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Abstract

In this thesis we focus on identically self-dual matroids and their minors. We
show that every sparse paving matroid is a minor of an identically self-dual sparse
paving matroid. The same result is true if the property sparse paving is replaced
with the property of representability and more specifically, F-representable where
F is a field of characteristic 2, an algebraically closed field, or equal to GF(p) for
a prime p = 3 (mod 4).

We extend a result of Lindström [11] saying that no identically self-dual matroid
is regular and simple. We assert that this also applies to all matroids which can be
obtained by contracting an identically self-dual matroid.

Finally, we present a characterisation of identically self-dual frame matroids and
prove that the class of self-dual matroids is not axiomatisable.
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Chapter 1

Introduction

Identically self-dual matroids (abbreviated ISD) are matroids which are invariant
under duality. Thus identically self-dual matroids are equal to their own duals,
M = M∗. This is in contrast to self-dual matroids, which are equal to their duals,
but only up to isomorphism. There are considerable restrictions on the structure of
an ISD matroid M; Every basis of M is the complement of another basis and cir-
cuits and hyperplanes are complements of each other. Consequently, identically
self-dual matroids are relatively uncommon, but we do have many simple exam-
ples. Some infinite families of identically self-dual matroids include; tipless bi-
nary spikes of even rank, the set of uniform matroids Ur,2r, and sparse paving ma-
troids with a single pair of disjoint circuit hyperplanes which partition the ground
set. An example of each of these types of ISD matroid is shown in Figure 1.1.

Figure 1.1: Three identically self-dual matroids; AG(3,2),U3,6 and R6.

Identically self-dual matroids have not been studied in great detail from a matroid
perspective. These same structures more commonly arise in design theory and
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CHAPTER 1. INTRODUCTION 2

in coding theory where a self-dual code is equivalent to an identically self-dual
matroid, an unfortunate difference in terminology. Self-dual codes have a long
history as noted in the summary article by Rains and Sloane [17]. Though much
of this is difficult to apply to ISD matroids, coding literature is useful in proving
the results in this chapter and we also use coding techniques in the chapter on
representable matroids.

In this thesis, research into identically self-dual matroids and their minors was
initiated by their connection to projective planes. In the next section we introduce
projective planes and illustrate how they are related to identically self-dual ma-
troids. Subsequently, we will give an overview of the material presented in the
remainder of the thesis.

1.1 Projective Planes

Projective geometry originated from perspective drawings and is not concerned
with distance, rather how lines and points intersect. Projective planes are simply
a specific type of projective geometry. Their origin is hard to place, but they were
mentioned as early as 1904 by Veblen [21].

The concept of a projective plane is not overly complex. We take a set of points P

and a set of lines L consisting of subsets of points. We say that a point p lies on,
is contained in, or is incident with line l if p ∈ l. The pair (P,L) is a projective

plane if it obeys the following properties:

1. For any pair of distinct lines there is a unique point that lies in their inter-
section.

2. For any pair of distinct points there is a unique line containing both points.

3. There exists a set of four points no three of which are collinear (a quadran-
gle).

Projective planes can also be viewed as an extension of affine planes. An affine

plane must fulfill all but the first property of the three above properties. That
is, an affine plane can contain parallel lines. Any affine plane can be extended
to a projective plane by including a unique point for each parallel class of the
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plane which is added to every line in the class. One new line is added containing
the additional points. It is easily verified that every pair of lines now has a unique
point of intersection so this method will result in a projective plane. The Euclidean
plane is one example of an affine plane which can be extended to a projective
plane. Augmenting this plane by the line at infinity will result in the extended
Euclidean plane which is also called the real projective plane.

As we have now seen, there are projective planes of infinite size like the extended
Euclidean plane, but for the purposes of this thesis we will be focusing on those
of finite size such as the planes in Figures 1.2 and 1.3. It can be observed that
they fulfill the three properties described earlier and that some of the lines have
to represented by curves as neither of these projective planes can be drawn in
Euclidian space with straight lines.

Figure 1.2: The projective plane of order 2 (Fano plane).

Figure 1.3: The projective plane of order 3.

It may seem that discrete planes are less applicable to physical problems than
their infinite counterparts, but they are closely related to finite designs and coding
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theory, which are both well suited to finite constructions. In addition, there are
benefits to studying finite planes as they are more tractable for computer work and
they have interesting structural properties. One such property of finite projective
planes allows us to characterise them by the number of points and lines in the
plane. Lemma 1.1.1 shows that we are justified in describing finite projective
planes this way.

Lemma 1.1.1. In a finite projective plane each line contains the same number of

points and furthermore this is equal to the number of lines containing each point.

Proof. First we prove that for any pair of lines l1, l2 in the plane there is a point x

which is not contained in either line. Assume that this fails and that there are no
points which are not incident with l1 or l2. Let p be the point of intersection of
l1 and l2 and note that since the plane contains four points, no three of which are
collinear, each of the lines must contain at least two points other than p. We let l1
contain points a and a′ and l2 contain b and b′. Any pair of points is contained in
a line of the plane so there is a line l3 containing a and b and a line l4 containing
a′ and b′. We know the lines l3 and l4 intersect l1 and l2 in the points {a,a′,b,b′}
but they must also intersect each other in an element x which is not incident with
l1 or l2. This contradicts our assumption, therefore for any pair of lines we can
always find a point which is not incident with either line.

Consider two lines l1 and l2 and a point x which is not contained in either line.
Let l1 contain k points and note that for any point on l1 there is another line which
contains this point and x. These k lines must all be distinct because l1 is the only
line which contains more than one point of l1. Thus there must be at least k lines
containing x. Now assume that x is incident with more than k lines. Each of these
lines must intersect l1 in a distinct point so l1 must contain more than k points
contrary to our assumption. Therefore the number of points incident with l1 must
be equal to the number of lines incident with x 6∈ l1. The same argument can be
applied to l2 and x so l1 and l2 must contain the same number of points. This is
true of any pair of lines so all lines of the plane must contain the same number of
points. Finally, the existence of a quadrangle in the plane ensures that no point is
contained in every line and that every point is incident with k lines.

Having established this fact, there is a clear way to define a finite projective plane
by its size. A projective plane of order n is a projective plane with the properties
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that each line contains n+1 points and each point is contained in n+1 lines. The
next lemma also follows directly from the structure of projective planes.

Lemma 1.1.2. A projective plane of order n has n2 + n+ 1 lines and n2 + n+ 1.

points

Proof. Let x be a point of a projective plane of order n. If we pick any other
point p then there is a line containing x and p by the second property of projective
planes. Therefore the collection of n+ 1 lines passing through x must contain
every point of the plane. Furthermore, p must lie on exactly one line through x or
there would be more than one line containing x and p contradicting the uniqueness
requirement. Thus, each of the n points other than x on the n+1 lines containing
x is a distinct point of the plane. Remembering to count x as well, this gives
n(n+1)+1 = n2 +n+1 points of the plane. An analogous argument to this one
proves that there are also n2 +n+1 lines in the plane.

The expression n2 + n + 1 arises frequently in this context so we denote N =

n2 + n+ 1 to simplify future equations. Since N ≥ 4 in order to satisfy the last
axiom of projective planes, the smallest projective plane has order 2. This plane
is unique up to isomorphism and it is commonly called the Fano plane after Gino
Fano. The Fano Plane arises frequently in matroid theory and is shown in Figure
1.2.

We can use the properties we have discussed so far to show a method for creating
projective planes from finite fields. Let p be a prime and k be a positive integer.
We can construct a projective plane of order pk by using the finite field GF(pk).
Let F = GF(pk) and n = pk, then consider the vector space F3. We define the
points of a plane to be the 1-dimensional subspaces of F3 and lines to be the 2-
dimensional subspaces. It remains to show that this collection of lines and points
satisfies the axioms of projective planes.

First, consider a pair of distinct lines. They must intersect in a 1-dimensional
subspace (a point) because a 3-dimensional space such as F3 does not contain two
disjoint 2-dimensional subspaces. If the lines intersect in a space with dimension
2 then the lines are not distinct. It is also straightforward to see that the second
requirement of projective planes holds; a distinct pair of points define a unique
line by simply taking the closure of the union of the two 1-dimensional spaces.
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The final condition is met by noting that for any field F, the space F3 contains the
four distinct points containing (1,0,0),(0,1,0),(0,0,1) and (1,1,1) which form
a quadrangle in the plane.

Having shown that this does in fact give us a projective plane we consider the
number of points in this plane. Each of the non-zero vectors of F3 is part of a sin-
gle 1-dimensional subspace and each of these spaces contains the linear multiples
of a single vector. Therefore each 1-dimensional space contains n− 1 non-zero
vectors and the set of 1-dimensional spaces partitions the set of non-zero vectors
of F3. There are n3− 1 non-zero vectors in F3 so the number of 1-dimensional
subspaces is given by

n3−1
n−1

= n2 +n+1.

Thus there are n2 +n+1 points in the plane and, by Lemma 1.1.2, this projective
plane has order n = pk. We call this plane PG(2,n).

This construction method gives us an infinite number of projective planes to study
and also brings us to one of the most important open questions of combinatorics.

Open Problem 1.1.3. Does a projective plane of order n exist where n is not a

prime power?

That is not to say that every finite projective plane is isomorphic to PG(2,n) for
some n. Every projective plane which is derived from a finite field is Desargue-
sian, meaning that Desargues’ Theorem holds in all of these planes. It has been
shown that there are 3 non-Desarguesian projective planes of order 9 which are
not isomorphic to each other or to PG(2,9) [7]. No projective planes of orders
which are not prime powers are currently known however.

This is not due to lack of trying on behalf of mathematicians. In the 20th cen-
tury many people attempted to answer this question and drew conclusions about
particular orders for which a projective plane certainly cannot exist. The earliest
related work was done by Tarry in 1900 [19]. A Latin square of order n is an
n×n array containing the numbers {1,2, . . . ,n} such that no row or column con-
tains any number more than once. If A and B are Latin squares such that A = ai, j

and B = bi, j for 1 ≤ i, j ≤ n then A and B are orthogonal if the n2 ordered pairs
(ai, j,bi, j) are all distinct. Tarry enumerated, by hand, the Latin squares of order
6 and found that no pair of these were orthogonal. The origin of this work was
to investigate Euler’s thirty six officers problem [5], but it would turn out to have
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implications for projective planes as well. Bose’s result of 1930 [2] states that
if a projective plane of order n exists then so do n− 1 pairwise orthogonal Latin
squares of order n. In conjunction with Tarry’s enumeration this was the first proof
that no projective plane of order 6 exists. If a projective plane of order 6 existed
then there would have to be a set of 5 pairwise orthogonal Latin squares when in
fact Tarry’s work showed there was not even a single pair which are orthogonal.

The next breakthrough in proving the non existence of projective planes came
from Bruck and Ryser in 1949 [3] and confirmed the result that the projective
plane of order 6 does not exist.

Theorem 1.1.4. (Bruck-Ryser) If n = 1,2 mod 4 and n is not the sum of two

squares then no projective plane of order n exists.

This ruled out projective planes of order n where n = 6,14,21,22, . . . and it re-
mains the only collection of orders for which it is known that no projective plane
exists. Unfortunately the discovery of this result did not resolve the next smallest
plane for which existence was not yet determined, the plane of order 10. Though
10 = 2 (mod 4), it is also the sum of two squares (10 = 32+12) and so the Bruck-
Ryser Theorem does not apply.

It was an extensive computer search undertaken by Lam, Thiel and Swiercz [10]
which eventually proved that no projective plan of order 10 could exist. This
was done by applying principles of coding theory to the incidence matrix of the
projective plane of order 10 which was assumed to exist. The incidence matrix
is an N×N matrix where every row corresponds to a line of the plane and the
columns are the points of the plane. The entries of the matrix are given by

Ai j =

1 line i contains point j

0 otherwise.

The code space which the rows of this matrix generate over a binary field, contains
vectors which each correspond to taking the symmetric difference of a collection
of lines of the plane. These symmetric differences of lines are called configu-

rations and they contain the points of the plane which are in an odd number of
the lines in the configuration. The weight of a codeword in this space is equal to
the number of non-zero entries it contains which is in turn equal to the number
of points in the corresponding configuration. We define the weight enumerator
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polynomial for a code C as

WC(x,y) =
N

∑
i=0

AixN−iyi

where N is the length of the code and Ai is the number of codewords of weight i.

Some of the values of Ai were calculated from the structure of the plane. The 111
lines of the plane are the only configurations containing 11 points so A11 = 111.
Similarly the empty codeword is the only configuration with no points, thus A0 =

1. It was also determined that Ai = 0 for i∈ {1,2, . . . ,10} and for i = 1,2 (mod 4).
Since the plane contains the configuration of all the points, it was observed that
Ai = A111−i.

Determining the remaining Ai values required additional coding theory. We first
define the dot product of two vectors. If x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn)

with x1,y1, . . . ,xn,yn ∈ F then the dot product of x and y is given by

x ·y = x1y1 + x2y2 + · · ·+ xnyn.

We say two vectors x and y are orthogonal if x · y = 0. For a code C which is a
subspace of Fk the orthogonal code consists of all vectors which are orthogonal
to every vector in C and is defined by

C⊥ = {x ∈ Fk | ∀y ∈C, x ·y = 0}.

It can be shown that if C is the code space generated by the incidence matrix of
the projective plane of order 10, then the orthogonal code C⊥ is a subset of C

consisting of the vectors of C with even weight. This means that (Ai)C⊥ = (Ai)C

when i is even and (Ai)C⊥ = 0 when i is odd. The MacWilliams identity provides a
relationship between the weight enumerator of a code and the weight enumerator
of the orthogonal code which allowed the Ai coefficients to be solved against each
other.

WC⊥(x,y) =
1
|C|

WC(x+ y,x− y)

The resulting system of equations is underdetermined, but can be calculated once
the values A12,A15 and A16 are known. These variables were chosen as smaller
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configurations require less computation to investigate. The first value solved was
A15, shown to be 0 by Macwilliams, Sloane and Thompson [12]. Next, A12 was
also shown to be 0 by Lam, Thiel and Swiercz [9] who went on to finish work
started by Carter [4] which showed A16 = 0 [8]. This revealed the values of the
remaining Ai coefficients and in particular A19 = 24,675. With evidence that a
configuration containing 19 elements must exist in the code space, a final search
was conducted to try and complete an 111×111 matrix with entries which fulfill
the requirements of an incidence matrix for a projective plane of order 10. This
was the most time consuming part of the search, but it was completed in 1989 and
found no viable incidence matrices thus proving there is no projective plane of
order 10.

We might hope that a similar line of reasoning could apply to the projective plane
of order 12. The overall idea of systematically testing for valid incidence matrices
for such a plane is reasonable, but computationally it is made more difficult by the
fact that the incidence matrix for a projective plane of order 12 would contain just
over twice as many entries as the incidence matrix for a projective plane of order
10. In addition, the methods used to reduce the scope of the search for the plane of
order 10 do not all apply here because of the difference in structure of the plane.
Notably, the binary code generated from the plane does not contain its orthogonal
code (though from [1, 4.6.2] we will see that the ternary field is a better choice).
We instead need to consider which projective planes do have this property and
find some way of preventing the search space from becoming unfeasibly large.

This is where we turn our focus to matroid theory. If the bounds of coding theory
are stretched by this computational method of determining the existence of planes
then perhaps matroids can offer a theoretical approach. We start the same way as
the coding theorists, with an incidence matrix for the projective plane of order n

which is assumed to exist. We also consider the vector space C generated by the
rows of the matrix, but then use these vectors as a chain-group representation for
a matroid M [20]. The support of a vector is the set of columns with a non-zero
entry in that vector. The minimal supports of vectors in C are cocircuits of M

which gives us the relationship between the code and the matroid. The dual of a
matroid is also easily defined as it simply has C⊥ as its chain-group representation.
Therefore the minimal supports in C⊥ are cocircuits of M∗ and circuits of M. We
use this to show a connection between projective planes and ISD matroids. A
similar relationship between projective planes and self-dual codes has been noted



CHAPTER 1. INTRODUCTION 10

before (see [6]), but here we present the proof in a matroid context.

