 Experiment Design

Three standard classifiers from the Weka package (i.e. decision tree (DT),
Naı̈ve Bayes (NB) and multilayer perceptron (MLP)) are employed for test-
ing the selected subsets. This is because they are widely used and well un-
derstood classifiers. As the segmentation tasks are transformed to binary
classification problems in this chapter and the segmentation accuracy and
F1 score are popularly used to evaluate binary classifiers, they are applied
to evaluate the segmentation results (see Section 2.5.3). Both measures
reach the worst at 0 and the best at 1. The base code of GP and two multi-
objective techniques (i.e. NSGA-II and SPEA2) are from the ECJ library
[110]. All GP related experiments are run 30 times.

5.5 Results and Discussions

5.5.1 Determining Coefficient c in Fitness Function of PGP-
FS

The coefficient in fitness function is an important parameter, as it reflects
how much control GP has on the penalty term. If it is too small, GP will
mainly focus on the classification accuracy based on the selected features,
so the number of selected features can hardly be controlled; if it is too
large, GP will take the minimisation of the number of selected features as
its main target and may ignore the solution functionality, thus converg-
ing towards extremely small but useless programs [136]. In addition, the
coefficient is normally determined by trail-and-error [136].

Table 5.2 presents the training performance of PGP-FS with different
coefficients (c) in the fitness function (Equation 5.1) on the Pascal dataset.
As the penalty value (calculated by the penalty measure, Equation 5.2)
is not intuitive, the number of features is also provided. Normally, the
larger the feature numbers, the more complex the evolved solutions. This
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table shows that with the increase of the coefficient, the feature number
decreases, yet the training accuracy also drops. Therefore, the choice of the
coefficient is to select a balance between the performance and the size of
selected feature subsets. Eventually, c is set to 0.1, as in this circumstance,
the feature number is dramatically reduced compared with those under
c = 0.001 or 0.01. Moreover, the increase of c (0.3, 0.5, 0.7, 0.9) can hardly
further reduce the feature number.

Table 5.2: Training performance of PGP-FS on the Pascal dataset with dif-
ferent coefficients in its fitness function.

Coefficient Training Penalty Number of
c Accuracy(%) Value Features

0.001 82.377 0.883 220
0.01 82.241 0.756 118
0.1 81.459 0.543 17
0.3 81.046 0.527 11
0.5 80.703 0.523 9
0.7 80.569 0.520 8
0.9 80.304 0.518 7

5.5.2 Training Results

This part analyses the results on the training stage (feature selection stage).
Figure 5.7 displays the single best solutions over 30 runs for PGP-FS, and
the aggregated Pareto fronts formed by nondominated solutions over 30
runs for NSGP-FS and SPGP-FS. From this figure, it can be seen that all
solutions contain less than 25 features, which are much smaller than the
whole set of 53 features. Moreover, most NSGP-FS and SPGP-FS solutions
have fewer features than PGP-FS solutions.

Table 5.3 provides the statistical results. For PGP-FS, the average of
the best solutions in the feature number and the classification accuracy
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(a) Weizmann set

(b) Pascal set

Figure 5.7: Training performance on the Weizmann and Pascal sets.

are shown. For the multi-objective methods, NSGP-FS and SPGP-FS, the
nondominated solutions are trade-offs of the two objectives that are con-
sidered equivalently important, so it is not approporiate to calculate the
average performance. To compare NSGP-FS and SPGP-FS against PGP-
FS, whether NSGP-FS or SPGP-FS solutions can dominate the PGP-FS’s
assumed “average solution” is reported. For example, on the Weizmann
dataset, it is considered that PGP-FS produces an “average solution” with
14 features and a classification accuracy of 74.57%.
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According to Table 5.3, the nondominated solutions of NSGP-FS can
dominate PGP-FS’s “average solution” on both datasets. Even though
SPGP-FS solutions cannot dominate PGP-FS’s “average solution” on the
Weizmann set, SPGP-FS and PGP-FS solutions achieve similar accuracies
generally (Figure 5.7). Moreover, NSGP-FS and SPGP-FS (especially SPGP-
FS) spend less training time than PGP-FS. For example, on the Weizmann
dataset, NSGP-FS’s training time is less than a half, and SPGP-FS’s training
time is only around one quarter of that of PGP-FS. This is because NSGP-
FS and SPGP-FS (especially SPGP-FS) generate feature subsets with much
fewer features than PGP-FS solutions, which speeds up training.

Table 5.3: Statistical results (#Feature means the number of features in
the selected feature subsets; Acc. is classification accuracy; “Dominate”
means whether NSGP-FS (or SPGP-FS) solutions can dominate the PGP-
FS’s “average solution”).

Dataset Method #Feature Training Acc.(%) Time per run(s)

Weizmann
PGP-FS Average 14.27± 1.32 74.57± 0.23 303.81± 48.60

NSGP-FS Dominate YES 136.63± 8.37

SPGP-FS Dominate NO 80.33± 6.23

Pascal
PGP-FS Average 15.67± 3.29 75.40± 0.20 295.21± 56.54

NSGP-FS Dominate YES 138.22± 17.56

SPGP-FS Dominate YES 86.91± 6.35

Based on the analyses, all the three proposed methods can generate fea-
ture subsets with much fewer features than the whole set (53 features), and
the multi-objective methods (NSGP-FS and SPGP-FS, especially SPGP-FS)
produce even smaller feature subsets, thus the training time is reduced
accordingly. In addition, the training performance is similar for solutions
with the same number of features produced by all three methods.
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5.5.3 Test Results

In this part, the feature subsets produced by the five feature selection
methods (i.e. three proposed methods, SFS and SBS) and the whole feature
set are tested by three classifiers (i.e. decision tree (DT), Naı̈ve Bayes (NB)
and multilayer perceptron (MLP)) for the segmentation tasks. The perfor-
mance is measured by the segmentation accuracy (Equation 2.1) and the
F1 score (Equation 2.2). For PGP-FS, the results of feature subsets that are
from the single best solutions over the 30 training runs are displayed in the
figures (Figure 5.8 and Figure 5.9). For NSGP-FS and SPGP-FS, all the so-
lutions from the aggregated Pareto fronts over 30 training runs are tested;
however, only the nondominated solutions are displayed. Table 5.4 and
Table 5.5 show the statistical results on the test sets.

Figure 5.8 and Figure 5.9 show that all the five feature selection meth-
ods reduce the number of features compared with the original set, es-
pecially the proposed methods and SFS. Specifically, compared with the
original set (53 features), NSGP-FS and SPGP-FS solutions are within 10
features on the Weizmann dataset and within 20 on the Pascal dataset;
PGP-FS solutions are from around 10 to 20 features on both datasets; SFS
solutions are around 10 on the Weizmann dataset and around 5 on the
Pascal dataset. In terms of performance (F1 score), NSGP-FS and SPGP-FS
solutions can dominate PGP-FS, SFS, SBS solutions plus the original set.
It means that NSGP-FS and SPGP-FS solutions with the same number of
features achieve better performance than that of other methods’ solutions.
In contrast, even though PGP-FS solutions are generally better than the
SBS solutions and the original set with lower numbers and similar perfor-
mance, they are worse than the SFS solutions for most cases, e.g. Naı̈ve
Bayes based segmentation on both datasets.

Table 5.4 and Table 5.5 display the statistical results. Compared with
the whole feature set, the test time per image drops for all the three clas-
sifiers that use the feature subsets provided by the five feature selection
methods, especially for the cases using NSGP-FS and SPGP-FS solutions.
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(a) Based on decision tree.

(b) Based on Naı̈ve Bayes.

(c) Based on multi-layer perceptron.

Figure 5.8: Performance (F1 score) of feature selection methods on the
Weizmann test set.
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(a) Based on decision tree.

(b) Based on Naı̈ve Bayes.

(c) Based on multi-layer perceptron.

Figure 5.9: Performance (F1 score) of feature selection methods on the Pas-
cal test set.
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Table 5.4: Statistical results on Weizmann test set (s represents seconds; #, "
means the result is lower or higher than that of the original feature set; for
NSGP-FS or SPGP-FS, YES (or NO) means its solutions dominate (do not
dominate) the reference methods’ solutions, i.e. the original feature set /
SFS solution / SBS solution / the PGP-FS’s “average solution”).

Classifier
Feature Test Test Feature Test Time

Set Accuracy(%) F1 Score Number Per Image(s)

DT

Original 68.90 0.530 53 0.029
SFS 68.25# 0.536" 11 # 0.016#
SBS 68.07# 0.518# 45# 0.021#

PGP-FS 69.89± 1.93 " 0.545± 0.005 " 14.27± 1.34 # 0.017± 0.002 #
NSGP-FS YES/YES/YES/YES 0.016± 0.002 #
SPGP-FS YES/YES/YES/YES 0.016± 0.002 #

NB

Original 71.52 0.568 53 0.753
SFS 73.01" 0.586 " 11 # 0.197#
SBS 71.35# 0.561# 45 # 0.683#

PGP-FS 71.00± 0.48 # 0.570± 0.004 " 14.27± 1.34 # 0.217± 0.019 #
NSGP-FS YES/YES/YES/YES 0.143± 0.056 #
SPGP-FS YES/YES/YES/YES 0.133± 0.046 #

MLP

Original 76.61 0.620 53 0.650
SFS 75.65# 0.596# 11# 0.077 #
SBS 73.92# 0.586# 45 # 0.457#

PGP-FS 71.58± 1.91 # 0.567± 0.009 # 14.27± 1.34 # 0.084± 0.009 #
NSGP-FS YES/YES/YES/YES 0.061± 0.019 #
SPGP-FS YES/YES/YES/YES 0.056± 0.016 #

This confirms that the multi-objective methods, NSGP-FS and SPGP-FS,
can produce smaller solutions than other methods, which confirms the
claim made from the training results in Section 5.5.2.

Based on the two tables, the SFS and SBS solutions cannot consistently
improve the performance of standard classifier based segmentation. For
example, on the Weizmann dataset, the SFS and SBS solutions reduce the
multi-layer perceptron’s performance compared with using the original
feature set. This may be because the best first search method is a greedy
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Table 5.5: Statistical results on Pascal test set (s represents seconds; #, "
means the result is lower or higher than that of the original feature set; for
NSGP-FS or SPGP-FS, YES (or NO) means its solutions dominate (do not
dominate) the reference methods’ solutions, i.e. the original feature set /
SFS solution / SBS solution / the PGP-FS’s “average solution”).

Classifier
Feature Test Test Feature Test Time

Set Accuracy(%) F1 Score Number Per Image(s)

DT

Original 77.10 0.438 53 0.072
SFS 78.19" 0.476" 4# 0.043#
SBS 76.54# 0.451" 37 # 0.067#

PGP-FS 79.74± 1.09 " 0.458± 0.008 " 15.67± 3.35 # 0.059± 0.006 #
NSGP-FS YES/YES/YES/YES 0.062± 0.014 #
SPGP-FS YES/YES/YES/YES 0.060± 0.013 #

NB

Original 83.28 0.466 53 2.288
SFS 84.24" 0.487 " 4# 0.286#
SBS 84.89" 0.511" 37# 2.040#

PGP-FS 84.58± 0.33 " 0.482± 0.004 " 15.67± 3.35 # 0.954± 0.175 #
NSGP-FS YES/YES/YES/YES 0.641± 0.254 #
SPGP-FS YES/YES/YES/YES 0.608± 0.212 #

MLP

Original 83.59 0.515 53 1.867
SFS 81.88# 0.491 # 4 # 0.151#
SBS 83.45# 0.504# 37 # 1.229#

PGP-FS 80.07± 1.64 # 0.498± 0.011 # 15.67± 3.35 # 0.362± 0.095 #
NSGP-FS YES/YES/YES/YES 0.236± 0.091 #
SPGP-FS YES/YES/YES/YES 0.220± 0.074 #

search method that does not examine all possible subsets, so it is not guar-
anteed to find the optimal feature subset. Similarly, PGP-FS solutions also
have varying performance, e.g. performance improved for decision tree,
while reduced for the multi-layer perceptron on the Pascal dataset. In con-
trast, NSGP-FS and SPGP-FS solutions can dominate not only the SFS, SBS
solutions and the original feature set, but the PGP-FS’s “average solution”
on both datasets for all three classifiers based segmentation tasks.

The analyses indicate that all the three proposed methods can reduce
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the number of features, especially the multi-objective methods (NSGP-
FS and SPGP-FS). However, PGP-FS has limited ability to provide fea-
ture subsets that can improve the performance of the given figure-ground
segmentation tasks, while the two proposed multi-objective methods are
more capable in searching for effective feature subsets.

5.5.4 NSGP-FS vs SPGP-FS

Figure 5.7, Figure 5.8 and Figure 5.9 are studied to compare NSGP-FS with
SPGP-FS in two aspects, the dominance of each other’s solutions and the
ability of preserving diversity of front solutions. Diversity is an important
factor for Pareto-based multi-objective optimisation techniques. It refers
to how well the solutions are distributed on the Pareto front. A good di-
versity (evenly distributed along the Pareto front) provides users a better
idea of the Pareto front shape that shows different options of trade-offs
between objectives, which increases the chance of finding a desired solu-
tion [107]. Table 5.6 provides the number of front members on the training
stage (derived from Figure 5.7) and the test stage (derived from Figure 5.8
and Figure 5.9).

