
Optimising Batting Partnership

Strategy in the First Innings of

a Limited Overs Cricket Match

by

Patrick Brown

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Master of Science

in Statistics.

Victoria University of Wellington

2017



Abstract

In cricket, the better an individual batsman or batting partnership performs, the more likely the

team is to win. Quantifying batting performance is therefore fundamental to help with in-game

decisions, to optimise team performance and maximise chances of winning. Several within-

game metrics exist to summarise individual batting performances in cricket. However, these

metrics summarise individual performance and do not account for partnership performance.

An expectation of how likely a batting partnership is to survive each ball within an innings can

enable more effective partnership strategies to optimise a team’s final total.

The primary objective of this research was to optimise batting partnership strategy by for-

mulating several predictive models to calculate the probability of a batting partnership being

dismissed in the first innings of a limited overs cricket match. The narrowed focus also re-

duced confounding factors, such as match state. More importantly, the results are of practical

significance and provide new insight into how an innings evolves.

The model structures were expected to reveal strategies for optimally setting a total score for the

opposition to chase. In the first innings of a limited overs cricket match, there is little informa-

tion available at the commencement and during the innings to guide the team in accumulating

a winning total score.

The secondary objective of this research was to validate the final models to ensure they were

appropriately estimating the ball-by-ball survival probabilities of each batsman, in order to

determine the most effective partnership combinations. The research hypothesised that the

more effective a batting partnership is at occupying the crease, the more runs they will score at

an appropriate rate and the more likely the team is to win the match, by setting a defendable

total.

Data were split into subsets based on the batting position or wicket. Cox proportional hazard

models and ridge regression techniques were implemented to consider the potential effect of

eight batting partnership performance predictor variables on the ball-by-ball probability of a

batting partnership facing the next ball without being dismissed. The Area Under the Curve

(AUC) was implemented as a performance measure used to rank the batting partnerships.

Based on One-Day International (ODI) games played between 26th December 2013 and 14th



February 2016, the model for opening batting partnerships ranked Pakistani’s A Ali and S

Aslam as the optimal opening batting partnership. This method of calculating batting part-

nership rankings is also positively correlated with typical measures of success: average runs

scored, proportion of team runs scored and winning. These findings support the research hy-

pothesis. South African’s, HM Amla and AB de Villiers are ranked as the optimal partnership

at wicket two. As at 28th February 2016, these batsmen were rated 6th equal and 2nd in the

world respectively. More importantly, these results show that this pair enable South Africa to

maximise South Africa’s chances of winning, by setting a total in an optimal manner.

New Zealand captain, Kane Williamson, is suggested as the optimal batsman to bat in position

three regardless of which opener is dismissed. Reviewing New Zealand’s loss against Australia

on 4th December 2016, indicates a suboptimal order was used with JDS Neesham and BJ

Watling batting at four and five respectively. Given the circumstances, C Munro and C de

Grandhomme were quantified as a more optimal order.

The results indicate that for opening batsmen, better team results are obtained when consecutive

dot balls are minimised. For top order and middle order batsmen, this criteria is relaxed with the

emphasis on their contribution to the team. Additionally, for middle order batsmen, minimising

the occasions where 2 runs or less are scored within 4 deliveries is important.

In order to validate the final models, each one was applied to the corresponding Indian Pre-

mier League (IPL) 2016 data. These models were used to generate survival probabilities for

IPL batting partnerships. The probabilities were then plotted against survival probabilities for

ODI batting partnerships at the same wicket. The AUC was calculated as a metric to determine

which models generated survival probabilities characterising the largest difference between IPL

partnerships and ODI partnerships. All models were validated by successfully demonstrating

the ability of these models to distinguish between higher survival probabilities for ODI part-

nerships compared with IPL partnerships at the same wicket.

This research has successfully determined ball-by-ball survival probabilities for individual bats-

men and batting partnerships in limited overs cricket games. Additionally, the work has pro-

vided a rigorous quantitative framework for optimising team performance.
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Chapter 1

Introduction to Sport Analytics
Professional team sport is fuelled by winning. Bigger prize money is earned by teams who win,

and win often [86]. Winning teams attract crowds, leading to increased viewership, sponsor-

ship, gate takings and sale of merchandise. But what does it take to win?

Batting first in a limited overs game of cricket has many uncertainties. This starts with what is

the total to set for the opposition to chase, which maximises the chance of victory? Secondly,

what is the best approach to at least achieve that total?

In this thesis, sports analytics will be used to define strategies that optimise the chances of

winning for the team batting first.

In [19, p.1], sports analytics is defined as “the management of structured historical data, the ap-

plication of predictive analytic models that utilize such data, and the information systems used

to inform decision makers and enable them to help their organizations in gaining a competitive

advantage on the field of play”. Statistical measures within sports have existed for several cen-

turies. In reference to baseball, it was noted in [28, p.1] that “in the mid-19th century, Henry

Chadwick is credited with developing the box score and his tabulation of hits, home runs and

total bases led to the formulation of metrics such as batting average and slugging percentage”.

Additionally, in [45], there is an extensive amount of cricket match data, dating back to 1864.

However, “the statistics used are not reflective of true performance measures” [84, p.11], while

the amount of historical analysis in cricket is scarce. The application of complex analytical

methods within sports has only boomed within the last half century [6].

During recent decades, there has been a huge growth in sports analytics together with increased

demand for insightful sport related statistics. This is due to the large increase in player salaries

and total revenue generated within sports. In the National Football League (NFL), average

player salaries increased by approximately 440% between 1989 and 2009. The total revenue

generated in the NFL increased by approximately 750% during the same period [94].

1
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The authors in [79] predicted that global sports revenue would grow by US$145.3 billion be-

tween 2010 and 2015. Given that teams that win earn bigger prize money, increased revenue

and achieve increased economic growth, it is important for managers and coaching staff of sport

teams to maximise their chances of success. To succeed, it is essential that player selection and

strategic decisions include the use of analytical techniques [20]. Furthermore, increased sports

revenue leads to increased spectator appeal and entertainment. In [27], data mining techniques

using Advanced Scout software were applied to National Basketball Association (NBA) data

from the 1995-1996 NBA season. These techniques enabled NBA coaching staff to discover

interesting patterns in basketball game data. This helped to increase the quality of play in the

NBA, which increased spectator appeal and entertainment.

Given the extensive amount of numerical data generated by sports, it is important that the data

is well utilised to extract insightful information. Numerical data is collected by data collection

centres such as Opta [9]. For field sport athletes, the data is generated using advanced Global

Positioning System (GPS) technology [43]. Numerical data helps teams make decisions on

coaching techniques, player selections and objective strategies. This is important to maximise

the chances of winning. Numerical data is also generated to help with in-game betting deci-

sions. The results generated from applying statistical techniques to sport related data are called

sport statistics. Sport statistics can be broadly categorised as either performance indicators or

performance outputs [29]. Performance indicators are a quantitative measure used to indicate

individual performance in a particular area of the game. These are collated during the game. In

contrast, performance outputs are summary measures detailing direct result of participation in

an event. These are described on a score sheet.

There is a breadth of academic literature applying various statistical techniques to sports, rang-

ing from measuring team performance to individual key performance indicators [29]. In [42],

the authors analysed the sprinting activities of different playing positions during European

Champions League and UEFA Cup matches, contested between 2002 and 2006. The au-

thors conducted several Kruskal-Wallis analyses to compare positional differences. The re-

sults found statistically significant differences in the total number of sprints and total sprint

distance covered during explosive sprints made by players in different positions. In [22], the

authors challenged the adequacy of existing paired comparison models used for ranking foot-
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ball teams. These models focus on either wins and losses or points scored, but not both. As

such, the authors suggested that the models fail to produce satisfactory rankings. A hybrid

paired comparison model was developed as an alternative. This model incorporates both win

and loss records and points totals to give a measure of winning difficulty. The model was ap-

plied to two sets of simulated data and performed better than the original models in both cases.

In [53], the authors developed a modified least squares system to rank American men’s college

basketball teams. This system was applied to data from the 1999-2000 basketball season and

1999-2001 football season. The system was used to predict the contestants of 73 post season

football games and 93 post season basketball games. The results showed that the modified least

squares system predicted these games correctly with 76.3% accuracy, compared with a 74.2%

predictive accuracy using basic least squares.

The application of analytical techniques to sport has been studied extensively. Analytical tech-

niques enable a cricket team to better understand factors behind winning. These are used to

make more effective strategic decisions to increase the team’s chances of winning.

1.1 Analytics in Cricket

Cricket is a team sport in which statistics feature heavily. A game of cricket is contested

between two teams of eleven players. One team is assigned the batting team. Pairs of batsmen

work together as partnerships, with the objective of scoring as many runs towards to the team

total as possible. A batsman can typically score 0 (known as a dot ball),1,2,3,4,5 or 6 runs, or

can be dismissed. A dismissal is referred to as a wicket. The opposition team is assigned the

fielding team. Each phase of play is called an innings and the length of an innings depends on

the format. This is discussed further in Section 1.2.

Statistical measures in cricket have existed since the mid-nineteenth century, while the use of

analytical techniques within cricket has grown substantially during the last half century [6].

As such, the breadth of recent analytical cricket literature is fairly extensive. It was noted

in [70, p.1] that “during the past decade a large number of papers have been published on

cricket performance measures and prediction methods”. Data mining involves applying statis-
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tical techniques to transform data into insightful information. In [84, p.1], it was noted that

“data mining is quickly becoming an integral part of the sports decision making landscape

where managers/coaches using machine learning and simulation techniques can find optimal

strategies for an entire upcoming season”. In addition, the recent use of data mining techniques

and knowledge management tools within cricket has been successful. For example, in [21],

multinomial logistic regression techniques effectively showed that a team’s batting and bowl-

ing strength, first innings lead, batting order and home advantage were all strong predictors

of winning in test matches. Sports analytics is based on team performance, individual perfor-

mance and forecasting, all of which are relevant to this thesis.

1.1.1 Team Performance

In [37], a dynamic programming model was applied to one-day cricket to calculate, at any stage

of an innings, the optimal scoring rate, an estimate of the total number of runs to be scored in

the first innings or an estimate of the probability of winning in the second innings. Each team is

allocated batting resources in the form of wickets and balls. The objective of the team batting

first is to maximise the number of runs scored. The aim is to set a score target that the team

batting second does not proceed to achieve. As such, the author produced the following first

innings formulation:

fn(i) = max
R

[
pd × fn−1(i− 1) +

R

6
+ (1− pd)× fn−1(i)

]
, (1.1)

where fn(i) represents the maximum expected score in the remaining n balls and i wickets in

hand, pd denotes the probability of dismissal, and R denotes the run rate per over. For each

number of balls remaining and wickets in hand, the author calculated the optimal run rate and

the expected score in the remainder of the innings. The results suggested that “teams should

try to score slightly faster than they expect their average rate for the rest of the innings to be,

and if wickets are lost, slow up, rather than the current practice of scoring slower than average

and speeding up if wickets are not lost” [37, p.333].

The objective of the team batting second is to maximise the probability of achieving a score

higher than that achieved by the team batting first. As such, the author defined a new variable,
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s, as the number of runs needed to reach a particular score. The author suggested that on “each

ball, a batsman either goes out with probability pd and the team still has s runs to score with one

less wicket in hand and one less ball, or scores X runs with probability px and so the team has

s−x runs to score with one less ball to go and the same number of wickets in hand” [37, p.334].

As such, the author produced the following second innings formulation:

pn(s, i) = max
R

[
pd × pn−1(s, i− 1) +

∑
0≤x≤6

px × pn−1(s− x, i)

]
(1.2)

where pn(s, i) is the probability of scoring at least another s runs with i wickets in hand and n

balls remaining. For each ball, each wicket in hand and each number of runs to go, the author

calculated the probability of winning and the optimal run rate. The author claimed that the first

innings conclusions also apply to the second innings. In addition, the author suggested that the

team batting second has an advantage as “in practice, the first team would begin their innings

with much less knowledge of the state of the wicket than the second” [37, p.335].

In [91], the authors used a combination of simulation, Bayesian log-linear modelling and sim-

ulated annealing to investigate optimal batting orders in the Indian national cricket team. For

India’s 2003 World Cup final batting order, the authors initially considered an algorithm to sim-

ulate runs scored in an innings. Ignoring rare occasions when five runs are scored, the authors

let Xi denote the outcome of the ith ball for i = 1, . . . , 300, where

Xi =



0, if batsman scores 0 runs,

1, if batsman scores 1 run,

2, if batsman scores 2 runs,

3, if batsman scores 3 runs,

4, if batsman scores 4 runs,

5, if batsman scores 6 runs,

6, if batsman is dismissed,

(1.3)

and Xm+1 = · · · = X300 = 0 if the innings ends on the mth ball, where m < 300. The joint
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distribution of X1, . . . , X300 was defined as:

[X1, . . . , X300] = [X300|X1, . . . , X299][X299|X1, . . . , X298] . . . [X2|X1][X1|X0] (1.4)

The algorithm generates Xi ∼ [Xi|X1, . . . , Xi−1] and the number of runs scored. The authors

proceeded to estimate the distributions [Xi|X1, . . . , Xi−1] using estimated batting characteris-

tics. These included the number of wickets lost and number of balls bowled, obtained from

71 ODI games, in which India batted first. These estimates were calculated using a Bayesian

log-linear model developed through WinBUGS software [87]. Subsequently, the authors were

interested in deriving optimal batting orders in one-day cricket for India. The objective func-

tion of this optimisation procedure was defined as the mean number of runs scored per innings.

Approximation of the objective function required many simulations to be carried out. Addition-

ally, there were 240 million feasible batting orders for the optimisation procedure to consider.

As such, the authors applied a simulated annealing, probabilistic search algorithm, discussed

in [66]. This was used to “explore the space of permutations of batting orders” [91, p.1940].

The results suggested two potentially optimal batting orders for India. Based on a compar-

ison with the Indian batting order adopted in the 2003 World Cup final, these batting order

suggestions were found to potentially improve ODI performance by approximately six runs.

1.1.2 Individual Performance

Statistical measures have been used to assess player performance in cricket. In [64], the authors

investigated the differences between the leading 12 wicket takers in English First-Class cricket

during the 1991 season. The authors considered three performance measures: bowling average,

economy rate and strike rate. The data are summarised in Figure 1.1. A scatter diagram in

Figure 1.2 was constructed to compare and illustrate these differences in player performance.
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Figure 1.1: Statistics for the leading 12 wicket-takers in English First-Class cricket for the 1991
season (Figure obtained from [64])

 

Figure 1.2: Augmented scatter plot of the twelve highest wicket-takers in English First-class
cricket in 1991 (Figure obtained from [64])

The bowling average was defined as the total number of runs conceded per wicket taken. The

economy rate was defined as the number of runs conceded per 100 balls. The strike rate was

defined as number of balls bowled per wicket taken. The scatter diagram illustrated that ‘good’
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spin bowlers and ‘good’ fast bowlers were located on separate areas of the graph. In addition,

the scatter diagram illustrated that fast bowlers had a low strike rate and a high economy rate.

Whereas, spinners had a high strike rate and a low economy rate.

In [30], reject inference methods (RIMs) were applied to estimate the likelihood of a bowler

taking a wicket within an innings. Ball-by-ball data from the 2015 IPL was used for analysis.

To be consistent with the terminology used in reject inference methods (RIMs), bowlers were

categorised according to whether or not they had defaulted and whether they were accepted or

rejected for inference. Non-default bowlers were defined to be those with strike rates in the

top 25%. All other bowlers were labelled as defaulted. Those bowlers who had not taken any

wickets were labelled as rejected. The accepted wicket taking bowlers were referred to as “Ac-

cApps” and all bowlers were referred to as “AllApps”. Through utilisation of the Generalised

Boosted Machine Model (GBM) decision-tree based approach, the top five variables selected

from a possible 14 were: economy rate, number of dot balls bowled, runs conceded, number of

boundaries and number of bowler-penalised extras. A logistic regression analysis was carried

out to test these variables and predict the probability of default. When all five variables were

included, a Receiving Operating Characteristic (ROC) curve was constructed and the resulting

Area Under the Curve (AUC) was 0.832. When the number of variables was restricted to three,

the AUC became 0.833. The inclusion of the additional two variables resulted in no signif-

icant model improvement. As such, only the top three variables were retained for analysis.

Logistic regression models were used to compare RIMs. Each RIM logistic model was used to

predict the probability of default. The outcome variable, strike rate, for rejected bowlers was

computed using an observed strike rate regression model. This model was fitted on all accepted

bowler observations with the three variables included. To assess the effectiveness of these mod-

els, several summary statistics were calculated. These included a modified type II error, AUC

and Mean Absolute Difference (MAD) between the predicted probabilities of “AllApps” and

the model being tested. The results found that the Memory Based Reasoning logistic model

generated the highest AUC and had a reasonably low MAD. This model was selected as the

preferred model. All predicted probabilities were transformed to give an estimate of strike rate.

The number of wickets per bowler per innings was then estimated by the estimated strike rate

divided by the number of balls bowled. The model predicted that bowlers who bowl a high
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number of dot balls and have a low economy rate have a higher probability of taking wickets.

In [32], a mixed distribution, called the Ducks ‘n’ Runs distribution was proposed. The dis-

tribution consisted of a beta distribution to model ducks (zero scores) and a geometric dis-

tribution to model runs (non-zero scores). Runs scored and the probability of failure to con-

tribute to the team total were used to evaluate individual batsmen in an innings. The probability

model was assessed at a macro (similar batsmen) and micro (individual batsmen) level. Data

associated with New Zealand first class batsmen, over four domestic seasons between 1994

and 1998, were used for analysis. At the macro level, four groups of batsmen were created,

based on batting position. In each group, the scores of the batsmen were grouped into 20

bins (0, 1 − 2, 3 − 6, 7 − 10, 11 − 20, 21 − 30, . . . , 141 − 150, 151 − 200, > 200) and the

observed proportion of scores were compared with expected probabilities. Scatter plots were

constructed and illustrated a strong linear relationship between the observed and expected in-

stances of scores. This indicated that the Ducks ‘n’ Runs model was a good approximation

for batting scores. At the micro level, the probability model for individual scores was fitted

to all individuals who participated in twenty or more innings. This was used to calculate the

proportion of Ducks, number of scores > 50 and number of scores > 100 an individual was

expected to score. The results showed that experiment-wise p-values were less than 5% for all

three measures, indicating that the Ducks ‘n’ Runs distribution adequately models individual

batting scores. Control charts based on quartiles of individual batting scores, were developed,

to monitor individual batting performance. The control charts successfully demonstrated the

occurrence of significant batting performance changes. This enabled identification of changes

in individual player form and ability. This may help to inform coaches to aid the delivery of

higher quality player feedback.

In [82], the differences between great batsmen of different eras were examined. The authors

suggested that the traditional method of calculating a batsman’s average may be justified assum-

ing the runs scored in several incomplete and complete innings are exponentially or geometri-

cally distributed. In [39], the authors observed that the exponential distribution and geometric

distribution are inadequate representations of batting scores. As such, the authors in [82] ex-

amined the exponential and Weibull distributions to estimate batting consistency. Data were

collected from the ESPN Cricinfo website and consisted of the scores of 25 batsmen who had
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scored 8000 or more international test runs. Additionally, four batsmen who had scored more

than 6000 international test runs with an average over 55 were included. Figure 1.3 illustrates

a histogram resembling the exponential distribution, summarising all innings scores for SR

Tendulkar.

 

Figure 1.3: Histogram of all innings scores of SR Tendulkar (Figure obtained from [82])

Pearson’s chi-square test was applied to assess the goodness of fit for the exponential distribu-

tion and the result suggested poor fit. This was repeated for other players and the exponential

distribution was found to inadequately model the batting scores in approximately 50% of cases.

As an alternative, the authors considered the Weibull distribution. The probability density func-

tion of a Weibull(α,θ) distribution was given by:

f(z) =

(
α
zα−1

θ

)(
exp−

zα

θ

)
, z ≥ 0, α > 0, θ > 0. (1.5)

Assuming the batting scores form a random sample from a Weibull(α,θ) distribution, the au-

thors calculated the maximum likelihood estimates (MLEs) of the parameters for each player.

Pearson’s chi-square test was applied to assess the goodness of fit of the Weibull distribution,

with parameters estimated using maximum likelihood methodology. The Weibull distribution

was found to provide a better fit than the exponential distribution in 26 out of 32 cases. For

the batsmen considered, the MLE of the batting standard deviation was found to provide an
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informative estimate of batting inconsistency, while the MLE of the batting mean was found to

be slightly higher than the traditional batting average. The batting mean and batting standard

deviation estimates were two of five measures used to rank the batsmen. Longevity is a mea-

sure used to increase the ranking of batsmen who have performed well over a long period of

time. This is often incorrectly ignored in a ranking analysis [81]. The authors in [82] adopted

longevity as a third ranking criteria. As a fourth measure, an index for quality-runs scored as

a function of opposition strength was generated. The fifth criteria was a measure of diversity

of opponent teams encountered by a player. The Mahalanobis distance is a multi-dimensional

generalisation of how many standard deviations a point is from the mean of its distribution [71].

The authors in [82] incorporated different combinations of each criteria as a measure of Maha-

lanobis distance. This was used as an overall ranking metric. DG Bradman was ranked as the

best batsman, followed by SR Tendulkar, L Hutton, KF Barrington and J Kallis.

In [31], time series clustering analysis was used to map the test career progression of Australian

cricketing legend Sir Donald Bradman, acknowledged as the greatest batsman of all time with

an exceptional career batting average of 99.94, from 80 innings. However, during the Second

World War, between 1939 and 1945, all international cricket was suspended. Of interest was

whether or not Bradman’s prime would have occurred during the Second World War period. To

assess this, the authors utilised time series clustering to characterise Bradman’s test career and

compare him with other test players. These players had all batted in at least 70 innings during

a career spanning at least 17 years as of 1st January 2009. The selected clustering method

was based on global characteristics measures as “it does not require many conditions to be true

before it can be used” [31, p.4]. Moreover, this approach clusters global features extracted

from individual time series rather than using a distance measure. As such, this approach can be

applied on different length time series. The scaled average contribution per calender year was

then modelled using weighted least squares regression. The parameters of the model were used

to cluster the batsmen into groups. The results showed that Bradman’s career progression was

most similar to West Indian legend Brian Lara, indicating that Bradman’s peak performance

would have occurred in the 12th to 14th years of his career (1939-1941), coinciding with World

War II. The authors proceded to impute Bradman’s likely scores for 1939-1945 and estimated

his batting average to be 105.41. Interestingly, there was insufficient evidence to suggest that
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this estimated average was significantly higher than Bradman’s actual career average of 99.94.

1.1.3 Forecasting

In [77], a roster based optimisation system that selects an optimal cricket team of eleven players

from a list of players that generates the greatest probability of winning, was developed. The

authors hypothesised that a team rating system accounting for individual player metrics will

perform more effectively than a system that only accounts for variables on the wider team,

such as home advantage, opposition strength and past team performances. Random forest

techniques were utilised to identify individual cricket player performance metrics that had a

significant effect on the player’s contribution to the proportion of team wins achieved. The

five most important batting metrics were: strike rate, number of balls faced, batting average,

total runs scored and percentage of boundaries. The five most important bowling metrics were:

economy rate, bowling average, strike rate, percentage of boundaries and percentage of dot

balls. The roster based optimisation method required implementation of a binary decision

variable, Y , to indicate whether the player was selected or not. This was categorised as:

Y =

1, if player selected

0, otherwise
(1.6)

As part of the adaptive rating system, an individual rating system was implemented using a

combination of the Product Weighted Measure + Analytical Hierarchy process and Exponen-

tially Weighted Moving Averages technique. The developed optimisation system was applied

to the 2015 IPL. The predictive accuracy of the developed system was assessed by comparing

the system’s performance with that of the New Zealand Totalisator Agency Board (TAB) and

the CricHQ algorithm. The results found that the performance of the adaptive rating system

was 20% better than the TAB and 13% better than the CricHQ algorithm. The results of this

research supported the hypothesis that cricket team ratings based on individual performances

are more effective than those based on team performances.
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1.2 Formats of Cricket

International cricket games are categorised as either test matches, one-day internationals or

Twenty20 (T20) matches. One-day international and T20 formats are categorised as limited

overs cricket due to restrictions on the number of overs allocated to each team, and the number

of overs an individual may bowl during an innings. In one-day internationals, each batting team

bats for one innings and is allocated 50 overs, compared to an allocated 20 overs to the batting

team in T20 cricket. In addition, the number of fielders allowed in a particular area of the field

at any time is restricted. In contrast, in test matches, each team is given two innings to bat. Test

matches may last for five days. There are no restrictions on the number of allocated overs each

team is given, the number of overs a bowler may bowl or fielding positions.

1.3 Purpose of Research

Recent developments in cricket have included the introduction of T20 cricket. In this format,

teams are restricted to 20 overs to score as many runs as possible. This results in faster, more

intensive games compared with those contested in other formats, with the aim of increasing

spectator appeal. As such, the amount of revenue generated by cricket globally has increased.

It was claimed in [2] that global cricket will generate total revenues of approximately $2.5

billion between 2014 and 2022. In addition, the IPL experienced 4% growth in brand valuation

between 2012 and 2013 [47]. The Big Bash T20 League (BBL) is Australia’s domestic T20

cricket competition, established in 2011. The average attendance in the BBL increased by

22% between 2015 and 2016, while TV ratings increased by 11% [17]. Furthermore, BBL

merchandise sales increased by 44% between 2014 and 2015 [17]. This research was motivated

by the rapid growth within cricket, and the importance in understanding the factors behind a

cricket team’s ability to win.