Lemma 1.1.5. Let M be a matroid. If M\e = (M/e)∗ then M is ISD.

Proof. Let N = M\e so that we get the following relationships.

N = M\e←M→M/e = N∗

First, consider a circuit C of M that does not contain e. When e is deleted from M

it does not affect C which remains a circuit in N. Thus C is a cocircuit of N∗ and
furthermore when we consider coextending by e again C is unaffected. Therefore
C is a cocircuit of M.

Next, consider a circuit C of M that contains e. By properties of circuits, C− e

is a circuit of M/e = N∗ and so it is a cocircuit of N. Now either C− e or C is a
cocircuit of M and we will show that it must be C which is the cocircuit. Suppose
to the contrary that C− e is a cocircuit of M. This implies C− e is a cocircuit of
M/e = N∗ and a circuit of N. This leads to the contradictory result that C− e is a
circuit of M when it is also a proper subset of the circuit C ⊆M. Therefore it is
not possible for C− e to be a cocircuit of M and instead C must be a cocircuit of
M.

Having shown that all circuits of M are cocircuits we need to show that the co-
circuits are all circuits or equivalently that all circuits of M∗ are cocircuits of M∗.
We can see that by taking the dual of N and N∗ we get N∗ = (M\e)∗ = M∗/e and
N = (N∗)∗= (M/e)∗=M∗\e. Thus we have the same relationship between M∗,N

and N∗ as M,N and N∗.

N = M∗\e←M∗→M∗/e = N∗

This means the same arguments, showing that circuits of M are cocircuits of M,
apply to M∗. Therefore every cocircuit of M is a circuit of M and M is ISD.

Theorem 1.1.6. Let n be divisible by some prime p but not by p2. If a projective

plane of order n exists let C be the code generated by the incidence matrix of

the plane over GF(p) and let N be the matroid which has C as a chain-group.

Then there exists an ISD GF(p)-representable matroid M with N = M\e for some

e ∈ E(M).
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Proof. A projective plane of order n is equivalent to a (n2+n+1,n+1,1) design
of order n. By [1, 4.6.2], if n is once divisible by p then the code generated by the
incidence matrix of the projective plane over GF(p) has the following properties:

1. C⊥ ⊆C

2. dim(C) =
n2 +n+2

2

We let N be the matroid which has C as a chain-group representation. The supports
of the minimal vectors of C⊥ are the circuits of N and C⊥ ⊆C so if they are not
minimal supports in C then there must be a cocircuit C∗ properly contained in the
circuit. It is possible to take a linear combination of the vectors corresponding
to C and C∗ to cancel any entry which is part of both C and C∗. The resulting
vector has smaller support than C and is still in C⊥. Therefore we can repeat this
technique using this vector in place of the the vector for C until we reach a vector
which has minimal support and corresponds to a cocircuit. Therefore every vector
x in C⊥ is the sum of vectors which have a support contained the support of x and
therefore every circuit is the union of cocircuits.

Now we know that every circuit of N is a union of circuits of N∗ which implies
that N∗ is a quotient of N by [16, 7.3.9]. From the dimension of C and the fact that
dim(C)+dim(C⊥) = n2 +n+1 we can deduce that r(N) = r(N∗)+1. Therefore
we can obtain N∗ by extending N by a single element and then contracting this
new element.

We can also find a way of expressing N and N∗ with matrices. If A is a basis for the
code C then it the matrix with A as its rows is a representation for N over GF(p).
Similarly, a basis for C⊥, A∗, can be used in a matrix representation for N∗ and
has one less row. Let x be any vector in C−C⊥ and consider the representation A′

for the matroid M defined below.

A′ =


A∗

0
0
...
0

x 1


Deleting the last column must give a representation for the matroid N and con-
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tracting the last column results in the matroid N∗. The matroid M is GF(p) rep-
resentable and, by Lemma 1.1.5, M is ISD.

The converse of of this Theorem is not true since there are ISD matroids with 6
elements such as U3,6 and R6 and no projective plane with 5 elements. However
it does give a necessary condition for the existence of projective planes. This
means if the projective plane of order 12 exists, which is the next smallest whose
existence is unknown, then so does a specific ISD matroid which is representable
over GF(3) and has 158 elements and rank 79.

1.2 Thesis Overview

The remainder of thesis focuses on ISD matroids. Knowing that projective planes
are related to ISD matroids with a single element deleted or contracted, inspired
more investigation into the minors of ISD matroids. One of our aims was to learn
more about the substructures of these highly structured matroids. We conjecture
that there is not a lot of structure from ISD matroids preserved by minor opera-
tions.

Conjecture 1.2.1. Every matroid is a minor of an ISD matroid.

This is supported by Chapter 2 which contains the following theorem.

Theorem 1.2.2. Every sparse paving matroid is a minor of an ISD sparse paving

matroid.

This proves the conjecture for a large class of matroids. It has conjectured by
Mayhew, Newman, Welsh and Whittle that asymptotically almost all matroids are
sparse paving [14]. This chapter also provides an example of a non-representable
ISD matroid, the existence of which is necessary if we expect non-representable
matroids to be minors of ISD matroids.

Chapter 3 provides further evidence for Conjecture 1.2.1.

Theorem 1.2.3. Every representable matroid is a minor of an ISD representable

matroid.

In this chapter we also make another conjecture, this one specific to representable
matroids.
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Conjecture 1.2.4. Every F-representable matroid is a minor of an ISD F-representable

matroid for all fields F.

We prove this conjecture for fields of characteristic 2, algebraically closed fields,
and F= GF(p) for primes p equivalent to 3 modulo 4.

Chapter 4 extends a result of Lindström which says that there are no ISD matroids
which are simple and regular. We prove the following strengthening of this result.

Theorem 1.2.5. If a matroid is simple and regular, then it cannot be obtained by

contraction from an ISD matroid.

In Chapter 5 we explore the overlap in the classes of frame matroids and ISD
matroids which leads to the theorem below.

Theorem 1.2.6. Let M be a frame matroid. If M is ISD and 3-connected, then it

is a swirl.

Chapter 6 is concerned with the axiomatisability of ISD matroids and self-dual
matroids. A sentence in MS0 which characterises ISD matroids is presented as
well as a proof that there is no sentence which is satisfied if and only if a matroid
is self-dual.

Finally, Chapter 7 is a summary chapter containing a collection of conjectures
relating to the material of this thesis and the progress we have made toward each
of them.



Chapter 2

Sparse Paving Matroids

A matroid M with rank r is paving if every circuit of the matroid has rank at least
r−1. If both M and its dual are paving then we say M is sparse paving. A non-

basis is an r-element set of a matroid which is not a basis and we use this to give an
equivalent definition of sparse paving matroids. The matroid M is sparse paving
if M is paving and whenever X ,Y are distinct non-bases of M, |X ∩Y |< r(M)−1.
Since M has no circuits with rank less than r−1 a non-basis of M must be a circuit
hyperplane.

The Vámos matroid V8 is a well known sparse paving matroid consisting of 8
elements and 5 circuit hyperplanes. It is an example of one of the smallest non-
representable matroids as every matroid with 7 or fewer elements is representable
over some field [16, 6.4.10]. If we denote the groundset {a,b,c,d,e, f ,g,h} then
the circuit hyperplanes of V8 are {{a,b,c,d},{e, f ,g,h},{a,b,g,h},{c,d,e, f},
{a,b,e, f}}. These are equivalent to the edges of a diamond graph if we label
each vertex with two elements of the matroid, as shown in Figure 2.1.

Figure 2.1: A diamond graph of the dependence in V8.

14
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Next we will demonstrate a method for adding elements to a sparse paving matroid
to construct an ISD sparse paving matroid. First, we will investigate how a sparse
paving matroid M behaves under deletion and contraction. Let CH denote the set
of circuit hyperplanes of M and let e be an element of E(M). The set of circuit
hyperplanes of M/e is given by {C− e | e ∈ C, C ∈ CH} and the set of circuit
hyperplanes of M\e is {C | e /∈ C, C ∈ CH}. Thus when e is contracted from
M the new circuit hyperplanes correspond to the circuit hyperplanes of M which
contain e and when e is deleted they correspond to the circuit hyperplanes which
do not contain e. This is promising when it comes to extending and coextending a
sparse paving matroid because both operations can be used to generate new circuit
hyperplanes.

Lemma 2.1.1. A sparse paving matroid M is ISD if the complement of every

circuit hyperplane is a circuit hyperplane.

Proof. A matroid is ISD if the complement of every basis is another basis. This
must mean the bases are in complementary pairs and the complement of non-
bases are also non-bases. In a sparse paving matroid all non-bases are circuit
hyperplane so if M is ISD then the complements of circuit hyperplanes are circuit
hyperplanes.

The Vámos matroid already contains four circuit hyperplanes which are in com-
plementary pairs, but the complement of {a,b,e, f} is not a circuit hyperplane so
the Vámos matroid is not ISD.

To create an ISD matroid, first we coextend the Vámos matroid by two new ele-
ments i and j. Whenever we coextend, the new elements must be added to all of
the current circuit hyperplanes or the cardinality of these circuits will be less than
the rank of the matroid, thus causing the matroid to no longer be sparse paving.
Currently the circuit hyperplanes of this matroid are as follows:

{{a,b,c,d, i, j},{e, f ,g,h, i, j},{a,b,g,h, i, j},{c,d,e, f , i, j},{a,b,e, f , i, j}}.

We now make a free extension by adding the element k in such a way that it does
not occur in any circuit hyperplanes. At this point the new matroid has eleven
elements and has rank six. By adding a final element l and five new circuit hyper-
planes, which are the complements of the existing circuit hyperplanes, we create
an ISD sparse paving matroid. The set of circuit hyperplanes for this matroid is
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{{a,b,c,d, i, j},{e, f ,g,h, i, j},{a,b,g,h, i, j},{c,d,e, f , i, j},{a,b,e, f , i, j},
{e, f ,g,h,k, l},{a,b,c,d,k, l},{c,d,e, f ,k, l},{a,b, f ,g,k, l},{c,d, f ,g,k, l}}.

To confirm that this collection of circuit hyperplanes constitutes a sparse paving
matroid we need only check that no pair of distinct circuit hyperplanes intersect in
five points. This is easily verified by inspecting the list of circuit hyperplanes or
we can use our construction method to convince us of this. The intersection of two
distinct circuit hyperplanes from the Vámos matroid contained at most two points,
because the Vámos matroid is sparse paving. Elements i and j were added to all
of these circuit hyperplanes so the resulting intersections of two distinct circuit
hyperplanes is at most four. The five circuit hyperplanes which were chosen as
the complements of the first five have the same size of intersection as their coun-
terparts so any pair has at most four elements in common. It only remains to verify
that taking one circuit hyperplane extended from the original circuit hyperplanes
and one of the complements does not lead to a pair of circuit hyperplanes with an
intersection of five elements. This is not hard to check since circuit hyperplanes
based on the original set all contain elements i and j, whereas circuit hyperplanes
from the set of complements all contain k and l and therefore there are at least two
elements which are different between the two. Thus the matroid we have defined
is an ISD sparse paving matroid with V8 as the minor obtained by deleting k and
l, and contracting i and j.

Next, we refine this method so it will apply to any sparse paving matroid. This
means that for a given sparse paving matroid M we can always find an ISD sparse
paving matroid which contains M as a minor. This is demonstrated in the follow-
ing theorem, a restatement of Theorem 1.2.2 with a bound on the size of N.

Theorem 2.1.2. Let M be a sparse paving matroid with r(M) = r and |E(M)|= n.

Then there exists an ISD sparse paving matroid N such that M is a minor of N and

|E(N)| ≤ n+ |n−2r|+4.

Proof. To prove this claim we shall construct an ISD sparse paving matroid with
M as a minor. First we are looking to extend M or M∗ until we reach a matroid
M′ where r(M′) = 1

2 |E(M
′)| or equivalently r(M′) = r∗(M′). To achieve this we

simply freely extend or freely coextend M to reach this equality. A free extension
consists of adding a new element to the ground set which is not contained in any
circuit hyperplanes and it increases r∗(M) by one. A free coextension adds a
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new element to every circuit hyperplane and increases r(M) by one. The number
of elements we need to add is the difference between r(M) and r∗(M) which is
|n−2r|.

Once we have generated M′ there are two possibilities. The first is that M′ contains
a pair of complementary hyperplanes and the second is that M′ contains no pairs
of complementary circuit hyperplanes. If the first case occurs, then we simply add
two elements so that the new matroid M′′ falls into the second category. First we
coextend M′ by the element x which is added to every circuit hyperplane. Then
we extend by the element y freely so it does not occur in any circuit hyperplanes.
Now the matroid M′′ cannot contain a pair of complementary circuit hyperplanes
because none of them contain y and r(M′′) = r∗(M′′). We will let M′′ be the new
M′.

Now there are no pairs of complementary circuit hyperplanes in M′. Let CH de-
note the set of circuit hyperplanes of M′. We define a new matroid N with ground
set E(M′)∪{x,y} and circuit hyperplanes {C∪ x |C ∈ CH}∪{(E(M′)−C)∪ y |
C ∈ CH}. This is obtained from M′ by a free coextension by x and a specific
extension by y so M′ = N\y/x and r(N) = r(M′)+1.

In order for N to be sparse paving (and therefore a matroid) the intersection of a
pair of distinct circuit hyperplanes must contain fewer than r(M′) elements. A pair
of circuit hyperplanes C1,C2 containing x directly corresponds to a pair of circuit
hyperplanes of M′ which had pairwise intersection strictly smaller than r(M′)−1.
Therefore |C1∩C2| ≤ r(M′)−1 when allowing for the additional common element
x. Similarly, being the complement of the set of circuit hyperplanes containing x,
the set of circuit hyperplanes containing y also has pairwise intersection less than
r(M′). Having ruled out the other two possibilities, if we suppose a pair of circuit
hyperplanes of N intersect in r(M′) elements then one must contain x, Cx, and
one must contain y, Cy. These circuit hyperplanes already differ in the elements
x and y, so they intersect in all the other elements. This means E(N)−Cy is a
circuit hyperplane and (E(N)−Cy)∩Cx = x. Thus (E(N)−Cy)−x and Cx−x are
complementary circuit hyperplanes of M′ which contradicts our evaluation of M′.
Therefore N is an ISD sparse paving matroid containing M as a minor.

The number of elements in M′ is n+ |n−2r| and requires 2 or 4 elements more to
reach N depending on whether M′ contains complementary circuit hyperplanes.
Thus, |E(N)| ≤ n+ |n−2r|+4.
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2.2 A Minimal Non-Representable ISD Matroid

When we extended the Vámos matroid to an ISD sparse paving matroid earlier we
found a 12-element ISD matroid which is non-representable. We now show that
there is a non-representable ISD matroid on 10 elements by choosing a different
non-representable matroid to extend.

Proposition 2.2.1. The smallest ISD non-representable matroid has 10 elements.

Proof. Let M be the sparse paving matroid with ground set {a,b,c,d,e, f ,g,h}
and circuit hyperplanes {{a,b,c,h}, {a,c,d,g}, {c,d,e,h}, {b,d,e, f}, {b,d,g,h},
{b,c, f ,g}, {a,b,e,g}, {a,d, f ,h}}. We will show that M is non-representable.
Note that M can be derived from the matroid N presented in Figure 2.2 by letting
the sets {a,c,e, f} and {b,d,e, f} be bases rather than circuits as they are shown
in N. In the figure, line segments with the same markings have the same length.

Figure 2.2: A picture of matroid N in Euclidean space.

