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”In childhood we strove to go to school,

Our turn to teach, joyous as a rule,

The end of the story is sad and cruel,

From dust we came, and gone with winds cool.”

- Omar Khayyam
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The simulation of adsorption processes on a heterogeneous crystal surface is the main

interest of this thesis. Two applications of this event have been developed with Kinetic

Monte Carlo simulation. One is how to control the crystal growth by macromolecules

and the other is how to measure the e↵ective rate of interactions near a crystal surface.

The first part of this thesis, considers the e↵ective rate of catalytic conversion on a

heterogeneous catalytic surface. We assume the crystal surface has two types of active

site, one is neutral and the other one is highly active. We compared our result from

simulation with the analytical method that is given by the homogenization theory. Our

result revealed the importance of patterns of surface energies and the size of them on

reaction rate.

In the second project we consider the adsorption of a homopolymer chain on a crystal

surface with two types of surface energies in order to limit the growth of one site and let

the other sites grow more. We developed a new Kinetic Monte Carlo simulation method

in this part, which was also applied to block copolymer chains that are more complex

than a homo-polymer chain. Using this method four important phases of the polymer

chains at high temperatures and also the free energies of the system across di↵erent

patterns of active sites have been found. We tested di↵erent types of co-polymers to

find the most di↵erentiative block copolymer for controlling the crystal growth.
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Chapter 1

Introduction

We are all familiar with crystals. The most common examples are sugar, salt, and

diamond; these are the products of crystallization processes[1]. Crystallization is an

important process in many chemical and biological systems[2]. It happens during the

purifying of a solution by making a solid layer on a surface. The resultant shape of

the crystal is an important outcome of this process, so the question that will arise is

how can we grow and control the crystal shape during this process in order to make

an optimal crystal shape. The answer is related to the control of facet growth during

crystallization[3]. Usually, during crystal growth, there are some facets that grow faster

than other facets due to their surface energies[4]. Facets with a high energy surface

grow faster than facets with lower energies. This will lead to a preferred orientation

for the nucleation on a surface, and therefore, facets can provide specific orientation for

adatoms to adsorb onto; sometimes this orientation has a periodic pattern such as a

step or a terrace or, at other times, it is random such as random defects or vacancies

are created during crystallization[5].

Generally, understanding the properties of patterned surfaces is the main interest

of this thesis, and controlling crystal growth is one of its applications. Specifically,

the subjects that we considered in the patterned surface are first studying the e↵ective

rate of adsorption of certain patterns and comparing the e↵ective rate of these patterns

together[6]. From a chemical point of view, the bond between molecules or atoms in the

surface plays a key role in the interaction of the absorbing molecules and the surface.

When the bonds between the absorbing molecules in the surface are strong, it is hard for

1
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molecules to adsorb on that facet, while in weak bond interaction molecules can attach

to that facet easily[7]. This is related to the physical structure of the surface as well

as rough surfaces which have many dangling bonds and it is easy for adatom to make

a new bond with the surface rather than a smooth surface where this attachment can

hardly occur[8].

Figure. 1.1 shows an example of the crystalline structure of T iO
2

. Di↵erent facets

of T iO
2

have di↵erent orientations, which result in di↵erent growth rates during crystal

growth. The size of active sites in [001] is in the order of 10�7[m], which is comparable

to the mean free path of the ideal gas whereas the size of active sites align [011] face is

somewhat broader[9]. In this direction, a group of small active sites are close together

and they make an island, the size of which is multiple times bigger than a unit size.

Sometimes the direction of these islands are ordered and they obey a periodic pattern.

For example, islands in [011] make a striped pattern. In the case of defects or vacancies in

the system, the adatom will face random patterns of highly active sites. In this example,

active sites in the direction of [10̄1] have been shown as random patterns. Sometimes,

a few active sites stick together and make an island, and at other times they have the

same size as the mean free path of the ideal gas, which is the smallest size of active site

that we study in this thesis.

Understanding the rate of interactions in di↵erent facets can help us to control

the crystal growth[10]. The goal of this thesis is both to understand how the features

of a crystal surface can determine its properties, but also to investigate how di↵erent

crystal facets may be stabilized by the adsorption of complex molecules[11]. In order

to progress towards this goal, we need to study how the adsorption of polymer onto

a surface can control the crystal growth. Consequently, we can make a new crystal

structure for a surface that some facets grow faster than others with a certain rate. In

order to understand how to control the crystal growth we need to first study the e↵ective

rate of heterogeneous catalytic surface. We have developed a new theoretical approach

based on homogenisation and applied numerical methods to study the interaction rate

on crystal surfaces[12].

The Kinetic Monte Carlo method can be used to simulate adsorption process, which

we will extensively discuss in chapter 3,5 and 6.
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Figure 1.1: An illustration of di↵erent types of roughness in TiO2 crystal structure.
The orientation of TiO2 molecules makes di↵erent surface energies that lead to di↵erent

growth rates under certain circumstances.

The reactivity of the material is the subject of many chemical and biological pro-

cesses. Investigating the behavior of the system at a molecular level is di�cult exper-

imentally; instead computational methods are powerful tools for understanding micro-

scopic scales. The Monte Carlo simulation is one the useful tools that helps us to study

very stochastic processes. Usually, we apply the Monte Carlo simulation to systems that

we want to study in the equilibrium state. For time dependent processes like crystal

growth, we can use Kinetic Monte Carlo simulation[13].

Any catalytic process deals with breaking and forming a new chemical bond and only

specific types of reactant and catalyst can make this transition. In this thesis, reactants

are the molecules in a gas phase that can make a bond with the surface. The active sites

for adsorbing reactants on the surface are called adsorbents. Once the reactants become

adsorbed on the adsorbents, they become adsorbates. Another important feature of a

crystal that is influenced by its shape is catalysis. Catalysis is basically active sites of

reaction that increase the reactivity of the surface. Typically some sites on the surface

may react faster with the reactant than other sites.
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When Langmuir formulated the chemisorption model on a metallic surface he as-

sumed there were two types of sites on a flat surface[14]. One energetically identical and

one with no interaction. He wrote in his note “Most finely divided catalysts must have

structures of great complexity[15]. In order to simplify our theoretical consideration

of reactions at surfaces, let us confine our attention to reactions on plane surfaces. If

the principles, in this case, are well understood, it should then be possible to extend

the theory to the case of porous bodies. In general, we should look upon the surface

as consisting of a checkerboard.” Thus, he developed the first theory of heterogeneous

catalytic surface. This characteristic and its consequences became further highlighted

by Taylor; he wrote: “There will be all extremes between the case in which all atoms in

the surface are active and that in which relatively few are so active.”[16]

In this thesis, we use the Kinetic Monte Carlo method (chapter 3) and homogeniza-

tion theory (chapter 2), to calculate the e↵ective activity of patterned surfaces. In each

surface that we study there are two types of interactive sites that are either distributed

in a certain way or randomly. In reality, there are many di↵erent types of active sites.

The key point of these sites is their availability for chemisorption from a liquid phase.

Some of these cases can increase or decrease specific activity dramatically by increasing

or decreasing the crystallite sizes. For example, in the metallic case, some metals such

as gold and platinum can strongly hold and activate the reactants even in their smallest

sizes, but not so strongly that they break the product. [17]. One of the mathematical

models that we applied in the crystallization process with the catalytic surface was ho-

mogenization theory due to the di↵usion of the molecules near the nonuniform surface,

which comes from the modification of the continuum di↵usion equation. The numerical

method that we applied was the Mont Carlo simulation method since the process in-

volves the complex stochastic behavior of many chemical species at a micro-level[18]. We

use a standard kinetic Monte Carlo method to model the performance of the catalytic

surface and then extend this to the simulating polymer chain, near and adsorbed on the

surface[19].

Technically, when we model such a system in continuum limit, this will lead to

considering nonuniform time evolution of the crystal growth. Under di↵usion limited

conditions, the continuum theory predicts that growth will follow at t1/2 (interval time)

law, whereas in general the evolution of the process depends on the rate of nucleation

and growth of particular facets[13],[20].
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A method for controlling crystal growth, that we consider in this thesis is polymer

adsorption on a surface. In many biocompatible and chemical surfaces, it is possible

to control the crystalline structure by polymeric growth modifiers. Di↵erent polymer

adsorbates such as homopolymer chains, diblock copolymer chains, polymer brushes

or polymer stars can be used to influence a crystal to grow in a certain direction by

minimizing their free energies[21],[22]. Depending on the strength of the polymer chain

and the surface energy, they can be adsorbed on a surface in such a way that they act as

an insulator and cover the facets from growing and help other facets to grow faster[23].

However, in the polymer adsorption process we need the relation between the free

energy di↵erence and the functional phase space, since this relation only supports a

canonical ensemble, and thus we applied the extended ensemble method in order to find

the free energy di↵erence for a continuous range of temperature.

1.1 Thesis outline

In this thesis, we want to study how to control the crystal structure and alter the

rate of growth by simulation methods. Therefore, first we need to study the physical

characteristic of the surface in order to understand the interactions of the adsorbing

particles near the surface at a micro level. In order to grow a crystal surface with

a specific pattern we need a substrate with di↵erent surface energies based on that

pattern. In order to design such a crystal surface, we apply absorbed polymer to control

and alter the rate of reactivity of the surface. In this thesis, we first study the e↵ective

reaction rate of patterned surfaces and then we consider the influence of adsorption

of the polymer on those patterns for controlling the reaction event near the surface in

order to create a surface structure with di↵erent surface energies. In order to study

the e↵ective rate of catalysis near a surface we developed a mathematical method to

understand the physical properties of sites such as their size e↵ect, orientation e↵ect,

and their coverages.

In Chapter 2 we explain the mathematical model that we developed for heteroge-

neous catalytic surface[24]. We will first start using the kinetic gas theory and examine
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the adsorption and di↵usion event in a continuum model, and then by applying ho-

mogenization theory we explore the limits of the continuum theory for a heterogeneous

catalytic system.

In Chapter 3 we apply the kinetic theory of gases and simulate the growth of the

heterogeneous catalytic surface. We show that the kinetic Monte Carlo method is the

best approach for simulating such a system [3]. Chapter 4 is the background knowledge

of what we need for applying polymer adsorption on the surface. In order to study the

adsorption of polymer onto a patterned surface, we need to consider di↵erent types of

interaction from long range to short range interactions. In this chapter, we will talk

about the tools and concepts that we need in order to simulate polymer adsorption onto

a heterogeneous, attractive surface.

In Chapter 5 we develop a kinetic Monte Carlo method for adsorption of homo-

polymer chains onto the heterogeneous active surface. In this chapter we show the size

e↵ect and the importance of pattern on polymer adsorption.

In Chapter 6 we apply di↵erent copolymer chains onto the heterogeneous surface in

order to understand the importance of orientation of monomers in a copolymer chain on

crystal growth. Designing the best orientation of monomers in a copolymer chain will

help us to achieve the desirable crystal surface. Since aiming at this goal is experimen-

tally expensive, we can simulate such a system. The Kinetic Monte Carlo method can

help us to find the best copolymer structure for crystal growth.



Chapter 2

Theory of Heterogeneous

Catalytic Surface

2.1 Introduction

Applying a catalyst in chemical processes can increase the reaction rate without

being consumed during the reaction (see Figure 2.1)[25]. A catalyst is a substance that

alters the internal energy of the chemical reaction by changing the thermodynamic path

without disturbing the initial energy and final energy of the process. The catalyst can

be liquid, gas or solid and its performance on a solid state will depend on its shape and

size because of the activity of di↵erent facets a particular crystal presents. Figure 2.2

shows that reactant A becomes adsorbed on catalytic site forming a new chemical bond,

and the product C will become desorbed after the chemical reaction is completed.

A + Surface ! C (2.1)

There are two types of catalytic processes, heterogeneous and homogeneous cataly-

sis. If the catalyst and reactants or their solutions are in the same phase it is called

a homogeneous catalyst reaction; when they are in di↵erent phases it is called hetero-

geneous catalysis. From the point of view of applications, heterogeneous catalysis is

more important than the homogeneous one. In most industrial projects they apply the

heterogeneous process to speed up the rate of the interactions.

7
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Figure 2.1: This figure shows the role of the catalyst during a chemical reaction. The
catalyst is an additive material and does not need to be in a chemical reaction, however,
it can increase the rate of reaction significantly. From left to the right shows the steps
of the process, from collision to producing a product. E1 is the energy required for this
chemical process without a catalyst. E2 is the energy required for making chemical

bond with the surface by the presence of catalyst.

Many catalysts consist of precious metals, and therefore applying them in bulk in a

chemical process is not economically e�cient. Dispersing them in nanostructured form

reduces the cost of applying them by maximizing the surface area exposure for reactions.

As a result, by using nanostructured heterogeneous catalysts we can dramatically in-

crease the performance by weight of this precious material[26]. In addition, some metals

like gold, which is largely inert in bulk form, can exhibit strong catalytic activity in

nanostructured form[27]. In particular, investigating the di↵erence between bulk active

metals and highly dispersed nanoparticulate form is something that needs to be studied

more.

The phenomenon of applying material as a catalyst was first discovered by Berzelius

in 1835[28]. At the same time, Mitscherlich was also studying catalytic reactions by

solids, introducing surface-reactants and contact- catalysis at that time. In 1895, Ost-

wald used catalysts in chemical reactions and called them an accelerator of reaction. His
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Figure 2.2: This figure shows all the phases of a chemical process when reactant gas
Ag converts to particle Cg. When reactant Ag becomes stable and continues to make
a bond with the molecules on the surface, it becomes Ai. Once the chemical bond
between surface and Ai created, the new particle Ci is made. After a while, a new

particle becomes free to go and leave the surface.

discovery was recognized with the Nobel prize for chemistry in 1909[15]. From that time,

other scientists investigated di↵erent materials and found new types of active materials.

Around 1913 Louis Jacques and Pierre Dulong discovered the reactivity of some metals

such as iron, copper, silver, gold and platinum[29]. Later on Taylor et al. discovered

that the reactivity of platinum is increased in the presence of a metal base. In the 1980s,

a group reported the activity of clusters on titanum with the appearance of nonmetallic

properties. This is one of the first studies where the size e↵ect of gold sites has been

pointed out[30]. The interplay of di↵usion theory and reaction rate process is one of

the interesting problems in statistical physics of disordered systems. Although track-

ing a single particle in random media has been discussed in many kinds of literature,

examining spatial-active patterns is a subject that needs to be studied more[31].

In this thesis, we focus on the dynamics of a catalytic surface at the intermolecular
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level and cover the gap between the microscopic elementary reaction and the macro-

scopic performance using the homogenization approach. Our goal is first to understand

nanostructured catalytic sites for reaction and second to design new patterns of het-

erogeneous catalytic surfaces in order to increase their e�ciencies and reactivities[32].

We apply numerical method to understand such a dynamically nonuniform environment

due to the di↵erent rates of interactions[33]. In this chapter we only use homogeniza-

tion theory. In the next chapter we find the kinetic information of the system such as

e↵ective reaction rate and coverages of a surface by the Kinetic Monte Carlo method

(KMC)[34].

In this chapter, we consider two-dimensional surfaces, with di↵erent active sites using

lattice with stochastic particle dynamics. Previous work has studied the pairwise reac-

tion of particles upon meeting, including heterogeneous disordered surfaces and chemical

reactions of dust grains in interstellar clouds[35],[36]. A key quantity which describes the

performance of such systems is their steady-state e�ciencies. In this thesis, we consider

a binary system consisting of two types of binding energies and one type of molecule in

the solution. The active sites are labeled as strong and weak (or zero) binding energy

sites. The e�ciency of a surface can be calculated by the Kinetic Monte Carlo simulation

method which we will study this in the next chapter[37],[38]. We extended our analysis

from a binary case near the surface to continuous distribution in the three-dimensional

simulation box, where we include the gas (reactant) as well. In order to study the

e↵ective reaction rate near the binary surface, we applied the homogenization theory.

Studying the behavior of heterogeneous influx near the surface and homogeneous Brow-

nian motion far from the surface are only feasible through the homogenization approach.

2.2 Catalyst Application

One of the most common daily uses of catalysts is catalytic converters in automobiles,

where their role is to reduce the exhaust of harmful gases due to the combustion of the

fuel in an engine[39]. Also, a catalyst can be applied in the industrial production of

ammonia, nitric and sulfuric acids and similar substances. Another example of applying

catalysts is in manufacturing polymers. This was discovered in the 18th century the

resin catalyst could participate in producing polyethylene. Catalyst also can exist in
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Figure 2.3: An illustration of di↵erent types of defect on nonuniform surfaces.

the spontaneous natural process[40]. Natural examples of catalyst are enzymes; they

are a special type of protein with performance strongly related to their shapes. Another

spontaneous catalytic process is the production of indigo dye by a mercury catalyst,

a big catalyst discovery in 1897[41]. Another example is activated carbon, which has

a specific number of adsorption sites so that molecules like hydrogen or nitrogen play

reactant role with the carbon. Activated carbon has a microcrystalline structure that

determines the activity of the surface area, the less ordered structure the more active it

is. The adsorption isotherm represents the equilibrium states of such a system described

by the Langmuir model[42], which is the fundamental concept in this chapter. Each

microcrystalline structure can be considered as an active site with the periodicity of L

from another microcrystalline in the Langmuir model. The arrangement of these layers

will determine the activity of the surface area. In this Chapter, we will explain the

Langmuir model and the importance of the physical structure of the surface.

2.3 Theoretical Aspects of Catalytic Surfaces

Several physical characteristics are important in this method, such as the mean free

path of di↵usive particles, relaxation time, di↵usion rate, reaction rates, etc.[43]. When
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the interaction between the adsorbate and the surface is the Van der Waals type, the

adsorbate molecules will di↵use uniformly and therefore their motions are Brownian.

However, if the surface is chemically active for a chemisorption process, and the rate of

di↵usion of the particles and their relaxation time on the surface are not homogeneous,

then they may not obey continuum di↵usion equation anymore[44]. It turns out that

the interaction properties of the surface depends on its internal structure, which can

a↵ect these physical characteristics (see Figure 2.3). Some factors such as the type of

unit cell of the surface (e.g. bcc, fcc ,..) or defects of non-uniform surfaces (e.g. kink,

step, terrace,...) can have a significant impact on adsorption and reaction rate near the

surfaces[45]. Moreover, employing precious material under certain temperatures and

pressures can alter the rate of interactions near the surfaces[46].

2.3.1 Physisorption

The first step in catalyst reaction is activating the reactant molecules by adsorption

onto a catalyst surface. The bond between adsorbent and adsorbate determines the

activation energy of a reaction[47]. The most common way of adsorption is physisorption,

which molecules are bonded by Van der Waals forces to the surface. Due to the weak

interaction of reactants with an adsorbent, this process does not disturb the structure

or texture of the substrate and it is such that it can be reversed. For this reason, two

or more than two layers of adsorbed molecules can be involved in the physisorption

event. Any kind of molecule can interact with any solid surface through the Van der

Waals forces. Although they are not e↵ective as a catalyst, they apply as promoter to

facilitate the adsorption of molecules onto a solid surface. These kinds of interactions

are known as physisorption[48].

2.3.2 Chemisorption

In the chemisorption processes, the bond between reactants and surface lies between

ionic and complete covalent[49]. Since absorbing to the catalyst surface with a chemical

bond makes a new substance, a chemisorption is a unique event. It means that only

certain adsorbent-adsorbate combinations can be formed.
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Chemisorption only happens in a single or a monolayer of adsorbed molecules. More-

over, if one site occupied by adsorbed molecule no additional particle can occupy on this

site for chemisorption.

The adsorption of molecules onto a surface is a general phenomenon of any surface

interaction process. In the case of a catalytic surface it is feasible to break down the

continuous chemical process into the following steps:

1. Di↵usion on the surfaces in the gas phase

2. Adsorption of one or more reactants onto the catalyst sites

3. Reaction of reactants with active sites

4. Desorption of products from the surface

5. Di↵usion away from the surface

2.3.3 Dynamics of the Gas

After physical properties of the system, another important factor that determines

the evolution of the system is the dynamics of the gas near the surface. This depends on

many factors, such as mean free path, mean free time and collision rate. These quantities

are related to each other, as described by the kinetic theory of gases for reactants in the

gas phase[50]. For simplicity, we assume a single species of gas to be like hard spheres,

meaning that there is no interaction between them. This is because in the gas phase the

mean free path of the reactant has the maximum length.

2.3.3.1 Mean free time

The mean free time is the average interval time between two subsequent collisions.

If a particle has its first collision at t = 0, then the probability of no more collisions

happening at t = 0 is P
time

= 1. In classical gas kinetic theory, we assume that multiple

collisions never happen for a molecule[51],[52]. We define a contact frequency ⌫ to find

the probability that the particle does not experience any contact at time interval t to
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t + dt. Let ⌫dt denote the probability that a given molecule experiences a collision

between t and t+ dt. Then the probability of no collision up to time t+ dt is given by:

P
time

(t+ dt) = P
time

(t)(1� ⌫dt). (2.2)

This linear equation can be converted to give a di↵erential equation for P
time

:

dP
time

dt
= �⌫P

time

(2.3)

Which has a solution:

P
time

(t) = e�⌫t (2.4)

In order to find a complete map of the distribution of free time of a given molecule, we

define a distribution function P
time

.

⌧ =

Z 1

0

dtf
time

=

Z 1

0

dt tP
time

(t) =

Z 1

0

dt t⌫e�⌫t =
1

⌫
(2.5)

where ⌧ is the average time between collisions.

