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Abstract
Over the past decade, advances in electronics, computer science, and wire-
less technologies have facilitated the rapid development of Wireless Body
Area Networks (WBANs). WBANs consist of various sensors that are at-
tached on or even implanted in the human body to improve health care and
the quality of life. WBANs must provide high-quality communication in
terms of both reliability and performance, in order to bring timely medical
help to patients. Commonly used communication standard in WBANs
is IEEE 802.15.4. However, due to poor channel quality in WBANs, this
standard is limited in reliability and performance. To address this issue,
cross-layer techniques for Media Access Control (MAC) have attracted
substantial research attention in recent years.

Aimed at developing cross-layer MAC technologies, Fuzzy Logic Con-
trollers (FLCs) have been widely utilised to effectively and efficiently pro-
cess information from different layers in WBANs. However, existing FLCs
have mostly focused on improving communication reliability while ignor-
ing the importance of network performance.

To improve both the reliability and performance of MAC protocols in
WBANs, this thesis introduces a new design of cross-layer FLC, called
Cross-Layer Fuzzy logic based Backoff system (CLFB), to improve reliabil-
ity by reducing the collision rate and increasing the packet delivery ratio.
CLFB can also enhance the network performance in terms of throughput
in WBANs while maintaining packet delays at a reasonable level by con-
sidering both channel condition and application requirements. Through
the proper use of FLCs as an extension of the standard exponential back-
off algorithms, CLFB is experimentally shown to achieve a high level of
adaptability.



This thesis also proposes an evolutionary approach to automate the
design of FLCs for CLFB in WBANs. With the goal of improving network
reliability while keeping the communication delay at a low level, we have
particularly studied the usefulness of three coding schemes with different
levels of flexibility, which enables us to represent alternative design of FLCs
as candidate solutions in evolutionary algorithms. The influence of fitness
functions that measure the effectiveness of each possible FLC design has
also been examined carefully in order to identify useful FLCs. Moreover,
we have utilised surrogate models to improve the efficiency of the design
process. In consideration of practical usefulness, we have further identified
two main design targets. The first target is to design effective FLCs for
a specific network configuration. The second target covers a wide range
of network settings. In order to examine the usefulness of our design
approach, we have utilised and experimentally evaluated two popularly
used evolutionary algorithms, i.e. Particle Swarm Optimisation (PSO) and
Differential Evolution (DE).

This thesis finally proposes a two-level control scheme at both the sensor
level and the coordinator level to further improve communication quality
in WBANs. The sensor-level FLC controls contention based channel access
and the coordinator-level FLC controls contention free channel access. This
two-level FLC architecture can effectively enhance the cooperation between
sensors and the coordinator such that both the reliability and performance
of the network can be significantly improved. We also studied the use of
cooperative coevolutionary approach to automate the design of our two-
level control scheme. With the goal of effectively designing useful FLCs,
we have particularly investigated different collaborator selection methods
for our cooperative coevolutionary approach, which enable us to effectively
select collaborators while evaluating the candidate FLC design in each
sub-population. Specifically, we show that network knowledge can help
our evolutionary design approach to select collaborators more effectively.
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Chapter 1

Introduction

This chapter provides an introduction to this thesis and its motivations,
goals, contributions, and organisation. The problem statement is provided
first, followed by a discussion on the motivations and challenges. The
research goals and major contributions of this thesis are then discussed.
This chapter finally presents the thesis organisation.

1.1 Problem Statement

A Wireless Body Area Network (WBAN) is an emerging technology which
deploys intelligent, low-power sensor nodes on, around or even implanted
in, the human body. As shown in Figure 1.1, each WBAN will have one
special node that is the coordinator, or the hub. This could be a smart phone
or another more powerful device, which receives bio-information from the
sensors and actuators. Often the coordinator is equipped with a larger
battery. It provides an interface with other networks or central motioning
station such as medical staff. In other words, the WBAN architecture can
be divided into two levels: sensor level and coordinator level.

WBAN connects the patient to the external medical health system in
order to transfer the vital signs of the patient to medical staff working in the
hospital. WBAN has the potential to make medical equipment movement

1
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Coordinator

Sensor Nodes

Central Monitoring Station

Figure 1.1: Wireless Body Area Network

easier where medical devices can be positioned without any worry about
re-establishing the patient’s connection to medical devices by reducing the
reliance on conventional cords and cables. In addition, it provides more
freedom in real-time monitoring especially for ambulatory patients within
the hospital, and home or mobile-health monitoring situations. It has a
great potential for monitoring chronically ill patients continuously over
long periods. Moreover, comprehensive real-time patient information is
available for mobile staff and server-based intelligent software algorithms
to monitor patients and make initial decisions. For example, WBAN can
monitor the heartbeat using Electrocardiography (ECG) sensors on an ongo-
ing basis. Then, the information will go from sensors to a coordinator for
transmitting the information to a point to integrate data. This would create
more realistic observations for medical staff to analyse.

The WBAN must provide high-quality communication support, i.e.
reliability and performance, in order to bring timely medical help to a
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patient. In practice, reliability is an important requirement, because WBAN
is responsible for carrying critical medical data and signalling emergencies
such as vital organ failures. In case of an emergency, communication failure
could cause death when a life-threatening event has been left unattended.
It must also provide high performance communication to support sensors
with high transmission rate, such as ECG sensors. Consequently, as a
critical component for intelligent health and medical monitoring, one of
the major concerns of the WBAN is to meet the performance and reliability
requirements of various WBAN applications, specially in healthcare.

In WBANs, Media Access Control (MAC) plays an important role for
providing reliability and performance [169]. WBANs, similar to other
wireless networks, must share a communication channel among multiple
nodes to transmit information. Therefore, WBANs utilise a mechanism
called MAC protocol to control channel (or medium) access. Since MAC
protocols control the channel access among nodes, their efficiency and
effectiveness can affect the reliability and performance of the network
through determining when a node can access the channel and resolving
any potential conflicts among competing nodes.

IEEE 802.15 family of wireless communication standards, in particular
IEEE 802.15.4, outline the basic elements needed to provide interoperability
among different devices [139] and defined MAC protocols for low power
devices in WBANs [3, 2]. However, they do not consider a complete MAC
protocol for WBANs. For example, they provide a packet format and rele-
vant message exchange protocols including allocation interval assignment
and the procedure to acknowledge the reception of packets. But, they
do not support communication control policies in consideration of appli-
cation requirements, channel condition, prioritising and retransmission
[4, 3]. Moreover, past research has evaluated the efficiency of IEEE 802.15.4,
showing that due to poor channel quality in WBANs, this standard can
be very limited in terms of its reliability (measured by Packet Delivery Ra-
tio (PDR)), and performance (measured by throughput and packet delay)
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[152, 120, 53, 24, 113, 25, 54]. Therefore, these MAC protocols need to be
improved to cope with this poor channel and stay reliable. It means when
the channel is available it should be used efficiently.

Several researchers [151, 91] have tried to tackle these challenges by
considering WBANs as a special type of Wireless Sensor Network (WSN) or
Wireless Sensor and Actuator Network (WSAN). Nevertheless, the provided
solutions for these types of networks cannot solve the challenges associated
with monitoring of human bodies specifically [151, 91]. In terms of human
bodies, we face a complex interaction between the internal and external
environment of the body. Whenever wireless sensor networks are used
to monitor human health and behaviours, these sensors may need to be
attached to or implanted in the body tissues. In essence, in addition to
different challenges faced by WSNs, the human body environment is differ-
ent with respect to scale, type, and frequency of monitoring. In a WBAN,
limited number of nodes are deployed in, on or around a single person
in a small-scale area, which is smaller than general WSNs. Another im-
portant difference is communication reliability between each WBAN node,
which is overcome by redundancy in WSN. The redundancy could not be
a solution for WBANs, because, for each typical medical application of
WBANs, there is usually a single sensor for each vital sign. Homogeneous
sensors networks are major assumptions for most WSN protocols, but are
not applicable in heterogeneous WBAN.

To cope with these challenges, MAC protocols can exploit informa-
tion from other layers to efficiently use the current channel capacity. For
example, channel access can be scheduled based on channel condition. Par-
ticularly, when the channel quality is good, MAC protocol should efficiently
utilise the channel. Meanwhile, when channel becomes available, MAC
protocol should prioritise channel access based on the known application
data rate. Specifically, MAC protocol can increase the network reliability
and performance by allowing high data rate sensor nodes to access the
channel with higher priorities and improve the utilisation of the channel
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capacity by sending as many packets as possible. This design technique is
called cross layering which has attracted much research attention in WBANs
because of the possible performance gain. Cross-layering is expected to
effectively deal with multiple sources of information uncertainty and make
complicated decisions in an efficient and effective manner. Therefore, joint
cooperation across layers demands complex algorithms.

Soft computing techniques, in particular fuzzy logic, have been popu-
larly used in cross-layering systems [120, 107, 31]. Existing studies have
also clearly shown that fuzzy logic is particularly useful for cross-layer con-
trol of channel access because of its flexibility and simplicity [120, 107, 31].
Due to its ability to handle uncertainty and imprecision, fuzzy logic has also
been characterised as one of the most effective technologies for successfully
controlling sophisticated processes. It enables the use of simple controllers
to satisfy complex design requirements, particularly when the model of the
system to be controlled has uncertainties [13]. This approach is particularly
suitable for dealing with nonlinear systems, such as WBANs, with multiple
inputs of a diverse nature, defining rules to connect these inputs with the
output.

However, FLCs have not been used effectively in WBANs (refer to
Section 1.2). For example, researchers often focus on designing FLC to
improve only one WBAN’s requirement (e.g. reliability) rather than bal-
ancing between different requirements (e.g. reliability and performance)
[107, 177, 31]. Moreover, researchers in the literature have mostly used
FLCs at sensor level only, neglecting the importance of using FLCs at the
coordinator level to improve the quality of communication [107, 115, 31].
Furthermore, although it is possible to improve MAC protocols by using
FLCs, high-quality communication in WBANs relies heavily on carefully
designed FLCs and poses new challenges for research. [120, 31, 107, 113].
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1.2 Motivation

The research in this thesis is motived by two requirements: (1) network
requirements and (2) design requirements. To address the first requirement,
FLCs have been incorporated into cross-layer based MAC protocols. Many
researchers have specifically used FLCs to process cross-layer information
and improve the reliability or performance of IEEE 802.15.4 [115, 120, 107,
31]. Instead of tweaking parameters of existing communication standard,
they substituted FLCs for part of the communication standard [107, 177, 31]
in hope of improving communication quality which is often measured
based on a single application requirement. For example, they could manage
to achieve high reliability by sacrificing communication delays [115, 107, 31].
Furthermore, existing works have considered mainly one level of channel
access control [107, 115, 31]. Particularly, cross-layer FLCs have often
been applied to the sensor level control and the opportunity of multilevel
FLCs control in WBANs is frequently ignored [107, 115, 31]. However. it
has been shown that IEEE 802.15.4 is able to improve its reliability and
performance when both sensor and coordinator level control of media
access can effectively work together [135, 64].

The second requirement is closely associated with the fact that, in prac-
tice, the effectiveness of FLCs depends heavily on their control rules and
Membership Functions (MFs). Therefore, careful design of FLCs becomes
an important research issue. However, existing research works have not
addressed this issue in depth [120, 31, 107, 113, 108].

Motivated by the two requirements above, we summarise the challenges
we have investigated in this thesis below:

• In practice, reliability is an important requirement. Based on this
understanding, some existing research works have been conducted to
enhance the level of reliability [119, 107, 31]. However, most of these
works failed to use used FLCs in an effective manner. For example,
instead of using FLCs to tune the parameters of the exponential back-
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off algorithm and in response to changing channel conditions and
application requirements, most researchers [107, 177, 31] focused on
utilising FLCs to increase backoff delays for the purpose of improving
the reliability and performance at the cost of significantly increas-
ing the packet delay [113]. However, it is very important to note
that, the average packet delay must be kept at a reasonably low level
in time-critical WBAN applications. Driven by this understanding,
aimed at achieving a desirable balance between reliability and per-
formance and supporting application requirements, a new approach
must be developed in this thesis to enable independent use of FLCs
by multiple sensor nodes for distributed cross-layer MAC.

• Designing multi-level MAC based on cross-layer FLCs is a challeng-
ing task in WBANs. Many researchers have utilised FLCs for sensor
level (i.e distributed) MAC to improve the communication reliability
and performance [107, 115]. Meanwhile, it has been shown that the co-
ordinator level control (i.e centralised) can also play an important role
to improve the reliability and performance of the network [135, 64].
In fact, some research efforts have been performed to optimise the
coordinator-level resource allocation, in particular bandwidth alloca-
tion, among sensor nodes. Nevertheless, to the best of our knowledge,
few research efforts have exploited the possibilities of using both dis-
tributed and centralised communication methods. Therefore, it is
of particular significance to develop an effective multi-level cross-
layer FLC system that simultaneously supports both sensor level and
coordinator level MAC in IEEE 802.15.4.

• Although FLCs have potential to improve the communication quality,
it has been shown that their effectiveness highly depends on their
design. Building an effective FLC involves designing and tuning
several parameters such as the position, shape and distribution of
MFs, rule base construction, selection of logical operations and conse-
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quences of the rules. Obviously, careful design of FLCs is essential for
successful communications in WBANs [120, 31, 107, 113]. However,
a review of the literature suggests that this important design issue
in WBANs has not been fully addressed. Very often, researchers rely
purely on manual design of FLCs that requires huge human efforts,
yet cannot provide any performance guarantees [120, 107, 31, 113].
Various automatic techniques have also been utilised to design FLCs
[159, 168, 96, 23, 52, 59, 47]. Among these techniques, Evolution-
ary Computation (EC) techniques enjoy a clear advantage since they
are capable of automatically designing different types of fuzzy logic
rules, various forms of MFs, and the structure of the rules base [45].
Meanwhile, two FLC design requirements should be satisfied: (1) ef-
fectiveness and (2) interpretability. The former refers to the capability
of FLCs to provide high reliability and performance without having
a negative impact on packet delays in WBANs. The latter requires
the behaviour of WBAN MAC protocols to be expressed in an easily
understandable way.

• Designing two FLCs, which can be cooperatively used at both the sen-
sor level and coordinator level, is also challenging, as there are large
number of parameters to be designed and tuned. Clearly, manual ap-
proaches are not desirable because they are laborious and error-prone.
Conventional EC techniques are not desirable either, because when
the dimension of each candidate solution increases, conventional
EC techniques may quickly lose their effectiveness [143]. Therefore,
utilising cooperative coevolutionary computation techniques could
be a promising and suitable solution to design FLCs effectively and
cooperatively. However, one major challenge of using cooperative
coevolutionary computation techniques is the choice of collaborators
while evaluating the candidate FLC design in each sub-population.
Many research works recommend to choose the best fit or random
solution from alternative sub-populations [126, 156, 161]. However,
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these methods are designed to tackle general optimisation problems.
It remains as an important and open question to develop a new col-
laborator selection method that can perform more effectively for our
specific design problems.

1.3 Research Goals

The overall goal of this thesis is to study fuzzy logic based cross-layer
approaches to improve reliability and performance of MAC protocols in
WBANs. For this purpose, this research aims to investigate the use of
cross-layer based FLCs to improve the reliability and performance of IEEE
802.15.4 based MAC protocols. This research also aims to investigate EC
techniques for automatic and effective design of FLCs for cross-layer MAC
in WBANs.

1.3.1 Research Questions

The research in this thesis will help to answer the research questions below:

(i) How can cross-layer FLCs be effectively used by distributed sensor nodes to
improve both reliability and performance of WBANs compared to existing
cutting-edge algorithms?

Reliability and performance are essential, yet challenging, require-
ments in WBANs. The cross-layer approach is a promising approach
to address this issue by sharing information across multiple commu-
nication layers. The use of FLCs for cross-layer MACs in WBANs
is motivated by their flexibility and simplicity. However, current
state-of-the-art research focuses on either reliability or performance,
therefore has limited practical usefulness. Consequently, we have
the goal to design an effective cross-layer FLC for distributed MAC
among sensor nodes in WBANs to improve both communication
reliability and performance.
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(ii) How can cross-layer FLCs be employed both at the sensor level and the
coordinator level to control channel access and significantly improve the
reliability and performance of WBANs?

Both contention based (i.e distributed) and contention free (i.e. cen-
tralised) methods must be supported for effective MAC in WBANs.
Although each method is often studied individually, the reliability
and performance of WBANs can be further improved by using both
of them cooperatively and simultaneously. However, few research
works have ever investigated such two-level design of cross-layer
FLCs in WBANs where the first level focuses on controlling con-
tention based channel access and the second level controls contention
free channel access. The key challenge is how to balance these two
cross-layer FLC levels to significantly improve both reliability and
performance in WBANs compared to other cutting-edge algorithms.

(iii) How can EC techniques be applied to automatically design effective and
interpretable FLCs for sensor nodes to control channel access in the context
of WBANs?

In practice careful design of FLCs can significantly improve their
effectiveness. EC techniques have been widely shown to be highly
effective at automatically designing various of fuzzy logic rules, Mem-
bership Functions (MFs), and the structure of rules base [45]. In this
thesis, EC techniques will be developed to design FLCs to provide
desirable balance between reliability and performance in WBANs.
Due to high computation complexity of EC techniques, the overall
efficiency of the design process must be significantly enhanced.

(iv) How can EC techniques be applied to automatically design effective two-level
FLCs both at the sensor and the coordinator level to cooperatively control
channel access in WBANs?

To answer research question (ii), a two-level cross-layer FLC system
will be developed where FLCs at the sensor level must collaborate
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effectively with the FLC at the coordinator level. This requires joint
design of two FLCs, one for sensor nodes to control contention based
channel access and another one for the coordinator to control con-
tention free channel access. This design problem motivates the use of
Cooperative Coevolutionary Algorithms (CCEAs) to reduce search
spaces and improve design effectiveness. While CCEA has shown def-
inite promise on various problems, it still faces challenging research
questions. One major question is regarding choice of collaborators
based on problem characteristics.

1.3.2 Research Objectives

The following set of research objectives have been defined in order to fulfil
the overall goal and research questions.

1. Propose a distributed cross-layer FLC architecture for IEEE 802.15.4
based MAC protocols to enhance both reliability and performance of
WBANs.

This objective aims to propose a new cross-layer approach using
FLCs to control contention based channel access. In the literature,
most of the existing research works on using FLCs in WBANs focus
on improving either the communication reliability or performance
[113, 107, 31]. However, they mainly focus on either reliability or per-
formance [113, 107, 31]. Different from these works, this research aims
to provide a desirable balance between reliability and performance by
introducing a distributed FLC architecture for cross-layer MAC. This
goal will be achieved by enhancing the performance of a standard
exponential backoff algorithm by effectively utilising cross-layer in-
formation including channel condition and application requirements.
This objective will be explored in Chapter 3.

2. Propose an automatic approach for effectively and efficiently design-
ing FLCs using EC techniques in the context of WBANs.
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Despite the promising results of using FLCs, careful design of FLCs
is required for effective MAC in WBANs. However, existing research
works mostly rely on a manual approach to design FLC, which is
laborious and error-prone. Despite huge human efforts, the resulting
FLC may have poor quality in practice. To address this problem, this
research proposes an evolutionary approach for automated design of
FLCs. In addition to improving network reliability and performance,
this research also aims to apply surrogate models to improve the
efficiency and practicality of the design approach. This objective will
be covered in Chapter 4.

3. Propose a two-level cross-layer FLC scheme for IEEE 802.15.4 based
MAC protocols to take advantages of both distributed and centralised
mechanisms, i.e at both sensor level and coordinator level, to cooper-
atively enhance reliability and performance of WBANs.

Following the first objective, which proposes to use a distributed
cross-layer FLC architecture for enhancing contention based channel
access, this objective aims at proposing a two-level cross-layer FLC
architecture to improve the reliability and performance of WBANs
further by exploiting both distributed and centralised mechanisms.
The first cross-layer FLC will control the contention based channel
access at the sensor level and the second one will control contention
free channel access at the coordinator level. This two level FLC ar-
chitecture is expected to effectively enhance the cooperation between
sensors and the coordinator such that both the reliability and perfor-
mance of the network can be significantly improved.

To improve the effectiveness of our multilevel FLCs, through this
objective we aim to adopt a Cooperative Co-evolutionary approach
to automatically design multi-level FLCs. This research also aims to
propose a new network-inspired collaborator selection mechanism
by exploiting the specific characteristics of the design problem. This
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objective will be addressed in Chapter 5.

A summary of the major contributions of this thesis is presented in
Section 1.3.3.

1.3.3 Major Contributions

This section presents the major contribution of this thesis, whereas each
of the Chapters 3 to 5 is dedicated to in-depth discussions of respective
contributions.

1. This thesis introduces a cross-layer FLC for IEEE 802.14.4 based
MACs, called Cross-Layer Fuzzy logic based Backoff system (CLFB),
to improve both network reliability (measured by PDR) and perfor-
mance (measured by throughput and packet delays). Contrary to
existing algorithms, which increase either reliability or performance,
the new approach explicitly considers both of the essential require-
ments. In particular, based on channel condition and application
requirements, CLFB can improve reliability and performance without
increasing packet delay, therefore achieving a higher level of adapt-
ability in comparison to IEEE 802.15.4. We also present a manual
approach to design the fuzzy membership functions in CLFB in order
to enhance its effectiveness. By integrating our CLFB into the IEEE
802.15.4 MAC sub-layer, we successfully enhance the competence
of this IEEE standard for various WBAN-based applications. More-
over, backward compatibility is ensured since this integration does
not change the underlying structure of IEEE 802.15.4. The results
clearly show that our CLFB achieved noticeable improvement over
several cutting-edge algorithms in terms of both network reliability
and performance.

Parts of this contribution have been published in:

Seyed Mohammad Nekooei, Gang Chen and Ramesh Kumar Rayudu,
“A fuzzy logic based cross-layer mechanism for medium access control
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in WBAN,” In IEEE 26th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), (Aug 2015), pp.
1094-1099.

2. This thesis introduces a new EA-based approach for fully automated
design of FLCs for CLFB in WBANs. To ensure the practicality of our
approach, we have defined three major requirements: effectiveness,
efficiency and general applicability. (1) Effectiveness: We have demon-
strated the effectiveness of our approach through experimental re-
sults. We have successfully shown that our approach can design FLCs
effectively to provide both reliability and performance in WBANs.
Particularly, we have compared CLFB using our automated designed
FLCs to other state-of-art algorithms. The comparison shows that
FLCs design through our approach can outperform other competing
algorithms in terms of both reliability and performance. (2) Efficiency:
In this research, the computation time of designing FLCs is used to ex-
amine the efficiency of the approach. We have enhanced the efficiency
of our approach by using surrogate models. We have experimentally
shown that our automatic design approach based on surrogate mod-
els has significantly improved the efficiency of the design process. (3)
General applicability: We have introduced two design targets. The
first target is to improve communication quality for patients who have
a specific WBAN configuration. The second target focuses on MAC
under multiple WBAN configurations. We found that the designed
rules can provide a reasonably good balance between PDR and delay
for a wide range of WBAN settings. That means the effectiveness of
designed FLCs can be preserved with respect to different network
settings.

Parts of this contribution have been published in:

Seyed Mohammad Nekooei, Gang Chen and Ramesh Kumar Rayudu,
“Evolutionary design of fuzzy logic controllers for medium access
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control in WBAN,” In IEEE Congress on Evolutionary Computation
(IEEE CEC) (July 2016), pp. 2821-2828.

Seyed Mohammad Nekooei, Gang Chen, Ramesh Kumar Rayudu,
“Automatic design of fuzzy logic controllers for medium access control
in wireless body area networks - An evolutionary approach”, Applied
Soft Computing 56 (2017), 245-261.

3. This thesis introduces Cooperative Cross Layer Fuzzy MAC controller
(CoCLF-MAC) which employs a two-level cross-layer FLC, i.e. Cross-
Layer Fuzzy logic based GTS Allocation controller (CLFGA) and CLFB, to
improve reliability and performance of the IEEE 802.15.4-based MAC
in the context of WBANs. Specifically, while CLFB is utilised at sensor
level, CLFGA at the coordinator level employs FLCs for prioritising
GTS allocation by using cross-layer information, including channel
condition and application data rate. In contrast to many related
algorithms, which use cross-layer optimisation only at the sensor
level, the new approach uses cross-layer FLC at both sensor level and
coordinator level, to cooperatively schedule the channel access and
improve communication quality.

This thesis also introduces a CCEA-approach for fully automated
design of FLCs at both the sensor level and coordinator level. In order
to improve effectiveness of the design approach, we introduced two
collaborator selection methods that employ the network knowledge
to judge the suitability of potential collaborator designs. We found
that our new collaborator selection methods can improve the effec-
tiveness of the design process. We investigated the practicality of our
approach based on two aspects: effectiveness and general applicabil-
ity. (1) Effectiveness: We have shown experimentally that, based on
FLCs automatically designed by CCEAs, our CoCLF-MAC achieved
significant improvement over other cutting-edge algorithms in terms
of both network reliability and performance. (2) General applicability:
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We have designed our CoCLF-MAC based on two design targets. The
first target is to improve communication quality based on a specific
WBAN configuration. The second target aims to improve commu-
nication quality over multiple WBAN configurations. Both targets
have been achieved successfully, clearly demonstrating the practical
usefulness of our approach.

Parts of this contribution have been published in:

Seyed Mohammad Nekooei, Gang Chen and Ramesh Kumar Rayudu,
“ Cooperative Design of Two Level Fuzzy Logic Controllers for Medium
Access Control in Wireless Body Area Networks,” 11th International
Conference on Simulated Evolution and Learning (SEAL2017), Shen-
zhen, China, 2017.

1.4 Organisation of the Thesis

This thesis is divided into six chapters followed by the Appendix and
References section.

Chapter 1 presents an introduction to the thesis. It provides an overview
of the research field, thesis objectives, its original contribution to
scientific knowledge, and thesis organisation.

Chapter 2 presents background knowledge and literature review.

Chapter 3 presents Cross-Layer Fuzzy logic based Backoff system (CLFB).
In this chapter, we present the usefulness of utilising FLCs for cross-
layer MAC in WBANs. We also study FLCs design to improve relia-
bility and performance of WBANs.

Chapter 4 studies the use of evolutionary algorithms (EAs) to fully auto-
mate the design of FLCs for cross-layer medium access control in
WBANs. It studies three coding schemes and their usefulness dur-
ing the proposed evolutionary design process. It also examines the
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influence of fitness functions that measure the effectiveness of each
possible FLC design in order to achieve a good balance between net-
work reliability and performance. Moreover, we utilise surrogate
models to improve the efficiency of the design process.

Chapter 5 presents a new two-levelled MAC scheme called Cooperative
Cross Layer Fuzzy MAC (CoCLF-MAC). CoCLF-MAC is designed to
support effective MAC at both the sensor level and the coordinator
level in WBANs. This chapter also presents comprehensive investiga-
tions over the use of cooperative coevolutionary algorithms to fully
automate the design of our two-level control scheme. With the goal
of improving network reliability while keeping the communication
delay at a low level, this chapter studies and experimentally evaluates
five different collaborator selection methods for our design problem.

Chapter 6 presents conclusions and discussion of results and limitations.
Future research directions are also highlighted.
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Chapter 2

Technical Background and
Literature Review

This chapter provides technical background and related works for this the-
sis. This chapter in Section 2.1 covers important background and provides
definitions of the basic concepts and terminologies in Wireless Body Area
Networks (WBANs) such as Media Access Control (MAC) protocols and
IEEE 802.15.4 standard. Section 2.1 also provides a brief introduction to
Fuzzy Logic Controls (FLCs) and Evolutionary Computation (EC) techniques.
Then in Section 2.2, we review related work and summary the research
topics related to WBANs. Section 2.2 also reviews related work to FLC
design problems. Finally, this chapter in Section 2.3 presents a summary of
challenges.

2.1 Technical Background

This section first covers basic concepts of WBANs in Subsection 2.1.1. Sub-
section 2.1.2 presents technical background of MACs in WBANs. Subsec-
tion 2.1.3 gives general overview on IEEE 802.15.4. Then Subsection 2.1.4
briefly presents FLCs. Subsections 2.1.5 covers EC techniques in general. Fi-
nally Subsection 2.1.6, 2.1.7 and 2.1.8 cover detailed EC techniques used in

19
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this thesis which are Differential Evolution (DE), Particle Swarm Optimisation
(PSO) and Cooperative PSO (CPSO) respectively.

2.1.1 Wireless Body Area Networks (WBANs)

Applications

Today, most images of organs, medical tests, and information about patients
are hours or even days old by the time doctors see them. However, in
hospitals facilitated by WBANs, physicians can check images, medical tests,
and medical history in real time even as they operate. In addition, wireless
actuators in WBANs deliver drugs more accurately. Accurate drug delivery
can lower doses and reduce side effects, such as a spinal cord stimulator
implanted in the body for long-term pain relief [89].