There exists a substantial amount of previous research into the use of analytical techniques in

cricket. However, the amount of research covering in-game analysis is scarce. Given the rise

in popularity of in-game betting in the 1990’s [58] and further rise more recently [8], the need

for in-game analysis is also increasing.
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An expectation of how likely a batting partnership is to survive each ball within an innings can

aid the development of more effective partnership strategies to optimise a team’s final total. The

primary objective of this research was to optimise batting partnership strategy by formulating

several predictive models to calculate the probability of a batting partnership being dismissed in

the first innings of a limited overs cricket match. The narrowed focus also reduced confounding

factors, such as match state.

The model structures were expected to reveal strategies for optimally setting a total score for the

opposition to chase. In the first innings of a limited overs cricket match, there is little informa-

tion available at the commencement and during the innings to guide the team in accumulating

a winning total score.

The secondary objective of this research was to validate the final models to ensure they were

appropriately estimating the ball-by-ball survival probabilities of each batsman, in order to

determine the most effective partnership combinations. The research hypothesised that the

more effective a batting partnership is at occupying the crease, the more runs they will score at

an appropriate rate and the more likely the team is to win the match, by setting a defendable

total.

Specifically, the purpose of this research was to address the following two key questions:

1. What are the in-game strategies for optimising the runs scored in the first innings?

2. What are the practical applications of this knowledge?

1.4 Publications Arising

Early work from this thesis, in [36], was peer-reviewed and published in Mathsport 13 Con-

ference proceedings. More detailed analysis, in [35], presented throughout Chapter 8, was

peer-reviewed and published in Mathsport International 2017 Conference proceedings.
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1.5 Structure of Thesis

Chapter 2 discusses various applications of survival analysis to performance in non-cricket

sports and cricket that were identified in the academic literature. Chapter 3 consists of research

objectives and methodology, which define the research questions and describes the adopted

methodology. In Chapter 4, data extraction and processing procedures are described, before

exploratory data analysis is presented in Chapter 5. An overview of ridge regression is provided

in Chapter 6. Survival analysis is introduced in Chapter 7. Model application and model

validation techniques are presented in Chapters 8 and 9 respectively. Chapter 10 discusses

the adopted methodology and the link between the research objectives and previous research.

Potential areas of future work are suggested, before a summary of the key findings of this

research is presented.



Chapter 2

Literature Review
In Chapter 1, literature focussing on general analytical applications in cricket was discussed.

This chapter outlines the academic literature concerned with the application of survival analysis

techniques to both non-cricket sports and cricket. The chapter starts with a wider review of

literature focussing on the application of survival analysis techniques to team sports. Major

sports covered include baseball, basketball and football. The chapter proceeds by addressing

the application of survival analysis techniques to cricket. The chapter concludes by linking the

academic literature with the objective of this research.

2.1 Survival Analysis in Non-Cricket Sports

The application of survival analysis within a sports context has been studied extensively, with

a literature review revealing a number of publications addressing this particular area of sport

analytics.

In [85], survival analysis techniques were applied to investigate manager retention rates in

baseball, basketball and football. Kaplan-Meier survival curves were fitted, with 95% con-

fidence bands proposed in [51], for managerial survival for each of baseball, basketball and

football. The authors examined whether the survival probabilities differed between the three

sports. In [83], the log-rank test was suggested as the appropriate test. This test uses the chi-

squared statistic to compare the actual and predicted failures for each sport. The result from

this test indicated that the survival curves for each sport were statistically different from each

other. The authors also investigated which distribution was the most appropriate at describing

the survival probabilities. For simplicity, the distributions considered were restricted to expo-

nential and Weibull forms. To determine which distribution was most appropriate, the Weibull

regression model was initially implemented with parameters, p and λ, equivalent to respective

parameters, α and θ, from Equation (1.5). These were estimated using maximum likelihood

16
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estimation. An estimated shape parameter greater than one indicates that the underlying distri-

bution is Weibull. This distribution reduces to an exponential when the estimated shape param-

eter is equal to one [52]. The estimated shape parameter, p, was greater than one in all models.

This suggested that the Weibull distribution provided a more accurate description of managerial

survival rates than the exponential. As a result, the Weibull regression technique was utilised

for each sport. In each regression model, managerial efficiency was used as a covariate and

regressed against managerial tenure, how long the manager stays with the team. Managerial

efficiency was calculated as a comparison of the manager’s winning percentage with the man-

ager’s maximum win percentage. The results showed a highly significant positive relationship

between managerial efficiency and managerial tenure in all three sports: baseball, basketball

and football. This suggested that the higher the proportion of games won by a manager, the

longer the manager will stay with the team.

In [93], the author investigated the effects of minority status on managerial survival rates in

Major League Baseball. Major League Baseball manager data between 1986 and 2005 in which

the manager managed five consecutive games were used for analysis. The dependent variable

indicated whether the manager returned for another season or not. As an extension to the work

implemented in [85], a number of different performance and individual characteristics were

implemented. Table 2.1 summarises the explanatory variables used.
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Explanatory variable Definition

Minority status Equal to one for black and Hispanic

managers; zero otherwise

Efficiency Score based on how efficiently the manager

transforms his given resources into wins

Winning percentage The winning percentage for the team during

the portion of the year that the manager was

with that team

Play-off wins The team’s winning percentage during

League Championship Series games and

World Series games

Experience Number of years spent in baseball as a

coach or player

Age Manager’s age

Table 2.1: Explanatory variables

Technical efficiency was calculated using data envelopment analysis, based on the output-

oriented technical efficiency proposed in [24]. The output-oriented technical efficiency refers

to the maximum output (win percentage), given that level of inputs. The player salaries were

divided into offensive and defensive salaries, used as two inputs. “For offense, the salaries of

the players who played the greatest number of games at each infield position and the top three

outfielders in games played are summed for each team of each year from 1985 to 2006. For

defense, the salaries of the top five pitchers in terms of games started and the top six pitchers in

terms of relief appearances are summed for each team of each year” [93, p.528]. The level of

talent on opposing teams was another potential factor behind a team’s winning percentage. As

such, the salary of the competition was included as a third input, calculated as the average total

salary of the other teams in the team’s division. A price index was created by calculating the

average player salary for each season from 1985 to 2006, and dividing the 2006 average salary

by that of the other seasons. This was used to adjust all player salaries into 2006 baseball dol-

lars. The authors then solved a maximisation problem to maximise θ, the multiple by which the

win percentage could be increased using a feasible combination of observed inputs and subject
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to several constraints:

1.
∑
λiWi ≥ θW0,

2.
∑
λiOi ≤ O0,

3.
∑
λiDi ≤ D0,

4.
∑
λiCi ≥ C0,

5.
∑
λi = 1,

6.
∑
λi ≥ 0,

where 0 identifies values for the team being analysed and i identifies the other teams in the

comparison group. In addition, W,O,D and C represent winning percentage, offense, defense

and competition, respectively.

“Constraint (1) implies that the combination of other observed winning percentages must be

greater than or equal to the observed winning percentage of the manager being evaluated. Con-

straints (2) and (3) imply that the combination of offensive and defensive inputs must be less

than the inputs of the manager under consideration. Equation (4) states that the combination

of the negative competition inputs must be at least as great as the competition faced by the

manager being evaluated. Constraint (5) implies variable returns to scale by eliminating scaled

down versions of one input bundle from the feasibility set. The last constraint simply assures

that there are no negative inputs” [93, p.530]. The authors then calculated the inverse of θ to

give an efficiency score between zero and one.

The authors proceeded by fitting four different models using different combinations of the pre-

dictors described in Table 2.1. These models included an exponential, Weibull, Gompertz and

Cox proportional hazards model. Under all models, the results found that winning percentage

and play-off wins had a positive effect on managerial survival, as expected. However, these

effects were highly insignificant when efficiency was added to the model. The correlation be-

tween winning percentage and efficiency was 0.75. Similarly, the correlation between play-off
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wins and technical efficiency was 0.27. The authors claimed that these correlations were a pos-

sible cause of the observed insignificant effects when efficiency was included as a covariate.

As a result, the four models were estimated excluding winning percentage and play-off wins.

The final four covariates included minority status, efficiency, experience and age. Tables 2.2

and 2.3 summarise the resulting hazard ratios and p-values.

Predictor Exponential Weibull

Hazard ratio P-value Hazard ratio P-value

Minority 0.71391 0.176 0.52267 0.011

Efficiency 0.07379 0.000 0.06400 0.000

Experience 0.99972 0.031 0.99908 0.000

Age 1.03797 0.007 1.05566 0.000

Table 2.2: Hazard ratios and p-values Exponential and Weibull.

Predictor Gompertz Cox proportional hazard

Hazard ratio P-value Hazard ratio P-value

Minority 0.60326 0.047 0.63369 0.072

Efficiency 0.06786 0.000 0.07293 0.000

Experience 0.99926 0.000 0.99956 0.006

Age 1.05202 0.000 1.04072 0.005

Table 2.3: Hazard ratios and p-values Gompertz and Cox proportional hazard.

Under all models, minority status, efficiency and experience all had hazard ratios of less than

one. This suggested that an increase in these covariates was associated with an increase in the

probability of survival. Age had a hazard ratio greater than one suggesting an increase in age

was associated with a reduction in probability of the manager surviving. In order to evaluate

which model was the most appropriate, each model was plotted with the Kaplan-Meier survival

function overlaid. The plots suggested that the Cox proportional hazards model provided the

best fit in approximating the Kaplan-Meier survival function. All covariates in this model were

statistically significant at the 8% level. The proportional hazards assumption was assessed for

this model in two ways. The first involved estimating the model with time by covariate interac-



21 2.1. Survival Analysis in Non-Cricket Sports

tions included in the model. None of these interactions resulted in significance, suggesting that

the proportional hazards assumption may have held. The second involved constructing a plot

of the residuals against time. The slope of the plot was equal to zero, which provided further

evidence in support of proportional hazards.

In [76], the author investigated factors that affect the quit behaviour of professional baseball

players in Japan. The author considered both pitchers and batters who played between 1977 and

1990 and applied Cox proportional hazard methodology. The dependent variable was defined

as the time until the player quit. Duration was defined as the number of years since the player

entered the baseball league. The author used wages, productivity and their quadratic terms as

explanatory variables. Wages was defined as the wage of the player in the previous year. For

batters, productivity was measured as the slugging rate:

slugging rate =
total bases

at bats
. (2.1)

For pitchers, productivity was defined in two ways. The first referred to the hit rate:

hit rate =
number of hits given up

number of hitters confronted
. (2.2)

The second referred to the strike to walk rate:

strike to walk rate =
number of strikeouts

number of bases on balls
. (2.3)

The results found that a higher income discouraged quitting among both batters and pitchers.

In addition, the effect of productivity differed between pitchers and batters. For batters, higher

productivity was associated with a reduction in probability of quitting. For pitchers, higher

productivity was associated with an increase in probability of quitting, regardless of which

definition of productivity was assessed. This suggested that there may be other factors at play

such as the impact on the body. For example, for batters, high productivity may put more strain

on the body. As such, these results could suggest that the higher the impact on the body, the

less likely the batter is to quit.

In [61], the author investigated the effect of racial difference on the retention probability of
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NBA coaches between 1996-1997 and 2003-2004. The author carried out three separate sur-

vival analyses, using a different definition of failure in each. Each coaching spell was used as

an observation and failure was firstly defined as a coach exiting. In the second analysis, failure

was defined as a coach exiting specifically by quitting. In the third analysis, failure was defined

as a coach exiting specifically by being discharged. The dependent variable was the manage-

rial survival time. The author applied hazard function methodology, assuming a log-logistic

accelerated failure time model. Table 2.4 summarises the explanatory variables used.
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Explanatory variable Definition

Race Dummy variable equal to one if coach’s race

is white; zero otherwise

Winning percentage The team’s current season winning

percentage

Payroll Log of the team’s real payroll relative to

league average for a given year

Age Coach’s age

NBA head coaching Coach’s number of years of NBA head

coaching

College head coaching Coach’s number of years of college head

coaching

Non NBA experience Coach’s number of years of professional

head coaching experience other than NBA

NBA assistant coach Coach’s number of years spent as assistant

coach in NBA

NBA winning percentage Coach’s lifetime NBA head coaching

winning percentage

Play-offs Coach’s number of years in NBA play-offs

as head coach

Playing experience Coach’s years of NBA or American

Basketball Association (ABA) playing

experience

Player coach Number of NBA or ABA all-star teams to

which the coach was named as player

Table 2.4: Explanatory variables

The results found that 27% of white coaches and 28% of black coaches had job separations in

an average year. In addition, 18% of white coaches and 20% of black coaches were discharged

on average, while 9% of white coaches and 8% of black coaches quit in an average year. As

such, no statistically significant racial differences on the overall probability of exit, quitting
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or discharge were found. The results failed to provide evidence to suggest any presence of

retention, hiring or wage discrimination against current black NBA coaches.

In [26], the authors investigated factors that were capable of determining how long head coaches

in the German Bundesliga football league would survive between 1981-1982 and 2002-2003.

The dependent variable, Y , was defined as a head coach dismissal, categorised as:

Y =

1, if head coach dismissed

0, otherwise
(2.4)

The authors applied Cox proportional hazard methodology to model the head coach tenure

within the current team. Several predictor variables were considered. These are summarised in

Table 2.5.
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Explanatory variable Definition

RSAL The relative salary of the head coach,

calculated as the individual salary divided

by the average salary of all head coaches in

the respective season

RWB The relative wage bill of the team,

calculated as the team wage bill divided by

the average wage bill of all teams in the

respective season

Bosman effect Dummy variable equal to one for the period

from when Bosman effect started (from

1995/1996); zero otherwise

CWP The win percentage of the head coach

RP The relative number of points won,

calculated as the number of points

accumulated by the team divided by the

average number of points won by the

average team in the respective season

CEXP Experience of the head coach in the

Bundesliga, measured in years

Table 2.5: Explanatory variables

It was hypothesised that a head coach’s career length depends on the relative salary, relative

wage bills of their teams, coaching experience and win percentage. It was also hypothesised

that the probability of a head coach dismissal has decreased over time.

In [62], it was found that Cox proportional hazard models are inadequate when it comes to

modelling repeated event data. The authors in [26] suggested that many of the coaches inves-

tigated have held multiple jobs in the Bundesliga. To account for this, the conditional risk-set

model in gap time, proposed in [78], was adopted. In addition, two parametric models, the

exponential and Weibull models, were also considered.
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Similar results were found in all four models. A positive effect of relative wage on the hazard

was found, suggesting coaches of more expensive teams do not last as long. It was also found

that the salary of the head coach, head coach experience and career win percentage had no sta-

tistically significant effects on the survival of the head coach. However, the Bosman effect had

a positive effect on survival. As such, head coaches working during the more recent Bosman

effect period are more likely to survive in the Bundesliga. The Bosman effect is based on a

decision by the 1995 European Court of Justice which banned restrictions on foreign European

Union (EU) players within national leagues. As a result, players in the EU were allowed to

move to another club at the end of their contract, without a transfer fee [49].

In [74], the authors investigated the survival rates of German Bundesliga teams who partici-

pated between 1981-1982 and 2009-2010. The dependent variable was the duration of firm

survival, measured as the team’s number of consecutive years after promotion into the Bun-

desliga. Firm survival ended when the team was relegated or the observed time frame ended.

The Kaplan-Meier and Nelson-Aalen estimators were used to illustrate the probability of stay-

ing in the Bundesliga for a specific number of seasons. The illustrations showed that the prob-

ability of surviving in the Bundesliga more than two years after being promoted was approx-

imately 55%. This suggested that approximately 45% of teams were relegated back to the

second Bundesliga only two years after promotion. The authors then modelled the survival of

these teams using various predictors. These are summarised in Table 2.6.
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Explanatory variable Definition

Relative budget The team’s annual budget relative to the

average annual budget of all teams in the

Bundesliga

Average performance The annual gap between a team’s end of the

season points total and the corresponding

points total of the first team that has been

relegated into the second Bundesliga

Local market size Measured in terms of thousands of residents

located in a club’s hometown in the year

2006

Number of pre-exits The number of exits from 1963-1964 to

1980-1981 in the Bundesliga

Newcomer Dummy variable equal to one if a club

participates in the Bundesliga for the first

time; zero otherwise

Club age The year of the current season minus a

club’s year of foundation

Share of foreign players The team’s average share of foreign,

non-German players

Average team age The average age of players in the team

Table 2.6: Explanatory variables

The functional form of the baseline hazard was found by fitting the model using the exponential,

Weibull, log-normal and log-logistic distributions. The results revealed that the log-logistic

distribution described the time-to-failure data for relegation in the Bundesliga most accurately.

Doubling of the relative budget was associated with an increase in expected time-to-failure of

7.1 years. This suggested that financial resources are highly important in order for teams to

avoid relegation. Teams with a better past performance and a higher club age were also found

to stay in the Bundesliga for a longer period of time.
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In [18], the authors investigated factors that have an effect on the longevity across all Major

League baseball players listed in the Baseball Archive v.5 database [14]. Players were cate-

gorised according to whether they were inducted into the Hall of Fame while alive, or whether

they represented age matched players who were alive at the time of induction, when induction

occurred for their age matched cohort. The dependent variable was defined as post induction

survival time. The authors used career length, player position and body mass index (BMI) as

predictors and carried out a Cox proportional hazards survival analysis. The authors hypoth-

esised that professional Major League Baseball players who are in the Baseball Hall of Fame

have longer longevities than players of the same age who are not in the Hall of Fame. The

results found that Hall of Fame players died significantly earlier than their controls (non-Hall

of Fame players). These results failed to support the research hypothesis. In addition, BMI was

found to have a positive effect on post induction survival. The mean BMI for Hall of Fame

players was 25.2, compared to 24.7 for their controls. This difference was statistically signifi-

cant. However, there were no significant relationships found between either the player position

or career length and the survival of that player after entering the Hall of Fame.

In [92], the authors investigated factors for an effect on injury among telemark skiers. The

authors utilised a population survey of telemark skiers over two ski seasons, between 1996 and

1998, to determine potential risk factors for injury. Respondents to this survey revealed details

on their sex, experience, equipment used, injuries and number of days skied in each season.

The authors conducted two survival analyses to investigate the impact of injury risk factors on

telemark skiers. The first analysis assessed for differences in ‘survival without knee injuries’

for skiers who wear leather boots compared to skiers who wear plastic boots. The second

investigated whether there were differences among skiers using releasable bindings compared

to those who use cable bindings and those who use the more traditional three-pin bindings. The

survival time referred to the time taken until a knee injury occurred. The results found ‘survival

without knee injuries’ was significantly longer for those skiers wearing leather boots compared

to those wearing plastic boots. In addition, ‘survival without knee injuries’ was longest for

those skiers using releasable bindings and substantially less for those using cable bindings and

the more traditional three-pin bindings. However, these differences in binding equipment were

statistically insignificant.
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In [41], the authors analysed the timing of player substitutions during the 2004-2005 Spanish

First Division football games. Of interest was whether the first substitution made by each team

occurred more often at half time or in the second half of games. The authors estimated a model

for the time from kick off to the first substitution and applied several different specifications of

the model. These included exponential, Weibull and Gompertz as proportional hazard forms

and log-logistic, log-normal, gamma and inverse Gaussian as accelerated failure time forms.

Several predictor variables were considered. These are summarised in Table 2.7.

Explanatory variable Definition

Home Dummy variable equal to one if the

substitution is made by the home team; zero

otherwise

Result Goals scored by the team that makes the

substitution, minus the goals scored by the

team that does not make the substitution, at

the moment of the substitution

Home and result interaction Interactive variable between home and result

Defensive Dummy variable equal to one if the

substitution is defensive; zero otherwise

Neutral Dummy variable equal to one if the

substitution is neutral; zero otherwise

Offensive Dummy variable equal to one if the

substitution is offensive; zero otherwise

Last four matches points Number of points achieved in the previous

four matches by the team that makes the

substitution

Last four matches rival points Number of points achieved in the previous

four matches by the team that does not make

the substitution

Table 2.7: Explanatory variables
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The inverse Gaussian distribution was found to provide the best fit. The results found the

predictor with the strongest statistically significant effect on the timing of substitutions, was

the score at the time that substitution was made. Statistical evidence was found to suggest

that home teams are more likely to make their first substitution at half time than away teams.

The results further suggested that defensive substitutions are generally made later in the match,

relative to offensive substitutions.

2.2 Survival Analysis in Cricket

The literature review revealed research that either built the foundations for other pieces of work

that focus on the application of survival analysis techniques to cricket, or directly focused on

survival analysis techniques in a cricket context themselves.

A batsman’s innings can be described as a lifespan. When the batsman goes out to bat, he is

‘born’ and ‘lives’ for a certain number of balls before he is dismissed. A dismissal is referred

to as a batsman ‘death’. This form of data can be represented and analysed using survival

functions [60].

In [44], the author suggested that batting data could be represented by the geometric distribu-

tion. In [38], the author investigated the distribution of batting scores and suggested that the

expected score of a batsman would be his true average accounting for all relevant previous in-

nings. To investigate the true average, the author considered data associated with a particular

batsman either over a particular period, in a particular position, or against a particular team.

The author defined i as the number of innings, n as the number of not out innings, w as the

number of dismissals and r as the number of runs scored. The batsman’s traditional average,

B and true average, A were given as:

B =
r

w
,A =

r

i
(2.5)

respectively. The authors undertook a theoretical approach to show that conditional on certain

assumptions, the number of scoring strokes follows a geometric distribution. The number of

balls faced was referred to as b, while s referred to the number of scoring strokes made. The
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probability of the batsman’s innings ending, out or not out, with each ball faced was given by:

pw = i
b
. The probability that the batsman makes a scoring stroke with each ball faced given the

batsman’s innings does not end with that ball was given by: ps = s
b−i . The authors also defined

qw = 1−pw and qs = 1−ps. These probabilities were assumed to be constant. The authors also

assumed that no scoring strokes are made on balls in which the batsman’s innings ends. The

random variable, X , represented the number of scoring strokes made by the batsman, while

j represented the number of balls faced. The probability that the batsman makes k scoring

strokes before being dismissed, Pr(X = k), was derived as:

Pr(X = k) =
∞∑
j=k

qjwpw

(
j

k

)
pksq

j−k
s

=
pkspwq

k
w

k!

∞∑
j=k

j!

(j − k)!
(qsqw)

j−k

=
pkspwq

k
w

(1− qsqw)k+1

=
pw

1− qsqw

(
psqw

1− qsqw

)k
= PQk,

where p = pw
1−qsqw and Q = pspw

1−qsqw = 1 − p. Therefore the number of scoring strokes made

follows a geometric distribution. Although the findings in [38] have been supported by several

studies (i.e. [32], [23]), the results from several studies suggest that the geometric distribution

is inadequate at representing batting scores in cricket. As such, these studies contradict the

findings in [38].

In [65], the authors adopted survival analysis techniques to investigate the properties of the tra-

ditional batting average. The authors considered a sample of batting scores assumed to follow

a geometric distribution. If the batting scores are independent geometric random variables, the

probability mass function (PMF) for each score was defined as:

p0(x) = θ(1− θ)x, (2.6)

where 0 < θ < 1 is an unknown parameter. A Pearson chi-squared goodness of fit test found
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that the geometric distribution resulted in poor fit. This resulted in an inconsistent batting aver-

age metric. As such, an alternative batting average, independent of the geometric assumption,

was suggested. M and M∗ represented the highest completed innings and highest not out

score made by a batsman respectively. Assuming M > M∗, the alternative batting average

was defined as: A = T , where

T =
M∑
x=0

x(F̂ (x)− F̂ (x+ 1)), (2.7)

where F̂ (x) is the Kaplan-Meier estimator of the survival function F (x) defined by: F (x) =∑∞
y=x p(y), also known as the Product Limit Estimator ( [63], [67], [57]). As the Product Limit

Estimator does not depend on parametric assumptions, the alternative batting average is a non-

parametric estimator of the mean. Suppose that M ≤M∗, there are k not out scores at least as

big as M , their sum is S and the probability mass unassigned by the Product Limit Estimator

is R. The alternative batting average in this situation was defined as:

A =
T + RS

k

1−R
. (2.8)

The authors concluded that a future area of research could be to investigate how additional

factors such as scoring rate, opposition bowling strength and pitch state, could be combined

with runs scored, to illustrate the qualities of particularly strong batsmen.

