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Abstract

Learning is an important activity through which humanity has incremen-

tally improved accomplishing tasks by adapting knowledge and methods

based on the related feedback. Although learning is natural to humans,

it is much more difficult to achieve in the technological world as tasks

are often learned in isolation. Software is capable of learning novel tech-

niques and algorithms in order to solve these basic, individual problems,

however transferring said knowledge to other problems in the same or re-

lated domains presents challenges. Solutions often cannot be enumerated

to discover the best one as many problems of interest can be intractable in

terms of the resources needed to successfully complete them. However,

many such problems contain key building blocks of knowledge that can

be leveraged to achieve a suitable solution. These building blocks encap-

sulate important structural regularities of the problem. A technique that

can learn these regularities without enumeration, may produce general so-

lutions that apply to similar problems of any length. This implies reusing

learned information.

In order to reuse learned blocks of knowledge, it is important that a

program be scalable and flexible. This requires a program capable of tak-

ing knowledge from a previous task and applying it to a more complex

problem or a problem with a similar pattern. This is anticipated to enable

the program to complete the new task in a practical amount of time and

with reasonable amounts of resources.

In machine learning, the degree of human intervention in solving prob-

lems is often important in many tasks. It is generally necessary for a hu-

man to provide input to direct and improve learning. In the field of De-

velopmental Learning there is the idea known as the Threshold Concept



(TC). A TC is transformative information which advocates learning. TCs

are important because without them, the learner cannot progress. In addi-

tion, TCs need to be learned in a particular order, much like a curriculum,

thus providing the student with viable progress towards learning more

difficult ideas at a faster pace than otherwise. Therefore, human input

to a learning algorithm can be to partition a problem into constituent sub-

problems. This is a principal concept of Layered Learning (LL), where a se-

quence of sub-problems are learned. The sub-problems are self-contained

stages which have been separated by a human. This technique is neces-

sary for tasks in which learning a direct mapping from inputs to outputs

is intractable given existing learning algorithms.

One of the first artificial learning systems developed is Learning Clas-

sifier Systems (LCSs). Past work has extended LCSs to provide more ex-

pressivity by using richer representations. One such representation is tree-

based and is common to the Genetic Programming (GP) technique. GP is

part of the Evolutionary Computation (EC) paradigm and produces so-

lutions represented by trees. The tree nodes can contain functions, and

leaf nodes problem features, giving GP a rich representation. A more re-

cent technique is Code Fragments (CFs). CFs are GP-like sub-trees with an

initial maximum height of two. Initially, CFs contained hard-coded func-

tions at the root nodes and problem features or previously learned CFs at

the leaf nodes of the sub-trees. CFs provided improved expressivity and

scalability over the original ternary alphabet used by LCSs. Additionally,

CF-based systems have successfully learned previously intractable prob-

lems, e.g. 135-bit multiplexer.

Although CFs have provided increased scalability, they suffer from a

structural weakness. As the problem scales, the chains of CFs grow to in-

tractable lengths. This means that at some point the LCS will stop learning.

In addition, CFs were originally meant to scale to more complex problems

in the same domain. However, it is advantageous to compile cross-domain

solutions, as the regularities of a problem might be from different domains



to that expressed by the data.

The proposed thesis is that a CF-based LCS can scale to complex prob-

lems by reusing learned solutions of problems as functions at the inner

nodes of CFs together with compaction and Layered Learning. The over-

all goal is divided into the following three sub-goals: reuse learned func-

tionality from smaller problems in the root nodes of CF sub-trees, identify

a compaction technique that facilitates reduced solution size for improved

evaluation time of CFs and develop a layered learning methodology for a

CF system, which will be demonstrated by learning a general solution to

an intractable problem, i.e. n-bit Multiplexer.

In this novel work, Code Fragments are extended to include learned

functionality at the root nodes of the sub-trees in a technique known as

XCSCF 2. A new compaction technique is designed, which produces an

equivalent set of ternary rules from CF rules. This technique is known

as XCSCF3. The work culminates with a new technique XCSCF*, which

combines Layered Learning, Code Fragments and Transfer Learning (TL)

of knowledge and functionality to produce scalable and general solutions,

i.e. to the n-bit multiplexer problem.

The novel ideas are tested with the multiplexer and hidden multiplexer

problems. These problems are chosen because they are difficult due to

epistasis, sparsity and non-linearity. Therefore they provide ample oppor-

tunity for testing the new contributions.

The thesis work has shown that CFs can be used in various ways to

increase scalability and to discover solutions to complex problems. Specif-

ically the following three contributions were produced: learned function-

ality was captured in LCS populations from smaller problems and was

reused in the root nodes of CF sub-trees. An online compaction technique

that facilitates reduced evaluation time of CFs was designed. A layered

learning method to train a CF system in a manner leading to a general

solution was developed. This was demonstrated through learning a so-

lution to a previously intractable problem, i.e. the n-bit Multiplexer. The



thesis concludes with suggestions for future work aimed at providing bet-

ter scalability when using compaction techniques.
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Chapter 1

Introduction

“We know that the greatest works can be represented in model, and that

the universe can be represented by the same means. The same principles

by which we measure an inch or an acre of ground will measure to millions

in extent. A circle of an inch diameter has the same geometrical properties

as a circle that would circumscribe the universe. The same properties of

a triangle that will demonstrate upon paper the course of a ship will do

it on the ocean, and when applied to what are called the heavenly bodies,

will ascertain to a minute the time of an eclipse, though those bodies are

millions of miles distant from us.”

Thomas Paine, The Age of Reason, 1938 (p. 168)

1.1 Scope

Learning can be defined as, “the improvement of performance in some

environment through the acquisition of knowledge resulting from experi-

ence in that environment” [88]. This is a sought-after property for soft-

ware agents because it holds the promise for durable and progressive

change in our everyday lives. While human beings have a natural abil-

ity for learning, software agents face several challenges in this endeavor.

First of all, unlike humans, software agents are often unable to generalize

1
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from a single example, they are liable to require many more [57]. In addi-

tion, software agents find it more difficult to use learned concepts using a

richer representation than conventional algorithms [57]. Conventional al-

gorithms tend to use simpler representations which translate into an easier

computation and smaller requirement of resources.

The accumulation of knowledge learned through experience can also

present challenges for software agents. Chief among these is the notion

of having too many hypotheses or having too few. If there are too many,

learning can become difficult due to a large search space. On the other

hand, with too few hypotheses, the system may be incapable of learning

quickly enough or not at all, due to missing functionality. Therefore accu-

mulated knowledge is a crucial aspect of learning and plays a critical role

in knowledge reusability, or experience, in human terms. Reusability is

important because once new knowledge is stored in an appropriate form,

it can then be utilized to solve problems in the same or a related domain.

Although this type of processing is not a priority for many computer sys-

tems [11], there exist possible avenues of research to explore its usefulness.

The original work presented here is part of the paradigm known as

Evolutionary Computation (EC). It is a group of techniques that rely on

Darwinian principles to simulate the process of natural selection to find

highly fit solutions to a problem [89]. There exist many pressures in this

type of system, which force the evolution of a population that can be the

solution to the problem. These solutions can be evolved by progressive

exploration of the sample space. The sample space is composed of all

the possible instances of a problem. EC is a good paradigm for symbolic

learning because its general solutions can be encapsulated in compact rep-

resentations. Moreover, EC has been used successfully to evolve solutions

to intractable problems.

Depending on the approach used to represent the environment sym-

bolically, the learning can be impacted positively or negatively. For exam-

ple, using a simple ternary alphabet, such as {0, 1, #}, can be quick and
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easy to compute an answer, however there is a lack of expressivity in this

type of representation. Using a richer representation can yield solutions

that can cover the problem space more completely and with more expres-

sivity. However, this type of representation can increase the search space

and this can hinder learning. The search space denotes all the possible

combinations of available functionality, i.e. the learned knowledge.

A powerful EC technique that has been used for learning solutions is

Learning Classifier Systems (LCSs) [13]. They have been in use for over

40 years. Originally they were formulated as cognitive systems, however

they have changed to become classification techniques. Cognitive systems

were used to model part of the brain functionality. LCSs are composed of

rules, or classifiers, which are known as individuals in the population of

the system. The rules are composed of two main parts, the condition and

the action. The condition and action can be thought of as a series of ‘If

Then Statements’ [82]. When particular conditions are met, a valid action

will be the output. Therefore the condition can also be regarded as equiv-

alent to the stimulus from the environment, i.e. the message, when the

condition matches the environmental message. The action is the response

from the agent or the class.

There are two main types of LCSs, the Michigan based and Pittsburgh

based varieties. The main difference between both types is that Michigan

based LCSs tend to produce one population of classifiers that together con-

stitute the solution to the problem. The Pittsburgh variety produce sets of

solutions where each set can be a solution to the problem. Also, Michi-

gan based LCSs can be used for solving online as well as offline problems

while Pittsburgh based LCS are mainly for offline problems [88].

The classifiers of an LCS consist of two main parts, the conditions part

and the action part. What these indicate is that a particular number of

conditions can map to a valid action or classification. The classifiers con-

stitute rules that can be applied to a problem in a domain in order to map

all possible classifications. For example, the conditions could communi-
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cate that if a car has four doors, four wheels and uses gasoline, then it is

classified as a sedan. The purpose of the classifiers is to niche – or par-

tition – the problem space into sub-parts that are easier to handle by the

agent [79]. However, it is not possible to exhaustively enumerate some

problem spaces because they may be too large and hence require an im-

practically long time to search. The LCSs address this type of situation

by introducing generality into the classifier rules. This indicates that the

representation used in the classifiers is very important in solving the prob-

lems.

Generally the major parts of an LCS are the encoding of the environ-

ment, the learning agent, the population of classifiers and the discovery

component. In the Michigan style of LCS, the environment provides a

stimulus that is encoded by the agent. The agent then finds or creates

the set of classifiers that match the environment signal [79]. When the

agent creates new classifiers, this is known as covering [95]. Depending

on whether the current phase is training or testing, the agent chooses an

action out of the set of possible actions. If the current phase is testing then

the best possible action is chosen. If training, a random action is chosen.

At that point the classifiers matching the predicted action are chosen out of

the previously created matchset. These are the classifiers that make up the

actionset. The action is executed and the environment provides a reward.

This is a normal aspect of reinforcement learning, and it has implications

on the population set. A Genetic Algorithm may be activated during the

testing phase, such that new classifiers are created by choosing two use-

ful parents and cross breeding them [63]. Mutation may also be applied,

which plays an important part in enforcing diversity among the popula-

tion of classifiers.

The measure of classifier worthiness has changed over the decades

during which the LCS technique has been used [79]. Two of the main

ways for this determination are strength and accuracy. The Zeroth Level

Classifier (ZCS) is a strength based LCS, which exemplifies simplicity over
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its predecessors. However ZCS exhibits unsatisfactory performance due

to the abundance of over-general classifiers [79], [88], [94], [95]. The tech-

nique eXtended Classifier System (XCS) differs from other types of LCSs in

that the fitness of the classifiers is based on the accuracy of the prediction

of the reward and not on the prediction itself. This means that the popu-

lation of classifiers is pressured towards being accurate, however, specific

classifiers that satisfy certain niches are not readily eliminated. This often

results in a compact population of classifiers that is maximally general and

accurate [22], [95].

Learning Classifier Systems have provided numerous benefits to the

field of machine learning such as human interpretable solutions and ar-

guably, ease of implementation, but they suffer from a number of weak-

nesses. They tend to produce large final populations, which can be dif-

ficult to process when solving problems. Also, the original ternary rep-

resentation of the classifiers can not address complex domains due to its

simplistic nature. Another major flaw in LCSs is that ordinarily they tend

to throw away any learned knowledge and must begin anew when solving

a new problem.

The introduction of aspects of Genetic Programming (GP) into LCSs

has enabled richer alphabets. Genetic Programming is part of the Evolu-

tionary Computation (EC) paradigm and produces solutions represented

by trees. The tree nodes can contain functions, giving the LCS the capabil-

ity of addressing complex domains [80], [102]. More recently, Code Frag-

ments (CFs) were introduced into the XCS framework enabling knowl-

edge to be maintained during successive problems in the same domain.

This was achieved by storing all the learned knowledge for later usage.

This increased scalability and increased the power of expression in LCSs.

CFs are GP-like sub-trees which utilize a given function-set in the root

nodes. The function-set is problem dependent, e.g. {+,−, ∗, /...} for sym-

bolic regression problems, and {AND, OR, NAND, NOR...} for binary

classification problems [49]. CFs also utilize a set of terminals at the leaf
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nodes, i.e. {D0, D1, D2, ... Dn-1}, where n is the length of the environ-

mental input state [49]. The terminals map to the problem features , see

Figure 1.1. Just like there is a don’tCare symbol in the original ternary al-

phabet of classifiers, there is a don’tCare CF. It always returns 1 and serves

the same purpose as the original ‘#’ in the ternary alphabet, see Figure 1.2.

CFs have an initial maximum depth of two [44]. This limit was chosen

because it was determined to help limit bloating, i.e. the introduction of

large numbers of introns. Introns are seemingly useless genetic code that

accumulates throughout the run of a system. In EC introns are a liability

because they increase the search space. Analysis suggests that there is an

implicit pressure for parsimony [48].

CFs have been combined successfully with a number of techniques. A

system where XCS was combined with CFs is XCS with Code Fragment

Condition (XCSCFC), see Section 2.5 (page 31). This technique was instru-

mental in solving until-then intractable problems, e.g. the 135-Bit Mux,

i.e a Boolean problem. Another CF-based system is XCS with Code Frag-

ment Action (XCSCFA) [42]. This type maintained the ternary alphabet

for the condition part, but substituted a CF for the action part. The system

provided more expressivity for the action part while providing an unan-

ticipated benefit. In certain XCSCFA configurations the final population of

classifiers was autonomously divided into optimal and sub-optimal sub-

populations [45]. This eased the process of simplification, see Chapter 2.

Normally, LCSs do not produce final populations in this manner, hence the

need arises for a compaction algorithm to streamline the final classifiers.

The above stated techniques and expansions have introduced many

improvements in scalability. However, inherent limitations in the same,

provide opportunity for new techniques to help an LCS scale better during

increasingly larger problems.
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D5

|

D1

&

D0

|

D2

Figure 1.1: An example of a code fragment. Here D0, D1, D2 and D5

represent classifier condition bits. Also, ‘&’ represents logical AND, and

‘|’ represents logical OR.

|

D0 ~

D0

Figure 1.2: An example of a don’tCare code fragment. The don’tCare CF

always outputs a 1. This is important because in order for a classifier to

take part in a matchset all of its condition CFs have to return a 1

1.2 Motivation

Although XCSCFC fulfilled its potential in terms of increased scalability

and an increased power of expression, it suffers from a systemic weakness.
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Since the CF sub-trees reuse other CFs at the leaf nodes, the chains of CFs

grow to intractable lengths. At some point, depending on the problem,

the system stops learning as the search space increases. While XCSCFC

was the first LCS to successfully solve the 135-bit multiplexer, it was not

capable of solving any of the more difficult multiplexer problems.

Ironically, one of the main reasons for XCSCFC’s lack of scalability for

the more difficult multiplexer problems was its very own advantage, its in-

creased power of expression. Although the original ternary alphabet was

limited and incapable of expressing complex domains, CFs suffer from too

much expressivity. Since they are compact, they contain much more func-

tionality packed in them than a ternary based alphabet. This increases the

search space to the point that learning can be impacted negatively as the

problem scales [49].

Other versions of the CF-based techniques have also been unsuccess-

ful at learning specific problems, e.g. the 264-bit multiplexer. XCSCFA, an-

other CF-based technique, produced well divided final populations where

the useful and not useful classifiers were grouped together, however it was

not capable of evolving a general solution to the multiplexer problem ei-

ther. It is hypothesized that the reason is that the multiplexer problem is

very difficult. It contains epistasis, which means that the importance of

certain bits depends on the values of other bits in the message. The multi-

plexer problem is also highly non-linear and this makes it difficult for an

LCS to discover the patterns that will solve it successfully in a tractable

amount of time. More importantly, some of the functionality that could

be very useful in solving this type of problem is not part of the Boolean

domain [41]. This suggests that a system needs to learn information from

multiple domains, store that knowledge and successfully use it in the so-

lution of further problems. New techniques are needed to increase scala-

bility and learning of LCSs.

Code Fragments enable adaptation of their terminal set because of their

rich and dynamic expressions, i.e. created CFs are added to the termi-
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nal set. Furthermore, All other common EC approaches predefine their

function set, which is not linked to the terminal set [49]. This includes

discovered building blocks, see Chapter 4. A novel method is needed to

enable functions within an LCS to be adapted and linked to the associ-

ated discovered building blocks. It is hypothesized that this will provide

increased scalability by reducing the search space. There is a similarity

between the arguments and return values of functions and the condition

part and actions returned by rule sets that could be exploited. This could

provide benefits in the form of modularity for the final rule-sets produced

by an LCS, similar to a function. During covering, only certain groups of

classifiers could be processed as opposed to conducting a search on the

entire final population.

The choice of alphabet plays a major role not just in the learning capa-

bility of a system, but also in its practicality within a problem domain. As

such, there is a trade-off between sample space and search space. Low-

level alphabets, such as the ternary alphabet, are fast to execute, compact

and straightforward to interpret, but the search space is poor such that the

algorithm may become trapped in local optima, see Section 2.1. High-level

alphabets, such as GP trees are expressive [81] , so they can avoid local op-

tima by redesigning the search space, see Section 2.1. On the other hand,

they are slow to execute, are susceptible to bloating and are difficult to in-

terpret [101]. It is hypothesized that it could be possible to transform the

high-level CF solutions, retaining their benefits, to a low-level alphabet,

thus reaping their benefits in future processing, see Chapter 5.

Learning Classifier Systems excel at creating a complete state-action

map, these are rules that cover the entire input space. They accomplish

this by discovering underlying patterns that link features to classes in the

training data. This is also true if there exists an observable, computable

relationship between features and classes in the data. For example, a

weighted sum approach of the raw features [97] . However, if the rela-

tionships are not linearly separable and the appropriate functionality is
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not available in the function set, the learning systems will struggle to dis-

cover such patterns. Furthermore, even if the functionality is available

in the function set, it is not clear what building blocks of learned infor-

mation should be used as input to the functions. Humans overcome this

problem by using threshold concepts where a teacher provides a curricu-

lum of learning to ensure that a new learner has appropriate functionality

available to solve successive problems that build on each other. Concepts

from layered learning and transfer learning will be considered to adopt a

similar approach into LCS, see Chapter 6. Layered Learning (LL) pertains

to the successive, bottom-up learning of a problem that has been broken

into sub-problems by a human. This could be a useful approach, consid-

ering the limitations of CFs. Transfer Learning (TL) pertains to the tech-

nique where learned information from a problem domain is used to solve

a problem in a target domain. This new domain may be the same or a

related domain [106].

1.3 Thesis Statement

The proposed thesis is that a CF-based LCS can scale to complex prob-

lems by reusing LCS populations as functions at the inner nodes of CFs,

using online compaction and using layered learning in the same or related

domain.

1.4 Research Goals

The overall practical goal following from this thesis is to increase the scal-

ability of learning classifier systems. The overall goal is divided into the

following three sub-goals:

∗ Reuse learned functionality captured in LCS populations from smaller

problems in the root nodes of CF sub-trees.
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∗ Create an online compaction technique that facilitates reduced evalua-

tion time of CFs.

∗ Develop a method to train a CF system in a manner leading to a general

solution. This will be demonstrated through an intractable problem,

i.e. the n-bit Multiplexer.

The three objectives are:

• Show that inner node-based functionality is beneficial. This objective

will be evaluated by testing it with progressively more difficult mul-

tiplexer problems up to and including the 135-bit multiplexer. The

technique will also be tested with the 3x6 hidden multiplexer prob-

lem. Here there will be three separate training paths for the new

system. These will be used to determine the benefit of including or

omitting certain functions from the training.

• Create a compaction technique to simplify the final population of CF

rules. The technique will be online and will translate the CFs into

an equivalent rules-set using a ternary alphabet. The benefit of the

technique will be measured by its performance during a series of

multiplexer problems. The system will also be tested with the 3x6

and 3x11 hidden multiplexer problems.

• Show that Layered Learning can provide benefits in scaling for a CF

based LCS by solving an intractable problem. The n-bit multiplexer

problem will be partitioned into constituent sub-problems by a hu-

man. The technique will then be trained on these sub-problems in se-

ries. Following this, rules for the 6-bit multiplexer will be produced

by the proposed system. At this point, the rules are anticipated to

be maximally general and able to cover the entire problem space. To

determine this, the rules will be tested against progressively more

difficult multiplexer problems of very large size, e.g. 264-bits and

above.
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XCS will be used to implement the techniques listed above; it is a well

tested and studied implementation of the LCS technique. Additionally,

Layered Learning is flexible, accurate as it has full functionality and is easy

to adapt to Transfer Learning. For these reasons the techniques mentioned

above are well suited for the purpose of this thesis.

1.5 Major Contributions

The novel work in this thesis is based on a body of knowledge that in-

cludes CFs. These were rooted in ADFs from GP but were not predeter-

mined structures [43]. CFs have been used in the condition or the action

of a classifier [49], [42]. Subsequently, the concept of generative represen-

tation in LCS was extended to finite state machines [46]. CFs could only

be used at the leaf nodes of CF sub-trees, which meant that knowledge

could be transferred but crucially not functionality. A scaled approach to

learning thus could be adopted, but not a layered learning approach. This

meant that learned functionality could not be continually expanded. The

novel work used CFs at the inner root nodes of CF sub-trees as well as the

leaf nodes. The resulting problem of long chains of learned knowledge

and functionality can be reduced using the novel compaction technique

which reduces a rich alphabet, that is slow to process, into a fast but sim-

ple alphabet. The novel technique utilizing a layered learning approach in

LCS with CFs at the root nodes as well as the leaf nodes of CF sub-trees is

crucial in increasing the scalability of an LCS. In addition it transforms EC

practitioners from specifiers of problems to specifiers of curricula in order

to solve simple problems that lead to a solution of more complex problems

that could not have been solved previously.

This thesis has led to the following major contributions to the field of

Evolutionary Computation in general and to the field of LCS-based learn-

ing in particular.

(a) A main contribution of this work was showing that a growing set of
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learned functions reused in the inner nodes of a code fragment tree

can be beneficial. Using this approach, the system was capable of

solving up to the 135-bit multiplexer and the 3x6 hidden multiplexer.

Parts of this contribution have been published in:

IWLCS 2014 - Reusing Learned Functionality in XCS: Code Frag-

ments with Constructed Functionality and Constructed Features [3]

SEAL 2014 - Reusing Learned Functionality to Address Complex

Boolean Functions [4]

(b) A compaction technique was created which facilitated the solution

to numerous problems with high epistasis and non-linearity. The

technique transformed the representation of knowledge from CFs to

a ternary alphabet. The novel work culminates in an innovative on-

line method to produce Distilled Rules (DRs). The new technique

was capable of producing DRs for the 70-bit multiplexer problem.

This is something that the original DRs technique was incapable of

accomplishing.

Parts of this contribution have been published in:

ACALCI 2016 - Compaction for Code Fragment Based Learning

Classifier Systems [5]

CEC 2016 - Compaction for Code Fragment Based Learning Classi-

fier Systems - Redux [6]

(c) The scalability capability of a CF-based LCS was increased by us-

ing Layered Learning as well as Transfer Learning. The novel work

reused learned knowledge and learned functionality to scale to com-

plex problems by transferring them from simpler problems. Progress

was demonstrated on the benchmark Multiplexer (Mux) domain.

Parts of this contribution have been published in:
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GECCO 2016 - Human-inspired Scaling in Learning Classifier Sys-

tems: Case Study on the n-bit Multiplexer Problem Set [7]

1.6 Organization of Thesis

The remainder of this thesis is organized as follows.

Chapter 2 provides a detailed description of LCSs along with an

overview of related evolutionary machine learning and knowledge trans-

fer learning approaches. This chapter also describes various encoding

schemes that have been used by the LCS community to represent classifier

rules.

Chapter 3 describes two research methodologies adopted in this work,

to achieve the overall goal, and briefly describes the systems designed and

implemented following these research methodologies. The details of each

implemented system are provided in a separate contribution chapter, from

Chapter 4 to Chapter 6. It also provides details of the problem domains ex-

perimented here and the experimental setup used for testing and evaluat-

ing the developed systems. This chapter also clarifies various differences

between the evaluation of an LCS and a traditional evolutionary machine

learning approach.

In Chapter 4, building blocks of knowledge are successfully extracted

from small-scale problems and reused at the root nodes of CF sub-trees to

learn more complex, large-scale problems in the domain. By utilizing this

novel learning approach, the resulting system readily solves problems of a

scale that existing classifier system and genetic programming approaches

find troublesome, e.g. the 135-bit MUX problem, hidden multiplexer.

In Chapter 5, the compaction capability of a classifier system is in-

creased beyond what normal subsumption and deletion can normally

achieve. This helped the system to learn a series of Boolean operators

without the use of hard-coded functions and subsequently more difficult

problems such as the 3x11 hidden multiplexer.
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In Chapter 6, the scalability of CF-based classifier systems is increased

by using a layer learning approach to the training phase. A difficult prob-

lem is broken into major constituent parts. The parts are solved in suc-

cession while reusing previously learned knowledge during the next part.

The type of systems used here maintained the usual ternary alphabet for

the condition part while substituting a CF for the binary action part. The

developed system produced general solutions of any scale n for the mul-

tiplexer problem.

Chapter 7 presents the achieved objectives, main conclusions from each

contribution chapter, and the future work that stems from this research

work.
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Chapter 2

Literature Review

This chapter provides an overview of Evolutionary Computation (EC),

Learning Classifier Systems (LCSs) and Code Fragments (CFs). This chap-

ter will also be devoted to describing Transfer Learning (TL), Layered

Learning (LL) as well as other methods for expressing rules in LCSs. This

outline structure follows closely the progressive development of the thesis

work.

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a paradigm for problem-solving tech-

niques. Characteristically, these techniques are based on principles of Dar-

winian evolution, such as natural selection and biological principles such

as genetic inheritance [24], [52], [93]. EC is deemed a suitable approach to

this thesis because it encompasses numerous techniques which have been

found beneficial for specific tasks such as learning and scalability [48], [49],

see Chapter 4, Chapter 5 and Chapter 6. One such technique is Learning

Classifier Systems (LCS) [13], [62].

Another EC member is Genetic Programming (GP). It is a technique

that genetically evolves a population of programs that can produce a se-

ries of algorithmic steps. These steps can constitute an answer to a prob-

17
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lem [54]. In GP, the program is usually represented in the form of trees [16].

The tree nodes consist of two sets of members: functions and terminals.

The goal is to evolve programs that could compute a solution [65]. The

functions are drawn from the reservoir of functions provided a priori [74].

These could take the form of arithmetic operators such as {x, -, +, /}, or

boolean operators such as {AND, OR, NOT, XOR} [75]. The terminals

can take the form of constants, such as integers or real numbers {1, 3, 2.2,

6.9}, or they could represent variables, such as distance x or height y. Nor-

mally the inner nodes will be comprised of functions from the function set

while the leaf nodes are comprised of terminals from the terminal set. GP

allows for complex representations of solutions by leveraging a rich alpha-

bet composed of the terminal set and the function set. These programs are

flexible and powerful but suffer from bloating, i.e. constant growth of the

trees. However, there exist different mechanisms for limiting the creation

of introns, i.e. apparently useless genetic code [104], [105].

GP is an integral part of this work since its representation is key in ex-

tracting reusable building blocks of information. GP assists in translating

the representation of the classifier condition into a more abstract, complex

form [11], [52], [70]. This representation forms the basis for much of the

new work presented here and has been crucial in enabling the extraction

of building blocks of knowledge as well as increasing the scalability to

more complex problems [49], see Section 6.1. The disadvantage of using

GP is that it has a very large search space caused by the rich alphabet and

would make it unfeasible for solving some of the more complex problems

such as the 135-bit multiplexer [49], [103].

2.2 Learning Classifier Systems

The initial description of the Learning Classifier System (LCS) was of a

cognitive system [34]. The concept was that this kind of system could learn

about its environment and about its state, thus enabling it to execute bene-
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ficial actions on its environment [99]. Cognition is a term from psychology

that is defined as the process of acquiring knowledge and understanding

through thought, experience, and the senses [29]. This implies the ability

to consider ostensibly disparate information and then apply it towards a

desired goal [98].

Holland and Rietman proposed the first Learning Cognitive System

(CS-1); this was the first implementation of an LCS [13]. The Learning

System One (LS-1) developed by Smith exhibited an advantage over CS-

1 in that it could learn from two different problem domains simultane-

ously [36], [73]. This capability afforded the benefit of building a repos-

itory of learned information, which was more complex than previous

learned functionality. This in turn was useful when attempting more dif-

ficult problems that required complex information to achieve their solu-

tions. In spite of this advantage, currently a number of LCSs (and a ma-

jority of EC techniques) only consider one domain at a time for the sake

of simplicity. The LS-1 work is important – even though the technique

used was the Pittsburgh as opposed to the Michigan technique used here

– because it demonstrates that an LCS is capable of learning from different

domains, a quality that will be indispensable in the proposed work.

Recent Learning Classifier Systems (LCSs) come in two main varieties,

the Pittsburgh and Michigan approaches [79]. The work here is based on

the Michigan style LCS and hence the reader is directed to [61] for a review

of the former. Figure 2.1 depicts the main highlights of a Michigan based

LCS. This figure is based on the XCS system developed by Wilson [15]

, [95]. XCS is notable for its popularity in the study of LCSs and its exten-

sive body of knowledge. XCS differs from its predecessors in a number of

key ways: 1) XCS uses the accuracy of predictions instead of the amount

of the reward, this promotes a solution encompassing a complete state-

action map of the problem via accurate rules [51]; 2) mutation and a GA

are applied to niches – subsets of the population – instead of panmictically

– across the entire population; 3) unlike the traditional LCS, XCS has no
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message list and therefore it is only suitable for learning Markov environ-

ments [22], [95].

XCS has been described as an evolutionary, adaptive agent, which is

used to learn information via a set of mutually cooperative rules [89], [95].

XCS learns by interacting with the environment, see Figure 2.1. The popu-

lation of classifiers is typically initialized by covering the individual data

patterns from the environment input and eventually generalizes the pop-

ulation by removing irrelevant information [37], [42], [96]. This type of

technique is composed of three major parts: the environment, the agent

and the population of rules [38]. The environment provides stimuli to

the agent, which in turn provides a viable action based on the message

presented by the environment. The environment then provides appro-

priate feedback, depending on the worth of the action proposed by the

agent [78]. The actionset is updated. The Genetic Algorithm (GA) may be

activated at this time [32], [90], it may insert new classifiers into the pop-

ulation [12], [30]. If the number of classifiers in the population exceeds

the maximum population allowed, unworthy classifiers will be chosen for

deletion [22].

XCS is a good method for solving certain problems because it pro-

duces a complete state-action map. Since the solution is a population of

classifiers, each classifier represents a portion of the overall solution [61].

The action of each classifier represents one possible decision that could be

taken by the system based on the environmental stimulus. Accuracy based

LCSs, e.g. XCS [61], [88], attempt to produce the final classifier population

as a collection of general classifiers with optimal accuracy and fitness [21].

The concept is that the suboptimal individuals would have been elimi-

nated by preferential selection of optimal individuals through the process

of evolution [18].

There are two types of subsumption in XCS, GA subsumption and ac-

tion set subsumption. GA subsumption normally occurs when creating a

new offspring classifier. If it can be subsumed by an accurate and suffi-
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Figure 2.1: XCS framework. A match set is created from the population

of classifiers. These are all the classifiers that match the environmental

state. Each available action is assigned a possible payoff by the classifiers.

Based on this array of predictions, an action is chosen. An action set is

created from the matchset and the action is executed. Depending on the

reward, the action set is updated and the GA may be applied [22], [95].

GA subsumption takes place right before the offspring are added to the

population. If the new population size is larger than the maximum pop-

ulation limit, then classifiers are chosen to be deleted until the population

is within the maximum population size.
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Figure 2.2: Schematic of XCS [13]. The population, matchset and actionset

are three of the major components.
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ciently experienced parent, it is not added to the population and the sub-

suming parent’s numerosity is increased by one. The motivation behind

this is that less redundancy, in terms of problem space coverage, trans-

lates into greater efficiency. Action set subsumption typically happens on

the action set after having gone through the discovery phase. The princi-

pal idea of the mechanism is to identify classifiers that are both accurate

and well experienced. The less general classifiers meeting this criteria are

removed (subsumed) from the population and the subsumer has its nu-

merosity counter increased. This method also provides benefits by reduc-

ing the computation costs associated with the subsumed classifiers and

by producing a more condensed final population [22]. However, action

set subsumption is often too harsh and as a result its turned off on many

problems.

A similar subsumption technique has been used to extend a CF based

XCS system as described in [39]. In this technique the object is to deter-

mine if a classier c1 subsumes a classifier c2. This is done by a process

which invokes each CF and compares the result of the corresponding bit

positions from both classifiers being compared. The more general classi-

fier, the subsumer, will have all its CFs evaluating to 1. For example, if c1

were determined to be more general than c2, then c2 would get subsumed

by c1. However, all of the CFs in classifier c2 also need to evaluate to 1.

The first technique for compaction was proposed by Wilson [95]. The

objective of the technique was to increase efficiency in XCS. With this in

mind, an approach utilizing condensation was put forth. The method re-

moves unnecessary classifiers from the final population, i.e. those super-

fluous to adequately cover the problem space. This shrinks the population

of classifiers increasing efficiency.