2.3.3.2 Mean free path

The mean free path is the average distance traveled by a molecule between two

subsequent collisions. The free path distribution equation of a molecule can be derived

in the same way of mean free time by substituting P
path

as a probability of traveling a

distance given by[53]:

� =

Z 1

0

ds sP
path

(s) =

Z 1

0

ds s↵e�↵s =
1

↵
(2.6)

the probability of a collision occurring in the elementary distance ds which is propor-

tional to s and we write this as a distance ↵ds that next collision is happening. Now we

obtain the average distance and average time between two collisions, and therefore, the

ratio of the two equations (2.6) and (2.5) will represent the average speed of a molecule

in a system.
�

⌧
= v (2.7)
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2.3.3.3 Collision rate

A collision event between two molecules happens in many chemical and physical

processes. For a reaction in the gas phase and a substrate, the collision between reactant

molecules and the substrate is important in the dynamics of the problem.[54]. According

to the gas kinetic theory, the average molecular speed in terms of gas temperature and

molecular mass is given by v̄ =
q

8kBT

⇡m

Q = A

r
8k

B

T

⇡m
⇢ (2.8)

Where ⇢ is the density of molecules per volume, k
B

is the Boltzmann constant, T is the

temperature, m is the mass of the particle. and the collision frequency is simply given

by:

Q = Av̄
N

V
, (2.9)

where A is cross-section for scattering of the particles. N is the number of molecules

which lie within radial distance d of the path v̄t before the collision occurs and V is

the volume swept-out. In what follows, we consider molecules as hard spheres with no

long range interactions. Since their collisions happen in a volume of space we consider

a tubular volume in which particles collide with each other in the cross section of this

tube (see Figure. 2.4)[55].

Volumn swept-out = ⇡d2v̄t, (2.10)

2.3.3.4 Di↵usion

The collision between molecules makes their motion stochastic. The kinetic theory

of gasses developed by Maxwell can describe this motion, where di↵usion events result

from the collision of molecules in a liquid or gas[56]. Brownian motion is one of the

mathematical models that refers to the random motion of the molecules in a solution.

Molecules in liquid or gas have di↵erent speeds and move in di↵erent directions and

this makes their di↵usion pattern completely random. The simplest model of Brownian

motion is the Wiener process which is a stochastic Markov process where the values

of the system change in an uncertain way[57]. The Markov process itself refers to the
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d

Figure 2.4: The collision of moving molecule with other random molecules. The
volume amount of a tube in which particles collide with each other in the cross section
of this tube. A is the cross-section for the scattering of the particle and d is the radial

distance of the path. v̄t is the path distance before the collision occurs.

likelihood of each state only depending on the next immediate point of time. Therefore,

transition from one state to another after time interval s can be defined as:

P (W
t+s

2 dy|W
s

= x) ⌘ p(s, x; t, y)dy =
1p

2⇡(t� s)
exp(

�(y � x)2

2(t� s)
)dy (2.11)

where x is the place of one particular molecule at time t = s and y is the conditional

place of the molecule at time t = s+dt, where the molecule has been already in x. where

p(s, x; t, y) is called the Gauss kernel function. The Markov process X = {Xt, t � 0} is

a di↵usion process if the following limits exist:

8
>>>>><

>>>>>:

lim
t#s

1

t�s

= 0

lim
t#s

1

t�s

R
|y�x|>✏

(y � x)p(s, x; t, y)dy = ↵(s, x)

lim
t#s

1

t�s

R
|y�x|>✏

(y � x)2p(s, x; t, y)dy = �2(s, x)

(2.12)
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where ↵ is a drift coe�cient (at time s and position x) and � is the di↵usion coe�cient

(at time s and position x). If X = {Xt, t � 0} is a di↵usion process, then the transition

density p(s, x; t, y) is given by:

@p(x, y)

@t
+

@

@y
{↵(t, y)p}� @2

@y2
{�2(t, y)p} (2.13)

The standard Wiener process is a di↵usion process with drift ↵(s, x) = 0 and di↵usion

coe�cient �(s, x) = 1. In continuum theory, this is known as heat equation and is one

the three fundamental solutions of Partial Di↵erential Equation (PDEs).

@p(x, y)

@t
=

1

2

@2p(x, y)

@2x
(2.14)

We will explain the numerical aspects of this model in the Numerical method section.

2.3.4 Reaction Mechanism

Collision rate and adsorption rate are the factors that describe the reaction rate

near the surface. These key parameters are related to the reaction mechanism near

the surface. In order to study the rate of interactions near the surface, we need to

examine the speed of di↵erent chemical processes near the surface in the equilibrium

state. The most common example of the description of a reaction mechanism near the

surface is the Langmuir isotherm. Although this theory is based on the assumption

that the reactivities of the active sites are similar for di↵erent surface coverage, in this

thesis, we prove that this assumption may not be true for nanostructured active sites.

In lower coverage and more distributed pattern active sites, the reaction rate is slightly

higher than the compact format. However, this theory will help us to understand the

adsorption isotherm near the surface. In this study, we will show that adsorption will

be nonuniform with some active sites with higher adsorption strength covered first by

reactants.
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2.3.5 Langmuir Isotherm

The Langmuir adsorption model will help to quantify the number of adsorbates as

a function of pressure[58].

A+M
ka⌦
kd

AM (2.15)

Where k
a

is a rate constant for adsorption and k
d

is a rate constant for desorption. This

theory which is also referred to as a Langmuir isotherm includes several assumptions[59],[60]:

• A particular solid surface has a fixed number of identical adsorption sites, each of

which assigns how many reactants can be occupied by one molecule.

• Reactants behave identically on a surface.

• Only one monolayer will form on a substrate in order to react with the surface.

• There is no adsorbate-adsorbate interaction after adhesion.

In this model, the rate of adsorption depends on the number of active sites that cover

the surface and the frequency of the contact of the reactant with the surface. From the

above assumption if one site is already occupied it is not available for another reactant.

As a result, only available sites have the potential to be a target for a reactant[61]:

r
a

/ QP
a

N(1� ✓), (2.16)

where r
a

is the rate of adsorption, Q is the collision rate of reactant per unit area,P
a

is

the probability of adsorption and N is the total number of reactants in the system. ✓ is

given by:

✓ =
Number of Occupied Adsorption Sites

Number of Available Adsorption Sites
(2.17)

Since the rate of adsorption and desorption depends on the intrinsic properties of active

sites, by multiplying rate constant to Eq. 2.16,

r
a

= k
a

QP
a

N(1� ✓), (2.18)

Similarly, the rate of desorption is given by:

r
d

= k
d

P
d

N✓. (2.19)
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In equilibrium the rate of adsorption will be equal to the rate of desorption:

k
a

QP
a

N(1� ✓) = k
d

P
d

N✓, (2.20)

We assume all the particles that are adsorbed on one active site can potentially perform

chemical interaction with the surface, so P
a

= P
d

= 1. Thus the Eq. 2.20 will become:

k
a

QN(1� ✓) = k
d

N✓ (2.21)

If we define a new constant k, which is the ratio of ka
kd
, then:

1� ✓

✓
=

1

kQ
(2.22)

✓ =
kQ

1 + kQ
(2.23)

Since the collision rate and pressure of the gas are in a direct relationship, at very low

pressure kQ << 1 and ✓ = kQ, whereas at high pressure kQ >> 1 and ✓ = 1. As a

consequence, the plot of coverage versus pressure should look like Figure. 2.5.

2.3.6 Homogenization Theory

Finding the macroscopic properties of a system by averaging the microscopic details

of the system can be achieved by a technique known as homogenization. This illustrates

the known example of when we consider a medium made up of two types of material: one

has high conductivity and the other low conductivity. Technically the total conductivity

of this system will be driven by the low conductance and it is not simply the average of

high and low conductivities, so the e↵ective conductivity is given by modification of the

low conductivity by considering high conductivity in the system and is di↵erent from

the mean of the two conductivities. Homogenization is a mathematical tool that leads

to describing a system by macroscopic characterization with additional parameters or

multiplication. This mathematical tool can be applied in[62]:

• systems with variation of boundary conditions

• systems with di↵erent rates of di↵usion;
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Figure 2.5: This figure demonstrates coverage versus Pressure. As the pressure in-
creases the coverage will increase up to saturation level. Coverage has a direct rela-
tionship with the rate of interaction as well. The pressure varies as does the surface

coverage.

• systems with variation of oscillations etc.

Several kinds of literature have applied this method to their work. Lund and Hendy

used homogenization theory to calculate e↵ective slip boundary condition for flow over

heterogeneous surfaces[63],[64]. Also a group Arriaga et al. applied this method in

photonic crystals[65]. Chiang et al[66]. applied this mathematical method in di↵erent

media such as seepage in rigid porous media, heterogeneous elastic materials, deformable

porous media, and wave propagation in inhomogeneous media. They extended the

mathematical technique of homogenization to the flow of fluid and heat through a porous

medium to explain the asymptotic behavior of fluid flow in inhomogeneous media.

2.3.7 Di↵usion toward Heterogeneous Surface

We consider a problem of di↵usion of the reactants over the periodic heterogeneous

surface with a di↵erent rate of reactivities. The key feature of this heterogeneous surface
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is the life expansion of the adsorbed reactant over the surface[67]. The mathematical

description of such a phenomenon involves a di↵erential equation of di↵usion of particles

that di↵use in space at the scale of the medium. If we rewrite Eq. 2.14 based on di↵usion

equation of particles onto the x-y plane, then in the polar coordinate:

@⇢(r, t)

@t
= D

@2⇢(r, t)

@r2
(2.24)

In this thesis we consider non-interacting particles, then in a closed system the total

number of particle will become constant and (Eq. 2.14) leads to:

Z
+1

�1
⇢(r, t)dr = 1 (2.25)

For a uniform di↵usive system in steady state we expect:

@

@x
i


D

@⇢

@x
j

�
= 0. (2.26)

Where D in uniform media is constant and x
j

is one arbitrary direction.
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L 

Figure 2.6: Density distribution along the z-axis. Due to the heterogeneity of the
surface, the distribution of density that changes linearly as a fraction of the height
times the normal density on a flat surface, it approximately changes with this ratio
for a heterogeneous surface. This exhibits the presence of additional term that could
approximately estimate the distribution of the density over a heterogeneous surface.

Figure. 2.6 shows the di↵usion of reactant near a heterogeneous surface with the

periodicity of L of active sites. For ideal gas near a neutral surface, we expect density

of the gas distributes linearly correspond to the height of di↵usion and initial density

of the gas. Whereas in heterogeneous surface this distribution does not completely

correspond to the equation that is written in the Figure. 2.6 and the e↵ective reactivity

of the active sites must be added as a coe�cient to the equation. The problem will

become more specific by considering the dynamics of the particle near the surface which

in steady state the rate of a collision near the surface and di↵usion of the system are

identical:

D
@⇢

@x
= k

1

Q (2.27)

where left side of equation refers to the adsorption rate of Langmuir-adsorption

model and Q is the collision rate
⇣
Q =

✓q
8kBT

⇡m

◆
⇢
⌘
, D ⇠ v� and l = �/k

1

which comes
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Figure 2.7: (An illustration of a catalyst surface, showing active sites (black) and
non-active sites (grey) distributed in a pattern of period L with adsorbed particles

(white) and non-absorbed particles (black).

from Eq. 2.8, Eq. 2.14 and Eq. 2.7. We expect this equation to be valid in continuum

limits; however, when we test it away from the continuum theory the homogenization

theory will not be valid anymore. In order to tackle this problem, we need to consider the

heterogeneous boundary condition. Di↵usion limited condition or controlled di↵usion is

when the di↵usion of reactant is rare. In a solution when the number of reactant gas

is low the number of reaction becomes more limited due to the less number of di↵used

particles.

2.4 Homogenization of Heterogeneous Catalytic Surface

The catalyst surface consists of a patterned array of active sites, over which the

activity can vary periodically with period L Figure. 2.7. We will also assume the system

has reached steady-state and is operating under di↵usion-limited conditions. We also

make a number of assumptions to simplify the mathematics. Once the reactants have

adsorbed to the surface, we assume that they cannot di↵use on the surface before the

catalytic reaction take place. In principle, desorption could occur, but in this work

we will assume that the desorption rate is negligible. Likewise, we assume that the

catalytic conversion process is also irreversible. These assumptions allow us to simplify

the mathematical problem so that results from homogenization theory can be applied,

although this comes at the expense of limiting the applicability of the model. For
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instance, we do not consider the possibility that the catalytically active sites are not the

most favorable sites for adsorption. We will consider a binary pattern on the surface,

with low activity sites and high activity sites distributed periodically over the surface.

Each site can only be occupied by one reactant molecule at a given time (Fig. 2.7). We

break the adsorption and catalytic processes down into four steps with associated rate

constants k
1

, k
2

, k
3

and k
4

respectively:

1. Adsorption a gas particle of type A
g

collides with an active site S
i

and is adsorbed

to this site with probability k
1

:

A
g

+ S
i

! A
i

,

2. The adsorbed particle desorbs from the surface to re-enter the gas phase without

having undergone catalysis with rate k
2

:

A
i

! A
g

+ S
i

,

3. Adsorbed particles of type A are converted to particles of type C with rate k
3

:

A
i

! C
i

,

4. Particles of type C desorb from active sites with rate k
4

:

C
i

! C
g

+ S
i

,

In this thesis, once the product is made, we disregard them from the process since they

do not have any interactions with other particles in the system. However, in some

studies, these particles themselves may play a key rule on the ultimate result and need

to be considered during the chemical process. To simplify the analysis, we will assume

that step (4), the desorption of the reaction product B
i

, occurs much more rapidly than

the reaction step (i.e. k
3

⌧ k
4

) and that step (2), the desorption of the reactant is much

slower than the reaction step (i.e. k
2

⌧ k
3

). With these assumptions, the step (3) is

the rate limiting reaction step at the surface. Under these assumptions, the Langmuir
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equation for the fractional surface coverage ✓
i

of the site i is:

d✓
i

dt
= k

1

(1� ✓
i

)Q� k
3

✓
i

, (2.28)

where Q is collision rate per unit area over the entire surface. The first term is the rate

of adsorption of particles that have di↵used to the surface on an empty active site. The

second term is the rate of catalytic conversion over the surface. Under di↵usion-limited

conditions, the fractional surface coverage ✓
i

⌧ 1, so the steady state coverage will be

given by:

✓
i

=
k
1

k
3

Q. (2.29)

In order to proceed further, we need to introduce a model to describe the transport

of the gas A to the catalyst surface. We use a Fickian di↵usion equation, which describes

the flux of gas A as it is consumed at the catalyst surface:

@⇢
A

(r, t)

@t
= Dr2⇢

A

(r, t), (2.30)

where D is the di↵usion coe�cient and ⇢
A

is the density of the gas A. Under steady-state

conditions the density of gas A satisfies(from 2.26):

r2⇢
A

= 0. (2.31)

Before steady state, the coverage of surface by absorbing molecules is a function

of time and depends on the rate of adsorption and reaction of the reactants with the

surface. On the steady state, the rate of adsorption becomes as the same as the rate of

conversion, and the particle influx at the catalyst surface � (with unit normal vector ~n)

is equal to the average density of converted particles per unit time (from 2.27):

�D~n ·r⇢
A

|
�

= �d[C
g

]

dt
=

k
3

✓
i

a
i

, (2.32)

where a
i

is the area unit of active site i, which we considered has to be 1. where we

have used the fact that d[Cg ]

dt

is proportional to the second term on the right-hand side of

(Eq. 2.28). By balancing the flux of gas A
g

into the site i with the rate of adsorption of

the gasses by mass, we can obtain a steady-state boundary condition for the gas density,
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⇢
A

over the surface:

�D~n ·r⇢
A

|
�

= � k
1

Q

1 + k1Qai
k3

, (2.33)

where, according to gas kinetic theory, the collision rate is Q = 1

4

q
8kBT

⇡m

⇢
A

|
�

, where m

is the mass and T is the temperature of the gas A. Under adsorption-limited conditions

(k
1

Qa
i

⌧ k
3

) the flux is proportional to the density of the gas A near the surface:

�D~n ·r⇢
A

|
�

= �k
1

4

r
8k

B

T

⇡m
⇢
A

, (2.34)

which reduces to a simple mixed boundary condition for the density of gas A at the

surface:

�l~n ·r⇢
A

|
�

= ⇢
A

, (2.35)

where the constant l = D

k1

q
2⇡m

kBT

has the dimension of length and can be interpreted as

the size of the region over which the gas A is depleted by adsorption and catalysis at

the surface.

Gas kinetic theory tells us that D ⇠ �v̄ where v̄ ⇠
q

kBT

m

is the mean velocity of the

gas molecules and � is the mean free path of the gas molecules. As a consequence, the

length l is found to scale as the ratio of mean free path to the probability of adsorption

at an active site:

l ⇠ �

k
1

. (2.36)

The discussion above, in particular, the boundary condition (2.35), applies to a

catalytic surface with a uniform distribution of active sites. However provided the dis-

tribution of active sites on the surface varies slowly enough, we would still expect (2.35)

to hold, with l ⇠ �/k
1

becoming a function of location on the surface. Conceptually we

would regard the probability of absorption k
1

as varying across the surface on the length

scale L � �. Regions with high k
1

would represent a high concentration of active sites

on the surface, while regions with low k
1

would represent a low concentration of active

sites.

We are interested in determining the e↵ective activity of a catalytic surface with a
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density of active sites that varies over the surface. By e↵ective activity, we mean the

activity of a homogeneous surface (i.e. a surface with a constant k
1

) that would pro-

duce the same overall rate of conversion of gas A as the heterogeneous surface when

viewed macroscopically. To compute the e↵ective activity, we use homogenization the-

ory [68, 69]. In what follows, we assume that l ⇠ �/k
1

varies periodically over the

catalytic surface with period L. In this case we expect ⇢
A

/r⇢
A

⇠ L near the surface.

Consequently, it is convenient to introduce a dimensionless set of spatial coordinates

x⇤ = x/L. The scaled boundary condition at the surface then becomes:

� l

L
~n ·r⇤⇢

A

(r, t) = ⇢
A

, (2.37)

Thus the ratio of L/l ⇠ (L/�) k
1

emerges as an important parameter in the e↵ective

performance of the catalyst.

By assuming (eq. 2.37) holds, two limiting cases can be examined. The first limit

occurs when l ⌧ L, so that the boundary condition reduces to:

⇢
A

= O(
l

L
). (2.38)

which at zeroth order in l/L would give a purely di↵usion-limited reaction. However

by calculating the first order correction in l/L we can obtain an e↵ective reactivity of

the heterogeneous surface.The e↵ective activity of the catalyst surface (say, the plane

defined by z = 0) is given by (see appendix A):

k
eff

=
D
k
1

(x, y)�1

E�1

(2.39)

to first order in l/L, where the angle brackets indicate the average of the quantity k
1

(x, y)

over the surface. Note that in this case the e↵ective activity is given by the area-weighted

harmonic mean of k
1

rather than the arithmetic mean. To examine the implications of

(2.39), consider a surface composed of two types of region, with adsorption probabilities

k
a

and k
c

respectively, that are periodically arranged over that surface. If a region of

type a occupies an area fraction of � on the surface, then the e↵ective activity is given

by:

k
eff

=
k
a

k
c

�k
c

+ (1� �)k
a

. (2.40)
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If the coverages of the sites are such that k
a

/� � k
c

/(1 � �) then this reduces to

k
eff

⇠ k
c

/(1��), so if the two regions occupy similar area fractions on the surface, but

k
a

� k
c

, the e↵ective absorption probability scales with the smaller value k
c

. This is a

direct consequence of the harmonic mean appearing in (2.39).

The second limit we consider occurs when L ⌧ l. Now the first-order boundary

condition becomes

~n.r⇢
A

= O
⇣L
l

⌘
. (2.41)

In this case it can be shown by homogenization that the e↵ective adsorption probability

is given by:

k
eff

=
⌦
k(x, y)

↵
. (2.42)

where now instead of the harmonic mean we have the arithmetic mean of k
1

.

Again it is instructive to consider a surface where reactants are more likely to adsorb

in regions of type a than regions of type b (so k
a

> k
c

). If the coverage of the regions of

type a is � then k
eff

= �k
a

+ (1� �)k
c

. Again if k
a

� (1� �)k
c

/� then k
eff

' �k
a

so

the e↵ective absorption probability of the surface scales with the larger value k
a

.

To summarize, homogenization theory predicts that the e↵ective performance of

a microstructured surface with adsorption probability Eqn. (2.34) will be that of a

homogeneous surface with k
eff

:

�D

r
2⇡m

k
B

T
~n ·r⇢

A

(r, t) = k
eff

⇢
A

, (2.43)

where k
eff

=
D
k
1

(x, y)�1

E�1

, the harmonic mean, when L � l and k
eff

=
⌦
k(x, y)

↵
,

the arithmetic mean, when L ⌧ l. Note that in both cases the e↵ective adsorption

probability will be independent of the particular pattern of active sites on the catalyst

surface. In the next chapter, we will test these predictions using kinetic Monte Carlo

simulations. We will also examine their applicability away from the continuum limit.
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2.5 Conclusion

Heterogeneous catalysis is of fundamental scientific interest in chemistry and materi-

als science, as well as being of significant economic value to society[70, 71]. The e↵ective

performance of a particular catalytic system can depend on the interplay between re-

actant availability and the surface area of the heterogeneous catalyst. When there is

a high concentration of reactants in the system, one would expect that the e↵ective

catalytic activity of a nanoparticulate catalyst by weight will increase with its surface

area, suggesting that maximizing the surface to volume ratio of such a catalyst could

reduce its cost without sacrificing performance [72–74]. This has stimulated a great deal

activity in the search to fabricate high-surface area nanoparticulate metal catalysts[75].

However, nanostructured catalysts do have their disadvantages. The high surface area

of a nanostructured catalyst may reduce its stability, which can be a drawback when

operating at high temperatures[76]. Furthermore, under di↵usion-limited conditions, re-

actants may not be able to access the entire surface of a nanostructured catalyst[77, 78]

if the depletion zone of reactants about active sites on the catalyst start to overlap. Gas

kinetic theory predicts that the size of this depletion zone will scale as the mean free

path of the gas molecules[79], so one might expect that under di↵usion-limited condi-

tions the e↵ective reactivity of a heterogeneous catalyst would depend on the structure

of the catalyst at that scale.