Suppose that M does have a matrix representation A. We can use row operations
to transform A into a matrix that starts with a rank four identity matrix where the
identity consists of any basis for M. This means we only need to work with the
remaining 16 entries of the matrix. When we discard the identity we can label the
rows of the remaining part of the matrix with the elements forming the identity;
here we have chosen the basis {a,b,c,d}. If we denote the row labels X and the
column labels Y then a set Z ∈ E(M), with size equal to the rank of the matroid,
is dependent if and only if the square submatrix spanned by (X−Z)× (Y ∩Z) has
determinant zero.
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First we look at 1×1 submatrices. The circuit hyperplanes {a,b,c,h} and {a,c,d,g}
both induce 1×1 matrices with determinant zero. Thus, there are two zero entries
in the matrix and the other entries are non-zero. This is shown in the leftmost
matrix in Figure 2.3.

e f g h


a ∗ ∗ ∗ ∗
b ∗ ∗ 0 ∗
c ∗ ∗ ∗ ∗
d ∗ ∗ ∗ 0

e f g h


a 1 1 1 1
b 1 x1 0 x2
c 1 x3 x4 x5
d 1 x6 x7 0

e f g h


a 1 1 1 1
b 1 α−1 0 1
c 1 1 α α

d 1 α α 0

Figure 2.3: The construction of a representation of M

Now we can scale the rows and columns of the matrix to guarantee seven entries
which are 1. As we know that the entries are non-zero it is simply a matter of mul-
tiplying the appropriate row or column by a scalar. We then label the remaining
entries with xi values as shown in the middle matrix of Figure 2.3.

We can determine these xi values using the other circuit hyperplanes of M. Below,
we list the circuit hyperplanes along with the submatrix must have determinant
zero and what that tells us about the xi entries.

{c,d,e,h} →

∣∣∣∣∣1 1
1 x2

∣∣∣∣∣= 0 → x2 = 1

{b,d,e, f} →

∣∣∣∣∣1 1
1 x3

∣∣∣∣∣= 0 → x3 = 1

{b,d,g,h} →

∣∣∣∣∣ 1 1
x4 x5

∣∣∣∣∣= 0 → x4 = x5

{b,c, f ,g} →

∣∣∣∣∣ 1 1
x6 x7

∣∣∣∣∣= 0 → x6 = x7

{a,b,e,g} →

∣∣∣∣∣1 x4

1 x7

∣∣∣∣∣= 0 → x4 = x7

{a,d, f ,h} →

∣∣∣∣∣x1 x2

x3 x5

∣∣∣∣∣=
∣∣∣∣∣x1 1

1 x5

∣∣∣∣∣= 0 → x1 =
1
x5

If we let x4 be α then the rest of the matrix is resolved as in the final matrix of
Figure 2.3. However this also implies that {e, f ,g,h} is dependent in M as the
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determinant of the entire matrix is 0. This is a contradiction, since {e, f ,g,h} is
not a circuit hyperplane of the sparse paving matroid it must be a basis and A does
not represent M. Hence, M is non-representable.

We chose M specifically because it does not have any complementary circuit hy-
perplanes and has r(M) = 1

2E(M). This means that we can find an ISD sparse
paving matroid with M as a minor by adding two elements using the method
shown in Theorem 2.1.2. This matroid is non-representable and has 10 elements.
The circuit hyperplanes of the matroid are shown below.

{{a,b,c,h, i},{a,c,d,g, i},{c,d,e,h, i},{b,d,e, f , i},{b,d,g,h, i},{b,c, f ,g, i},
{a,b,e,g, i},{a,d, f ,h, i},{d,e, f ,g, j},{b,e, f ,h, j},{a,b, f ,g, j},{a,c,g,h, j},

{a,c,e, f , j},{a,d,e,h, j},{c,d, f ,h, j},{b,c,e,g, j}}

Now we need to verify that there are no non-representable ISD matroids on 8 or
fewer elements. Since every matroid with less than 8 elements is representable we
only need to consider matroids with 8 elements.

A computer was used to generate all matroids with 8 elements and they were each
tested to see if they were ISD. The result was that there are 17 ISD matroids on 8
elements. Ten are sparse paving matroids and of the remaining seven, only two are
simple. We give representations for these 12 matroids in Figure 2.4. The other five
matroids must be representable because if we keep one element from each paral-
lel class then this simplification of the matroid has fewer than 8 elements. Thus it
must be representable and by duplicating the appropriate columns of the represen-
tation we can find a representation for the original matroid. For this reason we do
not provide representations for the non-simple ISD matroids on 8 elements.
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R R
1 0 0 0 1 1 1 1
0 1 0 0 1 2 3 4
0 0 1 0 1 3 4 2
0 0 0 1 1 4 2 3




1 0 0 0 1 1 1 1
0 1 0 0 1 2 3 4
0 0 1 0 1 3 4 5
0 0 0 1 0 1 5 6


R R

1 0 0 0 1 1 1 0
0 1 0 0 1 2 3 1
0 0 1 0 1 3 6 3
0 0 0 1 0 1 3 3




1 0 0 0 1 1 2 0
0 1 0 0 1 2 6 4
0 0 1 0 1 0 4 8
0 0 0 1 0 1 1 1


R R

1 0 0 0 1 1 1 1
0 1 0 0 1 6 3 2
0 0 1 0 1 3 3 1
0 0 0 1 1 2 1 2




1 0 0 0 1 1 1 0
0 1 0 0 1 3 4 1
0 0 1 0 1 4 5 1
0 0 0 1 0 1 1 1


R GF(4)

1 0 0 0 1 1 1 1
0 1 0 0 1 1 3 2
0 0 1 0 1 3 1 2
0 0 0 1 0 1 1 2




1 0 0 0 1 1 1 0
0 1 0 0 1 a 0 1
0 0 1 0 1 0 a 1
0 0 0 1 0 1 1 1


GF(3) GF(2)

1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 2
0 0 1 0 1 0 1 2
0 0 0 1 0 1 1 2




1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1


R R

1 0 0 0 1 1 1 1
0 1 0 0 1 1 1 2
0 0 1 0 1 3 4 0
0 0 0 1 1 5 6 0




1 0 0 0 1 1 1 1
0 1 0 0 1 1 1 2
0 0 1 0 1 1 2 0
0 0 0 1 1 2 0 0


Figure 2.4: Representations of the 12 simple ISD matroids with 8 elements.
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Representable Matroids

3.1 Introduction

A representable matroid M has the property that there is a mapping between the
elements of E(M) and a collection of vectors such that a X ⊆ E(M) is independent
if and only if the corresponding vectors are. As a result we can represent M with
a matrix where the columns are vectors with the same dependence structure as
the elements of the ground set of M. On the other hand, we can also consider the
vector space generated by the rows of the matrix. This is called a chain-group
representation and was introduced by Tutte in [20]. We use these chain-groups to
prove Theorem 1.2.3 which we restate here.

Theorem 3.1.1. If M is a representable matroid then it is a minor of an ISD

representable matroid.

We also propose the following conjecture.

Conjecture 3.1.2. If M is a matroid which is representable over a field F, then

there exists an ISD matroid N such that N is representable over F, and M is a

minor of N.

We prove this conjecture in the cases where F is a field of characteristic 2, F is
an algebraically closed field such as C, or F = GF(p) for a prime p = 3 (mod
4). These proofs are found in the sections 3.3, 3.4 and 3.5 following the number
theory introduced in 3.2 which is required to prove these results. Theorem 3.1.1
is a direct result of these theorems.

22
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3.2 Quadratic Residues

An element a of a finite field F is a quadratic residue if there exists b in F such
that

a = b2.

The remaining elements of F, which do not have this property, are called quadratic

nonresidues. We will abbreviate these terms and say that every element of a finite
field F is a residue or a nonresidue.

First we consider finite fields of characteristic 2. The following proposition is of
use to us in this case.

Proposition 3.2.1. (Frobenius Endomorphism) If F is a finite field with charac-

teristic p then the map

φ : F→ F

φ(a) = ap

is an automorphism.

Proof. Under this mapping, the fact that φ(a)φ(b) = φ(ab) is trivial; by the com-
mutativity of multiplication, xpyp = (xy)p. In order to show that φ(a)+ φ(b) =

φ(a+ b) we will use the formula for binomial expansion and observe that in a
field of characteristic p all but the first and last terms are equal to 0.

φ(x+ y) = (x+ y)p

=
p

∑
i=0

(
p
i

)
xp−iyi

= xp + yp = φ(x)+φ(y)

It is then clear that if F is a field of characteristic 2, the mapping of a 7→ a2 is onto
and therefore every element of F is a residue.

The situation is slightly more complicated in fields that do not have characteristic
2. When p is an odd prime the only element of Zp which is its own additive
inverse is 0. Therefore, if we consider the multiplicative group Z∗p and the fact
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that
a2 ≡ (−a)2 mod p,

the mapping φ : a→ a2 is a two to one mapping for a ∈ Z∗p. Thus, Z∗p contains
p−1

2
residues and the same number of nonresidues. Let R be the set of residues

of Z∗p and N be the set of nonresidues. Next we will present some well known
properties of R and N. In the following lemma we use notation for multiplying a
set of elements of a field each by a single element. If x is an element of a field and
Y is a set of elements of the field then we define xY = {xy | y ∈ Y}.

Lemma 3.2.2. Let p be an odd prime and R and N be the set of residues and

nonresidues of Z∗p respectively. If r1,r2 ∈ R and n1,n2 ∈ N then r1r2, n1n2 ∈ R

and r1n1 ∈ N. Moreover, r1R = R,r1N = N,n1R = N and n1N = R.

Proof. If r1,r2 ∈ R then

r1r2 ≡ a2b2 ≡ (ab)2 mod p

for some a,b ∈ Z∗p and therefore r1r2 ∈ R. The mapping x 7→ r1x is an injective
function in the field so the set {r1a | a ∈ R} is a subset of R which is equal in
cardinality to R. This means that the multiples of r1 with elements of R form the
entire set R, r1R = R. Therefore the other multiples of r1 must elements of N and
hence r1n1 ∈ N and r1N = N. By the same argument, the multiples of n1 with
elements of R make up the set N so n1n2 must be an element of R, n1N = R and
n1R = N.

Lemma 3.2.3. Let p be an odd prime, then for any n ∈ N there exist a,b ∈ R such

that a+b = n.

Proof. Only half of the elements of Z∗p are residues and it is always the case that
1 is a residue. Choose c ∈ N such that c has the smallest value (when comparing
numbers as integers) of all numbers in N. Therefore the elements c−1 and 1 are
in R. From Lemma 3.2.2 we have {cr | r ∈ R}=N and therefore there exists d ∈ R

such that n = cd. Now we can write

(c−1)d +d = cd = n

and a = (c−1)d and b = d satisfy the statement of the lemma.
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Next we introduce a theorem known as ‘Fermat’s Little Theorem’ as it will be
used in the final proposition of this section.

Theorem 3.2.4. (Fermat’s Little Theorem) Let p be a prime number and let a ∈
Z∗p. Then

ap−1 ≡ 1 mod p.

Proof. Consider Z∗p = {1,2, . . . , p− 1}. If we multiply each of these elements
by a we get {a,2a, . . . ,(p− 1)a} = Z∗p as multiplication by a is injective. The
product of each of these sets must be equivalent modulo p so

1 ·2 · · · · · (p−1)≡ a ·2a · · · · · (p−1)a mod p

≡ 1 ·2 · · · · · (p−1) ·ap−1.

Multiplying each side of the equivalence by the inverses of the elements of Z∗p
gives the desired result.

The final result we need from number theory is given by the following proposition.

Proposition 3.2.5. If p is a prime and p≡ 3 (mod 4) then the additive inverse of

any residue of Z∗p is a nonresidue.

Proof. Rearranging Fermat’s Little Theorem gives

ap−1−1≡ 0 mod p

and when p is an odd prime this can be factorised to

(a(p−1)/2−1)(a(p−1)/2 +1)≡ 0 mod p.

Each of the p− 1 elements of Z∗p is a solution to ap−1 ≡ 1 (mod p) but each is
also a solution to one of

a(p−1)/2 ≡ 1 mod p or a(p−1)/2 ≡−1 mod p

If we consider a residue a ∈ Z∗p then a≡ b2 (mod p) for some b ∈ Z∗p. Therefore
a(p−1)/2 ≡ bp−1 ≡ 1 mod p and the residues of Z∗p satisfy a(p−1)/2 ≡ 1 mod p.
The degree of this polynomial is equal to the number of residues in the field which
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leaves the (p−1)/2 nonresidues of the field as solutions to a(p−1)/2 ≡−1 mod p.
If p = 3 mod 4 then (p−1)/2 is odd and since p−1≡−1 mod p, we have

(p−1)(p−1)/2 ≡−1 mod p.

Therefore p−1 is a nonresidue, p−1∈N. Whenever a∈ R then−a≡ a(p−1)∈
N by Lemma 3.2.2. Therefore the inverse of a residue element is a nonresidue.

This result is the only one which requires that p≡ 3 (mod 4). Primes of the form
p ≡ 1 (mod 4) have the contrasting property that the inverse of a residue is a
residue and the inverse of a nonresidue is a nonresidue. It is for this reason that
only the fields GF(p) where p≡ 3 (mod 4) are suitable in the construction given
in section 3.5.

3.3 Fields of Characteristic 2

Extending a binary code by vectors from the orthogonal code is a technique used
by MacWilliams and Sloane in [13] which inspired this method of finding ISD
representable matroids. However, having established Proposition 3.2.1, there is
no reason not to consider all fields with characteristic 2. In the remainder of this
section we will use F to refer a field of characteristic 2.

In order to prove Conjecture 3.1.2 holds over F we give a method of constructing
an ISD matroid N that has M as a minor. If M is a matroid which is representable
over F we can consider the chain-group representation of M as a code C which
is generated by the rows of a matrix representation of M. Recall from Chapter
1, that the orthogonal code C⊥ consists of all codewords which are orthogonal to
every vector in C using the dot product as a bilinear form. Tutte proved that C⊥

is the chain-group for M∗ [20] so we can ensure that M is ISD if C = C⊥. We
don’t necessarily need such a strong result to show M is ISD since C and C⊥ can
represent the same matroid without being equal. An example of when C 6=C⊥ but
M is ISD is shown in Figure 3.1. The two matrices are generators a pair of codes
which are orthogonal and both represent the ISD matroid R6 (see Figure 1.1) over
GF(3), but are not equal.

For our purposes, it is easier ignore these types of inequivalent chain-groups and
find matroids where C = C⊥ instead. First we find a matroid where C ⊆C⊥ and
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A1 =

 1 0 0 1 1 2
0 1 0 2 1 2
0 0 1 0 1 1

 A2 =

 2 1 0 1 0 0
2 2 2 0 1 0
1 1 2 0 0 1


Figure 3.1: Two representations for R6.

then we can raise the dimension of the code until dim(C) = dim(C⊥) using ma-
troid extensions and coextensions. If at each step we preserve the fact that C⊆C⊥

then it must reach some point when C = C⊥ and the new matroid is ISD. We
achieve this process by finding a matrix representation for a matroid where each
row is orthogonal to every row of the matrix which implies C ⊆C⊥. Then we add
vectors from C⊥ to C while ensuring they are a coextension to the matroid and
that the new codewords x are self-orthogonal, that is, x ·x = 0.

Lemma 3.3.1. Let X be a collection of vectors {x1,x2, . . . ,xn} such that xi ·x j =

0 for all i, j ∈ {1,2, . . . ,n}. Then the code C generated by X is a subset of its

orthogonal code C⊥.

Proof. Every codeword in C is a linear combination of vectors in X . For any c∈C

we will show that c is in C⊥ as well. For any d in C we get

c ·d = (c1x1 + · · ·+ cnxn) · (d1x1 + · · ·+dnxn)

= ∑
1≤i, j≤n

cidi(xi ·x j)

= ∑
1≤i, j≤n

cidi(0)

= 0

Therefore c is orthogonal to every codeword of C so c ∈C⊥. Thus, C ⊆C⊥.

Proposition 3.3.2. If M is a matroid representable over a field F of characteristic

2 then there exists a matroid M0 such that M0 has a matrix representation over

F where every row of the matrix is orthogonal to every other and M is a deletion

minor of M0. Additionally, if r(M) = r then it is possible to find M0 such that

|E(M0)| ≤ |E(M)|+2r−1.

Proof. Let A be a matrix which represents M over F. We let r(M) = r so that A

has r rows. We will add extra columns in order to find a matrix where every row is
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orthogonal to every row in the matrix. Lemma 3.3.1 indicates that this is enough
to cause the chain-group C to fulfill C ⊂C⊥.