Subsequently, Kovacs [50] proposed a seminal condensation technique

known as Subset Extraction. The technique analyzes the system at a par-

ticular instant. Unlike condensation, it does not rely on incremental cal-

culations or a delay. Therefore it can be applied at any interval in order
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to reduce processing resource usage. The technique relies on finding a

well-evaluated subset of [P], i.e. the population. This subset must have a

good accuracy rating, it must completely cover the input/action space and

must not overlap. If found, this subset is considered a candidate optimal

population. The subset must also have as few members as possible. Al-

though this technique is effective in eliminating unneeded classifiers, it is

very complex. In spite of this, Subset Extraction has served as inspiration

for other techniques.

Dixon proposed a compaction technique that builds on previous meth-

ods [25]. This technique performs the compaction as a post-processing

step that condenses the population and is apart from the routine steps that

exert pressure on the population, such as niche mutation and subsump-

tion. LCSs keep alternative hypothesis, e.g. {# 1 # 1 # 1 : 1}, {1 1 # # # 1

: 1}. Both are accurate and maximally general, but it is desirable to only

keep one hypothesis. The three main steps [25], [92] consist of the follow-

ing: 1) a subset of classifiers that achieve 100% performance is identified;

2) any classifiers that are not good for performance are extricated from the

set; 3) the classifiers are ordered by the number of inputs matched, this

continues until all the inputs are matched.

This is where a GA plays a crucial role in the classifier; by preferen-

tially selecting fitter individuals. The GA is applied if the average time

period since the last GA application is greater than the threshold θGA. Two

parents are chosen by roulette wheel selection. These are based on fit-

ness, and the offspring are created from them. The offspring may undergo

crossover and mutation. At this point the new classifiers are inserted into

the population, followed by corresponding deletions (if applicable). If GA

subsumption is used, then each new offspring is checked to see if it can

be subsumed by either parent. If this is the case, then the numerosity of

the parent is increased by one, and the new child is not inserted into the

population [22].

Although standard XCS encapsulates many benefits, it still needs im-
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provements in order to solve more complex problems, e.g. the 135-bit

multiplexer. One of the drawbacks is that although it can scale in cer-

tain domains, it still has to relearn from the beginning each time. Any

increase in the dimensionality of the problem increases the search space,

the hardware demands, and training time [42]. To address these pressures,

different types of representation have been developed.

2.3 Representation

In an LCS the rules, i.e. classifiers, are composed of two main parts, the

condition and the action. Originally the condition part utilized a ternary

alphabet composed of: {0, 1, #} and the action part utilized the binary

alphabet {0, 1} [88]. This representation is simple and efficient to process

and is beneficial in certain types of problems, such as boolean domains.

LCSs can select/deselect features using the generality inherent in the

{don’t care} operator [34]. Originally the don’t care utilized a ‘#’ hash-

mark to mean that it could take the value of 0 or 1; this comprised

part of the ternary alphabet {0, 1, #}, [34]. Since the initial introduction

of LCSs, the number of applicable alphabets has been expanded to in-

clude more representations such as Messy Genetic Algorithms (mGAs),

S-Expressions, Hyper-ellipsoids [20] and Code Fragments.

Messy GAs process variable-length strings that may be missing values

for some of their conditions, they may also have multiple values for par-

ticular conditions [31]. The concept is to build longer building blocks from

smaller ones until a solution is discovered. They emphasized a different

viewpoint on Holland’s Adaptation in Natural and Artificial Systems [36].

Contrary to what many researchers hold as true, Holland was not against

a “scruffy” type of GA. Accordingly, his work was put forth as a guide

and not as a strict formulation of what a GA should be [31]. Subsequent

researchers acknowledged this influence and developed richer represen-

tations based on a messy encoding.
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Lanzi introduced an extension to XCS in which variable length messy

chromosomes replace the original bitstring representation [59]. The sen-

sory inputs are still translated into bitstring but the bits in the classifier’s

condition are not bound to the position of sensory input bits anymore.

The technique had success with the Woods1 and Maze4 environments. In

these environments, the systems tested were able to converge to a solution

that was quite near the optimum but never reached it [59]. This was due

to certain limitations in the representation.

Bitstring representation of classifier conditions has two major limita-

tions: 1) it can result in a loss of information about the environment struc-

ture, i.e. not capable of capturing regularities in an environment; 2) the

fixed correspondence between the position of bits in the classifier condi-

tion and the position of sensor bits can result in the incapability to repre-

sent complex environments, e.g. discrete problem domains [59]. A differ-

ent representation was needed to obtain better scalability.

Regular S-Expressions was Lanzi’s next foray into rich encoding of the

condition part. S-Expressions are LISP-like expressions which have been

used to express the LCS condition or action [58]. XCSL, as the system is

known, uses LISP S-Expressions. The classifier conditions are restricted to

the set of possible boolean functions that can be generated by combining

the logical operators {AND, OR, and NOT} with elementary conditions

over sensory inputs [58]. Though this technique is effective in eliminating

the two limitations of a ternary encoding (mentioned above), it makes it

difficult to determine if one condition is more general than another one.

For this reason, the subsumption operator cannot be employed efficiently

anymore and different heuristics must be developed, such as condensation

techniques [58]. Another problem is that the complexity of the classifier

conditions tends to grow as the learning proceeds. One important caveat

is that both of Lanzi’s techniques mentioned above aimed to replace the

entire condition of the classifiers, while the work here aims to replace in-

dividual features of the condition with GP sub-trees [58]. Finally, while
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Lanzi’s work did not reuse the learned functionality, the proposed work

does. However, some of Lanzi’s later work involved concepts that are

currently used in XCSCFC and in the proposed work. One of these con-

tributions is described in [67], while another is the XCS with stack-based

GP technique. The Simple Compact Genetic Algorithm (SCGA) has sim-

ilarities with the novel compaction work in this thesis. SCGA utilizes a

probability vector from the action-set to create new offspring. This is sim-

ilar to the vectors used by the online compaction technique described in

this work. However the vectors here are used to help identify an optimal

population of CF-based classifiers.

Stack-based GP extended XCS with conditions based on stack-based

Genetic Programming [60]. The condition part of the classifiers are lin-

ear programs written using Reverse Polish Notation (RPN) and are inter-

preted by a virtual machine. The application of tree-based genetic pro-

gramming is imbued with computational costs. These are related to the

genetic operators, crossover and mutation. Usually they have to examine

a large part of the parent conditions before progeny can be created, which

is due to the fact that GP expressions can grow long due to bloating. This

technique provides the benefit of reducing the computational costs asso-

ciated with the genetic operators adapted from tree-based Genetic Pro-

gramming. This technique shares some common aspects with CF-based

systems.

Bull and Ahluwalia proposed an alternative representation of the clas-

sifier [1]. In the system known as GP-CS they used a binary alphabet for

the condition part and an S-Expression for the action. Combined with the

K-nearest neighbor algorithm, this approach was successful in the classifi-

cation of various data-sets [1].

Koza devised a technique known as Automatically Defined Functions

(ADFs) [55]. ADFs are a technique for reusing generic sub-parts of GP

trees. These are defined once in a top-down manner, along with place

holders for their parameters. These then receive a sub-expression, or their



28 CHAPTER 2. LITERATURE REVIEW

input parameters, when they are called from within a GP tree. ADF is

one of the precursor techniques of the proposed work and therefore is an

important development.

Another method proposed by Bull and Ahluwalia integrated an LCS

with ADFs. They utilized ADFs to develop a filtering program to re-

duce the number of features. In [14] the ADFs were the feature prepro-

cessors/extractors and the result was fed to a K-nearest-neighbor (Knn)

classifier. This technique showed that explicit feature selection at the level

above the coevolving extractor functions provided better performance

than traditional approaches. This was because unneeded features could

be ignored more effectively [14]. A number of key findings emerged from

Bull’s further work described in [2] and [14]. It was found that all coevolu-

tionary approaches performed better than the standard approaches. Also,

the use of feature selection along with feature extraction performed best

of all. The technique uses automatically defined functions (ADFs) and as-

signs an independent sup-population to each one. These sub-populations

co-evolve with other ADF sub-populations and a population of the main

program trees.

Bull and Ahluwalia also introduced the technique called Evolutionary

Defined Functions (EDFs). EDFs in turn contained two new mutation op-

erators: compression and expansion [2]. These operators, along with the

coevolutionary method, enabled the automatic specification of EDF sub-

populations via compression. EDFs also contained a counter which was

useful in determining the EDF’s worth to the evolutionary process. This

form of credit assignment could be useful for future work, however in the

proposed work the number of axiomatic functions and those to be learned

by the system are not numerous enough to warrant this method. There

is opportunity of using a similar grading method for the CFs evolved in

the proposed work. It is anticipated that the new system will combine

learned functionality based on the effect that reinforcement exerts on the

evolutionary process. More importantly, the types of inputs and outputs
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of the different functions will be a gatekeeper, disallowing any illegal com-

binations of functions. Further, the problem will be presented as a series

of sub-problems, so there can be a sequential measure of the usefulness of

the axioms and sub-problems presented to the system [2], [14].

While Bull and Ahluwalia’s work added a level of abstraction to the

representation of the classifier, as well as insight into not just the creation

of functions, but also their usefulness to the production of a solution, it

lacked a very important component of the proposed work. It did not reuse

the learned building blocks to solve a more complex problem. The con-

cept of the ADFs is important here because of its obvious relationship to

function learning, however the proposed work aims to learn brand new

functions online, along with the number of their parameters. The number

of parameters will be set by a human at the start of the training for each

function.

2.4 Code Fragments

Code Fragments (CFs) were introduced in the form of GP-like sub-

trees [43]. They have an initial maximum depth of two, as this number

was deemed important to limit bloating, see Figure 2.3. CFs can utilize

previously generated CFs in their terminal nodes as the problem scales.

CFs have enabled numerous solutions to previously intractable problems,

such as the 135-bit multiplexer. They have also helped to find optimal

populations in discrete domain problems as well as in continuous domain

problems [49]. Importantly, CFs have enabled the re-usability of learned

information in LCSs in novel ways. For example, CFs have enabled the so-

lution to previously intractable problems like the 135-bit multiplexer [49].

CFs have also been used to produce compact rule sets that can be easily

converted to the optimum population [42].

The Code Fragment technique shares a number of properties with

ADFs. Both techniques used human-defined functions, including a def-
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Figure 2.3: An example of a code fragment. Here D0, D1, D2 and D5

represent classifier condition bits. In addition, ‘&’ represents logical AND,

and ‘|’ represents logical OR.

inition for the number of arguments these would take. In ADFs the func-

tions can be used by establishing a constrained syntactic structure for the

individual expressions in the population [56]. For example, the number

of arguments each ADF can take must be defined a priori and cannot be

changed during evolution [28]. This argument constraint also applies

to CF-based learned functions, with the exception that CF functions are

learned online. While CFs do increase their number of arguments, each

new problem has a limit of arguments dictated by the number of CFs al-

lowed for the problem. A CF is an expression, similar to a tree generated

in Genetic Programming [44]. CFs generate small blocks of code in binary

trees. CFs have also been expressed using sub-trees with more than two

terminals, with varying degrees of success [4]. Analysis suggests that there

is an implicit pressure for parsimony as only the CFs found to be useful

survive to form part of the final population [47], [48].

Numerous CF-based XCS systems have been created, where CFs (often

built upon previously learned CFs) contain building blocks of knowledge.

These building blocks of knowledge enable feature selection and feature

construction by including important message bits at the terminals. These

bits would have been found important for the current problem. For exam-
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ple, CFs could determine that the address bits of a message are important

for determining the data bit of a multiplexer problem. In addition, CFs use

a rich alphabet meaning that their relationships are functional instead of

linear. These CF-based systems will be described in detail in the following

section.

2.5 Code Fragment Based Systems

Current LCSs can be utilized to extract building blocks of knowledge.

These blocks of knowledge can then be used to solve more difficult prob-

lems in the same domain. The past work showed that the reuse of knowl-

edge through the integration of CFs into the XCS framework could assist

in scaling [49].

The first investigation involving code fragments was the introduction

of GP-tree like expressions to represent condition bits in a terse classifier

rule, which was named code-fragment conditions XCSCFC [49]. See Algo-

rithm 1 for an overall view of the execution. There are similarities with the

XCS technique, however there exist differences at the matchset and classi-

fier comparison levels. Algorithm 2 depicts the matchset creation process;

the matching is incumbent on a code fragment evaluating to 1. All the

code fragments in a classifier must meet this requirement for the classifier

to be added to the matchset. Algorithm 3 shows how XCSCFC determines

if one classifier is more general than another, this becomes useful when

comparing two classifiers. In this approach, the conditions in a classifier

were replaced with code fragments. Thus enabling feature construction in

the condition of the classifiers. The action part used the binary alphabet {0,

1} [49]. An important benefit inherent in CFs is the decoupling between

a CF and a position within the condition, i.e. the ordering of the CFs is

unimportant. In fact, the number of CFs present in the condition does not

have to be the same as the number of features in the environment as these

are available in the terminal set, i.e. for a multiplexer problem with a con-
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dition of length 6, 3 CFs could be enough to find the solution. Although

XCSCFC exhibited better scalability than XCS, eventually, a computational

limit in scalability was reached [46]. The reason is that as multiple CFs can

be used successively at the terminals, as the problem domain is scaled,

then a depth of tree of 2number of problems scaled could be created.

Algorithm 1: XCSCFC: Execution

Data: The currently observed input state s.

Result: Final population of accurate and general classifiers.

1 x←Maximum number of training instances

2 i← 0

3 while i < x || not converged do

4 Create matchset [M]

5 Create actionset [A]

6 Execute action

7 Get reward

8 Update [A]

9 Execute GA

10 i← i+ 1

11 end

12 return true

Initially, there was a separate population of code fragments used. This

population was randomly created and kept static throughout the learning

process [43]. Currently the CF population is housed simply within the

rules [48]. Each time a new classifier is created, a random CF is also created

for each of the required bit positions [49]. This means that the number of

code fragments to be reused from a particular level is governed by the

unique CFs in good classifiers.

By using CFs, XCSCFC increased in scalability and was able to reuse

knowledge learned in a simpler problem in a more complex one of the

same domain. For example, in the 135-bit multiplexer problem, XCSCFC
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Algorithm 2: XCSCFC: Matchset [49]

Data: The current input state s and a classifier cl ∈ [P ] where [P ] is

the population of classifiers.

Result: If the classifier cl matches the observed state s then the result

is true otherwise false.

1 for i = 1 to n do

2 cf ← code fragment from [q] indexed at cl.condition[i]

3 if cf 6= ‘don’t care’ codefragment then

4 /* Environment feature */

5 load terminal symbols in cf with corresponding binary bits

from state s

6 val← evaluate value of cf

7 if val 6= 1 then

8 return false

9 end

10 return true

takes only 2 x 106 instances to successfully solve the problem compared to

the search space of 4 x 1040. The standard XCS was not able to solve the

same problem [49].

The next step in CF-based systems was to replace the static binary ac-

tion by a code fragment while using the ternary alphabet in the condition

of the classifier rules to create XCSCFA (XCS fragment actions) [42]. Each

code fragment was a binary tree of depth up to d. The value of d was

dependent on the length of the condition in a classifier [42]. The action

value of the classifier was determined by evaluating the action CF [47]. In

order to achieve this, it was necessary to populate the CFA’s terminal sym-

bols [42], [45]. The terminals in the CF tree could be replaced with either

the corresponding bits from the environment message or with bits from

the classifier condition. In the later case a don’tCare symbol, i.e. ‘#’, in the

condition was randomly treated as 0 or 1 [42].
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Algorithm 3: XCSCFC: IsMoreGeneral [49]

Data: Two classifiers cl1 and cl2.

Result: If classifier cl1 is more general than classifier cl2, then the

result is true otherwise false.

1 n← ‘number of don’t care’ code fragments in cl1

2 s← ‘number of don’t care’ code fragments in cl2

3 if n ≤ s then

4 return false

5 N← set of all ‘non-don’t care’ code fragments in cl1

6 S← set of all ‘non-don’t care’ code fragments in cl2

7 if N 6 ⊃ S then

8 return false

9 return true

Subsumption deletion was effectively disabled, leading to a larger

search space [42]. The reason that subsumption was disabled is that a phe-

notype could map to multiple genotypes. Since the CF action is populated

with terminals from the condition, any don’tCares were treated randomly

as 1 or 0. This produced an inconsistency in the value of the CF action

which made it difficult to determine the generality of the classifiers. One

way to get around this is by comparing the CF actions on a bit by bit basis

but this can be troublesome [42]. Whereas in standard XCS with binary ac-

tion, subsumption deletion is fully enabled. This means that the numeros-

ity of the general classifier in a niche gets higher values as it subsumes

the less general classifiers in the niche. In code fragment based XCS, the

multiple genotypes to a single phenotype issue disables the subsumption

deletion function. Therefore, fitness in a niche is distributed among mul-

tiple equally general classifiers, all having a relatively small fitness value

as compared to the binary action-based XCS [42]. However, the lack of

subsumption deletion was compensated by the fact that code fragments

contained useful knowledge, such as the importance of the address bits in
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the multiplexer problems.

Another advantage of utilizing CFs in the action of a classifier is the

autonomous separation of optimal and sub-optimal classifiers in the final

population, which is due to the consistency of action formed by these clas-

sifiers [45]. This eventually results in the optimum rule set of the max-

imally general, compact and accurate classifiers, see Table 2.1. This is

useful because it produces a solution that can be easily converted to the

optimum population [48].

Consistency of action is an obscure but interesting phenomenon of XC-

SCFA. It arises whenever don’tCares are effectively in the action, which is

a highly unusual practice for a classifier system. That is, the same clas-

sifier can effect different actions depending on the features covered by

the condition. This occurs when the CF terminals are filled from a con-

dition part containing don’tCares. The input message is matched by a

classifier, which has to convert its CF in the action to an output. xxx This

could be achieved by substituting the environmental message into the CF

of the the action part. However, if a ‘0’ or ‘1’is substituted randomly for

the don’tCare, an interesting effect occurs. There is a complete separation

between the classifiers that are optimally fit and the newly created/sub-

optimal ones, as inconsistent actions are more likely to be incorrect and

thus removed from the population. This means that it is possible to sepa-

rate optimal from sub-optimal classifiers without condensation, see Chap-

ter 5.

XCSCFA does not scale to very large problems, even if the problems

had repeated patterns in the data. This shortfall was due to the inconsis-

tencies in the values of the CF action. For the larger problems, e.g. 70-bit

multiplexer and beyond, the sample space is too large for the system to

learn the problem effectively.

For many problems, e.g. the multiplexer problem has multiple niches,

there is not a single fully general rule that would provide the solution us-

ing a ternary condition. It is possible to have don’tCares in the address bits
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Table 2.1: A sample of classifiers from the final solution in XCSCFA for the

20-bit multiplexer problem. XCSCFA has the advantage of producing the

optimal classifiers separated from the sub-optimal ones with respect to the

numerosity [45].

No. Condition CF Action n p

1 1011###########1#### D2 D0 & D0 & 9 1000

2 0010##0############# D6 9 1000

3 1100############1### D1 D13 | ˜ 9 0

4 1001#########0###### D13 D9 d D13 D9 d d 9 1000

5 0111#######1######## D0 D0 d D0 D0 d r 9 0

6 1000########1####### D2 D2 d D2 d 8 1000

7 1000########0####### D6 D0 ˜ d 8 0

8 0111#######0######## D11 D11 D13 & r 8 0

9 0101#####0########## D11 D0 & D11 D0 & & 8 1000

10 1100############1### D3 D2 d ˜ 8 0

11 1111###############1 D3 8 1000

12 1011###########1#### D0 ˜ ˜ 8 1000

13 1011###########1#### D0 ˜ ˜ 8 1000

14 1011###########0#### D15 D15 d 7 0

15 1010##########1##### D14 D1 r D1 r 7 1000
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that map onto multiple data bits to provide the correct answer. It would

not be an eloquent solution, but it would be a solution nevertheless. There-

fore a classifier would have optimal and suboptimal rules mixed within

the population.

Prior to the work for this thesis, any new code fragments that were

learned while solving a problem could be reused by a CF in the terminal

set in any subsequent problems. However, the functions were predefined

and once a problem was finished it was not possible to adapt the function

set.

2.6 Other Representations

It has been shown above that evolving general solutions using rich rep-

resentations can increase scalability. This is an important characteristic

which will be useful in the new work. Previously, other Boolean problems

have been solved successfully by using techniques similar to this thesis

work, see Chapter 6. In addition to CFs, a number of representations were

developed previously. One of these representations was XCS with State-

Machine Action (XCSSMA). XCSSMA was introduced with the capabil-

ity to generate state machines to encapsulate repeating patterns. In other

words, it discovered recurrences and loops in order to repeat useful be-

haviors. This was accomplished by replacing the numeric action in XCS

with a Finite State Machine [46].

XCSSMA evolved compact and easily interpretable general solutions

for the even-parity and the carry problem domains. The parity problem is

considered difficult because parity is non-linear and non-monotonic [40].

The even-parity domain does not allow generalizations if the standard

ternary alphabet is used with static numeric action. So each bit must be

specific for a rule to be accurate [46]. Since this type of problem has been

studied extensively, producing a general solution is a notable accomplish-

ment [40]. Compact and general solutions are important for this work
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because they increase scalability.

XCSSMA produced useful solutions to some boolean domain prob-

lems. However, it could not improve the generalization for the multiplexer

(Mux) domain. This was because the state machines needed for this do-

main are more complex than the other domains mentioned above [46].

Furthermore, the multiplexer problem domain does not contain repeating

patterns at the domain level. However, there are repeating patterns, loops,

at the underlying problem description layer, but these were not accessible

to XCSSMA. Therefore this technique was not chosen for this novel work.

Self-Modifying Cartesian Genetic Programming (SMCGP) is an alter-

native to LCSs for scaling. SMCGP is a developmental form of CGP that

allows an individual program to modify itself using self-modifying func-

tionality. SMCGP evolves a computer program that could generate an ar-

bitrary sequence of computer programs, each of which solves a particu-

lar problem [49]. The drawback to this technique is that the solutions for

large scale problems are difficult to interpret. Furthermore, as the prob-

lem scales, the size of the solution becomes very large; eventually learning

will be intractable [46]. This limitation as well as the increasing difficulty

in interpreting the solutions, precluded this technique from being chosen.

The multiplexer problem is a complex and difficult problem due to

epistasis and its large search space at large scales. An early attempt at

scaling was the S-XCS system that utilizes optimal populations of rules,

these are learned in the same manner as classical XCS [41]. These optimal

rules are then imported into S-XCS as messages thus enabling abstraction.

The system uses human constructed functions such as Multiply, Divide,

PowerOf, ValueAt, AddrOf, among others [41], see Table 2.2. Although

these key functions provide the system with the scaffolding to piece to-

gether the necessary knowledge blocks, they have an inherent bias and

might not be available to the system in large problem domains. For exam-

ple, in the Boolean domain the Log and Multiplication functions do not

exist. It also assumes completely accurate populations, whereas the pro-
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posed system is required to learn both, the population and functionality,

from a tabula rasa. The novel work will utilize similar functions but will

learn them from basic functions provided by a human, e.g. Multiplication,

Log. This will provide a shortcut to reduce the search space. But more im-

portantly, CFs will facilitate the learning of the aforementioned functions

in progressively richer stages. Meaning, that once the system has learned

Multiplication, Addition, Subtraction and others, it could then attempt to

learn the function that provides the address of the important bit in the

problem. The reason is that the CFs would then contain all of the learned

functionality acquired throughout the training stages. This is something

that S-XCS is incapable of accomplishing [41].

If supervised learning is permitted (unlike in this work), the heteroge-

neous approach of ExSTraCS scales well, up to the 135 Bit Mux [87]. This

technique uses a mechanism that is similar to memory. It is designed for

Michigan style LCSs using supervised learning. During training a vector

of accuracy scores is maintained for each of the training instances. Af-

ter training, the scores are used to identify association regularities in the

data-set. In addition, the mutation and crossover mechanisms are directed

probabilistically while creating new rules. This rule generation is based on

an instance’s tracking scores [87]. This technique successfully linked indi-

vidual instances in the data-set to etiologically heterogeneous subgroups

by using attribute tracking. Also, it was found that attribute feedback

significantly improves test accuracy, generalization, run time and the ca-

pability to discriminate between predictive and non-predictive attributes

in the presence of heterogeneity. One drawback to this technique is that

Michigan style LCSs do not typically scale well. Also, the results presented

in [87] are computationally expensive. This means that large-scale analysis

(using large numbers of attributes) is currently impractical. However, in

its present form, this technique would be applicable to studies with a fil-

tered set of factors [87]. The technique described above relates to this orig-

inal work dealing with compaction algorithms; compaction techniques are
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Table 2.2: A sample of classifiers from the final solution in S-XCS with

optimal pupulation for the 3-bit, 6-bit, 135-bit and 1034-bit multiplexer

problems [41].

Mux Condition Length

3 VALUEAT OR 2 2 4

3 VALUEAT AND 2 2 4

3 VALUEAT ADDROF 2 2 4

3 VALUEAT AND 2 POWEROF 1 5

3 VALUEAT OR POWEROF 2 2 5

3 VALUEAT OR POWEROF 1 2 5

6 VALUEAT ADDROF 4 5 4

6 VALUEAT ADDROF 5 4 4

6 VALUEAT ADDROF 4 POWEROF 5 5

6 VALUEAT ADDROF POWEROF 3 4 5

6 VALUEAT ADDROF POWEROF 5 4 5

135 VALUEAT ADDROF 128 134 4

135 VALUEAT ADDROF 134 128 4

135 VALUEAT ADDROF POWEROF 22 128 5

135 VALUEAT ADDROF 128 PLUS 133 134 6

1034 VALUEAT ADDROF 1033 1024 4

1034 VALUEAT ADDROF PLUS 1029 1029 1024 6

1034 VALUEAT ADDROF MULTIPLY 1025 324 1024 6

1034 VALUEAT ADDROF PLUS 1029 1024 1024 6

1034 VALUEAT ADDROF MULTIPLY 1029 324 1024 6

1034 VALUEAT ADDROF PLUS 1033 1033 1024 6



2.7. LAYERED LEARNING 41

primarily used to reduce the number of classifiers based on a given crite-

ria [92]. In particular, the online nature of the technique and the usage of a

vector might be useful, see Chapter 5. However, this novel work relies on

reinforcement learning and therefore ExSTraCS is not a viable candidate.

2.7 Layered Learning

Layered Learning (LL) is a hierarchical machine learning paradigm pro-

posed in [83]. LL applies to tasks for which learning a direct mapping of

inputs to outputs is intractable. The tasks are decomposed in a bottom-up

manner into subtasks and there is separate learning at each subtask. The

learning at each subtask directly facilitates the learning of the next higher

layer. LL assumes that the appropriate aspects of the task to be learned

are determined as a function of the specific domain. It does not include an

automated hierarchical decomposition of the task. In this original work,

this composition will be done by a human. Since each subtask may have

specific characteristics, an appropriate algorithm is applied to learn each

subtask layer [83].

LL has been used to learn several problems. Stone and Veloso used LL

to decompose the activity of robotic soccer [83]. For example, the task of

the agent retrieving a moving ball and deciding what to do with it was de-

composed into: ball interception, pass evaluation, and pass selection. LL

has also been applied to the evolution of goal scoring behavior in soccer

players [9]. The authors compared their technique to standard GP pro-

grams with positive results. They determined that LL is on average able

to evolve goal scoring behavior comparable to standard GP, more reliably

and in a shorter time. Despite these advantages, the quality of solutions

found by LL did not exceed those of standard GP. LL in this fashion re-

quires a large amount of domain specific knowledge and programmer ef-

fort to engineer an appropriate layer [9]. Another usage of LL involved

a study of the interactions between evolution, development and lifelong
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layered learning [33]. The technique used a developmental tree-adjoining

grammar guided GP. It was capable of solving GP problems that lie well

beyond the scaling limits of standard GP. The solutions it found were sim-

ple, succinct, and highly structured [33].

Another implementation of LL was based on four different layers [77].

These layers were inspired by the biological hierarchy of the human ner-

vous system. The two stage training was designed to learn bipedal walk-

ing skills. In this application of LL, the technique demonstrated several

advantages compared to previous methods. It required a minimum con-

vergence time. However the higher average training error presented a

challenge [77]. In [8], the goal was to improve the generalization of GP for

symbolic regression problems. In that approach, several data-sets, called

primitive training sets, were derived from the original training data. The

sequence of the generated sets was from less complex to more complex.

However, the last data-set was still less complex than the original training

set [8]. The results indicated that the technique can improve the perfor-

mance of GP, both on the training and on the test data. Furthermore, it

decreases overfitting, and finds solutions with less complexity [8]. The

main limitation of the technique is that it was designed only for symbolic

regression problems, therefore it can not be applied to classification prob-

lems, for example [8].

LL relates to this thesis work in several ways. One of the aims is to

evolve a solution for the n-bit multiplexer problem. This is a difficult

problem that can be partitioned into a number of sub-problems. Each

sub-problem can then be learned in sequence while each subsequent sub-

problem relies on the solutions discovered by the previous ones. The

learned functionality is anticipated to be compact and maximally general.

This is due to the power of expression present in CFs. In addition by using

LL and CFs, the negative effects of bloating are anticipated to be attenu-

ated.
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2.8 Transfer Learning

Another approach which is helpful in learning more than one task is Trans-

fer Learning (TL). The core idea of TL is that experience gained in learning

to perform one task can help improve learning performance in a related,

but different, task [66], [84]. In essence, transfer learning aims to extract

the knowledge from one or more source tasks and apply the knowledge

to the target task [27], [85]. According to [85], it is also reasonable to frame

TL as one agent learning in a source task and a different agent learning in

the target task, where transfer is used to share knowledge between the two

agents. This is analogous to using LL combined with CFs, with a different

agent learning each sub-problem. TL is multi-directional and less subject

to human bias (compared to LL), as the learned information is gleaned

from the problem domain by the agent. The success of the learned knowl-

edge in the new domain is only determined by its usefulness in the new

domain. The benefits of TL are actualized when learning from one domain

and transferring the learned knowledge to a similar or related domain.

The field of machine learning defines TL as transferring the underlying

model [69].

In many real-world applications, the training and test data do not have

the same distribution. For example, there may be a classification task

in one domain of interest, but there may only be sufficient training data

in another domain of interest. Furthermore, the latter data may be in

a different feature space or follow a different data distribution. In such

cases, knowledge transfer, if done successfully, would greatly improve

the performance of learning by avoiding much expensive data-labeling

efforts [69], [84]. Transfer learning is classified into three different settings:

inductive transfer learning, transductive transfer learning, and unsuper-

vised transfer learning [69]. Most previous works focused on the first two

settings. Unsupervised transfer learning may attract more and more at-

tention in the future [69]. Furthermore, each of the approaches to trans-
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fer learning can be classified into four contexts based on what to trans-

fer in learning. They include the instance-transfer approach, the feature-

representation-transfer approach, the parameter-transfer approach, and

the relational-knowledge-transfer approach, respectively [69].

Transfer Learning (TL) is related to this proposed work due to its

strengths in advocating knowledge reuse. In addition, one of the aims

is to evolve a general solution for the n-bit multiplexer problem. This type

of problem has a nature which precludes an EC system from learning it

in one step, see Chapter 6. Therefore, TL forms an integral part of the tri-

umvirate used in this novel work which consists of TL, TL and CFs. Since

the target task must be partitioned into sub-problems by a human, this

means that TL alone would be ineffective in learning the problem.

2.9 Chapter Summary

Evolutionary Computation is a paradigm, which is suited to large scale

search, therefore it forms a component of this new work. Genetic program-

ming provides flexibility and power of expression, which should enable it

to extract reusable building blocks of knowledge. The disadvantage to GP

is that it suffers from bloating and has a large search space.

Learning Classifier Systems (LCSs) are techniques based on evolution-

ary principles whose goal is to produce an optimal population of classi-

fiers. Together, these classifiers, or rules, form a solution to the problem.

LCSs come in two major varieties, Michigan and Pittsburgh. The novel

work presented in this thesis is based on XCS, a Michigan style LCS. XCS

can be used to learn online tasks, something that Pittsburgh styled LCSs

do not perform normally. XCS also learns a complete state-action map,

meaning that it produces rules that are always accurate and correct, as well

as rules that are always accurate and incorrect. In addition, XCS evolves

rules that are maximally general, which is important because this increases

scalability.
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The rules that are produced by an LCS have two main parts, the con-

dition and action. The original alphabet used to represent the condition

of the classifiers consisted of {0, 1, #} while the action consisted of {0, 1}.

Although these alphabets are simple and quick to use, they lack the ex-

pressivity and flexibility required to represent complex problem domains.

This indicates that the representation is very important for LCSs.

Several representation schemes have been explored in order to im-

prove generalization and to cover the problem space better and with more

expressivity. Each of these representations has strengths and weaknesses.

CFs have introduced increased scalability and expressivity to the XCS

technique. This has enabled the solution to previously intractable prob-

lems, but as the problem scaled, all the techniques stopped learning at

some point. This thesis investigates various methods for improving scala-

bility and learning in XCS-based systems extended with CFs.

Layered Learning is promising because it has been used successfully in

various settings. For example, a difficult problem was decomposed into 4

different layers in [77]. The aim of this work was to learn bipedal walking

skills. Another successful implementation of LL was [83]. The task of

an agent retrieving a moving ball was decomposed into several subtasks.