When the patient becomes unconscious, the patients’ WBAN will auto-
matically identify the coordinates, alert the authorities, and upload their
entire medical history through an external medical health system before
nurses and doctors arrive. WBANs also can be used to help patients, such
as asthmatics who are allergic to some environmental factors. For example,
Chu et al. [33] utilised WBANs to monitor environmental factors. In an
environment which the asthmatic patient is allergic, an alarm is triggered.

As healthcare costs increase and the world population age [153], there
is also a need to monitor a patient’s health status while he/she is out of the
hospital in his/her personal environment. To address this demand, WBANs
can be used to monitor patients’ health. This also gives patients as much
autonomy and even responsibility for themselves and their environment
as possible [141, 121]. Computer-assisted rehabilitation and therapy can
also become accessible for patients at their homes with the help of WBANs
[162].

WBANs can also serve in other widespread domains. For example,
athletes training for the Olympics or any particular sport can be monitored
by WBAN to improve their performance. WBAN can collect information
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such as the athlete’s heart rate and activity. Coaches use such information
to improve training as the performance of each muscle can be measured
much more accurately [79, 72]. In the battle field, the moment a soldier is
hit, WBAN can transmit the exact location of the wound and his vital signs.
WBANs can also monitor carbon monoxide levels for fire fighters. WBANs
can even be utilised in advanced animal care. A more comprehensive list
of potential applications of WBANs can be found in [109, 151, 72].

Data Communication Characteristics

WBAN is made up of sensors and actuators located in, on, or very close
to the human body. The position of sensors on the body may have an
impact on channel quality, i.e. the quality of physical transmission medium.
Research shows that the quality of the channel near the human body is
very poor and path loss is very high [130]. While the path loss exponent in
regular Line-Of-Sight (LOS) situations is about 2, the path loss exponent of
the channel near the human body ranges from 2.18 to 3.3 and higher. When
two sensors do not have a direct LOS, i.e. Non-Line-Of-Sight (NLOS), the
wireless signal absorption of the tissue should be added. Consequently,
even more path loss will occur, with path loss exponents of up to 5.8
[130, 132].

The body posture or shape can also influence the channel quality sig-
nificantly. Due to NLOS and significant change in channel qualities, small
movement or a slightly different posture may result in a communication
outage. This means that different people in different conditions do not
have the same channel quality. Therefore, one of the major challenges for
WBANs is the poor channel quality, as it will limit possible solutions. It
might be impossible for a patient to have hundreds of sensors attached
to her/his body. This is interesting, as it is different from other networks,
such as WSNs.

It is worth mentioning that the scope of this thesis is to improve reli-
ability and performance of current commonly used standard in WBANs
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(i.e. IEEE 802.15.4) and it does not intend to either optimise the channel or
calculate the position of sensor nodes. Throughout this thesis, we focus on
random sensor node locations and the implications of the given channel.

Network Topologies

WBANs are often considered as convergecast networks. It means that all
data packets generated by sensor nodes end up at a single coordinator.
Meanwhile control packets (for configuring sensors or handling communi-
cation protocol details) are sent by the coordinator towards sensor nodes.
The amount of control packets is often significantly smaller than the amount
of data packets.

As shown in Figure 2.1, there are two common topologies, namely
mesh and star topologies. In mesh topologies, each sensor node is able
to relay data packets for the network. In other words, all sensor nodes
cooperate to transmit data packets to the coordinator or vice versa. Mesh
topology has potential to cope with link outages between sensor nodes
and the coordinator. However, it increases traffic load and complexity of
the network. Therefore, in WBANs, star topologies are mostly preferred
because of their simplicity to manage the network [61, 151]. In this network
topology, sensor nodes send data packets directly to the coordinator. In this
thesis, star topology is used to set up WBANs.

2.1.2 Medium Access Control (MAC)

There are many algorithms for allocating channel access, such as aloha, slot-
ted aloha, Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA),
CSMA with Collision Detection (CSMA/CD) and Time Division Multiple Ac-
cess (TDMA). Basically they can be divided into two main categories: (1)
contention-free MACs (2) and contention-based MACs. In contention-free
MAC, the protocol ensures that every node in the network access the chan-
nel at a given time and interference with other node will never happen. On
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(a) Mesh Topology (b) Star Topology

Figure 2.1: Examples of WBAN topologies

the other hand, contention-based MAC protocols allow nodes to compete
for accessing the channel and transmitting their data packets.

Contention-free MAC protocols avoid collisions by allocating resources
exclusively to nodes. One of the most common approaches to provide
contention-free MAC protocols is Time Division Multiple Access (TDMA).
TDMA protocols allow multiple devices to use the same frequency band,
but they use periodic time windows (called frames), consisting of a fixed
number of transmission slots, to separate the medium accesses of different
devices. A time schedule indicates which node may transmit data dur-
ing a certain slot, that is, each slot is assigned to at most one node. The
disadvantage of TDMA is that, when the network topology is changed,
the slot allocations must also be changed. Further, TDMA protocols can
be inefficient in their bandwidth utilisation when slots are of fixed size
whereas packet sizes vary and when allocated slots to a node are not used
in each iteration.



24 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Compared with contention-free techniques, contention-based protocols
allow nodes to access the medium simultaneously with the possibility of
contention. However, they utilise techniques to reduce the possibility of
collisions and to recover from them. Commonly used contention-based
MAC scheme is the Carrier Sense Multiple Access (CSMA) approach which
can be divided as Collision Detection (CSMA/CD) and Collision Avoidance
(CSMA/CA).

In CSMA/CD-based schemes, the sender firstly senses the medium to
determine whether it is free or busy. If the medium is busy, the sender does
not transmit packets. If the medium is idle, the sender can initiate data
transmission. In wired networks, the sender is able to keep listening to the
medium to detect collisions. It can stop sending data packets whenever it
detects collisions. However, in wireless networks, collisions may happen at
the receiver, and the sender will not know a collision has occurred. Another
problem in wireless networks is hidden-terminal. As shown in Figure 2.2,
there are two sensor nodes A and B to reach the coordinator. However,
they cannot overhear each other’s signals. In case A and B decide to send
data packets to the coordinator simultaneously, collision will happen at the
coordinator, without A and B directly knowing it. Therefore, CSMA/CA
algorithm is often used in wireless networks.

In CSMA/CA, the Collision Avoidance (CA) mechanism is achieved by
introducing a random backoff delay before assessing the channel through
carrier sensing. Particularly, when the channel is sensed as busy, the sensor
node must stop transmitting data packets for a random period of time
before listening again for a free communications channel. CSMA/CA also
uses Request to Send/Clear to Send (RTS/CTS) to avoid collisions caused
by hidden-terminals. In particular, as shown in Figure 2.2, when sensor
node A wants to send a data packet to the coordinator, A sends RTS to the
coordinator. Then the coordinator broadcasts a CTS. In this way, if a sensor
node can hear RTS, it must remain silent for the CTS to be transmitted back
to A without conflict. Furthermore, any sensor node, which can hear CTS,
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Figure 2.2: A sending an RTS to the coordinator and the coordinator re-
sponding with a CTS.

also must remain silent during the upcoming data transmission.
The IEEE 802 Standard comprises a family of networking standards that

cover the physical layer and MAC sub-layer specifications of technologies
from Ethernet to wireless. For wireless communication the specifications
include 802.11 for Wi-Fi, 802.15 for Wireless Personal Area Networks (WPANs),
802.16 for Wireless Metropolitan Area Networks (WMANs) and 802.20 for
Mobile Broadband Wireless Access (MBWA). A popular standard for building
WBANs is the IEEE 802.15.4 [30]. In the following subsection, we will
overview IEEE 802.15.4.

2.1.3 IEEE 802.15.4

The IEEE 802.15.4 [3] specification was formed to provide low data rate
communications. Low cost, extremely low duty cycle (even below 0.1%)
and long battery lifetime can be taken into account for this standard as
features, too. However, it is yet flexible enough to enable the delivery of
periodic data, intermittent data (such as occasional measurements), and
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repetitive low-latency data (for instance, real-time biohazard information).
A total of 27 individual channels are dedicated to IEEE 802.15.4 specification.
They operate in three different frequency bands: 2.4 GHz ISM band, 868
MHz, and 915 MHz. The number of channels dedicated to each frequency
band is as follows: one channel for 868 MHz, 10 for 915 MHz and 16 for 2.4
GHz. The maximum speed of communication for each frequency band is
approximately 20Kbps per channel (868 MHz band), 40 Kbps per channel
(915 MHz band) and 250 Kbps per channel (2.4 GHZ ISM band) [3].

The two types of devices used in IEEE 802.15.4 are specified as Full
Function Devices (FFD) and Reduced Function Devices (RFD) [3]. FFD devices
are capable of making networks, and have the ability of acting as the
coordinator. Communication between these devices is peer to peer (mesh)
or through a star configuration. When the network has a star topology, the
data packets are directly sent to the coordinator. Different from FFD, RFD
devices are only capable of communicating with FFDs [3].

IEEE 802.15.4 supports either of two topologies: the star topology or the
mesh topology as shown in Figure 2.1. Star topology will be used in this
thesis. In the star topology, a FFD device establishes a wireless network
and becomes the coordinator. The coordinator chooses a unique network
identifier and then it allows other sensor nodes to join the network.

Beacon-enabled IEEE 802.15.4

The MAC sub-layer in IEEE 802.15.4 provides beacon management, channel
access, Guaranteed Time Slot (GTS) management, frame validation, acknowl-
edged frame delivery, association, and disassociation. IEEE 802.15.4 uses
four types of MAC frames: beacon frame, data frame, acknowledgement
frame, and MAC command frame. The general MAC frame format is de-
picted in Figure 2.3, together with the Physical layer (PHY) frame format.
The maximum payload for a MAC frame in IEEE 802.15.4 is 102 or 118
bytes, which depends on the addressing scheme and the network topology.
In principle, medical data directly could be encapsulated in the payload.
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Figure 2.3: IEEE 802.15.4 frame structure

The MAC layer optionally supports a superframe structure, the format
of which is defined by the coordinator. Network beacons, which are sent
periodically by the coordinator, define the boundary of the superframe, as
shown in Figure 2.4. The superframe is divided into two portions, which are
active or the Superframe Duration (SD) and an inactive portion. The active
portion is divided into sixteen equally sized time slots. Specifically, two
values, i.e. macBeaconOrder (BO) and macSuperframeOrder (SO), describes
the superframe. BO describes the interval between two beacons which are
sent by the coordinator. This interval is also called the beacon interval (BI).
Furthermore, SO describes the length of SD, which is utilised by sensor
nodes to communicate with the coordinator. BI and SD are calculated
respectively as follows:

BI = aBaseSuperframeDuration× 2BO for 0 6 BO 6 14 (2.1)

SD = aBaseSuperframeDuration× 2SO for 0 6 SO 6 BO 6 14 (2.2)

where aBaseSuperframeDuration (=960) is the number of symbols form-
ing a superframe when SO order is equal to zero. The active portion is
composed of three parts: (1) beacon, (2) Contention Access Period (CAP),
and (3) Contention Free Period (CFP). The beacon is transmitted, without
the use of CSMA, at the start of slot 0, and the CAP starts immediately
following the beacon.
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Figure 2.4: Example of the IEEE 80215.4 superframe structure

Each sensor node needs to compete with other sensor nodes using
slotted CSMA/CA to access the channel during CAP between two beacons.
The coordinator could allocate portions of the active superframe, which are
called Guaranteed Time Slots (GTS), to low-latency applications. The GTSs
form CFP which always starts at a slot boundary immediately following
CAP. Another feature of this standard is unslotted CSMA/CA, which is
provided for non-beacon enabled networks, in which there is no superframe
structure or GTS. In this thesis, we investigate slotted CSMA/CA and GTS,
which are commonly used in WBANs [108, 177].

For a general view, when a sensor node wants to transmit data packets,
it first listens for the beacon frame from the coordinator. Sensor node uses
the beacon for synchronising with the superframe. At the appropriate
time, the sensor node starts transmitting data packets to the coordinator.
Finally, when the coordinator receives the data packets properly, it sends
back acknowledgement frame to the sensor node.

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

As mentioned before, CAP starts right after the beacon and finishes before
the CFP begins. If the CFP is disabled, the whole active portion will be
the CAP. Otherwise, the CAP must be at least aMinCAPLength, which is
the minimum number of symbols (=440) forming the CAP. During the
CAP, slotted CSMA/CA mechanism is utilised to transfer all frames, except
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Figure 2.5: Slotted CSMA/CA algorithm in IEEE 802.15.4 [4]

acknowledgement frames, as well as any data frame that quickly follows
the acknowledgement of a data request command.

CSMA/CA uses a unit of time called Backoff Period (BP). According
to this mode, a node should assess the channel before each transmission
(listen before talk). If the channel is idle, the transmission starts. Otherwise
transmission will be postponed for a random interval called the backoff delay.
Figure 2.5 illustrates slotted CSMA/CA. If CSMA/CA reaches “success”,
the data packet will be sent; otherwise, it terminates with a channel access
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failure. In the slotted CSMA/CA, there are three key variables for media
access control:

• Backoff Exponent (BE): BE holds the number of BPs that a node has
to wait before each channel assessment. At the beginning of the
CSMA/CA process, BE is initialised to macMinBE (=3). It is worth
to mention that if macMinBE (=0), collision avoidance will be disabled
during the first iteration of this algorithm. When a packet is ready
for transmission at a node, CSMA/CA forces the node to back off
for a random waiting delay to avoid collisions. The random delay is
chosen uniformly at random from the range [0, 2BE − 1], as shown
below:

backoffT ime = rnd(0, 2BE − 1)×BP (2.3)

After the backoff time is over, if the channel is still busy, BE is in-
cremented by one until macMaxBE (default value of 5 from a valid
range of [2...8]) is reached. Afterwards, the value of BE will be capped
at macMaxBE.

• Contention Window (CW): CW defines the number of backoff periods
that the channel is required to be clear before starting each transmis-
sion. CW is initialised to CW0 (=2). It will be reset to CW0 whenever
the channel is sensed as busy. On the other hand, if the channel is
sensed as clear, CW is decremented by one and this is repeated until
CW reaches zero. After that, data transmission shall start.

• Number of Backoffs (NB): NB counts the number of backoff attempts
experienced for the current transmission attempt. It is initialised to
zero (NB=0) for any new transmission. Every time the channel is
assessed as busy, NB is incremented by one. The algorithm will not al-
low NB to exceed macMaxBackoffs (=4). If NB=macMaxBackoffs,
a transmission failure is declared. Otherwise, the backoff procedure
will continue.
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IEEE 802.15.4 ensures that the whole procedure of CSMA/CA and
transactions can finish before the end of the CAP. For example, IEEE 802.15.4
stops the CSMA/CA procedure, whenever the number of backoff periods
is greater than the remaining number of backoff periods in the CAP. In this
case, IEEE 802.15.4 will proceed to check whether the rest of the CSMA/CA
procedure, such as two Clear Channel Assessment (CCA) analyses, data
packet transmission and any acknowledgement, can be completed before
the end of the CAP. If so, it can proceed; otherwise, it needs to wait until
the start of the CAP in the next superframe.

Guaranteed Time Slot (GTS) Allocation and Management

In IEEE 802.15.4, the coordinator is able to allocate a portion of the super-
frame, called GTS, to a sensor node. If there is sufficient capacity in the
superframe, a maximum of seven GTSs is allocated by the coordinator to
sensor nodes within the CFP. The coordinator must store all the information
necessary to manage seven GTSs such as the starting slot, length, direction,
and associated device address.

In IEEE 802.15.4, a sensor node sends a GTS allocation request to the
coordinator using CSMA/CA during CAP. As shown in Fig. 2.6, the sensor
node indicates the required bandwidth in the request. On receipt of the
GTS allocation request, the coordinator determines whether the requested
GTS can be allocated based on the current available capacity in the super-
frame so that the length of CAP must not be shorter than aMinCAPLength.
Furthermore, the coordinator is only allowed to allocate a maximum of
seven GTSs within a superframe. By default, the coordinator assigns GTSs
to sensor nodes in a First-Come-First-Served (FCFS) fashion, provided there
is sufficient bandwidth available.

In the case that there is sufficient capacity for the requested GTS, the
coordinator creates a GTS descriptor. The GTS descriptor contains the
requested specifications, the short address of the requesting sensor node,
the start slot and the length.



32 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

CLFGA

GTS 
capacity?

GTS 
allocation<N

END

Y

N

N

Receive GTS requests from N
sensor nodes

Y

GTS allocation

(a) The flow chart of GTS allo-

cation algorithms

Sensor Node Coordinator

GTS Request

Acknowledgement

Beacon (with GTS 
descriptor )

(b) Sequence chart of GTS alloca-

tion initiated by a sensor node

Figure 2.6: IEEE 802.15.4 GTS allocation

On receipt of the acknowledgement, the sensor node waits for the
upcoming beacon from the coordinator. Once it is received, the sensor node
will proceed to transmit data based on the GTS descriptor generated by the
coordinator. In the case that sensor node realises the transmission cannot be
completed before the end of the current GTS, it postpones the transmission
to the specified GTS in the next superframe. If the sensor node misses the
beacon at the beginning of a superframe, it cannot use its GTSs and must
wait for the next beacon.

GTS deallocation can be performed by either the coordinator or the
sensor node. For the sensor node initiated deallocation, sensor nodes will
send GTS deallocation request to the coordinator using CSMA/CA during
CAP. For the coordinator initiated deallocation, the coordinator should first
detect sensor nodes that have stopped using GTS. If the GTSs allocated to a
sensor node has not been utilised for 2× n superframes, the coordinator
deallocates the GTSs from the sensor node. Here n is defined as:
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n =

{
28−BO, if 0 6 BO 6 8

1, if 9 6 BO 6 14
(2.4)

2.1.4 Fuzzy Logic Controller (FLC)

Designing controller for complex and dynamic system is a challenging
task [1, 112]. To design effective controllers, soft computing techniques
such as fuzzy logic has been proven to be highly useful by imitating how
human operators control complex systems based on rudimentary system
knowledge.

For the first time, Lofti A. Zadeh introduced fuzzy logic and fuzzy set in
1965 [174] and 1973 [175], respectively. Since its invention, fuzzy logic has
attracted substantial research attention and become a successful alternative
to classical control techniques. The key characteristics of this success can
be listed as follows:

• Flexibility with information sources. FLCs can use both sensor data
and human experts, or just one if the other is not available. This
feature brings flexibility to FLCs with wide range of applications.

• Model-free: FLCs are model-free controllers, which are independent
of the physical system model. This characteristic enables FLCs to
cope with systems without mathematical models.

• Universal approximation: Fuzzy systems are universal approxima-
tors, which make them suitable for non-linear control system design.

• Desirable compromise between performance and cost: When FLCs
are implemented in general-purpose processors, they usually need
low computational resources. Another advantage of using FLCs is
easy understandability, which is important for non-experts.
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Fuzzy rule-based models, which are applications of fuzzy set theory,
are commonly used to provide frameworks for engineering applications.
There are three types of rule-based models:

• Linguistic fuzzy model which is the original Zadeh’s model of fuzzy
rule base. Linguistic fuzzy model contains both the antecedent and
consequent part of IF-THEN rule [175]. This model is still popularly
used because of its flexibility in handling various practical applica-
tions.

• Fuzzy relational model proposed by Pedrycz [123]. This model is able
to associate a particular antecedent proposition with several different
consequent propositions through a fuzzy relation.

• Takagi-Sugeno fuzzy model, proposed by Takagi et al. [146]. The
consequent in this model is a crisp function of antecedent variables.

Six classifications of FLCs based on differences in fuzzy rules and meth-
ods of their generation can be defined as follows: [46]:

• Fuzzy Proportional-Integral-Derivative (PID) control.

• Hybrid techniques encompassing fuzzy logic, neural networks, evo-
lutionary algorithms, etc.

• Fuzzy-sliding mode control.

• Adaptive fuzzy control.

• TakagiSugeno model-based fuzzy control.

• Conventional (Mamdani) fuzzy control.

Fuzzy Proportional-Integral-Derivative (PID) control

Due to simplicity and low cost of implementation, Proportional-Integral-
Derivative (PID) controllers are commonly used in industrial applications.
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As PID control might not cope with highly nonlinear and uncertain systems,
they are combined with FLCs which are able to handle non-linearities and
uncertainties through use of fuzzy set theory [46]. In general, fuzzy PID
controllers outperform conventional PID controllers [112].

Hybrid Techniques

Hybrid techniques use two or more different soft-computing techniques
simultaneously to improve the control effectiveness. For example, Neural
Network (NN) controls and FLCs are both model-free controls. NN controls
acquire knowledge mainly through data training (or learning). On the
other hand, FLCs acquire qualitative and imprecise knowledge mainly
through the expert. Consequently a combination of them, which is called
Neuro-Fuzzy Control (NFC), enables both (1) high learning capabilities and
computation efficiency and (2) a powerful framework for expert knowledge
representation. Consequently, NFCs have been widely used to design the
membership functions in the fuzzy control system [70, 117, 104].

Fuzzy sliding mode control

It has been shown that sliding-mode control can provide robust control on
nonlinear application with uncertainties, such as robotic applications, and
many Multiple-Input Multiple-Output (MIMO) systems [154, 179]. However,
it suffers from the chattering phenomena because of its sharp switching
criterion around the sliding surface. This phenomena is undesirable be-
cause it can excite the high frequency dynamics of the system. Chattering
in sliding mode control can be compensated by defining fuzzy boundary
layers that replace sharp (crisp) switching surfaces [60, 46]. Fuzzy sliding
mode control can also use EC techniques to design membership functions
[28, 95].
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Adaptive fuzzy control

Adaptive control aims at controlling initially uncertain systems. Mostly
researchers try to design adaptive controllers based on the assumption
of linear or simplified non-linear mathematical models [71, 90]. Since
mathematical models might not be available for many complex systems,
adaptive control systems might lose their effectiveness. As mentioned
before, FLCs are particularly effective on non-linear systems [160]. In
adaptive fuzzy controllers, FLCs are utilised to model those unknown
nonlinear functions. The parameters of FLC, such as membership functions,
can be updated based on some adaptive laws which are derived from the
Lyapunov stability theory [46].

TakagiSugeno model-based fuzzy control

Engineering applications often have numerical values for both input and
output. Accordingly, FLCs utilise fuzzifiers to transfer crisps into linguistic
variables and defuzzifiers to translate a quantifiable linguistic variables
back into crisps. In contrast, Takagi and Sugeno [146] proposed FLCs that
only use fuzzifiers to process input variables. The output variables in
Takagi-Sugeno fuzzy controllers are a linear combination of input variables.
In other words, the antecedent in IF-THEN rules is fuzzy but the consequent
part is a linear combination of input variables, as follows:

IF x1 is a
i
1 and x2 is a

i
2and ... and xn is a

i
n

THEN y is a0 + a1x1 + a2x2 + ...+ anxn
(2.5)

where x and y are input and output variables, respectively. The major
advantage of using Takagi-Sugeno fuzzy controllers is reduced number of
fuzzy rules [78, 145, 46].

Conventional (Mamdani type) fuzzy logic control

Conventional (Mamdani type) fuzzy logic control has been widely used
in many practical applications such as robots [14, 149, 166, 170], geomag-
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Figure 2.7: Basic diagram of the Fuzzy Logic Control System

netically induced currents [68], stirred tank reactors [85], Hybrid Electric
Vehicles [172, 15], smart power management [148] and localisation in WSNs
[117]. Although Takagi-Sugeno fuzzy controls can be simple in structure
and number of fuzzy rules, the lack of fuzziness in the consequent might
make it difficult to interpret for human experts. On the other hand, conven-
tional FLCs overcome this challenge by introducing linguistic variables for
both input and output variables. Another advantage of conventional FLCs
is regarding their flexibility in using different fuzzy operators to perform
fuzzy inference [34]. These advantages explain the popularity of this type
of FLCs in many practical applications [34].

As show in Figure 2.7, the basic components of a conventional FLC can
be listed as follows [34]:

• Fuzzification: This component uses a fuzzifier to translate crisp input
values into fuzzy linguistic values used in the fuzzy inference engine.

• Knowledge base: This component contains a collection of rules ac-
quired by expert knowledge.

• Fuzzy inference engine: This component is the heart of FLCs. The
fuzzy inference engine uses fuzzy set theory involving control fuzzy
logic operations to combine the fuzzy rules in the rule base and map
inputs to outputs.
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• Defuzzification: This component translates fuzzy output linguistic
values into the crisp values. The common defuzzifiers are Centre Of
Gravity (COG), Centre Of Average (COF) and maximum.

In contrast with Takagi-Sugeno FLCs, in Mamdani FLCs both antecedent
and consequent of IF-THEN rules are fuzzy as follows:

IF x1 is a
i
1 and x2 is a

i
2and ... and xn is a

i
n

THEN y1 is b
i
1 else y2 is b

i
2 else ... else ym is bim

(2.6)

where aij(j = 1, 2, ..., n) and bij(j = 1, 2, ...,m) denotes the fuzzy sets for in-
put (xk, k = 1, 2, ..., n) and output (yk, k = 1, 2, ...,m) variables respectively.

This thesis utilises Mamdani FLCs for media access control in WBANs.
FLCs have potential to improve communication quality, however, they
still face two main problems: (1) designing an adequate knowledge base
for the controller, (2) selecting and adjusting key control parameters. The
knowledge base is often derived from expert knowledge [1]. There are two
main methods to design FLCs:

• Manual design by human experts. In this approach, FLC specifica-
tions such as the linguistic labels associated with linguistic variables,
structure of the rule base, and meaning of each label, are designed by
domain experts.

• Automatic design by learning methods. In this approach, automated
learning methods such as Evolutionary Computation (EC) techniques,
ad-hoc data driven generation methods, variants of the least squares
method, gradient descent method, neural networks, and clustering
techniques, are used to design FLCs. Among these methods, the most
commonly used approach to automatically designing FLCs is based
on EC techniques [159, 47].
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2.1.5 Evolutionary Computation (EC)

EC is a soft computing technique which is inspired by biological evolution.
There are three main classes of EC algorithms [42]: Evolutionary Algorithms
(EAs) [42], Swarm Intelligence (SI) [41, 82] and Cooperative Coevolution (CC)
[42].

Evolutionary Algorithms (EAs)

EAs are heuristic and population based. Each individual of the population
is considered as a potential candidate solution. To measure the quality
of each individual, a fitness value will be assigned. Then new popula-
tion of candidate solutions is produced by stochastically removing less
desired solutions and introducing random new candidate solutions by the
use of techniques inspired by biological evolution: reproduction, muta-
tion, crossover, and selection [42]. The well-known EAs, namely genetic
algorithms, genetic programming, evolutionary strategies, evolutionary
programming differential evolution, are briefly explained as follows:

• Genetic Algorithms (GAs)

GA is the most widely known EAs and was initially introduced by
John Holland [62, 63, 12]. In GA, each candidate solution consists
of a fixed-length array of bits, called chromosomes. GAs evolve the
population of candidate solution by the mean of genetic operators to
search for the optimal solution for a given problem. These genetic
operators include crossover, mutation, and reproduction.

• Genetic programming (GP)

GP [87] is different from standard EAs in representation. As men-
tioned before, GA is represented as a fixed-length array of chromo-
somes. However, GP is represented using trees as chromosomes.
Specifically, GP contains a population of computer programs, which
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is optimised according to a fitness landscape [42, 88]. Due to its flex-
ibility, GP has been successfully used to solve many optimisation
problems such as classification, regression and scheduling [50, 44].

• Evolutionary Strategies (ESs)

ESs were introduced by Rechenberg and Schwefel for shape opti-
misation problems [42]. They utilise natural problem-dependent
representations with a fixed-length real-valued vector to represent
each candidate solution. Particularly, both the genetic building blocks
and strategy parameters (i.e. to simulate the behaviour of that indi-
vidual) jointly form such a vector. ESs evolve the population based
on both the genetic characteristics and the strategy parameters [16].

• Evolutionary Programming

EP was introduced by Fogel et al. [12, 48] to simulate evolution
as a learning process with the aim of evolving Finite-State Machines
(FSMs). The main difference between GP and EP is the structure of
the program, which is fixed in EP. The main operations of EP are
mutation and selection operators. In contrast with GAs, EP does not
originally include crossover operators.

• Differential evolution

DE was introduced by Storn and Price [144] as a powerful EA to
optimise nonlinear and non-differentiable continuous space functions.
DE, similar to GAs, evolves generations of candidate solutions. The
major difference between GAs and DE lies in the mutation operators.
DE uses the difference between a pair of chosen vector and a scaling
factor to move through the search space [150, 128].