In [60], the authors also applied Kaplan-Meier estimation techniques to show how batting ca-

reers can be illustrated using survival functions. The batsman’s innings was described as a

lifespan with a ‘death’ referred to as a dismissal. Observations during which players were not

dismissed were referred to as censored observations. This methodology was used to illustrate

the completed career performance of different batsmen. Data were obtained from the 2016

Cricinfo and CricketArchive databases. Statistics for test cricketers, SR Waugh and SR Ten-

dulkar, were used in combination with Kaplan-Meier estimation techniques to illustrate the

distinct survival probability curves. These curves are shown in Figure 2.1. The curves show

that SR Waugh’s survival probabilities were similar than SR Tendulkar’s for approximately the

first 10 runs scored. However, as the number of runs scored increased beyond 10, SR Tendulkar

became more effective, as illustrated by SR Tendulkar’s higher survival probabilities.
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Figure 2.1: Product Limit Estimator survival function for SW Waugh and SR Tendulkar (Figure
obtained from [60])

The Greenwood formula, derived in [51], was applied to generate confidence intervals for the

survival curves for a number of different batsmen. Australian twins, SR Waugh and ME Waugh,

were compared primarily because of the large differences between their batting averages. These

curves are shown in Figure 2.2. The curves show that ME Waugh performed as reliably as SR

Waugh up until approximately 50 runs had been scored, but then gradually performed worse

than SR Waugh as the number of runs scored increased beyond 50.
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Figure 2.2: Estimated survival functions for SR Waugh and ME Waugh. 95% confidence limits
are shown as dotted lines (Figure obtained from [60])

An unweighted log-rank test was used to test for statistical differences in survival between SR

Waugh and SR Tendulkar. The results found no statistically significant differences between

the two when considering the whole curve. However, when restricting focus to those parts of

the curves associated with run totals beyond 100, strong statistical differences were observed.

This was extended to construct survival curves for a large number of batsmen split by batting

position and innings. These curves are shown in Figure 2.3 and suggest that batting during

innings three and four was more difficult than batting during innings one and two.
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Figure 2.3: PLE survival function for all batsmen in Test matches split by batting position (left)
and innings number (right) (Figure obtained from [60])

In [40], the authors challenged the suitability of the Kaplan-Meier approach in estimating the

true batting average, and propose an alternative to the traditional batting average estimate. A

parametric maximum likelihood approach was adopted and a class of distribution called the

Generalised Geometric Distribution (GGD) was built. The authors used several pieces of nota-

tion. X1, . . . , Xn represented the scores from n innings when a batsman was out and Y1, . . . , Ym

represented the scores from m innings when a batsman was not out. K represented the highest

score. For 0 < i < K, fi referred to the number of times the batsman scored i runs and was

dismissed at the score i and f ∗i referred to the number of times the batsman scored i and re-

mained not out at the end of the innings. Fi and F ∗(i) denoted the cumulative frequencies of fi

and f ∗i , respectively. K was formally defined as K = max(max1≤i≤nXi,max1≤j≤m Yj). Mi

represented the total number of scores from out innings bigger than or equal to i, while Ni rep-

resented the total number of scores from out or not out innings bigger than i. Mathematically,

this means

Mi =
k∑
j=i

(fj + f ∗j )

= (n− Fi−1) + (m− F ∗i−1),
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and

Ni =Mi+1

= (n− Fi) + (m− F ∗i ).

Accounting for batting scores during innings when the batsman was dismissed and innings in

which the batsman was not dismissed, the authors considered the following form of the Kaplan-

Meier estimator of the survival function at time t:

Ŝkm(i) =
i∏

j=0

(
1− fj

Mj

)
, j = 0, 1, 2, . . . , (2.9)

and

Ŝkm(t) = Ŝkm([t]),∀t. (2.10)

The Kaplan-Meier estimator of the batting average was given by:

MKM =
K∑
i=0

ŜKM(i) =
K∑
i=0

i∏
j=0

(
1− fj

Mj

)
. (2.11)

While the Kaplan-Meier estimator improves the traditional estimate by accounting for not out

innings, there are still limitations when applied in a cricket score context. As the Kaplan-Meier

estimator is non-parametric, the survival function is based only on scores where the batsman has

been dismissed in the past. As such, the Kaplan-Meier estimator generates a zero probability of

dismissal on all occasions when the player has never been dismissed at that particular score. In

addition, the authors proposed that the summation in Equation (2.11) should technically go to

∞ but values of i > K are ignored. As such, on occasions when max1≤i≤nXi ≤ max1≤j≤m Yj ,

fk 6= Nk, implying Ŝkm(K) 6= 0, and consequently Ŝkm(t) > 0∀t. This means that the Kaplan-

Meier survival function may be infinite if the highest score is from a not out innings.

The authors suggested that the geometric distribution provides an unrealistic representation of

a batsman’s score since it assumes a batsman is equally likely to get out on every ball he faces.

The GGD was proposed as an alternative. The GGD is parameterised by a sequence of hazard
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rates at score values:

αi = P [X = i|X ≥ i] for i = 0, 1, 2, . . . ,

The GGD has the density φi = P (X = i) given by:

φ(0) = α0, φ(i) = αi ×
i−1∏
j=0

(1− αj), i = 1, 2, . . .

The Kaplan-Meier survival function for the GGD was given by:

S(i) =
i∏

j=0

(1− αj), i = 0, 1, . . .

In [90], the authors developed Bayesian survival analysis methodology to predict the test match

batting abilities for international cricketers. A Bayesian survival model was proposed to infer a

batsman’s hazard function from their career batting record. Let X ∈ {0, 1, 2, 3, . . . } represent

the score a batsman scores in a particular innings. The authors defined the hazard function in a

cricket context as:

H(x) =
P (X = x)

P (X ≥ x)
.

This represents the probability that the batsman scores x(P (X = x)), given they are currently

on score x. The probability distribution for a set of conditionally independent scores {xi}I−Ni−1

and not out scores {yi}Ni−1 was defined as:

p({x}, {y}) =
I−N∏
i=1

(
H(xi)

xi−1∏
a=0

[1−H(a)]

)
×

N∏
i=1

(
yi−1∏
a=0

[1−H(a)]

)
.

This gives the likelihood for any proposed model of H(x; θ). The log-likelihood was given as:

log(L(θ)) =
I−N∑
i=1

log(H(xi)) +
I−N∑
i=1

xi−1∑
a=0

log[1−H(a)] +
N∑
i=1

yi−1∑
a=0

log[1−H(a)],

where θ is the set of parameters controlling for the form of H(x). Given a batsman’s batting
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average is widely considered to represent a batsman’s ability in cricket, the hazard function was

parameterised as:

H(x) =
1

µ(x) + 1
,

where µ(x) represents a player’s effective batting average. In addition, a batsman is assumed

to have an initial playing ability, µ1, that increases up to a maximum, µ2, as the number of runs

scored increases. The authors used an exponential model to represent the transition from µ1 to

µ2 as follows:

µ(x;µ1, µ2, L) = µ2 + (µ1 − µ2) exp
(
−x
L

)
,

where L represents the number of runs required for 63% of the transition between the two

batting averages to take place. The authors assumed that µ1 ≤ µ2 and restricted the value of L

to be less than µ2. As such, they modified the set of parameters, (µ1, µ2, L), to be (C, µ2, D),

where µ1 = Cµ2, L = Dµ2 and C and D were restricted to the interval [0, 1]. Therefore, the

hazard function was reparameterised as:

H(x) =
1

µ1 − µ2(C − 1) exp
(
− x
L

)
+ 1

.

The proposed model was initially applied to individual players. Individual player data for

long test career players during the 1990’s and 2000’s were analysed using fixed priors for the

parameters, C, µ2 and D, of each player. These players consisted of retired batsmen, all-

rounders and a bowler, the same as those used in [33]. The full Bayesian model specification

for analysing an individual player was given as:

µ2 ∼ Lognormal(25, 0.752)

C ∼ Beta(1, 2)

D ∼ Beta(1, 5)
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log-likelihood ∼
I−N∑
i=1

log(H(xi)) +
I−N∑
i=1

xi−1∑
a=0

log[1−H(a)] +
N∑
i=1

yi−1∑
a=0

log[1−H(a)].

The joint posterior distribution for µ2, C and D is proportional to the prior times the likelihood

function. The authors then sampled from the joint posterior distribution to make inferences

about a player’s initial and peak batting average and the transition time between the two. The

results found that BC Lara and SR Waugh, the batsmen with the highest test career averages,

had the highest estimated peak batting average. However, CL Cairns and SM Pollock were

found to have the highest initial batting ability, but had lower test career batting averages.

The authors generalised their inference to a wider group of players using a hierarchical model

structure. The authors introduced hyperparameters, v and σ. v represents a value of µ2 that the

players are clustered around, while σ describes how much µ2 varies from player to player. The

full hierarchical model specification for analysing a group of players was given as:

v ∼ Uniform(1, 100)

σ ∼ Uniform(0, 10)

u2,i|v, σ ∼ Lognormal(v, σ2)

Ci ∼ Beta(1, 2)

Di ∼ Beta(1, 5)

log-likelihood ∼
∑
i

(
I−N∑
i=1

log(H(xi)) +
I−N∑
i=1

xi−1∑
a=0

log[1−H(a)] +
N∑
i=1

yi−1∑
a=0

log[1−H(a)]

)
.

The marginal posterior distribution for the hyperparameters, given all the data, was written in
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terms of the expectations over the individual players’ posterior distributions:

p(v, σ|{di}) ∝ p(v, σ)
N∏
i=1

E
[
f(µ2,i|v, σ)
π(µ2,i)

]
, (2.12)

where f(µ2,i|v, σ) is the Lognormal(v, σ2) prior applied to µ2 for the ith player and π(µ2,i)

is the Lognormal(25, 0.752) prior used calculate the posterior of each player. Using Equation

(2.12), the posterior samples for each sample were combined to make posterior inferences about

hyperparameters, v and σ. The abilities of the next opening batsman to debut for New Zealand

were predicted, with µ1 estimated to be 9.6, µ2 estimated to be 27.7 and L estimated to be 3.1.

In addition, MH Richardson was quantified as New Zealand’s best performing test opener since

he made his debut in 2001, one proposition that is widely agreed on in cricket.

Early work from this thesis was peer-reviewed and published in Mathsport 13 Conference pro-

ceedings. In that work [36], a predictive model capable of calculating the ball-by-ball probabil-

ity of an opening batsman being dismissed in the first innings of a limited overs cricket game

was formulated. A large number of Cox proportional hazard models were implemented with

each model fit to a different combination of nine predictors, some of which are modifications to

those used in previous work involving cricket analytics (i.e. [77], [30], [32]). These are defined

in Table 2.8.
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Batting performance metric Definition

Team total balls Cumulative number of balls faced by team

Total runs Cumulative number of runs scored by

batsman

Team total runs Cumulative number of runs scored by team

Strike rate Batsman strike rate

Dot balls Cumulative number of dot balls faced by

batsman

Consecutive dot balls Cumulative number of consecutive dot balls

faced by batsman

Less than 2 in 4 Cumulative number of balls faced in which

less than 2 runs in 4 balls had been scored

Resources Proportion of resources available to batsman

Pressure Pressure felt by batsman

Table 2.8: Previous batting performance metrics.

A pragmatic model selection methodology was utilised to find an appropriate set of candidate

models. Firstly, the estimated Cox model coefficients were required to make practical sense

according to whether they were expected to increase or decrease the probability of survival

as the number of balls faced increased. The predictors were also required to be statistically

significant. The last criteria required that the probability of batsman survival either remained

constant or decreased at the ball-by-ball level. However, no justification was given for this

criteria. The final model selected included: the cumulative number of runs scored, cumulative

number of dot balls scored and cumulative number of balls faced in which less than two runs in

four balls had been scored. The ball-by-ball survival probabilities for all 43 opening batsmen

considered were calculated using:

log

(
p

1− p

)
= β1x1 + β2x2 + · · ·+ βnxn, (2.13)

where p represented the probability of survival and β1, β2, . . . , βn represented the weights for

each attribute, x1, x2, . . . , xn, respectively. The results found differences in the roles of MJ
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Guptill and BB McCullum and in the roles of DA Warner and AJ Finch. These survival proba-

bilities were used to calculate the average AUC for each batsman. Strong relationships between

the average AUC and average ICC rankings for groups of batsmen were found. The correlation

between the square root of the average AUC and the square root of the average rankings was

-0.87. This suggested higher ranked opening batsmen are more likely to remain in bat than

lower ranked batsmen. The correlation between the square root of the average AUC and the

square root of the average runs scored was 0.91. This suggested that crease occupation and run

scoring are synonymous in successful batsmen.

2.3 Literature Review Findings

In this chapter, the application of survival analysis techniques to cricket has been reviewed,

with apparent disagreements discovered between studies over the adequacy of their respective

findings. However, they all appear to be limited in some shape or form. In [65], the authors

did not consider any potential covariates in the use of Kaplan-Meier estimation techniques to

investigate batsman survival rates. This research extends on the work in [65], by introducing the

effect of potential covariates on the historical performance of batsmen. The research in [37] also

considered aspects of the work in [65], by exploring the effect of a number of factors associated

with optimal batting strategy. These included the required run rate and number of wickets lost.

However, these considerations failed to account for within-game events. This research extends

on the work in [37], firstly by incorporating additional covariates that were not previously

considered and secondly, by specifically focusing on within-game events. These include: dot

ball and consecutive dot ball effects, boundary effects and team contribution effects. In [60]

and [90], the authors also investigated the historical performance of batsmen. However, those

pieces of work are further examples of published work that do not focus on within-game events.

Early work from this thesis was peer-reviewed and published in Mathsport 13 Conference pro-

ceedings. In that work [36], survival analysis methodology was successfully applied to investi-

gate the effect of within-game events on the probability of an opening batsman being dismissed

in the first innings of a limited overs cricket game. That work extends previous research in-

vestigating the historical performance of batsmen to assess within-game events. However, the
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research focused only on opening batsmen.

Prior to the work in this thesis, there did not appear to be any published studies that focus

on analysing the effect of within-game events on individual batsmen at particular batting po-

sitions, or batting partnerships at particular wickets in cricket. Further, there did not appear

to be any previous work investigating the impact that optimal batting partnership strategy has

on winning. As such, this research attempts to address this gap in the literature. This work,

in [35], was peer-reviewed and published in Mathsport International 2017 Conference proceed-

ings. Here, survival analysis methodology was successfully applied to investigate the effect of

within-game events on the ball-by-ball survival probabilities of different order batsmen and

batting partnerships in limited overs cricket games. This built the foundations to complete the

main objective of this research. The objective was to optimise batting partnership strategy in

limited overs cricket, in an attempt to increase a team’s scoring rate and chances of winning.
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Research Objectives and Methodology
The literature review revealed the extensive amount of published research surrounding survival

analysis methodology application, across various sporting disciplines. There have been several

pieces of published work that have applied survival analysis methodology to batting perfor-

mance in cricket. However, this work has focused on individual batsmen across their careers,

without particular focus on within-game events. Moreover, prior to the work in this thesis,

there did not appear to be any published studies that focus on analysing batting partnerships

in cricket. This is likely to stem from the historical difficulty in obtaining ball-by-ball data.

More recently, websites like www.espncricinfo.com have enabled much greater access to data.

The scarcity of literature surrounding survival analysis applications to the performance of bat-

ting partnerships with focus on within-game events in limited overs cricket, has resulted in a

gap in the literature. In addition, the growing popularity of in-game betting within the sport

( [58], [8]) highlights the potential demand for this research. The real world impact of this

research is that it helps teams to increase the number of runs scored at an optimal rate, there-

fore increasing chances of winning. Given this gap in the literature, research objectives were

established. These are discussed in Section 3.1.

3.1 Research Objectives

The primary objective of this research was to optimise batting partnership strategy by for-

mulating several predictive models to calculate the probability of a batting partnership being

dismissed in the first innings of a limited overs cricket match. The narrowed focus also reduced

confounding factors, such as match state.

The model structures were expected to reveal strategies for optimally setting a total score for the

opposition to chase. In the first innings of a limited overs cricket match, there is little informa-

tion available at the commencement and during the innings to guide the team in accumulating
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a winning total score.

The secondary objective of this research was to validate the final models to ensure they were

appropriately estimating the ball-by-ball survival probabilities of each batsman, in order to

determine the most effective partnership combinations. The research hypothesised that the

more effective a batting partnership is at occupying the crease, the more runs they will score at

an appropriate rate and the more likely the team is to win the match, by setting a defendable

total.

Specifically, the purpose of this research was to address the following two key questions:

1. What are the in-game strategies for optimising the runs scored in the first innings?

2. What are the practical applications of this knowledge?

3.2 Research Methodology

Given the research objectives, the following research methodology was applied:

3.2.1 Identify and calculate performance metrics

Metrics that significantly affect the ball-by-ball survival probabilities of individual batsmen and

batting partnerships were identified. Potential performance predictors were identified leverag-

ing expert opinion from current and former international first class players and coaches. These

were then tested for an effect on the probability of a batsman or partnership dismissal using

binomial logistic regression analyses. The dependent variable, Y , in these analyses was cate-

gorised as:

Y =

1, if batsman/partnership is dismissed

0, otherwise
(3.1)
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3.2.2 Apply statistical techniques to batting performance in cricket

Cox proportional hazard models, ridge regression techniques and censoring techniques were

applied to determine the effect of in-game events on the survival probabilities of individual bats-

men and batting partnerships. Observations where a batsman or partnership was not dismissed

were referred to as censored observations. These were taken into account in the modelling

procedure using existing functionality as part of the ‘survival’ package [12] in R [80].

3.2.3 Calculate the ball-by-ball survival probabilities of batsmen and bat-

ting partnerships

Cox models for different order batsmen and partnerships at different wickets were formulated.

This was carried out by splitting the data into multiple subsets. Individual batsmen were split

according to their batting position while batting partnerships were split according to the wicket

when the partnership was played. Using each model, Equation (2.13) was implemented to

calculate the survival probabilities.

3.2.4 Identify and calculate overall performance and effectiveness met-

rics

The survival probabilities were cumulated to give a total AUC for each batsman and each

partnership. The total number of runs scored, proportion of team runs scored and proportion

of games won were calculated for each batsman and each partnership. The ODI ICC bat-

ting rank for each batsman was also obtained (www.icc-cricket.com/player-rankings/overview).

The ranking used was that following the last international in which they batted, on or prior to

14th February 2016. These metrics were assessed for correlations and used as a measure of

performance effectiveness to complete the objective of optimising batting partnership strategy.

3.2.5 Identify and incorporate model validation methodology

Each final model associated with a subset of ODI data was initially fitted to the corresponding

IPL data. For example, the final model associated with third wicket ODI partnerships was
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applied to data associated with third wicket IPL partnerships. Survival probabilities for IPL

batsmen and partnerships were generated and plotted against survival probabilities for ODI

batsmen and partnerships, respectively. The AUC was calculated as a metric to determine

which models generated survival probabilities characterising the largest difference between

IPL and ODI batsmen and IPL and ODI partnerships.

3.3 Previous Research

This research adopted a Cox proportional hazard modelling approach and censoring methodol-

ogy. Several pieces of previous research were identified in which such methodology had been

applied to individual batting performances ( [65], [37], [60], [36], [90]). However, the research

methodology outlined in these pieces of work suffered several issues. The following research

weaknesses were identified:

1. Lack of performance metrics as predictors

In the research in [65] and [60], no performance metrics were assessed for a possible

effect on batsman performance.

2. Lack of focus on within-game events

In the research in [65], [37], [60] and [90], within-game events such as dot ball effects,

consecutive dot ball effects, boundary effects and team contribution effects were not

taken into account. The work only considered the career statistics from batsmen across

games as a whole.

3. Lack of analysis investigating different order individual batsmen

In the research in [65], [37], [60] and [90], no distinction was made between different or-

der batsmen. In [36], the authors applied Cox proportional hazard models to the survival

rates of opening batsmen. However, the work did not address the application of survival

analysis techniques into different order, non-opening batsmen.

4. Lack of analysis investigating batting partnerships

Prior to the work in this thesis, there did not appear to be any published work which

addresses applications of survival analysis techniques into batting partnerships in cricket.
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5. Lack of final model validation

Previous published work focussing on survival analysis applications to cricket has failed

to include any model validation techniques.

This research has developed an original and rigorous quantitative framework to optimise batting

partnership strategy in limited overs cricket. This approach used survival analysis to investigate

the survival properties of batsmen and partnerships, while addressing these issues. Early work

on this approach, in [36], was peer-reviewed and published in Mathsport 13 Conference pro-

ceedings. More detailed analysis, in [35], presented throughout Chapter 8, was peer-reviewed

and published in Mathsport International 2017 Conference proceedings.



Chapter 4

Data Extraction and Processing
The analysis conducted throughout this research required ball-by-ball data for One-Day In-

ternational (ODI) cricket matches contested between 26th December 2013 and 14th February

2016 and Indian Premier League (IPL) matches contested between 9th April and 29th May

2016. Ball-by-ball data provides information on what happened during each ball of a match.

This data is accessible from the ESPN Cricinfo website (www.espncricinfo.com). An auto-

mated process using the SAS language was applied to extract data from the associated com-

mentary log for each match. This was carried out on a ball-by-ball basis, before this data were

converted into a scorecard format and stored in a tabular form, as shown in Appendix C. The

SAS code used to carry out this extraction and conversion is presented in Appendix F. Data

collected was based on within-game events. Table 4.1 illustrates the contents of a ball-by-ball

scorecard.

Player info Game info Other descriptors and

metrics

Bowling Game Over

Facing Cricinfo ID Ball

Batting position Home Description

Bowling position Away Out (Y)

Venue Runs scored

Dates Sundry type

Year

Innings

Table 4.1: Ball-by-ball data elements.
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4.1 Data Manipulation

For the ODI data, variables that could potentially have an effect on the prediction of the prob-

ability of a batsman or batting partnership dismissal and could be obtained from the original

elements of the ball-by-ball data were calculated. These metrics are summarised in Table 4.2,

explained in Appendix B and illustrated in Appendix D and Appendix E.

Batsman metrics Partnership metrics

Batsman balls Partnership balls

Batsman runs Partnership runs

Batsman dot balls Partnership dot balls

Batsman consecutive dot balls Partnership consecutive dot balls

Batsman less than 2 in 4 Partnership less than 2 in 4

Batsman boundaries Partnership boundaries

Batsman contribution Partnership contribution

Batsman percentage boundaries Partnership percentage boundaries

Batsman percentage dot balls Partnership percentage dot balls

Wicket

Table 4.2: Performance metrics.

The batting order is important in cricket in order to maximise the score of each batsman and the

team. It was noted in [91, p.1939] that “in cricket, there is a long-standing tradition of general

strategy that places better batsmen near the beginning of the batting order and the weaker

batsmen near the end”. As such, the data were then split into multiple subsets, as shown in

Table 4.3. Each set consisted of data associated with the first innings of games.
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Batsman type Batting positions

Openers 1 and 2

Top order 3 and 4

Middle order 5,6 and 7

Lower order 8 and 9

Tail 10 and 11

Table 4.3: Categorised batsmen.

The data were then split into multiple further subsets. Each subset consisted of data associated

with first innings of games. These datasets were created with each separate set consisting of

data associated with one wicket. This resulted in ten further datasets, one associated with each

wicket.



Chapter 4. Data Extraction and Processing 52

4.2 Data Limitations

Several data limitations were identified. Firstly, entries associated with incorrect recording of

the presence of sundries (extras), type of extra and particular ball of the over were identified.

These were manually corrected for. Additionally, there are cricket teams that have players with

the same names. The extracted data did not distinguish between different batsmen with the

same names. These were manually consolidated and distinguished from one another.

As part of this research, primary emphasis was put on batting partnerships. As the extracted

data did not include the partner of the batsman facing each ball, identification and recording

of this was incorporated into data consolidation. This was identified by writing a function in

R [80] to identify instances when the batsman facing the bowler changed, while the innings

and game remained the same. For each instance, the new batsman was imputed as the partner

of the previous batsman.



Chapter 5

Exploratory Data Analysis
In this chapter, the characteristics of the extracted data are explored and the assumptions of

a logistic regression model fit to these data are assessed. The data outlined in Chapter 4 are

investigated for evidence of outliers, multicollinearity and relationships between the predictor

variables. A logistic regression analysis was selected, as the dependent variable, whether a

batsman or partnership was dismissed, was binary and the probability of a batsman or partner-

ship dismissal was of particular interest. The R code used to investigate the data and carry out

the analysis is presented in Section G.1 in Appendix G.

5.1 Outliers

A Cook’s distance test was carried out and revealed outlier observations that would have a

significant effect on the estimate of the model coefficients in a logistic regression analysis.

This would result in unreliable results and conclusions.

5.2 Multicollinearity and Interrelationships

The ‘car’ package [5] in R [80] was used to produce variance inflation factors (VIFs). These

were used to assess for presence of multicollinearity, which will be addressed in Section 5.2.1.

The ‘asbio’ package [1] in R was used to produce correlation matrices. These were used to

assess for the presence of statistical relationships between the metrics, which will be addressed

in Section 5.2.2.

5.2.1 Variance Inflation Factors

Two binomial logistic regression analyses were carried out. The objective of the first was to

determine a selection of metrics that are practically and statistically significant contributors to
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the probability of a batsman dismissal. The objective of the second was to determine a selection

of metrics that are practically and statistically significant contributors to the probability of a

batting partnership dismissal. Using the ‘car’ package in R, VIFs were fitted to each logistic

regression model. In [75], the authors emphasised the VIF rule appearing in many publications:

VIFs greater than 10 are a sign of strong multicollinearity.

In the first logistic regression analysis, it was found that batsman balls, batsman runs, batsman

dot balls, batsman consecutive dot balls, batsman less than 2 in 4 and batsman boundaries all

showed strong evidence of serious multicollinearity with VIFs greater than 10. In the second

logistic regression analysis, it was found that partnership balls, partnership runs, partnership dot

balls, partnership consecutive dot balls, partnership less than 2 in 4 and partnership boundaries

all showed strong evidence of serious multicollinearity, with VIFs greater than 10.