This means that at least one of the aims of this thesis work could benefit

from the advantages of LL.
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Chapter 3

Research Methodology

3.1 Research Methodology

The proposed research methodology adopted to investigate the thesis will

be presented in this section.

The overall goal of this thesis is to improve the scalability and re-

usability of learned knowledge in Learning Classifier Systems (LCSs). In

order to achieve these goals, the following three research methodologies

are adopted: (1) identify and extract useful functionality from simpler

problems in a domain and then use that learned information at the nodes

of CFs, (2) convert rules – formed with a rich alphabet – that are effective at

identifying complex patterns into equivalent rules – formed with a simple

alphabet – that are efficient to process, (3) identify underlying function-

ality and knowledge by using Layered Learning and human intervention

to separate a complex problem into constituent sub-problems, in order to

evolve a general solution.

In addition to improving the scalability and re-usability of learned

knowledge in LCSs, this thesis also aims at understanding the inner work-

ings of function re-usability and combination by fully tracing the construc-

tion of solutions. To illustrate this method, the solutions to a multiplexer

problem will be evaluated manually, as autonomous enumeration is im-

47
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practical.

The rest of this section briefly describes the systems to be designed and

implemented in this novel work following the above mentioned research

methodologies. The details of each implemented system will be provided

in separate contribution chapters, from Chapter 4 to Chapter 6.

3.1.1 Overview of Methods

The proposed systems extend Wilson’s XCS described in [22] and in [95],

which is an online accuracy-based LCS model. This system has been suc-

cessfully extended with CFs in previous work and therefore presents it-

self as a viable candidate for this original work [49]. XCS is a good ba-

sis for this work because the classifier fitness is based on the accuracy of

a classifier’s payoff prediction instead of the prediction itself. This pre-

vents overly strong classifiers from overtaking the population and edging

out less strong ones which could be very useful in small niches. Also,

the GA takes place in niches instead of panmictically. These aspects lead

XCS to evolve maximally general classifiers. In addition, XCS uses re-

inforcement learning, which emphasizes the formation of complete map-

pings [95]; XCS produces a complete state-action map; the system evolves

rules that are always correct and rules that are always incorrect [22], [95].

Last, the methods could be converted to supervised learning in a straight-

forward way [88].

The developed systems will be tested with Boolean problems such

as the multiplexer and hidden multiplexer. These problems have been

shown to contain epistasis and are highly non-linear. These characteris-

tics make them very difficult to learn by standard algorithms. The multi-

plexer has been studied extensively and therefore is the subject of a large

body of knowledge. Other types of problems such as real numbers could

also be studied with the proposed technique. CFs together with LL and

TL make it possible to represent complex domains in a scalable manner.



3.1. RESEARCH METHODOLOGY 49

With enough time, it would just be a matter of identifying the correct sub-

problems and their training sequence.

The criteria used to measure performance will be the rate of conver-

gence over the number of training instances. The convergence measure-

ment will appear as the Y-axis on the results plots, while the time will

appear as the X-axis. This is a standard method for measuring LCS perfor-

mance and therefore is a valid choice for this work.

3.1.1.1 Reuse of Learned Functionality from Smaller Problems in the

Nodes of CFs

In the first proposed system, the typically used CFs will be modified to

reuse learned information at the root nodes, as well as the leaf nodes, see

Chapter 4. The work will extend the XCSCFC system, which uses CFs

in the condition part, instead of the customary ternary alphabet {0, 1, #}.

XCSCFC was shown to increase scalability by reusing rich building blocks

of knowledge, which is not possible in the standard XCS [49]. For these

reasons it will be a starting point for the proposed work on developing

reusable functionality.

The CF sub-trees will initially be considered as per the usual formula-

tion of CFs, see Figure 4.1. In the novel work, they will be extended to also

include learned rule-sets in the nodes. This departs from the standard CF

definition that only includes previously learned CFs at the leaf nodes and

hard-coded functions at the root nodes. The learned rule-sets will consti-

tute functions in that they will be used to evaluate the connected terminals

and nodes during the learning phase, e.g. matching and covering opera-

tions, instead of hard-coded functions.
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3.1.1.2 Identify a compaction technique to simplify the final popula-

tion of CF rules

XCS often utilizes a simple, ternary alphabet that is easy and quick to com-

pute. However this simplicity means that difficult problem domains are

not addressed very well. The condition bits are dependent on their posi-

tion and there is a lack of expressivity, such that multiple rules are needed

to describe a single niche in the domain. CFs have been shown to provide

a richer representation as well as location independence, such that a single

rule can describe a niche, which is often faster to evolve. Also, CFs are in-

dependent of the problem length, which reduces the search space together

with training times, e.g. the 6-bit multiplexer could be solved with just

three CFs. However, this power of expression is difficult to compute and

is resource intensive. For these reasons, a new compaction technique will

be developed. There will be an offline version that will be post-processed

and executed once the final population has been evolved. There will also

be an online version that will be mostly in-process. This technique will

translate the rich CF-based rules into a ternary form. These will be used to

evaluate the root nodes during the matching and covering phases.

It is envisioned that the proposed compaction technique will reduce

the time requirements for evaluating CFs. This will be accomplished by re-

ducing the search space and using the distilled-rulesets in place of learned

functions 1. The technique is anticipated to be effective because along with

the new ternary rules to be created, the learned CF-based rules will also

be available for feature construction during the covering phase.

1Note that functions contain CFs, which contain other CFs and functions, which can

be time consuming to unravel.
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3.1.1.3 Show that Layered Learning can provide benefits in scaling for

a CF based LCS by solving an intractable problem

In addition to developing the above mentioned scalable classifier systems,

this new work will introduce and implement a method to learn the under-

lying patterns in a domain, such that any problem in it can be solved. The

problem will be partitioned into constituent sub-problems by a human.

The new system will be trained with these sub-problems. Each solution

will be used by the next sub-problem until the system has learned general

rules comprising all the functionality in the sub-problems.

The system will be guided throughout the training via the sub-

problems. This is a prominent characteristic of Layered Learning, which

also includes the bottom-up construction of solutions. The new work will

represent a novel combination, compared to the standard EC techniques.

This work will shift the normal emphasis of standard EC techniques

by leveraging the benefits of LL. Therefore the EC researcher will not be

required to specify the nature of the domain or define the algorithm’s pa-

rameter values, terminal set and function set. Instead, the method will

specify the order of the problems or domains. The system will be allowed

to automatically adjust the terminal set through feature construction and

selection, and thereby develop the function set. In this manner, the tech-

nique will differ from the self-contained stages of LL and will be closer to

TL.

The overlap between the new technique and TL will consist of how

the CFs will be reused. For example, part-solutions (CFs) will be available

for propagation between sub-problems. Similarly, complete solutions —

learned functions — could form part-solutions for future problems. Since

the system will have the capability to use learned rule-sets as functions,

along with the associated building blocks, i.e. CFs, that capture any asso-

ciated patterns, this will be an advantage over pre-specifying functionality

in EC and LL.

This method changes the fundamental problem from finding an over-
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arching ‘single’ solution that covers all instances or features of a problem

to finding the structure (links) of sub-problems that construct the overall

solution. Learning the underlying patterns that describe the domain is an-

ticipated to be more compact and reusable as they do not grow as the do-

main scales (unlike individual solutions that can grow impractically large

as the problem grows, e.g. DNF solutions to the multiplexer problem).

It is anticipated that once the training is complete, the system will

have all the functionality necessary to solve any n-bit multiplexer problem

where n refers to the length of the problem. Once the system has learned

the fundamental sub-problems, the rules will be used on the 6-bit multi-

plexer problem. Subsequently, the rules learned by the system during the

6-bit multiplexer will be tested on progressively more difficult problems.

These will include the 264-bit through the 8205-bit multiplexer problems.

The astronomically large sample space of the more complex problems will

preclude any solutions relying on enumeration and therefore will be suffi-

cient for determining the scalability and generality of the rules produced.

In addition, the test problems will consist of only the testing phase, mean-

ing that there will be no need for further training.

3.2 Experimental Design

This section provides details of the problem domains explored here, as

well as the experimental setup used for the experiments. This section also

clarifies certain details concerning the size of the training data-sets related

to the problem sample space. The evaluation methods will be the number

of training instances required to converge fully. This is a standard criteria

used in LCS experimentation and therefore will be appropriate for this

work.
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3.2.1 The Problem Domains

This original thesis work focused on Boolean problems because they have

a measurable search space and also contain identifiable building blocks.

This domain also lends itself to analysis and interpretation. Other do-

mains such as integer or real were not chosen for this new work because

the boolean domain problems are sufficient to demonstrate the benefits of

the new technique. However, the technique could be extended to address

other domains. In addition, some of the new techniques address domains

other than Boolean, see Chapter 6.

The following Boolean problem domains will be used in the experi-

mentation: the multiplexer, the hidden multiplexer, Parity, NAND, AND,

OR, XOR, NOR. The following sub-problems are composed of other do-

mains such as real and integers: Kbits, KbitString, Bin2Int, AddressOf,

ValueAt, see Chapter 6. The techniques developed as part of this thesis

will not be fitted to the multiplexer problem domain; they will be transfer-

able – with additional work – to alternative domains.

3.2.1.1 The Multiplexer Problem Domain

A multiplexer can be thought of as a logic circuit where a particular num-

ber of bits provide the address of the output bit. Therefore the address bits

are intrinsically bound to the structure in that they determine the impor-

tance of the corresponding data bit [45], [93]. The number of address bits,

being a function of the length of the multiplexer, grows as the length of

the input string scales to larger problems. Assuming L is the length of the

input, then the equation:

L = k + 2k (3.1)

encapsulates the relationship between the length of the input and the

number of address bits required (length k) [50].
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The search space of the multiplexer is considered adequate to demon-

strate the benefits of this new work. For example, the search space of

the 70-bit multiplexer contains 270 possible combinations [54]. Therefore

this domain presents opportunities for a seamless construction of learned

functionality via Boolean operators.

An example of a multiplexer is shown in Figure 3.1. Here the two ad-

dress bits, A0 and A1, translate to 1 in real form. The real number points to

the data bit D1 that contains the value to be returned. The index begins at

D0 and proceeds from the left towards the right, as shown in Figure 3.1 2.

0     1    1     1    0     0     :     1

A0  A1  D0  D1  D2  D3

Condition                 :  Action

Index:
0     1    2     3     4    5

Figure 3.1: 6-bit Multiplexer showing the address bits and the data bits of

the condition.

The multiplexer is a difficult and interesting problem because it has

epistasis and is highly non-linear. These characteristics are expressed by

the Equation 3.1. Also, this problem scales as k increases. The larger prob-

lems are intractable using enumeration.

3.2.1.2 The Hidden Multiplexer Problem Domain

The Hidden Multiplexer is a two tier problem involving a lower layer com-

posed (in this case) of 3-bit parity problems. The lower level is evaluated

2Note that the distinction between address bits and data bits is not provided to the

LCS tasked with learning the input to output relationship.
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first, in order for the results to be used by the top layer, which is com-

posed of one multiplexer problem, see Figure 3.2. There is a fixed cor-

respondence, the address bits are irrelevant as they are dependent on the

evaluation of the lower level parity problems. Once all the upper level bits

are known, the multiplexer part is evaluated and the class is determined.

The Hidden Multiplexer provides a difficult testing scheme for the tech-

nique due to low sparsity [17]. The problem also provides the LCS with

the opportunity of learning how to combine learned knowledge blocks to

effectively solve both layers.

Multiplexer Evaluation

110 010111101000 001

0 11100

Parity     Evaluation

Class=0

Figure 3.2: Example of the Hidden Multiplexer. The lower level consists

of parity problems and the upper level consists of a multiplexer problem.

The parity problems are solved first, then the multiplexer.

The hidden multiplexer problem is suitable for this work because it ex-

hibits difficulty due to its hierarchical nature. The systems attempting this

type of problem were faced with a lower level composed of Parity prob-

lems and an upper level composed of a multiplexer problem [17]. This

was anticipated to pose an interesting challenge due to its multi-level na-

ture and it requires effective building block processing. For example, The

37-bit multiplexer has seven specified bits per rule, the 3x6 (18)-bit hidden

multiplexer (3-parity and 6-multiplexer) has nine specified bits, therefore

proportionally there are more specified bits to discover in the hidden mul-
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tiplexer. The LCS does not interact with its hierarchical nature in standard

systems. This means that a classifier must identify the parity building

blocks and then organize them in a manner leading to a solution of the

overall problem.

As an added topic of interest, both 2-bit Parity and 3-bit Parity prob-

lems were included in the training regimen. That is to say, after the

Boolean operators were learned, the proposed system, as well as XCSCFC,

were both trained with 2-bit Parity and 3-bit Parity problems. The moti-

vation behind this was to determine if exposing the system to a portion of

the problem it would ultimately face was conducive to better learning, i.e.

leading to better building blocks for the more difficult problems, i.e. the

3x11 hidden multiplexer. This is plausible as in previous work, it was de-

termined that including the Parity problems in the training of a CF-based

system provides better performance for the 3x6 hidden multiplexer prob-

lem [4].

Another task that was to be included in the training sequence was the

3-bit multiplexer. Again, the motivation was to determine if performance

increased, i.e. number of correct classifications vis a vis the number of

training instances required, when the system’s training schedule included

functionality for lower scale than the primary problem composition. The

next problem is to include the 6-bit multiplexer; this will test whether in-

cluding a problem at the same level as part of the hidden multiplexer im-

proves performance.

3.2.2 Experimental Setup

Unless stated otherwise, the following parameter values, commonly

found in the literature, are used for the experiments here, as suggested

by Butz and Wilson in [22]. These values are well tested and will serve as

a good starting point for trials: learning rate β = 0.2; fitness fall-off rate

α = 0.1; fitness exponent ν = 5; prediction error threshold ǫ0 = 10; thresh-
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old for GA application in the action set θGA = 25; mutation probability

µ = 0.04; two-point crossover with probability χ = 0.8; experience thresh-

old for classifier deletion θdel = 20; fraction of mean fitness for deletion

δ = 0.1; classifier experience threshold for subsumption θsub = 20; prob-

ability of don’tCare symbol in covering Pdon′tCare = 0.33; reduction of the

prediction error predictionErrorReduction = 0.25; reduction of the fitness

fitnessReduction = 0.1; and the selection method is tournament selection

with a tournament size ratio 0.4. Both GA subsumption and action set

subsumption are activated. This is good because it helps to evolve general

classifiers, however it also increases processing time. Explore and exploit

problem instances are alternated. The reward scheme used is 1000 for a

correct classification and 0 otherwise 3.

All the results obtained in this new work are the average of 30 indepen-

dent runs, each with an independent seed; this will minimize the chance

that the same series of random numbers are used in the experiments. In

graphs presented, the X-axis is the number of problem instances used as

training examples and the Y-axis is the classification performance mea-

sured as the moving average over the last 1000 test problem instances.

3.2.3 Test Data-set Size

An LCS evolves a population of classifier rules to generate a model for

the problem. This is to be achieved by randomly choosing problem in-

stances from the whole data-set during the learning/training process. This

is different from standard machine learning and EC practice where a train-

ing and unseen test set are created. This tests for overfitting in order to

provide an estimate of performance when implemented in real-life. In

learning small data-sets, using an LCS approach, the generated model is

only tested against the known optimum solution and no conclusions from

testing performance can be made for unseen data. In large data-sets, e.g.

3Note Pdon′tCare and population size are critical as a problem scales, see Chapter 6
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MUX greater than 70, the number of training instances is (much) less than

the number of problem instances, so generalization is also tested. In some

problems, which have an astronomically huge sample space, the rules pro-

duced by the techniques cannot be fully tested by using all the possible

instances from the unseen data-set, as enumeration is intractable. In these

cases, a test data-set of 1 000 000 instances is small but it is large enough

to expose many deficiencies.

In the sub-problems of the work dealing with human-inspired scaling,

see Chapter 6, the training set is much smaller than the problem sample

space. For example, the Kbits sub-problem has a sample space of 11 train-

ing instances. However, sufficient functionality is available – e.g. log,

addition, subtraction, floor, ceiling and others – for the LCS to evolve a

population of classifiers that covers the problem.

3.3 Chapter Summary

The overall goal of this thesis is to improve the scalability and reusability

of knowledge blocks in Learning Classifier Systems (LCSs). To achieve this

goal, three research methodologies are adopted: (1) identify and extract

useful functionality from simpler problems in a domain and then use that

learned information at the nodes of CFs, (2) convert rules that are effec-

tive at identifying complex patterns into equivalent rules that are efficient

to process, (3) identify underlying functionality and knowledge by using

Layered Learning and human intervention to separate a complex problem

into constituent sub-problems, in order to evolve a general solution.

Additionally, this chapter provides details of the problem domains ex-

plored here and the experimental setup used for the experiments. This

chapter also clarifies certain details concerning the size of the training

data-sets related to the problem sample space. The evaluation methods

will be the number of training instances required to converge fully. This

is a standard criteria used in LCS experimentation and therefore will be
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appropriate for this work.
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Chapter 4

Reusing Learned Functionality

4.1 Introduction

This chapter introduces novel work where standard CFs are expanded.

Originally CFs reused learned information at the leaf nodes only. This new

work expands CFs to reuse learned knowledge at the root nodes as well as

the leaf nodes. The implementation consists of CFs combined with Learn-

ing Classifier Systems (LCSs). LCSs are powerful classification techniques,

due to their variety, e.g. XCS, and flexibility, e.g. representation through

different alphabets. LCSs are usually formulated as an input (conditions)

providing an outcome (action). Originally, the conditions were expressed

using a ternary alphabet, i.e. {0, 1, #}: the hash mark could take the value

of 0 or 1. The action part used a binary alphabet, i.e. {0, 1}. These al-

phabets, although simple and efficient to compute, posed limitations on

the type of problems that could be addressed, as well as on the richness

in expression. Many additions to the LCS technique have been developed

since their inception, one of the most prominent ones being the eXtended

Classifier System (backronym) (XCS).

The power of LCSs was limited up until 2011 because they discarded

information as the problem scaled. Code Fragments (CFs) were developed

to address this limitation and to increase the expressivity of this technique.

61
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CFs are GP-like sub-trees that have a rich and flexible representation of

environmental patterns. CFs can use many types of functions in their root

nodes and usually take environment features or other CFs in their terminal

nodes. This makes CFs capable of addressing many types of problems in

very complex domains. Code Fragments combined with XCS (XCSCFC),

have been demonstrated to be scalable by solving the 135 bit multiplexer

problem, something that until then had been considered intractable [49].

Although XCSCFC fulfilled its potential for increased scalability with an

expansive power of expression, it suffers from an integral weakness. Since

the CF sub-trees reuse other CFs at the leaf nodes, the chains of CFs grow

to intractable lengths. At some point, depending on the problem, the sys-

tem stops learning.

CFs and their reuse at leaf nodes helped but still would reach a limit.

The reason behind this is that as the CFs grew, they eventually led to very

long chains of CFs. To overcome XCSCFCs propensity to grow large CF

chains, it was hypothesized that using CF information at the root nodes as

well as at the leaf nodes, could provide increased scalability. It was also

desired to capture the underlying patterns through learned functionality

and skills. For these reasons, a new system based on XCS and CFs will

be developed. The technique, known as XCSCF 2, will be utilized later to

solve a number of problems in the Boolean domain, see Section 4.2.1. The

technique will capitalize on the benefits of reusing learned knowledge at

the root nodes. It will also show that knowledge learned from simple do-

mains can then be transferred to a more complex domain, thus showcasing

increased scalability. Past work has shown that learning from simple do-

mains can lead to the solution of more complex problems in the same or a

related domain [49].

The hypothesis is that reusing learned functionality at the inner nodes

can provide increased scalability. This is because the root nodes will have

a tight linking between the function and the CFs associated with that func-

tion, i.e. inner node. This is anticipated to decrease the search space,
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thus providing better scalability. Previously, only terminals could be re-

placed by the constructed code fragments. This was a design choice, as

the building blocks of knowledge were at the terminal level. This being

where the discovery of useful combinations of features and constants took

place. This is analogous to feature construction using GP trees. The reason

that code fragments were used only at the terminals in XCSCFC is because

CFs can accept any number of arbitrary inputs, where a function takes in a

set number of inputs. As the chains of CFs grow, the number of leaf nodes

present also grows. This means that if one were to swap a function with a

code fragment it might involve dissimilar objects. This is because different

functions could have different number of inputs.

4.1.1 Chapter Goals

A genetic programming approach may have many pre-programmed func-

tions. But these are unrelated to each other and to useful building blocks

of knowledge. In XCSCF 2, it is intended that functions and building

blocks, i.e. CFs, will be linked in order to guide genetic operations for im-

proved search. Coupling CFs and learned functions together is anticipated

to improve learning over just supplying user defined functions without

previous useful input knowledge. The aim of the work presented in this

chapter is to create methods to enable rule-sets as functions, achievable

through the following methods.

∗ Reuse functions at the inner nodes. Function reuse at the inner nodes

is important because by reusing the learned rule-sets as functions

(termed Function-RuleSets) and their associated code fragments, it

is possible to provide a tight linking between the two. This will aid

in the performance of the system as well as provide valuable and

reusable building blocks of learned knowledge. The analogy is as

follows:
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′If < Conditions > Then < Actions >′ (4.1)

′If < Input > Then < Output >′ (4.2)

Function(Arguments < Input > Return < Output >) (4.3)

Equation 4.1 is the standard way that a classifier would process its

conditions to achieve an action, which is analogous to 4.2. Equation

4.3 is the analogy with a function. These functions will take a number

of arguments as their input and will return an output.

∗ Reduce the search space. This is anticipated to be achieved by linking

the new CFs with the new rule-sets learned. This will be shown with

performance graphs, which will depict the number of training in-

stances required to solve a series of problems. The usage of graphs is

a suitable measure as it is a standard method for gauging LCS perfor-

mance. The final output will provide a composite function which at

the time of evaluation will have to search only among those CFs that

have been assigned to it. This ‘shortcut’ is anticipated to produce an

increase in scalability and should facilitate the solution to problems

in related domains [3].

According to [91], there are a finite number of common patterns in the

world. In addition, natural, human and artificial systems tend to fall into

these repeating patterns. If a pattern can be recognized in one system

along with the ability to solve the problems related to that system or do-

main, it should be possible to reuse those techniques in a related domain.

The technique is explained fully in the following sections. Its applica-

tions will also be described. Afterward, the results from these experiments

will be presented and a discussion will be conducted describing the impli-

cations of the findings.
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4.2 Reusing Rule-sets as Functions

4.2.1 Method

The new technique proposed here builds on the strengths of XCSCFC and

improves on them by expanding the reuse of CFs. Specifically, rule-sets

that contain classifiers containing CFs can be reused as functions in the in-

ner nodes of higher level CFs. For instance, Figure 4.1 shows that the leaf

nodes can contain learned CFs as well as environment features. In addi-

tion, the root nodes of the CF sub-tree contain learned functions (rule-sets).

This combination provides a link between the CFs and the new ternary

rules. In this case the function rule-sets utilize the ternary alphabet {1, 0,

#}. In Figure 4.1 the function rule-set maps to the AND Boolean operator

which would have been learned previously. When the next task is pre-

sented to the system, the learned Function Rule-set could be utilized to

construct new CFs as part of the covering process. This facilitates learn-

ing of a series of functions that could then participate in learning a more

difficult problem in a related domain.

Boolean operators have been found useful in learning problems and

can be learned in series. For these reasons the proposed technique, known

as XCSCF2, will initially be presented with several Boolean tasks. Fig-

ure 4.2 illustrates the step by step methodology. The series of objects with

the letters “FS” inside signify the Function Sets currently learned; the cir-

cles at the bottom of Figure 4.2 illustrate the necessary rule-sets that will

need to form as the function is being learned. The four sets of axes show

the expected performance by the system while learning the current prob-

lem. The Y axes represent the percentage of the problem learned by the

system, e.g. level of convergence, while the X axes depict the amount of

instances required for the system to learn the task.

The training problems used by the novel system are part of the Boolean

domain. The system is initially given the NAND Boolean operator rules.

With these rules, it is then trained with the OR Boolean operator. The
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RuleSet

Rule 
Set

0 # : 0
# 0 : 0
1 1 : 1
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Learned function 
code fragment is 
reused in new 

problem

Figure 4.1: Code Fragment and Function Rule-set reuse. The root node

illustrates the ternary rules of the ‘AND’ function that have been learned

previously. These are then reused when learning a new problem.
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a priori

Figure 4.2: Code Fragment and Function Rule-set reuse. Each learned

problem feeds its complement of learned functionality to the next prob-

lem.

NAND operator is deemed essential because with it, other Boolean opera-

tors such as OR, AND or XOR could also be learned [86], [68]. The concept

is that as the system learns each function, it accumulates the essential rules

and CFs that will solve that problem. For instance, after the system learns

the OR function it tackles AND, XOR and finally NOR. With the exception
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of the NAND function, the sequence of Boolean operators is not impor-

tant since it is possible to learn all of them as long as NAND is present.

Once this basis of learned functionality is in place, it can then be used to

learn useful patterns in the multiplexer problem domain. The system is

not given more Boolean functions to learn due to its intractable memory

requirements. Importantly, the system does not reuse the learned CFs at

the leaf nodes until it begins learning the 11-bit multiplexer problem. This

was a design decision taken to minimize the memory requirements. This

was due to the growing chains of CFs. The stopping criteria is when the

system has processed the given number of training problems. The next

step is to determine if the learned knowledge can be transferred to a more

difficult problem in the same domain and possibly into a related domain

such as the multiplexer problem.

The multiplexer problem is suitable for these experiments because it is

a difficult problem which has been studied extensively in research [17]. It

is highly non-linear in the sense that some of the bits are crucial in deter-

mining the importance of other bits in the string. The number of address

bits is a function of the length of the message string and grows as the prob-

lem size increases. This means that the search space of the problem is also

adequate to show the benefits of the proposed technique. For example, for

the 70-bit multiplexer the sample space consists of 270 combinations [54].

4.2.1.1 Evaluation of CF Sub-trees

In order to evaluate a CF tree, the system uses the Reverse Polish Notation

method to traverse the tree. For example, the CF depicted in Figure 4.3,

when presented with the environment message: 1 0 1 1 0 1 , is then

evaluated in the steps illustrated in Table 4.1. Step 1 begins by mapping

the environment features to the corresponding terminal, the right hand

side column shows this. Then the function is evaluated by comparing

the inputs with the rules associated with the function. When a matching

rule is found, the action of that rule is returned, see Figure 4.4. Step 2
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evaluates the right hand side branch as shown in the middle column, with

the right hand side column showing the mapped features. The root node

produces the final answer for the CF tree by using the results from the

two branches along with the function in the root node. When the top root

node is evaluated – step 3 – the learned rule-sets for the function at that

node are compared with the inputs produced by the two branches. When

a matching rule is found, the action is returned as the overall answer for

the CF tree.

D5

F1

D1

F2

D0

F1

D2

0 0 : 0
1 # : 1
# 1 : 1

0 # : 0
# 0 : 0
1 1 : 1

F1

F2

F1 & F2 : Learned functions

Figure 4.3: An example of a code fragment.

This evaluation process is further illustrated in Algorithm 4. Here n is

the length of the CF, cf in a classifier rule. The CF is evaluated, as in the

methods used for Reverse Polish Notation. If a CF evaluates to a num-

ber which falls within the length of the problem, then the correspond-

ing environment feature is returned. In the case of a previously learned

CF, the evaluateCF function is called recursively. On the other hand, if a

CF matches a previously learned function, e.g AND, OR, then there is a

comparison between the current inputs and the rules linked to that func-

tion. Depending on the number of inputs of the learned function, the same

number of inputs are expected from the CF currently being evaluated. The
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Table 4.1: Evaluation of a Code Fragment. Reverse Polish Notation is used

to traverse the left branch, then the right branch and finally the top root

node of the CF in Figure 4.3. The right hand side column shows the envi-

ronment features mapped to the corresponding CF terminals.

Step Original Mapped Features

1 D0 D1 F2 1 0 F2

2 D2 D5 F1 1 1 F1

3 0 1 F1 1

F2

1 0

F1

1 1

F1

0 1

Step 1

Step 3

Step 2

0 # : 0

1 # : 1
# 1 : 1

# 1 : 1

Figure 4.4: Rules matching at the root nodes.

CF creation process ensures that new CFs are allotted the correct number

of inputs, thereby avoiding mismatches. These inputs are compared with

each of the ternary rules linked to the learned function until a match is
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found. At this stage of development, there will always be a match be-

cause the functions being learned are simple; they contain at most four

rules each. It is plausible that as the functions increase in complexity there

will be mismatches due to the quality of the ternary rules learned. This

will need to be handled in future systems. When the match occurs, the ac-

tion linked to the matching rule is returned. When the entire CF has been

evaluated, the final value in the calculations is the result of the CF.

4.2.1.2 Comparison with XCSCFC

It is important to tell apart the proposed system from XCSCFC, on which

it is based, in order to understand the novel technique better. XCSCF2 is

based on XCSCFC and as such, shares many properties with this type of

system. First and foremost, the proposed system uses CFs in the condition

just like XCSCFC. The CF trees are built similarly, with the root nodes con-

taining functions and the leaf nodes containing either an environment fea-

ture or a previously learned CF. Both systems also introduce a don’tCare

CF, a regular CF, or an environmental feature for each of the condition po-

sitions in the problem. A don’tCare CF is one that always returns a one.

Importantly, both systems can have a CF count that is equal to or less than

the length of the problem. For example, a problem of length 11 could be

solved by less than 11 CFs.

In addition, just like XCSCFC, the new system creates a matchset by

including classifiers where all the conditions, i.e. CFs, produce a one. This

means that all CFs created during covering, match the associated condi-

tion bit. Determining if two classifiers are equal is also accomplished like

in XCSCFC, CFs are compared node by node; if all the nodes are the same,

then the CFs are equal to each other. This is important when determin-

ing copies of CFs during the discovery phase. The equality between CFs

is not altogether exact, because unlike XCSCFC, the proposed technique

uses rule-sets for functions. This means that one CF with a root node con-

taining Function x could be different from another CF which also con-
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Algorithm 4: XCSCF2: evaluateCF

Data: The currently observed input state s and a CF cf ∈ [c] where

[c] is the set of conditions in a classifier.

Result: When the top root node of the CF tree is evaluated, the final

answer of the CF is produced.

1 n← Length of Code Fragment cf

2 for i = 1 to n do

3 code← code indexed at cf [i]

4 if code ≥ 0 && code < condLength then

5 /* Environment feature */

6 return s[code]

7 else if code ≥ condLength then

8 /* Previously learned CF */

9 /* Call evaluateCF function recursively */

10 return evaluateCF(code, s)

11 else

12 /* Previously learned Function */

13 x← Number of learned functions

14 for idx = 1 to x do

15 if code ≡ Function then

16 rNum← Number of rules in function

17 for rdx = 1 to rNum do

18 if CFrule ≡ Function rule then

19 /* Function rule match */

20 return Function rule action

21 end

22 end

23 end

24 return true
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tains Function x at the exact same position. The first function might never

match the same rule number as the second instance of the same function.

In this manner, determining if CFs are equal is only done at the Function

level, otherwise it could become very time-consuming to determine if one

Function is the exact copy of another. In addition, it would not serve any

benefit to allow this granularity, because the matching rules are dependent

on the inputs being passed up the CF sub-tree. For these reasons, XCSCF2

only tests at the function level and therefore is not performing a complete

comparison.

While both systems use CFs in the condition part and a binary alpha-

bet in the action part, it is in the structure of the CF sub-trees where the

main difference is found. Figure 4.5 illustrates how XCSCFC reuses either

learned knowledge or problem features in the leaf nodes. The functions

provided for the system are predefined, which means that they include

some bias from the environment.

Code Fragment 1

Code Fragment 1
gets reused 

in the leaf node of the 
code fragment tree

Rule Set
0 0 : 0
1 # :1
0 1 : 1

D3

&

D0

CF1 D4

|

Predefined
Function

Figure 4.5: Original design of the Code Fragments-based XCSCFC. Code

Fragment 1 uses the hard-coded AND function denoted by the &, while

D0, D3 and D4 address features in the environment message.
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The structural differences between both systems lead to different exe-

cutions during the evaluation of CFs. As was described above, XCSCF2

contains learned rule-sets at the root nodes. These learned rule-sets per-

form the role of atomic values, designed to shorten the search space. The

NAND boolean rules are provided for the new system a priori, therefore

they constitute a bootstrap. When XCSCF2 is learning the first function, in

this case OR, a new function is created with all the corresponding rules for

the NAND operator and their corresponding actions. This new NAND

function is then used to learn the OR Boolean operator. When learning

subsequent Boolean functions, the OR and NAND functions will be avail-

able for those tasks. All the learned functions in the new technique are

assigned a unique tag by the system described here. For example, in Ta-

ble 4.2 the proposed system reuses previously learned functions; these

have been tagged by the system as ‘M’, ‘N’ ‘c’, and ‘m’, while XCSCFC

uses its hard-coded functions.