Swarm Intelligence

Swarm Intelligence (SI) algorithms are inspired by the collective intelligence
of social behaviour of simple agents such as bird flocks, ant colonies, and
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bacterial growth [7, 82, 103]. Generally, SI uses each agent for parallel local
search in hope of finding optimum solutions. In the meantime, each agent
interacts with other agents to reach global behaviour. Two well-known SI
techniques are ant colony optimisation and particle swarm optimisation.

• Ant Colony Optimisation

Ant colony optimization (ACO) [40, 39] was introduced by Dorigo [42]
to mimic the behaviour of ants looking for the shortest path from
their colony to food [38]. In ACO, every ant can produce a candidate
solution. These ants leave pheromones as footprint on the ground.
Therefore, other ants in the colony can follow the path and reach
the food. In ACO, the best solution is the “path” that has the most
pheromones. In this way, ACO can take advantage of the elements of
previous solutions.

• Particle Swarm Optimisation

Although Particle Swarm Optimisation (PSO) and the technical termi-
nology are grounded in physical particles, it is inspired by social
behaviour of bird flocking or fish schooling [41, 81, 158, 125]. Specif-
ically, each candidate solution is represented as a particle. In PSO,
particles move in the search space to find the optimum solution. In
contrast to EAs, PSO does not support crossover and its mutation
is defined through a vector addition. Particularly, PSO updates the
position of each particle based on the best experience of its own and
its neighbouring particles to move the whole swarm towards the
optimal solution. PSO has been applied to solving problems in a vari-
ety of areas [42, 57, 10, 6], because of its simplicity and effectiveness
[158, 125].

Cooperative Coevolution

Cooperative Coevolutionary (CC) techniques use multiple sub-populations,
each representing part of a problem, to cooperatively solve a large problem.
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CC has been successfully applied to solving high-dimensional function
optimisation [126] and job shop scheduling problems [66]. Specifically,
CC adopts a divide and conquer strategy to decompose any given prob-
lem into sub-populations, each of which can be solved effectively. When
individuals from one sub-population work well with individuals from
other sub-populations, they will be rewarded. Penalties will apply other-
wise. One of the well-know CC techniques is Cooperative Particle Swarm
Optimisation (CPSO) [156, 92].

In this thesis, we have utilised DE, PSO and CPSO, which are explained
in subsections 2.1.6, 2.1.7 and 2.1.8, respectively, to automatically design
FLCs in WBANs.

2.1.6 Differential Evolution (DE)

The DE algorithm [144] is similar to other traditional evolutionary algo-
rithms, such as GAs. It supports the commonly used genetic operators
including crossover, mutation and selection. The major difference between
DE and GA is the mutation operator.

Like nearly all EAs, DE randomly initiates a population of NP D-
dimensional candidate solutions. The ith candidate solution of the popula-
tion at time t is denoted as follows:

~Xi(t) = [xi,1(t), xi,2(t), ..., xi,D(t)], i ∈ 1, 2, ...NP (2.7)

A mutated candidate solution in DE is created according to the follow-
ing:

~Mi(t+ 1) = ~Xr1(t) + F × ~Xr2(t)− ~Xr3(t)) (2.8)

where r1, r2 and r3 are different (non-identical) indexes randomly selected
from {1,...,NP}, and F is a scaling factor where F ∈ [0, 2]. ~Mi(t+ 1) and ~Xr1

are called the target and base candidate solutions, respectively. “Binomial”
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crossover is used to increase the potential diversity of the population. In
the crossover operation, the trial vector is first determined as below:

~Ui(t) = [ui,1(t), ui,2(t), ..., ui,D(t)] (2.9)

l = rand(1, D) (2.10)

ui,j(t+ 1) =

{
mi,j(t+ 1), if rndj(0, 1) ≤ Cr or j = l

xi,j(t), if rndj(0, 1) > Cr or j 6= l
(2.11)

for each j ∈ {1, 2, ..., D}. Cr is the crossover constant, which is [0...1].
Selection as the final step decides whether the target vector or the trial
vector should become a member of the next generation, as below:

~Xi(t+ 1) =

{
~Xi(t), if f( ~Ui(t+ 1)) ≤ f( ~Xi(t))
~Ui(t+ 1), if f( ~Ui(t+ 1)) > f( ~Xi(t))

(2.12)

where f() is a fitness function to be minimised.

2.1.7 Particle Swarm Optimization (PSO)

PSO is an evolutionary algorithm based on the social behaviour of birds
within a flock [81]. It is composed of candidate solutions called parti-
cles where the whole population of particles is a “swarm”. Each particle
occupies a position vector ~Xi and a velocity vector ~Vi in D-dimensional
hyperspace. The position vector represents a candidate solution in the
search space, which is initialised randomly at the beginning. The particle
possesses its current position ~Xi and velocity ~Vi. In addition, it memorises
its previous best position called personal best, pbest, and the position of
the best particle in the whole swarm called gbest. In each iteration t, PSO
updates the velocity of the ith particle in the dth dimension as follows:



44 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

vid(t+1) = ω×vid(t)+c1×r1(t)(pbestid(t)−xid(t))+c2×r2(t)(gbestd(t)−xid(t))
(2.13)

where c1 and c2 are “self-confidence” and “swarm confidence” constants
respectively. r1(t) and r2(t) are random numbers uniformly distributed in
[0...1]. Accordingly, the position of the ith particle in the dth dimension is
updated as follows:

xid(t+ 1) = xid(t) + vid(t+ 1) (2.14)

The personal best position of each particle is updated as follows:

pbestid(t+ 1) =

{
pbestid(t), if f(xid(t+ 1)) ≤ f(pbestid(t))

xid(t+ 1), if f(xid(t+ 1)) > f(pbestid(t))
(2.15)

where f() is a fitness function to be minimised. The update process is
iteratively repeated until either an acceptable gbest is achieved or a fixed
number of iterations tmax is reached.

2.1.8 Cooperative Particle Swarm Optimisation (CPSO)

CPSO [156], which is explained in Algorithm 1, decomposes a position
vector into K s-dimension subcomponents (where D = K × s). In order
to evaluate the fitness value of a particle, CPSO concatenates all gbest
particles from K different sub-populations. Function b(j, Pj.xi) is called to
evaluate the ith particle in the jth sub-population. This function returns
an D-dimensional vector as the whole solution containing gbest with its
jth component replaced by Pj.xi. The idea is to evaluate how well Pj.xi

“cooperate” with another sub-population.
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define : b(j, z) ≡ (P1.gbest, ..., Pj−1.gbest, z, Pj+1.gbest, ..., PK .gbest)

Create and initialise K swarms, each with s dimensions (where
D = K × s);

The jth swarm is denoted as Pj, j ∈ [1..K] ;
repeat

for each swarm Pj ∈ [1..K] do
for each candidate FLC i ∈ [1..s] do

if f(b(j, Pj.xi)) < f(b(j, Pj.pbesti)) then
Pj.pbesti ← Pj.xi;

end
if f(b(j, Pj.pbestj)) < f(b(j, Pj.gbest)) then

Pj.gbest← Pj.pbestj ;
end

end
Perform PSO updates, i.e. velocity and position, on Pj ;

end

until termination condition is true;
Algorithm 1: The pseudocode of the CPSO algorithm. Pj.xi denotes the
current position of the ith candidate solution of the jth sub-population.
Pj.pbesti is the personal best of the ith candidate solution of the jth sub-
population. The jth of the K sub-populations has a global best particle
Pj.gbest.
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2.2 Literature review

This section reviews the literature related to different methods proposed in
this thesis. Subsection 2.2.1 first presents related work about MAC protocols
in WBANs. Subsection 2.2.2 reviews cross-layer FLCs in WBANs. Subsec-
tions 2.2.3 and 2.2.3 discuss FLC design and its application to WBANs.

2.2.1 Medium Access Control (MAC)

MAC protocols that are specifically developed for WBANs are fairly lim-
ited. Since WBANs and WSNs are similar in many aspects, it is useful to
study WSNs MAC as well. Researchers often try to optimise the energy
consumptions in WSN MAC protocols. For example, Ye et al. introduced
S-MAC [171] which enables sensor nodes to transmit data packets within
divided time slots through virtual clusters. The authors tried to balance
between energy and packet delay. Dam et al. [155] improved S-MAC by
introducing T-MAC which adaptively changes the duty cycle based on
different traffic patterns. Although this adaptability removes a conserva-
tive slot schedule for the worst traffic pattern in S-MAC, the aggressive
sleep schedule reduces the throughput and increases packet delay. Krish-
namachari et al. [98] also used the adaptive duty cycle approaches while
designing D-MAC. However, all these MAC protocols, i.e. S-MAC, T-MAC,
and D-MAC, introduce traffic load for synchronising and scheduling sleep
periods. Moreover, WSNs MAC protocols are typically designed for multi
hop ad hoc networks, while this thesis focuses on star-topology WBANs.

IEEE 802.15.4 [3] is the most commonly used standard to implement
WBANs [26, 91, 83]. Since most WBANs are built based on IEEE 802.15.4
compliant chip set [91, 83], the IEEE 802.15.4 MAC protocol is often used
in WBANs. However, previous research showed that IEEE 802.15.4 can
be very limited in terms of its reliability (measured by Packet Delivery
Ratio (PDR)), and performance (measured by throughput and packet delay)
[152, 120, 53, 24, 113, 25, 54]. Therefore, efforts have been made to improve
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reliability and performance of IEEE 802.15.4. They can be divided largely
into two categories: (1) improving the MAC protocol during only CAP and
(2) improving the MAC protocol while CFP is enabled. The former focuses
on enhancing the effectiveness of CSMA/CA in IEEE 802.15.4 and the latter
tries to improve GTS allocation in IEEE 802.15.4.

IEEE 802.15.4 CSMA/CA

IEEE 802.15.4 recommends a popular technology known as Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) to schedule concurrent
channel access [3]. In CSMA/CA, the Collision Avoidance (CA) mechanism
is achieved by introducing a random backoff delay before assessing the
channel through carrier sensing. Particularly, when the channel is assessed
as busy, the maximum backoff delay will be increased exponentially. For
each new transmission, CSMA/CA in IEEE 802.15.4 ignores the most recent
channel condition. It blindly restarts the whole backoff process instead of
adjusting backoff delay based on the recent channel condition. In other
words, exponential backoff algorithm in IEEE 802.15.4 is memory-less [8]
and cannot consider the channel condition history. As a result, while
the channel is still busy, the collision rate might increase and accordingly
throughput would decline.

To address this issue, several amendments have been proposed to up-
date the maximum backoff delay in a more adaptive manner [58]. For
example, the Enhanced Collision Resolution (ECR) and the Enhanced Backoff
(EB) mechanisms are proposed in [58] to improve throughput of CSMA/CA.
The authors suggested that two consecutive CCAs are not a good indica-
tion of channel condition. Consequently, ECR increases BE after a number
of consecutive CCAs which is set to macMaxBackoffs. Moreover, instead
of resetting the maximum backoff delay after a transmission failure, the
maximum backoff delay remains high and will only be reduced after a
successful transmission. In this way, ECR tries to preserve the channel
condition history by slowly decreasing BE. On the other hand, EB shifts
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Figure 2.8: State transition scheme to adjust macMinBE in IEEE 802.15.4,
proposed by Ko et al. [51]

the range of backoff counters based on the expected number of busy BPs
to avoid overlaps among different backoffs and CCAs. Although this ap-
proach makes CSMA/CA more effective in busy channels, the performance
of the network might be poor, especially if the channel condition fluctuates
frequently. Furthermore, average delay may also increase subject to the
shifting range of BP [163].

Ko et al. [51] proposed a state transmission scheme to dynamically
adjust macMinBE based on the transmission conditions. In this scheme,
the macMinBE value changes in the range of [1..3], as the condition of the
sensor node changes. As shown in Figure 2.8, each sensor node has three
different states with different macMinBE values. This scheme calculates
the channel access frequency by keeping the records of the number of
idle beacon frames (with no transmission) and the number of successful
transmissions within a beacon frame in each sensor node. This frequency
is then used to prioritise each sensor node to access the channel. Although
this scheme tried to consider the frequency of channel access with respect
to each sensor node, it cannot quickly adapt itself to the current channel
condition.

In order to compensate for the injected delay, Wong et al. [163] pro-
posed an Additional Carrier Sensing (ACS) method. They used extra channel
assessments before increasing backoff delay to collect more information
regarding the channel condition. Specifically, the authors suggested that
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there are two reasons for the second CCA failure in IEEE 802.15.4. (1) when
sensor node A performs the first CCA, sensor node B in the network also
successfully performs its second CCA in the same time. In this case, when
sensor node A tries to perform CCA for the second time, sensor node B is
in middle of sending its data packets and the channel is busy. Therefore,
the second CCA for sensor A fails. (2) Sensor node A performs CCA for
the first time, while sensor node B is waiting for the acknowledgement
after finishing its transmission. Therefore, the first CCA shows a clear
channel and then sensor node A performs its second CCA. In the meantime,
if the transmission for sensor B is successful, the coordinator sends back
acknowledgement and the channel is busy. In view of the two reasons, ACS
requires sensor nodes to perform the third CCA to reduce the likelihood of
CCA failure. In this way, sensor node A has another opportunity to access
the channel after sensor node B receives it acknowledgement. However,
these studies tend to ignore application layer information. Thus, backoff
delay might not be adapted based on the specific application requirements
of each sensor node.

IEEE 802.15.4 GTS

As mentioned in Subsection 2.1.3, IEEE 802.15.4 also supports TDMA based
on the GTS mechanism. GTS can guarantee the reliability and performance
of data delivery by allocating a specific time slot within a superframe for
data transmissions. However, existing scheme in IEEE 802.15.4 faces some
limitations as follows:

• In IEEE 802.15.4 only up to seven GTSs can be allocated during each
superframe.

• GTS allocation is based on simple First-Come, First-Served (FCFS)
mechanism.

Specifically, in IEEE 802.15.4, sensor nodes send GTS requests to the co-
ordinator and the coordinator allocates GTS to a limited number of sensor
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nodes in a simple FCFS fashion. This strategy might lead to underutili-
sation of the GTS bandwidth resources, therefore, limiting the reliability
and performance of WBANs. Several research works tried to address the
limitation related to CFP [86, 177, 135, 64]. For example, Koubaa et al. [86]
proposed an Implicit GTS Allocation MEchanism (i-GAME) to improve the
GTS utilization efficiency by accepting multiple flows sharing the same
GTS. Particularly, in this algorithm, each sensor node requests a guaranteed
service by sending its traffic specification and delay requirement. Then the
coordinator tries to allocate bandwidth through GTS based on the traffic
specification of the requesting nodes, their delay requirements, and the
available GTS resources. The i-GAME shares multiple traffic flows within
the same GTS to minimise the amount of wasted bandwidth, while still
trying to meet their delay requirements. However, in the i-GAME, since the
algorithm starts the GTS allocation from the last time slot in a round-robin
manner, it may fail to serve a flow with hard real-time deadline, which
needs to be assigned to the first GTS in the CFP [165]. Additionally, it
requires a control packet for flow specification at the higher layer [165].
Moreover, the information of delay requirements must to be exchanged
with the controller, which will incur extra traffic overhead [135].

Na et al. [110] proposed GTS Scheduling Algorithm (GSA) that tries to op-
timise GTS allocation based on the payload size and the delay constraint for
data transmissions. Specifically, GSA checks schedulability of the requested
requirements by estimating the delay of each transaction and analysing
the relationship in between the delay and the number of allocated GTSs.
Based on that, GSA tries to spread out the payload through several su-
perframe by allocating the minimum number of GTSs to each transaction
within each superframe. In this way GSA can ensure a smooth traffic flow
between the coordinator and sensor nodes. However, this algorithm needs
to exchange delay requirements between sensor nodes and the coordinator
which increase traffic overhead [135].

Shrestha et al. [135] proposed a new scheme to prioritise GTS allocation
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based on the application data rate of each sensor node. It tries to utilise
the radio bandwidth in the GTS in an optimal manner. In this algorithm, if
the GTS request is unsuccessful, a sensor node needs to wait until the next
superframe and sends the request again. Due to this delay, the sensor node
might discard the data packet if its waiting time exceeds the delay limit.
Moreover, the authors did not provide a detailed priority differentiation
mechanism.

Huang et al. [64] proposed Adaptive GTS Allocation (AGA) which utilises
the idea of assigning priorities in a dynamic fashion based on recent GTS
usage feedbacks to provide low latency and fairness. Particularly, AGA is
divided into two phases: (1) The classification phase, that assigns priorities
to devices based on recent GTS usage feedbacks in a multilevel Additive-
Increase/Multiplicative-Decrease (AIMD) manner. They suggest that recent
GTS usage feedbacks give long-term transmission characteristics. (2) The
scheduling phase, that allocates GTSs based on given priorities. However,
the AGA scheme suffers firm some implementation overhead since extra
information for devices must be recorded to allocate GTS resources. Besides,
channel condition can play an important role in balancing traffic between
CFP and CAP and none of the mentioned solutions has taken it into account
[164].

To address IEEE 802.15.4 limitations in both CSMA/CA and GTS, cross-
layer control provides a promising new direction for research [83, 49]. In
a cross-layer approach, information from different layers of the protocol
stack is collaboratively utilised to enhance the effectiveness of MAC layer.
Soft computing techniques, in particular fuzzy logic, have been popularly
used in cross-layering systems [120, 107, 31].

2.2.2 Cross-layer Fuzzy Logic MAC

FLCs have become one of the major control techniques because of their
capability of solving previously intractable or very difficult control prob-
lems and their successful real-life applications. Due to their capability for
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dealing with nonlinear systems with multiple inputs and defining some
rules to connect these inputs with the outputs, FLCs have been vastly used
in cross-layering technologies such as localisation in WSNs [117], modelling
and analysing the lifetime of WSNs [137], clustering in WSNs [101], event
detection [94], coding scheme [136] and deployment in WSNs [176].

Mouzehkesh et al. [107, 108] proposed Dynamic delayed Medium Access
Control (D2MAC) to improve the network reliability and performance of
IEEE 802.15.4. They have introduced FuzzyMAxDelay to decide the upper
limit of backoff delay instead of exponential backoff delay (see (2.3)). The
backoff delay is calculated as follows:

backoffT ime = rnd(0, FuzzyMAxDelay)×BP,

where 8 6 FuzzyMAxDelay 6 127 (2.16)

where FuzzyMAxDelay is calculated by a FLC based on sensor node’s data
rate and the rate of successful channel access calculated as follows:

ChannelclearRate =

∑n
i=0CCA2

n
(2.17)

where CCA2 is the second successful CCA in IEEE 802.15.4 and n (=20) is
the number of superframes. D2MAC calculates ChannelclearRate for every
n superframes.

In D2MAC, as the channel becomes busy, FuzzyMaxDelay will increase
accordingly. Although, D2MAC managed to show improvements over
IEEE 802.15.4 in term of reliability, it achieves this reliability by sacrificing
packet delays.

A similar work was also conducted by Chen et al. in [31]. They pro-
posed a soft-computing technique to improve both network reliability and
performance. In their algorithm, a FLC is employed to calculate: (1) the
upper limit of backoff delay by adding FuzzyBEField to the exponential
backoff value and (2) the increase step size of NB in IEEE 802.15.4 through
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FuzzyNBStep respectively as follows:

backoffT ime = rnd(0, 2BE − 1 + FuzzyBEField)×BP,

where 8 6 FuzzyBEField 6 127 (2.18)

NB = NB + FuzzyNBStep, where 0 < FuzzyNBStep 6 4 (2.19)

where both FuzzyBEField and FuzzyNBStep are produced by the FLC based
on data rate of each sensor node and ChannelclearRate in (2.17). In contrast
with D2MAC, the authors in [31] did not change the structure of expo-
nential backoff algorithm. Furthermore, they tried to control packet delay
by controlling NB. However, they still impose long packet delay to im-
prove the reliability of the network, which is undesirable for time-sensitive
applications in WBANs.

Although these approaches have improved IEEE 802.15.4 significantly,
they have not taken GTS allocations into account. To address this limitation,
Jing et al. [177] proposed Fuzzy Control Medium Access (FCMA) to prioritise
GTS allocation and to control backoff delay in sensor nodes. Similar to
D2MAC, FCMA calculates the upper limit of backoff delay, which is CW, in
IEEE 802.15.4. FCMA also changes the structure of IEEE 802.15.4 to accom-
modate more than seven GTS slots and increase channel utilisation. They
claimed that they improved both reliability and performance of WBANs.
However, their proposed method is centralised and even CW size is con-
trolled by the coordinator, which causes traffic overhead. Moreover, FCMA
does not take channel condition into account, which might have negative
impact on the reliability and performance of the network.

2.2.3 Evolutionary design of Fuzzy Logic Controllers

A major problem for FLCs is that their design is crucial for the cross-layer
approaches discussed in Subsection 2.2.2 to be effective. In designing FLCs,
we need to specify fuzzy set membership, the fuzzy operators and the
Knowledge Base. However, a review of the literature suggests that this
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important design issue in WBANs has not been fully addressed. Very often,
researchers rely purely on manual design of FLCs that requires huge human
efforts, yet cannot provide any performance guarantees [120, 107, 31, 113].

Various automatic techniques have been utilised to design FLCs such
as the table lookup schemes [159], gradient descent [159], clustering and
gradient descent [168], and EC techniques [96, 23, 52, 59, 47]. In comparison
with other techniques, EC techniques enjoy a clear advantage since they
are capable of automatically designing different types of fuzzy logic rules,
various forms of MFs, and the structure of rules base [45]. Moreover, EC
techniques are gradient-free optimisation techniques [45] that are widely
applicable specifically on noisy and multimodal problems. Because the
design problem in WBANs can be generally considered to be noisy and
multimodal [131], we believe EC techniques are suitable for our design
problem.

In the literature, many EC techniques, including Genetic Algorithm (GA)
[23, 84], PSO [17, 11, 111, 18] and DE [124, 59, 138, 118], have become
popular tools for designing FLCs. Some representative and recent research
works have been summarised in Table 2.1. For example, Bouarroudj et
al. [19] successfully designed Gaussian MFs through PSO. Pishkenari
et al. [124] used both GA and DE to design trapezoidal MFs of a FLC
for controlling a rescue robot and showed that DE can outperform GA.
Similarly, Yun et al. [173] used GA to design FLC for localisation in WSNs.
Martinez et al. [99] also proposed designing MFs by using two popular EC
techniques, i.e. GA and PSO. They tested their solution on a benchmark
problem and suggested that PSO can converge more quickly than GA.

The design complexity to a large extent can also be affected by the
coding scheme and its dimension in use. Bingül et al. [17] successfully
designed Gaussian MFs through PSO for two controllers for a planar robot.
They proposed a coding scheme which is divided into two parts. The first
part is to encode the centre and deviation of the Gaussian MFs for the
first controller and the second part is to encode parameters of MFs for the
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Table 2.1: Related works of EA-based FLCs design.

EA Type of MF Tuning Parameters FLC Application
Bingül et al. [17] PSO Gaussian Centre and deviation Planar robot

Kim et al. [84] GA Triangular
Three control
parameters of a
triangular MF

OPS and FNC
for the inverted
pendulum

Hachicha et al. [59] DE Triangular
Three control
parameters of a
triangular MF

Financial market
dynamics

Nasseer et al. [11] PSO Triangular
Centre and width
(Symmetric triangular)

Speed of wind
turbines

Chang et al. [32] PSO Triangular
Centre value
(Symmetric triangular)

Two wheeled
mobile robot

Pishkenari et al. [124]
GA
vs DE

Trapezoidal
Four control
parameters

Rescue robot

Martinez et al. [99]
GA
vs PSO

Combination of
Gaussian and
triangular

Three control
parameters of a
triangular MF,
Centre and
deviation
Gaussian MF

Benchmark
problem

Bouarroudj et al. [19]
PSO
vs GA

Gaussian Centre and deviation

Maximum power
point tracking
of photovoltaic
system

Yun et al. [173] GA Trapezoidal
Four control
parameters

Localisation in
WSNs

Liu et al. [96] GA Triangular Linguistic Hedge
Cart-pole balance
system

Casillas et al. [23] GA Triangular

Linguistic Hedge
and Three
control parameters
of a triangular MF

The rice and
electrical
benchmark
problems
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second controller. Hachicha et al. [59] utilised DE to design triangular
MFs to model the financial market dynamics. They proposed a two part
coding scheme which encodes centre and linguistic of each MF respectively.
Furthermore, Nasseer et al. [11] focused on reducing the search dimension
in designing a FLC through PSO for wind turbine. To reduce the search
dimension, the authors used triangular MFs with only two control param-
eters, i.e. centre and width. Similarly, Chang et al. [32] used symmetric
triangular MFs to further reduce the search space.

Liu et al. [96] studied a similar problem and suggested only searching
for a collection of linguistic modifiers with respect to a fixed collection
of fuzzy rules for efficient design of FLCs. These linguistic modifiers are
utilised to dynamically tune the shape of MFs and increase the convergence.
Following this work, Casillas et al. [23] suggested a deep structure for
designing FLC, which uses both the linguistic modifiers and the control
parameters of MFs. They studied this deep structure and claimed that
the linguistic modifiers will not change the overall structure of FLCs and
hence maintain their interpretability. Accordingly, the authors proposed
a three fold coding scheme for their proposed Fuzzy Rule-Based Systems
(FRBSs) genetic tuning. The first part is 3-tuple of real values for each
triangular MF. The second and third part are to encode linguistic modifiers.
Although, these research works [23, 124, 17, 59, 32, 96] have focused on
examining domain-specific coding schemes, there is a lack of comparison
between different coding schemes in terms of their flexibility, effectiveness
and interpretability.

The effectiveness of EC techniques in designing FLCs has been widely
demonstrated. However, they could easily become unaffordable in practice
due to (1) high computational cost and (2) the curse of dimensionality. EC
techniques mostly must evaluate a large number of candidate solutions
before a satisfying result can be achieved. The evaluation can be a major
source of high computational cost. Moreover, increasing the number of
input and output variables in FLCs results in the curse of dimensional-
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ity. Therefore, in this thesis, we study surrogate models and cooperative
coevolutionary techniques to address these issues, respectively.

Surrogate-assisted EC techniques

The major computational cost for designing FLC in WBANs comes from
evaluating the fitness function. An effective way to address this issue is
to use surrogate models of fitness functions which have been used widely
in many optimisation problems such as aerodynamic design [127] and
circuit design [142]. For example, Praveen et al. [127] utilised a Radial Basis
Function (RBF) based surrogate to assist PSO in optimising aerodynamic
shapes. A new system called Design and Analysis of Computer Experiments
(DACE) [122] has been also exploited to build a surrogate model to reduce
the computation cost of EAs in standard benchmarking problems and a
simulation-based hydrology application. Jin et al. [76] utilised feed-forward
MultiLayer Perceptrons (MLP) to build a surrogate model for optimisation
problem such as aerodynamic design. A comprehensive survey of different
surrogate related research is provided in [74].

To build an effective and efficient surrogate model, two requirements
should be addressed [75]: (1) accuracy of the model and (2) selection of
candidate solutions for re-evaluations. The accuracy of surrogate models is
essential, because an inaccurate model can result in incorrect convergence.
To improve the accuracy of surrogate models both off-line [67, 77] and
online training [74, 76, 127, 129] can be used. The former focuses on training
the model before using EC and the latter updates the model during the
evolutionary design process. It has been shown that, because of the lack of
data and the high dimensionality of many problems, online training can
perform better than off-line training.

In the online training, surrogate models and real fitness functions have
been mostly used together to improve the accuracy of surrogate models
[74, 76, 127, 129]. This cooperation can improve the surrogate model during
the evolutionary process by re-training the model with respect to new
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samples. In other words, in every generation some candidate solutions
are selected and re-evaluated with the real fitness function. The new re-
evaluated candidate solutions are added to the data set to re-build a more
accurate model. Nevertheless, building the surrogate model from scratch
in every generation might be inefficient [21, 97]. Therefore, many research
efforts have utilised online learning to improve the accuracy of the model
with respect to new samples during evolutionary process.

The second requirement to build an effective and efficient surrogate
model is to choose the candidate solutions for re-evaluations. Several strate-
gies have been suggested to select candidate solution for re-evaluations. For
example, some research efforts have tried to select the candidate solution
for re-evaluation by clustering the populations. They select the candidate
solution that is closest to each cluster centre [55, 105] or the fittest in the
cluster [55, 56]. The most straightforward and popular strategy is to evalu-
ate the number of candidate solutions with higher fitness in the population
[75, 74, 127, 129, 77].