According to the training performance in Figure 5.7, most NSGP-FS
solutions achieve similar accuracies to SPGP-FS solutions that have the
same number of features, as most of their solutions overlap (red and black
points). Figure 5.8 and Figure 5.9 shows the test performance based on the
F1 score. According to the two figures, no absolute claim that NSGP-FS
solutions dominate SPGP-FS solutions can be made, as there are NSGP-FS
solutions that dominate SPGP-FS solutions for certain cases and vise versa.
It suggests that NSGP-FS and SPGP-FS are equally qualified in searching
effective feature subsets for the segmentation problems in this work.

In terms of the diversity, Figure 5.7 based on the training performance
shows that NSGP-FS produces a better distributed front and has more
front members than SPGP-FS (e.g. 14 for NSGP-FS and 11 for SPGP-FS
on the Weizmann set shown in Table 5.6). Moreover, Figure 5.8 and Fig-
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ure 5.9 based on the test performance are more complicated and provide
inconsistent results for both methods. For example, NSGP-FS solutions
are more evenly distributed for DT on the Weizmann test set (Figure 5.8a),
while SPGP-FS solutions have higher diversity for MLP on the Pascal test
set (Figure 5.9c). However, further information in Table 5.6 shows that
NSGP-FS has a higher average number of front solutions than SPGP-FS
on the Weizmann test set. Therefore, it indicates that NSGP-FS is better
at keeping diversity on the Pareto front than SPGP-FS. This may be be-
cause NSGA-II tends to emphasise the edge solutions and produce solu-
tions along the whole frontier [44], while SPEA2 focuses more on solutions
in the middle front region.

Table 5.6: Comparison of NSGP-FS against SPGP-FS in the number of front
solutions (# means number).

Dataset Method
#Front Solution #Front Solution (Test)

(Training) Classifier Average

Weizmann

NSGP-FS 14
DT 7

7NB 6
MLP 7

SPGP-FS 11
DT 5

6NB 8
MLP 6

Pascal

NSGP-FS 13
DT 7

8NB 10
MLP 6

SPGP-FS 12
DT 6

8NB 9
MLP 8
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5.5.5 Analysis on Selected Features

Figure 5.10 shows the selection rate of each feature in the original feature
set based on the proposed methods. The selection rate is calculated as fol-
lows. Firstly, for NSGP-FS and SPGP-FS, all the front solutions of 30 runs
are collected; for PGP-FS, the best solutions of 30 runs are collected. Then,
the number of each feature that are selected by the collected solutions is
counted, based on which the occurrence rate of each feature is calculated
for each method.

According to Figure 5.10, features (f0, f8, f15, f16, f29, f35, f37, f38, f41) have
higher selection rates on the Weizmann dataset than others, while features
(f25, f31, f33, f34, f41, f42, f44, f45, f46, f47, f48) are more often selected on the
Pascal dataset. Based on Figure 5.5, features with indexes from 0 to 39
are Gabor features that can capture edge information; f40, f41 and f42 are
colour features; the remaining featuers (indexed from 43 to 52) are grayscale
statistical features. This shows that for Weizmann images, edge and colour
features are more useful than local statistical features, while for Pascal im-
ages, the frequently selected features cover all the three types of features.
Considering that Pascal images are highly varied, all the edge, colour and
local statistical features are necessary to achieve accurate segmentation.
In contrast, on the Weizmann images, the objects of interest are horses
(with distinctive curves as edges), and the backgrounds are mainly trees,
grass and/or sky (with distinctive colour). Therefore, the edge and colour
features may be more reliable than local statistical features for Weizmann
images.

5.6 Chapter Summary

Three feature selection methods based on GP were proposed in this chap-
ter, two of which (i.e. NSGP-FS and SPGP-FS) are multi-objective and
one of which (i.e. PGP-FS) is single-objective. The contributions of this
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(a) On Weizmann dataset.

(b) On Pascal dataset.

Figure 5.10: Selected features based on the proposed methods.

work are twofold. Firstly, this is the first time to investigate the ability of
GP to select effective feature subsets for image segmentation tasks. Even
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though GP has been studied for feature selection in existing works, these
are mainly for general classification problems. GP has not been sufficiently
investigated in the field of feature selection for figure-ground image seg-
mentation. Secondly, feature selection is a multi-objective task, maximiz-
ing the effectiveness of the selected feature subset and minimizing the
number of selected features. Compared with the existing GP based feature
selection works that rarely consider the number of features, the proposed
methods take both objectives into account. The feature subsets produced
by the proposed methods were evaluated to reflect the methods’ capacity
in searching for effective feature subsets for complex segmentation tasks
(images with high variations).

Two benchmark selection methods (sequential forward selection and
sequential backward selection) were selected as the reference methods.
Two benchmark datasets with high variations, the Weizmann and Pascal
datasets, were employed to test the proposed and the reference methods.
The results show that all the three proposed methods can generate feature
subsets with a much lower number of features than the original set (53
features), and the multi-objective methods (NSGP-FS and SPGP-FS, espe-
cially SPGP-FS) can further reduce the number of features selected while
improving the segmentation performance. However, PGP-FS has limited
ability to provide effective feature subsets and produce unstable perfor-
mance. Furthermore, the two multi-objective methods are more capable
in searching effective feature subsets, whose solutions dominate both SFS
and SBS solutions. When comparing NSGP-FS with SPGP-FS, they are
equally qualified in searching effective feature subsets, yet NSGP-FS is bet-
ter at keeping diversity among the nondominated solutions than SPGP-FS.

In addition to feature selection, feature construction is a process of
transforming a given set of features to a new set of more powerful features.
A new feature is usually created by a function of the original features and
operators. As GP can utilise complex and variable-length representations,
such as trees, in which various kinds of operators can be used to combine
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input features into linear or non-linear forms, it is well-suited for feature
construction. Therefore, the next chapter will investigate feature construc-
tion using GP.



Chapter 6

GP for Feature Construction in
Figure-ground Segmentation

Figure 6.1: The overall structure of contributions.

New feature selection methods using GP were designed in Chapter 5.
The results show that the selected feature subsets of the proposed methods
achieve better segmentation performance with a lower number of features

157
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than those of the sequential algorithms and the original feature set.
In addition to feature selection, feature construction is another type of

feature manipulation, which is a process of transforming original features
to a new set of more powerful features. Considering that GP based fea-
ture selection methods achieve promising results, and GP is a well-suited
technique for feature construction, this chapter investigates feature con-
struction using GP for figure-ground segmentation.

6.1 Introduction

GP is a well-suited technique for feature construction as it can use complex
and variable-length representations and has high search ability, and GP’s
solutions can be interpreted [20]. Even though existing GP based feature
construction works have achieved promising results, it is still challenging
to design effective fitness functions and develop new methods to avoid
constructing features by mixing different types of image features homoge-
neously in the existing works. Therefore, GP is investigated to construct
features for figure-ground segmentation in this chapter.

Note that based on the evaluation of constructed features, there are
three branches of feature construction methods, i.e. filter, wrapper and
embedded [92]. This chapter only focuses on the filter and wrapper ap-
proaches, since the goal of feature construction in this thesis is to construct
effective features explicitly, which can be used as inputs of segmentation
algorithms to improve the segmentation performance. Since embedded
approaches can only conduct implicit feature construction in the process
of learning a model for a given problem, they are not considered in this
chapter. In addition, based on whether a single feature or multiple fea-
tures is/are constructed, there are single feature construction (SFC) [28]
and multiple feature construction (MFC) methods [129]. Both the single
and multiple constructed features consider the interactions of original fea-
tures, which makes the constructed features more effective for target prob-
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lems than the original features.

6.1.1 Chapter Goals

The goal of this chapter is to apply GP for the first time to construct high-
level features from primitive features to improve the segmentation per-
formance on complex images (e.g. images with high variations). Both
single (SFC) and multiple feature construction (MFC) methods are de-
signed. Specifically, a new entropy based fitness function is developed for
filter feature construction methods. Techniques, i.e. subtrees (see Section
6.4.1) and cooperative coevolution techniques (see Section 6.4.2), are intro-
duced in GP to design MFC methods. The SFC methods and the subtrees-
based MFC method combine different types of primitive features homo-
geneously together, while the cooperative coevolution technique enables
GP to construct features from different types of features separately, and
conduct combination of the constructed features simultaneously. It is an-
ticipated that the proposed methods can construct effective features that
perform well for segmentation tasks on complex images.

Specific objectives are shown as follows to determine:

1. whether the constructed features can outperform the original fea-
tures on the given complex segmentation tasks,

2. which of the proposed single or multiple feature construction meth-
ods can construct more effective features,

3. how to interpret the constructed features to reveal their effectiveness
in distinguishing object and background pixels.

6.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 6.2 describes
the framework of figure-ground segmentation with feature construction.



160 CHAPTER 6. GP FOR FEATURE CONSTRUCTION

Section 6.3 and section 6.4 introduce the proposed single and multiple fea-
ture construction methods respectively. In addition, experiment prepa-
rations are described in section 6.5, including the function sets and ter-
minal sets. Section 6.6 discusses the results, and section 6.7 analyses the
constructed features. Eventually, the summary of this chapter is given in
section 6.8.

6.2 Overall Structure of GP based Feature Con-
struction

Figure 6.2 displays the framework of the figure-ground segmentation with
a feature construction stage. In this chapter, segmentation problems are
formulated to pixel classification problems. Compared with the window
(or subimage) classification based methods in Chapter 3 and Chapter 4,
the pixel based segmentation does not require window related parame-
ters that rely on users’ expertise to set up. The framework consists of
three major steps. Firstly, a given number of pixels are captured ran-
domly from training images whilst ensuring equal number of class object
and background. Low/middle-level features are extracted for these pixels
along with their class labels (class object or background) to form the training
set. Accordingly, the same type of features are extracted for each pixel in
test images. Secondly, the training set is used to evolve feature construc-
tion functions by GP. Based on the evolved construction functions, original
features of each training/testing sample are converted to a new feature(s).
Thirdly, the transformed training set is employed to train a standard clas-
sifier, e.g. a decision tree, which is then applied to classify the transformed
test set. Based on certain evaluation measures and the ground truth, the
segmentation results are generated.
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Figure 6.2: Framework of the pixel classification based figure-ground seg-
mentation with feature construction (f0 is a feature with 0 as its index and
so forth; (f0, f1, f2, ...) is a feature vector extracted by existing feature de-
scriptors; f

c

is the single constructed feature; A and B represent class object
and background respectively; (0,0), (*,*) and (H,W) represent the pixel coor-
dinates; H and W are the test image’s height and width).

6.3 Proposed Single Feature Construction Meth-
ods

Two single feature construction methods are developed, i.e. a filter ap-
proach (termed as FSFC – Filter Single Feature Construction) and a wrap-
per approach (WSFC – Wrapper Single Feature Construction). An entropy
based fitness function is designed for FSFC, since it can measure the im-
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purity of two classes separated based on the constructed features, which
can reflect the effectiveness of the constructed features. In addition, as the
classification accuracy is a popular measure for binary classification prob-
lems, it is employed as the fitness function for WSFC. Figure 6.3 shows
how to construct a single feature based on a derived solution of single fea-
ture construction methods. Specifically, the solution can be regarded as
a feature construction function. By feeding the required input features to
the tree solution, an output value can be generated from the root node,
which is used as the single constructed feature of this solution.

Figure 6.3: Feature construction using an evolved solution of single feature
construction methods (f0 is an input feature, and so forth; +,�, ⇤,%, >,<

, sqrt are operators).

6.3.1 Filter Single Feature Construction Method

As segmentation tasks are transformed to binary pixel classification based
problems, a “good” feature should be the one that can separate pixels of
two classes, i.e. class object and background, by projecting them in the fea-
ture space. As shown in Figure 6.4a, pixels from two classes are commonly
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overlapping. For example, the interval (the range of feature values) of
class background contains object pixels. Since a less overlapping (or less im-
pure) class interval means a better separation, the goodness of constructed
features can be reflected by the impurity of the class intervals [127]. There-
fore, a novel fitness function is proposed for FSFC that aims to minimise
the impurity of the class intervals. Considering that there may exist out-
liers, which are noisy samples, 0.5% (determined empirically) of its total
pixels on both minimum and maximal edges are removed from each class
interval (illustrated in Figure 6.4b).

(a) Overlapping class intervals.

(b) Class intervals without outliers.

Figure 6.4: Pixel distribution in the feature space (O and B represent class
object and background respectively; ⇥ means removing the corresponding
pixels).

As a popular entropy measure, Shannon entropy [151] is employed to
measure the impurity of the class intervals. Shannon entropy is described
as follows. Given discrete probability distributions �!p = p1, p2, ..., pN ,
where the probabilities are all non-negative numbers and

P
N

i=1 pi = 1, the
Shannon entropy of �!p is shown in Equation 6.1.