Table 4.2: Sample CFs produced by XCSCF2 and XCSCFC for the 20 bit

Mux problem. The tags N, M, c, m, r and d stand for previously learned

functions. The tags CF 55, CF 44, CF 56, CF 25, CF 31, CF 28, CF 47 and

CF 36 stand for CFs associated with the previously learned functions.
CF

Number XCSCF2 XCSCFC

1 D2 D2 M D0 D1 N c D1 D5 & ˜

2 D2 D3 M D1 D2 M N D0 D1 & D1 D0 & |

3 D0 D3 N D1 D5 N m D2 D5 | D2 D1 | d

4 CF 55 CF 44 N CF 56 CF 25 m c CF 31 CF 28 r CF 47 CF 36 r &

There exists a structural overlap between the systems in that both use

a similar number of functions. XCSCFC uses the hard coded functions

NAND, OR, AND, NOT and NOR, while XCSCF2 uses the following func-

tions NAND, OR, AND, XOR and NOR. The proposed system uses the

given NAND rules to learn the rule-sets for the rest of the functions. Al-

though XCSCF2 does not learn any additional rule-sets past the NOR op-

erator, it does continue to learn CFs, just like XCSCFC. Future versions
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of XCSCF2 will be capable of learning functions with more than two in-

puts. In addition, similar to XCSCFC, XCSCF2 begins to reuse CFs at the

leaf nodes starting with the 11-bit multiplexer problem. This makes it an

extension of the original XCSCFC system. In other words, after the NOR

operator is learned, the system uses all the rule-sets learned up to that

point when evaluating the root nodes of the trees. At the same time, it also

uses any previously learned CFs, beginning with the 11-bit multiplexer

problem. In essence, the population of CFs will continue to grow, unlike

the population of rule-sets associated with each learned function, which

will remain static after the NOR function is learned. The novel system is

unable to learn past the NOR boolean operator due to its serious memory

requirements. In addition, the proposed system is incapable of learning

functions with more than two inputs. For example, all the Boolean opera-

tors learned here have at most two inputs. In order to handle more inputs,

the structure of the CFs needs to change to accommodate the extra nodes.

This will have to be a dynamic property so that memory is not wasted.

4.2.2 Results

4.2.2.1 Boolean Operators

The proposed system was trained with the data-sets corresponding to the

Boolean operators NAND, OR, AND, XOR and NOR in sequence, follow-

ing are the results of these experiments. XCSCF2 was capable of learning

the {OR, AND, XOR and NOR} operators, see Figure 4.6. The NAND

operator became a boot-strap function which was used to learn OR, and

then the system learned the AND operator, continuing in this manner un-

til it had learned all the necessary Boolean operators. XCSCF2 was able

to converge rapidly as it was learning the new rules and CFs. This was

because the functions being learned are not difficult, consisting of at most

four rules each, with each rule consisting of two bits.
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(a) OR Boolean Operator.
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(b) AND Boolean Operator.

0 100 200 300 400 500 600

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

XOR

Instances (x 100)

P
er

fo
rm

an
ce

XOR using XCSCF2   

(c) XOR Boolean Operator.
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(d) NOR Boolean Operator.

Figure 4.6: Results of the Boolean problems using XCSCF2. The figures

illustrate learning by reusing previously learned information. The OR

Boolean operator is learned by using the rules for the NAND operator,

these are provided for the system. The AND Boolean operator is learned

by using the learned OR operator and the NAND operator, and so on and

so forth. The sample period for the instances is every 100th instance, i.e.

each data point on the graph represents 100 instances.
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4.2.2.2 Multiplexer Problems

The results for the multiplexer experiments are illustrated in Figure 4.7,

which shows the performance curves for both XCSCF2 and XCSCFC. The

experiments spanned the 6 bit Mux through the 20 bit Mux problems. It

is evident that the proposed system performed better than XCSCFC here,

in terms of a lower number of training instances needed for learning the

problem. Although it is not clear what caused this advantage, it is sug-

gested that having learned the XOR Boolean operator instead of the NOT

operator – XCSCFC had the NOT operator hard-coded instead – was ben-

eficial to the proposed system. This is because the XOR function contains

at most four rules while the NOT operator contains at most two. Also,

XOR contains two inputs while NOT only contains one. This means that

XOR can describe more of the problem domain and therefore can help to

learn faster.

Learning was slightly different between the CF-based systems used in

the experiments. Both systems produced a similar number of CFs for the

20 bit Mux problem. For example, for run 8, XCSCF2 produced 888 CFs

while XCSCFC produced 751 CFs. This indicates that the functionality

that XCSCF2 was learning and that XCSCFC had hard-coded, was ade-

quate to learn the problem. Also, XCSCF2 was learning more efficiently

than XCSCFC; this is supported by Figure 4.7. The proposed system con-

verged with about 40,000 training instances while XCSCFC accomplished

that with about 70,000 instances.

Table 4.2 illustrates a sample of the rules produced. Rules 1-3 demon-

strate that both systems made use of their functions. Also, XCSCF2 and

XCSCFC both used features from the environment at the terminal nodes.

The fourth rules exhibit learned CFs at the terminal nodes. The prefix ‘CF ’

stands for Code Fragment, followed by the Id assigned by the system. Ta-

ble 4.3 illustrates the learned rules associated with function M. These rules

do not contain ‘#’ characters, meaning that they have not been optimized

by the system. This will be an improvement in future versions. The “M”
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Figure 4.7: Comparison between XCSCF2 with XCSCFC for the 6-20 Bit

Multiplexer Problems. The numbers between the brackets are for identi-

fying the curves.
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Table 4.3: Function M learned ternary rules produced by XCSCF2. These

correspond to the NOR boolean operator. The system does not provide

pressure to learn don’tCares.

XCSCF2 Rules

1 1 : 0

1 0 : 0

0 1 : 0

0 0 : 1

is just a tag that the new system assigned to the NOR boolean operator as

it was learning.

The XOR function provided benefits that were missing when the NOT

function was given instead. This is illustrated in Figure 4.8. These ex-

periments replaced the XOR function with the NOT function for XCSCF2.

All the curves for XCSCF2 are located closer to the corresponding curves

of XCSCFC, in comparison to those of Figure 4.7. This indicates that the

system has taken more training instances to fully converge for all the ex-

periments.

The results for the 37-bit and 70-bit Mux experiments comparing

XCSCF2 with XCSCFC are illustrated in Figures 4.9 and 4.10. It is evident

that during these experiments, XCSCF2 required more training instances

than XCSCFC in order to learn the problem. It is possible that XCSCF2 was

increasingly at a disadvantage due to not having access to the NOT oper-

ator. It is also useful to keep in mind that although XCSCF2 learned new

CFs and reused them during the subsequent problem(s), it did not learn

new rule-sets with each new problem, past the NOR stage. This also ap-

pears to be a contributing factor of this disparity in performance. During

the 6-bit to 20-bit series of multiplexer experiments, the binary rule-sets

were sufficient to cover the search space of the problem. In essence, the

learned rules were used to match short segments of the environmental

message string. This facility was not enough for more complex problems
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Figure 4.8: Comparison between XCSCF2 with XCSCFC for the 6-20 Bit

Multiplexer Problems. Instead of the XOR function, the system was given

the NOT function to learn. The numbers between the brackets are for iden-

tifying the curves.
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such as the 37-bit and 70-bit problems graphed here. This occurred be-

cause there were not enough learned functions to form useful building

blocks. It could be argued that XCSCF2 must work harder to find the use-

ful combination of CFs and rules that will express the Multiplexer address

bits as well as the corresponding data bit. Therefore the system must labor

to niche the problem space and in this way find the general classifiers that

will contain the appropriate environment features.

The results for the 135-bit Multiplexer experiments are illustrated in

Figure 4.11. Similar to the 70 bit experiments, XCSCF2 required more train-

ing instances than XCSCFC, however the difference was proportionally

similar in both cases, if taken over the total number of training instances

for the experiments. In addition, the standard deviation is slightly larger

for XCSCF2 as compared to XCSCFC. This indicates that the experiments

had very different learning performances during the individual experi-

ments.

It is not known a priori which functions will be useful for the problem

being learned. There is a need to balance between too many functions and

not enough. Both extremes can hinder learning by providing too large a

search space or not enough grist for the learning mill. Our concern here is to

test this on objective one and objective two.

4.2.3 Interpretation of Results

The results indicate that the proposed technique has potential for in-

creased scalability. Experiments 5.1-5.2 demonstrated that there exist ben-

efits in providing a CF system with the capability of reusing learned

knowledge at the root nodes, as well as at the terminal nodes. This capabil-

ity has translated into better performance by the proposed system for the

6-20 bit Mux problems. Although, these are not very difficult problems,

by today’s standards, they do help to illustrate the benefits of the tech-

nique. The CFs produced by the systems share similarities in the fact that
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Table 4.4: Sample rules produced by XCSCF2 and XCSCFC for the 135 bit

Mux problem.
Rule

Number XCSCF2 XCSCFC

1 N(c(D3, D1), m(D3, D5)) r(&(D0, D2), |(D0, D3))

2 d(N(D5, D3), N(D3, D0)) &(˜(D2), d(D4, D0))

3 c(m(D1, D0), d(D0, D0)) r(d(D5, D0), d(D1, D5))

4 m(N(CF 137, D2), d(D0, CF 163)) &( |(CF 147, D9), r(D1, CF 160))

both techniques reuse learned knowledge in a consistent manner. In other

words, XCSCF2 uses a combination of CFs coupled with learned rule-sets

while XCSCFC reuses its learned CFs at the leaf nodes. The two techniques

differ in that the functions produced by XCSCF2 refer back to learned func-

tion rule-sets while in XCSCFC, the functions are hard-coded by the user.

Table 4.4 illustrates the two variations of CFs.

Although the proposed work performed well against the state of the

art technique, there is opportunity for improvement. First of all, the pro-

posed system only learns new binary rule-sets up to the NOR Boolean

operator. This presents a handicap that would ultimately become very ap-

parent during the harder problems. It is hypothesized that a lack of more

relevant rule-sets limits the scalability of the novel system as the problems

become more complicated. By ‘relevant’ it is meant rule-sets that are closer

to the problem being attempted at the time. For example, it may be helpful

to have learned rule-sets for the 6-20-bit Mux problems when the system

finally attempted the 37-bit Mux.

Another limitation faced by XCSCF2 was a holdover from XCSCFC,

namely the global storage of learned CFs in a single repository. Needless to

say, this promoted lengthy searching for any matching CFs being used in

the classifiers as the number of CFs can quickly number in the thousands,

depending on the problem. This could be addressed in future versions by

changing the way in which learned CFs are stored.
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4.2.4 Summary of Reusing Rule-sets as Functions

The new work showed that building blocks of knowledge can be useful

at the root nodes as well as the terminal nodes of the CF trees. By using

XCSCF2 it was possible to learn building blocks of functionality from ba-

sic boolean rules. The learned function rule-sets were stored and used to

solve the subsequent problems. It was also shown that knowledge learned

in the boolean logic domain could be used to solve problems in a related

domain such as the multiplexer. This was demonstrated with the solu-

tions to the 6-20-bit multiplexer problems. It was also determined that

as the problem scales, the time requirements for the technique also grow,

however they are not prohibitive.

It is anticipated that further scaling is achievable by providing a linking

between the learned rule-sets and their associated CFs. This will reduce

the search space by limiting the number of CFs that must be searched dur-

ing the normal execution of the technique. This has been identified as a

critical step in enabling the cross-domain knowledge transfer that includes

function rule-sets as well as their respective set of code fragments.

4.3 Reusing Code Fragments to address the Hid-

den Multiplexer

4.3.1 Method

It has been shown that reusing rule-sets as functions at the root nodes of

CF trees is feasible and beneficial. This was accomplished in the Boolean

domain as well as a related domain, i.e. Multiplexer. However, there are

problems which are more difficult than the aforementioned ones, which

could benefit from this type of process. Such problems present enough

difficulty that a reduction in the search space is a pre-requisite to find their

solution. In this work, the proposed technique will provide a tight linking
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between the learned rule-sets and the learned CFs. It is anticipated that

this will reduce the search space facilitating the solution to these problems.

The system involved uses two-point crossover for the rule discovery;

according to Butz [17], uniform crossover tends to have deleterious effects

on the population, making XCS unable to solve the 18-bit hidden multi-

plexer problem. According to Butz [17], this happens because XCS is un-

able to process the building blocks at the lower level, but rather disrupts

them. On the other hand, two-point crossover helps XCS learn the prob-

lem [17]. Butz also addresses the need to provide a larger population to

XCS due to its inability to efficiently handle building blocks for this type

of problem, see Section 4.3.2.

The problem domain in this new work is the hidden multiplexer. The

basic structure of the problem is shown in Fig 4.12. Since the solutions

can be composed of Boolean functions, this makes it a feasible domain to

learn [17], [56]. Also, their multi-tiered nature, non-redundant features

and high epistasis have made them appropriate for this type of exper-

iments by providing enough difficulty to show the benefits of the new

technique.

The hidden multiplexer is a two tier problem involving a lower layer

composed – in this case – of 3-bit parity problems. The lower level must

be evaluated first, in order for the results to be passed up to the top layer,

which is composed of one multiplexer problem. There is a fixed correspon-

dence, and the address bits are irrelevant. Once all the upper level bits are

known, the multiplexer part is evaluated and the class is determined.

This problem is considered very difficult due to its two level structure.

Unlike a standard multiplexer, the rules produced by the solution must

account for this hierarchical property. The system must exercise efficient

usage of the building blocks of knowledge. This means that the rules must

address proper combinations of parity solutions which also produce cor-

rect combinations of bits in the upper level. Therefore the training of the

system must include the proper number and types of functions to facilitate
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Figure 4.12: Example of the Hidden Multiplexer. The lower level consists

of parity problems and the upper level consists of a multiplexer problem.

the correct solution.

The first step is to determine the fundamental functions that should

be given to the new system. The more of these that are included, the more

domain bias is also included without the capability to learn the connection

between the functions and the discovered building blocks. For instance,

for the Boolean domains, NAND gates are building blocks through which

it is possible to build other gates such as the OR, AND or NOR [3], [68],

[86].

The system described here is initially given the NAND rules, to pro-

vide a bootstrap function with which to learn the NAND function CFs.

NAND is important because it makes it possible to build the other Boolean

operators. Although it appears to be inefficient, this step is in preparation

for having XCS learn the NAND rules for this step in the future. This will

reduce human knowledge and bias from this process. After this step is

done, the system is trained to learn the OR function. Once this step is fin-

ished, the system will have the NAND and OR rules available for solving

problems. There is also a new set of CFs that are linked to the OR function.

The system is then trained in a similar manner to learn the AND, XOR and

NOR functions.
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The purpose of the base training is to have the system build a cache of

reusable functions, composed of rule-sets and associated CFs. This cache

then becomes relevant building blocks of knowledge for these functions.

Then the hidden multiplexer problem is attempted [3].

First, the human experimenter must set the order of the problems to be

addressed. This stage consists of three separate branches, see Figure 4.13

for more details. The parity branch continues on to the 2-bit even and odd

parity, 3-bit even and odd parity, in that order. When this is completed

the system attempts to learn the 18-bit hidden multiplexer. The second

branch also consists of learning the boolean operators, the parity prob-

lems and then the 6-bit multiplexer problem. When this is accomplished,

the proposed system is given the 18-bit hidden multiplexer problem. The

last branch consists of learning the boolean operators as mentioned above,

then the system is given the 6-bit multiplexer, prior to attempting the 18-

bit hidden multiplexer problem.

4.3.2 Results

The training regimen provided certain benefits depending on the order of

the problems being learned. Figure 4.14 illustrates results for the three sep-

arate training branches in the experiments. Including the parity function

during the training helps the system learn the hidden multiplexer problem

better than otherwise. This was to be expected because the parity problem

provides valuable functionality. The type and number of rules produced

are also dependent on this factor.

Table 4.5 shows the number of rules for an arbitrarily selected run (No.

8) of these experiments. It is clear that the number of rules and number

of CFs produced grow in opposite directions as one reads down the table.

What is not clear, however, is the reason for the discrepancy in perfor-

mance. In other words, one can not readily determine what factor helped

the first two training paths to converge with similar numbers of training
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Boolean

Parity 6-Mux

3x6 Mux3x6 Mux3x6 Mux

Figure 4.13: Training flow of learned functions for the system. All the

paths begin with the Boolean operators and culminate with the 3x6 hidden

multiplexer. The first training path includes the Boolean, Parity and 3x6

Mux problems. The second path includes the Boolean, Parity, 6-Mux and

3x6 Mux problems. The third path includes the Boolean, 6-Mux and 3x6

Mux problems.
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Figure 4.14: 18-bit Hidden Multiplexer problem. The graphs show three

different training paths (Boolean, parity, 6mux) for XCSCF2.
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Table 4.5: Number of rules and CFs produced by XCSCF2 for three differ-

ent training paths. These are for run 8.

Training Path Number of Rules Number of Code Fragments

Boolean→ Parity 184,585 14,225

Boolean→ Parity→Mux 169,936 17,164

Boolean→Mux 100,558 24,479

instances while the third path needed about 300,000 more instances. The

quality of the CFs could be a clue and a sample of these is shown in Ta-

ble 4.6. The CFs for the three training branches do not demonstrate an ob-

vious difference, with perhaps a difference in CF chain lengths. The chains

for the Boolean-Parity-Mux path would be expected to be longer as they

have had one more layer of training, however upon a closer inspection

of the data produced, no major difference has been noted. This inspec-

tion indicates that the critical factor is the Parity function. It is providing

useful knowledge blocks in the training paths where it is used. Also, the

fact that the training path using Boolean, Parity and Multiplexer functions

produces more rules than the path that uses Boolean and Multiplexer func-

tions, is because the Multiplexer does not add as many useful knowledge

blocks as the Parity function. In fact, it is causing the system to produce an

overabundance of rules, as compared to the path where only Boolean and

Parity functions are used. On the other hand, the Parity function makes a

noticeable difference in the number of CFs produced, as can be seen on the

right hand side column of Table 4.5. The Parity function helps produce a

more compact population of CFs.

Figure 4.15 shows the results for the 3x6 hidden multiplexer after hav-

ing trained the system with the boolean and parity problems. The pro-

posed system performs better than XCS or XCSCFC. Figure 4.16 shows a

graph of the results for the training path of the Boolean and Multiplexer

problems. The lack of the Parity problems during the training appears to

have made a difference in the performance of the proposed system. Fig-
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Table 4.6: Final Code Fragments produced by the three different training

paths. D* represent features while a-z, A-Z are learned functions.

Problem CFs Produced

Boolean→ Parity

J(y(D5,D10),X(D13,D13,D13))

J(D3,D4)

J(D14,D12)

g(O(D9,D1),H(D13,D4),X(D2,D0,D9))

...

Boolean→ Parity→Mux

c(y(D3,D4,D9),g(D5,D4,D3),Q(D16,D16,D1,D5))

H(J(D16,D11),X(D1,D2,D10))

d(d(D10,D9),Q(D15,D17))

D16

...

Boolean→Mux

D4

y(y(D2,D14),Q(D1,D0))

y(D2,Q(D0,D1))

d(K(D3,D3),K(D3,D6))

...
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Figure 4.15: 18-bit Hidden Multiplexer problem. The graphs compare

XCSCF2 against two other systems. The training path is (boolean, parity,

hidden multiplexer).
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Figure 4.16: 18-bit Hidden Multiplexer problem. (Boolean, mux)

ure 4.17 shows that the training involving the Boolean, Parity and Multi-

plexer problems produces results similar to the ones produced by the path

with Boolean and Parity problems. This was expected, based on the results

pointed out in Table 4.5.

Table 4.7 illustrates the population size and number of training in-

stances for the Boolean experiments. These were only the base problems

that would be used later to learn the hidden multiplexer. The number of

training instances for the initial nine problems is higher than for the mul-

tiplexer problem. The NAND problem needs twice as many classifiers as



4.3. REUSING CODE FRAGMENTS TO ADDRESS THE HIDDEN MULTIPLEXER95

0 1000 2000 3000 4000 5000 6000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Instances (x 1000)

P
er

fo
rm

an
ce

0 1000 2000 3000 4000 5000 6000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Instances (x 1000)

P
er

fo
rm

an
ce

0 1000 2000 3000 4000 5000 6000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Instances (x 1000)

P
er

fo
rm

an
ce

 18 Bit Hidden Multiplexer 

[1] − XCSCF2

[2] − XCSCFC 
[3] − XCS 

[1]

[2]
[3]

Figure 4.17: 18-bit Hidden Multiplexer problem. (Boolean, parity, mux)
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Table 4.7: Number of classifiers and training instances for XCSCF 2.

Boolean Classifiers Instances

NAND 1,000 700,000

OR 2,000 700,000

AND 2,000 700,000

XOR 2,000 800,000

NOR 2,000 900,000

2-Bit Even Parity 2,000 900,000

2-Bit Odd Parity 2,000 1,000,000

3-Bit Even Parity 2,000 1,100,000

3-Bit Odd Parity 2,000 1,200,000

6 Mux 500 500,000

the Mux and 200,000 more instances. This is strange, given the fact that the

NAND rules are provided a priori. It is hypothesized that this is caused be-

cause the system is learning the CFs associated with the NAND rules and

there aren’t any CFs to reuse at this time. The reason that the system was

trained with the NAND Boolean operator in spite of having the rules is be-

cause in future versions those rules will be learned by a standard XCS and

then will be provided, which will reduce the amount of human knowledge

given to the system. The other Boolean operators require more classifiers

and training instances, but that can be attributed to the growing cache of

learned functionality. If there are too many functions or not enough, it can

impact the learning ability of a system. In this case, the system does not

have enough useful functions yet. Also, it is logical for the Parity problems

to have higher requirements as they can be considered more difficult than

the Boolean operators. This initial higher overhead in training instances

and population can be attributed to the lack of useful functionality; this is

overcome as the system continues to learn and accumulates more building

blocks, like during the multiplexer problems.

Table 4.8 shows the classifier and training instance requirements for
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Table 4.8: Number of classifiers and training instances for XCSCF 2, XC-

SCFC, and XCS for the 3x6 Hidden Multiplexer.

System Classifiers Instances

XCSCF 2 50,000 6,000,000

XCSCFC 50,000 6,000,000

XCS 100,000 6,000,000

the three systems used while solving the 3x6 hidden multiplexer problem.

The training instances for all three systems were the same number. XCS

was allotted twice as many individuals as the other two systems for two

main reasons: XCS is known to have difficulty solving this problem; it has

been suggested by Butz [17] to provide a very large number of classifiers

to XCS for this type of problem. According to Butz [17], in the k-parity-ḱ-

multiplexer combination, the optimal population is of size:

|[O]| = 2(2k(k
′+1)) . (4.4)

The optimal population size is closely related to the order of difficulty

of the problem, taking into account the lower and upper level building

blocks. This size is given by the equation:

kd = k(k′ + 1) . (4.5)

Here k stands for the number of bits in the parity part while ḱ stands

for the number of bits in the multiplexer part [17].

4.3.3 Interpretation of Results

One of the main observations during this new work is that the Parity prob-

lems are important in finding the correct patterns for the hidden multi-

plexer. This was demonstrated by the results involving XCSCF2 and the

three different training paths. It is hypothesized that since the structure of
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the hidden multiplexer involves a layer of parity problems, the presence

of the learned Parity function is important and provides valuable relation-

ships between different problem features. Furthermore, the presence of

the multiplexer learned function does not appear to be as important as the

Parity. This may be due to the fact that the Boolean problems are enough to

enable a solution to the Multiplexer layer. This can be seen in Figures 4.15,

4.16 and 4.17.

XCSCF2 performed better than XCS and XCSCFC for all the experi-

ments in terms of training instances required. This can be attributed to the

strengths of the technique, i.e. reusing CFs at the root and leaf nodes. The

performance by XCSCFC and XCS were counter-intuitive, given the some-

what similarity between the proposed system and XCSCFC. It was unex-

pected, but XCS consistently performed better than XCSCFC, in terms of

training instances required. This is due to the overhead of its richer alpha-

bet.

While the 3x6 hidden multiplexer served as a good testbed for the tech-

nique, it is not considered a very difficult problem. This is because prob-

lems with a size of 18 bits are routinely solved by XCS and similar systems.

Therefore more work still remains to be done. It is not obvious how much

more the Parity function alone can help in the solution of more difficult

problems like the 3x11 hidden multiplexer. Nevertheless, the solution to

the 3x6 hidden multiplexer problem by XCSCF2 indicates the potential for

more scalability.

4.3.4 Summary of Reusing Code Fragments to address the

Hidden Multiplexer

Learned knowledge and functionality was successfully reused at the root

nodes and leaf nodes of CF trees, respectively. This facilitated opportu-

nities for reducing the search space by providing a tight linking between

the learned rule-sets and the learned CFs. Each time a CF was evaluated,
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the system searched only among the CFs assigned to the learned function,

instead of one large CF repository, as was done before. This demonstrated

the feasibility of reusing rule-sets as functions.

Learned knowledge from one domain was successfully transferred

to a related domain. The proposed system was initially trained on the

Boolean operators and then one of three training paths was chosen. The

learned functionality was then used to learn a problem in a related do-

main, namely the hidden multiplexer.

The graphs are indicative of increased scalability within the tested

scope. XCSCF2 consistently outperformed XCSCFC and XCS, even when

it was at a disadvantage; when the Parity problems were not part of the

training regimen, performance suffered. This hints at comparative per-

formance in more difficult problems such as the 3x11 hidden multiplexer,

however currently the system can not handle variable length CFs, which

is a prerequisite for handling the more difficult problems.

Although the system performed well, there is a consistent overhead in

the population size and training instances needed to learn the initial func-

tionality, i.e. {NAND, OR, AND, XOR, NOR}. Even the Parity problems

proved expensive in comparison to the multiplexer, however these invest-

ments in resources resulted in increased performance.

Further work is required to facilitate dynamic length CFs. This is a cur-

rent limitation that precludes the creation of CFs over a specific threshold.

This customization will allow the testing of more difficult problems with

an ostensibly larger domain space, e.g. 3x11 hidden multiplexer.

4.4 Chapter Summary

The focus of the work was to learn a group of Boolean functions that could

be used as a basis for further learning in the same or a related domain.

The basis for the learned functionality was to be in the form of rule-sets

which would then be used as functions. Part of the novel work also in-
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volved determining if the learned functionality could be transferred to re-

lated domains to facilitate further learning. Importantly, the effects on the

scalability of the proposed technique would figure as an important aspect

of the experiments.

Learned functionality in the form of rule-sets was reused at the root

nodes, while CFs were reused at the leaf nodes of CF trees. This was

achieved by replacing the usual hard-coded functions in the root nodes

with learned rule-sets. The newly learned CFs were stored in one reposi-

tory regardless of the function used to learn them. This builds on previous

CF enabled systems which only reused CFs at the leaf nodes. The train-

ing included the Boolean operators, i.e. {NAND, OR, AND, XOR, NOR}.

From these operators the proposed system learned rule-sets and the asso-

ciated CFs. The learned rules – used as functions – were utilized to suc-

cessfully learn more complex problems in the same or a related domain.

This was shown by arriving at a solution to the Multiplexer problem by

using previously learned CF functionality. The novel system was tested

on the 6-20 multiplexer problems, which it was capable of solving. Larger

problems caused the system time challenges, however these were not pro-

hibitive.

The important findings obtained in Section 4.1 of this chapter were cap-

italized upon successfully in the second part of this work. Three different

training paths were used to train a CF based system. As in Section 4.2,

this system used learned functionality at the leaf and root nodes, with the

added benefit of having a more extensive training regimen. This was nec-

essary as the problem being tackled was of a hierarchical nature and hence

more complex than the multiplexer problems solved in the previous sec-

tion.

The benchmark problems used to test the stated goals were suitable as

they provided enough difficulty and cross domain requirements to high-

light the strengths and weaknesses of the technique. As was anticipated,

the new technique provided improved scalability which was evident by
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the solution to the 18-bit hidden multiplexer problem. It was also dis-

covered that the Parity problems are important for learning the hidden

multiplexer problem.

The problem used to showcase the technique is not considered very dif-

ficult for two reasons: first of all, although it is composed of two levels, it is

only 18 bits long, longer problems are now routinely solved by comparable

techniques; second, the same problem was solved by XCS more efficiently

than by XCSCFC, which is considered the state of the art. Therefore, in

spite of the successes achieved with this original work, more needs to be

done. The new system is not capable of executing beyond the 3x6 hid-

den multiplexer in its current form. This means that the technique must

be updated to address this shortcoming. The system will have to deal

with varying lengths of CF trees as the problems grow in complexity. An-

other very important observation is that the technique, in its current form,

has a scalability limit. This limit is linked to the size of the problems, i.e.

the number of inputs related to each new function. The next chapter in-

troduces two variations of a compaction technique called Distilled Rules.

The techniques were developed with the goal of reducing the search space

of problems by providing ternary rule-sets in lieu of long CF chains at the

root nodes.
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Chapter 5

Distilled Rules for CF-based

Systems

5.1 Introduction

This chapter builds upon the work addressing learned functions com-

posed of rule-sets as well as CFs. In Chapter 4 it was shown that scalability

improves by using the technique, and it reduces the search space. Since the

overall goal of this thesis is to increase the scalability of LCSs, numerous

techniques were explored. In Chapter 4 it was noted that scaling was be-

ing adversely affected by computational inefficiencies. It was theorized

that if the potentially long chains of CFs emanating from the root nodes

could be reduced or changed to a more computable form, it could reduce

the time requirements when evaluating said CF chains. This identified the

need for a compaction process.

There exist many types of compaction methods for LCSs. One common

form of compaction is the subsumption mechanism that is part of XCS.

This mechanism takes the form of GA subsumption and action set sub-

sumption, see Chapter 2. A similar compaction technique has been used to

extend a CF-based XCS system as described in Chapter 2 and in [39]. This

technique is promising, and shares similarities with the proposed Distilled

103
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Rules (DRs) technique. The number of macroclassifiers in low dimension-

ality problems was reduced, however the technique is not currently scal-

able [39]. CFs are expressive and compact, which means that they are dif-

ficult to compute. A compaction technique that translates CFs into a sim-

pler form could benefit scalability, see Chapter 2 and [39]. This technique

is needed because previous compaction techniques have had limited scal-

ability [39]. In the proposed thesis, a CF-based LCS is anticipated to scale

to complex problems by using a compaction technique. The evaluation of

the CFs as the state of the environment changes is a subtle but very impor-

tant part of the compaction process, because it economizes computation

resources. The results of the subsumption technique identify computa-

tion speed as restricting scalability. According to Po-Ming et al. [39], the

lengthy runs precluded the experimentation with multiplexer problems

with a length of 20-bits or more [39]. A similar issue could be faced by

the proposed offline DR work; as if performance degrades rapidly with

problem scale. Then this could be remedied with an online DRs method.

An alternative technique for compaction performs it as a post-

processing step, see Chapter 2 and Wilson [95]. This means that this tech-

nique, like that for DRs, is not taxing to the normal execution of XCS.

However, the proposed work aims to translate the CFs present in the clas-

sifiers [95]. The benefit anticipated from this technique is associated with

scalability. The compact and complex CFs will be converted to a simpler

alphabet. Another benefit will be that the technique will not burden the

normal execution of XCS, rather it will be a post-process after the final

population of classifiers has been evolved. However, the disadvantage

could rest with the random states that will be used to test each of the clas-

sifiers in the final population. It is anticipated that this processing will

grow as the problem scales. The hypothesis is that an off-line compaction

technique could be used to translate CF-based classifiers into a simpler

alphabet. The technique is anticipated to increase scalability.

A different technique for compaction was put forth by Dixon [25].
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The technique known as CRA2 is executed during the normal iteration

of the training stage. Classifiers that have the highest payoff prediction,

numerosity product, are marked ‘useful’. When the run is over, all the

classifiers not marked ‘useful’ are removed. According to Dixon [25], this

technique can produce a reduced population. However, it is dependent on

having at least one dominant classifier in each matchset. Furthermore, this

algorithm only works if the classifiers have zero errors and payoffs equal

to the environment reward value.

A variant of the XCS technique, known as Supervised Classifier Sys-

tem (UCS), was used to extract optimal rules in an online method; these

rules are known as signatures [76]. UCS is an accuracy based LCS, like

XCS. However, during the explore phase UCS learns directly from the en-

vironment state as opposed to receiving a reward. The signature extrac-

tion technique seeks to avoid the limitations found in a normal run of UCS.

The problem is that the population convergence does not happen quickly

and a large number of iterations are required [76]. Also, the end popula-

tion contains classifiers that are not part of the optimal population. The

signature extraction technique automatically detects optimal classifiers as

they are discovered by UCS, in addition it terminates the search process as

soon as a maximally general solution is found [76]. The signature extrac-

tion technique was successfully tested on the multiplexer problem. While

testing on a 2-dimensional checkerboard problem, the technique found

near optimal decision boundaries. Although the technique was successful

during the multiplexer problem, the new research work will be dealing

with the translation of a CF-based ruleset into a binary alphabet. Most im-

portantly, the signature technique was implemented using a supervised

training model while the new proposed work will utilize a reinforcement

learning model. However a number of the intricacies in the signature tech-

nique can be readily included in the new proposed work.