Coevolutionary design of fuzzy logic control

Extending the number of input and output variables in FLCs results in
increased difficulty of designing FLCs. To address this issue, a divide-and-
conquer strategy could be a natural approach to tackle this complexity. For
example, Potter and Jong [126] proposed a Cooperative Co-Evolutionary
Algorithm (CCEA) to cope with high complexity in optimisation prob-
lems. In their solution, a problem is decomposed into several smaller
sub-components, each of which can be evolved through a separate GA
sub-population. While each sub-population is evolved, the remaining sub-
populations can be held fixed. Recently CCEAs have been applied to many
optimisation problems [126, 143, 133, 69, 156, 92]. For example, Stonier
and Young [143] used CCEAs to optimise a hierarchical fuzzy controller
for the inverted pendulum. Roberts et al. [133] utilised Cooperative Co-
evolutionary Genetic Algorithm (CCGA) for image feature construction and
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object detection. Ibáñez et al. [69] proposed a cooperative coevolution-
ary approach in craniofacial superimposition which deals with the use of
imprecise cephalometric landmarks in the skullface overlay process.

Bergh and Engelbrecht [156] proposed Cooperative Particle Swarm Op-
timiser (CPSO) that can perform much better than the original PSO on
several benchmark optimisation problems. This is achieved by using mul-
tiple sub-populations to optimise different components of the solution
vector cooperatively. Li and Yao proposed [92] Cooperative Coevolving PSO
(CCPSO), which is an improvement over CPSO, to tackle high dimensional
non-separable optimisation problems. They used random grouping and
adaptive weighting to handle high dimensional non-separable problems.
Li and Yao [93] also tried to improve CPSO further by proposing CCPSO,
which enhanced the likelihood of optimum grouping by increasing the fre-
quency of random grouping and introducing the dynamic subcomponent
sizes for random grouping.

The most straightforward method to construct a candidate solution as a
whole is to make it interact with all possible collaborators from the other
sub-populations. This method, which is also called complete pairwise inter-
action, is highly computationally expensive [161]. An alternative solution
is to select a limited number of collaborators from other sub-populations.
Choosing collaborators is connected to problem characteristics and could be
among the most important design decisions for the successful application
of CCEAs [161]. Specifically, CCEAs evaluate the fitness function based
on how well the candidate solution cooperates with the other candidate
solutions with which it interacts. Candidate solutions succeed when they
find collaborators effectively.

Commonly researchers have chosen the best fit solution from alternative
sub-populations [69, 92, 161]. However, this method could be greedy and
CCEAs could fall into local optima [156, 161]. Therefore, some researchers
have selected an alternative method which involves two candidate so-
lutions, i.e. the best and a random candidate solution [92, 161]. In this
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method, both selected collaborators are evaluated with the current candi-
date solution and the higher fitness determines the fitness of the current
candidate solution [156, 161]. Although these methods are commonly used
by researchers, they are designed to tackle general optimisation problems.
We believe that, considering the unique characteristic of design problems
can improve the effectiveness of collaborator selections.

2.3 Chapter Summary

This chapter presented important technical background. First, it provided
an introduction to Media Access Control (MAC) protocols in Wireless Body
Area Networks (WBANs) and IEEE 802.15.4 standard. Then, it over-viewed
Fuzzy Logic Controls (FLCs) and Evolutionary Computation (EC) techniques.
This chapter also reviewed and discussed works related to MAC protocols
and cross-layer FLC approaches to improve the quality of communication
in WBANs. Next, it reviewed evolutionary approaches to effectively design
FLCs.

This chapter also discussed the limitations of the existing work which
form the motivations of this research. The research aims to utilise cross-
layer FLCs to improve reliability and performance of MAC protocols in
WBANs. However, the works in the literature mostly rely on a manual
approach to design FLCs, which is laborious and error-prone. Despite
huge human efforts, the resulting FLCs may have poor quality in practice.
Consequently, this research aims to address this limitation by introducing
an evolutionary approach to design FLCs in the context of WBANs. To
achieve these aims we need to address the limitations of existing work as
follows:

• Some existing research efforts have already utilised FLCs to improve
the reliability and performance in WBANs [119, 107, 31]. However,
we believe that they have not used FLCs in an effective manner. They
have mostly achieved high levels of reliability and performance at the
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cost of significantly increasing the packet delay [113]. As a matter of
fact, the average packet delay must be kept at a reasonably low level
in time-critical WBAN applications.

• Existing research works mostly have employed FLCs for only sensor
level MAC [107, 115, 31]. However, it hs been shown that using
the coordinator level control could also improve the reliability and
performance of the network [135, 64]. Although, some research efforts
have been performed to optimise the coordinator-level bandwidth
allocation to sensor nodes, few have exploited the advantages of using
both distributed and centralised communication methods. There is a
need for an effective multilevel cross-layer FLC and a balance between
these levels to significantly enhance reliability and performance in
the context of WBANs.

• It has been shown that FLCs have potential to improve the commu-
nication quality. However, the effectiveness of FLCs depends on
their design. Nevertheless, a review of the literature suggests that
this important design issue in WBANs has not been fully addressed.
Very often, researchers rely purely on manual design of FLCs that
requires huge human efforts, yet cannot provide any performance
guarantees [120, 107, 31, 113]. It also been shown that EC techniques
are desirable to be used to design FLCs [159, 168, 96, 23, 52, 59, 47].
In order to design FLCs in the context of WBANs, we need to address
the following requirements:

– Encoding the candidate solutions: In the literature, most of
the research works only have studied domain-specific coding
schemes and some have studied general coding schemes. How-
ever, it is not clear which coding scheme is particularly useful
for our design problem. Thus, it is necessary to discover which
coding scheme can be effective in our design approach.
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– Fitness function: There is a need to design a meaningful fitness
function to guide the evolutionary design process. Our main
design goal is to optimise the reliability of WBANs. On the other
hand, the performance of the network has to be competitive
to IEEE 802.15.4. However, increasing reliability may lead to
an increase in packet delay. Consequently, reliability should be
constrained to packet delay.

– Fitness evaluation method: To the best of our knowledge, there
is no evaluation method in the literature review for different
WBAN’s settings. Therefore, to improve the general applicability
of our approach, we need to define the fitness evaluation method
based on different WBAN’s settings.

– Efficiency of design process: Since evaluating the fitness of any
candidate FLC design is time-consuming, which has impact
on the practicality of the design approach, the efficiency of the
design process has to be improved. Therefore, we need to rely
on surrogate models to boost the efficiency of the design process.

• Utilising cooperative coevolutionary computation techniques could
be a promising and suitable solution to effectively and cooperatively
design multilevel FLCs. However, one major challenge is collaborator
selection methods which can be crucial in the design process. Many
research works recommend to choose the best fit or random solution
from alternative sub-populations [126, 156, 161]. However, these
methods are designed to tackle general optimisation problems and
may not be effective enough in our specific design problem.

The following three chapters of this thesis will address and discuss the
above mentioned issues.



Chapter 3

Cross-Layer Fuzzy Logic based
Backoff

3.1 Introduction

Past research has evaluated the efficiency of commonly used IEEE 802.15.4
in WBANs [30, 3], showing that this standard can be very limited in terms of
its reliability (measured by PDR), and performance (measured by through-
put) [120, 53, 24, 113].

In practice, reliability is an important requirement. For instance, in
healthcare monitoring applications, reliable communication is essential in
order to bring dependable medical care to patients. Since WBANs are used
to carry medical data and signal emergencies like vital organ failures, in
worst-case scenarios, communication failure may cause death when a life-
threatening event has been left unattended. Driven by this understanding,
some exciting research has already been conducted to enhance the level of
PDR [119, 107, 31]. Accordingly, the aim of this chapter is to improve the
reliability of the current standard.

In addition to reliability, performance in terms of throughput poses an-
other issue for IEEE 802.15.4 [119]. Particularly for the healthcare monitor-
ing applications, WBANs are required to achieve high throughput in order
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to support sensors with high transmission rate such ECG sensors. For such
applications to be successful, Chen et al. [31] proposed a soft-computing
technique to improve both network reliability and performance. A similar
work was also conducted by Mouzehkesh et al. [107] by proposing Dynamic
delayed Medium Access Control (D2MAC) to improve the network reliability
and performance of IEEE 802.15.4.

However, reliability and performance improvement should not be re-
alised at the cost of significantly increasing the packet delay. As a matter
of fact, the average packet delay must be kept at a reasonably low level.
This requirement can be easily understood in medical applications where
timely communication is highly desirable. In order to decrease the network
delay, Additional Carrier Sensing (ACS) method [163] has been proposed to
use the third Channel Clear Assessment (CCA) to reduce unnecessary delay
introduced by the shifted backoff period.

In Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA),
the Collision Avoidance (CA) mechanism is achieved by introducing a ran-
dom backoff delay before assessing the channel through carrier sensing.
Particularly, when the channel is assessed as busy, the maximum backoff
delay will be increased at an exponential speed. For each new transmission,
CSMA/CA in IEEE 802.15.4 ignores the most recent channel condition. It
blindly restarts the whole backoff process instead of adjusting backoff delay
based on the recent channel condition. As a result, while the channel is still
busy, the collision rate might increase and accordingly throughput would
decline. Different from this standard approach, in this chapter, backoff
delay is dynamically adjusted through a new cross-layer approach. The
adjustment is undertaken by a fuzzy logic system designed by us. We have
also conducted a manual process to fine-tune fuzzy rules for the purpose
of making it more suitable for healthcare applications.
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3.1.1 Chapter Goals

This chapter targets the problem of inflexible backoff delays in IEEE 802.15.4.
This chapter aims to address this issue by proposing a new cross-layer
approach to adaptively produce backoff delays. This approach utilises
soft computing techniques, in particular fuzzy logic, which have been
popularly used in cross-layering systems [120, 107, 31]. We demonstrate
the effectiveness of using FLCs for adaptively producing backoff delays
to improve reliability and performance in WBANs. The following are the
chapter goals briefly:

1. Extending IEEE 802.15.4 to facilitate fuzzy logic based MAC and make
it more competent for various WBAN-based applications.

2. Manually designing the FLC used to improve reliability and perfor-
mance of WBANs.

3. Preserving backward compatibility with IEEE 802.15.4 by using FLC
and not changing the fundamental structure of the IEEE 802.15.4.

4. Finally, experimentally demonstrating the potential usefulness of the
new scheme with comparison to several recently proposed algorithms
such as CSMA/CA in IEEE 802.15.4, ACS [163], D2MAC [108] and
a recent algorithm proposed by Chen et al. [31]. For the sake of
simplicity, in this research, “IEEE 802.15.4” refers to the standard
CSMA/CA algorithm.

3.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 3.2 proposes
the cross-layer fuzzy logic based backoff algorithm. Section 3.3 presents
manual FLC design process. Section 3.4 describes the simulation imple-
mentation and results in detail. Finally, we conclude this chapter in section
3.5.
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3.2 A Cross-Layer Backoff Mechanism Using Fu-

zzy Logic Controller

Many research work show that the quality of wireless channels near the
human body is very poor and path loss is very high [131]. The poor channel
condition in WBANs may result in transmission failures and decreased
reliability and performance which are the major concerns especially in
healthcare applications [113]. Moreover, IEEE 802.15.4 does not consider
application-specific requirements, such as frequency of channel access,
when adjusting the backoff delay. Moreover, whenever the channel is
assessed as busy, IEEE 802.15.4 will blindly increase BE incrementally. The
work flow in Figure 3.1 implies that every node will always restart the
whole backoff process for each new transmission, regardless of application-
specific requirements and recent channel condition. Consequently, nodes
might fail to adjust the backoff delay sufficiently quickly and this would
significantly increase the collision rate in WBANs. Accordingly, reliability
and channel utilisation are negatively affected.

In order to tackle this issue, we have introduced Cross-Layer Fuzzy
Logic based Backoff (CLFB) [113] to adapt backoff delay by adjusting Back-
off Exponent (BE) based on different channel conditions and application
requirements as shown in Figure 3.2. Figure 3.1 illustrates both slotted
CSMA/CA and CLFB. Whenever the fuzzyEnable=true, CLFB will be used
for determining backoff delay. Otherwise, the standard slotted CSMA/CA
in IEEE 802.15.4 will be adopted. CLFB uses a FLC to adaptively tune
BE depending on both recent network conditions and application require-
ments.

To distinguish BE determined by FLC in CLFB from BE in IEEE 802.15.4,
the former will be called fuzzyBE in this research. Consequently, the random
backoff delay followed by each node before accessing the channel in CLFB
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Figure 3.1: The flow chart of CSMA/CA and CLFB algorithms where
differences between the standard CSMA/CA and Cross-Layer Fuzzy logic
Backoff (CLFB) are highlighted.
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is obtained as below:

backoffT ime = rnd(0, 2fuzzyBE − 1)×BP,

where fuzzyBE ∈ {2, .., 8} (3.1)

As illustrated in Figure 3.3, the FLC in CLFB accepts two input variables,
i.e. NBRate and data rate, which are described in more detail in Subsection
3.2.1. Moreover, it produces fuzzyBE as an output. Standard Mamdani
fuzzy system will be used for inferencing in our FLC [100].

Rules

Inference Engine

Fuzzifier Defuzzifier
Data Rate

fuzzyBE

Crisp 
Inputs

Crisp 
Outputs

NBRate

Fuzzy Logic Controller

Figure 3.3: Architecture of fuzzy logic controller for CLFB.

3.2.1 Fuzzy Input and Output Variables

The first input variable of the FLC in CLFB is NBRate. NBRate is measured
through the moving average of NB value over time as below:

NBRate(t+ 1) =

δ ×NB + (1− δ)×NBRate(t), if NB ≤ macMaxBackoffs

δ ×NBpenalty + (1− δ)×NBRate(t), if NB > macMaxBackoffs

(3.2)

where δ, 0 6 δ 6 1, is a discount factor and NBpenalty is a penalty for
every transmission failure. In particular, NB will increase whenever the
channel is in use. When it exceeds macMaxBackoffs, the corresponding
transmission effort will fail. Consequently, NBpenalty must be strictly higher
than macMaxBackoffs.
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Since NB serves as a direct indication of the channel condition in the re-
cent past, whenever channel condition deteriorates, NBRate starts to increase
quickly. Similarly, it decreases when the channel condition is improved.
The NBRate in our FLC is categorised into four fuzzy levels, i.e. low, medium,
medium-high and high. We choose to use four different fuzzy levels because
key related research [119, 107, 31] prefers to use at most four fuzzy levels
for any types of input to a fuzzy system. However, this is not a technical
restriction. In the future, we will study the possible benefits of using more
fine-grained fuzzy levels. In the calculation of NBRate (Eq. 3.2), a penalty
will also be applied. Specifically, when a transmission attempt fails because
NB exceeds macMaxBackoffs, our algorithm introduces the penalty to
clearly distinguish between failures during CCAs and a complete trans-
mission failure. The penalty is represented by the NB value of six, which
is clearly higher than the maximum possible NB value during any CCAs.
Due to this penalty method, the full possible range of NB-rate is from zero
to six.

The second input variable to our FLC in CLFB is data-rate. It is an
important variable since it helps to balance between the waiting time and
the channel condition. To cope with various network arrangements, we
decided to normalise the data-rate. Upon joining the WBAN, a sensor
node will send its application data-rate to the coordinator, which will then
determine the maximum data-rate among all individual sensors in the
network. The coordinator will subsequently inform the whole network
about the maximum data-rate. Each sensor node will normalise its own
data-rate within the range of 1 to 100 accordingly. One potential benefit
of using normalised data-rate is to improve the utilisation of the network
capacity. The normalised data rate is further partitioned into four different
fuzzy levels, i.e. low, medium, medium-high and high.

The output from our FLC is the fuzzyBE. In order to have a reasonable
level of accuracy, fuzzyBE is decomposed into four separate fuzzy levels,
which are B1, B2, B3 and B4. The centre of gravity is used in our FLC to
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defuzzify fuzzyBE and produce a crisp value in (3.1).
For simplicity and efficiency, following other researchers [107, 31], we

use the triangular shaped membership function for all input and output
variables. Examples of such membership functions are illustrated in Figure
3.4. In subsection 3.3, we will explain how the membership functions will
be manually designed to improve reliability and performance of WBANs.

H
e

ig
h

t

Engineering Units
(NBRate, Data-Rate, fuzzyBE)

α 

0

1

β β' 
α' 

Figure 3.4: An example of triangular membership functions and tuning by
adjusting the membership function parameters

3.2.2 Fuzzy Logic Rules

In this study, there are 16 different rule antecedents, (i.e. 4 fuzzy levels
of NBRate × 4 fuzzy levels of data rate). Consequently, our FLC in CLFB
comprises 16 separate fuzzy rules. Each rule follows a basic structure as
shown below:

R(n) : IF NB −Raten is ai1
and Data−Raten is ai2
THEN fuzzyBEn is c

i

(3.3)

A summary of all the fuzzy rules in CLFB is also presented in Table 3.1.
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According to this table, whenever NBRate is Low, meaning that channel
is not busy, our FLC will suggest short delays by setting fuzzyBE to B1,
e.g. fuzzy rules R(1), R(2) and R(3) in Table 3.1. However, the node with
High data rate tends to receive longer delays to prevent it from blocking
low data rate nodes, e.g. R(4). When the channel is more congested, i.e.
NBRate is at a Medium level, our FLC will produce comparatively larger
fuzzyBE, e.g. R(5), R(6) and R(7). Meanwhile nodes with High data rates will
receive even longer delays, e.g. R(8). This happens because the node with
higher data rate produces more packets and tries to access the channel more
frequently. By receiving a longer delay, the probability of packet collisions
can be reduced.

Furthermore, if the channel becomes even more congested, i.e. Medium-
High, to reduce the chances of collision the backoff delays recommended
by corresponding rules, i.e. R(9), R(10) and R(11), will become B3. Moreover,
the node with High data rate will have the longest delay, i.e. B4. Finally
when channel usage is High, our FLC will produce the longest delay B4,
regardless of the data rate input. The only exception is the nodes with Low
data rate which will still receive a shorter delay, i.e. B3.

As an example for the above mentioned rules, when we have two low
data rate sensor nodes in the network, the channel is idle most of the
time. Consequently, based on R(1), fuzzyBE will be short and every sensor
node will experience less delay. On the other hand, when there are several
high data rate sensor nodes in the network, the channel is mostly busy.
According to R(12) and R(16), fuzzyBE will be sufficiently high to avoid
unnecessary collisions for the overall reliability of WBANs.

3.3 Manual Design of Fuzzy Logic Controllers

In practice, the effectiveness of FLC depends heavily on its control rules
and membership functions. Therefore, the tuning and adjustment of mem-
bership functions become an important part of FLC design. At this stage of
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Table 3.1: Fuzzy Logic rules for CLFB.

NBRate

Data Rate
Low Medium Medium High High

Low R(1): B1 R(2): B1 R(3): B1 R(4): B2
Medium R(5): B2 R(6): B2 R(7): B2 R(8): B3
Medium High R(9): B3 R(10): B3 R(11): B3 R(12): B4
High R(13): B3 R(14): B4 R(15): B4 R(16): B4

the research, because the total rule set is reasonably small, we designed our
FLC manually as explained below.

One of the most common ways of tuning membership functions is to
adjust the basic parameters defining them. For this purpose, two tuning
parameters, i.e. α and β as shown in Fig. 3.4, are considered, . In fact, α
controls the shortening and widening of the membership function and β

moves the membership functions to the left and right. The aim of tuning is
to adjust the two parameters in a direction of improving WBAN reliability
and performance.

In this research, we have three steps in the tuning process. They are
detailed below,

1. Tuning the output membership functions: because the output member-
ship functions have more influence on the performance of FLC, the
adjustment is carried out on them first. Particularly the input member-
ship functions are held steady while tuning the output membership
functions. Upon adjusting a membership function, we first adjust
parameter β. After each adjustment 30 independent evaluations are
performed to confirm its usefulness, i.e. improving both reliability
and performance of IEEE 802.15.4. After three local adjustments, we
then proceed to adjust α by following an identical process. After
changing α and β individually, we have a good approximation of α
and β. Then we use them to perform several steps of random local



74 CHAPTER 3. CROSS-LAYER FUZZY LOGIC BASED BACKOFF

search to finally determine the values for α and β. This process is
applied on all B1, B2, B3, and B4 membership functions.

2. Tuning the input membership functions: In order to investigate suitable
settings for input membership function and further improve perfor-
mance of FLC, the input membership functions are tuned and the
output membership functions remain unchanged. For each mem-
bership function, tuning of α and β follows basically the procedure
described in step 1.

3. Tuning both the input and output membership functions: the previous two
steps follow a greedy search strategy to find out the suitable settings
for each membership function. In this final step, in order to improve
FLC performance further, a local search is performed to tune both
inputs and output membership functions simultaneously.

By following this process, we finally determine the suitable member-
ship functions for each fuzzy level of every input and output variable.
These functions are presented in Fig. 3.5 to make the simulation results
reproducible.

3.4 Simulation Implementation and Results

In order to evaluate the reliability and performance of CLFB and compare it
with many competing algorithms in the literature, including IEEE 802.15.4,
ACS, and D2MAC, as well as a recently proposed algorithm [31] termed
“NB-Step”, we have performed simulation study in this chapter. In this
section, detailed information and discussion related to the simulation en-
vironment, including important simulation settings, will be described in
subsection 3.4.1. The simulation results and discussions will be presented
in subsection 3.4.2.
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Table 3.2: Communication specifications of Sensor nodes used in the simu-
lation [2, 119].

Sensor Node ECG Respiratory Rate Motion Sensor
Traffic
Generation
Distribution

Constant Constant Poisson

Data Rate 156.25 Bps 15 Bps 64 Bps

Sensor Node Temperature Heart Rate (HR) Blood Pressure (BP)
Traffic
Generation
Distribution

Poisson Constant Constant

Data Rate 12.5 Bps 20 Bps 512 Bps

3.4.1 Simulation Environment

In this research, we chose to use OMNeT++ 4.4 as our simulation tool [5].
OMNeT++ is an open source network simulator framework with support
for a wide variety of communication protocols. Our simulation is set up in
a star-based WBAN with a single WBAN coordinator. To evaluate network
conditions in different traffic loads, the number of sensors will increase
ranging from two to nine. The simulation scenarios studied here are het-
erogeneous since we use up to six different types of medical sensors with
different data rates. A summary of different sensors and their communi-
cation features can be found in Table 3.2 (i.e. 3-lead ECG, respiratory rate,
blood pressure, heart rate, motion and temperature sensors). Although
these sensors only represent a small portion of all available medical sensors,
they are the most frequently used in many simulation studies [119]. To pro-
duce reliable results, each simulation scenario is evaluated independently
30 times. The averages of these runs will be presented as the simulation
results.
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All body sensors are randomly placed in a 2×2 m2 region with a WBAN
coordinator in the centre. For simplicity, sensor nodes are initiated with
the same amount of battery, i.e. 5500 mAh. Our simulation uses the
IEEE 802.15.4 standard upper frequency band at 2.4 GHz, which is an
important and commonly available frequency band in healthcare, with the
standardised data rate of 250 Kb/s and the maximum payload size of 102
bytes. The scenarios, which are considered by our simulation, depend on
the frequency band of 2.4 GHz, which is suitable for body surface to body
surface communication under two possible conditions, namely Line-of-Sight
(LoS) propagation and Non-Line-of-Sight (NLoS) propagation.

In order to create a simulation environment that closely approximates
real communication situations, we used the log-normal shadowing model
[147] to build the channel model. Existing research suggests that, in
WBANs, the log-normal shadowing model can better capture the small-
scale fading than the traditional Rayleigh and Ricean distributions. The
path loss exponent is set to three which is the exponent along the front of
the human body. In this research, “δ” in (3.2) is set to 0.85. This setting
comes out of a trial and error process. We found that, by using it, NB-rate
always presents a good indication of channel condition in our simulated
WBAN.

3.4.2 Simulation Results

In this subsection, the results obtained from the simulation are presented.
The metrics, which are utilised to assess the reliability and performance of
the network, are:

• Packet Delivery Ratio (PDR): the ratio of the number of sent data pack-
ets to the number of delivered data packets as follow:

PDR =
Number of Packets Received by Coordinator

Total Number of Packets Sent by all Sensor Nodes
(3.4)
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• Collision Rate: the average number of data packet collisions over a
communication channel.

• MAC Throughput: the average quantity of data frames that can be
delivered successfully over a communication channel at the MAC
sub-layer.

• Packet end-to-end delay: the average time taken by a data packet to
arrive at the coordinator. Measurement of the packet delay starts
from the time when data frames enter the MAC sub-layer.

Packet Delivery Ratio and Collision Rate

In this chapter, the reliability of WBAN upon using CLFB is examined
based on PDR and Number of Collisions. Table 3.3 compares PDR achieved
by CLFB with four competing algorithms, i.e. IEEE 802.15.4, ACS [163],
D2MAC [107] and another competing algorithm [31], which to facilitate
our discussion, will be called “NB-Step”. As it is shown in Table 3.3, when
there are two and three nodes in the network, PDR is nearly 100% and there
are no statistically significant differences among the different algorithms.
While the number of nodes becomes larger, PDR starts to deviate. For
example, when there are nine nodes, PDR for the five algorithms will be
0.63 (IEEE 802.15.4), 0.63 (ACS), 0.82 (D2MAC), 0.81 (NB-step) and 0.77
(CLFB), respectively. With the help of the t-test, CLFB is shown to be
statistically more reliable (i.e. higher PDR) than IEEE 802.15.4 and ACS.

Although, CLFB can significantly improve the communication reliability
in comparison to IEEE 802.15.4 and ACS, the results show D2MAC and NB-
step can manage to achieve higher PDR than CLFB. This happens because
they impose significantly longer backoffs on CSMA /CA. As a result the
packet delay increases substantially. Different from these two competing
algorithms, CLFB can keep the delay close to the level obtained in IEEE
802.15.4. In the meantime, it can still achieve higher PDR.
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After investigating PDR, the collision rate is also considered. Generally,
by increasing the number of nodes, the PDR will decrease in all algorithms.
This is because of the increasing number of collisions on the network,
as shown in Table 3.4. Statistically, t-test shows that CLFB can perform
significantly better than IEEE 802.15.4 and ACS when more than two nodes
are involved in the simulation. On the other hand when only two nodes
are simulated, no collisions can be observed. Although the results show
that D2MAC and NB-step achieved lower collisions, they sacrifice the delay
hugely. We found that the real advantage of CLFB over D2MAC and NB-
step is due to its capability of decreasing collisions without noticeably
increasing communication the delay of IEEE 802.15.4.

MAC Throughput

Table 3.5 presents the performance of the network in terms of the MAC
throughput. T-test shows that CLFB statistically outperforms IEEE 802.15.4
and ACS when there are more than two sensor nodes in the network.

Meanwhile, when the network has nine nodes, statistically CLFB per-
forms the same as D2MAC and NB-step. Nevertheless, the simulation
results show the throughputs of D2MAC and NB-step in other cases out-
perform CLFB. That happens because they can avoid more collisions by
significantly increasing the backoff delay. However, long backoff delays
may not be desirable for delay sensitive applications.

Packet end-to-end delay

As we mentioned earlier, the simulation results illustrated in Table 3.6 show
that D2MAC and NB-step introduced significantly higher delays to the
network than other algorithms. For example, our t-test analysis indicates
that CLFB can manage to achieve markedly less delay than D2MAC and NB-
step. In fact, the delay achieved by CLFB is statistically indistinguishable
from that of IEEE 802.15.4 and ACS. As we further highlighted in Table 3.6,
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in some simulations, CLFB can even achieve slightly less delay than IEEE
802.15.4.

Based on the observations above, we can claim that the main strength
of CLFB lies in the fact that it can statistically dominate the performance of
IEEE 802.15.4 in terms of both the reliability (e.g. PDR) and performance
(e.g. delay). Particularly, among all the competing algorithms, CLFB is
the only algorithm that can outperform IEEE 802.15.4 in every metric.
This leads us to believe that CLFB can achieve the best utilisation of the
limited communication bandwidth so as to realize a good balance among
all performance metrics.

3.5 Chapter Summary

In this chapter, we proposed the Cross-Layer Fuzzy logic based Backoff system
(CLFB) to improve network reliability, i.e. Packet Delivery Ratio (PDR)
and collision rate. We also aimed to improve the throughput in WBANs
without increasing packet delay to a great extent. CLFB was designed by
us to produce the Backoff Exponent (BE) by considering both the channel
condition and the application data rate. This design brings higher levels of
adaptability to WBANs. In addition, we also presented a manual approach
to fine-tune the fuzzy membership functions in CLFB in order to enhance
its effectiveness. By integrating our CLFB into the IEEE 802.15.4 MAC
sub-layer, we successfully enhanced the competence of this IEEE standard
for various WBAN-based applications. Moreover, this integration does
not significantly change the underlying structure of the IEEE 802.15.4.
Thus, backward compatibility is ensured. The results clearly showed that
our CLFB achieved noticeable improvement in network reliability and
performance. In the meantime, the packet delay was still maintained at a
reasonably low level, consistent with the original standard.

