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Abstract

Beamforming filter optimization can be performed over a distributed wire-
less sensor network, but the output calculation remains either centralized
or linked in time to the weights optimization. We propose a distributed
method for calculating the beamformer output which is independent of
the filter optimization. The new method trades a small decrease in signal
to noise performance for a large decrease in transmission power. Back-
ground is given on distributed convex optimization and acoustic beam-
forming. The new model is described with analysis of its behaviour under
independent noise. Simulation results demonstrate the desirable proper-

ties of the new model in comparison with centralized output computation.
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Chapter 1
Introduction

Electronic sensors are an integral part of modern life. We include several
types of sensors in our phones, drive on smart motorways, even washing
machines know when they have been loaded unevenly. It has become nor-
mal for an individual to have tens, hundreds, even thousands of sensors
in their service.

Every sensor and the data it generates is tainted by noise and error. Dis-
tinguishing between desired and undesired signals can be difficult, many
clever ideas and systems have been developed to address this problem.
The general aim of these systems is to increase the energy in the signal
that we want, relative to the energy in the signal that we do not want, that
is, an increase in signal to noise ratio (SNR).

Using multiple sensors is one method for increasing the SNR. When
two sensors make independent observations of a target signal, both of
the observations also contain noise. The observations of the target signal
are correlated so phase aligning and then summing the two observations
causes the target signal to sum constructively. Independent noise in the
observations is uncorrelated so is summed non-constructively. The en-
ergy in the desired signal has increased while the energy in the noise has
not. An increase in SNR has been achieved simply by summing the two

phase aligned sensor signals.
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If summing two sensors can increase the SNR, it is natural to want to
sum ten sensors, or one billion sensors, or an unlimited number. However,
more sensors means more data which requires more processing power. In-
creasing the processing power could mean using a more powerful proces-
sor, but this is still limited by manufacturing and fundamental constraints.
The other option is to increase the processing power by using more pro-
cessors. Using multiple spatially separated processors in concert is called
distributed processing and is the central topic of this thesis.

Distributed processing requires a different type of algorithm from cen-
tralized processing. Each processor in the distributed network is given a
local algorithm to run, communicates with neighboring processors, and
by their combined efforts produce a global behaviour. Perhaps a useful
analogy is to a flock of birds where each bird follows a local set of rules:
do not crash and do not leave the flock, but knows nothing of the meta
behaviour. The beautiful swirling flocking behaviour we observe is the
global result of local rules and local communication.

We envision the trend towards distributed computation growing and
expect it to extend to the development of public sensor networks (PSNs).
A PSN is a large scale network of sensors and processors that are pro-
vided, for example, by a central government for anyone to use. Applica-
tions could include a nationwide traffic monitoring network or pollution
sensing. The future of massive sensor networks is discussed in [1]], and
[2] gives an overview of sensor networks and applications. In this thesis
we deal specifically with acoustic beamforming on a wireless microphone
sensor network.

In order to motivate this large scale wireless microphone network, imag-
ine a network of nodes installed in the ceilings of buildings and homes
across New Zealand. Each node possesses a microphone, a battery, a pro-
cessor, and radio communication capability. Any specific node in the net-
work is dormant for the majority of the time, and wakes up when the ap-

plication requires it to. A user inserts an instruction at an insertion node,
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the insertion node then recruits neighboring nodes as necessary for com-
pletion of the instruction. For example, Jane is at a conference having a
conversation with James in a crowded room of talkers. Jane is having trou-
ble understanding James. She instructs the public microphone network to
isolate James’ voice and return the audio to her, enabling her to easily fol-
low the conversation. Multiple sensor techniques have been found to be a
promising and realistic technology for hearing aid applications in [3].

Another conceivable application is hands free calling. Say Tom wants
to call his sister Jo using the microphone network in his home. Tom walks
freely around the house without a communication device, doing the vac-
uuming and listening to both Jo and music over the stereo. The network
isolates Tom’s voice as he moves around the house and Jo has no problem
hearing or understanding Tom. Hopefully these examples illustrate that
PSNs may be useful.

An ideal PSN ought to be infinitely scalable. As previously discussed,
we cannot connect a nationwide sensor network to one centralized pro-
cessor. There is too much data, and transmission times scale with distance
slowing the calculation down. So we require localized distributed pro-
cessing algorithms in order to realize PSNs. Distributed processing also
has additional benefits to security, system robustness, power consump-
tion, processing speed, is more likely to have a sensor near to the target,
and is more likely to have line of sight access to the target.

Security: Whenever data is processed in a centralized manner, the sin-
gle central processor sees all the data collected in the entire network. If
someone were to gain unauthorized access to the processing node, they
would also gain access to all of the network data. In a distributed net-
work, the spread of the data is naturally limited. This gives distributed
systems an inherent security advantage.

Robustness: If the processor in a centralized system fails, the entire
network fails. Distributed processing makes robust node failure possible,
where the failure of a node simply changes the network graph without
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causing global failure of the system.

Power: Transmitting sensor data to a centralized processor can be ex-
pensive. In section 4.4/ we show that distributed systems can require less
power. Radio signals decay as 72 where r is the distance from the trans-
mitter (based on distribution of the energy over the surface of a sphere) so
reducing transmission distances by using distributed processing can ex-
tend network lifetimes. In a realistic setting the decay with distance can
be as bad as r~* due to cancellation caused by reflections [1].

Speed: It takes more time to transmit data over longer distances, so re-
ducing transmission distances has some benefit in processing speed. There
are speed costs to distributed processing too so this benefit should be con-
sidered in more detail for specific applications.

Minimum distance: A single microphone is likely to be further from
the target source than the closest microphone in an array [4]. As sound
energy decays with distance but the noise floor does not, the nearest mi-
crophone is likely to have a higher SNR. Even if only the best microphone
within the array is used, the array is likely to have a higher SNR than by
using the single microphone [4].

Line of sight: Line of sight access to the target is more likely if we use
an array rather than a single sensor. Line of sight observations will gener-
ally have shorter acoustic transmission distances so will have higher SNR.
Room reflections also complicate the relationship between the observation
and the target signal, so line of sight observation is preferable.

Having discussed some potential applications and benefits of distrib-
uted processing we now turn to the research and development that en-
ables it. Our application is acoustic beamforming, which requires the op-
timization of a set of weights. The optimization tool we will use is con-
vex optimization. Boyd and Vandenberghe released a comprehensive and
highly regarded book on convex optimization and its application in 2004
[5]. They summarize the tools that allow us to derive optimal beamformer

weights in a centralized manner, by forming the Lagrangian from the ob-
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jective and the constraints and finding the optimum.

While [5] summarizes the tools for convex optimization, it does not
extend to solving convex optimization problems over an arbitrary dis-
tributed network graph. Bertsekas and Tsitsiklis [6] gives a theoretical
treatment of numerical distributed methods. Boyd then deals with applied
distributed computation in Randomized Gossip Algorithms [7], with anal-
ysis of the distributed averaging problem under gossip constraints over
an arbitrary network. Distributed averaging aims to compute the global
average using only local computation and communication. In gossip algo-
rithms a node asynchronously and randomly chooses a neighbor, the two
nodes compute the average of their current estimates, which replaces both
current estimates. Over time, the network converges to the global average,
bounds on the convergence time are also given in [7]. See [8] for a general
review of gossip algorithms, which shows that gossip algorithms can be
applied to problems such as Kalman filtering.

The alternating direction method of multipliers (ADMM) was reviewed
by Boyd, Parikh, Chu, Peleato, and Eckstein in [9]. ADMM is an algorithm
which enables the distributed optimization of a convex problem. It is lim-
ited in that the primal update can be split across a maximum of two nodes,
and the dual update requires global knowledge so must be computed cen-
trally. ADMM is an iterative algorithm that alternates between solving
a distributed primal minimization and a centralized dual gradient ascent
step. The primal minimization is ideally analytically solvable but in many
cases requires another layer of iterative algorithm to solve. Understand-
ing ADMM requires us to introduce Dual Ascent, Dual Decomposition,
the Augmented Lagrangian, and the Method of Multipliers [9].

The requirement of a central node and synchronous updating limit the
application of ADMM. Fully distributed ADMM (D-ADMM) with no re-
quirement for a central node was introduced in [10] with application to
basis pursuit. The same authors also applied D-ADMM to general separa-
ble optimization problems in [11] including average consensus. D-ADMM
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was shown to have low communication costs relative to competing state
of the art algorithms. However, D-ADMM was still synchronous and af-
fected by the slowest worker problem. Asynchronous distributed ADMM
(AD-ADMM) was introduced and analyzed in [12}13] and shown to have
preferable convergence properties.

Based on ADMM but with better convergence rates, the primal dual
method of multipliers (PDMM) was introduced by Zhang and Heusdens
in [14] (it was originally called the bi-alternating direction method of mul-
tipliers (B ADMM)). PDMM minimizes the augmented bi-conjugate func-
tion and is bounded by 0, in contrast to ADMM which is a saddle point
problem. They demonstrate the effectiveness of the algorithm with appli-
cation to /; regularized least squares minimization (LASSO).

With the addition of Kleijn, the same authors then analyze the conver-
gence rate of PDMM in [15] and show that for general convex functions,
PDMM converges in O(K'). Results are given for application to LASSO
showing that PDMM outperforms ADMM and fast ADMM. These papers
had developed PDMM on two nodes only, Zhang and Heusdens then pub-
lished PDMM for arbitrary graphs in [16]. The algorithm is capable of
both asynchronous and synchronous implementation, and retains a con-
vergence rate of O(K'). Simplified update equations are presented in
[17].

PDMM enables asynchronous distributed convex optimization on an
arbitrary graph, and can be used to implement a minimum variance dis-
tortionless response (MVDR) beamformer. But what is a beamformer?
What is MVDR? We now turn our attention to acoustic beamforming.

A beamformer is a method of increasing the SNR in an estimate of
a target signal based on the target’s location in space. The gain pattern
sometimes looks like a beam, hence the name. Multiple sensors make ob-
servations from different locations, which are then delayed, weighted and
summed to form the beamformer output (BFOP).

Many applications exist for beamforming, for example: towed sonar
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arrays, cellphone networks, speech enhancement, radar, air traffic control,
medical imaging, geo-physics, and astro-physics. Van Veen and Buckley
give an overview of beamformers in [18] and give references for these ap-
plications.

Our interest is acoustic beamformers, so the sensors are microphones
and the signals being observed are acoustic pressure waves. The distance
from the sound source to each sensor is likely to be different, so the pres-
sure wave arrives at each sensor at a different time. It is this arrival time
information which enables beamforming. Delays are added to the sensor
observations to phase align the target source across sensors. The delayed
observations are then summed and the phase aligned target signal sums
constructively. Any interfering source arriving from a different location
will have a different set of delays associated with it and will not sum con-
structively. Any independent sensor noise present will also not be con-
structively summed. The result is the constructive summing of the target
signal and non-constructive summing of interference signals and noise,
increasing the SNR.

This type of beamformer is called delay and sum, or Bartlett, and was
originally introduced for sonar and radar applications [19) 20]. The de-
lay and sum beamformer is not optimal in the presence of interference or
diffuse noise. Many optimal and adaptive beamformers have been subse-
quently proposed. Capon introduced a maximum likelihood filter [21] to
suppress interference, which was optimal in a least squares sense, and was
the first MVDR beamformer. Widrow proposed an adaptive least mean
squares algorithm in [22] which required training on a reference signal
and had a soft constraint. Griffiths [23] adaptively finds the minimum
mean square error. Frost’s 1972 algorithm was similar to Widrow but with
hard constraints that were not restricted to unity, and with no requirement
for a reference signal [24]. Frost’s adaptive algorithm is capable of adapt-
ing without accumulating errors. He also gave a geometric analysis that

is still instructive. The multiple sidelobe canceller was introduced by Ap-
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plebaum in [25] but also required a reference signal. [26] gives a useful
comparison of Applebaum, Widrow and Frost.

The beamformers described so far have all been centralized. Distrib-
uted beamformers became popular some forty years later. Zeng and Hen-
driks apply randomized gossip to delay and sum beamforming in [27]
and achieve an asynchronous distributed beamformer. The approach was
notable for placing no constraints on the network topology, however the
noise must be uncorrelated i.e. no point source interferers or diffuse noise,
and they require global averaging at each time sample. Heusdens, Zhang,
Hendriks and Kleijn use message passing to achieve distributed MVDR
beamforming in [28]. MVDR beamformers are able to null interference
so are often preferable to delay and sum beamformers. An MVDR beam-
former is reduced to delay and sum when the noise is uncorrelated.

