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School of Chemical and Physical Sciences
Te Wānanga Matū
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Abstract

We theoretically study the quantum confinement effects and transport prop-

erties of quantum ring (QR) systems. In particular, we investigate QRs

made out of the following materials: single-layer graphene (SLG), single-

layer transition-metal dichalcogenides (TMDs) and narrow-gap semiconduc-

tor quantum wells (SQWs).

Via perturbation theory and assuming that the ring aspect ratio is small, the

general subband dispersion relations of these hard-wall ring confined systems

are determined. These dispersion results agree with and extend on previous

works. We discover the necessity of including both a size-quantisation energy

and an angular momentum dependent energy shift to the dispersion equation

due to their sizeable impact on the conductance of the system.

The topological properties of these QR systems is also investigated. We find

that QR confinement of materials may destroy the topologically non-trivial

properties of states. The topological phase can be recovered when the band

structure is inverted and the confined material parameters satisfy certain

critical widths and gap limits.

An analytical expression of the conductance for QRs (with symmetrically-

arranged leads), in the presence of the perpendicular magnetic field piercing

the centre of the ring, is derived. We study the geometric (i.e. Berry) and

dynamic phases of the system that arise from the interference of partial

waves in the ring branches. We discover that the Berry phase is modified

by a correction term that arises purely from the quantum confinement of

the materials. This has generally not been taken into account by previous

studies. The explicit analytical expressions of the phase correction term are

derived and shown to be proportional to the angular momentum dependent

energy shift, present in the dispersion relations, for lead injection energies

close to the subband energy.

Overall, this study finds that the material-dependent phase plays a signif-

icant role in both the dispersion relation and the conductance of QRs and

thus provides a useful insight for future experimental efforts with regards to

transport in QR systems.
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Chapter 1

Introduction

Electric current in metals and semiconductors is carried by mobile charge

carriers. Normally, the physical properties of such charge carriers are similar

to that of electrons at rest in vacuum, except for changes in the magnitude

of their mass and magnetic moment. However, within the last � 10 years,

unconventional materials such as two-dimensional atomic crystals (like single-

layer sheets of graphite, called graphene [1]), topological insulators [2], and

Weyl semimetals [3] have become available in which charge carriers show

quite exotic behaviour. One of these intriguing features is chirality , i.e., the

strong coupling of the charge carriers’ momentum to their intrinsic magnetic

(spin or pseudo-spin) degree of freedom.

Chirality is usually associated with ultra-relativistic fermionic particles such

as fast electrons (moving close to the speed of light) or neutrinos which can

require vast resources to study experimentally. However, the opportunity

to study chirality effects in a condensed matter system makes it possible to

access properties that have so far been only theoretically surmised in the

context of relativistic quantum mechanics and quantum field theory.

1.1 Motivation of this study

In this thesis, we shall theoretically explore confinement effects and transport

properties of ring-confined 2D materials using an analytical approach. Many

studies employ numerically-based methods to study such properties of these

1



2 CHAPTER 1. INTRODUCTION

systems [4–6]. Others use an analytical procedure to study non-ring specific

confinements of materials [7] or focus on a specific material [8]. However, a

complete analytical overview of how confinement effects and transport prop-

erties vary for different 2D-materials is missing. This is what motivates our

research.

Our main focus will be to develop a comprehensive study of quantum con-

finement effects and transport properties in ring structures of the follow-

ing 2D materials: single-layer graphene (SLG), single-layer transition-metal

dichalcogenides (TMDs) and topological insulators (TIs) made out of narrow-

gap semiconductor quantum wells (SQWs). Since such materials host chiral

charge carriers and are now being experimentally realised [9–14], our theo-

retical study will provide a timely and fundamental insight to guide further

exploration of these systems.

In the following sections of this chapter, we introduce some of the basics

that are required to delve deeper into this field. First, we discuss Dirac-like

charge carriers and their chiral properties. Then, we give details regarding

the structure and key properties of the materials that we wish to explore.

Next, the effects of confinement and interference properties of quantum rings

and the progress of current research in this area are examined. Following

this, we touch upon the nature of topological insulators and topologically

protected edge states (TPES). Finally, we outline the general structure of

the coming chapters.

1.2 Two-dimensional Dirac-like charge carri-

ers

Two-dimensional (2D) Dirac-like charge carriers emerge in many condensed

matter systems and are described by 2D Dirac-like Hamiltonians. To under-

stand this in more detail, we take a look at the (D+1)-dimensional relativistic

Dirac Hamiltonian which is given by

H = β mc2 + cα � p (1.1)
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where c is the speed of light, m represents the effective mass, p is the spatial

components of momentum in the (D+1) dimensions. β and α � (α1, ..., αD)

are objects whose forms are fixed by the condition that the Hamiltonian must

reproduce the relativistic energy equation

E2 =
(
mc2

)2
+ (p c)2 (1.2)

where E is the energy. This condition is fulfilled when

β2 = 1 fαi, βg = 0 and fαi, αjg = 2δij (1.3)

where fA,Bg = AB +BA is the anticommutator.

In 2D, the β and α are described by the Pauli matrices. Generally, the most

commonly-used representation of the 2D Dirac Hamiltonian is given by:

H2D = cσ � p + V0 σz (1.4)

where σ = (σx, σy) and V0 is a potential that can, for example, represent the

rest energy mc2 for a free relativistic particle or the band-gap in condensed

matter systems. In such systems, the wavefunction is represented by a 2-

component spinor and the particles that they describe are called Dirac charge

carriers.

The general eigenspinor Ψ(r) of the 2D Dirac Hamiltonian is given by

Ψ(r) = N

 1

σ
√

E−V0
E+V0

eiφp

 eip·r/~ (1.5)

where E is as given in Eqn. (1.2) [we replace mc2 ! V0], N is a normalisa-

tion factor, σ � sgn(E + V (r)) and φp = arctan (py/px). The form of this

wavefunction will occur in many chapters to come due to the presence of

Dirac-like charge carriers in our materials of interest.

When we replace c by the Fermi velocity vF in Eqn. (1.4), the 2D Dirac

Hamiltonian is able to describe certain condensed-matter systems such as the

motion of electrons at high-symmetry points in SLG. Generally, unlike SLG,

most condensed matter systems are described by a Dirac-like Hamiltonian

(e.g. some systems possess, additionally, spin-splitting). The particles in
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these systems are referred to as Dirac-like charge carriers.

Additionally, in condensed matter systems, two “flavours” (i.e. represen-

tations) of the Dirac Hamiltonian are needed to describe the complete low-

energy system, i.e. states with energies close to the Fermi energy. This arises

due to the existence of two distinct high-symmetry pseudo-spin valleys that

are present in the primitive cell of the reciprocal space, i.e. the Brillouin zone,

of the material. Coincidentally, the states in these valleys are time-reversal

symmetric to each other. We label these valleys using the label τ = �1

which in our materials refer to the K and K′ valleys, respectively, in SLG &

TMDs or the projection of the angular momentum for Γ valley basis states

in the growth direction in SQWs. In these systems, the wavefunction is de-

scribed by the 2-component spinor where the components now correspond to

a pseudo-spin degree of freedom.

As mentioned previously, one of the important properties of Dirac charge

carriers is their chirality. Chirality is possessed by particles that have a

strong coupling between spin (or pseudo-spin) and direction of propagation.

This is intriguing because systems with strong chirality present new and

unique effects in the presence of a magnetic field such as the anomalous

integer quantum Hall effect in graphene [15, 16]. The chirality is measured

by the chirality operator hc which is given by:

hc =
σ � p
jpj

. (1.6)

where the eigenvalues of hc are �1. When we apply this to the massless Dirac

equation (which describes non-confined perfect SLG sheets where V0 = 0),

this operator commutes with the Hamiltonian [see Eqn. (1.4)] and hence the

chirality is exactly known for the energy eigenstates. In the case of SLG,

we can choose H(τ)
SLG = τ vF σ � p 1, which describes the charge carriers at

both τ valleys, such that electrons have an hc eigenvalue equal to �τ where

the � refers to positive or negative energy eigenvalues, respectively. The

chirality on the SLG K and K′ valleys can be seen in Fig. (1.1). This is

1The particular form of the Hamiltonian depends purely on the choice of basis states
which alters none of the physics. Generally in this thesis, we use the SLG representation

of the Hamiltonian defined by H(τ)
SLG = vF σ∗ � p where σ∗ = (τσx, σy). However, we use

the alternative representation here to demonstrate chirality concepts because this choice
of basis provides a simpler demonstration of the main ideas.
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just one demonstration of the strong chiral nature that is present in many

condensed-matter systems. In the next section we will delve into the struc-

tural properties of the 2D materials that are of interest to us.

Figure 1.1: Pseudo-spin chirality (indicated by the arrows) of K and K′

Dirac cones in graphene where the chirality eigenvalue is equal to �τ for
positive and negative energies, respectively. Chiral charges exhibit interesting
properties due to their strong spin-orbit coupling.

1.3 Dirac-like materials

Single-layer graphene consists of a plane of carbon atoms in a hexagonal (or

honeycomb) lattice as depicted in Fig. (1.2a). The two-component spinor

arises due to the presence of a degree of freedom (i.e. pseudo-spin), emerging

from the existence of two identical atoms (sublattice-sites A and B) in the

unit cell. One of the exotic properties of a perfect SLG sheet (where V0 !
0) is that for low energies, it possesses a linear energy dispersion that is

centred at the high-symmetry points [17, 18]. This feature is much akin to

that of free massless, relativistic particles such as the neutrino. Thus we

can potentially observe ultra-relativistic behaviour on a SLG “chip”. This

feature, in addition to its strong chiral properties and simple Hamiltonian,

is the main reason for our interest in it.

Now we turn to present the basic properties of single-layer transition-metal

dichalcogenides. TMDs possess three atomic layers constructed in the form

of X-M-X [M = molybdenum (Mo) or tungsten (W) and X = sulphur (S),

selenium (Se) or tellurium (Te)] as depicted in Fig. (1.2b) [19]. However,
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viewed from the top, similarly to graphene, a 2D hexagonal-shaped lattice of

alternating X2 (the 2 refers to two X atoms that are projected to the same

point) and M atoms exists, as can be seen in Fig. (1.2). In this case, the

two-component spinor represents the degree of freedom corresponding to the

conduction and valence band. In addition to the properties that are present

in SLG (i.e. strong chirality), TMDs also possess a direct band gap with

strong real-spin-orbit coupling (leading to the spin-splitting) around their

K and K′ valleys for low energies. The real-spin splitting is particularly

prominent in the valence band [19]. Due to these additional features, TMDs

will allow us to deepen our understanding of confinement effects in more

complicated systems.

(a) Honeycomb lattice (b) TMD layer structure

Figure 1.2: (a) The general honeycomb lattice that is present in both SLG
and TMDs. The green and blue circles represent the carbon sublattice sites A
and B, respectively, in SLG and alternating chalcogenide (X) and transition-
metal atoms (M), respectively, in TMD. The red diamond represents the
smallest unit cell. (b) Layer structure of TMD is visible which, when pro-
jected down from top-view, results in a honeycomb lattice. Here, yellow rep-
resents the X atoms and blue represents the M atoms.

The final material that we are interested in studying is the semiconductor

quantum well [e.g. mercury telluride (HgTe) quantum well [20] or indium

arsenide and gallium antimonide (InAs/GaSb) quantum well [21]]. These

materials are essentially a sandwich of one sheet of semiconductor (HgTe) be-

tween two other sheets of semiconductors [cadmium telluride (CdTe)] which

can be seen in Fig. (1.4). The CdTe layers have a wider band-gap than
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the HgTe layer and hence act as insulating barriers that create discrete en-

ergy subbands within HgTe. The two-component spinors for HgTe quantum

wells represent the spin-quantum number ms = �(1
2
, 3

2
) at the relevant high-

symmetry valley (Γ) and hence are pseudo-spins [2,22]. Unlike SLG or TMD,

SQWs have only one high-symmetry valley in the Brillouin zone with two

distinct Dirac cones centred on it. SQWs also have a band-gap and depen-

dences on p2 terms making them much more complex compared to SLG.

Importantly, some SQWs (such as HgTe quantum wells) possess a tuneable

and invertible band-gap which would permit experimentalists to explore the

confinement-related changes of the topological nature of SQWs 2. Changing

the band-gap is much more difficult in the cases of SLG and TMDs.

Many of the interesting effects arising from chirality manifest themselves

in structures where the motion of the charge carriers is confined, e.g., to a

narrow (quantum) wire or a quantum ring. Hence, we proceed to the next

section where we consider general phenomena that may arise when we confine

chiral charge carriers in quantum rings.

1.4 Ring confinement of chiral charge carri-

ers

Quantum rings (QRs) are generally defined as nanoscale sized doubly con-

nected ring-like structures [23] [a diagram of a SLG ring can be seen in

Fig. (1.3)]. They are especially interesting structures because they are a

paradigm for investigating particle-wave duality and other quantum-physical

effects. This is possible due to the practical detection of changes to physical

observables when particles travel down two different branches of the ring and

interfere upon recombination. In particular, QRs present an opportunity to

observe how geometric phases (also known as Berry phases) affect physical

quantities.

Geometric phases are generally phase differences between the initial and final

eigenstates. One of the most prominent examples of a geometric phase is

the famous Aharanov-Bohm effect [24–26] whereby the magnetic flux that

2We will discuss this in more detail in Sec. (1.5).
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threads through the centre of a ring [see setup in Fig. (1.3)] will modulate

the transmission through the ring. To understand this, we begin with the

wavefunction at a point r in the presence of a magnetic vector potential A

which is given by

Ψ = Ψ0e
i ϕ(r) where ϕ(r) =

e

~

∫ r

r0

A(r′) � dr′ . (1.7)

Here Ψ0 is the wavefunction when A = 0 and r0 is an arbitrary initial point

where the magnetic field B = 0. In simply connected regions of space where

B = r � A = 0, the line integral only depends on the beginning and end

points. Thus, when we calculate the probability of finding a particle in the

region of interference between partial waves travelling above, Ψabove, and

below, Ψbelow, the magnetic flux through the ring, we have

jΨabove + Ψbelowj2 / 1 + cos (γ) (1.8)

where

γ =
e

~

[ ∫ r

r0

Aabove � dr′ �
∫ r

r0

Abelow � dr′
]

=
e

~

∮
A � dr′ = 2π

φ

φ0

(1.9)

where φ is the magnetic flux through the centre of the ring and φ0 =

2π~/e [26]. To obtain the last equality we have used Stokes theorem to

turn the line integral into a surface integral representing the flux. Hence, the

conductance of such a system becomes periodic as a function of φ/φ0.

Another simple (and relevant) demonstration of a Berry phase is when a

particle circles around a magnetic field and gains a phase factor that is pro-

portional to e−imΩ where m is the particle’s spin component along the mag-

netic field and Ω is the angle subtended by the circuit around the magnetic

field [27]. When the particle is a fermion (i.e. possesses a half-integer spin),

a full circuit around the magnetic field produces a non-trivial phase of �1.

Both these above mentioned geometric phases will play a crucial role in the

understanding of ring transport properties of chiral charge carriers in the

presence of a magnetic field.

The essence of these examples is that the Berry phase, although “just” a

phase difference between the initial and final wavefunctions, can also manifest
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Figure 1.3: Schematic setup of a graphene ring (orange) with leads (grey)
attached. To demonstrate the Aharanov-Bohm setup, we have threaded the
ring with a magnetic flux φ (i.e. the magnetic field is perpendicular to the
plane of the ring). The partial waves Ψabove and Ψbelow travel via different
branches of the ring and eventually interfere in the lead on the right.

itself in physical observables such as in the conductivity.

In particular, ring structures of graphene, TMDs and topological insulators

are scientifically desirable to study due to the possibility of detecting the

effects of exotic interplay between the Dirac-like charge carriers and the con-

finement of the ring. This could yield unique geometric phases. The strong

presence of chirality allows for phenomena such as the π Berry phase in

SLG, TMD and SQW to arise [28, 29] due to the rotation of the pseudospin

with the electron’s momentum. In addition, having chiral charge carriers

enables the design of novel electronic devices that could become useful for

quantum information processing and spintronics devices in the realm of nano-

electronics [23,30–33].

Fabrication of general 2D quantum rings started around the mid-eighties

with the endeavour to realise smaller and smaller rings [4]. The first example

of a laboratory made graphene ring was first constructed in 2008 by S. Russo

et. al. [9]. The fabrication of HgTe QRs has also been realised [34].

The theoretical treatment of quantum rings still centres around some corner-
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stone papers that were published slightly before the fabrication of QRs. The

conductance of quantum rings with leads was a central focus of a variety of

studies in the mid-eighties [35–37]. They modelled scattering through leads

using a scattering matrix and derived expressions for the conductance. We

utilise these results to understand conductances and transport properties of

chiral charges in our systems.

Finally, one of the other intriguing feature of ring confinement is that it causes

changes in the topological nature of certain materials. This happens because

decreasing the width increases confinement energies and thus may result

in states that were initially topologically protected (i.e. they are robust to

time-reversal symmetric impurities) to become trivial [38,39]. To understand

this we move to the next section in which we give a brief overview of the

topological nature of TIs.

1.5 Topological insulators

The defining feature of a topological insulator is the presence of an inverted

band gap which allows for the existence of topologically protected edge states

(TPES) within the insulating band gap. TPES are not affected by time-

reversal symmetric perturbations and hence are desirable to study in the

realm of quantum computing [40, 41] and the fabrication of devices such as

topological spin transistors [42].

HgTe quantum wells, as depicted in Fig. (1.4a), are generally (dependent on

system parameters) a type of 2D topological insulator due to the presence of

an invertible band gap. This is possible due to the strong spin-orbit coupling

in Hg which causes it to have an inverted band structure [2]. As mentioned

in Sec. (1.3), HgTe-based quantum wells also have the advantage of being

able to tune the gap parameter by changing the size of the quantum well [20].

This is because the decrease of the width, d, increases the confinement effects

thus forcing an inverted gap to decrease and eventually become normal at a

critical width dc. This is illustrated in Fig. (1.4b).

Hence, due to these properties, one can easily manipulate HgTe quantum

well system parameters to alter the topological nature of the material. When

additionally confined in a ring, we gain a second width parameter, W , which
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we expect to have similar effects on the topological nature. If this is the case,

we gain fundamental insight into quantum confinement effects in topological

insulators.

d

(a) HgTe quantum well ring

(b) HgTe quantum well band inversion at dc

Figure 1.4: (a) Schematic setup of an HgTe quantum well ring where the
HgTe layer (orange) is sandwiched between the CdTe layers (blue). (b) As
we go from d < dc to d > dc the band becomes inverted with light-hole (or
heavy-hole) band H1 moving to be above electron band E1 thus causing band
inversion. The band gap is measured as M �E1�H1. This figure is adapted
from Ref. [20].

Another distinguishing feature between topologically trivial and non-trivial

insulators lies in the number of pairs of time-reversal symmetric states (i.e.

Kramers pairs) at a given energy in the gap: there exist either an even or

odd amount of these pairs. Topological insulators possess an odd number of

Kramer pairs [43]. Since time-reversal symmetric impurities destroy an even

set of Kramers pairs, TIs retain at least one pair of Kramer pairs. Thus,

this always guarantees that the insulator stays in the topological phase and

hence we call bound states in TIs topologically protected.

Additionally, TIs can be assigned a distinct Z2 topological invariant that
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differs from that of a trivial insulator3 - this invariant can be understood to

be similar to the difference between a sphere and a torus: neither can be

deformed to the other due to their distinct topologies. For further details,

the reader is referred to Ref. [44].

1.6 Outline of thesis

In this thesis we apply modifications of a general, overarching methodol-

ogy to analyse the specific materials: single-layer graphene, transition-metal

dichalcogenides and narrow-gap semiconductor wells (such as HgTe quantum

wells).

First we lay out the methodology used to examine the confinement properties

and conductances of SLG, TMD and SQW QR systems in Chapter 2.

In Chapter 3, we apply this methodology to discover the confinement prop-

erties of SLG and determine the general subband energy dispersion amongst

other results. Since TMDs possess an identical Hamiltonian as SLG with the

addition of an energy shift due to spin splitting, they are also included in

this chapter. In Chapter 4 we apply a similar procedure to SQW.

In the next two chapters physical observables of QRs, in the presence of a

magnetic field, are examined. First in Chapter 5, we investigate the con-

ductance properties of QRs with leads for the relevant materials. Then in

Chapter 6, we study the confinement-induced geometric phases of these ma-

terials and the connection to their topological phase.

Finally in Chapter 7, we review our results, compare to previous literature

and discuss the implications of our findings. We conclude by suggesting

possible directions for future work.

3The elements of the group Z2 are f0, 1g [44]. Trivial and topological insulators are
assigned the index 0 and 1 respectively hence distinguishing them.



Chapter 2

Methodology

In this chapter, we lay down the basic methodology that is used to anal-

yse ring-confinement and transport properties of SLG, TMD and SQW QR

systems.

First, we present the low-energy effective k � p Hamiltonians, H(τ)
α , for each

material (labelled by α) with an explanation of relevant terms and regimes of

applicability. Then, a radially-symmetric ring-confinement model is applied

to the Hamiltonians resulting in the possibility to split them into a radial,

H
(τ)
α,0, and azimuthal component, H

(τ)
α,1. Following this, we assume knowledge

of eigenstates and energies of H
(τ)
α,0, which we use to transform both H

(τ)
α,0

and H
(τ)
α,1 into a new basis thus giving H

(τ)
α,0 and H

(τ)
α,1, respectively. Using

perturbation theory that ignores inter-subband interactions, we solve for the

general subband dispersion relation of the system. Then, we outline the

changes in the system in the presence of a magnetic field. Finally, we discuss

the scattering model that is used to find transport properties in QRs with

leads.

2.1 Hamiltonians

We are interested in the behaviour of electrons at low-energies close to the

high-symmetry valleys of our 2D-Dirac-like materials. In this regime, their

motion can be described by a low-energy effective k�p Hamiltonian. The k�p
method uses perturbation theory and semi-empirical data to discard higher

13
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order k terms thus leading to a simplified band dispersion [45, 46]. For all

of our materials, we present the Hamiltonians in terms of an equation that

describes both “flavours” of electrons using the label τ � �1. The τ index

labels subspaces that are linked by time-reversal symmetry. To reiterate

from Chapter 1, these different flavours are necessary since they describe

charge carriers at different high-symmetry points in the Brillouin zone of the

material.

It is well-known that any type of mass gap, either intrinsic [47] or confinement-

induced [5,48], causes dynamics that are only time-reversal invariant if both

flavours of 2D-Dirac electrons are included. We therefore discuss the effect

of ring confinement consistently for both. However, we neglect processes

that couple the time-reversal-related flavors, thus assuming graphene and

dichalcogenide rings to be sufficiently wide and point-defect-free, and spin-

splitting in SQWs to be absent. In the following section, we present the

forms of the Hamiltonians that are used and touch upon crucial concepts for

each case.

Single-layer graphene

For SLG, we use the standard Hamiltonian which is usually derived using

the nearest-neighbour tight-binding method and identical to results from the

k � p method [18]. The Hamiltonian is expanded around the high-symmetry

points K and K′ in the Brillouin zone to obtain two distinct equations for

the corresponding valleys (τ = �1 respectively) using the pseudo-spin basis

corresponding to the sublattice sites A and B: fjAi(τ) , jBi(τ)g. The resulting

Hamiltonian can be shown to be:

H(τ)
SLG = ~v τ (kτ σ− + k−τ σ+) , (2.1)

where ~ is the reduced Planck constant, v is the Fermi velocity, σ± =

(σ1 � i σ2)/2 are pseudo-spin-1/2 ladder operators for the eigenstates of

σ3 � diag(1,�1) that correspond to the Bloch-function basis at K and K′

points, and σ0 is the identity matrix in pseudo-spin space. Additionally,

k± := kx � i ky is in terms of the Cartesian components of the in-plane wave

vector k. A limitation of this model is the fact that we ignore all interac-
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tions other than those from the nearest neighbours 1. Generally, since we

stay in the low-energy regime, these contributions from further neighbours

are negligible since the coupling decreases with the distance of separation.

Single-layer transition-metal dichalcogenides

For single-layer transition-metal dichalcogenides, we use the model that was

introduced by D. Xiao et. al. [49]. Using the k � p method, this Hamil-

tonian is derived via symmetry argument applied to the simple minimal

band model. A spin-orbit coupling term is present due to the presence of

spin-splitting in the valence band. The basis used for the Hamiltonian con-

sists of the conduction band (CB) and valence band (VB) and real spin s:

fjCB, si(τ) , jVB, si(τ)g. For MoS2, the individual elements are given by

jCB, si(τ) = jdz2i (2.2)

jVB, si(τ) =
1p
2

(jdx2−y2i+ iτ jdxyi) (2.3)

where d is an orbital that splits into three groups (for more details, please

refer to [49]). Although this is specifically for MoS2, the physics, Hamiltonian

and basis are essentially the same for all group-VI dichalcogenides. The

general Hamiltonian is thus given by

H(τ)
TMD = ~v τ (kτ σ− + k−τ σ+) +

∆

2
σ3 � λ τ s3

σ3 � σ0

2
(2.4)

where ∆ is the band-gap energy and λ is the strength of the spin-splitting in

the valence band, s3 denotes the Pauli matrix for the real spin of electrons

in TMD2 and all the other parameters are the same as in the SLG case.

The only difference between this Hamiltonian and that of SLG is the band

gap and the valence-band spin-splitting term. Naturally, as in the SLG case,

the model that we use for TMD is a simplification of the general system. A

more general approach may involve implementing the seven-band k �p model

1Coincidentally, it so happens that the contributions from next-nearest neighbours just
shift the energy at the K and K′ valleys and thus, without loss of generality, can be set
to zero.

2Notice that the real spin s3 is completely decoupled for spin up and down. However,
this still differs to the SLG system where energies are degenerate for real spin " and #.
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that takes into account more energy bands and additional degrees of freedom

in the system [19, 50, 51]. However, this is not necessary in the low-energy

regime since we focus on the nearest bands to the K and K′ points.

Semiconductor quantum wells

In the case of SQWs, specifically HgTe quantum wells, we use the simple

model first put out by B. A. Bernevig et. al. [20]. The Hamiltonian de-

scribed the movement of charge carriers around the Γ high-symmetry Bril-

louin zone point. Using k � p symmetry arguments regarding the coupling

of basis fjE1+i , jH1+ig for τ = 1 and fjE1�i , jH1�ig for τ = �1 the

Hamiltonian is deduced. The basis elements are given by

jE1�i = α jΓ6,�
1

2
i+ β jΓ8,�

1

2
i (2.5)

jH1�i = jΓ8,�
3

2
i (2.6)

where α and β are just constants. Thus for HgTe quantum wells, τ corre-

sponds to the projection of total angular momentum for Γ-point basis states

in the growth direction. The SQW Hamiltonian is given by

H(τ)
SQW = ~v τ (kτ σ− + k−τ σ+) +

∆(k)

2
σ3 + εk σ0 (2.7)

where we use the usual parametrizations [20,52] εk = C�Dk2 and ∆(k)/2 =

M �B k2. The material parameters M , B, C and D are determined by the

setup of the system (e.g. width of SQW etc.). In this case, the eigenstates of

σ3 correspond to the Bloch-function basis at the Γ-point. In the following,

and without loss of generality, we set C = 0 for convenience since it is just

a constant energy shift. It is of importance to note that the M parameter

is the gap parameter that causes band inversion and is determined by the

width of the middle (e.g. HgTe) layer in the SQW [as explained and shown

in Fig. (1.4b)]. Naturally, this model is a simplification that ignores bulk

inversion asymmetry which couples the different τ flavours. This becomes

important for finding the exact spin orientation of edge states and can be

taken account of by adding the HBIA term, as given in Refs. [2, 52], to the

H(τ)
SQW. However, this is not within the frame of interest with respect to
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confinement-effect in QR systems and thus we proceed with the simplified

model.