5.2.2 Scatter Plot and Correlation Matrix

A scatter plot and correlation matrix for the batting metrics illustrated strong positive relation-

ships between batsman balls, batsman runs, batsman dot balls, batsman consecutive dot balls,

batsman less than 2 in 4 and batsman boundaries.

The relationships between these metrics generated correlation values, r,≥ 0.90. Table 5.1 sum-

marises the correlation between these metrics.
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Pair of variables Correlation

Batsman balls and batsman runs 0.930

Batsman balls and batsman dot balls 0.952

Batsman runs and batsman boundaries 0.927

Batsman dot balls and batsman consecutive

dot balls

0.951

Batsman dot balls and batsman less than 2

in 4

0.901

Batsman consecutive dot balls and batsman

less than 2 in 4

0.956

Table 5.1: Metric correlations.

A scatter plot and correlation matrix for the batting partnership metrics illustrated strong posi-

tive relationships between partnership balls, partnership runs, partnership dot balls, partnership

consecutive dot balls, partnership less than 2 in 4 and partnership boundaries.

The relationships between these metrics generated correlation values, r,≥ 0.90. Table 5.2 sum-

marises the correlation between these metrics.

Pair of variables Correlation

Partnership balls and partnership runs 0.945

Partnership balls and partnership dot balls 0.956

Partnership runs and partnership boundaries 0.935

Partnership dot balls and partnership

consecutive dot balls

0.958

Partnership dot balls and partnership less

than 2 in 4

0.918

Partnership consecutive dot balls and

partnership less than 2 in 4

0.966

Table 5.2: Partnership metric correlations.
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5.3 Logistic Regression Assumptions

The validity of the binomial logistic regression analysis was tested by examining whether the

following assumptions of a logistic regression analysis held:

1. The residuals are independent

2. The residuals are not affected by outliers

3. The relationship between the independent variables and the log odds is linear

In a linear regression analysis, several assumptions hold in addition to (1) and (2) in a logistic

regression analysis. The first is that the residuals are normally distributed. The second is

that the residuals exhibit constant variance. These are not assumed in a logistic regression

analysis [56].

5.3.1 Independence of Residuals

The first assumption was tested by carrying out a Durbin-Watson test, using built in functional-

ity in the ‘car’ package in R. The Durbin-Watson test assesses for any evidence of autocorrela-

tion among the residuals from a general linear model. The hypotheses tested are H0 : ρ = 0 vs

H1 : ρ 6= 0, where ρ refers to the autocorrelation. In [46, p.874.], the authors claimed that “a

test statistic greater than 2 indicates a negative correlation between adjacent residuals, whereas

a value below 2 indicates a positive correlation”.

In [48], the authors suggested that there are three conventional levels of statistical significance,

1%, 5% and 10%, commonly used to assess statistical models. The Durbin-Watson test for the

first logistic regression analysis, produced a p-value = 0.089. This was statistically significant

at the 10% level. This provided evidence against the null hypothesis that no correlation exists

among the residuals. The Durbin-Watson test statistic for the logistic regression model was

1.82, indicating that the residuals were positively correlated. This suggested that the residuals

may have been linearly dependent.

The Durbin-Watson test for the second logistic regression analysis, produced a significant p-
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value at the 10% level (p-value = 0.091). This provided evidence against the null hypothesis

that no correlation exists among the residuals. The Durbin-Watson test statistic for the logis-

tic regression model was 1.82, indicating that the residuals were positively correlated. This

suggested that the residuals may have been linearly dependent.

5.3.2 Residual Outliers

The second assumption was tested by carrying out a Bonferroni Outlier Test, using existing

functionality in the ‘car’ package in R. This test reports the “Bonferroni p-value for studentised

residuals in linear and generalised linear models, based on a t-test for linear models and normal-

distribution test for generalized linear models” [3]. In [59], the authors explained that the

Bonferroni correction measure tests each of the residuals from a regression model to determine

whether or not it is an outlier. The hypotheses tested were H0 : None of the residuals are

outliers vs H1 : At least one of the residuals is an outlier.

Applying the test to the logistic regression analyses, produced a Bonferroni p-value = 0.001 for

the first analysis, and p-value = 0.002 for the second. These were both statistically significant

at the 5% level. This provided evidence to reject the null hypothesis and accept that one or

more of the residuals from each logistic regression model may have been outliers.

5.3.3 Linearity

The third assumption was tested using the Box-Tidwell approach suggested in [88]. This in-

volves introducing new variables defined as the natural logs of each continuous predictor. The

interaction between each new variable and the original variable associated with each predictor

is included in the logistic regression model. If the interaction term returns significance, there

is evidence to suggest that the relationship between the associated predictor and the log odds is

non-linear, violating the assumption.

Applying the test to the first logistic regression analysis, revealed statistically significant inter-

actions between the predictor and the natural log of the predictor for batsman dot balls, batsman

consecutive dot balls, batsman contribution, batsman percentage boundaries and batsman per-
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centage dot balls. This suggested a non-linear relationship between the log odds and each one

of these predictors.

Applying the test to the second logistic regression analysis, revealed statistically significant

interactions between the predictor and the natural log of the predictor for partnership balls,

partnership runs, partnership consecutive dot balls, partnership less than 2 in 4, partnership

contribution, partnership percentage boundaries and partnership percentage dot balls. This

suggested a non-linear relationship between the log odds and each one of these predictors.

5.4 Conclusions

The diagnostics from the logistic regression analysis to investigate the probability of a batsman

dismissal and the logistic regression analysis to investigate the probability of a batting partner-

ship dismissal suggest that such analyses may result in invalid conclusions. There is evidence

against the independent residuals, outlier residuals and linearity assumptions. In addition, the

multicollinearity between the metrics of interest suggests that the logistic regression results may

be unreliable and inaccurate. Ridge regression is a technique that accounts for multicollinearity

in a multiple regression analysis and will be addressed in Chapter 6.

Logistic regression analysis is concerned with the association between several covariates and

whether or not an event occurs. As this research is concerned with the association between

several covariates and the time to an event, logistic regression may not be the most appropriate

technique for analysis. In this research, the particular event of interest is the occurrence of a

batsman dismissal. The data used in this research contain observations in which a batsman is

not dismissed during the observed time period. These are known as censored observations and

a logistic regression analysis does not take into account any possible censoring bias. Survival

analysis is a method capable of accounting for these issues and will be addressed in Chapter 7.
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Ridge Regression

6.1 Introduction to Ridge Regression

In Chapter 5, the logistic regression analysis revealed strong multicollinearity among several

predictor variables. This chapter will discuss ridge regression as a suitable statistical technique

used to analyse multiple regression data that exhibit multicollinearity. Ridge regression is a

suitable technique to use when the outcome is binary [25].

The presence of multicollinearity results in unbiased least square estimates. However, the vari-

ance of these estimates are large. This means that the estimates may be far from the true value.

The ridge regression technique introduces some bias to the regression estimates, reducing the

standard errors of these estimates and making them more reliable [11].

6.2 Multiple Regression

A regression analysis is a process which involves investigating the relationship between one

dependent variable and one or more independent variables.

Multiple regression involves exploring the relationship between several predictor variables,

x1, x2, . . . , xk, and one response variable, yi. Values of yi and x1,i, x2,i, . . . , xk,i are observed

for i = 1, . . . , n.

A multiple regression model can be written as [34]:

yi = β0 + β1x1,i + · · ·+ βkxk,i + εi, (6.1)

where β0, β1, . . . , βk are unknown parameters estimated from the data and εi ∼ N(0, σ2). The

residuals, εi, are assumed to be independent of one another, normally distributed with a mean
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of zero and constant variance, σ2
e .

The method of least squares can be used to estimate the parameters in a multiple regression

model. This method chooses the best fit by finding estimates of β0, β1, . . . , βk that minimise

the sum of the squared residuals. In multiple regression, the model can be expressed in matrix

form as [34]:

Y =Xβ + ε, (6.2)

where

Y =


y1

y2
...

yn

 ,

X =


1 x11 . . . xk1

1 x12 . . . xk2
...

...
...

...

1 x1n . . . xkn

 ,

β =


β0

β1
...

βk

 ,
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and

ε =


ε1

ε2
...

εn

 .

β is estimated using least square estimates [34]:

β̂ = (X ′X)−1X ′Y . (6.3)

Under the assumption of normally distributed errors, the least squares estimators are the same

as maximum likelihood estimators [7]. Given the design matrix, X , and parameters, β, the

likelihood function can be written as [34]:

L(β, σ2) = f(Y |β, σ2) =
1

(2πσ2)
n
2

exp

(
−(Y −Xβ)′(Y −Xβ)

2σ2

)
, (6.4)

and the log-likelihood as [34]:

l(β, σ2) =
−n
2

(
log(2π) + log(σ2)

)
− 1

2σ2

(
Y −Xβ

)′(
Y −Xβ

)
. (6.5)

Maximising L(β, σ2) or l(β, σ2) analytically, enables derivation of the maximum likelihood

estimates.

6.3 Ridge Regression Methodology

A ridge regression analysis is essentially a multiple regression analysis with some modifica-

tions.
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6.3.1 Standardisation

The first step in a ridge regression analysis is to standardise the dependent and independent

variables by subtracting their means and dividing by their standard deviations. All subsequent

ridge regression calculations are based on standardised variables. The final regression coeffi-

cients are adjusted back to their original scale [11].

6.3.2 Parameter Estimation

As discussed in Section 6.2, the ridge regression coefficients are estimated using the least

squares estimator, β̂. β̂ is chosen to minimise the sum of squares residuals, φ(β). The re-

lationship between β̂ and φ(β) is defined as [54]:

φ(β) = (Y −X ′β̂)′(Y −Xβ̂), (6.6)

where

β̂ = (X ′X)−1X ′Y . (6.7)

The estimator, β̂, is unbiased such that E(β̂) = β and has a minimum variance among all

linear unbiased estimators. The variance covariance matrix of the estimates is given by [54]:

V (β̂) = σ2(X ′X)−1. (6.8)

Ridge regression adds a small value, k, to the diagonal elements of the correlation matrix. The

gives the ridge estimator as [54]:

β̃ = (X ′X + kI)−1X ′Y . (6.9)

The amount of bias in this estimator is given by [54]:

E(β̃ − β) = [(X ′X + kI)−1X ′X − I]β. (6.10)
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The covariance matrix is given by [54]:

V (β̃) = (X ′X + kI)−1X ′X(X ′X + kI)−1. (6.11)

The appropriate choice of k depends on the true value of the coefficients being estimated [11].

In [54], the authors suggested using a ridge trace plot. This plot shows the ridge regression

coefficients as a function of k. A value is chosen for which the regression coefficients have

stabilized.

The presence of multicollinearity results in unbiased least square estimates and inflated stan-

dard errors of the regression coefficients. The ridge regression technique introduces some bias

to the regression estimates, via the small value, k. This reduces the standard errors of these

estimates and makes them more reliable [11].

6.4 Chapter Remarks

Ridge regression techniques are useful when there is multicollinearity evident in multiple re-

gression data. In Chapter 5, the logistic regression analysis revealed multicollinearity among

several predictor variables. The application of ridge regression techniques, discussed in this

chapter, to the ODI data, will be addressed in Chapter 8.
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Survival Analysis
Logistic regression analysis was performed in Chapter 5. This explored the association between

several covariates and event occurrence. As this research is focused on the association between

several covariates and the time to an event, logistic regression may not be the most appropriate

technique for analysis. The particular event of interest is the occurrence of a batsman dismissal.

The data used in this research contain observations in which a batsman is not dismissed during

the observed time period. These are known as censored observations and logistic regression

analysis does not take into account any possible censoring bias. This chapter will introduce key

aspects of survival analysis. This is a suitable approach to use when survival time to an event

is of particular interest, and censoring is present [55].

7.1 Introduction to Survival Analysis

Survival analysis is a branch of statistical analysis used to investigate and model the relationship

between one dependent variable, the time until a particular event of interest occurs, and several

predictor variables [55].

Survival analysis has been used in a range of settings. For example, in a medical setting in

[50], three parametric models were applied to model survival data from five clinical trials of

adjuvant therapy for Stage II breast cancer. Additionally, survival analysis has been applied to

the banking sector. In [69], Cox models were applied to the analysis and prediction of bank

failure.

7.2 Censoring

A characteristic of survival data is the possibility of an individual surviving longer than the

follow up period. As a result, the observation of survival time for that individual is incomplete.
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The process used to produce this particular type of observation is called censoring, while the

observation is referred to as a censored observation. Censored observations can take on several

forms. Observations that occur at particular times but finish before the outcome of interest

occurs are referred to as right censored observations. This is the most common form of censored

observation. If the event of interest has already occurred before the first observation is made,

the observation is referred to as a left censored observation. If the event of interest is known to

be between two particular time points, the observation is referred to as interval censored [68].

7.3 Survival and Hazard Functions

7.3.1 Survival Function

The survival function is the probability of observing a survival time greater than some time, t,

defined as [68]:

S(t) = Pr(T > t). (7.1)

The cumulative distribution function of the survival time, T , is the probability that an individual

will have a survival time less than or equal to some time, t, defined as [68]:

F (t) = Pr(T ≤ t). (7.2)

Assuming the time random variable is continuous, the survival function may be expressed

as [55]:

S(t) = e−H(t), (7.3)

where H(t) is the cumulative hazard function, defined in Section 7.3.3.
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7.3.2 Hazard Function

The hazard function refers to the probability of an individual failing after some time, t, condi-

tional on that individual surviving to time, t, and is defined as [68]:

h(t) = −
dS(t)
dt

S(t)
, (7.4)

where S(t) is the survival function, defined in Section 7.3.1.

7.3.3 Cumulative Hazard Function

The cumulative hazard function is defined as [68]:

H(t) =

∫ t

0

h(t)dt, (7.5)

where h(t) is the hazard function, defined in Section 7.3.2.

7.3.4 Kaplan-Meier Method

The most commonly used estimator of the survival function is called the Kaplan-Meier estima-

tor. This estimator takes into account both uncensored and censored observations and considers

the survival time to be a series of declining steps defined at each time point. The Kaplan-Meier

estimator, also known as the Product Limit Estimator, is a non-parametric maximum likelihood

estimate of S(t) given by [55]:

Ŝ(t) =
∏
ti≤t

ni − di
ni

, (7.6)

where ni is the number of individuals who have survived to time, ti, and di is the number of

deaths at time, ti. This estimator is non-parametric as it is fully based on the data, providing a

true estimate of the survival function.

Without censoring, the Kaplan-Meier estimate of the survival function, Ŝ(t), at any given time,

t, is equal to the proportion of individuals in the sample who are still alive [55].
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7.4 Cox Proportional Hazards Model

On occasions when the objective of analysis is to assess the effect of continuous covariates on

survival, Kaplan-Meier estimation techniques are inadequate. Cox proportional hazard models

are used in this situation.

Cox models are used to model the relationship between the hazard function and several covari-

ates. The hazard rate for one individual at time, t, with one independent variable, x, and the

hazard rate at baseline levels of covariates, h0, is defined as [55]:

h(t, x) = h0exp(β1x). (7.7)

If there is more than one independent variable, Equation (7.7) can be written in matrix notation:

h(t,X) = h0exp(β′X). (7.8)

Refer to Section 6.2 in Chapter 6 for details on matrix form specification in multiple regression.

Equation (7.8) can be generalised to:

h(t,X) = h0(t,α)exp(β′X), (7.9)

where h0(t,α) is the hazard function at baseline levels of covariates and is allowed to vary over

time and α is a vector of parameters influencing the baseline hazard function. Equation (7.9)

is referred to as the Cox model.

Cox models are semi-parametric, consisting of a parametric and a non-parametric component.

The parametric component makes assumptions about the effect of covariates, while the non-

parametric component makes no assumption about the distribution of the hazard function.

In some situations, the distribution of the survival time has a known parametric form. In these

situations, fully parametric regression models may be utilised. These differ from the Cox pro-

portional hazards model in that both the hazard function and the effect of the covariates are

specified.
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The mathematical theory behind parameter estimation in a Cox model is described in Appendix

A. Analytical parameter estimation is discussed in Section A.1, while numerical parameter

estimation is addressed in Section A.2. Additionally, several examples of parametric regression

models are described in Section A.3.

7.4.1 Cox Model Assumptions

There are two assumptions that the Cox model relies on. The first is based on linearity and the

second is based on proportional hazards [55].

1. The effect of each covariate is linear in the log hazard function.

2. The ratio of the hazard function for two individuals with different sets of covariates does

not depend on time.

7.5 Chapter Remarks

In general, the results from using a Cox model will closely approximate the results from the

correct parametric model [68]. As such, the Cox model is a useful approach and will provide

reliable enough results when there is uncertainty around the correct parametric form of the dis-

tribution of survival times. The application of censoring techniques, discussed in Section 7.2,

and the Cox model methodology, discussed in Section 7.4, to the ODI data, will be addressed

in Chapter 8.



Chapter 8

Model Application
In this chapter, a combination of ridge regression techniques, discussed in Chapter 6, and sur-

vival analysis techniques, discussed in Chapter 7, are applied to the ODI data. The modelling

procedure and results are presented when data is associated with individual batsmen. This is

followed by illustration of the equivalent analysis when data is associated with batting partner-

ships. The chapter proceeds with an illustration of the final models and how they are used to

calculate the Area Under the Curve (AUC) as a batting performance metric. Optimal batting

partnership combinations from a wide variety of cricketing nations are derived based on a com-

bination of AUC and other robust batting performance metrics: total runs scored, proportion of

team runs scored and winning percentage. These optimal partnerships maximise the number

of runs scored in the least amount of time possible and the team’s chances of winning. Prac-

tically, this approach reveals which batsmen are capable of pacing their innings to maximise

their team’s chances of winning. This is a novel approach which holistically considers strike

rate, total runs and the match context. This is particularly difficult to assess in the first innings

of a match when setting a total. Additionally, the metrics are used to determine the optimal

New Zealand batting order during a selection of ODI games.

8.1 Modelling Methodology

Using existing functionality as part of the ‘survival’ package [12] in R [80], this research

utilised a combination of Cox proportional hazard modelling and ridge regression analysis to

model data associated with individual batsmen. There was some uncertainty over the correct

parametric form of the survival times of batsmen. Consequently, the Cox modelling approach

was preferred over parametric regression modelling, as discussed in Section 7.5 in Chapter 7.

A survival object was created and taken to represent the response variable in a Cox model. This

consisted of a particular event and the time taken to that event, in this case the event being

a batsman dismissal. The total number of balls faced by the batsman was taken to represent

69
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the time to that event. The censoring methodology discussed in Section 7.2 in Chapter 7 and

employed in [60], was also adopted. Those observations where batsmen were not dismissed

were referred to as censored observations. This research adopted the Efron method, discussed

in Section A.1.2.3 in Appendix A, to account for repeated failure times. The Efron method was

chosen as it is considered to provide the closest approximation to the exact partial likelihood,

and is employed as the default method in R [80].

To assess the first assumption of a Cox model described in Section 7.4.1 in Chapter 7, this

research adopted the following approach, described in [89]. Each predictor was split into

groups defined at each quantile. A Cox model was fitted to all batting performance predic-

tor groups. For each predictor, the associated estimated coefficients from the Cox model were

plotted against the midpoints of each group. For every predictor, the resulting line connect-

ing the midpoints did not follow an approximate straight line. This provided evidence that

non-linearity may exist among every predictor. A common transformation used to correct for

this situation is the square root transformation [55]. As the data primarily consist of counts, a

square root transformation was applied to successfully remove non-linearity in all predictors.

8.1.1 Opening Batsman Modelling

A large number of Cox models were fitted to data associated with openers. To achieve model

parsimony, each model was fitted with a maximum selection of four predictor variables from

the eight individual batting performance metrics. For each fitted model, the covariates that

showed evidence of multicollinearity were specified as ridge regression terms. AIC was ini-

tially used to rank these models. From here, two model selection criteria were utilised in order

to find an appropriate set of candidate models. To meet the first criteria, the estimated model

coefficients had to be practical. For example, an increase in predictors such as batsman dot

balls was expected to decrease the likelihood of a batsman surviving the next ball. This is due

to additional factors such as fatigue, bowling and fielding strategy and batsmen adopting higher

risk strategies to increase the run rate. For these predictors, the first criteria was met if the cor-

responding estimated coefficient was negative. To satisfy the second criteria, the predictors had

to be statistically significant. In the work in [36], a predictive model capable of calculating the

ball-by-ball probability of an opening batsman being dismissed in the first innings of a limited
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overs cricket game was formulated. In addition to the criteria previously discussed, an addi-

tional criteria was included in the work in [36]. That criteria required that the probability of

batsman survival either remained constant or decreased at the ball-by-ball level. Here, that cri-

teria used in [36] is relaxed. The reason for this relaxation is due to metrics which on occasion

are smaller when one ball is faced, relative to when the previous ball was faced. For instance,

batsman contribution is based on the proportion of team runs scored by the individual batsman.

When extras occur in the data, the total number of team runs increases, while the total number

of individual batsman runs remains the same. This is due to the rules regarding allocation of

extras. This results in a small reduction in contribution and consequently a slight increase in

survival probability. The R code used to carry out the opening batsman modelling procedure is

presented in Section G.2 in Appendix G. Table 8.1 illustrates the models ranked by AIC that

meet the criteria. The Cox model with consecutive dot balls, less than 2 in 4, boundaries and

contribution as predictors had the highest AIC.
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Rank-ordered

model

Model predictors

P1 P2 P3 P4

1 Consecutive dot

balls

Less than 2 in 4 Boundaries Contribution

2 Runs Dot balls Less than 2 in 4

3 Runs Consecutive dot

balls

Less than 2 in 4

4 Dot balls Boundaries Contribution

5 Dot balls Contribution Percentage

boundaries

6 Consecutive dot

balls

Less than 2 in 4 Boundaries

7 Consecutive dot

balls

Boundaries Contribution

8 Less than 2 in 4 Boundaries Contribution

9 Consecutive dot

balls

Contribution Percentage

boundaries

Table 8.1: Opening batsman ranked models

To assess the second assumption of the Cox model described in Section 7.4.1, this research ap-

plied the ‘cox.zph’ function [13] as part of the ‘survival’ package [12] in R [80]. This function

tests the hypotheses H0: The proportional hazards assumption holds vs H1: The proportional

hazards assumption does not hold. This function was applied to assess whether each of the pre-

dictors in each model from Table 8.1 showed any evidence of violation towards proportional

hazards. Through evaluation of this assumption, the candidate set of models was reduced to one

model from Table 8.1, with all other models failing the second assumption. Table 8.2 illustrates

the predictors included in this final model, together with their estimated coefficients.
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Batsman

class

Model predictors and coefficients

P1 Coef P2 Coef P3 Coef

Openers Runs -1.478 Consecutive

dot balls

-0.624 Less than

2 in 4

-0.694

Table 8.2: Opening batsman final model predictors

8.1.2 Non-Opening Batsman Modelling

In addition, it was expected that these factors may have a differing effect on the performance of

non-opening batsmen in the remaining of the batting innings compared with opening batsmen.

As such, the modelling procedure described in Section 8.1.1 was applied to data associated

with batsmen categorised as either top order, middle order, lower order or tail, followed by data

associated with all batsmen, as suggested in [36]. Data remained associated with first innings of

games. The emphasis remained on the first innings due to the challenge of accessing strategies

for setting a total. Table 8.3 illustrates the predictors included in the final models, together with

their estimated coefficients.

Batsman

class

Model predictors and coefficients

P1 Coef P2 Coef P3 Coef P4 Coef

Top order Consecutive

dot balls

-0.285 Less than 2

in 4

-0.273 Boundaries -0.547 Contribution -0.740

Middle

order

Runs -0.317 Dot balls -0.653 Less than 2

in 4

-0.441 Contribution -1.385

Lower

order

Runs -0.613 Consecutive

dot balls

-0.637 Less than 2

in 4

-0.525 Contribution -1.189

Tail Runs -0.667 Dot balls -0.574 Less than 2

in 4

-0.657

All

batsmen

Runs -1.459 Less than 2

in 4

-1.209 Contribution -0.050

Table 8.3: Categorised batsman final model predictors
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For all models described in Table 8.3, evaluation of the proportionality assumption resulted in

no statistical evidence to suggest that any model violated this assumption. With model fitting,

model checking and model selection procedures successfully completed, the six final models

were used to generate results, discussed in Section 8.2.

8.2 Individual Batsman Results

The ball-by-ball survival probabilities for all individual batsmen considered were calculated

using Equation (2.13). The survival probabilities for each batsman in each game were plotted to

produce survival curves. The intent was to carry out a qualitative analysis of style in individual

games.

Table 8.4 describes a selection of batsmen and games. Figures 8.1, 8.2 and 8.3 were constructed

to illustrate the ball-by-ball survival probabilities for these batsmen during these games.

Batsman Match Date played

MJ Guptill New Zealand v Australia 08/02/2016

BB McCullum New Zealand v Australia 08/02/2016

DA Warner Australia v South Africa 19/11/2014

AJ Finch Australia v South Africa 19/11/2014

CJ Anderson New Zealand v Sri Lanka 14/02/2015

GD Elliott New Zealand v Sri Lanka 14/02/2015

JP Duminy Sri Lanka v South Africa 06/07/2014

DA Miller Sri Lanka v South Africa 06/07/2014

KD Mills New Zealand v South Africa 21/10/2014

TA Boult New Zealand v South Africa 21/10/2014

S Senanayake Bangladesh v Sri Lanka 17/02/2014

SL Malinga Bangladesh v Sri Lanka 17/02/2014

Table 8.4: ODI batsman match information

Figure 8.1 illustrates a selection of the results from the final model associated with opening
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batsmen.
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Figure 8.1: Survival probabilities for MJ Guptill, BB McCullum, DA Warner and AJ Finch

The results show that in the ODI between New Zealand and Australia, MJ Guptill had higher

survival probabilities than BB McCullum. In the ODI between Australia and South Africa, AJ

Finch had higher survival probabilities than DA Warner.