The algorithm in [28] is named generalized linear coordinate descent
(GLiCD) and requires a trade off parameter to control the relative weight
of the diagonal vs off-diagonal components of the noise correlation matrix.
GLiCD also requires a global averaging at each time sample, and for the
covariance matrix sparsity pattern to match the network adjacency pat-
tern, which requires adjusting the transmission range of nodes to match
the covariance matrix. Bertrand and Moonen present distributed adap-
tive node specific signal estimation (DANSE) in [29], which is limited to
a fully connected network. Any algorithm that requires a fully connected
network is not infinitely scalable so can not be applied on a PSN. They
optimize for minimum mean squared error (MMSE) and aim for a node
specific estimation of the desired signal , that is, each node may estimate
a different signal. DANSE is extended to LCMV beamforming (called LC-
DANSE) in [30] but it again depends on a fully connected network and
provides for node specific signal estimation. The advantage offered by this
algorithm is reduced communication costs compared with the centralized
LCMYV beamformer case.

Bertand and Moonen present a distributed LCMV beamformer in [30]
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that requires either a fully connected or acyclic network that results in the
optimal output at every node. Markovich and Golan describe a distributed
generalized sidelobe canceller (GSC) beamformer in [31] that also requires
a fully connected network. These network configuration limitations rule
these algorithms out for our application as we aim to implement a fully
distributed beamformer filter weights (BFFW) optimization on adhoc and
scalable networks. O’Connor and Kleijn propose a diffusion based beam-
former that approximates MVDR in [32] that does not restrict the network
topology explicitly. It does however transmit data that scales with the
network size, excluding the possibility of an infinitely scalable network.
Sherson, Kleijn and Heusdens introduce a novel distributed LCMV beam-
former in [33] which can compute the optimal beamformer response on
both cyclic and acyclic networks. The beamformer output calculation is
connected to the weight calculation.

The application of PDMM to sparse distributed acoustic beamforming
is presented by O’Connor, Kleijn and Abhayapala in [34]. They acknowl-
edge that in a beamforming application on a large sensor network, it may
not be necessary to involve all network nodes. Instead, their sparse beam-
former uses an ¢; norm regularization to encourage low weights to zero.
All nodes are still involved in the BFEFW optimization, but some nodes
do not contribute to the BFOP. This raises the idea of optimization on a
subnetwork rather than the full network generally considered in the liter-
ature.

Calculation of the BEFWs has received most of the attention in the lit-
erature, with less attention given to calculation of the BFOP. In [34], the
BFOP is calculated in a centralized manner for demonstration of the al-
gorithm. The optimal beamformer of [33] leaves open the choice of op-
timization algorithm so can also use PDMM, but the BFOP calculation is
tied to the BFFW optimization. This could be viewed as a useful feature,
however it is possible that there is some advantage to retaining separation

as linking the calculations also links them in time. It is easy to imagine a



CHAPTER 1. INTRODUCTION 10

scenario where a system designer may prefer to run the two calculations
at different rates. For example, in a static scenario the BFFWs need only
be calculated once, while the BFOP is calculated constantly. Also, opti-
mization of the BFFWs is an iterative and costly process, where the BFOP
calculation can be computed explicitly. Given that we are working with a
wireless sensor network where battery life is a primary concern, it makes
sense to reduce the computational load where possible. What is missing is
a method for the distributed calculation of the the BFOP that is indepen-
dent of the BFFW optimization.

The primary contribution of this thesis is to propose a low cost method
for distributed BFOP calculation that is independent of the BFFW opti-
mization. Our proposed method requires that each node make a local esti-
mate of the target signal, in contrast to centralized BFOP calculation where
only the fusion node estimates the target signal. Each local estimate com-
bines the local weighted observation and any estimates passed to it by
upstream nodes (nodes further from the insertion node). The BFFWs are
assumed to be already available, for example, as the result of the BEFW
optimization described in [34]. Each node passes its local estimate to one
neighboring downstream node only. This results in a tree structure for the
BFOP calculation. As each node is only required to pass a single estimate
to a neighboring node, the required transmission power is reduced com-
pared to schemes that transmit the observations to a fusion node. The pro-
posed distributed BFOP calculation is found to trade a small decrease in
SNR performance for a large decrease in the required transmission power.
This makes it possible to achieve a higher SNR at lower communication
cost by using our new method.

The following chapter gives background details required for under-
standing and implementing distributed PDMM and acoustic beamform-
ing. Chapter 8| provides some auxiliary results which are useful to anyone
implementing a distributed acoustic beamformer, but which do not belong
with the primary result. Included here is a result that suggests the optimal
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distribution of nodes is not uniform. Chapter [ gives the primary result
of the thesis which describes the proposed distributed BFOP calculation
and gives analysis and simulation results comparing its performance with
centralized BFOP calculation. Discussion and suggestions for further de-
velopment are then given. Chapter |5 gives conclusions and summarizes
the thesis.



Chapter 2
Background

The introduction motivated distributed acoustic beamforming and sum-
marized the related history and literature. Convex optimization was dis-
cussed through to the primal dual method of multipliers (PDMM), which
is the current state of the art in distributed convex optimization. Beam-
forming was introduced and then combined with distributed optimiza-
tion in distributed beamforming. This culminated in the PDMM based
sparse distributed beamformer of [34] and the optimal beamformer of [33].
Both examples are capable of asynchronous distributed optimization of
the beamformer filter weights (BFFWs) on an ad hoc network. However,
the beamformer output (BFOP) calculation is left centralized in [34], and
is distributed but linked to the BFFW optimization in [33]. This thesis pro-
poses a method for distributed BFOP calculation that is independent of
the BFFW optimization, and relies on a separate algorithm such as [34] to
provide the BFFWs.

This chapter is intended to provide the specific details that enable im-
plementation and understanding of the proposed distributed BFOP cal-
culation and BFFW optimization using [34]. Convex optimization is de-
veloped from convexity through the method of Lagrange multipliers, it-
erative algorithms, and separable algorithms. The augmented Lagrangian
then brings robustness but costs separability. ADMM gives us limited sep-

12
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arability, then we arrive finally at PDMM over arbitrary graphs.

The second half of the chapter describes implementation and issues
of practical acoustic beamformers. Discussion is given on the short time
Fourier transform (STFT), conjugate symmetry for guaranteeing a real post
filter time domain signal, conversion from the complex to real domain,
and the gradient of a function of a complex variable. Beamforming details
are then addressed including delay and sum, optimal MVDR, adaptive al-
gorithms following Frost, finishing with the sparse distributed MVDR of
[34].

2.1 Distributed Convex Optimization

The MVDR objective function is a quadratic [34] and therefore convex,
so convex optimization can be used to find the optimal filter weights [35,
5]. Distributed convex optimization shifts the optimization from a cen-
tral computation at a fusion centre, to being calculated over the sensor
network. Implementation of distributed optimization requires an under-
standing of the building blocks, so this section introduces convexity and
convex optimization, dual ascent, dual decomposition, ADMM, arriving
finally at PDMM over arbitrary graphs.

2.1.1 Convexity

Convex optimization deals with optimizing a convex objective function
under constraints. All details in this section are referenced in [5]. The
standard form is

minimize fy(x)
subject to f;(x) < ie(l1,2,...,m]

0,
0, i€1,2,...,n] 2.1)

9i()
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where the objective function fj(z) is closed (contains all of its limit points,
and contains its own boundary), proper (always greater than negative in-
finity, and less than positive infinity for at least one point on the domain),
and convex. f;(z) is the ith convex inequality constraint, g;(z) is the ith
affine equality constraint, ¢ € Z, m is the number of inequality constraints,
and n is the number of equality constraints.

A function f is convex if and only if the domain of f is convex, and for

all x and y on the domain of f it satisfies Jensen’s inequality,
0f(x) +(1=0)f(y) = f(0z+(1=0)y),  0<b#<1  (22)

Figure 2.1| gives an example. The chord between f(x) and f(y) is always
greater than or equal to the function f between z and y. If the only place
where the chord and the function touch is at the endpoints (arguments x
and y) then the function is strictly convex and the inequality in equation
becomes strict. Convexity plays an important role in optimization, as
a convex function has only one infimum which is globally optimal. There-
fore, if you are able to find a point on a convex function where the gradient
is zero, this is guaranteed to be globally optimal.

The first order Taylor approximation near x of a convex function f(z)
is a global underestimator of the function. Thatis, f : RY — R is convex if

and only if the domain of f is convex and,

fly) = f(@)+V f(z)" (y — 2), (2.3)

where V is the gradient operator. If the function is strictly convex then the
tirst order Taylor approximation touches the function at one point only.
If f is twice differentiable, then it is convex if and only if the domain of
[ is convex and its Hessian is positive semidefinite for all = in the domain
of f,
V2f(z) =0, Vx € dom f. (2.4)
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Figure 2.1: Visual interpretation of Jensen’s inequality. The function f is strictly convex
as the chord between any two points (z, f(z)) and (y, f(y)) always lies above f between
x and y.

A symmetric matrix A € R™" is positive semidefinite if and only if it
satisfies,
T Ax >0, Vz € R". (2.5)

A function that maps from the reals to the reals f : R” — R can be
convex and so too can f : C* — R™ which maps from complex to real.
A function f : C* — C™ can not be convex. The complex numbers are
unordered so it makes no sense to consider a complex number to be more
or less than another.

The convex conjugate will play a role in some subsequent derivations
and is given by,

f*(y) = sup {z"y — f(x)}. (2.6)

The convex conjugate function has the desirable property of being always
convey, as it is the pointwise supremum of affine functions [5]. There is
no requirement for f(z) to be convex or differentiable for this to be true.
The convex conjugate leads directly to Fenchel’s inequality by obser-

vation,
[ y) > 2"y — fz) (2.7)
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The general form of the convex conjugate is sometimes called the Fenchel
conjugate. For a differentiable function the convex conjugate is sometimes
referred to as the Legendre transform.

This section gave a brief introduction to convexity based on Boyd, for
more detail see [5]. For a thorough and well regarded theoretical reference
on convex analysis, see Rockafellar [36]. Having introduced convexity we
need a tool for solving constrained convex problems of the form (2.1). That

tool is Lagrange multipliers.

2.1.2 Lagrange Multipliers

Constrained optimization problems such as require the constraints to
be met exactly at all times. A useful tool is the method of Lagrange multi-
pliers, which converts the problem from a constrained optimization to an
unconstrained optimization with a penalty for violating the constraints.
The method of Lagrange multipliers was introduced by Lagrange in 1788
[37] to determine general equations of equilibrium for problems with con-
straints [38]. We first introduce Lagrange multipliers A € R™ and reformu-
late the problem as a Lagrangian. For objective function f;(x) with x € R?,
inequality constraints f;(z), and equality constraints ¢;(z) the Lagrangian
function L : R? x R™ x R" — R is defined as

L(z, A\ v) = f0($)+2/\z‘fi($) +Z%gi($)- (2.8)

i=1 i=1
A; is the Lagrange multiplier for the ith inequality constraint, v; is the La-
grange multiplier for the ith equality constraint. A and v are also called the

dual variables. Minimization of the Lagrangian over the primal variable =
gives the dual function,

o) =i { oo+ SN + Yva@) | @9)
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Note that the dual function is a pointwise infimum of affine functions for
fixed x and is therefore always concave [5]. This is true even when the
original function is not convex. The maximization of the dual function is

called the dual problem,

maximize g(\,v) (2.10)
subjectto A > 0.

The reason for our interest in the dual problem is that it is possible and
sometimes simpler to solve in the dual domain. If Slater’s condition
is met and the primal objective and constraints are convex then we have
strong duality. Strong duality means that the optimum (maximum) of the
dual problem is equal to the optimum (minimum) of the primal problem.
Slater’s condition requires that there exists feasible x such that the inequal-

ity constraints f;(z) are strictly less than zero,
filz) <0, Vi. (2.11)

If the inequality constraints are affine, then Slater’s condition can be re-
laxed to
fil@) <. (2.12)

If the objective function and constraints of the primal problem (2.1) are
all convex, we can also use the Karush Kuhn Tucker (KKT) conditions to
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prove optimality [5]. Specifically, if

fi(x) <0, [ ,m]

gi(z) =0, 1,2,...,n]
A0, clL,2,...,m] (2.13)

Aifi(x) =0, i€(l1,2,...,m]

Vfola ZA Vfilx) + Zu,w

=1

then (z,\) are the optimal primal and dual variables, and there is zero
duality gap [5].

We now have the tools to identify a problem as convex, and to solve
constrained convex optimization problems using Lagrange multipliers an-
alytically. There are situations where an analytic solution is not available,
and iterative methods must be used to find the optimum. In the next sec-
tion we introduce dual ascent as an example of an algorithm that itera-

tively approaches the maximum of a function.