This is to be an ancillary process that is anticipated to benefit the over-

all execution of subsumption and classification by translating the rich CF
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OR Problem

D1 N
D0 N
D1 N D0 D0 d  d
D1 D1 d  D0 N d
D1 N D0 N d
D0 D0 d  D1 D1 d  d
D0 N D1 N d
D0 N D1 D1 d  d
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Code Fragments Produced  

0 0 : 0
1 # : 1
# 1 : 1

Distilled Rules Learned

Compaction

Figure 5.1: OR - Final CFs and their corresponding DRs. D0 and D1 are

features from the environment. N and d represent learned functions. The

tag ‘d’ corresponds to the NAND function while ‘N’ stands for the previ-

ously learned NOT function.

alphabet into a simpler ternary alphabet that is faster to process. There-

fore, there will be a tight linking between the new Distilled Rules (DRs)

created and the CF rules from where they originated, see Figure 5.1. This

link is useful as the CFs are reused by the system and they include fea-

ture construction and feature selection while the DRs are used instead of

evaluating long chains of CFs. The compaction techniques proposed in

this chapter are deemed necessary and useful because CF-based classify-

ing systems tend to breed long chains of CFs. Although there exists an

initial limit to the CF depth, as the population grows and evolves, it is

very common to have CFs that have other CFs at their leaf nodes. If CFs

are part of classifiers in learned functions at nodes, then this can add to

the length of evaluation of CFs. In the on-line version of DRs, compaction

of the population is not intended to be separate and apart from the under-

lying function of the CF technique.
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Legend

D0, D1 : Features from 
the environment

m : OR function

c : AND function

0 0 : 0
1 # : 1
# 1 : 1

Distilled Rules 
Learned Previously

Figure 5.2: CF 43 Sub-Tree - graphical illustration of leaf (bottom) and root

(middle and top) nodes. The root node is the learned OR function where

the associated DRs are shown linked to it.

Figure 5.2 illustrates a CF produced by one run of the 6-bit Mux prob-

lem. The whole sub-tree shows the hierarchy of the previously learned

functions, which includes the previously discovered Distilled Rules asso-

ciated with the OR function. As there are no hard-coded functions in the

proposed system, the DRs serve as the ternary definition of the function,

in this case OR.

5.1.1 Chapter Goals

The proposed work in this chapter aims to produce a replacement popu-

lation of ternary rules known as Distilled Rules (DRs). The technique is

deemed important because CFs tend to grow as the leaf nodes continually

reuse previously learned CFs. As these can represent very long chains of

CFs, it was necessary to find a way to shortcut the evaluation of CFs, spe-

cially during the matchset creation step. The ancillary benefit provided

by the DR layer is a circumvention of any hard-coded functions. Meaning

that the system learns new functionality without injecting environmen-

tal bias via the functions provided by the user. The emphasis for good
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learning performance then falls on the choice of problems presented to the

system and not so much the training instances or user defined functional-

ity.

The two types of compaction proposed in this chapter build upon a

common foundation. By implementing a mutation operator as a post-

processing stage, it will be shown that a layer of DRs can be distilled from a

final population of CF-based classifiers. Tests on the offline DRs extraction

method, see Section 5.2, showed promise in compaction, but at the cost of

long running times. The method was used as the basis for the online DRs

extraction method, see Section 5.3, where run times could be reduced as

the online method executes mostly during the normal XCS stages. There

is a DRs reconciliation which takes place after the final population of clas-

sifiers has been evolved, however it is a small percentage of the overall

online technique.

Objective two of the thesis (Section 1.4) is to identify a compaction tech-

nique to simplify the final population of CF rules. The new work to be

presented in this chapter, known as XCSCF3, will also expand on the tech-

niques, introduced in Chapter 4, which showed that reusing learned rule-

sets at the root nodes of CF sub-trees is beneficial for the performance of

the system, as well as for the scalability. The ancillary benefit is anticipated

to be a reduction in the length of the CFs leading to the solution of more

complex and difficult problems.

5.2 Offline Distilled Rules Extraction

5.2.1 Method

5.2.1.1 XCSCF3 Training

The proposed technique is based on XCSCFC and utilizes a multistage

training regimen. It begins with the NAND function, see Figure 5.3. This

is provided for the system as a bootstrap function after having a standard
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XCS learn the ternary rules. A standard XCS learns the NAND problem

and the ternary rules produced are placed in a file. The system undergoes

the customary explore/exploit phases and the original ternary alphabet is

used, i.e. {0, 1, #}. The file containing the learned NAND rules is then

imported into the proposed technique, XCSCF3 to be used as a learned

NAND function for subsequent problems.

The training then progresses to the Boolean operators {NOT, OR, AND,

XOR, NOR}, which are learned with the help of the NAND function [3].

The rest of the Boolean operators can be learned by using the NAND

function. The training then involves the 2-bit and 3-bit Parity functions,

which then leads to the 3-bit multiplexer and the 6-bit multiplexer, see

Section 4.2.1. At this point the training diverges into two branches. One

branch learns the 11 to 70-bit multiplexers and the other learns the 3x6-bit

hidden multiplexer and the 3x11-bit hidden multiplexer. This will help

determine if the rules learned are transferable to a related domain.

Throughout the above steps, the system will be accumulating new sets

of DRs. Each time a function is learned and the final population of CF-

based classifiers is evolved, the DRs translation process takes place. See

Algorithm 5 for an overview of the technique. Only the classifiers that

are always accurate, correct and with enough experience are selected for

translation. These classifiers must also have a prediction error below ǫ0.

Each classifier will be evaluated, one non-don’tCare CF at a time. The first

step will be to determine which problem features are significant for the

current CF. This means that successive problem states will only change

the significant features while ignoring the others. Any random problem

instance that results in a one (CFs that evaluate to 1), for all the CFs in

a classifier, will qualify as a temporary DR. Once the maximum number

of random problem instances have been presented to the valid classifiers,

the subsumption operator acts on the population of temporary DRs. This

consists of comparing all pairs of DRs and subsuming the less general one,

if both support the same action. Duplicates are also deleted to reduce the
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NAND, NOT, 
OR, AND, 

XOR, NOR, 

2EvenParity
2OddParity
3EvenParity
3OddParity

3Mux
6Mux

11Mux
20Mux
37Mux
70Mux

3x6HMux
3x11HMux

Figure 5.3: Training regimen for XCSCF3. After having learned the

Boolean operators, the Parity problems, the 3-bit and the 6-bit multiplex-

ers, there are two training branches to show that the rules learned by the

system can be used in a related domain.

number of total DRs produced. The final population of DRs will be added

to the network of functions as a brand new DRs function and saved into

a file for later retrieval. The system will give it the same tag as for the

CF-based rule-set, thus linking the DRs with their CF equivalents.

The new CFs will be learned in the standard way as has been described

in the previous chapter. In fact, the proposed system shares many details

in common with XCSCFC, specifically the method for feature creation via

the CFs [49]. The proposed system will create new CFs for each of the con-

dition bits, while maintaining the original binary alphabet for the action

part of the classifiers.

5.2.1.2 Benchmark XCSCFC Training

To evaluate the performance of XCSCF3, the XCSCFC technique was cho-

sen as the benchmark for comparison, as it is the state of the art in CF-

based systems. Also, since XCSCF3 is an extension of XCSCFC, it will help

determine the performance against a closely related technique. The train-

ing for XCSCFC was slightly different from that of the proposed system.
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Algorithm 5: Rules Compaction - Offline

Data: The final population [FP ] of classifiers cl with enough experience

and always correct.

Result: A population of ternary rules translated from cl.

1 n← number of cl in [FP ]

2 for i = 1 to n do

3 /* Process all eligible classifiers. */

4 x← number of condition bits in cl

5 for h = 1 to x do

6 /* Process each condition bit. */

7 cf ← code fragment from [q] indexed at cl.condition[h]

8 if cf 6= ‘don’t care’ codefragment then

9 /* Array element will be permuted. */

10 TempList[currentBit]← 0

11 else if cf ≡ ‘don’t care’ codefragment then

12 /* Array element set to constant - will not be permuted */

TempList[currentBit]← NOOPERATION

13 end

14 while unprocessed bits do

15 /* Evaluate current classifier using TempList. */

16 TempList[currentBit]← NextPermutation

17 if All code fragments ≡ 1 then

18 /* Current State is a valid candidate DR. */

19 Add TempList to currentRule

20 end

21 end

22 N ← 0 /* DRs Counter */

23 while numSubsumed > 0 AND N < MAX LOOPS do

24 /* Continue until the number of DRs subsumed is 0 or the maximum

number of loops is reached. */

25 if currentRule is duplicate then

26 ignore currentRule

27 else if currentRule is subsumable then

28 subsume currentRule

29 else if currentRule is subsumer then

30 subsume existingRule

31 update currentRule numerosity

32 N ← N + 1

33 end
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Hard-coded 
Functions
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Figure 5.4: Training regimen for XCSCFC for the multiplexer problems.

The system is provided with a series of hard-coded functions. Then it is

tasked with learning the multiplexer functions sequentially.

This is because XCSCFC was given hard-coded functions, while XCSCF3

will learn rule-sets as functions. The emphasis of this work is to deter-

mine the scalability of LCSs, which was tested through the hidden mul-

tiplexer problem. Hence effort was put into aligning the training paths

for both systems. This alignment is important because it shows that the

methods are not overfitted to a single outcome, but can address a variety

of problems in a similar domain. Also, unlike the proposed system, XC-

SCFC utilizes numerous hard-coded functions provided a priori. Figure 5.4

illustrates that XCSCFC was provided with five hard-coded Boolean func-

tions. It then uses them to learn the 6-bit multiplexer. Then it uses the

hard-coded functions, along with the newly learned CFs, to learn the next

multiplexer problem, and so on until it has learned the 70-bit multiplexer.

It should be mentioned that for the multiplexer problems this system was

not provided with the XOR function, nor the Parity problems 1. This was

in order to adhere as closely as possible to the original implementation

of XCSCFC. However, the XOR and Parity problems can provide helpful

knowledge blocks when learned, see Section 4.3.3.

Figure 5.5 illustrates the training regimen for the hidden multiplexer

problems. The training begins with the even and odd parity problems

while relying on a number of hard-coded functions that were provided

for the system. It then proceeds to learn the 3-bit and 6-bit multiplexers

1This makes a direct comparison with XCSCF3 problematic.
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NAND, NOT, 
OR, AND, 

XOR, NOR, 

2EvenParity
2OddParity
3EvenParity
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Learned 
Functions

Learned 
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Figure 5.5: Training regimen for XCSCFC for the hidden multiplexer prob-

lems. The system is provided with a series of hard-coded Boolean func-

tions. Then it is tasked with learning the Parity functions. Finally it learns

the hidden multiplexer problems.

before learning the hidden multiplexer problems.

5.2.1.3 Creation of Offline Distilled Rules

After the final population of a problem has been discovered, the system

will begin the translation process, see Section 5.2.1.1. During this step,

each CF rule is changed into ternary rules using the alphabet {0, 1, #}.

Throughout the translation process, the system eliminates all duplicates to

simplify the DR population. One important consideration that the system

makes is determining which classifiers are valid for further processing.

This is done by comparing their accuracy, experience and prognostication.

If the values are acceptable, then the classifiers are processed bit by bit. In

this respect, each CF that is included in the condition part will be evalu-

ated against a random set of environment messages. Only non-don’tCare

CFs are considered, as it is known that dont’Care CFs always return 1.

The CFs are evaluated using the sequential environment messages pro-

duced by DRs method and their result is stored temporarily. If all of the

results are 1, i.e. all the CFs match, then the current environment message

becomes a potential candidate DR. These will be processed further. As the

candidates are being accumulated, the system also tests if any of them can

be subsumed. This process continues until all the CF rules that qualified

to be processed have been tested against a predetermined number of envi-
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Final CF Population
Evaluate CFs

(Random Messages)

Tally Candidates DRsSubsume DRsFinal DRs

Valid Classifiers

Figure 5.6: Offline Distilled Rules creation process. The technique pro-

cesses valid classifiers from the final population and finishes with their

translation into a ternary alphabet.

ronment messages (the user determines the number of messages). This is a

sequential process and ignores any bits considered insignificant to the CF,

see Section 5.2.1.1. For example, if a CF in a 6-bit problem were to have D0

and D3 at its leaf nodes, this means that the message bits {D1, D2, D4, D5}

do not need to change as the CF is being tested. The first message string

would be {0 NOOP NOOP 0 NOOP NOOP} and the last message string

will be {1 NOOP NOOP 1 NOOP NOOP} 2. This means that only a subset

of all the possible 6-bit permutations will be used for testing the CF, which

reduces the sample space. Once this process is complete, the resulting list

of DRs is the translation of the original CFs into a ternary alphabet, see

Figure 5.6.

5.2.2 Results of Offline Distilled Rules Experiments

The results will be presented completely prior to interpretation so that

analogies can be drawn across experiments. The training began with the

Boolean operators and proceeded with the multiplexer and hidden mul-

tiplexer problems. The results were compared with those obtained from

XCS and XCSCFC, as they are comparable systems suitable for the role of

2NOOP means that the bit is insignificant and will not be changed during the testing

of the CF.
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benchmark.

The number of training examples was chosen based on empirical evi-

dence and varied with the problem. It appears on the X-axis on all graphs

while the Y-axis represents the performance observed. Performance was

measured as the percentage of correct classification during the last 1000 ex-

ploit instances, which will help in creating a clear and detailed results plot.

All the experiments were run 30 times independently, which is a standard

practice for EC experiments. The reward scheme was 1000 for a correct

classification and 0 for an incorrect one. Both, GA subsumption and action

set subsumption were active and the type of mutation was niche mutation.

Both types of subsumption will help in scalability by limiting the number

of classifiers present in the final population. Additionally, the systems

used two point crossover. This type of mutation is helpful for multilevel

types of problems. The success of the algorithm will be measured by using

the following methods:

(1) CF Rules to DRs, i.e. Table 5.2

(2) Time taken

(3) Scalability of the technique

(4) Performance check on other domains to ensure sampling has not in-

troduced errors

The first test will be checking the performance against known experi-

mental results.

5.2.2.1 Multiplexer Problems

The results for the 6-11 bit multiplexer are shown in Figures 5.7(a)

and 5.7(b). They illustrate that XCSCF3 has increased performance as the

problem scales. It also performs better than XCSCFC during both of these

experiments. Initially, the proposed technique under-performs in relation
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to XCS, however during the 11-bit multiplexer problem, it demonstrates

performance similar to XCS. The 6-bit multiplexer problem highlights the

benefit of XCS’ simple alphabet. However, XCSCF3’s combination of CFs

and DRs provides increased performance, shown by the 11-bit multiplexer

plot. XCSCF3 also performs better than XCSCFC for both problems, show-

casing the benefits of combining the rich CFs-based rules with simple DRs.

Figures 5.8(a) and 5.8(b) illustrate the results for the 20 and 37-bit multi-

plexer problems. Here it is evident that XCSCFC has surpassed the perfor-

mance of both XCS and XCSCF3 in terms of training instances required to

converge. For the 20-bit multiplexer problem, the performance of both XC-

SCF3 and XCSCFC is very similar, albeit the proposed system lags behind

slightly. XCS is having difficulty in finding useful classifiers evidenced

by the graph as it evolves a final population. For the 37-bit multiplexer

problem, XCSCFC has outperformed the other two systems. However,

XCSCF3 demonstrates a higher level of performance compared with XCS.

XCS demonstrates periods of inconsistent performance, as evidenced by

the graph as it slowly rises to finally converge with about 400 000 training

examples.

Figure 5.9 shows the results for the 70-bit multiplexer problem. It indi-

cates that the trend encountered in the previous two multiplexer problems

continues. XCSCFC converged with about 500 000 training examples, XC-

SCF3 required slightly less than 1 500 000 examples, while XCS needed

more than 2 000 000 – which is not shown on the figure. This was done to

keep the plot as clear as possible. XCSCF3 was incapable of converting the

final CF population into DRs in a tractable amount of time. Therefore the

system could not process the next problem, i.e. 135-bit multiplexer. Also,

XCSCF3 required more iterations than XCSCFC because the DRs are not

optimal, i.e. a better mutation operator is needed.
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(a) 6-bit multiplexer problem.
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(b) 11-bit multiplexer problem.

Figure 5.7: Results for the 6-bit and 11-bit multiplexer problems using XC-

SCF3, XCS and XCSCFC. Note: Y axis scale differences for visual clarity.
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(a) 20-bit multiplexer problem.
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(b) 37-bit multiplexer problem.

Figure 5.8: Results of the 20-bit and 37-bit multiplexer problems using

XCSCF3, XCS and XCSCFC.



5.2. OFFLINE DISTILLED RULES EXTRACTION 119

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Instances (x 1000)

P
er

fo
rm

an
ce

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Instances (x 1000)

P
er

fo
rm

an
ce

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Instances (x 1000)

P
er

fo
rm

an
ce

 70 − Mux 
[1] − XCSCF3
[2] − XCS
[3] − XCSCFC 

[1] [2][3]

Figure 5.9: Comparison between XCSCF3, XCS and XCSCFC for the 70-bit

Multiplexer problem.
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Figure 5.10: Comparison between XCSCF3, XCS and XCSCFC for the 3x6

bit Hidden Multiplexer Problems. The numbers between the brackets are

for identifying the curves.
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5.2.2.2 Hidden Multiplexer Problems

Figure 5.10 shows the results for the 3x6 hidden multiplexer problem.

These results are interesting because they are similar to the early exper-

iments for the multiplexer problems, i.e. compare with Figures 5.7(a)

and 5.7(b). The aforementioned plots show that XCSCF3 performed bet-

ter than XCSCFC with respect to the number of training instances needed

to converge fully. Additionally, the order of the systems compared with

Figure 5.9 is different, where XCSCFC converged with the least number

of training instances. This was due to the fact that XCSCF3 was no longer

producing an optimal population of DRs, in fact it failed to learn the DRs

for the 70-bit multiplexer. On the other hand, XCSCFC had accumulated

useful knowledge blocks that helped it learn the 70-bit multiplexer. The

proposed system exhibited better performance than the other two bench-

mark systems. Surprisingly, XCS performed better than XCSCFC for these

experiments and this is attributed to XCSCFC’s incapability to effectively

combine building blocks of knowledge to solve the lower level parity

problems, while XCS’ simple ternary alphabet gave it an advantage. Fig-

ure 5.11 shows the results for the 3x11 hidden multiplexer problem. Here

the performance of XCSCFC has improved so that it is now ahead of both

the other systems in terms of training instances. In fact, XCS was incapable

of learning the problem because its ternary representation is not scalable.

XCSCF3 converged with slightly more training instances than XCSCFC.

5.2.3 Interpretation of Results

5.2.3.1 Multiplexer Problems

All three systems being compared solved the 6-11 bit problems, with XCS

demonstrating a slight advantage over the other two systems, in terms

of required number of training instances. The ternary condition part of

XCS provided an advantage over the complex conditions of the two, CF-

based systems. The simple and efficient ternary alphabet was superior to
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Figure 5.11: Comparison between XCSCF3, XCS and XCSCFC for the 3x11

bit Hidden Multiplexer Problems. The numbers between the brackets are

for identifying the curves.
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the complex and rich CF expressions. XCSCF3 performed better than XC-

SCFC for these same problems as well, meaning that the learned function-

ality has benefited the proposed system while the hard-coded functions

of XCSCFC may have hindered it from converging quickly due to having

less resources.

When scaling to the 20-bit and 37-bit multiplexer problems, XCSCFC

required the least number of iterations of the three systems. For the 20-bit

problem, XCSCFC was slightly ahead of XCSCF3 but by the 37-bit problem

the advantage had at least tripled, in terms of required iterations. XCSCFC

required about 90 000 training examples while XCSCF3 required about

300 000 training examples and XCS required about 400 000 training exam-

ples. Another observation of the results is that up to and including the

20-bit multiplexer, all the curves produced by the experiments increased

monotonically as they slowly converged on 100% performance. During

the 20-bit experiments, XCS produced a rough graph, which is indicative

of problems in the learning. It is considered that the rough graphs on the

20-bit and 37-bit experiments are symptomatic of difficulty in learning and

possibly the cover-delete cycle [19]. During the 37-bit experiments, XCS ex-

hibits more learning difficulty than during the 20-bit experiments. This is

because the simple ternary alphabet used in the representation is not as

efficient as the CF-based representations for this scale.

The sequential training utilized for the XCSCF3 means that if at any

stage a sub-optimal final population of DRs is produced, this will impact

the performance during the subsequent problems. This is evidenced by

the fact that XCSCF3 is incapable of learning the DRs for the 70-bit mul-

tiplexer. Since the DRs learned as a new function are reused by LCSs for

future problems, if there are too many specific DRs, this will cause a degra-

dation in performance when evaluating the CFs. This happens because the

CF rules are used to generate the DRs and hence there exists an indirect

mapping between the DRs and the CFs in reverse. In other words, just

like CFs were used to produce DRs, the DRs can be used within CFs dur-
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ing the evaluation of potential matchset members. If there are too many

DRs (over specific) then they could be used in CFs which do not lead to

maximally general conditions that are also accurate.

5.2.3.2 Hidden Multiplexer Problems

The hidden multiplexer experiments demonstrated the power of CFs com-

bined with DRs. During the 3x6 hidden multiplexer experiments, see Fig-

ure 5.10, the proposed system was able to combine the necessary functions

to rapidly converge before the other two benchmarks. Surprisingly, XCS,

with its simple ternary representation, was capable of converging with

less training examples than XCSCFC. The 3x6 (18-bit) hidden multiplexer

is a challenging problem and therefore demonstrated how the mixed rep-

resentation of XCSCF3 was superior to a ternary and to a CF-based rep-

resentation. Both of XCS and XCSCFC exhibited an early and rapid rate

of learning, visible from the graph, and then both settled into a slightly

slower rate of learning as they both converged.

During the 3x11 hidden multiplexer experiments, XCSCFC demon-

strated better performance than the proposed system by requiring approx-

imately 400 000 training instances while XCSCF3 required about 450 000,

see Figure 5.11. This is indicative that the combination of CFs and DRs

in XCSCF3 has lost its advantage over XCSCFC at this scale. For the 6-bit

multiplexer experiment, the proposed system produced 11 DRs, see Ta-

ble 5.1. This number of rules is much smaller than the ideal rules for this

problem. It is also lower than the number of rules produced by XCS. For

the 3x6 hidden multiplexer experiments, an arbitrarily selected run 8 pro-

duced 1 197 DRs while for the 3x11 hidden multiplexer there were 37 166

DRs produced. This increasing trend can be explained in part by the grow-

ing complexity of the problems, but also there is an increasing number of

sub-optimal DRs being learned as well. This is even before taking into

account the difficulty of the hidden multiplexer problem, which naturally

requires more DRs than a corresponding multiplexer problem, i.e. with
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XCSCF3

0 0 0 # # # : 0

0 0 1 # # # : 1

0 1 # 0 # # : 0

0 1 # 1 # # : 1

⋆ 0 # 0 0 # # : 0

1 0 # # 0 # : 0

1 0 # # 1 # : 1

⋆ # 1 0 1 # 1 : 1

1 1 # # # 0 : 0

1 1 # # # 1 : 1

⋄ 1 1 1 1 # 1 : 1

Ideal

0 0 0 0 0 0 : 0

0 0 1 0 0 0 : 1

...

0 1 0 0 0 0 : 0

0 1 0 1 0 0 : 1

...

1 0 0 0 0 0 : 0

1 0 1 0 1 0 : 1

...

1 1 1 1 1 0 : 0

1 1 1 1 1 1 : 1

XCS

0 1 # 0 # # : 0

0 0 0 # # # : 0

1 1 # # # 1 : 1

1 0 # # 1 # : 1

1 1 # # # 0 : 0

0 0 1 # # # : 1

0 1 # 1 # # : 1

1 0 # # 0 # : 0

0 # 1 1 # # : 1

# 1 # 0 # 0 : 0

# 0 0 # 0 # : 0

1 # # # 0 0 : 0

# 0 1 # 1 # : 1

# 1 # 1 # 1 : 1

1 # # # 1 1 : 0

# 1 # # # 1 : 0

Table 5.1: Distilled Rules produced by XCSCF3 for the 6-bit Multiplexer

problem. ‘ ’ denotes over-specific bits. ‘⋆’ indicates alternate rules. Alter-

nate rules are one of a number of alternative rules in a population that are

equally valid/accurate (but may not be as compact or as intuitive as the

ideal rule set. ‘⋄’ indicates rules that should be subsumed. The table with

the Ideal heading shows the simplest, correct rules. The table with the XCS

heading demonstrates the final population of rules produced by XCS.

similar condition length. Therefore, an increasing number of sub-optimal

DRs gave rise to even more sub-optimal progeny as the problems scaled.

Table 5.2 illustrates a sample of the DRs produced by the 3x6 hidden

multiplexer problem, 1 197 was too many to display. This sample was

chosen as it demonstrates the main advantages and disadvantages of the

technique. The first rule is an accurate rule which produces the correct

action. This rule is evaluated by applying even parity to the first six bits

from the left, three bits at a time, which produces the address bits for the



126 CHAPTER 5. DISTILLED RULES FOR CF-BASED SYSTEMS

multiplexer part. In this case that will be [0 1]. This translates to an address

of ‘1’ in decimal numbers. The first three parity bits are [0 0 1]. The three

Parity bits that compose the second address bit are: [0 0 0], which after

applying odd Parity gives action ‘0’. The same process applies to the next

four rules which are all accurate as well. The next three sampled rules are

interesting in the sense that the data bit is composed of the last three bits,

however a number of bits that are not part of the address or the data bit

are specific. This means that the breadth of the problem space covered by

these rules is diminished, making it necessary to have additional rules to

cover the sample space.

The next two rules are interesting because the system determined that

half of the address bits should be “don’t cares”. This raises the question of

what is it about this rule that the system found useful. It is equivalent to

0#00##:0 which is an alternate maximally general, accurate rule. Accord-

ing to Kovacs [53], this type of rule overlaps with elements of the optimal

population, therefore it competes with them in order to reproduce and is

punished for it. The data bits addressed by the possible values of the ad-

dress bits do provide the correct action. For instance, the first three bits

always produce ‘0’ while the next three bits will produce either ‘0’ or ‘1’.

These possible values map to the 7th-12th bits. These always produce the

correct action of ‘0’.

The next to last rule contains extra bits that are specific and do not

add to the knowledge of the problem space. In addition, this type of rule

makes it more difficult for the agent to learn the problem. As the CFs are

evaluated during matching, the extra specific bits make it more likely that

a correct rule will be rejected simply because one of the non-relevant bits

did not match. It could be argued that this effect will be dampened by the

production of maximally general rules in the final population. However,

the role of the DRs is to facilitate a faster evaluation of the CFs, therefore

any DRs that are too specific hinder learning.

The last rule displays the same structure as some mentioned above, as
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Table 5.2: Distilled Rules produced by XCSCF3 for the 3x6 Hidden Mul-

tiplexer problem. ‘ ’ denotes over-specific bits. ‘△’ indicates accurate,

maximally general rules. ‘⋆’ indicates alternate rules that are accurate and

overly specific.

XCSCF3

△ 0 0 1 0 0 0 # # # 0 1 0 # # # # # # : 0

△ 0 0 1 0 0 0 # # # 0 0 1 # # # # # # : 0

△ 0 0 1 0 0 0 # # # 1 0 0 # # # # # # : 0

△ 1 1 1 0 0 0 # # # 0 0 0 # # # # # # : 1

△ 1 1 1 0 0 0 # # # 0 1 1 # # # # # # : 1

...

1 0 1 0 0 0 # 1 # # # # 1 0 0 0 1 0 : 0

0 0 0 # 1 0 # 1 # # # # 1 0 0 0 1 0 : 0

1 0 1 1 0 1 # 1 # # # # 1 0 0 0 1 0 : 0

...

0 1 0 # # # 1 0 0 0 1 0 # # # # # # : 0

0 1 0 # # # 1 0 0 1 1 1 # # # # # # : 0

...

⋆ 1 0 1 1 1 1 # # # 0 1 0 1 0 0 0 # # : 0

...

1 1 1 # # 0 # # # 0 0 0 # # # # 1 # : 1

it contains don’tCares in the address bits. This rule produces the correct

action of ‘1’ when the address bits are {0, 1}. However, when the address

bits are {0, 0}, this addresses a don’tCare, i.e. the correct action only part of

the time. This promotes the creation of incorrect rules during the matching

stage. This in turn will degrade performance.

Table 5.3 illustrates a random sample of the results for the 3x11 hidden

multiplexer experiments. As has been stated above, the rules sampled

here are not optimal. However, there is a useful pattern visible within

the population. It is apparent that the system has learned that it is the
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Table 5.3: Distilled Rules produced by XCSCF3 for the 3x11 Hidden Mul-

tiplexer problem.
XCSCF3

0 1 1 0 1 1 0 1 0 # # 1 1 0 0 # # # # # # # # # # # # 1 0 1 # 0 # : 1

0 1 1 0 1 1 0 1 0 # # 1 0 1 0 # # # # # # # # # # # # 1 0 1 # 0 # : 1

0 1 1 0 1 1 0 1 0 # 1 # 0 0 1 # # # # # # # # # # # # 1 0 1 # 0 # : 1

0 1 1 0 1 1 0 1 0 # 1 # 1 1 1 # # # # # # # # # # # # 1 0 1 # 0 # : 1

0 1 1 0 1 1 0 1 0 # # 0 1 0 0 # # # # # # # # # # # # 1 0 1 # 1 # : 1

0 1 1 0 1 1 0 1 0 # # 0 0 1 0 # # # # # # # # # # # # 1 0 1 # 1 # : 1

0 1 1 0 1 1 0 1 0 # 0 # 0 0 1 # # # # # # # # # # # # 1 0 1 # 1 # : 1

0 1 1 0 1 1 0 1 0 # 0 # 1 1 1 # # # # # # # # # # # # 1 0 1 # 1 # : 1

0 0 1 1 1 0 0 0 0 # # # # # # # # # 1 0 1 # # 0 # # # # # 1 # # # : 1

0 0 1 1 1 0 0 0 0 1 # # # # # # # # 1 0 1 # # 0 # # # # # # # # # : 1

1 # 1 # 0 1 1 0 0 # # # # # # # # # # # # # # # # # # 1 1 0 # # # : 1

# # 1 1 0 1 # 0 1 # # # # # # # # # # # # # # # # # # 1 1 0 # # # : 1

...

rules with specific bits towards the left side that are more useful. Also,

along with this pattern, it is apparent that the rules have specific values

corresponding to the multiplexer data bit as well as other bits around it.

This means that there is a level of learning taking place which could lead

to an optimal translation of the CF based rule-set. This is due to the re-

inforcement learning mechanism which favors those rules which consis-

tently forecast the reward to be obtained.

The problem with increasing numbers of sub-optimal DRs has been

thought to have a dual nature. The first one, as discussed above, has to do

with the propagation of sub-optimal descendants of the current popula-

tion of DRs. Since it has been shown that the DRs share a mapping to their

CF progenitors. The other cause has to do with the fact that the proposed

system does not have a grading system to discern which CF-based rules

are producing positive results and will ultimately help produce optimal

DRs. This issue is beyond the scope of this work, but is important to note

as it provides an opportunity for improvement.
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5.2.4 Summary of Offline Distilled Rules Extraction

The offline DRs algorithm was shown to provide benefits for shortening

the potentially long chains of CFs that can form in LCSs. The technique

consists of an offline process that utilizes a mutation operator to translate

non don’tCare CFs into ternary rules called DRs. The simpler expressions

encompassed by this type of rules means that there is a shortcut to evalu-

ating long CFs.

XCSCF3 exhibited success with the early problems. There was also

good performance by XCS. However, as the problems scaled, XCSCFC

demonstrated a superior capability than XCS for scaling to more difficult

problems. Certain challenges were discovered in the proposed technique,

XCSCF3, in that sub-optimal populations of DRs were produced as the

problems became more difficult. This had to do with the mutation opera-

tor being used.

The benefits exhibited by the technique confirm that further scaling

could be realized with adjustments in the training and the algorithm. At

this stage the main restrictive factor remains the post-processing that gives

rise to the DR population. It is hypothesized that an online compaction

technique could provide increased scalability.

5.3 Online Distilled Rules Extraction

The first attempt at compacting CFs to DRs in an offline manner (in this

chapter) identified several points of interest. It was possible to produce

accurate DRs for small problems that were equally effective, while being

more efficient. The technique also exhibited a number of limitations; first

and foremost were the increasingly prohibitive running times required to

produce the new DRs. Also, as the problem size increased, the quality of

the DRs produced was related to the number of environmental messages

produced by the mutation operator. This means that as the problem scales,
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the running times will grow ever larger.

The aim of the novel work in this section is to introduce an online pro-

cess to improve the efficiency of the DR creation process, without reducing

the effectiveness of the CF approach. This two-step process of translating

CF-based rules to ternary rules is considered more advantageous to either

single step process of creating just CF rules or ternary rules. The ternary

rules are compact and efficient in operation, but do not scale well as they

do not represent the patterns present in a domain concisely, i.e. they often

require multiple rules to be found and interact to describe a search space.

The CF rules often produce a small number of rules that express patterns

precisely, but can take much longer computational time during the match

process, because long chains of rules need to be evaluated. The idea of

Distilled Rules is to transform expressive rules into fast/efficient rules to

speed up operation and enable practical scaling to large domains.

It is anticipated that by streamlining the process that produces the DRs,

it will produce a more optimal population of rules (less rules). This is

anticipated to reduce the length of CF chains as the problem scales and

the learned functionality is transferred to the new problem(s).

5.3.1 Method

CFs can produce accurate and general rules. Combined with easy inter-

pretation for humans, they can produce a solution that spans numerous

layers of logic. This complexity can impose a high toll on the scalability

of a system; this makes some problems intractable. This new compaction

technique aims to improve on the previous work on Distilled Rules. The

previous work, see Section 5.2, was only capable of extracting DRs up to

the 37-bit multiplexer and 3x11 hidden multiplexer problems, while the

proposed system is designed not only to solve the aforementioned prob-

lems but also to extract the corresponding DRs from the final population

of classifiers for the 70-bit multiplexer.
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5.3.1.1 Proposed System

The aim here is to shorten the length of the CF chains. There exist other

methods for creating compacted ternary rule-sets, but this new work aims

to use CFs to generate the final compact rules by directly translating each

CF rule into multiple ternary rules. The final DRs will be linked to the

uncompacted CFs, which can be reused in future problems as they encode

the knowledge of relationships between the features.