In this chapter, we considered the problem of computing the e↵ective performance

of a catalyst under di↵usion-limited conditions, given a particular spatial arrangement

of catalytically active sites on the catalyst surface. Indeed, the surface of a typical het-

erogeneous catalyst possesses active sites with a range of activities distributed across

a range of length scales. Under standard conditions, the mean free path of molecules

in air is on the order of 100nm so we might expect that nanostructured catalysts may

behave di↵erently under di↵usion-limited conditions to catalysts that are structured on

larger or smaller length scales. In our model, we considered a surface with a periodic

array of active sites of period L. We describe the kinetics of the absorption of a re-

actant onto this catalytic surface using a Langmuir model, with the catalytic process

described by a series of distinct elementary steps, including adsorption, reaction, and

desorption. The theory developed here also applies to surfaces that are covered by small

catalytically-active particles[80]. Again, one may regard such a support as a catalyst
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with a heterogeneous distribution of active ”sites”, where in this case each ”site” rep-

resents a catalytically active nanoparticle. In this case, one may have a great deal of

control over how the particles are distributed over the support (e.g. see [81]) or indeed

the distribution may change over time due to Ostwald ripening [82] or other process

associated with the catalytic reaction [83]. Our approach allows one to compute the

e↵ective catalytic activity of a support in terms of its coverage by catalytically active

particles. We compute the e↵ective activity of such surfaces under di↵usion-limited con-

ditions using two approaches. In this chapter, we used a continuum di↵usion equation

to describe the transport of reactants to the surface, and applied mathematical homoge-

nization techniques [84, 85] to compute an e↵ective activity in a limit where the pattern

period L is much less than the size of the depletion zone about the active sites, which

is of order �. In the next chapter, we test our model with the Kinetic Monte Carlo

simulation method to explore the limitations of the heterogeneous catalytic surface in

continuum model.



Chapter 3

Monte Carlo Simulation of the

E↵ective Reactivity of a

Heterogeneous Catalytic Surface

3.1 Introduction

In the previous chapter, we applied a continuum mathematical model in order to

compute the e↵ective reaction rate near a patterned surface. The e↵ective performance

of the catalysts under di↵usion limited conditions was the subject that we mainly fo-

cused on. We applied gas kinetic theory to demonstrate the importance of the size of

active sites in the reaction rate. In this chapter, our main approach is simulating such a

system in order to study the reactivities of di↵erent patterns on the surface. We want to

consider some patterns and compare the performance in the same thermodynamic condi-

tion using Kinetic Monte Carlo Simulations. In this chapter we will test the predictions

of continuum approach and observe the breakdown and limits of the continuum approx-

imation as the size of active sites approaches the mean free path of the gas: L ! �[86].

We also investigate the e↵ect of patterning of active sites on the catalyst surface (e.g.

checkerboard and stripes). The continuum theory predicts that for a given density of

active sites, the performance of the catalyst depends only on the period of the pattern L

and not the particular pattern. The kinetic Monte Carlo methods allow us to test this

prediction in the limit where L ⇠ �.

31
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Before we start looking at the simulation of the chemical processes of heterogeneous

catalytic surface, we explain briefly about the tools and concepts that we need for our

simulation in this chapter.

3.2 Numerical Simulation of Di↵usion Limited Catalysis

In this chapter, we applied the Monte Carlo simulation method. The Monte Carlo

method is a good technique for calculating averages in a multi-particle system.

In this section, we model the di↵usion of the reactant as a random walk. For a system

comprises an ideal gas in a non-equilibrium state this can be simulated by the Kinetic

Monte Carlo method. Since the di↵usion of the reactant near the catalytic surface is not

uniform, the Kinetic Monte Carlo method will use di↵erent rates for di↵erent processes.

We will explain this method in the following section.

3.2.1 Random walk model

A drunken person in a city is a common example of the random walk model. A

drunk person in a city has no idea where he is coming from or is going to, therefore,

his chosen direction is random. Each step is considered as an event in Monte Carlo

simulation. If we consider each drunk person as a particle, we have so many of these

drunk people moving around randomly in a city. We assume at each time, only one of

these random walkers changes its place based on the random decision. In the long time

limit, their average position will tend to be zero and their average displacement will be

close to the origin.

The simplest possible case is a one-dimensional random-walker with steps of equal

lengths of lattice space and time intervals. At each step, which is equal to the time inter-

val of event (t
i

), the random walker will either move right or left with equal probability.

8
><

>:

+l with 50% Probability,

�l with 50% Probability.
(3.1)
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Figure 3.1: The random walker pathway in one-dimensional space. This figure shows
the walker first started from the origin. His first four steps randomly were in the right
direction and his next two steps were in the left direction. The right direction is assigned
as the positive direction and the left direction is assigned as the negative direction.

By counting the total number of steps with their direction we can obtain the ultimate

point of the particle, r(N):

r(N) =
NX

i=1

l
i

(3.2)

The average of this point in a long time limit is zero.

hr(N)i = 0 (3.3)

In many Monte Carlo simulations, the time between two steps depends on the time that

is taken for a process to be finished. Therefore, for systems that have the limitation of

space or particles, as the system goes toward the saturation or lack of one element, the

interval time between two events or process takes longer. In our system time is varied

from nanosecond to a microsecond.

3.2.2 Continuum limit

In the limit of vanishing lattice spacing l and time interval, the random walk model

approaches a continuum di↵usion model. The dynamics of random-walker can be ex-

plained by the master equation of motion. In one dimension, the probability of a particle

being at a certain point depends on its probability of being in the nearest neighbors of

this point at last time step:
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P (i, N) =
1

2
P (i+ 1, N � 1) +

1

2
P (i� 1, N � 1) (3.4)

where i refers to the site number and N shows the number of steps in the MC simulation.

The master equation for two dimensions will have 4 terms i, j unit vectors, and in three

dimensions 6 terms with i, j, k elements.

The ultimate point will be:

8
><

>:

t = N⌧,

r = il.
(3.5)

where ⌧ is the time step and t is the total simulation time. We normalize our equation

so the probability integrated to one:

P (r/l, t/⌧) =
1

2
P (r/l � 1, t/⌧ � 1) +

1

2
P (r/l + 1, t/⌧ � 1) (3.6)

By multiplying l to both sides and factoring ⌧ and substracting P (r, t� ⌧):

P (r, t)� P (r, t� ⌧)

⌧
=

P (r � l, t� ⌧) + P (r + l, t� ⌧)� 2P (r, t� ⌧)

2⌧
(3.7)

which leads to:

8
><

>:

P (r, t� ⌧) ⇡ P (r, t)� ⌧ @P (r,t)

@t

P (r ± l, t� ⌧) ⇡ P (r, t)± l @P (r,t)

@t

+ 1

2

@

2
P (r,t)

@r

2 � ⌧ @P (r,t)

@t

(3.8)

by substituting Eq. 3.8 into Eq. 3.7, we obtain the equation of motion of a particle:

@P (r, t)

@t
⇡ l2

2⌧

@2P (r, t)

@r2
(3.9)

where l

2

2⌧

= D. From Eq 2.24 the probability distribution of a particle at (r,t) becomes:

P (r, t) =
Np
4⇡Dt

e
�r2

4Dt (3.10)
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Where 2Dt = hr2(t)i from Einstein relation. This is the solution of (Eq. 3.9)and is

similar to Gaussian form of distribution. There are di↵erent types of modified random-

walk based on physical conditions of systems. Self-avoiding random walk, persistent

random walk and restricted random walk are examples of this modified model [87].

3.2.3 Kinetic Monte Carlo simulation method

In the MC simulation we try to follow the dynamics of a system where events such

as growth and di↵usion are stochastic and depend on various numbers of random factors

that are modeled in a system. Di↵erent physical phenomena can be modeled with the

MC simulation from random hopping of atoms to the growth of colloidal particles. Most

statistical mechanics problems that involve sampling of the range of phase space for

exploring certain properties can be modeled with the MC simulation. Sometimes beside

MC, we add up further modifications in order to reach the equilibrium state faster

such as the coarse-graining model in which we neglect those interactions that are not

a↵ecting statistical properties of the system and we rescale all the system’s interaction

scales to the minimum scale that needs to be considered in the system. In this thesis,

we shall focus on statistical and kinetical properties of the system, therefore, applying

Kinetic Monte Carlo (KMC) would be the best solution. Although there are di↵erent

kinds of simulation methods for simulating atomic scale systems, they are not always

e↵ective[88]. This di↵usion can be explained as a move from the old state to the new

state based on conditional probability density. This probability density will depend on

the energy di↵erence between the old state and the new state. The energy di↵erence

value will be compared with a random number generated in each MC step that can lead

to two approaches: sampling with rejection or rejection free sampling. If the random

number is greater than the potential energy function, the system cannot move and needs

to find another path for its transition, whereas in rejection sampling the transition will

be rejected and no move will occur at that MC step. Applying either approach depends

on the time evolution of the system. In this thesis, we applied the KMC method with

rejection sampling. The KMC method is essentially the same as the dynamic Monte

Carlo method and the Gillespie algorithm[89]; the main di↵erence is in terminology and

usage areas.
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Figure 3.2: Time of occurrence of each event based on time the interval. Three
di↵erent types of process (r1, r2, r3) happen at di↵erent times. Some event e.g r3 takes

longer than r2 to be completed as an event.

One of the advantages of using the KMC method is its ability to simulate on large

timescales. Whereas in most of the simulation methods, for example, Molecular Dynam-

ics (MD) simulation, accurate dynamical integration requires short time steps to cover

all the particular events, while we would like them to happen on a larger timescale.

This leads to timescale problem. The goal of this section is to become familiar with

the concepts that underlie the Kinetic Monte Carlo method. The algorithm that we

present in this thesis has been used for crystal growth and is applicable to a broad range

of other systems that are modeled as heterogeneous random walks. Usually, when the

di↵usion process occurs in discrete phase space and continuous-time Markov process,

KMC simulation o↵ers distinct stochastic events during the simulation, which underlies

on the spatially heterogeneous surface.

Generally, we have a sequence of states {x
i

2 X} based on the total state space {X}.

At each time a transition through one state can occur[90]. As a result, the dynamics of

the system can be categorized into a set of transition from state x
i

into another possible

state x
j

. Usually, the biased probability is such that system tends to transit to the lower

energy of states.

r
ij

(x
i

! x
j

) (3.11)

which r
ij

is a rate of one single process that is from site i to another site j (i ! j) so

the total rate is given by:
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R
i

=
iX

j=1

r
j

(3.12)

for i = 1, ...N where N is the total number of transitions. Denote R = R
N

Therefore,

the transition probability is given by:

p
ij

=
r
ij

R
, (3.13)

and total probability is given by:

P =
X

i,j

p
ij

. (3.14)

Each sequence of transition happens in an inhomogeneous Poisson process. Some of the

states at some points are not accessible, and therefore, system has to restrict its option

to those rates that are accessible for that certain energy and time interval.

f(t) = re�rt (3.15)

where r is the transition rate of the system at its current place. t is the life time

event. The equation gives the probability of transition that occurs at each waiting

time distribution. The key point of all is that there are independent and there is no

correlation between them. At each time step we find an event to carry out by finding

the i for which:

r
i�1

< uR < r
i

(3.16)

where u is a random number between 0 and 1 For the next step we update the time by

t + ⌧ . The occurrence of an event may a↵ect the future rate of events since the total

number of available states and particles will be changed after that step. Therefore, we

need to recalculate each r
ij

and time by:

⌧ =
�logu

R
(3.17)
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3.3 Simulation of heterogeneous system

To test the theory developed in the previous chapter in section (2.4), we have imple-

mented the Langmuir adsorption model (processes (1-4)) together with the lattice di↵u-

sion of the gas A near the surface using the kinetic Monte Carlo simulation method.We

consider a cubic 40⇥ 40⇥ 40 lattice within a box with periodic boundary conditions in

the x and y directions, and a catalytically active surface at the boundary z = 0. The

particles di↵use on the lattice, where the lattice constant is chosen to be equal to the

mean free path � of the gas A. At the top of the box, we impose a reflecting boundary

condition. The total number of particles in the simulation box is kept constant at 1600

by replacing particles that are converted with new particles that potentially can adsorb

on the surface, from the top of the simulation cell. In the simulations presented here, we

have neglected process (2) (i.e. we have set k
2

= 0) and consider that the process (4) is

so rapid that it happens instantaneously (i.e. once conversion occurs we simply delete

the particle from the catalyst surface). There is no interaction between the particles,

except that only one active site on the surface can be occupied at any given time. This

leaves three rates to consider in the simulations: ⌧�1

D

= D/�2, the rate of di↵usion in

the gas; k
1

Q, the rate of adsorption; and k
3

= ⌧�1

c

, the rate of conversion of adsorbed

particles. The time constant (⌧
D

) is the mean free time of the di↵using gas particles,

which we chose as our unit of time. The time constant (⌧
c

) is the relaxation time of the

catalytic conversion process, which occurs only at occupied actives sites. These active

sites on the catalyst surface (z = 0) are arranged in a periodic pattern or randomly dis-

tributed to achieve a specified surface coverage. We use a rejection-free kinetic Monte

Carlo method to evolve the system to a steady-state, which typically requires 106 Monte

Carlo steps. This was checked to ensure that the particle flux at the catalyst surface

had settled to a steady value and that the density gradient of the particles was approx-

imately constant in the z-direction. We have considered spatial variations in k
1

(x, y)

over the surface while considering ⌧
c

to be constant everywhere else. We have tested

patterns of di↵erent motif and coverage, together with variations in the period L. When

⌧
c

⌧ ⌧
D

the simulations can be used to test the expressions for the e↵ective activity

under di↵usion-limited conditions given in the previous section (equations (2.39) and

(2.42)).
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3.3.1 Results

We first consider the continuum limit, L � �, with ⌧
c

⌧ ⌧
D

, where we would expect

(2.39) to hold for finite values of k
1

. In Figure 3.3 and 3.4 we consider the e↵ective

activity of a series of checker board patterns (such as those in the schematic in Fig. 2.7),

where the period L is scaled from 2 to 20 � and the surface coverage is varied from � = 0

to 1. All sites on the surface are active, but some have absorption probability k
1

= 1.0

(with surface coverage �) while others have k
1

= 0.5 (with surface coverage 1� �). We

chose ⌧
c

= 0.1⌧
D

to be constant over the entire surface. When l ⇠ �/k
1

⌧ L we would

expect equation (2.39) to hold. As shown in the figure, as L gets larger, the e↵ective

activity, and its dependence on the surface coverage, indeed approaches that predicted

by equation (2.39). This illustrates the e↵ectiveness of the homogenization approach

in the continuum limit. Away from the continuum limit, when L ⇠ l the theoretical

expression underpredicts the e↵ective reactivity. In fact, as L ! �, k
eff

is found to

increase. In other words, for a fixed average coverage of active sites, surfaces with sites

dispersed on scales comparable to � are found to be more e↵ective at capturing reactant

than surfaces where sites are more concentrated.

Figure 3.3: The figure compares the e↵ective activities for a range of di↵erent domain
sizes as a function of the surface coverage with e↵ective reactivity predicted by equation
(2.39)and surface coverage of active sites with k1 = 1.0 : 0 of � = 25% and k2 = 0.25
elsewhere as ⌧c is varied. For length scales L ⇠ �, the e↵ective activity exceeds that
predicted by (2.39) but as L gets larger, the e↵ective activity is well described by

equation (2.39).
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Figure 3.4: The graph compares the e↵ective activities for a range of di↵erent domain
sizes as a function of the surface coverage with e↵ective reactivity predicted by equation
(2.42) and surface coverage of active sites withk1 = 1.0 : 0 of � = 25% and k2 = 0.15
elsewhere as ⌧c is varied. For length scales L ⇠ �, the e↵ective activity exceeds that
predicted by (2.42) but as L gets larger, the e↵ective activity is well described by

equation (2.42).

It is also interesting to consider cases where k
1

= 0 on some parts of the surface,

while k
1

is finite elsewhere. In Figure 3.4 we again consider the e↵ective activity for a

series of checker board patterns as the period L increases from �. Two curves are shown

in the figure: in the first, k
1

= 1.0 on active sites, which have a coverage � = 0.25,

while in the second, k
1

= 0.8 on active sites, which have a coverage of � = 0.5. On

all other sites k
1

= 0, so adsorption is not possible. Again ⌧
c

= 0.1⌧
D

over the entire

surface, although now process (3) only occurs on active sites. In this case, we see that

as �/L ! 0 the e↵ective activity k
eff

approaches the value given by equation (2.42).

Although L � � in this limit, over much of the surface L ⌧ l ⇠ �/k
1

as k
1

= 0 and

equation (2.42) seems to provide a good description of the e↵ective activity. Away from

the continuum limit, equation (2.42) again underestimates the e↵ective activity of the

surface.
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Figure 3.5: The relationship is shown between the e↵ective activity keff and the
domain size L is shown for the case where k1 = 0.8 at 50% coverage (and k1 = 0
elsewhere) and the case where k1 = 1.0 at 25% coverage. The patterns here have
a checkerboard character. The e↵ective activity in the simulations approaches that

predicted by equation (2.42) as �/L ! 0 but exceeds this as L ! �.
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Figure 3.6: The figure shows the e↵ective activity of di↵erent patterns with a surface
coverage of active sites with k1 = 1.0 of � = 25% and k1 = 0.0 elsewhere as ⌧C is varied.
In the range of 0 < ⌧C ⌧ ⌧D, the larger length length scale regions approach agreement
with equation (2.42). For the patterns with periods comparable to the mean free path
(�), the e↵ective activity exceeds the limit predicted by equation (2.42) as ⌧C ! ⌧D.
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Figure 3.7: The figure shows the e↵ective activity of di↵erent patterns with a surface
coverage of active sites with k1 = 0.8 of � = 50% and k1 = 0.0 elsewhere as ⌧C is varied.
In the range of 0 < ⌧C ⌧ ⌧D, the larger length length scale regions approach agreement
with equation (2.42). For the patterns with periods comparable to the mean free path
(�), the e↵ective activity exceeds the limit predicted by equation (2.42) as ⌧C ! ⌧D.

Finally, we have considered the e↵ect of di↵erent patterns, as well as the case where

⌧
c

> ⌧
D

, which is not covered by the theory developed in the previous chapter. We

have considered a variety of patterns, as shown in the inset of figures 3.6, 3.7, including

a selection of checkerboard-type patterns, a pattern where active sites are randomly

distributed over the surface, and stripes. As in the previous case, we find that for the

larger domain sizes the e↵ective activity is given by equation (2.42) for small ⌧
c

, and that

the e↵ective activity of the patterns with smaller length scales exceed those predicted by

the theory. As ⌧
C

increases the e↵ective activity decreases, as one might expect as the

activity becomes reaction-limited rather than adsorption or di↵usion-limited. Also note

that the e↵ective activity is pattern dependent, with the checked pattern with the period

L = 2� outperforming the stripes and the random pattern, which in turn outperform

the patterns on larger length scales.

3.4 Discussion and conclusions

We have found that the two approximate expressions (2.39) and (2.42) for the ef-

fective catalytic activity of a surface with a heterogeneous distribution of catalytically
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active sites match the simulations well in the limits where they are expected to be valid.

For distributions of active sites with length scales below the continuum limit we find

that these expressions underestimate the e↵ective activity. In air, under standard con-

ditions, the mean free path of a gas molecule is of the order of 100 nm. Under these

conditions, we would expect that the continuum di↵usion equation (2.30) provides a

good description of variations in the density of the gas at the catalyst surface on scales

greater than 100 nm. Variations in the distribution of active sites below this scale would

produce variations in the density of the reactant gas that would not be captured well by

the continuum di↵usion equations, as demonstrated by the KMC simulations presented

here. Nonetheless, the e↵ects of variations in the distribution of active sites above this

scale should be able to be captured by the continuum approach so it is interesting to

consider the implications of the continuum theory. Consider a distribution of small but

high activity particles (metal nanoparticles of diameter 10 nm, say, with k
1

= k
a

) dis-

persed on larger, less active oxide particles (e.g 1µm TiO
2

particles, with k
1

= k
d

⌧ k
a

)

for instance[91]. Here we might find a variation of activity on length scales, L, of greater

than 100 nm, so the continuum theory would be expected to be valid and equation

(2.39) should hold. In this case, small particles play the role of active sites and their

fractional enhancement to the e↵ective activity (k
eff

/k
d

) is proportional to 1/(1 � �).

The small particles essentially consume all the reactant they encounter, so it is their

coverage rather than their activity that determines the enhancement to the e↵ective

activity of the larger particles.

In summary, we have applied a mathematical homogenization approach (Chapter2)

together with KMC simulations (This chapter) to investigate the e↵ect of scale and pat-

terning on the e↵ective activity of catalytic sites on a heterogeneous catalyst operating

under di↵usion-limited conditions. The KMC simulations show that in the continuum

limit the kinetic theory of gas works well where there is a high number of particles dif-

fusing over the active sites. In particular, in the limit where the mean free path is much

less than the scale of patterning of catalytically active sites, the e↵ective rate constant is

found to be equal to the harmonic mean of the rate constant over the surface. However,

as the length scale of the patterns becomes comparable to the mean free path length, the

e↵ective activity of the system can exceed the theoretical limit suggested by the contin-

uum theory. We expect that this work will have implications for the design and use of

nanostructured catalysts that need to operate under di↵usion-limited conditions. There
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are so many systems that they perform chemical process under high temperatures, for

such a system the mean free path of the particles are larger than the ideal gas, therefore,

the system is in di↵usion-limited condition.