Polar coordinate transformation

Since we work with a ring geometry and an axially symmetric confinement,

it is only natural for us to express the Hamiltonians in polar coordinates

r = (r, ϕ). It is helpful to note the relation

k± = e±iϕ/2 (kr � i kϕ) e±iϕ/2 , (2.8)

with the Hermitian operators for radial and azimuthal wave-vector compo-

nents

kr = �i
(
∂r +

1

2r

)
, (2.9a)

kϕ = �i ∂ϕ
r

. (2.9b)

For later reference, we also note the identities

k2
r = �∂2

r �
1

r
∂r +

1

4r2
, (2.10a)

fkr , kϕg � kr kϕ + kϕ kr = �2

r
∂r ∂ϕ , (2.10b)

fkr , 1/rg = �i 2

r
∂r . (2.10c)

It is then straightforward to apply these coordinate transformations to Eqns. (2.1),

(2.4) and (2.7) and obtain

H(τ)
SLG = Uτ ~v (kr τ σ1 + kϕ σ2) U †τ , (2.11a)

H(τ)
TMD = Uτ

[
~v (kr τ σ1 + kϕ σ2) +

∆

2
σ3 � λ τ s3

σ3 � σ0

2

]
U †τ , (2.11b)

H(τ)
SQW = Uτ

[
~v (kr τ σ1 + kϕ σ2)�

(
k2
r + k2

ϕ

)
(Dσ0 +B σ3) +M σ3

]
U †τ .

(2.11c)
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where Uτ (ϕ) = expf�i τ σ3
2
ϕg. These expressions form the basis for our

further study of quantum states in ring conductors.

2.2 Basic model for ring confinement

We assume the ring structure to be defined by an axially symmetric mass

confinement V (r)σ3. A mass confinement (σ3 instead of σ0) is used because

it applies the same confinement-potential on particles of the same mass, thus

treating electrons and holes the same [53]. This gives rise to the Schrödinger

equation [
H(τ)
α + V (r)σ3

]
jΨ(τ)

α i = E(τ)
α jΨ(τ)

α i . (2.12)

where α = SLG,TMD, SQW. We make the Ansatz

jΨ(τ)
α i = Uτ (ϕ) eilϕ jΦ(τ)

l,αi , (2.13)

where ~l is the eigenvalue of rkϕ (the z component of total angular momen-

tum). This transforms Eqn. (2.12) into the unitarily equivalent problem[
H

(τ)
α,0 +H

(τ)
α,1(l)

]
jΦ(τ)

l,αi = E(τ)
α (l) jΦ(τ)

l,αi , (2.14)

where H
(τ)
α,0 is purely radial and particle-hole symmetric 3, and H

(τ)
α,1(l) con-

tains all the terms associated with the azimuthal motion and any (typically

very small) particle-hole-symmetry-breaking terms . For the cases of interest

here, we find the following expressions for the corresponding parts of the

Hamiltonian:

(i) Single-layer graphene:

H
(τ)
SLG,0 = ~v kr τ σ1 + V (r)σ3 , (2.15a)

H
(τ)
SLG,1 = ~v

l

r
σ2 . (2.15b)

(ii) Single-layer transition-metal dichalcogenides: because of their fundamen-

tal similarity, we can combine all terms involving σ3 into a new effective

3Actually, it is the energy-reflection symmetry that we need. See Ref. [54] for more
details of discrete symmetries exhibited by Dirac models.
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potential Ṽ (r) � V (r) + ∆/2� λ τ s3/2, thus obtaining

H
(τ)
TMD,0 = ~v kr τ σ1 + Ṽ (r)σ3 , (2.16a)

H
(τ)
TMD,1 = ~v

l

r
σ2 +

λ

2
τ s3 σ0 . (2.16b)

Except for the particle-hole-asymmetric contribution to H
(τ)
TMD,1, this Hamil-

tonian is in essence formally identical to SLG.

(iii) Narrow-gap semiconductor quantum well: we can again combine M and

the confinement into the effective potential Ṽ (r) � V (r) + M . The SQW

QR Hamiltonian then becomes

H
(τ)
SQW,0 = ~v kr τ σ1 �B k2

r σ3 + Ṽ (r)σ3 �Dk2
r σ0 , (2.17a)

H
(τ)
SQW,1 = ~v

l

r
σ2 �

l2

r2
(B σ3 +Dσ0) . (2.17b)

Here we have departed from the general philosophy by including a particle-

hole-asymmetric contribution in H
(τ)
SQW,0 (i.e. the σ0 term). This turns out

to be necessary because jDj . jBj is typically not a small correction [52].

As a result, some straightforward modifications will have to be made when

applying the formalism developed below to the SQW case.

We proceed by considering the radial Schrödinger equation

H
(τ)
α,0 jφ(τ,n)

α i = E
(τ,n)
α,0 jφ(τ,n)

α i , (2.18)

with its set of discrete energy eigenvalues E
(τ,n)
α,0 and corresponding eigenstates

jφ(τ,n)
α i, and n = �1,�2, . . . . In practice, to solve for the eigenvalues and

eigenstates, we map the Schrödinger equation into a 1D Dirac-like equation

which is possible due to the symmetry of the ring system. By our explicit

construction (except in the SQW case which can be easily addressed), the

energy-reflection symmetry [54]

σ2 H
(τ)
α,0 σ2 = �H(τ)

α,0 , (2.19)

holds, which implies E
(τ,−n)
α,0 = �E(τ,n)

α,0 and jφ(τ,−n)
α i = σ2 jφ(τ,n)

α i. From now

on, we thus assume without loss of generality n > 0 and E
(n)
α,0 > 0.

In the spirit of subband k � p theory [55, 56], we now posit that the radial
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Schrödinger equation (2.18) has been solved and make the Ansatz

jΦ(τ,±n)
l,α i =

∑
n′>0

(
a

(±n,n′)
l,τ,α jφ(τ,n′)

α i+ b
(±n,n′)
l,τ,α jφ(τ,−n′)

α i
)

(2.20)

for the general eigenstates. The unknown coefficients in this expansion are

then found from the discrete matrix-eigenvalue problem

[
H

(τ)
α,0 + H

(τ)
α,1

]


a
(±n,1)
l,τ,α

b
(±n,1)
l,τ,α

a
(±n,2)
l,τ,α

b
(±n,2)
l,τ,α

...


= E(τ,n)

α (l)



a
(±n,1)
l,τ,α

b
(±n,1)
l,τ,α

a
(±n,2)
l,τ,α

b
(±n,2)
l,τ,α

...


, (2.21)

with the new Hamiltonian matrices

H
(τ)
α,j =



〈
H

(τ)
α,j

〉(1,1)

τ,α

〈
H

(τ)
α,j σ2

〉(1,1)

τ,α

〈
H

(τ)
α,j

〉(1,2)

τ,α

〈
H

(τ)
α,j σ2

〉(1,2)

τ,α
. . .〈

σ2H
(τ)
α,j

〉(1,1)

τ,α

〈
σ2H

(τ)
α,j σ2

〉(1,1)

τ,α

〈
σ2H

(τ)
α,j

〉(1,2)

τ,α

〈
σ2H

(τ)
α,j σ2

〉(1,2)

τ,α
. . .〈

H
(τ)
α,j

〉(2,1)

τ,α

〈
H

(τ)
α,j σ2

〉(2,1)

τ,α

〈
H

(τ)
α,j

〉(2,2)

τ,α

〈
H

(τ)
α,j σ2

〉(2,2)

τ,α
. . .〈

σ2H
(τ)
α,j

〉(2,1)

τ,α

〈
σ2H

(τ)
α,j σ2

〉(2,1)

τ,α

〈
σ2H

(τ)
α,j

〉(2,2)

τ,α

〈
σ2H

(τ)
α,j σ2

〉(2,2)

τ,α
. . .

...
...

...
...

. . .


.

(2.22)

Here h. . . i(n,n
′)

τ,α � hφ(τ,n)
α j . . . jφ(τ,n′)

α i denotes a matrix element between positive-

energy eigenstates of the radial Schrödinger equation. By construction, we

have

H
(τ)
α,0 =



E
(τ,1)
α,0 0 0 0

...

0 �E(τ,1)
α,0 0 0

...

0 0 E
(τ,2)
α,0 0

...

0 0 0 �E(τ,2)
α,0

...
...

...
...

...
. . .


. (2.23)

The explicit form of H
(τ)
α,1 depends, in principle, on the details of the confine-

ment. However, as shown below, we can use general properties of the basis

states to gain some insight about its matrix elements.

For the SQW case, modifications are easily made by not using the energy-

reflection symmetry (jφ(τ,−n)
α i = σ2 jφ(τ,n)

α i) and performing the general form
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of a change in basis.

Furthermore, once the form of H
(τ)
α,1 is known, we can use perturbation theory

approximations to find the nth subband-dispersion relation. This is done by

just solving the (n,�n) 2�2 block-diagonal Hamiltonians where we ignore

the interactions between (n,�m) subbands where n 6= m. Generally, this is

a valid approach since the largest magnitudes in H
(τ)
α,0 are the diagonal energy

terms (by construction, also the only terms) and in H
(τ)
α,1 are the (n,�n) off-

diagonal terms 4. Naturally, the coupling between different subbands will

also decrease depending on the energy difference between the subbands.

A pictorial image of the magnitudes of H
(τ)
α,1 elements, based off the SLG case

[as presented in Sec. (3.2)], can be seen in the following equation

H
(τ)
α,1 =

 〈
H

(τ)
α,1

〉(1,1)

τ,α

〈
H

(τ)
α,1 σ2

〉(1,1)

τ,α〈
σ2H

(τ)
α,1

〉(1,1)

τ,α

〈
σ2H

(τ)
α,1 σ2

〉(1,1)

τ,α

 〈
H

(τ)
α,1

〉(1,2)

τ,α

〈
H

(τ)
α,1 σ2

〉(1,2)

τ,α〈
σ2H

(τ)
α,1

〉(1,2)

τ,α

〈
σ2H

(τ)
α,1 σ2

〉(1,2)

τ,α

. . .

. . .〈
H

(τ)
α,1

〉(2,1)

τ,α

〈
H

(τ)
α,1 σ2

〉(2,1)

τ,α〈
σ2H

(τ)
α,1

〉(2,1)

τ,α

〈
σ2H

(τ)
α,1 σ2

〉(2,1)

τ,α

 〈
H

(τ)
α,1

〉(2,2)

τ,α

〈
H

(τ)
α,1 σ2

〉(2,2)

τ,α〈
σ2H

(τ)
α,1

〉(2,2)

τ,α

〈
σ2H

(τ)
α,1 σ2

〉(2,2)

τ,α

 . . .

. . .

...
...

...
...

. . .


.

(2.24)

where the darkness of the colour indicates the magnitude of the element

(darker � larger: maroon>red>orange>yellow). The (n,�n) 2 � 2 block-

diagonal Hamiltonians H
(τ,n)
α,1 are indicated by the square brackets.

We see that, although the off-diagonal (n, �n) subband terms are consis-

tently the largest (maroon) for all n, the magnitude of coupling terms be-

tween (n,�m) subbands can become larger than diagonal terms. This is

usually compensated by the large energy terms in the diagonal entries of

H
(τ)
α,0 and a cancelling of coupling effects5. However, for higher n subbands

the (n, n�1) subband coupling terms may have a non-negligible effect due to

the decrease in magnitude of the (n, n) diagonal terms. This could result in a

slight shift of the subband energies that is not taken account of. We assume

4This will become more apparent in the following chapters.
5Subbands have a tendency to repel each other - this would lead to a certain amount

of the n� 1 coupling effects to cancel.
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that this generally has no crucial effect on the actual physics of the subbands,

although we only completely trust the results from the lowest subbands.

Thus, the general 2� 2 block-diagonal Hamiltonian in the new basis is given

by

H(τ,n)
α =

 E
(τ,n)
α,0 +

〈
H

(τ)
α,1

〉(n,n)

τ,α

〈
H

(τ)
α,1 σ2

〉(n,n)

τ,α〈
σ2H

(τ)
α,1

〉(n,n)

τ,α
�E(τ,n)

α,0 +
〈
σ2H

(τ)
α,1 σ2

〉(n,n)

τ,α

 (2.25)

where the �nth subband energy dispersion is given by

E(τ,±n)
α =

〈
H

(τ)
α,1

〉(n,n)

τ,α
+
〈
σ2H

(τ)
α,1 σ2

〉(n,n)

τ,α

2

�

√√√√[
E

(τ,n)
α,0 +

〈
H

(τ)
α,1

〉(n,n)

τ,α
�
〈
σ2H

(τ)
α,1 σ2

〉(n,n)

τ,α

2

]2

+ j
〈
H

(τ)
α,1 σ2

〉(n,n)

τ,α
j2.

(2.26)

Now that we have presented the overall procedure to determine subband-

dispersion relations, we move onto understanding the changes due to the

effects of an added magnetic field.

2.3 Ring-enclosed magnetic (Aharonov-Bohm)

flux

For our system, we consider a magnetic field, B, that pierces the centre of

the ring plane. In the presence of a magnetic field B = r�A perpendicular

to the ring plane, the wave vector k entering Eqns. (2.1), (2.4) and (2.7)

for the bulk SLG, TMD and SQW systems is substituted according to the

familiar rule [25, 26]

k! k +
e

~
A (2.27)

where we use the convention for charge q ! �e (e being absolute value of

the charge of an electron). Using polar coordinates and the vector potential
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A = [φ/(2πr)] ϕ̂ for an infinitesimally thin tube of magnetic flux φ piercing

the ring plane at its origin, one finds the usual substitutions [24, 35,36]

kϕ ! kϕ +
φ

φ0r
, l! l(φ) = l +

φ

φ0

, (2.28)

where φ0 � 2π~/e is the magnetic flux quantum and no change in kr. Re-

placing l! l(φ) in Eqns. (2.1), (2.4) and (2.7), respectively, yields the SLG,

TMD and SQW ring dispersions as a function of the magnetic flux penetrat-

ing the ring area.

We have now found that only the operator kϕ and angular quantum number

l change in the presence of a magnetic field. Hence, we have all the relevant

tools to tackle transport properties of ring system, which is explored in the

next section.

2.4 Ring confinement with leads

For electronic transport through 2D material quantum rings, we consider a

ring system that is attached to leads with a magnetic flux, φ, that pierces

the centre of the ring, as was described in Sec. (2.3). This generic scenario

is sketched schematically in Fig. (2.1) where all the relevant scattering am-

plitudes are indicated.

The linear electric conductance G is related to the transmission probability

between scattering states from the two leads via [57]

G =
e2

2π~
∑
ν1,ν2

Tν2ν1(E) . (2.29)

where Tν2ν1 is the transmission function with the labels ν1 (ν2) for states at

fixed energy E in lead 1 (2) including all possible (i.e., orbital as well as real-

spin and valley) degrees of freedom for the charge carriers. To determine

the transmission functions Tν2ν1(E), the scattering problem for electronic

probability waves has to be solved for the ring structure as was done, e.g., in

Refs. [37], [36] and [35].

Such a calculation is based on the description of each junction by a three-

terminal scattering matrix that links lead states at a fixed energy to ring
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1

2

β1'

β1
�ϕ

β2'

β2

Figure 2.1: Electronic transport through a quantum ring conductor with a
magnetic flux, φ, through the centre. Leads are connected at two junctions
labelled 1 and 2 where charge carriers are distributed between (incoming and
outgoing) scattering states in the leads and (right-moving and left-moving)
ring eigenstates. α, β and γ are scattering amplitudes. The squares represent
the points where we match scattering amplitudes from the right and left - this
is necessary due to the non-trivial phase change of the eigenstates. Figure is
adapted from Ref. [35].

eigenstates at that same energy. Here we adopt the general form of a T-

junction scattering matrix [35, 37], S, which is based on a model that is

consistent with basic symmetries and conservation laws. S is applied to the

three incoming waves ai � (αi, βi, γi) at the T-junction (labelled i = f1, 2g)
to describe the three outgoing waves a′i � (α′i, β

′
i, γ
′
i) where α is in the current

lead and β& γ are in the ring branches [see Fig. (2.1)]. This gives the relation

a′i = S ai . (2.30)

We assume S is real and symmetric with respect to two branches (i.e. in-

coming electrons from the lead are scattered evenly into both branches of the

ring). Thus S is given by

S =

�(a+ b) ε
1/2
c ε

1/2
c

ε
1/2
c a b

ε
1/2
c b a

 (2.31)

where εc determines the the coupling strength between the lead and the ring
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and a and b can be found using the probability current conservation rule of

unitarity to give

(a+ b)2 + 2εc = 1 (2.32)

a2 + b2 + εc = 1. (2.33)

Rearranging the equations, we find that a and b can be given in terms of εc:

a± = �1

2
(
p

1� 2εc � 1) (2.34)

b± = �1

2
(
p

1� 2εc + 1) (2.35)

where the solutions fa+, b+g and fa−, b−g correspond to the same physi-

cal description of the system. Without loss of generality, we use solutions

fa+, b+g henceforth. We have also neglected two other sets of solutions that

are not of physical interest to us - refer to Ref. [35] for more information.

There are obvious bounds for εc: 0 � εc � 1
2
. εc = 1/2 corresponds to a

completely transparent junction since a + b = 0 in this case. In the other

extreme, εc = 0 corresponds to all electrons in the current lead being reflected

back since a + b = 1. In this case b2 = 1 which means the electrons in the

ring do not notice the presence of a junction when they travel from one half

to the other.

To find the transmission of the ring, we assume a single incoming current

that enters via junction 1 (thus jα1j2 = 1) which means the transmission is

given by T = jα′2j2. To find α′2, we match the wavefunctions at the squares

in Fig. (2.1) which will result in(
β2

β′2

)
= e−iθ1

(
eiφs1 0

0 e−iφs1

)(
β′1

β1

)
(2.36)

and (
γ1

γ′1

)
= e−iθ2

(
eiφs2 0

0 e−iφs2

)(
γ′2

γ2

)
(2.37)

where φs1/2 is a flux-independent dynamic phase change and θ1/2 is the ge-

ometric phase change. Both these phases arise from the change of phase
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factors attached to the wavefunctions as the charges move around the ring

as was described in Sec. (1.4). The Aharanov-Bohm phase and the spin 1/2

phase both appear in θ1/2 while dynamic phases that are dependent on en-

ergy appear in φs1/2. These also specifically depend on the geometry of the

system such as the position of the junctions. Generally, the total dynamic

phase, φs, and geometric phase, 2θ, that enter the transmission are found to

be

φs =
φs1 + φs2

2
(2.38)

θ =
θ1 + θ2

2
. (2.39)

Using Eqns. (2.30), (2.31), (2.36) and (2.37) we can rearrange to find α′2

and thus the transmission. The details of this calculation can be found in

Ref. [35]. The transmission function for a perfectly symmetric ring where

θ1 = θ2 = θ and φs1 = φs2 = φs is

T
(
φs, θ, εc

)
=

4 ε2c sin2 φs cos2 θ

[a2 + b2 cos 2θ � (1� εc) cos 2φs]2 + ε2c sin2 2φs

. (2.40)

Note that in the presence of a magnetic flux φ, only the geometric phase θ(φ)

becomes dependent on it, as expected.

In Chapter 5, we apply this theory to our model for the ring bandstruc-

ture and determine the transfer matrices that describe electron propagation

through the two ring branches that are connected to the leads. In particular,

we derive explicit expressions for the Berry phase, θ, and φs in terms of the

injection energy and ring parameters. The conductance can then be derived

via Eqn. (2.29) where we take in to account all spin and pseudo-spin degrees

of freedom. To keep this discussion simple, we assume that only the ring

subband with label n contributes to transport.

The conductance of QR systems for our specific materials will be discussed

in detail in Chapter 5 and their Berry phases will be explored in Chapter 6.

Having developed the general formalism for tackling confinement in QRs, we

proceed to apply this to SLG, the simplest possible Dirac system, in the next

chapter.



Chapter 3

Single-layer graphene

In this chapter we explore the ring confinement properties, such as the dis-

persion relations, of single-layer graphene (SLG) ring structures using the

methodology as described by Sec. (2.2).

First, we map H
(τ)
SLG,0 into a 1D Dirac equation to which we apply a hard-wall

confinement. After we determine the secular energy equation via straight-

forward calculation, we discover that using a particular parametrisation of

the secular equation allows for the existence of a “universal” energy solution,

i.e. the energies are completely determined by the confinement energy ~v/W
and the band gap V0. We also find and investigate the topological properties

of pure evanescent bound states, with energies less than jV0j, for an inverted

band structure V0 < 0.

Then, a simple massless-Dirac case is explored for which we find the full an-

gular dependence of the Hamiltonian and subband energy dispersions using

realistic approximations. These are found to agree with previous work [5].

Finally a general mass-confinement case is explored for SLG and single-

layer transition-metal dichalcogenide (TMD) rings. We find the full subband

energy-dispersion relation in terms of the confinement-energy and gap size.

27
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3.1 Ring structure in SLG

To solve the radial Schrödinger equation (2.18) with the SLG Hamiltonian

(2.15a), we make the Ansatz

φ
(τ,n)
SLG (r) =

χ
(τ,n)
SLG (r)p

2πr
. (3.1)

Notice that we do not have to worry about the transformation at r = 0 due

to the ring structure. Straightforward calculation, using Eqns. (2.9a) and

(2.10c), yields

kr

(
χ

(τ,n)
SLG (r)p

2πr

)
� 1p

2πr
(�i∂r)χ(τ,n)

SLG (r) . (3.2)

Hence the radial Schrödinger equation for a SLG ring [obtained using Eqns.

(2.15a) and (2.18)] translates into a 1D Dirac equation with a widely studied

mass confinement [48,58–62] for the function χ
(τ,n)
SLG (r):

� i dχ
(τ,n)
SLG

dr
τ σ1 +

1

~v

[
V (r)σ3 � E(τ,n)

SLG,0 σ0

]
χ

(τ,n)
SLG = 0 , (3.3)

to which we apply a hard-wall boundary that is given by

V (r) =

{
V0 for ri < r < ro

1 elsewhere
. (3.4)

where ri and r0 are the inner and outer ring radii, respectively. We employ

the following notation for the width W and average radius R:

W = ro � ri , (3.5a)

R =
ro + ri

2
. (3.5b)

The eigenstates for energy E � E
(τ,n)
SLG,0 have the general form

χ
(τ,n)
SLG (r) = c

(τ,n)
1κ

(
1

τ σ γ

)
eiκr + c

(τ,n)
2κ

(
1

�τ σ γ

)
e−iκr , (3.6)
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where σ � sgn(E + V0), sgn(α) � α/
p
α2 and

κ =
1

~v

√
E2 � V 2

0 , (3.7a)

γ =

√
E � V0

E + V0

. (3.7b)

These quantities are real for jEj > jV0j. For jEj < jV0j, we have κ � iκ̄ and

γ � iγ̄ where κ̄ and γ̄ are now the real parts. They are given by

κ̄ =
1

~v

√
V 2

0 � E2 , (3.8a)

γ̄ =

√
V0 � E
V0 + E

. (3.8b)

Now, we have the general form of the wavefunction without having imposed

boundary conditions yet. In the next section, we will determine the eigenen-

ergies when hard-wall boundary conditions are applied.

3.1.1 Universal energy curve

The general method of setting the wavefunction to zero at the boundaries

(ri and ro), i.e. χ
(τ,n)
SLG (ri) = 0 = χ

(τ,n)
SLG (ro), does not result in a normalisable

result in the case of a 1D Dirac equation. This is because the system is over-

determined and thus would only possess the trivial solution. To overcome

this issue, we impose the zero-current boundary conditions [5,48,63–65] which

is equivalent to a hard-wall confinement in this system. The conditions are

thus given by

χ
(τ,n)
SLG (ri) = �τ σ2 χ

(τ,n)
SLG (ri) , (3.9a)

χ
(τ,n)
SLG (ro) = τ σ2 χ

(τ,n)
SLG (ro) (3.9b)

at the inner (r = ri) and outer (r = ro) ring radii, respectively. This yields

the secular equation

tan(κW ) = σ
2 γ

γ2 � 1
� �~v

V0

κ . (3.10)
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The trivial solution κ = 0 has γ = 0 and thus yields the unphysical spinor

χSLG(r) � (0, 0)T . To make contact with previous works, we further exam-

ine the solutions of the secular Eqn. (3.10) using the addition theorem for

tangents. It is possible to distinguish two subsets of solutions to Eqn. (3.10)

which were derived by Ref. [58] to be

σ γ =


cot

(
κW

2

)
(3.11a)

� tan

(
κW

2

)
(3.11b)

where solutions to Eqn. (3.11a) will result in odd n > 0 states and Eqn. (3.11b)

will result in even n > 0 states. Notice also that using the transformation

E
(τ,n)
SLG,0 ! �E

(τ,n)
SLG,0 in Eqn. (3.11a) [or Eqn. (3.11b)] will result in Eqn. (3.11b)

[or Eqn. (3.11a)] since γ ! 1/γ, κ ! κ and σ ! �σ. This exemplifies the

high degree of symmetry in these solutions.

Using the parameter ~v/W , we can use the parametrisation: E/(~v/W )

and V0/(~v/W ), such that the solutions to Eqns. (3.11a) and (3.11b) are

“universal”. This means that the width and Fermi velocity do not have to

be exactly specified in order to have a solution - only the quantities ~v/W
and V0 are necessary to determine the energies of the system. Hence ~v/W
is also known as the confinement energy. The parameterisation derivations

can be seen as below:

sgn(E + V0)

√
EW
~v �

V0W
~v

EW
~v + V0W

~v
=


cot(

√
(EW~v )2 � (V0W~v )2

2
) (3.12a)

� tan(

√
(EW~v )2 � (V0W~v )2

2
) (3.12b)

where E/(~v/W ) is now purely a function of V0/(~v/W ).

For negative values of V0 where

V0W

~v
� �1 (3.13)

there exist evanescent edge states within the �jV0j gap. This is because

(V0, E) = (�1, 1), which is a solution to Eqn. (3.12a), is the value below
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which the energy of the lowest-subband (n = 1) passes from above the gap

to below. Below this limit, κ and γ both become purely imaginary, as given

by Eqns. (3.8a) and (3.8b), and hence result in an evanescent wavefunction.

This is where SLG becomes topologically non-trivial thus allowing for the

presence of evanescent TPES in the gap.

We depict the universal energy curves for the first three positive lowest-

subbands in Fig. (3.1) 1. It can be seen that the lowest-subband traverses

below the band gap jV0j as described by the limit in Eqn. (3.13). The figure

shows the distinct difference between the behaviour of the lowest-subband

when it becomes a TPES [E/(~v/W ) ! 0 as V/(~v/W ) ! �1] compared

to the higher subbands that obey the classical behaviour [E/(~v/W ) ! 1
as V/(~v/W )! �1].

Figure 3.1: Three positive n subband energy curves as a function of the
universal parameter V0/(~v/W ) for SLG rings. The universal energy curve
for n = 1 (red), 2 (blue) and 3 (black) are shown for all relevant parameters.
For reference, the black-dashed line represents where the gap is situated for a
constant width, i.e. E

(τ,n)
SLG,0 = jV0j. If the energy of a state is below this line

then it is evanescent and a topological bound state.

Having found the universal energy curves, we now proceed to find the eigen-

states of the H
(τ)
SLG,0 system in the next section.