The boot-strap function of NAND needs to be created from a standard

XCS system. The rules-set produced is then imported by the proposed

system to serve as a seed function. From this seed function, other Boolean

operators are learned, such as NOT, OR, AND, and so forth [3].

The proposed system will adhere to the normal XCS method formula-

tion, i.e., create a matchset, choose a valid action, create an action set, exe-

cute the action and update the action set based on the reward returned by

the environment. In conjunction with the above steps, the system will con-

struct features composed of CFs, following the method of XCSCFC [49].

It will create new CFs for each of the condition bits but will retain the

binary alphabet, {0, 1}, for the action part of the classifiers. During the

explore/exploit cycle, each of these two stages will play a critical role in

the creation and maintenance of the Distilled Rules Network. The overall

process is depicted in Figure 5.12.

The Distilled Rules Network refers to the observation that distilled

rules are not created in isolation. As they are created from rules containing

learned functions, these functions also contain rules (learned rule-sets).

These functions are thus built from other functions and so on, which forms

a network showing the relationship between functions, e.g. for Boolean

functions: NAND creates NOT creates OR creates AND and so forth. Al-

gorithm 6 shows the DRs Network creation process.

During the explore phase, if the number of training examples has

reached the preset level, then the reward is checked to ascertain if it was

the maximum payoff value discovered so far (often the reward is either
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Algorithm 6: Creation of DRs Network - Online

Data: Actionset [A].

Result: A Network of Distilled Rules (DRs).

1 CONST DR SAMPLE BEGIN ← 0.5 (range 0.5 to 0.95)

2 if Explore then

3 if Iteration ≥ CONST DR SAMPLE BEGIN ∗MaxProblems And

reward ≥ maxPayoff then

4 forall classifiers in actionset do

5 if predictionError < epsilon 0 And experience > 1/beta And

prediction = maxPayoff then

6 forall condition bits do

7 if 6= dontCare then

8 getCFConditionBits()

9 end

10 add the new temporary DR to the DRs Network

11 end

12 end

13 end

14 else if Exploit then

15 if Iteration ≥ CONST DR SAMPLE BEGIN ∗MaxProblems then

16 classifierId← next Id from DeleteList

17 Delete classifierId from Network

18 Delete classifierId from DeleteList

19 end

20 else if Classifier being deleted (discovery) then

21 if predictionError < epsilon 0 And experience > 1/beta And

prediction = 1000 then

22 if Iteration ≥ CONST DR SAMPLE BEGIN ∗MaxProblems

then

23 Add classifierId to DeleteList

24 end

25 end

26 end
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Figure 5.12: Overview of the process which creates and maintains the net-

work of temporary distilled rules. This occurs during the explore/exploit

cycles.

0 or 1000 for incorrect or correct classification respectively). If this is the

case, then all the classifiers that meet a certain criteria are processed, i.e.

have error below a threshold and sufficient experience to be considered

accurate.

The processing consists of checking each of the non-don’tCare CFs that

compose the condition. Note that there are multiple CFs that represent a

don’tCare for the conditions where only the seeded/pre-known don’tCare

CFs are checked in this method. In other words, some CFs will evaluate to

‘1’ regardless of their input, just like a normal don’tCare CF. Any evolved,

complex trees, that are effectively don’tCares are simply processed as a

standard tree, but at additional computational cost. Any terminal bits

from the environment message are noted. The next step is to place a ‘#’

character in any of the positions where a CF is a don’tCare. Ones and ze-

roes 1, 0 are added by evaluating the CF representing the current condition

bit and placing its result in the corresponding location of the new DR. At

this time there is a temporary DR that is ready to be added to the growing
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temporary DRs Network.

If the current phase is exploit and the number of training examples

has reached the preset threshold, then the current classifiers are checked

against a Delete List. This is the list of classifiers that have been deleted by

the GA during the normal process of discovering new useful classifiers.

Each current classifier that is on the list is deleted from the DRs Network.

If the system deletes any classifiers during the discovery phase, the

valid classifier ids are added to the Delete List. This only happens if the

number of training instances has reached the pre-determined threshold

and if the prediction error, experience and prediction meet the preset cri-

teria.

Once the final population of classifiers has been created and simplified,

the post-processing of the temporary DRs in the Network is conducted. In

this technique there is less post-processing involved as compared with the

off-line DR technique [5]. The reason for this is that a large portion of the

processing now takes place during the explore and exploit phases. The

first task is to reconcile the temporary DRs attached to each current classi-

fier that was saved throughout the life of the run, this process is described

in Algorithm 7. Essentially, the aim of this step is to identify unique DRs,

while discarding duplicates.

Another major part of creating the final DRs is to have a genetic oper-

ator determine if any of the raw DRs can be combined. This is shown in

Algorithm 8. The process centers on examining each unique DR identified

so far (these are termed Final DR) and comparing it with each subsequent

DR in the list. If the actions match, then each condition bit of the DRs is

compared. If there is a corresponding mismatch, then the more general

rule will absorb the less general one. During the post-processing state,

duplicates are searched for and deleted, as this helps eliminate wasteful

comparisons.
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Algorithm 7: Rules Compaction - Reconcile Network DRs

Data: The final population [FP ] of classifiers cl with enough experience

and always correct.

Result: A population of ternary rules translated from each cl.

1 forall cl in [FP ] do

2 cid← cl.Id

3 if cid in DRs Network then

4 forall DRs attached to cid do

5 if DR Not duplicate then

6 Store Interim DR

7 end

8 end

9 end

10 end

11 forall Stored Interim DRs (SIDRs) do

12 forall Final DRs (FDRs) do

13 if SIDR.action ≡ FDR.action then

14 forall condition bits do

15 MismatchCount← Number of mismatches

16 end

17 if MismatchCount ≡ 1 then

18 if incoming mismatch is don′tCare then

19 Subsumes existing bit

20 else if existing mismatch is don′tCare then

21 Subsumes incoming bit

22 else

23 new bit is don′tCare

24 end

25 end

26 end

27 end

28 if SIDR not processed then

29 Add SIDR to Final DRs List

30 end

31 end
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Algorithm 8: Rules Compaction - Subsumption with more general

DRs
Data: A population of Final Distilled Rules (FDRs).

Result: A population of general Distilled Rules.

1 forall Final DRs (FDRs) do

2 if Final DR not subsumed then

3 forall Subsequent Final DRs (SFDRs) do

4 if Subsequent Final DR (SFDR) not subsumed then

5 if FDR.action ≡ SFDR.action then

6 forall condition bits do

7 if FDR.bit 6= SFDR.bit then

8 Mismatch← True

9 break

10 end

11 if Mismatch then

12 if FDR more general then

13 SFDR is subsumed

14 else if SFDR is more general then

15 FDR is subsumed

16 end

17 end

18 end

19 end

20 end

21 end

22 end

23 end
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5.3.1.2 Usage of Distilled Rules

The distilled rules produced by the system at the end of each run will be

reused by the system when solving any subsequent, more difficult tasks,

i.e. a Boolean operator or a larger problem. Since the proposed system

does not avail itself of hard-coded functions, the DRs will serve as the

functions that will be used instead. Each time a CF, forming part of a

classifier condition, has to be compared with the message string, e.g. when

forming a matchset, the CF sub-tree will be traversed and the appropriate

functions at the root nodes will receive their inputs from the terminals at

the leaf nodes. These inputs are compared with the list of DRs linked to

the aforementioned function. Where all inputs match a particular rule, the

linked action becomes the output and potential input for any higher levels

in the chain of CFs.

5.3.2 Results of the Online Distilled Rules Experiments

5.3.2.1 Experimental Setup

The experiments were run 30 times, each having an independent random

seed. The stopping criteria was when the programs were exposed to the

preset number of training examples. The proposed system was compared

with XCSCFC and with XCS. The experiments were single step with the

following settings: Payoff 1,000; the learning rate β = 0.2; the probability

of applying crossover χ = 0.8; the probability of using a don’t care symbol

when covering Pdon′tCare = 0.33.

5.3.2.2 Experimental Tests

The number of rules produced by the system for the 70-bit multiplexer

was suboptimal, in spite of having learned the problem. This appears to

be as a consequence of having set the threshold value for processing tem-

porary DRs too high at 95% of total training instances. This was necessary
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as the execution times of a problem of this magnitude were anticipated to

be prohibitive. The necessary minimum number of general rules for rep-

resenting a search space of 270 variations is 128. This takes into account

the first 6 bits for the address and one more bit for the data. The rest of

the bits can all be don’tCares. The quality of the rules produced is mixed

as a number of them contained don’tCares where the address bits should

be. This produced numerous possible data bits. There are also rules with

specific address bits, which is what would be expected, and a number of

other specific bits interspersed throughout the rest of the condition. This

is undesirable as this type of rule tends to cover less of the problem space

than the optimal version, which tends to be more general.

The results for the 70-bit multiplexer problem are illustrated by Fig-

ure 5.13. The proposed system performed better than XCS, as was antici-

pated, but worse than XCSCFC in terms of training instances required to

converge. The standard deviation of the proposed system is also visibly

larger than XCSCFC but it appears that XCS had a slightly larger devia-

tion.

The 135-bit multiplexer proved to be a far more difficult problem for

the proposed system, see Figure 5.14. Although it was provided with sim-

ilar settings as were given to XCSCFC, it was just beginning to learn when

the stopping criteria was reached. This is due to the caliber of the DRs

produced from the 70-bit multiplexer problem. It is theorized that the

proposed system could learn the 135-bit multiplexer, however it would

require far more resources than it was currently given, this also highlights

the weakness of the technique in terms of computing resources when the

DRs being reused are less than optimal. XCS was unable to learn the prob-

lem at all, which was anticipated given the complexity of the problem.

Figure 5.15 illustrates the results for the 3x6 hidden multiplexer. The

final results are not surprising in the sense that they are very similar to the

results for the offline technique. The online technique was anticipated to

be at least as efficient as those for the offline technique. The fact that the
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Figure 5.13: Comparison between XCSCF3, XCS and XCSCFC for the 70-

bit Hidden Multiplexer Problems using the online DR technique. The

numbers between the brackets are for identifying the curves.
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Figure 5.14: Comparison between XCSCF3, XCS and XCSCFC for the 135-

bit Hidden Multiplexer Problems using the online DR technique. The

numbers between the brackets are for identifying the curves.
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online technique produced less DRs on average, supports this assertion.

The results for the 3x11 hidden multiplexer are illustrated in Fig-

ure 5.16. Here the performance of all the systems is similar to that for the

offline experiments. XCSCFC performed the best, followed by XCSCF3.

XCS was not able to learn the problem, as was anticipated.

5.3.3 Interpretation of Results

The multiplexer and hidden multiplexer domains provided ample oppor-

tunity for the proposed technique to demonstrate the advantages that it

exercises over the offline technique. Obviously, there are structural differ-

ences between the offline and online techniques that preclude a compari-

son of like to like, however, the results are encouraging. The reason is that

although both systems are different structurally, the fact that their perfor-

mance was measured against two commonly known systems, i.e. XCS and

XCSCFC, is enough to draw fair conclusions.

First of all, the caliber of rules produced by the system was of a better

quality, simply because there were fewer of them. For the 3x6 hidden mul-

tiplexer problem, there were 812 DRs produced on average by the online

system, while the offline system produced an average of 1 319. This im-

plies that the final population of rules covers more of the problem space,

on average, than the rules for the offline version. Also, the fact that the

new technique is capable of learning the DRs for the 70-bit multiplexer,

something that the offline version was incapable of doing, highlights the

benefits of the new technique. Of course, there is the new technique’s

embryonic learning of the 135-bit multiplexer. This is something that the

offline DRs technique was not even close to furnishing.

Although the new technique, XCSCF3, has been successful in some

ways, it still lacks the performance of XCSCFC. Specifically, by the time the

system attempts the 70-bit multiplexer, it is quite clear that it requires at

least two times more training examples than XCSCFC. This is not surpris-
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Figure 5.15: Comparison between XCSCF3, XCS and XCSCFC for the 3x6

bit Hidden Multiplexer Problems using the online DR technique. The
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ing, as the former is not using hard-coded functions but distilled ternary

rules instead. That is to say, when evaluating the long chains of CFs, at the

function root nodes, the proposed system is using ternary rules. Depend-

ing on the usefulness of the rules available, this evaluation could become

very time consuming. However, this is not enough to explain the disparity

in performance between XCSCF3 and XCSCFC. There must be a property

in the DR techniques (both offline and online) which could explain this

phenomena.

5.3.4 Summary of Online Distilled Rules Extraction

The proposed work was shown to provide improvement in performance

while creating a layer of DRs from CF based rules. The technique consists

of an online process that gets executed during the explore/exploit stages

of the run as well as a post-process stage which produces the final popula-

tion of CFs. The shortcut afforded by the ternary alphabet {0, 1, #}, means

that long chains of CFs can now be replaced by simple comparisons be-

tween the environment situation and the rules pertaining to the CF root

nodes being evaluated. The well known limitations of using a ternary al-

phabet for the representation of the condition part are circumvented by

this technique by creating tight linking between the DRs and the CF based

rules. The rich and powerful presentation afforded by the CFs, combined

with the simplicity of the DRs makes for a useful combination in the prob-

lem domains tackled here.

Most of the DRs related processing takes place while the system is

learning new rules and testing them. As the new match sets are created,

and the action sets are updated, new temporary DRs are created from the

well-performing classifiers and stored for later processing. During the ex-

ploit phase, the technique deletes any classifier ids that may be in the delete

list. During the Discovery phase, any classifiers that are deleted by the GA

are added to the delete list. Once the final population is evolved, the post-
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processing takes place. The online version is much less intensive than the

offline version described previously in this chapter. It consists of recon-

ciling the temporary DRs into a population that has been expunged of

duplicates and that has had a mutation operator applied – this acts like a

subsumption mechanism.

XCSCF3 exhibited success with the early problems. There was also

some surprisingly good performance by XCS. However, as the problems

scaled, XCSCFC demonstrated a superior capability to scale to these more

difficult problems. Certain challenges were discovered in the proposed

technique in that sub-optimal populations of DRs were produced as the

problems became more difficult. This has to do with the mutation operator

being used and the inability to address all of the huge number of possible

environment messages (for the 3x11 hidden multiplexer).

The benefits exhibited by the new technique confirm that further scal-

ing could be realized with adjustments in the training and the algorithm.

At this stage the main restrictive factor remains the post-processing that

gives rise to the DR population, making it the primary candidate for cus-

tomization.

5.4 Chapter Summary

In this chapter, two versions of a novel compaction technique were pro-

posed. The reasoning behind a compaction technique for CF based Learn-

ing Classifier Systems is twofold: first, although CFs provide various ben-

efits in terms of scalability and power of expression, they can be compu-

tationally intensive; second, the number of CF based rules produced as a

solution can be very large. Distilled Rules (DRs) provide an alternative to

complex CF based rules. They utilize a ternary alphabet which is simple

to process and does not contain complex expressions.

The first version of the compaction technique is mostly an offline pro-

cess that takes place after the final population of classifiers has been pro-
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duced by the system. It consists of providing the system with a pre-set

number of situations. The classifiers containing some specific amount of

experience, accuracy and error are evaluated using the current situation.

All the non don’tCare CFs in these classifiers are evaluated and those that

are selected are then processed further. The population of DRs is accu-

mulated and checked for redundancy as the process advances. At a later

stage, the growing number of DRs is subjected to a mutation operator

which functions as a subsumption mechanism. In other words, the tem-

porary DRs are compared in round robin fashion to determine if any rules

share a common action. If this is the case, then it is determined if there is at

most one corresponding bit that is different between the two rules. If this

is true, then the more general rule subsumes the other one. This technique

provided certain benefits towards the solution of progressively more dif-

ficult problems in the Boolean domain. Ultimately, structural limitations

precluded the system from continuing to learn. A more efficient method

was required. The next version of the DRs technique is mostly and online

process.

The online DRs technique shares similarities with the offline version in

that the main objective remains the same. The translation process from CF-

based rules to a ternary DR is also similar but with a few caveats. Whereas

in the offline compaction version the system was presented with a pre-set

number of situations, in this version, the translation process sees the same

situations presented to the agent during the explore and exploit phases.

The explore phase is when new temporary DRs are created from useful

classifiers. They are created via the same process as in the offline version.

Then they are added to the temporary DRs network where they remain

throughout the run, unless their parent classifier is subsumed. If a clas-

sifier is deleted and it meets a criteria, then its id is added to the Delete

List. During the exploit phase, the Delete List is checked and one of the

classifier ids is selected. All temporary DRs in the network matching this

classifier id are deleted. Eventually, when the final population of classi-
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fiers has been evolved, the surviving DRs are further processed to produce

a population of DRs that can be optimal and duplicate free.

The online version of the DRs introduced additional benefits and fa-

cilitated the translation of the DRs for the 70-bit multiplexer, something

which had not been possible with the offline version. In spite of having af-

forded a number of benefits, the online version still has a scalability limit

that prevents it from fully learning more difficult problems, e.g. the 135-bit

multiplexer. This leaves an opening for further improvement in search of

increased scalability, which will be further developed in the next chapter.
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Chapter 6

Layered/Transfer Learning for

CF-based Systems

6.1 Introduction

The developments in CF-based LCSs have been shown to increase scalabil-

ity when learning numerous problem domains (Chapter 4). For instance, it

has been shown that reusing learned functionality at the root nodes as well

as the leaf nodes of CF sub-trees has its benefits [3]. Also discussed, was

the related technique Distilled Rules, that aims to create a compacted layer

of ternary rules in order to quicken the evaluation of CF chains (Chap-

ter 5). However, creating a general solution that is universally scalable

for certain types of problems is still beyond their capability, e.g. the mul-

tiplexer problem. This can be because of the increasingly long chains of

CFs, which eventually prevent learning, or because the problem is simply

too complex in its sample space for the technique to scale up beyond a cer-

tain limit [49]. Alternative traditional EC approaches can not assist, as a

number of them throw away learned information between runs. For these

reasons, it is necessary to consider the CF technique from a point of view

different than traditional EC learning.

Since the unifying thread of this work is scalable learning, it is suitable

149
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1 0  x  1  =  1 0   

1 0  x  1 0  =  1 0 0  

1 0 0  x  1 0  =  1 0 0 0 

1 0 0  x  1 0 0  =  1 0 0 0 0

1 0 0 0  x  1 0 0 0 =  1 0 0 0 0 0 0

Figure 6.1: Human method for multiplication shortcut. A person could

realize that to multiply by multiples of ten, one only needs to place a one

next to the total number of zeroes involved in the multiplication.

to explore how a human approaches certain difficult problems to make

learning tractable. During many humans’ formative years of education,

one of the basic skills taught is the times table. Undoubtedly this form

of computation seemed daunting to many of the children attempting to

master the lesson, however as time passed, specific ancillary skills would

have been discovered. For example, the realization that multiplying in-

creasingly larger base ten numbers, that are divisible by 10, is a simple

matter of adding zeroes to obtain the answer. Figure 6.1 illustrates the

common pattern that emerges, mainly that the answer is given by plac-

ing a one followed by the total number of zeros in the numbers involved.

A problem in the multiplication domain has been solved by identifying

simpler building blocks in the simpler, underlying domain of addition.

Granted, this is a trivial example, but it serves to illustrate the drive for

the work proposed here, which is to design an agent with the capability to

discover the important underlying functionality with associated building

blocks that will help it scale to very large problems in the same or a related

domain.

One of the research directions currently active in Computer Science is
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the decomposition of problems into manageable pieces by software agents

[83]. For example, if an agent were tasked with taking part in a ‘football

game’, what would be the necessary stages to transform this seemingly

intractable and unrecognizable problem into a series of steps, leading to

an agent that is capable of taking part in such a game [83]? This hypothet-

ical problem and others like it become more manageable if separated into

constituent parts. This implies human involvement, at least in the selec-

tion of the said parts. The implication is that by providing the right set of

functionality, a difficult problem could be learned in a series of steps.

It is anticipated that enabling a software agent to ‘reason like a human’

as it attempts to solve a problem will provide benefits. The premise is

that humans are imbued with natural abilities that help them solve certain

types of problems, among which is the concept of the number line [72],

as well as humans’ tendency to focus and excel at finding patterns, i.e.

regularities. Mimicking a number line would provide an agent with the

capability to compare values to determine greater vs smaller, for example.

This is a critical step in the solution to problems involving position and

values, such as the multiplexer problem. It has been said by Wiener that

‘the world contains certain patterns that are repeated in different types

of systems’ [35] , [91]. It is a subset of useful common patterns that this

work seeks to learn and reuse. By accruing functionality that contains

these regularities, it is anticipated that the resulting functions will form

fundamental steps of solutions to larger and more complex problems, thus

making it possible for an agent to form solutions to larger, more complex

problems than previously possible.

It is hypothesized here that humans scale to complex problems by con-

sidering the underlying patterns in such problems that are generated from

previous, smaller scale problems, thus transferring knowledge and skills

from these problems. This learned knowledge could be from different do-

main(s) as some of the functionality that is needed may not exist within

the problem itself. It is anticipated that when this approach is adopted into
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evolutionary computation approaches, it will lead to advances in scalabil-

ity of those techniques.

The field of Developmental Learning contains an idea known as the

Threshold Concept (TC) [26]. This idea conveys the fact that in human

learning there exist certain pieces of knowledge that are transformative

in advocating the learning of a task without which the learner can not

progress [64]. These concepts need to be learned in a particular order, thus

providing the student with viable progress towards learning more difficult

ideas at a faster pace than otherwise. For instance, humans are routinely

taught mathematics in a certain progression; arithmetic is taught before

trigonometry and these two are taught before calculus. The empirical ev-

idence indicates that this sequence will be more effective in fostering the

learning of progressively more difficult mathematics [26]. In effect, TCs

provide a scaffolding upon which principles can be attached that other-

wise would be too difficult to learn.

The base framework used for this chapter is CF-based XCS. XCS has

consistently demonstrated good performance and is easy to update, com-

pared with other classification techniques. When combined with CFs, XCS

has been capable of increased scalability, helping it solve previously in-

tractable problems. Thus, using the CF-based XCS Learning Classifier

System provides a common basis on which to gauge any benefits in scala-

bility. The LCS technique has been in use for at least 40 years. They were

first introduced by Holland [34]; they were originally cognitive systems

designed to evolve a set of rules. LCSs were inspired by the principles of

stimulus-response in cognitive psychology [13], [17], [34], [36], [73].

LCSs morphed from being platforms to study cognition and have be-

come powerful classification techniques [62]. An important property of

LCSs is their capability to subdivide the problem into niches that can then

be solved efficiently [37]. This is made possible by integrating generality

in the rules produced. This pressure towards generality means that one

classifier could be a solution to more than one problem instance. In other
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words, LCSs can divide the problem space into niches, thereby creating

smaller ‘problems’ from the whole. This helps in keeping the solution

compact, which in turn reduces the search space. In addition, LCSs are a

good technique for learning difficult concepts in stages. Depending on the

representation used, it is possible for an LCS to learn a series of smaller

pieces of a larger, more complex problem.

Despite these advantages, certain problems are difficult to solve, e.g.

the multiplexer problem. This is due to fundamental problem characteris-

tics such as epistasis (the importance of certain bits depends on the values

of other bits) and heterogeneity (when individual solutions or groups of

individuals are independently predictive of the same phenotype). These

phenomena were studied by Urbanowicz et al. [87] who introduced the

method of attribute tracking for characterizing heterogeneity and inter-

action in Michigan style LCSs applied to supervised learning problems.

This approach is useful and potentially influential, however it considers a

complete supervised instance, whereas the proposed work seeks to use re-

inforcement learning. The technique also seeks to use the ‘divide and con-

quer’ approach. In other words, the work dealing with attribute tracking

considers a single problem while CFs transfer knowledge/functionality

between successive problems.

The ‘divide and conquer’ approach is a well known principle in hu-

man learning and is based on the notion that the two hemispheres of the

human brain can process complex tasks in a parallel fashion. There is also

communication that takes place between the hemispheres while perform-

ing this type of processing. It has been determined that while the human

brain functions in this manner, it exhibits better performance than if the

entirety of the tasks were given to only one hemisphere. This is true as

long as all the data necessary to solve the problem is given at the same

time [10]. In the proposed work, it is intended to go beyond what the

Michigan Style LCS currently offers, in terms of niching a complex prob-

lem into smaller parts and providing general classifiers that solve those
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smaller parts. What is needed is a technique akin to the interhemispheric

processing described in [10]. In other words, the proposed technique must

be capable of using different parts of its learned functionality to solve the

complete problem. In this manner it will resemble the brain while still re-

maining under the EC umbrella, the different pieces of a problem will be

solved by the appropriate functionality.

Although EC techniques have facilitated progress in the field of ma-

chine learning, some of them have a fundamental weakness. Each time a

solution is produced, the techniques tend to ‘jettison’ any learned knowl-

edge and must start from a blank slate when tasked with a new problem.

Reusing learned knowledge has been shown to increase scalability and

could provide benefits that decrease the search space of the problem by

encoding relationships between environment features [49]. In addition,

one of the major goals of this chapter is to discover groups of functions

that will map to numerous, heterogeneous structures of problems. This

will aid in evolving a compact and optimal set of classifiers at each of the

proposed sub-problems [71].

This situation is due to the limitations of CFs; there are too many func-

tions required to learn in one layer. This applies to the proposed work in

that it is not possible to learn the target problem as a single functional step,

since there are numerous functions that must be combined to achieve a so-

lution; the rigors of CF construction – every new CF has an initial height

limit of two – preclude any initial overly rich/complex CF sub-trees. Also,

in Layered Learning (LL), the task is decomposed in a bottom-up manner,

just like the decomposition anticipated here. Learning occurs separately

at each level and the output of each layer feeds into the next layer. Impor-

tantly, in LL the decomposition of the task is not automated. This is just

like the proposed work; the target problem will be decomposed by a hu-

man into a number of sub-problems. However, it will be up to the agent

to learn to combine the available functionality in a constructive manner.

This means that the agent will be guided by the limitations imposed on
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each function: input data types, output data types and numbers of argu-

ments. This will be further complicated as some functions will be required

to learn knowledge in different domains, i.e. boolean, integers, real num-

bers. This will enable knowledge to be transferred from one domain to the

next.

The methods outlined a technique for Boolean problems. This tech-

nique will be tested on the multiplexer problem due to the following prop-

erties: epistasis, high non-linearity and ubiquitousness in research. As

such, this type of problem requires learned functionality from many dif-

ferent domains, the target is the Boolean domain. For example, the log

and power base two functions will be very important for the solution but

they do not appear in the Boolean domain. Some functionality will be

provided a priori, other functions will be learned online, e.g. the ValueAt

learned function will return a Boolean value.

In addition to this, it is important for the technique to learn with a

minimal set of training examples. This is because as the problems scale

up, they will become intractable at some point. It should also be capable

of combining the functionality in new and divergent ways, thereby dis-

covering new solutions [57]. Therefore relevant aspects of the concepts of

LL and TL will be combined with the proposed LCS-based technique to

facilitate better learning and scalability than previously possible. From LL

the technique will use human interaction for breaking the problem into

constituent parts. From TL the technique will include the capability of

learning knowledge from one domain and then reusing it in a related do-

main. This combination of relevant aspects will help promote learning of

a difficult, monolithic problem by breaking it into sub-problems, each one

feeding the next. Another anticipated benefit of the proposed technique

is that the number of rules evolved will be small, due to their maximal

generality and richness in composite functionality. The maximal general-

ity of the rules is guaranteed due to the fact that XCS strives to achieve

rules of this nature. Also, since the CF-based action will contain a rich
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combination of functions, it is plausible that one action contains enough

functionality to cover the entire action map. This seems to indicate that the

representation of the problem plays a large role in enabling a technique to

express the necessary patterns which will scale to more difficult problems

in a domain.

6.1.1 Experiments Chosen

The experiments consist of the multiplexer. This problem was chosen be-

cause of its difficulty. It contains epistasis; some bits determine the im-

portance of other bits. The problem is also highly non-linear and it has

a long track record in research. In the multiplexer problems, the number

of address bits is related to the length of the message string and grows

along with the length. The search space of the problem is also extensive

enough to show the benefits of the proposed work. For example, for the

135-bit multiplexer the sample space consists of 2135 combinations, which

is immensely beyond enumerated search [54].

Past work has shown that this type of problem presents a challenge for

LCSs such as XCS. Even when combined with CFs, learning happens un-

til the CF chains become excessively long. A number of techniques were

developed with this limitation in mind. These techniques deal with com-

pression as well as alternative ways for using CFs, such as learned rule-

sets at the root nodes [4], [5]. In other words, the representation played a

large role in the aforementioned studies.

One representation (an alphabet for the condition/action encoding)

for solving Mux problems is by using Disjunctive Normal Form (DNF).

However DNF presents some limitations: as the problem grows, the DNF

grows very large as well. The 6-bit multiplexer can be solved but is ver-

bose, see equation 6.1 (the primes indicate negation and ‘X’ the features

(bits) in a multiplexer string) [95]:
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Figure 6.2: Humans are capable of recognizing patterns. Therefore they

could determine that there exists a relationship between the address bits

and the data bit of a multiplexer problem.

F6 = X0′X1′X2 +X0′X1X3 +X0X1′X4 +X0X1X5 (6.1)

A human would approach the problem differently. They would realize

that there is an innate relationship between the address bits and the data

bit, even if presented with just a binary input string and no prior knowl-

edge of the underlying problem structure, see Figure 6.2. It is hypothe-

sized that humans scale to complex problems by considering the under-

lying patterns in such problems that are generated from previous, smaller

scale problems, thus transferring knowledge and skills from these precur-

sors. This learned knowledge might be from different domain(s), as some

of the functionality that is required may not exist within the problem itself.

It is anticipated that when this approach is adapted into EC approaches, it

will lead to advances in scalability of these techniques.
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6.1.2 Chapter Goals

The aim of this chapter is to adapt the principle of threshold concepts,

combined with TL and LL, into LCSs to produce general solutions to

large scale problems in a complex domain and related domain; this will

be demonstrated through the often used benchmark Multiplexer problem.

The Multiplexer problem is one that lends itself for research because it is

difficult, highly non-liner and has epistasis, e.g. the importance of the data

bits is dependent on the address bits.

A multiplexer can be thought of as a logic circuit where a certain num-

ber of bits provide the address of the output bit. Assuming L is the length

of the input, then the equation:

L = k + 2k (6.2)

defines the relationship between the length of the input and the number

of address bits required. This is a fundamental concept which the tech-

nique will need to learn. Following this, the technique will also need to

use the number of address bits (k) to extract them from the bit string. Part

of the functionality will need to be capable of converting the address bits

into a real number such as the position of the data bit. Importantly, in or-

der to compute formula 6.2, the agent would need to be apprised of the

power base two function as well as real number addition. These functions are

not part of the Boolean domain, but humans would have already learned

these functions. They would have been taught during their normal edu-

cation as prescribed by their human instructors. However the concept of

the mental number line is something that humans are born already know-

ing [72]. Therefore humans can readily include them in their reasoning for

this domain.

This chapter considers the following research objectives:

∗Develop methods such that learned knowledge and learned functional-

ity can be reused for Layered Learning of Threshold Concepts.
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∗ Determine the necessary axioms of knowledge, functions and skills

needed for any system from which to commence learning the target

problem.

∗ Demonstrate the efficacy of the introduced methods in two complex do-

mains, i.e. Mux, Hidden Mux.

∗ Determine whether the technique can function if the layers are missing

or are insufficient.

In the following section a more detailed description of the technique

will be presented. This will include a description of the problem domain

as well as the methodology for separating the different parts of the target

problem. The results of the experiments will be described and their inter-

pretation will provide further insight into the intricacies of the proposed

work.

6.2 Solving the n-bit Multiplexer Problem Set

6.2.1 Method

This work disrupts the standard learning paradigms in EC that seek to

address problems in a single stage evolution by aligning it with LL and

TC. Here the goal is to learn capabilities using a bottom-up approach,

coupled with transformative concepts that foster learning. Via this ap-

proach, it may be possible to learn functions and parts of functions con-

ducive to learning an entire problem. The problem will be decomposed

into a number of sub-problems with each layer feeding its solution into the

subsequent layer. This is necessary as learning the entire problem in one

training session is intractable due to the rigors of CF creation [49]. Each

sub-problem in and of itself will be a critical component for the system to

fully learn the problem, but more importantly, they will be administered

to the system in a prescribed manner. In other words, the method here is
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to specify the order of problems/domains (together with robust parame-

ter values) while allowing the system to automatically adjust the terminal

set through feature construction and selection, and ultimately develop the

function set. This is different to the self-contained stages of LL, and closer

to TL in this respect, as part-solutions (CFs) can be propagated. Similarly,

complete solutions (learned functions) can form part-solutions for future

problems. This is analogous to a school teacher determining the order of

threshold concepts for a student in a curriculum [64]. The system can use

learned rule-sets as functions along with the associated building blocks,

i.e. CFs, that capture any associated patterns; this is an advantage over

pre-specifying functionality.