Chapter 4

Introduction to Polymer Physics

From a physical point of view, a polymer chain consists of a set of units called

monomers, which are chemically bonded with hydrogen or covalent forces. Real examples

of polymer chains include DNA molecules or proteins[92]. DNA molecules are very

important for life, their primary structures are linear (multiple chemical units) composed

of monomers (single chemical units), called nucleotides, as are proteins which consist of

amino acids (monomers). The basic properties of a polymer are a consequence of the size

of the polymer chain and the size of monomers (which correspond to the volume of space

excluded by the monomers). This controls other characteristics of the polymer chain such

as extensivity, flexibility, and conformation of the polymer[93]. Generally, the monomer

structure and the way that they are assembled determine the physical behavior of the

polymer (Figure. 4.1). The unit of repetition for some polymer molecules can consist of

more than one type of monomer. When there are two types of monomer in one polymer

chain, it is called a diblock copolymer (A� B). When the arrangement of monomer A

and monomer B is random, the chain is called a random copolymer. A polymer with

three types of monomer is called a triblock copolymer. In contrast a polymer with one

type of monomer is called homopolymer chain (Figure. 4.2)[94].

From a structural point of view, we can consider three types of polymer chain:

linear, branched and cross-linked. Linear polymer chains consist of one single chain

with repeated monomers, whereas a branched polymer has one backbone and several

branches. The combination of single chain makes cross-link polymer with several crossed

joints. There are other ways to classify polymers, e.g. whether they are organic or

45
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(a) (b) (c) 

Figure 4.1: A general structure of single (a) , branched (b) and cross-linked poly-
mer(c).

inorganic, or anionic or cationic. However, the most useful way for our purposes is

based on their mechanical and thermodynamic behavior in solution. Since polymers are

quite sensitive to physical and thermodynamic conditions, they behave di↵erently under

di↵erent physical conditions[95].

Figure 4.2: This figure shows the periodic repetition of the single polymer chain that
can be homopolymer (only one type of monomer), diblock copolymer (two types of

monomer) or (triblock polymer).

A polymer chain in solution can change its shape dynamically and its instantaneous

shape is called a conformation[96]. If we fully stretch a polymer chain, the distance

between two ends is called the contour length. However it is quite hard to find a polymer
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chain fully stretched in a solution since it is highly fluctuating. Instead, its configuration

is usually crumpled and has a random coil conformation[97].

In this chapter, we will study how physical conditions such as temperature of the

system can lead to applying a di↵erent numerical models. Moreover, how to transit

from one model to another when the physical condition of the medium changes, will be

discussed later.

4.0.1 Overview of Polymer models

In order to study the rheology of polymers, their physical structures are more im-

portant than their chemical components, since the deformation and flow in the solution

can be changed under di↵erent thermodynamic conditions. However, in this thesis, we

are interested in adsorption of the polymer chain on a surface. Therefore, we need to

study the interaction of polymers and the surface. In order to study the microscopic

behavior including their governing potentials near the surface we apply a coarse-grain

model. The coarse-grain model helps us to limit the number of degrees of freedom and

the motions. The thing that is important in coarse grain model is the size correspon-

dence features. Scaling plays a key role in simulating a polymer by this model. In 1946

Kremer defined a model called the Free Joined bead-rod chain in which he introduced

the monomers of the polymer as a bead and their connections are called rods. The

size of the rod corresponding to one step is called a Kuhn length, which is the smallest

connection length between two monomers[98]. Several coarse-grained models have been

applied to predict the physical behaviors of polymers based on physical characteristics

such as length, volume, and size of the chain[99]. The bead-spring model, bead-stick

model, and pearl necklace model are illustrated in Figure. 4.3.

In the bead-spring model, the beads are monomers that are connected by springs.

Connection by a spring allows the bond between monomers to fluctuate over a certain

range of lengths. In a bead-stick model, monomers are connected through a single rod,

in either freely jointed-chain or a freely rotating chain. In the freely jointed chain the

direction of bond angles are totally unrelated and random, whereas in the freely rotating

chain the correlation between the bonds can be defined as[100]:

h�!r
i

.�!r
j

i = b2cos ✓|i�j| (4.1)
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(a) (b) (c) 

Figure 4.3: Based on the bond length between monomers and their flexibilities, we
can construct each polymer chain with these three types of models Figure (a) is a
bead-stick model which models a rigid polymer chain Figure (b) is a bead-spring model
which is a model for a semiflexible polymer chain. Figure (c) is pearl-necklace model

and is suitable for a flexible polymer chain.

r
i

and r
j

are the bond vectors of i-th monomer and j-th monomer. ✓ is the angle between

the two adjacent bond vectors. b is the Kuhn length between the two monomers. In

very high temperatures we can apply the pearl-necklace model. In the pearl-necklace

model, monomers are always in contact with their two nearest neighbors. In very low

temperatures we apply rod model when monomers have a maximum distance from each

other. Pearl-necklace model is similar to rod model with rod length equal to the diameter

of monomers or beads[101].

4.0.2 Scaling of Polymer Chain

End-to-end distance and Centre of mass

In previous sections, we modeled a polymer as N+1 units with N joints where the

position of these joints is denoted by ~r
i

(i = 0, 1, ...N), and therefore, the end-to-end

vector is then given by R[102]:

R ⌘ ~r
N

� ~r
0

(4.2)
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and consequently the mean squared of the end-to-end vector is:

R2 ⌘ h(r
N

� r
0

)2i. (4.3)

It is quite common to use the center of mass of the polymer chain in order to find some

information about the elasticity and the flexibility of the chain. If we neglect the mass

of monomers, the center-of-mass is given by:

r
G

=
1

N + 1

NX

i=0

r
i

. (4.4)

With this result we can find the radius of gyration:

R
g

2 = h 1

N + 1

NX

i=0

(r
i

� r
G

)2i = 1

N + 1

NX

i=0

h(r
i

� r
j

)2i (4.5)

which we will use this result in chapter 5 and we measure the centre of mass of the

polymer chain in adsorbed and desorbed states.

Figure 4.4: This Figure shows end-to-end vector, the centre of mass and the radius
of gyration in a single polymer chain.

4.0.3 Flory Exponent

When the length of the polymer chain increases, the swelling of the chain becomes

important. In order to obtain a precise value for the radius of gyration of the ideal chain,

we need to consider the exponent of increasing the dimension of the monomers that can

change the strength of swelling of the chain. The exact value of the radius gyration and

its exponent is given by renormalization group theory. However, this approach is more

complicated than the Flory approach. Flory could estimate this exponent in a simple
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way. Therefore this approach is called the Flory exponent:

R
g

⇠= bN⌫ (4.6)

where ⌫ is the Flory exponent, N is the total number of monomers and b is the Kuhn

length. The value of the Flory exponent, and consequently the radius of the gyration, is

related to the physical condition of the polymer in the system. For example, depending

on the temperature of the system, the polymer can be in di↵erent phases. These phases

can be divided into three main categories: Collapse, Ideal and Extended. In the collapse

phase, the attraction between monomers is such that monomers tend to stay as close as

possible, whereas in extended phase, the repulsive interaction between monomers does

not let them get close together. In each phase, the Flory exponent has di↵erent values.

In the collapsed phase the Flory exponent is proportional to 1

d

, where d is the dimension

of the system and in extended phase is 3/d+ 2 for d  4 and 1/2 for d > 4. The phase

between collapsed and extended is called the ideal phase, and the Flory exponent is

equal to 1/2. In this thesis we assume our system is in the ideal state; however, there

are some possibilities of transit to other states. In this research, we also consider high-

temperature phases where the polymer is in the collapse phase and as the temperature

goes down the polymer will become more extended. Therefore in a system with a fixed

number of monomers, the size of the radius of gyration will change over the range of

temperatures.

4.1 The Linear Polymer Chain Model

4.1.1 Continuous Space Model

The general concept behind the continuum models for polymers is that the proba-

bility distribution of the long polymer chain should be universal, no matter what type

of monomers are in the structure [103]. In 1965-66 S.F. Edward considered a unique

simplified model for polymers and this was the first model that introduced the idea of

universal properties [102]. In this model, we consider the polymer chain to be a string

described by features like the length scale of bonding between monomers b and the Flory

exponent ⌫ as a viscosity indicator[104]. If we consider cross-sectional path length (�l),

we can show the total path length will become R = N�l. One should also take the limit
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that the number of monomers N ! 1. The advantage of applying continuum model for

a long polymer chain is that by having the information of a small part of distribution we

can integrate the probability distribution of the whole chain from point 0 to L, which L

is the total length of the polymer.[105],[106]. Comparing the distribution of continuous

with the discrete system, we first start with the potential energy of the bead-spring

model in the discrete system. If we assume the beads are in the position of r
0

, r
1

...r
N

the potential energy of the chain is given by potential energy of the spring constant force

k
s

with:

U(r
0

, r
1,..

, r
N

) =
1

2
k
s

NX

n=1

(r
n

� r
n�1

)2 (4.7)

For certain arrangments the Boltzmann distribution function of the chain is given by:

exp
⇥
U(r
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, r
N

)/k
B

T
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=

NY

n=1

exp
h k

s

2k
B

T

NX

n=1

(r
n

� r
n�1

)2
i

(4.8)

The distance between two monomers are defined as �l = b and b2 = 3kBT

ks
. Thus:

exp
⇥
U(r

0

, r
1,..

, r
N

)/k
B

T
⇤
= exp

h 3

2b�l

NX

n=1

(r
n

� r
n�1

)2
i

(4.9)

by rewriting r
n

� r
n�1

= @l and considering n to be continuous.

lim
N!1

exp(� 3

2b

NX

n=1

✓
@r

@n

◆
2

�n) = exp(� 3

2b

Z
L

0

✓
@r

@l

◆
2

dl) (4.10)

Equation (Eq. 4.11) is the conclusion of the Gaussian distribution in a discrete and

continuum media. In a discrete space the distribution of monomers is the product of

all the discrete probabilities. In continum media when we know the partial distribution

of monomers, we can integrate the total distribution of the chain. Therefore, for a long

chain we can approximate the Gaussian distribution with continuum limit. The details

of which we will discuss later. Now from a normalization prospect we have:
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NY

n=0

exp(� 3
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Z
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@R

@l

◆
2
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4.1.2 Discrete Space model

The lattice or discrete model is known as the Bond Fluctuation Model (BFM)[107].

In the continuum model, the center of the beads could be anywhere in 3-dimensional

space, while in the discrete model, the monomers are in predefined unit cells or grid

surface, and bonds connect them together[108]. The discrete space is called a lattice

and each lattice unit is called a site. In two-dimensional space, we can have a square

lattice or triangular lattice space. In three dimensions we very often use cubic cells

or sometimes diamond lattice. The number of neighbors of each lattice is called the

coordination number. The coordination number for a square lattice or a diamond is

four and for a triangular lattice or a cubic lattice it is six. In a cubic lattice, monomers

can hop from one site to another, but they can only hop to the places where their new

bonds to their nearest neighbors has a radius of (
p
1l,

p
2l,

p
3l).

4.2 Gaussian Distribution

Using a Gaussian distribution, the length between monomers, the Kuhn length,

l, determines the conformation properties of the polymer. Depends on polymer, if the

Kuhn length is small, the conformation of the polymer follows the Brownian distribution

and is quite flexible, whereas for a long Kuhn length polymer is quite sti↵ and not

flexible[109],[110]. At high temperatures, the long polymer chain will be crumpled and

the bond between two monomers tends to become zero. In these circumstances, the

polymer will become flexible. Here in this thesis we are interested in high temperatures.

In this thesis, the system in some parts is at temperatures high enough, that the bond

length between two monomers will become quite small and the polymer tends to be

flexible.

For flexible polymers, the bond vectors are totally uncorrelated, therefore their ori-

entations are independent of each other. The correlation between bond vectors can be

defined by:



Introduction to Polymer Physics 53

h⌧
i

.⌧
j

i = l2�
ij

(4.12)

where �
ij

is kronecker delta. For a sti↵ polymer or a semi-flexible polymer, a worm-like

chain model can be applied[57]. In this model, we need to consider that the intrinsic

sti↵ness is proportional to the energy cost for bending polymer. The simplest bending

Hamiltonian is like one-dimensional Heisenberg model for ferromagnets:

H = �✏
N�1X

i=1

�!r
i+1

.�!r
i

(4.13)

where ✏ is the friction coe�cient. Where r
i

= l. In the continuum limit noted by

N�!1,✏�!1, l�!0 and assuming ✏/N = constant, the contour length will be also

constant:

�r
i+1

.ri =
1

2
[(r

i

� r
i+1

)2 � 2l2] (4.14)

Then the Hamiltonian equation will be:

H = lim
N,✏!1,l!0

✏l

2
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In the continuum limit, the tangent vector with the arc length s wil be equal to:

@r(s)

@s
= lim
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(4.16)

by converting discrete space into continuous space
P

N�1
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l to
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ds we find:
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From Hamiltonian we can find the partition function of the system.

Z =

Z
D[r

s

]�r(s)� 1exp(��H[r(s)]) (4.18)

By having the partition function, we can find the total conformation of the long polymer

chain with length L and energy of the conformation k
B

T .

4.3 Ideal and real polymer chain distribution

In reality, the interaction between monomers is such that two more monomers cannot

occupy a single space even partially (Self-Avoiding Random Walk or SAW model)[111].

However, we often make an ideal assumption that monomers can overlap with each other.

In a lattice model, this corresponds to monomers occupying the same site (Figure. 4.3).

This leads to the definition that in ideal polymer chain model crossing over itself is

allowed while in the real chain model (SAW) is not (Figure. 4.5).

(a) (b) 

Figure 4.5: Figure (a) shows the real polymer chain, where the two monomers cannot
be closer than a specific length and Figure (b) shows the ideal polymer chain where

two monomers can cross over each other.

Both types of chain can be modeled as a random walk. For a real chain, two di↵erent

segments can never meet each other at the same point; however, in the ideal chain they

can. For an ideal polymer chain we apply Gaussian distribution model to describe the
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probability distribution of the chain; however, for a real polymer chain a non-Gaussian

distribution model must be applied.

4.3.1 Random Walk model of Ideal chain

The random walk model was already discussed in a general way in chapter 2. In

this section, we discuss its role in the ideal polymer chain model, where each monomer

plays a random walker role. Suppose a random walker starts at the origin point x = 0 in

one-dimensional space, where the size of each step is identical and equal to l. After each

step, the random-walker loses its memory, a property that comes from the Markovian

chain process[112]. If n step from the total (N) was toward the right and the N � n

step was toward left, then the probability distribution by of having right steps (p) and

left steps (q) is binomial and equal to:

(p+ q)n =
NX

n=0

pnqN�nC
N

(4.19)

Since the probability of going left or right is equal to one, the total sum of p+ q will be

equal to one. After N steps the probability of having n steps in the right direction will

become:

P
n

= 2�NC
N

=
N !

n!(N � n)!
(4.20)

Assuming there is equal probability of going left or right, if we set p = 1 � q, we

have the identity:

2N =
NX

n=0

N !

n!(N � n)!
(4.21)
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Thus, the expected value of n is given by:

nP
n

= 2�N

NX

n=0

nN !

n!(N � n)!
= 2�NN

NX

n=0

(N � 1)!

(n� 1)!(N � n)!

= 2�NN2N�1 = N/2,

(4.22)

and the second moment is given by:

hn2i =
NX

n=0

n2P
n

= 2�N

NX

n=0
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(n)!(N � n)!

= 2�N
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i

= N(N + 1)/4

(4.23)

Now let see the changes of P
n

when N increase to the large number. In order to study

P
n

(for discrete space model) or P (x) (for a continuous space model). The general idea

of normal distribution comes from one of the three fundamental equations of physics,

di↵usion equation. A particle starts from the origin and di↵uses over time so that its

position follows the Gaussian distribution [113]. In polymer physics, when the number

of steps in random walk model becomes very large, we use the same approach in order

to find the probability of polymer chain conformation applied to (Eq. 4.21). By substi-

tuting n for �s we can interpret the step motion of random walkers as a polymer chain

conformation[114]. For large N we use the Stirling approximation.

lnP
n

= �Nln2 +N(lnN � 1) + n(ln(n� 1))� (N � n)[ln(N � n)� 1]

= �Nln2 +NlnN � nlnn� (N � n)ln(N � n)
(4.24)

If we consider one dimension and start from the origin (x
0

= 0) the arbitrary displace-

ment after n step is x
n

= nb, we can convert n = x
n

/b and rewrite N�n to (N+x
n

/b)/2,

in which b is Kuhn and x
n

is the displacement length; this equation will become:
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By normalizing
R
p(x)dx = 1, we can find the probability that random walk be at

position x
n

= x after N step:

P (x) = (2⇡Nl2)�1/2exp
�
� x2

2Nl2
�

(4.26)

Where we assume the length of displacement is very small that tend to be zero x ! and

polymer is continuously distributed.

4.3.2 Distribution function of ideal polymer chain

As we learned from section. 4.1.1, in the limit of N ! 1, the ideal chain behaves

as the continuum model. Since each part of the chain is identical we can take a cross

section of the displacement (x
1

! x
2

) and find the probability density between these

two points. To do this we can consider the midpoint between these two points and define

G(x
1

, x
2

, n) as a transition probability.

G(x
1

, x
2

, n) = (2⇡nl2)�3/2exp

 
� 3(x

1

� x
2

)2

2nl2

!
(4.27)

We assume the number of segment of the polymer between these two points are n, where

n << N , then we call G(x
1

, x
2

, n) is the transition probability for a point (e.g.x
2

) to

move into area around x
1

in a small volume of dx
1

(with the total number of steps =

n
1

). Consequently, we can join two groups of units with the inter-joint point x0. If the

number of units from x
1

to x0 is n
1

and the number of units from x0 to x
2

is n
2

then the

probability that distribution occur through the displacement of the chain from x
1

to x
2

is given by[115]:



Introduction to Polymer Physics 58

Z
G(x

1

, x0;n
1

)G(x0, x
2

;n
2

)dx0 = G(x
1

, x
2

;n) (4.28)

in which n = n
1

+ n
2

. Unlike the random walk model for the ideal polymer chain, the

Gaussian distribution can be defined for limited number of units even when n ! 0, then

x
1

and x
2

are in the same place:

G(x
1

, x
2

, 0) = �(x
1

, x
2

) (4.29)

This shows that Gaussian distribution of the ideal polymer chain can follow the normal

distribution of the di↵usion equation. Thus G(r, r0;n) for three dimensions will satisfy:

"
@

@n
� (b2/6)r2

#
G(r, r0;n) = �(n)�(r � r0) (4.30)

4.4 Excluded Volume E↵ect

This is the property that distinguishes the real polymer chain model from the ideal

chain model. We say sphere A is excluded by sphere A
0
when their distance is not less

than the centre-to-centre distance of the spheres d
AA

0 . If the excluded volume of one

sphere changes from zero to v
ex

then the total available space for the neighbor will change

from V to V � v
ex

[116]. Consequently, the configurational entropy will be changed as

below:

�S = k
B

ln
V � v

ex

V
(4.31)

This equation shows the change of configurational entropy is directly related to the ratio

of excluded volume over the volume of spheres. Also, this means that the Helmholtz

free energy di↵erence will be proportional to this ratio as well (�A/k
B

T ). The excluded

volume e↵ect can be present even in solution. If the segment unit length is l then each

monomer occupies a cube of volume l3 and no other monomer can be found in that area.
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The excluded volume e↵ect can be considered as an interaction and therefore the

corresponding free energy per chain is F/k
B

T = (N2/2)v
ex

/R3, which is a function of

the scaling exponent ⌫(R ⇡ Nl⌫), where ⌫ ⇡ 2. . The contribution of free energy in the

total conformation energy (�U/k
B

T ), by assuming l3 = v
ex

will be[117]:

�U
ex

/k
B

T ⇠= l3N2/R3 (4.32)

At higher concentrations, the excluded volume e↵ect can be considered between the pair

of di↵erent chains. The thermodynamic properties of the polymeric system have been

directly related to the e↵ective volume of space. When this parameter becomes zero,

it is called ✓ temperature. For T < ✓, ⌫ will become negative and for T > ✓, ⌫ (Flory

exponent: see section 4.0.3) becomes positive. For T = ✓ self-avoiding random walk

will transform into random walk, or in another words monomers can overlap with each

other. Therefore monomer penetration influences polymer chain size. In a good solvent,

the chain length is larger than a ✓ solvent, so the coils are denser and the radius of

gyration is 2/3 power of N instead of one.

4.5 The Real Polymer Chains Model

So far we have understood the concept of ideal chain and real chain, also the excluded

volume e↵ect that monomers cannot occupy the same place. The reason that we cover

both states of the polymer chain in this thesis is because our system can vary from ideal

chain to real chain due to the temperature. Therefore, we need to know how to model

each state of the system.

4.5.1 Self-Avoiding Random Walk Model (SAW)

A polymer can be folded into the 3D complex structure in a solution[118]. The com-

plex configuration depends on long range and short range interactions of the polymer.

For example, the force between monomers in a chain, and their interactions with the

solution, can determine the total number or the ultimate form of the configurations of

the folded polymer chain.
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If we want to model a real polymer chain in 3D, the simple random walk model is

not a suitable one[119]. We need a dynamical model that responds to all impulsive and

attractive forces of the polymer in a solution. From the mathematical point of view,

this is not a Markov process, because the thermodynamic properties of the system are

highly related to the properties of the solution and chain. At very high temperatures

monomers can be very close to each other as much as they can overlap, and we can

model them as an ideal chain. While at lower temperatures monomers cannot be closer

than their diameters (excluded volume e↵ect); a model that uses the latter approach is

called the self-avoiding random walk.

The displacement x and the variance in the displacement of the self-avoiding random

walk model in one dimension is given by:

x = n / t (4.33)

and,

p
(x2) =

p
n ⇤

p
t (4.34)

However, in 2D, their relation will become rescaled and depends on the Flory ex-

ponent (⌫), which is directly related to the type of the solution (see section 4.0.3) and

temperature of the medium. In our case, the Flory exponent is at the intermediate

range.