H(�!p ) = �
NX

i=1

p
i

⇤ lnp
i

. (6.1)
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Based on the Shannon entropy, the impurity of one class interval can
be calculated by Equation 6.2, where C is the set of class labels, Ic repre-
sents the interval in the feature space for a specific class c (c 2 C), and
H(Ic) means the Shannon entropy of the interval Ic. Specifically, given a
set of training samples (feature vectors with class labels), they are trans-
formed based on the evolved feature construction function. Then in the
constructed feature space, for a certain class c, the class interval Ic can
be determined. NPIXS

Ic

refers to the number of pixels that fall into the
interval Ic, while NPIXS

i;Ic refers to the number of pixels whose class
labels are class i (i 2 C) and who fall into the interval Ic.

H(Ic) = �
X

i2C

p(NPIXS
i;Ic|NPIXS

Ic

) ⇤ ln p(NPIXS
i;Ic|NPIXS

Ic

).

(6.2)
where C = {c1, c2}, Ic = {Ic1, Ic2}. The fitness function (Equation 6.3)

is defined as the mean of the two class intervals’ entropies. A lower fitness
value means a better separation of two classes, which suggests a better
constructed feature.

fitness =
H(Ic1) +H(Ic2)

2
. (6.3)

6.3.2 Wrapper Single Feature Construction Method

The fitness evaluation of an individual in the evolution process of the
wrapper single feature construction method (WSFC) is shown in Figure
6.5. WSFC uses the classification accuracy as the fitness function. Since
the training process is a balanced binary classification problem, the clas-
sification accuracy is an effective measure. Specifically, a training set and
a validation set are required for measuring individuals’ classification ac-
curacy in the evolution process of WSFC (described in section 6.5.4). In
Figure 6.5, the whole tree rooted on the root node is employed as a feature
construction function, based on which the training and validation samples
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Figure 6.5: Fitness evaluation of an individual in the evolution process of
WSFC.

are transformed to new samples. The new training and validation sets are
then employed to train and evaluate a classifier (e.g. decision tree), and the
classification accuracy is calculated as the fitness value of this individual.

6.4 Proposed Multiple Feature Construction Meth-
ods

Two multiple feature construction methods are proposed, including a sub-
trees based method (SubtMFC) and a coevolutionay method (CoevoMFC).
As Ahmed’s work [4] discovered that the subtrees rooted on the non-
terminal nodes of an evolved tree solution produce useful features for
their classification tasks, SubtMFC is developed to construct multiple fea-
tures from the subtrees of one solution. The cooperative coevolutionary
technique is employed, since it allows GP to construct features from differ-
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ent types of image features separately, and then combine the constructed
features simultaneously. SubtMFC (as well as FSFC and WSFC) conducts
homogeneously combination of varied types of primitive features, leading
to the interactions of non-related features, which may lower the effective-
ness of constructed features. In contrast, CoevoMFC does not allow the
interactions across different features.

Both SubtMFC and CoevoMFC are wrapper approaches, and employ
the classification accuracy as the fitness function (same as that of WSFC).
Training and validation sets (described in section 6.5.4) are required for
fitness evaluation. Note that the proposed filter method (FSFC) cannot use
the feedback of a learning algorithm for fitness evaluation, which makes it
more difficult to achieve an accurate evaluation of solutions.

6.4.1 Subtrees-based Multiple Feature Construction

Figure 6.6 shows how to construct features using a subtrees based multi-
ple feature construction (SubtMFC) solution. It can be seen that by feeding
the required primitive features to the solution, each subtree can produce
an output. The outputs of all subtrees are collected, forming a new con-
structed feature set. For SubtMFC, constructed feature sets have varied
numbers of features, as different solution trees can contain varied num-
bers of subtrees.

The fitness evaluation of an individual in SubtMFC is shown in Fig-
ure 6.7. The subtrees rooted on the non-terminal nodes are employed as
feature construction functions, based on which the training and validation
samples are transformed to new samples. The new training and valida-
tion sets are then employed to train and evaluate a classifier (e.g. decision
tree), and the classification accuracy is calculated as the fitness value of
this individual.
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Figure 6.6: Feature construction using evolved solutions of SubtMFC (f0
is an input feature, and so forth; +,�, ⇤,%, >,<, sqrt are operators).

6.4.2 Coevolution Multiple Feature Construction

The coevolution multiple feature construction (CoevoMFC) method is de-
signed by introducing the cooperative coevolution technique in GP. Algo-
rithm 6 shows the pseudo code of CoevoMFC. Compared with the stan-
dard GP, the major difference lies in the initialisation stage and the fitness
evaluation stage (highlighted in blue colour). Specifically, a target problem
is formulated into multiple subproblems. In the initialisation stage, multi-
ple subpopulations are set up, each of which represents one subproblem.
Then the coevolutionary search proceeds in each subpopulation indepen-
dently, except for the fitness evaluation of each individual [86], which re-
lies on other individuals.

Figure 6.8 shows an example of generating new features based on Co-
evoMFC solutions. Since there are three general types of image features,
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Figure 6.7: Fitness evaluation of one individual in the evolution process of
SubtMFC.

Figure 6.8: Feature construction using a group of evolved solutions of Co-
evoMFC (f0 is an input feature, and so forth; +,�, ⇤,%, >,<, sqrt are op-
erators).

i.e. edge, colour and grayscale statistics features, several feature descrip-
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input : M: the number of subpopulations;
G: the maximum number of generations;
The terminal set, function set and GP parameters (section 6.5).

output: Solutions (feature construction functions).

1 for m = 0 to M-1 do
2 For subpopulation P

m

, determine the subpopulation size N

m

;
3 Create an initial population of N

m

GP trees at iteration zero (P
m0) using the Ramped

half-and-half method;
4 end
5 g  1

6 while g < G� 1 and the ideal individual (the individual with fitness value == 1.0 ) is not found do
7 for m = 0 to M-1 do
8 Fitness assignment: Individuals from subpopulation P

m

are tested by grouping them
with the fittest individuals in the other subpopulations from the previous generation
and assessing their joint fitness (Figure 6.9);

9 Create P

m(g+1) from P

mg

:
10 begin
11 Set P

m(g+1) empty;
12 for i = 0 to N

m

� 1 do
13 Conduct crossover, mutation or reproduction operations based on the

individuals from P

mg

;
14 Add the child/children to P

m(g+1);
15 end
16 end
17 end
18 g  g + 1;
19 end
20 Return the M best individuals from M subpopulations.

Algorithm 6: Pseudo-code of CoevoMFC (GP procedure is in red
and coevolution procedure is in blue).

tors are selected to extract features that can cover all these three types of
features (described in section 6.5.1). Therefore, CoevoMFC formulates a
feature construction problem consisting of three subproblems, where each
subproblem can handle one type of feature separately. Thus, a group of
three feature construction functions are generated in each GP run, and
then the output of the root node of each function is collected to form a
new feature set with a fixed size of three features.

Figure 6.9 shows the fitness evaluation of an individual, which is in-
dividual j in the sub-population i. Firstly, one representative individual
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Figure 6.9: Fitness evaluation of an individual in the evolution process of
CoevoMFC (N is the number of subpopulations; f0 and cf0 means a feature
and a constructed feature with the index 0 respectively).

from each of the remaining subpopulations is selected to form the context
of the target individual. The fittest individuals in other subpopulations
from the previous generation are selected as the representative individu-
als. Secondly, the selected individuals are combined with the target indi-
vidual, which are now three feature construction functions. With the input
of primitive features, the training and validation datasets are transformed
based on the feature construction functions (three high-level features are
constructed for each training and validation sample). Thirdly, a classifier
is trained and evaluated using the transformed training and validation
sets to produce the classification accuracy, which is assigned to the target
individual.

6.5 Experiment Preparations
6.5.1 Terminal Set
As there are three subpopulations in CoevoMFC, each subpopulation takes
one type of image features as its terminal set (edge features for subpopu-
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lation 0; colour features for subpopulation 1; grayscale statistics for sub-
population 2). In contrast, for SubtMFC and two SFC methods, as there
is only one subpopulation, the terminal set is the same, which contains all
the three types of image features. Several feature descriptors are selected
to extract features (shown in Figure 6.10), which are the same as those in
Chapter 5 (see Section 5.2.3 for details).

Figure 6.10: Terminal set (f0 is a feature with 0 as its index and so forth;
subpop represents subpopulation).

6.5.2 Function Set

Table 6.1 displays the function set, which consists of seven functions: the
first five are standard mathematical functions and the last two are rela-
tional functions. These functions are selected, since they are all computa-
tionally efficient, and can realise both linear and non-linear combinations
of input features.

6.5.3 Other GP Settings

Major GP parameter settings are shown in Table 6.2, and the setting of the
population size is as follows. Figure 6.10 shows that subpopulations 0, 1
and 2 of CoevoMFC take edge features (40 dimensions), colour features
(3 dimensions) and grayscale statistics (9 dimensions) as inputs respec-
tively. Since a larger number of input features can form a larger search
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Table 6.1: Function set of GP based feature construction methods.

Function Name Definition Function Name Definition
+(a1, a2) a1 + a2 -(a1, a2) a1 � a2

*(a1, a2) a1 ⇤ a2 %(a1, a2)

(
a1/a2 if a2! = 0

0 if a2 == 0

sqrt(a1) Sqrt|a1|

> (a1, a2)

(
a1 if a1 > a2

a2 if otherwise
< (a1, a2)

(
a1 if a1 < a2

a2 if otherwise

space, a higher population size is often necessary to find optimal solu-
tions. Therefore, for CoevoMFC, the sizes of three subpopulations are set
to 512, 32 and 256 respectively based on the number of input features that
each subpopulation handles. However, higher population sizes can lead
to higher computation/time cost. Moreover, higher population sizes can-
not guarantee better solutions. As long as the population size exceeds a
critical size for GP methods, effective search can be ensured. Therefore, for
SubtMFC and the two single construction methods, the size of the single
subpopulation is set to 512 rather than 800 (the addition of subpopulation
sizes for CoevoMFC). This is because the size of 512 is sufficient for the fea-
ture construction tasks based on initial experiments, in which significant
improvements on the segmentation performance of constructed features
were not achieved by setting the population size to 800.

Table 6.2: GP parameter settings of GP based feature construction meth-
ods.

Parameter Setting Parameter Setting
Generation 51 Initialisation Ramped half-and-half
Crossover Rate 0.80 Mutation Rate 0.19
Reproduction Rate 0.01 Maximum Depth 10
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6.5.4 Experiment Design

Two standard image datasets, Weizmann horse database [22, 24] and Pas-
cal aeroplane dataset [53] are used in this chapter (described in Section
2.5.1). The dataset processing (e.g. the splitting of a dataset to training,
validation and test sets) is the same as that in Chapter 5 (see Section 5.4.2).

The outputs of the solutions (trees) derived by the proposed methods
are normalised to the range [0, 1] using the sigmoid function, and the nor-
malised values are regarded as the constructed features. This is because
the original features are in [0,1], thus it is necessary to make the con-
structed features compatible with the original features. Specifically, the
sigmoid function is employed, since it can transform input numeric val-
ues to the range [0, 1] monotonically. Four standard classifiers, i.e. J48 (a
decision tree based classifier), NB (Naı̈ve Bayes), PART (a rule based classi-
fier) and SMO (Sequential Minimal Optimisation), from the Weka package
[171] are selected to evaluate the constructed features, since they are pop-
ularly used for classification problems. All GP related experiments are run
30 independent times, and the results are the average of the 30 best solu-
tions (one single best solution from each run). The F1 score (Equation 2.2)
is utilised to evaluate segmentation results.

6.6 Results and Discussions

Table 6.3 and Table 6.4 displays the results of the proposed single and mul-
tiple construction methods respectively (the training performance in seg-
mentation accuracy and the test performance in F1 score). The constructed
features and the combined features (constructed features and the original
features) are compared with the original features. The comparisons are
based on a statistical significance test technique: the one sample median
test [58] at the significance level 5%, which can test whether the median
of a sample set of values is the same as a hypothesised value. Since the
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proposed methods are indeterministic, thus they are run multiple times
producing multiple independent feature sets, while there is only one orig-
inal feature set.

6.6.1 Single Feature Construction Methods

Table 6.3: Results of FSFC and WSFC (#F means the number of features;
Original means the original features; CF and Combined stands for the sin-
gle constructed feature and the combined features (a constructed feature
+ the original features) respectively; ", # or = mean significantly better,
worse or similar, compared with original features).