2.1.3 Iterative Algorithms: Dual Ascent

Often in optimization problems the solution is not available analytically.
Iterative algorithms can be used to approach and approximate the solu-
tion. This section introduces iterative algorithms using dual ascent which
iteratively finds the optimum of the dual function using gradient ascent.
This review is based on dual ascent as it is presented in [9]. The problem

statement is an equality constrained minimization,

minimize f(x) (2.14)
subjectto Az =b.
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The Lagrangian is

L(x,v) = f(z) + v (Az — b), (2.15)
and the dual function ¢(v) is given by,

g(v) = ir;fL(a:, V)
= inf {f(:v) o7 (Az — b)}
=—vlb— inf{ — vl Az — f(x)}

T

— T (AT, (2.16)

where f* is the convex conjugate of f.
If we assume strong duality of f then we can use the maximizing ar-
gument of g(v), v*, to retrieve the optimal value of the primal problem

using

x* = argmin L(z, V"), (2.17)
provided there is only one minimizer of L(z, v*), for example if L(x,v*) is
strongly convex.

The dual ascent method alternates between gradient ascent on the dual
variable to move towards the dual optimum, and updating the primal
variable based on the new v, as in 2.17). If we assume that g(v) is dif-
ferentiable, then the gradient of g is

Vyg(v) = Ax — b, (2.18)

(for intuition, this can be seen by fixing x in the third line of ). So
we can step towards the optimal point by minimizing the primal func-
tion over z(¥) to find x**1), where k is the iteration number, then stepping
v®) in the direction Az**+Y) — b, i.e. gradient ascent to find v*+!). That
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is, we alternately step the two variables towards the saddle point of the

Lagrangian using the iterative updates,

z* D = argmin L(x, v®)

P+ k) o (k) (Ax(kﬂ) —b). (2.19)

a®) is a step size to control the dual gradient step. As the dual variable
gets closer to the optimum, the dual gradient becomes smaller. At the
optimal point we have a fixed point as the maximum of the dual function
implies that the dual gradient is zero, so the dual update simply returns
the previous v. No change in v also implies no change in z.

We now have updates that will iterate towards the optimal point, as
an example of how iterative algorithms such as PDMM work. However,
we still do not have the updates explicitly. The objective function f(x) is
required in order to calculate the minimization in the = update. It is also
possible that the =z update step in will require an additional iterative
algorithm to perform the minimization. Several assumptions also have
to be met, so the method can fail relatively easily. For example, if strong
convexity is violated and f(z) is an affine function with non zero slope
then the minimization in the z update is unbounded below.

We have now seen an iterative algorithm for solving a convex opti-
mization problem. Dual ascent is a centralized algorithm however, and
we require a distributed algorithm. It is possible to separate the primal
variable update across processors as long as the objective function and
variable are separable. This method is called dual decomposition and is
discussed in the following section as our introduction to distributed pro-

cessing.
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2.1.4 Separable Algorithms: Dual Decomposition

Dual ascent was able to iteratively approach the optimal point of the opti-
mization problem in a centralized manner. We are aiming for a distributed
algorithm, and dual ascent can be extended to be a partially distributed al-
gorithm. If f(z) is separable, that is,

fl) =" filw:), (2.20)

=1
then the x update in (2.19) can be calculated in a distributed manner. Here
v = 27,23, ... 27, and n is the total number of partitions of z. Note

that the v update in (2.19) requires knowledge of all of z(**!) so the dual
variable update must still be calculated centrally. Nevertheless, this is our
first distributable algorithm, and can be used to solve a problem in a dis-
tributed manner provided the objective function and variable are separa-
ble.

The matrix A must also be partitioned, in such a way that

Ar =Y A (221)
i=1
The Lagrangian (2.15) can now be rewritten as
L(z,v) = ZLz‘(%, v) = Z {fz(%) + vl Ay — (1/n)VTb}- (2.22)
i=1

=1

The z minimization can now be split across processors. The new update

equations are,

Ekﬂ) := arg min L;(z;, v™)

z;

T

pRHD = ) ok (AR g, (2.23)
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Dual ascent and dual decomposition require assumptions to be met, for
example the strong convexity of f. These conditions are not guaranteed to
be met in general, but are often met in our application. For example an
MVDR beamformer has a strictly convex objective and linear constraints
so strong duality only requires that the constraints are strictly met. It is
also possible to ensure that the Lagrangian is strictly convex by the addi-
tion of a quadratic term, with the additional advantage of speeding up the

optimization. The resulting function is called the augmented Lagrangian.

2.1.5 Augmented Lagrangian

The augmented Lagrangian guarantees strong convexity and speeds up
convergence by adding a quadratic ¢, norm term to the Lagrangian,

Ly(x,v) = f(z) + v"(Az — b) + g||A:1: — b3, (2.24)

where the definition of the p-norm is

N 1/p
], = (Z Ixi\p) ., zeRV. (2.25)
=1

The addition of the quadratic term results in a function which is always
strictly convex, eliminating this limitation from the dual ascent and dual
decomposition algorithms. The solution to L, is equivalent to the solution
to L, as when the constraint is met the quadratic term is zero. An iterative
method for finding the optimal point can be found following the same
reasoning as given above for the Lagrangian. This results in the following

update equations,

* ) = argmin L,(z, v)

T

P40 ) 4 p(Agl) ), (2.26)
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and is known as the method of multipliers. The method of multipliers is
more general than dual ascent, and has better convergence properties [9].
The cost is that the primal variable x is no longer separable as the quadratic
introduced cross terms, so the primal update can no longer be distributed
as it was in dual decomposition. However, the augmented Lagrangian can

be made separable for distributed optimization using ADMM.

2.1.6 ADMM: Alternating Direction Method of Multipli-

€rs

Dual ascent can be used to find the optimum of a convex function, which
leads to separability via dual decomposition allowing the primal update
to be distributed across processors. Dual decomposition fails under some
circumstances such as affine constraint functions, but can be made more
robust by using the augmented Lagrangian and the method of multipli-
ers. However, the penalty term in the augmented Lagrangian causes the
method of multipliers to be inseparable, losing the ability for distributed
processing. A relatively minor adjustment to the objective and constraint
functions can make it possible to combine the augmented Lagrangian with
separability. This method is called the alternating direction method of
multipliers, or ADMM.

ADMM splits a splittable objective function and primal variable in two,
so x becomes z and z, and f(x) becomes f(z) + g(z). We assume that the
functions f(x) and g(z) are convex, and restate the equivalent problem as

minimize f(x) 4 g(z)
subjectto Ax + Bz =c. (2.27)

The augmented Lagrangian is formed as before,

Ly(z,z,v) = f(z) + g(2) + V" (Az + Bz — ¢) + gHAx + Bz —c|3. (2.28)
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We now minimize over the two variables separately, then update the dual
variable using gradient ascent,

2D = arg min L(z, z(k), V(k))
2D = argmin L(z* Y, 2, v®)
B I (O p(Ax(k+1) + B+ _ c). (2.29)

By iterating over these updates we approach the optimal solution. The pri-
mal updates in ADMM are split across the two variables z and z, whereas
if we applied dual ascent they would be minimized together. This ac-
counts for alternating direction in the name of the algorithm.

ADMM is a useful and current algorithm that is competitive with other
learning algorithms, sometimes outperforming state of the art in central-
ized computation [9]. The attractive feature of ADMM in our distributed
beamformer context is the ability to calculate the updates in a distributed
manner. Useful as this is, ADMM is limited in two important ways: 1)
only the primal updates can be calculated in a distributed manner, the
dual update still requires a centralized calculation, and 2) the objective and
variable can only be split in two while still guaranteeing convergence [9].
An ideal distributed optimization algorithm would allow infinitely many
primal variables and have no centralized update. Application of ADMM
to basis pursuit is given in the following section, illustrating how a dis-
tributed algorithm can actually be used. We then move on to PDMM, the
algorithm which we will use to implement fully distributed optimization
of the BFFWs.

2.1.7 Basis Pursuit Using ADMM

This section gives an example application of ADMM to basis pursuit based
on [9] in order to demonstrate how iterative distributed algorithms can be

used in practice. Basis pursuit aims to find a basis for the representation
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of data using less dimensions. It achieves that by minimizing the ¢, norm
which can produce sparse solutions [5]. The basis pursuit problem state-

ment is

minimize | x|y

subjectto Ax =b (2.30)

where z € R", A € R™" b € R™, m < n. Here b could represent obser-
vations of an underdetermined system of linear equations b = Az and
we would like to find the solution z. An underdetermined system of
equations typically has an infinite number of solutions (or possibly none),
but imposing further restrictions such as requiring a sparse solution will
favour a particular solution. In order to formulate the problem for ADMM,
we create a split objective function that combines the ¢; minimization and

limits the space by putting it in consensus form,

minimize f(x)+ ||z]1

subject to x = z, (2.31)

where f(x) is zero when x € {z|Az = b} and infinity otherwise, i.e. f(x) is

an indicator function. The augmented Lagrangian for the problem is then
Ly(w,zv) = f@) + 1+ @ =) + Ea =2, @32)
Now convert it to an equivalent scaled form by completing the square,

2
Lyl zv) = f@) + alh + (e = 213 + 207 (0~ 2)

- Plle— -4 27 = (7Y

= )+ B+ (e -2+ 2] - (2))

_ Plo—-s 2

= J@)+ 2l + 2| R (233)
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Minimizing L,(z, z,v) over the primal variables x and z separately, and
then updating the dual variable v using gradient ascent results in the
ADMM updates,

(k) 12
* ) = argmin f(z) + gHI — 2 L
x p 12
(k) |2
20D — argmin 2|1 + ng(kH) —z+ i (2.34)
» p

YD) ) (D) (D).

The f(z) term in the = update (2.34) restricts us to {z|Ax = b}. The
quadratic term is a Euclidean projection of =z — v/p onto the set {x| Az = b}
and is given by the solution to

UV |
minimize §HI — (& - (Vk/p))Hz

subject to Az = b. (2.35)

The constrained minimization (2.35) problem can be converted to an un-

constrained problem using another Lagrangian with multiplier y,

L(z,v) = %Hx — (2F - (Vk/p))HZ + 9T (Ax —b). (2.36)

Taking the gradient of (2.36)) with respect to x and set to zero we get

VL(z,v)=2— (=0 /p)+ATy=0

xT

oAy = (= (Y p) — (2.37)

We want to have Az in order to sub in our constraint Az = b, so we multi-
ply through by A, then solve for y,
AATy = A(ZF = (VF)p)) — Az = A(Z* — (V" /p)) — b
ooy = (AAT) AR = (VF/p)) — b) (2.38)
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Substitute y into (2.37) and rearrange for z to get,

0=2a— (2" = ("/p) + AT((AAT)_l (A" - (I/k/p)) - b))
o= (= W) — AT((AAT) (A - (4/0) ~ b))
= (I — AT(AAT)TA) (2% — vk /p) + AT (AAT) b, (2.39)

We have found the = that minimizes the right hand side of the z update in
(2.34). Previously in the dual ascent and dual decomposition sections we
stopped at a general update expression. This is our first explicit update
equation that can be implemented in practice. Notice that some of the
operators do not change with iteration and can be precomputed, i.e. AAT.

The z update in is a soft thresholding operator. Starting from a
general form of the z update equation (2.34),

1
minimize §Ha—bH§+cHaHl, (2.40)

then taking the gradient with respect to a we get
1
OGY(§Ha—b||;+c||a||1> =a—"b+cVlal. (2.41)

The ¢, norm is not differentiable at zero but we can consider three cases

separately,

a>0 = Vla|; =1 = a=b—c
a=0 = Vla|p=[-¢d = a=b—[—c] (2.42)
a<0 = Vlal;=-1 = a=b+g,
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resulting in a piecewise expression,

b—c, b>c
Se(b) = <0, —c<b<c (2.43)
b+c, b< —c

This operator can be implemented, and is visualized in in figure Trans-

1

-2C -C 0 c 2c
b

Figure 2.2: Visualization of the soft threshold operator.

lating back to the variables,

(@ 40 ) =1, (20D 4 ) > 1
S(k+1) 0, —1 < (2D p ok /p) <1 (2.44)
(@™ 408 /p) + 1, (a®) 4 0k /p) < —1.

Finally, the dual variable v update is found by gradient ascent. Con-
sidering the gradient of with respect to v, only the third term con-
tributes,

Y L(x,z,v) =12 —z. (2.45)

We can move v towards the dual maximum by adding the most recent z—z
to the previous v value, as already given in (2.34). We have now found all
three updates explicitly and can implement our first iterative distributable
algorithm. Figure [2.3| shows simulation results for randomly generated
measurement data where the primal and dual residuals (called r Norm and

sNorm respectively) converge towards zero (epsPri and epsDual variable
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exit conditions which are not necessary for this discussion).