1Recall that since H
(τ)
SLG,0 is energy-reflection symmetric, E

(τ,n)
SLG,0 = �E(τ,n)

SLG,0 and thus
we only have to consider positive energies.
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3.1.2 Wavefunctions of SLG

Using the boundary conditions, given by Eqns. (3.9a) and (3.9b), we find a

relation between coefficients in the Ansatz [Eqn. (3.6)],

c
(τ,n)
2κ = �e2i(κri−arctan(σγ)) c

(τ,n)
1κ . (3.14)

which allows us to find the eigenstates of the system. Straightforward calcu-

lation yields eigenstates of the form

χ
(τ,n)
SLG (r) = Nn

 cos [κn(r �R) + χn]

τ σ γn i sin [κn(r �R) + χn]

 (3.15a)

for ri � r � ro and χ
(τ,n)
SLG (r) � 0 elsewhere. Here κn and γn are the values of

κ and γ corresponding to the nth quantised energy level. The phases χn and

normalisation factors Nn are given by

χn =
κnW

2
� π

2
+ arctan (σγn) , (3.15b)

Nn =
1p
W

[
En(En + V0)

E2
n + ~v

W
V0

] 1
2

. (3.15c)

where En is the energy of the nth subband. The separation of the secular

equation into Eqns. (3.11a) and (3.11b) yields sets of momenta κna and κnb
,

respectively, for which the phases are χna = 0 and χnb
= �π/2. Hence,

the corresponding eigenstates are those for which the conduction-band wave

function is parity-even and parity-odd, respectively:

χ
(τ,na)
SLG (r) = Nna

 cos [κna(r �R)]

τ σ γna i sin [κna(r �R)]

 , (3.16a)

χ
(τ,nb)
SLG (r) = Nnb

 sin [κnb
(r �R)]

�τ σ γnb
i cos [κnb

(r �R)]

 . (3.16b)

One may wish to note that χ
(τ,n)
SLG (r) = τ σ σ2χ

(τ,−n)
SLG (r). Thus the states are

energy-reflection symmetric. The complete eigenstate jφ(τ,n)
SLG i is given by our

Ansatz in Eqn. (3.1).
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Now that we have developed a full description of the H
(τ)
SLG,0 system, we move

on to transforming the H
(τ)
SLG,1 into the basis of the eigenstates of H

(τ)
SLG,0 and

finding the general subband energy dispersion. In the next section, we do

this for a specific example: the massless-Dirac case.

3.2 Massless-Dirac case

A perfect SLG QR is represented by the massless-Dirac case where V0 = 0,

i.e., γ = 1. Thus, SLG rings are generally confinement dominated since the

confinement energy ~v/W is much larger than the gap size V0 = 0. In this

case, the secular Eqn. (3.10) has the following physical solutions:

κn =

(
n� 1

2

)
π

W
, (3.17a)

E
(τ,n)
SLG,0 =

(
n� 1

2

)
π~v
W

, (3.17b)

with positive integer n. The result in Eqn. (3.17b) recovers the expres-

sion for SLG-ring subband edges given before in Ref. [5]. Specialisation of

Eqns. (3.15a-c) to the present situation yields the eigenspinors

χ
(τ,n)
SLG (r) =

1p
W

 cos
[(
n� 1

2

)
π r−R

W
+ (n� 1)π

2

]
τ i sin

[(
n� 1

2

)
π r−R

W
+ (n� 1)π

2

]
 . (3.18)

where the normalisation factor becomes 1/
p
W . Distinguishing the cases of

odd [n = 2ν�1 which corresponds to secular Eqn. (3.11a)] and even [n = 2ν

which corresponds to secular Eqn. (3.11b)] main quantum numbers, we can

write

χ
(τ,2ν−1)
SLG (r) =

1p
W

 cos
[(

2ν � 3
2

)
π r−R

W

]
τ i sin

[(
2ν � 3

2

)
π r−R

W

]
 , (3.19a)

χ
(τ,2ν)
SLG (r) =

1p
W

 sin
[(

2ν � 1
2

)
π r−R

W

]
�τ i cos

[(
2ν � 1

2

)
π r−R

W

]
 . (3.19b)
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Note that the total particle density for all states is uniform/nodeless across

the ring width (i.e. χ
(τ,n)
SLG (ri/o) 6= 0), in contrast to the nonrelativistic case.

It is straightforward to see the existence of symmetries in the components of

the H
(τ)
SLG,1 matrix. We find that

hH(τ)
SLG,1i

(n,n′)

τ,SLG
= hσ2H

(τ)
SLG,1σ2i

(n,n′)

τ,SLG
(3.20)

and

hσ2H
(τ)
SLG,1i

(n,n′)

τ,SLG
= hH(τ)

SLG,1σ2i
(n,n′)

τ,SLG
(3.21)

which hold due to the relation σ2
2 = σ0. Noting that the size-quantisation

energy scale for the radial equation is ~v/W [see Eqn. (3.17b)], we measure

the matrix elements of H
(τ)
α,1 in the same unit. We also define the aspect ratio

ε = W/R which will be important for future use. Using the wavefunctions

of H
(τ)
SLG,0, we can now determine the new form of H

(τ)
α,1 in the basis of jφ(τ,n)

SLG i
and jφ(τ,−n)

SLG i, as was set out in Chapter 2. It can be shown that using our

Ansatz and Eqn. (3.18) we obtain:

hH(τ)
SLG,1i

(n,n′)

τ,SLG
=

~vl
W

∫ ro

ri

1

r

(
cos((n� 1

2)π r−riW � π
4 )

τi sin((n� 1
2)π r−riW � π

4 )

)†
σ2(

cos((n′ � 1
2)π r−riW � π

4 )

τi sin((n′ � 1
2)π r−riW � π

4 )

)
dr

=
~vlτ
W

∫ ro

ri

sin((n+ n′ � 1)π r−riW � π
2 )

r
dr

= �~vlτ
W

∫ ro

ri

cos((n+ n′ � 1)π r−riW )

r
dr

and

hH(τ)
SLG,1σ2i

(n,n′)

τ,SLG
=

~vl
W

∫ ro

ri

1

r

(
cos((n� 1

2)π r−riW � π
4 )

τi sin((n� 1
2)π r−riW � π

4 )

)†
(

cos((n′ � 1
2)π r−riW � π

4 )

τi sin((n′ � 1
2)π r−riW � π

4 )

)
dr

=
~vl
W

∫ ro

ri

cos((n� n′)π r−riW )

r
dr .
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To write this in a more compact form we have

hH(τ)
SLG,1i

(n,n′)

τ,SLG
=

~v
W

(�τ) l F(n+ n′ � 1, ε) (3.22)

and

hH(τ)
SLG,1σ2i

(n,n′)

τ,SLG
=

~v
W

l F(n� n′, ε) . (3.23)

The function F is given by

F(p, ε) =
ε

π

∫ π
2

−π
2

dρ

1 + ε
π
ρ

cos

(
p
[
ρ+

π

2

])
(3.24)

where p is an integer placeholder for n+ n′� 1 or n� n′ to give the relevant

solutions. The solution to Eqn. (3.24) is given by

F(p, ε) =

(
Ci (β+)� Ci(�β−)

)
cos(β−)�

(
Si(β−) + Si(β+)

)
sin(β−)

(3.25)

where Ci(x) and Si(x) are the cosine and sine integral functions, respectively,

and

β± = pπ

(
1

2
� 1

ε

)
. (3.26)

There is naturally a hierarchy in the magnitudes of the components of H
(τ)
α,1.

As p is increased incrementally, β± also increases which leads to a decrease

in the size of the integral shown by Eqn. (3.24). Hence, the value of p

(= n+ n′ � 1 or n� n′) determines the magnitude of the components. This

is exactly how the sizing of the matrix elements were found in Eqn. (2.24).

For p 6= 0, the series expansion of F(p, ε) in ε around ε = 0 gives

F(p, ε) =
2

p2π2
ε2 +

3 (π2p2 � 8)

2π4p4
ε4 +O(ε6) (3.27)

for odd p and

F(p, ε) =
2

p2π2
ε3 +

(π2p2 � 24)

π4p4
ε5 +O(ε7) (3.28)

for even p. In the special case p = 0 [i.e. n = n′ for Eqn. (3.23)] F(0, ε) can
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be expressed in closed form as

hH(τ)
SLG,1σ2i

(n,n)

τ,SLG
=

~v
W

l ln

(
1 + ε

2

1� ε
2

)
. (3.29)

In the limit of ε ! 0, i.e., for a ring with large radius and small width,

the leading contributions to the Hamiltonian are the terms proportional to

F(0, ε) � ε+O(ε3).

Keeping only the largest order of ε terms, the Hamiltonian H
(τ)
α,1 becomes

a block-diagonal matrix with only the matrix elements hH(τ)
SLG,1σ2i

(n,n)

τ,SLG
and

hσ2H
(τ)
SLG,1i

(n,n)

τ,SLG
taken to be non-zero. Some previous works [66–68] have

essentially assumed such a form of the Hamiltonian for the ideal-SLG (Dirac)

ring limit.

However, a more accurate solution to the eigenvalue problem, given by Eqn. (2.21),

is equivalent to solving

π~v
W

n� 1
2

W
πR
l

W
πR
l �

(
n� 1

2

)
(a(±n,n)

l,τ,SLG

b
(±n,n)
l,τ,SLG

)
= E

(τ,n)
SLG (l)

(
a

(±n,n)
l,τ,SLG

b
(±n,n)
l,τ,SLG

)
,(3.30)

where the radial-size-quantisation energy E
(τ,n)
SLG,0 enters as a mass term in the

diagonal entries. Straightforward diagonalisation yields

E
(τ,±n)
SLG (l) = � ~v

W

√
π2

(
n� 1

2

)2

+

(
W

R

)2

l2 . (3.31)

Closer inspection of Eqn. (3.31) reveals that the leading correction to the

energies is of order ε2, which is of the same order as the diagonal contribution

hH(τ)
SLG,1i

(n,n)

τ,SLG
. As established in Chapter 2 and Eqn. (2.25), the more precise

form for the 2�2 blocks of the full SLG-ring Hamiltonian in the narrow-width

limit is

H
(τ,n)
SLG

~v/W
= π

(
n� 1

2

)[
σ3 +

2

π(2n� 1)

W

R
l σ1

� τ 4

π3(2n� 1)3

(
W

R

)2

l σ0

]
, (3.32)
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which yields the dispersions

E
(τ,±n)
SLG (l)

~v/W
= �τ 2

π2(2n� 1)2

(
W

R

)2

l �

√
π2

(
n� 1

2

)2

+

(
W

R

)2

l2 . (3.33)

which can be determined using Eqn. (2.26). The expansion of Eqn. (3.33) to

leading (i.e., quadratic) order in ε agrees fully with Eqn. (8) of Ref. [5] that

was obtained under similar assumptions.

Figure 3.2: Lowest-subband dispersion for a single-layer-graphene ring with
aspect ratio W/R = 0.1. The solid blue (dashed red) curve corresponds to the
K (K′) valley.

Fig. (3.2) shows the dispersion for the lowest (n = 1) subband according

to Eqn. (3.33) for a particular value of the ring aspect ratio W/R. The

asymmetry with respect to inversion of the total-angular-momentum quan-

tum number (l ! �l) for a given valley is clearly visible. However, due to

time-reversal symmetry, the dispersions for the K and K′-valley degrees of

freedom are related via the combined transformation l ! �l and τ ! �τ .

The two curves form the famous Kramer pairs which, in this case, are not

topologically protected since E
(τ,1)
SLG,0 > jV0j = 0. The relative shift of the

dispersion curves can be estimated as 2/[π(2n � 1)], which is a decreasing

function of the subband index n. This shift is explored further in the Chap-

ter 6.

Now that we have finished our analysis of the V0 = 0 SLG QR system, we

move on to understanding the dispersions of a general V0 mass-confinement

in SLG and TMD QR systems. First, we study the general mass-confinement
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of SLG QRs and determine the azimuthal dependence of the energy subband

dispersion and discover the swapping of relative positions of the τ -valley

dispersions. Then, we study the changes of the dispersion in the presence

of the spin-splitting for TMD QRs with a particular focus on molybdenum

diselenide (MoSe2).

3.3 General mass-confinement

3.3.1 Single-layer graphene

Mass-gaps in SLG sheets are created due to the presence of certain disorders

and substrate interactions. Hence it is realistic to examine the system with

a general V0 confinement value. The same symmetries for H
(τ)
SLG,1 hold as in

the massless-Dirac case and are given by Eqns. (3.20) and (3.21). Thus the

H
(τ)
SLG,1 matrix elements are given by

hH(τ)
SLG,1i

(na,n′a)

τ,SLG
=

∫ R+W
2

R−W
2

φ
(τ,na)
SLG

†
H

(τ)
SLG,1φ

(τ,n′a)
SLG 2πr dr

= NnaNn′aτ
∫ R+W

2

R−W
2

~v
l

r

(
γn′a sin

(
κn′a(r �R)

)
cos (κna(r �R))

+ γna sin (κna(r �R)) cos
(
κn′a(r �R)

))
dr (3.34)

and

hH(τ)
SLG,1σ2i

(na,n′a)

τ,SLG
=

∫ R+W
2

R−W
2

φ
(τ,na)
SLG

†
H

(τ)
SLG,1σ2φ

(τ,n′a)
SLG 2πr dr

= NnaNn′a

∫ R+W
2

R−W
2

~v
l

r

(
cos (κna(r �R)) cos

(
κn′a(r �R)

)
+ γnaγn′a sin (κna(r �R)) sin

(
κn′a(r �R)

))
dr.

(3.35)

The solutions to these integrals, via a series-expansion up to the second

order of ε, can be found in Appendix (B). Using these solutions and applying

the knowledge that we have gained from Sec. (3.2), the accurate subband
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dispersion up to order ε2 is given by the 2�2 Hamiltonian [as in Eqn. (2.25)]:

H
(τ,n)
SLG =

~v
W

[
E

(τ,n)
SLG,0

~v/W
σ3 � τ

(
W

R

)2

l ΓSLG σ0 +
W

R
l σ1

]
(3.36)

where E
(τ,n)
SLG,0 is found using the secular equation given by Eqn. (3.10). Γα is

given by

Γα =
1

2

1 + V0
~v/W(

E
(τ,n)
α,0

~v/W

)2

+ V0
~v/W

. (3.37)

where α = fSLG,TMDg in this instance. The general subband energy dis-

persion, E
(τ,n)
SLG (l), can be found to be

E
(τ,±n)
SLG (l)

~v/W
= �τ

(
W

R

)2

l ΓSLG �

√[
E

(τ,n)
SLG,0

~v/W

]2

+

(
W

R

)2

l2 . (3.38)

This is naturally equivalent to Eqn. (3.33) when V0 = 0. Once again we

can see that for a given l, E
(τ,±n)
SLG (l)/(~v/W ) varies universally with param-

eter V0/(~v/W ). We choose two V0/(~v/W ) values: V0/(~v/W ) = �2 (with

TPES) and V0/(~v/W ) = 0 (trivial case) and plot the the lowest two sub-

bands (n = 1, 2) in Fig (3.3).

(a) Lowest subband (b) Second-lowest subband

Figure 3.3: Plot of general subband energy dispersion of lowest (a) and
second-lowest (b) subbands for W/R = 0.1, V0/(~v/W ) = �2 (solid) and 0
(dashed) with both isospin valleys K (blue) and K′ (red).

We see that for n = 1 at any given energy, the τ = 1 curve is shifted to the

right of the τ = �1 curve for both the trivial and topological phases of the
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QR. However for n = 2, the τ = 1 curve shifts from the right to the left of

the τ = �1 curve as we switch from the trivial to the topological phase. This

difference highlights some of the phenomena that happen when we transition

from the trivial to the topological phase of the material.

To understand this more, we have to understand the component ΓSLG which

governs this shift. We plot ΓSLG as a function of V0/(~v/W ) for the three low-

est subbands in Fig. (3.4). For n > 1, we have ΓSLG = 0 when V0/(~v/W ) =

�1, i.e. the transition point between topological and trivial regimes [Eqn. (3.13)].

This means that there is no shift between the isospin valley curves at that

parameter value. Thus, since the shift between isospin valleys for n > 1

monotonically increases with increasing V0/(~v/W ) 2, there is a distinct dif-

ference in the relative positions of the isospin valley subbands between the

trivial and topological phase of the material.

However, the n = 1 subband behaves significantly different because there is

no such transition, as can be seen in Fig. (3.4). Additionally, the ΓSLG factor

monotonically decreases as a function of V0/(~v/W ). These features may be

a hallmark of the topological nature and protection of this state. All of these

concepts will be discussed further in Chapter 6 where we will see that the

Berry phase is also affected by the shifts of �τ energy dispersions.

Figure 3.4: Plot of ΓSLG as a function of V0/(~v/W ) for the different
subbands: n = 1 (red), 2 (blue) and 3 (black). Only n > 1 subbands cross at
V0/(~v/W ) = �1 from negative to positive values of ΓSLG.

2This is because the shift depends on ΓSLG [as given in Eqn. (3.37)] which also increases
monotonically for an increasing V0/(~v/W ). This we will definitively show in Chapter 6.
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We will now proceed to analyse the general mass-confinement subband energy

dispersion of single-layer TMD rings. Mathematically, the calculations that

arise from this case are extremely similar to those in SLG. Nevertheless, we

give a somewhat simplified, general description of the system including the

most essential calculation details.

3.3.2 Transition-metal dichalcogenides

Single-layer TMD rings have the same form of the radial equation as the SLG

rings - however the effective spin-dependent potential V0 � 1
2
(∆ � λ τ s3) is

defined such that there is never a massless limit in TMD systems 3. The

gap parameter V0 effectively acts as though there are two independent gaps

for τs3 = �1, respectively. Unlike the SLG system that is confinement-

dominated (i.e., generally has ~v/W > V0), the large value of ∆ � ~v/1.81Å

makes the TMD system gap dominated [19].

In TMD, the form of the wavefunctions remain unchanged and hence we

can use Eqns. (3.16a) and (3.16b) as our base wavefunctions for finding the

matrix elements for H
(τ)
TMD,1. Recall that H

(τ)
TMD,1 is of the form

H
(τ)
TMD,1 = ~v

l

r
σ2 +

λ

2
τ s3 σ0 (3.39)

with the extra σ0 term as compared to SLG which is just an energy shift

with respect to the τs3 factor in the overall energy dispersion. Once again,

the symmetries are given by

hH(τ)
TMD,1i

(n,n′)

τ,TMD
= hσ2H

(τ)
TMD,1σ2i

(n,n′)

τ,TMD
(3.40)

and

hσ2H
(τ)
TMD,1i

(n,n′)

τ,TMD
= hH(τ)

TMD,1σ2i
(n,n′)

τ,TMD
(3.41)

which hold due to the relation σ2
2 = σ0. The matrix elements are thus given

3Theoretically, there could be a massless-Dirac limit if we could impose a variable mass
confinement that can effectively cancel the 1

2 (∆�λ τ s3) potential. However this does not
seem to be a viable option yet.
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by

hH(τ)
TMD,1i

(na,n′a)

τ,TMD
= hH(τ)

SLG,1i
(na,n′a)

τ,SLG
+
λ

2
τs3δnan′a (3.42)

and

hH(τ)
TMD,1σ2i

(na,n′a)

τ,TMD
= hH(τ)

SLG,1σ2i
(na,n′a)

τ,SLG
. (3.43)

As in the case of SLG, using these solutions, we find that the subband disper-

sion up to order ε2 is accurately described by the effective 2�2 Hamiltonian:

H
(τ,n)
TMD =

~v
W

[
E

(τ,n)
TMD,0

~v/W
σ3 � τ

(
W

R

)2

l ΓTMD σ0 +
W

R
l σ1 +

λ

2~v/W
τs3

]
(3.44)

where E
(τ,n)
TMD,0 is the energy that is derived using the secular equation, with

the altered potential that is now spin-dependent, as given by Eqn. (3.10).

The general subband energy dispersion, E
(τ,n)
TMD(l) is found to be

E
(τ,±n)
TMD (l)

~v/W
= �τ

(
W

R

)2

l ΓTMD +
λ

2~v/W
τs3 �

√[
E

(τ,n)
TMD,0

~v/W

]2

+

(
W

R

)2

l2

(3.45)

which is equivalent to the SLG general mass-confinement subband energy

dispersion when λ = 0 [see Eqn. (3.38)]. We see that the only change, for

TMD rings, is that the energy dispersion includes the real-spin dependence

term which causes the energy to receive a �λ/2 energy shift based on the

sign of τs3.

Generally accepted values for group-VI dichalcogenides of the valence band

spin-splitting strength λ range around the hundreds of meV 4, while band

gap energies range around a couple of eV [19]. This means that for all TMDs,

V0 > 0 always holds because the band gap energy is much larger than the

valence and conduction band spin-splitting. Thus, without a variable mass

confinement, there are never TPESs in this system.

Using an experimental values for MoSe2 rings, with λ = �90 meV [22, 69],

4For conduction bands, this intrinsic spin-splitting is even smaller, being on the order
of magnitude around � 10 meV.
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~v = 253 meV nm and ∆ = 1.40 eV [19], we plot Fig. (3.5) which shows the

characteristic spin dependent splitting. We can also observe that the time-

reversal symmetry between the two isospin valley dispersions in the case of

TMD is different from that of SLG. To get the time-reversal partner, we have

to use the transformation τ ! �τ , s3 ! �s3 (as compared to just τ ! �τ
in SLG) and l ! �l. Additionally, given our initial model, we assume that

intrinsic spin-splitting of the conduction bands is zero thus resulting in a

negligible spin-splitting of the n = 1 band. However in Fig. (3.5a), we can see

a minor spin-splitting in the conduction band that is due to ring confinement,

thus allowing us to see a deviation between the τs3 = �1 subbands.

If we were able to vary the mass-confinement, we would see very similar

results as in Sec. (3.3.1) for SLG, with the addition of spin splitting. In fact,

there would be situations where one τs3 state is a TPES while the �τs3 state

is trivial. For example this would happen if V0 = �1 � λ τ s3/2 where we

have shifted the mass-confinement by a factor �1
2
∆� 1.

(a) Conduction-band states (b) Valence-band states

Figure 3.5: Lowest-subband dispersion relations for an MoSe2 QR with
spin-dependent splitting (" blue, # red) for isospin valley K and K′ (solid
and dashed respectively). (a) Figure of the conduction band where the lower
and upper bands have τs3 = 1 and �1, respectively. We see minor conduction
band τs3 spin-splitting. (b) Figure of the valence bands where the lower and
upper bands have τs3 = 1 and �1, respectively. The spin-splitting direction is
in agreement with Ref. [19]. The parameter values are given by λ = �90 meV,
~v = 253 meV nm and ∆ = 1.40 eV, W = 40 nm and R = 400 nm.

We have now wrapped up our description of SLG and TMD ring confinement

effects and dispersions. The transport properties related to these results

are explored further in the Chapters 5 and 6. Using the analysis from this

chapter, we have gained a better understanding of simple ring-confined Dirac

systems which helps us tackle the more difficult case of the narrow-gapped
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semiconductor quantum well, which is presented in the next chapter.



Chapter 4

Semiconductor quantum well

In this chapter we look into the energy dispersions of a narrow-gap semi-

conductor quantum well (SQW) ring using the methodology described in

Sec. (2.2).

Similarly to single-layer graphene (SLG), we map H
(τ)
SQW,0 onto a 1D Dirac-

like equation to which we apply a hard-wall confinement. The eigenenergies

and eigenstates are then determined and found to be in agreement with

previous literature [7]. Then we explore the properties associated with the

transition between trivial and topological phases, and the effects of changing

the system parameters of the quantum well. Next, for a general strength

of mass-confinement, we determine the angular momentum dependence of

SQW rings by finding the matrix elements of H
(τ)
SQW,1. As in the SLG chapter,

we use the approximation that the ring aspect ratio is small, which allows

us to determine the explicit form of the subband energy dispersion as a

function of angular momentum quantum number, l. Finally, we examine

the relative positions of the τ flavour energy dispersions and find qualitative

differences between the lowest-subband and higher subbands that indicate

the topological nature of the lowest-subband.

45
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4.1 Ring structures in SQWs

We start with the same Ansatz as in SLG:

φ
(τ,n)
SQW(r) =

χ
(τ,n)
SQW(r)
p

2πr
, (4.1)

with the relations

kr

(
χ

(τ,n)
SQW(r)
p

2πr

)
� 1p

2πr
(�i∂r)χ(τ,n)

SQW(r) , (4.2a)

k2
r

(
χ

(τ,n)
SQW(r)
p

2πr

)
� 1p

2πr
(�∂2

r )χ
(τ,n)
SQW(r) , (4.2b)

which were derived with the use of Eqns. (2.10c) and (2.10a). Hence the

radial Eqn. (2.17a) arising from the SQW model becomes

�i
dχ

(τ,n)
SQW

dr
τ σ1 +

B

~v
d2χ

(τ,n)
SQW

dr2
σ3

+
1

~v

[
Ṽ (r)σ3 �

(
E

(τ,n)
SQW,0 �D

d2

dr2

)
σ0

]
χ

(τ,n)
SQW = 0 .

(4.3)

For Ṽ (r) � M , Eqn. (4.3) constitutes the 1D Dirac equation with the addi-

tion of the ∂2
r terms. We apply a hard-wall confinement of the form

Ṽ (r) =

{
M for ri < r < ro

1 elsewhere
. (4.4)

where ri and ro are the inner and outer radii. We also define the width W

and radius R as in the SLG chapter [see Eqn. (3.5)]. We remind the reader

that M is the variable band gap parameter which governs the topological

nature of the material, as discussed in Chapter 1. In the inverted regime, i.e.

M < 0, we expect TPES in the form of evanescent eigenstates to appear.

Using the units E0 � (~v)2/jBj and q0 � ~v/jBj for energy and momen-

tum, respectively, we express our system parameters as: D̃ � D/jBj, Ẽ �
E

(τ,n)
SQW,0/E0, Ẽk � (E

(τ,n)
SQW,0 + Dk2)/E0, and k̃ � k/q0. We also redefine the



4.1. RING STRUCTURES IN SQWS 47

band gap as ξM �M/E0. Using these new definitions, the energy eigenvalues

and corresponding eigenstates of Eqn. (4.3) can be written as

Ẽ±k = �
√
k̃4 + (2ξM + 1)k̃2 + ξ2

M , (4.5a)

χSQW(r) =

(
1

τ sgn(k̃) sgn(Ẽ + ξM + k̃2) γ

)
eiκ̃r̃ , (4.5b)

where sgn(α) � α/
p
α2 and we use the fact that B < 0 in HgTe [20]. We

also introduce the abbreviation

γ =

√
Ẽk � ξM � k̃2

Ẽk + ξM + k̃2
. (4.5c)

The form of this wavefunction is identical to that in Eqn. (1.5) for 1D motion

(p = �~ k). Refer to Appendix (A.1) for the relevant signs of sgn(Ẽ+ξM+k̃2)

which will play an important role in the hard-wall confined secular equation.