The first set of columns which need to be added will ensure that every row is
orthogonal to the other rows, but not necessarily itself. This will increase M by
at most r− 1 new elements. We add the columns one at a time and let the rows
of the current matrix be denoted ai for i ∈ {1,2, . . . ,r}. When we add the ith of
these r−1 new columns we want to make row i orthogonal with every other row.
This is done by adding a column consisting of i−1 zero entries followed by a 1 in
row i. For i < j ≤ r the jth entry is given by −ai ·a j. The zero entries ensure that
the ith row remains orthogonal with the previous rows which was established by
adding the previous columns. The choice of the entries after the 1 make the row
orthogonal with those which come after it.

After completing this process the only non-orthogonal vectors are due to vectors
which are not self-orthogonal, meaning the dot product of the vector with itself is
not zero. By adding at most r new columns, one for each row, we can resolve this
issue. If −ai ·ai 6= 0 then we choose bi such that b2

i = −ai ·ai add a new column
with bi as its ith entry and zeros elsewhere. It is possible to find bi because every
element is a quadratic residue and this new addition to each row makes every row
vector self-orthogonal. This construction of A0 is shown below.

A0 =


A

1 0 · · · 0 b1 0 · · · 0 0
a1,2 1 0 0 b2 0 0

... . . . ...
... . . . ...

a1,r−1 a2,r−1 1 0 0 br−1 0
a1,r a2,r · · · ar−1,r 0 0 · · · 0 br


The maximum number of new columns required to generate M0 from M is 2r−1
so E(M0)≤ E(M)+2r−1.

Now we know we can always extend a matroid over F to one where the chain-
group C has the property C ⊆ C⊥. We now introduce the idea of a coset which
will be useful in continuing with these F-representable matroids.

Definition 3.3.3. If C is a subspace of C⊥ then the coset of a vector x in C⊥ is
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given by

[x] = {x+y | y ∈C}

Vectors x and y in C⊥ are in the same coset if x−y ∈C.

Theorem 3.3.4. Let M be an F-representable matroid where F is a field of char-

acteristic 2. Let C denote a chain-group representation of M. If C⊆C⊥ then M is

a minor of an F-representable ISD matroid N. If r(M) = r it is possible to find N

such that |E(N)| ≤ 2|E(M)|−2r+2.

Proof. We will find a way of repeatedly coextending a matroid until it is ISD,
but the coextension choice will depend on the parity of the ground set. We will
start with a matroid M0 and find matroids Mi with associated chain-groups Ci and
matrices Ai.

We will show that for each Mi it is possible to add a new row vector from the
orthogonal space which is not self-orthogonal. Then we add a new column to this
matrix made up of zero entries except for the last which is chosen such that the
last row is self-orthogonal. The construction is shown in Figure 3.2 in the case
that x∈C⊥i and a2 =−x ·x 6= 0. We know that a is guaranteed to exist since every
element is a residue.

Ai+1 =


Ai

0
0
...
0

x a


Figure 3.2: Construction of Ai+1 from Ai

Next we show that this process is possible for any matroid starting with C ⊆C⊥.
First we make the following claim.

Claim. If every vector in C⊥i −Ci is self-orthogonal and Ci has even length then
1 ∈Ci.

This is because if x= (x1,x2, . . . ,xn) and x ·x= 0 then x2
1+x2

2+ · · ·+x2
n = 0. From

Proposition 3.2.1 we can deduce that x · 1 = x1 + x2 + · · ·+ x2 = 0 and thus 1 is
orthogonal to every vector in C⊥. Hence, 1 ∈ (C⊥)⊥ =C.

We will use this to address, initially, the case when Mi has an even number of
elements, Ci ⊆ C⊥i and 1 6∈ C. There must be some vector x in C⊥i which is not
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self-orthogonal and we can simply add this as a new row with a = x · x as an
additional entry and zeros elsewhere in the column as in Figure 3.2.

Next, if Mi has an odd number of elements and Ci ⊆C⊥i then it is not possible for
1 to be in C because it is not self-orthogonal. Therefore there are certainly vectors
in C⊥i −Ci which are not self-orthogonal, but we also have to be careful not to
introduce the vector 1 into Ci+1. We will consider the difference in dimension
between Ci and C⊥i .

If dim(Ci) = dim(C⊥i )−1 then a single vector x∈C⊥i −Ci along with C generates
the space C⊥i . In this case it does not matter if we end up with 1 in Ci+1 because
r(Mi+1) = r∗(Mi+1) and we do not need to coextend further.

If dim(Ci) < dim(C⊥i )− 1 then C⊥i −Ci contains at least two vectors which are
not in the same coset and at least one which is not self-orthogonal. We will show
there are at least two which are not self-orthogonal. Assume that only one of
the vectors, x, is not self-orthogonal and that another, y, has y · y = 0. Then let
z = x+y so that

z · z = (x+y) · (x+y)

= x ·x+2(x ·y)+y ·y

= x ·x 6= 0

Therefore there is another vector z∈C⊥i −C which is not self-orthogonal or in the
same coset as x. Thus, there is a choice of vectors to add to Ci and we can choose
one such that 1 is not in Ci+1.

We have now shown how this sequence of coextensions can be repeated until we
reach a matroid with rank equal to its corank. We also need to show that it is
possible to start this process. If |E(M)| is even and its chain-group contains the
vector 1 then it is necessary to let M0 be equal to M with a loop as an extra element.
This corresponds to an extra column of 0s in the chain-group and so C is still a
subset of C⊥. If M is not in the previous case then M0 = M and M is a contraction
minor of an F-representable ISD matroid.

We have given the construction for the matroid sequence and verified that it is pos-
sible to construct so it only remains to prove that this gives us an F-representable
ISD matroid which contains M as a minor.

Each matroid in the sequence is a coextension of the last which can be observed
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by noting that if the element corresponding to the last column of Ai+1 is contracted
then Ai is obtained. Therefore M0 is a contraction minor of Mi for all i and M is
either equal to M0 or a single element deletion of M0.

The method of coextending the Ai matrices ensured that every row was orthogo-
nal to every other row so, by Lemma 3.3.1, Ci ⊆C⊥i . The difference between the
rank and corank decreases for each subsequent matroid so eventually they must
be equal, at which point Ci = C⊥i . This means that N = Mi is ISD and must be
F-representable because Ai is a representation for N over F. The number of coex-
tentions required to reach N is equal to r∗(M)−r(M)= |E(M)|−2r, except it may
take two additional elements to compensate for the chain-group of M containing
1. Therefore if N is found using this method then |E(N)| ≤ 2|E(M)|−2r+2.

3.4 Algebraically closed Fields

As we observed in the last section, adding new elements to matroids while trying
to preserve self-orthogonality of the chain-group and increase the rank is partly
dependent on the quadratic residues in the field. In an algebraically closed field F
we generally do not use the term quadratic residue, but it remains the case that if
a ∈ F then a = b2 for some b ∈ F. For that reason, we will say that every element
of F is a residue when F is algebraically closed to be consistent with our other
terminology.

If we look back to the proof of Proposition 3.3.2, it does not require anything from
the field other than that every element is a residue. Therefore we can restate the
proposition in terms of algebraically closed fields.

Proposition 3.4.1. If M is a matroid representable over a field F which is alge-

braically closed then there exists a matroid M0 such that M0 has a matrix repre-

sentation over F where every row of the matrix is orthogonal to every other and

M is a deletion minor of M0. Additionally, if r(M) = r then it is possible to find

M0 such that |E(M0)| ≤ |E(M)|+2r−1.

The related theorem for algebraically closed fields does not follow as directly, but
the proof of Theorem 3.3.4 can be adapted. We also note here that the field should
not have characteristic 2 in order for the following proof to work. Every field of
characteristic 2 is already addressed in Theorem 3.3.4 so no results are lost by
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only considering those fields with other characteristics in the next theorem.

Theorem 3.4.2. Let M be an F-representable matroid where F is an algebraically

closed field and char(F) 6= 2. Let C denote a chain-group representation of M. If

C ⊆ C⊥ then M is a minor of an F-representable ISD matroid. In addition, it is

possible to find N such that |E(N)|= 2|E(M)|−2r(M).

Proof. We follow the same method used in the proof of Theorem 3.3.4. Let M0 =

M and we will construct a sequence of matroids Mi with matrix representation Ai

and chain-group Ci. The method for finding Ai+1 from Ai is again to append a
new row from Ci with a new column which makes the row self-orthogonal. This
is shown back in Figure 3.2.

If dim(Ci) < dim(C⊥i )− 1 then C⊥i −Ci contains at least two vectors x, y from
different cosets. If either of these are not self-orthogonal then it can be used as the
additional row. If neither are then x ·x = 0 and y ·y = 0 so we let z = x+y so that

z · z = (x+y) · (x+y)

= x ·x+2(x ·y)+y ·y

= 2(x ·y) 6= 0

It is here that we require that the characteristic of F is not 2 so that 2(x · y) 6= 0.
This means that z is not self-orthogonal and we can use it as our new row in Ai+1.

If, instead, dim(Ci) < dim(C⊥i )− 1, then we note that there is only one coset
in C⊥i other than Ci. We take any vector x from the coset to append to Ci and
add a column which makes the vector self-orthogonal. Then Ci+1 ⊆ C⊥i+1 and
dim(Ci+1) = dim(C⊥i+1) implies that Mi+1 is ISD and therefore it cannot contain
any loops. This ensures that the last entry in the last column is non-zero.

This proves that it is always possible to coextend Mi in such a way that Mi+1 has
Ci+1 ⊆C⊥i+1 and at some point we reach an ISD matroid. Therefore M is a con-
traction minor of an F-representable ISD matroid N. The number of coextentions
required is equal to r∗(M)− r(M) = |E(M)|− 2r. Therefore if N is found using
this method then |E(N)|= 2|E(M)|−2r.

Using the results on fields of characteristic 2 and algebraically closed fields we
can prove Theorem 3.1.1 which we restate here with an explicit bound on the size
of the ISD matroid.
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Theorem 3.4.3. If M is a representable matroid then it is a minor of an ISD

representable matroid N. Furthermore, if |E(M)| = n and r(M) = r then it is

possible to find N such that |E(N)| ≤ 2n+2r

Proof. If M is representable over a field F then it is also representable over the
algebraic closure of F which we will denote F′. This field must have characteristic
2 or be an algebraically closed field that does not have characteristic 2. Therefore
by Proposition 3.3.2 and Theorem 3.3.4 or by Proposition 3.4.1 and Theorem 3.4.2
M is a minor of an ISD F′-representable matroid. The bound on the size of N is
worse by two elements for the fields of characteristic 2 so that is the bound we
use here. It takes at most 2r−1 elements to extend an arbitrary F′-representable
matroid to a matroid M′ where the chain-group C is a subset of C⊥. It then takes
no more than r∗(M′)− r(M′)+2 = n+1 elements to produce an ISD matroid N.
Hence, |E(N)| ≤ 2n+2r.

3.5 GF(p) for p=3 (mod 4)

In this section we give a constructive proof that if M is a matroid which is repre-
sentable over GF(p) where p is a prime and p = 3 (mod 4) then there exists an
ISD matroid N which is representable over the same field and contains M as a mi-
nor. First, however, it is necessary to apply the theory of residues and nonresidues
to a vector space. Recall that we denote the set of residues of a field R, and the set
of nonresidues N. The results of Lemmas 3.2.2 and 3.2.3 and Proposition 3.2.5
will be important in this section. Namely, that R and N are invariant under mul-
tiplication by elements of R and will be mapped to each other if multiplied by an
element of N. Any element of N is the sum of two elements in R and, lastly, the
the inverse of a residue is a nonresidue.

Lemma 3.5.1. Let x and y be orthogonal, linearly independent vectors of GF(p)n

for a prime p. If x ·x≡ a ∈ R and y ·y≡ b ∈ R then there is a vector z which is a

linear combination of x and y and has z · z ∈ N.
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Proof. Let z = cx+dy where c,d ∈ GF(p) and then

z · z = (cx+dy) · (cx+dy)

= c2(x ·x)+2cd(x ·y)+d2(y ·y)

= c2(x ·x)+2cd(0)+d2(y ·y)

= c2a+d2b.

Depending on the choice of c and d, c2 and d2 can take any value from R and
therefore so can c2a and d2b, by Lemma 3.2.2. Lemma 3.2.3 asserts that we can
choose c and d so that c2a+d2b ∈ N.

Lemma 3.5.2. Let x and y be orthogonal, linearly independent vectors of GF(p)n

for a prime p = 3 (mod 4). If x ·x≡ a ∈ R and y ·y≡ b ∈ N then there is a vector

z which is a linear combination of x and y and has z · z≡ 0.

Proof. The proof follows the same reasoning as the proof for Lemma 3.5.1, but
note that here b ∈ N. Using the same choice of z = cx+dy we again have z · z =
c2a+d2b. By Lemma 3.2.2, c2a∈R and so−c2a∈N by Proposition 3.2.5. Again
using Lemma 3.2.2, d2b can take any value in N so we let d2b =−c2a. Thus we
can find a vector z such that z · z = 0.

As we saw in the previous section, a matroid is ISD if a chain-group represen-
tation C of the matroid is a equal to its orthogonal code C⊥. We will again be
constructing a matroid with this property and we will continue to use the same
bilinear form, the dot product.

Theorem 3.5.3. Let M be a matroid representable over GF(p) for some prime

p ≡ 3 (mod 4). Then there exists an ISD matroid N such that N is representable

over GF(p) and M is a minor of N. Furthermore, if |E(M)| = n and r(M) = r

then it is possible to find the matroid N such that |E(N)| ≤ 4n+6r−6.

Proof. We will again be working with the code space corresponding to a matroid.
First we need to extend M to a matroid where C ⊆ C⊥ and we will then extend
and coextend this matroid until dim(C) = dim(C⊥) while retaining the property
that C⊆C⊥. At this point the new matroid will have C =C⊥ so it must be an ISD
matroid.
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Starting with M we will show it is always possible to find an extension M0 of M

with a code space C⊆C⊥. We simply need to ensure that the chosen generator for
C, which is the matrix representation of M0, contains vectors which are orthogonal
to every other vector in the generator (Lemma 3.3.1). This can be accomplished
by adding no more than 3r−1 new elements to M where r = r(M). The first r−1
of these columns start with i−1 zero entries followed by a one in the ith row for
i ∈ {1,2, . . . ,r− 1}. The remaining r− i entries are chosen so that each vector
after the ith row is orthogonal to the ith one.


A

1 0 · · · 0 b1,1 b1,2 0 0 · · · · · · 0 0
a1,2 1 0 0 0 b2,1 b2,2 0 0

... . . . ...
...

... . . . ...
...

a1,r−1 a2,r−1 1 0 0 0 0 . . . 0 0
a1,r a2,r · · · ar−1,r 0 0 0 0 · · · · · · br,1 br,2


At most 2r more elements are needed to ensure that each vector is self-orthogonal
in M′. If x is a vector of M extended by r−1 elements and x ·x= a then adding the
element b as an additional entry to x means (x,b) ·(x,b) = a+b2. Therefore addi-
tional entries can only change x ·x by adding a value of GF(p) which is a residue.
For each vector x of the generator matrix x ·x is 0, a nonresidue or a residue. By
Lemma 3.2.3 and Proposition 3.2.5 these vectors can be made self-orthogonal by
adding 0, 1 or 2 entries respectively.
Now we can let M0 be a matroid constructed from M in this way so M is a minor of
M0 and the chain-group representation of M0 contains vectors which are orthogo-
nal to all of the vectors in the chain-group. Let the code space corresponding to the
chain-group be denoted C0 and then we have C0⊆C⊥0 . Next we begin an inductive
process; if dim(Ci) = dim(C⊥i ) then Mi is ISD, but if not then dim(Ci)< dim(C⊥i )

and we can find a matroid Mi+1 with code space Ci+1 such that the difference in
dimension between Ci+1 and C⊥i+1 is one less than between Ci and C⊥i .
There are two distinct cases to consider: First, when dim(C⊥i )−dim(Ci)> 1 and
second, when dim(C⊥i )− dim(Ci) = 1. We will use Ai to denote a matrix repre-
sentation for Mi which is also a generator for Ci.