Method Training Accuracy (%) Test F1 score
(#F) J48 NB PART SMO J48 NB PART SMO

W
ei

zm
an

n

Original(53) 69.84 72.38 76.98 79.76 0.544 0.565 0.566 0.662
FSFC 68.30= 62.23# 68.32# 57.40# 0.498# 0.453# 0.499# 0.410#
CF(1) ±5.24 ±5.42 ±5.26 ±5.38 ±0.096 ±0.072 ±0.096 ±0.090

FSFC 98.02" 72.46= 84.60" 80.28= 0.539= 0.569= 0.554# 0.651#
Combined(54) ±0.15 ±0.20 ±1.45 ±0.15 ±0.002 ±0.001 ±0.005 ±0.001

WSFC 76.51" 74.72" 76.09= 75.82# 0.599± 0.590± 0.596± 0.601±
CF(1) ±1.25 ±1.95 ±1.51 ±1.81 0.014 " 0.018 " 0.017 " 0.020 #
WSFC 96.13" 72.21= 83.81" 80.42= 0.569± 0.578± 0.589± 0.663±

Combined(54) ±1.14 ±0.49 ±1.46 ±0.30 0.009 " 0.004 " 0.020 " 0.002 =

Pa
sc

al

Original(53) 75.44 83.56 79.60 83.01 0.442 0.475 0.475 0.517
FSFC 72.85# 67.60# 72.86# 64.91# 0.351# 0.332# 0.382# 0.270#
CF(1) ±6.29 ±6.13 ±6.27 ±7.15 ±0.072 ±0.061 ±0.071 ±0.079

FSFC 96.16" 80.56# 87.56" 85.21" 0.455" 0.473= 0.471= 0.506#
Combined(54) ±0.82 ±0.10 ±2.45 ±0.09 ±0.006 ±0.002 ±0.018 ±0.000

WSFC 83.76" 83.15= 83.92" 75.82# 0.478± 0.484± 0.478± 0.601±
CF(1) ±0.36 ±0.43 ±0.53 ±1.81 0.009 " 0.010 " 0.010 = 0.020 "
WSFC 94.97" 79.83# 86.76" 84.45" 0.447± 0.479± 0.470± 0.514±

Combined(54) ±1.19 ±0.08 ±1.16 ±0.41 0.009 = 0.001 = 0.027 # 0.006 =

The results of the proposed single feature construction methods, i.e.
filter (FSFC) and wrapper (WSFC) methods, are shown in Table 6.3. In
terms of the training performance, the single construction features of FSFC
based on different classifiers are generally worse than the original features,
while the combined features outperform the original features. As the sin-
gle constructed feature is only one feature, it may not contain sufficient
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distinguishing information for object/background pixels, which leads to
worse performance than the original features. In addition, both the sin-
gle and combined construction features have generally higher or similar
training accuracies, compared with those of original features. Therefore,
WSFC performs better than FSFC in training.

In terms of the test performance, both the single constructed features
and combined features of WSFC generally perform significantly better
than or similar to original features on both datasets. For example, com-
pared with the original features on Weizmann dataset, single constructed
features of WSFC increase the F1 score by 0.055, 0.025, 0.030 and -0.061
based on the four classifiers respectively, while the combined features in-
crease performance by 0.025, 0.013, 0.023 and 0.001. In contrast, for FSFC,
single constructed features achieve lower F1 scores on both datasets than
original features, while its combined features have varying performance
based on different classifiers on the two datasets (perform similar for four
out of eight cases; perform worse for three out of eight cases; perform bet-
ter for the remaining one case). Therefore, WSFC outperforms FSFC on
test sets, which confirms the claim on the training sets. This is because
WSFC is a wrapper approach that employs the feedback of a classifier to
evaluate the constructed features for the classification based segmentation
tasks, which tends to be more effective than FSFC that does not rely on
any classifier to evaluate the constructed features.

6.6.2 Multiple Feature Construction Methods

Table 6.4 displays the results of the proposed multiple feature construc-
tion methods, i.e. SubtMFC and CoevoMFC. Compared with the original
features using different classifiers, the combined features of the proposed
methods have generally better or similar results in both training and test
performance. For only the constructed features, they perform worse than
original features in the training accuracy; however, they achieve better or
similar testing performance in F1 score based on most classifiers. Note that
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Table 6.4: Results of CoevoMFC and SubtMFC (CF and Combined refer to
the multiple constructed features and the combined features respectively;
", # or = mean significantly better, worse or similar, compared with origi-
nal features).

Method Training Accuracy (%) Test F1 score
(Number of features) J48 NB PART SMO J48 NB PART SMO

W
ei

zm
an

n

Original features(53) 69.84 72.38 76.98 79.76 0.544 0.565 0.566 0.662

CoevoMFC

CF 78.10± 75.70± 76.96± 76.07± 0.600± 0.595± 0.593± 0.601±
(3) 1.00 " 0.89 " 0.87 # 0.98 # 0.014 " 0.014 " 0.013 " 0.011 #

Combined 96.43± 72.61± 84.95± 80.59± 0.572± 0.580± 0.587± 0.664±
(56) 1.13 " 0.33 " 1.33 " 0.25 = 0.007 " 0.003 " 0.013 " 0.001 "

SubtMFC

CF 82.61± 77.05± 78.95± 78.77± 0.592± 0.616± 0.604± 0.636±
(30± 9.71) 2.54 " 1.23 " 1.89 = 1.25 # 0.019 " 0.018 " 0.023 " 0.020 #
Combined 96.92± 76.06± 85.98± 81.20± 0.568± 0.620± 0.592± 0.668±
(83± 9.71) 1.06 " 1.12 " 1.85 " 0.41 " 0.013 " 0.012 " 0.016 " 0.003 "

Pa
sc

al

Original features(53) 75.44 83.56 79.60 83.01 0.442 0.475 0.475 0.517

CoevoMFC

CF 85.23± 83.17± 84.38± 83.42± 0.488± 0.493± 0.480± 0.493±
(3) 0.76 " 0.40 = 0.74 " 0.47 " 0.011 " 0.009 " 0.012 " 0.012 #

Combined 95.74± 79.94± 88.01± 84.40± 0.446± 0.481± 0.470± 0.522±
(56) 1.17 " 0.08 # 1.35 " 0.31 " 0.008 " 0.001 " 0.019 = 0.007 "

SubtMFC

CF 86.65± 83.28± 84.44± 83.86± 0.461± 0.506± 0.471± 0.502±
(29± 9.03) 1.09 " 0.54 = 0.52 " 0.27 " 0.012 " 0.007 " 0.016 = 0.007 #
Combined 95.91± 82.40± 87.98± 84.53± 0.440± 0.509± 0.469± 0.524±
(82± 9.03) 1.22 " 0.45 = 1.57 " 0.27 " 0.010 = 0.005 " 0.024 = 0.005 "

F1 score is more reliable than the segmentation accuracy due to the unbal-
anced objects/backgrounds on the test images. Moreover, the constructed
features (3 for CoevoMFC; 30 on Weizmann dataset or 29 on Pascal dataset
for SubtMFC) are less than the original features (53) in size. The analyses
indicate that the constructed features of both MFC methods are more ef-
fective and robust than the original features.

When comparing CoevoMFC with SubtMFC in the test performance,
the constructed features and combined features achieve similar segmen-
tation performance. For example, on the Pascal dataset, the combined
features of CoevoMFC achieve 0.446, 0.481, 0.470 and 0.522 in F1 for J48,
NB, PART and SMO respectively, while those of SubtMFC achieve 0.440,
0.509, 0.469 and 0.524 respectively. However, considering that CoevoMFC
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only produces three features, which is much less than those of SubtMFC
(around 30 on Weizmann dataset and around 29 on Pascal dataset), Co-
evoMFC features are more effective.

6.6.3 Single Methods vs Multiple Methods
Compared with those of single construction methods (FSFC and WSFC),
both the constructed features and the combined features of multiple con-
struction methods (SubtMFC and CoevoMFC) generally achieve better or
similar training and testing performance. As WSFC performs better than
FSFC based on the analyses in section 6.6.1, WSFC is taken for comparison
with the MFC methods.

According to Table 6.3 and Table 6.4, the constructed features of mul-
tiple construction methods are relatively more effective than those of the
single construction methods. For example, in terms of the training accu-
racy on the Weizmann dataset, the constructed features of WSFC achieved
76.51% (J48), 74.72% (NB), 76.09% (PART) and 75.82% (SMO), while those
of SubtMFC rose by around 6%, 3%, 2% and 3% and those of CoevoMFC
increased by approximately 2%, 1%, 1% and 0.2% accordingly. In the test
performance on the Weizmann dataset, the constructed features of WSFC
achieves 0.599 (J48), 0.590 (NB), 0.596 (PART) and 0.601 (SMO), while those
of SubtMFC rose by about -0.031, 0.026, 0.008 and 0.035 and those of Co-
evoMFC increased by around 0.001, 0.005, -0.003 and 0 respectively. This
indicates that the proposed multiple feature construction methods (i.e.
SubtMFC and CoevoMFC) are better than the single feature construction
methods (FSFC and WSFC) in constructing effective features for the given
segmentation problems.

6.7 Further Analyses
To reveal the effectiveness of the constructed features, this section analyses
the evolved solutions (feature construction functions) of WSFC and Co-
evoMFC, since WSFC and CoevoMFC perform best among the proposed
single and multiple construction methods respectively.
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6.7.1 Analyses of A Single Feature Construction Solution

(a) One WSFC solution.

(b) A test image. (c) The constructed feature space based on the solu-
tion in Figure 6.11a.

(d) One original feature f38. (e) One original feature f40.

Figure 6.11: Distribution of class object/background pixels in different fea-
ture spaces.

Figure 6.11a shows an example feature construction function derived
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by WSFC. Based on the function, original features of a Weizmann test im-
age (Figure 6.11b) are transformed into a constructed feature. Figure 6.11c
shows the histogram of object/background regions in the constructed fea-
ture space. It can be seen that the majority of object pixels and background
pixels can be separated. Specifically, most background pixels fall into
the value range of above 0.5 and the object pixels are all within [0, 0.5],
while only a minority of pixels are misclassified. This reflects that the con-
structed feature is effective to distinguish object/background pixels.

Figure 6.11d and Figure 6.11e display the object/background histogram
in the spaces of two original features, e.g f38 and f41, which are used in the
feature construction solution (Figure 6.11a). Figure 6.11d and Figure 6.11e
show that the majority of background and object pixels are overlapping, so
are not as separable as in the constructed feature spaces. This reflects that
the single constructed feature is more distinctive than the original ones,
which indicates that the proposed WSFC can evolve useful functions to
build effective high-level features.

6.7.2 Analyses of Multiple Feature Construction Solutions

Figure 6.12 displays one best group of feature construction functions evolved
by CoevoMFC. Specifically, Figure 6.12a, Figure 6.12b and Figure 6.12c are
the solutions derived based on edge features, colour features and grayscale
statistics respectively. Figure 6.12b shows that the feature construction
function is to select the feature f41, and no further operation is imple-
mented. Based on these functions, original features of a Pascal test image
(Figure 6.13a) are transformed to constructed features.

Figure 6.13b, Figure 6.13c and Figure 6.13d show the object/background
histogram in the constructed feature spaces, in which the majority of object
pixels and background pixels can be separated. Specifically, Figure 6.13c
shows that feature f41 itself is distinctive, which explains that the solution
in Figure 6.12b only selects f41 without additional operations. In contrast,
Figure 6.13e and Figure 6.13f display the object/background histogram in
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(a)

(b)

(c)

Figure 6.12: Example solutions (feature construction functions) evolved
by CoevoMFC ((a), (b) and (c) are the best solutions of subpopulations 0,
1 and 2 respectively).

two original feature spaces, e.g. f13 and f52, which shows that the major-
ity of background and object pixels are overlapping. This suggests that
the constructed features contain more distinguishing information than the
original ones for segmentation on the given complex images.

6.8 Chapter Summary

This chapter introduced GP for the first time to construct high-level fea-
tures from primitive image features, aiming to improve the performance
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(a) A test image. (b) Feature space constructed by Figure 6.12a.

(c) Feature space constructed by Figure 6.12b (i.e.
f41).

(d) Feature space constructed by Figure 6.12c.

(e) Original feature (f13) space. (f) Original feature (f52) space.

Figure 6.13: Distribution of class object/background pixels in different fea-
ture spaces.

of subsequent classifiers based segmentation tasks, especially on complex
images. Both single and multiple feature construction methods were de-
signed using GP, termed as SFC and MFC. Specifically, the proposed sin-
gle construction methods include a filter (FSFC) method and a wrapper
(WSFC) method, where a novel entropy based fitness function was de-
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signed for the FSFC. The subtrees and cooperative coevolution techniques
were introduced in GP to develop new multiple feature construction meth-
ods. The subtrees technique was selected, as the outputs of subtrees con-
tain useful information. In contrast to the single construction methods
and the subtrees based method that conduct homogeneous combination
of different types of features, the cooperative coevolution technique was
employed, which enables GP to construct features from different types of
features separately, and conduct combination of the constructed features
simultaneously.

Among the single feature construction methods (FSFC and WSFC),
both the single constructed features and combined features of WSFC per-
form better than the original features for testing; for FSFC, the single con-
structed features perform worse and the combined features hold varied
performance. It reflects that WSFC is better than FSFS for constructing
more effective features. Similarly, multiple feature construction methods
(SubtMFC and CoevoMFC) constructed features, producing better or sim-
ilar testing performance in F1 score based on most classifiers. Moreover,
the number of constructed features (3 for CoevoMFC; 30 on Weizmann
dataset and 29 on Pascal dataset for SubtMFC) is less than that of the
original features (53). This indicates that the constructed features of both
MFC methods are more effective and robust than the original features.
When comparing between SubtMFC and CoevoMFC, they achieve simi-
lar testing performance; however, CoevoMFC only has three constructed
features, a much smaller number than those of SubtMFC (30 on Weizmann
and 29 on Pascal). Therefore, CoevoMFC is more capable than SubtMFC
in generating effective features based on the performance for given seg-
mentation tasks.