To find the bound states of the 1D hard-wall confined SQW model, we super-

impose possible solutions for given energy Ẽ and determine the coefficients

from the boundary conditions. This is done by solving for the possible k̃

solution in the secular equation [Eqn. (4.5a)]. There are four possible values

of the wave number at fixed Ẽ � jξMj and Ẽ � �jξMj, with two of them

being real and given by k̃ = �κ̃, and two imaginary ones given by k̃ = �iλ̃
where κ̃ = κ/q0 and λ̃ = λ/q0. We find

κ̃ =

[
1

2

(√
(2ξM + 1)2 + 4(Ẽ2

κ � ξ2
M)� 1

)
� ξM

] 1
2

,

=

[
1

2

(√
1 + 4ξM + 4Ẽ2

κ � 1

)
� ξM

] 1
2

, (4.6a)

λ̃ =

[
1

2

(√
(2ξM + 1)2 + 4(Ẽ2

iλ � ξ2
M) + 1

)
+ ξM

] 1
2

,

=

[
1

2

(√
1 + 4ξM + 4Ẽ2

iλ + 1

)
+ ξM

] 1
2

. (4.6b)
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The full Ansatz for the bound-state wave function is

χ
(τ,n)
SQW(r) = c

(τ,n)
1κ

(
1

τ σ γκ

)
eiκr + c

(τ,n)
2κ

(
1

�τ σ γκ

)
e−iκr

+ c
(τ,n)
1λ

(
γ̄λ

�iτ

)
e−λr + c

(τ,n)
2λ

(
γ̄λ

iτ

)
eλr, (4.7)

where σ � sgn(Ẽ + ξM + κ̃2). The parameters are given by

γκ =

Ẽκ �
1
2

(√
1 + 4ξM + 4Ẽ2

κ � 1

)
Ẽκ + 1

2

(√
1 + 4ξM + 4Ẽ2

κ � 1

)


1
2

, (4.8a)

γ̄λ =


1
2

(√
1 + 4ξM + 4Ẽ2

iλ + 1

)
� Ẽiλ

1
2

(√
1 + 4ξM + 4Ẽ2

iλ + 1

)
+ Ẽiλ


1
2

. (4.8b)

There will generally be many solutions with jẼj � jξMj that are bulk-derived

ring-confined states. In addition, we expect solutions to arise with jẼj < jξMj,
at least in the inverted regime (i.e. ξM < 0), due to the hybridisation of edge

states from the inner and outer boundaries. In the latter situation, we have

a fully evanescent state with κ̃ � i˜̄κ and γκ � iγ̄κ̄, where

˜̄κ =

[
ξM �

1

2

(√
1 + 4ξM + 4Ẽ2

iκ̄ � 1

)] 1
2

, (4.9a)

γ̄κ̄ =


1
2

(√
1 + 4ξM + 4Ẽ2

iκ̄ � 1

)
� Ẽiκ̄

1
2

(√
1 + 4ξM + 4Ẽ2

iκ̄ � 1

)
+ Ẽiκ̄


1
2

(4.9b)

are then real numbers for all values of Ẽ and D̃ within the gap when ξM �
�1/4. When ξM < �1/4, ˜̄κ and γ̄κ̄ are not guaranteed to be real and may be-

come a complex quantity with both a real and imaginary component. This

is due to the square-root values (such as
√

1 + 4ξM + 4Ẽ2
iκ̄ in ˜̄κ) that ap-

pear in all the κ̃, λ̃ and γ components which may become imaginary in this

limit. The exact limit at which it becomes imaginary depends on the specific
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configurations of D̃ and Ẽ and can be shown to be

ξM �
�1 + 2D̃Ẽ +

√(
D̃2 � 1

)
(4D̃Ẽ � 1)

2D̃2
. (4.10)

Henceforth, unless otherwise mentioned, we only consider gap values that

obey the strict limit of ξM > �1/4. We now move on to derive the secular

energy equation and explore its solutions.

4.1.1 Secular energy solutions

We treat the hard-wall ring confinement conventionally by introducing the

open boundary conditions [6, 7] χ
(τ,n)
SQW(ri,o) = 0. Straightforward calculation

yields the secular equation

sin(κ̃W̃ ) sinh(λ̃W̃ )

1� cos(κ̃W̃ ) cosh(λ̃W̃ )
= σ

2γ̄λγκ
1� γ̄2

λγ
2
κ

, (4.11)

where W̃ � q0W . We rearrange this using trigonometric identities to obtain

tanh( λ̃W̃
2

)

tan( κ̃W̃
2

)
�

tan( κ̃W̃
2

)

tanh( λ̃W̃
2

)
= σ

γ̄2
λ̃
γ2
κ̃ � 1

γ̄λ̃γκ̃
(4.12)

which can be shown to be equivalent to Eqn. (9) in Ref. [7]. This derivation

is shown in Appendix (A.2). Interestingly, in the limit λ̃W̃ � 1 and λ̃ > κ̃,

which are generally satisfied [58] except potentially very deep in the inverted

regime, Eqn. (4.11) simplifies to

tan(κ̃W̃ ) = σ
2γ̄λγκ
γ̄2
λγ

2
κ � 1

. (4.13)

This has the same structure as the secular Eqn. (3.10) for a confined 1D

Dirac particle with γ ! γ̄λγκ. Bound states arising from the hybridisation

of edge states in the inverted regime [7] have energies satisfying

tanh(˜̄κW̃ ) = �σ 2γ̄λγ̄κ̄
γ̄2
λγ̄

2
κ̄ + 1

. (4.14)

Analogous to the SLG case, we find that the secular equation given by
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Eqn. (4.12) has two distinct energy solutions that arise from the underly-

ing symmetry of the system. These two forms are given by:

σγκ̃γ̄λ̃ =



cot( κ̃W̃
2

)

coth( λ̃W̃
2

)
(4.15a)

�
tan( κ̃W̃

2
)

tanh( λ̃W̃
2

)
(4.15b)

which is very similar to the SLG case [Eqns. (3.11a) and (3.11b)]. Solutions

to Eqn. (4.15a) correspond to the odd n > 0 states and Eqn. (4.15b) to the

even n > 0 states and vice-versa for n < 0. Thus adjacent energy states are

always of different “types”. Henceforth, we shall refer to states with energies

determined by Eqn. (4.15a) as type (a) and Eqn. (4.15b) as type (b).

We can rearrange Eqns. (4.15a) and (4.15b) for γκ and γ̄λ terms, respectively,

which will come in handy for later reference. We find

σγκ =

(
κ̃2 + λ̃2

)
cot
(
κ̃W̃

2

)
λ̃ coth

(
λ̃W̃

2

)
� κ̃ cot

(
κ̃W̃

2

) (4.16)

when rearranging Eqn. (4.15a) and

γ̄λ =

(
κ̃2 + λ̃2

)
tanh

(
λ̃W̃

2

)
λ̃ tanh

(
λ̃W̃

2

)
+ κ̃ tan

(
κ̃W̃

2

) . (4.17)

when rearranging Eqn. (4.15b). To obtain these relations, we have made use

of Eqns. (A.3) and (A.4) in the appendix.

Now we proceed to determine solutions for topological evanescent edge states,

i.e. when jẼj < jξMj. In the case of ξM � 0, Eqns. (4.15a) and (4.15b) become

�
coth( κ̄W̃

2
)

coth(λW̃
2

)
= γ̄κ̄γ̄λ (4.18a)

�
tanh( κ̄W̃

2
)

tanh(λW̃
2

)
= γ̄κ̄γ̄λ (4.18b)
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where σ = 1. We see that the left-hand side (LHS) of the equations is a

combination that is always negative and the right-hand side (RHS) is always

positive. Therefore the two sides of the equations are only equal when they

are separately equal to zero. When γ̄κ̄γ̄λ = 0, we have Ẽ = ξM. This

is not within the gap hence there are no topological bound states between

jẼj < jξMj for ξM � 0, as was expected in Sec. (1.5).

For 0 > ξM � �1/4, these equations are different because σ = �1 in this

case. The secular equations thus become

coth( κ̄W̃
2

)

coth(λW̃
2

)
= γ̄κ̄γ̄λ (4.19a)

tanh( κ̄W̃
2

)

tanh(λW̃
2

)
= γ̄κ̄γ̄λ (4.19b)

which results in a varying number of solutions. Due to the consequences of

SQW QRs generally not possessing energy-reflection symmetry 1, this may

result in zero, one or two viable topological bound state solutions, dependent

of the configurations of parameters ξM < 0, D̃ and W̃ , as compared to zero

and two in SLG QRs. As previously expected, we have proof that TPES can

only exist in the inverted regime.

For W ! 1 and ξM < 0, there exist two evanescent bound states for each

τ valley within the band gap. At this limit, the energies of the edge states

converge to the same energy which is determined by

γ̄κ̄γ̄λ = 1 (4.20)

where we have applied the limit on Eqns. (4.19a) and (4.19b). The energy is

thus given by

E
(τ,±1)
SQW,0/E0 = ξMD̃ (4.21)

which agrees with the results in Ref. [7].

1Recall that this is due to the σ0 term in the H
(τ)
SQW,0 [see Eqn. (2.17a)] which is present

when D̃ 6= 0. The σ0 terms is what we call a vector potential and couples to the charge
(unlike σ2 which couples to the mass) of the particle thus treating electrons and holes
oppositely, hence causing an asymmetry in their dispersions.
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Now we explore the effects of changing certain parameters, such as width,

and how this affects the secular equation solutions. First we turn our at-

tention to the simpler energy-reflection symmetric case of D̃ = 0 (thus

E
(τ,n)
SQW,0 = �E(τ,−n)

SQW,0). We plot Ẽ q0W as a function of ξMq0W for the three

lowest-subbands in Fig. (4.1). The parametrisation is chosen such that our

axes are analogous to those for the SLG Fig. (3.1): ξMq0W � V0/(~v/W ).

Unlike SLG, there is no universal energy curve because the curves change

for different W̃ values. It becomes apparent that as W̃ ! 1, the curves

approach those of SLG. The underlying reason for this is due to the quan-

tity tanh(λ̃W̃ /2)! 1, which causes the secular equations [Eqns. (4.15a) and

(4.15b)] to resemble those of SLG [Eqns. (3.11a) and (3.11b), respectively].

Figure 4.1: Three D̃ = 0 lowest-subbands energies Ẽ q0W versus ξMq0W at
different q0W values for SQW (discontinuous) and SLG (thick-solid). The
different subbands are given by n = 1 (red), 2 (blue) and 3 (black). The
width values are given by q0W = 26.6 (dotted) and 53.1 (dot-dashed). The

dashed-black line represents the gap-size: E
(τ,n)
α,0 /E0 = jξMj.

In Fig. (4.1), we also observe that when ξMq0W . �1, the lowest-subband

becomes topologically protected allowing for the existence of evanescent edge

states with energies jẼj < jξMj. This is an approximate limit since varying the

width changes the point at which the system becomes topological. However,

this change is very small for a wide range of W̃ values (particularly for large

W̃ ). Thus, the limit is reminiscent to that of the SLG case [see Eqn. (3.13)]

which further emphasises the similarities between the SQW and SLG for large

W̃ . Furthermore, in the limit of ξMq0W ! �1 we see that Ẽ q0W ! 0 for
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the lowest-subband. This is distinctly different from the behaviour of higher

subbands which have Ẽ q0W !1. All these defining features draw attention

to the topological nature of this subband.

For a negative non-zero D̃ 2, energy-reflection symmetry no longer holds.

We plot the energy as a function of gap size for different �n subbands in

Fig. (4.2). Contrary to the D̃ = 0 case, the lowest-subbands now become

evanescent at two different values of ξMq0W thus resulting in varying numbers

of states (0, 1 or 2) within the gap at a given ξMq0W configuration. The

system is in its topological phase once the first evanescent TPES state forms

[e.g. in Fig. (4.2) where ξMq0W � �0.5].

Figure 4.2: Energy curves of the lowest-three �n (solid/dotted) subbands
where we plot E q0W/E0 versus ξMq0W for a SQW QR when D/jBj =
�0.746. The subbands are given by n = �1 (red), �2 (blue) and �3 (black).

The dashed-black line represents the gap-size: E
(τ,n)
SQW,0/E0 = �jξMj. The

width was held constant at q0W = 26.6.

Unlike the D̃ = 0 case, the n = �1 lowest-subbands do not tend to zero in the

limit of ξMq0W ! �1. However, they still behave visibly different from the

higher subbands because they converge to the same values while the higher

subbands go to �1, respectively. This means that the energy difference of

the lowest-subband goes to zero in the deeply inverted regime which will be

important in Chapter 6. The energy, to which the lowest-subbands converge,

is given by the value E
(τ,n)
SQW,0/E0 ! ξMD̃, as shown in Eqn. (4.21). In contrast,

the higher subbands go as E
(τ,n)
SQW,0/E0 ! 1 as ξMq0W ! �1. This once

2As in the case of HgTe quantum wells.
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again signifies the difference between the the topologically protected state

(when jE(τ,n)
SQW,0j < jξMj) versus the higher subbands.

The shapes of higher subbands have also changed slightly: for n < �1, the

subbands are more “bunched” together while the n > 1 subbands are more

spread out. This effect would be reversed for a positive value of D̃. As for

the width dependence of the energies, although not shown in the figure, we

see the same effect as in the D̃ = 0 case where for large values of q0W the

energy solutions appear at similar values for a given gap size. Although not

proven, we strongly suspect that for q0W ! 1 the curves would approach

the curves produced by a modified SLG case [i.e. with the addition of D̃σ0∂
2
r

to Eqn. (3.3)].

As mentioned before, in Fig. (4.2), there are a varying number of TPESs

for different values of ξM and q0W for a non-zero value of D̃. A detailed

discussion on this topic is presented in the next section where we determine

the values of ξM and q0W where TPESs disappear.

4.1.2 Transition from topological regime to normal

As mentioned in the previous sections, topological bound states (i.e. TPES)

are only present at certain values of ξM, D̃ and W̃ , as seen in Figs. (4.1)

and (4.2). We also know from Sec. (4.1.1) that there are none when ξM � 0.

However, for ξM < 0, the situation still varies depending on the magnitudes

of jξMj, W̃ and D̃. When D̃ = 0, we either have zero or two topologically

protected edge states at a given ξM, W̃ and τ value due to energy-reflection

symmetry. However, when D̃ 6= 0, we can have f0, 1, 2g edge states at a

given ξM, W̃ and τ value. How these variables change the topological nature

of the states and the material will now be discussed.

Although we have mostly focused our attention in previous sections on how

the energies of the bound states vary with the gap size, ξM, we will first focus

on how these TPESs vary as a function of the width, W̃ . The reason for this

approach is that this knowledge is simpler to attain and will become useful

for finding the variation with regards to the gap because of their intertwined

relationship.

The general wavefunction [Eqn. (4.7)] can be thought of as edge states that
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are localised at ri and ro [7]. The magnitude of the coupling between these

states, which depends on the confinement width W̃ , determines the confine-

ment energy of the overall system. For a fixed gap size ξM and a large width,

the bound states do not interact, thus allowing them to possess the same en-

ergies, as given by Eqn. (4.21), which is below ξM. Hence, they are TPESs.

However, decreasing the width of the ring causes the coupling between the

edge states, situated on opposite boundaries of the walls, to increase. This

causes the magnitude of the confinement energy to increase thus eventually

pushing the bound state energies out of the jẼj < jξMj region. Below a cer-

tain critical width, W̃c±, the topological properties of an evanescent bound

state are destroyed by the confinement effects. This process can be seen in

Fig. (4.3).

To find an analytical solution for the length scale at which topological bound

states become trivial, we assume λ̃ � ˜̄κ and λ̃W̃ > 1 [58] such that the

Eqns. (4.19a) and (4.19b) become

γ̄˜̄κγ̄λ̃ =


coth(

˜̄κW̃

2
) (4.22a)

tanh(
˜̄κW̃

2
) (4.22b)

which can be rearranged to become

W̃ =


2
˜̄κ

coth−1 (γ̄κ̄γ̄λ) (4.23a)

2
˜̄κ

tanh−1 (γ̄κ̄γ̄λ) . (4.23b)

The topological bound state disappears when jẼj � jξMj resulting in a critical

width W̃c±:

W̃c+ = lim
Ẽ→−ξM

2

˜̄κ(Ẽ)
coth−1

(
γ̄κ̄(Ẽ)γ̄λ(Ẽ)

)
(4.24)

and

W̃c− = lim
Ẽ→ξM

2

˜̄κ(Ẽ)
tanh−1

(
γ̄κ̄(Ẽ)γ̄λ(Ẽ)

)
. (4.25)
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(a) W̃ > W̃c+ (b) W̃ = W̃c+

(c) W̃c− < W̃ < W̃c+ (d) W̃ < W̃c−

Figure 4.3: Transition of the bound states (red and blue circles) between
different limits of W̃ with respect to W̃c±. We plot the RHS (orange and
blue respectively) and LHS (green for both) of Eqns. (4.15a) and (4.15b) and
note the points of overlaps (i.e. bound states). The thick-red (thick-blue)
bound state moves from within the gap (�jξMj indicated by vertical dashed
black lines) to outside the gap after W̃ becomes smaller than the critical width
W̃c+ (W̃c−). The parameters are as follows: ξM = �0.207, D̃ = �0.746 and
q0W = 20, 13.4, 8, 2.3 [(a)-(d)].

Note that the limits were chosen based of Fig. (4.3) where the type (a) and

(b) bound states always transition out of the gap at �ξM, respectively. The

critical width is found to be

W̃c± =
1

jξMj

√
1� D̃

(1� D̃)(1 + 2(1� D̃)ξM)
(4.26)

where we have assumed 1� D̃2 > 0 which is generally true. Notice that the

critical widths are always real for ξM � �1/4 since jD̃j < 1. In the special
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case of D̃ = 0, W̃c+ = W̃c− = W̃c thus giving

W̃c =
1

jξMj

√
1

1 + 2ξM

(4.27)

where W̃c is a critical width below which both topological bound states dis-

appear making the system topologically trivial.

In literature, the system parameters of HgTe quantum wells are generally

~v = 364.5 meV nm, B = �686 meV nm2 and D = �512 meV nm2 [6,7] with

a variable gap magnitude. To give the reader a feeling of the length scales

at which this confinement effect destroys a TPES, we calculate the critical

widths for a gap parameter ofM = �40 meV where we have ξM = �0.207 and

D̃ = �0.746. For these values the critical widths are W̃c+ = 13.4 (� 7.12 nm)

and W̃c− = 3.50 (� 1.86 nm). We notice that W̃c+ > W̃c− for D̃ < 0 and

W̃c+ < W̃c− for D̃ > 0, as can be seen in Fig. (4.4b). Additionally, one must

note that the approximation λ̃ > ˜̄κ and λ̃W̃ � 1 can be slightly inaccurate

for the minfW̃c+, W̃c−g and thus lead to a minor shift from the actual value.
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(a) W̃c± versus ξM
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(b) W̃c± versus D̃

Figure 4.4: Critical width as a function of ξM and D̃. (a) The different val-
ues of D̃ are �0.746 (solid blue/black for W̃c+ or vice versa for W̃c−), �0.373
(dashed blue/black) and 0 (red). (b) The different values of ξM are �1/4
(red for W̃c+ and green for W̃c−), �1/8 (solid blue/black), �1/16 (dashed
blue/black) and �1/32 (dotted blue/black).

Curiously, varying the magnitude of jξMj causes similar effects as varying

the width. When we are in the deeply inverted region, there are usually

two TPES within the gap for a wide range of width values [see Fig. (4.4a)].

However, as we decrease the magnitude of the inverted band gap, i.e. jξMj !
0, we see states that were TPES become trivial, as seen in Fig. (4.2). To find
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the gap values at which TPES disappear, Eqn. (4.26) must be inverted for

the critical values ξMc±.

The change of ξMc q0W as a function of q0W can be seen in Fig. (4.5). For

a large limit of W̃ � 1 [and thus ξMc± � 1 to satisfy Eqn. (4.26)] we find,

via a Taylor expansion of Eqn. (4.26), that the system has topological bound

states when

ξMc±q0W . �

√
1� D̃
1� D̃

+O(ξMc±) . (4.28)

For D̃ = 0, we have ξMc+ = ξMc− = ξMc and the limit reduces to

ξMcq0W . �1 (4.29)

which is reminiscent of the SLG limit [see Eqn. (3.13)], as was also explored

in Sec. (3.1.1). This value is seen to be an accurate description at large values

of q0W (& 10) in Fig. (4.5). Furthermore, in Fig. (4.1) we see support for

this limit since for the larger width (q0W = 100) the limit becomes more

accurate.
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Figure 4.5: Critical ξMc q0W as a function of q0W . As q0W ! 1,
ξMc q0W ! 1. This limit is reminiscent of the case in SLG. D̃ was held
at 0.

In the case of a non-zero D̃ = �0.746 as in Fig. (4.2), we have ξMc±q0W =

f2.62, 0.381g which corresponds well to the transition points between topo-

logically protected and trivial edge states. This is accurate since we have a
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fairly large W̃ = 26.6 in Fig. (4.2).

Generally, TPES are present in un-confined SQW whenever ξM < 0 [2].

However, we have shown that when SQW become ring-confined, TPES are

only present if W > Wc± and ξM < ξMc±. Overall we have found that

quantum confinement of SQW QRs causes some of the TPES that were

present in the initial un-confined SQW to disappear, as in the SLG QR case.

We have now determined and explored the critical limits at which TPESs

appear and have gained a comprehensive understanding of how the secular

energy solutions vary for different system parameters. This section will be

crucial for our understanding of the τ valley dependence for the subband

energy dispersions which will be discussed in Sec. (4.2.2). It will also aid us

in comprehending results in Chapter 6 where we shall discover connections

between the Berry phase, arising due to quantum-confinement, and the crit-

ical limits at which TPES dissappear. We now move on to determine the

energy eigenstates of H
(τ)
SQW,0.

4.1.3 Eigenstates of SQW

The boundary equation matrix determined by the boundary conditions

χ
(τ,n)
SQW(ri/o) = 0

can be shown to be
e
iW̃ κ̃
2 e−

iW̃ κ̃
2 γ̄λe

− W̃ λ̃
2 γ̄λe

W̃ λ̃
2

e−
iW̃ κ̃
2 e

iW̃ κ̃
2 γ̄λe

W̃ λ̃
2 γ̄λe

− W̃ λ̃
2

τσγκe
iW̃ κ̃
2 �τσγκe−

iW̃ κ̃
2 �iτe−

W̃ λ̃
2 iτe

W̃ λ̃
2

τσγκe
− iW̃ κ̃

2 �τσγκe
iW̃ κ̃
2 �iτe

W̃ λ̃
2 iτe−

W̃ λ̃
2



c

(τ,n)
1κ

c
(τ,n)
2κ

c
(τ,n)
1λ

c
(τ,n)
2λ

 =


0

0

0

0

 . (4.30)

Using the first three equations in the matrix, we can determine the gen-

eral values of c
(τ,n)
1κ , c

(τ,n)
2κ and c

(τ,n)
1λ in terms of c

(τ,n)
2λ which allows us to find

the general form of the wavefunction. This derivation can be seen in Ap-

pendix (A.3).

However, it is advantageous for us to consider a simplified version of the wave-

function by separating it into two forms that correspond to type (a) states

[i.e. energies described by Eqn. (4.15a)] and type (b) states [i.e. energies de-
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scribed by Eqn. (4.15b)]. This can be obtained by substituting Eqns. (4.16)

and (4.17) into the γκ and γ̄λ components of Eqn. (4.30) 3. When we then

solve for the wavefunction we find

χ
(τ,n)
SQW,1(r̃) = c̃1

p
q0


cosh(λ̃(r̃−R̃))

cosh
(
λ̃W̃
2

) � cos(κ̃(r̃−R̃))

cos
(
κ̃W̃
2

)
iτ(κ̃2+λ̃2)

λ̃ coth
(
λ̃W̃
2

)
−κ̃ cot

(
κ̃W̃
2

)
(

sinh(λ̃(r̃−R̃))

sinh
(
λ̃W̃
2

) � sin(κ̃(r̃−R̃))

sin
(
κ̃W̃
2

)
)

(4.31)

for type (a) states [using Eqn. (4.16)], and

χ
(τ,n)
SQW,2(r̃) = c̃2

p
q0


sinh(λ̃(r̃−R̃))

sinh
(
λ̃W̃
2

) � sin(κ̃(r̃−R̃))

sin
(
κ̃W̃
2

)
iτ(κ̃2+λ̃2)

λ̃ tanh
(
λ̃W̃
2

)
+κ̃ tan

(
κ̃W̃
2

)
(

cosh(λ̃(r̃−R̃))

cosh
(
λ̃W̃
2

) � cos(κ̃(r̃−R̃))

cos
(
κ̃W̃
2

)
)


(4.32)

for type (b) states [using Eqn. (4.17)], where c̃1 and c̃2 are normalisation

constants. These wavefunctions are equivalent to those derived by B. Zhou

et. al. [7] 4.

Remembering that we are working in a ring geometry, the actual wavefunc-

tions are given by φ
(τ,n)
SQW,1 = χ

(τ,n)
SQW,1/

p
2πr and φ

(τ,n)
SQW,2 = χ

(τ,n)
SQW,2/

p
2πr. Both

φ
(τ,n)
SQW,1(r̃) and φ

(τ,n)
SQW,2(r̃) can be separated into two components which are

associated with the Dirac part and the wing (decaying) part of the wave-

function, respectively:

φ
(τ,n)
SQW,η(r̃) = φ

(τ,n)
SQW,η,D(r̃) + φ

(τ,n)
SQW,η,W (r̃) (4.33)

where η � f1, 2g. For φ
(τ,n)
SQW,1(r̃), we have

φ
(τ,n)
SQW,1,D(r̃) = � c̃1p

2πr̃

q0

cos
(
κ̃W̃

2

) ( cos(κ̃(r̃ � R̃))

iτσγκ sin(κ̃(r̃ � R̃))

)
(4.34)

3For type (a) states the γ̄λ is found as a function of γκ using the secular equation
[Eqn. (4.15a)]. Then all the γκ components are substituted using Eqn. (4.16). For type
(b) states, the procedure is reversed where γκ is written in terms of γ̄λ and then substituted
using Eqn. (4.17).

4Minor differences arise due to a choice of basis: we work using the x axis orientation
of r instead of their y axis orientation. Hence there is no effect on the physical results.
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and

φ
(τ,n)
SQW,1,W (r̃) =

c̃1p
2πr̃

q0

cosh
(
λ̃W̃

2

) ( cosh(λ̃(r̃ � R̃))

iτ 1
γ̄λ

sinh(λ̃(r̃ � R̃))

)
(4.35)

where c̃1 is given by

c̃−2
1 =

W̃

2

[
1 + γ2

κ

cos2(κW2 )
+

1� 1
γ̄2λ

cosh2(λW2 )

]
�
[

4(σγκγ̄λ λ̃+ κ̃)

κ̃2 + λ̃2
+
γ2
κ � 1

κ̃

]
tan(

κ̃W̃

2
)

+

[
4(σγκγ̄λ κ̃� λ̃)

κ̃2 + λ̃2
+

1
γ̄2λ

+ 1

λ̃

]
tanh(

λ̃W̃

2
) (4.36)

and for φ
(τ,n)
SQW,2(r), we have

φ
(τ,n)
SQW,2,D(r̃) = � c̃2p

2πr̃

q0

sin
(
κ̃W̃

2

) ( sin(κ̃(r̃ � R̃))

�iτσγκ cos(κ̃(r̃ � R̃))

)
(4.37)

and

φ
(τ,n)
SQW,2,W (r̃) =

c̃2p
2πr̃

q0

sinh
(
λ̃W̃

2

) ( sinh(λ̃(r̃ � R̃))

iτ 1
γ̄λ

cosh(λ̃(r̃ � R̃))

)
(4.38)

where c̃2 is given by

c̃−2
2 =

W̃

2

[
1 + γ2

κ

sin2(κW
2

)
�

1� 1
γ̄2λ

sinh2(λW
2

)

]
+

[
4(σγκ

γ̄λ
λ̃+ κ̃)

κ̃2 + λ̃2
+
γ2
κ � 1

κ̃

]
cot(

κ̃W̃

2
)

+

[
4(σγκ

γ̄λ
κ̃� λ̃)

κ̃2 + λ̃2
+

1
γ̄2λ

+ 1

λ̃

]
coth(

λ̃W̃

2
) . (4.39)

Upon seeing the separated wavefunctions, it is obvious that Eqns. (4.34) and

(4.37) have identical forms (up to a constant factor) to the wavefunctions

obtained by the 1D Dirac equation, given by Eqns. (3.16a) and (3.16b). This

exemplifies the Dirac nature of SQWs with however the noticeable addition

of the wing states which play a particularly observable role close to the edges

of the ring [7]. The forms of the evanescent eigenstates, when jẼj < jξMj,
can be seen in Appendix (A.4).

We have now obtained the forms of the eigenstates and energies of H
(τ)
SQW,0.
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In the next section, we use these results to change the basis of H
(τ)
SQW,1 using

the eigenstates of H
(τ)
SQW,0. This will eventually allow us to find the azimuthal

(i.e. l) dependence of the subband energy dispersions.