1. If Mi has a chain-group Ci with the property dim(C⊥i )−dim(Ci)> 1 then a
generator for C⊥i contains at least 2 vectors which are not in Ci. If there is
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any vector xn in C⊥i −Ci with xn ·xn = a ∈N then−a ∈ R, by Lemma 3.2.5,
and we can define Ai+1 as shown below where b2 =−a.

Ai+1 =


Ai

0
0
...
0

xn b


If, on the other hand, C⊥i does not contain any vectors x with x ·x ∈ N, then
x ·x = 0 or r ∈ R for all x ∈C⊥i .

Suppose that all of the vectors in C⊥i −Ci have the property x ·x ∈ R. Let xr

be one of these vectors and consider the vector space generated by Ci and
xr which we will denote Ci∪ xr. Having one additional generating vector,
dim(Ci∪ xr) = dim(Ci)+ 1 and therefore dim((Ci∪ xr)

⊥) = dim(C⊥i )− 1.
Since xr is in C⊥i we know that Ci ⊆ (Ci∪xr)

⊥ and the dimension of (Ci∪
xr)
⊥ is larger than that of Ci so (Ci ∪ xr)

⊥−Ci is non-empty. Let yr be
a vector in (Ci ∪ xr)

⊥−Ci and by assumption yr · yr ∈ R. Now, however
we have xr,yr ∈ C⊥i which are orthogonal and linearly independent so by
Lemma 3.5.1 there exists z in C⊥i which is a linear combination of xr and
yr and z · z ∈ N. This contradicts our assumption and therefore if C⊥i does
not contain any vectors x with x ·x ∈ N it must contain a vector x0 with the
property that x0 ·x0 = 0.

Next we want to find a vector yr in C⊥i − (Ci∪ x0)
⊥ with yr · yr ∈ R. Note

that x0 is in (Ci ∪ x0)
⊥, and C⊥i is larger in dimension than (Ci ∪ x0)

⊥, so
C⊥i must contain a vector which is linearly independent of Ci ∪ x0. Let z
be such a vector and if z · z ∈ R then we can simply let yr = z. If not, then
z ·z = 0 and as z is not orthogonal to x0 we can let yr = x0+z. We are valid
in choosing yr this way as

yr ·yr = (x0 + z) · (x0 + z)

= x0 ·x0 +2(x0 · z)+ z · z

= 2(x0 · z) 6= 0

and we know that yr · yr is not a nonresidue. Now we have vectors x0 and
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yr from C⊥i such that

x0 ·yr = x0 · (x0 + z)

= x0 ·x0 +x0 · z

= x0 · z 6= 0

and we will use them to form Ai+1 as shown below.

Ai+1 =

 Ai 0
x0

yr

a b c

d e 0


In order to have Ci+1 ⊆ (Ci+1)

⊥ we need the rows of Mi+1 to be orthogonal
to each other and themselves. This means we need to find a,b,c,d,e ∈
GF(p) with the properties:

(a) a2 +b2 + c2 ≡−(x0 ·x0)≡ 0

(b) d2 + e2 ≡−(yr ·yr) ∈ N

(c) ad +be≡−(x0 ·yr) 6≡ 0

First, we are able to choose d and e which fulfill (b) by Lemma 3.2.3. Next
we choose α,β ,γ 6= 0 which have the same properties as a,b,c in (a). Let
α be any value, then −α2 ∈ N by Proposition 3.2.5 and we can choose β

and γ such that β 2 + γ2 ≡ −α2 by Lemma 3.2.3. Now we want to ensure
that αd +βe 6≡ 0 by permuting the labels on α , β and γ . This is certainly
possible as α , β and γ are not all equal so permuting them will change the
value of αd +βe. Now we consider the effect of scaling the newly labeled
α,β ,γ by k 6= 0.

(kα)2 +(kβ )2 +(kγ)2 ≡ k2
α

2 + k2
β

2 + k2
γ

2

≡ k2(α2 +β
2 + γ

2)≡ 0

Therefore kα , kβ and kγ also fulfill condition (a) and furthermore

kαd + kβe≡ k(αd +βe).

Therefore by choosing the correct value for k we can get kα , kβ , d and e to
satisfy condition (c) due to the fact multiplication is injective and αd+βe 6≡
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0. Thus let a, b and c equal kα , kβ and kγ respectively and we can construct
the matrix above with the required conditions.

It must be possible to construct Ai+1 by one of the methods shown above.
Care was taken to ensure that there are non-zero entries in the new columns
of the matrix and that the additional vectors are orthogonal to every other
vector. Therefore these new matroids are formed by a single coextension, or
two coextensions and an extension and Ci+1 ⊆C⊥i+1. A coextension raises
the dimension of Ci by one and an extension raises the dimension of C⊥i by
one so in both of these methods above the dimension of Ci is increased by
one with respect to C⊥i .

2. The second case occurs when dim(C⊥i )− dim(Ci) = 1. As Ci ⊆ C⊥i , the
vector corresponding to each cocircuit is in C⊥i . This implies that every
cocircuit is the union of circuits because if we repeated cancel entries of the
vector corresponding to a cocircuit C with vectors corresponding to circuits
which are subsets of C then we must reach a vector with minimal support,
which is another circuit. Therefore the cocircuit is covered by circuits.

Every circuit of M∗i is a union of circuits of Mi which implies that Mi is a
quotient of M∗i by [16, 7.3.9]. There are only two cosets in C⊥i including Ci.
Take any vector x in C⊥i −Ci and we generate Ai+1 as follows

Ai+1 =


Ai

0
0
...
0

x 1


Deleting the last column results in a matrix representation for M∗i and con-
tracting the last column gives the matrix Ai, a representation for Mi. By
Lemma 1.1.5 Mi+1 is ISD.

Thus, M is a minor of M0 and M0 is a minor of an ISD matroid N = Mn for some
n.

Finally, we prove that if M has n elements and rank r then the matroid N has no
more than 4n+ 6r− 6 elements. As mentioned earlier, it takes a maximum of
3r− 1 elements to extend M to M0 so E(M0) ≤ n+ 3r− 1. We can also deduce
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that r(M0) = r so r∗(M0) = (n+3r−1)− r = n+2r−1. Thus, the difference in
the rank and the corank of M0 is n+ r−1 which indicates that N = Mn+r−1 is ISD
and requires at most three new elements for each step of the construction except
for the last step which is guaranteed to take only one new element. Therefore
E(N)≤ n+3r−1+3(n+ r−1)−2 = 4n+6r−6.



Chapter 4

Regular Matroids

4.1 Introduction

Regular matroids are a subset of the class of representable matroids. They are
simply the class of matroids which are representable over every field, though there
are several different characterisations. Some of these are presented here with more
details given in [16].

Proposition 4.1.1. The following statements are equivalent for a matroid M

1. M is regular.

2. M is representable over every field.

3. M is representable over GF(2) and GF(3).

4. M is representable by a totally unimodular matrix.

5. M is binary and orientable.

Given the many ways in which they can be defined, it is not surprising that regular
matroids have a number of unique properties and have been extensively studied.
Of the results relating to regular matroids it is the following theorem of Lindström
[11] which we will focus on in this chapter.

Theorem 4.1.2. (Lindström) If a matroid M is simple and regular then it is not

ISD.

40
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This is a fairly complete description of how the classes of ISD matroids and reg-
ular matroids intersect, but we extend this result further and here restate Theorem
1.2.5.

Theorem 4.1.3. If a matroid is simple and regular, then it cannot be obtained by

contraction from an ISD matroid.

Before we can prove this theorem we give a property which is shared by matroids
that can be generated by contracting ISD matroids.

Lemma 4.1.4. If a matroid M is a contraction minor of an ISD matroid then every

cocircuit of M is a union of circuits of M.

Proof. If M is an ISD matroid then the set of circuits of M is exactly the set of
cocircuits of M. If N is a contraction minor of M then there exists X ⊆ E(M)

such that N = M/X . A cocircuit of N is simply a cocircuit of M which has no
intersection with X and as M is ISD it is also a circuit. A circuit of M with
no intersection with X must be a union of circuits of N by [16, Exercise 2b pg.
105].

A cycle of a binary matroid is a union of circuits so we shall call matroids with
the property that all cocircuits are unions of circuits cyclic-cocircuit matroids. All
matroids which can be obtained by contracting ISD matroids are cyclic-cocircuit
matroids, but it is not known whether the two classes are the same. We will in fact
be proving the slightly stronger theorem from which Theorem 4.1.3 will directly
follow.

Theorem 4.1.5. If M is simple and regular then it is not a cyclic-cocircuit matroid.

Before proving this theorem we will present the proof of Lindström’s theorem
and explain why it is not easily adapted to our proof. Then we will introduce
concepts of connectivity and Seymour’s decomposition theorem which together
give us strong enough structural properties of regular matroids to prove Theorem
4.1.5.

4.2 Lindström’s proof

Here we will outline Lindström’s proof and show that the method he used is not
likely to be useful in proving our extension. The way Lindström states his theorem
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is actually stronger than the way we phrased it earlier. He looks at connected,
regular matroids and shows the only one which is ISD is U1,2.

Theorem 4.2.1. (Lindström) The uniform matroid U1,2 is the only connected, reg-

ular ISD matroid.

Proof. Let M be a connected, regular matroid. We will show that if C is a circuit
of M then |C| ≤ 2. Assume that C is a circuit containing more than two elements
and let e and f be distinct elements of C. By [23, 5.1.1] there exists a cocircuit D

such that C∩D = {e, f} and as M is ISD, D is also a circuit.

We now use circuits C and D to find a third circuit B which intersects the other two
in the elements e and f . First, note that every circuit in M has even cardinality as
they must intersect every cocircuit in an even number of elements and the circuits
are cocircuits themselves. This means that M is bipartite and from this we can
deduce that, being its own dual, M is Eulerian [22]. Therefore the entire groundset
of M is a disjoint union of circuits. Now we take the symmetric difference of
E(M), C and D and note that E(M)4C4D is a disjoint union of circuits and
contains e and f . There must be a circuit B in E(M)4C4D which contains the
element e and since B cannot intersect either of the cocircuits C or D in a single
element, it must contain f too. This gives us three circuits and cocircuits B, C and
D, which each contain the elements e and f , but are otherwise disjoint.

Now we can use the orientability of regular matroids from [23, 10.4.3]. It states
that we can label every element of the circuits and cocircuits of M with + or −
to find a partition with the following property. If a circuit C has the partition
C = {C+,C−} and a cocircuit D has a partition D = {D+,D−} then

|C+∩D+|+ |C−∩D−|= |C+∩D−|+ |C−∩D+|.

In addition we are allowed to choose the partitions in such a way that C+ =C and
C−= /0 for one circuit or cocircuit; here we choose the circuit C. Next we consider
e and f in the cocircuit D. As e, f ∈C+, they must each be in different parts of D

to satisfy the equality above. By looking at the overlap of cocircuit D with circuit
B we can similarly deduce that e and f have the same sign in the circuit B. Finally,
we return to C, but this time as a cocircuit. The intersection with B forces e and f

to be in different sets of the partition of cocircuit C.

This construction was not dependent on the choice of elements e and f , so by
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this same argument, any pair of elements of C should have different signs in the
cocircuit C. This is a contradiction when |C|> 2 and therefore there cannot be any
circuits with size greater than 2. As M is connected, this implies that every element
is parallel with every other and the only ISD matroid of this type is U1,2.

The difficulty in applying this method to our theorem comes in finding B, C and
D. This is because in a cyclic-cocircuit matroid it is not the case that circuits and
cocircuits are equivalent.

Following Lindström’s method we let M be a simple, regular cyclic-cocircuit ma-
troid. If we assume C is a circuit which has more than two elements then we can
still let e, f ∈ C and use [23, 5.1.1] to find a cocircuit D where C∩D = {e, f}.
The difference here is that C is not guaranteed to be a cocircuit and D is a union
of circuits, but it does not have to be a circuit itself. Therefore we are unable to
continue the rest of the construction.

It is clear that we need to use something stronger than the methods used by Lind-
ström. We find the strength we need in Seymour’s decomposition theorem which
we discuss in the next section.

4.3 Matroid connectivity

Connectivity in matroids is a way of generalising connectivity in graphs. We
say a graph is connected if it consists of a single component in which any pair
of vertices act as the endpoints of some path. This kind of connectivity does not
directly apply to matroids. A graph G which is connected and a a graph H which is
not connected can have the same graphic matroid. Instead we consider structures
with a higher level of connectivity.

First, we review some terminology which will be useful when discussing graphic
matroids. A matroid M is graphic if the groundset of M is equal to the edge set of
a graph G and the set of circuits of M is in correspondence with the set of cycles
of G. We can assume G is connected and we call a set of edges in G a cut-set if
the graph acquired by deleting these edges from G is disconnected. A minimal set
of edges with this property is a bond and the bonds of a graph are cocircuits of the
graphic matroid.

Next, rather than only deleting edges, we give a way of describing graphs in which
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vertices have been removed. Let G be a graph and X be a set of vertices of G. Then
G−X is the graph obtained by deleting every vertex in X from G along with any
edge which is incident with one of the deleted vertices. If G is connected, but
G−X is disconnected then we call X a vertex cut of G. The minimal number
of vertices that must be removed from a connected graph in order for it to be-
come disconnected is related to how connected the graph is. We say a graph G

is k-connected if every vertex cut of G contains at least k vertices. We have to
take care when it comes to complete graphs because they contain no vertex cuts
as the graph will be empty before it becomes disconnected. It would not make
sense for a finite graph to have infinite connectivity so we restrict the definition to
exclude complete graphs. Another useful way of viewing connectivity is given by
Menger’s Theorem. Note that two paths are internally disjoint if the only vertices
they have in common are the end points of the paths.

Theorem 4.3.1. (Menger) A graph G is k-connected if and only if every pair of

vertices are joined by k pair-wise internally disjoint paths.

Thus, connectivity in graphs is related to how easily they can be disconnected by
removing vertices. The analogue for matroids is defined by separations.

Definition 4.3.2. Let M be a matroid and let k≥ 1 be an integer. A k-separation of

M is a partition (X ,Y ) of E(M) such that |X |, |Y | ≥ k, and r(X)+r(Y )−r(M)< k.

We say that a matroid is n-connected, if it has no k-separation for k < n. There
is some equivalence between graph and matroid connectivity; If G is a connected
graph with at least four edges then it is 3-connected if and only if M(G) is 3-
connected [16, 8.1.9]. Connectivity properties also behave well under duality. If
a matroid is n-connected then so is its dual. Finally, to simplify the most common
forms of connectivity, a 1-connected graph is often simply called connected. As
previously mentioned, all matroids are 1-connected, so a connected matroid refers
to 2-connectedness.

Here we introduce one final notion of connectivity in matroids. Whereas a 4-
connected matroid has no 3-separations, an internally 4-connected matroid is per-
mitted to have a 3-separation (X ,Y ) as long as |X |= 3 or |Y |= 3. A 3-separation
of this kind does not provide a good method of decomposition, something we will
revisit later.
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The following proposition puts a lower bound on the number of elements in each
circuit of a highly connected matroid.

Proposition 4.3.3. Let M be an n-connected matroid. If |E(M)| > 2(n− 1) then

every circuit in M contains at least n elements.

Another concept associated with connectivity is matroid sums. These are oper-
ations which form larger matroids from smaller components. We will use Sey-
mour’s definition [18] for how 1-, 2- and 3-sums act on binary matroids.

Definition 4.3.4. Let M1 and M2 be binary matroids where one of the following

sets of conditions holds.

1. E(M1)∩E(M2) = /0 and E(M1),E(M2) 6= /0.

2. E(M1)∩E(M2) = {e} where e is an element which is not a loop or coloop

of M1 or M2 and |E(M1)|, |E(M2)| ≥ 3.

3. E(M1)∩E(M2) = {Z} where Z is a 3 element circuit of M1 and M2 which

contains no cocircuit of M1 or M2, and |E(M1)|, |E(M2)| ≥ 7.