GP’s potential in different aspects for figure-ground image segmenta-
tion tasks has been investigated (Chapters 3-6), including investigating the
effectiveness of image features for GP to evolve capable segmentors, intro-
ducing multi-objective techniques to GP methods to balance solution func-
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tionality and complexity, developing feature selection/construction meth-
ods using GP to generate effective features. It would be meaningful to
further investigate the proposed GP methods in the field of figure-ground
segmentation, e.g. by comparing the proposed methods or by comparing
with non-EC segmentation methods.
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Chapter 7

Further Analyses of Proposed
Methods

Figure 7.1: The overall structure of contributions.
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7.1 Introduction

GP’s potential in different aspects for figure-ground image segmentation
tasks was investigated (Chapters 3-6), including the effectiveness of image
features for GP to evolve capable segmentors (Chapter 3), multi-objective
GP methods to balance solution functionality and complexity (Chapter 4),
GP based feature selection (Chapter 5) and feature construction (Chapter
6). In this chapter, the proposed GP methods will be further investigated
in the field of figure-ground segmentation.

Figure-ground segmentation problems are transformed into window
classification based tasks in Chapters 3 and 4, in which the effectiveness of
image features employed as inputs of GP and the bloat control were inves-
tigated respectively. The window classification based framework has two
drawbacks, i.e. setting the window related parameters and producing in-
accurate object boundaries. Therefore, the pixel classification based frame-
work was proposed in Chapter 5, which avoided these drawbacks. Based
on the pixel classification framework, the feature selection and construc-
tion methods were investigated in Chapters 5 and 6 respectively, which
generated effective features for figure-ground segmentation tasks. There-
fore, it is necessary and meaningful to conduct the following comparisons:
the window classification based versus the pixel classification based meth-
ods, the single-objective methods versus multiple-objective methods, and
the selected features versus the constructed features for figure-ground seg-
mentation tasks. Note that the comparison between the single-objective
methods and the multiple-objective methods was already conducted in
Chapters 4 and 5, so it is not included in this chapter.

The benchmark datasets selected in this thesis (see Section 2.5.1) con-
tains one class of foreground objects. Therefore, whether the proposed
methods can perform well on datasets containing various classes of fore-
ground objects (a wide range of objects, e.g. plants, animals and vehicles)
deserves to be investigated in this chapter. In addition, it is hypothesised
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that the evolved segmentors based on one type of foreground objects can
generalise well on other types of objects, so it would be interesting to con-
duct transfer validation tests. Moreover, compared with other segmenta-
tion techniques, the strengths and weaknesses of GP in this field deserve
investigation.

7.2 Performance on Datasets with Various Fore-
ground Objects

Various foreground objects refer to multiple foreground objects that can
cover a wide range of objects, e.g. plant, animals and vehicles. The bench-
mark datasets used in this thesis, i.e. Weizmann horse dataset and Pascal
aeroplane dataset (see Section 2.5.1), are partitioned to contain one class of
foreground objects. For example, on Weizmann horse dataset, the horse
images are used to train the proposed GP methods to evolve segmentors
that are then used to segment horses on test images. Whether GP can
evolve useful segmentors that can handle various types of objects simul-
taneously was not determined. In this section, the proposed GP based
segmentation methods will be tested on datasets containing various types
of foreground objects.

7.2.1 Design of Experiments

Two new datasets (i.e. the SED2 dataset [8] and the ImgSal dataset [94],
which will be described in Section 7.2.2), are selected. This is because they
are well explored benchmark object segmentation and detection datasets;
the images in both datasets contains diverse classes of objects; and the
ground truth on pixel level of both datasets is provided. Note that other
image datasets that meet the above three criteria can also be used.

Two segmentation frameworks using GP were developed in this the-
sis, i.e. the window classification based framework (see Section 3.2.1) and
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the pixel classification based framework (see Section 5.2.1), both of which
are employed in this section. Three GP based segmentation methods (the
weighted sum method, INSGP and ISPGP) were developed to evolve seg-
mentation solutions in Chapter 4. As INSGP and ISPGP perform better
than the weighted sum method, while INSGP and ISPGP produce solu-
tions with similar segmentation performance, ISPGP (see Section 4.2.2) is
selected in this section. In addition, the GP algorithm is used as a reference
method. Therefore, both the window and pixel classification frameworks
based GP and ISPGP methods will be employed on the two new datasets.

7.2.2 Datasets

Table 7.1 shows selected images from SED2 [8] and ImgSal (image saliency)
[94] datasets. Specifically, SED2 consists of 100 images with two salient ob-
jects in each image. The SED2 images contain a wide range of foreground
regions, e.g. birds, planes, buildings, boats, flowers and people. The sizes
of SED2 images are around 300 ⇥ 225 (or 225 ⇥ 300) pixels.

ImgSal is a benchmark dataset for saliency detection [94]. There are 235
colour images in the ImgSal dataset, which are varied in certain aspects,
e.g. salient region size and cluttered backgrounds. Specifically, ImgSal
images can be divided into six categories: images with large, intermediate
and small salient regions; images with cluttered backgrounds; images with
repeating distractors; images with both large and small salient regions.
In addition, ImgSal images contain diverse salient regions, e.g. animals
(e.g. horses, cows, butterflies and pandas), people in different activities
(e.g. working in the field and biking) and plants. The sizes of ImgSal
images are all 480⇥ 640 pixels. Note that the ground truth is derived from
human segmentors, so it could include bias and ambiguity, e.g. in Table
7.1 whether the viaduct in the fourth ImgSal image is salient or not.
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Table 7.1: Two new datasets (G.T. means ground truth; Ori. stands for
original images).

SED2
Ori.

GT

ImgSal
Ori.

GT

7.2.3 Experiment Preparation

Two thirds of images in ImgSal and SED2 are used for training, and the
remaining images are for testing, where appropriate fifty samples are ex-
tracted from each ImgSal training image, while twenty samples are ex-
tracted on each SED2 training image, since ImgSal images are larger than
SED2 ones.

The required parameters for the window classification based methods
are set based on the previous settings, i.e. the window size (16⇥ 16 pixels)
and the shifting steps of the window (two in both vertical and horizontal
directions) (see Section 4.3.3 for details).

7.2.4 GP Settings

The settings of GP (i.e. the function set, the terminal set, the fitness func-
tion and GP parameters) are similar to the settings in previous chapters,
which are shown as follows.

Table 7.2 shows the function set used in this section, which removes the
redundant operators included in the function set of Chapter 4 (see Section
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4.3.2). The two objectives of ISPGP are the classification accuracy (Equa-
tion 4.2) and the complexity measure (Equation 4.3), and the fitness func-
tion of GP is the classification accuracy (Equation 4.2). In addition, major
GP parameters are as follows: the rates of crossover, mutation and eilitism
operators are 80%, 19% and 1% respectively; the population size is 512,
and the minimum and the maximum tree depth is 1 and 10 respectively.
Other GP parameters follow the default settings used in Koza’s works [83]
(see Section 2.5.4 for details).

Several feature descriptors (i.e. Gabor filters, RGB colour features and
mean/median filters (see Section 2.5.2)) are employed. Specifically, 12 Ga-
bor filters are selected, which are generated from three common scales
(4, 8, 16) and four common orientations (0, ⇡4 ,

2⇡
4 ,

3⇡
4 ) to extract Gabor fea-

tures. The pixel values on red, green and blue channels are used to capture
colour information. In addition, the mean filter and the median filter with
three block sizes (3 ⇥ 3, 5 ⇥ 5 and 9 ⇥ 9 pixels) are also employed to ex-
tract local grayscale statistics. Therefore, there are 21 features (12 Gabor
features, 3 RGB colour features, 3 mean features and 3 median features) in
each feature vector for the pixel classification based methods. Note that
features are extracted from subimages for the window classification based
methods. As the window is 16 ⇥ 16 pixels (set up in Section 7.2.3), there
will be 5376 features (16⇥16⇥21) in each feature vector for the window
classification based methods. It is considered that this feature dimension
is too high, as it is computationally expensive and may cause overfitting.
Therefore, the extracted features are down-sampled to 336 dimensions
(4⇥4⇥21) for the window classification based methods. The details of fea-
ture extraction for the window and pixel classification based methods can
be seen in Section 4.3.1 and Section 6.5.1 respectively.

7.2.5 Results

Table 7.3 displays several image results. On SED2, the results are visually
accurate with objects segmented, but edges are blurred and inner pixels
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Table 7.2: Function set of GP based figure-ground segmentation methods.

Function Name Definition Function Name Definition
+(a1, a2) a1 + a2 -(a1, a2) a1 � a2

*(a1, a2) a1 ⇤ a2 %(a1, a2)

(
a1/a2 if a2! = 0

0 if a2 == 0

> (a1, a2)

(
a1 if a1 > a2

a2 if otherwise
< (a1, a2)

(
a1 if a1 < a2

a2 if otherwise

IF(a1, a2, a3)

(
a2 if a1 is true
a3 if a1 is false

== (a1, a2)

(
1 if a1 == a2

0 if otherwise

of objects are mis-labelled. On ImgSal, the results are too specific with
background parts captured as foreground (the first and fourth images).
Interestingly the train carriages and two additional bathers are captured
more clearly than GT as well as separating the two dolphins (the second,
fifth and third images respectively).

Compared with SED2 images, ImgSal images are more difficult seg-
mentation tasks, as ImgSal contains images with small salient regions,
cluttered backgrounds and/or repeated distractors. This is supported by
statistical results in Table 7.4), where the test F1 scores on ImgSal are sig-
nificantly lower than those on SED2 based on the Mann-Whitney U-Test
[118] at the significance level 5%. Even though the proposed GP based
segmentation methods cannot perform close to optimum on ImgSal due
to its high variations, the promising results on SED2 reflect that it is possi-
ble for GP to evolve segmentors with distinctive patterns for various types
of objects (e.g. straight lines from buildings and curves from flowers).

When comparing ISPGP with GP, both achieve similar test F1 scores on
each dataset based on the Mann-Whitney U-Test. However, both the train-
ing and test time are reduced for ISPGP, which are around half of those for
GP. This is because ISPGP uses multi-objective techniques to balance the
solution performance and complexity (Section 4.2.2), thus the evolved so-
lutions of ISPGP are smaller/simpler than those of GP, which helps reduce
the time cost in both training and test stages. This reflects that the pro-
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Table 7.3: Result examples using pixel classification based ISPGP (G.T.
means ground truth; Ori. stands for original images).

SED2
Ori.

GT

Result

ImgSal
Ori.

GT

Result

posed ISPGP performs better than GP for the figure-ground segmentation
tasks on the given datasets.

When comparing the window classification based and pixel classifica-
tion based methods, their F1 scores on the test sets are compared based on
the Mann-Whitney U-Test. Specifically, on SED2, the window based and
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Table 7.4: Results (Window and Pixel means the window classification
based and the pixel classification based GP methods respectively; s repre-
sents seconds).

Method Training Test Train Time Test Time
Accuracy(%) F1 Per Run(s) Per Image(s)

SED2
Window

GP 79.96± 0.73 0.544± 0.019 14.616± 2.802 0.025± 0.005

ISPGP 81.13± 3.00 0.549± 0.020 10.865± 1.607 0.019± 0.004

Pixel
GP 80.49± 0.44 0.540± 0.017 9.047± 2.004 0.055± 0.009

ISPGP 81.67± 2.36 0.546± 0.020 6.153± 0.734 0.025± 0.007

ImgSal
Window

GP 72.97± 0.56 0.261± 0.010 195.960± 21.594 0.120± 0.025

ISPGP 78.16± 7.28 0.259± 0.013 90.569± 9.370 0.108± 0.024

Pixel
GP 72.63± 2.44 0.250± 0.014 58.470± 12.561 0.190± 0.040

ISPGP 79.44± 6.49 0.248± 0.010 30.817± 5.366 0.086± 0.028

pixel based GP methods achieve similar F1 scores, as well as the window
based and pixel based ISPGP methods. However, on ImgSal, the window
based methods are significantly better in F1 score than the pixel based
methods. Considering the ImgSal images are more complex with high
variations, the results suggest that the window classification based seg-
mentation framework perform better than the pixel based framework on
complex image datasets. This may be because the window based frame-
work uses a shifting window that generates multiple predicted labels on
most image pixels and a voting scheme is employed to produce the final
predicted label, which can help lower the influence of inaccurate predic-
tions.

Two ISPGP solutions for the SED2 dataset are shown in Figure 7.2.
Take Figure 7.2b as an example. Based on the feature extraction in Section
7.2.4, feature subsets, f0, ..., f191, f192, ..., f239, f240, ..., f287 and f288, ..., f335,
are Gabor features, colour features, mean features and median features
respectively. From Figure 7.2b, eight features are used in this solution,
among which six features are Gabor features, one feature is a colour fea-
ture and the other one is a mean feature. This reflects that edge features are
popular for datasets with multiple types of objects. This may be because
the variations of different types of foreground objects and backgrounds
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(a)

(b)

Figure 7.2: Two example segmentors evolved by the window classification
based ISPGP on the SED2 dataset.

that lie in color and texture are more difficult to capture than edges.