4.2 Finding the azimuthal dependence

The Hamiltonian associated with the azimuthal motion, as given in Eqn. (2.17b),

can be reworked to become

H
(τ)
SQW,1 = ~v

l

r
σ2 �

l2

r2
B σ3 �D

l2

r2
σ0

= E0

(
l

r̃
σ2 +

l2

r̃2
σ3 � D̃

l2

r̃2
σ0

)
. (4.40)

where we have made use of our parametrisation definitions. This Hamiltonian

determines the total subband energy dispersion and transport properties of

the material due to the inclusion of the azimuthal motion of particles in the

ring.

The only symmetry present in the H
(τ)
SQW,1 is given by

hφ(τ,n)
SQW,2jH

(τ)
SQW,1 jφ

(τ,n′)
SQW,1i = hφ(τ,n)

SQW,1jH
(τ)
SQW,1 jφ

(τ,n′)
SQW,2i

†
.

which is due to the Hermitian nature of the Hamiltonian. Unfortunately,

since energy-reflection symmetry does not generally hold, there is no sym-

metry in the diagonal terms such as in the SLG and TMD cases that would

simplify our calculations. Thus we have to apply the general change of basis

to H
(τ)
SQW,1 using the eigenstates of H

(τ)
SQW,0.

We find that the matrix term hφ(τ,n)
SQWjH

(τ)
SQW,1 jφ

(τ,n′)
SQW i can be shown to be

hφ(τ,n)
SQW,1jH

(τ)
SQW,1 jφ

(τ,n′)
SQW,1i =

∫ R+W
2

R−W
2

φ
(τ,n)
SQW,1

†
H

(τ)
SQW,1φ

(τ,n′)
SQW,1 2πr dr

= c̃1c̃
′
1E0

∫ R̃+ W̃
2

R̃− W̃
2

2∑
α=1

2∑
β=1

τατ
′
β

cos(λαW̃2 ) cos(
λ′βW̃

2 )
�

[
l

r̃
τ

(
γ′β√
�τ ′β

cos(λα(r̃ � R̃))sin(λ′β(r̃ � R̃))
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+
γαp
�τα

cos(λ′β(r̃ � R̃))sin(λα(r̃ � R̃))

)
+
l2

r̃2

(
cos(λα(r̃ � R̃))cos(λ′β(r̃ � R̃))

� γαp
�τα

γ′β√
�τ ′β

sin(λ′β(r̃ � R̃))sin(λα(r̃ � R̃))

)

� D̃ l2

r̃2

(
cos(λα(r̃ � R̃))cos(λ′β(r̃ � R̃))

+
γαp
�τα

γ′β√
�τ ′β

sin(λ′β(r̃ � R̃))sin(λα(r̃ � R̃))

)]
dr̃

(4.41)

where τ1,2 = �1, λ1 = iλ̃, λ2 = κ̃, γ1 = 1/γ̄λ and γ2 = σγκ. Note that here

α is used as a summation index and does not indicate the material as in the

methodology. Using jφ(τ,n)
SQW,2i, we have

hφ(τ,n)
SQW,2jH

(τ)
SQW,1 jφ

(τ,n′)
SQW,2i =

∫ R+W
2

R−W
2

φ
(τ,n)
SQW,2

†
H

(τ)
SQW,1φ

(τ,n′)
SQW,2 2πr dr

= c̃2c̃
′
2E0

∫ R̃+ W̃
2

R̃− W̃
2

2∑
α=1

2∑
β=1

τατ
′
β

sin(λαW̃2 ) sin(
λ′βW̃

2 )
�

[
l

r̃
τ

(
τ ′βγ
′
β

√
�τ ′βsin(λα(r̃ � R̃))cos(λ′β(r̃ � R̃))

+ ταγα
p
�ταsin(λ′β(r̃ � R̃))cos(λα(r̃ � R̃))

)
+
l2

r̃2

(
sin(λα(r̃ � R̃))sin(λ′β(r̃ � R̃))

� τατ ′βγαγ′β
p
�τα

√
�τ ′βcos(λ′β(r̃ � R̃))cos(λα(r̃ � R̃))

)
� D̃ l2

r̃2

(
sin(λα(r̃ � R̃))sin(λ′β(r̃ � R̃))

+ τατ
′
βγαγ

′
β

p
�τα

√
�τ ′βcos(λ′β(r̃ � R̃))cos(λα(r̃ � R̃))

)]
dr̃

(4.42)

and matrix elements that couple states jφ(τ,n)
SQW,1i and jφ(τ,n′)

SQW,2i can be written
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as

hφ(τ,n)
SQW,1jH

(τ)
SQW,1 jφ

(τ,n′)
SQW,2i =

∫ R+W
2

R−W
2

φ
(τ,n)
SQW,1

†
H

(τ)
SQW,1φ

(τ,n′)
SQW,2 2πr dr

= c̃′2c̃1E0

∫ R̃+ W̃
2

R̃− W̃
2

2∑
α=1

2∑
β=1

τατ
′
β

cos(λαW̃2 ) sin(
λ′βW̃

2 )
�

[
l

r̃
τ

(
τ ′βγ
′
β

√
�τ ′βcos(λα(r̃ � R̃))cos(λ′β(r̃ � R̃))

+
γαp
�τα

sin(λ′β(r̃ � R̃))sin(λα(r̃ � R̃))

)
+
l2

r̃2

(
cos(λα(r̃ � R̃))sin(λ′β(r̃ � R̃))

� τ ′βγαγ′β

√
�τ ′β
p
�τα

cos(λ′β(r̃ � R̃))sin(λα(r̃ � R̃))

)
� D̃ l2

r̃2

(
cos(λα(r̃ � R̃))sin(λ′β(r̃ � R̃))

+ τ ′βγαγ
′
β

√
�τ ′β
p
�τα

cos(λ′β(r̃ � R̃))sin(λα(r̃ � R̃))

)]
dr̃ . (4.43)

When we apply the realistic assumption that the aspect ratio ε � W/R is

small, i.e. ε� 1, the exact solutions to these matrix elements can be found

for orders of ε via a Taylor expansion. The solutions to these integrals, in this

regime, can be found in Appendix (B) where we have tabulated the relevant

integrals up to order ε2.

In the following section we explore the relative magnitudes of the matrix

elements and discuss which contributions can be neglected and which must

be taken account of. It is our aim to convince the reader that inter-subband

interactions between n and n′ 6= �n can generally be ignored thus allowing

us to purely consider the (n,�n) energy subbands dispersions for SQWs,

as in the cases of SLG and TMD. Although this was also considered in the

methodology section, we feel it prudent to show the validity of our method

due to the breaking down of energy-reflection symmetry in this case.
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4.2.1 Magnitude of matrix elements

Using the integrals in the Appendix (B), we can determine that, when ε �
W/R� 1, the largest contributions to the H

(τ)
SQW,1 are the linear l terms from

the hφ(τ,n)
SQW,1jH

(τ)
SQW,1 jφ

(τ,n′)
SQW,2i matrix elements. These are the only terms that

are proportional to the first order of ε. They couple type (a) and type (b)

eigenstates [arising from the Eqns. (4.15a) and (4.15b)] which correspond to

odd (even) and even (odd) eigenstates for positive (negative) n, respectively.

In general, when energy-reflection symmetry holds (D̃ = 0), the largest cou-

pling terms are between n and �n states, which are always of different types,

as discussed in Sec. (2.2). The reasoning for this parallels that for SLG where

the difference in the magnitude of l = 0 subband energies governs the cou-

pling strength between the subbands. The larger the difference, the smaller

the coupling. Thus in this case, the relative magnitudes of matrix elements

are very similar to those of the SLG case.

However, when D̃ 6= 0, the strength of the coupling becomes somewhat

murkier due to the fact that energies differ in magnitude for �n subbands

because of the asymmetry of the l = 0 subband energies. Nevertheless n

and �n states still have the strongest coupling for the lower subbands. This

is because the coupling depends on the magnitude of the energy difference

between the eigenstates which is relatively small for lower subbands. How-

ever for higher subbands this reasoning does not hold due to the increasing

energy difference and asymmetry of the l = 0 energies [see Fig. (4.2)]. Thus

it becomes possible for higher subbands to be significantly influenced by

neighbouring states since the energies become relatively small. Hence, we

only fully trust the approximation described above for the lowest-subbands

results in SQW.

So far we have only concentrated on the largest matrix elements of first order

in ε for which we have established a hierarchy. However, there are also ε2 or

higher order contributions, some of which cannot be neglected.

There are only odd orders of ε terms in hφ(τ,n)
SQW,1jH

(τ)
SQW,1 jφ

(τ,n′)
SQW,2i. Thus in

these matrix elements, the next order terms are 3rd and higher and can be

neglected because they would be multiple orders of magnitude smaller than

the ε terms.
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On the other hand, same type coupling terms (hφ(τ,n)
SQW,ηjH

(τ)
SQW,1 jφ

(τ,n′)
SQW,ηi) only

have even orders of ε. Once again the magnitude of individual terms depends

on the difference of the energies ∆E(n,n′) � jE(τ,n)
SQW,0j � jE

(τ,n′)
SQW,0j: the larger

the energy difference, the smaller the contribution. Thus we can ignore ε2

and higher order contributions of inter-subband coupling terms (i.e. n with

n′ 6= n) since the energy differences between subbands that are separated by

another subband is relatively large 5. However, the diagonal matrix terms

of order ε2 that couple an energy eigenstate with itself (∆E(n,n) = 0) have a

significant contribution to the energy subband dispersion as in the SLG case

which cannot be neglected.

Furthermore, notice how the orders of ε are very similar to the SLG case

[in Sec. (3.2)] where off-diagonal terms possess only odd orders and diagonal

terms have only even orders of ε. This is one of the indications that we can

mostly follow the same reasoning as for SLG and hence trust the (n,�n)

subband dispersions.

A comparison of the effects of inter-subband coupling terms and diagonal

subband contributions on the lowest-subbands (n = �1) can be seen in

Fig. (4.6) with parameter values that correspond to a realistic HgTe quantum

well ring. We plot the lowest-subbands with and without inter-subband

coupling from n = �2 and find that the difference between the dispersions

is negligible for the region of realistic azimuthal motion (l . 50). We also

find, as expected, that neglecting the diagonal ε2 coupling terms yields a less

accurate approximation of the energy subband dispersion and thus must be

included in the matrix elements of H
(τ)
SQW,1. However the off-diagonal ε3 and

higher order (n,�n) contributions to dispersion are seen to be negligible.

This all supports our previous reasoning.

Thus, we have shown that the H
(τ)
SQW,1 can be separated into the block diag-

onal (n,�n) subband Hamiltonians H
(τ,±n)
SQW,1. The exact form of the subband

dispersions is derived in the following section.

5Remember that they are separated by another subband due to the alternating types
of states.
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Figure 4.6: Lowest-subband dispersion for a HgTe quantum well with and
without coupling from n = �2 states. All diagonal and off-diagonal coupling
terms between subbands n = �1,�2 (solid), �1, 2 (dashed) and �1 (black-
dotted) are included to produce the lowest-subband dispersion. The red-dotted

line ignores the diagonal ε2 H
(τ)
SQW,1 terms. Other parameter were set constant

at q0W = 5.31, D̃ = �0.746, ξM = �0.207 and W/R = 0.025.

4.2.2 Subband energy dispersion

The block-diagonal (n,�n) subband Hamiltonian up to the first order of

ε = W̃/R̃ in the (n,�n) coupling terms (off-diagonal terms) and ε2 in the

diagonal terms can be shown to be

H(τ,n)
SQW = E0�Ẽ(τ,n)

SQW,0 � lτ
(
W̃
R̃

)2
ΛSQW + l2

(
W̃
R̃

)2
ΥSQW lτ W̃

R̃
∆SQW

lτ W̃
R̃

∆∗SQW Ẽ
(τ,−n)
SQW,0 � lτ

(
W̃
R̃

)2
Λ′SQW + l2

(
W̃
R̃

)2
Υ′SQW

 ,

(4.44)

where we construct the basis such that Ẽ
(τ,n)
SQW,0 is the energy of a type (a) state

[Eqn. (4.15a)] and Ẽ
(τ,−n)
SQW,0 is the energy of type (b) state [Eqn. (4.15b)] 6.

6Recall the �n subbands are always of different types.
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The different components are determined by the following functions

Λ(δ, ρ, θ) =
c̃2

W̃ 2

2∑
α=1

2∑
β=1

�τατβ
cos(λαW̃2 � θ) cos(

λβW̃
2 � θ)

�

(
(δ � ρ)

[
W̃

2

cos
(

(λα−λβ)W̃
2

)
λα � λβ

�
sin
(

(λα−λβ)W̃
2

)
(λα � λβ)2

]

+ (δ + ρ)

[
W̃

2

cos
(

(λα+λβ)W̃
2

)
λα + λβ

�
sin
(

(λα+λβ)W̃
2

)
(λα + λβ)2

])
, (4.45)

and

Υ(δ, ρ, θ, σ) =
c̃2

W̃ 2

2∑
α=1

2∑
β=1

τατβ

cos(λαW̃2 � θ) cos(
λβW̃

2 � θ)
�

([
1� D̃ � (1 + D̃)δρ

] sin
(

(λα−λβ)W̃
2

)
λα � λβ

+ σ

[
1� D̃ + (1 + D̃)δρ

] sin
(

(λα+λβ)W̃
2

)
λα + λβ

)
, (4.46)

where ΛSQW = Λ( γα√
−τα ,

γβp
−τβ

, 0), Λ′SQW = Λ(τβγβ
p�τβ, ταγα

p
�τα, π2 ), ΥSQW =

Υ( γα√
−τα ,

γβp
−τβ

, 0, 1) and Υ′SQW = Υ(τβγβ
p�τβ, ταγα

p
�τα, π2 ,�1). The off-

diagonal terms are given by

∆SQW =
c1c
′
2

W̃

2∑
α=1

2∑
β=1

τατ
′
β

cos(λαW̃2 ) sin(
λ′βW̃

2 )
�

[ γα√
−τα

+ τ ′βγ
′
β

√
�τ ′β

λα � λ′β
sin

(
(λα � λ′β)W̃

2

)
�

γα√
−τα
� τ ′βγ′β

√
�τ ′β

λα + λ′β
sin

(
(λα + λ′β)W̃

2

)]
.

(4.47)
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The eigenenergies, Ẽ
(τ,±n)
SQW , of the �n subbands are found to be given by

Ẽ
(τ,±n)
SQW =

Ẽ
(τ,n)
SQW,0 + Ẽ

(τ,−n)
SQW,0 � lτ

(
W̃
R̃

)2
(ΛSQW + Λ′SQW) + l2

(
W̃
R̃

)2
(ΥSQW + Υ′SQW)

2

�
[(Ẽ(τ,n)

SQW,0 � Ẽ
(τ,−n)
SQW,0 � lτ

(
W̃
R̃

)2
(ΛSQW � Λ′SQW) + l2

(
W̃
R̃

)2
(ΥSQW �Υ′SQW)

2

)2

+ l2

(
W̃

R̃

)2

j∆SQWj2
] 1

2

.

(4.48)

Unfortunately, so far we have discovered no simplified expressions for the

components of the subband energy dispersion, unlike the dispersion equations

for SLG and TMD. This is due to the extra layer of complication that is

present due to the existence of wing states, as seen in Eqns. (4.35) and

(4.38), and the lack of energy-reflection symmetry for a non-zero D̃.

Now that the general subband dispersions have been obtained, we proceed

to study the qualitative features of these dispersions. To do this, we consider

the simplified D̃ = 0 case first. Once we have understood this instance, we

proceed to the more general D̃ 6= 0 situation.

Energy-reflections symmetric case

Firstly, we must note that for D̃ = 0, the subband dispersions can be sig-

nificantly simplified since Ẽ
(τ,n)
SQW,0 = �Ẽ(τ,−n)

SQW,0, ΛSQW = Λ′SQW and ΥSQW =

�Υ′SQW. Eqn. (4.48) can thus be expressed as

Ẽ
(τ,±n)
SQW =� lτ

(
W̃

R̃

)2

ΛSQW

�

√√√√√
Ẽ(τ,n)

SQW,0 + l2

(
W̃

R̃

)2

ΥSQW

2

+ l2

(
W̃

R̃

)2

j∆SQWj2 .

(4.49)
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In Fig. (4.7), for D̃ = 0, we depict the relative positions of the τ flavour

subband energy dispersions for ξMq0W = �2 (inverted gap with TPESs)

and ξMq0W = 0 (non-inverted gap), as a direct comparison to Fig. (3.3)

for the SLG case. Although visibly different from Fig. (3.3), once again,

we discover that for n = 2 the τ flavour dispersions swap positions, i.e.

τ = 1 dispersion shifts from being on the left (in inverted gap ξMq0W =

�2) to being on the right (non-inverted gap ξMq0W = 0) of the τ = �1

dispersion as they transition between the two topological phases. However,

this swapping phenomenon does not occur for the n = 1 subband which

indicates a qualitative difference between the topological and trivial states.

(a) lowest-subband (b) Second lowest-subband

Figure 4.7: Plot of general subband energy dispersion of lowest (a) and
second lowest (b) subbands for q0W = 53.1, W/R = 0.1, D̃ = 0, ξMq0W =
�2 (solid) and 0 (dashed) with both flavours τ = 1 (blue) and -1 (red) at

Γ. Notice that for (b) we still have a gap because E
(τ,1)
SQW 6= 0 due to the

confinement-effects that increase the confinement energies in the material.

We expect, as in the SLG case, that there is a value of ξMq0W between

ξMq0W = �2 and 0 at which the two flavours have an identical energy

dispersion, i.e. E
(τ,n>1)
SQW = E

(−τ,n>1)
SQW , thus leading to a zero shift between the

dispersions. The value at which this occurs corresponds to when ΛSQW =

Λ′SQW = 0 which causes zero τ dependence in Eqn. (4.49) (hence no shift

between �τ flavour dispersions). Additionally, by observing the subband

dispersion equation [Eqn. (4.49)] one can determine that the shift in l values

between the different �τ flavour subband dispersions is directly proportional

to the size of ΛSQW. This will be explicitly shown in Chapter 6.

We plot ΛSQW as a function of the gap size in Fig. (4.8). This allows us

to gain an insight into the magnitudes of the relative shift between the τ
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dispersions. Transitions from negative to positive values of ΛSQW only arise

for subbands with n > 1, similarly to SLG. Thus we can see points at which

ΛSQW = 0 for these subbands. Additionally, the lowest-subband never swaps

positions of the two flavour dispersion curves as we transition between the

two regimes. This striking feature seems to be a signature of the topological

nature of the state. Additionally, ΛSQW as a function of ξM monotonically

decreases for n = 1 while it monotonically increases for n > 1.

Figure 4.8: ΛSQW as function of ξM at a fixed width q0W = 26.6 for the
three lowest-subbands: n = 1 (red), 2 (blue) and 3 (black). Other parameters
were held constant at W/R = 0.1 and D̃ = 0. We choose to plot ΛSQWq0W
since it is then unit-wise equivalent to ΓSLG from Fig. (3.4).

Now, we shall explore the gap value at which ΛSQW = 0. Recall from

Sec. (3.3.1) that, in the SLG case, the zero point corresponded perfectly

with the transition point between the topological and trivial phases of the

material. However, contrary to the SLG case, the “swapping” point of the

τ flavours in SQW does not occur at ξMcq0W � �1 [Eqn. (4.28)] and hence

does not correspond to the transition point from the trivial to the topological

regime as discussed in Sec. (4.1.1).

We have now seen some of the different features between the lowest-subband

and the higher subbands for an energy-reflection symmetric SQW QR. Now,

we move on to analysing the differences that arise due to a non-zero D̃.
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Non-energy-reflection symmetric case

For D̃ 6= 0, we once again show the swapping of τ flavour dispersions for

the n = 2 subband in Fig. (4.9) as we tune from a deeply inverted gap

[ξMq0W = �7 in Fig. (4.9a)] to a zero gap [ξMq0W = 0 in Fig. (4.9b)].

(a) ξMq0W = �7 (b) ξMq0W = 0

Figure 4.9: Plot of a SQW QR n = 2 subband energy dispersion when (a)
ξMq0W = �7 and (b) ξMq0W = 0 with both flavours τ = 1 (blue) and �1
(red). Other parameters were held constant at q0W = 26.6, W/R = 0.1 and
D̃ = �0.746.

We also depict the n = 1 subband dispersions in Fig. (4.10) for ξMq0W = �7

and ξMq0W = 0. Here we see that the subband flavours do not swap for n = 1

which shows the difference between the topological and trivial subbands.

Additionally for ξMq0W = �7, we also plot the n = �1 subband so that one

can see the gapless nature of subbands in the deeply inverted gap regime. One

can also observe that due to the lack of energy-reflection symmetry, we see a

shift in the energies are not symmetrically distributed around Ẽ
(τ,n)
SQW = 0, as

previously discussed in Sec. (4.1.1). In Fig. (4.10) we also observe that when

the band-gap ξM is zero, there is still a gap between the n = �1 subbands

due to the confinement effects, as in the D̃ = 0 case.

Contrary to the energy-reflection symmetric cases, the τ flavour dispersion

shift now differs not only for different n > 0 subbands but also for �n
subbands as we will see in Fig. (4.11). In this case, for energies E

(τ,n)
SQW �

E
(τ,n)
SQW,0

7, the shift between the two flavours is approximately proportional

to ΛSQW for type (a) and Λ′SQW for type (b) subbands 8. In particular, the

7This is generally true for the regime of interest since a small change in the energy
causes a large change in the azimuthal quantum number [see as an example Fig. (4.7)].
Since we deal with jlj . 50, we stay in this regime.

8This will be definitively shown in Chapter 6.
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Figure 4.10: Plot of a SQW QR n = �1 subband energy dispersions for
ξMq0W = �7 (solid) and ξMq0W = 0 (dashed) with both flavours τ = 1
(blue) and -1 (red). Other parameters were held constant at q0W = 26.6,
W/R = 0.1 and D̃ = �0.746. The n = �1 subband of ξMq0W = 0 is not
included since it has negative energies and would unnecessarily complicate
the figure.

zero shift difference between the two flavours occurs when either ΛSQW = 0

or Λ′SQW = 0 for their respective subband types.

We plot ΛSQW [for type (a) subbands] and Λ′SQW [for type (b) subbands]

as a function of the gap size for n = �1,�2,�3 in Fig. (4.11). We see

that the jnj > 1 subbands transition from negative to positive values of

ΛSQW (or Λ′SQW) as the gap size is tuned from a deeply inverted gap to a

non-inverted gap. However, as in the D̃ = 0 case, it can be seen that the

n = �1 subbands are always positive and do not possess a ΛSQW = 0 or

Λ′SQW = 0 point, respectively. Furthermore, the ΛSQW and Λ′SQW values

of lowest-subbands monotonically decrease while the higher subbands seem

to generally increase 9. Since these features are present in all cases consid-

ered thus far, it further demonstrates the curious and unique nature of the

topological subbands as compared to the trivial ones.

As shown in Fig. (4.11), we find that the swapping points (i.e. ΛSQW = 0

or Λ′SQW = 0) do not occur at ξMc±q0W , as given by Eqn. (4.28) for large

q0W , and as such is not a clear indicator that separates the topological from

9Unlike the D̃ = 0 case, the higher subbands do not monotonically increase anymore
as we can see a bump in the n = �2 subbands.
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Figure 4.11: ΛSQW for type (a) states and Λ′SQW for type (b) states as
a function of gap size ξMq0W for a SQW QR where the different subbands
are given by n = �1 (solid/dashed red), �2 (solid/dashed blue) and �3
(solid/dashed black). Parameter values were kept constant at q0W = 26.6,
D̃ = �0.746 and W/R = 0.1.

the trivial phase as was the case for SLG. We also notice that the swapping

points are notably shifted compared to both the SLG and SQW D̃ = 0 case.

We will continue our discussion with respect to the differences between the

topological and trivial regimes as we explore these concepts in further detail

when investigating the QR Berry phase in Chapter 6. We have now compre-

hensively explored the radial properties of the SQW ring system such as the

change in its topological nature when confined. However, a complete insight

into the physical consequences due to the azimuthal motion determined by

H
(τ)
α,1 is still missing. Thus we find it a necessity to explore the transport

properties of SQW (and SLG, TMD) ring systems in order to truly see the

effects of the H
(τ)
α,1 Hamiltonian. In the next chapter we determine the form

of the conductance for these QR systems.



Chapter 5

Conductance

This chapter focuses on the conductance properties of the ring-confined sys-

tems and is divided into two parts.

In the first part of this chapter, we concentrate on developing the general

formalism and properties of the conductance without specifically applying

this formulism to the individual materials. We begin by deriving the non-

material specific forms of parameters: θ $ θ
(τ,n)
g /2 and φs $ χ

(τ,n)
s , as was

discussed in Chapter 2. These parameters are then expressed in a simplified

form, via symmetry arguments regarding real and pseudo-spin degrees of

freedom, and implemented into the conductance. After this, we explore and

suggest experimental strategies for determining these dynamic and geometric

phases at zero and non-zero magnetic fields.

In the second part, we determine the explicit forms of θ
(τ,n)
g and χ

(τ,n)
s for

the massless-Dirac SLG, TMD and SQW rings. The dependence of the con-

ductance as a function of φ and Ein for these materials is presented and the

appearance of resonance peaks and troughs are discussed. Finally, we explore

the behaviour of the τ flavour conductance peaks and their relative positions

and connect this back to the τ flavour energy dispersion swapping that was

discovered in the Chapters 3 and 4.

75
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5.1 General conductance derivation

By construction, in the QRs, we have an anticlockwise and clockwise moving

partial wave that are classified by the angular quantum numbers l
(τ,n)
+ and

l
(τ,n)
− , respectively, as can be seen in Fig. (5.1). When the ring is connected to

leads, an electron injected into junction j from a lead state jνji with injection

energy Ein > 0 will be in the interferometer state

jEin, νji = c
(νj)
+ Uτ (ϕ� ϕj) eil

(τ,n)
+ (ϕ−ϕj) jΦ(n)

l
(τ,n)
+ ,α

i

+ c
(νj)
− Uτ (ϕ� [ϕj + 2π]) eil

(τ,n)
− (ϕ−[ϕj+2π]) jΦ(n)

l
(τ,n)
− ,α

i

(5.1)

where we adopt the convention that �π � ϕj < π and ϕ > ϕj and c
(νj)
±

correspond to the scattering amplitudes fβj, β′jg and fγj, γ′jg. At this point

we remind the reader that we have defined Uτ (ϕ) � expf�i τ σ3
2
ϕg as in

Chapter 2. Additionally, note that the phase shift of 2π between the right-

moving and left-moving partial waves (having azimuthal quantum numbers

l
(τ,n)
+ and l

(τ,n)
− , respectively) is required to account for the initial conditions

associated with electron injection.

−

1

1

ϕ

+ 2

1

α

α

Figure 5.1: An injected wave with amplitude α1 is partially reflected via a
wave with amplitude α′1 and partially transmitted into the ring via waves that

are categorised by their angular quantum number l
(τ,n)
+ and l

(τ,n)
− . l

(τ,n)
+ and

l
(τ,n)
− are constructed to travel anticlockwise and clockwise, respectively.