10° :
——rNorm
——sNorm
———epsPri
——-epsDual

100 ]

0 10 20 30 40 50
No of iterations

Figure 2.3: The primal and dual residuals r Norm and sNorm respectively converge to-
wards zero as the iteration gets closer to the optimal solution. epsPri and epsDual are
the exit conditions for the primal and dual respectively.

We now have an implementable distributed algorithm for solving a
convex optimization problem. The limitations of ADMM are still present;
the distribution of the primal update can be over a maximum of two nodes,
and the dual update can not be distributed. PDMM does not have these
limitations. It was recently introduced in 2013 and allows the iterative

solution of a convex optimization problem in a fully distributed manner.

2.1.8 PDMM: Primal Dual Method of Multipliers

The primal dual method of multipliers (PDMM, formerly Augmented Bi-
Conjugate function, or Bi-ADMM) was introduced by Zhang and Hues-
dens in 2013 [14] as an alternative to ADMM with the potential for faster
convergence and greater flexibility. They aimed to improve ADMM, which
solves a constrained min-max or saddle point problem, by formulating an

unconstrained and distributable minimization problem that results in an
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equivalent solution. The problem statement given in [14] is

minimize f(z)+ g(2)
subjectto Mz = z. (2.46)

The same authors with the addition of Kleijn study the convergence of
PDMM in [15], and generalize the problem statement to

minimize f(x)+ g(2)

subjectto Axr + Bz =c. (2.47)

We will continue with the more general problem statement (2.47). The

primal Lagrangian L, is given by
Ly, 2,v) = f(z) + g(=) + v (c — Az — Bz), (2.48)
and the dual function by,

g(v) =inf L(zx, z,v)

T,z

= {Enzf f(@) +g(2) + v (c— Ar — Bz). (2.49)

Taking the gradient with respect to x and z would result in a solution in-
cluding the gradient operator, so instead we use the convex conjugates f*
and ¢* (introduced in section see [5] for more detail) of f and ¢ to

express the two infimums,
g(v) = inf {f(x) +9(2) + v (e — Az — Bz)}

=vlc+ iIg'.le {f(x) — VTAx} + irzlf {g(z) — VTBZ}
=vlc— f*(ATv) — g*(B™v), (2.50)
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where the convex conjugates are given by

FY(ATy) = — inf { flz) - VTA:I:}

g*(BTv) = —inf {g(z) - I/TBZ}. (2.51)
It follows immediately that

(AT + f(x) —vT Az >0
g (B™v) + g(z) —v'Bz >0, (2.52)

which is commonly referred to as Fenchel’s inequality [5]. The dual prob-

lem is

sup g(v) =sup {VTC — f*(ATv) — g*(BTV)}. (2.53)

14

The conjugate functions are then decoupled by introducing A via the fol-

lowing optimization,
maxi\mize Me— f*(ATv) — g*(BT))
subjectto v = A, (2.54)

and a second Lagrangian constructed for the dual problem by introducing
another multiplier y,

La(v,y) = Ne— f*(ATv) = g"(B"N) +y" (v = A) (2.55)
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with y = Bz. The primal dual function can now be constructed with p > 0,

and h, = §|lc — Az — Bz|)5 + 2—1PHV — A||3 enforcing the constraints,

Ly(x,z,v,\) = Ly(z,2,v) + La(2,v, \) + hy(x, 2,1, \)
= f(x) 4+ g(2) + v'(c — Az — B2)
+ Me— 1 (ATv) — g*(BTX) + (B2) (v — \)

p 1
+§HC—A3&—BZH§+2—pHy—)\H§. (2.56)

Note that as a result of and the non-negativity of the two squared
norm penalty terms, L,(z, z, v, A) > 0. Minimization is then performed in
alternating directions over the variables. The most general updates given
in [15] are

(2D AEHDY — arg min max L,(x, 2% ™))

(2D kD) — arg mzin max L,(x™ 2, v, AW). (2.57)
The similarity to ADMM is in the alternating direction coordinate descent
updates. The difference is the lack of a centralized gradient ascent dual
update. This lack of a centralized dual update allows PDMM to be per-
formed in a fully distributed manner. The convergence rate of PDMM is
analyzed in [15] and shown to be O(K '), and to outperform ADMM.

PDMM has another advantage; it converges under an asynchronous
update scheme [16]. This is in contrast to ADMM which must maintain the
correct update order to guarantee convergence (aynchronous distributed
ADMM also addresses these issues but PDMM gives faster convergence).
In our distributed beamformer application this reduces the organizational
cost as the nodes are no longer restricted to using a global clock.

[15] provided for distributed optimization, but was still limited to two

nodes. The next step was generalization of PDMM to arbitrary graphs.
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2.1.9 PDMM: Extension to Arbitrary Graphs

The final step in the development of an algorithm for fully distributed
beamforming was the extension of PDMM to arbitrary graphs. This was
presented by Zhang and Huesdens in [16] in 2015.

To cope with full distribution the model naturally becomes more com-
plicated. Define a network graph G' = (V, £) where V represent the nodes
(vertices), and € represents the edges between nodes. Each node 7 has a lo-
cal closed, proper and convex objective function f;(;) : R®:l — RU{+o00},
a set of neighboring nodes N; that share an edge, and a total number of
neighbors including itself given by the cardinality |V;|. The total number
of nodes is given by the cardinality |V| = m.

The separable global objective is defined as

minimize Z fi(z;)
x

SY

subject to Aluﬂjl + Aj|ixj = Cij, V(Z,j) €& (258)

where (c;;, Aj);, Ajii) € (R™,R™5*™ R™5%") for every edge (i, j) € £ and
are used to enforce the consensus between neighboring nodes. The La-

grangian for the distributed problem is given by,

(i,5)€€ =%

The Lagrangian is convex in z and concave in A\, where = and A are the
stacked combinations of z;, Vi € V and \;;, V(3, ) € €.

As we can see in (2.59), the component of the Lagrangian due to the
constraints is directed, that is, there is a Lagrange multiplier from node i
to j, and another one from j to i. Let \;; € R"% represent the multiplier
owned by node i relating to node j. Let \; represent the vertical concate-
nation of these \;;, Vj € N;. Let A; represent the vertical concatenation of
A;;,¥j € N,. Then, following the construction of , the augmented
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primal dual function is constructed for an arbitrary network graph,

L(z,\) = Z [fz(fl?z) - Z )‘?\i (Ai|j37i - Cij) - fi*(A;'F)\i)]

ey JEN;

1 1
(

1,j)€E
and again following [15] we get the updates,
(z*+D AEHDY — argmin max L(x, \). (2.61)

Substituting in L(x, \), the updates are given by,

1

k : k

2% = arg min { E 5”142'\]'1’1' + Aj|z'37§ " — i3
T JEN;

—ﬁ(Ejﬁpﬁ)fﬂm} VieV (262

JEN;

1
k+1 . } : k k
)\E ) =arg min l <§||)\z|J — )\g‘z)Hg + )\Z[]Ajhxg ) _ )\g;jcz'j)
2 JEN;

(3

+ﬁM%ﬂ,vmv. (2.63)

These updates are for synchronous updating where all nodes update at
each iteration. It is possible to run this updating scheme as an asyn-
chronous fashion where a single node updates in each iteration. If some
assumptions are met, i.e. that all nodes update and the frequency is similar
for all nodes, then PDMM will still converge [16].

Zhang, Heusdens and Kleijn provide a convergence analysis in [16]
for both the synchronous and asynchronous case, and demonstrate the
algorithm with an application to distributed averaging. They show that
both synchronous and asynchronous schemes have a convergence rate of
O(K™') (where K is the iteration number) for properly defined objective
functions. PDMM is shown to converge faster than ADMM in the dis-
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tributed averaging case.

[16] also provides a simplified dual update for the case where P, ;;
P, .. Pis used to define a generalized ¢, norm. In our application P = |
and therefore meets the condition so the simplified update can be used,

A = A e — A2 — Ayt (2.64)

We now have a fully distributed algorithm capable of optimizing a con-
strained convex separable objective. This algorithm enables optimal dis-
tributed beamforming, which will be discussed in section The back-
ground of distributed convex optimization over arbitrary graphs has been
given, we now turn to our application; acoustic beamforming. The follow-
ing sections give background on beamforming and then draw distributed

convex optimization and acoustic beamforming together.

2.2 Beamforming for Acoustics

Here we provide details necessary for the implementation of distributed
acoustic beamformers in the context of our proposed distributed BFOP
calculation. The STFT, conjugate symmetry, conversion from real to com-
plex domain, and complex gradient are discussed. This is followed by
the development of beamforming from delay and sum, to optimal MVDR,
adaptive beamforming following Frost, and finally arriving at sparse dis-
tributed MVDR using PDMM.

2.2.1 Time Frequency Domain

Broadband beamformers take the structure of a finite impulse response
filter which can be computed in the frequency domain. Transformation
to the frequency domain is achieved using a DFT. The DFT requires the
complete signal to be available but this is not possible in real time audio
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processing as new signal arrives continuously. We would also like to al-
low for a dynamic scenario where the target and interference sources are
allowed to move, so require a dynamic beamformer that can reoptimize
the weights at some time interval. The STFT breaks the incoming audio
into windowed sections and takes the DFT of each section. The result is
one frequency spectrum per windowed section, called the time frequency
spectrum [39].

The simplest window is the rectangular window. This window func-
tion distorts the spectrum of the windowed audio. The rectangle window
becomes a sinc function in the frequency domain. If we pass a sine wave
through a rectangular window and take the DFT we will find the spectrum
distorted by the sinc, as shown in figure Choosing a window requires
trading between sidelobe attenuation, and main lobe width. The window
throughout this thesis is the Hann window (sometimes called Hanning,
not to be confused with Hamming). The Hann window is a cosine win-
dow with sidelobes that taper off quickly and can be made to sum to one
with a 50% overlap. The summation behaviour of the Hann window is
shown in figure The Hann window is defined by,

2mn
w(n) = 0.5 — 0.5 cos (N — 1), (2.65)

where n is the sample number and N is the window length in samples. Er-
ror in the reconstructed signal can be reduced by windowing in both the
analysis and synthesis operations [40]. The combined windowing opera-
tions must still sum to one for a unitary transform so the square root of the
Hann window is then used for both analysis and synthesis.

Following sections discuss phase delaying the frequency domain sig-
nal. The window length must be chosen to be longer than any of the re-
quired delays to avoid distortion in the synthesized signal.

It is important to get the alignment of consecutive windows correct.

Observing the window function (2.65) we see that the window starts at
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0 when n = 0, and arrives again at 0 when n = N — 1. The window

maximum is 1 and occurs when the argument of the cosine is exactly 7,

that is, when n = (N — 1)/2. n is a sample index so n € Z,, therefore NV

must be odd. The correct alignment of the windows can be achieved by
placing the start of each window at

N-1
n:k(T>+1, kel0,1,2,...]. (2.66)

Incorrect window delays can result in unexpected results. Note that here
we have considered n starting from 0. In some languages, i.e. Matlab, the
indexing starts at 1 and this will have to be taken into account.
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Figure 2.4: (a) Original signal: a 23 Hz sine wave. (b) DFT of the sine wave, prior to
windowing. The DFT is a clean and accurate spectrum of the original signal. Note that
the magnitude axis has been restricted for comparison with (c) is larger than what is

visible. (c) DFT of the sine wave post rectangle windowing. The spectrum has been
distorted by windowing.
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Figure 2.5: The Hann window sums to 1 provided the correct delays are used.
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The incoming time domain signal is multiplied with the shifted win-
dow function and passed through a DFT. Let x[n] represent the observa-
tion signal with n indexing the sample. The typical DFT analysis/synthesis
pair is given by

-1

X[k => a[n]e >N kez
z[n] = ! > X[kermrn N, (2.67)

where the 1/N term conserves signal energy. Note that there are other
possible scalings which also preserve signal energy (see appendix [A.2).
Including the delayed window gives the time frequency spectrum,

2

X[k,m] = wln — Lm]z[n)e 72N | e 7, (2.68)

i
o

where L is the number of samples to shift each consecutive window, and
m € [0,1,..., M — 1] is a positive integer that indexes each window. Syn-
thesis of the original signal from the time frequency spectrum requires an
overlap add operation [41]. An inverse DFT is taken of each section, i.e.
for each value of m. Each section is again multiplied with the square root
Hann window and overlapped with correct time alignment, the sections
are then summed resulting in the original signal.