1

2
⌫ < 1, (4.35)

In some self-avoiding random walk models the probabilities of available sites for displac-

ing a random walker’s place are equal. However, in some cases, each MC step has its

own weight that depends on the availability of the sites. If monomers have been in a

site once then that site will be rejected for the next move. So the number of discarded
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walks will increase exponentially.

instantaneous generated walk

total attempted walks
= e�cn, (4.36)

where c is an iterative constant. In this thesis, if the place is empty, the monomer can

occupy it, no matter whether it has been occupied with a monomer before or not.

So far we have discussed the general approach of monomer displacement in a system.

However, the performance of simulation of a polymer in a system is highly related to

other physical conditions of the system for example, pH, temperature, and solution

molecules. In order to improve the performance of the simulation e↵ectively, we need

to apply e↵ective conformation method in the simulation. For di↵erent system, we may

need to apply di↵erent conformation approaches. In the next section, we will explain

some common methods that can increase the rate of simulation significantly.

Figure 4.6: This figure shows a surface with the striped pattern of sticky patches. The
monomer can adsorb on those patches. Blue stripes show the sticky sites. Once a couple
of monomers adsorb on blue stripes the movement of monomer become more restricted.
By applying right conformation method we can improve the simulation performance.

• Reptation method: this method was first introduced by Pierre-Gilles de Gennes,

from part of his work on liquid crystals and polymers [120]. According to the

de Gennes assumption, any polymer can be confined in a tube. Any thermal

fluctuation can cause the polymer to reptate as a result of polymer entanglement

and being analogous to slithering in a tube. This is one of the most common ways

of generating SAW in a medium. It performs very well for dilute media with the

short-time limit. Basically, we choose either end of the chain and choose one of

the available direction randomly and move the monomer to this place. However

for the long time limit is not e�cient. In addition, this method is sensitive to its

initial state. This method is not suitable for attractive sites (see figure 4.6); it

becomes very slow if either ends become adsorbed on attractive sites. Therefore,
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have not applied this approach to our system. Figure 4.7.a shows the reptation

method in lattice space.

• Kink-Jump:, this method is suitable for the system with a concentrated solution,

when the polymer chain hits the molecules of the solution. In this numerical

method we apply bond fluctuation model (BFM); monomers can only fluctuate

into certain places. The restriction of the movement is because of the bonding

between monomers, they can change their places as long as they do not break

their bonds with their neighbors. In part of our local moves we use this approach

and we combine it with another approach. In the Kink jump method, since we

can choose di↵erent monomers on a chain, the system will not be stopped from

evolution after a few monomers become adsorbed on sticky patches. Figure 4.7.c

shows the Kink-Jump method in lattice space.

• Pivot algorithm:, In this method, we do not have only single steps but also, we

have two or more sub-walks which can be due to the rotational or transformational

symmetry. This method is e�cient for non-uniform media, but, for uniform media

is probably not the right method. As we mentioned before, we are interested in,

simulating the polymer chain adsorption on the surface. We want to consider some

attractive sites on the surface, each of which have a specific pattern. Figure 4.6

shows one of these patterns, which is striped. We will test the Pivot algorithm

approach for such a system in Chapter 5, but we will see due to the overlap energy

system cannot fluctuate properly based on BFM rule and the presence of sticky

sites. Figure 4.7.c shows the Pivot algorithm method in lattice space.

4.6 Statistical Mechanics of a Polymer Chain in a Solution

From a statistical mechanical point of view, calculating the partition function of

polymeric systems enable one to determine the equilibrium configuration of a polymer

chain in a solution. There are some analytical methods for finding these statistical

functions, with some methods giving exact solutions while others result in approximate

solutions. For non-interacting systems calculating the partition function of the system is

not di�cult; however, these systems are not very relevant. Typically we are interested in

interacting systems. The main di�culty in finding exact solutions for such systems are
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Figure 4.7: These figures show the changing places of the monomers. Dash circles
are the new places of the monomers and dash lines show the breaking and making new
bonds. The new chain structures show on the right side of picture. Figure (a) shows
Reptation algorithm where one end of the polymer chain is moved to the other end.
Figure (b) shows the first monomer of the displaced part is rotated 90 degrees to the
new place with the rest of the chain. Figure (c) shows two di↵erent types of kink-jump

displacement, which are all in the range of the BFM length.

the fluctuations of the polymer configuration. There are some methods for solving such

systems such as mean field theory, series expansion, and renormalization group methods.

In this thesis, we use the series of expansion approach and apply this to polymer chains

at surfaces[121].

4.6.1 Series Expansion

This technique uses a perturbation approach, where the partition function is modeled

as a series of a certain parameter in di↵erent subensembles of the system. This parameter

can be the temperature which we expand from 0 to ��1(� = (k
B

T )�1) or even for some

system series with very low densities ⇢ = 0 to ⇢. Applying series expansion helps us to

find the phase transition of the systems in the region where their convergence tends to be

very slow. The next step is how to calculate the partition function, which corresponds

to all of the configuration space for these sub-ensembles. Simply summing the partition

function over all configurational phase space is not feasible, because by increasing the size
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of the system, the total number of configuration will increase exponentially. For example,

in three dimensions with 10 lattice sites in each axis and 10 particles, the total number

of discrete configurations will be (103)10. Obviously, 10 particles is a very small number

and for a more real system, we need more particles. The simplest way of computing

configurational space is to select a random number of configurations. This approach in

the long time limit leads to an equivalent number of occurrence of microstates and the

same value of their probability distributions. If we select N
c

number of configurations

randomly, then the average the partition function will be:

Z = z =
⌦

total

N
C

NcX

i=1

exp(��E(�
i

) (4.37)

where ⌦
total

is the total number of microstates, � is ith configuration and Z is the parti-

tion function. The terms in this equation are dominated by those at high temperatures

and energies . The thing that we need is to make a balance between microstates through

bias algorithm. Suppose that the probability of each microstate is p(�
i

). At the first

moment a natural choice is the Boltzmann distribution:

p(�
i

) = �exp(�E(�
i

))

Z
(4.38)

where E(�
i

) is the energy of configuration i. Since Z is sum over all possible con-

figurations and calculating the probability of occurrence of each microstate from total

configuration space is not an easy task, we calculate the transition probability from

configuration i to configuration j. ⇢
ij

= P (�
i

) �
j

) is the density matrix that gives

the transition probability between the nearest neighbors of subensembles. Here, each

element of density matrix only depends on states i and j. The next step is to connect

⇢
ij

to the probability of each microstate. The probability of microstate i at time, t = 1,

is given by:

p
i

(1) =
X

p
i

(0)⇢
ij

(4.39)

Now we need to produce the density matrix. The value of ⇢
ij

can be determined by
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scattering matrix R
ij

. The matrix R
ij

tells us what states are available for transition.

In practice we can implement this algorithm by selecting a trial move from i to j and

producing a random number between [0, 1]. If the value of R
ij

� 1 the move is accepted,

otherwise the acceptance has a probability. R
ij

matrix is an arbitrary symmetric matrix:

⇢
ij

=

8
><

>:

R
ij

, U
j

< U
i

R
ij

exp[��(U
j

� U
i

)] otherwise
(4.40)

In the following section, we will show how we can use this approach in order to find

the free energy of the system[122].

4.6.1.1 Umbrella sampling

Umbrella sampling is a method for free energy calculation in terms of the reaction

coordinates, which was developed by Torrie and Valleau in 1977. The method uses a

bias potential, which is applied from one state to another. If we consider a molecule that

its center of mass is negligible at a distance z from interactive surface, the probability

distribution of the configuration of the molecule will become[123]:

⇢(z) /
Z

exp��U(�N )�[z � z(�
N

)]d(�
N

) / exp��F (z) (4.41)

Figure 4.8 shows a schematic probability distribution along the z axis which is the

reaction coordinate. The height of the free energy barrier tells us that there is a small

probability that a molecule can transit from its current state to other states. For larger

heights, this causes a problem. By applying bias sampling we can only consider the

model through subensembles of z near z
j

. This means that the partition function will

be restricted to distances near the surface of the reaction discarding the rest of the

configurational space[124]. The most common way of biasing the configuration is as

follows:

��U
j

(�
j

) = ��U
i

(�
i

) + ⌘
ij

(z) (4.42)
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Figure 4.8: Free energy barriers of transition from z to z’.

where:

⌘
ij

(z) = �k/2(z
i

� z
j

) (4.43)

is a harmonic potential. The e↵ective weighting potential is given by:

�U
j

(�
j

) = �U
i

(�
i

) + k/2(z
i

� z
j

) (4.44)

The choice of force constant in equation ( 4.44) is very important. If the force constant

is too small, it will cause less e↵ective biasing. If it is too large this can lead to a weak

overlap between z distribution and limited numbers of occurrence. In each simulation

step we can find the unweighted probability distribution by:

p(�
N

) / p
j

(�
j

)e�⌘j(z) (4.45)

One of the advantages of umbrella sampling is that it can be applied both in MC and MD

simulation. The umbrella method, after iterative reweighting, is a good method to find

the free energy[125]. The method can also be applied to canonically average parameters.
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One of the disadvantages of this method is the di�culty of finding a suitable sampling

distribution. This can cause some issues for large systems[126].

4.6.1.2 Expanded ensemble method

This method was developed by Lyubarstev et al. It is similar to umbrella sampling

in that it uses expansion; however, in umbrella sampling, we compute the mean field

potentials along the reaction coordinates, whereas in the expanded ensemble method

we sample from a distribution of random-walkers[127]. The expanded ensemble method

(EEM) was first applied to charged hard spheres, where these hard spheres were able

to transit between a range of di↵erent replica temperatures (� = 1/kT )[128]. A replica

temperature is allocated to each subensemble while other physical and thermodynamic

conditions of subensembles are identical. Therefore, the partition function for the test

of subensembles is given by:

Z =
X

j

z
j

exp(⌘
j

) (4.46)

where ⌘
j

is a bias potential and it is an iterative function. z
j

is the partition function

of each sub-ensemble at each temperature (��1

j

).

Z =
X

�

exp[��
j

E(�)] = exp(��
j

F
j

) (4.47)

The equation ( 4.47) gives us the total partition function of the system in a di↵erent

range of temperatures. Now we need a transition matrix to prescribe the transition

between neighbouring subensembles. The bias probability from state i to j is given by:

�� = (�
i

� �
j

)U(�) + ⌘
i

� ⌘
j

(4.48)

where � is the particular configuration of space. All the subensembles start from

the same configuration but evolve independently between transitions. From Eq( 4.46)

we can find the contribution of each subensembles in the total probability.
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P
j

= z
j

exp(⌘
j

)/Z (4.49)

We start every state from the initial state that � = 0 or very high temperature

since we assume the empirical coe�cient at that temperature is ⌘ = 0. We can use the

partition function of the ideal gas in three dimensions simple cubic lattice Z = 6N , where

N is the number of monomers. As a consequence, the free energy, which is proportional

to k
B

T ln(Z) is obtainable. If we assume the probability of occurrence of subensemble

at �
0

= P
0

and the probability of occurrence of any arbitrary subensemble is P
j

then

the ratio of these two probabilities that assign the probability of transition from one

subensemble (in this case � = 0) to another (�
i

) is given by:

p
i

p
i

=
z
j

exp(⌘
j

)

z
0

exp(⌘
0

)
= exp(�(�

j

F
j

� �
0

F
0

)� ⌘
i

� ⌘
j

) (4.50)

Then we can find the free energy di↵erence between two subensemble.

�
i

F
i

� �
j

F
j

= ln
p
i

p
i

+ ⌘
i

� ⌘
j

(4.51)

However, we need to choose optimal accurate ⌘
i,j

. We start with the initial value of

⌘0
i

:

⌘0
m

� ⌘0
m�1

= (�
m

� �
m�1

)U
ij

(4.52)

where m is the particular subensemble which its nearest neighbours are m ± 1. Here

we consider left nearest neighbour (m� 1). However finding the optimal ⌘
m

iteratively

leads to self-consistent solution:

⌘i
m

= ⌘i�1

m

� ln(pi
m

/p0
m

) (4.53)
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In an equilibrium state, equation Eq( 4.51) will become ⌘
m

= �
m

F
m

because p
j

6= p
k

,

thefore, B
i

F
i

�B
j

F
j

= ⌘
i

� ⌘j and from equation Eq( 4.52), we have:

U(�) =
@(�F (�))

@�
. (4.54)

Although in this description of the method, the temperature was changing in di↵erent

subensembles, we can apply this method for di↵erent chemical potentials and variations

in the number of particles.

One of the applications of expanded ensemble methods is protein folding which was

modeled by a polymer chain whose temperature is used in a certain range to examine

its configuration[129]. Spin glass theory which was modeled by three-dimensional Ising

model is the best example of sampling theory for the expanded ensemble method [130].

This was the simulation that proved that replica symmetry can break the theory.

Generally, the EEMmethod provides us this opportunity to explore the configuration

of space and helps us to find the free energy di↵erence through measuring occurrence.

4.7 Conclusion

This chapter is an introduction to polymer physics. Some subjects such as scaling,

coarse graining, and random walk models are the key elements in the simulation of poly-

mers in physics. In this chapter, we have explained some common numerical methods

that can be used in a polymeric system. Some of these methods can be applied for poly-

mer adsorption on the surface. Simulating the polymer adsorption on the surface is a

complex process. There are a di↵erent range of interactions near the surface: short-range

interactions such as monomer-surface interactions and long- range interactions such as

monomer-monomer interactions. Each type of interaction has its own time interval.

We used Kinetic Monte Carlo simulation to cover di↵erent time intervals that a system

needs in order to have the related evolution. In the next chapter, we will explain about

the system that has both attractive and neutral sites. Once a few monomers become

adsorbed on the surface, general KMC simulation will become very slow. We employ

some conformation techniques such as the kink-jump method which we have discussed

from here, in order to increase the time of evolution in the system.





Chapter 5

Homopolymer Adsorption onto

Heterogeneous Surfaces

The adsorption of polymer chains on a solid surface is important in biology, tribology,

and industrial processes. Lubrication, DNA packing, chromatography and the synthe-

sis of artificial membranes all involve polymer adsorption onto a surface[131],[132],[95].

Polymers on a surface e↵ectively give rise to new materials with potentially useful

properties[21],[133]. To understand this, we need to study the nature of the applied

polymer chain and its environment to determine the macroscopic properties of the

interface[134]. As an example, thermodynamic properties such as the temperature of the

polymeric system have been directly related to the e↵ective volume around the monomers

(⌫), the space which monomers exclude other monomers. Factors such as solvent quality,

the size of macromolecules, end-to-end vectors, and radius of gyration length have been

extensively explored at the molecular level over the last four decades[135].

However, in this thesis, we are interested in the dynamics of the polymer solution in

the vicinity of the liquid-solid surface[136]. In general, the theory of the polymer-solid

interaction is very complex [137]. This will become more complicated when we consider

corrugated crystal structures with di↵erent kinds of interactions and surface energies.

In practice most of the surfaces are inherently heterogeneous, so the study of the

statistical and dynamical behavior of polymers near a heterogeneous surface is crucial.

From a thermodynamic point of view, polymers will minimize their energy by maximiz-

ing the number of adsorbed monomer-sites, but this leads to entropy loss, due to the

71
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reduction of free available monomer for building a new configuration. In this chapter,

we will investigate the behavior of homopolymer chain on complex surfaces using Monte

Carlo methods[138]. The surface structure that we study consists of both interacting

and non-interacting regions. From a surface structure point of view, there are some

attractive regions on the surface with binding energies that can overcome the loss of

entropy of an adsorbed polymer, whereas in other areas the entropy loss of the polymer

chain is greater than the binding energy, so a depletion layer will be developed. This bal-

ance of energy for the short chain is less than that for the long chain. As a consequence,

short chain polymers bind more easily to a surface.

The contribution of entropy to free energy is proportional to the temperature. At

high temperature, entropy will dominate, while at low temperature, the adsorption

energy will dominate. Our goal is to compute the critical value of the temperature T
c

of which both adsorption and desorption of the chain occurs with the same probability.

Once the polymer chain fully recognizes the attractive pattern for adsorption (fully

recognition of pattern by polymers means, when the polymer can self-assemble itself

based on the pattern), another phase of the system will occur.

In this thesis, we studied a few periodic and non-periodic patterns of attractive

sites. Not only is the temperature an important factor in phase transition, the length

of attractive sites also plays a key role in the time of occurrence of the phase transition.

We start from attractive sites patterned on the length scale of a monomer and

extend until the surface is e↵ectively and homogeneously attractive. From this, we

can consider the results from the nanostructured heterogeneous surface with uniform

attractive surface continuously. We calculate the free energy of such a system with

the expanded ensemble method. This method has been widely described in Chapter

4. This method has been studied for homogenous surfaces very well[139], however, the

heterogeneous surface is a subject that have been discussed less especially in polymer

physics. In this thesis, we are interested in heterogeneous attractive surfaces.

5.1 Applications of Polymer Adsorption

The polymer chain can be used to control crystal growth. When there is more than

one type of energy of facets in a crystal structure, the polymer chain can adsorb on the a
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particular facet and help other facets to grow faster. One of the uses of the homopolymer

adsorption on a solid substrate is in gas detection by semiconductors. Coating semicon-

ductor substrates with monodispersed polymer is one method for increasing the per-

formance of semiconductors or metals in detection of gases such as hydrogen[140],[141].

Polymers are highly sensitive and responsive to the environment via their configurations

and entropy and are well-known as a smart material[142]. Another application is in

optics and biosensors, where polymers can be patterned to di↵erent specific wavelengths

of light[143].

Recently the sensitivity property of polymer has been shifted to a new era of ap-

plications, which is in the biomedical field[144]. Polymer chains have been employed to

increase the e�ciency of injection and drugs in terms of speed and coverage. Basically,

drug molecule will attach to a polymer chain and that helps the drug to identify the

target cells faster and more e�ciently than with the regular approach[145].

The obstacle for all applications is the size of dispersion[146]. In nanostructure

format, polymer chains are very stable due to their covalent bonds. The covalent bonds

under thermal conditions become very weak and unstable. Therefore it is quite hard for

the system to reach a stable state. As a result, studying the polymer adsorption as a

function of temperature and environment is a crucial challenge for many chemical and

biological processes[147].

5.2 An Overview of Polymer Adsorption

In 1953, the first discovery of the change in conformation of a polymer chain in the

presence of a reflecting wall was made by Simha, Frisch and Eirich[148]. They studied

the properties of a single semiflexible chain tethered to a planar surface with a long-

range attractive potential by means of Monte Carlo simulations. They employed the

bond fluctuation lattice model and the Wang-Landau sampling technique to find the

adsorption isotherm[139]. Their discovery led to finding the thickness of the adsorbed

layer of monomers at a ✓ point which was proportional to the square root of the molecular

weight of the polymer. However, in 1960 DiMarzio et al. proved that the total number

of distinct conformations had been overestimated[149]. They applied a new method for

conformation of a polymer chain in a periodic cubic box. One monomer will change its



Homopolymer Adsorption onto Heterogeneous Surfaces 74

place; however, chains never take backward steps, but rather always press forward. The

polymer chain continues its displacement until their last monomer hits the other side of

the wall of the simulation box. They showed that the evaluation of the conformation of

the polymer chain must be considered one step before hitting the wall. Their calculation

was consistent with their experimental result. Also, there were some diverse studies

regarding the thermodynamic interaction parameters, applying scaling theory of polymer

adsorption and finding the thickness of the layer of adsorbed segments around that

time[150].

From the experimental point of view until 1955 only the total number of adsorbed

monomers per site could be measured. Then after that, the thickness of the layer of

adsorbed monomer could also be found.

From the theoretical point of view, statistical methods such as mean field theory,

scaling theory, and the renormalization group have been developed to explain the com-

puter simulations. Flory introduced the minimization of the free energy of polymer

adsorption onto a surface in the lattice space, which combines the mean field theory and

lattice models of polymer chains[151],[95]. In most of these studies, a flat surface was

considered, although in reality most of the surfaces have some roughness, impurities,

and defects. Magrather, Baumgfirtner and Muthukumar used MC simulation method

of simple cubic (SC) lattice[152]. Later on in 2002 Sharma et al.[153]and another group

Tavakoli et al.[154]. in 2012 paid attention to dipole surface and holes on the surface.

They applied a stripe pattern for such a heterogeneous surface.

5.3 Theory of Polymer Adsorption

Adsorption of small molecules has been discussed in Chapter 2 and 3. Unlike small

molecules that have a well-defined structure, polymer molecules can adapt a complex

variety of configurations and are prone to deform under small forces. Changing their

shape under di↵erent circumstances influences their physical properties. They can be

adsorbed in high amounts when the adsorption energy of the surface is greater than

entropy loss of molecules leaving the solution. In earlier chapters, we studied a dilute

solution, when a few molecules are adsorbed and the surface is occupied during the
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interaction. Once the interface becomes occupied, adsorption will gradually decrease,

behaviour that is described by the Langmuir model.

Understanding the physical behavior of the polymer at an interface is much less well

understood. The free energy of the polymeric system has a key role in determining the

conformational transitions of molecules in a system and reveals the balance between

entropy and adsorption energy that controls adsorption. The first person to discuss the

importance of this was Flory[155]. He used the free energy minimization approach for a

single chain in a solution, where its degree of scaling ⌫ (see section 4.0.3) corresponds to

the density of monomer with end-to-end vector length (R). For the ideal chain this ⌫ is 1

but based on the solvent, it can also be greater or less than one. Since the concentration

of the monomers is constant, the only thing that determines this value is the strength of

swelling and compacting of the polymer in a solvent. He assumed first the interaction

of polymer is such that the ideal chain is stretched from both ends. Later this length

of stretched chain is applied as a length scale to find the elasticity and the radius of

gyration. In 1962 Silbereg showed that in order to calculate the free energy of the

system near the interface it is important to consider solution loops and adsorbed train

in di↵erent states[96]. He also emphasized that, although the scaling length R2 at the ✓

point is proportional to molecular weight, for the adsorbed chain this relationship could

be weaker than this. He proved the scaling properties of the polymer in a solution can

be di↵erent from adsorbed chain, considering the segment interaction between chains.