Given an electron injection energy Ein, the l
(τ,n)
± are determined from the re-
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lation Ein = E
(n)
α (l

(τ,n)
± ). The anticlockwise or clockwise movement associated

with l
(τ,n)
± is determined via the velocity vl / sgn(∂E

(n)
α /∂l) = �1, respec-

tively. Note that, for the SLG, TMD and SQW ring conductors considered

here, we generally have l
(τ,n)
+ 6= �l(τ,n)

− even with magnetic flux φ = 0 [see

Figs. (3.2) and (4.10)]. We adopt the same notation as in Ref. [35] by using

the states Uα(�ϕj) jΦ(n)

l
(τ,n)
σ ,α

i as a basis and observe that Uα(2π) = eiζαπ with

ζα = 1 for the materials that are of interest to us 1. Then, using Eqn. (5.1)

in the new basis, we locally match the lead and ring states at the junctions

and determine the transfer matrices through the upper and lower ring parts

connecting the junctions 1 and 2. These are found to be(
β2

β′2

)
= e−iθ

(τ,n)
1

(
eiχ

(τ,n)
1 0

0 e−iχ
(τ,n)
1

)(
β′1

β1

)
, (5.2a)

(
γ1

γ′1

)
= e−iθ

(τ,n)
2

(
eiχ

(τ,n)
2 0

0 e−iχ
(τ,n)
2

)(
γ′2

γ2

)
, (5.2b)

with the phases

θ
(τ,n)
1 =

l
(τ,n)
+ + l

(τ,n)
−

2
(ϕ1 � ϕ2) + π

(
l
(τ,n)
+ + l

(τ,n)
− + 1

)
,

(5.3a)

θ
(τ,n)
2 =

l
(τ,n)
+ + l

(τ,n)
−

2
(ϕ2 � ϕ1) , (5.3b)

χ
(τ,n)
1 =

l
(τ,n)
+ � l(τ,n)

−

2
(2π + ϕ1 � ϕ2) , (5.3c)

χ
(τ,n)
2 =

l
(τ,n)
+ � l(τ,n)

−

2
(ϕ2 � ϕ1) . (5.3d)

where αi, βi and γi are denoted in Fig. (2.1) of Chapter 2. The transmission

function (and therefore the electric conductance) through the ring is found

to be a function of the geometric phase

θ(τ,n)
g = θ

(τ,n)
1 + θ

(τ,n)
2 , (5.4a)

= π
[
l
(τ,n)
+ (φ) + l

(τ,n)
− (φ) + 1

]
, (5.4b)

� π
[
l
(τ,n)
+ (0) + l

(τ,n)
− (0) + 1

]
+ 2π

φ

φ0

(5.4c)

1As an example of a material with a different factor, bi-layer graphene has ζα = 0.
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that depends explicitly on the magnetic flux φ penetrating the ring, and the

flux-independent dynamic phases χ
(τ,n)
1,2 . For a symmetrically connected ring

(i.e., when ϕ2 � ϕ1 = π), we have

χ
(τ,n)
1 = χ

(τ,n)
2 � χ(τ,n)

s =
(
l
(τ,n)
+ � l(τ,n)

−
)π

2
. (5.5)

The transmission probability of the ring is then given by Eqn. (2.40) (orig-

inally derived in Ref. [35]) with the correspondences φs $ χ
(τ,n)
s and θ $

θ
(τ,n)
g /2, that is

T
(
χ(τ,n)

s , θ(τ,n)
g , εc

)
=

4 ε2c sin2 χ
(τ,n)
s cos2

(
θ

(τ,n)
g /2

)
[a2 + b2 cos θ

(τ,n)
g � (1� εc) cos 2χ

(τ,n)
s ]2 + ε2c sin2 2χ

(τ,n)
s

.
(5.6)

Remember from the definitions in Chapter 2 that εc is a coupling parameter

that arises from the S matrix which couples the source and drain leads to

the ring.

The total conductance is obtained by summing over transmission probabili-

ties in all open channels that are associated with the real-spin and τ flavour

degrees of freedom as stated in Eqn. (2.29). In SLG and SQW rings, there

is no real-spin dependence in the dynamics considered here and thus is ac-

counted for by a simple degeneracy factor. In TMD rings, due to real spin-

splitting, the summation of contributions from real-spin is non-trivial [see

Fig. (3.5)]. Since particles with the same τs3 factor have similar phases and

transmissions (as we will see in the following sections), this can simplify our

calculations. However, we still have to sum over all τ and s3 separately for

TMD QRs.

The ring transmission has a τ or τs3 flavour dependence because, by virtue

of time-reversal invariance:

l
(η,n)
± (0) = �l(−η,n)

∓ (0) (5.7)

where η = τ for SLG & SQW and η = fτ, s3 = �τg for TMD 2. Therefore

2Here for TMD we have just added an extra index to the terms, e.g. l
(η,n)
± � l

(τ,s3,n)
± .

Additionally, s3 can be expressed as �τ to simplify our future expression.
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we find

χ(η,n)
s = χ(−η,n)

s , (5.8a)

θ(η,n)
g = 2π

(
φ

φ0

+
1

2

)
+ τ δθ(n)

g . (5.8b)

where we define

δθ(n)
g = π

[
l
(1,n)
+ (0) + l

(1,n)
− (0)

]
(5.9)

for SLG & SQW and

δθ(n)
g = π

[
l
(1,±1,n)
+ (0) + l

(1,±1,n)
− (0)

]
(5.10)

for TMD. The quantity δθ
(n)
g is what we call the correction to the confinement-

induced Berry phase. This is because although θ
(η,n)
g nominally includes the

Aharanov-Bohm phase, 2πφ/φ0, and spin-1/2 phase, π, the extra ring cor-

rection term, δθ
(n)
g , has so far been given very little attention, if any at all.

However, this term turns out to play an important role in the form of the

conductances which we shall see in the later half of this chapter. Looking

closely, we also realise that δθ
(n)
g is proportional to the shift between the τ

flavour dispersions that we analysed for SLG, TMD and SQW QRs and must

thus also be related to the quantity Γα (or ΛSQW and Λ′SQW for SQW QRs)

that governs this shift. This property is also explored in the later sections.

The ring conductance for SLG and SQW QRs are thus given by

G =
e2

π~
∑

τ=−1,1

T
(
χ(η,n)

s , θ(η,n)
g , ε

)
. (5.11)

For TMDs, we use the modified version:

G =
e2

2π~
∑

τ,s3=−1,1

T
(
χ(τ,s3,n)

s , θ(τ,s3,n)
g , ε

)
(5.12)

that takes into account the real spin solutions separately.

In the next section we present measurement strategies that may be imple-

mented by experimentalists to detect the dynamic and geometric phases.
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5.1.1 Detection methods

An important feature of the conductance is the existence of peaks and troughs

(i.e. resonances) for certain configurations of non-material related parameters

(φ and Ein). If we can determine the connection between these configurations

and the dynamic and geometric phases, then we may find a simple method to

measure these quantities. In particular, there would be an interest in measur-

ing the correction to the confinement-induced Berry phase, δθ
(n)
g , for which

we will develop specific measurement strategies in the following sections.

For a fixed value of φ, the magnitude of conductance changes when Ein is

varied. We find that minima usually occurs when χ
(η,n)
s = pπ where p 2 Z

which causes the sin(χ
(η,n)
s ) = 0 in the transmission function [see Eqn. (5.6)].

The energies at which these zero conductances occur are denoted by E
(p)
min.

There are exceptions to this feature when the denominator is also zero which

we explore below.

In the case of a varying φ, we can observe that the conductance has a peri-

odicity of φ0. We have seen in Eqns. (5.11) and (5.12) that the conductance

is an accumulation of individual contributions from the �η flavours, which

exhibit different θ
(η,n)
g values [see Eqn. (5.8b)]. We can find their individual

conductance peaks as a function of φ by setting θ
(η,n)
g = 2mπ where m 2 Z.

This particular θ
(η,n)
g value causes the transmission denominator to become

a minimum and its numerator to become a maximum thus resulting in a res-

onance point. Since the θ
(η,n)
g value at which this happens varies depending

on �η flavours, we find two different resonance points, respectively. The φ

positions of the conductance peaks are thus given by φ
(η,n,m)
r where

φ(η,n,m)
r = φ0

(
m� 1

2
� τ δθ

(n)
g

2π

)
. (5.13)

The shape and width of the resonances can vary depending on the χ(η,n) and

thus Ein. These peaks are particularly visible when we tune the energy such

that χ(η,n) = pπ (as mentioned before) for which

G =
e2

π~

[
δ
φ, φ

(η,n,m)
r

+ δ
φ, φ

(−η,n,m)
r

]
. (5.14)

Notice how the peaks are symmetric around φ0m and φ0 (m � 1/2). For
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most other values of Ein, these peaks broaden and start to overlap and even-

tually result in the formation of an accumulative peak or trough at φ0m

or φ0 (m � 1/2). This causes the two separate η contributions to become

indistinguishable.

Thus for most fixed injection energy values, there are generally resonance

areas [this is explicitly shown in Fig. (5.3)] around φ = φ0m or φ0 (m�1/2).

It turns out that the φ position where the resonance area occurs is determined

by the sign of cos(δθ
(n)
g ). This dependence is shown in the following derivation

where we sum over the τ valley conductances using Eqns. (5.8b) and (5.11) 3

when φ(m) = m
2
φ0:

G (φ(m)) / cos2

(
θ

(1,n)
g

2

)
+ cos2

(
θ

(−1,n)
g

2

)

/ sin2

(
mπ + δθ

(n)
g

2

)
+ sin2

(
mπ � δθ(n)

g

2

)
/ 1� eimπ cos

(
δθ(n)

g

)
, (5.15)

where we are at a constant injection energy. Note that this is possible since

the cos(θ
(1,n)
g ) = cos(θ

(−1,n)
g ) value and χ

(η,n)
s of the conductances stay con-

stant for different η values, as shown in Sec. (5.1). Generally, a positive value

of cos(δθ
(n)
g ) corresponds to a trough and a negative value to a peak. However

as shown before, at certain injection energies Ein � E
(p)
min, more peaks can

appear in the interval of 2π due to narrowing of individual η conductance

contribution’s peak widths. In this case, a negative value of cos(δθ
(n)
g ) will

represent a local minima.

Eqns. (5.13) and (5.15) present us two semi-independent methods that would

allow experimentalists to measure the correction to the Berry phase, δθ
(n)
g .

The first method, using Eqns. (5.13), one can determine δθ
(n)
g by tuning

through a period of φ for χ(η,n) � pπ and making note of the φ separation

of the �η peaks. This method is completely accurate when jδθ(n)
g j < π.

However, for jδθ(n)
g j � π, there is a certain amount of ambiguity due to the

3For SLG and SQW, this calculation should be straightforward. For TMD, this propor-
tionality rule is only valid when we purely consider the separate τs3 conductances where

we also sum over the τ = �1 valleys keeping τs3 constant. This is because δθ
(n)
g may vary

for different values of τs3.
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periodicity of the conductance as a function of magnetic flux. Fortunately,

it turns out that most δθ
(n)
g values have a magnitude that is smaller than π

which is shown definitively in Chapter 6.

The second method can be implemented close to zero field strength where

we can determine a range within which the confinement-induced Berry phase

must be due to the presence of a peak or trough. Although this wouldn’t

give us the exact value of δθ
(n)
g , unless we already knew the exact Ein value,

it would give us a range (2m + 1/2)π < δθ
(n)
g < (2m + 3/2)π (if a peak is

present) or (2m� 1/2)π < δθ
(n)
g < (2m+ 1/2)π (if a trough is present) when

φ = 0. Additionally, when δθ
(n)
g = (2m + 1/2)π, we have a φ periodicity of

φ0/2.

We now proceed to find the specific theoretical values of δθ
(n)
g and χ

(τ,n)
s for

the materials: massless-Dirac SLG, TMD and SQW rings. The form of the

conductance as a function of the relevant ring parameters are then shown

and discussed with reference back to results from this section. For simplicity,

we define ∆Ein � Ein � E(η,n)
α (0) henceforth.

5.2 Massless-Dirac single-layer graphene

For a perfect SLG QR, we can rearrange the subband dispersion [Eqn. (3.33)]

for l± to find the relevant equation for the phases:

δθ(n)
g = 2π

4
π3(2n−1)3

ε2(
2

π(2n−1)
ε

)2

�
(

4
π3(2n−1)3

ε2
)2

Ein

E
(τ,n)
SLG (0)

(5.16)

� 1

(n� 1
2
)

Ein

E
(τ,n)
SLG (0)

(5.17)
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and

χ(τ,n)
s = π

√(
4

π3(2n−1)3
ε2
)2

+

(
2

π(2n−1)
ε

)2([
Ein

E
(τ,n)
SLG (0)

]2

� 1

)
(

2
π(2n−1)

ε

)2

�
(

4
π3(2n−1)3

ε2
)2 (5.18)

� π
R

W

√
E2

in �
[
E

(τ,n)
SLG (0)

]2

~v/W
(5.19)

where E
(τ,n)
SLG (0) � E

(τ,n)
SLG,0, as given by Eqn. (3.17b), and in the second line of

the equations we have discarded the higher order ε � W/R terms since ε�
1. Interestingly, the confinement-related contribution δθ

(n)
g to the system’s

geometric phase is approximately constant for a fixed device geometry, and

is even a universal function of V0/(~v/W ) in the limit of small aspect ratio

W/R. Thus a useful separation of parametric dependences occurs, where

χ
(τ,n)
s varies strongly with the Fermi energy Ein in the leads but is independent

of the magnetic flux φ, while θ
(τ,n)
g depends on the magnetic flux but only

weakly on Ein. Studying the ring conductance as a function of both φ and

Ein will therefore allow, in principle, to extract the relevant ring-structure

parameters.

Using Eqn. (5.11), we can plot the massless-Dirac SLG conductance G as a

function of energy difference ∆Ein, φ and energy levels n. For the n = 1 sub-

band, the conductance versus injection energy for different lead transparency

values can be seen in Fig. (5.2).

We see that the shape of the curves are similar to those from Ref. [35] but are

warped due to the parametrisation of χs in terms of energy. When εc = 1/2,

the junction is transparent for electrons travelling from the lead to the ring

(or vice versa) and thus there is a high amount of transmission as compared

to the εc = 1/4 and 1/16 cases. However, there is a zero conductance value

situated at E
(p)
min that is attributable to the perfect destructive interference

of the partial waves within the ring. In the cases of εc = 1/4 and 1/16, we

see that there are only strong resonances close to the E
(p)
min value. This is

because as the junction becomes less transparent, the resonances are sharper

and harder to tune to.
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Figure 5.2: Figure of massless-Dirac SLG conductance G [Eqn. (5.11)] as
a function of energy ∆Ein for different values of lead transparency εc = 1/2
(dotted black), 1/4 (dashed red) and 1/16 (solid blue). The other parameters
were held constant at W/R = 0.1, n = 1 and φ/φ0 = 0.1.

We also notice an eventual elongation of the resonance region as we increase

Ein. This is due to the parametrisation of χs in terms of the energy which

behaves as χs /
√
E2

in � E
(τ,n)
SLG (0)2. This means that as we increase Ein, the

maxima become separated further apart and elongated. Additionally, there

are consistently two resonance peaks (particularly visible for εc = 1/4 and

1/16) that appear to surround a minimum that is described by χ(τ,p) = pπ,

as mentioned in the previous section. These minima, where G is given by

Eqn. (5.14), can be found at energies E
(p)
min:

E
(p)
min

E
(τ,n)
SLG,0

=

√
1�

(
2

π2(2n� 1)2
ε

)2

�√
1 + p2

[(
2

π(2n� 1)
ε

)2

�
(

4

π3(2n� 1)3
ε2
)2 ]

(5.20)

where p 2 Z. This equation corresponds very well to the G = 0 points in

Fig. (5.2). Notice that the very first minima occurs at p = 0 which gives

E
(0)
min

E
(τ,n)
SLG,0

=

√
1�

(
2

π2(2n� 1)2
ε

)2

. (5.21)
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This value has an energy Ein that is smaller than E
(τ,n)
SLG,0 and corresponds to

the vertex point of the subband dispersion. Although not explicitly shown

in Fig. (5.2), we can see indications of this point since the conductance rises

for ∆Ein < 0 to form a maxima.

In Fig. (5.3) we display a contour plot of the conductance as a function

of both injection energy and magnetic flux. We observe that, as expected,

the conductance is periodic with period φ0. It is also visible to us that the

resonance area [see definition in Fig. (5.3)] is centred around φ/φ0 = m which

indicates that (2m′+ 1/2)π < δθ
(n)
g < (2m′+ 3/2)π where we have made use

of Eqn. (5.15). Using our analytical expression for δθ
(n)
g , we find that this is

indeed true since δθ
(1)
g /π = 2/π which is within the range.
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Figure 5.3: Contour-plot of massless-Dirac SLG conductance in units of
e2/π~ as a function of ∆Ein versus φ/φ0 for εc = 1/4, W/R = 0.1 and
n = 1. We see the persistent periodicity of G as a function of φ/φ0. What
we name the “resonance area” is indicated by the red box which is currently
centred around φ/φ0 = m but may shift to φ/φ0 = m � 1/2 depending on
system parameters. The two separate τ valley conduction peaks that occurs
in this area are circled in green [also shown in Fig. (5.4)].

Additionally, if we take a look at the φ dependence of the figure at the
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energies close to E
(p)
min, we see the predicted two valley splitting that becomes

apparent (in the figure, we have circled samples of these peaks in green). For

Ein � E
(1)
min, we plot this dependence in Fig. (5.4). The difference between

the τ valleys conductance peaks is equivalent to δθ
(n)
g /π, as anticipated from

Eqn. (5.13), which should allow experimentalists to determine δθ
(n)
g .

Figure 5.4: Lowest-subband K (blue) and K′ (red) valley massless-Dirac

SLG conductances as a function of φ for a fixed ∆Ein/E
(τ,1)
SLG (0) = 1.82�10−3.

Since our energy is close to E
(1)
min, we are able to see the distinct conductances

corresponding to different valley contributions. Other parameter are held
constant at εc = 1/4, W/R = 0.1.

We now proceed to investigate the explicit forms of the phase and conduc-

tance for TMD QRs. Since the general TMD subband dispersion, as given

by Eqn. (3.45), can be easily modified to describe a general SLG by setting

λ = 0, we only explicitly find δθ
(n)
g and χ

(τ,n)
s for the TMD QR.

5.3 Transition-metal dichalcogenide

For TMD the values of δθ
(n)
g and χ

(τ,n)
s can be found by inverting the subband

dispersion [Eqn. (3.45)] for the l
(τ,n)
± values. The phases are given by

δθ(n)
g = 2π

ΓTMD

1�
(
W
R

)2
Γ2

TMD

[
Ein �

λ

2
τs3

]
W

~v
(5.22)

� 2π ΓTMD

[
Ein �

λ

2
τs3

]
W

~v
(5.23)
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and

χ(τ,n)
s = π

W

~v
R

W

√[
(W
R

)2Γ2
TMD � 1

][
E

(τs3,n)
TMD,0

]2

+

[
Ein � λ

2
τs3

]2

1� (W
R

)2Γ2
TMD

(5.24)

� π
R

W

√[
Ein � λ

2
τs3

]2

�
[
E

(τs3,n)
TMD,0

]2

~v/W
(5.25)

where we have applied the same simplification, in the second line, as before

with the massless-Dirac SLG QR. As in the massless-Dirac SLG case, δθ
(n)
g is

approximately a constant for small changes in Ein and can thus be considered

only dependent on φ. We also see that χ
(τ,n)
s is strongly dependent on Ein

with zero dependence on φ.

For a MoSe2 QR, we can see the resultant total (both flavours τs3 = �1)

conductance for the n = 1 subbands as a function of energy Ein/E
(τs3=−1,1)
TMD

in Fig. (5.5). In this case, due to the small amount of spin-splitting in the

conductance band, we see a superposition of two conductance patterns due

to the different contribution from τs3 = �1. Since the τs3 = �1 subband sits

at a slightly higher energy than the τs3 = 1 subband, as seen in Fig. (3.5), we

parametrise the curve using E
(τs3=−1,1)
TMD and do not look at the pure τs3 = 1

subband conductance.

For TMDs, there exist local minima when χ
(p)
s = pπ which are situated in

between resonances. Additionally, they depend now explicitly on the flavour

τs3, unlike in the SLG example. The energies at which these can be found

at are given by

E
(p)
min

E
(τs3,n)
TMD,0

=

√
1�

(
W

R

)2

Γ2
TMD

√√√√1 +

(
~v p

E
(τs3,n)
TMD,0R

)2[
1�

(
W

R

)2

Γ2
TMD

]

+
λ
2
τs3

E
(τs3,n)
TMD,0

.

(5.26)

In Fig. (5.6) we depict the contour plot of the total and individual τs3 con-

tributions to the conductance as a function of energy and magnetic flux
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Figure 5.5: Figure of MoSe2 n = 1 subband conductance G as a function
of energy E

(1)
TMD(l) for different values of lead transparency εc = 1/2 (dotted

black), 1/4 (dashed red) and 1/16 (solid blue). The other parameters were
held constant at λ = �90 meV, ~v = 253 meV nm and ∆ = 1.40 eV, W =
40 nm, W/R = 0.1, n = 1 and φ/φ0 = 0.1.

for MoSe2 QRs. We see that the τs3 = 1 resonance point is significantly

elongated compared to those of τs3 = �1. This is because the larger

the energy difference is between Ein and E
(τs3,n)
TMD (0), the more elongated

the conductance shapes will be due to the parametrisation of χs which is

/
√
E2

in � E
(τs3,n)
TMD (0)2. Since E

(1,1)
TMD(0) is below E

(−1,1)
TMD (0), this means that

the energy difference between Ein and E
(1,1)
TMD(0) is larger and thus results in

the longer stretched patterns.

We see that the shape of the resonances, as a function of φ, differ greatly

from those of the massless-Dirac SLG case since the φ dependence of (τ, s3) =

�(1, 1) [see Fig. (5.6a)] and �(1,�1) [see Fig. (5.6b)] flavour conductions do

not exemplify two distinct φ
(±η,n,m)
r flavour peaks at Ein = E

(p)
min [i.e. the two

green circles in Fig. (5.3) are not distinguishable for this case]. Since the

maxima seem to only occur at φ/φ0 = m, this indicates that δθ
(n)
g � mπ. If

we calculate, using Eqn. (5.23), the actual value of δθ
(n)
g for a MoSe2 ring we

find the value to be 0.999π for (τ, s3) = �(1, 1) and 0.998π for �(1,�1).

The total conductance for a MoSe2 ring can be seen in Fig. (5.6c) which once

again shows the superposition of the τs3 flavours. Since the δθ
(n)
g values are

very similar for both flavours, we see that the resonances align along the

same φ/φ0 = m values. In a hypothetical situation where the Berry phases
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(a) τs3 = 1 conductance
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(b) τs3 = �1 conductance
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(c) Total conductance of n = 1 states

Figure 5.6: Contour-plot of conductance of MoSe2 n = 1 subband states
in units of e2/π~ as a function of E

(1)
TMD(l) versus φ/φ0. (a) Conductance

with only the τs3 = 1 lowest-subband states. (b) Conductance with only
the τs3 = �1 lowest-subband states. (c) Total conductance of the lowest-
subband states. We see the persistent periodicity of G as a function of φ/φ0.
Other parameters were held constant at εc = 1/4, W = 40 nm, W/R = 0.1,
∆ = 1400 meV, λ = �90 meV, ~v = 253 meV nm and n = 1.
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were visibly different for the two flavours, this would no longer hold, thus

resulting in an even further complicated conductance pattern.

We have now finished our analysis of the TMD QR conductance and move

on to understanding the more complex system of SQW QRs. It is difficult

to derive a full analytical solution for the phases and conductances and thus

we only present a simplified analytical solution where we neglect diagonal l2

terms in H
(τ)
SQW,1. This will hopefully allow us to gain some insight into the

simplified system which will guide our understanding for the general system.

After this, the general result for the conductances will be explored using

numerical calculations.

5.4 Semiconductor quantum well

Rearranging Eqn. (4.48) for l
(τ,n)
± will result in four solutions, of which two will

be real and two imaginary due to the additional presence of the l2 terms in

H
(τ)
SQW,1. We simplify the equation such that we can find analytical solutions

for θ
(τ,n)
g and χ

(τ,n)
s using an approximation that the terms associated with

the l2 term are negligible for small l, large W̃ and small ξM (i.e. H
(τ,n)
SQW,1 �

~vl/r σ2). Using this method, the δθ
(n)
g values are given by

δθ(n)
g = π

[
ΛSQW + Λ′SQW

j∆SQWj2 �
(
W̃
R̃

)2

ΛSQWΛ′SQW

Ẽin �
Λ′SQWẼ

(τ,n)
SQW,0 + ΛSQWẼ

(τ,−n)
SQW,0

j∆SQWj2 �
(
W̃
R̃

)2

ΛSQWΛ′SQW

]
(5.27)

� π

j∆SQWj2
[
ΓSQW

(
Ẽin � Ẽ(τ,−n)

SQW,0

)
+ Γ′SQW

(
Ẽin � Ẽ(τ,n)

SQW,0

)]
(5.28)
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and

χ(τ,n)
s =

π

j∆SQWj2 �
(
W̃
R̃

)2

ΛSQWΛ′SQW

�

([
j∆SQWj2 �

(
W̃

R̃

)2

ΛSQWΛ′SQW

](
Ẽin � Ẽ(τ,n)

SQW,0

)(
Ẽin � Ẽ(τ,−n)

SQW,0

)

+

(
W̃

R̃

)2 [Λ′SQW

(
Ẽin � Ẽ(τ,n)

SQW,0

)
+ ΛSQW

(
Ẽin � Ẽ(τ,−n)

SQW,0

)
2

]2) 1
2

(5.29)

� π

j∆SQWj

√(
Ẽin � Ẽ(τ,n)

SQW,0

)(
Ẽin � Ẽ(τ,−n)

SQW,0

)
(5.30)

where we have simplified the second lines of the equations by neglecting larger

orders of ε = W/R.

The Berry phase can be further simplified for certain injection energy regimes.

In particular, a realistic simplification involves setting the injection energy to

approximately the l = 0 energy of the subband dispersion, i.e. Ein � Ẽ
(τ,±n)
SQW,0,

thus resulting in the equations:

δθ(n)
g �


π

ΛSQW

j∆SQWj2

[
Ẽ

(τ,n)
SQW,0 � Ẽ

(τ,−n)
SQW,0

]
for Ein � Ẽ

(τ,n)
SQW,0,(5.31a)

π
Λ′SQW

j∆SQWj2

[
Ẽ

(τ,−n)
SQW,0 � Ẽ

(τ,n)
SQW,0

]
for Ein � Ẽ

(τ,−n)
SQW,0.(5.31b)

These forms of the δθ
(n)
g and χ

(τ,n)
s are very similar to those of SLG and TMD.

However, one obvious difference is the lack of energy-reflection symmetry thus

leading to separate equations that depend on the type of the state [either

(a) or (b)]. Once again, for a fixed device geometry, we see that δθ
(n)
g is

essentially a constant at the energies that we consider and thus is dominated

by the change of φ. χ
(τ,n)
s is once again strongly dependent on the injection

energy and completely independent of the magnetic flux.

Although this is just a simplified model, we see that δθ
(n)
g is essentially di-

rectly proportional to ΛSQW and Λ′SQW for the two different types, respec-

tively. Fortunately this particular property also remains true even when we
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include the l2 terms in the Hamiltonian which we will discover in the Chap-

ter 6. It also turns out that when we include the l2 terms, χ
(τ,n)
s also stays

proportional to

√(
Ẽin � Ẽ(τ,n)

SQW,0

)(
Ẽin � Ẽ(τ,−n)

SQW,0

)
which causes the elonga-

tion of resonance areas as a function of Ein, which were seen in the SLG and

TMD cases.

Using our simplified analytical model and comparing it to the numerical and

generalised analytical (this will be shown in Chapter 6) solutions for the

complete system allows to gain insight into the effects of the l2/r2 terms that

arises in H
(τ)
SQW,1. We will come back to this comparison in the next chapter

in which the difference of the Berry phase with and without the l2 terms will

be substantial for large ξM.

We now focus our attention upon the conductance of the complete system (i.e.

including the l2 terms) which we can calculate using a numerical method 4.