Of interest is the apparently different roles adopted by each batsman. The lower survival prob-

abilities and steeper slopes are indicative of risky behaviour. Given the survival properties and

the slope of the curves, the results imply that MJ Guptill and AJ Finch opted for a more con-

servative style of play, whilst BB McCullum and DA Warner opted for higher risk strategies

respectively. MJ Guptill scored 59 from 61 (4x4 runs, 3x6 runs) and BB McCullum scored 47

from 27 (6x4 runs, 3x6 runs). New Zealand won the game by 55 runs. In the second game, AJ

Finch scored 109 from 127 (9x4 runs, 3x6 runs) and DA Warner scored 53 from 50 (6x4 runs,

2x6 runs). Australia won the game by 73 runs.

Figure 8.2 illustrates a selection of the results from the final model associated with middle order

batsmen.
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Figure 8.2: Survival probabilities for CJ Anderson, GD Elliott, JP Duminy and DA Miller

GD Elliott and JP Duminy opted for a more conservative style of play, whilst CJ Anderson

and DA Miller opted for higher risk strategies respectively. GD Elliott scored 29 from 34 (2x4

runs, 0x6 runs) and CJ Anderson scored 75 from 46 (8x4 runs, 2x6 runs). New Zealand won

the game by 98 runs. In the second game, JP Duminy scored 16 from 25 (0x4 runs, 0x6 runs)

and DA Miller scored 36 from 21 (2x4 runs, 2x6 runs). South Africa won the game by 75 runs.

Figure 8.3 illustrates a selection of the results from the final model associated with tail batsmen.
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Figure 8.3: Survival probabilities for KD Mills, TA Boult, S Senanayake and SL Malinga

KD Mills and SL Malinga opted for a more conservative style of play, whilst TA Boult and S

Senanayake opted for higher risk strategies respectively. However, these differences in style of

play are fairly small. KD Mills scored 1 from 6 (0x4 runs, 0x6 runs) and TA Boult scored 21

from 33 (2x4 runs, 1x6 runs). South Africa won the game by 6 wickets. In the second game,

SL Malinga scored 0 from 10 (0x4 runs, 0x6 runs) and S Senanayake scored 30 from 48 (2x4

runs, 1x6 runs). Sri Lanka won the game by 13 runs.

The results illustrated in Figures 8.1, 8.2 and 8.3 consider different order batsmen from a variety

of cricketing nations, highlighting the ability for this technique to be used to compare players

from around the world, which is useful for scouting purposes.

8.2.1 Individual Batsman Performance Measures

The area under each survival curve and the total area under all curves for each batsman were

calculated. To account for the differing number of games played by each batsman, the average

AUC for each batsman was computed. This was used as a metric for batsman comparison

purposes. Another metric, the wins-to-games ratio for each batsman was also calculated.

As the average number of games per batsman was approximately five, results for each batsman

were aggregated into groups of five according to their rank ordering, based on the average AUC.

This enabled the average AUC statistic to be assessed as a meaningful measure of performance,

where a higher AUC indicates longer periods of productive time spent at the crease and is

therefore indicative of better performances. This is likely to increase the team’s chances of

winning.

The ODI ICC batting ranking for each batsman was obtained. The ranking used was that

following the most recent international played between 26th December 2013 and 14th February

2016. The average number of runs scored and average proportion of team runs scored for each

cohort were also calculated.
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8.2.2 Individual Batsman Insights

Table 8.5 summarises the batsmen included in the top cohort associated with each batsman

category.

Top cohort Openers Top order Middle

order

Lower

order

Tail

1 V Sibanda S Malik SM Ervine S Shenwari SCJ Broad

2 KC

Sangakkara

N Jamal S Haider LE Plunkett MA Wood

3 SE Marsh MR Marsh Misbah-ul-

Haq

NM

Coulter-Nile

NM

Coulter-Nile

4 MN Samuels LRPL

Taylor

A Ali MN Waller J Nyumbu

5 J Anderson S Ahmed I Wasim MS Wade KMDN

Kulasekara

Table 8.5: Top cohort batsmen

Figure 8.4 compares the average AUC with the average ICC ranking per opening batsman in

each cohort. The size of the bubble is based on the average number of runs scored per cohort,

with that average used to annotate the graph. It is important to note that the ICC ranking

considers all innings compared with the method explored here, which assesses first innings

only. A moderately strong relationship is illustrated between the average AUC and the average

ICC rankings for openers, with a correlation of -0.58.
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Figure 8.4: Average AUC for rank-ordered cohorts compared with ODI ICC batting ranking
for openers and average number of runs scored for the observed time frame (within bubble)

Figure 8.5 compares the average AUC with the average ICC ranking per top order batsman in

each cohort. A moderately strong relationship is illustrated between the average AUC and the

average ICC rankings for top order batsmen, with a correlation of -0.39.
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Figure 8.5: Average AUC for rank-ordered cohorts compared with ODI ICC batting ranking
for top order batsmen and average number of runs scored for the observed time frame (within
bubble)
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Figure 8.6 compares the average AUC with the average ICC ranking per middle order batsman

in each cohort. A moderately strong relationship is illustrated between the average AUC and

the average ICC rankings for middle order batsmen, with a correlation of -0.69.
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Figure 8.6: Average AUC for rank-ordered cohorts compared with ODI ICC batting ranking for
middle order batsmen and average number of runs scored for the observed time frame (within
bubble)

Figure 8.7 compares the average AUC with the average number of runs scored for an opening

batsman in each cohort.
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Figure 8.7: Average AUC for rank-ordered cohorts compared with average number of runs
scored for openers for the observed time frame

Figure 8.8 compares the average AUC with the logit of the average proportion of team runs

scored for an opening batsman in each cohort. A logit transformation of the average proportion

of team runs scored was applied to stabilise the variance.
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Figure 8.8: Average AUC for rank-ordered cohorts compared with logit of the average propor-
tion of team runs scored for openers for the observed time frame

As illustrated in Figures 8.7 and 8.8, the average AUC is strongly related to both the average

number of runs scored and the average proportion of team runs scored. The correlation between

the square root of the average AUC and the square root of the average runs is 0.924. Similarly,

the correlation between the square root of the average AUC and the square root of the average

proportion of team runs scored is 0.929. As expected, these correlations indicate that the more

effective opening batsmen simultaneously occupy the crease and score runs. Importantly, the

nature of the model indicates a steady scoring rate among openers. This starts to set up for

investigation into optimal contribution: optimal batting partnerships in low risk conservation

and high risk aggression.

Figure 8.9 compares the average AUC with the average number of runs scored for a middle

order batsman in each cohort. A strong positive relationship is illustrated between the average
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AUC and the average number of runs scored for middle order batsmen, with a correlation of

0.88.
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Figure 8.9: Average AUC for rank-ordered cohorts compared with average number of runs
scored for middle order batsmen for the observed time frame

Figure 8.10 compares the average AUC with the logit of the average proportion of team runs

scored for a middle order batsman in each cohort. A strong positive relationship is illustrated

between the average AUC and the logit of the average proportion of team runs scored for middle

order batsmen, with a correlation of 0.85.
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Figure 8.10: Average AUC for rank-ordered cohorts compared with logit of the average pro-
portion of team runs scored for middle order batsmen for the observed time frame

Figure 8.11 compares the average AUC against the average number of runs scored for a tail

batsman in each cohort. A strong positive relationship is illustrated between the average AUC

and the average number of runs scored for tail batsmen, with a correlation of 0.84.
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Figure 8.11: Average AUC for rank-ordered cohorts compared with average number of runs
scored for tail batsmen for the observed time frame

Figure 8.12 compares the average AUC with the logit of the average proportion of team runs

scored for a tail batsman in each cohort. A strong positive relationship is illustrated between

the average AUC and the logit of the average proportion of team runs scored for tail batsmen,

with a correlation of 0.84.
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Figure 8.12: Average AUC for rank-ordered cohorts compared with logit of the average pro-
portion of team runs scored for tail batsmen for the observed time frame

From Figures 8.9, 8.10, 8.11 and 8.12, the positive association between a batsman occupying

the crease and the number of runs scored and proportion of team runs scored is not restricted

to opening batsmen. This association is also evident in lower order batsmen. Importantly, the

nature of the model for tail batsmen indicates that the longer tail batsmen remain in bat, the

larger the increase in scoring rate becomes. This highlights that even those batting at 10 and 11

must be capable of scoring runs.

8.3 Model Structure Interpretation

In all models, the longer a player bats, the more likely he is to be dismissed. Of interest are the

other attributes.

1. For openers, these results suggest that a high number of runs scored, consecutive dot

balls faced and balls faced in which less than 2 in 4 runs are scored are associated with

an increased probability of being dismissed.

2. For top order batsmen, a high number of consecutive dot balls, balls faced in which

less than 2 in 4 runs, boundaries scored and a high contribution are associated with an
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increased probability of being dismissed.

3. For middle order batsmen, a high number of runs scored, dot balls faced, balls faced

in which less than 2 in 4 runs and a high contribution are associated with an increased

probability of being dismissed.

4. For lower order batsmen, a high number of runs scored, consecutive dot balls faced, balls

faced in which less than 2 in 4 runs are scored and a high contribution are associated with

an increased probability of being dismissed.

5. For tail batsmen, a high number of runs scored, dot balls faced and balls faced in which

less than 2 in 4 runs are scored are associated with an increased probability of being

dismissed.

These attributes are consistent with intuition in a cricket context. It is particularly important

for openers to score the highest number of runs, by rotating the strike. The more consecutive

dot balls faced, the less frequently the openers rotate the strike. As such, the more likely they

are to be dismissed. In contrast, top order and middle order batsmen are more affected by their

contribution to the team and less affected by consecutive dot balls, compared with openers. Ad-

ditionally, middle order batsmen are more affected by dot balls and occasions where 2 runs or

less are scored within 4 deliveries, compared with openers and top order batsmen respectively.

8.4 Batting Partnership Modelling

The main objective of this research was to investigate the survival rates of batting partnerships

in order to optimise batting partnership strategy. Here, batting strategy refers to determining the

run rate which provides the best chance of winning when setting a total. As shown in Section

8.3, different batsmen may opt for distinct individual strategies. When focussing on batting

partnerships, the event taken for survival analysis was a batsman dismissal. However, the time

to that event was modified and taken to be the total number of balls faced by the corresponding

partnership. The methodology discussed in Section 8.1 was applied to batting partnership data.

A large number of Cox models were fitted to each of the ten partnership datasets associated
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with a given wicket. To achieve model parsimony, each model was fitted consisting of a max-

imum selection of four predictor variables from the eight batting performance metrics at the

partnership level. Table 8.6 illustrates the predictors included in each partnership final model,

together with their estimated coefficients.
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Wicket Model predictors and coefficients

P1 Coef P2 Coef P3 Coef

1 Partnership

dot balls

-2.613 Partnership

boundaries

-0.915 Partnership

contribution

-0.213

2 Partnership

runs

-0.744 Partnership

dot balls

-0.648 Partnership

less than 2 in

4

-0.645

3 Partnership

runs

-1.584 Partnership

consecutive

dot balls

-0.522 Partnership

less than 2 in

4

-0.606

4 Partnership

runs

-1.175 Partnership

dot balls

-2.192 Partnership

contribution

-0.467

5 Partnership

runs

-0.642 Partnership

dot balls

-0.587 Partnership

consecutive

dot balls

-0.650

6 Partnership

runs

-0.797 Partnership

consecutive

dot balls

-1.391 Partnership

contribution

-1.134

7 Partnership

runs

-0.543 Partnership

less than 2 in

4

-1.054 Partnership

contribution

-1.477

8 Partnership

dot balls

-0.407 Partnership

consecutive

dot balls

-0.693 Partnership

contribution

-2.242

9 Partnership

dot balls

-0.404 Partnership

less than 2 in

4

-0.587 Partnership

contribution

-1.751

10 Partnership

runs

-1.796 Partnership

less than 2 in

4

-1.478 Partnership

percentage

dot balls

-0.172

All wickets Partnership

runs

-1.473 Partnership

less than 2 in

4

-1.288 Partnership

contribution

-0.057

Table 8.6: Partnership final model predictors
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For all models described in Table 8.6, evaluation of the proportionality assumption resulted

in no statistical evidence to suggest that any model violated this assumption. With model

fitting, model selection and model checking procedures successfully completed, the eleven

final models were used to generate results, discussed in Section 8.5.

8.5 Batting Partnership Results

The ball-by-ball survival probabilities for all batting partnerships considered were calculated

using Equation (2.13). The survival probabilities for each batting partnership in each game

were plotted to produce survival curves.

Table 8.7 describes a selection of batting partnerships and games. Figures 8.13, 8.14, 8.15 and

8.16 were constructed to illustrate the ball-by-ball survival probabilities for these partnerships

during these games.
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Batting partnership Match Date played

P1 P2

MJ Guptill BB McCullum New Zealand v Sri

Lanka

14/02/2015

CJ Anderson L Ronchi New Zealand v Sri

Lanka

14/02/2015

AJ Finch SE Marsh Australia v England 26/01/2014

GJ Bailey MS Wade Australia v England 26/01/2014

MJ Guptill BB McCullum New Zealand v Sri

Lanka

14/02/2015

AN Cook IR Bell Australia v England 17/01/2014

DA Warner AJ Finch Australia v Pakistan 12/10/2014

S Dhawan RG Sharma India v Pakistan 15/02/2015

EJG Morgan J Root New Zealand v

England

20/02/2015

GJ Maxwell MR Marsh Zimbabwe v

Australia

25/08/2014

GD Elliott LRPL Taylor England v New

Zealand

12/06/2015

AD Mathews KC Sangakkara Sri Lanka v England 03/12/2014

H Hassan S Zadran New Zealand v

Afghanistan

08/03/2015

TA Boult MJ Henry New Zealand v Sri

Lanka

15/01/2015

E Adil R Ali Australia v Pakistan 20/03/2015

PVD Chameera KMDN Kulasekara Scotland v Sri Lanka 11/03/2015

Table 8.7: ODI batting partnership match information

Figure 8.13 illustrates survival curves for different order partnerships in the same ODI game.

The results show that in the ODI between New Zealand and Sri Lanka, MJ Guptill and BB
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McCullum had higher survival probabilities than CJ Anderson and L Ronchi. In the ODI match

between Australia and England, AJ Finch and SE Marsh had higher survival probabilities than

GJ Bailey and MS Wade.
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Figure 8.13: Survival probabilities for MJ Guptill and BB McCullum, CJ Anderson and L
Ronchi, AJ Finch and SE Marsh, GJ Bailey and MS Wade

Of interest is the apparently different roles adopted by each partnership. The lower survival

probabilities and steeper slopes are indicative of risky behaviour. Given the survival properties,

the results imply that MJ Guptill and BB McCullum and AJ Finch and SE Marsh, as partner-

ships, opted for a more conservative style of play, whilst CJ Anderson and L Ronchi and GJ

Bailey and MS Wade opted for a higher risk strategy. MJ Guptill and BB McCullum scored

104 from 97 and New Zealand won the game by 98 runs. CJ Anderson and L Ronchi scored

72 from 38. AJ Finch and SE Marsh scored 11 from 28 and Australia won the game by 5 runs.

GJ Bailey and MS Wade scored 52 from 69.

Figure 8.14 illustrates a selection of the results from the final model associated with opening

partnerships. Given the survival properties, the results imply that DA Warner and AJ Finch

opted for a high risk strategy, on route to 48 from 63. Australia won the game by 1 run.

Similarly, S Dhawan and RG Sharma opted for a high risk strategy, though not as extreme as

DA Warner and AJ Finch. S Dhawan and RG Sharma scored 32 from 45 and Sri Lanka won the

game by 76 runs. In contrast, AN Cook and IR Bell and MJ Guptill and BB McCullum played
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relatively more conservatively. AN Cook and IR Bell scored 52 from 68 in England’s 1 wicket

loss. MJ Guptill and BB McCullum scored 104 from 97 in New Zealand’s win by 98 runs.

The opening batting partnership model consists of partnership dot balls, partnerships bound-

aries and partnership contribution. High values of these predictors are associated with a high

probability of dismissal. As such, the model suggests that the high risk strategies opted by DA

Warner and AJ Finch and S Dhawan and RG Sharma corresponded to a high combination of

‘dot balls-to-balls’ ratio, ‘boundaries-to-balls’ ratio and ‘contribution-to-balls’ ratio.
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Figure 8.14: Survival probabilities for MJ Guptill and BB McCullum, AN Cook and IR Bell,
DA Warner and AJ Finch, S Dhawan and RG Sharma

Figure 8.15 illustrates a selection of the results from the final model associated with fourth

wicket partnerships. GD Elliott and LRPL Taylor opted for a high risk strategy on route to 67

from 34. New Zealand won the game by 13 runs. EJG Morgan and J Root, GJ Maxwell and

MR Marsh and AD Mathews and KC Sangakkara, as partnerships, all played relatively more

conservatively. EJG Morgan and J Root scored 43 from 77 in England’s 8 wicket loss. GJ

Maxwell and MR Marsh scored 109 from 54 in Australia’s win by 198 runs. AD Mathews and

KC Sangakkara played the most conservatively after ball 26. They scored 78 from 86 and Sri

Lanka lost the game by 5 wickets.

The fourth wicket batting partnership model consists of partnership runs, partnership dot balls
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and partnership contribution. High values of these predictors are associated with a high proba-

bility of dismissal. As such, the model suggests that the high risk strategies opted by GD Elliott

and LRPL Taylor correspond to a high combination of ‘runs-to-balls’ ratio, ‘dot balls-to-balls’

ratio and ‘contribution-to-balls’ ratio.
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Figure 8.15: Survival probabilities for EJG Morgan and J Root, GJ Maxwell and MR Marsh,
GD Elliott and LRPL Taylor, AD Mathews and KC Sangakkara

Figure 8.16 illustrates a selection of the results from the final model associated with tenth

wicket partnerships. The survival curves suggest that H Hassan and S Zadran and E Adil and

R Ali played a high risk game. H Hassan and S Zadran scored 18 from 14 in Afghanistan’s 6

wicket loss. E Adil and R Ali scored 18 from 35 in Pakistan’s 6 wicket loss. In contrast, TA

Boult and MJ Henry and PVD Chameera and KMDN Kulasekara appear to have played more

conservatively. TA Boult and MJ Henry scored 26 from 17 in New Zealand’s 6 wicket loss.

PVD Chameera and KMDN Kulasekara scored 27 from 19 in Sri Lanka’s win by 148 runs.

The tenth wicket batting partnership model consists of partnership runs, partnership less than 2

in 4 and partnership percentage dot balls. High values of these predictors are associated with

a high probability of dismissal. As such, the model suggests that the high risk strategies opted

by H Hassan and S Zadran and E Adil and R Ali correspond to a high combination of ‘runs-

to-balls’ ratio, ‘balls faced in which less than 2 in 4 runs had been scored-to-balls’ ratio and
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‘percentage dot balls-to-balls’ ratio.
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Figure 8.16: Survival probabilities for H Hassan and S Zadran, TA Boult and MJ Henry, E Adil
and R Ali, PVD Chameera and KMDN Kulasekara

The results illustrated in Figures 8.13, 8.14, 8.15 and 8.16 consider batting partnerships from

a wide variety of cricketing nations, highlighting the ability for this technique to be used to

compare partnerships from around the world, which is useful for scouting purposes.

8.5.1 Batting Partnership Performance Measures

The area under each survival curve and the total area under all curves for each partnership

were calculated. To account for the differing number of games played by each partnership, the

average AUC for each partnership was computed. This was used as a metric for partnership

comparison purposes. Another metric, the wins-to-games ratio for each batting partnership was

also calculated.

The framework developed in the early work of this thesis, presented in [36], has been lever-

aged to investigate batting partnerships at a deeper level. Results for each partnership were

aggregated into groups of five according to their rank ordering based on the average AUC.

The average number of runs scored and average proportion of team runs scored for each cohort

were also calculated. Each rank-ordered cohort consists of five batting partnerships.
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8.5.2 Batting Partnership Insights

Table 8.8 summarises the partnerships included in the top cohort associated with wickets one

and two.

Top cohort Wicket 1 Wicket 2

P1 P2 P1 P2

1 A Ali S Aslam PJ Hughes SPD Smith

2 A Ali MB Azam AK Zazai NK Mangal

3 DA Miller Q de Kock DG Brownlie KS Williamson

4 A Ali S Ahmed A Shehzad Y Khan

5 IR Bell AN Cook MDKJ Perera HDRL

Thirimanne

Table 8.8: Top cohort partnerships wickets one and two

Table 8.9 summarises the partnerships included in the top cohort associated with wickets three

and four.

Top cohort Wicket 3 Wicket 4

P1 P2 P1 P2

1 TM Dilshan HDRL

Thirimanne

SMA Priyanjan KC Sangakkara

2 H Sohail Misbah-ul-Haq AB de Villiers RR Rossouw

3 A Shehzad A Shafiq TM Dilshan M Jayawardene

4 GS Ballance BA Stokes LD Chandimal KC Sangakkara

5 DM Bravo D Ramdin A Ali S Malik

Table 8.9: Top cohort partnerships wickets three and four

Table 8.10 summarises the partnerships included in the top cohort associated with wickets five

and six.
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Top cohort Wicket 5 Wicket 6

P1 P2 P1 P2

1 F Alam U Akmal A Stanikzai S Shafiqullah

2 TWM Latham KS Williamson JF Mooney SW Poynter

3 KA Pollard LMP Simmons LRPL Taylor MJ Santner

4 N Mangal S Shenwari F Berhardien WD Parnell

5 AD Mathews SMA Priyanjan GJ Bailey MS Wade

Table 8.10: Top cohort partnerships wickets five and six

Table 8.11 summarises the partnerships included in the top cohort associated with wickets seven

and eight.

Top cohort Wicket 7 Wicket 8

P1 P2 P1 P2

1 A Zazai M Ashraf KJ Abbott DW Steyn

2 AD Mathews NLTC Perera S Ahmed W Riaz

3 DAJ Bracewell MJ Santner NM

Coulter-Nile

JP Faulkner

4 R McLaren DW Steyn AF Milne NL McCullum

5 L Ronchi MJ Santner NO Miller R Rampaul

Table 8.11: Top cohort partnerships wickets seven and eight

Table 8.12 summarises the partnerships included in the top cohort associated with wickets nine

and ten.
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Top cohort Wicket 9 Wicket 10

P1 P2 P1 P2

1 SCJ Broad AD Hales TD Chisoro H Masakadza

2 DJ Willey CR Woakes T Muzarabani J Nyumbu

3 AD Mathews BKV Prasad TA Boult MJ Henry

4 S Ahmed S Tanvir PVD Chameera KMDN

Kulasekara

5 MJ

McClenaghan

TG Southee NO Miller R Rampaul

Table 8.12: Top cohort partnerships wickets nine and ten

Figure 8.17 compares the average AUC with the average number of runs scored for an opening

partnership in each cohort.
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Figure 8.17: Average AUC for rank-ordered cohorts compared with average number of runs
scored for opening partnerships for the observed time frame

Figure 8.18 compares the average AUC with the logit of the average proportion of team runs

scored for an opening partnership in each cohort.
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Figure 8.18: Average AUC for rank-ordered cohorts compared with logit of the average pro-
portion of team runs scored for opening partnerships for the observed time frame

As illustrated in Figures 8.17 and 8.18, there are strong relationships between the average AUC

and the average number of runs scored and the average AUC and the average proportion of

team runs scored for opening partnerships.

For opening partnerships, the correlation between the square root of the average AUC and the

square root of the average runs is 0.942. Similarly, the correlation between the square root of

the average AUC and the square root of the average proportion of team runs scored is 0.944.

As expected, these correlations suggest that more effective opening partnerships simultaneously

occupy the crease and score runs at a rate that increases the team’s chances of winning.

The proportion of games won within each cohort is also explored. The correlation between the

average AUC and the logit of the proportion of games won is 0.23. The direction and magnitude

of this statistic indicates that the survival time for an opening partnership is positively associated

with the partnership team winning the match. However, this relationship is statistically weak

and possibly reflects the additional factors involved in winning a ODI game. ODI victory is

not solely based on the ability of batsmen to occupy the crease. It is also based on the ability

of batsmen to score runs at an appropriate pace, at different stages of the innings. ODI victory

also depends on the first innings bowling team defending a total in the second innings.
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For non-opening partnerships at subsequent wickets, both the correlation between the square

root of the average AUC and the square root of the average runs and the correlation between

the square root of the average AUC and the square root of the average proportion of team runs

scored are above 0.8. As when investigating opening partnerships, these correlations suggest

that effective non-opening partnerships simultaneously occupy the crease and produce runs at

a rate that increases the team’s chance of victory.

For third wicket partnerships, the correlation between the logit of the proportion of team runs

scored and the logit of the proportion of games won is 0.31. This suggests a moderate positive

association between the proportion of team runs scored by third wicket partnerships and win-

ning. For fifth wicket partnerships, the correlation between the square root of the average runs

and the logit of the cohort win percentage is 0.12. This means that the onus is on the top order

to optimally score runs.