This process enables time varying frequency domain filtering of con-
tinuously arriving audio signals. Also, by using Cooley and Tukey’s 1965
Fast Fourier Transform (FFT) algorithm [42] this filtering can be achieved
efficiently.

The summation of the windows in figure2.5[shows that the summation
to one is only true from the midpoint of the first window to the midpoint
of the last window. That is, windowing distorts the start and end of the

signal. This can be addressed by zero padding the beginning and end of
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the observation signal such that the observed signal does not fall within
the first or last half window. The first and last half windows then act only
on zeros.

Once the observations are in the time frequency domain, we aim to
delay the observations in order to phase align the target signal. The time
delays from target signal to sensor exist in a continuous domain, while the
sampled audio exists in a discrete domain. It is generally not possible to
phase align the target signal using integer valued sample delays. Non-
integer delays can be achieved using frequency domain phase shifts. In
order to do so, conjugate symmetry can be used to ensure that the phase

shifted time domain signal is guaranteed real.

2.2.2 Conjugate Symmetry

Our aim is to phase align the sensor observations of the target signal using
phase shifts. Implementing frequency domain phase shifts can cause the
shifted time domain signal to become complex. The conjugate symmetry
property of the Fourier transform of a real signal can be used to make
assumptions about the spectrum which allow us to ensure that the post
phase shift time domain signal is real.

Let x[n] € RY, the DFT of z[n] is X[k] € CV, and (.)* indicates the
complex conjugate. Conjugate symmetry is defined by

X[N — k] = X*[K]. (2.69)

We can derive this property for real x by starting from the left hand side
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of (2.69) and arriving at the right hand side,

X[N — k| = x[n]e‘jz’r(N_k)"/N
— Z x[n]eijWnej%rkn/N

_ Z (x*[n]e—jZWkn/N)*
N-1 «

_ (Z xn —j27rkn/N>

=0
X

(], (2.70)

where we have used that x is real z[n] = z*[n], e 7*™ = 1 for n € Z, and
that the sum of conjugates is equal to the conjugate of the sum. To see the

last property, let (a = a, + ja;, b = b, + jb;) € C where 5% = —1.

(a+0)* (ar + ja;) + (b, + jb;) )*
ar +by) +]%+b»*
a, + b)) — j(a; + b;)
a’r—jal) (br — jbi)

— o + b (2.71)

= ((
= ((
= (
= (

Audio beamforming starts with a real signal (sampled time domain
audio can only be real valued), which therefore has conjugate symmetry
in the frequency domain coefficients. This allows us to throw away half of
the coefficients, as they can be perfectly synthesized from the other half.
The DC component can also be removed, and we assume that the Nyquist
sampling filter guaranteed no energy at half of the sampling frequency
fs/2 so the £f,/2 components of the spectrum can be truncated. We can
now phase shift the truncated spectrum, recreate the missing spectrum
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using conjugate symmetry and values of 0 at DC and +f;/2, then take the
inverse transform and arrive at a real time domain signal.

Another issue which arises in practice is the computation of the beam-
former in the complex domain. Some sources within the literature, for ex-
ample [34], calculate the beamformer in the real domain, with an assumed
conversion from complex to real domains. Conversion between the two is

described next.

2.2.3 Conversion from Complex to Real Domain

In order to follow the distributed beamforming literature, it is necessary

to be able to convert our complex domain problem to the real domain. Let
a € CV with the standard inner product

N N N

aa = "ajar =Y (wr — jye) (@ + jyu) = Y 77 + U, (2.72)

k=1 k=1 k=1

where z;,, y;, are the real and imaginary components of a; i.e. a = = + jy,
j is the imaginary uniti.e. j> = —1, (.)* is the complex conjugate operator,

and (.)¥ is the hermitian operator. If we transform a into a vector a € R?"

using
a= "], (2.73)
Y
then we can calculate an equivalent inner product
. N
a'a= [uTT ?/T} [ ] =x'r+yly= Z z; +yi = aa. (2.74)
Yy k=1

Note that this does not extend to inner products between two vectors that

result in a complex output. For example, assume b = v + jw € CV and
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b= [v" w"]" then

N
aflb = Z v+ yw + j(rxw — yv) # a’b. (2.75)

k=1

Conversion is also possible for a complex linear mapping. Let D = (D, +
jD;) € CV*N and

e R2VX2N, (2.76)

)

A D, —D;
D —
[Di D,

Then

D, —D;
D;, D,
-Drx — Dy
D;x+ D,y

(Da),
| (Da);

(2.77)

Da can then be recovered by
Da=|[1 j| Da=(Da), +j(Da); = (D — Diy) + j(Dix + Dyy). (278)

Having established that conversion from the complex domain to the
real domain is possible in the distributed beamforming context, we now
have the option to consider derivations and algorithms entirely in the real
domain.

2.24 Complex Gradient and Stationary Points

For beamforming we will aim to minimize an objective that will be a real
valued function of a complex variable. Finding the minimum of a func-

tion is usually achieved by taking the derivative and setting it to zero, but
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when we have a complex variable the function is no longer analytic and
the derivative does not exist [43]. The derivative can be found by treat-
ing the function as having two independent variables, i.e. x and z*. See
[43, 44, '45] for further reference. The gradient is given by,

_ o 0f(x,7)
Vi(z) =2 5o (2.79)
which we can apply to a complex quadratic,
f(z) =2 A" Ax
Vf(z) =2A" Ax. (2.80)

The term A” A has been used here to highlight the structure of the opera-
tor, which has a real diagonal and is conjugate symmetric. In our applica-
tion, this operator will be a covariance matrix that will satisfy these struc-
tural requirements and therefore allow an analytic gradient to be found.
However, other elements of our application such as complex inner prod-
ucts and complex operators do not fit the criteria. In order to cope with
these elements we can transform them from C" to R* and treat the real

and complex parts as independent variables as discussed in section

2.2.5 Delay and Sum

Having discussed the necessary auxiliary tools for the implementation of
frequency domain beamforming, we turn to the background of beamform-
ing itself. The story begins with the delay and sum beamformer [46].

A talker’s voice travels through air at a constant velocity. If two mi-
crophones are placed at different distances from the talker, the speech will
arrive at the near microphone first, and the more distant microphone sec-
ond. It seems intuitive that we could sum the two microphones to increase
the SNR of the target signal. However, the different distances between the
talker and the two microphones means that simply summing the signals
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will make little difference as they will be out of phase and effectively in-
dependent. The delay and sum beamformer adds a specific delay to each
microphone to exactly offset the delay caused by the different distances.
The delayed signals are then summed. Because the signals are now phase
aligned, they sum constructively and improve the SNR of the estimated
target speech. Figure 2.6|gives a visual representation of the system, illus-
trating that the target signal is constructively summed, while the interfer-

ence signal is not.

Target
wavefront
/ . t, . Steering Signal
T delay stage ahgnrpent
O\l I !

Noise/
interference J
wavefront ..~

Figure 2.6: The delay and sum beamformer introduces delays that phase align the desired
target signal, then sums the delayed observations. The alignment causes the target signal
to sum constructively while (almost) all other sources are not summed constructively.
(Image credit http:/ /www.labbookpages.co.uk/audio/beamforming/delaySum.html)

The delay and sum beamformer is effective, but not optimal in the
presence of interference. Capon introduced the minimum variance dis-
tortionless response (MVDR) beamformer in [21]], which uses optimal fil-
ter weights to place a null at the location of each point source interferer
(the number of point sources is limited by the degrees of freedom in the
system). This results in improved performance over the delay and sum

beamformer. The following section describes Capon’s beamformer.
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2.2.6 Optimal MVDR

MVDR beamformers aim to minimize the output variance while requiring
unity gain across all frequencies in the look direction. We assume the ob-
servations are independent across window and frequency indices and can
therefore omit them for clarity.

Let Y € C be a random variable representing the frequency domain
output of the beamformer, which is a weighted sum of observations, Y =
wf X . The weights w € C, and the observations are a random variable
X € CM, where M is the total number of sensors. Each observation is a
sum of the attenuated and phase shifted target signal plus noise and inter-
ference X = dS + N. d € CM is the look direction vector representing the
phase shift and attenuation, S € C is a random variable representing the
target source coefficient, and N € C is a random variable representing
the noise and interference at each sensor node. The noise is assumed to be
a combination of attenuated and phase shifted point source interference
signals (i.e. other talkers) and independent noise at each node (perhaps
thermal noise in the sensor circuitry). The output variance is given by

EYHY] = E[(w" X)" (w" X)]
E[(w" X) (w" X)"]
= w’E[X X"w
w
w

HE[(dS + N)(dS + N)"|w
"(E[S*dd" + E[INN"])w
(S w dd®w + w"” Rw (2.81)

where R = E[NN*] is the power spectral density matrix of the unwanted
noise and interference signals. The power spectral density is the frequency
domain equivalent of the spatial covariance. We will refer to R as a covari-
ance matrix from here.

MVDR beamformers aim to minimize the output variance while con-
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straining the gain to unity in the look direction across all frequency bins.
The first term of the output variance expressed in (2.81) is not dependent
on w due to the unity gain look direction constraint, so we only need to

minimize the second term. The optimization problem is
NV S
minimize w Rw
subject to wfd = 1. (2.82)

The method of Lagrangian multipliers can be used to convert (2.82) from
a constrained form to an unconstrained form,

1
L(w,w",v) = §wHRw —v(wfd—1) - v*(d"w - 1), (2.83)

where (.)* represents the complex conjugate operator. Taking the complex
gradient (see section 2.2.4) with respect to w* and equating to 0 we get

VHL(w,wH,I/) =Rw—vd=0

w=vR . (2.84)
The weights have to meet the constraint, so substituting (2.84) into (2.82),

dw=vd"R'd=1

1
YT @i R4
R~

Equation is the well known optimal MVDR beamformer weights.
The true noise covariance has been used to derive the optimal weights, in
practice the true noise covariance is unavailable. An unbiased estimate
of the observation covariance can be made by averaging observation co-
variances, this is sometimes referred to as a sample matrix inversion (SMI)
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beamformer [47]. Matrix inversion can also be problematic, and is com-
monly addressed by introducing additional uncorrelated noise. If the sce-
nario is dynamic we need to recalculate the optimal weights regularly. It
is common to use an adaptive algorithm to maintain the optimal weights
rather than the analytic optimal weights given in (2.85). Frost introduced
an adaptive algorithm for implementation of an minimum variance beam-

former in [24], which we discuss in the following section.

2.2.7 Frost’'s Adaptive Algorithm

Frost’s 1972 paper [24] describes an adaptive algorithm for implementing
an LCMV (or MVDR) broadband beamformer. LCMV is a generalization
of MVDR that can have any set of linear constraints. Frost also gave a
geometric interpretation of the algorithm which gives valuable insight into
the algorithm and sources of error, in particular accumulative error. The
advantages of Frost’s algorithm were that it required no prior knowledge
of the signal second order statistics and did not accumulate errors in the
weight vector, while maintaining a hard constraint.

The LCMV optimization problem is the same as for MVDR but with

the unity gain constraint replaced with any constant f,

1
minimize §wH Rw
subject to wfd = f. (2.86)

The optimal weights are derived using the same method outlined in the
previous section to get

fR™'d
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and the optimal BFOP is given by,

(2.88)

-1 T
Y:MX:(ﬂ%d)X

d"R-'d
The true R is not known, so the analytic equation for optimal w cannot

be used. Instead we iteratively approach the minimum using gradient

descent and an approximation of the noise covariance,
w = w® — v L(w®, ) = w® — pg(Rw™ — vd), (2.89)
where 1 controls the step size. The constraint still has to be met so

f — dTw(k+1)
=d" (w(k) — p(Rw™ — vd))
1

y:ﬂﬂdg—fmw+uf3w% (2.90)

Subbing v back into (2.89),

M;Af—f@W+uwam>O

= P(uR— Dw™ + F, (2.91)

w%HJ:uMO_M<Rw%L_<

where [ is the identity matrix, P and F' are precomputable and given by

1 /
P=—dd" —1 F=—d. 2.92
d’d ’ dTd (2.92)

As we do not have the actual noise covariance, Frost suggests approximat-
ing R with the covariance of the observations, that is R*) = 2®2z®7T_ In
practice it is common to use a running average over some number of itera-
tions. Here we have used « rather than X to indicate that the observation is

k) (k)T

no longer a random variable, but an observation. Subbing R*) = 2z
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into (2.91) we get,
w* D = P(URWw® — y®) 4
= P(puz®zWTy®) _y®)y 4 p
= P(ua®y® —w®) 4 F (2.93)

The update equation uses available information only and is imple-
mentable. Figure 2.7)shows simulated gain curves for each frequency bin
as a function of direction for a beamforming problem solved iteratively us-
ing (2.93). The spatial filtering achieved by the adapted weights vector has
left the target unattenuated in all frequency bins, while heavily attenuat-
ing the interferer in all frequency bins. The different wavelengths of each
frequency bin causes the spatial response in each bin to be different, with
the exception of the look direction which is constrained to unity across all
frequency bins.