In Fig. (5.7), we plot the conductance as a function of injection energy and

magnetic flux in the cases of ξM < ξMc± and ξM > ξMc±. Recall that ξMc±

indicates the gap values at which bound states traverse between the bulk and

gap as described in Sec. (4.1.2). Ideally, we would hope to see a change in

the conductance, as the gap size becomes less and less inverted [in Fig. (5.7):

ξMq0W : �7 ! 0], that parallels the altered topological nature of these

bound states as their energies transition from being inside to being outside

of the gap.

In Fig. (5.7a), we have plotted the ξM < ξMc± limit where the SQW QR

is in the deeply inverted regime [ξMq0W = �7]. In this case, we see that

the resonance regions of conductance are centred around φ/φ0 = m � 1/2

and are thus shifted by �1/2 along the φ axis as compared to the SLG and

TMD cases which can be seen in Figs. (5.3) and (5.6c), respectively. This is

governed by the cos(δθ
(n)
g ) component in Eqn. (5.15) which is positive [i.e.

(2m�1/2)π < δθ
(n)
g < (2m+1/2)π] hence resulting in a minima at φ = mφ0.

Additionally, one can deduce from the figure that δθ
(n)
g must be close to 2mπ

since the τ peaks are not very distinguishable. As mentioned in Sec. (5.1.1),

the exact value of δθ
(n)
g is impossible to deduce from the figure alone due to

the periodicity in φ. In this case, our numerical value for δθ
(n)
g is 0.09π which

4For specific configurations of the system, we find the l± values by using a root finder
in Mathematica.
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(b) ξMq0W = 0

Figure 5.7: Contour-plots of conductance of SQW n = 1 subband state as
a function of ∆Ein and φ/φ0 for different numbers of bound states. (a) Two
topological bound-state within �jξMj for ξMq0W = �7. (b) Zero topologi-
cal bound-states within �jξM j for ξMq0W = 0. Other parameters were held
constant at n = 1, εc = 1/4, D̃ = �0.746, W̃ = 26.6, W̃/R̃ = 0.1 and
φ/φ0 = 0.1.

is an extremely small value of δθ
(n)
g as compared to the massless-Dirac SLG

and TMD systems.

In Fig. (5.7b), we have plotted the ξM > ξMc± scenario where the system

no longer possesses an inverted gap [ξMq0W = 0]. We notice that the res-

onance regions are once again centred around φ/φ0 = m which results in a

significantly different conductance pattern as compared to Fig. (5.7a). This

is due to the δθ
(n)
g component that changes for a different ξM - the compo-

nent becomes closer to mπ for Fig. (5.7b) and thus the cos(δθ
(n)
g ) component

becomes negative thus resulting in the resonances at φ/φ0 = m. This is one

of the changes that indicate of the role of a changing band-gap which we will

explore further in the next chapter.

We also show in Fig. (5.8) how the different subband’s τ flavour conduction

peaks behave as we change the gap size. This is done by setting Ein � E
(p)
min

5

and observing numerically how the τ flavour conduction moves.

In Fig. (5.8a), we follow the n = 1 subband which shifts from δθ
(n)
g ! 0

in the deeply inverted regime to a much larger value that approaches π in

5Naturally, the value of E
(p)
min changes as we change the gap size. However, we can just

tune our energy to compensate for this.
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(a) n = 1 conduction (b) n = 2 conduction

Figure 5.8: Figures of SQW QR n = 1 (a) and 2 (b) subband τ flavour con-
ductance as a function of φ/φ0 for a varying gap size ξMq0W : �7 (solid)!
0 (dotted). The flavours are depicted as τ = 1 (blue) and �1 (red) and the
arrow indicates the movement as ξMq0W : �7 ! 0. This is done via nu-
merical calculations in Mathematica. (a) For n = 1, there is no swapping of
the position of the flavour conductances at φ/φ0 = m+ 1/2. (b) For n = 2,
we see a swapping point at φ/φ0 = m� 1/2 which once again indicates a be-
havioural difference between n = �1 and higher subbands. Other parameters
were held constant at Ein � E

(p)
min, εc = 1/4, D̃ = �0.746, W̃ = 26.6 and

W̃/R̃ = 0.1.

the non-inverted regime. However, we see at no point that the �τ flavours

swap positions around φ/φ0 = m� 1/2 resulting in a negative value of δθ
(n)
g .

We find that as we go further into the deeply inverted regime δθ
(n)
g ! 0

since the conductance peak start to overlap at φ/φ0 = m � 1/2, but never

swap relative positions. Naturally these discoveries parallel those described

in Sec. (4.2.2) since δθ
(n)
g is basically equivalent to the shift of the τ valley

energy dispersions.

To have a direct analogy to Sec. (4.2.2), we also plot Fig. (5.8b) where we

study the positions of the τ valley conductances for the n = 2 subband. Re-

call in Sec. (4.2.2) we discovered that the dispersions swap positions resulting

due to a zero Λ′SQW value being present. We see the same pattern in δθ
(n)
g

as we change the gap parameter. Eventually, there is a gap value at which

δθ
(n)
g = 0 (i.e. conductances overlap at φ/φ0 = m� 1/2) which separates the

δθ
(n)
g < 0 and δθ

(n)
g > 0 regimes.

Now that we have seen the crucial connection between the conductance, the

confinement-induced Berry phase and the τ flavour dispersion swapping, as

discussed in the SLG and SQW chapters, we can cement our understanding
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of transport properties in QR systems in the next chapter. We proceed to do

a detailed study of the Berry phase values for varying system parameters and

set out to tie all the results together. In particular, we aim to understand

the significance of SQW phases in comparison to the simpler Dirac system.
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Chapter 6

Geometric Berry phase

In the last chapter we saw that the correction to the Berry phase, δθ
(n)
g ,

played an integral role in the structure of the conductance and the swapping

of the τ = �1 flavours of conduction peaks. In this chapter, the significance

of this phase is explored in further detail with regards to changing system

parameters, such as the gap size and ring width. The transition between the

topological to non-topological regimes and its connection to δθ
(n)
g is also ex-

amined for which we discover hallmarks of such a transition in our materials.

We proceed by first investigating the form of δθ
(n)
g for different subbands in

a general SLG ring (i.e. variable gap size). Once we have a comprehensive

knowledge of this relatively simple system, we use this to compare with the

more complex Berry phase of the energy-reflection symmetric SQW ring,

where D̃ = 0. We also draw comparisons between the δθ
(n)
g values of the

SQW system with and without the l2 term in H
(τ)
SQW,1. Using our insight of

the energy-reflection symmetric systems, we finally tackle the D̃ 6= 0, non-

energy reflection symmetric case of SQW QRs. During this whole procedure

we continuously draw parallels with the results from previous chapters to

create a comprehensive summary of transport properties in 2D material QRs.

6.1 Single-layer graphene

Adapting from the TMD QR form of δθ
(n)
g , as given in Eqn. (5.23), we can de-

termine an approximate-universal Berry phase for a general SLG QR system

97
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to be of the form:

δθ(n)
g = 2π

ΓSLG

1�
(
W
R

)2
Γ2

SLG

Ein

~v/W

� 2π ΓSLG
Ein

~v/W
(6.1)

where we have neglected the (W/R)2 � 1 term in the second line. Notice

how this result is “universal”, i.e. solely dependent on V0 and the confine-

ment energy ~v/W , for a given value of Ein, since ΓSLG is also completely

determined by V0 and ~v/W , as explained in the Sec. (3.1.1). Note that

δθ
(n)
g = �δθ(−n)

g due to the presence of energy-reflection symmetry in SLG

QR systems. We can take Eqn. (6.1) one step further by acknowledging that

the injection energy is approximately equal to the size-quantisation energy:

Ein � E
(τ,n)
SLG,0, since we only consider a limited range of azimuthal motion

jlj . 50. Thus, for injection energies that are close to E
(τ,n)
SLG,0, we have

δθ(n)
g � 2π ΓSLG

E
(τ,n)
SLG,0

~v/W
. (6.2)

The form of δθ
(n)
g , as described by Eqn. (6.2), for the three lowest subbands

(n = 1, 2, 3) can be seen in Fig. (6.1). We can notice immediately that the

Berry phase of the lowest subband is drastically different from those of the

higher subbands.

Firstly, in the limit V0W/~v ! �1 (infinitely deep inversion), the lowest-

subband has δθ
(1)
g ! 0 while in higher subbands δθ

(n>1)
g ! �1. This is mainly

because E
(τ,1)
SLG,0 ! 0 whereas E

(τ,n>1)
SLG,0 !1, as was seen in Sec. (3.1.1). These

limits are easily detected in the conductance since a distinct resonance centers

around φ = (m�1/2)φ0 for δθ
(1)
g ! 0 and around φ = mφ0 for δθ

(n>1)
g ! �1,

as described in Sec. (5.1.1).

The physical interpretation of this behaviour is that the lowest-subband ex-

hibits pure “Dirac” features as we move deeper into the inverted-gap regime,

i.e. the topological regime. This is due to θ
(τ,1)
g ! 2πφ/φ0 + π and thus

retaining the spin-1/2 π Berry phase factor that arises from the Dirac nature

of the material.

Higher subbands, on the other hand, behave non-relativistically, i.e. in
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a “Schrödinger”-like fashion, in this limit because they effectively possess

θ
(τ,n>1)
g ! 2πφ/φ0 (n.b. a shift of 2mπ can be neglected). This shows that,

unless a subband is topologically protected, increasing the magnitude of the

gap size causes the system to become more Schrödinger-like.

Figure 6.1: Figure of SLG Berry phase δθ
(n)
g as a function of the universal

parameter V0W/~v for the three lowest-subband. The different subbands are
given by n = 1 (red), 2 (blue) and 3 (black). The behaviour of the lowest
subband can be seen to be distinctly different from the higher subbands.

Furthermore, for the n > 1 subbands we also notice that δθ
(n>1)
g = 0 at

V0W/~v = �1. Here we remind the reader that V0W/~v = �1 is also the

value at which the system transitions between being topologically trivial or

non-trivial, as shown in Eqn. (3.13). We see that this is also the point

at which δθ
(n>1)
g transitions from negative to positive values (as V0W/~v is

increased). Naturally this outcome parallels those of the τ -valley dispersion

shifts results that were described in Sec. (3.3.1). With regards to the n >

1 subband conductance, this transition point should be detectable since it

involves the swapping of the τ -valley conductance peaks around φ = (m �
1/2)φ0 [as was seen for SQW in Fig. (5.8b)].

The situation for the lowest subband is entirely different since δθ
(1)
g stays

positive for the entire domain. At V0W/~v = �1, δθ
(1)
g = π/2 and thus is the

only subband that does not have a zero δθ
(n)
g value. This particular system

parameter value is also significant for the φ dependence of the conductance

spectrum since it is the transition point for the centering of the conductance

resonance areas around either φ = (m � 1/2)φ0 or φ = mφ0, as given by



100 CHAPTER 6. GEOMETRIC BERRY PHASE

Eqn. (5.15). At this point, the conductance at φ = (m�1/2)φ0 and φ = mφ0

will be of equal amplitude because the contributions from the �τ peaks are

equally distant from both points (due to being separated by φ = φ0/2). This

results in φ having a periodicity of φ0/2 in the lowest subband conductance,

as discussed in Sec. (5.1.1).

Thus, V0W/~v = �1 separates δθ
(n)
g into two distinct regions that correspond

to the non-topological and topological regimes, respectively. This result is

in complete agreement to the previous conclusions in the Chapter 3. In

addition to this, we have also found that the limit of δθ
(n)
g in the deeply

inverted regime differ between the topological subband (n = 1) and the

bulk subbands (n > 1). We can conclude that, in addition to results in

Sec. (3.1.1), there are numerous signatures of the topological phase in SLG

QRs when V0W/~v � �1.

We have now completed our analysis of the SLG QR Berry phase. As we

proceed to the energy-reflection symmetric case of SQW rings, we hope to

see some of these features paralleled.

6.2 Semiconductor quantum well

6.2.1 Energy-reflection symmetric case

To gain an in-depth understanding of the general SQW QR Berry phase,

we first consider the simplified energy-reflection symmetric SQW model with

D̃ = 0. It turns out that one can simplify the subband energy dispersion

[Eqn. (4.49)] such that one can obtain an approximate, but accurate, δθ
(n)
g

equation:

δθ(n)
g =

2ΛSQWẼin

∆2
SQW �

(
W
R

)2
Λ2

SQW + 2ẼinΥSQW

� 2ΛSQWẼin

∆2
SQW + 2ẼinΥSQW

(6.3)

where E
(τ,n)
SQW,0 = �E(τ,−n)

SQW,0, ΛSQW = Λ′SQW and ΥSQW = �Υ′SQW. Notice that,

once again, δθ
(n)
g = �δθ(−n)

g . To obtain this result we also discard the ε3 and
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ε4 terms that appear in the energy dispersion when brackets are expanded.

Naturally, since we are interested in energies that are close to E
(τ,n)
SQW,0, we can

simplify this to

δθ(n)
g �

2ΛSQWẼ
(τ,n)
SQW,0

∆2
SQW + 2Ẽ

(τ,n)
SQW,0ΥSQW

. (6.4)

The form of δθ
(n)
g for the n = 1, 3 subbands of a SQW ring at a fixed, large

q0W value can be seen in Fig. (6.2). In this figure, we also show the differences

due to the inclusion of the l2 term in H
(τ)
SQW,1 (i.e. the effects of the ΥSQW

element) and, for comparison, the SLG δθ
(n)
g value.

(a) n = 1 subband (b) n = 3 subband

Figure 6.2: Figure of n = 1 (a) and 3 (b) subband δθ
(n)
g as a function of

ξMq0W � V0/(~v/W ) for SLG (red) and SQW (black). For the SQW δθ
(n)
g

values, we use Eqn. (5.31a) (dashed-black) and the more accurate solution

(when H
(τ)
SQW,1 includes the l2/r2 term) as given by Eqn. (6.4) (solid-black).

(a) We see that leaving out the l2/r2 term causes the SQW phase to be very
similar to that of SLG - the difference is solely due to the additional wing
states in SQW. The inclusion of the l2/r2 causes a suppression of the Berry
phase for large ξMq0W . (b) Even without the l2/r2 term, there are discrep-

ancies between SLG and SQW δθ
(n)
g values. This seems to be caused due to a

shift in the overall subband energy dispersions. Other parameters were held
constant at q0W = 26.6, W/R = 0.1 and D̃ = 0.

For n = 1 the exclusion of the l2 terms leads to a Berry phase that strongly

resembles that of SLG as can be seen in Fig. (6.2a). The differences can

be accounted due to the appearance of additional wing states in the SQW

model [see Eqns. (4.35) and (4.38)] which have an overall small effect on

the phase. Once we include the l2 term, δθ
(n)
g becomes suppressed for large

values of ξMq0W which causes the black curve to tend to δθ
(n)
g = 0 in the
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ξM ! 1 limit as compared to δθ
(n)
g = π for the other curves. The reason

underlying this feature is that as ξM !1, the magnitude of the E
(τ,n)
SQW,0ΥSQW

term increases linearly, which can be seen in Fig. (6.3b), and since this term

appears in the denominator of the phase [see Eqn. (6.4)], it causes an overall

decrease in δθ
(n)
g . The linear increase is because E

(τ,n)
SQW,0 / ξM [see Fig. (4.1)]

and ΥSQW is a constant [see Fig. (6.3a)] at large ξM value.

(a) ΥSQW versus ξM (b) 2E
(τ,n)
SQW,0ΥSQW versus ξM

Figure 6.3: Figure of ΥSQW (a) and 2E
(τ,n)
SQW,0ΥSQW (b) as a function of

ξMq0W for a SQW QR at different widths. The different widths are given
by q0W = 15.9 (dot-dot-dashed), 21.3 (dashed), 26.6 (solid) and 53.1 (dot-
dashed). (a) We see that, as the width is decreased, the overall ΥSQW mag-
nitude increases. Additionally, ΥSQW begins to saturate at a fairly small gap
size for all widths. (b) Since the energy increases linearly as a function of

ξM (for large ξM), the 2E
(τ,n)
SQW,0ΥSQW term, which appears in δθ

(n)
g , also be-

comes linearly dependent on ξM. The other parameters were held constant at
W/R = 0.1 and D̃ = 0.

Physically, the l2 term can be interpreted as a radially-dependent confinement

that is proportional to 1/r2. Thus at certain parameter values, it may confine

the wave to an outer section of the ring since the potential at the inner part

is very high. As we increase the gap size, this causes the confinement to

become stronger and eventually pushes the effective width, within which the

wave is situated, to zero causing δθ
(n)
g ! 0.

For n = 3, the differences between SLG and SQW become more apparent

even when l2/r2 is excluded. The SQW curves seem to be shifted to the right

of SLG which could correspond to a shift of the τ = 1 energy dispersion

relation to the right due to the additional wing states. However another

possible explanation for this effect may be due to the fact that we ignore the
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inter-subband interactions. Higher subbands may unevenly repel the n = 3

dispersion curve causing a shift in the Berry phase.

For n = 3, when the effects of the ΥSQW terms (i.e. the l2 terms in the

Hamiltonian) are included, we see that for ξM > 0 the Berry phase decreases

in the same manner as for n = 1. However, for ξM < 0, δθ
(n)
g becomes larger

in magnitude as compared to the δθ
(n)
g described by Eqn. (5.31a), which

indicates that at some point around ξMq0W � �3, the ΥSQW term becomes

negative thus decreasing the denominator value. The actual value of ΥSQW

can be seen in Fig. (6.4), which corroborates this theory, since at ξMq0W �
�3, the ΥSQW term becomes negative. As it becomes larger in magnitude

(while still negative), δθ
(n)
g approaches infinity since ΥSQW ! �j∆SQWj2.

Similar results can be anticipated for all n > 1 subbands [e.g. see n = 2 in

Figs. (6.4) and (6.6)].

Figure 6.4: Figure of 2Ẽ
(τ,n)
SQW,0ΥSQW as a function of ξMq0W � V0/(~v/W )

for subbands n = 1 (red), 2 (blue) and 3 (black). The lowest subband is
the only subband that does not become negative eventually. Other parameters
were held constant at q0W = 26.6, W/R = 0.1 and D̃ = 0.

In Fig. (6.5) we plot the dependence of δθ
(n)
g as a function of ξMq0W for

different q0W values. We see that δθ
(n)
g , unlike the SLG QR, does not form a

universal curve since the curve drastically changes when the width is altered.

This is due to the non-universality of the secular energy equation in SQWs.

Note that some of the curves do not stretch over the complete region since

we only consider ξM > �1
4

[recall from Eqn. (4.10)] which cuts off data for

some of the curves that correspond to smaller values of q0W .
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Figure 6.5: Figure of δθ
(n)
g as a function of ξMq0W � V0/(~v/W ) for SLG

(solid) and SQW (discontinuous) QRs for different widths. The different
widths are given by q0W = 2.66 (dotted), 5.66 (dashed), 15.9 (dot-dot-dashed)

and 53.1 (dot-dashed). The transition from two evanescent states (jE(τ,n)
SLG,0j <

jξMj) to zero evanescent states (jE(τ,n)
SLG,0j � jξMj) are represented by red and

black lines, respectively. We see that as the width is decreased, the overall
magnitude of the phase decreases significantly due to the increase of ΥSQW.
Note that some of the curves do not stretch over the complete region since we
only consider ξM > �1

4
. The parameters were held constant at W/R = 0.1

and D̃ = 0.
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For small q0W , the Berry phase appears to shrink in magnitude. This is

because as the radius and width are both decreased, the l2/r2 confinement

of the particle becomes steeper and larger which causes it to more effectively

confine higher energy particles in an effective width that is smaller than the

actual width of the ring. Thus the ΥSQW term becomes larger for a smaller

width [see Fig. (6.3a)] and causes the suppression of δθ
(n)
g phase. As the

width is increased, the l2/r2 potential confines the wave less and less thus

increasing the overall magnitude of δθ
(n)
g . However, we still find that at a

large enough value of ξM, the l2/r2 eventually becomes the dominant effect

which causes δθ
(n)
g to approach 0.

Fig. (6.5) also shows the transition between two to zero evanescent states

(red to black). These transitions seem to happen at around ξMq0W � �1 for

large widths, which agrees with the predictions of Eqn. (4.28).

As a direct comparison to Fig. (6.1), we plot Fig. (6.6) for which q0W =

26.6 1. The forms of the SQW curves are similar to SLG since the n > 1

subbands transition between positive and negative values of δθ
(n)
g while the

n = 1 subband stays purely positive. Once again, this demonstrates the

distinct difference between the lowest and higher subbands, that is indicative

of the lowest subband’s unigue topological properties. The major visible

differences between the SQW and SLG QR δθ
(n)
g are due to the ΥSQW term

which causes δθ
(n)
g ! 0 as ξM !1 and δθ

(n)
g ! �1 as ξM ! �j∆SQWj2.

In Fig. (6.6), the δθ
(n>1)
g = 0 points are naturally the same as those in

Fig. (4.8) since they are both proportional to ΛSQW. However, unlike SLG,

there is no clear indication in δθ
(n)
g of the value at which SQW becomes topo-

logical since δθ
(n>1)
g = 0 does not seem to occur at ξMcq0W [see Eqn. (4.28)].

Thus, we only know that the system is in the topological regime when the

eigenstate becomes purely evanescent which occurs at ξMq0W � �1, as de-

rived in Sec. (4.1.2).

Unfortunately, since the 2E
(τ,n)
SQW,0ΥSQW generally suppresses the magnitude

of δθ
(n)
g , we also do not possess the same distinct conductance patterns as

described in the SLG QR section. For example, when ξMq0W = ξMcq0W ,

the Berry phase of the lowest subband is not equal to π/2 which means

1Naturally, we have already discovered that δθ
(n)
g will change with respect to q0W and

hence this is not quite a “direct” comparison. However, we choose a large value of q0W
which should be most similar to the SLG case.
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Figure 6.6: Figure of the SQW QR δθ
(n)
g as a function of ξMq0W for

different subbands. We used the general numerical solution derived from
Eqn. (6.4). The different subbands are given by n = 1 (red), 2 (blue) and
3 (black). The parameters were held constant at W/R = 0.1, D̃ = 0 and
q0W = 26.6.

that the conductance resonance regions do not swap their centering between

φ = (m� 1/2)φ and φ = mφ.

Now that we have analysed the differences between the SLG and energy-

reflection symmetric SQW QR cases, we can move onto studying the most

complicated system: non-energy-reflection symmetric SQW QRs.

6.2.2 Non-energy-reflection symmetric case

Applying the same procedure as for the D̃ = 0 case, we can obtain an accurate

expression for the Berry phase with a general D̃ value, by implementing the

same realistic approximations. Doing this gives

δθ(n)
g �

(ΛSQW + Λ′SQW)Ẽin � ΛSQWẼ
(τ,−n)
SQW,0 � Λ′SQWẼ

(τ,n)
SQW,0

∆2
SQW + (Ẽin +

Ẽ
(τ,n)
SQW,0

2 � 3
2Ẽ

(τ,−n)
SQW,0)

ΥSQW

2 + (Ẽin +
E

(τ,−n)
SQW,0

2 � 3
2Ẽ

(τ,n)
SQW,0)

Υ′SQW

2

(6.5)
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which simplifies to

δθ(n)
g �



ΛSQW

(
Ẽ

(τ,n)
SQW,0 � Ẽ

(τ,−n)
SQW,0

)
∆2

SQW + 1
4

(
Ẽ

(τ,n)
SQW,0 � Ẽ

(τ,−n)
SQW,0

)(
3ΥSQW �Υ′SQW

) for Ẽin � Ẽ(τ,n)
SQW,0

(6.6a)

�Λ′SQW

(
Ẽ

(τ,n)
SQW,0 � Ẽ

(τ,−n)
SQW,0

)
∆2

SQW + 1
4

(
Ẽ

(τ,n)
SQW,0 � Ẽ

(τ,−n)
SQW,0

)(
ΥSQW � 3Υ′SQW

) for Ẽin � Ẽ(τ,−n)
SQW,0

(6.6b)

where we have used a similar line of reasoning as for the D̃ = 0 case. One

notices that δθ
(n)
g 6= �δθ(−n)

g since energy-reflection symmetry does not hold

any more. The D̃ terms are associated with a σ0 term which means it acts

differently on electrons and holes since it effectively couples to the charge of

the particle. This causes the asymmetry in the energies of the conduction

(n > 0) and valence (n < 0) subbands. For the simplicity in the next sections

we define

∆ΥSQW �


3ΥSQW �Υ′SQW for Ẽin � Ẽ

(τ,n)
SQW,0

ΥSQW � 3Υ′SQW for Ẽin � Ẽ
(τ,−n)
SQW,0

and ∆Ẽ
(τ,n)
SQW � Ẽ

(τ,n)
SQW,0 � Ẽ

(τ,−n)
SQW,0. Since the asymmetry in the system is

already present in the size-quantisation energies, Ẽ
(τ,±n)
SQW,0, the D̃ l2/r̃2 σ0 only

adds further complications due to its additional asymmetry.

In Fig. (6.7), we show the lowest-subband δθ
(n)
g as a function of ξMq0W for

different values of D̃. We see that the peak of the Berry phase moves from

the left to the right as we increase D̃ from negative to positive. This is be-

cause the ∆ΥSQW (in this case = 3ΥSQW�Υ′SQW) term saturates to a smaller

magnitude for an increasing D̃ as demonstrated in Fig. (6.8a). This causes

the denominator to become smaller thus allowing for the peak to shift to the

right. We can also see a larger negative D̃ curve approaches 0 quicker than

the less negative curves due to the same reason: larger saturation magnitude

of ΥSQW for the more negative curves thus causing a quicker decrease. Addi-

tionally, we can see regions of ξMq0W for which there are 0 (black), 1 (blue)

or 2 (red) evanescent topological bound states within the band gap �jξMj.
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Figure 6.7: Figure of the lowest subband n = 1 δθ
(n)
g as a function of ξMq0W

for a SQW QR at differing values of D̃. For the SQW curves, we used the
general solution, given Eqn. (6.6a). The different D̃ values are given by
D/jBj = �0.746 (dotted), �0.373 (dashed) and 0 (solid). Here we have also
depicted the presence of 2 (red), 1 (blue) or 0 (black) evanescent states within
jξMj. The parameters were held constant at W/R = 0.1 and q0W = 26.6.

These points are theoretically predicted to occur in Sec. (4.1.2).

In Fig. (6.8), we see that ∆ΥSQW and ∆Ẽ
(τ,n)
SQW,0∆ΥSQW behave oppositely for

�n. In the case of n = 1, as shown in Fig. (6.7), we saw that the saturation

point of ∆ΥSQW was higher than when D̃ = 0 which caused a peak shift

to the left. For n = �1, we would expect the opposite since the saturation

point of ∆ΥSQW is lower than that of D̃ = 0 which would mean that the

peak shifts towards the right 2.

We compare the magnitudes of ∆Ẽ
(τ,n)
SQW,0∆ΥSQW as a function of gap size

for different subbands in Fig. (6.9). Here, once again, the D̃ = 0 curves

[seen in Fig. (6.4)] split into two curves that correspond to the �n subbands.

Furthermore, we see that the jnj > 1 all cross between negative and positive

values. When they are negative, the δθ
(|n|>1)
g curves can tend to �1 when

∆Ẽ
(τ,n)
SQW,0∆ΥSQW ! �4j∆SQWj2.

In Fig. (6.10) we have plotted δθ
(n)
g as a function of ξM for the n = �1,�2,�3

subbands. We once again see that the Berry phase shows characteristic

differences between the lowest jnj = 1 subbands and the higher jnj > 1

subbands. The jnj = 1 subbands, which becomes topological for the deeply

2This expected shift can be seen in Fig. (6.10)
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(a) n = 1 subband (b) n = 3 subband

Figure 6.8: Figure of SQW QR ∆ΥSQW � 3ΥSQW�Υ′SQW (solid) or ΥSQW�
3Υ′SQW (dashed) (a) and 1

4
∆Ẽ

(τ,n)
SQW∆ΥSQW (b) as a function of ξMq0W for

D̃ = 0 (black) and �0.746 (red) at a constant width q0W = 26.6. In both
figures we can see that turning on the D̃ factor causes the D̃ = 0 ΥSQW

term in Eqn. (6.4) to split into the two ∆ΥSQW terms. The direction of
splitting depend on the type of subband: solid red for type (a) and dashed red
for type (b) states. Other parameters were held constant at W/R = 0.1 and
D̃ = �0.746.