We do not use this here since we only consider a single chain.

The common goal of all these methods is to relate the conformational properties of

the polymer to the sti↵ness of the polymer and its adsorption energy on the surface.

This is also the approach we take here. We need the total potential energy in order to

compute the partition function of the system and to calculate the free energy. The total

energy of the system can be given by:

U
total

= U
steric

+ U
B

+ U
A

(5.1)

This potential energy for our system consists of sti↵ness (U
B

), steric (U
steric

) and

adsorption energy (U
A

). The sti↵ness of a polymer can be defined by bonded potential
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energy, which can be gdescribed by:

U
B

=
X

✓

(1 + cos✓)2 (5.2)

where ✓ is the average interactive angle between two segments. If the polymer chain

represents di↵erent monomers, , which correspond to the sti↵ness of the polymer chain,

it can vary from one type to another. However, in our simulations, we assume the

monomers are identical and the bond length is small. We have learned from chapter 4

that for simplicity we consider the bond length between two monomers to be very small

(the Kuhn length), so the polymer chain is very flexible and the bond between any three

consecutive sites can vary from 0 to 180. Therefore, from above equation the average

U
B

in our case is zero.

The interaction between spherically-symmetric monomers can be defined by steric

potential:

U
steric

=
X

ij

U(r
ij

) (5.3)

where r
ij

is the distance between two interacting monomers, and U(r
ij

) is given by:

U(r
ij

) =

8
><

>:

k
B

T (r
i

� r
j

) < �,

0 (r
i

� r
j

) > �
(5.4)

where (�) is the monomer diameter. The value of U(r
ij

) can be computed by the link-

cell method[156]. At very high temperatures this steric potential is very large and is

equivalent to the number of overlaps of monomer together on the same site.

The other potential energy which is important is the adsorption potential. We define

this potential as

U
A

= N
s

✏ (5.5)

N
s

is the number of adsorbed monomers and ✏ is the strength of adsorption. In our

simulation the strength of adsorption is varried from 0 to k
B

T .

In the following section we consider a polymer chain with 24 identical monomers that
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connected together; their interactions are covalent and are such that their nearest neigh-

bors can interact with each other. However, this interaction is always much greater than

adsorption energy of attractive sites such that they will never become detached from

each other. This assumption is important at low temperatures due to the self-avoiding

random walk model when monomers cannot cross over each other.

5.4 Polymer adsorption near heterogeneous surfaces by

MC method

In this chapter, our aim is to simulate the adsorption of the polymer chain onto

heterogeneous attractive sites[157]. We build a three-dimensional lattice (3D) box with

a size of D ⇤ D ⇤ D where (D = 25), and the cell length (L) is a monomer diameter.

We neglect the solvent-monomers interactions and also solvent-solvent interactions. The

heterogeneous surface is placed at z = 0 and consists of neutral and attractive sites [158],

whereas on top of the 3D simulation box at z = D, there is an impenetrable surface.

Here we compute the free energy di↵erence by the KMC method. Finding the free

energy by the KMC method is di�cult due to the absence of function of configurational

phase space to be averaged over the area of the surface [159]. Therefore we use a series

expansion, in particular the expanded ensemble method that was introduced in the

previous chapter in order to find the functional relation between phase space and free

energy[160]. In addition, we are interested in finding physical quantities such as the

center of mass (radius of gyration), the end to end vector, the absorption fraction and

the probability of desorption. Furthermore, the most important part is to draw a phase

diagram for the system based on the temperature and the size of attractive sites for

di↵erent patterned surfaces.

5.4.1 Free energy calculation of homopolymer chain on lattice space

Calculation of the free energy or partition function is very useful for finding the

phase transitions, equilibrium states, and conformational transitions [161]. Computa-

tionally both molecular dynamics and Monte Carlo methods can be used to calculate

the internal properties of the system [162]. Methods such as umbrella sampling or series
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expansion can be used to simulate polymer adsorption. However, all of these meth-

ods are computationally demanding. Here in this thesis, we use an approach that is

called the extended ensemble method as discussed in Chapter 4, which is quite e�-

cient and accurate [163]. This method has been tested before in many systems such as

Lennard-Jones fluids[164], ordered polyelectrolyte[165], quantum Heisenberg[166], and

primitive electrolyte model[167]. In the present study, we apply this method on ho-

mopolymer adsorption in lattice space [168]. First, we assume our model is governed by

the self-avoiding random walk on a lattice. We start by calculating the total number

of configurations of the system at high temperature and for canonical ensemble system,

where the temperature is fixed:

S = �(�F ) = ln(Z) (5.6)

where � is reciprocal temperature (1/k
B

T ), S is the entropy of the system and Z is

the partition function that is related to the configurational phase space of the system

(Z = 1

N !

R Q
dqexp(��H(q))). When the contour length of the chain is quite short,

counting the total number of configurations is quite straightforward. However, for a

long chain, one can construct a random chain and then the fraction of nonoverlapping

configurations over a total number of configurations gives us the partition function of

the system, but again when the polymer chain becomes too large this is not an e↵ective

method. Instead in this study, we make a bridge between an impenetrable to a semi-

penetrable chain. Indeed, this method will cover di↵erent phases of the system that can

occur over a certain range of temperature: for example, the excluded volume e↵ect where

overlaps are not allowed at low temperature and the ideal chain model where overlaps

are allowed at high temperature. In order to use the expanded ensemble method for our

system, we first construct the potential energy of the current conditions of the system.

The semi-penetrable assumption means that monomers can overlap with each other with

an energy overlap of ✏
mm

. Also, segments can adsorb on the surface with an energy of

absorption is ✏
ms

. We have argued in section 5.3 that the total potential energy of the

system is given by:

U(q
i

) = N
v

✏
mm

�N
s

✏
ms

(5.7)
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where N
v

is the total number of overlapping monomers and N
s

is the total number of

adsorbed monomers on the surface. The first term shows the steric potential and the

second term shows the adsorption energy of the system. This equation is only for one

conformation at a state i (q
i

). Consequently, non-dimensional Hamiltonian of the system

is given by:

H(q
i

) = �U(q
i

) (5.8)

where U(q
i

) is the potential energy of conformation. Since the temperature is the con-

trolling factor in adsorption transition of the system we consider a set of subsystems

(subensemble) over a range of temperatures such that each sub-system is at a certain

constant temperature [169].

However, we know that many important phases are missing at high temperatures

that can only be found in exploring the system at that range of temperature. As a

consequence, using the expanded ensemble method (EEM), we not only consider each

sub-ensemble at a constant temperature but we also examine the whole system at a

range of temperatures. The canonical partition function will be the sum of all the

configurations that we obtain from Monte Carlo averaging. We start by computing the

partition function of each subensemble (Z
m

):

Z
m

=
X

i

exp(H
m

(q
i

)), (5.9)

where H
m

is the Hamiltonian of each subensemble at some temperature ��1

m

. The total

partition function for m subensembles using (Eq. 4.46) is given by:

Z =
X

m

Z
m

exp(⌘
m

) (5.10)

where ⌘
m

is the weight function that balances between di↵erent subensembles to ensure

that the simulation explores low energy states as well. From the previous chapter,

we start giving an arbitrary value of zero to ⌘
0

and finding the rest of the ⌘
m

by the

probabilities of their occurrences and we improve the values after several MC steps.
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In order to integrate all the subensembles in a simulation, we need to consider an ex-

tended system that contains all the subensembles. The subsystems are identical, except

their temperatures ��1

m

are di↵erent. The extended system needs to exchange between

each subensemble in order to find the equilibrium state. We divide the simulation pro-

cess into two steps: 1)-change the conformation of the chain in one subsystem,

2)-swap the sub-ensemble for transition from one temperature to another.

We consider these two steps independently below.

5.4.1.1 Change the conformation of the chain

In this step, the system is at a certain temperature in a subensemble and the only

change is in the configuration of the system. Therefore the subsystem will have transition

from one configurational state to another state within the subensemble. The probability

of transition between state i and j is given by:

w
ij

(�
m

= constant, q
i

! q
j

) = min{1, exp[��
m

(U(q
i

)� U(q
j

))]} (5.11)

After considering all the conditions for displacing monomers, we test the Rosenbluth

condition, which measures the energy of the system after and before the transition,

computing the energy of the new state and the energy of the current state[170]. where

exp[��
m

(U(q
i

)�U(q
j

))] is the result of (Eq 4.52). The transition will be approved with

the probability min{1, exp�(U(q
f

) � U(q
i

))}, otherwise the transition will be rejected.

In Monte Carlo simulation algorithm such as metropolis or kinetic Monte Carlo, moves

will be accepted if exp(�U/k
B

T ) < r where 0 < r < 1 is a random number. We applied

the same method for the change of conformation and free energy calculation as well.

There are di↵erent types of local moves of polymer conformation approaches, such as

kink-jump, crankshaft, and reptation, which we already discussed in section. 4.5.1[171].

Applying each method has its own advantages and disadvantages, which are not the

same for all types of systems. Selecting best method is based on their performances in

a specific system, as well as their speeds, and e�ciencies. For example the reptation

method is not a suitable case for non-homogenous surfaces and it is mostly used for

uniform media.



Homopolymer Adsorption onto Heterogeneous Surfaces 81

The method that we apply is the combination of the single move MC (SMMC)[172],

and configurational biased method (CBMC)[173]. It consists of three steps: select a

monomer from a single chain randomly, then examine the total available sites in the

radius of cubic cells (Figure. 5.1) (
p
1,
p
2,
p
3) and finally we select one of the available

sites randomly. Secondly, check whether the nearest neighbors of the selected monomer

are capable of changing their place in the newly translated position or not. Furthermore,

we check whether one end of the polymer chain is close to the neighbours of selected

monomer or not. If that is the case, the monomer can make a new bond with that end

and the subsequent monomer becomes the last or first monomer of the chain and that

end plays the role of a new neighbor for that monomer (Figure. 5.2). This method can

dramatically increase the speed of evolution of systems with adsorption sites.

Figure 5.1: This figure shows the bond fluctuation of a polymer chain within a cube.
The dash lines show the available places that one monomer can choose from. The red
circle is the fixed monomer and dashed gray circles show the new possible position of

monomer. Maximum displacement is a cube diagonal.

The situation is more complicated when some monomers are adsorbed on the surface,

while their neighbors are free to make a local move. The system can transit from one

conformation to another, if the strength of the surface is such that adsorbed monomer

can not leave the adsorption sites then their neighbours can only move within a certain

distance which is obeying the bond fluctuation model (BFM) assumption (section 4.4)
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Figure 5.2: A state before conformation change is shown. i is the selected monomer
and it is close to the end of the polymer chain, therefore in the second picture monomer
makes a new bond with n-th monomer and looses its other bond with i+1. Now N
becomes i+1-th monomer and the previous neighbor will become the last monomer.

5.4.1.2 Swap between sub-ensembles

At this step a subsystem with a fixed configuration is checked for a transition from

its current temperature to the next nearest neighbour temperature that is more stable

from an energetic level point of view:

w
mm

0(�
m

! �
mm±1

, q
i

= constant)

= min{1 + exp[�U(q
i

)(�
m±1

� �
m

) + ⌘
m±1

� ⌘
m

]} (5.12)

where �
m

is the temperature of the current subensemble. We check the neighbours of this

subensemble to see whether their energies are less than the current subensemble. q
i

is

the conformation of polymer, it does not change during the temperature transformation.

In the whole MC process, there were n
m

MC steps in subensemble m at �
m

and

n0
m+1

MC steps in subensemble m+ 1 with �
m+1

. If the total number of MC steps was
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n then the probability of occurence of subsensemble m is equal to p
m

= n
m

/n. As a

result from (Eq. 5.10) p
m

will be p
m

= Zmexp(⌘m)

Z

. Once we have found the ratio of two

probabilities we can use the (Eq. 4.49) from chapter 4 for free energy di↵erence of two

subensemble p
m

/p
m

0 :

�
m

F
m

� �
m

0F
m

0 = �ln(p
m

/p
m

0) + ⌘
m

� ⌘
m

0 (5.13)

The simulation is started using simple known partition function. For example, in

our case we assume the initial system is at a very high temperature (� = 0) and consists

of a gas of non-interacting monomers. By considering 6 degrees of freedom for each site,

the partition function will become (Z
0

= 6L) and the weight factor (⌘) will be zero.

Therefore equation . 5.13 will transform into:

�
m

F
m

= �
0

kT ln(Z
0

)� lnp
m

/p
0

+ ⌘
m

= �Lln(6)ln(p
m

/p
0

) + ⌘
m

(5.14)

This equation defines the free energy F
m

is excess free energy from the ground state. In

order to ensure balance of probability of occurrence for each subensemble, we need to

find the optimal values for ⌘, which requires a separate calculation. The initial values

of ⌘ also not known but we choose ⌘0
0

= 0 in the first run for the ground state. By

combining U(q) = @�F (�)/@� and from (Eq. 5.13) at equilibrium (ln(p
m

/p
m�1

) = 0),

thus:

⌘0
m

� ⌘0
m�1

= (�
m

� �
m�1

)(U
m

(q) + U
m�1

(q))/2 (5.15)

We stop running the process once p
m

' p
m

0 and ⌘q
m

become the optimal value of ⌘ after

running q times. After finding the optimal values of ⌘
m

for each subensemble we can put

the ultimate values in (Eq. 5.14) and follow the rest of the calculation in the equilibrium

state.

We consider a range of temperature from � = 0, ...4✏�1

mm

and for accuracy purpose, we

divided this range of beta into 40 segments (�� = 0.1), 20 segments (�� = 0.2✏�1

mm

), and
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10 segments (�� = 0.4✏�1

mm

) and we compare the results to see how many subensembles

are best. It turns out the number of subensembles should not be too small or too large,

as when the number is too small, we may lose some important phases of the system

and when the number of subensembles is too large, it is hard for the system to find the

equilibrium state and it may become stuck in one ensemble, since the energy di↵erence

becomes quite high, therefore, the bias potential does not let the system to change its

ensemble. The optimal number of subensemble will be di↵erent for di↵erent systems. For

example, for an electrolyte system, people consider the range of � = 0✏�1 to � = 20✏�1

and then divide this range into 8 equal parts[127]. In our system, we found that most

of the interesting phase behaviour occurs at temperatures from � = 0✏�1 to � = 4✏�1,

since some phase behaviour occurs over a narrow range of temperature. We considered a

small range of temperature in order not to miss any important evolution of the system.

5.5 Results

We start by finding the initial ⌘ from a number of overlaps and adsorbed monomers

and we obtain the optimal values of ⌘
m

after three runs. Finding ⌘ for a system that does

not have any attractive sites is straightforward, but in the presence of attractive sites,

the competition between overlap energy and adsorption energy makes the value of ⌘

more complicated, since the balance point of forces will not change linearly over a range

of temperatures and the equal probabilities of subensembles take a long time. Table. 5.1

shows the free energies for a polymer adsorbed over striped pattern of attractive site

of size L = 2. We did three runs for each pattern to find the optimal value and we

normalized the value over the length of the box D = 24 (see figure 2.7). The first

column shows the values of � in each subensembles and the second column is the total

potential energy of short range and long range interaction. We assume the energy

of binding monomer-surface (✏
ms

= 1��1) and overlap energies of monomer-monomer

(✏
mm

= ✏
ad

= 1). At very high temperature (� = 0✏�1) the fluctuation of the system is

very high, so the high entropy of the system does not let the polymer chain to become

close to the interface. Therefore at very high temperature the contribution of adsorption

energy is nearly zero, while at low-temperature system has less entropy and tends to

become stable as a consequence the there is only adsorption energy term in the total

potential energy. The third column in this table shows the probability of occurrence of



Homopolymer Adsorption onto Heterogeneous Surfaces 85

di↵erent subensembles becoming equal. It means that the balance factor is performing

well.

5.5.1 Probability of Desorption state of homopolymer chain onto het-

erogeneous surface

The temperature at which the polymer starts to become adsorbed on the surface is an

important phase boundary for us. At this temperature, the energy of the polymer will be

strong enough to make a new bond with the surface and overcome its internal interaction.

Our system consists of two types of sites attractive sites and neutral sites: The polymer

chain needs to distinguish the attractive sites and become adsorbed on those sites. We

produced three di↵erent patterns of attractive sites in our system: random, striped and

checkerboard. We also extend the size of each pattern to examine the e↵ect of the

size of islands on the temperature of adsorption of the chain. As a consequence, this

phase can occur at di↵erent temperatures based on the conditions of the system. In

order to understand when a system reaches this state, we can calculate the probability

of desorption. The probability of desorption is computed from the total number of

desorbed states at a particular temperature. At high temperature this probability is

near to one; as the temperature goes down this probability will tend to zero.

5.5.2 Adsorption energy of homopolymer chain onto heterogeneous

surface

Polymer adsorption has been studied extensively in chemically and biologically ho-

mogeneous surfaces. However, in reality, homogeneous surfaces do not exist. There

are two types of heterogeneities on the surfaces: chemical and physical heterogeneity.

Chemical heterogeneity results in some surface sites being preferable for adsorption than

others, and physical heterogeneity results in some roughness and corresponding surface

defects. We use a lattice model, so the size of each unit cell is comparable to the size of

monomers in the solution. The surface is modeled as a flat square lattice with attractive

and unattractive sites. In a periodic lattice the standard of measuring the adsorption

energy of the system is the total number of adsorbed monomers on attractive sites times

the binding energy; in this case ✏
ms

= ✏
ad

= 1��1, whereas in random lattice due to

the di↵erent dimensionality of the attractive sites, we measure the adsorption energy
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Table 5.1: Striped pattern with size of islands L = 2. The first column shows the �
segmentations. The second column computed the total potential energy of the system.
The third column shows the probability of the subensemble occurrence in equilibrium.
Three columns of �mF 0

m/L, �mF 1
m/L and �mF 2

m/L show 3 times running to find the
optimal value of free energy di↵erence of subensembles.

�
m

U
m

(q) p
m

�
m

F 0

m

/L �
m

F 1

m

/L �
m

F 2

m

/L

0 4.8 4.45 ⇤ 10�2 0 0 0
0.2 2.65 7.34 ⇤ 10�2 0.0298 -0.457615197 -0.663467
0.4 1.95 4.46 ⇤ 10�2 0.0482 -0.293948829 -0.621584892
0.6 1.1 5.12 ⇤ 10�2 0.0604 -0.212847471 -0.623527527
0.8 0.75 5.10 ⇤ 10�2 0.0678 -0.16571258 -0.588376999
1 -0.35 4.94 ⇤ 10�2 0.0694 -9.28E-02 -0.344592154
1.2 -4.45 4.64 ⇤ 10�2 0.0502 3.73E-02 -0.207179055
1.4 -10 5.03 ⇤ 10�2 -0.0076 -9.71E-03 -2.06E-02
1.6 -12.45 4.77 ⇤ 10�2 -0.0974 -9.35E-02 -0.109515771
1.8 -14.8 4.68 ⇤ 10�2 -0.2064 -0.20102872 -0.202600151
2 -15.4 4.50 ⇤ 10�2 -0.3272 -0.303032279 -0.308999509
2.2 -19.45 4.46 ⇤ 10�2 -0.4666 -0.464121163 -0.574201226
2.4 -20.2 4.50 ⇤ 10�2 -0.6252 -0.626578093 -0.621058524
2.6 -19.6 4.46 ⇤ 10�2 -0.7844 0.78000176 -0.780239105
2.8 -18.8 4.58 ⇤ 10�2 -0.938 0.929854214 -0.931794882
3 -19.8 4.46 ⇤ 10�2 -1.0924 -1.12098658 -1.09032285
3.2 -18.4 4.55 ⇤ 10�2 -1.2452 -1.25291169 -1.25037634
3.4 -19.35 4.54 ⇤ 10�2 -1.3962 -1.39173567 -1.39034104
3.6 -19.35 4.51 ⇤ 10�2 -1.551 -1.50077653 -1.50024617
3.8 -20 4.47 ⇤ 10�2 -1.7084 -1.78565001 -1.78224671
4 -22 4.46 ⇤ 10�2 -1.8644 -1.86106634 -1.86087024

based on the coverage of the surface by adsorbed monomers (N
m

) over the total number

of attractive sites � = N
m

/N . Our goal here is to study the e↵ect of distribution and

size of heterogeneous sites on adsorption states. Moreover, this information will help

determine whether the pattern and length scale of that pattern are important factors in

the desorption transition of the system[174].

5.5.2.1 An overview of four di↵erent phases of the system

There are four important phases that we want to study in this system: fully crum-

pled, expansion, adsorption, and pattern recognition. Before studying di↵erent patterns

and comparing them together, we show these four phases by an example. From snap-

shots you can see these four phases step by step (Figure 5.4 and 5.5). First the polymer

is fully crumpled then it starts to expand and become adsorbed on the surface and in the
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Figure 5.3: This figure shows a summary of four important phases that occur during
simulation. All the figurs are in striped pattern with L = 2. In figure (A), line drop from
maximum to minimum shows the transition from fully crumpled to the expanded state.
Figure (B) demonstrates the probability of the number of desorbed state in the system.
Figure (C) shows the transition from desorbed state to adsorption state. Saturation in
high � shows fully adsorption of the chain. Figure (D) show the pattern recognition by
polymer chain. Once the total number of bridges tend to zero, the polymer has fully

recognized the pattern of the surface.

last step the chain tries to recognize the surface. After simulating di↵erent phases, we

want to draw the phase diagram of the system that the length of the attractive islands

and the temperatures are two key factors of its phase transitions. Figure. 5.3 shows the

di↵erent phases of the striped pattern at L=2.