Define a new matroid M by letting E(M) be the symmetric difference of E(M1)

and E(M2), and the set of cycles of M be the symmetric difference of cycles in M1

and M2. Then, depending on which properties are fulfilled above, M is a 1-, 2-, or

3-sum of M1 and M2 respectively. This is denoted

M = M1⊕i M2 i ∈ {1,2,3}.

It is conventional to call a three element circuit of a matroid a triangle and these
occur frequently when discussing 3-sums. Another convention we will use, in
the case of 2-sums and 3-sums, is to call e and Z the guts point and the guts line

respectively. They form the part of the matroid where M1 and M2 are joined and
the degree of the sum indicates how strongly connected the resulting matroid is. If
M = M1⊕k M2 then (E(M1)∩E(M),E(M2)∩E(M)) is a k-separation of M. This
also gives us a way of associating matroid sums with connectivity.

Proposition 4.3.5. Let M be a binary matroid. For n = 2,3, M is n-connected if

and only if

M 6= M1⊕k M2
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for k < n. Similarly M is internally 4-connected if and only if

M 6= M1⊕k M2

where k = 1,2,3.

We now have a way of describing matroids in terms of their connectivity and
how easily they can be decomposed into smaller matroids. Restricted to regular
matroids, Seymour’s decomposition theorem gives a very good description of their
structure. The theorem mentions the matroid R10, for which a representation over
R is given in Figure 4.1.

a b c d e f g h i j


1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1

Figure 4.1: A representation of R10 over R

Theorem 4.3.6. (Seymour) Every regular matroid M may be constructed by means

of 1-, 2-, and 3-sums, starting with internally 4-connected matroids each isomor-

phic to a minor of M and each either graphic or cographic or isomorphic to R10.

This means internally 4-connected matroids which are graphic, cographic or iso-
morphic to R10 act as the smallest building blocks for all regular matroids. We can
use Theorem 4.3.6 to break down matroids into their smallest parts which will be
crucial in proving Theorem 4.1.5.

4.4 Proof of Theorem 4.1.5

In this section we show that the class of simple, regular matroids is disjoint from
the class of cyclic-cocircuit matroids. We will prove Theorem 4.1.5 by using Sey-
mour’s decomposition theorem. By assuming that matroids with these properties
exist and considering the connectivity of the resulting matroids we will arrive at a
contradiction.
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The smallest components of regular matroids, as demonstrated by the decomposi-
tion theorem, consist of graphic matroids, cographic matroids, and matroids iso-
morphic to R10. For this reason we will first prove a number of propositions about
how these three types of matroid behave with respect to being cyclic-cocircuit
matroids.

Initially, we look at matroids which are already internally 4-connected and cannot
be constructed with 1-, 2- and 3-sums.

Proposition 4.4.1. If M is a non-empty, simple, cyclic-cocircuit matroid, then M

is not graphic.

Proof. Assume M is a counterexample and let G be a graph such that M = M(G).
Since M is simple, G does not contain any loops. Let H be a connected component
of G where H contains more than one vertex. Note that if there is no such H then
G is trivial because it has no edges. Next we choose any vertex v of H. If we
repeatedly delete edges incident with v then v is no longer connected to any other
vertex. This means the set of edges adjacent to v forms a cut-set and there is a
subset of these edges which forms a bond of the graph. This is a cocircuit of
M which consists of edges adjacent to a single vertex of G. For this cocircuit
to be a union of circuits, every one of the edges must be in a non-trivial parallel
class, but this cannot happen if M is simple. Therefore our assumption that M is a
counterexample was incorrect.

Proposition 4.4.2. If M is a non-empty 3-connected, regular, cyclic-cocircuit ma-

troid then M is not cographic.

Proof. Let G be a graph such that M = M∗(G). Using properties of connectivity,
when M∗(G) is 3-connected it follows that M(G) is 3-connected and therefore
G is 3-connected. We can now apply Theorem 4.3.1 to G and thus every pair
of vertices in G must be joined by 3 pair-wise internally disjoint paths. Take an
edge e and let its incident vertices be denoted v and w. We can now choose two
additional paths p1, p2 between v and w so that e, p1 and p2 are disjoint. This
allows us to construct the cycles p1∪ e and p2∪ e which intersect in the edge e.

Suppose that p1∪ e is a union of bonds of G. One of these bonds must contain e

and that bond intersects with the cycle p2∪e in only the edge e. However, it is not
possible that a circuit and a cocircuit intersect in exactly one element. Thus we
have a contradiction and we have found a cycle of G which is not a union of bonds
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of G. This corresponds to a cocircuit of M∗(G) which is not a union of circuits of
M∗(G) and therefore M∗(G) is not a cyclic-cocircuit matroid.

Proposition 4.4.3. If M is a cyclic-cocircuit matroid then M is not isomorphic to

R10.

Proof. Refer to the representation for R10 given in Figure 4.1. We can observe that
the closure of {a,b,c,d} contains g and h and forms a hyperplane. Therefore the
complement {e, f , i, j} is a cocircuit. However, looking at the elements {e, f , i, j},
f is the only one with an entry in the second row and i is the only element with
an entry in the third row. Therefore neither f nor i are part of a dependent set
contained in {e, f , i, j}. This means that {e, f , i, j} is an example of a cocircuit
which is not the union of circuits and R10 is not a cyclic-cocircuit matroid.

It now follows from Theorem 4.3.6 and Propositions 4.4.1, 4.4.2 and 4.4.3 that
if a regular matroid is internally 4-connected it cannot be cyclic circuit. Next we
give a similar set of restrictions for the cases when a cyclic-cocircuit matroid M

contains 2- or 3-sums. It may be that not every cocircuit in one of the internally 4-
connected components of M is cyclic. This is the result of the weaker connectivity
between the components and the way the matroid sums behave. In a 2-sum there
is an element in each of the constituent matroids which is not part of M and in a
3-sum there is a triangle of each matroid which is not present in M.

Proposition 4.4.4. Let M be a cyclic-cocircuit matroid. Let M1 and M2 be ma-

troids such that

M = M1⊕i M2

for i ∈ {2,3}. If C∗ is a cocircuit of M1 and C∗ ⊆ E(M) then C∗ is cyclic in M1.

Proof. Let C∗ be a cocircuit of M1 such that C∗ ⊆ E(M). Then E(M1)−C∗ is a
hyperplane of M1 which contains the guts point or line so E(M)−C∗ is a hyper-
plane of M and therefore C∗ is cocircuit of M. As M is a cyclic-cocircuit matroid,
C∗ must be a cycle of M. This cycle does not intersect M2 and it must be a sym-
metric difference of cycles of M1 and M2. In a 2-sum there is no cycle of M2 such
that the symmetric difference with a cycle from M1 has no intersection with M2

so C∗ must simply be a cycle from M1. In a 3-sum the only way a non-empty
cycle of M2 has a symmetric difference with a cycle of M1 which does not contain
any elements of M2 is if the cycle from M2 is E(M1)∩E(M2) = Z and the cycle
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from M1 contains Z. Then the cycle C∗ of M along with Z is a cycle in M1 and by
taking the symmetric difference of cycles C∗∪Z and Z we see that C∗ is cyclic in
M1.

We now show that even when not every cocircuit is required to be cyclic the com-
ponents cannot be regular. First we consider components of a 2-sum.

Proposition 4.4.5. Let M be an internally 4-connected, regular matroid with

|E(M)| ≥ 4. There is no element e ∈ E(M) such that every cocircuit not con-

taining e is a union of circuits.

Proof. Assume the conclusion is false and let M be a counterexample. Since M is
internally 4-connected and regular, M is graphic, cographic or isomorphic to R10

by Theorem 4.3.6.

If M is graphic and M = M(G) then G can only have two vertices. If there are
more than two vertices then at least one vertex v is not incident with the edge
e. The set of edges incident with v contains a cocircuit which is not a union of
circuits as none of these edges are in parallel pairs. If G has only two vertices then
it consists of a single parallel class. This cannot form an internally 4-connected
matroid as a 3-connected matroid with at least 4 elements does not contain any
circuits of size 2 by Proposition 4.3.3.

If instead M is cographic with M = M∗(G) then again G must contain the edge
e and every cycle of the graph not containing e is a union of bonds. Consider an
edge f which is distinct from e. Let the two vertices it is incident with be denoted
v and w. As G is 3-connected, v and w have a further two pairwise edge disjoint
paths between them by Menger’s Theorem. At most, one of these paths contains e

and the other path along with f forms a cycle not containing e. If this cycle were a
union of bonds then one bond must contain f and would intersect the other cycle in
exactly one element. This again contradicts the fact that a matroid cannot contain
a circuit and a cocircuit which have one element in their intersection. Therefore
there are no cographic matroids with the required properties.

Finally, it is straightforward to check that R10 is not a suitable choice for M. Each
element in R10 is equivalent so if there were an element e with the desired prop-
erties then we can find an isomorphism which maps it to the element a given in
the proof of Proposition 4.4.3. However, in that proof we give a cocircuit which
is not cyclic and does not contain a. Therefore there is no element of R10 that
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can be labeled e such that every cocircuit which doesn’t contain e is a union of
circuits.

Next we show that matroids which form a cyclic-cocircuit matroid after a 3-sum,
cannot be regular.

Proposition 4.4.6. Let M be a 3-connected, graphic or cographic matroid with

|E(M)| ≥ 7 . There is no three element circuit Z ∈ E(M) such that every cocircuit

which is disjoint from Z is a union of circuits.

Proof. As previously stated, we know that M is graphic, cographic or isomorphic
to R10 by Theorem 4.3.6. In this case, however, R10 is not an option worth investi-
gating as it does not contain a three element circuit. Instead we only need to prove
that M cannot be graphic or cographic.

If M is graphic then M = M(G) for some graph G and we know G contains the
cycle Z. It is not possible for any of the edges in Z to be in a non-trivial parallel
class. Any additional edge on this triangle brings the total number edges to at
least four. This leads to a contradiction because Proposition 4.3.3 shows that a
3-connected matroid with at least four elements cannot have any parallel pairs.

We choose an edge e not contained in Z which we are guaranteed because M has
at least 7 elements. Then there is a vertex v which is not incident with any edges
of Z. The set of edges incident with v contains a cocircuit which is only the union
of circuits if it is made up of parallel pairs. Again, Proposition 4.3.3 indicates this
is not the case. Therefore M is not graphic.

This leaves the possibility that M is cographic. If this is the case then we should
be able to find a graph G such that M = M∗(G). Thus G should contain a three
element bond Z and every cycle which does not contain any elements of Z should
be a union of bonds. Again note that G contains no parallel pairs because it is
3-connected. Now we can apply Theorem 4.3.1. First take any edge e 6∈ Z and
denote its incident vertices v and w. There are three edge disjoint paths between v

and w because G is 3-connected. One of these is e, one path p1 might pass through
two edges of Z, but at least one other path p2 doesn’t intersect Z. We can create
a cycle p2 ∪ e which is not the union of bonds since no bond will contain e or
it will intersect the cycle p1∪ e in exactly one element which is a contradiction.
Therefore M is not cographic.
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One of the last results we introduce before putting everything together is to show
that it is possible to isolate a graphic or cographic component of a matroid through
a single separation.

Definition 4.4.7. Let M be a binary matroid which is 3-connected. A leaf is a

minimal set X ∈ E(M) such that |X | ≥ 4 and (X ,E(M)−X) is a 3-separation.

Lemma 4.4.8. If M is a binary matroid which is 3-connected, but not internally

4-connected, then M contains a pair of disjoint leaves.

Proof. Let M be a binary matroid which is 3-connected and not internally 4-
connected. Then there must be a partition (X ,Y ) of E(M) which is a 3-separation
with |X |, |Y | ≥ 4. Each of X and Y is a leaf or contains a leaf of M. Therefore M

contains two disjoint leaves, one which is a subset of X and one which is a subset
of Y .

Lemma 4.4.9. Let M be a regular matroid and let X be a leaf of M. Then there

exists a matroid M1 such that E(M1)∩E(M) = X and M1 is graphic or cographic.

Proof. Let X be a leaf of the matroid M. By [18, 2.9], there exist matroids M1 and
M2 such that

M = M1⊕3 M2

and X = E(M1)−E(M2). Therefore X = E(M1)∩E(M). Next we observe that if
M1 has a 2-separation it is due to parallel classes on the elements of the triangle
Z = E(M1)∩E(M2) [18, 4.3]. However, we chose X to be minimal so any ele-
ments on the guts line of M must belong to M2 so M1 contains no parallel pairs
and is 3-connected.

Now assume that M1 is not graphic or cographic. By [18, 14.2], M1 has a minor
isomorphic to R10 or R12. If M1 has an R10 minor then M1 itself is isomorphic to
R10, but this is a contradiction as M1 would contain no triangles and could not be a
component of a 3-sum. Therefore M1 has a minor isomorphic to R12 and from [18,
9.2], we see that M1 has an exact 3-separation (X ′,Y ′) with |X ′|, |Y ′| ≥ 6. Without
loss of generality we let |Z ∩Y ′| ≥ 2 so that X ′ is the part of the partition with
minimal intersection with Z. Then (X ′−Z,E(M)− (X ′−Z)) is a 3-separation of
M, but |X ′−Z| ≥ 4 and X ′−Z is properly contained in X which contradicts our
choice of X as a leaf. Therefore M1 must be graphic or cographic.
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Next we put together the results on internally 4-connected matroids so that we can
turn to matroids with lower connectivity and prove the extension to Lindström’s
Theorem.

Proposition 4.4.10. Let M be a simple, regular matroid which is a cyclic-cocircuit

matroid. Then M is not internally 4-connected.

Proof. If M is regular and internally 4-connected then it must be graphic, co-
graphic or isomorphic to R10 by Theorem 4.3.6. Propositions 4.4.1, 4.4.2 and 4.4.3
prove these possibilities are not valid and thus M is not internally 4-connected.

Proposition 4.4.11. Let M be a simple, regular matroid which is cyclic-cocircuit.

Then M is not 3-connected.

Proof. Let us make the assumption that there exists a simple, regular matroid
which is 3-connected in addition to being a cyclic-cocircuit matroid. Let M be a
minimal example of such a matroid. We know M cannot be internally 4-connected
from Proposition 4.4.10. Then, by Lemma 4.4.8 and Lemma 4.4.9, there exist
matroids M1,M2 such that

M = M1⊕3 M2

and M1 is graphic or cographic. We will let Z denote the three element circuit
in common between M1 and M2. Now we can look at the structure imposed on
M1 by M. Every cocircuit of M1 which does not intersect Z must be a union of
circuits of M1, by Proposition 4.4.4. Applying Proposition 4.4.6 to M1 results in a
contradiction so our assumption was incorrect.

Now we can prove the main theorem.

Proof of 4.1.5. Assume that M is a minimal counterexample and therefore it must
be 2-connected. If M were not 2-connected then

M = M1⊕1 M2

and both M1 and M2 would also be simple, regular and cyclic-cocircuit so M would
not be minimal. We know that M is not 3-connected by Proposition 4.4.11. As M
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is 2-connected, but not 3-connected we can find matroids M1 and M2 such that

M = M1⊕2 M2

and E(M1)∩E(M2) = e. We take M1 to be as small as possible and prove that M1

must be 3-connected. Assume for a contradiction that M1 is not 3-connected, thus

M1 = M3⊕2 M4.

Without loss of generality we can let e 6∈ E(M3) and so there must be a separate
decomposition of M such that M = M3⊕2 M5 for some matroid M5. This is a
contradiction as |E(M3)|< |E(M1)|. Therefore M1 must be 3-connected.

Propositions 4.4.4 and 4.4.5 prove that M1 cannot be internally 4-connected. There-
fore we can apply Lemma 4.4.8 which shows M1 has 2 disjoint leaves, so there
must be one which does not contain e. Therefore, by Lemma 4.4.9, we can find a
sum,

M1 = M3⊕M4,

where M3 is graphic or cographic and does not contain e. Again we let Z denote
the common ground set elements of M3 and M4.

For the 3-sum to be well defined |E(M3)| ≥ 7 and Proposition 4.4.4 says that every
cocircuit of M3 which does not intersect Z is the union of circuits. This is not
possible as shown by Proposition 4.4.6 and therefore M is not a counterexample.