Figure 6.9: Figure of 1
4
∆Ẽ

(τ,n)
SQW∆ΥSQW as a function of ξMq0W for different

SQW QR subbands n = �1 (solid/dashed red), �2 (solid/dashed blue) and
�3 (solid/dashed black). Other parameters were held constant at W/R = 0.1,
q0W = 26.6 and D̃ = �0.746.
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inverted regime, do not possess zero crossing points where δθ
(n)
g = 0, as was

indicated by the lack of τ flavour dispersion swapping in Sec. (4.2.2). This is

also supported by the results in the SQW conductance [as seen in Fig. (5.8a)]

where we saw no τ flavour swapping of the conductance peaks.

Figure 6.10: Figure of δθ
(n)
g as a function of ξMq0W for a SQW QR for

different subbands: n = �1 (solid/dotted red), �2 (solid/dotted blue) and �3
(solid/dotted black). We used the general solution derived from Eqns. (6.6a)
and (6.6b). The parameters were held constant at D̃ = �0.746, W/R = 0.1
and q0W = 26.6.

However for jnj > 1, we do observe these zero crossing points, i.e. δθ
(n>1)
g = 0,

which occur at the same gap value as was predicted by plotting ΛSQW and

Λ′SQW in Fig. (4.11). This was also seen in the conductance where the τ

flavour conductance peaks swapped positions [see Fig. (5.8b)]. Unfortunately,

like the D̃ = 0 case, these zero points do not occur at the critical gap values,

ξMc±, that separate the topological and trivial regimes, as was discussed in

Sec. (4.1.2). Thus, the only measure of the gap value at which the transition

occurs, is found using the theoretical predictions in Sec. (4.1.2). However,

we should still be able to measure the topological properties of the lowest

subband by observing the unique Berry phase of this state.

Another feature that we notice in the jnj = 1 subbands is that, unlike the

jnj > 1 subbands, the curves do not appear to shift significantly and thus still

strongly resemble those of the D̃ = 0 SQW and SLG cases. The higher sub-

bands are significantly shifted due to the distorted ΥSQW values. It may also

be possibly due to the inaccuracy of the higher subband dispersion equations,

arising from the perturbation theory approximations.
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We have now explored and understood many aspects of δθ
(n)
g for SLG, TMD

and SQW QRs. Although there are still areas that are worth investigating

such as the exact effects of ∆SQW in the SQW systems, we leave this for

another project. In the next chapter, we summarise our results, discuss some

of the implication of these observations and conclude with an outlook for

future work.
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Chapter 7

Summary and outlook

In this thesis we have undertaken a comprehensive analytical study of the

confinement effects and transport properties in single-layer graphene (SLG),

transition-metal dichalcogenide (TMD) and semiconductor quantum well

(SQW) quantum rings (QRs). We began by developing a general methodol-

ogy that was modified to tackle each material individually. In this chapter we

will summarise the main results, their implications, and provide possibilities

for further work.

For SLG QRs, we obtained a general formula [given in Eqn. (3.38)] that de-

scribes the subband dispersion of the system as a function of the confinement

energy, ~v/W , and gap size, V0, for a small aspect ratio, ε � W/R � 1.

Unlike previous works for V0 = 0 [66–68], we have accounted for the size-

quantisation energy, E
(τ,n)
SLG,0, which introduces a finite mass gap. We have also

included the diagonal 2� 2 block Hamiltonian H
(τ,n)
SLG,1 term [see Eqn. (3.22)]

that cause time-reversal flavour dispersion shifts. These terms turn out to be

vital for obtaining an accurate Berry phase. The only exception to this gen-

eral lack of terms is the work done by Recher et. al. on the V0 = 0 SLG QR

system [5]. Literature regarding SLG systems with a general V0 also do not

include the diagonal H
(τ,n)
SLG,1 term, ΓSLG [Eqn. (3.37)], which they may have

assumed to be negligible since it is “just” an (angular momentum dependent)

energy shift. However, we have shown that this term has a substantial effect

on the dispersions, conductances and the Berry phase and hence must be

taken into account in these contexts.

Results for TMD QRs are qualitatively similar to those of the SLG QR with
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however the noticeable addition of the large valence band spin-splitting. The

general subband dispersion was found in Sec. (3.3.2) which is in agreement

with the work of Oliveira et.al. [8]. However, they also neglected the diagonal

ΓTMD term in their Hamiltonian which, as in the case of SLG, we have found

necessary to include for a complete understanding of the Berry phase and

conductance [see Sec. (5.3)].

General SQW systems have been analytically explored in various studies [7,

58]. In our analysis of the eigenstates and energies of the radial component

of the SQW QR Hamiltonian, H
(τ)
SQW,0, we find that both the secular equation

[Eqn. (4.12)] and eigenstates [Sec. (4.1.3)] agree with those of Refs. [7, 58].

However the ring-confinement of these systems have only been explored with

a strong numerical focus due to their complexity [6]. Using perturbation the-

ory and the approximation ε� 1, we were able to derive a general subband

dispersion [see Eqn. (4.48)]. Although this equation is not yet in an elegant

format, compared to the dispersion equations of SLG and TMD, it is still a

new result which allows for the analytical exploration of the parameter de-

pendences (such as ring width W , band gap ξM, etc.) of the band structure

and transport properties in SQW QR.

We also explored the topological properties of these materials. For both

SLG and SQW QRs, we found that as we moved deep into the inverted

gap regime (i.e. band structure is strongly inverted), the lowest-subbands

(jnj = 1) eventually became topologically non-trivial and hence possessed

topologically protected edge states (TPES). For SLG, the limit at which this

happens was found to be when V0/(~v/W ) � �1, below which the subbands

become topologically protected [see Eqn. (3.13)]. This limit turns out to

greatly affect the Berry phase and thus using these results, experimentalists

should be able to determine whether the QR is in the topological phase or

not.

In the case of SQW QRs, the critical limits, at which the ring entered its

topological phase, took much more complicated forms [see Sec. (4.1.2)] due

to the lack of energy-reflection symmetry when the parameter D̃ 6= 0. This

asymmetry meant that as we increased the inversion of the band gap, the

jnj = 1 bound states traversed into the gap at different gap values, respec-

tively. This gave rise to two critical gap values, ξMc± < 0, that are described

by Eqn. (4.28) for a large width (q0W &10). In particular, when D̃ = 0,
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energy-reflection symmetry once again holds which leads to ξMcq0W . �1

[Eqn. (4.29)]. This limit is reminiscent to that of the SLG QR, thus exem-

plifying the Dirac-like nature of SQW QRs.

We can conclude from these findings that ring confinement tends to destroy

the topological properties of subbands. Unconfined SLG and SQW systems

usually possess TPESs for any inverted band gap value [2,70]. However once

we confine them in a ring, TPESs only arise when the system parameters

satisfy a critical limit (e.g. V0/(~v/W ) � �1 for SLG QR and ξMcq0W . �1

for energy-reflection symmetric SQW QR). The underlying reason for this

is that increasing the confinement (e.g. decreasing the width W ) generally

increases the magnitude of the confinement energies thus pushing TPES out

of the gap. This phenomenon is analogous to the critical width that is present

in the HgTe quantum well layer structure [20], as discussed in Sec. (1.5).

For SLG QRs, we found that the relative positions of the τ = �1 valley

dispersions swapped for jnj > 1 subbands as V0 was tuned from topological

[V0/(~v/W ) � �1] to the trivial [V0/(~v/W ) > �1] regions. In particular, a

zero shift between the subband dispersions was present at V0/(~v/W ) = �1.

However for the jnj = 1 subbands, this dispersion swapping did not take

place which indicated a qualitative difference between the topological and

non-topological subbands. In the SQW QR systems, we found similar results

where the dispersions of higher subbands (jnj > 1) swapped positions while

the lowest subbands (jnj = 1) did not.

In Chapters 5 and 6 we derived and analysed the analytical expressions of

the Berry phase, θ
(τ,n)
g , for SLG, TMD and SQW QRs. In previous work,

this phase has been only analytically studied using non-material specific QR

models [29, 71, 72]. Our work, in this area, is consequential because we have

discovered a correction term to the Berry phase, δθ
(n)
g , that arises purely

from the ring confinement of our specific materials (SLG, TMD and SQW).

Moreover, we also determined explicit expressions of θ
(τ,n)
g .

In Chapter 5, we also found that the magnitude of the shift between τ flavour

dispersions was equivalent (by a constant factor) to the magnitude of con-

finement arising Berry phase correction δθ
(n)
g . Furthermore, in Chapters 5

and 6, these terms were discovered to be proportional to the diagonal H
(τ,n)
α,1

terms: Γα for SLG & TMD, and ΛSQW and Λ′SQW for SQW QRs, when
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the lead injection energy is approximately the size-quantisation energy, i.e.

Ein � E
(τ,n)
α,0 . Additionally, δθ

(n)
g and the shift between flavour dispersions

were also found to be related to the φ separation of the τ = �1 flavour con-

ductance peaks [see Sec. (5.1.1)]. Analogous to the swapping of the jnj > 1

τ flavour dispersions, the jnj > 1 conductance peaks also swapped positions

at φ = φ0(m� 1/2) when the gap size was varied [see Fig. (5.8b)].

Generally, relativistic fermionic particles possess a spin 1/2 Berry phase

θ
(τ,n)
g ! π in the presence of a magnetic field. Particles that present this

phase, we call “Dirac-like”. This contrasts the non-relativistic Schrödinger

equation which does not take into account the spin of a particle and thus

does not predict the π Berry phase. We call particles that behave spinless,

as per the Schrödinger description, “Schrödinger-like”. This description be-

comes important for distinguishing the lowest from the higher subbands, as

was seen in Chapter 6.

We saw that for both SLG and SQW QRs, the Berry phase of the lowest

subband exhibited distinct qualitative differences compared to the higher

subbands in the deeply inverted regime. As ξMq0W ! 1, the lowest sub-

band went as δθ
(|n|=1)
g ! 0 such that the total Berry phase became θ

(τ,n)
g !

2πφ/φ0 + π which meant the subband retained its Dirac spin 1/2, π, phase.

Additionally, the phase always stayed a positive value for n = 1 and a nega-

tive value for n = �1. Furthermore, neither subband possessed a δθ
(|n|=1)
g = 0

crossover point.

For SLG QRs, the higher subbands go as δθ
(|n|>1)
g ! 1 and thus θ

(τ,n)
g !

2πφ/φ0 which means it becomes more Schrödinger-like. Additionally, as

we varied the gap size, δθ
(|n|>1)
g of the higher subbands transitioned from

positive to negative with a crossover point at V0/(~v/W ) = �1 (i.e. when

ΓSLG = 0), as was indicated by the τ energy dispersion and conductance

peak swapping. For SQW QRs, this swapping also occurred for the higher

subbands. However, for ξM ! �1, they did not seem to approach a well-

defined limit due to the inclusion of the ΥSQW and Υ′SQW terms. Thus for both

SLG and SQW QRs, the higher subbands, which are always topologically

trivial, behave significantly different from the lowest subbands, which become

topologically protected, in the deeply inverted gap regime.

Overall, we have seen that δθ
(n)
g , that arises from the momentum depen-
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dent energy shift in the material dispersions, notably impacts the overall

Berry phase, θ
(τ,n)
g , the conductance and the dispersion relations. Hence,

the momentum dependent energy shifts must be taken into account when

considering transport properties of QR systems.

Further outlook

Although we have comprehensively understood the confinement effects and

transport properties of SLG and TMD QR systems, we are still lacking the

same thorough insight with regards to the SQW QR systems. In particular,

the underlying behaviour of the Berry phase should be further investigated.

Our understanding was partially hindered due to the complexity of the SQW

subband dispersion equation which ideally could be simplified to be just in

terms of the size-quantisation energy and system parameters, as was done

for the SLG and TMD QRs.

We only analysed the conductance of a perfectly symmetric ring. However,

the next steps would be to add asymmetry with regards to the relative po-

sitions of the junctions and include realistic impurity scatterers in the ring

branches, as was suggested by Büttiker et. al. [35]. This would add an extra

layer of complexity that would however be rewarded with findings that are

more likely to resemble the results obtained by experimentalists. It may also

be useful to investigate the effects of a tilted magnetic-field that penetrates

the ring.

For now, we hope that these results will aid experimentalists in understanding

the complex QR conductance patterns that arise in SLG, TMD and SQW

QR systems and support theorists in their attempt to understand transport

phenomena in confined chiral charge carrier systems in further depth.
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Appendix A

Extra information regarding

SQW

A.1 Important signs of the SQW model

The sign of σ � sgn(Ẽ + κ̃2 + ξM) and various other quantities are presented

in Tables (A.1) and (A.2) for different ranges of ξM and energy values.

ξM region Energy region sgn(Ẽ + κ̃2 + ξM). sgn(Ẽ � λ̃2 + ξM)

ξM > 0 jξMj > jẼj 1 -1

ξM < 0 jξMj > jẼj -1 -1

All Ẽ > jξMj 1 -1

All Ẽ < jξMj -1 -1

Table A.1: Table of sgn(Ẽ + κ̃2 + ξM) and sgn(Ẽ � λ̃2 + ξM) for relevant
regions of consideration.

A.2 Comparing our formulation with B. Zhou’s

Here we show that the secular equation for a SQW QR is equivalent to the

one presented by B. Zhou et. al. [7]. Inverting the H
(τ)
SQW,0 secular energy
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ξM region Energy region sgn(Ẽ � κ̃2 � ξM) sgn(Ẽ + λ̃2 � ξM)

ξM > 0 jξMj > jẼj -1 1

ξM < 0 jξMj > jẼj 1 1

All Ẽ > jξMj 1 1

All Ẽ < jξMj -1 1

Table A.2: Table of sgn(Ẽ � κ̃2 � ξM) and sgn(Ẽ + λ̃2 � ξM) for relevant
regions of consideration.

equation [Eqn. (4.11)] gives us

cos(κ̃W̃ ) cosh(λ̃W̃ )� 1

sin(κ̃W̃ ) sinh(λ̃W̃ )
= sgn(Ẽκ + ξM + κ̃2)

γ̄2
λγ

2
κ � 1

2γ̄λγκ
. (A.1)

The LHS can be reworked to give

tanh( λ̃W̃
2

)

tan( κ̃W̃
2

)
�

tan( κ̃W̃
2

)

tanh( λ̃W̃
2

)
= sgn(Ẽκ + ξM + κ̃2)

γ̄2
λγ

2
κ � 1

γ̄λγκ
(A.2)

Now, taking a closer look at γκ and γ̄λ, we see that

γκ =

√
Ẽκ � ξM � κ̃2

Ẽκ + ξM + κ̃2
= sgn(Ẽκ + ξM + κ̃2)

Ẽκ � ξM � κ̃2

κ̃

= sgn(Ẽκ + ξM + κ̃2)
α̃κ̃
κ̃

(A.3)

γ̄λ =

√
λ̃2 � ξM � Ẽλ
λ̃2 � ξM + Ẽλ

=
λ̃

Ẽλ � ξM + λ̃2
=

λ̃

α̃λ̃
. (A.4)

where α̃κ̃ � Ẽκ � ξM � κ̃2 and α̃λ̃ � Ẽλ � ξM + λ̃2. Substituting these

expressions into the RHS in Equation (A.2), we find

tanh( λ̃W̃
2

)

tan( κ̃W̃
2

)
�

tan( κ̃W̃
2

)

tanh( λ̃W̃
2

)
=
α̃2
κ̃λ̃

2 � α̃2
λ̃
κ̃2

α̃λ̃ακ̃κ̃λ̃
(A.5)
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which is identical to the secular equation by Zhou et. al. for which we can

substitute λ̃! λ̃1 and κ̃! �iλ̃2.

A.3 General SQW coefficients for wavefunc-

tion

c
(τ,n)
1κ !

c
(τ,n)
2λ γ̄λe

1
2
iW̃ (κ̃+iλ̃)

(
�σγκγ̄λ + e2λ̃W̃ (σγκγ̄λ + i)� 2ieW̃ (λ̃+iκ̃) + i

)
σγκγ̄λ � 2σγκγ̄λeW̃ (λ̃+iκ̃) + e2iκ̃W̃ (σγκγ̄λ + i)� i

(A.6)

c
(τ,n)
2κ !

c
(τ,n)
2λ γ̄λe

1
2
iW̃ (κ̃+iλ̃)

(
eiκ̃W̃

(
�σγκγ̄λ + e2λ̃W̃ (σγκγ̄λ � i)� i

)
+ 2ieλ̃W̃

)
σγκγ̄λ � 2σγκγ̄λeW̃ (λ̃+iκ̃) + e2iκ̃W̃ (σγκγ̄λ + i)� i

(A.7)

c
(τ,n)
1λ ! �

c
(τ,n)
2λ

(
�2σγκγ̄λe

iκ̃W̃ + (σγκγ̄λ � i) eW̃ (λ̃+2iκ̃) + eλ̃W̃ (σγκγ̄λ + i)
)

σγκγ̄λ � 2σγκγ̄λeW̃ (λ̃+iκ̃) + e2iκ̃W̃ (σγκγ̄λ + i)� i
.

(A.8)

The wavefunction χ
(τ,n)
SQW(r) = (χ

(τ,n)
SQW,↑(r), χ

(τ,n)
SQW,↓(r))

T is then given by

χ
(τ,n)
SQW,↑(r̃) = �c̃(τ,n)

2λ

p
q0 γ̄λ

[
sin(κ̃W̃ ) cosh

(
λ̃(r̃ � R̃)� λ̃W̃

2

)

+ cosh(λ̃W̃ ) sin

(
κ̃(r̃ � R̃)� κ̃W̃

2

)
� sin

(
κ̃(r̃ � R̃) + κ̃

W̃

2

)

� σγκγ̄λ
(

cos(κ̃W̃ ) sinh

(
λ̃(r̃ � R̃)� λ̃W̃

2

)
� sinh

(
λ̃(r̃ � R̃) + λ̃

W̃

2

)

+ sinh(λ̃W̃ ) cos

(
κ̃(r �R)� κ̃W̃

2

))]
(A.9)
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and

χ
(τ,n)
SQW,↓(r̃) = ic̃

(τ,n)
2λ

p
q0 τ

[
σγκγ̄λ

(
cosh(λ̃W̃ ) cos

(
κ̃(r̃ � R̃)� κ̃W̃

2

)

� cos

(
κ̃(r̃ � R̃) + κ̃

W̃

2

)
+ cos(κ̃W̃ ) cosh

(
λ̃(r̃ � R̃)� λ̃W̃

2

)

� cosh

(
λ̃(r̃ � R̃) + λ̃

W̃

2

))
+ γ2

κγ̄
2
λ sinh(λ̃W̃ ) sin

(
κ̃(r̃ � R̃)� κ̃W̃

2

)

� sin(κ̃W̃ ) sinh

(
λ̃(r̃ � R̃)� λ̃W̃

2

)]
.

(A.10)

Eqns. (A.9) and (A.10) can be shown to be consistent with Eqns. (4.31) and

(4.32) by substituting the relevant expression of Ẽ [i.e. Eqns. (4.16) and

(4.17)] into the γκ and γ̄λ of the more general wavefunction.

A.4 Ẽ < jξMj wavefunctions

For Ẽ < jξMj and 0 > ξM > �1/4, we will have κ � iκ̄ and γκ � iγ̄κ̄, where

˜̄κ = q0

[
ξM �

1

2

(√
1 + 4ξM + 4Ẽ2

iκ̄ � 1

)] 1
2

, (A.11a)

γ̄κ̄ =


1
2

(√
1 + 4ξM + 4Ẽ2

iκ̄ � 1

)
� Ẽiκ̄

1
2

(√
1 + 4ξM + 4Ẽ2

iκ̄ � 1

)
+ Ẽiκ̄


1
2

(A.11b)

are then real numbers. For φ
(τ,n)
SQW,1,<(r̃), we have

φ
(τ,n)
SQW,1,D,<(r̃) = � c̃1p

2πr̃

q0

cosh
(

˜̄κW̃
2

) ( cosh(˜̄κ(r̃ � R̃))

iτ γ̄˜̄κ sinh(˜̄κ(r̃ � R̃))

)
(A.12)
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and

φ
(τ,n)
SQW,1,W (r̃) =

c̃1p
2πr̃

q0

cosh
(
λ̃W̃

2

) ( cosh(λ̃(r̃ � R̃))

iτ 1
γ̄λ̃

sinh(λ̃(r̃ � R̃))

)
(A.13)

and for φ
(τ,n)
SQW,2,<(r), we have

φ
(τ,n)
SQW,2,D,<(r̃) = � c̃2p

2πr̃

q0

sinh
(

˜̄κW̃
2

) ( sinh(˜̄κ(r̃ � R̃))

iτ γ̄˜̄κ cosh(˜̄κ(r̃ � R̃))

)
(A.14)

and

φ
(τ,n)
SQW,2,W (r̃) =

c̃2p
2πr̃

q0

sinh
(
λ̃W̃

2

) ( sinh(λ̃(r̃ � R̃))

iτ 1
γ̄λ̃

cosh(λ̃(r̃ � R̃))

)
(A.15)

where we have noted that σ = �1 for the regime of interest.
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Appendix B

Useful integrals

Here we present the integrals that are required to solve for the H
(τ)
α,1 matrix

coefficients. We have Taylor-expanded the solutions up to the second order

of ε.

∫ 1
2

− 1
2

ε

(1 + εη)
cos(λαηW )cos(λβηW )dη =

ε

W̃

[sin
(

(λα−λβ)W

2

)
λα � λβ

+
sin
(

(λα+λβ)W

2

)
λα + λβ

]
+O

(
ε3
)

(B.1)

∫ 1
2

− 1
2

ε

(1 + εη)
sin(λαηW )sin(λβηW )dη =

ε

W̃

[sin
(

(λα−λβ)W

2

)
λα � λβ

�
sin
(

(λα+λβ)W

2

)
λα + λβ

]
+O

(
ε3
)

(B.2)
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∫ 1
2

− 1
2

ε

(1 + εη)
cos(λαηW )sin(λβηW )dη =

ε2

W 2

[
� W

2

cos

(
(λα−λβ)W

2

)
λα � λβ

+
W

2

cos

(
(λα+λβ)W

2

)
λα + λβ

+
sin
(

(λα−λβ)W

2

)
(λα � λβ)2

�
sin
(

(λα+λβ)W

2

)
(λα + λβ)2

]
+O

(
ε4
)

(B.3)

∫ 1
2

− 1
2

ε

(1 + εη)
cos(λβηW )sin(λαηW )dη =

ε2

W 2

[
W

2

cos

(
(λα−λβ)W

2

)
λα � λβ

+
W

2

cos

(
(λα+λβ)W

2

)
λα + λβ

�
sin
(

(λα−λβ)W

2

)
(λα � λβ)2

�
sin
(

(λα+λβ)W

2

)
(λα + λβ)2

]
+O

(
ε4
)

(B.4)

∫ 1
2

− 1
2

ε2

W (1 + εη)2
cos(λαηW )cos(λβηW )dη =

ε2

W̃ 2

[sin
(

(λα−λβ)W

2

)
λα � λβ

+
sin
(

(λα+λβ)W

2

)
λα + λβ

]
+O

(
ε4
)

(B.5)

∫ 1
2

− 1
2

ε2

W (1 + εη)2
sin(λαηW )sin(λβηW )dη =

ε2

W̃ 2

[sin
(

(λα−λβ)W

2

)
λα � λβ

�
sin
(

(λα+λβ)W

2

)
λα + λβ

]
+O

(
ε4
)

(B.6)
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∫ 1
2

− 1
2

ε2

W (1 + εη)2
cos(λαηW )sin(λβηW )dη = O

(
ε3
)

(B.7)

∫ 1
2

− 1
2

ε2

W (1 + εη)2
cos(λβηW )sin(λαηW )dη = O

(
ε3
)

(B.8)
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[51] Kormányos, A. et al. Monolayer MoS2: Trigonal warping, the Γ valley,

and spin-orbit coupling effects. Physical Review B 88, 045416– (2013).

URL https://link.aps.org/doi/10.1103/PhysRevB.88.045416.

[52] König, M. et al. The quantum spin hall effect: Theory and experiment.

J. Phys. Soc. Jpn. 77, 031007 (2008).

[53] Bromley, D. & Greiner, W. Relativistic Quantum Mechanics. Wave

Equations (Springer Berlin Heidelberg, 2013). URL https://books.

google.co.nz/books?id=YCb0CAAAQBAJ.
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[68] Boĺıvar, N., Medina, E. & Berche, B. Persistent charge and spin currents

in the long-wavelength regime for graphene rings. Phys. Rev. B 89,

125413 (2014).

[69] Ross, J. S. et al. Electrical control of neutral and charged excitons in a

monolayer semiconductor. Nature Communications 4, 1474 EP – (2013).

URL http://dx.doi.org/10.1038/ncomms2498.

[70] Pankratov, O. A., Pakhomov, S. V. & Volkov, B. A. Supersym-

metry in heterojunctions: Band-inverting contact on the basis of

Pb1xSnxTe and Hg1xCdxTe. Solid State Communications 61, 93–

96 (1987). URL http://www.sciencedirect.com/science/article/

pii/0038109887909343.

[71] Lopes-Oliveira, V., Castelano, L. K., Marques, G. E., Ulloa, S. E. &

Lopez-Richard, V. Berry phase and Rashba fields in quantum rings

in tilted magnetic field. Physical Review B 92 (2015). URL http:

//par.nsf.gov/biblio/10007541.

[72] Nagasawa, F., Frustaglia, D., Saarikoski, H., Richter, K. & Nitta, J.

Control of the spin geometric phase in semiconductor quantum rings.

Nature Communications 4, 2526 EP – (2013). URL http://dx.doi.

org/10.1038/ncomms3526.

http://dx.doi.org/10.1038/ncomms2498
http://www.sciencedirect.com/science/article/pii/0038109887909343
http://www.sciencedirect.com/science/article/pii/0038109887909343
http://par.nsf.gov/biblio/10007541
http://par.nsf.gov/biblio/10007541
http://dx.doi.org/10.1038/ncomms3526
http://dx.doi.org/10.1038/ncomms3526

	Introduction
	Motivation of this study
	Two-dimensional Dirac-like charge carriers
	Dirac-like materials
	Ring confinement of chiral charge carriers
	Topological insulators
	Outline of thesis

	Methodology
	Hamiltonians
	Basic model for ring confinement
	Ring-enclosed magnetic (Aharonov-Bohm) flux
	Ring confinement with leads

	Single-layer graphene
	Ring structure in SLG
	Universal energy curve
	Wavefunctions of SLG

	Massless-Dirac case
	General mass-confinement
	Single-layer graphene
	Transition-metal dichalcogenides


	Semiconductor quantum well
	Ring structures in SQWs
	Secular energy solutions
	Transition from topological regime to normal
	Eigenstates of SQW

	Finding the azimuthal dependence
	Magnitude of matrix elements
	Subband energy dispersion


	Conductance
	General conductance derivation
	Detection methods

	Massless-Dirac single-layer graphene
	Transition-metal dichalcogenide
	Semiconductor quantum well

	Geometric Berry phase
	Single-layer graphene
	Semiconductor quantum well
	Energy-reflection symmetric case
	Non-energy-reflection symmetric case


	Summary and outlook
	Extra information regarding SQW
	Important signs of the SQW model
	Comparing our formulation with B. Zhou's
	General SQW coefficients for wavefunction
	<|M| wavefunctions

	Useful integrals