7.3 Transfer Validation

This section aims to investigate how well the segmentors evolved from
images with one type of objects (e.g. horses) can generalise on the same
images (images with the same type of foreground objects, e.g. horses, from
different datasets to remove confounding variables, e.g. lighting effects),
similar images (images with biologically similar types of foreground ob-
jects, e.g. cows) and different images (images with biologically different
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types of foreground objects, e.g. planes).

7.3.1 Design of Experiments

To achieve the goal of this section, the training set of the Weizmann horse
dataset will be used to train the proposed methods to evolve segmentors,
and then the evolved segmentors will be tested on the test set of the Weiz-
mann horse dataset, the validation sets of Pascal horse images, Pascal cow
images and Pascal aeroplane images respectively. The cows are consid-
ered as similar objects to horses, as they share common characteristics in
both shape and backgrounds, while the planes are regarded as different
objects from horses, as they are different in these aspects. Furthermore, an
experiment of using Pascal aeroplane images as the training set and the
Weizmann horse images as the test set is conducted for cross-comparison.

The description of Weizmann and Pascal datasets are provided in Sec-
tion 2.5.1. There are 218 images in the Weizmann training set, and 20 sam-
ples are extracted from each training image. In addition, there are 56 horse
images, 56 cow images and 88 plane images in the Pascal dataset for val-
idation. The settings of the GP methods (i.e. the terminal set, the func-
tion set, the fitness function and the parameter settings) are the same with
those in Section 7.2.4.

7.3.2 Results

Table 7.5 presents the training results based on two training sets, i.e. Weiz-
mann horse images and Pascal plane images. It shows that similar classi-
fication accuracies are achieved for the window and pixel based methods
on both training sets. The evolved segmentors from the two datasets are
then tested on several test sets, and the results are presented as follows.

Table 7.6 shows the performance of the segmentors (evolved from the
Weizmann horse images and Pascal plane images) on different test sets.
Considering the four sets of experiments based on the segmentors evolved
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Table 7.5: Training results (Window and Pixel means the window classifi-
cation based and the pixel classification based GP methods respectively; s
represents seconds).

Training
Method

Training Train Time
Set Accuracy(%) Per Run(s)

Weizmann horse
Window 76.59± 1.59 81.6± 18.4

Pixel 77.69± 0.92 30.3± 5.9

Pascal plane
Window 80.44± 0.82 98.8± 19.5

Pixel 80.79± 0.80 28.1± 5.3

Table 7.6: Test results (Window and Pixel means the window classifica-
tion based and the pixel classification based GP methods respectively; s
represents seconds; Weizmann horse VS Weizmann horse means that the
segmentors evolved from Weizmann horse images are tested on unseen
Weizmann horse images, and so forth).

Method Test F1 Score Test Time Per Image(s)
Weizmann horse VS Window 0.490± 0.013 0.062± 0.011

Weizmann horse Pixel 0.597± 0.015 0.042± 0.009

Weizmann horse VS Window 0.492± 0.032 0.063± 0.016

Pascal horse Pixel 0.476± 0.019 0.114± 0.028

Weizmann horse VS Window 0.562± 0.038 0.066± 0.023

Pascal cow Pixel 0.550± 0.027 0.112± 0.028

Weizmann horse VS Window 0.359± 0.047 0.058± 0.014

Pascal plane Pixel 0.376± 0.037 0.118± 0.028

Pascal plane VS Window 0.413± 0.014 0.034± 0.007

Weizmann horse Pixel 0.393± 0.014 0.040± 0.006

from Weizmann horse images, the test F1 scores are significantly worse
on Pascal plane images than those on horse/cow images based on the
Mann-Whitney U-Test [118] at the significance level 5%. This suggests
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that segmentors cannot generalise well on images with different objects.
Specifically, the training images are horse images that contain different
patterns from plane images. For example, the shape of horses mainly con-
sists of curves, while planes are formed by straight lines. In addition, the
backgrounds of horse images tend to be grass and/or trees, while those of
planes tend to be sky and/or buildings.

In contrast, when applying Weizmann horse segmentors on the Pas-
cal horse images and Pascal cow images, promising results are achieved.
Specifically, compared with the F1 scores on Weizmann test images, they
are similar on Pascal horse images and are even better on Pascal cow im-
ages. This reflects that Weizmann horse segmentors can generalise well
on Pascal horse images and Pascal cow images. The reason is that the
GP methods have captured common characteristics that horses and cows
share, e.g. object shape and backgrounds. The ability to capture com-
mon characteristics across a class of foreground objects in a human in-
terpretable manner is a major strength of GP based image segmentation.
Note that on the Pascal cow images, better test performance is achieved
than that on the Pascal horse images (having the same type of object as
the training images). By checking the Pascal cow images, they tend to be
easier segmentation tasks than the Pascal horse images, since they tend to
contain relatively clean backgrounds and objects with bigger object sizes
in relation to background.

Table 7.3 shows several result examples for the transfer validation test.
It can be seen that based on the Weizmann training set (horse images),
the Weizmann test horse, Pascal test horse and Pascal test cow images are
segmented visually accurately. Even though there exist false positives on
Pascal test horse and cow images, the results are still promising due to the
cluttered backgrounds. This is because the training and test images are the
same type or contain similar types of objects, which share common prop-
erties (e.g. in object shape and object size). In addition, when training on
the horse images and testing on the plane images or vice verse, the results
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W.horse VS W.horse VS W.horse VS W.horse VS P.plane VS
W.horse P.horse P.cows P.plane W.horse

Original

GT

Result

Figure 7.3: Result examples of the window classification based GP for
transfer validation test (W.horse VS P.horse refers to the segmentor trained
on the Weizmann horse training set is used to segment Pascal horse test
set, and so forth; GT means ground truth).

are relatively worse. For example, the “P.plane VS W.horse” result im-
age shows that the boundaries of the horse cannot be accurately detected,
which may be because the GP method cannot learn specific patterns to
detect curves on a horse from plane images with straight lines.

7.4 Selected Features Versus Constructed Features

This section will compare the selected feature subsets with the constructed
features of the proposed methods. Specifically, three feature selection meth-
ods were proposed in Chapter 5, i.e. PGP-FS, NSGP-FS and SPGP-FS. As
NSGP-FS and SPGP-FS perform better than PGP-FS, while NSGP-FS and
SPGP-FS produce feature subsets with similar segmentation performance,
SPGP-FS is selected in this section. In addition, four feature construction
methods were developed in Chapter 6, i.e. FSFC, WSFC, SubtMFC and
CoevoMFC, among which CoevoMFC is more capable than others in gen-
erating effective features for given segmentation tasks. Therefore, SPGP-
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FS and CoevoMFC are the best-performing feature selection/construction
methods proposed in this thesis. Note that the previous results of SPGP-FS
and CoevoMFC from Chapters 5 and 6 respectively cannot be compared
directly, as they use slightly different settings. The two methods are rerun
using the same settings (e.g. the terminal/function set, the fitness function
and GP parameters) for the same segmentation tasks. Features selected by
SPGP-FS and features constructed by CoevoMFC will be compared in this
section.

Note that feature selection and construction are not combined together
for figure-ground segmentation in this thesis. This is because to under-
stand GPs performance and how GP functions on feature selection or fea-
ture construction, it is necessary to conduct research/investigation on each
of them individually. Moreover, even though combining feature selec-
tion and construction might be a method to further manipulate the se-
lected/constructed features to improve the segmentation performance, there
are many other possible methods, which are beyond the scope of this the-
sis.

7.4.1 Design of Experiments

Two standard image datasets, Weizmann horse database [22, 24] and Pas-
cal aeroplane dataset [53] are used in this section (see Section 2.5.1 for de-
tails). The dataset processing (e.g. the splitting of datasets to training/test
sets) follows previous settings (Section 6.5.4), as well as the terminal set
(Section 6.5.1), the fitness function (i.e. the classification accuracy for GP;
the classification accuracy and the number of selected features for SPGP-
FS (Section 5.3.2)) and the GP parameter settings (Section 6.5.3).

The function set is shown in Table 6.1, which combines the function sets
used for both feature selection (Chapter 5) and feature construction (Chap-
ter 6). This makes the function set more likely to be sufficient for both
SPGP-FS and CoevoMFC. Specifically, it consists of eight functions: five
standard mathematical functions (+,�, ⇤,%, sqrt), two relational functions
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(>,<) and one conditional function (IF ). These functions are selected, as
they are all computationally efficient, and can realise both linear and non-
linear combinations of input features.

Table 7.7: Function set of GP based feature selection/construction meth-
ods.

Function Name Definition Function Name Definition
+(a1, a2) a1 + a2 -(a1, a2) a1 � a2

*(a1, a2) a1 ⇤ a2 %(a1, a2)

(
a1/a2 if a2! = 0

0 if a2 == 0

sqrt(a1) Sqrt|a1|

> (a1, a2)

(
a1 if a1 > a2

a2 if otherwise
< (a1, a2)

(
a1 if a1 < a2

a2 if otherwise

IF(a1, a2, a3)

(
a2 if a1 is true
a3 if a1 is false

== (a1, a2)

(
1 if a1 == a2

0 if otherwise

Naı̈ve Bayes (NB) from the Weka package [171] is employed to eval-
uate the selected/constructed features in the fitness function in the train-
ing/test stage. This is because Naı̈ve Bayes (NB) is a robust and well un-
derstood classifier. The F1 score (Equation 1.2 in Section 1.5.2) is utilised
to evaluate segmentation results. All experiments are run 30 times inde-
pendently.

7.4.2 Results

Figure 7.4 and Figure 7.5 compare the training and test performance of
SPGP-FS and CoevoMFC respectively. For SPGP-FS, the aggregated Pareto
fronts of selected feature sets from 30 runs are displayed, while for SPGP-
FS, 30 constructed feature sets (each from one GP run) are displayed. Note
that the number of features in the figures refer to the number of original
features selected in the feature subsets by SPGP-FS or used to construct
the new features by CoevoMFC. These figures show that based on both
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the training accuracy and the test F1 score, the selected feature subsets
of SPGP-FS can dominate most constructed feature sets of CoevoMFC. In
other words, for a selected feature set and a constructed feature set that
have the same training accuracy (or test F1 score), the selected feature set
has smaller number of features than those used to construct the new fea-
ture set.

(a) On Weizmann dataset.

(b) On Pascal dataset.

Figure 7.4: Training performance (solutions with high classification accu-
racies and low number of features are desired).

In Table 7.8, the training and test performance of CoevoMFC constructed
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(a) On Weizmann dataset.

(b) On Pascal dataset.

Figure 7.5: Test performance (solutions with high classification accuracies
and low number of features are desired).

feature sets are the average based on 30 runs. For SPGP-FS, a Pareto front
of solutions (trade-offs based on the two objectives, i.e. the classification
accuracy and the number of selected features) are generated in each run.
To compare with the constructed feature sets of CoevoMFC, the Pareto
front solution with the highest classification accuracy of SPGP-FS is se-
lected in each run, and the average values of the 30 front solutions (se-
lected feature sets) are displayed in Table 7.8.
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Table 7.8 shows that similar training accuracies are achieved for Co-
evoMFC and SPGP-FS based on the Mann-Whitney U-Test [118] at the sig-
nificance level 5%. In terms of the test performance, similar F1 scores are
achieved on the Weizmann dataset. However, on the Pascal dataset, the se-
lected features perform significantly better than the constructed features.
Therefore, for the two given figure-ground segmentation tasks, SPGP-FS
can produce feature sets that are more effective than those of CoevoMFC.

According to Table 7.8, there are more features in the selected feature
sets than the new features in the constructed feature sets. Specifically,
there are around 9 and 11 selected features based on SPGP-FS for the two
datasets respectively, while the number of constructed features based on
CoevoMFC is fixed (i.e. three) due to the characteristics of CoevoMFC that
one new feature is constructed from one type of primitive features and
three general types of primitive features are used (see Section 6.4). How-
ever, considering Figure 7.4 and Figure 7.5, more primitive features are
used to construct the three new features by CoevoMFC than the features
selected by SPGP-FS.

In addition, CoevoMFC is more time-consuming than SPGP-FS. One
major reason lies in the fitness evaluation, where primitive features need
to be transformed to new features based on each CoevoMFC individual
(regarded as a feature construction function). Compared with SPGP-FS,
the processing of feature transformation leads to extra calculation for Co-
evoMFC.

Table 7.8: Results (s represents seconds).

Dataset Method
Training Test F1 Num. of Train Time

Accuracy(%) Score Features Per Run(s)

Weizmann
SPGP-FS 71.95± 0.82 0.578± 0.007 9.00± 1.74 33.4± 2.3

CoevoMFC 72.29± 0.44 0.579± 0.004 3 88.5± 6.5

Pascal
SPGP-FS 80.36± 0.56 0.499± 0.009 11.10± 2.30 40.5± 4.3

CoevoMFC 79.93± 0.09 0.480± 0.001 3 87.0± 2.3
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7.5 Further Discussion

Image segmentation is an active area with many algorithms and tech-
niques proposed. According to Khan’s work [80], traditional segmenta-
tion techniques can generally fall into the following six categories:

• Threshold based methods [2];

• Region based methods (region growing, region splitting, and region
merging) [76];

• Edge based methods [6];

• Clustering based methods [56];

• Neural network based methods [61, 108];

• Partial Differential Equation (PDE) based methods (active contour
model (ACM), level sets, Mumford-Shah model and so on) [29, 73].