Corollary 4.4.12. If M is a cosimple, regular matroid then M cannot be obtained

by deleting elements from an ISD matroid.



Chapter 5

Frame Matroids

5.1 Biased Graphs and Frame Matroids

A biased graph Ω consists of a graph where some of the cycles in the graph are
balanced cycles and the remainder are unbalanced cycles. In a biased graph we
denote the set of balanced cycles B and we can describe the biased graph as the
pair (G,B). The only restriction on the set of balanced cycles of a biased graph
relates to theta subgraphs. A theta subgraph, pictured on the right of Figure 5.1,
is a set of three internally disjoint paths between two vertices. By taking any pair
of these paths we find that a theta subgraph contains three cycles and in a biased
graph 0, 1 or 3 of these cycles can be balanced. That is, a theta subgraph cannot
contain precisely two balanced cycles. We say a biased graph Ω is balanced when
every cycle of Ω is balanced.

Whereas graphs give rise to graphic matroids, biased graphs generate frame ma-
troids. Before we can describe these matroids we need to introduce the two re-
maining substructures of biased graphs which are shown in Figure 5.1. Pictured

Figure 5.1: Handcuffs and a theta graph.

54
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first is an example of loose handcuffs, a pair of cycles with a minimal path from
one to the other. The second structure is a pair of cycles that share a single vertex
and these are called tight handcuffs.

Now we can describe the frame matroid M(Ω) which is generated from the biased
graph Ω. As in graphic matroids, the ground set of M(Ω) is given by the edges
in Ω. The circuits of M(Ω) are the minimal sets of edges which form balanced
cycles, loose handcuffs, tight handcuffs or theta graphs. This means that all bal-
anced cycles are circuits and any of the three structures in Figure 5.1 which do not
contain a balanced cycle are also circuits of M(Ω).

Another way of characterising frame matroids is given by Zaslavsky [24].

Proposition 5.1.1. M is a frame matroid if and only if there exists a matroid N with

a basis B such that N\B = M and for all e ∈ E(M), the unique circuit contained

in B∪ e has at most 3 elements.

The naming of frame matroids is made more apparent by this proposition. The
basis B acts as a frame in the matroid N and every element of E(N) lies on a
line containing two elements of B. Therefore a frame matroid M is simply what
remains of N when the basis B is deleted.

It is also useful, at this point, to mention the rank function of a frame matroid. The
dependent sets of M(Ω) are those which contain a balanced cycle of Ω or one of
the structures in Figure 5.1. Therefore the largest independent set in a component
of Ω can be found by taking a maximal tree and one additional edge as long as to-
gether this set of edges does not contain a balanced cycle. Any larger set of edges
must contain two distinct cycles and therefore must contain a pair of handcuffs
or a theta graph and is not independent. However, in a balanced component there
are no unbalanced cycles so the largest independent set is simply a maximal tree.
Thus, in an unbalanced component of Ω the size of the largest independent set
matches the number of vertices of the component, and in a balanced component
the largest independent set is one smaller.

Proposition 5.1.2. Let Ω be a biased graph. The rank of M(Ω) is equal to the

number of vertices in Ω minus the number of balanced components.

The rank of the matroid is decreased when the number of balanced components
increases. Therefore a cocircuit C of M(Ω) corresponds to a minimal set of edges
in Ω such that Ω−C contains one more balanced component than Ω.
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We now introduce the class of matroids called swirls as described in [16, pg.
664]. A swirl of rank r contains elements in pairs {a0,b0,a1,b1, . . . ,ar−1,br−1}.
The non-spanning circuits are given by {ai,bi,zi+1,zi+2, . . . ,ai+k,bi+k} where z is
either a or b and 1≤ k≤ r−2 with subscripts calculated modulo r along with bal-
anced r element cycles which intersect each pair {ai,bi} in exactly one element.

We will investigate the form Ω can take if M(Ω) is ISD and come to the following
result. This is a restatement of Theorem 1.2.6.

Theorem 5.1.3. Let M be a frame matroid. If M is ISD and 3-connected, then it

is a swirl.

In this case, the graph G underlying Ω must be as shown in Figure 5.2. We will
prove this in the next section.

Figure 5.2: Structure for Ω when M(Ω) is ISD and 3-connected.

5.2 ISD Frame Matroids

In this section we characterise ISD frame matroids by identifying structures that
do not occur in a biased graph Ω if M(Ω) is ISD. First, note that if Ω is a biased
graph and X is a set of edges of Ω then we can define a new biased graph Ω−X .
If Ω = (G,B) then the graph underlying Ω−X is G−X and the set of balanced
cycles of Ω−X are the cycles in B which do not intersect X .

We want to restrict ourselves to matroids which are connected. Any ISD ma-
troid which is not connected is the direct sum of two smaller ISD matroids so we
only need to consider the connected components. This will ensure that Ω is also
connected.

Now we will prove a simple lemma which will form the base of many proofs.
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Lemma 5.2.1. Let Ω be a connected biased graph such that M(Ω) is ISD and

connected. If v is any vertex in Ω then the set of edges incident with v must

contain a circuit of M(Ω).

Proof. Let v be a vertex of Ω and Ev be the set of edges incident with v. As v

becomes newly isolated in Ω−Ev, it must be a balanced component of Ω−Ev.
If v was originally in an unbalanced component then v is a balanced component
in Ω−Ev and if v was in a balanced component then all of the components that
are generated in Ω−Ev are balanced. Either way there is an increase in balanced
components and therefore r(Ω−Ev) < r(Ω). Thus, Ω must contain a cocircuit
C ⊆ Ev and since M(Ω) is ISD, C is a circuit of M(Ω) contained in Ev.

If M(Ω) is ISD then we already know that there are no loops in M(Ω) as no circuit
intersects any cocircuit in a single element. A parallel pair in M(Ω) must also be a
series pair in an ISD matroid, but the only connected matroid containing a parallel
pair which is a series pair is U1,2. Therefore, if M(Ω) is a connected ISD matroid
other than U1,2 then M(Ω) has no circuits of size one or two and in turn Ω has no
balanced cycles of size one or two.

Lemma 5.2.2. Let Ω be a biased graph where M(Ω) is ISD and connected, but

not the uniform matroid U1,2. If v is any vertex of Ω then the set of edges incident

with v contains a pair of tight handcuffs or a theta subgraph.

Proof. From Lemma 5.2.1 we know that every vertex v in Ω is incident with a
circuit of M(Ω). As Ω contains no balanced cycles of size 2, the edges incident
with v must contain every edge of one of the structures in Figure 5.1. This is only
possible for a pair of tight handcuffs with 3 or 4 edges or a theta graph of 3 edges
in parallel.

The importance of this result is that since neither of these structures contains a
balanced cycle, every vertex of Ω is incident with an unbalanced cycle of size
two.

Corollary 5.2.3. Let Ω be a biased graph where M(Ω) is ISD and connected, but

not the uniform matroid U1,2. If v is any vertex of Ω then v is incident with an

unbalanced cycle.

This is our most useful tool in proving the next results.
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Lemma 5.2.4. Let Ω be a biased graph such that M(Ω) is ISD and connected and

Ω contains vertices v and w, and more than three edges which are incident with

both v and w. Then M(Ω) =U2,4.

Proof. Suppose that v and w are vertices of Ω and there are more than three edges
incident with v and w. There are more than two edges so M(Ω) is not U1,2 and Ω

does not contain a balanced cycle. Therefore three of the edges between v and w

form a theta subgraph θ which is a cocircuit of M(Ω). This means in the graph
Ω− θ there will be a balanced component since the rank of the matroid must
be decreased by one. Since v and w had more than three incident edges, Ω− θ

is connected and therefore it has to be balanced. By Corollary 5.2.3 any vertex
of Ω is incident with an unbalanced cycle and so if there are any vertices other
than v and w they will be incident with an unbalanced cycle which remains in
Ω−θ . This cannot happen if Ω−θ is balanced so Ω and Ω−θ only contain two
vertices and a single edge incident with them. Any additional edges would create
unbalanced loops or an unbalanced parallel pair. Therefore Ω contains the theta
graph with one additional edge and M(Ω) is equal to U2,4.

Proposition 5.2.5. If Ω is a biased graph and the associated frame matroid M(Ω)

is ISD and connected, then every edge of Ω which is not a loop is in a nontrivial

parallel class.

Proof. In this proof we will use case analysis to show that if there is a pair of
adjacent vertices with precisely one edge incident with both vertices then M(Ω)

cannot be ISD. By considering all possible structures with an edge in a parallel
class of size one we will show that this implies that the set of circuits and the set
of cocircuits of M(Ω) are not equal and therefore the matroid is not ISD.

Assume that v, w and e exist in Ω where e is the only edge incident with both v

and w. First, consider all possible paths from v to w. Each path must have an edge
which is incident to v so we let the set of edges which are contained in a path from
v to w and are incident with v be denoted Wv. Note that Wv is a cut-set of the biased
graph as Ω−Wv does not contain a path from v to w and so v and w are in different
components of Ω−Wv. Furthermore Wv is a minimal cut-set of Ω as any vertex
other than v which was on a path from v to w is part of the component containing
w in Ω−Wv. Therefore no subset of Wv is a cut-set and in particular, Wv− e is
not a cut-set. We also know that Ω− (Wv− e) is not balanced because there are
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unbalanced cycles incident with w by Corollary 5.2.3 and this implies that Wv− e

does not contain a cocircuit. As M(Ω) is ISD, Wv− e does not contain a circuit
and therefore Wv consists of at most one unbalanced cycle of size two along with
single edges.

Next we examine all the possibilities and consider them in three separate cases;
Wv contains an unbalanced two element cycle, Wv does not contain any cycles and
v is incident with a theta graph, or Wv does not contain a cycle and v is not incident
with a theta graph.

For the remainder of the proof, remember that w is incident with an unbalanced
cycle by Corollary 5.2.3. We will also return to using Ev to denote all edges
incident to v.

Case 1: Wv contains an unbalanced 2 element cycle.

When Wv contains a single cycle, Ev−Wv must also contain a cycle by Lemma
5.2.2. Other than when M(Ω) = U2,4 no parallel classes with size greater than
three exist in Ω by Lemma 5.2.4, and therefore the cycle in Ev−Wv must come
from one of the structures shown in Figure 5.3. Each of these options will imply
the existence of a circuit which is not a cocircuit.

Figure 5.3: Case 1.

a. If v is incident with a loop then this loop along with the parallel pair in Wv

form a circuit C. The set of edges in Wv is a bond so no proper subset of
the edges is a cut-set and therefore the graph Ω−C is connected. Since w is
incident with an unbalanced cycle, Ω−C is not balanced. This indicates that
the rank of M(Ω−C) is not lower than the rank of M(Ω) and therefore C is
not a cocircuit.

b. If Ev−Wv has a parallel class of size two incident with v and x, then the hand-
cuffs consisting of this pair of edges and the pair of edges in Wv is a circuit of
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M(Ω). Both x and w must have a circuit incident to them by Corollary 5.2.3
and thus deleting the handcuffs at v does not increase the number of balanced
components of the graph and this circuit is not a cocircuit.

c. If Ev−Wv contains a theta subgraph incident to vertices v and y then the hand-
cuffs created by taking two of the edges of the theta graph and the cycle from
Wv are a circuit C. These edges are not a cut-set of the graph and, as w is in-
cident to a circuit, Ω−C is not balanced. Therefore the handcuffs cannot be a
cocircuit of M(Ω).

All of these options have circuits which are not cocircuits and are unsuitable for a
graph where M(Ω) is ISD. Hence Wv cannot contain an unbalanced cycle.

Case 2: Wv does not contain a cycle and v is incident with a theta graph.

Next we consider the options for Ω given in Figure 5.4 where v and x are incident
to a theta subgraph θ . In each of these cases θ is a circuit and therefore a cocircuit.
In the subgraph Ω−θ there are unbalanced cycles incident with w so in order for
θ to be a cocircuit it must be x which is part of a balanced component. This
balanced component in Ω− θ cannot contain any vertices other than x as these
vertices must be incident with unbalanced cycles in Ω by Corollary 5.2.3. Loops
in Ω are never balanced so x is incident with exactly those three edges of θ .

Figure 5.4: Case 2.

a. If v is not incident with any additional cycles then we consider the set of edges
consisting of two of the edges incident with x and v as well as all the single
edges incident with v. We find that this collection of edges C is a cocircuit. In
the graph Ω−C there is a balanced component consisting of v and x joined by a
single edge, but any proper subset of C does not create a balanced component
when deleted from Ω as every vertex is incident with an unbalanced cycle.
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Clearly, C is not a circuit of Ω because it is not a balanced cycle and it does not
contain two cycles.

b. If v is incident with a loop then the loop along with two edges from the theta
subgraph form a circuit C. The circuit is not a cocircuit, as there is a single
component in Ω−C and there are unbalanced cycles incident with w so there
are no new balanced components.

c. If v is incident with a parallel class of size two which is also incident with the
vertex y then the parallel pair and two edges from the theta subgraph form a
pair of tight handcuffs. There must be another unbalanced cycle which is inci-
dent with y by Lemma 5.2.2 and therefore the handcuffs cannot be a cocircuit
because, when they are deleted from the graph, the cycles incident with w and
y prevent either component from being balanced.

d. If v is incident to a second theta subgraph of edges also incident on z then the
handcuffs formed by taking two edges of each of the theta graphs is a circuit of
M(Ω). As in possibility b., deleting the handcuffs does not increase the number
of balanced components in the graph as w is incident with unbalanced cycles.
Hence, these handcuffs are a circuit, but not a cocircuit.

Again, in these four scenarios the collections of circuits and cocircuits of M(Ω)

are not equal and if M(Ω) is ISD this cannot occur.

Case 3: Wv does not contain a cycle and v is not incident with a theta graph.

The final two options are pictured in Figure 5.5. If v is not incident with a theta
graph then it must be incident with a pair of tight handcuffs with 3 or 4 elements.
It is not possible for v to be incident with two loops because if M(Ω) contains a
circuit with two elements it implies that M(Ω) = U1,2. This means that v must
be incident to a pair of edges which are also incident with another vertex x. From
Lemma 5.2.2 we see that x must be incident with another unbalanced cycle besides
this parallel pair.

a. If Ev contains a loop then together the two cycles incident with v form a pair
of tight handcuffs. If the handcuffs are deleted from Ω then no balanced com-
ponents are formed because w and x are both incident with unbalanced cycles.
Therefore the handcuffs are a circuit, but not a cocircuit.
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Figure 5.5: Case 3.

b. If Ev contains a second parallel pair which is also incident with y then the
pair of parallel pairs form a circuit together. By Lemma 5.2.2, y is incident
with another unbalanced cycle. Therefore if the handcuffs are deleted from Ω,
every component is unbalanced because of the cycles incident with w, x and y.
Hence, the handcuffs are not a cocircuit.

Both of these options in this final case have circuits which are not cocircuits.
Thus there are no possibilities which do not result in a contradiction and Ω cannot
contain any edges in non-trivial parallel classes.

At this point it is clear that every edge in Ω must be a loop or in a parallel class of
size two or three except for where M(Ω) is U2,4. Next we wish to find a restriction
on the number of neighbours each vertex can have.

Proposition 5.2.6. Let Ω be a biased graph. If M(Ω) is ISD then no vertex in Ω

has more than 2 neighbouring vertices.

Figure 5.6: Vertex with 3 neighbours

Proof. If Ω contains four edges in parallel then M(Ω) =U2,4 by Lemma 5.2.4 and
each vertex has a single neighbouring vertex. If Ω does not have a parallel class
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of size four then from Proposition 5.2.5 we know that if two vertices are adjacent
then there are either two or three edges which are incident on both vertices. Thus
if we assume that there is a vertex v in Ω which has at least 3 adjacent vertices we
can deduce that there exist vertices x, y and z in one of the forms shown in Figure
5.6. Again we will show that these possibilities imply that the set of circuits and
cocircuits of M(Ω) are not equal and therefore M(Ω) cannot be ISD.

a. If there are at least two theta subgraphs incident with v then a pair of edges from
each of the two theta subgraphs forms a circuit C. The graph Ω−C contains a
single component which is unbalanced by the third parallel class incident with
v. Therefore C is a circuit and not a cocircuit.

b. If there are at least two parallel classes of size two incident with v then a pair of
these parallel classes form a circuit C. Let v, y and z be the vertices which are
incident with C. Then y and z must each be incident with another unbalanced
cycle by Lemma 5.2.2. Since all components of Ω−C are unbalanced, it is not
possible for the circuit C to be a cocircuit.