One possible limitation of the current solution is its reliance on manual
design for FLCs used in CLFB. Hence, in Chapter 4, we will consider using
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automatic design based on soft computing techniques such as Particle
Swarm Optimisation (PSO) and Deferential Evolution (DE) algorithms, to
effectively find suitable Membership Function (MFs) in FLCs used in CLFB.

Another possible limitation of the current solution is its focus primarily
on re-engineering the standard slotted Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) in IEEE 802.15.4. Further performance
and reliability improvement can potentially be achieved by combining
CSMA/CA and Guarantee Time Slots (GTS). Our research shows that, by
improving CSMA/CA alone, higher levels of network reliability and perfor-
mance can be achieved. This technological improvement is complementary
with use of GTS. The potential use of GTS will be considered in Chapter 5.



84 CHAPTER 3. CROSS-LAYER FUZZY LOGIC BASED BACKOFF



Chapter 4

Automatic Design of Fuzzy Logic
Controller in Wireless Body Area
Networks

4.1 Introduction

In the previous chapter, we addressed the limitations of commonly used
IEEE 802.15.4 in WBANs by proposing Cross-Layer Fuzzy Logic based Backoff
(CLFB) to improve network reliability and performance. We improved
network performance by relying primarily on manual approaches for de-
signing Fuzzy Logic Controllers (FLCs) used in CLFB, even though, they are
laborious and error-prone [84]. This issue has not received substantial at-
tention in the literature. Hence, in this chapter, we will study the usefulness
of automatic methods for systematic design of FLCs in WBANs.

Amongst various automatic techniques used to design FLCs, Evolution-
ary Computation (EC) techniques are very effective at handling noisy and
multi-modal problems [45]. Due to this reason, EC-based automatic design
of FLCs will be evaluated comprehensively in this research. In particu-
lar, in order to demonstrate that our approach can effectively work with
commonly used EC techniques, we will examine the usefulness of two well-

85
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known EC techniques, i.e. Particle Swarm Optimization (PSO) [17, 65, 102, 52]
and Differential Evolutionary (DE) [59, 27, 124, 36]. These two algorithms
have been chosen because of our familiarity and their proven effectiveness
[43, 80, 157, 102, 59, 52, 113]. However, we do not rule out the possibility of
using other EC techniques.

In order to evolve useful FLCs by using EC techniques, four important
technical issues must be addressed. The first issue focuses on the coding
scheme which turns an arbitrary design of FLC into a candidate solution
that can be evolved by EC techniques. In order to produce an effective
design of FLCs, we jointly investigate the efficacy of three different coding
schemes with varied levels of restrictions. Our research shows that less
restricted coding schemes may help to improve the performance of WBANs.
However, a good balance between performance and interpretability is
essential in practice.

The second issue is to design a meaningful fitness function to guide
the evolutionary process effectively. Our primary goal is to improve the
reliability (i.e. PDR) and performance (i.e. throughput and packet delay)
of WBANs. In this research, throughput is implicitly considered as it is
indirectly improved by enhancing PDR. However, increasing PDR may
lead to an increase in packet delay. Consequently, PDR is constrained
by packet delay. It is intuitive to pursue PDR as the main objective and
packet delay as a constraint. In our approach, whenever the packet delay of
candidate FLCs is as good as IEEE 802.15.4, the fitness function will focus
mainly on improving PDR. On the other hand, if there is a deterioration
in packet delay in comparison to IEEE 802.15.4, the fitness function will be
penalised to achieve a good balance between PDR and packet delay. In our
experiments, we successfully show the usefulness and effectiveness of our
fitness function for EC-based FLCs design.

The third issue to be studied in this chapter concentrates on different
design targets in the context of WBANs. This research defines two alterna-
tive design targets. The first target is designing optimum FLCs to provide
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reliability and performance for a specific network configuration in WBAN.
The second target is aimed at designing desirable FLCs for more general
WBAN settings. To fulfil these design targets, we propose two methods
to evaluate candidate FLCs. The first method evaluates candidate FLCs
based in a single predefined network setting and is useful for the first tar-
get. The second method evaluates candidate FLCs through a combination
of multiple varied network settings in an attempt to support the second
target. Our experiments show the FLCs evolved for the first target can only
perform well on a specific network setting. Any changes to this setting will
have a negative impact on the effectiveness of the evolved FLCs. More-
over, we experimentally demonstrate that, although the effectiveness of
designing FLCs by using the first evaluation method can outperform the
second method, FLCs evolved through the second method can provide
desirable reliability and performance for a wider range of WBAN settings.
The second method hence brings the ability to add or remove patients
sensor nodes and improves the overall applicability of our approach.

The fourth issue considers the efficiency of the EC-based design process.
Since evaluating the fitness of any candidate FLC design is time-consuming
(each run of PSO or DE takes 119 hours with our High-Performance Comput-
ing (HPC) facilities), the efficiency of the design process must be improved.
We address this issue by utilising surrogate models to compensate for
computation costs. In order to improve the accuracy, the surrogate model
will be re-trained through online learning of each generation of fitness
evaluation. After examining the usefulness of surrogate-assisted ECs, we
found that, although the surrogate model slightly impedes effectiveness,
it is still useful because the efficiency of the design process is significantly
improved.

4.1.1 Chapter Goals

Soft computing techniques including fuzzy logic have been successfully
applied to Wireless Body Area Networks (WBANs). However, most of the
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existing research works rely on manual design of the FLC. To address this
issue, this chapter aims to propose an evolutionary approach to automate
the design of FLCs for cross-layer medium access control in WBANs. The
following are the chapter goals briefly:

1. Investigating the effectiveness of coding schemes to encode the candi-
date solutions. The coding scheme turns an arbitrary design of FLC
into a candidate solution that can be evolved by ECs. In the literature,
most of the research works only have studied domain-specific coding
schemes. Researchers have also studied some general coding schemes.
However, it is not clear which coding scheme is particularly useful
for our design problem. Consequently, we study three alternative
coding schemes with varied levels of restriction.

2. Designing a meaningful fitness function for leading the evolution-
ary design process to achieve a desirable balance between reliability
and performance in WBANs. The primary design goal is improving
the reliability of WBANs, while the performance of the network is
remaining competitive with respect to IEEE 802.15.4.

3. Defining design targets based on different WBAN’s scenarios to eval-
uate the fitness and improve the practicality of our approach.

4. Improving the efficiency and practicality of the design approach via
surrogate models.

5. Investigating the usefulness of commonly used EC techniques to
design FLCs through our approach.

6. Demonstrating the practical usefulness of our EC-based FLC design
approach in WBANs by experimentally comparing it with several
existing algorithms such as CSMA/CA in IEEE 802.15.4, Additional
Carrier Sensing (ACS) [163], Dynamic Delayed Medium Access Control
(D2MAC) [107] and a recent algorithm proposed by Chen et al. [31].
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For the sake of simplicity, in this chapter, “IEEE 802.15.4” refers to the
standard CSMA/CA algorithm.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 4.2 proposes
the EA-based FLCs design in WBANs. Section 4.3 reports and analyses the
simulation results. Finally, in Section 4.4 the summary will be presented.

4.2 Evolutionary Design of FLCs in WBANs

In this section, we propose a general method to automatically design FLCs
in CLFB in order to obtain a desirable balance between reliability and
performance in WBANs. As reported extensively in the literature [159, 45,
59, 11, 47], EC techniques have been applied to automate the design of
various aspects of FLCs. As shown in Figure 4.1, the focus of this chapter is
primarily on designing the control parameters of all MFs in a FLC.

Particularly, in the context of WBANs, we identify four important tech-
nical issues for EC-based design of FLCs: (1) coding scheme, (2) fitness
function, (3) evaluation method and (4) efficiency. These issues will be
addressed respectively in the following subsections. To facilitate our study,
in this chapter, PSO and DE have been selected to drive the automatic
design process due to their proven effectiveness [43, 80, 157, 102, 59, 52].
It is important to note that our aim is to demonstrate that this approach
can work well with many commonly used EC techniques. We choose PSO
and DE in particular because of our familiarity, but do not rule out the
possibility of using other EC techniques.

4.2.1 Coding Scheme

Most EC techniques operate primarily on a population of candidate so-
lutions. Each candidate solution represents a separate FLC design and
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follows a specific coding scheme which encodes all control parameters
for each MF through a vector of real numbers. In this vector, every three
consecutive dimensions form an individual group of control parameters.
For example, as depicted in Figure 4.2, the first group of parameters, which
control the first MF, have been highlighted in red. Due to the use of trian-
gular MFs, the first control parameter in any group (a,b,c) must always be
less than the middle-control parameter (a < b), which subsequently must
always be less than the third control parameter (b < c).
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Figure 4.2: Unrestricted coding scheme (URCS) in which T is the linguistic
of each membership function.

As illustrated in Figure 4.2, the dimension of every candidate solution
is directly related to the number of MFs. Because our FLC in Figure 3.3 has
two input variables and one output variable, every variable is modelled by
four MFs, and each MF includes three control parameters, the dimension
of each candidate solution is 3× 4× 3 = 36.

The coding scheme explained above gives a flexible method to encode
candidate solutions. For convenience of discussion, we will call this coding
scheme the UnRestricted Coding Scheme (URCS). As depicted in Figure 4.2,
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the domain of any MF in URCS can be completely covered by the domains
of other MFs (e.g. the domain of MFs T2 and T3 is completely enclosed by
the domain of MF T1). Consequently, MFs cannot be easily distinguished
for good interpretability. Hence, it is difficult to associate semantic (domain-
specific) meanings to these MFs [178]. In order to design more interpretable
FLCs, we will introduce two other coding schemes with different levels
of restrictions. They are the Strictly Restricted Coding Scheme (SRCS) and
the Moderately Restricted Coding Scheme (MRCS). In comparison with URCS,
overlapping between different MFs is more strictly controlled in SRCS and
MRCS.

SRCS imposes a stringent restriction on each MF. Particularly, as il-
lustrated in Figure 4.3, the middle control parameter of each MF can be
covered only by itself and not by any other MFs. Thus any MF can only par-
tially overlap with its neighbouring MFs. In other words, any crisp input to
our FLC in CLFB cannot be covered by more than two MFs simultaneously.
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Figure 4.3: Strictly restricted coding scheme (SRCS) in which T is the
linguistic of each membership function.

Different from SRCS, MRCS presents a more flexible restriction by util-
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ising special Overlapping Control Factors (OCFs) in the candidate solution
as shown in Figure 4.4. In particular, each membership function is asso-
ciated with one OCF. OCF is used to decide (1) whether the right tail of
the neighbouring MF to the left can cover its middle-control parameter (i.e.
OCF<0.33) or (2) whether the left tail of the neighbouring MF to the right
can cover its middle-control parameter (i.e. 0336OCF60.66). On the other
hand, if OCF>0.66, no neighbouring MFs will cover the middle-control
parameter. Obviously, when MRCS is used, 12 new dimensions must be
added to each candidate solution (due to the fact that we have 3×4=12 MFs
in the FLC). Consequently, the total dimension of each candidate solution
becomes 36+12=48.

In the literature, most of the research works have only studied domain-
specific coding schemes. Some researchers have also studied general coding
schemes [23]. However, it is not clear which coding scheme is particularly
useful for our design problem. Therefore, in this research, in order to
discover an effective coding scheme, the three coding schemes with varied
levels of restrictions will jointly be studied in the context of WBANs (refer
to Section 4.3.)

4.2.2 Fitness Function

Fitness function is an essential part of our design approach. Through
properly designed fitness functions, we hope to obtain a desirable balance
between reliability and performance in WBANs. In order to measure
reliability, PDR (widely used in the literature [119]) has been utilised in
this chapter. PDR is calculated as the ratio of packets that are successfully
delivered to the coordinator over the number of packets that have been
sent out by all sensor nodes in a WBAN as below:

PDR =
Number of Packets Received by Coordinator

Total Number of Packets Sent by all Sensor Nodes
(4.1)

Obviously, when PDR is high, critical data will experience fewer colli-
sions during transmission in WBANs. To achieve this objective, we define
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∆PDR as follows:

∆PDR = PDRCLFB − PDRstd (4.2)

where PDRCLFB and PDRstd refer to PDRs obtained by utilising CLFB and
IEEE 802.15.4 respectively. Whenever ∆PDR > 0, the reliability achieved
by CLFB is considered better than that of IEEE 802.15.4.

Besides reliability, it is also highly desirable to improve the performance
of WBANs. Performance can be measured by two metrics, which are packet
delay and network throughput. Since enhancement in throughput is realised
by improving PDR, throughput is implicitly considered in this research.
Consequently, the main focus of this chapter is on packet delay. ∆Delay is
subsequently defined as follows:

∆Delay =

{
Delaystd −DelayCLFB, if DelayCLFB > Delaystd

0, if DelayCLFB ≤ Delaystd
(4.3)

where DelayCLFB and Delaystd are delays achieved by following CLFB
and IEEE 802.15.4 respectively. Since the packet delay in IEEE 802.15.4
is generally considered acceptable for many WBANs applications [20],
instead of maximising ∆Delay, we want CLFB to achieve the same level of
delay as IEEE 802.15.4. Therefore, when DelayCLFB > Delaystd in (4.3), the
delay achieved by FLC in CLFB is considered as less desirable and ∆Delay

becomes negative. On the other hand, if DelayCLFB ≤ Delaystd, this time
CLFB has performed well enough and ∆Delay will be fixed at zero. Due to
(4.3), ∆Delay behaves essentially as a constraint. When the delay becomes
reasonably short, the main focus of our design process will be primarily on
maximising PDR.

As explained above, ∆PDR in (4.2) is the main objective to be optimised,
and ∆Delay in (4.3) serves as a constraint for the purpose of keeping the de-
lay achieved by FLC in CLFB as competitive as IEEE 802.15.4. Consequently,
the fitness function is defined as follows:

F = ∆PDR + λ×∆Delay (4.4)
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where λ is a coefficient. As a simple example, when PDRCLFB = 0.50

and PDRstd = 0.75 then ∆PDR = 0.50 − 0.75 = −0.25. In this case, if
∆Delay = 0, the fitness function F in (4.4) becomes -0.25. This means that
the packet delay achieved by the candidate FLC is as good as IEEE 802.15.4
and ∆PDR can be improved without any penalty. This chapter aims at
finding a proper coefficient to obtain a desirable trade-off between PDR
and delay. The particular effect of λ will be further studied in Section 4.3.

4.2.3 Fitness Evaluation Method

In this chapter, two methods are studied to evaluate the fitness of each
candidate solution guided by two different design targets. The first design
target (T1) is to design FLCs that function effectively on a specific network
setting. For example, in a healthcare application for monitoring an elderly
individual who has lately been sent home following recovery from a cardiac
surgical procedure, a pre-defined WBAN setting with a three-lead ECG,
blood pressure (BP) and heart rate (HR) sensors is required [2]. Therefore,
our aim is to improve reliability and performance in this particular setting.
The second target (T2) is to design FLCs that are able to work consistently
well across a wide range of network settings. Target T2 aims to improve the
general applicability of FLCs. To distinguish design targets, every result
upon using our CLFB based on targets T1 and T2 will be refer to as CLFBT1

and CLFBT2 respectively.
In association with the two design targets, we consider two differ-

ent evaluation methods. The first method evaluates the candidate solu-
tion based on a single pre-defined WBAN setting. The second evaluation
method utilises multiple pre-determined WBAN settings to jointly evalu-
ate the same candidate solution. Therefore, in the second approach, the
averaged ∆PDR and ∆Delay over multiple network settings is utilised to
determine the fitness of the candidate according to (4.2), (4.3) and (4.4). In
both evaluation methods, every network setting is tested for five indepen-
dent runs. For detailed information, please refer to Subsection 4.3.5.
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In this research we are not employing any overfitting control techniques
while designing FLCs. However, we have experimentally demonstrated
the effectiveness of designing FLCs through EC-based approach to improve
the reliability and performance of varied WBAN’s settings. In the future
work, we will take advantage of using overfitting control techniques [35].

4.2.4 Surrogate Assisted ECs for Designing FLCs

In this subsection, we investigate the usefulness of surrogate models to im-
prove the efficiency of EC-based design of FLCs in WBANs. EC techniques
usually require a large number of fitness function evaluations before con-
verging to a good FLC design [74]. Unfortunately, fitness evaluations may
often become costly. Such situations typically occur when EC techniques
are employed to solve expensive problems, such as the time-consuming
simulation of WBANs introduced in Subsection 4.2.2 and 4.2.3. To address
this efficiency issue, this chapter utilises a surrogate model to approximate
the fitness of a certain proportion of candidate FLC designs evolved by EC
techniques.

Various methods have been introduced for constructing surrogate mod-
els [75, 74]. In particular, the widely used methods in design engineering
include Kriging models, feed-forward Multi-Layer Perceptrons (MLPs) and
Radial Basis Function Networks (RBFNs) [76]. Comparison has been made
by some researchers to examine the effectiveness of different surrogate
models [22, 73, 74]. However, because the performance might be problem
dependent, it is difficult to choose the best model for any specific design
tasks [74]. Since the focus of this research is only on investigating the
usefulness of surrogate models for improving the efficiency of the design
process, we have identified three commonly used criteria while building
our surrogate model: simplicity, accuracy, and direct support for online
learning.

Simplicity and accuracy are widely addressed in the literature [74]. Ob-
viously, simple models, which are easy to implement and use, are desirable.
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However, a simple model (e.g. low order polynomial models) might per-
form poorly in our high-dimensional design method. Therefore, in order to
make a reasonably good balance between accuracy and simplicity, we have
selected MLPs to approximate high-dimensional fitness function. From our
preliminary study, we found that MLP can achieve reasonable accuracy
with limited sample data.

MLP also supports the third design criterion since it can be learned
online during the design process. This feature helps the model accuracy, so
that it can be more reliably used to guide EC-based design [74]. However,
we are not excluding the possibility of using other surrogate models. Figure
4.5 shows the MLP with one hidden layer that approximates the fitness for
each candidate FLC design. The input variables of our MLP are the control
parameters of MFs determined by the coding schemes in Subsection 4.2.1.

As shown further in Figure 4.6, the whole population of the first gener-
ation is evaluated based on the real fitness function. A dataset of sample
fitness values is created as a result. It is subsequently used to train the MLP
model. Afterwards, the MLP is utilised to replace the real fitness function
for evaluating a certain proportion of candidate solutions in the popula-
tion. Meanwhile, in order to improve its accuracy, our MLP is re-trained
based on the newly added fitness samples obtained from evaluating the
remaining candidate solutions by using the real fitness function.

Following the idea described above, during every generation of the EC
techniques, a number of controlled individuals (η) in the population (NP in
total) are chosen to be re-evaluated through network simulations. There
are two typical strategies to select individuals for re-evaluation [76]. The
first strategy is to select controlled individuals completely randomly. The
second strategy is to select the best η individuals (with the highest fitness
values) as the controlled individuals. Intuitively, good individuals are more
important since they tend to have stronger influence on future generations
[76, 75]. Therefore, the second strategy is utilised in our experiments. Also,
the η selected controlled individuals and their “real” fitness values will be
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Figure 4.6: An example of surrogate model to calculate the fitness function.

exploited to re-train our MLP incrementally.

4.3 Simulation Implementation and Results

In this section, we describe the simulation settings for WBANs in Subsection
4.3.1, settings of the EC techniques parameters in Subsection 4.3.2, and the
evaluation metrics in Subsection 4.3.3. Afterwards, the simulation results
will be reported in Subsections 4.3.4 and 4.3.5. Subsection 4.3.4 presents
the results of designing FLCs to achieve target T1, i.e. FLCs for specific
network settings. Subsection 4.3.5 analyses the simulation results obtained
from designing FLCs with target T2 in mind, i.e. FLCs for multiple network
settings.

In Subsection 4.3.4, firstly, in order to discover proper coefficients for our
fitness function in (4.4), we study ten different coefficients. Afterwards, to
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show that our approach can work well with commonly used EC techniques,
we present experiments on two well-known EC techniques, i.e. PSO and DE.
Then we particularly investigate the effectiveness of three coding schemes.
To improve the efficiency of the design process further, the usefulness of
surrogate models will be investigated next. Finally, through comprehensive
simulation studies, we conclude that our EC-based approach for FLC design
can outperform many competing algorithms in the literature, including
IEEE 802.15.4, ACS, and D2MAC, as well as a recently proposed algorithm
[31] termed “NB-Step”.

In Subsection 4.3.5, firstly, we define multiple scenarios for automatic de-
sign of FLCs for target T2. Similar to Subsection 4.3.4, three coding schemes
will be compared. Then the effectiveness and efficiency of using surrogate
models will be investigated. Finally, the simulation studies on several test-
ing scenarios will be conducted to demonstrate that our EC-based approach
for FLC design can outperform many competing algorithms across many
different network configurations.

4.3.1 Simulation Environment for WBANs

In order to simulate WBAN, we have utilised OMNeT++ network simulator
version 4.4.1 [5]. Following typical settings in the literature [119], the maxi-
mum data rate is 250 Kb/s with frequency of 2.4 GHz. In our simulation, all
sensor nodes are randomly deployed within a 2× 2 m2 space with a single
WBAN coordinator using the star topology. The network simulation time
for our experiments is 600 seconds (longer simulation time does not appear
to alter our major findings). We have used the log-normal shadowing
model as the channel model. In comparison with the traditional Rayleigh
and Ricean distributions, the log-normal shadowing model reproduces the
small-scale fading in WBANs more accurately [147].
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4.3.2 Parameter Settings for Evolutionary Algorithms

The aim of this research is to show that our approach can effectively work
with different EC techniques. Therefore, two well-known EC techniques,
i.e. PSO and DE with standard operators, are utilised to evolve effective
FLC designs. We have no intention to introduce any changes to PSO or
DE which are beyond the scope of this chapter. For both PSO and DE, the
population size is set to 50. The maximum number of generations is set to
100. Under these settings, both PSO and DE are close to convergence after
100 generations, as evidenced in Figure 4.7.

Based on the common settings in the literature [167, 134], the fully con-
nected topology is used for PSO. Meanwhile, ω=0.7298 and c1=c2=1.49618
[167, 134]. For DE, we choose the standard method DE/rand/1/bin, where
Crossover Rate (Cr) and scaling factor (F) are set to 0.8 and 0.5 respectively
[29].

To obtain reliable results, PSO and DE under the same settings are re-
peated 30 times with different starting seeds. In addition, the Analysis of
Variance (ANOVA) test is performed to determine whether statistically sig-
nificant differences in performance and reliability can be observed. Tukey’s
post-hoc analysis and t-test analysis are also utilised to realise the main
source of difference.

4.3.3 Evaluation Metrics

To quantitatively compare the reliability and performance of WBANs, we
employ four well-known metrics as follows:

• Packet Delivery Ratio (PDR): the ratio of the number of sent data pack-
ets to the number of delivered data packets as shown in (4.1).

• Collision Rate: the average number of data packet collisions over a
communication channel.
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• MAC Throughput: the average quantity of data frames that can be
delivered successfully over a communication channel at the MAC
sub-layer.

• Packet end-to-end delay: the average time taken by a data packet to
arrive at the coordinator. Measurement of the packet delay starts
from the time when data frames enter the MAC sub-layer.

For a fair comparison with competing algorithms, each competing tech-
nology is run for 30 times independently on every simulation scenario.
Again, the average results in reliability and performance will be used to
compare with FLCs designed by our EC-based approach.

4.3.4 Automatic Design of FLCs for Specific Network Set-

tings (Target T1)

This subsection introduces a WBAN simulation scenario for target T1. Af-
terwards, the effectiveness of different coding schemes in PSO and DE for
FLC designs is statistically investigated. Then, the influence of varied coef-
ficients (i.e. λ) in the fitness function (4.4) will be examined. The efficiency
of the design process will further improved through using surrogate mod-
els, and finally the reliability and performance of CLFB achieved by FLCs
designed in this research are compared with the competing algorithms.

Network Simulation Scenario for Target T1

In this study, we consider a particular application where an elderly indi-
vidual lives alone. She has lately been sent home following recovery from
a procedure. She has a collection of sensors to monitor her health status.
A WBAN is responsible for collecting and sharing all sensory information
with her doctor via the Internet. This WBAN scenario contains three-lead
ECG, EEG, respiratory rate and motion sensors as well as a smartphone
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coordinator. The communication features of these sensor nodes can be
found in Table 4.1.

Table 4.1: Communication specifications of Sensor nodes used in the simu-
lation [2, 119].

Sensor Node ECG
Respiratory
Rate

Motion
Sensor

Heart
Rate (HR)

Traffic
Generation
Distribution

Constant Constant Poisson Constant

Data Rate 156.25 Bps 15 Bps 64 Bps 20 Bps

Sensor Node Temperature EEG
Blood
Pressure (BP)

Endoscope
Imaging

Traffic
Generation
Distribution

Poisson Constant Constant Poisson

Data Rate 12.5 Bps 31.25 Bps 512 Bps 1538.46 Bps

PSO-based FLCs Design

Using the WBAN scenario just described, the results from PSO for the
three different coding schemes (i.e. URCS, SRCS and MRCS) and different
coefficients (i.e. λ) are presented in Table 4.2. From the results, URCS
generally outperforms the other two coding schemes, concerning both
packet delay and PDR, which is confirmed by ANOVA test and Tukey’s
post-hoc analysis. For example, when λ = 2 in Table 4.2, we found that
URCS provide indistinguishable PDR and significantly less delay compared
to MRCS and SRCS (p-values<0.0001). When λ = 2.5, as another example,
URCS statistically shows significantly higher PDR (p-values<0.0001) and
indistinguishable delay compared to the other coding schemes.
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Table 4.2: Results obtained by PSO in terms of PDR and packet delay in
seconds (target T1).

λ PM URCS SRCS MRCS

1.0
PDR 0.937±0.004 0.920±0.002 0.925±0.002

Delay 0.787±0.002 0.783±0.002 0.796±0.002

1.5
PDR 0.893±0.007 0.904±0.003 0.882±0.003

Delay 0.776±0.006 0.780±0.002 0.763±0.002

2.0
PDR 0.862±0.006 0.870±0.011 0.866±0.011

Delay 0.738±0.004 0.750±0.006 0.748±0.006

2.5
PDR 0.830±0.006 0.809±0.002 0.812±0.003

Delay 0.723±0.002 0.722±0.001 0.722±0.001

3.0
PDR 0.832±0.004 0.802±0.002 0.801±0.002

Delay 0.727±4.7×10−4 0.727±5.0×10−4 0.727±0.001

3.5
PDR 0.831±0.004 0.800±0.002 0.809±0.002

Delay 0.727±0.001 0.727±0.001 0.727±4.6×10−4

4.0
PDR 0.830±0.003 0.800±0.002 0.809±0.002

Delay 0.727±3.8×10−4 0.727±0.001 0.727±0.001

5.0
PDR 0.830±0.002 0.816±0.001 0.817±0.001

Delay 0.727±3.6×10−4 0.727±3.4×10−4 0.727±4.9×10−4

10.0
PDR 0.823±0.002 0.814±0.002 0.817±0.002

Delay 0.725±4.1×10−4 0.725±3.4×10−4 0.725±0.001

100.0
PDR 0.823±0.003 0.813±0.005 0.814±0.001

Delay 0.725±3.8×10−4 0.725±0.001 0.725±0.001
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Figures 4.8, 4.9 and 4.10 show examples of FLCs designed through
URCS, SRCS and MRCS respectively. As depicted in Figure 4.8, the domain
of one MF in URCS can possibly be covered completely by the domains
of other MFs. For example, the domain of MF for B2 in Figure 4.8c is
completely enclosed by the domain of MF for B3. Consequently, the MFs
in URCS cannot be easily distinguished for good interpretability. On the
other hand, Figures 4.9 and 4.10 show that the MFs in SRCS and MRCS are
completely distinguishable.

Another aspect of interpretability of FLCs is the coverage of fuzzy
partitioning [9]. This means that the entire domain of a variable should
be covered by the MFs generated, and every data point should belong to
at least one of the corresponding fuzzy sets. However, the MFs designed
through URCS might miss some points as highlighted in Figure 4.8b. On
the other hand, the domains of all variables are covered completely by
those MFs generated through SRCS and MRCS.

Despite the interpretability issues, the results in Table 4.2 demonstrate
that the performance of URCS is better than SRCS and MRCS. Although his-
torically more priority has been given to the performance, the importance
of interpretability is also well recognised. Our simulation results show that
our coding schemes (i.e. SRCS and MRCS) can provide a desirable trade-off
between interpretability and performance in practice.

The above discussion suggests that SRCS and MRCS are more desirable
for interpretability reasons. Moreover, the designed rules can also reveal
some new information about WBANs. For example, when both SRCS
and MRCS are used, the MF for B1 is consistently designed as a narrow
triangular at the left end, as shown in Figures 4.9c and 4.10c. In view of
the rules R(1), R(2) and R(3) in Table 3.1, this observation implies that sensor
nodes do not need to wait before packet transmission as long as the channel
is not busy.