Four segmentation methods are selected for comparison with the pro-
posed GP methods in Chapter 3, i.e. thresholding [2] and active contour
model (ACM) [1], a region growing method [87] and a K-means method
[56]. The four methods are selected as they are from four different branches,
and each of them is a standard or popular algorithm in its branch. The
results (see Section 3.5.2) show that the GP-evolved segmentors achieve
consistently good performance, while traditional methods perform worse
or cannot maintain good performance on all the given datasets. Specifi-
cally, automatic or manual initial contour placement is required by ACM,
and it is well known that ACM relies heavily on the placement of the ini-
tial contour [106]. Only when initial contours are set near objects of in-
terest, could ACM produce accurate results. In addition, the threshold-
ing method is only suitable for images with high contrast between objects
and backgrounds. For K-means clustering and region growing methods,
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the number of clusters and regions is needed to be set beforehand respec-
tively. Compared with the selected traditional segmentation methods, the
advantage of GP is that it is easily adapted to diverse image domains with-
out major parameter tuning or human intervention.

In addition to the above four techniques, the remaining two types of
segmentation techniques, i.e. edge based methods and neural network
based methods, were not tested experimentally with the following rea-
sons. Considering that results of figure-ground segmentation are com-
monly pixelwise separation of objects and backgrounds, edge based meth-
ods were not selected as they produce object boundaries as segmentation
results and extra processing is needed to generate pixelwise segmentation
for fair comparison with the proposed methods. In addition, among neu-
ral network based methods, deep learning techniques, e.g. convolutional
neural networks [108], are popular and are gaining success in image seg-
mentation. Deep neural networks were not selected, because they require
large annotated image datasets and processing with high computation
power, which are beyond the scope of this work. Even though the edge
based and deep neural networks based methods are not experimentally
compared with the proposed methods, their strengths and weaknesses are
discussed as follows.

Edge based methods detect and link edge pixels of different regions
based on certain criteria (e.g. discontinuity or a similarity) to form con-
tours, thus separating regions in an image [6]. However, edges of a region
can often be difficult to be detected due to noise or occlusions. In addi-
tion, the key advantage of the deep learning techniques lies in the abil-
ity to learn appropriate feature representations for given problems [61].
One major challenge of deep learning methods is to construct appropriate
datasets as they should have large numbers of examples that represent the
given problem, which requires domain expertise, infrastructure resources
and human labour. Moreover, expertise is required to design the architec-
ture of deep networks for given problems. Compared with deep learning
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techniques, the strengths of GP are that it does not require pre-defined
problem models, and GP does not need large-scale datasets for training.

7.6 Chapter Summary

This chapter investigated the following four issues. Firstly, whether the
proposed methods can perform well on datasets that contain various fore-
ground objects. Secondly, whether the segmentors evolved from images
with one type of foreground objects can generalise well on images with
similar/different types of foreground objects. Thirdly, the selected fea-
tures were compared with the constructed features of the proposed feature
selection/construction methods. Finally, the strengths and weaknesses
of GP were discussed in comparison with alternative segmentation tech-
niques.

This chapter shows that the proposed GP based segmentation methods
can evolve segmentors with useful class characteristic patterns to segment
various types of objects simultaneously, although it is still challenging to
handle highly varied datasets with various foreground objects. In addi-
tion, the window classification based segmentation framework is shown to
be better than the pixel based framework on the complex image datasets.
This may be because the window based framework has a voting scheme
to generate the final class label of image pixels, which helps reduce the
influence of inaccurate predictions.

The proposed GP based segmentation methods are argued to be able to
evolve segmentors that can generalise well on images with the same/similar
foreground objects. In contrast, when tested on images with different
types of objects, the evolved segmentors cannot perform well (e.g. seg-
mentors trained on horse images and tested on plane images).

In addition, SPGP-FS can select feature subsets more effective than
those constructed by CoevoMFC, and SPGP-FS is more efficient than Co-
evoMFC as extra feature transformation is required by CoevoMFC in eval-
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uating new feature sets. In addition, more primitive features are used to
construct new features by CoevoMFC than those selected by SPGP-FS.

This chapter considers that compared with deep learning techniques
qualitatively, the strengths of GP are that it does not require pre-defined
problem models, and does not need large-scale datasets for training. In
addition, compared with other traditional segmentation methods, e.g. re-
gion growing and K-means clustering, the advantage of GP is to be easily
adapted to diverse image domains without major parameter tuning or hu-
man intervention.



208 CHAPTER 7. FURTHER ANALYSES OF PROPOSED METHODS



Chapter 8

Conclusions and Future Work

This thesis focuses on figure-ground image segmentation using GP. The
overall goal is to investigate and improve the capability of GP for figure-
ground segmentation. This goal has been achieved by developing new GP
based methods to evolve segmentation algorithms that can perform well
on diverse image domains, and to conduct feature selection/construction
that can produce effective features for supplementary segmentation ap-
proaches. This thesis contributes to both computer vision and genetic
programming fields. Based on the proposed methods (e.g. segmentation
methods and feature selection/construction methods), similar/better seg-
mentation performance was achieved with less manual and/or computa-
tional cost.

This thesis finds that GP is suited to figure-ground image segmenta-
tion, especially for the following three issues. Firstly, given diverse image
domains, as GP based segmentation methods do not require pre-defined
solution models, much parameter tuning and human intervention, they
can be easily adapted to a wide range of image domains, e.g. bitmap, tex-
ture and object images (details in Chapters 3, 4 and 7). Secondly, given
complex images with high variations (e.g. in object shapes, object sizes
and cluttered backgrounds), as GP based feature selection/construction
methods can generate effective features, they can help improve the seg-

209
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mentation performance of the subsequent segmentation based on stan-
dard classifiers (details in Chapters 5 and 6). Thirdly, if discovered fea-
ture relations are required to be interpretable and reusable, the GP based
feature construction methods should be considered, as it is possible to in-
terpret constructed features by analysing the evolved tree solutions of GP
(details in Chapter 6).

The proposed segmentation methods were tested and compared with
existing GP based methods and traditional segmentation methods on stan-
dard image datasets with varying difficulty levels. The results show that
GP is able to derive well-performing segmentation algorithms that can
adapt to a wide range of image domains, e.g. binary images, texture im-
ages and images with different types of objects. Specifically, the weighted
sum method, INSGP, and ISPGP were developed to evolve segmentation
algorithms (see Chapter 4). INSGP and ISPGP can evolve segmentors with
similar or better segmentation performance, yet smaller sizes than those of
the weighted sum method. Moreover, INSGP and ISPGP have similar per-
formance in evolving effective segmentors.

GP can be effectively used for feature selection/construction with the
selected/constructed features achieving better segmentation performance
and containing a smaller number of features than the original feature set.
Specifically, three methods were designed in Chapter 5 for feature selec-
tion, i.e. PGP-FS, NSGP-FS and SPGP-FS. NSGP-FS and SPGP-FS can se-
lect feature subsets with similar segmentation performance, yet smaller
numbers of features than PGP-FS. Moreover, NSGP-FS and SPGP-FS have
similar performance in selecting feature subsets for the given problems.
In addition, four feature construction methods were developed in Chap-
ter 6, i.e. FSFC, WSFC, SubtMFC based and CoevoMFC. Among them,
CoevoMFC is more capable to construct effective features than the other
methods.

Conclusions for each of the research objectives of this thesis are pro-
vided as follows, along with the potential research areas that this work
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enables.

8.1 Achieved Objectives

This work has achieved the following research objectives:

1. Diverse image features were investigated to determine what image
information is necessary for GP to evolve capable segmentors for di-
verse image domains. Seven terminal sets that include the three gen-
eral types of image features, i.e. brightness (intensities), texture and
shape features, were used as inputs of GP to evolve segmentation al-
gorithms. Results show that texture features are more effective than
intensities and shape features. Moreover, the evolved segmentors
using texture features (e.g. Gabor features) can perform consistently
well on a wide range of image domains, e.g. binary images, texture
images and images with different types of objects.

2. Multi-objective GP based methods were proposed for figure-ground
segmentation to balance the evolved solutions’ functionality and com-
plexity in terms of solution size. The GP based methods often have
bloat problems that cause the complex segmentors being evolved.
As complex segmentros normally have large sizes, are computation-
ally expensive and difficult to interpret, multi-objective GP based
methods were designed to optimise two objectives, i.e. maximis-
ing the segmentation performance of solutions and minimising their
complexity. The proposed methods can evolve a set of non-dominated
segmentors that are trade-offs between the two objectives. Since
the evolved segmentors have smaller sizes, the fitness evaluation
of individuals (segmentors) in the evolutionary process is less time-
consuming, leading to the training and test time being reduced.

3. New feature selection methods using GP were developed for the
first time to address figure-ground segmentation problems. The GP
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based feature selection is not extensively investigated for figure-ground
segmentation. Moreover, feature selection is a multi-objective task:
maximizing the segmentation performance and minimizing the num-
ber of features. Different from existing works that rarely consider the
number of selected features, this thesis introduced the parsimony co-
efficient technique and multi-objective techniques in GP to balance
the two objectives. Results show that compared with the original
features, the proposed GP based methods can select feature subsets
that can improve the segmentation performance while reducing the
number of features.

4. Novel feature construction methods using GP were developed for
the first time to construct discriminative features for figure-ground
segmentation. GP based feature construction has not been sufficiently
investigated for figure-ground segmentation, and the existing works
mix different types of features simultaneously. In this thesis, both
single feature construction and multiple feature construction (MFC)
methods were developed. Compared with the original features, the
constructed features are more discriminative, which helps improve
the segmentation performance and reduce the number of features.
Moreover, the coevolution technique is introduced in GP to develop
CoevoGP, that allows new features to be constructed separately from
different types of features simultaneously. The results show that Co-
evoGP performs best in generating effective features for the given
segmentation problems.

5. The strengths and weaknesses of the proposed GP methods were
further investigated in the field of figure-ground image segmenta-
tion. Specifically, the following four issues are addressed. Firstly, the
proposed GP segmentation methods were tested on image datasets
with various classes of foreground objects. The proposed methods
can evolve segmentors with useful class characteristic patterns to



8.2. MAIN CONCLUSIONS 213

segment various types of objects simultaneously. Secondly, transfer
validation tests were conducted by employing the evolved segmen-
tors from images with one type of foreground objects on images with
other types of objects. The results show that the evolved segmen-
tors can generalise well on images with similar foreground objects.
Thirdly, the best-performing proposed feature selection method and
feature construction method are compared, which shows that the
feature selection method produces more effective features, uses fewer
primitive features and consumes less time for the given segmenta-
tion tasks. Finally, the proposed GP methods were compared with
other segmentation techniques, e.g. thresholding, K-means cluster-
ing and deep learning techniques. Compared with deep learning
techniques, the strengths of GP are that it does not require pre-defined
problem models, and does not need large-scale datasets for training.
Compared with other traditional segmentation methods, GP can be
easily adapted to diverse image domains without major parameter
tuning or human intervention.

8.2 Main Conclusions

This section discusses the major conclusions for the five research objectives
corresponding to the five contribution chapters (Chapter 3 to Chapter 7).

8.2.1 GP for Evolving Segmentors from Diverse Image Fea-
tures

The first work on determining effective image features for GP to evolve
capable segmentors (segmentation algorithms) were conducted in Chap-
ter 3. Specifically, seven terminal sets were investigated, that cover three
general feature types, i.e. brightness, texture and shape features. It is
found that intensities are not sufficient for complex images, as they are
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not discriminative when foreground and background patches have simi-
lar brightness levels. Shape features are better than intensities, but using
only shape information is not sufficient to distinguish the foreground and
background patches with similar pixel distributions. In contrast, texture
features are the most effective since they are discriminative for different
materials that foreground/background regions normally belong to (e.g.
metal or wood). In addition, this thesis finds that GP can use texture fea-
tures (e.g. Gabor features or histogram statistics) to derive segmentors that
perform consistently well on diverse image domains.

8.2.2 Multi-objective GP for Evolving Segmentors

New GP methods were proposed to evolve figure-ground segmentors that
are balanced between the segmentation performance and the solution com-
plexity in terms of solution size in Chapter 4. Specifically, a parsimony
pressure technique (i.e. the weighted sum technique) and two multi-objective
techniques (INSGA-II and ISPEA2) were incorporated with GP to opti-
mise the two objectives at the same time. The weighted sum GP method
considers both the functionality and the complexity, but combines them
into a single objective. The multi-objective GP methods treat two objec-
tives independently, aiming to achieve good trade-offs between solution
functionality and complexity. In addition, a GP based method without
considering solution complexity was developed as a reference method. It
is found that GP can be successfully combined with parsimony pressure
techniques or multi-objective techniques to evolve balanced segmentors
that reduce significantly in size while achieving similar segmentation per-
formance to that of segmentors produced by the reference method.