Each of these options implies that M(Ω) is not ISD so Ω must not contain any
vertices which are adjacent to more than two neighbours.

This is a strong restriction on the structure of Ω since it now must contain no
diverging paths. We are almost ready to fully describe the graph G underlying
Ω after first considering the biased graphs with 1 or 2 vertices which behave less
consistently.

Proposition 5.2.7. Let Ω be a biased graph where M(Ω) is the corresponding

frame matroid and M(Ω) is ISD. If Ω is connected and has fewer than 3 vertices

then the graph G which underlies Ω has one of the structures shown in Figure 5.7.

Proof. If Ω has a single vertex then the only edges it can contain are unbalanced
loops. If it has no loops then M(Ω) is the empty matroid. If it contains unbalanced
loops then a pair of loops forms a two element circuit and M(Ω) =U1,2. If Ω has 2
vertices v and w, we now consider how many edges are incident with both vertices.
It is not possible that there is a single edge between v and w, by Proposition 5.2.5.
If Ω contains one balanced parallel pair between v and w then this also means
M(Ω) is U1,2 and there cannot be any additional edges on v or w or the balanced
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Figure 5.7: Biased graphs with 1 or 2 vertices

cycle would not be a cocircuit of M(Ω). If there is a parallel pair between v and w

which is not balanced, then each of v and w must be incident with an unbalanced
loop in order to fulfill Lemma 5.2.2 and M(Ω) = U2,4. If there is theta subgraph
θ on the edges v and w containing no balanced cycles then exactly one of v or w

should be incident with a loop. This is because Ω− θ should contain precisely
one more balanced component than Ω and this also has the frame matroid U2,4.
Finally, if there are 4 edges incident with both v and w then M(Ω) = U2,4 and Ω

contains no other edges, by Lemma 5.2.4.

Finally, we are ready to give the structure for a general biased graph which has an
ISD frame matroid. We will first introduce some graph terminology that will be
referred to in the proposition. A doubled cycle can be obtained by taking a cycle
and adding another edge alongside each edge of the cycle so that every edge is in a
parallel class of size two. This also called a 2Ck where k is the number of vertices
in the doubled cycle. A similar concept can be applied to a path to generate a
doubled path where every edge is in a parallel class of size two, but selecting one
representative from each class results in a path.

Proposition 5.2.8. Let Ω = (G,B) be a biased graph with more than two vertices

such that M(Ω) is a connected ISD frame matroid. Then G is either a doubled

cycle 2Ck or a doubled path with an additional edge at each of the two end vertices

as shown in Figure 5.8.

Proof. From Proposition 5.2.6, every vertex in Ω has one or two neighbours. Fur-
thermore, there are no single edges in Ω by proposition 5.2.5. Either every vertex
has two neighbours and the vertices form a cycle with parallel classes or there are
two vertices with only one neighbour each and Ω has a path structure.

Considering the first of these options we will let Ω be a cycle where every edge
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Figure 5.8: Biased Graphs of ISD Frame Matroids

is in a non-trivial parallel class. Suppose there is a parallel class with three edges
between two vertices v and w of Ω so these edges produce a theta subgraph θ . In
the graph Ω−θ there is a single component because there is a path between v and
w from the other part of the cycle. This path has parallel classes so Ω−θ is not
balanced and therefore θ is a circuit, but not a cocircuit. This is a contradiction if
M(Ω) is ISD so every parallel class must have two edges. It remains to show that
no vertex of Ω is incident with a loop. If it were, then the loop and a neighbouring
parallel pair form a pair of tight handcuffs C. Again, because Ω is a cycle, Ω−C

contains a single unbalanced component so C is a circuit which is not a cocircuit.
Therefore there are no loops and Ω is a 2Ck.

In the case where Ω contains vertices which do not have two neighbours then there
must be two end vertices of the path which each have only one neighbour. These
vertices must be incident with a circuit, by Lemma 5.2.2, so they are incident
with at least three edges. If they are incident with four or more edges then they
are incident with at least two loops or with a loop and a theta graph. Both of
these scenarios are contradictory because if C is a pair of handcuffs consisting
of two loops or of a loop and two edges of a theta graph then Ω−C does not
contain a balanced component and C is not a cocircuit. Therefore the end vertices
are incident to exactly three edges - either a loop and a parallel pair or a theta
subgraph. Next we can assert that there are no loops incident with the vertices
which have two neighbours. If there were, then the tight handcuffs C consisting
of the loop with a pair of parallel edges are not a cocircuit, because Ω−C contains
no balanced components.

Finally, there are no parallel classes of size at least three except the classes of
size exactly three which may be incident with an end vertex. Assume there is a
parallel class of size three or more which is not incident with an end vertex and
let the circuit C be a pair of tight handcuffs containing two edges of this class and
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two edges of a neighbouring parallel class. There are at most two components in
Ω−C and none of them are balanced because the end vertices are incident with
unbalanced cycles. Hence C is not a circuit and there are no parallel classes of size
three or greater which are not incident with the vertices with only one neighbour.
Therefore the only possible structures for Ω are a doubled cycle or a doubled path
where the end vertices are incident to three edges as pictured in Figure 5.8.

The proof of Theorem 5.1.3 directly follows from this proposition.

Proof of 5.1.3. Let M be an ISD, 3-connected frame matroid. By Proposition
5.2.8, if M = M(Ω) then Ω is one of the biased graphs shown in Figure 5.8. Of
these, the only structure which gives a 3-connected frame matroid is the doubled
cycle. Therefore Ω must be a doubled cycle 2Ck and we can deduce from the set
of non-spanning circuits of the frame matroid that M(Ω) is a swirl.

5.3 Special Cases

Having found the possible structures for Ω where M(Ω) is an ISD frame matroid
we next consider the more restricted classes of graphic matroids, signed graphic
matroids and bicircular matroids. Graphic matroids are a subset of regular ma-
troids so the first result is already given in Theorem 4.2.1 due to Lindström.

Proposition 5.3.1. If G is a graph and the graphic matroid M(G) is ISD and

connected then M(G) is U1,2.

Proof. Graphic matroids are equivalent to the matroids associated with a biased
graph where every cycle is balanced. This means every cycle is a circuit and
cocircuit of M(G) and G cannot contain any loops. Proposition 5.2.5 means there
are no single edges in G and if any edge is in a parallel pair then in addition this
is a series pair. The only connected matroid with a parallel pair which is a series
pair is U1,2.

Next we characterise the structure of signed graphs which have ISD signed graphic
matroids. A signed graph is a graph where every edge is given a sign of + or −
and the cycles of the graph with an even number of negative edges are balanced.
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Proposition 5.3.2. If Ω is a signed graph with more than two vertices and the

signed graphic matroid M(Ω) is ISD and connected then Ω is a doubled cycle of

even length 2C2k or a doubled path with loops at the extremal vertices. In either

structure the parallel pairs consist of one positive edge and one negative edge and

the loops are negative.

Proof. Let Ω be a signed graph such that the signed graphic matroid M(Ω) is
ISD. We know that Ω has one of the structures from Figure 5.8 so assume that
Ω is a doubled cycle. Every parallel pair of edges in Ω must be unbalanced and
therefore must consist of one edge of each sign. Therefore it is possible to pick
one edge from each pair in such a way that there is a large cycle C which has an
even number of negative edges and is balanced. The complementary edges which
remain in Ω−C should also be balanced so that C is a cocircuit. The complement
of a balanced cycle in Ω is another balanced cycle so Ω has an even number of
vertices and Ω is a 2C2k.

If instead Ω has two vertices each with only one neighbour then it must be a
doubled path with two loops. By Proposition 5.2.8, Ω must have three edges
incident with each terminal vertex. However, in a signed graph if there are three
edges in parallel then there must be a pair of edges which form a balanced cycle.
This cannot happen because except for when M(Ω) = U1,2 no connected ISD
matroid contains a parallel pair. Therefore Ω contains no theta graphs and must
be a doubled path with two loops.

In either case there can be no balanced cycles and therefore every cycle must
contain an odd number of negative edges. This forces loops to be negative edges
and parallel pairs to contain one positive and one negative edge.

Bicircular graphs are simply frame matroids which have no balanced cycles so
all the circuits of a bicircular matroid correspond to bicycles in the graph (Figure
5.1). In accordance, we also define a free-swirl which is a swirl without any of the
non-spanning circuits which intersect one element of each of the pairs of elements
in the ground set. This last proposition directly follows from Theorem 5.1.3 and
the definition of bicircular matroids and free-swirls.

Proposition 5.3.3. If M is an ISD, 3-connected, bicircular matroid then it is a

free-swirl.



Chapter 6

Axiomatisability

In [15], Mayhew, Newman and Whittle introduce a form of monadic second-order
logic (MS0) which can be used to characterise certain classes of matroids. In this
chapter we define a sentence ψ in MS0 such that a matroid M satisfies ψ if and
only if M is ISD. We will also use methods from their paper to show that the class
of self-dual matroids is not able to be characterised by a sentence in MS0.

6.1 ISD matroids

Here we give a description of MS0 and use it to find a sentence which is only
satisfied by ISD matroids. In a sentence of MS0 variables are interpreted as subsets
of the ground set of a matroid. We use three predicates: X1 ⊆ X2 is true whenever
X1 is a subset of X2; Ind(X1) is true when X1 is independent; and Sing(X1) is true
when |X1| = 1. We also have access to the connectives {¬,∧} and since this set
is functionally complete we will use ∨,→ and↔ which can be expressed with ¬
and ∧. Finally, the last item in the MS0 toolkit is the existential quantifier ∃ and
by pairing this with ¬ we can also use ∀.

We now put these together to find a sentence which describes ISD matroids. Such
a sentence should assert that the complement of every basis is also a basis of the
matroid so first we write predicates which describe bases and complements in
MS0.
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A basis is a maximal independent set which we can establish in MS0 as

Basis(X) = Ind(X)∧∀X1(X ⊆ X1→ X1 ⊆ X ∨¬Ind(X1)).

If two sets are complementary then every element is part of exactly one of them.

Comp(X ,Y ) = ∀X1(Sing(X1)→ (X1 ⊆ X ↔¬(X1 ⊆ Y )))

We use these in the following sentence ψ . A matroid M satisfies ψ if and only if
M is ISD.

ψ : ∀X(Basis(X)↔∀Y (Comp(X ,Y )→ Basis(Y )))

6.2 Self-dual Matroids

Unlike ISD matroids, the properties of self-dual matroids are not able to be cap-
tured by a sentence in MS0. In order to prove this we will first define a notion of
equivalence for matroids.

Definition 6.2.1. Let M1 and M2 be matroids. Let M be the set of all matroids

M′ such that E(M′)∩ (E(M1)∪E(M2)) = /0 and let K be the set of all k-variable

sentences in MS0. Then M1 and M2 are k-equivalent if, for all M′ in M and for

all ψ in K , both, or neither, M1⊕M′ and M2⊕M′ satisfy ψ .

It is not hard to show that this is an equivalence relation. The fact that k-equivalence
is reflexive and symmetric follows directly from the definition. Next, suppose that
M1 and M2 are k-equivalent and M2 and M3 are k-equivalent, but that M1 and M3

are not. Then there exists a k-variable sentence ψ and a matroid M′ such that ex-
actly one of M1⊕M′ or M3⊕M′ satisfies ψ . Relabeling does not affect whether a
matroid satisfies a sentence in MS0 so we relabel M2, if necessary, to ensure that
|M2 ∩M′| = /0. Now it implies that one of the pairs, M1 and M2, or M2 and M3,
is not k-equivalent depending on whether or not M2⊕2 M′ satisfies ψ . This is a
contradiction and therefore k-equivalence is an equivalence relation. Furthermore,
there are a finite number of equivalence classes which is proved in [15].

Lemma 6.2.2. Let k be a positive integer. There are a finite number of equivalence

classes of matroids under the relation of k-equivalence.
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Next we use this result to prove that self-dual matroids are not axiomatisable in
MS0.

Theorem 6.2.3. There is no sentence ψ in MS0 such that a matroid is self-dual if

and only if it satisfies ψ .

Proof. Suppose instead that ψ is a sentence which describes self-dual matroids
and that ψ has k variables. By Lemma 6.2.2, there are a finite number of equiv-
alence classes for k-equivalence. Therefore if we consider the infinite family of
matroids, M(Kn) for n≥ 5, there must be two distinct matroids of this type which
are k-equivalent. Thus, let M1 and M2 be k-equivalent where M1 = M(Kn), M2 =

M(Km) and n < m. Now we choose M′ ∼= M∗1 such that E(M′)∩(E(M1)∪E(M2)).
Because M1 and M2 are k-equivalent, M1⊕M′ is indistinguishable from M2⊕M′

with respect to ψ . Note, however, that whereas M1 ⊕M′ ∼= M1 ⊕M∗1 is self-
dual, M2⊕M′ ∼= M2⊕M∗1 is not self-dual because the largest connected minor
of M2⊕M∗1 is isomorphic to M2 and the largest connected minor of (M2⊕M∗1)

∗ is
isomorphic to M∗2 . Therefore ψ cannot accurately determine the class of self-dual
matroids when it is satisfied by both, or neither of M1⊕M′ and M2⊕M′. Hence
there is no sentence which characterises self-dual matroids.



Chapter 7

Conjectures

We conclude this thesis by discussing a number of conjectures which have arisen.

Conjecture 7.1.1. Every matroid is a minor of an ISD matroid.

It makes sense to begin with the conjecture which was the first to be conceptu-
alised. This conjecture motivated several chapters of the thesis which lead to a
proof for two classes of matroids. Theorem 2.1.2 proves that all sparse paving
matroids are minors of ISD sparse paving matroids and Theorem 3.4.3 shows that
the conjecture holds for representable matroids.

The methods used for each of these classes do not seem to be able to be gen-
eralised to all matroids. It is also difficult to see how a counterexample could
be constructed as it requires showing that the matroid is not a minor of any ISD
matroid.

A related conjecture comes from taking this idea and putting a restriction on the
type of ISD matroids we are interested in.

Conjecture 7.1.2. Every F-representable matroid is a minor of an ISD F-representable

matroid, for all fields F.

Chapter 3 addresses this question and proves, by means of Theorems 3.3.4, 3.4.2
and 3.5.3, that it is true when F is a field of characteristic 2, an algebraically closed
field, or GF(p) for a prime p = 3 (mod 4). These proofs all centre around chain-
groups and the orthogonal vector space defined using the dot product as a bilinear
form. It relies on finding vectors which are orthogonal and, in particular, vectors
which are orthogonal to themselves. This does not occur in some fields such as
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R which makes it unclear how one might going about proving this result for all
fields.

In the cases when the previous conjectures are true it is possible to put an upper
bound on how large the ISD matroid which contains any given matroid as a minor
must be. This suggests the following conjecture.

Conjecture 7.1.3. There exists c in Z such that for any matroid M there exists an

ISD matroid N such that M is a minor of N and |E(N)| ≤ c|E(M)|.

Of course this can only be true if Conjecture 7.1.1 is also true.

Conjecture 7.1.4. If M is a matroid and every cocircuit of M is a union of circuits

there exists an ISD matroid N with X ⊆ E(N) such that M = N/X.

Another way of phrasing this is to say that we conjecture that the class of cyclic-
cocircuit matroids is the same as the class of contraction minors of ISD matroids.
We know that every contraction minor of an ISD matroid is a cyclic-cocircuit
matroid, but it is not yet known whether the converse is true.

Lastly, we conjecture that there are far fewer ISD matroids than self-dual matroids
for matroids with a large number of elements.

Conjecture 7.1.5. Let Sn be the number of self-dual matroids on n-elements up to

isomorphism. Let in be the number of ISD matroids on n-elements.

lim
n→∞

in
Sn

= 0
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