To provide a good balance between reliability and performance in the
network, there is a need to determine suitable coefficients for the fitness
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function in (4.4). Therefore, different coefficient for ∆Delay, i.e. λ, have
been investigated. As evidenced in Table 4.2, we also found that with
larger λ (e.g. λ > 2.5), our EC-based design puts huge attention on keeping
the packet delay at a low level (which may not be really necessary). On
the other hand, PDR seems to become more influential when λ becomes
smaller (e.g. λ < 2.0). In fact, we have performed a separate one-way
ANOVA analysis over all different coefficients for each coding scheme.
The results show that, when λ < 2.0, the performance of CLFBT1 will
change significantly in delay. Specifically, as shown in Table 4.2, when λ

changes from 2.0 to 1.5, delay is increased by 0.038 seconds. On the other
hand, when λ > 2.0, the change on delay is always less than 0.015 seconds.
Consequently, we will select two coefficients (i.e. λ = 2.0 and λ = 2.5)
for the rest of our experiments. These two coefficients, which are bolded
in Table 4.2, can provide a reasonable balance between PDR and delay.
Regardless of which EAs will be used in practice, the design goal remains
the same. Hence, only these two coefficients will be considered for the
remaining of this subsection.

DE-based FLC Design

Besides PSO, this chapter also studies the usefulness of DE to determine
whether our approach can easily work with different EC techniques. It
is obviously not necessary to repeat the experiments above. We hence
have utilised only the two specific coefficients identified in the previous
paragraph. Moreover, as designing FLCs through EC techniques is highly
time-consuming (every run of PSO or DE takes 119 hours with our HPC
facilities), this enables us to save considerable computation time. The
corresponding results are summarised in Table 4.3.

Although PSO can perform slightly better with URCS than other coding
schemes, the one-way ANOVA test and Tukey’s post-hoc analysis suggest
that, upon using DE, generally no coding scheme is clearly more effective.
We notice that FLCs designed through PSO with URCS are statistically more
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effective than those designed through DE, in terms of both PDR and packet
delay. Particularly, separate t-tests with respect to each coding scheme and
coefficient show significant differences between PSO with URCS and DE
with URCS. On the other hand, t-test analysis mostly suggests no significant
performance differences between between PSO and DE upon using SRCS
and MRCS. There is only one exception: when λ = 2.5. In this case PSO
with MRCS outperforms DE. As a result, our statistical analysis suggests
that PSO can design FLCs more effectively than DE.

Table 4.3: Results obtained by DE in terms of PDR and packet delay (sec-
onds).

λ PM URCS SRCS MRCS

2.0
PDR 0.843±0.006 0.835±0.006 0.847±0.009

Delay 0.740±0.003 0.734±0.003 0.740±0.005

2.5
PDR 0.822±0.007 0.816±0.005 0.814±0.004

Delay 0.731±0.003 0.727±0.002 0.728±0.002

Surrogate Assisted EC-based FLC Design

Since it is highly time-consuming to design FLCs by using EC techniques,
we want to study the usefulness of surrogate models to improve the effi-
ciency of the design process. In this research we have used MLP to build
our surrogate model and performed experiments on both PSO and DE. We
have considered different coding schemes, i.e. URCS, SRCS and MRCS, as
well as three different settings for (η). The results are reported in Table 4.4.

As depicted in Table 4.4, when λ = 2.0, FLCs designed through surrogate-
assisted PSO with MRCS and SRCS (marked by ‡) can outperform FLCs that
follow URCS. For example, when η=50%, one way ANOVA test and Tukey’s
post-hoc analysis report that, while their PDRs are indistinguishable, MRCS
and SRCS provide significantly less delay than URCS (p<0.0001). On the
other hand, if λ = 2.5, designing FLCs through surrogate assisted PSO
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with URCS (marked by ‡) can outperform the other coding schemes. For
instance, when λ = 2.5 and η=75%, one way ANOVA test and Tukey’s post-
hoc analysis show, while packet delay is indistinguishable, URCS provides
significantly higher PDR (p<0.0001) than other coding schemes. Table 4.4
also presents the simulation results for surrogate-assisted DE. Statistical
analysis indicates that no coding scheme is more effective in terms of both
packet delay and PDR.

As mentioned in Subsection 4.2.4, in order to improve the accuracy of
the surrogate model, in every iteration, the best η individuals of the whole
population are re-evaluated. Consistent with common intuition, we found
that surrogate-assisted ECs with high η (e.g. η=75%) are sometimes more
effective. For example, if λ = 2.5 and URCS is used, surrogate-assisted PSO
with η=75% offers significantly higher PDR than the results obtained when
η=25%. Meanwhile, packet delay is indistinguishable. However, mostly no
significant differences can be identified across the three different settings of
η.

In view of the results reported in Tables 4.2, 4.3 and 4.4, we believe
surrogate-assisted design can manage to achieve very good performance
while significantly improving the efficiency of the design process as shown
in Table 4.5. Although sometimes more effective FLCs can be identi-
fied without using surrogate models, surrogate-assisted PSO and DE can
achieve more effective results than IEEE 802.15.4 and other competing
algorithms (see Subsubsection 4.3.4). The simulation results also suggest
that our fitness function with λ = 2.5 can effectively guide the design of
FLCs. Moreover, we have discovered that surrogate-assisted ECs with
η=25% are both efficient and effective. In view of the above and by further
considering the need to design easily interpretable FLCs, we suggest that
surrogate-assisted ECs with λ = 2.5, η=25% and MRCS (bolded in Table
4.4) present a suitable choice for practical use.
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Table 4.4: Results obtained by surrogate model for PSO and DE in terms of
PDR and packet delay (seconds).

η λ PM
PSO DE

URCS SRCS MRCS URCS SRCS MRCS

75%
2.0

PDR
0.837
±0.014

0.849
±0.006‡

0.854
±0.011‡

0.852
±0.008

0.842
±0.013

0.849
±0.015

Delay
0.777
±0.010

0.727
±0.006‡

0.740
±0.011‡

0.745
±0.005

0.758
±0.014

0.769
±0.012

2.5
PDR

0.861
±0.003‡§

0.847
±0.003§

0.851
±0.005§

0.827
±0.006

0.810
±0.004

0.810
±0.005

Delay
0.719
±0.002‡§

0.718
±0.002§

0.719
±0.002§

0.733
±0.003

0.724
±0.002

0.725
±0.002

50%
2.0

PDR
0.846
±0.016

0.847
±0.008‡

0.848
±0.011‡

0.849
±0.013

0.831
±0.006

0.841
±0.014

Delay
0.779
±0.010

0.732
±0.008‡

0.749
±0.012‡

0.748
±0.009

0.748
±0.007

0.764
±0.008

2.5
PDR

0.856
±0.005‡§

0.849
±0.003§

0.855
±0.005§

0.832
±0.006

0.808
±0.004

0.811
±0.005

Delay
0.722
±0.004‡§

0.721
±0.001§

0.720
±0.002§

0.736
±0.003

0.724
±0.002

0.727
±0.002

25%
2.0

PDR
0.844
±0.015

0.845
±0.008‡

0.852
±0.013

0.857
±0.013

0.830
±0.009

0.829
±0.011

Delay
0.760
±0.010

0.725
±0.007‡

0.750
±0.014

0.757
±0.010

0.748
±0.007

0.754
±0.006

2.5
PDR

0.853
±0.004‡§

0.843
±0.004§

0.844
±0.004§

0.829
±0.006

0.809
±0.007

0.809
±0.007

Delay
0.719
±0.002‡§

0.720
±0.002§

0.719
±0.002§

0.735
±0.003

0.729
±0.002

0.729
±0.003

‡ indicates coding schemes that outperform others
§ indicates surrogate-assisted ECs that outperform EC techniques without

using surrogate models
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Table 4.5: Average computation time of PSO and DE with our HPC facilities
over 30 independent runs.

Time in Hours

DE

Without Surrogate Assistance 119.782±0.289
Surrogate Assisted (75%) 93.308±0.683
Surrogate Assisted (50%) 66.903±2.311
Surrogate Assisted (25%) 30.481±0.283

PSO

Without Surrogate Assistance 118.937±0.736
Surrogate Assisted (75%) 92.642±0.947
Surrogate Assisted (50%) 65.457±5.271
Surrogate Assisted (25%) 30.173±0.491

Comparison between EC-based FLC Design (Target T1) and Competing
Algorithms

In order to measure the effectiveness of our automatic FLC design, we
compare it with recent competing algorithms, i.e. IEEE 802.15.4, ACS,
D2MAC and NB-step. For a good compromise between effectiveness and
interpretability as we mentioned in Subsection 4.2.1, surrogate-assisted
PSO design with λ = 2.5, η=25% and MRCS are compared with these
competing algorithms.

As presented in Table 4.6, CLFBT1 outperforms IEEE 802.15.4, ACS,
D2MAC and NB-step in terms of both PDR and packet delay. The one-way
ANOVAs give significant differences with p-value<0.0001. The correspond-
ing Tukey’s post-hoc analysis further confirms our conclusion. Specifically,
PDR achieved by CLFBT1 is significantly higher than IEEE 802.15.4, ACS,
D2MAC and NB-step without any negative impact on packet delay.

As mentioned in Subsection 4.2.2, the other design objective is to im-
prove throughput which is realised implicitly by enhancing PDR. Table 4.6
further reports WBAN throughput upon using each algorithm. Statistical
analysis confirms that CLFBT1 achieves significantly higher throughput
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than the other algorithms. Moreover, CLFBT1 can significantly reduce the
collision rate in comparison to all competing algorithms.

Table 4.6: Results obtained by competing algorithms, i.e. IEEE 802.15.4,
D2MAC and NB-step.

PDR Delay (seconds) Throughput (bps) Collision rate
IEEE 802.15.4 0.751±0.003 0.725±0.003 1925.678±11.150 0.370±0.003

ACS 0.691±0.002 0.681±0.003 1783.331±10.988 0.410±0.002
D2MAC 0.826±0.003 0.760±0.002 2101.920±12.496 0.329±0.002
NB-step 0.825±0.002 0.760±0.003 2098.524±12.114 0.329±0.002
CLFBT1 0.844±0.004 0.719±0.002 2209.776±14.966 0.271±0.004

Summary of Automatic Design of FLCs for Target T1

In this subsection, we have succeeded in (1) effectively designing FLCs
based on ECs for target T1 and (2) improving significantly the efficiency of
the design process with the help of surrogate models. Although our statis-
tical analysis suggests that PSO can sometimes slightly outperform DE, it
has been shown that both of them can be effectively utilised to design FLCs.
We have also studied the usefulness of three coding schemes, i.e. URCS,
SRCS and MRCS, and concluded that, although URCS is generally more
effective than MRCS, FLC designs through MRCS are more interpretable.
Moreover, We have showed that with η=25%, the surrogate model can
improve the efficiency of the design process significantly while keeping the
accuracy at an acceptable level. We have also demonstrated that the fitness
function with λ = 2.5 should be employed to satisfy both the reliability and
performance requirements in WBANs. Finally, we statistically confirmed
the effectiveness of CLFBT1 by comparing it to other competing algorithms.
The results show that sensor nodes using CLFBT1 can provide significantly
better reliability and performance than competing algorithms such as IEEE
802.15.4, ACS, D2MAC and NB-step.
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Due to improvements in effectiveness as mentioned above, we believe
that the time spent on designing FLCs through our approach is worthwhile.
Moreover, once CLFBT1 is designed, it can be easily embedded into each
sensor node and repeatedly used for different WBAN applications.

4.3.5 Automatic Design of FLCs for Multiple Network Set-

tings (Target T2)

In this subsection WBAN simulation settings for design target T2 will be
explained first. Accordingly, we statistically study the effectiveness of
different coding schemes with respect to both ECs and surrogate-assisted
ECs. Finally, the reliability and performance of CLFBT2 are compared with
the competing algorithms.

Network Simulation Scenario for Target T2

FLC designs for target T1 may not produce a desirable balance between
reliability and performance over a wide range of WBAN settings. Therefore,
as explained in Subsection 4.2.3, we also have the aim to design FLCs based
on target T2 (i.e. enhancing reliability and performance over multiple
WBAN’s settings). For this purpose, we have built separate training and
testing scenarios. In particular, five different network settings described
in Table 4.7 are used for training. Again, Table 4.1 is used to determine
the communication features of each sensor node. Table 4.8 summarises
all testing scenarios for this study. Specifically, to test the generalisability
of FLC designs, we have considered up to eight different sensors during
testing. All these sensors are commonly studied in the literature [2, 119].
Meanwhile, two ECG sensors are included in testing scenario 9 in Table 4.8
in order to examine WBAN with high traffic load.
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Table 4.7: WBAN settings for designing FLCs regarding target T2.

Scenario No of sensors WBAN setting
1 Three sensors Temperature, ECG, respiratory rate
2 Four sensors Temperature, ECG, respiratory rate and HR

3 Six sensors
Temperature, ECG, EEG, respiratory rate, HR
and BP

4 Seven sensors
Temperature, ECG, EEG, respiratory rate, HR, BP
and Motion

5 Eight sensors
Temperature, ECG, EEG, respiratory rate, HR, BP,
Motion and Endoscope Imaging

Table 4.8: WBAN settings for testing FLCs designed regarding target T2.

Scenario No of sensors WBAN setting
1 One sensor Temperature
2 Two sensors Temperature and ECG
3 Three sensors Temperature, ECG and respiratory rate
4 Four sensors Temperature, ECG, respiratory rate and HR
5 Five sensors Temperature, ECG, respiratory rate, HR and EEG

6 Six sensors
Temperature, ECG, EEG, respiratory rate, HR,
and BP

7 Seven sensors
Temperature, ECG, EEG, respiratory rate, HR, BP
and Motion

8 Eight sensors
Temperature, ECG, EEG, respiratory rate, HR, BP,
Motion and Endoscope Imaging

9 Nine sensors
Temperature, ECG, EEG, respiratory rate, HR, BP,
Motion, Endoscope Imaging and ECG
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PSO-based and Surrogate-Assisted PSO-based FLC Design

Since Subsection 4.3.4 confirms that both PSO and DE are effective for
designing FLCs, we decide to only use PSO to design FLCs for target
T2. Subsequently, the training results from PSO for the three different
coding schemes, i.e. URCS, SRCS and MRCS, are presented in Table 4.9.
From the results, we found that the differences among the three coding
schemes generally are statistically indistinguishable. However, in training
scenarios seven and eight, PSO with URCS outperforms other coding
schemes (improved PDR with compatible packet delay).

In Subsection 4.3.4, we have shown that surrogate-assisted ECs with
η=25% are efficient and effective for designing FLCs. Consequently, we
also examine surrogate-assisted PSO with η=25% for design target T2. The
training results presented in Table 4.9 clearly show that there is no sig-
nificant difference between PSO and surrogate-assisted PSO in terms of
effectiveness, regardless of the coding scheme. On the other hand, the
computation time for designing FLC through PSO and surrogate-assisted
PSO is 491.96 ± 5.42 and 148.30 ± 7.47 hours, respectively. Since there is
an almost 70% saving of computation time upon using surrogate-assisted
PSO and it is as effective as PSO, we think the best choice again is to design
FLCs through surrogate-assisted PSO. It should be mentioned that the com-
putation time for designing FLCs is totally worthwhile since the designed
FLCs can be repeatedly used in many WBAN applications, and enhance
the effectiveness of the network significantly.

Comparison between PSO-based FLC Design (Target T2) and Compet-
ing Algorithms

After comparing CLFBT2 with competing algorithms including CLFBT1 on
the testing results (see Tables 4.10, 4.11, 4.12 and 4.13), we found that only
CLFBT2 can clearly outperform IEEE 802.15.4 in both PDR and packet delay.
In other words, CLFBT2 is the only algorithm which can provide higher
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Table 4.9: Training results obtained by PSO and surrogate-assisted PSO in
terms of PDR and packet delay in seconds (λ=2.5).

Training
Scenario

PM
PSO Surrogate-Assisted PSO

URCS SRCS MRCS URCS SRCS MRCS

1
PDR

0.844
±0.002

0.844
±0.002

0.844
±0.002

0.844
±0.002

0.841
±0.002

0.843
±0.001

Delay
0.260
±0.001

0.260
±0.001

0.260
±0.001

0.260
±0.001

0.258
±0.001

0.259
±0.001

2
PDR

0.860
±0.001

0.856
±0.004

0.860
±0.001

0.860
±0.001

0.849
±0.004

0.852
±0.004

Delay
0.271
±0.001

0.270
±0.002

0.272
±0.001

0.272
±0.001

0.266
±0.003

0.268
±0.003

3
PDR

0.519
±0.002

0.512
±0.001

0.512
±0.001

0.514
±0.002

0.511
±0.001

0.512
±0.002

Delay
0.303
±0.002

0.298
±0.001

0.299
±0.002

0.301
±0.002

0.299
±0.002

0.299
±0.002

4
PDR

0.489
±0.002

0.485
±0.001

0.484
±0.001

0.485
±0.002

0.484
±0.001

0.485
±0.002

Delay
0.309
±0.001

0.308
±0.002

0.308
±0.001

0.308
±0.001

0.310
±0.002

0.311
±0.002

5
PDR

0.474
±0.002

0.471
±0.001

0.471
±0.001

0.471
±0.002

0.471
±0.002

0.471
±0.002

Delay
0.308
±0.002

0.309
±0.002

0.311
±0.002

0.309
±0.003

0.313
±0.004

0.313
±0.003
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PDR and throughput than IEEE 802.15.4 without incurring longer delay.
Moreover, it produces less collision rate than IEEE 802.15.4. Although
CLFBT2 can outperform other competing algorithms from this perspective,
it does not always produce the highest level of reliability, however.

Table 4.10 shows that PDR is almost 100% when the network consists of
only two nodes including the coordinator. When the traffic load increases
by adding more sensor nodes, PDR starts to decrease. Table 4.10 shows
that CLFBT1 , D2MAC and NB-step can manage to achieve higher PDR
than CLFBT2 in some scenarios (e.g. scenarios 3, 4 and 5). This achieved
by imposing significantly longer backoffs. On the other hand, the results
clearly show CLFBT2 is more reliable than IEEE 802.15.4 and ACS without
imposing longer backoffs on sensor nodes.

Generally, by increasing the number of nodes, PDR will decrease in all
algorithms. This is because of the increasing number of collisions on the
network, as shown in Table 4.11. In addition, CLFBT1 , D2MAC and NB-step
can achieve less collision rate than CLFBT2 . However, they force the sensor
nodes to increase their backoff delay to avoid collisions. On the other hand,
CLFBT2 can perform much better than IEEE 802.15.4 and ACS in term of
collision rate without sacrificing communication delay.

As mentioned before, MAC throughput of the network presented in
Table 4.12 is indirectly improved by increasing PDR in WBANs. Conse-
quently, CLFBT1 , D2MAC and NB-step can outperform CLFBT2 in terms
of throughput in some scenarios (e.g. scenarios 3, 4 and 5). Neverthe-
less, our statistical analysis shows that CLFBT2 statistically outperforms
IEEE 802.15.4 and ACS when there are more than two sensor nodes in the
network.

Although the results show CLFBT1 , D2MAC and NB-step can some-
times achieve higher PDR and throughput than CLFBT2 , it is important
to note that they sacrifice the packet delay hugely which means they are
undesirable for delay sensitive WBAN applications. For example, in sce-
nario 7, CLFBT1 , D2MAC and NB-step introduce significantly longer delay
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than IEEE 802.15.4, as shown in Table 4.13. Unlike the competing ap-
proaches, CLFBT2 can keep the packet delay close to the level obtained in
IEEE 802.15.4. Particularly, ANOVA and Tukey’s post-hoc analysis indicate
that the delay achieved by CLFBT2 is statistically indistinguishable from
that of IEEE 802.15.4 and ACS. Moreover, CLFBT2 can manage to achieve
significantly less delay than CLFBT1 , D2MAC and NB-step.

Summary of Automatic Design of FLCs for Target T2

In this subsection, we have successfully designed FLCs for target T2 by
using both PSO and surrogate-assisted PSO. We found that surrogate-
assisted PSO is more desirable in view of both efficiency and effectiveness.
Our simulation results further revealed the main strength of CLFBT2 which
is its effectiveness. These results also demonstrated that CLFBT2 is the
only method that can significantly outperform IEEE 802.15.4 concerning
both reliability and performance. It is worthwhile to note that, besides
its effectiveness and efficiency, CLFBT2 also provides general applicability.
This means that during practical use, patients can add or remove any
specific sensor nodes and the network remains effective.

4.4 Chapter Summary

In this chapter, we have proposed an EC-based approach for fully auto-
mated design of Fuzzy Logic Controllers (FLCs) for Cross-Layer Fuzzy Logic
based Backoff (CLFB) in WBANs. In order to design FLCs effectively, we
have studied the influence of three different coding schemes on the ef-
fectiveness and interpretability of the FLCs designed. This chapter also
defined a fitness function with aim of achieving high network reliability
and performance in WBANs with respect to two separate design targets.
The first target is designing effective FLCs (i.e. CLFBT1) to provide relia-
bility and performance for a specific WBAN configuration. On the other
hand, the second target aims to design desirable FLCs (i.e. CLFBT2) for
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more general WBAN settings.
To achieve our design targets, we have successfully utilised surrogate

models to improve the efficiency of the design process. Moreover, we
have examined the usefulness of our approach with the help of two well-
known EC techniques, i.e. Particle Swarm Optimization (PSO) and Differential
Evolutionary (DE). We have shown that PSO slightly outperformed DE
for our design problems. Moreover, we have confirmed that CLFBT1 can
achieve significantly better reliability and performance than IEEE 802.15.4,
ACS, D2MAC and NB-step. We have also experimentally shown that only
CLFBT2 can outperform IEEE 802.15.4 in terms of both PDR and packet
delay for a wider range of communication scenarios.

It is worthwhile mentioning that, during the whole design process, we
have introduced neither specific mechanism nor significant changes to IEEE
802.15.4. FLCs are fuzzy rules that are simple and easy to process. Once
FLCs for CLFB have been designed through our automatic approach, they
can be easily integrated into sensor nodes as long as they are compatible
with IEEE 802.15.4 without any major changes.

As mentioned before, we have primarily focused on Carrier Sense Mul-
tiple Access with Collision Avoidance (CSMA/CA) in IEEE 802.15.4. Fur-
ther performance and reliability improvement in WBANs can potentially
be achieved by combining CSMA/CA with Time Division Multiple Access
(TDMA). This essentially requires us to simultaneously design a hierarchi-
cal system of FLCs. For this purpose, in Chapter 5, we plan to develop
new cooperative coevolution design techniques to further improve the
usefulness of WBANs in practice.



Chapter 5

Cooperative Design of Two Level
Fuzzy Logic Controllers for
Medium Access Control in
Wireless Body Area Networks

5.1 Introduction

In Chapter 3, we have developed the Cross-Layer Fuzzy logic based Backoff
controller (CLFB) to control channel access at the sensor level and improve
network reliability and performance in IEEE 802.15.4. Nevertheless, it has
been shown that the coordinator level control can also play an important
role to improve the reliability and performance of the network [135, 64].

The coordinator in IEEE 802.15.4 manages the GTS mechanism, which
can guarantee the reliability and performance of data delivery by allocating
a specific time slot within a superframe for data transmissions. However,
IEEE 802.15.4 is limited in allocating GTS to the number of nodes as only
up to seven GTSs can be allocated during each superframe. This means
that many sensor nodes may not enjoy the benefits of accessing a guar-
anteed service. This limitation might be worsened because of the use of
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the inflexible First-Come, First-Served (FCFS) GTS allocation policy and the
waste of the allocated resources. For example, a node with a low data
rate that has been allocated a GTS may use it only partially (when the
amount of guaranteed bandwidth is higher than its data rate). This leads
to underutilisation of the GTS bandwidth resources. In other words, the
coordinator, regardless of data rate requirement and traffic congestion, allo-
cates GTS to the requested devices based on FCFS. Therefore, a high data
rate sensor may not receive the GTS allocation and a low data rate sensor
might underutilise the allocated resources.

To address above mention limitation, some research efforts have been
performed to optimised the GTS allocation. For example, Huang et al.
[64] proposed an Adaptive GTS Allocation (AGA) method to prioritise GTS
allocations in a dynamic fashion based on recent GTS usage feedback with
the consideration of low latency and fairness. Zhou et al. [177] proposed
Fuzzy Control Medium Access (FCMA) to prioritise GTS allocation based
on message criticality and application data rate. However, none of these
algorithms has considered either the channel condition while allocating
GTS or simultaneously improving both CSMA/CA and GTS through a
control strategy to improve reliability and performance of the network.

This chapter proposes a Cooperative Cross Layer Fuzzy Medium Access
Control (CoCLF-MAC), which uses FLCs both at the sensor level and the
coordinator level to cooperatively improve the quality of the IEEE 802.15.4-
based MAC in the context of WBANs. Specifically, the coordinator employs
FLCs for prioritising GTS allocation by using cross-layer information such
as channel condition and application data rate. Meanwhile, sensor nodes
utilise CLFB to control channel access.

In Chapter 4, we have shown that careful design of FLCs is essential
for successful communications in WBANs. Due to inherent interactions
between sensor nodes and the coordinator, FLCs used by sensor nodes
and the coordinator must cooperatively work together to achieve desirable
results. Consequently, both FLCs need to be designed simultaneously.
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Meanwhile, designing two-level control schemes will significantly in-
crease the complexity of the design process and potentially affect the effec-
tiveness of the designed FLCs. Designing two FLCs jointly will obviously
increase the design complexity. To address this issue, following the divide-
and-conquer strategy, Potter and Jong [126] proposed the CCEA algorithm.
In their algorithm, a problem is decomposed into several smaller sub-
components and each sub-component can be evolved through a separate
Genetic Algorithm (GA) sub-population. A few years later, Bergh and En-
gelbrecht [156] proposed Cooperative Particle Swarm Optimiser (CPSO) that
can perform much better than the original PSO on several benchmark op-
timisation problems. This is achieved by using multiple sub-populations
to optimise different components of the solution vector cooperatively. In
this research, we decide to adopt a standard CPSO because of its proven
effectiveness [156] and our familiarity.

In order to use CPSO effectively, one major issue to be addressed in this
thesis is on the choice of collaborators from one sub-population while eval-
uating the candidate FLC design from the other sub-population of CPSO.
Typically researchers prefer to choose the best fit solution from alternative
sub-populations [126, 156, 161]. However, as a result of using this greedy
method, CCEAs and CPSO could fall easily into local optima [156, 161].
Therefore, some researchers have selected an alternative method which
involves two candidate solutions, i.e. the best and a random candidate
solution [92, 161]. In this method, both selected collaborators are evalu-
ated with the current candidate solution and the higher fitness determines
the fitness of the current candidate solution [156, 161]. Although these
methods are commonly used by researchers, they are designed to tackle
general optimisation problems. Therefore, in this research, we propose
three new collaborator selection schemes based on our insight into efficient
communication in WBANs and employ the network knowledge to judge
the suitability of any potential collaborators.
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5.1.1 Chapter Goals

Most of the existing research works considered only single-level FLCs. In
this chapter, we propose a two-level control scheme at both the sensor level
and the coordinator level to improve both the reliability and performance
of MAC in WBANs. We also propose to use CPSO to automate the design
of our two-level control scheme. Following are the chapter goals briefly:

1. Extending IEEE 802.15.4 to facilitate a two-level cross-layer FLC to
take advantage of both distributed and centralised mechanisms, i.e
at both sensor level and coordinator level, to cooperatively enhance
reliability and performance of WBANs.

2. Automatically designing multilevel FLCs for cross-layer MAC involv-
ing sensor nodes and the coordinator through CPSO.

3. Introducing new methods of collaborator selection in CPSO by ex-
ploiting the specific characteristics of the design problem to improve
the algorithm’s practical usefulness.

4. Demonstrating the practical usefulness of our CPSO-based multilevel
FLC design approach in WBANs by experimentally comparing it
with several existing algorithms such as IEEE 802.15.4 [3], AGA [64],
FCMA [177], CLFB [115] and D2MAC [107].

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. Section 5.2 proposes
a multilevel cross-layer FLC for prioritising GTS allocations. Section 5.3
presents the CPSO-based FLCs design in WBANs. Section 5.4 reports and
analyses the simulation results. Finally, in Section 5.5 the summary will be
presented.
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5.2 A Cross-Layer GTS Allocation Mechanism us-

ing Fuzzy Logic

In this chapter, we aim at proposing CoCLF-MAC which is a two-level
control scheme at both the sensor level and the coordinator level, to improve
IEEE 802.15.4 in the context of WBANs. As shown in Fig. 5.1, sensor-level
FLC is used by sensors to adaptively adjust the backoff exponent, called
fuzzyBE, to avoid collisions based on NBRate and the application data rate.
Being the moving average of the Number of Backoffs (NB) in IEEE 802.15.4,
NBRate serves as a good indication of the channel condition. On the other
hand, the application data rate is used to regulate the delay based on the
channel access frequency.