8.6 Optimisation Procedure

Given the correlations between the four metrics, for each batting partnership at each wicket,

the average AUC, average number of runs scored, average proportion of team runs scored and

win percentage were combined into an overall measure of effectiveness. Effective partnerships

bat for long periods of time, with a scoring rate that increases the team’s chance of defending

their total. This measure was used to determine the top three optimal batting partnerships at

each wicket for cricketing nations during the time period 26th December 2013 to 14th February

2016. Similarly, the top three optimal batting partnerships at each wicket across all considered

nations as a whole were determined. To illustrate these results, Table 8.13 illustrates the top

three optimal opening partnerships for New Zealand and Australia. This provides useful insight

into working strategies.
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New Zealand Australia

P1 P2 P1 P2

1 DG Brownlie MJ Guptill AJ Finch BJ Haddin

2 BB McCullum MJ Guptill AJ Finch DA Warner

3 DG Brownlie AP Devcich AJ Finch PJ Hughes

Table 8.13: Optimal partnerships wicket one New Zealand and Australia

From Table 8.13, DG Brownlie and MJ Guptill are ranked as the optimal New Zealand opening

pair. This is because DG Brownlie is more conservative, while MJ Guptill is more of an ag-

gressive opener. AJ Finch and BJ Haddin are Australia’s optimal openers. Similarly, AJ Finch

plays aggressively, while BJ Haddin is more conservative.

Table 8.14 illustrates the top three optimal opening partnerships for England and India.

England India

P1 P2 P1 P2

1 MM Ali IR Bell S Dhawan AM Rahane

2 IR Bell AN Cook AM Rahane M Vijay

3 AD Hales JJ Roy S Dhawan RG Sharma

Table 8.14: Optimal partnerships wicket one England and India

From Table 8.14, MM Ali and IR Bell are ranked as England’s optimal opening pair and S

Dhawan and AM Rahane are India’s optimal openers. IR Bell and S Dhawan play with an

aggressive style, while MM Ali and AM Rahane play relatively more conservatively.

Table 8.15 illustrates the top three optimal batting partnerships at wicket two for Sri Lanka and

South Africa.
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Sri Lanka South Africa

P1 P2 P1 P2

1 TM Dilshan KC Sangakkara HM Amla AB de Villiers

2 KC Sangakkara HDRL

Thirimanne

HM Amla RR Rossouw

3 MDKJ Perera HDRL

Thirimanne

Q de Kock RR Rossouw

Table 8.15: Optimal partnerships wicket two Sri Lanka and South Africa

From Table 8.15, TM Dilshan and KC Sangakkara are ranked as the optimal Sri Lankan pair at

wicket two. HM Amla and AB de Villiers are South Africa’s optimal pair.

Table 8.16 illustrates the top three optimal batting partnerships at wicket two for West Indies

and Bangladesh.

West Indies Bangladesh

P1 P2 P1 P2

1 CH Gayle MN Samuels M Haque S Rahman

2 DM Bravo CH Gayle A Haque M Haque

3 DM Bravo DR Smith M

Mahmudullah

T Iqbal

Table 8.16: Optimal partnerships wicket two West Indies and Bangladesh

From Table 8.16, for wicket two, CM Gayle and MN Samuels are ranked as West Indies optimal

pair and M Haque and S Rahman are Bangladesh’s optimal pair.

Table 8.17 illustrates the top three optimal batting partnerships at wicket three for Zimbabwe

and Afghanistan.
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Zimbabwe Afghanistan

P1 P2 P1 P2

1 C Ervine H Masakadza A Stanikzai S Shenwari

2 BB Chari SC Williams A Zazai M Nabi

3 H Masakadza R Mutumbami G Naib N Jamal

Table 8.17: Optimal partnerships wicket three Zimbabwe and Afghanistan

From Table 8.17, for wicket three, C Ervine and H Masakadza are ranked as Zimbabwe’s

optimal partnership and A Stanikzai and S Shenwari are Afghanistan’s optimal partnership.

Table 8.18 illustrates the top three optimal batting partnerships at wicket three for Scotland and

Ireland.

Scotland Ireland

P1 P2 P1 P2

1 KJ Coetzer MW Machan A Balbirnie EC Joyce

2 HJW Gardiner PL Mommsen NJ O’Brien WTS

Porterfield

3 RD Berrington PL Mommsen NJ O’Brien PR Stirling

Table 8.18: Optimal partnerships wicket three Scotland and Ireland

From Table 8.18, for wicket three, KJ Coetzer and MW Machan are ranked as Scotland’s

optimal partnership and A Balbirnie and EC Joyce are Ireland’s optimal partnership.

Table 8.19 illustrates the optimal batting partnership at each wicket across, all considered na-

tions as a whole. That is, at each wicket, the partnership that would have maximised their

respective team’s final score and chances of winning by the largest amount.
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Wicket Batting partnership Country

P1 P2

1 A Ali S Aslam Pakistan

2 HM Amla AB de Villiers South Africa

3 H Sohail S Malik Pakistan

4 DJ Bravo FH Edwards West Indies

5 KM Jadhav MK Pandey India

6 STR Binny AT Rayudu India

7 J Buttler AU Rashid England

8 AG Cremer H Masakadza Zimbabwe

9 T Panyangara S Raza Zimbabwe

10 TA Boult L Ronchi New Zealand

Table 8.19: Optimal partnerships nationwide

Those batsmen that are in the incoming batting position are emphasised in bold. For example,

TA Boult bats at position 11. A Ali and S Aslam are ranked as the optimal opening pair, HM

Amla and AB de Villiers are ranked as the optimal partnership at wicket two and TA Boult is

ranked as the optimal number 11 batsman. However, with TA Boult ranked as the number one

bowler in February 2017, that is of greater importance.

This research has successfully derived the optimal batting partnership strategy at each wicket

across all considered nations. That is, those partnerships that would have maximised the score

and winning chances of their respective teams by the largest amount. These partnerships were

particularly effective at occupying the crease, while scoring lots of runs, contributing highly to

their team and increasing their team’s chances of winning.

This research investigated the optimal partnership strategy in the New Zealand team at a deeper

level. Table 8.20 illustrates the optimal batting partnership strategy at each wicket for New

Zealand.
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Wicket Batting partnership

P1 P2

1 MJ Guptill DG Brownlie

2 DG Brownlie KS Williamson

3 BB McCullum LRPL Taylor

4 CJ Anderson JD Ryder

5 TWM Latham KS Williamson

6 TWM Latham L Ronchi

7 HM Nichols MJ Santner

8 AF Milne MJ Santner

9 MJ Henry MJ McClenaghan

10 TA Boult L Ronchi

Table 8.20: Optimal partnership strategy New Zealand

Figure 8.19 shows a decision tree, constructed to illustrate the optimal batting partnership strat-

egy for New Zealand at each wicket, depending on which batsman in the partnership is dis-

missed.

 

Figure 8.19: Decision tree illustrating optimal New Zealand batting partnership strategy

Table 8.21 describes the partnerships, denoted as letters, in the decision tree in Figure 8.19.
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Diagram notation Batting partnership

P1 P2

A MJ Guptill DG Brownlie

B MJ Guptill KS Williamson

C DG Brownlie KS Williamson

D MJ Guptill LRPL Taylor

E KS Williamson LRPL Taylor

F DG Brownlie BB McCullum

G MJ Guptill CJ Anderson

H LRPL Taylor GD Elliott

I KS Williamson GD Elliott

J BB McCullum LRPL Taylor

K MJ Guptill GD Elliott

L CJ Anderson HM Nichols

M GD Elliott CJ Anderson

N LRPL Taylor JDS Neesham

O KS Williamson TWM Latham

P BB McCullum CJ Anderson

Table 8.21: Partnership correspondence

Figure 8.19 shows that MJ Guptill and DG Brownlie are the optimal opening partnership. MJ

Guptill and DG Brownlie had a 100% win percentage when batting together as openers. In

the event that either of these opening batsmen are dismissed, KS Williamson is suggested as

the optimal batsman to bat in position three. DG Brownlie and KS Williamson had a 100%

win percentage when batting together at second wicket. MJ Guptill and KS Williamson had a

70% win percentage when batting together at second wicket. Together with the fact that KS

Williamson is the current New Zealand captain and was ranked as number five in the ICC ODI

player rankings on 8th February 2016, these results suggest that the approach developed to

optimise batting partnership strategy is valid.

In addition, in [4], KS Williamson was acknowledged as “the most important player to his
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team in the world” with the biggest contribution to success in test cricket, spanning the last

three years. KS Williamson is the third top century scorer of any batsman over the last three

years, while he is only one of two players to score over 30% of his team’s hundreds. Further,

KS Williamson has scored 3011 runs in the last three years, considerably higher than the next

best New Zealand batsman, TWM Latham, with 2031 [4]. This further highlights the validity

of the optimisation procedure.

Based on the optimal partnership strategy illustrated in Figure 8.19, an optimal top six New

Zealand batting line up is suggested in Table 8.22.

Batting position Batsman

1 MJ Guptill

2 DG Brownlie

3 KS Williamson

4 LRPL Taylor

5 GD Elliott

6 JDS Neesham

Table 8.22: Optimal New Zealand top six batsmen

8.7 Optimal Batting Partnership Strategy by Risk

In [91], the authors suggested that in one-day cricket there are two extreme batting strategies

from which intermediate strategies can be obtained. The first is an aggressive high risk strategy.

This is where a batsman attempts to score a high number of runs with a greater risk of dismissal.

The second is a conservative low risk strategy. This is where a batsman attempts to preserve

wickets by scoring at a lower rate. This is likely to involve rotating the strike with singles

rather than hitting boundaries. In addition to the ability of batsmen to occupy the crease, ODI

victory depends on the ability of batsmen to score runs at an appropriate pace at different stages

of the innings. This is a possible reflection of the weak relationships between the average

AUC and win percentage, in Section 8.1. Playing riskily to accumulate quickly may be the

best strategy, especially towards the end of the innings if there are wickets in hand. Whereas,
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playing cautiously may be more sensible earlier on.

As such, of interest as part of this research was the optimal partnership strategy depending

on the style of play adopted. For each batting partnership, the average AUC as a ratio of

the combination of the average AUC, average number of runs scored and proportion of team

runs scored was calculated. This ratio was used to determine the level of risk taken by the

partnership. The larger the ratio, the larger the average AUC compared to the number of runs

scored and proportion of team runs scored. This suggests that a large ratio is indicative of an

overall low risk strategy opted by the partnership. The smaller the ratio, the smaller the average

AUC compared to the number of runs scored and proportion of team runs scored. This suggests

that a small ratio is indicative of an overall high risk strategy opted by the partnership.

The risk ratio was used to rank each partnership into a risk strategy category. Ten risk strategy

categories were created. For low risk categories, these were defined as extreme low risk, upper

low risk, moderate low risk, lower low risk and minimal low risk. For high risk categories,

these were defined as extreme high risk, upper high risk, moderate high risk, lower high risk

and minimal high risk. In each risk category, the overall effectiveness measure was used to rank

the partnerships and determine the optimal partnership at each wicket.

Table 8.23 illustrates the optimal batting partnership for an extreme low risk strategy at each

wicket across all considered nations. That is, at each wicket, the partnership that would have

maximised their respective team’s final score and chances of winning by the largest amount,

had the team opted for an extreme low risk strategy.
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Wicket Batting partnership Country

P1 P2

1 DA Warner SR Watson Australia

2 NK Mangal U Ghani Afghanistan

3 AK Zazai N Jamal Afghanistan

4 M Jayawardene KC Sangakkara Sri Lanka

5 M Jayawardene SMA Priyanjan Sri Lanka

6 JL Carter DJ Sammy West Indies

7 RD Berrington J Davey Scotland

8 E Adil W Riaz Pakistan

9 M Tauqir N Aziz United Arab

Emirates

10 M Haq I Wardlaw Scotland

Table 8.23: Optimal extreme low risk partnerships nationwide

Table 8.24 illustrates the optimal batting partnership for an upper low risk strategy at each

wicket, across all considered nations.

Wicket Batting partnership Country

P1 P2

1 TM Dilshan D Karunaratne Sri Lanka

2 I Kayes T Iqbal Bangladesh

3 MJ Clarke SE Marsh Australia

4 A Haque S Al Hasan Bangladesh

5 PJ Hughes SPD Smith Australia

6 A Stanikzai M Shafiqullah Afghanistan

7 R McLaren DW Steyn South Africa

8 S Binny A Mishra India

9 A Hamza D Zadran Afghanistan

10 NO Miller R Rampaul West Indies

Table 8.24: Optimal upper low risk partnerships nationwide
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Table 8.25 illustrates the optimal batting partnership for a moderate low risk strategy at each

wicket, across all considered nations.

Wicket Batting partnership Country

P1 P2

1 A Balbirnie J Anderson Ireland

2 U Tharanga L Thirimanne Sri Lanka

3 A Shafiq Misbah-ul-Haq Pakistan

4 DA Miller Q de Kock South Africa

5 A Haque M Mahmudallah Bangladesh

6 N Zadran S Shenwari Afghanistan

7 CJ Anderson MJ Santner New Zealand

8 KJ Abbott DW Steyn South Africa

9 MJ McClenaghan TG Southee New Zealand

10 L Gamage N Kulasekara Sri Lanka

Table 8.25: Optimal moderate low risk partnerships nationwide

Table 8.26 illustrates the optimal batting partnership for a lower low risk strategy at each wicket,

across all considered nations.
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Wicket Batting partnership Country

P1 P2

1 J Ahmadi N Mangal Afghanistan

2 MJ Clarke PJ Hughes Australia

3 G Naib N Jamal Afghanistan

4 TM Dilshan M Jayawardene Sri Lanka

5 F Berhardien JP Duminy South Africa

6 MM Ali AD Hales England

7 DAJ Bracewell MJ Santner New Zealand

8 JWA Taylor CR Woakes England

9 N Kulasekara S Prasanna Sri Lanka

10 E Adil M Irfan Pakistan

Table 8.26: Optimal lower low risk partnerships nationwide

Table 8.27 illustrates the optimal batting partnership for a minimal low risk strategy at each

wicket, across all considered nations.

Wicket Batting partnership Country

P1 P2

1 A Ali S Ahmed Pakistan

2 K Sadiq N Zadran Afghanistan

3 AB de Villiers K van Wyk South Africa

4 NR Waller SC Williams Zimbabwe

5 DA Miller F du Plessis South Africa

6 L Ronchi MJ Santner New Zealand

7 L Ronchi MJ Santner New Zealand

8 A Raza S Haider United Arab

Emirates

9 NM Coulter-Nile MR Marsh Australia

10 T Muzarabani J Nyumbu Zimbabwe

Table 8.27: Optimal minimal low risk partnerships nationwide
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Table 8.28 illustrates the optimal batting partnership for a minimal high risk strategy at each

wicket across all considered nations. That is, at each wicket, the partnership that would have

maximised their respective team’s final score and chances of winning by the largest amount,

had the team opted for a minimal high risk strategy.

Wicket Batting partnership Country

P1 P2

1 A Ali B Azam Pakistan

2 AJ Finch SE Marsh Australia

3 TM Dilshan L Thirimanne Sri Lanka

4 IR Bell EJG Morgan England

5 WTS Porterfield GC Wilson Ireland

6 GS Ballance BA Stokes England

7 S Maqsood W Riaz Pakistan

8 AF Milne NL McCullum New Zealand

9 S Ahmed S Tanvir Pakistan

10 TS Chisoro H Masakadza Zimbabwe

Table 8.28: Optimal minimal high risk partnerships nationwide

Table 8.29 illustrates the optimal batting partnership for a lower high risk strategy at each

wicket, across all considered nations.
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Wicket Batting partnership Country

P1 P2

1 TM Dilshan L Thirimanne Sri Lanka

2 MDKJ Perera L Thirimanne Sri Lanka

3 H Sohail Misbah-ul-Haq Pakistan

4 DM Bravo D Ramdin West Indies

5 N Mangal S Shenwari Afghanistan

6 LRPL Taylor MJ Santner New Zealand

7 A Zazai M Ashraf Afghanistan

8 M Haque R Hossain Bangladesh

9 SCJ Broad AD Hales England

10 D Chameera S Lakmal Sri Lanka

Table 8.29: Optimal lower high risk partnerships nationwide

Table 8.30 illustrates the optimal batting partnership for a moderate high risk strategy at each

wicket, across all considered nations.

Wicket Batting partnership Country

P1 P2

1 IR Bell AN Cook England

2 DG Brownlie KS Williamson New Zealand

3 A Shehzad A Shafiq Pakistan

4 LD Chandimal KC Sangakkara Sri Lanka

5 TWM Latham KS Williamson New Zealand

6 GJ Maxwell MR Marsh Australia

7 LD Chandimal AD Mathews Sri Lanka

8 NM Coulter-Nile JP Faulkner Australia

9 DJ Willey CR Woakes England

10 D Chameera N Kulasekara Sri Lanka

Table 8.30: Optimal moderate high risk partnerships nationwide
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Table 8.31 illustrates the optimal batting partnership for an upper high risk strategy at each

wicket, across all considered nations.

Wicket Batting partnership Country

P1 P2

1 A Ali S Aslam Pakistan

2 GJ Bailey SPD Smith Australia

3 CR Ervine H Masakadza Zimbabwe

4 AB de Villiers JP Duminy South Africa

5 JE Root BA Stokes England

6 F Berhardien WD Parnell South Africa

7 A Ali U Akmal Pakistan

8 CJ Jordan EJG Morgan England

9 AD Mathews D Prasad Sri Lanka

10 AM Guruge S Anwar United Arab

Emirates

Table 8.31: Optimal upper high risk partnerships nationwide

Table 8.32 illustrates the optimal batting partnership for an extreme high risk strategy at each

wicket, across all considered nations.
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Wicket Batting partnership Country

P1 P2

1 A Ali M Hafeez Pakistan

2 HM Amla AB de Villiers South Africa

3 H Sohail S Malik Pakistan

4 DJ Bravo FH Edwards West Indies

5 KM Jadhav MK Pandey India

6 STR Binny AT Rayudu India

7 JC Buttler AU Rashid England

8 AG Cremer H Masakadza Zimbabwe

9 T Panyangara S Raza Zimbabwe

10 TA Boult L Ronchi New Zealand

Table 8.32: Optimal extreme high risk partnerships nationwide

8.8 Case Study

On 4th December 2016, New Zealand played Australia in a ODI and lost by 68 runs. Former

Black caps all-rounder and Auckland A cricket coach, AR Adams, criticised the New Zealand

coaching staff for their batting order changes in that game [15].

AR Adams questioned the choice of JDS Neesham as number four. C Munro batted as number

six and C de Grandhomme batted as number eight. Given how successfully Aucklanders, C

Munro and C de Grandhomme, batted in domestic cricket in 2016, AR Adams suggested that

C Munro and C de Grandhomme should have been played in positions four and five, followed

by BJ Watling and JDS Neesham [15].

The objective of this case study was to determine the optimal New Zealand batting order for the

game against Australia to assess whether it aligns with AR Adams’s suggestions, and demon-

strate the practical application of this research.

The New Zealand batting order against Australia is illustrated in Table 8.33.
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Batting position Batsman

1 MJ Guptill

2 TWM Latham

3 KS Williamson

4 JDS Neesham

5 BJ Watling

6 C Munro

7 MJ Santner

8 C de Grandhomme

9 MJ Henry

10 LH Ferguson

11 TA Boult

Table 8.33: New Zealand order against Australia 4th December

As part of this research, the final models were fitted to data from the first innings of limited

overs cricket games. In the ODI between Australia and New Zealand, New Zealand batted in

the second innings. To account for this, the models were applied to data from the most recent

ODI game prior to 4th December 2016, in which New Zealand batted in the first innings. New

Zealand’s opponents in this game were India, with the game contested on 26th October 2016.

The intent was to use the performance of batsmen in the ODI against India as an indication of

how these batsmen would have performed in the ODI against Australia. As such, the optimal

New Zealand batting order against India could be used as an indicator to suggest the order that

would have likely optimised the scoring rates and chances of winning against Australia.

Each batsman was assigned a measure of effectiveness based on the average AUC, total number

of runs scored, proportion of team runs scored and strike rate.

8.8.1 Bootstrapping

Bootstrapping is a technique used to re-sample data without replacement and allows estimation

of the sampling distribution of a statistic [73]. As the analysis in this case study was based on



115 8.8. Case Study

one game, bootstrapping was used to generate 1000 bootstrap samples of batsman effectiveness.

To determine the optimal batting order, the process was repeated with a different batsman

removed each time. Table 8.34 illustrates the New Zealand batting order used in the ODI game

against India.

Batting position Batsman

1 MJ Guptill

2 TWM Latham

3 KS Williamson

4 LRPL Taylor

5 JDS Neesham

6 BJ Watling

7 AP Devcich

8 MJ Santner

9 TG Southee

Table 8.34: New Zealand batting order against India 26th October

Each bootstrapped sample consisted of the effectiveness of each batsman from Table 8.34, with

one batsman removed. In this particular game, New Zealand only used nine batsmen. As

such, each bootstrapped sample contained eight observations. The bootstrapping procedure

was repeated to give 1000 samples. The mean effectiveness for the team was calculated for

each sample. The mean of those means was used as a rating of effectiveness for the team

with the batsman excluded from analysis. The rating was then used to determine where that

batsman was positioned in the optimal batting order. The optimal batting order is the order that

would have maximised the team’s final score and chances of winning. The smaller the rating

associated with each batsman, the less effective the team would have been without the batsman

and the higher the batsman was optimally positioned.
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8.8.2 Optimal New Zealand Order Against India 26th October 2016

Table 8.35 illustrates New Zealand batsmen based on their position in the optimal order, com-

pared with where they were actually positioned in the ODI against India.

Position Optimal batsman Actual batsman

1 MJ Guptill MJ Guptill

2 TWM Latham TWM Latham

3 KS Williamson KS Williamson

4 LRPL Taylor LRPL Taylor

5 BJ Watling JDS Neesham

6 AP Devcich BJ Watling

7 JDS Neesham AP Devcich

8 MJ Santner MJ Santner

9 TG Southee TG Southee

Table 8.35: Suggested New Zealand order compared with actual New Zealand order against
India 26th October

Table 8.35 illustrates that optimally, JDS Neesham should have been positioned as number

seven, behind both BJ Watling and AP Devcich.

8.8.3 Optimal New Zealand Order Against Australia 4th December 2016

The optimal order suggested in Table 8.35 was used to optimally position New Zealand batsmen

in the primary ODI of interest against Australia.

Given that C Munro and C de Grandhomme were not involved in the ODI between India and

New Zealand or any previous ODI contested in 2016, a rating of effectiveness from the optimi-

sation procedure could not be derived for these batsmen.

As such, a different approach was taken to determine the optimal position for C Munro and

C de Grandhomme, relative to BJ Watling and JDS Neesham. The Plunket Shield is New

Zealand’s domestic first-class cricket competition. The 2016-2017 season is the most recent
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competition in which C Munro, C de Grandhomme and JDS Neesham had all batted. As such,

in order to compare these batsmen, this research investigated their domestic performances in

the Plunket Shield. However, the Plunket Shield does not categorise as limited overs cricket.

Consequently, the final models and optimisation procedure could not be applied to games from

this competition. The optimisation procedure used to rate the New Zealand batsmen against

India accounted for AUC, total runs scored, proportion of team runs scored and strike rate.

Given this, batting averages in the 2016-2017 Plunket Shield competition were used to compare

the effectiveness of C Munro and C de Grandhomme with that of BJ Watling and JDS Neesham.

The intent was to compare the most recent performance of these batsmen prior to the ODI

between Australia and New Zealand, within the same competition for the same period. This

is likely to have been indicative of where to position these batsmen, relative to each other, in

the optimal New Zealand order against Australia. Despite being from different competitions

and formats, these performances are an adequate proxy of batting performance, primarily due

to the timeliness of observations.

During the period of the 2016-2017 Plunket Shield season prior to New Zealand’s ODI on

4th December, C Munro and C de Grandhomme were scoring at a considerably higher rate

compared with JDS Neesham. C Munro was averaging 84.50, while C de Grandhomme was

averaging 54.00 [16]. JDS Neesham averaged 8.00 in the same competition for the same period

[10]. BJ Watling had not played any domestic cricket during the 2016-2017 season prior to 4th

December 2016. However, in ODIs, BJ Watling was averaging 26.09 compared with 21.75

for JDS Neesham [16]. As such, comparative ratings of effectiveness for C Munro and C de

Grandhomme would likely have been higher than the actual ratings calculated for BJ Watling

and JDS Neesham, based on the optimisation procedure. This supports AR Adams’s suggestion

to play C Munro and C de Grandhomme as number four and five respectively, with BJ Watling

and JDS Neesham as number six and seven respectively.

Similarly, lower order batsmen, MJ Henry, LH Ferguson and TA Boult did not bat in the ODI

between India and New Zealand on 26th October. With the exception of LH Ferguson, the other

eight batsmen from Table 8.35 batted in the previous game between India and New Zealand on

23rd October 2016. As such, the final models were applied to this game and a measure of

effectiveness was assigned to each batsman, as discussed in Section 8.8. The bootstrapping
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procedure, discussed in Section 8.8.1, was applied to rate each batsman. The rating was then

used to position each batsman in the optimal order.