The anticipated benefits actualized by this technique will be mainly

due to the fact that it will not introduce domain bias, rather it will allow

the system to construct features based on the available functionality. The

fact that a human will break the problem into a series of steps, each with

its own axiomatic requirements, will ensure that the technique does not

include domain bias. The system will have just enough axioms to foster

further learning of the sub-problems, which will add to the functionality

available to the system. This functionality will include that provided by

the human user a priori(axioms), as well as that which is learned along the

way (learned functions). This means that some of the learned functions

will contain regularities from domains different from the problem being

currently learned. The learned functions will normally contain arguments

and a return value while the skills will simply act upon the current system

state and may or may not provide a return value. For example, the system

will learn the ValueAt function, and this in turn will be made up of func-

tionality from previous steps. These steps will contain functions related to

the Boolean domain as well as the domain of real numbers.

This method modifies the intrinsic problem from finding an overarch-

ing ‘single’ solution that covers all instances or features of a problem to

finding the structure (links) of sub-problems that construct the overall so-
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0     1    1     1    0     0     :     1

A0  A1  D0  D1  D2  D3

Condition                 :  Action

Index:
0     1    2     3     4    5

Figure 6.3: 6-Bit multiplexer showing the address bits and the data bits of

the condition, this distinction is not provided to the learning system.

lution. Learning the underlying patterns that describe the domain is antic-

ipated to be more compact and reusable as they do not grow as the domain

scales (unlike individual solutions that can grow impractically large as the

problem grows, e.g. DNF solutions to the multiplexer problem).

6.2.1.1 n-bit Multiplexer Problem

The multiplexer problem can be deconstructed into a series of steps – lay-

ers – that the system is to learn. An example of a 6-bit multiplexer is de-

picted in Figure 6.3. Determining the number of address bits k requires

using the log function, as illustrated in equation 6.3, in this example k is

2. Then k bits must be extracted from the string of bits to produce the two

address bits. The next step is to convert the address bits into decimal form;

this requires knowledge of the power base 2 function as well as elementary

looping, addition and subtraction functions. Depending on the approach to

this step, multiplication may also be required. The two address bits trans-

late to 1 in real form, as shown in Figure 6.3, i.e. A0 and A1. The real num-

ber points to the data bit D1 that contains the value to be returned. The

index begins at 0 and proceeds from the left towards the right, as shown

in Figure 6.3.
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One of the underlying reasons for choosing the multiplexer problem

domain for the proposed work is that humans can solve this kind of prob-

lem by naturally combining functions from other related domains along

with functionality from the Boolean domain. For instance, a human can

reason that there is a relationship between the address bits and the data

bits without being given any knowledge about the problem beforehand.

The agent is anticipated to formulate a similar process whereby useful in-

formation can be reused. Humans are also able to reason that a sub-set of

functions in their ‘experiential toolbox’ may be appropriate for solving the

problem.

The experiential toolbox is the whole of learned functionality for the

agent. These functions include from primary and secondary education

multiplication, addition, power, and the Log function. The agent here must

build-up its own similar toolbox of functions and associated pieces of

knowledge (CFs). A computer program could select any of these func-

tions and potentially many more, but it could not intuit which are appro-

priate to the problem, and which are not. Therefore, the agent will need

guidance in its learning so that it may have enough cross-domain func-

tions to successfully solve the current problem. It will need to be capable

of learning with more functions than necessary as the exact number of

useful functions may not be known a priori, but at this stage of paradigm

development is not expected to be able to adjust to fewer functions than

necessary.

Besides functions, the experiential toolbox will also contain skills.

These are capabilities that the agent will have learned or will have been

given beforehand. Unlike functions, which contain arguments and have

return values, skills manipulate the current state of the system and may

or may not produce an output; one example is the looping skill [23], [55].

This looping skill is important because it will be utilized during successive

operations such as converting a sequence of bits into an integer. These

skills once learned by the agent and combined with the functions, provide
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the seeds from which to discover useful knowledge. For example, a hu-

man understands all the operations required for counting k number of bits,

starting from the left of the input string. Then the human would have to

conceptualize how to convert the address bits to a real, which requires the

ability to multiply. It is important to note that extracting k from the prob-

lem length L is a difficult task. It can be accomplished through a trial and

error iterative approach or a formula can be used. In this case the formula:

k = ⌊log2 L⌋ (6.3)

provides the functionality for determining the number of k address bits by

using the length of the input. In this case the person would need famil-

iarity with the log base 2 function as well as the floor function. A human

could determine the address bits with increasing difficulty, due to the fact

that humans are able to compute things mentally up to a limit, but a soft-

ware system would have to learn this functionality before even attempting

to solve the n-bit multiplexer.

6.2.1.2 Proposed System

The proposed system, termed XCSCF* – this moniker is appropriate be-

cause the technique has evolved from a number of earlier CF-based tech-

niques – consists of various components, see Figure 6.4. Since different

types of actions are expected, e.g., Binary, Integer, Real, it is proposed that

the functions be created by XCSCFA based systems, although any rule

production system can also be used, e.g. XCS, XCSCFC, etc. This will

facilitate the use of real and integer values for the action as well as en-

abling it to represent complex functionality. The proposed solution will

reuse learned functionality at the terminal nodes. This means that at the

terminal nodes there will be CFs as well as environment features. These

will also appear at the root nodes of the CFs. In essence, the root nodes

will contain learned functions, since this has been shown to be beneficial

for scaling. XCSR would not be helpful here because on a number of the
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Figure 6.4: Training encompasses different types of functions, skills and

axioms. The experiential toolbox will contain general as well as mul-

tiplexer specific learned functionality. The question marks indicate CFs

from the previous (as well as potential to add from the next) domain and

functionality learned from it.

steps, the permitted actions are not a number but a string. Moreover, XCSR

with Computed Continuous Actions would present unnecessary compli-

cations to this work because the conditions of the classifiers do not require

continuous values [44].

The inputs and outputs of the overall system consist of a Mux instance

(bit string) and its integer length L, which is known to standard techniques

addressing the Mux problem, and an output of binary type at the very end.

Base functionality will have to be provided for the system; we term these

Axioms, e.g. log. For example, it is anticipated that basic functions like

addition, multiplication, subtraction, division, natural log, power base 2

will have to be provided to the systems to bootstrap learning of the target

problem. Future work will involve obtaining a minimal set of axioms.
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Figure 6.5: Multiplexer training flow, as considered by humans - the mes-

sage is utilized at three steps, while the k bits are used in two steps during

learning. The training regimen uses a layered approach. Each subsequent

step is composed of knowledge blocks from the previous steps.
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6.2.1.3 Individual Detailed Components

The selected regime for separating the Mux problem into subordinate

problems has five parts. Five constituent parts was found to be the min-

imum needed for a CF-based system to learn the necessary functionality,

including the heterogeneous data types and disparate domains involved.

Each subsequent part builds upon the rules learned from the previous step

as well as from the axioms provided. Figure 6.4 illustrates the relation-

ships between the axioms, skills and learned functionality and their CF

representation. The figure also depicts how the type of problem faced can

feed domain specific functionality into the experiential toolbox of the sys-

tem. This is shown by the arrow flowing from the Mux problem towards

the Experiential Toolbox.

At each step, the new system has access to the environmental message,

constants and hard-coded functions, as well as the learned CFs and CF

functions. To bootstrap the learned CF functions the NAND boolean op-

erator will be learned in a standard XCS and the resulting rules will be

available to the n-Bits system to fabricate a bootstrap for the learning pro-

cess. Table 6.1 shows a listing of all the axioms and skills made available

to the system along with their system generated tags (used to interpret re-

sults) and their input/output data types. Table 6.2 shows a listing of the

constant(s) provided to the novel system. Table 6.3 shows a listing of the

functions to be learned, note that these were furnished in order, as a cur-

ricula. However, a system could be developed to address all problems in

parallel, such that as each problem is solved, it becomes available (CFs and

function) to the remaining problems. The different types of parameters for

the sub-problems are also listed in Table 6.3. The multiplexer is listed in

the table but it is not a sub-problem – it is the task on which the final rules

will be tested in this section. More specifically, the technique will learn the

fundamental sub-problems, then the 6-bit mux problem and those rules

will be used to test on the more difficult multiplexer problems.

It is important to consider that the work presented here does not seek
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Table 6.1: Functionality Provided (Hard-coded functions)

Function Tag Input Output

Floor [ Float Integer

Ceiling ] Float Integer

Log { Float Float

BinaryString $ Integer String

Power 2 Loop @ String Variant

Add + Variant Integer

Subtract - Float Float

Multiply * Float Integer

Divide / Float Integer

ValueAt = Integer Binary

Table 6.2: Constant(s) Provided

Constant Tag Input Output

LEN L NA Variant: any type

Table 6.3: Input and Output Types for all the sub-problems and for the

Mux problem. The data type ‘Variant’ can accept all other types.

Sub-Problem Input Type Output Type

KBits Integer Integer

KBitString Integer String

Pow2Loop String Variant

AddressOf Variant Integer

ValueAt Integer Binary

Mux Integer Binary

to provide a specific blueprint for a system to follow and ultimately arrive

at the solution to a given multiplexer problem only. Rather, the empha-

sis here is to facilitate learning in a series of steps, where in this case the
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learned functionality could potentially help a system to arrive at a general

solution of any Multiplexer problem, i.e. any n-bit multiplexer problem

where n represents the varying length of the multiplexer string of bits.

Furthermore, it is important for the system to learn to combine the dif-

ferent learned functions in a way conducive to learning; a way that will

produce a general solution. The training data will also originate in not

just one type of multiplexer problem, but will be compiled from many dif-

ferent types of sub-problems, see Figure 6.5.

The number of subordinate problems can always be increased (until

the foundation axioms are reached, see Table 6.1) in the future, e.g. learn-

ing basic functions such as an adder or a multiplier via Boolean functions

or even learning the log function via training data.

The five steps are labeled: kBits, kBitString, Bin2Int, AddressOf and

ValueAt. They will be detailed sequentially in the following sections.

6.2.1.4 Sub-Problem - kBits

The first step is to determine the number of k address bits that will con-

tribute to the solution for the n-bit multiplexer. The constant LEN (also

termed L, see equation 6.2) furnishes the system with the length of the en-

vironment message. It is an environment constant that is set before the

run. The training data-set to be used consists of instances of possible Mux

lengths and the corresponding number of address bits, see Table 6.4.

6.2.1.5 Sub-Problem - kBitString

This part extracts the first k bits from a given input string. The data-set

will be random bit strings, e.g. length 6, and a fixed k length where the

action is the first k bits, see Table 6.5. The training data will not include

more heterogeneous lengths because this is deemed not necessary. The

series of sub-problems will ultimately produce the correct combination of

functions, axioms and constants, which is anticipated to scale to any length



6.2. SOLVING THE N-BIT MULTIPLEXER PROBLEM SET 169

Table 6.4: Training data for the KBits sub-problem. It offers a mapping

from a possible multiplexer length to the corresponding number of ad-

dress bits.

Message Action

3 1

6 2

11 3

20 4

37 5

70 6

135 7

264 8

521 9

1034 10

2059 11

multiplexer problem. By restricting the length of the training data to one

length, the size of k is also being restricted. This may have unexpected

consequences if the final rules are used in a related domain to solve other

problems.

6.2.1.6 Sub-Problem - Bin2Int

The third sub-problem deals with converting a binary number to an inte-

ger. This is crucial because the system needs this information to determine

the position of the data bit. However, this is not a trivial task as the system

would need to be cognizant of many functions that a human would poten-

tially already have in their experiential toolbox. This includes the concept

of a number line, the ability to determine relationships between bit pat-

terns and their translation into real numbers. The data-set will be random

strings of length 6, with the action being the equivalent integer number of
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Table 6.5: Training data for the kBitString sub-problem.

Bit String Action

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

... ...

0 1 1 1 1 1 0 1

1 0 1 1 1 1 1 0

1 1 1 1 1 1 1 1

the first two bits, see Table 6.6. The training data is limited to a length of 6

as it was deemed sufficient for the system to learn to combine the proper

sequence of functions, axioms and skills. In addition, the first two bits are

considered significant for this sub-problem. However, since the technique

uses LL, a full multiplexer problem must be part of the training data as the

requisite functions that compute the earlier sub-problem rely on this.

Table 6.6: Training data for the Bin2Int sub-problem.

Bit String Action

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

... ...

0 1 1 1 1 1 1

1 0 1 1 1 1 2

1 1 1 1 1 1 3
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6.2.1.7 Sub-Problem - AddressOf

This functionality determines the location of the data bit from an input

string and known address, which is a more difficult problem than learning

the summation of address length and decoded length. The data-set will be

random strings (length 6) and decoded address with the integer action,

see Table 6.7. The first two bits of the training data are important for this

sub-problem, however the full 6 bits of a multiplexer problem are required

for the chained functionality to compute the sub-problems correctly. Also,

the technique appears to be adding 2 to the real translation of the first two

bits. However, upon closer examination of the final rules, there may be a

more complex combination taking place.

Table 6.7: Training data for the AddressOf sub-problem.

Bit String Action

0 0 0 0 0 0 2

0 0 0 0 0 1 2

0 0 0 0 1 0 2

... ...

0 1 1 1 1 1 3

1 0 1 1 1 1 4

1 1 1 1 1 1 5

6.2.1.8 Sub-Problem - ValueAt

The functionality to be learned is to return the bit referenced from a bit

string. The system is trained using a data-set of bit strings of known length

(again length 6) with a reference integer and corresponding output bit, see

Table 6.8. These sub-problems will be as simple as possible in the multi-

plexer domain for Layered Learning to investigate scalable and reusable
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learning. The alternative data-sets are more complex as they are for gen-

eral learning to support transfer learning for general problem solving (not

just multiplexer solving). These sets could include Sine, Cosine, Tangent

and many other functions.

Table 6.8: Training data for the ValueAt sub-problem.

Position Bit String Action Reward

0 0 0 0 0 0 0 0 1000

5 0 0 0 0 0 1 1 1000

4 0 0 0 0 1 0 1 1000

... ... ... ...

0 0 1 1 1 1 1 0 1000

1 1 0 1 1 1 1 0 1000

2 1 1 1 1 1 1 1 1000

6.2.2 Hidden Multiplexer

In order to demonstrate the technique’s capability for transferring learned

knowledge into a related domain, it will be tasked with the hidden multi-

plexer problem. The hidden multiplexer was deemed appropriate for this

work because it presents a very difficult problem with a complex and large

search space [17], see Figure 6.6, where all bits are relevant to any instance

rather than to a small percentage. It also exhibits a high degree of epis-

tasis and non-linearity. The multi-level nature of the problem means that

the system must form useful blocks of knowledge to solve the lower level.

Once the Parity problems (lower level) are solved, then the system must

combine the newly learned blocks of knowledge to solve the multiplexer

problem in the upper level, thus solving the complete problem.

The results are anticipated to be very similar to XCSSMA. The main

reason is that the proposed system will be producing general solutions to
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Multiplexer Evaluation

110 010111101000 001

0 11100

Parity     Evaluation

Class=0

Figure 6.6: 3x6 bit Hidden Multiplexer showing the lower, Parity level and

the upper, multiplexer level. In this case the multiplexer address bits are

assumed to begin from the left side. The agent is only presented with the

lower level bit string during training and testing.

the multiplexer problem. XCSSMA was successful in producing general

solutions to several Boolean problems [46]. It has been discovered in pre-

vious work that including the Parity learned function promotes increased

scalability [4].

The resulting rules from the ValueAt problem will be used to solve a

hidden multiplexer problem. This will show whether the rules are effec-

tive in a related domain. Furthermore, certain axiomatic functions, like

those that compose the Parity problem, have not been included.

6.2.3 Results of the n-bit Multiplexer Experiments

6.2.3.1 Experimental Setup

The experiments were executed 30 times with each having an indepen-

dent random seed. The stopping criterion was when the agent completed

the number of training instances allocated, which was chosen based on

preliminary empirical tests on the convergence of systems. The proposed
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systems were compared with XCSCFC and XCS. The settings for the ex-

periments are common to the LCS field [49]. They were as follows: Pay-

off 1000; the learning rate β = 0.1 − 0.2; the Probability of applying

crossover to an offspring χ = 0.8; the probability of using a don’tCare

symbol when covering P don′tCare = 0.33−0.95, this range indicates that

as the problems grew in complexity the system faced growing difficulty

in finding a solution; the experience required for a classifier to be a sub-

sumer Θsub = 20; the initial fitness value when generating a new classifier

FI = 0.01; the fraction of classifiers participating in a tournament from an

action set 0.4. In addition, error threshold ǫ0 has been set to 10.0. This

setting became necessary as the problems increased in complexity. The

population size varied with the sub-problem, see Table 6.9. The KBits sub-

problem required a larger population because it could not count on any

previously learned knowledge.

Table 6.9: Population size for the fundamental sub-problem experiments.

Sub-problem Population Size

KBits 2000

KBitString 500

Pow2Loop 500

AddressOf 1000

ValueAt 500

6.2.3.2 Experimental Tests

Figures 6.7(a) - 6.7(d), illustrate the training in the KBits through Addres-

sOf sub-problems. The KBits sub-problem training was straightforward.

This is reflected by Figure 6.7(a). Since the training data was limited to a

list of the possible mappings of a multiplexer problem length to the correct

number of address bits, the system quickly determined the appropriate
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combination of axioms which would produce the maximum reward. This

is reflected by the very small number of training instances required to con-

verge fully. An example of the rules produced by the KBits sub-problem

is: L { [ . Here L stands for the problem length constant, ‘{’ stands for

the Log axiom and ‘[’ stands for the Floor axiom. This rule computes the

number of k bits by first using the constant L as an input to the Log axiom

and then applies the Floor axiom to the result. The reason that the sub-

problem required a larger number of training individuals than the others

is because the number of possible valid actions was 11, which was not a

simple binary classification because there were 11 possible actions for each

classifier.

The KBitString sub-problem training is illustrated in Figure 6.7(b).

Here the training data-set was the same, but the maximum population

was smaller. This is the reason that the system began its convergence at a

lower percentage (0.98) than the previous sub-problem. Also, the layered

learning approach used here means that the function learned for the pre-

vious problem could now be used by the KBitString sub-problem to create

a solution. This implies that the constant L, the Log and Floor functions

would form part of the final rules determined to produce the maximum re-

ward. This is because the CF rules produced by the previous sub-problem

would contain the aforementioned functionality. Furthermore, this dic-

tates a more complex evaluation of the CFs forming part of any covering

classifiers for the current sub-problem.

The next sub-problem, Bin2Int, used all the functionality learned in the

previous two sub-problems. The training data is at least as complex as in

the previous sub-problems as it encompasses them, however the function-

ality has one additional layer of complexity. Not only did this solution re-

quire the axioms and/or functions learned for the KBits sub-problem and

require the functionality learned for the KBitString sub-problem, it also

needed the final rules produced by this sub-problem. The latter showed

that the looping skill is very important to the solutions, see Table 6.10. The
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looping skill appears in all the final rules. The rule with the highest nu-

merosity and fitness prefers the constant L at the leaf nodes in one of its

branches, while on the other branch it accepts the previously learned KBit-

String function, m. This same function takes code fragment with ID 7 (the

system gives this CF the moniker of CF 7) as its input. This is a redun-

dancy of the system, since this code fragment contains the same function-

ality as learned function m. Also, in the third rule of Table 6.10, the looping

skill is included twice, something that does not happen in the other three

final rules.

Table 6.10: Final rules for the Bin2Int sub-problem (Experiment 8, arbitrar-

ily picked as it is representative of the 30 experiments). L, m and $ repre-

sent the length constant, learned KBitString function and the BinaryString

axiom respectively.

Condition Action Numerosity Fitness

# # # # # # CF 7 m CF7 m @ 36 0.25

# # # # # # L CF 7 m @ 27 0.19

# # # # # # L L @ CF 7 m @ 54 0.37

# # # # # # L $ CF 7 m @ 28 0.19

The AddressOf sub-problem produced a plot with a longer curve, com-

pared to the previous three mentioned above. This problem required

that the system use more training instances than all the previous three

sub-problems. This is understandable as there was another sub-problem

added to the evaluation process for the CFs present in the classifier. In

light of this, it is also understandable that this sub-problem produced more

rules than any of the previous sub-problems, see Table 6.11. An examina-

tion of the table reveals that the Addition axiom is considered very impor-

tant by the system. It has determined that adding the results of the KBits

function and the Bin2Int function will yield the correct location of the data

bit within the message string. This is plausible as the former will yield the
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number of address bits, while the latter will provide the additional num-

ber of bits to add to get to the correct location of the data bit. Furthermore,

no one rule is overwhelmingly fitter than any other. Also, the numerosity

of the rules falls between 7 and 14, inclusive. This is not a great difference

and does not indicate anything interesting with the exception that as the

numerosity of a rule increases so does its fitness.

Table 6.11: Final rules for the AddressOf sub-problem (Experiment 8).

Condition Action Numerosity Fitness

# # # # # # N CF 9 CF 8 c + 14 0.08

# # # # # # CF 10 CF 9 c N + 9 0.05

# # # # # # N CF 10 CF 8 c + 8 0.05

# # # # # # CF 8 CF 10 c N + 9 0.05

# # # # # # N CF 10 CF 11 c + 7 0.04

# # # # # # N CF 10 CF 9 c + 7 0.04

# # # # # # CF 9 CF 8 c N + 10 0.06

# # # # # # CF 7 m N + 13 0.07

# # # # # # N CF 8 CF 9 c + 10 0.06

# # # # # # N CF 11 CF 8 c + 9 0.05

# # # # # # CF 11 CF 10 c N + 10 0.06

# # # # # # N CF 11 CF 9 c + 12 0.07

# # # # # # N CF 9 CF 9 c + 11 0.06

# # # # # # CF 8 CF 8 c N + 9 0.05

# # # # # # CF 9 CF 10 c N + 7 0.04

# # # # # # N CF 10 CF 10 c + 7 0.04

# # # # # # N CF 7 m + 9 0.05

# # # # # # N CF 9 CF 10 c + 8 0.04

# # # # # # CF 8 CF 11 c N + 8 0.04

Figure 6.8 shows that the training was successful for the ValueAt sub-

problem. The plot indicates that the system converged with a small num-
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ber of training instances, compared to the AddressOf sub-problem. The

fact that the system produced just two rules indicates that the rules are

highly general, which is confirmed as the condition part of both rules is

composed of don’tCares only, see Table 6.12. The numerosity for both

rules was higher than in any of the other sub-problems, also the higher

numerosity tends to map to a higher fitness.

Table 6.12: Final rules for the ValueAt sub-problem (Experiment 8).

Condition Action Numerosity Fitness

# # # # # # CF 28 CF 14 M = 70 0.68

# # # # # # CF 28 CF 20 M = 34 0.32

The number of rules and CFs generated by the fundamental parts, i.e.

kBits, kBitString, Bin2Int, AddressOf and ValueAt was small. In certain

cases, the number of rules produced was one, as was the case with run 8

of the kBits sub-problem. This is plausible as the rule is general and will

work for any length input string. The same trend continued with the more

difficult problems as well. The condition was composed of don’tCares,

which may appear counter-intuitive as LCSs partition the search space,

and is typically observed in the ternary XCS applied to multiplexer prob-

lems. However this was anticipated as the rules could be applicable to all

instances of the sub-problem, therefore they could be maximally general.

All the sub-problems used the standard XCS training and testing cy-

cles, i.e. explore and exploit. However, for the more difficult problems,

the final rules learned by the fundamental steps were used with only the

testing phase available, i.e. exploit. The problems presented to the sys-

tem grew progressively large. This size was large enough to prevent the

system from solving them simply by enumerating possible solutions. The

LL approach culminated in training the ValueAt function, which is the last

step in solving the multiplexer problem. Therefore, only the testing phase

was needed for evaluating the LL approach on the multiplexer data-sets.
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(a) Kbits
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(b) KbitString
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(c) Bin2Int
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(d) AddressOf

Figure 6.7: Results of the Kbits, KbitString, Bin2Int and AddressOf sub-

problems using XCSCF*. There was training and testing involved. Each

sub-problem fed its output (CFs and learned function) to the next sub-

problem.
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Figure 6.8: Result for the ValueAt sub-problem. These results with XCSCF*

involved training and testing. The system converged to 100%.
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Figure 6.9 shows that only the proposed system XCSCF* and XCSCFC

were able to solve the 135-bit Multiplexer. Additionally, the proposed

system performed better than the state of the art XCSCFC, albeit with a

higher standard deviation at a given number of instances. The Wilcoxon

signed rank test comparing XCSCF* with XCSCFC after two million itera-

tions shows no evident difference between both techniques. Further tests

were conducted for the 264-bit and 521-bit multiplexer problems, see Fig-

ure 6.10. The rules produced by XCSCF* using LL for the 6-bit multiplexer

were reused in these experiments. This shows scaling by relearning, be-

cause with each multiplexer problem the system has to relearn new rules,

but it is the capturing of the underlying patterns without retraining at each

successive problem as it scales that is the aim of this work. In other words,

it is anticipated that the final rules produced by the fundamental steps to

the layered learning can capture the necessary regularities present in all

multiplexer problems. This way, no further learning would be necessary,

only testing in order to find a solution to a problem.

Tests were conducted on the final rules produced by the 6-bit multi-

plexer to determine if they were general enough to solve more complex

problems. Figure 6.11 shows that the rules produced by the 6-bit mul-

tiplexer were able to solve the 264-bit, 521-bit and 1034-bit multiplexer

problems. Figure 6.12 illustrates the solutions for the 2059, 4108 and 8205-

bit Multiplexer problems 1. Note also that the training data for the KBits

sub-problem only included up to 2059→ 11, meaning that the system gen-

eralized beyond its input data. All the graphs are similar in the sense that

the performance begins at 100% and remains at that level throughout the

tests. The system used to test the generality of the rules was a version of

XCSCFA with certain modifications; there was only the exploit phase and

no covering was allowed. The generality of the solution is built upon the

power of expression imbued in Code Fragments (CFs). Since many types

1Note that 28205 is a vast number, meaning that testing a million instances is a frac-

tionally small sub-sample, but will identify many deficiencies.
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of actions (e.g. integer, string) were involved during the training process,

CFs provided a viable way to express the action part of the rules evolved

and their complex functionality.

6.2.3.3 Sub-Trees Generated by the 6-bit Multiplexer

The solution tree for a 6-bit Multiplexer is shown in Figure 6.13. The figure

illustrates the compactness of the CF rules. One can also observe that the

system has determined that the ValueAt function is the one that produces

the final value for the multiplexer. This final output is determined by com-

puting the entire chain of CFs which culminates in the ValueAt function.

The fully expanded tree is shown in Figure 6.14. It is evident that the

chains of CFs produced are very long and are composed of functional

blocks that are repeated in different branches. The learned function M

is expanded in Figure 6.14 (top). In this figure it is clear that the function is

composed of many other learned functions that are repeated. For instance,

the KBits function (N) is present in the right branch of the root node con-

taining the + function. N is also present at the bottom of both branches

of the root node containing the c function. The N function also appears at

the bottom of CF 9, which forms the right child of the c function. Keeping

in mind that this portion of the image reflects only the root node contain-

ing the M function, it is clear that CF 10 contains learned function m –

otherwise known as the KBitString function – and CF 7, which are then

repeated in CF 28. This CF forms the left child of the root node containing

function M.

Figure 6.14 (bottom) shows CF 28 and CF 16. These are the expanded

child nodes of learned function M. There are some redundancies in the

makeup of CF 28. For instance, learned function m and CF 7 both have the

same structure. They are composed of the Bit String axiom combined with

function N. This same structure appears three times in CF 16. The repeated

CFs mentioned above return a string representation of the k address bits

calculated by learned function N. Ultimately, CF 16 performs an addition
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Figure 6.9: 135-bit Multiplexer Solution. Note: Wilcoxon signed rank test

comparing XCSCF* with XCSCFC shows no evident difference between

both techniques at two million iterations.
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Figure 6.10: 264-bit and 521-bit Multiplexer solution, utilizing both train-

ing and testing. The rules, CFs and functions produced by the 135-bit

multiplexer problem were transferred to the explore and exploit phases to

learn the 264-bit problem. Then, the rules, CFs and functions learned by

the 264-bit problem were used to solve the 521-bit problem.



6.2. SOLVING THE N-BIT MULTIPLEXER PROBLEM SET 185

0 200 400 600 800 1000

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Instances (x 1000)

P
er

fo
rm

an
ce

0 200 400 600 800 1000

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Instances (x 1000)

P
er

fo
rm

an
ce

0 200 400 600 800 1000

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Instances (x 1000)

P
er

fo
rm

an
ce

 XCSCF* 
[1]−264mux
[2]−521mux
[3]−1034mux

[1] [2] [3]

Figure 6.11: 264, 521 and 1034-bit Multiplexer solution, using XCSCF*. The

rules produced by the 6-bit multiplexer were used to solve these problems.

Only the exploit phase was activated, the explore phase was deactivated

therefore no additional training took place.
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Figure 6.12: 2059, 4108 and 8205-bit Multiplexer solution. These results

with XCSCF* did not involve any training, just the test phase. The rules

produced by the 6-bit multiplexer were used to solve these problems. Only

the exploit phase was activated, the explore phase was deactivated.
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Figure 6.13: 6-bit Multiplexer Solution Rule. Where ‘=’ is the ValueAt func-

tion, ‘M’ is the AddressOf function and CF 16, CF 28 are Code Fragments.

of its child branches, but in doing this, it calculates CF functionality that

will be used elsewhere, such as that mentioned above. Learned function c

and both of its child nodes contain m at the bottom of their right branches.

A comparison of the computer generated and human-inspired solu-

tions of the multiplexer is in order here. Figure 6.14 shows a solution of

the multiplexer problem that is very complex, large and seemingly convo-

luted. On the other hand, Figure 6.5 – the human hypothesized version

of the multiplexer – is simpler and has fewer layers. The original human

inspired model uses layered learning in a straight forward way, each layer

feeds its input into the subsequent layer. However in the computer gener-

ated model, the learning is more haphazard. Some functionality is learned

multiple times and then gets reused further down the CF chains. Also,

some functionality appears in several places in a random way.

The systemic redundancies described above presented an opportunity

for the novel system to store these computed values for later usage. It

also shows that while the final rules for the difficult problems can appear
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simple at first (Figure 6.13), under careful scrutiny the underlying func-

tionality is extremely complex and is composed of the necessary combina-

tions of axioms, skills and learned functions that were determined by the

system to provide a viable solution to the problem. More importantly, as

each layer of learned functionality is peeled back, it reveals the regulari-

ties which are present and that form the necessary structure of a general

solution for the problem. The same structure can make it difficult to in-

terpret the rules, specifically the apparently redundant CF chains present.

In addition, the sub-trees are not straightforward and can expand several

layers larger than they appear at first.

6.2.3.4 Rules Generated by the 6-bit Multiplexer

The rules produced by the 6-bit multiplexer solution are illustrated by Ta-

ble 6.13. The rules are maximally general, which is caused by the scope of

the functions accumulated by the experiential toolbox. The combined set

of functions is sufficient to calculate the correct data bit for any 6-bit mul-

tiplexer problem. This is because the ValueAt function combines all the

necessary functionality, from all previous domains, to arrive at the correct

value. The action part of the rules combined a number of CFs along with

their parent functions. CF 16 was found to be helpful by two of the rules,

see Table 6.13, however there does not appear to be any particularly useful

relationship between the solution and this lone CF, i.e. CF 16. It is similar

in structure to the other CFs in the final rule-set. All the rules consider

the ‘+’ axiom very important and combine it with other CFs, previously

learned functions and other axioms.

6.2.3.5 CF Rules Tested from the 135-bit to the 521-bit Mux problems

The rules produced by the 6-bit multiplexer problem were tested on much

larger multiplexer problems. These experiments included the testing and

training phases. The system required increasingly larger settings for the
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Table 6.13: Final rules learned while solving the 6-bit Multiplexer. The

condition parts are composed of don’tCares, meaning that the rules are

useful for solving any 6-bit multiplexer. Each rule is a complete solution

to the problem.

Condition Action

# # # # # # CF 14 CF 16 M b

# # # # # # CF 18 CF 26 M b

# # # # # # CF 30 CF 16 M b

# # # # # # CF 31 b

variable p don′tCare, which could be attributed to the increasing complex-

ity of the problem and the curse of dimensionality, see Table 6.14. XCSCF*

was unable to learn in this manner past the 521-bit multiplexer. During the

264-bit problem the system fully converged after first showing a period

of difficulty in learning. For the 521-bit multiplexer problem the system

demonstrated a better rate of learning than during the 264-bit problem,

however although it approached 100%, it never fully converged. The fi-

nal rules produced by the 135, 264 and 521-bit problems for run number 8

(out of 30) are in Table 6.15. The rules are similar in that they are all maxi-

mally general with an action part composed of CFs. Importantly, all three

problems produced just one rule each. This is symptomatic of the com-

pactness and expressive richness of the rules. It is not considered that the

rules are subject to over-fitting because subsequent experiments showed

that the rules were capable of solving very difficult multiplexer problems

well beyond the input data. Also, it is not considered that the rules suffer

from over-generality due to the fact that the rules were anticipated to be

maximally general. This would mean that the rules could be applied to

most if not all the possible instances of multiplexer problems for a speci-

fied length.
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Table 6.14: Settings for p don’tCare for the 135-521 bit multiplexer prob-

lems. The training and testing phases were involved.