At the coordinator-level, Cross-Layer Fuzzy logic GTS Allocation (CLFGA)
is utilised to prioritise the requests for transmissions through GTS based on
both the channel collision rate and application data rate. Instead of serving
each request according to the simple FCFS order [3], the coordinator assigns
communication bandwidth to sensor nodes by following their respective
fuzzyGTSpriority.

As presented in Algorithm 2, CLFGA adaptively prioritises GTS alloca-
tion based on different channel conditions and application requirements.
CLFGA utilises a FLC to adaptively assign priorities, so-called fuzzyGTSpri-
ority, to sensor nodes, that are in need of GTS allocations. This assignment
is based on recent network conditions experienced by the coordinator and
application requirements of sensor nodes.

After prioritising GTS allocation for all sensor nodes, the coordinator
adequately allocates GTS resources to sensor nodes. This allocation is based
on the priority numbers, GTS capacity and length of the superframe. As
presented in Algorithm 2, CLFGA first confirms there are enough GTS
resources to be allocated. As we strictly follow IEEE 802.15.4 MAC protocol,
CLFGA allocates GTS whenever the following criteria are satisfied:
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define : Assume that there are N sensor nodes in a WBAN
Each sensor node sends a GTS allocation request to the coordinator
The coordinator allocates GTS to sensor nodes ;
for each sensor node i ∈ [1..N ] do

Calculate fuzzyGTSpriorityi by the designed FLC based on
channel condition and application data rate;

end
while The GTS capacity is not overloaded do

Find sensor node k which has the highest fuzzyGTSpriority;
GTS will be assigned to the sensor node k in the current
superframe;

end
Algorithm 2: The pseudocode of Cross-Layer Fuzzy logic GTS Alloca-
tion (CLFGA) algorithms.

1. The maximum number of GTS slots to be allocated to devices is seven.

2. The minimum length of a CAP shall be aMinCAPLength. The increase
in the total GTS period shall not result in reduction of the CAP length
to less than aMinCAPLength.

If both criteria above are satisfied, CLFGA is able to allocate GTS re-
sources to sensor nodes with higher fuzzyGTSpriority (s).

Based on the above discussion, the FLC in CLFGA utilises two input
variables, i.e. collision rate and data rate, which are shown in Fig 5.2 and will
be described in more detail below. The standard Mamdani fuzzy system
will be used for inferencing in our FLC [100].

5.2.1 Fuzzy Input and Output Variables

The first input variable of the FLC in CLFGA is collision rate which is
measured as follows:

Collision rate =
Total number of collided signals

Total number of recieved signals
(5.1)



134 CHAPTER 5. COOPERATIVE DESIGN OF TWO LEVEL FLCS

Rules

Inference Engine

Fuzzifier Defuzzifier
Data Rate

fuzzyGTSpriority

Crisp 
Inputs

Crisp 
Outputs

Collision 
Rate

Fuzzy Logic Controller

Figure 5.2: Architecture of fuzzy logic controller for CLFGA.

As wireless communication uses a shared medium, if more than one
device tries to communicate simultaneously, collisions will happen. If col-
lisions happen, the coordinator will detect the collided signals and abort
communication. Therefore, collision rate, which is calculated by the coor-
dinator, is a direct indication of the channel condition in the recent past.
Clearly the increase in collision rate indicates high traffic workload in
WBANs. Similarly, whenever traffic workload in the network is reduced,
collision rate decreases. Collision rate therefore helps to balance the traffic
workload between the CFP and CAP. When the CAP traffic load is light,
there is no need to allocate too many GTS resources for sensor nodes. Too
much dedicated bandwidth for GTS usage leads to resource wastage and
to the degradation of the overall system performance. Instead, the GTS
bandwidth should be saved for contention-based accesses in CAP. Follow-
ing Chapter 3, collision rate is fuzzified into four fuzzy levels, namely low,
medium, medium-high and high.

The second input variable of our FLC in Fig 5.2 is the data rate of each
sensor node. This should be taken into account to adaptively prioritise
GTS allocations. For example, nodes with high data rate tend to access the
channel more frequently and should be assigned higher priorities. This is
important for reducing collisions and packet loss.

In a WBAN, the data rate can vary significantly across different types
of nodes. In order to cope with different network settings, the data rate is
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normalised in CLFB within the interval of [1...100]. The normalised data
rate is further partitioned into four different fuzzy levels, i.e. low, medium,
medium-high and high.

The output from our FLC in Figure 5.2 is the fuzzyGTSpriority. In order
to have a reasonable level of accuracy, fuzzyGTSpriority is decomposed
into four separate fuzzy levels, which are P1, P2, P3 and P4. Similar to the
FLC in CLFB, the centre of gravity is used to defuzzify fuzzyGTSpriority
and produce a crisp value.

Moreover, for simplicity and efficiency, similar to CLFB, we use the
triangular shaped membership function for all input and output variables.
Examples of such membership functions are illustrated in Figure 4.4. In
this research, the control parameters of these membership functions, e.g. a,
b and c in Figure 4.4, are automatically designed by CPSO. In this research,
we design membership functions of our FLCs to effectively prioritise GTS
allocations and adaptively produce backoff delays. Therefore, GTS and
CSMA/CA can consistently work to cooperatively improve network relia-
bility and performance.

5.2.2 Fuzzy Logic Rules

In this study, there are 16 different rule antecedents (i.e. 4 fuzzy levels
of collision rate × 4 fuzzy levels of data rate). Consequently, our FLC
in CLFGA comprises 16 separate fuzzy rules. Each rule follows a basic
structure as shown below:

R(n) : IF Collision−Raten is ai1
and Data−Raten is ai2
THEN fuzzyGTSpriorityn is c

i

(5.2)

A summary of all fuzzy rules in CLFGA is presented in Table 5.1. Ac-
cording to this table, whenever collision rate is low, our FLC will consis-
tently suggest the lowest priority P1, e.g. fuzzy rules R(1), R(2), R(3) and
R(4) in Table 5.1. This helps to prevent deteriorating network performance
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by not allocating too many GTS resources to sensor nodes. In the case
that collision rate is at a Medium level, our FLC will recommend moderate
fuzzyGTSpriority, e.g. R(6) and R(7). Meanwhile nodes with high data rates
will receive higher priority, e.g. R(8). The node with a Low data rate still
receives lowest priority to prevent wasting GTS resources, e.g. R(5). Further-
more, if the channel becomes Medium-High, the priorities of corresponding
rules, i.e. R(10) and R(11), will be adjusted to P3. For the same reason, the
nodes with Low data rate receive lower priority, i.e. R(9), and the node with
a High data-rate will have the highest priority, i.e. P4. Finally when traffic
workload is High, our FLC will produce the highest priority P4 for R(15) and
R(16). The nodes with Low and Medium data rate will still receive relatively
lower priority, i.e. P3.

Table 5.1: Fuzzy Logic rules for CLFGA.

Collision Rate
Data Rate

Low Medium Medium High High
Low R(1): P1 R(2): P1 R(3): P1 R(4): P1
Medium R(5): P1 R(6): P2 R(7): P2 R(8): P3
Medium High R(9): P2 R(10): P3 R(11): P3 R(12): P4
High R(13): P3 R(14): P3 R(15): P4 R(16): P4

5.3 Evolutionary Design of Multilevel FLCs in

WBANs

In this section, we propose a general method to automatically design FLCs
for our two-level control scheme as shown in Fig. 5.1. As reported ex-
tensively in the literature [159, 45, 59, 11, 47], evolutionary computation
techniques have been successfully applied to automate the design of var-
ious aspects of FLCs and are considered highly suitable for tackling our
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research problems. Specifically, we focus on designing the control parame-
ters of all MFs through CPSO.

In this research, we take advantage of the modularity nature of our
design problem. Particularly, we use two sub-populations in CPSO: the first
sub-population contains individuals that encode FLCs in CLFB to be used
at the sensor level, and the second sub-population contains individuals
that encode the FLCs in CLFGA to be used at the coordinator level.

In the context of WBANs, we can identify four important technical
issues for CPSO-based design of FLCs:

1. Coding scheme: Each candidate solution in CPSO represents a sep-
arate FLC design and must follow a specific coding scheme which
encodes all control parameters for each MF through a vector of real
numbers. In Chapter 4, we have studied the influence of different
coding schemes on the effectiveness and interpretability of the FLCs
designed. We experimentally showed that Moderately Restricted Cod-
ing Scheme (MRCS), as illustrated in Fig. 4.4, can provide both good
effectiveness and interpretability. Consequently, in this chapter, we
utilise MRCS to encode candidate FLCs at both control levels.

2. Fitness function: Fitness function is an essential part of our design ap-
proach. Through properly designed fitness functions, we can obtain
a desirable balance between reliability and performance in WBANs.
Our main design goal is to optimise the reliability of WBANs (mea-
sured by PDR). On the other hand, the performance of the network
has to remain competitive with respect to IEEE 802.15.4. In WBANs,
throughput can be improved directly through increasing PDR. How-
ever, increasing PDR may lead to an increase in packet delay. We
therefore decide to pursue PDR as the main objective and packet
delay as a soft constraint, the violation of which will be penalised
through the fitness function. Consequently, we have defined the
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fitness function as follows:

F = ∆PDR + λ×∆Delay (5.3)

where λ is a coefficient. In chapter 4, we have studied the particular
effect of λ and found that a proper value for λ to obtain a desirable
trade-off between PDR and delay is 2.5.

3. Collaborator selection: In CPSO, as each candidate FLC is part of
the whole solution, while evaluating the fitness of any candidate FLC
from one sub-population, we need to select a candidate FLC from
the other sub-population as a collaborator. In this research, we will
try to exploit our network knowledge to select collaborators more
effectively (refer to Subsection 5.3.2).

4. Evaluation method: In order to ensure the practicality of our ap-
proach, we have introduced two different evaluation targets. The first
target is designing effective FLCs to provide reliability and perfor-
mance for a specific WBAN configuration. The second target aims to
design desirable FLCs for more general WBAN settings.

5.3.1 Multilevel FLC Design based on CPSO

CPSO [156], which is explained in Algorithm 3, decomposes candidate
FLCs into two sub-populations of s-dimensions, one for CLFB and one
for CLFGA. In order to evaluate the fitness value of each candidate FLC
of corresponding sub-population, CPSO builds a collaborator vector ỹ. As
shown in Figure 5.3, ỹ is built by selecting candidate FLCs from corre-
sponding sub-population as collaborators. Function b(j, Pj.xi) is called to
evaluate the ith candidate FLC in the jth sub-population. This function
returns an n-dimensional vector as the whole solution containing ỹ with
its jth component replaced by Pj.xi. The idea is to evaluate how well Pj.xi

“cooperates” with another sub-population.
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define : b(j, z) ≡ (P1.ỹ, ..., Pj−1.ỹ, z, Pj+1.ỹ, ..., PK .ỹ)

Create and initialise (K=2) sub-populations, i.e. candidate FLCs for
CLFB and CLFGA, each with s dimensions (where n = K × s);

The jth sub-population is denoted as Pj, j ∈ [1..2] ;
repeat

for each sub-popualtion Pj ∈ [1..K] do
for each candidate FLC i ∈ [1..s] do

if f(b(j, Pj.xi)) < f(b(j, Pj.pbesti)) then
Pj.pbesti ← Pj.xi;

end
if f(b(j, Pj.pbestj)) < f(b(j, Pj.gbest)) then

Pj.gbest← Pj.pbestj ;
end

end
Perform PSO updates, i.e. velocity and position, on Pj ;

end

until termination condition is true;
Algorithm 3: The pseudocode of the CPSO algorithm for designing our
multilevel FLCs. Pj.xi denotes the current position of the ith candidate
FLC of the jth sub-population. Pj.pbesti is the personal best of the ith
candidate FLC of the jth sub-population. The jth of the K sub-population
has a global best particle Pj.gbest.
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The original CPSO chooses the best individuals from other sub-populat-
ions as collaborators. However, this approach is greedy and might fall
in local optima [161]. Therefore, in the following subsection, we study
different approaches to choose collaborators to cooperate with the other
sub-population (or sub-populations) for improved design performance.

5.3.2 Collaborator Selection Method

A candidate solution in CPSO can not be evaluated from a single population
in isolation, because each candidate solution represents only a part of
the whole solution. Therefore, collaborators must be chosen from other
sub-populations to assess fitness. Particularly, in each generation, CPSO
evaluates each candidate solution of every sub-population by combining
them with collaborators from other sub-populations. Similarly, CPSO
follows the procedure for all the remaining sub-populations as shown in
Fig 5.3.

Population of 
candidate FLCs in

CLFB

EA

Population of 
candidate FLCs in

CLFGA

EA

WBAN Domain

Collaborator(s)

Population of 
candidate FLCs in

CLFB
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EA
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Figure 5.3: Coevolutionary model of two populations

There are two straightforward ways to select collaborators from other
sub-populations: (1) select the fittest candidate solution or gBest; and
(2) select a random candidate solution. The former is greedy and the
latter is explorative [161]. Although these methods are commonly used
[161, 126], they are designed to tackle general optimisation problems. It
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is interesting to exploit the unique characteristic of our design problem
to find more suitable collaborators. In following, we will explain two
alternative approaches, which use expert knowledge to find more effective
collaborators.

Similarity of shared input variable

In our design problem, we suggest using possible correlations between two
FLCs, which can be useful to find a potential collaborator. As shown in Fig
5.1, data rate is the common input variable for the both FLCs. Moreover,
rules, which are designed for FLCs in CLFB and CLFGA, treat data rate
almost in the same manner. Particularly, in CLFB, whenever data rate
increases from low to high, FLC suggests increasing backoff delays accord-
ingly. Similarly, in CLFGA, when data rate increases from low to high, FLC
also suggests increasing the priority of GTS allocation to the corresponding
sensor node. Therefore, we suggest exploiting the similarity of data rate
MFs to find more suitable collaborators. Specifically, CPSO calculates sim-
ilarities between the current candidate solution and candidate solutions
from the alternative sub-population and assigns a similarity degree to each
potential collaborator. Afterwards, CPSO selects a more similar candidate
FLC from the the other sub-population as a collaborator. To calculate the
similarity degree, as illustrated in Fig 5.4, we first measure the Euclidean
distances between control points in each MF as follows:{

mij =
√

(aij − bij)2 = ||aij − bij| |, where i = 1, 2

nij =
√

(cij − bij)2 = ||cij − bij| |, and j = 1, 2, 3, 4
(5.4)

where i is the candidate solution number and j is the number of MFs.
Afterwards, the similarities between each MF in the current candidate

solution and its corresponding MF in the potential collaborator are mea-
sured by Membership Function Similarity Degree (MFSD) as below:

MFSDj =
√

(xkj − xhj)2 + (mkj −mhj)2 + (nkj − nhj)2, where k 6= h

(5.5)
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Figure 5.4: An example of similarity measurements

where k is MF in the current candidate solution and h is the corresponding
MF of the potential collaborator. Finally, the Similarity Degree (SD) between
the current candidate solution and the potential collaborator from another
sub-population is measured as follows:

SD =

√√√√1

j

j∑
i=1

(MFSDi −MFSD)2, where MFSD =

∑j
i=1MFSDi

j

(5.6)

where SD suggests that two MFs are more similar to each other when their
SD is smaller.

Network inspired Collaborator Selection (NiCS)

The previous method of selecting a collaborator was based on similarity
of shared rules between two FLCs. However, this decision might become
more precise with help of the deeper knowledge of experts. Therefore, we
introduce Network inspired Collaborator Selection (NiCS) to select collabora-
tors more effectively. Based on our experience of effective communication
in WBANs, the criteria for collaborator selection have been summarised
in Table 5.2 and 5.3. These criteria define the support of MFs for both
sensor-level and coordinator-level FLCs. The basic idea is to ensure that
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Table 5.2: Collaborator selection criteria for sensor-level FLC design

Input and
output variable

Support of membership function
Low/B1 Medium/B2 Medium High/B3 High/B4

NBRate [0...1) (0...3] [1...5] [4...6]
Data rate [1...50] [10...75] [35...100) [50...100]
fuzzyBE [2...5] [3...6] [5...7.5] [6...8]

Table 5.3: Collaborator selection criteria for coordinator-level FLC design

Input and
output variable

Support of membership function
Low/P1 Medium/P2 Medium Hig/P3 High/P4

Collision rate [0...30] (0...80] [40...100) [70...100]
Data rate [1...40] [10...60] [35...90] [50...100]
fuzzyGTSpriority [0...30] (0...70] [30...100) [80...100]

the support of partnering FLCs always falls into the right range which may
help to promote a more effective collaboration.

According to Table 5.2, while CPSO is evolving FLCs at the coordinator
level, we need to carefully select a FLC collaborator at the sensor level. For
example, in view of rules R(1), R(2) and R(3) in Table 3.1, the support of B1
MF for fuzzyBE is set to [2..5] in Table 5.2. Consequently, sensor nodes do
not need to wait before packet transmission as long as the channel is not
busy. The rules in Table 3.1 also suggest that, when the channel is highly
congested, sensor nodes must apply backoff delay long enough to prevent
collisions. Consequently, the support of B4 MF is in the range of [6..8].

As an another example, the support of Low MF for NBrate in Table
5.2 is in the range of [0..1). This means that the channel is mostly free
and highly likely a sensor node can send its packet within the current
Contention Window (CW). On the other hand, High MF shows an extremely
busy channel and its support falls in [4...6].

Similarly, selection criteria in Table 5.3 guide the selection of effective
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collaborators at the coordinator level to evolve FLCs in sensor level. For
example, in view of the rules R(1), R(2) and R(3) in Table 5.1, the support
of P1 MF shown in Table 5.3 implies that, as long as the channel is not
busy, the coordinator does not need to assign communication bandwidth to
the requested sensor nodes immediately. On the other hand, based on the
rules R(12), R(15) and R(16) in Table 5.1, the support of P4 MF suggests that
the coordinator needs to assign the channel to the requested sensor nodes
immediately to prevent collisions when the channel is highly congested.
As another example, the support of Low MF for collision rate falls in [0..30],
implying that the coordinator believes that the channel is fairly clear and
will therefore assign the lowest priority to any requested sensor nodes.

As explained in Algorithm 4, if a candidate FLC meets these criteria, it
could be considered as a potential collaborator. Otherwise, the collaborator
can be chosen either randomly or as the fittest FLC candidate (gBest). In our
new approach, we can select the candidate FLC from the pool of potential
collaborators (NiCSpool) in two ways:

1. NiCSgBest: if the fittest solution is within the potential collaborators,
it is selected as the collaborator to evaluate the candidate solution;
otherwise, the collaborator will be randomly selected from NiCSpool.

2. NiCSrandom: randomly select a collaborator from the potential collabo-
rators, regardless of whether the fittest selection is within NiCSpool.

In the literature, most of the research works have only studied general
collaborator selection methods [161]. However, it is not clear which col-
laborator selection method is particularly useful for our design problem.
Therefore, in this research, in order to discover an effective collaborator
selection method, five collaborator selection methods will jointly be studied
in the context of WBANs (refer to Section 5.4.)
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define : NiCSpool is a pool of potential collaborators for each
sub-population, i.e. candidate FLCs for CLFB and CLFGA;

The jth sub-population is denoted as Pj, j ∈ [1..2] ;
for each sub-population j ∈ [1..2] do

Copy potential collaborators into NiCSpoolj based on criteria in
Tables 5.2 and 5.3;

if NiCSpoolj > 0 then
if NiCSgBest==enable and Pj.gbest ∈ N iCSpoolj then

Pj.ỹ = Pj.gbest;
else

randomly choose Pj.ỹ from N iCSpoolj ;
end

else
if NiCSgBest==enable then

Pj.ỹ = Pj.gbest;
else

randomly choose Pj.ỹ from sub-population jth;
end

end

end
.

Algorithm 4: The pseudocode of the NiCS algorithm. Pj.ỹ denotes the
selected collaborator in the jth sub-population. The jth sub-population
has a global best particle Pj.gbest
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5.3.3 Fitness Evaluation Method

In this research, two methods have been studied to evaluate the fitness
of each candidate solution guided by two different design targets [115].
The first design target (T1) is to design FLCs that function effectively on a
specific network setting. The second target (T2) is to design FLCs that are
able to work consistently well across a wide range of network settings.
To distinguish design targets, every result upon using our CoCLF-MAC
based on targets T1 and T2 will be referred to as CoCLF-MACT1 and CoCLF-
MACT2 respectively.

Consequently, we consider two different evaluation methods to support
these two design targets. The first method evaluates the candidate solu-
tion based on a single pre-defined WBAN setting. The second evaluation
method utilises multiple pre-determined WBAN settings to jointly evaluate
the same candidate solution. In the second approach, to determine the
fitness of the candidate solution, the averaged ∆PDR and ∆Delay over
multiple network settings will be utilised [115]. In both evaluation meth-
ods, every network setting will be tested for five independent runs. For
detailed information, please refer to Subsection 5.4.5.

In this research we are not employing any overfitting control techniques
while designing FLCs. However, we have experimentally demonstrated the
effectiveness of designing FLCs through CPSO-based approach to improve
the reliability and performance of varied WBAN’s settings. In the future
work, we will take advantage of using overfitting control techniques [35].

5.4 Simulation Implementation and Results

In this section, we describe the simulation settings for WBANs in Sub-
section 5.4.1, the CPSO parameters settings in Subsection 5.4.2, and the
evaluation metrics in Subsection 5.4.3. Afterwards, the simulation results
will be reported in two subsections. Particularly, in Subsection 5.4.4, the re-
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sults will be presented for designing our multilevel FLC to achieve target T1,
i.e. multilevel FLCs for specific network settings. We will particularly inves-
tigate the effectiveness of different collaborator selections. Subsection 5.4.5
analyses the simulation results obtained from designing our multilevel FLC
with target T2, i.e. multilevel FLCs for multiple network settings. Through
comprehensive simulation studies, we can finally conclude in this section
that our EC-based approach for multilevel FLC design can outperform
many competing algorithms in the literature including, IEEE 802.15.4 [3],
CLFB [115], D2MAC [107], AGA+ IEEE 802.15.4 [64], AGA+CLFB [64, 115]
and FCMA [177].

5.4.1 Simulation Environment for WBAN

In order to simulate WBAN, we have utilised OMNeT++ network simulator
version 4.4.1 [5]. Following typical settings in the literature [119], the maxi-
mum data rate is 250 Kb/s with frequency of 2.4 GHz. In our simulation, all
sensor nodes are randomly deployed within a 2× 2 m2 space with a single
WBAN coordinator using the star topology. The network simulation time
for our experiments is 600 seconds (longer simulation time does not appear
to alter our major findings). We have used the log-normal shadowing
model as the channel model. In comparison with the traditional Rayleigh
and Ricean distributions, the log-normal shadowing model reproduces the
small-scale fading in WBANs more accurately [147].

5.4.2 Parameter Settings for Evolutionary Algorithms

To design two-level FLCs, the size of each sub-population in CPSO is set
to 50. The maximum number of generations is set to 100. Under these
settings, CPSO is close to convergence after 50 generations. Meanwhile, the
fully connected topology is used for CPSO and ω=0.7298 and c1=c2=1.49618
[167]. To have reliable results, CPSO under the same settings is repeated 30
times with different starting seeds.
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5.4.3 Evaluation Metrics

To quantitatively compare the reliability and performance of WBANs, we
employ four well-known metrics which are PDR, collision rate, throughput
and Packet delay.

For a fair comparison with competing algorithms, each competing tech-
nology is run for 30 times independently. Again, the average results in
reliability and performance is used to compare with FLCs designed by our
CPSO-based approach.

In addition, the Analysis of Variance (ANOVA) test is performed to
determine whether statistically significant differences in performance and
reliability can be observed. Tukey’s post-hoc analysis and t-test analysis
are also utilised to realise the main source of difference.

5.4.4 Automatic Design of Multilevel FLCs for Specific Net-

work Settings (Target T1)

This subsection introduces a WBAN simulation scenario for target T1. Af-
terwards, the effectiveness of five different collaborator selections in CPSO
for FLC designs is statistically investigated. Finally the reliability and per-
formance of CLFB and CLFGA achieved by FLCs designed in this research
are compared with the competing algorithms.

Network Simulation Scenario for Target T1

Similar to Chapter 4, we consider a specific WBAN scenario where an el-
derly individual lives alone. She has recently had a procedure. A collection
of wireless sensors are attached to her body to monitor her health status.
All sensory information is collected and sent to her doctor by a WBAN
through the Internet. This WBAN scenario contains three-lead ECG, EEG,
respiratory rate and motion sensors as well as a smartphone coordinator.
The communication features of these sensor nodes can be found in Table
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5.4.

Table 5.4: Communication specifications of Sensor nodes used in the simu-
lation [2, 119].

Sensor Node ECG Respiratory Rate Motion Sensor Heart Rate (HR)
Traffic
Generation
Distribution

Constant Constant Poisson Constant

Data Rate 156.25 Bps 15 Bps 64 Bps 20 Bps

Sensor Node Temperature EEG Blood Pressure (BP) Endoscope Imaging
Traffic
Generation
Distribution

Poisson Constant Constant Poisson

Data Rate 12.5 Bps 31.25 Bps 512 Bps 1538.46 Bps

Collaborator selection

In this research, we explore five different collaborator selection methods, i.e.
gBest, random, NiCSgBest, NiCSrandom and similarity. As illustrated in Fig.
5.5, the results show that CPSO achieved consistently good results after
100 generations (5000 evaluations) with respect to all collaborator selection
methods. Moreover, Fig. 5.5 shows that greedy methods for collaborator
selection can be more effective than less greedy selection methods. For
example, the gBest collaborator selection method is more effective than the
random one. Furthermore, the simulation results confirm that our selection
methods, i.e. NiCSgBest and NiCSrandom, can enhance the effectiveness of
the collaborator selection. For example, the NiCSgBest collaborator selec-
tion method is more effective than gBest during the first 10 generations in
terms of both PDR and packet delay, statistically confirmed by ANOVA
and Tukey’s post-hoc analysis (p-value<0.05). Similarly, NiCSrandom is also
more effective than the random collaborator selection method in our design
problem. We have also introduced another greedy collaborator selection
method based on similarity of shared input variables between two FLCs,
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i.e. CLFB and CLFGA. Although this selection method is more effective
than random collaborator selection, it cannot outperform NiCSrandom. Gen-
erally, since CPSO with NiCSgBest achieved reasonably good results after
10 generations, whenever there is lack of computation power and time,
NiCSgBest is more desirable than other selection methods.

Comparison between CPSO-based FLC Design and Competing Algo-
rithms

In order to demonstrate the effectiveness of CoCLF-MACT1 , we have com-
pared it with several cutting-edge algorithms, i.e. IEEE 802.15.4 [3], CLFB
[115], D2MAC [107], AGA+ IEEE 802.15.4 [64], AGA+CLFB [64, 115] and
FCMA [177]. Among these algorithms, CLFB and D2MAC use one-level
control and the rest, i.e. IEEE 802.15.4, AGA+ IEEE 802.15.4, AGA+CLFB
and FCMA, use two-level control. As presented in Table 5.5, CoCLF-
MACT1 significantly outperforms IEEE 802.15.4, CLFB, D2MAC, AGA+
IEEE 802.15.4, AGA+CLFB and FCMA in terms of both PDR and packet
delay. The one-way ANOVAs give significant differences with p-value
<0.0001. The corresponding Tukey’s post-hoc analysis further confirms
our conclusion. Specifically, while PDR achieved by CoCLF-MACT1 is sig-
nificantly higher than IEEE 802.15.4, CLFB, D2MAC, AGA+ IEEE 802.15.4,
AGA+CLFB and FCMA, packet delay achieved by CoCLF-MACT1 is also
significantly lower than the rest of the algorithms.

Table 5.5 further reports the WBAN throughput upon using each algo-
rithm. Statistical analysis confirms once again that CoCLF-MACT1 achieves
significantly higher throughput than the rest of the algorithms. More-
over, it can also significantly reduce the collision rate in comparison to all
competing algorithms.
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Figure 5.5: The CPSO-based process for FLC design after 100 generations.
The results for all collaborator selection methods are obtained by averaging
over 30 independent tests in a four-sensor-node scenario.
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Table 5.5: Comparison of CoCLF-MACT1 and competing algorithms, in
terms of PDR and packet delay (seconds), throughput (bps) and Collision
rate.