LH Ferguson completed his ODI debut against Australia. Given his lack of ODI experience,

LH Ferguson is positioned as number eleven in the optimal order.

Table 8.36 illustrates the New Zealand order that would have likely optimised the scoring rates

and chances of winning against Australia. This is compared with the actual batting order.

Position Optimal batsman Actual batsman

1 MJ Guptill MJ Guptill

2 TWM Latham TWM Latham

3 KS Williamson KS Williamson

4 C Munro JDS Neesham

5 C de Grandhomme BJ Watling

6 BJ Watling C Munro

7 JDS Neesham MJ Santner

8 MJ Henry C de Grandhomme

9 MJ Santner MJ Henry

10 TA Boult LH Ferguson

11 LH Ferguson TA Boult

Table 8.36: Optimal New Zealand order compared with actual New Zealand order against
Australia 4th December

Based on the findings in Table 8.36, New Zealand appear to have utilised a suboptimal order

with JDS Neesham and BJ Watling batting at four and five respectively. Given the circum-

stances, C Munro and C de Grandhomme were quantified as a more optimal order.

In the ODI between New Zealand and Australia, BJ Watling struggled, only scoring 6 from 13

before being dismissed. JDS Neesham scored 34 from 62. C Munro recorded the highest score,

49 from 59, of the three batsmen. The optimal batting order is consistent with this, suggesting

C Munro should have batted before BJ Watling and JDS Neesham, as number four. This would

have improved New Zealand’s chances of winning, based on previously observed individual
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batting strategies.

8.9 Chapter Remarks

This chapter has applied Cox proportional hazard modelling, censoring and ridge regression

techniques to investigate the survival properties of individual batsmen and batting partnerships

in limited overs cricket games. This framework has been used to successfully optimise bat-

ting partnership strategy across global cricket nations. This chapter addressed the first four

limitations of previous work. Namely, performance metrics that have a significant effect on

the probability of a batsman dismissal were identified. This chapter considered the effects of

within-game events on batsman survival with success. Cox models were applied to generate

survival probabilities for opening and non-opening batsmen and batting partnerships. These

were used to successfully optimise batting partnership strategy. The final limitation outlined

in Section 3.3 in Chapter 3 was associated with a lack of final model validation. This will be

addressed in Chapter 9.

The optimal opening partnership consists of Pakistani openers, A Ali and S Aslam. The optimal

wicket two batting partnership consists of South African pair, HM Amla and AB de Villiers.

HM Amla and AB de Villiers had a 100% winning rate when batting together as a second

wicket partnership. The optimal wicket six partnership consists of Indian pair, STR Binny and

AT Rayudu.

New Zealand captain, KS Williamson is the optimal batsman in position three, irrespective of

which opener is dismissed. At the time of New Zealand’s loss against Australia on 4th Decem-

ber 2016, KS Williamson was ranked as number five in the ICC ODI rankings. Additionally,

in [4], KS Williamson was acknowledged as “the most important player to his team in the

world”.

Reviewing New Zealand’s loss against Australia on 4th December 2016, indicates a subopti-

mal order was used, with JDS Neesham and BJ Watling batting at four and five respectively.

Given the circumstances, C Munro and C de Grandhomme were quantified as a more optimal

order. This supported the batting order suggestions made by former Black caps all-rounder and
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Auckland A coach, AR Adams.

To ensure complete case analysis, performance from other competitions was used. This demon-

strated the wider applicability and usefulness of this methodology for scouting and selection

purposes.

The work presented throughout this chapter, in [35], was peer-reviewed and published in Math-

sport International 2017 Conference proceedings.



Chapter 9

Model Validation
This chapter discusses the application of the final models to IPL data and draws conclusions

based on a comparison with the model application to ODI data. These comparisons highlight

the differences in performance between ODI and IPL batsmen and partnerships. These differ-

ences are practical, suggesting the associated models are valid.

9.1 Model Validation Methodology

This research applied the data extraction and manipulation methodology discussed in Chapter

4 to data from the 2016 IPL season. Games in this league were contested between 9th April

and 29th May 2016.

Each final model was initially fitted to the corresponding IPL data. For example, the final model

associated with middle order ODI batsmen was applied to data associated with middle order

IPL batsmen. Using methodology discussed in Section 8.2 in Chapter 8, survival probabilities

for IPL individual batsmen were generated and plotted against survival probabilities for ODI

individual batsmen. The Area Under the Curve (AUC) was calculated as a metric to determine

which models generated survival probabilities characterising the largest difference between IPL

batsmen and ODI batsmen.

9.2 Individual Batsman Model Validation Results

A selection of batsmen across a variety of games was used to illustrate the results of the process

used to validate the final models associated with individual batsmen. Table 9.1 describes each

batsman and the respective game they played. Figures 9.1, 9.2 and 9.3 were constructed to

illustrate the differences between ball-by-ball survival probabilities for ODI batsmen and IPL

batsmen.

121
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Batsman Match Date played

IR Bell Australia v England 24/01/2014

G Gambhir Kolkata Knight Riders v

Mumbai Indians

13/04/2016

KS Williamson New Zealand v Sri Lanka 14/02/2015

SV Samson Delhi Daredevils v Mumbai

Indians

23/04/2016

CJ Anderson New Zealand v Australia 06/02/2016

P Ojha Sunrisers Hyderabad v

Kolkata Knight Riders

16/04/2015

H Singh Mumbai Indians v Rising

Pune Supergiants

09/04/2016

LM Jongwe Zimbabwe v Afghanistan 22/10/2015

P Sahu Delhi Daredevils v Kings XI

Punjab

15/04/2016

AM Guruge India v United Arab

Emirates

28/02/2015

SPD Smith Rising Pune Supergiants v

Gujarat Lions

15/04/2016

EJG Morgan Australia v England 19/01/2014

Table 9.1: Batsman match information

Figure 9.1 was constructed to illustrate the differences between ball-by-ball survival probabil-

ities for ODI and IPL openers. IR Bell had higher survival probabilities than G Gambhir. IR

Bell opted for a conservative approach, on route to 55 from 52 (9x4 runs, 0x6 runs). G Gambhir

opted for a relatively higher risk strategy, on route to 64 from 52 (4x4 runs, 1x6 runs).
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Figure 9.1: Survival probabilities for IR Bell (ODI) and G Gambhir (IPL)

Figure 9.2 was constructed to illustrate the differences between ball-by-ball survival probabili-

ties for ODI and IPL top order batsmen. KS Williamson had higher survival probabilities than

SV Samson. KS Williamson opted for a conservative approach, on route to 57 from 65 (5x4

runs, 1x6 runs). SV Samson played a relatively higher risk game, on route to 60 from 48 (4x4

runs, 2x6 runs).
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Figure 9.2: Survival probabilities for KS Williamson (ODI) and SV Samson (IPL)



Chapter 9. Model Validation 124

Figure 9.3 was constructed to illustrate the differences between ball-by-ball survival probabili-

ties for ODI and IPL middle order batsmen. CJ Anderson had higher survival probabilities than

P Ojha. CJ Anderson opted for a conservative approach, on route to 16 from 28 (0x4 runs, 1x6

runs). P Ojha played a relatively higher risk game, on route to 37 from 28 (2x4 runs, 2x6 runs).
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Figure 9.3: Survival probabilities for CJ Anderson (ODI) and P Ojha (IPL)

These results are practical because batsmen in IPL games tend to play a high risk game in order

to be successful. Successful IPL batsmen score lots of runs at a rapid rate that increases over

the course of the innings. A higher risk approach maximises the chances of scoring a higher

number of runs than the opposition with only 20 allocated overs in which to do so. In contrast,

batsmen in ODI games tend to play more conservatively in order to be successful. Successful

ODI batsmen simultaneously remain in bat for a long period of time and score a high number

of runs. A more conservative approach maximises the chances of the batting team using all 50

allocated overs.

9.2.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is a non-parametric test used to assess whether two sam-

ples come from the same distribution. The hypotheses tested are H0 : The samples come from

the same distribution vs H1: The samples come from different distributions [72].
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9.2.1.1 KS Test and Survival Probabilities

This research applied the KS test to assess for statistical evidence of a difference in distribution

between the survival probabilities of IPL batsmen and the survival probabilities of ODI bats-

men. In each test, one sample consisted of the survival probabilities for an IPL batsman from

Table 9.1, and another consisted of the survival probabilities for an ODI batsman from Table

9.1.

Table 9.2 illustrates the p-values from a KS test applied to survival curves in Figures 9.1, 9.2

and 9.3.

IPL batsman ODI batsman KS test p-value

IR Bell G Gambhir 0.007

SV Samson KS Williamson 1.171e-08

P Ojha CJ Anderson 6.064e-08

H Singh LM Jongwe 5.377e-06

P Sahu AM Guruge 0.1482

SPD Smith EJG Morgan 0.001343

Table 9.2: Survival Probabilities KS test

From Table 9.2, the results of the KS test suggest that the distribution of survival probabilities

differs the most between top order batsmen, SV Samson and KS Williamson.

This suggests that the difference in risk strategy between ODI and IPL batsmen is most evident

in those batsmen who play in top order positions. IPL top order batsmen need to ensure they

set a high scoring rate in preparation for potentially less effective lower order batsmen, while

top order ODI batsmen need to give themselves and the team the greatest chance of using all

50 overs.

9.2.1.2 KS Test and AUC

This research also applied the KS test to assess for statistical evidence of a difference in distribu-

tion between the cumulative AUC for IPL batsmen and the cumulative AUC for ODI batsmen.
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Table 9.3 illustrates the p-values from a KS test applied to the cumulative AUC associated with

batsmen from Figures 9.1, 9.2 and 9.3.

IPL batsman ODI batsman KS test p-value

IR Bell G Gambhir 1.996e-11

SV Samson KS Williamson 2.2e-16

P Ojha CJ Anderson 8.493-09

H Singh LM Jongwe 6.661e-16

P Sahu AM Guruge 0.001406

SPD Smith EJG Morgan 4.441e-16

Table 9.3: AUC KS test

From Table 9.3, the results of the KS test suggest that the distribution of cumulative AUC

differs the most between top order batsmen, SV Samson and KS Williamson.

Table 9.4 summarises the differences in total AUC between ODI batsmen and IPL batsmen.
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IPL batsman ODI batsman Difference in AUC

G Gambhir IR Bell 6.951

SV Samson KS Williamson 25.267

P Ojha CJ Anderson 14.609

H Singh LM Jongwe 8.598

P Sahu AM Guruge 2.754

SPD Smith EJG Morgan 16.220

Table 9.4: Difference in AUC between IPL and ODI batsmen

As illustrated in Table 9.4, the results found that the curve that produced the largest difference

in total AUC for IPL batsmen compared to ODI batsmen was generated through the model

associated with top order batsmen, SV Samson and KS Williamson. This is consistent with the

results of the KS test application. These results are also practical, as higher order ODI batsmen

tend to play more conservatively than lower order ODI batsmen, and higher order IPL batsmen

tend to opt for a higher risk strategy than lower order IPL batsmen.

The ability of the final models to distinguish between higher survival probabilities for batsmen

in ODI games and lower survival probabilities for batsmen in IPL games suggests the final

models are valid. This is due to the difference in style of play adopted by players in ODI games

compared to IPL games. Batsmen in IPL games play more aggressively and are more likely to

be dismissed than batsmen in ODI games.

9.3 Batting Partnership Model Validation Results

A selection of batting partnership combinations across a variety of games were used to illustrate

the results of the process used to validate the batting partnership models. Table 9.5 describes

each IPL batting partnership and the respective game they played. These partnerships were

selected, as each pair of partnerships being compared faced a similar number of balls in their

respective game.
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Batting partnership Match Date played

P1 P2

M Vijay M Vohra Kings XI Punjab v

Gujarat Lions

11/04/2016

AB de Villiers V Kohli Royal Challengers

Bangalore v Sunrisers

Hyderabad

12/04/2016

S Dhawan Y Singh Mumbai Indians v

Sunrisers Hyderabad

08/05/2016

SW Billings KK Nair Delhi Daredevils v

Kolkata Knight Riders

30/04/2016

S Al Hasan YK Pathan Kolkata Knight Riders

v Gujarat Lions

08/05/2016

P Ojha S Dhawan Sunrisers Hyderabad v

Rising Pune

Supergiants

26/04/2016

DJ Bravo JP Faulkner Delhi Daredevils v

Gujarat Lions

27/04/2016

J Yadav CH Morris Delhi Daredevils v

Royal Challengers

Bangalore

22/05/2016

NM Coulter-Nile A Mishra Kolkata Knight Riders

v Delhi Daredevils

10/04/2016

NM Coulter-Nile Z Khan Kolkata Knight Riders

v Delhi Daredevils

10/04/2016

PA Patel AT Rayudu Kings XI Punjab v

Mumbai Indians

25/04/2016

Table 9.5: Partnership match information
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Table 9.6 describes each ODI batting partnership and the respective game they played.

Batting partnership Match Date played

P1 P2

MJ Guptill JD Ryder New Zealand v India 31/01/2014

V Kohli AM Rahane India v West Indies 17/10/2014

GS Ballance BA Stokes Australia v England 19/01/2014

K Khan R Mustafa United Arab

Emirates v

Afghanistan

02/12/2014

GJ Bailey MR Marsh Australia v South

Africa

16/11/2014

N Hossain S Rahman Bangladesh v

Zimbabwe

09/11/2015

KMDN Kulasekara SMA Priyanjan Ireland v Sri Lanka 06/05/2014

S Khan W Riaz Pakistan v

Zimbabwe

01/03/2015

MJ McClenaghan TG Southee New Zealand v India 25/01/2014

NO Miller R Rampaul West Indies v

England

02/03/2014

H Masakadza R Mutumbami Afghanistan v

Zimbabwe

06/01/2016

Table 9.6: Partnership match information

Figure 9.4 was constructed to illustrate the differences between ball-by-ball survival proba-

bilities for ODI and IPL opening partnerships. MJ Guptill and JD Ryder had higher survival

probabilities than M Vijay and M Vohra. MJ Guptill and JD Ryder played conservatively, on

route to 22 from 46. M Vijay and M Vohra opted for a higher risk strategy, on route to 78 from

50.
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Figure 9.4: Survival probabilities for MJ Guptill and JD Ryder (ODI) and M Vijay and M Vohra
(IPL)

Figure 9.5 was constructed to illustrate the differences between ball-by-ball survival probabili-

ties for ODI and IPL wicket two partnerships. From Figure 9.5, V Kohli and AM Rahane had

higher survival probabilities than AB de Villiers and V Kohli. V Kohli and AM Rahane played

conservatively, on route to 72 from 91. AB de Villiers and V Kohli played a higher risk game,

on route to 157 from 87.
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Figure 9.6 was constructed to illustrate the differences between ball-by-ball survival probabili-

ties for ODI and IPL wicket three partnerships. From Figure 9.6, GS Ballance and BA Stokes

had higher survival probabilities than S Dhawan and Y Singh. GS Ballance and BA Stokes

played conservatively, on route to 21 from 51. S Dhawan and Y Singh played a higher risk

game, on route to 85 from 49.
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Figure 9.6: Survival probabilities for GS Ballance and BA Stokes (ODI) and S Dhawan and Y
Singh (IPL)

9.3.1 KS Test and Partnership Survival Probabilities

This research applied the KS test to assess for statistical evidence of a difference in distribu-

tion between the survival probabilities for IPL partnerships and the survival probabilities for

ODI partnerships. In each test, one sample consisted of the survival probabilities for an IPL

partnership and another consisted of survival probabilities for an ODI partnership.

Table 9.7 illustrates the p-values from a KS test applied to survival curves in Figures 9.4, 9.5

and 9.6.
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IPL batting partnership ODI batting partnership KS test p-value

P1 P2 P1 P2

M Vijay M Vohra MJ Guptill JD Ryder 2.453e-05

AB de Villiers V Kohli V Kohli AM Rahane 0.01671

S Dhawan Y Singh GS Ballance BA Stokes 5.459e-10

SW Billings KK Nair K Khan R Mustafa 0.0002322

S Al Hasan YK Pathan GJ Bailey MR Marsh 0.01458

P Ojha S Dhawan N Hossain S Rahman 5.221e-08

DJ Bravo JP Faulkner KMDN

Kulasekara

SMA Priyanjan 0.08597

J Yadav CH Morris S Khan W Riaz 0.001213

NM

Coulter-Nile

A Mishra MJ

McClenaghan

TG Southee 3.609e-06

NM

Coulter-Nile

Z Khan N Miller R Rampaul 0.001106

PA Patel AT Rayudu H Masakadza R Mutumbami 5.127e-05

Table 9.7: Survival probabilities KS test

From Table 9.7, the results of the KS test suggest the difference in survival probabilities is

largest for wicket three partnerships S Dhawan and Y Singh and GS Ballance and BA Stokes.

9.3.2 KS Test and Partnership AUC

This research also applied the KS test to assess for statistical evidence of a difference in dis-

tribution between the cumulative AUC for IPL partnerships and the cumulative AUC for ODI

partnerships.

Table 9.8 illustrates the p-values from a KS test applied to the cumulative AUC associated with

partnerships from Figures 9.4, 9.5 and 9.6.
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IPL batting partnership ODI batting partnership KS test p-value

P1 P2 P1 P2

M Vijay M Vohra MJ Guptill JD Ryder 3.533e-11

AB de Villiers V Kohli V Kohli AM Rahane 2.22e-16

S Dhawan Y Singh GS Ballance BA Stokes 8.26e-14

SW Billings KK Nair K Khan R Mustafa 6.661e-16

S Al Hasan YK Pathan GJ Bailey MR Marsh 6.661e-16

P Ojha S Dhawan N Hossain S Rahman < 2.2e-16

DJ Bravo JP Faulkner KMDN

Kulasekara

SMA Priyanjan 4.084e-07

J Yadav CH Morris S Khan W Riaz 9.711e-09

NM

Coulter-Nile

A Mishra MJ

McClenaghan

TG Southee 3.065e-06

NM

Coulter-Nile

Z Khan N Miller R Rampaul 0.0003936

PA Patel AT Rayudu H Masakadza R Mutumbami 2.22e-16

Table 9.8: AUC KS test

From Table 9.8, the results of the KS test suggest the distribution of cumulative AUC differs

the most between wicket six partnerships, P Ojha and S Dhawan and N Hossain and S Rahman.

Table 9.9 summarises the differences in total AUC between ODI and IPL partnerships.
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IPL batting partnership ODI batting partnership Difference in

AUC

P1 P2 P1 P2

M Vijay M Vohra MJ Guptill JD Ryder 17.066

AB de Villiers V Kohli V Kohli AM Rahane 16.695

S Dhawan Y Singh GS Ballance BA Stokes 25.827

SW Billings KK Nair K Khan R Mustafa 22.497

S Al Hasan YK Pathan GJ Bailey MR Marsh 11.026

P Ojha S Dhawan N Hossain S Rahman 15.827

DJ Bravo JP Faulkner KMDN

Kulasekara

SMA Priyanjan 6.143

J Yadav CH Morris S Khan W Riaz 8.695

NM

Coulter-Nile

A Mishra MJ

McClenaghan

TG Southee 11.823

NM

Coulter-Nile

Z Khan N Miller R Rampaul 9.416

PA Patel AT Rayudu H Masakadza R Mutumbami 18.050

Table 9.9: Difference in AUC between ODI and IPL partnerships

As illustrated in Table 9.9, the results found that the curves that produced the largest differences

in total AUC for IPL partnerships compared to ODI partnerships, were generated through the

model associated with wicket three partnerships, S Dhawan and Y Singh and GS Ballance and

BA Stokes. This is practical, as ODI partnerships at early wickets tend to be more conservative

than ODI partnerships at later wickets and IPL partnerships at early wickets tend to play a

higher risk game than IPL partnerships at later wickets.

These results are practical because partnerships in IPL games tend to play a high risk game

in order to be successful. Successful IPL partnerships score lots of runs at a rapid rate that

increases over the course of the innings. A higher risk approach maximises the chances of

scoring a higher number of runs than the opposition, with only 20 allocated overs in which to

do so. In contrast, partnerships in ODI games tend to play more conservatively in order to be
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successful. Successful ODI batsmen simultaneously remain in bat for a long period of time

and score a high number of runs. A more conservative approach maximises the chances of the

batting team using all 50 allocated overs.

The ability of the final models to distinguish between higher survival probabilities for partner-

ships in ODI games compared with partnerships in IPL games suggests the final models are

valid. This is due to the difference in style of play adopted by partnerships in ODI games com-

pared to IPL games. Partnerships in IPL games play more aggressively and are more likely to

be dismissed than batsmen in ODI games.

9.4 Chapter Remarks

This chapter illustrated how each formulated model was able to successfully distinguish be-

tween higher survival probabilities for batsmen and partnerships in ODI games compared with

those in IPL games. This formed an effective way of validating each model. Consequently,

this chapter addressed the model validation limitation in Section 3.3 in Chapter 3. In addition,

application of the KS test provided insights into strategical differences opted by ODI and IPL

batsmen in particular positions and partnerships at particular wickets. Chapter 10 will include

a discussion of this research and how it has addressed the gap in the literature, an overview

of potential areas of future research and concludes with a summary of the key results of this

research.



Chapter 10

Discussion, Future Research and Conclu-

sion

10.1 Discussion

In cricket, given that teams that win earn bigger prize money, it is important for managers and

coaching staff to maximise their chances of success. To succeed, it is essential that player se-

lection and strategic decisions using analytical techniques can provide a competitive advantage.

Using analytics optimises the effectiveness of player performance and consequently the success

of the team, by providing objective transparency into what it takes to win a game of cricket.

This research was motivated by the lack of academic literature surrounding survival analysis

applications to the performance of batsmen and batting partnerships, the rapid growth within

cricket and the importance in understanding the factors behind a team’s ability to win. Partic-

ularly challenging is how to optimally set a total. This is, how should batsmen approach an

innings to ensure they score as many runs as possible, while minimising the risk, such that all

available overs in the first innings are used?

The application of survival analysis techniques to individual batsman performance is not an

entirely new area, with several pieces of previous work covering this ( [65], [37], [60], [36],

[90]). However, there were a variety of shortcomings in these areas of work:

1. Lack of performance metrics as predictors

2. Lack of focus into within-game events

3. Lack of analysis investigating different order individual batsmen

4. Lack of analysis investigating batting partnerships

136
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5. Lack of final model validation

Each of these shortcomings was rigorously addressed in this research. Data were split into mul-

tiple subsets. Data associated with individual batsmen were split according to the individual’s

batting position. Data associated with batting partnerships were split according to the wicket

when the partnership was played. Using a combination of Cox proportional hazard modelling,

ridge regression techniques and censoring techniques, Cox models were formulated, for each

subset of data, with a selection of within-game events included as predictors. Examples of

these predictors included runs scored, dot balls, boundaries scored and contribution. These

models were used to calculate the ball-by-ball probability of a batsman or batting partnership

facing the next ball without being dismissed in the first innings of a limited overs cricket match.

Performance metrics considering survival probabilities, run totals and winning were success-

fully generated to rank batsmen and batting partnerships. These were used to determine optimal

partnership combinations across global cricketing nations. Unlike batting in the second innings,

where a total is known, the first innings requires the team to score as many runs as possible.

This research provides a framework to assess the value of the observed strategies of batsmen,

to enable a total that maximises the team’s chances of winning to be adopted.

10.2 Future Research

In Chapter 9, the formulated models were successfully validated. However, there are shortcom-

ings of this research:

1. Distinction between different phases of an innings

There may be certain times (i.e. number of balls faced) when the models are able to

calculate the probability of partnership dismissal more accurately than at other times.

Investigating this issue is a potential area of further research.

2. Lack of analysis investigating the performance of batsmen and partnerships in the

second innings

The developed models in this research were fitted to data from the first innings of a

selection of ODI games and IPL games. The emphasis on first innings was due to the lack
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of previous research into what a match winning total should be. Another area of future

work could involve extending this research to investigate the performance of batsmen

and partnerships participating in the second innings of limited overs cricket games.

3. Lack of comparison with different T20 cricket leagues

Given that the IPL focuses on Indian matches and conditions, another area of future work

could involve extending this research to investigate the performance of individual bats-

men and partnerships participating in other T20 cricket leagues such as the Big Bash

League in Australia or the T20 cup contested in England and Wales. This may reveal

any international differences between the performance of individual batsmen and part-

nerships.

4. Lack of investigation into parametric survival analysis

Previous work into cricket analytics has compared the use of the exponential and Weibull

distributions to model batsman scores in cricket [82]. The general conclusions from this

work suggest that the Weibull distribution provides a better representation of batting

scores than the exponential distribution. This research could be adapted to undertake a

parametric survival analysis approach. The exponential, Weibull and log-logistic regres-

sion models could potentially be utilised to model batsman survival rates using similar

methodology to that when applying Cox models. Comparisons between the models could

then be made to determine which approach is the most suitable.

5. Lack of model validation using ODI data

The model validation methodology involved applying the models to data from the 2016

IPL season. The developed models in this research were fitted to data from ODI games

contested between 26th December 2013 and 14th February 2016. Future research could

explore the models further by applying them to ODI data from different timeframes close

to the current timeframe used.
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10.3 Conclusion

The primary objective of this research was to formulate models to calculate the probability

of a batting partnership being dismissed in the first innings of a limited overs cricket game.