50
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Figure 2.7: Frost’s adaptive algorithm was used to find the optimal LCMV weights. The
spatial response of the beamformer is shown for a linear sensor array. The target direc-
tion has 0dB gain across all frequency bins, while the interference direction is heavily
attenuated for all frequency bins. Note that each curve represents the spatial response of
an individual frequency bin.
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Having implemented an adaptive optimal frequency domain beam-
former, we have covered the background leading up to distributed beam-
forming. The following section describes sparse distributed MVDR beam-
forming using PDMM, as introduced by [34].

2.2.8 Sparse Distributed MVDR Using PDMM

O’Connor, Kleijn and Abhayapala presented an algorithm for applying
PDMM to the distributed iterative calculation of a sparse MVDR beam-
former in [34]. An ¢/, norm regularization term is used to encourage small
beamformer weights to zero, noting that the zero weights tend to belong
to nodes far from the target source. The optimization effectively chooses a
subnetwork of nodes that are close to the target source, though all nodes
are still involved in the optimization.

The objective function is derived following [28] using the logarithm of
the maximum a posteriori (MAP) estimation of the weights vector, with
the addition of ¢; regularization via virtual nodes. Let w € R be the
beamformer weights, R € RM*M ig the observation covariance matrix,
d € RM the look direction vector, and o € R is a scalar. The minimization

of the global MVDR objective with an ¢; regularization term is given by,
minimize §wTRw —d"w+ afw. (2.94)

In order to distribute this objective, nodes more than two hops apart are
assumed uncorrelated (discussed in section allowing the decomposi-
tion of the first two terms into a distributed consensus form,

o 1
minimize g —ngkwk—d;‘gwk

2

keN

subject to Agywy, + Aypw; =0, V (k1) € & (2.95)

where w;, € RW:l is the local beamformer weights at node k, N, is node
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k’s neighborhood, Ry € RWelxVel jg the local covariance matrix at node k,
di € RWHl is a local look direction vector that is all zeros except for the ele-
ment that relates to node k’s look direction, A;; € R*>*MWl and A;;, € R2*M
contain 1, —1,0 and are designed to ensure consensus between neighbor-
ing nodes.

As |lw|l; = >, |wg|, the regularization term can be distributed by each
node taking the absolute value of its weight estimate relating to itself. A
set of virtual nodes V where |V| = |N| are introduced to incorporate the
regularization, as the minimization of the /; norm must be treated differ-
ently to the minimization of the quadratic. Each node has the local opti-

mization
[N+V]
minimize Z fr(zk)
k=1
subject to Agpwy, + Aypw; =0, V (k1) €& (2.96)
where

l[ETRkQSk — dTZBk, forke N
folzg) = 2" g (2.97)
alxgl, fork e V.

The objective and constraints are used to create the augmented primal
dual function as per [16]. Minimizing over the primal variable and maxi-
mizing over the dual variable for both the real and virtual nodes results in

the update equations where i indexes the iteration,

(Zlej\/k AguAk\l + Rk)il

wi ™= (T AT — Ay Y) + db), forke N (2.98)
(—bx + sign(by)min(|bx], @) (Af, Agp) ™", fork €V
M =M = A — Ayga?, fork € (N, V),1 € N,

(2.99)
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where

b = 2w Al Ay — AL (2.100)
Each node calculates updates either asynchronously or synchronously by
communicating locally with its neighbors and the global BFFWs converge
towards the MVDR optimal weights. The global BFFWs are the concate-
nation of each node’s estimate of its own BFFW. This weight vector can
then be used to calculate the BFOP by each node sending its weighted ob-
servation wyxy, to a central location for global computation of the BFOP, or
alternatively by using the distributed BFOP calculation proposed in chap-
ter
This chapter presented the background necessary for the implementa-
tion of distributed convex optimization, acoustic beamforming, and our
proposed distributed BFOP calculation. The following chapter gives some
auxiliary results which are useful in the context of distributed acoustic
beamforming but which do not belong with the primary result. Chapter
M then presents our proposed distributed BFOP calculation with analysis
and experimental results.



Chapter 3
Auxiliary Results

This section contains some auxiliary results that are useful in the context
of the thesis but do not directly contribute to the primary result presented
in chapter ] A proof is given for the preservation of positive semidef-
initeness in covariance conversion from the complex domain to the real
domain of twice the dimension as discussed in section Theoretical
covariance based on the free space model is given, with discussion and
some alternatives. Ensuring that the distributed and centralized problems
are equivalent is essential in distributed problems, an example of forcing
equivalence is given. The trade off between observing a signal from near
and far on a sensor array is considered and raises the possibility of an
optimal distribution of sensor nodes. Diffuse noise coherence and the im-
plications for acoustic sensor arrays is considered. Finally, a relationship
is derived between the number of nodes in consecutive layers which does

not depend on the distance from the centre or the node density.

53
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3.1 Covariance Conversion From CV*¥ to R2V>2N

Preserves Positive Semidefiniteness

The literature sometimes assumes a common mapping from the complex
domain to the real domain of twice the dimension, as discussed in sec-
tion In the complex domain the MVDR objective is expressed as a
quadratic i.e. w” Rw where w € C" is the variable and R € C"*¥ is the
covariance, and convex optimization is used to minimize the objective.
Convex optimization is only applicable if the objective function is convex,
and for that to be true R must be positive semidefinite. The original com-
plex R is guaranteed to be positive semidefinite precisely because it is a
covariance matrix, but does it remain positive semidefinite after mapping
to the real domain of twice the dimension? In this section we prove that
the converted covariance matrix on R*"*?¥ is also positive semidefinite.

Let R = rrfl = QAQH € CV*VN, where the columns of ) contain the
eigenvectors of I, and A is a diagonal matrix containing the eigenvalues
of R. As R is hermitian, the elements of A are real (see appendix for
proof). Then

R =QAQ"

Ngiql!

M= 11

i@ + gyi) (2] = jyl)

=1

I
.MZ

Ai ((%%T +yyl) + iy — wiyiT)) (3.1)

=1

where \; = A, ¢; € C¥ is the ith column vector of Q, ¢; = x; + jy;, and
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j? = —1. The real and imaginary parts of R are

N
=1

N
i=1

Let R € R2V*2N be the converted covariance (based on section [2.2.3), then

Z l Z; LilY; )7 Zi\il )\Z(l.lsz + ylsz)

>N wzxuyzy?), ->N, &(yz-xf—xiy?)]

A\, (zal + vyl), —(yel —zy))
' —aziyl), (il + yiyl)

& <xsz>, (—yiaT) (D), (zy?)
—;A( (yix?), (f]b‘ﬂé’T)]Jr (—zii), (yiyf)]>
2. _y;] o —:v?]). (33)

y.
As R can be expressed as the sum of matrices of form gg”, which are al-

7

ways positive semidefinite, R is positive semidefinite. Note that gg”
always positive semidefinite as h” gg"h = (hg)? > 0.

3.2 Theoretical Covariance Based on Distance

There are a number of approaches to finding the sensor network covari-
ance matrix, such as the true noise covariance, the true observation co-
variance, the sampled observation covariance, and randomly generated
covariance. Here we derive the theoretical covariance matrix based only
on the distance between the sensors and the target.

Consider the setup shown in figure The target signal t € C prop-
agates through free space to sensors 1 and 2. The target is is located at
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spatial coordinates [; € R3, and the sensors at /1,1, € R?, so the distance

from t to sensor i is ||l; — l;|2.

x2

Figure 3.1: Target signal ¢ and two sensor nodes.

Let the target signal ¢t = e7%"/7, with j> = —1, f Hz is the frequency,
and 7 is time in seconds. The target arrives at each sensor attenuated and

with a phase shift from the free space transfer function i,

6_](751

47T||lt _lz||2

(3.4)

The phase shift ¢; is the number of wavelengths in the distance between

target ¢ the sensor ¢,

M= lla Il = Lillaf

- - (3.5)

i

1

where A = ¢/f is the wavelength in metres and ¢ ms™' is the speed of

sound. The spatial covariance Rg with entries 7 is

Tik = T;T},
= (hit)(hyt)*
o= lte=lill2=llte=1xl2) f /e

_ , 3.6
@2l — Gl = bl (3.6)

where (.)* is the complex conjugate operator. In this way we can calcu-

late the covariance matrix of a network of nodes observing a source. If
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more than one source is present, the covariance matrix can be calculated
for each source separately and then summed to find the total theoretical
covariance. The only information required is the spatial coordinates of the
source, and the nodes.

The spatial covariance Rgs as defined by is noise free, which is in-
consistent with processing noisy audio signals in the real world. Noise can
be added directly to the covariance matrix. Uncorrelated noise (perhaps
thermal noise in the sensor circuitry) is independent between sensors and
appears only on the diagonal of the covariance matrix. If we assume equal
noise power o3 in each sensor then the uncorrelated noise covariance ma-
trix is given by

Ry = o3I, (3.7)

where [ is the identity matrix, which can be added to the spatial covari-

ance to find the total covariance
R = Rs+ Rn. (3.8)

This is sometimes referred to as diagonal loading or Tikhonov regular-
ization [48, 49]. Diagonal loading is useful for improving the condition
number (and therefore the invertibility) of the covariance matrix, which
can be a problem in practice. Diagonal loading can also help make the
beamformer more robust to uncertainty in the look direction and node lo-
cation.

Diffuse noise can be added in a similar way. Diffuse noise is given by

(501,
Rp = & = sinc (
VUi

where )y, is the cross spectral density between the diffuse noise at node

(3.9)

c

2 f||1; — lk||2)

1 and node k. Rp can then be added to the total covariance which now

combines the spatial covariance, uncorrelated noise covariance, and dif-
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fuse noise covariance,
R=Rs+ Ry + Rp. (3.10)

3.3 Distributed and Centralized Covariance

Equivalence

It is essential to ensure that the distributed objective is equivalent to the
centralized objective when formulating a distributed problem. With ap-
plication to MVDR beamforming and omitting any regularization, the cen-
tralized objective is commonly of the form

minimize w” Rw, (3.11)

where w € RVl R € RV*VI and V is the set of all network nodes. A

common choice for the distributed objective is of the form

minimize ZwiTRiwi, (3.12)

iev
where w; € RVl R, € RN:xIVil and A is the set of neighbors of node i.
Equations and must be equivalent, which is not guaranteed.
Using the distributed beamformer from [34], each local weight w; and co-
variance R; are kept at node ¢, and relate to node i’s neighborhood. To

show how non-equivalence can arise, we compare the centralized and dis-
tributed objective for the network shown in figure The network has a

12 s

Figure 3.2: Example sensor network.
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global covariance matrix I?, and three local covariance matrices Ry, R, R3,

11 T2 T13

R= To1 To2 T23] »
731 T32 T33

Ri=|" "], Ry=R, Ry=

T21 Ta2

T'22 7”23] (3 13)

32 T33

It also has a global weights vector w, and three local weights vectors w,
wy, ws. Assume that consensus has been achieved in the weights so that
the related components are equal across the global weights vector and all
of the local weights vectors, and zero pad the matrices where required in
order to place the weights and covariances at the correct index. Then

rin riz Of jwy
Zw;‘ﬁRiwi:[wl w3 0} To1 a2 O |we
i€V 0O 0 O 0
11 Ti2 Ti13 w1y
+ [wl Wo wg} o1 T2 T23 W2
31 T32 T33 w3
00 0][0]
+ [O Wo wg} 0 roo T3 |wo
0 732 733| [ws]
2ry1 2rip i3 w1

:[wl w9 wg] 27"21 37“22 27‘23 W2

T3 2732 2rs3 | W3

£w! Rw (3.14)

The distributed covariance has summed to a weighted covariance, where

the weightings reflect the number of times ¢, j in r;; appear together in a
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neighbor list. The neighbor lists for the network are

1
M:H,M:Q,M:H. (3.15)
3

Let C be the scaling matrix,

2 2 1
cC=12 3 2 (3.16)
12 2

C and the Hadamard product (o) can be used to express the first equation

in as
Z w] Ryw; = w’ (C o R)w. (3.17)
i€y
Each component of C' is found as such: consider c;2, count the number of
times node 1 and node 2 appear in the neighbor lists together, which
is twice. The centralized and distributed problems can be made equivalent
by taking the Hadamard product of the original covariance matrix with C,

the componentwise inverse of C,

L 1/ 1
C= |1 13 1f]. (3.18)
1 1o 1/
Then
w?(CoC o Rw=w"Rw. (3.19)

This method can be used to force equivalence between the centralized and
distributed quadratic objectives. It will not work however if there are any
zeros in C, which occurs any time two nodes do not share any neighbors
(which is common in a realistic network). In this case we must force the
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original covariance matrix to be sparse in order to achieve equivalence
between the distributed and centralized beamformer expressions.
Forcing the covariance matrix to be sparse means it is no longer guar-
anteed positive semidefinite and therefore can not be considered a covari-
ance matrix. An alternative approach is to generate a sparse random co-
variance matrix that is guaranteed positive semidefinite. For example,
Matlab can generate a positive semidefinite symmetric random matrix
given a certain sparsity pattern using sprandsym (). However, gener-
ating a random sparse covariance matrix means we no longer have infor-
mation about the location of the sensors. We cannot derive the location of
the sensors from the randomly generated sparse covariance matrix as the
locations will be ambiguous. This is nevertheless a useful approach and

was utilized in [34].