PDR Delay Throughput Collision rate
IEEE 802.15.4 [3] 0.831±0.005 0.168±0.007 09594.17±32.93 0.322±0.014
D2MAC [107] 0.845±0.004 0.271±0.015 09601.40±34.75 0.310±0.014
CLFB [115] 0.828±0.002 0.229±0.003 09570.21±16.03 0.331±0.006
AGA [64]
+IEEE 802.15.4

0.903±0.005 0.162±0.121 10742.47±72.76 0.162±0.011

AGA[64]
+CLFB[115]

0.941±0.002 0.149±0.002 11061.79±56.47 0.138±0.007

FCMA [177] 0.924±4.3×10−4 0.151±0.001 10906.71±34.27 0.141±0.003
CoCLF-MACT1 0.999±2.4×10−5 0.104±0.001 11976.03±49.20 0.008±0.005

5.4.5 Automatic Design of Multilevel FLCs for Multiple

Network Settings (Target T2)

In this subsection WBAN simulation settings for design target T2 will be
explained. Accordingly, we statistically study the effectiveness of different
collaborator selection methods. Finally, the reliability and performance of
CoCLF-MACT2 are compared with the competing algorithms.

Network Simulation Scenario for Target T2

Since multilevel FLC designs for target T1 may not produce a desirable
balance between reliability and performance over a wide range of WBAN
settings, we also aim to design multilevel FLCs based on target T2 (i.e.
enhancing reliability and performance over multiple WBAN’s settings). For
this purpose, we have built separate training and testing scenarios. Similar
to Chapter 4, five different network settings described in Table 5.6 are used
for training. Furthermore, Table 5.7 summarises all testing scenarios for this
study. Specifically, to test the generalisability of multilevel FLC designs, we
have considered up to eight different sensors during testing. All sensors are
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Table 5.6: WBAN settings for designing Multilevel FLCs regarding target
T2.

Scenario No of sensors WBAN setting
1 Three sensors Temperature, ECG, respiratory rate
2 Four sensors Temperature, ECG, respiratory rate and HR
3 Six sensors Temperature, ECG, EEG, respiratory rate, HR, and BP

4 Seven sensors
Temperature, ECG, EEG, respiratory rate, HR, BP and
Motion

5 Eight sensors
Temperature, ECG, EEG, respiratory rate, HR, BP, Motion
and Endoscope Imaging

commonly studied in the literature [2, 119]. Meanwhile, two ECG sensors
are included in testing scenario 9 in Table 5.7 in order to examine WBAN
with high traffic load.

CPSO-based FLC Design

In this section, the training results from CPSO through the five different
collaborator selection methods, i.e. gBest, random, NiCSgBest, NiCSrandom

and similarity, are presented in Table 5.8. The results in Table 5.8 show that
CPSO can be more effective through greedy methods in our design prob-
lem. For example, the gBest collaborator selection method is more effective
than the random one. From the results, we found that NiCSgBest generally
outperforms other collaborator selection methods. Specifically, the results
clearly show that, except scenarios one and two, CPSO through NiCSgBest

is more effective than other collaborator selection methods, statistically
confirmed by ANOVA and Tukey’s post-hoc analysis (p-value<0.05). Fur-
thermore, the design process through our selection method, i.e. NiCSrandom,
is more effective than random collaborator selection method. Moreover,
we found that the differences between NiCSrandom and collaborator selec-
tion method based on similarity of shared input variables are statistically
indistinguishable.
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Table 5.7: WBAN settings for testing Multilevel FLCs designed regarding
target T2.

Scenario No of sensors WBAN setting
1 One sensor Temperature
2 Two sensors Temperature and ECG
3 Three sensors Temperature, ECG and respiratory rate
4 Four sensors Temperature, ECG, respiratory rate and HR
5 Five sensors Temperature, ECG, respiratory rate, HR and EEG

6 Six sensors
Temperature, ECG, EEG, respiratory rate, HR,
and BP

7 Seven sensors
Temperature, ECG, EEG, respiratory rate, HR, BP
and Motion

8 Eight sensors
Temperature, ECG, EEG, respiratory rate, HR, BP,
Motion and Endoscope Imaging

9 Nine sensors
Temperature, ECG, EEG, respiratory rate, HR, BP,
Motion, Endoscope Imaging and ECG

10 Nine sensors
Temperature, ECG, EEG, respiratory rate, HR, BP,
Motion, Endoscope Imaging, ECG and ECG

Comparison between CPSO-based Multilevel FLC Design (Target T2)
and Competing Algorithms

After comparing CoCLF-MACT2 with competing algorithms including
CoCLF-MACT1 on the testing results (see Tables 5.9, 5.10, 5.11 and 5.12),
we found that CoCLF-MACT2 can generally outperform IEEE 802.15.4
and other competing algorithms in both PDR and packet delay. In other
words, CoCLF-MACT2 is the only algorithm which can provide higher PDR
and throughput than others without incurring longer delay. Moreover, it
produces a lower collision rate than others.

Table 5.9 shows that PDR is almost 100% when the network consists of
only two nodes including the coordinator. When the traffic load increases
by adding more sensor nodes, PDR starts to decrease. Table 5.9 shows
that CoCLF-MACT2 can manage to achieve higher PDR than IEEE 802.15.4,
AGA+IEEE 802.15.4, AGA+CLFB, FCMA and CoCLF-MACT1 , except in
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Table 5.8: Training results obtained by CPSO in terms of PDR and packet
delay in seconds (λ=2.5)

Training
Scenario

PM gBest Random NiCSgBest NiCSrandom Similarity Factor

1
PDR

0.985
±0.001

0.984
±0.002

0.987
±0.002

0.988
±0.001

0.978
±0.003

Delay
0.111
±0.001

0.111
±0.001

0.111
±0.001

0.111
±0.001

0.112
±0.001

2
PDR

0.978
±0.001

0.979
±0.004

0.982
±0.001

0.982
±0.003

0.978
±0.004

Delay
0.112
±0.001

0.112
±0.002

0.111
±0.001

0.111
±0.001

0.112
±0.001

3
PDR

0.589
±0.002

0.562
±0.001

0.648
±0.001

0.566
±0.002

0.575
±0.003

Delay
3.042
±0.002

3.127
±0.001

2.530
±0.002

3.056
±0.004

3.134
±0.004

4
PDR

0.454
±0.002

0.449
±0.001

0.535
±0.001

0.454
±0.006

0.454
±0.004

Delay
4.167
±0.001

4.134
±0.003

3.170
±0.001

4.039
±0.004

4.019
±0.003

5
PDR

0.384
±0.002

0.367
±0.002

0.407
±0.001

0.376
±0.002

0.383
±0.004

Delay
4.546
±0.002

4.736
±0.005

4.158
±0.002

4.641
±0.003

4.598
±0.004



156 CHAPTER 5. COOPERATIVE DESIGN OF TWO LEVEL FLCS

scenarios 3 and 5. In these two scenarios, the competing algorithms could
manage to achieve higher PDR by imposing significantly longer backoffs.
In other words, the results clearly show CoCLF-MACT2 is more reliable
than IEEE 802.15.4 without imposing longer backoffs on sensor nodes.

Generally, by increasing the number of nodes, PDR will decrease in
all algorithms. This is because of the increasing number of collisions on
the network, as shown in Table 5.10. CoCLF-MACT2 can achieve a lower
collision rate than AGA+IEEE 802.15.4, AGA+CLFB, FCMA and CoCLF-
MACT1 , except in scenarios 3 and 5. However, in scenarios 3 and 5, long
backoff delays are applied to avoid collisions. On the other hand, CoCLF-
MACT2 can perform much better than IEEE 802.15.4 in term of collision
rate without sacrificing communication delay.

As mentioned before, MAC throughput of the network presented in Ta-
ble 5.11 is indirectly improved by increasing PDR in WBANs. Consequently,
CoCLF-MACT1 , AGA+CLFB and FCMA can outperform CoCLF-MACT2 in
terms of throughput in some scenarios (e.g. scenarios 3 and 5). Meanwhile,
our statistical analysis shows that CoCLF-MACT2 statistically outperforms
IEEE 802.15.4 when there are more than two sensor nodes in the network.

Increasing the number of nodes lead to an increase in the network
congestion. Accordingly, IEEE 802.15.4 increases the backoff delays to
reduce the collision rate. Inducing longer backoff delays result in longer
packet delays in the network as shown in Table 5.12. Although the results
show CoCLF-MACT1 , AGA+CLFB and FCMA can occasionally achieve
higher PDR and throughput than CoCLF-MACT2 , it is important to note
that they sacrifice the packet delay hugely, which means they are unde-
sirable for delay sensitive WBAN applications. For example, in scenario
5, CoCLF-MACT1 and FCMA introduce significantly longer delay than
CoCLF-MACT2 , as shown in Table 5.12. In other words, CoCLF-MACT2

can outperform IEEE 802.15.4, AGA+IEEE 802.15.4, AGA+CLFB, FCMA
and CoCLF-MACT1 in term of the packet delay. Particularly, ANOVA
and Tukey’s post-hoc analysis indicate that the delay achieved by CoCLF-
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MACT2 is statistically significantly less than IEEE 802.15.4, AGA+IEEE
802.15.4, AGA+CLFB, FCMA and CoCLF-MACT1 , when there are more
than two sensor nodes in the network.

5.5 Chapter Summary

In this chapter, we proposed an EC-based approach to automatically design
Fuzzy Logic Controllers (FLCs) for Cooperative Cross Layer Fuzzy MAC (CoCLF-
MAC) in WBANs. Different from many works in the literature that utilised
FLCs only at the sensor level, CoCLF-MAC explored and successfully
demonstrated the importance of utilising FLCs both at the sensor level
and the coordinator level. We also utilised two separate design targets to
achieve high network reliability and performance in WBANs. The first
target is designing effective multilevel FLCs (i.e. CoCLF-MACT1) to provide
reliability and performance for a specific WBAN setting. On the other hand,
the second target aims to design desirable multilevel FLCs (i.e. CoCLF-
MACT2) for more general WBAN configurations.

Meanwhile, we examined the usefulness of the well-know Cooperative
PSO (CPSO) with five different collaborator selection methods. We showed
that CPSO can successfully design both the sensor and coordinator control
levels jointly to improve reliability and performance of WBANs. We also
confirmed that our proposed collaborator selection methods is more effec-
tive than conventional collaborator selection methods in design multilevel
FLCs in WBANs.

Moreover, we have confirmed that CoCLF-MACT1 can achieve signif-
icantly better reliability and performance than cutting-edge algorithms
such as IEEE 802.15.4, AGA+ IEEE 802.15.4, AGA+CLFB, FCMA, CLFB
and D2MAC. We have also experimentally shown that only CoCLF-MACT2

can outperform IEEE 802.15.4 in terms of both PDR and packet delay for a
wider range of communication scenarios.

It is worthwhile mentioning that, during the whole design process, we
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0.000
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2.4×
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−
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have introduced neither specific mechanism nor significant changes to
IEEE 802.15.4. FLCs are fuzzy rules that are simple and easy to process.
Once FLCs for CoCLF-MAC have been designed through our cooperative
automatic approach, they can be easily integrated into sensor nodes and
the coordinator as long as they are compatible with IEEE 802.15.4 without
any major changes.



Chapter 6

Conclusions

This chapter highlights the achieved objectives, main conclusions, and
future research directions. The overall goal of this thesis is to investigate
cross-layer fuzzy logic controllers to improve reliability and performance
of MAC protocols in WBANs. This goal was successfully achieved by (1)
effectively using cross-layer based FLCs to improve reliability and perfor-
mance of IEEE 802.15.4 based MAC protocols, (2) developing evolutionary
approaches for automatic design of FLCs for cross-layer MAC in WBANs
in order to assure a reasonable balance between reliability and perfor-
mance, and (3) developing a two-level cross-layer FLC scheme for IEEE
802.15.4 based MAC protocols to take advantages of both distributed and
centralised mechanisms, i.e at both sensor level and coordinator level, to
cooperatively enhance channel quality.

The proposed design approaches were evaluated and compared with
related state-of-the-art algorithms. The results showed that our approaches
in this thesis are highly competitive and significantly outperformed the
related state-of-the-art algorithms.

The remainder of this chapter is organised as follows: Section 6.1 pro-
vides achieved objectives of each chapter. Section 6.2 presents conclusions
and discussion of each chapter. Section 6.3 highlights future research direc-
tions.
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6.1 Achieved Research Objectives

This thesis has successfully achieved its three main objectives as follows:

1. This thesis developed a Cross-Layer Fuzzy logic based Backoff (CLFB)
scheme to control contention based channel access. This new scheme
provides a desirable balance between reliability and performance by
introducing a distributed cross-layer FLC architecture to improve
exponential backoff algorithm based on channel condition and ap-
plication requirements. Particularly, CLFB uses the recent channel
condition to predict desirable backoff exponent in the CSMA/CA
algorithm. It also employs application data rates to balance between
the waiting time and the channel condition. Furthermore, a manual
approach has been adopted to design the FLC in our CLFB. The simu-
lation results clearly showed that CLFB significantly outperformed
the competing algorithms, including IEEE 802.15.4, Additional Carrier
Sensing (ACS) [163] and Dynamic delayed Medium Access Control
(D2MAC) [107] as well as a recently proposed algorithm [31] termed
“NB-Step”, in terms of reliability and performance without having
negative impact on packet delays. A part of this objective has been
published in [113].

2. This thesis developed an automatic EC-based approach for effective
and efficient design of FLCs for MAC in WBANs. With the goal of im-
proving network reliability while keeping the communication delay
at a low level, we have defined three coding schemes and evaluated
their usefulness during the proposed evolutionary design process.
We have also examined the influence of fitness functions that measure
the effectiveness of each possible FLC design in order to achieve a
good balance between network reliability and performance. More-
over, we have utilized surrogate models to improve the efficiency of
the design process. In consideration of practical usefulness, we have
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further identified two main design targets. The first target is to design
effective FLCs for a specific network configuration. The second target
focuses on designing FLCs to function effectively across a wide range
of network settings. Through a comprehensive set of experiments,
we have finally shown that our proposed approach for designing
FLCs clearly outperformed several recently proposed algorithms for
media access control in WBANs, including IEEE 802.15.4, ACS [163],
D2MAC [107] and NB-Step [31]. A part of this objective has been
published in [115, 114].

3. This thesis developed a Cooperative Cross Layer Fuzzy MAC controller
(CoCLF-MAC) which employs a two-level cross-layer FLC scheme
for IEEE 802.15.4 based MAC protocols. The new scheme takes the
advantage of both distributed and centralised mechanisms, at both the
sensor level and coordinator level to effectively enhance the reliability
and performance of WBANs. Particularly, the CLFB at the sensor
level controls the contention based channel access, and Cross-Layer
Fuzzy logic based GTS Allocation controller (CLFGA) at the coordinator
level controls contention free channel access.

This thesis also developed an automatic approach for cooperative
and effective design of our two-level FLC by using Cooperative Co-
Evolutionary Algorithms (CCEAs) in particular Cooperative PSO (CPSO).
For this purpose, we proposed a new collaborator selection scheme
based on our insight into efficient communication in WBANs and
employed the network knowledge to select suitable collaborators
in CPSO. We found that our new collaborator selection method
can clearly improve the effectiveness of the design process. We fi-
nally experimentally showed that our proposed approach for de-
signing two-level FLCs can clearly outperform several recently pro-
posed algorithms for media access control in WBANs, including IEEE
802.15.4 [3], CLFB, D2MAC [107], Adaptive GTS Allocation (AGA)+
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IEEE 802.15.4 [64], AGA+CLFB [64, 115] and Fuzzy Control Medium
Access (FCMA) [177]. A part of this achieved has been published in
[116].

6.2 Main Conclusions

Overall, this thesis finds that cross-layer FLCs can effectively improve
the communication quality in IEEE 802.15.4 based WBANs. This thesis
also introduces evolutionary approaches to automatically and effectively
design our proposed FLCs in order to assure a reasonable balance between
reliability and performance. These new approaches are experimentally
evaluated and shown to outperform several state-of-the-art algorithms.

6.2.1 Cross-Layer Fuzzy Logic based Backoff

Chapter 3 introduced a cross-layer FLC for IEEE 802.14.4 based MACs,
called Cross-Layer Fuzzy logic based Backoff system (CLFB), to improve
both network reliability and performance. Contrary to existing algorithms,
which increase either the WBAN reliability or performance, the new ap-
proach explicitly considers both of the two essential requirements. Particu-
larly, in consideration of channel condition and application requirements,
CLFB can improve reliability and performance without increasing packet
delay. By integrating our CLFB into the IEEE 802.15.4 MAC sub-layer, we
successfully enhanced the competence of this IEEE standard for various
WBAN-based applications. Moreover, FLCs are some simple and easy
to process fuzzy rules. Therefore, once FLCs are designed, they can be
easily integrated into sensor nodes without increasing the communication
complexity. Since CLFB focuses on tuning the parameter of the exponential
backoff algorithm in IEEE 802.15.4, it minimises the modifications to the
standard and does not introduce new communication overheads. This
chapter also experimentally demonstrated the effectiveness of CLFB over
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several cutting-edge algorithms in terms of both network reliability and
performance.

6.2.2 Automatic Design of Fuzzy Logic Controllers

Chapter 4 introduced a new EA-based approach for fully automated de-
sign of FLCs for CLFB in WBANs. This chapter introduced our approach
through five steps: 1) encoding the candidate solutions, 2) defining the
fitness function, 3) defining the fitness evaluation method, 4) applying
EAs to find suitable candidate solution that maximises the fitness function,
and finally 5) utilizing surrogate models to improve the efficiency of the
evolutionary design process.

1. Encoding the candidate solutions: This step of the design process
focuses on the coding scheme. The coding scheme turns an arbitrary
design of FLC into a candidate solution that can be evolved by EAs.
In order to produce an effective design of FLCs, we jointly investigate
the efficacy of three different coding schemes, namely UnRestricted
Coding Scheme (URCS), Strictly Restricted Coding Scheme (SRCS) and
the Moderately Restricted Coding Scheme (MRCS), with varied levels of
restrictions. Despite interpretability issues, we showed that the perfor-
mance of URCS is better than SRCS and MRCS. Although historically
more priority has been given to the performance, the importance of
interpretability is also well recognised. We demonstrated that our cod-
ing schemes (i.e. SRCS and MRCS) can provide a desirable trade-off
between interpretability and performance in practice.

2. Fitness function: In this step of the design process, we have designed
a meaningful fitness function to guide the evolutionary design pro-
cess. Our main design goal is to optimise the reliability of WBANs
(measured by PDR). On the other hand, the performance of the net-
work also has to be competitive to IEEE 802.15.4. In this research,
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throughput is considered indirectly through enhancing PDR. How-
ever, increasing PDR may lead to an increase in packet delay. Conse-
quently, PDR is constrained to packet delay. We, therefore, have to
pursue PDR as the main objective and packet delay as a constrained
the violation of which will be penalised in the fitness function.

3. Fitness evaluation method: In order to improve the practicality of
our approach, we have defined two evaluation methods in regard to
two different design targets. The first design target is to design FLCs
that function effectively on a specific network setting. The second
target is to design FLCs that are able to work consistently well across
a wide range of network settings.

4. Applying ECs: In the literature, it has been frequently shown that
EC techniques are very effective at handling noisy and multi-modal
problems. Due to this reason, EC-based automatic design of FLCs is
evaluated comprehensively in this research. It is worth noticing that
our approach is flexible to work with many EC techniques. Therefore,
in order to demonstrate that our approach can effectively work with
different EC techniques, we have successfully investigated the overall
usefulness of the approach through two well-known EC techniques,
i.e. PSO and DE.

5. Surrogate-assisted ECs: Since evaluating the fitness of any candidate
FLC design is time-consuming, this thesis also improved the efficiency
of the design process through surrogate models. It is worthwhile to
mention that, although the computation time still seems high after
using the surrogate model, the designed FLCs will actually be used
repeatedly in many WBAN applications. In other words, we need to
design FLCs only once and reuse them for many applications.

The practicality of the approach for designing FLCs demands for three
different requirements: effectiveness, efficiency and general applicability.
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Based on the reasons given below we believe that our approach is highly
practical.

1. Effectiveness: We have successfully demonstrated, through exper-
imental results, that our approach can design FLCs effectively to
provide both reliability and performance on WBANs. Particularly, we
have compared CLFB using our automated designed FLCs to other
state-of-art algorithms. The comparison shows that FLCs design
through our approach can outperform other competing algorithms in
terms of both reliability and performance.

2. Efficiency: The computation time of designing FLCs is considered
as the efficiency of the approach. We have enhanced the efficiency
of the approach through surrogate models. In this way, we have ex-
perimentally shown that our automatic design approach significantly
improves the efficiency of the design process.

3. General applicability: We introduced two design targets. The first
target is for patients who have a specific WBAN configuration. The
second target focuses on multiple WBAN configurations. Although
the designed rules based on the second target in a specific WBAN
setting might not as effective as the designed rules based on the
first target, the second target can provide a reasonably good balance
between PDR and delay for a wide range of WBAN settings. That
means this is not necessary to re-design rules from scratch for every
different network setting. In this way, a specific sensor node can be
added or removed without significantly degrading reliability and
performance of the WBAN.
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6.2.3 Cooperative Design of Two Level Fuzzy Logic Con-

trollers

Chapter 5 introduced a two-level cross-layer FLC, which is called Coop-
erative Cross Layer Fuzzy MAC controller (CoCLF-MAC), for high quality
communication in IEEE 802.15.4-based WBANs. Specifically, CLFB at the
sensor level aims at optimising the performance of exponential backoff
algorithm. Meanwhile, our Cross-Layer Fuzzy logic based GTS Allocation
controller (CLFGA) at the coordinator level prioritises GTS allocation based
on channel condition and application data rate. The chapter finds that the
proposed CoCLF-MAC has potential to significantly improve reliability
and performance of the IEEE 802.15.4-based MAC in the context of WBANs.

To cooperatively and automatically design FLCs at both the sensor
level and coordinator level, a CCEA-approach has been introduced in this
chapter. This chapter finds that collaborator selection can significantly
affect the effectiveness of CCEAs in the design process. Therefore, we
introduce two collaborator selection methods based on our knowledge for
effective communication in WBANs. It has been shown that the proposed
collaborator selection methods can clearly improve the effectiveness of the
design process.

This chapter also has studied the practicality of the design approach as
follows:

1. Effectiveness: The experimental results showed that our automatic
approach to design FLCs in CoCLF-MAC can significantly outper-
form other cutting-edge algorithms in terms of both network reliabil-
ity and performance.

2. General applicability: CoCLF-MAC has been designed based on two
design targets: (1) a specific WBAN configuration (2) over multiple
WBAN configurations. Both targets have been achieved successfully,
confirming the practical usefulness of the proposed approach.
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6.3 Future Works

This section suggests a direction of future research works.

6.3.1 IEEE 802.15.6

Since most WBANs are often supported by IEEE 802.15.4 compliant chip set
[91, 83], this thesis has focused on improving IEEE 802.15.4. Throughout,
we have shown that cross-layer FLCs can effectively improve the reliabil-
ity and performance of IEEE 802.15.4 based WBANs. However, the IEEE
802.15 task group 6 [4] recently introduced IEEE 802.15.6 to reduce low
energy consumption and improve reliable communication in, on, or around
human body. Although IEEE 802.15.6 outlines the basic elements needed to
provide interoperability among different devices [140], it does not consider
a complete MAC protocol that is suitable for WBANs. For instance, it
provides packet format and message exchange protocols. However, this
standard does not consider perceived policies regarding the channel condi-
tion history and application requirements, resulting in an incomplete MAC
protocol. In order to consider the channel condition history and application
requirements, it is important to also investigate using cross-layer FLCs in
IEEE 802.15.6 to improve reliability and performance of the network.

6.3.2 Multi-Objective EC Techniques

In this thesis, we focused on improving network reliability and performance
in WBANs through a single optimisation objective. The objective focuses
on optimising the reliability of WBANs (measured by PDR). As a result,
throughput can be increased directly through increasing PDR. On the other
hand, the performance of the network has to remain competitive with
respect to IEEE 802.15.4. However, increasing PDR may lead to an increase
in packet delay. We therefore decided to pursue PDR as the main objective
and packet delay as a soft constraint, the violation of which would be
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penalised through the fitness function.
Rather than optimising one objective, in the future, we can consider

the use of Evolutionary Multi-Objective (EMO) algorithms such as, Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [37] and Strength Pareto
Evolutionary Algorithm 2 (SPEA-2) [180]. Through EMO algorithms, we can
pursue simultaneously many different compromises over two conflicting
objectives, i.e. PDR and packet delays. Selecting the most suitable FLC
design over a group of Pareto-optimal designs suggests another interesting
research question to be investigated.

6.3.3 Surrogate-assisted Cooperative Coevolution

Since fitness evaluations may often become costly and EC techniques usu-
ally require a large number of fitness function evaluations before converg-
ing to a good FLC design [74], it is necessary to utilise a surrogate model for
approximating the fitness of candidate to increase the practicality of our de-
sign approach. Therefore, in this thesis, we have investigated the usefulness
of surrogate models to improve the efficiency of conventional EC-based
design of FLCs for CLFB in WBANs. We experimentally showed that, there
is an almost 70% saving of computation time upon using surrogate models
and they are as effective as design approach without surrogate models.
Nevertheless, the computation time for our cooperative coevolutionary
design of multilevel FLCs for CoCLF-MAC in WBANs is 489.96±6.42 hours.
In order to improve the efficiency and practicality of our cooperative coevo-
lutionary design process, it is important to use surrogate models in future
approach.

Furthermore, in this thesis, we use have used Multi-Layer Perceptrons
(MLPs) to build our surrogate model. Nevertheless, other models approx-
imation models can also be utilised in our design problem. For example,
statistical learning methods such as Gaussian processes can provide accu-
racy information such as confidence intervals for the estimated values. On
the other hand, the computation cost of Radial Basis Function (RBF) models
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are less expensive than Gaussian processes. To build an effective surrogate
model to assist EC-based design of FLCs, it is important to study different
approximation models in our design problem in the future.

6.3.4 Real Life Experiments

In this thesis, we confirmed the effectiveness of our schemes through net-
work simulations based on OMNeT++. Nevertheless, our simulations do
not always reflect real-world scenarios precisely. In order to evaluate our
proposed schemes such as CLFB and CoCLF-MAC, in the future, we are
interested in examining them in real-world testbed. Real-world evalua-
tion is challenging due to three requirements: (1) Medical and Human
Ethics Committee (HEC) approvals, which are needed to conduct tests
on patients. (2) Selection of representative patients and test scenarios. (3)
Finally, equipment preparation and implementation require funding. Due
to these reasons, we could not manage to perform real-life tests in this
thesis. However, we ae planning to seek funding to evaluate our proposed
schemes through real-life tests, in the future.

6.4 Final Remarks

The Human population took thousands of generations to reach 2.3 billion
in 1945. However, in one human lifetime, it went to 6.4 billion in 2005
and the demographic expectation is over 9 billion in 2050 [153]. This
puts pressure on food, water and vulnerable natural resources, health
care demand and medical treatment. Hence there is a growing need for
more scalable and more inexpensive healthcare solutions [106]. Advances
in sensor networking have opened up new opportunities in healthcare
systems by introducing Wireless Body Area Networks (WBANs). This
thesis has improved quality of communication in WBANs based on the
current standard (i.e. IEEE 802.15.4). We hope this research could result in
long-term benefits of using WBANs including earlier crisis detection and
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help to improve quality of life for people.
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[67] HÜSKEN, M., JIN, Y., AND SENDHOFF, B. Structure optimization of
neural networks for evolutionary design optimization. Soft Computing
9, 1 (Jan 2005), 21–28.

[68] HUSSEIN, A. A., AND ALI, M. H. Fuzzy logic controlled variable
resistor for suppressing gic in transformers. IET Generation, Transmis-
sion Distribution 11, 6 (2017), 1494–1501.
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Appendix A

High performance Computation

NeSI provides High Performance Computing (HPC) platforms in New
Zealand. The specifications of platforms are summarised in Table A.1.

Table A.1: The specifications of High Performance Computing (HPC) plat-
forms

Platform Hardware Operating Environment

P575/POWER6
FitzRoy

- 108 nodes each with 32 cores
(3,456 4.7 GHz processor cores)
with each node having either 64 or
128 GB RAM, providing 8,704 GB
RAM in total.
- DDR InfiniBand interconnect
between nodes

- AIX
- GPFS high performance parallel
file system
- LoadLeveler workload scheduler
and TSM-SM Hierarchical Storage
Management (HSM)

Intel cluster
Pan

- 6,000+ cores of Intel based x86
processors (IvyBridge/SandyBridge
/Westmere) operating at 2.7-2.8 GHz
with approximately 8 GB RAM per core
- 42 GPU devices (Tesla M2090 and
K20X models)
- 4 Intel Xeon Phi devices
(Intel Phi 5110P) QDR Infiniband
interconnect

- Linux
- GPFS high performance parallel
file system
- SLURM workload scheduler
and TSM-SM Hierarchical Storage
Management (HSM)
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