The goal was to optimise batting partnership strategy by determining which pairs of individual

batsmen formed the most effective partnerships at different stages of the first innings of limited

overs cricket games. The research hypothesised that the more effective a batting partnership is

at occupying the crease, the more runs they will score at an appropriate rate and the more likely

the team is to win the match, by setting a defendable total. Survival analysis techniques were

the method of choice as they could be applied in a cricket context to investigate the ball-by-ball

survival probabilities for batting partnerships. These could subsequently be used to generate

insights into the performance of different partnership combinations. Practically, these insights

provide valuable information on individual and partnership batting strategies and batting order

to maximise the chances of winning when setting a total.

The secondary objective of this research was to validate the final models to ensure they were

accurately calculating the ball-by-ball survival probabilities of different partnership combina-

tions. Practically, these insights are useful from a coaching perspective to highlight the impor-

tance of minimising dot balls by rotating the strike.

Specifically, the purpose of this research was to address the following two key questions:

1. What are the in-game strategies for optimising the runs scored in the first innings?

2. What are the practical applications of this knowledge?

To answer the first key question, the survival probabilities calculated using each Cox model

were cumulated to give a total AUC for each partnership across all games. To account for the

differing number of games played by each partnership, the average AUC for each partnership

was computed. This measure was used rank the batting partnerships. This method of cal-

culating batting partnership rankings was also positively correlated with typical measures of

success: average number of runs scored, proportion of team runs scored and winning. These

results support the research hypothesis. These metrics were combined into a measure of perfor-
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mance effectiveness, used to optimise batting partnership strategy. This completed the primary

objective of this research.

To validate each final model, each model that was applied to a subset of ODI data was also ap-

plied to corresponding IPL data. All models successfully distinguished between higher survival

probabilities for ODI batsmen and partnerships compared with IPL batsmen and partnerships.

This completed the secondary objective of this research.

Based on ODI games played between 26th December 2013 and 14th February 2016, the model

for opening batting partnerships ranked Pakistani’s A Ali and S Aslam as the optimal opening

batting partnership. Interestingly, HM Amla and AB de Villiers are ranked as the optimal

wicket two partnership and TA Boult is ranked as the optimal number 11 batsman.

New Zealand captain, KS Williamson is the optimal batsman in position three, irrespective of

which opener is dismissed. At the time of New Zealand’s loss against Australia on 4th Decem-

ber 2016, KS Williamson was ranked as number five in the ICC ODI rankings. Additionally,

in [4], KS Williamson was acknowledged as “the most important player to his team in the

world”.

To answer the second key question, this research reviewed New Zealand’s loss against Australia

on 4th December 2016. The review indicated a suboptimal order was used with JDS Neesham

and BJ Watling batting at four and five respectively. Given the circumstances, C Munro and

C de Grandhomme were quantified as a more optimal order. This supported the batting order

suggestions made by former Black caps all-rounder and Auckland A coach, AR Adams. This

demonstrates a practical application of this research.

The original approach developed in this research may be useful for scouting youth talent. Statis-

tics that demonstrate the positive influence that occupying the crease for batting partnerships

has on match outcomes is useful for player development, selection and in-game strategies. This

highlights the usefulness of the research as a coaching tool.

This research has utilised survival analysis methodology to develop and validate models to

calculate the ball-by-ball probability of a batting partnership being dismissed in the first innings
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of a limited overs cricket match. These models were used to derive optimal batting partnership

combinations across a wide variety of cricketing nations. Additionally, the models have been

used to determine the New Zealand optimal batting order during a selection of ODI games. This

research has achieved all research milestones required to develop an original approach capable

of optimising batting partnership strategy in the first innings of limited overs cricket games.

Additionally, the two key research questions (1) and (2), have been thoroughly examined. The

original, robust and validated quantitative framework derived in this research, enables cricket

teams to make analytically driven decisions to optimise their performance and increase chances

of winning.

Importantly, this novel research provides a unique and objective framework for assessing how

teams set totals in the first innings of a limited overs game of cricket, to increase their chances

of winning. With pragmatic insights, this research can be deployed by coaches, selectors and

other interested parties to gain a deeper understanding of how to dynamically structure a batting

order to maximise winning.



Appendix A

Cox Model Theory and Parametric Survival

Analysis

A.1 Analytical Parameter Estimation

To estimate the parameters in a Cox model, maximum likelihood estimation techniques are

utilised. Suppose:

δi =

1, if individual i is uncensored

0, if individual i is right censored
(A.1)

for i = 1, . . . ,m,

then the likelihood function for a general model with some parameters, (α,β), is defined as

[55]:

f(T |α,β,X) =
m∏
i=1

h(ti|α,β,x)δiS(ti|α,β,x). (A.2)

For the Cox model, the likelihood function is defined as [55]:

f(T |α,β,X) =
m∏
i=1

h0(ti|α)δiexp(β′X)δiS0(ti|α)exp(β′X). (A.3)

Taking the logarithm yields:

logf(T |α,β,X) =
m∏
i=1

δilogh0(ti|α) + δiβ
′X + exp(β′X)logS0(ti|α). (A.4)

To maximise this log-likelihood function requires specification of the form for the baseline

hazard, h0(ti|α). The partial likelihood function may be used as an alternative.
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A.1.1 Partial Likelihood for Unique Failure Times

To derive the partial likelihood function conditional on no individuals failing at the same time,

define the risk set, R(t), to be the set of individuals who have not died or been censored. Let

φi = exp(β′X i). The partial likelihood for β is given by [55]:

lp(β,X) =
m∏
i=1

[
φi∑

j∈R(ti)
φj

]δi
. (A.5)

A.1.2 Partial Likelihood for Repeated Failure Times

The partial likelihood function differs when two or more individuals are recorded as failing at

the same time, depending on the method used. Let ti be the ith ordered unique failure time. Let

D(t) represent the set of individuals who fail at time, t [55].

A.1.2.1 Exact Method

The exact partial likelihood is defined as [55]:

lp(β,X) =
I∏
i=1

∏
j∈D(t(i))

φj∑
q∈Qi Φq

, (A.6)

where Qi is the set of all |D(t(i))|-tuples that could be selected from R(t(i)) and Φq is the

product of φj for all members j of |D(t(i))|-tuple q.

A.1.2.2 Breslow’s Method

Breslow’s method is one approximation to the exact method. When using Breslow’s method,

the partial likelihood is defined as [55]:

lp(β,X) =
I∏
i=1

∏
j∈D(t(i))

φj

(
∑

j∈R(t(i))
φj)
|D(t(i))|

. (A.7)
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A.1.2.3 Efron’s Method

Efron’s method is another approximation to the exact method. When using Efron’s method, the

partial likelihood is defined as [55]:

lp(β,X) =
I∏
i=1

∏
j∈D(t(i))

φj∏|D(t(i))|
k=1

[∑
j∈R(t(i))

φj − k−1
|D(t(i))|

∑
j∈D(t(i))

φj

] . (A.8)

A.2 Numerical Parameter Estimation

The Newton-Raphson method is an iterative procedure that may be used to numerically estimate

the parameters in a Cox model. Let β be the a parameter vector of dimension, p. The procedure

to find β̂ that maximises the log-likelihood function, l(β), is as follows [55]:

1. Let k=0

2. Arbitrarily choose β(k)

3. Solve

I(β(k))(β(k+1) − β(k)) = U(β(k)), (A.9)

for β(k+1)

4. Increment k by one

5. Repeat steps 3,4 and 5 until convergence

β(k) represents the value of the parameters at iteration k of the procedure. U(β) is the score

function defined by:

U(β) =

(
dl(β)

dβ1
, . . . ,

dl(β)

dβp

)
. (A.10)
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I(β) is the information matrix defined by:

I(β) = −


d2l(β)

dβ2
1

. . . d2l(β)
dβ1dβp

... . . . ...
d2l(β)
dβ1dβp

. . . d2l(β)

dβ2
1

 . (A.11)

The log-likelihood function, l(β), may be replaced by the partial log likelihood function, lp(β).

A.3 Parametric Survival Analysis

Accelerated Failure Time (AFT) models are one type of parametric survival model. These

models are survival time models that are linearised by taking logs. One characteristic of AFT

models is that the effect of AFT model covariates is said to accelerate survival time. As such,

the effect of these covariates are multiplicative on the time scale. Three common AFT models

are outlined in Sections A.3.1, A.3.2 and A.3.3 respectively.

A.3.1 Exponential Regression Model

The distribution of survival time to an event, T , can be written as a function of a single covariate

as [55]:

T = eβ0+β1x × ε. (A.12)

Assuming one covariate is used to model the survival time, the exponential regression model is

written as [55]:

ln(T ) = β0 + β1x+ ln(ε). (A.13)

If the error term, ε, follows a log-exponential distribution, the survival function for the model

in Equation (A.13) is written as [55]:

S(t, x,β) = exp
(
−t

eβ0+β1x

)
. (A.14)



Appendix A. Cox Model Theory and Parametric Survival Analysis 146

The hazard function for the model in Equation (A.13) is [55]:

h(t, x,β) = e−(β0+β1x). (A.15)

The hazard ratio for a dichotomous covariate is:

HR(x = 1, x = 0) = e−β1 . (A.16)

As a result, the exponential regression model is an AFT model that characterises proportional

hazards.

A.3.2 Weibull Regression Model

The Weibull regression model consisting of one covariate is written as [55]:

ln(T ) = β0 + β1x+ σ + ln(ε). (A.17)

The survival function for the model in Equation (A.17) is [55]:

S(t, x,β, σ) = exp−tλexp
[(
−1
σ

)
(β0 + β1x)

]
, (A.18)

where λ = 1
σ

. The hazard function for the model in Equation (A.17) is [55]:

h(t, x,β, λ) =
λtλ−1

(eβ0+β1x)λ
. (A.19)

A.3.3 Log-Logistic Regression Model

The Log-logistic regression model consisting of one covariate is written as [55]:

ln(T ) = β0 + β1x+ σ + ε, (A.20)
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where ε is logistically distributed. The survival function for the model in Equation (A.20)

is [55]:

S(t, x,β, σ) = [1 + exp(z)]−1, (A.21)

where z = y−β0−β1x
σ

and y = ln(t). The hazard function for the model in Equation (A.20)

is [55]:

h(t, x,β, σ) =
1

σ
× 1

t
× ez

1 + ez
. (A.22)
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Performance Metric Definitions
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Ball-by-Ball Data Structure
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Individual Batsman Performance Metrics
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Batting Partnership Performance Metrics
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Appendix F

SAS Code

F.1 Data Extraction and Processing

%let innings=1;

%macro ODI_commentary(match,innings);

options nonotes;

%do innings=1 %to &innings;

/*Gathering the Commentary Card*/

filename mydata url

"http://www.espncricinfo.com/ci/engine/match/&match..html?

innings=&innings.;view=commentary";

data web_data_&match._&innings;

infile mydata length=len lrecl=32000;

input record $varying2000. len;

run;

data a1 (keep=match del b2b runs desc);

set Web_data_&match._&innings;

/*Extract Match ID*/

if index(record,"| Cricket Commentary | ESPN Cricinfo</title>"

) ge 1 then do;

var1 = tranwrd(record,’| Cricket Commentary | ESPN Cricinfo

</title>’,’’);

match = compbl(tranwrd(var1,’<title>’,’’));

end;
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else match="";

drop var1;

/*Extract Delivery*/

if index(record,’<div class="commentary-overs">’) ge 1 then do

;

var2 = tranwrd(record,’<div class="commentary-overs">’,’’);

del = compbl(tranwrd(var2,’</div>’,’’));

end;

else del = "";

drop var2;

if del ne "" then header_info=1;

header_info + 0;

if del ne ’’ then flag=0;

flag + 1;

if flag = 3 then do;

b2b = tranwrd(record,’<p>’,’’);

b2b = tranwrd(b2b,’,’,’’);

end;

if flag = 4 then do;

runs = tranwrd(record,’<span class="commsImportant">’,""

);

runs = tranwrd(runs,’</span>’,"");

runs = compbl(tranwrd(runs,’,’,’’));

end;

if flag = 5 then desc = tranwrd(record,’/p>’,’’);

desc = tranwrd(desc,’<div>’,’’);

desc = tranwrd(desc,’<span>’,’’);
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desc = tranwrd(desc,’</span>’,’’);

desc = tranwrd(desc,’<’,’’);

retain _match;

if match ne "" then do;

_match = match;

end;

else do;

if match = "" then match = _match;

else _match = match;

end;

retain _del;

if del ne "" then do;

_del = del;

end;

else do;

if del = "" then del = _del;

else _del = del;

end;

retain _b2b;

if b2b ne "" then do;

_b2b = b2b;

end;

else do;

if b2b = "" then b2b = _b2b;

else _b2b = b2b;

end;

retain _runs;
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if runs ne "" then do;

_runs = runs;

end;

else do;

if runs = "" then runs = _runs;

else _runs = runs;

end;

if header_info=0 then delete;

drop record header_info;

if flag = 5 then output;

run;

data a2;

set a1;

runs1a = strip(scan(runs,1,’)’));

runs1b = strip(scan(runs,2,’)’));

b2b = strip(tranwrd(b2b,’,’,’’));

b2b = strip(tranwrd(b2b,’ to ’,’ $’));

bowler = strip(scan(b2b,1,’$’));

batsman = strip(scan(b2b,2,’$’));

if index(runs,’OUT’) ge 1 then wicket = 1;

else wicket = 0;

if runs1b ne ’’ then runs = runs1b;

if index(runs,’FOUR’) ge 1 then runs1 = 4;

else if index(runs,’SIX’) ge 1 then runs1 = 6;

else if index(upcase(compress(runs)),"NORUN") ge 1 then
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runs1 = 0;

else if index(runs,’OUT’) ge 1 and index(runs,"1") = 0 and

index(runs,"2") = 0

and index(runs,"3") =0 then runs1=0;

else runs1 = input(strip(runs),1.0);

temp = upcase(strip(scan(runs,2,’ ’)));

if temp = ’LEG’ then SUNDRY = ’LB’;

if temp = ’NO’ then SUNDRY = ’NB’;

if temp = ’WIDE’ then SUNDRY = ’WD’;

if runs1a = ’(NO BALL’ then SUNDRY = ’NB’;

drop b2b temp runs runs1a runs1b;

if b2b = ’’ then delete;

rename runs1 = runs;

n = _n_;

run;

proc sort data = a2 out = batsman (keep = batsman n) nodupkey;

by batsman;

run;

proc sort data = batsman;

by n;

run;
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data batsman1;

set batsman;

drop n;

bat_pos = _n_;

run;

proc sort data = a2;

by batsman;

run;

proc sort data=batsman1;

by batsman;

run;

data a3;

merge a2 batsman1;

by batsman;

run;

proc sort data=a2;

by n;

run;

proc sort data = a2 out = bowler (keep= bowler n) nodupkey;

by bowler;

run;

proc sort data=bowler;

by n;

run;
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data bowler1;

set bowler;

drop n;

bowl_pos = _n_;

run;

proc sort data = a3;

by bowler;

run;

proc sort data = bowler1;

by bowler;

run;

data a4;

merge a3 bowler1;

by bowler;

run;

proc sort data=a4;

by n;

run;

data a5;

set a4;

drop n;

run;

data ODI&innings;

set a5;
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match = tranwrd(match,’ v ’,’ | ’);

game = input(substr(left(match),1,4),$6.);

cricinfo_id = &match;

h = strip(scan(match,2,’:’));

home = strip(scan(h,1,’|’));

a = strip(scan(h,2,’|’));

a = tranwrd(a,’ at ’, ’ $’);

away = strip(scan(a,1,’$’));

x = strip(scan(a,2,’$’));

venue = strip(scan(x,1,’,’));

dates = strip(scan(x,2,’,’));

year = input(strip(scan(x,3,’,’)),6.0);

innings = &innings;

over = input(strip(scan(del,2,’’)),4.0);

over = floor(over);

ball = input(strip(scan(del,2,’.’)),4.0);

Description = desc;

Bowling = bowler;

Facing = batsman;

Out = wicket;

Runs_scored = runs;

Sundry_Type = sundry;

Batting_Pos = bat_pos;

Bowling_Pos = bowl_pos;

innings = &innings;

drop match h a x del desc bowler batsman wicket runs sundry

bat_pos bowl_pos;
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run;

proc append data=ODI&innings base=work.game&match force;

run; quit;

proc datasets library=work nolist;

delete a1 a2 a3 a4 a5 batsman batsman1 bowler bowler1 ODI&

innings

web_data Web_data_&match._&innings;

run;

quit;

%end;

proc append data=work.game&match base = work.ODI_archive force

;

run; quit;

/* Dedupe Data to Ensure that Records are not repeated */

proc sort data=work.ODI_archive nodupkey;

by cricinfo_id innings over ball description runs_scored

sundry_type;

run;

proc datasets library=work nolist;

delete game&match;

run; quit;

options notes;
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%mend ODI_commentary;

%macro bulk_ODI_extract(low_id,high_id);

%do loop_match=&low_id %to &high_id %by 2;

%ODI_commentary(&loop_match,2);

%end;

%mend bulk_ODI_extract;

%bulk_ODI_extract(980901,981019);

proc export

data=ODI_ARCHIVE

outfile= "C:\Users\Patrick\SAS Extractor\Data\ball_by_

ball.csv"

dbms= csv

replace;

run;
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R Code

G.1 Exploratory Data Analysis

#Read in clean data

data <- read.csv("C:/Users/Patrick/odi_data.csv", header=TRUE,

sep=",")

#Sort data by match, innings, batting position, over, ball,

extra and out

data2 <- data[order(data[,"cricinfo_id"],data[,"innings"],data

[,"Batting_Pos"],data[,"over"],data[,"ball"],-xtfrm(data[,"

Sundry_Type"]),data[,"Out"],decreasing = F),]

#Subset data to first innings only

finaldata <- data2[which(data2$innings==1),]

#Rename variables for ease of analysis

attach(finaldata)

finaldata$x1 <- b_balls

finaldata$x2 <- b_runs

finaldata$x3 <- b_dot_balls

finaldata$x4 <- b_consecutive_dot_balls

finaldata$x5 <- b_less_than_2_in_4

finaldata$x6 <- b_boundaries

finaldata$x7 <- b_contribution

finaldata$x8 <- b_%_boundaries

finaldata$x9 <- b_%_dot_balls

162



163 G.1. Exploratory Data Analysis

finaldata$x10 <- p_balls

finaldata$x11 <- p_runs

finaldata$x12 <- p_dot_balls

finaldata$x13 <- p_consecutive_dot_balls

finaldata$x14 <- p_less_than_2_in_4

finaldata$x15 <- p_boundaries

finaldata$x16 <- p_contribution

finaldata$x17 <- p_%_boundaries

finaldata$x18 <- p_%_dot_balls

#Logistic regression fit to data associated with individual

batsmen

fit <- glm(Out ˜ x1+x2+x3+x4+x5+x6+x7+x8+x9,family=binomial(

link=’logit’),data=finaldata)

#Logistic regression fit to data associated with batting

partnerships

fit2 <- glm(Out ˜ x10+x11+x12+x13+x14+x15+x16+x17+x18,family=

binomial(link=’logit’),data=finaldata)

#Install and load required packages

install.packages("car",dependencies=TRUE)

install.packages("asbio")

library(car)

library(asbio)

#Outliers

cutoff <- 4/((nrow(finaldata)-length(fit$coefficients)-2))

plot(fit, which=4, cook.levels=cutoff)
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#Variance inflation factors

vif(fit)

vif(fit2)

#Correlations

cor(finaldata[,c("x1","x2","x3","x4","x5","x6","x7","x8","x9")

], use="complete.obs", method="pearson")

cor(finaldata[,c("x10","x11","x12","x13","x14","x15","x16","

x17","x18")], use="complete.obs", method="pearson")

#Scatter plot and correlation matrix

pairs(˜x1+x2+x3+x4+x5+x6+x7+x8+x9,data=finaldata, main="Simple

Scatterplot Matrix")

pairs(˜x10+x11+x12+x13+x14+x15+x16+x17+x18,data=finaldata,

main="Simple Scatterplot Matrix")

#Independence of residuals

durbinWatsonTest(fit)

durbinWatsonTest(fit2)

#Residual outliers

outlierTest(fit)

outlierTest(fit2

#Linearity

finaldata$x1 <- finaldata$x1+1

finaldata$x2 <- finaldata$x2+1

finaldata$x3 <- finaldata$x3+1

finaldata$x4 <- finaldata$x4+1

finaldata$x5 <- finaldata$x5+1

finaldata$x6 <- finaldata$x6+1
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finaldata$x7 <- finaldata$x7+1

finaldata$x8 <- finaldata$x8+1

finaldata$x9 <- finaldata$x9+1

finaldata$x1_ln <- log(finaldata$x1)

finaldata$x2_ln <- log(finaldata$x2)

finaldata$x3_ln <- log(finaldata$x3)

finaldata$x4_ln <- log(finaldata$x4)

finaldata$x5_ln <- log(finaldata$x5)

finaldata$x6_ln <- log(finaldata$x6)

finaldata$x7_ln <- log(finaldata$x7)

finaldata$x8_ln <- log(finaldata$x8)

finaldata$x9_ln <- log(finaldata$x9)

fit3 <- glm(Out ˜ x1+(x1:x1_ln)+x2+(x2:x2_ln)+x3+(x3:x3_ln)+x4

+(x4:x4_ln)+x5+(x5:x5_ln)+x6+(x6:x6_ln)+x7+(x7:x7_ln)+x8+(x8

:x8_ln)+x9+(x9:x9_ln),family=binomial(link=’logit’),data=

finaldata)

summary(fit3)

finaldata$x10 <- finaldata$x10+1

finaldata$x11 <- finaldata$x11+1

finaldata$x12 <- finaldata$x12+1

finaldata$x13 <- finaldata$x13+1

finaldata$x14 <- finaldata$x14+1

finaldata$x15 <- finaldata$x15+1

finaldata$x16 <- finaldata$x16+1

finaldata$x17 <- finaldata$x17+1

finaldata$x18 <- finaldata$x18+1

finaldata$x10_ln <- log(finaldata$x10)
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finaldata$x11_ln <- log(finaldata$x11)

finaldata$x12_ln <- log(finaldata$x12)

finaldata$x13_ln <- log(finaldata$x13)

finaldata$x14_ln <- log(finaldata$x14)

finaldata$x15_ln <- log(finaldata$x15)

finaldata$x16_ln <- log(finaldata$x16)

finaldata$x17_ln <- log(finaldata$x17)

finaldata$x18_ln <- log(finaldata$x18)

fit4 <- glm(Out ˜ x10+(x10:x10_ln)+x11+(x11:x11_ln)+x12+(x12:

x12_ln)+x13+(x13:x3_ln)+x14+(x14:x14_ln)+x15+(x15:x15_ln)+

x16+(x16:x16_ln)+x17+(x17:x17_ln)+x18+(x18:x18_ln),family=

binomial(link=’logit’),data=finaldata)

summary(fit4)

G.2 Opening Batsman Modelling

#Read in clean data

data <- read.csv("C:/Users/Patrick/odi_data.csv", header=TRUE,

sep=",")

#Sort data by match, innings, batting position, over, ball,

extra and out

data2 <- data[order(data[,"cricinfo_id"],data[,"innings"],data

[,"Batting_Pos"],data[,"over"],data[,"ball"],-xtfrm(data[,"

Sundry_Type"]),data[,"Out"],decreasing = F),]

#Subset data to first innings, opening batsmen only

finaldata <- data2[which(data2$innings==1 & data2$Batting_Pos

< 3),]
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#Rename variables for ease of analysis

attach(finaldata)

finaldata$x1 <- b_balls

finaldata$x2 <- b_runs

finaldata$x3 <- b_dot_balls

finaldata$x4 <- b_consecutive_dot_balls

finaldata$x5 <- b_less_than_2_in_4

finaldata$x6 <- b_boundaries

finaldata$x7 <- b_contribution

finaldata$x8 <- b_%_boundaries

finaldata$x9 <- b_%_dot_balls

finaldata$x10 <- p_balls

finaldata$x11 <- p_runs

finaldata$x12 <- p_dot_balls

finaldata$x13 <- p_consecutive_dot_balls

finaldata$x14 <- p_less_than_2_in_4

finaldata$x15 <- p_boundaries

finaldata$x16 <- p_contribution

finaldata$x17 <- p_%_boundaries

finaldata$x18 <- p_%_dot_balls

#Open libraries in preparation for survival analysis

library(survival)

#Create survival object: failure time is number of balls faced

by batsman, event is whether batsman is dismissed

object <- survfit(Surv(b_balls,Out)˜1)

summary(object)

#Cox model selection using glmulti package
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#Model selection based on smallest AIC

glmulti.coxph <- glmulti(Surv(b_balls,Out,type="right")˜sqrt(

x2)+sqrt(x3)+sqrt(x4)+sqrt(x5)+sqrt(x6)+sqrt(x7)+sqrt(x8)+

sqrt(x9),method="h",intercept=F,report=T,level=1,minsize=4,

maxsize=4,data = finaldata,crit = "aic",fitfunction = "coxph

")

glmulti.coxph

summary(glmulti.coxph)

#Final model with ridge terms

model <- coxph(Surv(b_balls, Out,type="right") ˜ sqrt(x2)+

ridge(sqrt(x4),sqrt(x5)),method="efron",data=finaldata)

summary(model)

#Testing proportional hazards assumption

out <- cox.zph(model, global = T)

print(out)

par(mfrow=c(2, 2))

plot(out)
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