In order to understand these phases better, we took some snapshots of di↵erent

phases for di↵erent patterns. We consider only one length of island size for three di↵erent

patterns to understand the evolution of the system as � increases.
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(a) (b)

(c) (d)
(a) Di↵erent snapshots of striped pattern at di↵erent range of temperatures: very

high=(a) to low temperature=(d). From a to d � = 0.0✏�1, 1.2✏�1, 2.5✏�1, 3.5✏�1

(a) (b)

(c) (d)
(b) Di↵erent snapshots of checkerboard at di↵erent range of temperatures: very

high=(a) to low temperature=(d) From a to d � = 0.0✏�1, 2.0✏�1, 3.0✏�1, 4.0✏�1

Figure 5.4: The snapshots of two di↵erent patterns at four di↵erent temperatures
with L=2. The brown sites show the attractive islands and green sites or neutral.
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(a) (b)

(c) (d)
Figure 5.5: Di↵erent snapshots of one arbitrary random pattern (does not change
over time) at di↵erent range of temperatures: very high=(a) to low temperature=(d)

From a to d � = 0.0✏�1, 1.8✏�1, 2.5✏�1, 4.0✏�1.

5.5.2.2 Expansion of homopolymer adsorption

We begin with an analysis of the e↵ect of the distribution of the active sites on the

geometry of the homopolymer during adsorption. One of the most important quantities

is the end-to-end vector of polymer in the z-direction, which helps us first to find the

radius of gyration and moreover, gives us some insights about the elasticity of the chain

for di↵erent ranges of temperature. This measurement directly helps us to find the

transition from fully crumpled polymer chain to expanded polymer chain that is ready

to become adsorbed on the surface. (Figure. 5.10) the temperature and pattern scale

dependencies of < R
z

>. For a checked pattern with L = 1 or L = 2, the degrees of

freedom for adsorption of the segments is less than for a striped pattern, and therefore,

the entropy of the system in the checked pattern with size L = 1 or L = 2, is higher

than the other two patterns[175]. As we can see, the length of the polymer chain in the z

direction in this pattern is higher than that of the striped and random[176]. However, as

we increased the size of the domain sites in the checked pattern, the number of degrees

of freedom or available sites in this pattern become greater and comparable with the
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Figure 5.6: The average of centre of mass for di↵erent pattern and di↵erent size of
active sites

striped. Due to the complexity of the random pattern, this pattern has the maximum

length of an end-to-end vector in the z-direction.

The reason that the height of chain at � = 0✏�1 is not maximum in figure 5.6 is

because of the number of overlaps. Basically, at � = 0 (very high temperatures) the

polymer is crumpled, and therefore the distance between the two ends is very short.

Then at higher beta for example � ! 1 the chain becomes more expanded and once it

comes to the surface, its height will tend to zero.

5.5.2.3 Critical temperature of adsorption and desorption

At Z = 0 system has two types of sites: neutral and attractive sites. A few attractive

sites can attach together and make an island. The total number of attractive sites



Homopolymer Adsorption onto Heterogeneous Surfaces 91

divided by unit area defines the coverage (�). The Adsorption energy is defined as a

total number of the adsorbed monomer on the attractive sites times the unit of energy,

which is ✏�1 = k
B

T :

✏
ads

= Nadsorbedmonomers ⇤ (k
B

T ) (5.16)

The thermodynamic properties of the system at very high temperature and very low

temperature are quite di↵erent. At very high temperature (� ' 0✏�1) the behavior of

the polymer chain is similar to the ideal chain that we discussed in Chapter 4, and hence

this is where we see the most compact form of the polymer chain. As the temperature

decreases the polymer chain expands due to the excluded volume e↵ect. The system

transitions from the configuration of an ideal polymer chain to a real polymer chain with

excluded volume. At this temperature, the polymer chain starts to become expanded and

ready to be fully adsorbed on the surface since active sites can only accept one monomer

per unit area, for adsorbing on the surface chain needs to become fully expanded first.

Sometimes due to the high energy of the surface, the chain does not have a chance

to expand itself, and therefore some monomers can never hit the surface. (Figure. 5.7)

shows the total number of adsorbed monomers with di↵erent length over a di↵erent range

of temperatures. At very high temperature no segment is adsorbed yet as � increases a

few monomers start to become adsorbed on the surface. This point is designated to be

the critical temperature of adsorption. The number of adsorbed monomers is higher for

wider domain size. While in strong adsorption states the number of adsorbed monomers

will decrease with broader domain size. This is because of the time evolution of the

system. In the presence of very strong adsorption sites the system does not have any

chance to self-assemble itself onto the attractive sites. Therefore, many monomers that

have overlap together do not have enough time to find the private place for themselves

(see Figure. 5.7). At small domain size, this critical point for a pattern like stripe occurs

at a higher temperature than complex patterns like checked and random. Another

important feature that we can see in the figures is the total number of adsorbed monomer

at saturation points, which for pattern like checked with domain size L = 1 this value

cannot exceed further than N
ads

= 8, whereas this value for more simple pattern like

striped at the same size is almost twice.

The critical temperature of desorption refers to the fraction of a total number of
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Figure 5.7: The energy of adsorption for di↵erent patterns with a di↵erent size of the
sticky island. From this figure, we can find the critical temperature of adsorption for
di↵erent types of adsorption sites. Once a few monomers start to become adsorbed on
the surface we measure this temperature as a critical temperature of adsorption. The

� values of striped and checkerboard pattern are the same.

states that are in desorbed state and this number for high temperature is equal to one

and it means that 100% of the states are in desorbed states. As the temperature goes

down the probability that polymer found in desorbed states is decreasing. This fraction

suddenly drops o↵ once a few monomers adsorb on the surface. This is the point we

measured as the critical temperature of desorption (see Figure 5.8).

5.5.2.4 Pattern Recognition

The size of domain sites helps us to understand the interplay between the size of

active sites and monomer pattern recognition. Moreover, the strength of adsorption

is another factor that can alter the temperature of recognition[177]. To distinguish

between highly adsorbed and recognizing surface (see Figure. 5.9a). This may not be

very important for a single chain, while it plays a key role in the crowded polymer chain;

when applying the polymer chain it is very expensive and we want to take advantage of
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Figure 5.8: This figure shows the probability of desorption for di↵erent patterns with
a di↵erent size of the attractive sites. From this figure, we can find the critical temper-
ature of desorption for di↵erent types of attractive sites. Once a few monomers start
to drop on the surface the total number of desorbed states start to become decreased
and we can measure the temperature as a critical temperature of desorption. � values

of checkerboard and striped pattern are the same.

the maximum e�ciency of this material[178]. Therefore the second sharp transition of

the system is when the polymer chain recognizes the pattern and become fully frozen that

pattern. Pattern recognition is very important in curing cancers by a smart drug delivery

system through polymer chains[179]. In order not to waste this expensive material, they

apply polymer chains not only to recognize the tumor cells but also to help drugs to

optimize their life expansion on these patches. (Figure. 5.9a) shows the general concept

of recognition. As you can see in the first figure (a) polymer chain is fully adsorbed

and the energy of binding will be equal to the other figure (b). However, in the first

figure there are some bridges and since this is not a stable phase for the polymer chain,

it will tend to get o↵ the surface. However, in figure (b) the polymer is more stable

and fully relaxed at the pattern. (Figure. 5.9b) shows the average number of these

bridges for two di↵erent patterns and two di↵erent sizes of islands. In both patterns at

high temperature, there is no binding between the polymer and the surface, while at
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Figure 5.9: (A) Di↵erence between fully adsorbed and the pattern recognition A-a
polymer chain is fully adsorbed on the surface. Nevertheless, the chain makes several
bridges from one attractive site to another. In A-b the surface is fully recognized by
polymer chain (no monomer remains unabsorbed). For L=1 polymer will never become
adsorbed on one line unless the length of the chain was smaller than the size of island.
(B) Numerical results of an average number of bridges in checked pattern and striped

pattern for two sizes of attractive islands L = 2, 4.
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higher � the chain becomes partially adsorbed. The number of bridges starts to increase

by decreasing the temperature; for example, around � = 0✏�1 for the striped pattern

the number of bridges is maximum, and then starts decreasing due to recognizing the

pattern and once it is zero, the polymer has recognized the pattern.

5.5.2.5 Phase diagram

In the phase diagram of the system, four major phases can be discovered. 1) Desorp-

tion: at very small � and very small L, at this phase system, has the highest and lowest

binding energy. The polymer chain is fully crumpled and has the highest entropy. 2)

Expansion: another phase is when � becomes larger and L is very small, polymer chain

cannot adsorb but the overlap energy will decrease and the chain becomes expanded.

The entropy of the system starts to decrease as the system becomes ready not to have

overlaps. 3) Adsorption: at very low temperature and low to medium size of islands a

few monomers start to adsorb on the surface, however not all the monomers can adsorb

in this phase. 3) Pattern recognition: as we increased the length of the active sites,

adsorption will become the main phase of the system. Polymer tends to adsorb on the

surface faster and the number of adsorbed monomer increase until at a certain tempera-

ture and size of islands, polymer chain become fully frozen on the surface. As the size of

the island tends to a maximum, which is the length of the box, almost all of the phases

of the system will meet together at a certain point, which is the critical temperature of

adsorption for homogeneous surfaces. Drawing a phase diagram for an ordered pattern

such as checked or striped is easier than a disordered pattern like random, and there-

fore here we only stick to the accurate phase diagram of striped and checked patterns

because we could calculate the exact numeric values for each phase of the system. For a

random pattern understanding the critical temperature of adsorption and desorption is

not very complicated; interpreting the pattern recognition temperature, however, is not

very accurate.

The phase diagram of figures 5.10a and 5.10b demonstrate for any long flexible

ideal chain that the binding energy of the surface can overcome to the overlap energy of

the monomers, the temperature of the phase transition is proportional to the length of

domain size.
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Figure 5.10: These two figures demonstrate the di↵erent phases of the system. At
high temperature, the polymer is fully desorbed crumpled and compact (a) then starts
to expand (b) and ready to make a new bond with the surface. After a few monomers
have adsorbed on surface adsorption will start (c). In the next step polymer starts to
find the stable state and become relaxed on the surface (d). The width of the lines
show that the boarder between two regions is not very sharp and it changes from case

to case. Therefore, we cannot separate two phases with a certain point.
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5.5.2.6 Compatible Surfaces

In this section, we consider the mixture of di↵erent surfaces only because in reality,

di↵erent types of the facet can exist in the crystal structure, or in biology we have

so many biocompatible surfaces, and as a consequence, we need to understand in this

situation what pattern is the most desirable for a chain to adsorb on. From a statistical

point of view, the polymer tends to adsorb on a place that has greater numbers of degrees

of freedom, and therefore in the battle between checked and striped pattern, the striped

pattern will win and attract the polymer chain on its sites.

(a) (b) 

Figure 5.11: Compatible schematic to show the competition between striped and
checked pattern for adsorbing polymer chain.

In order to test our observation, we ran our model 144 times to check the frequency

of the adsorption of the polymer chain in di↵erent positions on the surface. Figure

5.12shows the histogram of this testing for each length x noted as the size of islands L.

From L = 1 to L = 12 we designed a striped surface and beyond that is the checkerboard

surface. Our testing demonstrates that the striped pattern is more desirable than the

checkerboard for the polymer to be adsorbed on that. As you can see the frequency of

adsorption in the striped pattern area is greater than the checkerboard.
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Figure 5.12: The histogram of adsorption of Polymer chain on a mixed surface demon-
strates that stripe pattern is more desirable than checkerboard for polymer to become

adsorbed.

5.6 Conclusion

In order to summarize all the things that we have found in this chapter, suppose

a freely jointed chain (FJC) and heterogeneous attractive sites are dynamically in an

interaction condition. Generally, we were interested in analyzing thermodynamical and

statistical properties of the adsorbed state, in order to identify di↵erent types of surfaces.

In addition, due to the importance of the pattern recognition in many biocompatible

and chemical surfaces, we want to find the relation between phases and recognize the

pattern of the surfaces.This will help us to understand what state the system will have

maximum coverage of attractive sites by segments of the polymer chain. As a part of

this study, we focus on di↵erent patterns of the surface, which can be a demonstration

of di↵erent types facets on a crystal structure. As a result, the primary question was

whether di↵erent patterns or structure of the lattice can a↵ect on adsorption states and

phase transition of the system. Additionally, when the system does stop evolving or in

another words the polymer chain will be frozen on a specific structure.

The model that we chose was suitable for the conformation of the polymer, the flexibility

of the coil and the competition between binding energy of the surfaces and fluctuation of

configurations. The extended ensemble method due to the flexibility of transition within

a di↵erent range of temperatures and measuring the entropy of such a stochastic problem

at each temperature allows us to extract the important details of the thermodynamic

behavior of the system from very high to low temperatures.
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Our result proved that in nanostructured formats of pattern FJC has more degrees

of freedom in the striped pattern. Therefore, it has this capability to reach to the

steady state at higher temperatures, a checked pattern is the most complex surface due

to the limitation of accepting monomers on its attractive sites. This di↵erence between

patterns will fade away at lower temperature and broader domain sizes[180].

In the next chapter, we consider two types of monomers in a chain. Building and

designing the best polymer chain for optimal results from the coating is a big challenge.

One of these applications is in crystal growth. We will study this in the following chapter.





Chapter 6

Copolymer Adsorption onto

Heterogeneous Surfaces

The use of copolymers to influence non-uniform crystal growth across di↵erent facets

has attracted a lot of attention recently[172]. Designing particular copolymers that mod-

ify the rate of adsorption near particular surfaces is a promising approach to optimising

crystal structure. Di↵erent types of blocks can be assembled in a chain, including hy-

drophobic and hydrophilic blocks or double hydrophilic blocks, (A-block-B or A-alt-B).

Here we assume our copolymer type is A-alt-B, which are usually small monomers with

small chain lengths. If we need to alter the surface energy of a particular facet, specific

copolymers can be designed to preferentially absorb on that facet. As a result, such

copolymers are sometimes called crystal modifiers[181].

Here we study the selectivity of a copolymer on a heterogeneous surface with dif-

ferent strength of adsorption. The approach is similar to that for homopolymers on

heterogeneous surfaces. The solution condition is exactly the same as in the previous

chapter: we have a transition from high pH or high temperature to low pH or low

temperature[182]. By designing di↵erent copolymers, we can modify the rate of adsorp-

tion in order to produce di↵erent types of crystals[183]. Adsorption leads to entropy

loss, and the equilibrium state is a result of the balance between entropy loss and en-

thalpy gain from adsorption[184]. Here we have employed the MC simulation method

to understand the di↵erent phases of the system. The di↵erent challenge of applying

101
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MC simulation in this chapter from the previous chapter comes from di↵erent types of

monomer and the way we select the configuration and transitional states[172].

Figure 6.1: Figure (a) shows diblock copolymer adsorption with the least e↵ective
design. In this type of design, the orientation of monomer type B and monomer type
A are such that both can equally distribute over the surface. In Figure (b) monomer
type, A and B cannot equally adsorb on the surface and adsorption of type A (green

cube) will be preferred to type B (orange cube).

In living systems polymers are flexible and sensitive to change of environment. The

most common biological example of such a system is protein molecules adsorption onto

cell bodies that needs pattern matching between target cells and proteins[185]. The

important elements in this kind of adsorption are the chain length and the sequence of

the monomers in the chain, as well as their match to the adsorbing sites, the adsorption

strength and the pattern of distribution[186].

Another application of the copolymer is in biopolymers, which are usually random

heteropolymer (RHP)[187]. Their multi-functionalities and quench disordered make

them interesting for biometric behavior in a definite context. The interest in applying

copolymer structure to nucleation is due to modulation at high temperatures. At high

temperatures, the copolymeric system exhibits phases where the order parameter is spa-

tially modulated. For example, monomers of type A and type B can never overlap each
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other below the critical temperature; they are energetically attracted at high temper-

atures. Moreover, they are e↵ectively proven to be surface confined in the nucleation

process. Due to the small size of the monomer in the copolymer, the crystallization

always experiences higher confinement and more compact morphologies by copolymers.

The consequences of confinement by copolymers are reduction of both crystallization

and melting temperatures of the crystallization process.

On the other hand, ordered A-alt-B copolymers are of interest for lithographic ap-

plications, where copolymers are templates to produce quantum dot arrays [188]. Con-

trolling the domain size through surface interaction is a big challenge in this application.

Furthermore, there are many other applications such as transmembrane signaling

pathogen-host interaction, an anti-reflective coating that needs recognition by means of

a copolymer chain[189].

The adsorption of copolymer happens at higher temperatures compared to ho-

mopolymer systems. In copolymers, the attractive and repulsive interaction between

monomer type A and B are di↵erent. Therefore the configurational phase space in the

copolymer chain is more restricted than homopolymers. As a consequence, due to less

fluctuation of conformations, they can find their relaxation states faster.

The important information from the adsorption energy diagram of copolymer sys-

tems comes from the diversity of the number of adsorbed monomers type A and B. In

crystal growth processes, scientists are interested in controlling the growth of facets with

high surface energies to let other facets with lower rates grow more. Therefore in this

study, we are interested in designing a polymer with type A + type B that is the most

selective in its adsorption on a range of potential surfaces[190]. We try three di↵erent

patterns of adsorption energies and compare their results together aligned with di↵erent

domain sizes of islands.

6.1 Methodology

Our main focus in this chapter is studying the e↵ect of attractive domain sizes and

patterns on adsorbing chains of A and B monomers.
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We use the bond fluctuation method (BFM). Our polymer consists of two types of

monomer A and B. The chemical nature of the copolymer is such that they can naturally

occupy a single unit at high temperature or high pH, whereas at low temperature or

low pH their internal molecular interaction will decrease and monomers will repel each

other. As with the previous chapter, we use the expanded ensemble method (EEM) in

order to transition from a flexible chain to a rod-like model chain. The surface energy

is measured as a unit of energy adsorption which is ✏
0

= ✏ = k
B

T and the strength of

sites are less than one unit of energy (✏
A

and ✏
B

< 0).

In order to study the dynamics of the local moves, as in the previous chapter we start

with the mechanism of the single move in MC simulation. Since the nature of their

fluctuations and conformations are the same, there is no preference for selecting monomer

A or B. As a trial conformation we select one monomer randomly and then we check

whether the constraint condition of the bond fluctuation method to retain the condition.

Next, based on the Rosenbluth condition we weigth both levels of energy states (old= w
0

and new= w
1

). The trial confirmation will be accepted if the random number generated

is less than or equal to min{1, w
1

/w
0

}. In order to calculate the transition of the

system, we first start from the Hamiltonian of the system. We assume that the overlap

energy of N
ov

(B � B) = N
ov

(A � A) = N
ov

(A � B) = k
B

T and the ionic strength

0 < ✏
A�A

6= ✏
B�B

 1 and ✏
A�B

= 0. Using this we can write[191]:

H
tot

= (�N
A

✏
A�A

�N
B

✏
B�B

+ (N
A

+N
B

)✏
kBT ) = U

i

(6.1)

the subscript i refers to the current state i. The transition probability will be:

W
ij

=

0

@w
aa

0

0 w
bb

1

A (6.2)

where w
aa

and w
bb

are the probability of adsorption monomer type A on the site type

A with adsorption energy ✏
A

and the probability of adsorption of monomer type B

adsorbing on the site type B with adsorption strength ✏
B

. Thus,

P
eq

(i)W (i ! j) = P
eq

(j)W (j ! i) (6.3)

From (Eq. 6.1) and (Eq. 6.3) we find:
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W (i ! j)

W (j ! i)
= exp(@H/k

B

T ) = exp(U
i

� U
j

)/k
B

T (6.4)

6.2 Simulation setup

We have considered a box of size 24L ⇤ 24L ⇤ 24L where Lis the diameter of the

monomer, with 24 monomers repeating by A and B units. We design di↵erent ways of

distributing these two blocks of monomers in the chain. Our goal is to find the strength

of interactions between these two units with adsorptive sites which mesh as A and B.

Site A only adsorbs unit A with the strength of 0.75k
B

T and site B only adsorbs unit B

with the strength of 0.25k
B

T . We considered three di↵erent type of A-alt-B, which are

A-B-A-B..., A-A-B-A-A..., A-A-B-B-A-A.....

We execute our simulation by distributing one type of chain in each system. We

applied periodic boundary conditions on the x-y plane and an impenetrable boundary

condition on top of the box. For each time step, we selected one monomer randomly and

after checking the BFM condition we displaced it to the new cell. If this monomer is close

to either end of the chain it can lose its current bond with its nearest neighbors and make

a new bond with that end; as a consequence, the previous neighbor will become the new

end of the chain. In the homopolymer only the distance of the monomer from the chains

end was important. In the copolymer however, the type of monomer is important as

well. Since the order of the monomers in a chain is important to us, only the same type

of monomers can swap their places, otherwise, the new trial will be rejected. Ultimately

we need to calculate the Rosenbluth weighting function based on the energy level of the

current place and the new place (see section 5.4.1.1).

As in the previous chapter, we would like to find di↵erent phases of the system and

the temperature of each phase transition. Here we show only one case of copolymer

chain adsorption AABAA on striped pattern to become familiar with the general idea of

phase transitions of diblock copolymer adsorption onto a striped heterogeneous surface.

We assume the width of each site is L=2 and the length is equal to the length of the box

D=24. Three major phase transitions have been shown and in general four phases are
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(a) Centre of mass in the z direction for
striped pattern, L = 2, for copolymer chain

AABAA.