Weighted Sum based Method

This thesis finds that the weighted sum based method can produce so-
lutions that are better than those of the reference method, yet worse than
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those of the multi-objective methods. Considering the weighted sum tech-
nique combines objectives into a scalar fitness function based on a pre-
defined coefficient, its search space is restricted to a certain part of that
based on two independent objectives for the multi-objective methods. There-
fore, the weighted sum based method is not as flexible as the multi-objective
methods in searching for trade-offs between objectives.

Multi-objective Methods

This thesis finds that the two multi-objective GP methods (INSGP, ISPGP)
outperform the parsimony pressure method and the reference method in
evolving balanced solutions. Moreover, INSGP solutions have found to
have a better spread along the whole frontier than the ISPGP solutions.
This is mainly due to the difference in the two multi-objective techniques:
SPEA2 focuses more on solutions in the middle region, while NSGA-II
tends to emphasise the edge points of the current nondominated solutions
and produce solutions along the whole frontier [44].

8.2.3 GP for Feature Selection in Figure-ground Segmenta-
tion

New feature selection methods using GP were developed for figure-ground
image segmentation for the first time (see Chapter 5). The proposed meth-
ods handle feature selection as a multi-objective task (maximizing the seg-
mentation performance based on the selected features and minimizing the
number of selected features) by using the parsimony coefficient technique
and two multi-objective techniques. This thesis finds that parsimony pres-
sure techniques and multi-objective techniques can be successfully com-
bined with GP to select effective features for figure-ground segmentation.
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Parsimony Coefficient based GP Method

It is found that the new fitness function designed for the parsimony coeffi-
cient method can effectively guide it to search for feature subsets based on
the two objectives. Specifically, the fitness function consists of two terms
that are linearly combined, i.e. the classification accuracy and a penalty
term. As in Chapter 5, the segmentation tasks were transformed to pixel
classification based problems, the classification accuracy was selected to
measure the classification performance based on the selected features. The
parsimony coefficient technique introduced a penalty (based on the num-
ber of selected features) into the classification accuracy. The penalty mea-
sure is based on the sigmoid function, as it can monotonically transforms
solution sizes into the range value [0, 1), making the penalty value suitable
to be linearly combined with the classification accuracy.

Compared with the original features, the feature subsets produced by
the proposed parsimony pressure based method can improve segmenta-
tion performance while reducing the number of features. However, com-
pared with two traditional feature selection methods (sequential forward
selection (SFS) and sequential backward selection (SBS)), this method can-
not produce consistently better performance on the given datasets.

Multi-objective GP Methods

It is found that Pareto dominance based multi-objective techniques (e.g.
NSGA-II and SPEA2) enable GP to select effective features based on the
two objectives. Specifically, the proposed multi-objective methods pro-
duced trade-off solutions along the two objectives, which can dominate
the original feature set, SFS/SBS solutions and the solutions of the parsi-
mony pressure method. This means that compared with the parsimony
pressure based method, the multi-objective methods can further reduce
the number of features selected while improving the segmentation perfor-
mance. The reason is that, unlike the parsimony pressure based method
(aggregates the objectives into a scalar fitness function), the multi-objective
methods treat two objectives independently, making them more flexible in
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searching for trade-offs between objectives.

8.2.4 GP for Feature Construction in Figure-ground Seg-
mentation

GP was applied for the first time to construct high-level features from
primitive features to improve the segmentation performance on complex
images (e.g. images with high variations) in Chapter 6. Based on whether
a single feature or multiple features is/are constructed, there are single
feature construction (SFC) [28] and multiple feature construction (MFC)
methods [129]. Both single (SFC) and multiple feature construction (MFC)
methods were designed in this work. This work finds that by considering
interactions of the original features, the constructed features of the pro-
posed methods achieve better segmentation performance than the original
features yet are fewer in number.

Single Feature Construction

Two single feature construction methods were developed, i.e. a filter ap-
proach (termed as FSFC) and a wrapper approach (WSFC). Specifically,
an entropy based fitness function was designed for FSFC and the classi-
fication accuracy was used as the fitness function for WSFC. It is found
that WSFC is better than FSFC in constructing more effective features for
the given figure-ground segmentation tasks. Note that WSFC employs the
feedback of a classifier to evaluate the constructed features, while FSFC de-
pends on the general characteristics of the training data. FSFC tends to be
less effective than WSFC in feature evaluation. This is because the avoid-
ance of inductive algorithms in filter approaches makes the constructed
features not optimised to be used with a learning algorithm for specific
tasks.
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Multiple Feature Construction

Two multiple feature construction methods were proposed, including a
subtree based method (SubtMFC) and a coevolutionay method (CoevoMFC).
It is found that compared with the constructed features of single construc-
tion methods (FSFC and WSFC), the features constructed by the multiple
construction methods (SubtMFC and CoevoMFC) generally achieve bet-
ter or similar training and test performance. As the single constructed
feature is only one combination of original features, it may not contain
sufficient distinguishing information for foreground/background pixels,
which leads to worse performance than multiple constructed features.

Moreover, it is found that CoevoMFC is more capable than SubtMFC
in generating effective features for the given segmentation tasks. This is
because CoevoMFC is developed by incorporating the cooperative coevo-
lutionary technique with GP, which allows GP to construct features from
different types of image features separately, and then combines the con-
structed features simultaneously. Therefore, CoevoMFC does not allow
the interactions across different types of features. In contrast, SubtMFC
(as well as FSFC and WSFC) conducts homogeneously combination of var-
ied types of primitive features, leading to the interactions of non-related
features, which may lower the effectiveness of constructed features.

8.2.5 Holistic Considerations

Further investigations of the proposed GP methods in the field of figure-
ground image segmentation were conducted in Chapter 7. Specifically,
four issues were addressed. Firstly, the proposed GP segmentation meth-
ods were hypothesised to generalise well on image datasets with multiple
classes of foreground objects. Secondly, it was shown that the segmentors
evolved from images with one type of foreground objects can generalise
well on images with other types of objects. Thirdly, the selected features
and constructed features of the proposed GP methods were compared. Fi-
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nally, the proposed GP segmentation methods were compared with other
segmentation techniques beyond the scope of EC techniques.

Performance on Datasets with Various Foreground Objects

Note that the major benchmark datasets used in this thesis, i.e. Weizmann
horse dataset and Pascal aeroplane dataset, contain one type of foreground
objects. In practice, datasets with various types of foreground objects
are more common than those containing one type of foreground objects.
Therefore, after GP is well investigated on datasets with one object class,
it would be meaningful to investigate whether the proposed GP methods
can handle datasets with various object classes.

Two datasets (i.e. the SED2 dataset and the ImgSal dataset) were se-
lected, because they are well explored benchmark object segmentation and
detection datasets, and the images in both datasets contains diverse classes
of objects. This thesis finds that the proposed GP based segmentation
methods can evolve segmentors with useful class characteristic patterns to
segment various types of objects simultaneously, but it is still challenging
to handle highly varied datasets with various types of foreground objects.

Transfer Validation Tests

It is found that the proposed GP based segmentation methods are able
to evolve segmentors that can generalise well on images with the simi-
lar foreground objects. The reason is that the GP methods have captured
common characteristics (e.g. the object shape and backgrounds) that sim-
ilar images share (e.g. horse images and cow images). The ability to cap-
ture common characteristics across a class of similar foreground objects
in a human interpretable manner is a major strength of GP based image
segmentation.
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Selected Features versus Constructed Features

The best-performing feature selection method and feature construction
method proposed in this thesis, i.e. SPGP-FS and CoevoMFC, were se-
lected for comparison. This thesis finds that SPGP-FS can select feature
subsets that are more effective than those constructed by CoevoMFC, and
SPGP-FS uses less primitive features than those used to construct new
features by CoevoMFC. In addition, SPGP-FS is more efficient than Co-
evoMFC as CoevoMFC requires feature transformation in fitness evalua-
tion, which leads to high computation/time cost.

Comparison with Other Image Segmentation Techniques

The main scope of this thesis is GP, but other non-EC segmentation tech-
niques exist. Compared with deep neural networks, the major strengths of
GP are that it does not require pre-defined solution models and large-scale
datasets for training. Specifically, architectures of deep networks for given
problems should be designed beforehand, while problem models are not
required by GP. In addition, deep learning methods require appropriate
datasets that should have large number of images and represent the given
problems, which requires domain expertise, infrastructure resources and
human labour. Moreover, compared with other traditional segmentation
techniques, i.e. thresholding, K-means clustering, region growing and ac-
tive contour model, the advantage of GP is that it can be easily adapted to
diverse image domains without much parameter tuning or human inter-
vention.

8.3 Future Work

This section highlights key areas of future work that are enabled by the
achieved contributions.
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8.3.1 A Challenge for The Proposed GP Methods

This work shows that the segmentation results (binary images with fore-
ground/background labelled as colour white/black) contain ”holes” in-
side foreground objects, which means that inner parts of objects are de-
tected incorrectly as background (see Chapter 3 and Chapter 4). However,
the edges of objects are generally detected accurately. The reason may
be that the information is not sufficient to recognise certain body parts
of foreground objects. In contrast, the edge parts of objects contain more
information, e.g. the edge information, which helps to detect them.

A post-processing stage can be employed to solve the above problem
in the proposed methods by employing morphological operators, e.g. di-
late, erode, open and close. Specifically, image opening and erosion are the
dual of closing and dilation respectively. Image opening and erosion can
remove foreground pixels from the edges of foreground regions and en-
large background holes in foreground regions, while closing and dilation
can enlarge the boundaries of foreground regions and shrink background
holes in foreground regions [68].

To avoid introducing an extra post-processing stage, investigations can
be made to improve the proposed GP methods to generate segmentation
results without “holes”. As the common framework of applying GP to
figure-ground segmentation is to transform segmentation tasks to subim-
age/pixel classification problems, GP is used to evolve classifiers to clas-
sify each subimage (or pixel) as class foreground/background. Therefore,
the spatial relations of subimages/pixels, e.g. pixel connectivity and re-
gion continuity, are lost. Considering that edge regions of foreground
objects can generally be accurately separated, it is plausible that spatial
relations of neighboring subimages/pixels can help remove “holes” on
foregrounds/backgrounds. Therefore, how to use the spatial relations of
subimages/pixels in the evolutionary process of GP deserves further in-
vestigations.
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8.3.2 Filter GP Methods

As filter methods are not optimised to be used with a learning algorithm
for specific tasks in fitness evaluation, so filter methods must discover fea-
tures that a priori suit an algorithm’s learning style. Therefore, it is worth
developing effective fitness functions for filter methods.

As GP is commonly applied to figure-ground segmentation by trans-
forming segmentation problems to binary classification tasks (classifying
subimage/pixel as class foreground or background), two promising av-
enues for filter measures can be investigated. As a discriminant criterion
function, Fisher criterion is the ratio of the between-class scatter to the
within-class scatter. It may be possible to design fitness functions that
can minimise within-class scatter and maximise the between-class scatter
[95]. In addition, information theory (e.g. mutual information and en-
tropy) [151] is used to measure the information of the random variables.
It is plausible that this can also be used to develop fitness functions that
can measure the relevance of image features with classes (background or
foreground).

8.3.3 Datasets with Various Types of Objects

GP was well investigated on datasets containing one type of foreground
objects in this work. As it is often the case that a dataset contain images
with various types of foreground objects, the proposed GP based methods
are tested on two benchmark datasets (SED2 and ImgSal) with diverse
types of objects in Chapter 7. Compared with SED2 images, ImgSal im-
ages represent more difficult segmentation tasks, as ImgSal contains im-
ages with small salient regions, cluttered backgrounds and/or repeated
distractors. Even though promising results are achieved on SED2, the pro-
posed GP methods cannot perform close to optimum on ImgSal due to
its high variation. This suggests that GP cannot evolve segmentors with
distinctive patterns for highly varied classes of objects. Therefore, how to
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improve the proposed GP methods to handle datasets containing varied
classes of objects deserves further investigations.

One possible method is to improve the learning ability of the pro-
posed GP methods by using ensemble learning techniques1, e.g. boost-
ing. Specifically, boosting algorithms iteratively learn weak “rules” by re-
weighting the training data to address certain examples (e.g. misclassified
examples for a classification task), and then combine weak “rules” to form
a strong “rule” [59]. Therefore, the proposed GP methods can be used to
learn weak segmentors in boosting algorithms that can develop a strong
segmentor eventually.

8.4 Chapter Summary

This chapter summarised the achieved objectives of this thesis in GP evolved
segmentors, feature selection and construction, and further investigation
of GP’s effectiveness in figure-ground segmentation. In addition, the ma-
jor conclusions corresponding to the achieved objectives were also de-
scribed. Moreover, key areas of future work were discussed in this chapter,
i.e. avenues to improve the proposed GP methods, to build effective fit-
ness functions for filter GP methods, and to enable GP to handle datasets
with various object classes. Overall, this thesis shows that GP is suited
to figure-ground image segmentation on complex images with high vari-
ations, and it is worth investigating the remaining issues in this field.

1Ensemble learning is to combine the predictions of multiple learning algorithms to
obtain better predictive performance than that based on any single constituent learning
algorithm [45].
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