Problem p don’tCare Setting

135-bit 0.90

264-bit 0.95

521-bit 0.99

Table 6.15: Final rules learned while solving the 135, 264 and 521-bit Mul-

tiplexer for run number 8. The condition part is composed of don’tCares,

meaning that the rule is useful for solving any size multiplexer. The let-

ter b stands for learned ValueAt function. It is used by all three problems.

Problem Condition Action

135-bit multiplexer # # ... # # CF 161 b

264-bit multiplexer # # ... # # CF 273 CF 273 M b

521-bit multiplexer # # ... # # CF 547 b

6.2.3.6 CF Rules Tested from the 264-bit to the 8205-bit Mux problems

An important aspect of these experiments was to determine whether

learning could be accomplished without re-training. For that reason, a

series of tests were executed using the rules produced by the 6-bit multi-

plexer. The Table 6.16 illustrates the rules produced by the system while

testing the series of 264-8205 bit Multiplexer problems. The solution to the

6-bit multiplexer produced only four rules, see Table 6.13, and these were

used to conduct the tests. This table confirms that the test population con-

sisted of only one rule, per run, per problem. The test samples consisted of

one million problem instances. The ascending CF ids are a feature of the

system, which renames each set of reused CFs depending on the size of

the Multiplexer being learned at the time. The CFs illustrated in the table

are the same four from the 6-bit solution, they are just renamed by each
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new problem.

The rules from the 6-bit multiplexer can be reused by a much larger

problem like the 8205-bit multiplexer principally for two reasons. The

number of arguments linked to the functions in the action part of the clas-

sifier is independent of the length of the problem. Also, all the rules are

maximally general, and since they are composed of don’tCares, it means

that the condition part does not have any bit position limitations. There-

fore all the rules can be applied to much larger multiplexer problems and

will still yield the correct result.

6.2.3.7 Hidden Multiplexer

Figure 6.15 illustrates the results for the 18 bit hidden multiplexer prob-

lem. All three systems were able to solve the problem. XCSCF* con-

verged within about 1 100 000 instances; slightly ahead of XCS, while

XCSCFC converged within about 2 million training instances. Although

this problem may not appear difficult in comparison to the 135-bit Mux

– the 3x6 hidden multiplexer is only 18-bits long – for example, it does

serve to showcase the usefulness of the rules produced by the system. The

reason is that although the 3x6 hidden multiplexer has a smaller sample

space, it does have a larger number of relevant bits in each instance. In

this case the learned information was transferred to a related domain with

success. This is evident as the same functionality that solved the ValueAt

sub-problem was useful for solving the 3x6 hidden multiplexer problem.

This implies that functionality from non-Boolean domain, e.g. Log, Power,

was re-used to solve a hierarchical Boolean problem. The nascent capabil-

ity of the rules – run 8 produced 160 specific rules compared to the low

number of rules needed to solve the multiplexer problems – for solving

the hidden multiplexer looks more positive when certain details are con-

sidered. For instance, XCSCFC had been trained with Boolean operators

as well as the odd and even parity problems. Although XCSCF* uses the

NAND function as a boot-strap, it does not occur in the actual feature



194CHAPTER 6. LAYERED/TRANSFER LEARNING FOR CF-BASED SYSTEMS

Table 6.16: Final Code Fragment Actions from maximally general rules

produced by 264-8205 Multiplexer tests (No training was involved).

Problem CFs Produced

264Mux

CF 272 CF 274 M b

CF 276 CF 284 M b

CF 288 CF 274 M b

CF 289 b

521Mux

CF 529 CF 531 M b

CF 533 CF 541 M b

CF 545 CF 531 M b

CF 546 b

1034Mux

CF 1042 CF 1044 M b

CF 1046 CF 1054 M b

CF 1058 CF 1044 M b

CF 1059 b

2059Mux

CF 2067 CF 2069 M b

CF 2071 CF 2079 M b

CF 2083 CF 2069 M b

CF 2084 b

4108Mux

CF 4116 CF 4118 M b

CF 4120 CF 4128 M b

CF 4132 CF 4118 M b

CF 4133 b

8205Mux

CF 8213 CF 8215 M b

CF 8217 CF 8225 M b

CF 8229 CF 8215 M b

CF 8230 b
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construction that takes place during the explore phase. This was a design

decision as NAND is not directly used in any of the fundamental steps.

Therefore XCSCF* was able to transfer knowledge blocks successfully in

spite of not having been trained with a number of functions that naturally

benefited XCSCFC, i.e. boolean operators and parity problems.

The rules produced by the system are illustrated in Table 6.17. Un-

like the rules produced by the fundamental stages, i.e. (KBits, KBitString,

Bin2Int, AddressOf, ValueAt), or the 6-bit multiplexer, these exhibit a

higher number of specific alleles (non-don’tCare features) in the condition

part. The action part retains its usual configuration of the known learned

functions and their required inputs. This might be indicative of the diffi-

culty in solving the Parity problem, coupled with the hierarchical nature

of the hidden multiplexer.

Table 6.17: Final rules learned while solving the 18-bit Hidden Multiplexer

(Even Parity). The function denoted by the letter b represents the learned

ValueAt function. It returns the value of the data bit addressed by the

hidden multiplexer.

Condition Action

1 1 1 1 1 1 1 # 0 1 # # # # 1 # 1 # CF 38 CF 39 M b

0 0 0 1 1 1 # # # # # # 1 0 1 # # # CF 30 CF 41 M b

1 1 1 0 0 1 # 1 0 # 1 # # # # # # 1 CF 25 CF 33 M b

0 0 0 1 0 1 # # # # # # # # # 1 1 0 CF 41 CF 41 M b

0 1 0 1 1 0 # # # 0 0 1 # # # # # # CF 27 CF 37 M b

0 0 0 1 0 1 # # # # # # # # # 1 1 0 CF 33 CF 38 M b

0 0 0 1 0 1 # # # # # # # # # 1 0 1 CF 35 CF 30 M b

0 0 0 1 1 1 # # # # # # 0 0 0 # # # CF 34 CF 30 M b

... ...

The results for the 3x6 hidden multiplexer were reused for learning

the 3x11 hidden multiplexer using training and testing. Figure 6.16 shows
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Figure 6.15: 18-bit Hidden Mux Solution: The rules produced by the Val-

ueAt sub-problem were reused in the related Hidden Multiplexer domain.
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the results of these experiments. The proposed system was not capable

of learning the problem. Also, XCS failed to learn the problem as well.

On the other hand, XCSCFC converged with about 4 000 000 training ex-

amples. It appears that the rules produced by the ValueAt and the 3x6

hidden multiplexer problems were not useful towards solving this larger

problem.
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Figure 6.16: 33-bit Hidden Mux Solution: The rules produced up to and in-

cluding the 3x6 hidden multiplexer were reused here. There was training

and testing involved.

The results for another set of experiments for the 3x11 hidden multi-
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plexer can be seen in Figure 6.17. These experiments reused all the rules

produced up to and including the ValueAt sub-problem. The system was

incapable of learning the problem. Again, this is indicative of missing

functionality for solving the problem. The most obvious choice is the Par-

ity function as this was present in previous work that was able to solve the

3x11 hidden multiplexer.
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Figure 6.17: 33-bit Hidden Mux Solution: The rules produced up to and

including the ValueAt stage were reused here. There was training and

testing involved.
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6.2.4 Interpretation of Results

Throughout this work, the manner in which humans approach tasks has

been a recurrent theme. In fact, it forms an essential part of this work [64].

Furthermore, it is considered that the reason this approach can solve prob-

lems to a much larger scale than previously, is that human knowledge

separated the problem into appropriate, simpler sub-problems [57]. How-

ever, it is still a difficult task to learn each sub-problem in such a way

that learned knowledge/functionality can be transferred. Furthermore,

the need to learn to combine these blocks effectively increases the diffi-

culty.

The way that humans select sub-problems is similar to that of humans

selecting function sets in standard EC approaches. In these, too few or in-

appropriate selection prevents effective learning, while selecting too many

unnecessary components inhibits training [55]. Analyzing results for ro-

bustness and checking for the inclusion of redundant or irrelevant axioms

yielded an interesting finding. In these experiments the ceiling function

was available, but never used by the final solutions.

It is evident that XCSCF* has benefited from the transfer of learned

information from each of the sub-problems. This can be observed in the

rules produced by the fundamental sub-problems; they contain function-

ality learned in all the layers. Although a step by step plan was not given

to the system, it was still capable of combining the available functions in a

productive way, see Figure 6.14. This property of the new system appears

to be similar to deriving a set of Threshold Concepts, where significant

learning towards the final target problem only advances once the proper

chain of functionality is formed and evaluated. This is shown in the struc-

ture of the rules produced, where the functions have been combined by the

system in order to produce maximally general rules that can scale to any

size n multiplexer problem, see Table 6.16. However, it is concluded that

the final structure of the CFs is a product of the reinforcement mechanism

of XCS. This is shown in Table 6.12, here the system has found two rules
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which provide a solution, and each rule has an amount of fitness. How-

ever, both rules have a similar structure in that the ValueAt function is the

topmost function with function M as its child. The two leaf nodes consist

of CFs. The rules providing the maximum reward get to exist longer and

participate in breeding.

The proposed system, XCSCF*, was capable of solving the 135 and the

264-bit multiplexer problems following the normal training and testing

phases for XCS. However, for the 521-bit multiplexer problem it never

fully converged. The solutions to the aforementioned problems demon-

strated that knowledge transfer benefited the system in learning the prob-

lems; the rules demonstrate compounding usage of previously learned

functionality at each subsequent layer. The non-monotonic shape of the

performance graphs illustrates that the system faced periods of difficulty

in learning, primarily during the 264-bit problem. However it eventu-

ally converged fully. Surprisingly, the system performed better against the

larger 521-bit problem, in terms of fewer training instances to reach max-

imum performance. Also, the curve was smoother than the one for the

264-bit problem, meaning that it learned more quickly and in a more con-

sistent progression. It is hypothesized that the increasingly larger value

for the p don’tCare property was instrumental in enabling the solution to

these problems which was different in the 264-bit multiplexer (0.95) and

the 521-bit multiplexer (0.99).

It is not clear why XCSCF* would fail to learn past the 521-bit Multi-

plexer (it never fully converged for this problem). None of the experiments

for larger problems were able to learn. It is suggested that the problem has

to do with the training phase. It is possible that as the problems scale, the

training phase is faced with a large pool of classifiers to use in a matchset

and then in an actionset, many of these are of the type with low fitness

during the early stages of learning. Since the training part picks a random

action winner, it is conceivable that many of these action winners will pro-

vide the incorrect answer and therefore delay learning of the problem. As
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the problems become more difficult, this situation is exacerbated to the

point that the system stops learning altogether. This presents a credible

reason because the same rules were able to solve much larger problems,

albeit without using training.

XCSCF* also performed well with the 3x6 hidden multiplexer prob-

lem, see Figure 6.15. Also, further evidence of knowledge transfer was

observed with the solution of this problem. This was an unexpected ac-

complishment, given the complex structure of the hidden multiplexer [17]

and the novel representation. This difficulty is demonstrated by the larger

number of rules required to solve the problem, and specially, by the rel-

atively more specific rules in comparison with the 6-bit multiplexer final

rules-set.

Another item of interest is that the majority of the rules contain envi-

ronment features (specific bits) towards the left side of the condition while

the don’tCares tend to appear in the middle and right side of the con-

dition, corresponding to the address part of the higher level multiplexer

problems. This is obviously due to the influence that genetic transfer ex-

erts on the creation and evolution of the population. XCS-based systems

exert a pressure leading to maximally general rules. This generality can be

achieved by reusing useful rules to create new children which share some

of their parents’ genetic makeup. Those classifiers that tend to solve the

layers correctly, and hence receive the highest reward, tend to remain long

enough to breed. This has led to the system identifying the first six bits, as

very important, which would have been learned while solving the multi-

plexer part of the problem. That is, consider the first six bits as eventually

yielding the two address bits for the 6-bit Mux that is in the upper level.

The rest of the condition could be composed mostly of don’tCares as only

one more upper level bit is required in order to produce the correct action

for the entire problem.

When XCSCF* was tasked with the 3x11 hidden multiplexer problem,

it was not capable of solving it. Two sets of experiments were run, one set
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involved all the rules produced by the 3x6 hidden multiplexer, while the

other involved all the rules produced by the ValueAt sub-problem. It is

considered that the experiential toolbox is missing certain very important

axioms which could be useful in solving the more difficult hidden multi-

plexer problems. One of the obvious axioms is the Parity operator. This

could be learned by the system in one or two stages, primarily by learning

to tell the difference between different types of bits. Arguably this could

be done in a similar fashion as was done for the multiplexer solution; the

problem could be broken apart by a human into its main constituent parts.

Then it could just be added to the experiential toolbox, ready to be reused

as needed.

6.2.4.1 Additional Observations on the n-bit Multiplexer

One of the more interesting questions regarding the results is the tech-

nique’s usage of leaf nodes. It is clear that learned function N (returns

k, the number of address bits) appears in most of the branches of the CF

sub-trees. It appears either on its own or as part of a larger chain of CFs.

It also appears in the guise of CF 6, but this CF does not appear in any

other chains for the simple fact that it has the exact same configuration as

function N. This means that it has constant L as its leaf node. Furthermore,

since the technique associates a learned function with the CFs learned, and

since the learned function N has the same structure as CF 6, it follows that

CF 6 is redundant information. The important item of information here is

that the very last node of the function is constant L. This is critical because

it informs the CF machinery of the length of the current problem. With

this information, the rest of the CF evaluations proceed as prescribed by

the connecting functions, axioms or skills. The fact that the solutions con-

tain constant L as a seminal CF member, has implications for virtually all

of the rest of the relationships. It means that for the final rules to provide

the correct answer to a particular multiplexer problem, constant L should

be included in the chain of CFs. This is evidenced by the fact that the
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ubiquitous N function contains constant L in its makeup.

Another interesting observation is that unlike the execution of XC-

SCFC, where the terminal nodes have a direct impact on the final answer

returned by the CF sub-tree, it was discovered that for XCSCF* this does

not appear to be the case. In XCSCFC information in the terminal nodes

is manipulated up the branches (processed by the pre-coded functions lo-

cated at the nodes) until the final output is produced. A full trace of the

6-bit multiplexer was conducted for one of the solutions for XCSCF*, see

Figure 6.14. It was identified that repeating patterns of learned knowledge

are located throughout the chain of CFs. This indicates that it was helpful

to store the computed values of said functional blocks for later usage. It

was also observed that for the general solution, the two main branches:

CF 28 and CF 16 feed their outputs into the function M but these outputs

are not used directly when M is evaluated. The reason is that the learned

function M relies on its own set of rules to compute its output, which disre-

gards the inputs from its two child branches. Function M is the AddressOf

function which was trained on inputs of a bitstring and past knowledge

of L and k. The training sets were implicitly based on the multiplexer

rather than on a general address of a boolean problem, hence the evolved

function did not require explicit inputs. This idiosyncrasy of the technique

was addressed above, and it was mainly stated that all branches of learned

function M begin with constant L, therefore no further inputs are required

or expected due to the layered learning. Even if both sub-branches were

to be ignored, the correct answer would still be provided by M as it has

this CF knowledge in its learned functions.

The question that arises about the redundancy in the CF chains is

where it could be useful in other types of CF based LCSs. The answer

is not so simple. It is hypothesized that because the technique is based

on XCSCFA, it promotes a compartmentalization of the major functional

blocks, see Figure 6.14. For example, inside of the function M, all of the

functional blocks get evaluated as if they were one single function. The
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result gets passed up to the function ‘=’ (this is just the internal tag the

system gives the ValueAt function) which then returns the action for the

problem. However, the results from the two children of M get computed

but never get sent to any of the internal functions of M, not even to func-

tion ‘=’. It is hypothesized that the reason this phenomenon occurs is sim-

ply because all of the CF chains inside of function M eventually end in the

constant L. The training provided the system with a choice of forming CF

sub-tree leaf nodes composed of the constant L, a previously learned CF

or an environment feature. In the rules, the constant L became an atomic

property of the CF chain, a value which could not be decomposed into

any other value; it could only be replaced with the value for the current

problem [100]. In essence, the constant L provided a starting point, which

the system used to eventually compute the final answer by moving up the

CF chain. For example, function N, when expanded, starts the evaluation

with L and proceeds to the Log and Floor axioms. Essentially, using the

constant L ‘transforms’ the N function to one without the need for any

other inputs. This was not anticipated when the system was being put

together, however, the effect has provided a subtle benefit; the children

branches have become partially redundant. In spite of this redundancy,

the child branches are important because they capture relationships be-

tween the learned functionality, axioms and skills which lend themselves

to compact solutions.

6.3 Chapter Summary

The work in this chapter demonstrates how the Layered Learning (LL)

approach has been beneficial in facilitating increased scalability. A LL ap-

proach was used to facilitate the learning of the n-bit multiplexer problem.

The problem was broken into five main sub-problems which were then

solved in stages. Each subsequent stage was built upon the foundations

provided by the previous sub-problems. This technique is also aligned
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with the Threshold Concept in that each of the sub-problems was criti-

cally important in facilitating the learning of the next sub-problem. But

more importantly, all of the sub-problems together were transformative

and led to a scalable, general solution to the n-bit multiplexer.

The generality of the solution is built upon the power of expression

imbued in Code Fragments (CFs). Since many types of actions were in-

volved during the training process, CFs provided a viable way to express

the action part of the rules evolved. For this reason, the sub-problems

were composed of XCSCFA-based systems. The condition part used a

ternary alphabet, i.e. {0, 1, #}, however the final rules were composed of

don’tCares, making them maximally general. Of course any rules-based

classifier system could have been used instead of the one used by the so-

lution (XCSCFA). However, the candidates would have required the ca-

pability of expressing complex actions, since different types of actions are

needed to find the solutions. This is why CFs were chosen for the repre-

sentation of the action part in this work.

The ValueAt sub-problem evolved a series of general rules which were

then used to solve the 6-bit multiplexer problem. The rules produced here

were then used to solve the 264-8205 bit multiplexer problems. These ex-

periments did not involve any training, just testing, in order to fit the 6-bit

input to the new, larger domain. The results were notable as the perfor-

mance demonstrated a rapid convergence rate in terms of test samples.

More importantly, the astronomically huge size of the problem domain

was sufficient to illustrate the benefits of the technique. Being that no

other LCS or EC-based system has been capable of solving the magnitudes

of problems presented here by using inductive learning, this qualifies as a

step forward in the field of Evolutionary Computation.

The technique was also tested against the hidden multiplexer and here

the results were mixed. Initially the rules were useful in solving the 3x6

hidden multiplexer, however, the 3x11 hidden multiplexer was too diffi-

cult. It is hypothesized that necessary functionality is missing from the
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experiential toolbox. It is estimated that at the very least, a learned func-

tion or an axiom reflecting the Parity boolean function is needed. This

is anticipated to advance the learning process and to help the system in

combining the necessary building blocks needed to solve the hierarchical

problem.

Another finding involved the structure of the final rules. A typical

rule from the 6-bit multiplexer problem solution was fully traced and it

was discovered that not all branches cooperate towards finding the final

answer at the very top of the CF chain. For example, the function M was

not directly dependent on the inputs provided by its two child branches.

It relied entirely on its own set of rules and CFs. This is due to the fact that

there exist certain redundancies in the functionality of the CF chains, that

is, certain rules and their CFs appear in different functional blocks. This

makes it feasible for a function like M to compute a final answer based

solely on its own associated knowledge. It was also discovered that the

constant L plays a critical role in this idiosyncrasy of the technique.

Overall, XCSCF* has been successful in evolving maximally general,

scalable rules which were used to solve a number of very difficult mul-

tiplexer problems. This has expanded the scalability of XCSCFA-based

systems to multiplexer problems of any size, something that was out of

reach for LCS based systems until now. However, there is opportunity

for improvement in terms of the hidden multiplexer problem. The tech-

nique demonstrated a limited capability for transferring learned informa-

tion, and more work is required for overcoming the more difficult prob-

lems.



Chapter 7

Conclusions and Future Work

The overall goal of this thesis was to improve the scalability of learning

classifier systems. Emphasis has been placed on XCS systems extended

with Code Fragments. In this novel work, CFs were customized to reuse

learned functionality at the root nodes of the CF sub-trees. In addition,

hard-coded functions, routinely used in EC techniques, were replaced

with learned rule-sets. These learned rule-sets contributed to the reduc-

tion of the search space in problems such as the multiplexer and hidden

multiplexer. The results from the newly developed systems were com-

pared with the existing related systems.

The rest of this chapter presents the achieved objectives, principal con-

clusions from each of the contribution chapters, and the future work that

flows from this original research work.

7.1 Achieved Objectives

The following research objectives have been fulfilled by this original work

to achieve the overall research goal.

1. It was shown that re-using CF-based building blocks at the root

nodes of CF sub-trees increases scalability. The new system known

207
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as XCSCF 2 was trained with several problems in the Boolean do-

main. The new system then demonstrated increased performance in

terms of required training instances to converge fully. This perfor-

mance was compared to related systems like XCS and XCSCFC.

2. A novel compaction technique was designed and implemented. This

technique, known as XCSCF3, showcased the benefits of transform-

ing a population of CF-based rules to another composed of ternary

rules. CFs are powerfully expressive and can describe a problem

domain in a compact and rich manner. Ternary rules are easy to in-

terpret and quick to compute. However, they lack expressivity and

are also subject to limitations in the location of the bits as well as

the number of bits per classifier rule. Essentially, both sets of rules

are equivalent, in the sense that the ternary rules were derived from

the richly compact CF rules. XCSCF3 was shown to perform well in

comparison with other related systems. It was able to solve up to

the 70-bit multiplexer and the 3x11 hidden multiplexer. On the other

hand, the technique is not scalable beyond the 70-bit multiplexer.

Additionally, although XCSCF3 was capable of solving the 3x11 hid-

den multiplexer, it required more training instances than XCSCFC.

3. It was shown that Layered Learning, combined with Transfer Learn-

ing can provide benefits in scaling for a CF based LCS by solving an

intractable problem. The problem known as the multiplexer was par-

titioned by a human into five constituent parts. Then the novel tech-

nique known as XCSCF* was trained with these sub-parts, each sub-

problem re-used the learned building blocks from the previous one.

After the elemental training was complete, the system was trained

with a 6-bit multiplexer problem. The rules produced at this stage

were tested against other much larger multiplexer problems. The

rules were shown to be scalable and optimally general for each of

the tests. Although the rules were scalable to problems with a sam-
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ple space of astronomically large sizes, it was noted that a sample

size of 1 000 000 testing samples is large enough to discover many

deficiencies.

The above mentioned achievements form a major portion of this thesis.

They encompass the original research objectives, however additional find-

ings were discovered. A full tracing of the rules evolved by XCSCF* for

a 6-bit multiplexer revealed that the technique produced several redun-

dancies. These redundancies provided the system with the opportunity to

store these computed values for future usage. It was also confirmed that

the encoding used by CFs is rich and compact. A simple two level solu-

tion to a simple multiplexer problem has the tendency to expand into CF

sub-trees with many more levels. This also confirms the benefit of human

intervention in partitioning the multiplexer problem into sub-problems.

Prior to designing XCSCF*, it was known that the standard CF technique

was incapable of learning all the necessary functionality in one layer. This

is the reason that the multiplexer problem required partitioning.

7.2 Main Conclusions

This section presents the main conclusions and highlights from the three

major contribution chapters (Chapter 4 to Chapter 6).

7.2.1 Reusing CFs in the Root Nodes of CF Sub-trees

The original CF sub-tree formulation was extended to accommodate

learned information at the root nodes of the sub-trees. The CFs also were

changed to use learned rule-sets at the root nodes instead of the usual

hard-coded functions. These rule-sets were learned from functions orig-

inating in the Boolean domain, they included {NAND, OR, AND, XOR,

NOR}. The system was then given problems in the multiplexer domain to

solve.
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The new technique known as XCSCF 2 showed that it is possible to

learn building blocks of functionality from basic boolean rules. In addi-

tion, it was shown that knowledge learned in the boolean logic domain

could be used to solve problems in a different domain such as the mul-

tiplexer. This transfer of knowledge, learned in one domain, to a related

domain, facilitated the solution to problems in the new domain.

The XCSCF 2 successfully solved the 6-20 bit multiplexer problems

with better than expected results. In other words, its training instance re-

quirements were minimal compared to the other systems being compared.

However, it was slower when it came to the more difficult problems, but

not prohibitively so.

The XCSCF 2 offered opportunity for further scalability by linking a

set of Function rule-sets to their respective CFs. This extension to the CF

technique is something that was explored in Chapter 4.

7.2.2 Develop a New Compaction Technique

A new CF compaction technique was introduced in Chapter 5. This tech-

nique, known as XCSCF3, converted the final population of CF-based

rules into a ternary rules-set. The techniques developed were of two kinds,

offline and online compaction techniques. These will be described further.

The offline compaction technique was a post-processing translation

that operated on the final population of rules produced by the system. The

process took place after the final set of classifiers had been evolved. Only

the classifiers meeting a pre-set criteria of experience, fitness and accuracy

were considered. The translation consisted mainly of presenting the CF

rules with a pre-set number of problem instances to afford a translation of

the CFs into rules using a ternary alphabet.

The offline compaction technique demonstrated that it is possible to

translate CF rules into a ternary format. Additionally, These rules can be

easier to compute than the normal CF rules. This was shown by the so-
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lutions to problems including the 70-bit multiplexer and the 3x11 hidden

multiplexer.

The offline compaction technique provided new benefits to the field

of LCS, as shown by the experimental data, see Figure 4.7. Said exper-

iments demonstrate that the offline compaction technique is beneficial in

terms of training instances required to solve a problem. However the tech-

nique contains a number limitations. First, the fact that it is a post-process

means that it adds to the execution time required for a normal run. In ad-

dition, the process is very lengthy and requires a large number of training

instances to produce a ternary rules-set from the CF population. This is

complicated by the fact that the problem instances presented to the algo-

rithm scale with the problem. This implies that the technique will stop

creating DRs at some point. This is because it is infeasible to enumerate all

the possible instances of large problems, such as the 70-bit multiplexer.

The online compaction technique was a mixture of in-process and post-

process. Like its offline sibling, its overall goal was of converting CF-based

rules into ternary rules. The major difference between both techniques is

that the online compaction made use of the problem instances normally

presented to the learning agent. Also, it divides its processing between the

explore and exploit stages. However, there is some post-processing after

the final population of classifiers has been evolved, but this is restricted

to removing useless ternary rules that are no longer needed or that are

duplicates.

The online compaction technique was capable of producing ternary

rules in a quicker manner than the offline version. This was due to the

simplicity of the process which made use of the normal explore and ex-

ploit phases of XCS. Also, the compaction technique was presented with

the same training/testing instances as the learning agent. This resulted in

substantial time savings, culminating in the translation of the 70-bit multi-

plexer rules. This was something that the offline technique was incapable

of producing.
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In spite of providing reduced time requirements for the translation of

CF rules, the online technique still reached a limit in the translation of

rules. For example, for the 135-bit multiplexer, the online technique was

beginning to learn the problem but was not able to do this in a reason-

able amount of time. Furthermore, it was observed that the ternary rules

produced for the 70-bit multiplexer were not optimal. These substandard

rules then made it difficult for the system to learn the 135-bit multiplexer.

It is plausible that by adjusting the parameter controlling when the Distil-

lation of rules begins, more optimal rules could be evolved.

7.2.3 Develop a Layered Learning Methodology for a CF

System

Previous work has shown that CF-based learning classifier systems can

demonstrate better scalability than standard XCS systems using the origi-

nal ternary representation for the rules. Although CFs provide many ben-

efits, they also contain limitations. Since the CF sub-trees can reuse other

CFs at the leaf nodes, the chains of CFs can grow intractably long. This

compounding effect reaches a point where learning is no longer possible

for the system. Even using different techniques such as learned rule-sets at

the root nodes is not scalable to the very large problems, those beyond the

135-bit multiplexer. XCSCFC successfully solved the 135-bit multiplexer,

but it was not capable of solving the more difficult problems such as the

264-bit multiplexer and beyond.

The multiplexer is a difficult problem because it has epistasis and is

highly non-linear. This means that the importance of certain bits depends

on other bits in the message string. Also, this problem is popular in re-

search and therefore is routinely used as a benchmark. The multiplexer

has been troublesome for some CF-based systems like XCSCFC due to its

properties. It is not possible to discover regularities that will ultimately

lead to a scalable and general solution of the multiplexer problem.
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Since a general solution to the multiplexer problem involves function-

ality from different domains, e.g. real, Boolean and so forth, it was hy-

pothesized that a human could partition the problem into constituent sub-

problems. These sub-problems would then be used to train the system

known as XCSCF* in a series of steps. Once the fundamental training were

complete, the system would be ready to learn the multiplexer problem it-

self.

XCSCF* produced a set of general rules which contained all the func-

tionality learned from all the previous sub-problems. These rules were

tested against a number of increasingly difficult multiplexer problems, all

of which the technique was able to solve with the aforementioned rules.

The outcome of the experiments indicated that CFs were instrumental in

this success. The CFs, along with a Layered Learning approach, led to a

set of rules that are scalable to astronomically large multiplexer problems.

7.3 Future Work

7.3.1 Distilled Rules

XCS systems based on CFs (described in Chapter 4 onwards) play an im-

portant role in the novel work described here. Consequently, it is clear that

the re-usability of previously learned rules is of paramount importance to

this work [3], [4], [49]. However, it has emerged that there are various

ways in which said rules and CFs can be reused. In the new work pre-

sented in Chapter 5, new classifiers were imbued with new CFs for each

condition bit. These CFs were created on-the-fly from a random choice of

previously learned functions and their assigned CFs. The leaf nodes of the

new CFs could contain either an environment feature or one of the CFs

which had been previously linked to its parent function.

It is theorized that by reusing previously learned CF-based rules as a

template for the new classifiers, it is possible to reduce the search space,
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when tackling the subsequent, more difficult problems. For example, if

the system were facing the 11-bit multiplexer, the new classifier condi-

tions would get seeded with entire rules from the 6-bit multiplexer func-

tion. The remaining condition bits would follow the current process. That

is, functions would be chosen at random and the leaf nodes would be as-

signed linked CFs, as described in Chapter 5. The reasoning behind this

is as follows: since the final rule population for the previous problem was

found to be helpful, then it must also present benefits to the more difficult

current problem.

Another opportunity for improvement is the fact that the classifiers do

not implement any CF fitness mechanism, besides the original XCS imple-

mentation, i.e. fitness, accuracy, experience, etc. However these metrics

operate at the classifier level. It could be worthwhile to implement an

additional fitness mechanism at the function level. In other words, func-

tions whose classifiers do not do well during the test phase would receive

a negative reward or some other type of censure. The functions that do

well would receive a positive score and its CFs would also be impacted

positively. This could be extended in granularity so that instead of the

functions being impacted, only the CFs linked to the function would get a

score.

There is another way in which the proposed technique could improve

its performance. This involves visualizing the long chains of CFs as mono-

lithic objects. That is to say, a CF sub-tree can be thought of as an object

that accepts a number of inputs – the leaf nodes – and produces an output

at the first root node, i.e. the one at the very top of the CF sub-tree. The leaf

nodes could constitute additional CFs, but this is not important as only the

output produced by the topmost CF is the one that produces the value of

the input for the monolithic object. It is then possible to construct a truth

table. As the CFs are evaluated, this truth table can be stored in temporary

memory and utilized whenever the same CF is encountered again in the

same run. Figure 7.1 depicts the concept described here.
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This technique is anticipated to produce an additional shortcut when

evaluating the CFs. At first, the process would proceed as described in [3],

with the additional step of adding the current inputs to the truth table

along with its value. The number of possible combinations of inputs and

corresponding values in this case would be 16. In a future time step, when

the list of possible values would be more complete, the system could start

searching the list and reusing any of the values that had already been cal-

culated. This is anticipated to save computing time by freeing the system

from recalculating long chains of CFs. Of course, there is an initial invest-

ment of resources as the CF values list starts to be filled. However, this

initial investment in time should be compensated once the list is complete.

It is not clear at this time the full impact of searching the list of stored in-

puts and the corresponding values. However by keeping the number of

inputs for the monolithic object small, the linear search may be kept at a

tractable amount of time. This would make it more efficient and would

preclude the system from dealing with very large numbers of parameters.

However, using this last technique alone would deprive the system of the

CFs evolved for the functions with more than the maximum number of

parameters allowed.

The seemingly natural combination of the template method and mono-

lithic object method mentioned above could deliver increased scalability.

7.3.2 n-Bit Multiplexer

The current system is serial, which has the following consequences: train-

ing is lengthy, useful rules are discovered in layers, the discovered CFs

are compact. A system is possible where each sub-problem is addressed

in parallel with the resulting functionality and building blocks becom-

ing available in a shared location. Simple (low-level) problems would

complete first, enabling higher-order functions to be solved consecutively.

The links and order of solved problems would contain interesting meta-
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Code 
Fragment

Code 
Fragment

Function

0 1 1 1

1

Memory
0: null
1: null
2: null
3: null

15: null
14: null
13: null
12: null

4: null
5: null
6: null
7: 1

11: null
...

0 1 1 1 = 7
Action: 1

Figure 7.1: CFs viewed as monolithic objects. The entire assembly can

be conceptualized as one large object with temporary memory to catalog

all the possible combinations of inputs to outputs. The number of inputs

should be limited so as not to make this method unwieldy.
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knowledge, a form of learning curricula.

Some of the practical candidate problems to be solved next are: Count

Ones, Even Parity, Odd Parity. With these solutions being part of the func-

tional repository of the system.
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