3.4 Is Bigger Better?

When considering a sensor field observing a target signal it is an inter-
esting question to ask what is the optimal sensor distribution. Here we
consider whether a small group of sensors near to the target is more effec-
tive than a large group of sensors far from the target.

Consider a single sensor. As the sensor moves away from the target, the
energy from the target signal decreases as acoustic signals become attenu-
ated with distance. The energy from the thermal noise remains constant,
so moving further from the source results in lower SNR.

Now consider a uniform distribution of sensors in R*. The energy from
the target radiates as the surface of a sphere. As we move away from
the target, the SNR per sensor decreases but the radius, surface area, and
number of nodes on the surface of the sphere increases. Which should we
prefer; a small sphere with few sensors near the target, or a large sphere
with many sensors far from the target?

We want to compare the ratio of the number of sensors on our big and
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small spheres, with the ratio of the SNR from our big and small spheres.
The number of sensors is Ms(r) = pA = pdnr?, where the S stands for
sphere, p m~? is the sensor density, and A = 47r? m? is the surface area
of the sphere. Let r be the radius of a small sphere, and ar the radius of
a larger sphere with a > 1. Assume a delay and sum beamformer, with
uncorrelated equal power noise at all sensors. First we find the ratio of the

number of sensors on the large and small spheres,

Mg(ar) pam(ar)? o,
Mg (r) - pamr? N

(3.20)

which shows that increasing the radius of the sphere by a factor « increases
the number of sensors by a?.

In order to find the ratio of the two SNRs we require a beamforming
model. LetY,S € R,w, X,d,N € R" be the beamformer output, target
signal, weights, observations, look direction and noise with capitals indi-

cating random variables. The output power of the beamformer is

E[YTY] =E[(w"X)" (w" X)]
E[(w"(dS + N))" (w"(dS + N))]
E[S?]d"ww"d + E[N"ww" N] (3.21)

where the final step was possible because the target and noise signals are
uncorrelated. The output power of the beamformer (3.21)) is composed of
two terms, one from the target and one from the noise. The SNR is the

ratio of these two terms,

(3.22)

If we consider that the phase has already been adjusted for, then a delay

and sum beamformer has w = 1. As the noise is uncorrelated with equal

variance o3 at each node, then E[NNT| = o%1 where [ is the identity
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matrix. The sensors are all on the surface of a sphere so are equidistant
from the source at the centre and d = (47r)~'1, so the SNR simplifies to
E|S?|M  E[S?
sNR = LISTIM_E[S7]p (3.23)

o (4rr)2 o%dr

which does not depend on the radius. The SNR for the two spheres can
now be compared,

(3.24)

So increasing the radius of the sphere by a increased the number of sensors
by o? but made no change to the SNR.

A more realistic scenario is one where the target is a talker in a room
and the sensors are uniformly distributed on the ceiling. We can apply the
same process as was used above to find whether it is better to use a large
or small ring of sensors in a plane. Assume the target sits in the same
plane as the sensors and define the ring as the area between the circle with
radius r and the circle with radius r 4 d. Therefore, the area of the ring is

(subscript R indicates ring),
Ap =7n(r+90)* —7r? = n(2r§ + 6%). (3.25)

Following the same argument as we did for the sphere, we find the ratio
of the number of sensors between the rings of small and large radius,

Mpg(ar)  pr(2(ar)d + %)
Mg(r) — pm(2rd +62)

(3.26)
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Let § << 1 so that 42 is negligible, then

Mpg(ar) _ pr(2(ar)d)
Mpg(r) pm(2r4)

= a, (3.27)

which shows that an increase in the radius by a factor of « results in an
increase in the number of sensors by a factor «. The ratio between the
SNR for rings with large and small radius are also calculated in the same

way as for spheres above, resulting in

(E [S } p772ar6)
SNRR(OH‘) o\ onlmen? ) 1
SNRg(r) ( E[s?] pﬂQr(s) a (3.28)

2 (47r)?

Increasing the radius of the sensor ring by a factor a has increased the
number of sensors and decreased the SNR. We conclude that for sensors
on a plane observing a signal propagating as a sphere in R3, it is more
efficient (for example in terms of power consumption) and the estimate
will have less error by using a sensor ring with a small radius.

In order to achieve this result we assumed there was no noise coher-
ence between sensors. In practice, sensors close to each other have corre-
lated noise (for example interference or diffuse noise) meaning that there
is a limit to how small the ring of sensors can be while still making inde-
pendent observations. Beamformers are not generally limited to a ring of
sensors, it is more likely that a disk of sensors would be used. The calcula-
tions above do not extend to a disk as in both the sphere and the ring case
we have used the fact that the distance from the source was equal across
all sensors. Investigation of the disk case would make interesting future
work.

The interesting thing that this section suggests is the possibility of an
optimal distribution of sensors. Perhaps there are efficiency gains pos-
sible by creating a sensor disk with high density close to the target and
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lower density further from the target. In some sense this is implied when
the magnitude of the beamformer weights become smaller further from
the target. It may be possible to save power by swapping many lowly
weighted nodes far from the source for few highly weighted nodes far

from the source.

3.5 Range of Support

The previous section mentioned that there is likely to be a minimum dis-
tance between two nodes if they are going to be useful in the presence
of interference or diffuse noise. Here we briefly consider what those dis-
tances might be for a diffuse noise field. The coherence of diffuse noise
from sources on a sphere is given by [50]

Rij = SinC(27Tf”li — l]’HQ/C). (329)

To make computation tractable, let us simplify the coherence such that it

equals zero outside the main lobe and equals one inside the main lobe,

1, @nf||l; —1; <
g, 1 Cfli= o) < 7 530
0, elsewhere.

In the case of speech processing, we can assume a limited bandwidth of
say 500 to 3 x 10°Hz. Let f; = 500 Hz then the range of support of the

coherence function is,

c 340ms!
L=, < — =225 g34m, 31
” 3”2—2f1 I x 1070, O34m (3:31)
Now let f, = 3 x 103 Hz,
4 —1
¢ _3ms _ o57m. (3.32)

b=l < = = 27—
lhi=blle < 57 = 6 107w
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So for a small bandwidth suitable for capturing speech, the range of sup-
port of the coherence function varies between 0.05m and 0.35m. The im-
plication is that nodes closer to each other than 0.5¢/f m will be less ef-
fective in reducing diffuse noise at that frequency. We also see that the
optimal distribution of nodes will be different for different frequencies. In
practise this suggests that using a minimum spacing between nodes which
is larger than the range of support of the coherence function for the lowest
frequency being measured. This will ensure that each node contributes

unique observations of the diffuse noise across all frequencies.

3.6 How Many Upstream Neighbors?

In the following chapter we present a model where the active set of nodes
expands from the central insertion node. Each node has one downstream
neighbor only where downstream means closer to the insertion node (see
chapter [). If the network has a uniform node density and is divided into
equal width layers based on distance from the insertion node, then layers
will contain more nodes the further they are from central insertion node.
How many upstream neighbors do we expect a node to have?

Assume a density of nodes per square meter p. Let the maximum
radius that defines layer j be r;, which is an integer multiple of 7y, i.e.
rs = 3r1,r7 = Try etc. Layer 0 has 7y = 0 and contains only the insertion
node. The area of layer j is

Ay =r(r =2 == ((r)" = (G- 1n)?) (3.33)
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and layer j contains N; = pA; nodes. Then,

Nj = pA;
= pr () = (G = Dm)?)

= (i~ - 1)
= prri(25 — 1) (3.34)

Now we can compare the number of nodes in consecutive layers. If a node

sits in layer j, then it must on average have

N _ pmd2G+1) —1) _ 2j+1

N, pmri(2i-1) 25-1

(3.35)

upstream neighbors. For example, a node in layer j = 5 will have 13/11 =
1.18 upstream neighbors on average, whereas a node in layer j = 1 will
have 3. Equation does not depend on the density or the choice of
71. Increasing the density or r; both result in more nodes in every layer, in
the same proportions described by (3.35). This calculation does not make
sense for ry and results in a ratio of —1 as the area of the layer is 0.

Some of these auxiliary results may be useful to anyone implementing
distributed acoustic beamformers. We now move to the main result of
this thesis and present our model for distributed BFOP calculation in the

following chapter.



Chapter 4
Distributed Beamformer OQutput

The current state of the art in distributed acoustic beamforming enables
optimization of the beamformer filter weights (BFFWs) over a distributed
network of nodes. The beamformer output (BFOP) can then be calculated
centrally by passing the weighted observations to a collection node as in
[34]. Alternatively, the BFOP can be calculated in a distributed manner but
is tied to the BFFW optimization in [33]. In this section we develop a new
method for calculating the BFOP in a distributed manner. It is assumed
that the BFFWs have already been calculated by a second algorithm such
as delay and sum or sparse distributed MVDR [34].

To motivate the new method, imagine a scenario where the target sig-
nal changes periodically i.e. a meeting that shifts between talkers. When
a new talker begins to speak, the BEFWs must be reoptimized. Once the
optimal BFFWs have been found, there is no need to change the BFFWs
unless the situation changes. In contrast, the BFOP must be calculated
constantly and streamed to the user, so it is useful to have the BFFW opti-
mization and the BFOP calculation implemented separately.

We can already compute the BFOP independently of the filter opti-
mization, but in a centralized manner. Centralized computation of the
BFOP requires that all nodes transmit their weighted observations to a
central node. This transmission can be achieved either directly or by pass-

68
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ing data via interlying nodes. The power required for direct transmission
to the central node is relatively high, which is undesirable as it reduces
the lifetime of the wireless battery powered sensor network. The required
transmission power can be reduced by passing each weighted observation
towards the central node via interlying network nodes. This also comes
with a caveat; nodes towards the center will be required to pass more in-
formation than outer nodes, and this will place an upper limit on the size
of the network.

We propose a scheme that takes the passing scheme and goes further.
Each node makes a local estimate of the BFOP, and passes this estimate to
only one downstream neighbor. No node is required to relay data from
one neighbor to another. Every node in the network now passes the same
amount of data, regardless of its position in the network. The upper limit
on the size of the network imposed by both types of centralized calculation
has been removed. The new scheme requires less transmission power than
the centralized direct computation, as passing data via interlying nodes is
cheaper than direct transmission. It also requires less power than passing
all observations via interlying nodes as all nodes on the interior of the
network pass less data.

In the proposed scheme, each node makes a local estimate of the BFOP.
This estimate is a weighted sum of two components; the current node’s
weighted observation, and BFOP estimates from any upstream neighbors
of the current node. Figure4.1[shows an example three layer network with
node 1 as the insertion node. A layer is defined by the number of hops to
the insertion node. For two nodes located in layers a and b with b > a, b
is upstream of a, and a is downstream of b. The insertion node is chosen
for being the closest to the target source. A node in the outer layer such as
node 3, makes a BFOP estimate based only on its weighted observation. It
uses location information to choose the cheapest downstream neighbor to
pass its BFOP estimate to, which in this case is node 2. Node 2 makes a
BFOP estimate by combining its own weighted observation with the BFOP
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stream

Figure 4.1: Small example sensor network. Node 1 is the insertion node. Nodes directly
upstream from 1 are considered to be in layer 1. Nodes directly upstream from nodes in
layer 1 are in layer 2, and so on. Nodes only ever pass a single estimate to one down-
stream node.

estimates of its upstream neighbors, nodes 3 and 4. Node 2 is expected to
have an improved BFOP estimate over node 3 for two reasons. Firstly,
node 2 is closer to the target source than node 3, and therefore has higher
SNR. Secondly, node 2 can make use of three observations, while node 2
can only make use of one.