(b) Adsorption enery for striped pattern with
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(c) Average number of bridges of striped pat-
tern with active sites L = 2. For only

monomer type A with ✏A = 0.75

Figure 6.2: This figure shows (A) summary of three important phases that occur
during simulation. In the first figure, line drop from maximum to minimum shows the
transition from fully crumpled to the expanded state. In this figure the type of monomer
is not really important, therefore we did not consider them separately. Figure (B) shows
the adsorption energies of two types of monomers. With this information we can find
the phase transition from desorption to adsorption states once first a few monomer
starts to become adsorbed. Figure (C) show the pattern recognition by monomer type
A that the strength of adsorption is bigger than type B. Once the total number of

bridges tend to zero, we consider copolymer has recognized the surface.

studied: phase transitions occur from fully crumpled to expanded state, from desorbed

state to adsorption state and from being fully adsorbed to fully recognize the surface.
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(a) (b) (c) 

(d) (e) (f) 
(a) snapshots of AABB chain adsorption on striped pattern.Figure a to c shows the
snapshots of high temperature (� = 0.0), whereas figure d to f shows lower temperature

adsorption correspond to the size of islands (� = 0.8, 0.7, 0.65)

(a) (b) (c) 

(d) (e) (f) 

(b) snapshots of AABB chain adsorption on checked pattern. Figure a to c shows
the snapshots of high temperature (� = 0.0), whereas d to f shows lower temperature

adsorption (� = 1.0, 0.9, 0.8) correspond to the size of islands (L=1,2,4)

Figure 6.3: The snapshots of two di↵erent patterns at di↵erent temperatures with
the size of domain=1,2,4
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As in the previous chapter, in order to understand the phase transition from fully

crumpled polymer to extended polymer we need to calculate the centre of mass of the

copolymer chain. Here we calculate the center of mass of the polymer in the z direction

in order to understand the elasticity of the chain and its phase transition within a range

of temperature Figure. 6.6 and Figure. 6.7 show the evolution of the center of mass

as a function of temperature for di↵erent patterns on the surface. From the snapshots

of simulation we see the adsorption of di↵erent types of the copolymer on patterned

surfaces: Striped, Checked and Random. In this chapter due to the heterogeneity of the

surface and polymer chain, we expect more complex process comparing to the previous

chapter. However, in some cases monomer type A prefer to only adsorb on the certain

sites and type B on other sites. This property can facilitate the adsorption process if

the periodicity of the monomers is the same as the periodicity of the adsorption site. As

a consequence, the phase temperature for some cases occur earlier than homopolymer

chain and for some other cases because the periodicity of the chain is di↵erent from the

periodicity of the surface, the adsorption process becomes di�cult.
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(b) Centre of mass of ABAB chain in the z
direction for active site L=2
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(c) Centre of mass of ABAB chain in the z
direction for active site L=4
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(d) Centre of mass of AABB chain in the z
direction for active site L=1
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(e) Centre of mass of AABB chain in the z
direction for active site L=2
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(f) Centre of mass of AABB chain in the z
direction for active site L=4

Figure 6.6: These figures show the length of R in the z direction. First three pictures
are for ABAB chain. The most chaotic pattern for the surface is random. On the other
hand, the maximum point of each pattern is di↵erent from one another. The maximum

point of Rz even lies to lower temperature for the chain AABAA.
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(a) Centre of mass of AABAA chain in the z
direction for active site L=1
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(b) Centre of mass of AABAA chain in the z
direction for active site L=2
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(c) Centre of mass of AABAA chain in the z
direction for active site L=4

Figure 6.7: The average of centre of mass for di↵erent pattern and di↵erent size of
active sites for one type of chain. The maximum length of R in z direction for this

pattern of chain is somewhere between ABAB and AABAA.

6.2.1 Adsorption Energy

As mentioned in (section. 6), in order to find a desirable rate for growing a crystal

we need to alter the pattern of the monomers within a copolymer chain. In order to

design the best patterns of monomers in the chain we need to have good information

about the di↵erent surface energies of the surface. Here we assume there are only two

types of facets on the surface. Di↵erent types of state can be studied. The nonideal case

scenario would be when type A and type B are adsorbing the same amount of monomers

at equilibrium state or equivalently the same rate. We studied the e↵ect of distribution

of monomers at a given potential energy of the surface[172].
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We calculated three di↵erent types of chain for adsorption onto three di↵erent pat-

terns (striped, checkerboard and random).

We start from (Figure. 6.8) which shows the chain type ABAB, so the number

of monomer type A and B should be exactly the same. In (Figure. 6.8a) since the

periodicity of the chain is the same as the periodicity of the island sites, we have the

maximum number of adsorption for both types of A and B, which is not advantageous

for modifying the crystal growth rate. Indeed with this distribution it is similar to a

homo polymer chain onto a homogeneous adsorption surfaces. Therefore, we see if we

want to grow a crystal with a specific pattern that matching the orientation of the block

monomers with the same strength of attractive sites on the surface might not be that

ideal. In order to create heterogeneity in crystal growth we need to apply a chain that

favors one pattern and against to another. One way of doing this is to design a new

pattern of orientation of monomers within a chain. We can design a chain such that

one type of monomer becomes fully adsorbed on one type of site and another type stay

none attracted from the surface and let that surface grow with solution. As we increased

the size of the absorbative patches, the diversity of adsorption of the two di↵erent types

of monomers will increase. However, the distinction between di↵erent patterns become

less significant. As a result, we are interested in the distinctive number of adsorption of

di↵erent monomers and di↵erent patterns. The ideal case is shown in figure( 6.9b). As

we can see there is a significant di↵erence between monomer type A and B and there

are also di↵erent responses to di↵erent patterns.
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(a) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L = 1, for the design of ABAB
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(b) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L = 2, for the design of ABAB
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(c) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L = 4, for the design of ABAB
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(d) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L = 1, for the design of AABB
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(e) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L = 2, for the design of AABB
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(f) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L = 4, for the design of AABB

Figure 6.8: Total number of adsorbed monomer of AABBAA and ABAB over a
certain range of � for di↵erent size of islands
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(a) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
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tion ✏B = 0.25 with the length of adsorption
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(b) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L=2, for the design of AAB
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(c) Adsorption energy of monomers type A
with the strength of adsorption ✏A = 0.75 and
monomers type B with the strength of adsorp-
tion ✏B = 0.25 with the length of adsorption

L=4, for the design of AAB

Figure 6.9: Total number of adsorbed monomer of AABAA over the certain range of
� for di↵erent size of islands

6.2.2 Pattern Recognition

The pattern recognition state is important in many copolymer systems. Understand-

ing the temperature or pH at which a polymer matches monomers with adsorption sites

is an important part of this analysis. Once the homopolymer chain fully recognizes a

pattern and becomes adsorbed on one type of site we call the pattern recognition has

occurred. Whereas in copolymer systems, due to the heterogeneity of the chain and sur-

face, once one type of monomers adsorbed on certain sites, and other types of monomers
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will have di�culty to become adsorbed on the surface due to repulsion between di↵erent

types of monomer, which this lead to special nucleation on the surface.

(Figure. 6.10) shows the results from simulation of adsorption on two patterns. Here

we only consider one type of monomer and we show the average number of bridges within

a certain range of temperature. Di↵erent dashed lines represent the di↵erent sizes of

adsorption regions. Obviously, small sizes limit the adsorption, so they have a larger

number of bridges, whereas large sites have a small number of bridges. In both subfig-

ures, we focused on the strong type of adsorption, which is ✏
A

= 0.75. If we compare

the stripe pattern at � = 4 for L = 2 with � = 4 for L = 2 on a checkerboard pattern

we see the system still has not fully recognized the pattern, which is the result of the

high entropy of the polymer adsorbed on the checkerboard pattern.

6.2.3 Phase diagram

Figure 6.12 and 6.12 are the the phase diagrams of the most selective design of

copolymer AABAA onto striped and checkerboard pattern. The temperature and length

of attractive sites as order parameters play key roles in the phase transitions. The phase

diagram of copolymer system with heterogeneous attractive sites consists of several

phases: first, at high temperatures the level of entropy of the system is such that not a

single monomer can adsorb on the surface. Due to the heterogeneous pattern in a chain,

the loss of entropy occurs faster than the homogenous chain and a few monomers with

strong adsorption strength start to become adsorbed on the surface and they will drag

o↵ the rest of the chain onto the surface. However, the periodicity and the size of the

island will restrict monomers to only occupy the right adsorption site. Therefore most

of the time, the full adsorption state, and recognition states will at lower temperatures

than homopolymer adsorption. Technically when there is no bridge between identical

monomers in adsorbed sites, the chain has recognized the surface. However, the one

that we are interested in is the contrast adsorption between monomer type A and type

B. In another words, one type must overcome the other type in terms of gaining the

adsorption energy of state.

Therefore here we selected AABAA as the most distinctive copolymer chain in terms

of adsorption onto di↵erent types of sites. Figure. 6.5,6.4,6.3 are the examples of di↵erent
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orientation of diblock compolymer chain for ABAB, AABAA, and AABBAA chain.

These figures show the number of adsorbed monomers of copolymer chain under the

same thermodynamics condition and same size of adsorption sites.
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Figure 6.11: This figure shows the phase diagram of the most selective design of
copolymer AABAA in striped pattern as a function of length of sites and temperature.
Phase (a) system is at very high temperature, phase (b) system starts to become ex-
panded and adsorbed on the surface, phase (c) chain is become fully adsorbed). The
width of the lines show that the boarder between two regions is not very sharp and it
changes from case to case. Therefore, we cannot separate two phases with a certain

point
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Figure 6.12: This figure shows the phase diagram of the most selective design of
copolymer AABAA in checkerboard pattern as a function of length of sites and tem-
perature. Phase (a) system is at very high temperature, phase (b) system starts to
become expanded and adsorbed on the surface, phase (c) chain is become fully ad-
sorbed. The width of the lines show that the boarder between two regions is not very
sharp and it changes from case to case. Therefore, we cannot separate two phases with

a certain point

6.3 Conclusion

We have applied the Monte Carlo simulation method with the Bond-Fluctuation

model and an expanded ensemble method to study copolymer chain adsorption on a flat

chemically heterogeneous surface. The main objective of this study is understanding the

size e↵ect of heterogeneous attractive sites and their distribution patterns on e↵ective

adsorption of di↵erent types of copolymer chain. Our result revealed that di↵erent blocks

of copolymer orientation can alter the adsorption temperature. With this information,

one can design the new, desired crystal structure by optimizing a polymer chain to favor

particular crystal surfaces. Since examining the di↵erent nanostructure of the surface by

experimenting is di�cult and sometimes leads to wasting a high amount of material, by

this computational method one could first design the best distribution of copolymer for

a specific pattern then apply the result to an experiment. As a consequence, it means

that are may be able to control the rate of crystallization e↵ectively. By designing a
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polymer that will preferentially adsorb on particular surfaces. We have examined only

three di↵erent blocks of A-Alt-B copolymer chain. This result showed that not only is

there a high distinction between adsorption of the di↵erent segments but also comparing

di↵erent patterns of the surface, there is quite a significant gap between striped, random

and checkerboard, and therefore, the distribution matters as well.

However, we only considered specific patterns of the surface and the copolymer chain.

There are di↵erent ways of distributing monomers in the chain. Designing the best

copolymer chain based on the pattern of the surface through MC simulation helps us to

pick up the e�cient copolymer chain instead of trying di↵erent chain in the experiment.
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(a) (b) (c) 

(d) (e) (f) 
(a) snapshots of AABAA chain adsorption on striped pattern. Figure a to c shows the
snapshots of high temperature (� = 0.0), whereas figure d to f shows lower temperature

adsorption (� = 1.0, 0.9, 0.8) correspond to the size of islands (L=1,2,4)

(a) (b) (c) 

(d) (e) (f) 

(b) snapshots of AABAA chain adsorption on checked pattern. Figure a to c shows
the snapshots of high temperatures, whereas figure d to f shows lower temperatures

adsorption correspond to the size of islands (� = 0.8, 0.65, 0.5)

Figure 6.4: The snapshots of two di↵erent pattern at di↵erent temperatures with the
size of domain=1,2,4
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(a) snapshots of ABAB chain adsorption on striped pattern. Figure a:c shows the snap-
shots of high temperatures (� = 0.0), whereas d:f shows lower temperatures adsorption

correspond to the size of islands(� = 0.75, 0.65, 0.5)

(a) (b) (c) 

(d) (e) (f) 

(b) snapshots of ABAB chain adsorption on checked pattern. Figure a:c shows the
snapshots of high temperatures(� = 0.0), whereas d:f shows lower temperatures ad-

sorption correspond to the size of islands (� = 1.0, 0.9, 0.75)

Figure 6.5: The snapshots of two di↵erent pattern at di↵erent temperatures with the
size of domain=2
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(a) Average number of bridges for striped pattern. Di↵erent lines shows di↵erent size of islands
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(b) Average number of bridges for checkerboard surface. Di↵erent lines shows di↵erent size of
islands

Figure 6.10: The average number of bridges comparison between two patterns:
striped and checkerboard
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Conclusion

Di↵erent morphologies of the same compound are the result of the surface energy

di↵erence of the crystal faces, and the growth mechanisms which cause some faces to grow

faster than others. There are di↵erent ways of controlling crystal growth. Most of the

methods at microscale modify the growth rate. Studying the growth rate in experiment

is not easy since distinguishing between di↵erent phases in short time intervals can

sometimes be inaccurate. However, by computational methods one can simulate the

whole process in a virtual space. Here we applied the Kinetic Monte Carlo method to

find the tiny events that occur during crystallization process and help to modify the rate

of crystal growth. Two approaches have been followed in this thesis: one is the growth

of crystal with di↵erent surface energies, and the other is through free polymer chains.

We consider a single crystal with di↵erent crystallographic structures and di↵erent

orientations. Here in this thesis we assumed that the polymer surface interaction makes

a nonuniform surface due to the controlling of interaction on particular sites. Controlling

the surface interactions lead to di↵erent orientations on the surface which is called facet.

After understanding the rate of interactions of each facet we want to study the adsorption

and activity rate of such a nonuniform crystal structure. We have studied three types

orientation for catalyst such as striped, checkerboard and random to see whether the

orientation a↵ects the rate or not. Kinetically this is measured by the e↵ective rate over

the surface. The e↵ective rate is related to the nature of the catalyst and the coverage

of the surface by the reactant. Our result showed us under the same thermodynamic

condition, the checkerboard nanostructure pattern has twice the e↵ective reaction rate

121
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compared to the two other patterns. Investigating e↵ective reaction rate by the KMC

helps us to save the cost of using precious materials such as gold, titanium, platinum,

etc, in experiments.

The second approach in this thesis was the influence of the polymer chain on crystal

growth. Coating the surface with a polymer chain under certain conditions will help the

surface to grow under specific circumstances.

In this thesis we applied a homopolymer chain in Chapter 5, and tried to understand

the di↵erent phase transitions of the system based on di↵erent facet structures. This

has been investigated by KMC simulation, which reveals the importance of the nanos-

tructured pattern on phase transition of such a system. These results can be applied

in many industries such as biomedical, optoelectrical, etc. In this Chapter 4 important

phases have been explained. The first phase occurs at high temperatures; here the poly-

mer chain is fully crumpled and desorbed on top of the surface, and due to the high

fluctuation energy, it cannot adsorb on the surface. The second phase starts when a

few monomers become adsorbed on the surface under a specific attractive pattern. This

starting point di↵ers from pattern to pattern as shown in our results. The striped pat-

tern is the easiest pattern for adsorption among the other two nanostructured patterns,

and checkerboard pattern is the most di�cult pattern for adsorption due to the lowest

number of degrees of freedom for the polymer chain conformation. Another important

phase was pattern recognition of the surface by the polymer, after this phase, polymer

will be frozen.

The final area examined in this thesis was copolymer adsorption. Our result can be

broadly applied in many industries. The best example, which we explained frequently

in this thesis, is when a block of polymer chain is attached to a molecule and makes

a copolymer system. Once they reach the surface, the polymer plays an insulator role

for some patterns and helps other slow energy facets grow under special condition.

Architecting the order of di↵erent types of monomer (A and B) based on the di↵erent

sizes of attractive sites was a challenge of this process.

Simulating such a system help the experimenters to save a great deal of material

and time by designing the computationally e�cient structure first. In several cases,

our result has been focused on pattern structure and copolymer designing. Basically

we studied 3 types of pattern, random, striped and checkerboard with three domain
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sizes 1,2,4. Furthermore we considered three types of copolymer chain A-alt-B on top of

those surfaces. We compared these di↵erent phases in the previous chapter. In summary,

we wanted to develop the most distinctive adsorption energy and pattern recognition

between monomer type A and B in these three chains. We did indeed find the most

di↵erentiating patterns and chain for our thermodynamic conditions. This result showed

the accuracy of the model. In future, we can apply di↵erent patterns by designing new

polymer chains as well.





Appendix A

Homogenization theory in the

Limitation of a very small L

In this appendix, we consider the homogenization of equation (2.37) in the limit

where the period L becomes small compared to the far field. We introduce a function

` = `(x, y) which varies over the catalyst surface �

L

. We assume that some appropriate

boundary condition holds on some plane �

far

in the far field, but will neglect it for the

purposes of the calculation. The boundary condition of interest is:

� `(x, y)~n ·r⇢ = ⇢, on the catalyst surface �

L

. (A.1)

In weak form, with this boundary condition, equation (2.31) can be written:

2

Z

⌦

r⇢ · (ru) dV +

Z

�L

1

`(x, y)
⇢u d� = 0 (A.2)

where ⌦ is the domain bounded by the parallel planes �
L

and �

far

and u is an arbitrary

test function. The homogenization limit is obtained when the period L/H ! 0, where

H is the far field distance. In this limit, one can consider a sequence of equations of the

form of (A.2) with each corresponding to a surface �

L

with a smaller period L. In this

limit, the second term weakly converges to its average over a single period:

Z

�L

1

`(x, y)
⇢u d� !

Z

�0

⌧
1

`(x, y)

�
⇢u d� (A.3)
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The strong form of this homogenized boundary condition, which will hold in the limit

L ⌧ l ⇠ H, is thus

� ~n ·r⇢ =

⌧
1

`(x, y)

�
⇢, on�

0

. (A.4)

Thus, in terms of k
1

, we can write equation (Eq. 2.24) in this limit as:

�D

r
2⇡m

k
B

T
~n ·r⇢

A

(r, t) = k
eff

⇢
A

, (A.5)

where

k
eff

=
⌦
k(x, y)

↵
. (A.6)



Appendix B

MC Algorithm of Chapters 4,5,6

We have developed di↵erent kinetic Monte Carlo methods for our system in di↵erent

conditions. Here we explained di↵erent steps of MC processes:

B.0.1 KMC Algorithm

1. Set all the initial positions at t = 0.

2. Assigne their rates and all their possible transitions.

3. Calculate total rate
P

N

i=1

r
i

= R

4. Choose a random number between zero and one: u = [0, 1]

5. Find an occurrence event at each time step by calculating: r
i�1

< uR < r
i

6. Update all the positions and their related functions such as potentials.

7. Choose another random number to update the time step to t+ ⌧ , ⌧ = �logu

R

.

8. Go back to the beginning of the loop.

B.0.2 Kinetic MC algorithm of Homopolymer adsorption

1. Set all the unit cells in a cubic box with length L=24.

2. Distribute mesh sites on the bottom of the box.

3. Create a copolymer chain on top of the surface.
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4. Assign number of MC steps.

5. Choose a monomer randomly.

6. Count all the available states by considering the empty states and constrain the

condition of the monomers with their nearest neighbors.

7. Choose one place randomly.

8. Check whether the selected monomer is close to either end or not.

9. If yes the current nearest neighbor will become the new end after conformation is

approved.

10. Assign all the new places for the monomer and the rest of the chain.

11. Measure the current energy of state and the new places, energy of state.

12. Calculate the Rosenbluth weight function.

13. Choose a number randomly.

14. If it was within min{1, exp�(U
f

� U
i

)}, then it is accepted.

15. If the new place is a sticky site,check the penalties.

16. Exachange the old place for the new place.

17. Check the temperature transition for transiting the system to the new temperature

18. choose another random number.

19. If it was within min{1+exp[�U(q
i

)(�
m±1

��m)+⌘
m±1

�⌘m]}, then it is accepted.

20. Recalculate the probability of each subensembles.

B.0.3 Kinetic MC algorithm of Copolymer adsorption

1. Set all the unit cells in a cubic box with length L=24.

2. Distrbute mesh sites on the bottom of the box.

3. Create a copolymer chain on top of the surface.

4. Assign the number of MC steps.
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5. Choose a monomer randomly.

6. Count all the available states by considering the empty states and the constrain

condition of the monomers with their nearest neighbors.

7. Choose one place randomly.

8. Check whether the selected monomer is close to either end or not.

9. If yes, check whether the end is similar to its nearest neighbor or not.

10. If yes, the current nearest neighbor will become the new end after conformation is

approved.

11. Assign all the new places for the monomer and the rest of the chain.

12. Measure the current energy of state and the new places, energy of state.

13. Calculate the Rosenbluth weight function.

14. Choose a number randomly.

15. If it was within min{1, exp�(U
f

� U
i

)}, then it is accepted.

16. If the new place is a sticky site, check the penalties.

17. Exchange the old place for the new place.

18. Check the temperature transition for transiting the system to the new temperature.

19. Choose another random number.

20. If it was within min{1+exp[�U(q
i

)(�
m±1

��m)+⌘
m±1

�⌘m]}, then it is accepted.

21. Recalculate the probability of each subensemble.





Appendix C

Adsorption concept

In Chapter 1 and 2, we discuss the adsorption process. However, in many kinds of

literature, we may have seen the absorption process as well. Sometimes these two terms

are confusing. Therefore, in this appendix, we explain the di↵erence between adsorption

and absorption process.

C.1 Adsorption versus Absorption

What is the di↵erence between adsorption and absorption? Imagine that a cup of

co↵ee accidentally falls onto your o�ce desk. What is the best way to dry it out? Per-

haps two of the handiest tools that you would apply are ordinary paper and tissue paper,

but which one works better? Obviously, ordinary paper cannot completely absorb the

co↵ee however, tissue paper absorbs the liquid very well. Absorption is the transition

of a substance throughout medium to form a solution, whereas adsorption is the adhe-

sion and bonding of molecules which stick together and are weakly held by a substrate

that can easily slip down from the surface. One of the best examples of the di↵erence

between adsorption and absorption is comparing the adhesion of perfume and french

fries to your skin. Perfume is absorbed by our skin and it will disappear after a while,

whereas the chips’ oils will not be absorbed by your skin. The other di↵erence between

absorption and adsorption is that adsorption can be easily reversed by physical action

such as motion, heating, etc.
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