The proposed scheme imposes a tree graph over the network, which
is separate to any network topology involved in the BEFW optimization.
There is a vast literature on tree networks for data network routing, mobile
networks, sensor networks etc. Selecting the best graph from the set of all
graphs can be achieved in a number of ways. Two common approaches
are shortest path and minimum hop [51, 52]. Dynamic network routing
is considered in [53], and power aware routing that considers the current
state of the node’s energy usage and storage is discussed in [54]. [55] max-
imizes the lifetime of the network. Other performance criteria can also
be considered, such as the overall average response time in [56]. The tree

structure used in this section is chosen locally and approximately with the
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aim of minimizing the transmission power, and is derived in section 4.5
This chapter proceeds by deriving the optimal distributed combina-
tion weights that minimize the error variance of a local BFOP estimate.
The performance of the proposed model is analyzed regarding the prop-
agation of error variance and it is shown that the error variance reduces
as the BFOP estimate moves towards the central insertion node. Imple-
mentation of the local combination weights is discussed followed by how
to choose the downstream neighbor to approximately minimize transmis-
sion power. Simulation results are then presented that show that this dis-
tributed BFOP model trades a small decrease in performance for a large

decrease in transmission power.

4.1 Optimal Combination Weights

This section introduces the system model, and finds the optimal local com-
bination weights. Let S € R be a random variable representing the Fourier
coefficient of the target signal for a single bin and window index. Let
N € RM be a random variable representing the Fourier coefficients of the
noise across M sensors. Each node makes an observation X = dS+ N, X €
RM where d € R is the look direction vector that describes the attenua-
tion and phase shift of the target signal at each sensor location. The stan-
dard beamformer output is a weighted combination of the observations,
Z = w'X € R. As discussed in section we can work in the real
domain by assuming a mapping from complex to real numbers.

The centralized BFOP calculation only makes an estimate of the BFOP
at the central node. In contrast, the proposed distributed BFOP calculation
makes an estimate of the BFOP at every node. Let Z,,.,, € R represent the
local BFOP estimate at the current node. Let a € R with the constraint
that «’1 = 1 and where N is the current node’s neighbors, making the
estimates a weighted average. We would like to find the optimal combi-
nation weights a that minimize the error variance of the BFOP estimate at
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each node,

minimize E [(S - Znew)2:|

subjectto a1 =1. 4.1)

Znew 18 @ weighted combination of the current node’s weighted observa-

tion and BFOP estimates passed down from any upstream neighbors,
Znew = a' Z. (4.2)

Let the first element of Z be Z; = wX, w is the current node’s BFFW, and X
is the current node’s observation. The remaining elements of Z are each a
BFOP estimate received from an upstream neighbor that has been passed

into the current node. Each of the BFOP estimates have been found using
the same Z,,.,, calculation. Subbing (4.2) into (4.1),

E[(S — Znew)’] =E[(S —a"2)?]
=E[(a" (15 - 2))?]

—E {( ZEZN@@-(S - Zi))2] , (4.3)

where the second line was possible as a’1 = 1 therefore a”1S = S. The
neighborhood N includes the current node, and the current node’s up-

stream neighbors. The Lagrangian is given by,

L(a,v) :E[<Zai(S—Zi)>2} +V<Zai_1)' (4.4)

iEN ieEN
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Taking the gradient with respect to a; and setting to zero,

V L(a,v) =0
=2 aE[(S—Z)(S - Z)| +v
ieN
1eEN
= 24TV 4y, (4.5)

where b0) € RV has elements b = E[(S — Z,)(S — Z,)],i € [1,...,|N]).
can be expressed over all j by introducing the matrix B, where ele-
ment ¢, j of B is given by E[(S — Z;)(S — Z,)]. Then the gradient of the
Lagrangian with respect to a is,

V L(a,v) =
= Bi+ -1
a:%;B*L (4.6)

Equation (4.6) must still meet the constraint,

a’l1=1
-2

—_— 4.7
1"B-11 47)

.. ]7 —
Subbing 7 back into a gives us the optimal combination weights as a func-
tion of B~ 1,

B~11

BT (+8)

a=
which depends only on the expected error at the current node, and the ex-
pected error at the upstream neighbors. This optimal combination weight

vector can be used to combine the current node’s weighted observation
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with the estimates of any upstream neighbors, resulting in the optimal
Znew, the current node’s estimate of the BFOP. Z,,.,, is then passed to the
current node’s downstream neighbor. The resemblance of the optimal
combination weights to the optimal MVDR weights is superficial and the
two should not be confused.

4.2 Error Variance

It is desirable to have some understanding about the error variance at dif-
ferent parts of the network. It is expected that a downstream node will
have lower error variance than its upstream neighbors. There are two rea-
sons for this expectation, the downstream node is closer to the target so
receives more target signal energy, and the downstream node makes an
estimate based on a greater number of observations. Here we show that
use of the optimal combination weights results in an error variance less
than the smallest error variance at the upstream neighbors for a scenario
with a single target source and independent noise.

Let AV be the current node’s neighborhood which includes its upstream
neighbors and its own weighted observation. Let a € R be the combi-
nation weights, Z € R is a random variable representing the neighbor-
hood estimates, B = E[bb”] € RWIXWI is the covariance of the estimate
errors, b = (1S — Z) € RWI, 1 € RW is a vector of ones, and S € R is
a random variable representing the target signal. Z,., = o’ Z is the cur-
rent node’s estimate of the BFOP which is a weighted sum of the current
node’s weighted observation and any BFOP estimates passed from up-
stream neighbors. Assume a single target source corrupted by indepen-
dent noise and MVDR weights which results in uncorrelated cross error,

i.e. diagonal B. This allows us to decompose the error variance of Z,.,,
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into a weighted sum of error variances at the upstream neighbors,

E[(S — Znew)’] = E[(S — a"2)’]
—E[Y (s - 27
ieN
— E[Za?b?], (4.9)

ieN

where E[b?] = E[(S — Z;)?]. Recall that the error variance of Z,.,, is mini-

mized by the combination weights,

B~11

As the covariance matrix B = E[bb”] is diagonal with element B;; = E[b?],
the inverse can be formed by taking the componentwise inverse of the
diagonal elements, B;;' = (E[b?])~!. Therefore element a; is given by

(Bpt) "
Sjen (E2)

We would like to show that the error variance of Z,,.,, is never greater

(4.11)

i:

than the smallest error variance of the upstream estimates Z;, Vi € N. Let

m be the index of the upstream neighbor with the smallest error variance,
E[0%] < E[bZ], Vi. (4.12)
We aim to show that

E[Z afbf] < E[p2). (4.13)
ieN
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Subbing (4.11)) into (4.13) and pulling out E[b2,] from the sum,

E[Z asz] < E[p?] (4.14)
1EN

)]
(E[

C

N ’
3 (. ) F0 <

(E[b3]
S (B[2)
(Syen ER) ™)
L<EPZ]> (ER)

< E[b}]

JEN
veem)((Er) e () )
{jeN]j#m}
L<1+ER) Y (Bp) . (4.15)
{7eNj#m}

which must be true as E[b3], E[b2] > 0,V(j,m) € N. Therefore, as equation
(4.15) is true, equation is also true, and the error variance of Z,,.,,
is guaranteed to be no more than the smallest error variance of Z;,Vi €
N, under independent noise. The error variance decreases as the output
calculation moves towards the insertion node.

Note that the performance of the distributed BFOP calculation is not
guaranteed to equal or better the performance of the centralized calcu-
lation. So what is the advantage? Calculating the BFOP using the dis-
tributed combination weights approach significantly reduces the commu-
nication power required. Given our context is wireless sensors, any power
saving is desirable as it results in a longer life network. The following
section describes the calculation and passing of BFOP estimate error vari-

ances in practice.
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4.3 Error Variance In Practise

The distributed BFOP calculation using the optimal combination weights
relies on knowing the error variances in the neighborhood. How does each
node calculate its own error variance?

Consider a single target source with independent noise at each node.
Also assume that the noise variance is equal for all nodes, which is reason-
able if the nodes are constructed identically. All error originates from error
in the observations. There are two types of node, an outer layer node, and
a node with upstream neighbors. An outer layer node only has error in its
observation. A node with upstream neighbors has error in its observation,
and error in the estimates passed into it by its upstream neighbors. Each
node must pass an estimate of its error variance to its downstream neigh-
bor so that the downstream neighbor can properly weight the estimate.
We now derive the general error variance for all nodes and then look at
the special case of outer layer nodes.

As in the previous section, Z,., = a’Z is the current node’s esti-
mate of the target signal which is a weighted combination of the current
node’s already weighted observation and the estimates of any upstream
neighbors. These are concatenated into Z € R/, where  is the current
node’s neighborhood including itself, and |[N] is the number of nodes in
the neighborhood. The error variance of the current node is again given
by (4.9), which indicates that the current node can calculate its own error
variance by weighting and summing the error variances from the nodes
in its neighborhood including itself. The only source of error variance is
the observations so all that is needed is to find the error variance of each
node’s observation and then propagate these errors via the weighted sum
of (4.9). Assume that the current node’s weighted observation is element
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1of Z,i.e. Z; = wX. Then the error variance of 7, is

E[(

E[(S — w(dS + N))?]

=E[S? — 2Sw(dS + N) + (w(dS + N))?]
E[S? — 25%wd — 2SwN + w’d*S? + 2dSN + w’N?|
E[S?](wd — 1)* + w?E[N?]. (4.16)

The total error variance can be calculated as,

E[Z a2(S — Zi)ﬂ = ¢ (E (5% (wd —1)* + wQE[W)

1EN
+ > @E[(S-2). (4.17)
{ieN|i#1}

where E[(S — Z;)?], {i € Ni # 1} are all passed to the current node from
its upstream neighbors. For a node on the outer layer,

g (Bls-207)"

a

=1, (4.18)

— 1TB—11 = (E [(S B Zl)2}>1
SO becomes
B| S as - 27| (s - 27
ieN
= E[$?] (wd — 1)? + w?E[N?]. (4.19)

The distributed BFOP can now be simulated. The calculation requires the
target signal variance, the noise variance, and the assumption of indepen-
dent noise. Note that for MVDR weights wd = 1 as required by the con-
straint so the variance of the target signal can be omitted.

We still require a method for computing the total transmission power.
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The next section describes calculation of the total transmission power, and
selection of the cheapest downstream neighbor for the current node to

pass its BFOP estimate.

4.4 Linear Array Transmission Power: Direct vs
Multihop

The advantage of our distributed beamformer output calculation is a re-
duction in the required transmission power, and therefore an extended
network lifetime. It is cheaper to pass a value inwards using a multihop
transmission scheme than directly. This section highlights this with an
example on a linear array shown in figure

Figure 4.2: Linear node array. Less power is required to transmit from N to 1 via the
interlying nodes, than to transmit directly from N to 1.

Assume each node requires a receive power of P to guarantee error free
reception. The absolute distance between twonodes i and i+1isd; > 0, V1,
and the power required to transmit from node i + 1 to ¢ is P, = Pd3, so that
the power received at node i is Pd2d; > = P, where we have assumed the
radio power decays as d~2.

The example array is linear, meaning that the direct transmission dis-
tance from N to 1 is dy_,1 = ZZ]\L _11 d;. We would like to show that the
power required to transmit from N to 1 via the interlying nodes (multi-

hop) is less than the power required to transmit from N to 1 (direct). The
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total transmission power required for direct transmission is given by,

N-1 2
Py = Pd?\ul - P( Z di) ) (4.20)
i=1
and for multihop by,
N-1 N-1
Y P=P) d. (4.21)
i=1 i=1

Inspection of and reveals that the direct total transmission
power requirement is always greater than for multi hop, as expected. The
linear array case is a simplification, a real network will be passing between
nodes in a non-linear configuration. It is possible to imagine configura-
tions where the multihop approach is expected to be more expensive, for
example, if node 1 and node 2 were to swap positions in figure The

next section looks at the conditions on multihop being cheaper.

4.5 Non-Linear Array Transmission Power: Di-

rect vs Multihop

Multihop transmission was shown to be cheaper than direct transmission
for a linear array in the previous section. Real array geometries are likely
to be non-linear so it is desirable to know when it is cheaper to use multi-
hop, and when it is cheaper to use direct transmission. These conditions
are derived in this section.

Consider the non-linear array shown in figure Node 1 is the in-
sertion node, and we want to send node N’s estimate to node 1. We have
two options, transmit from N to 1 via the interlying nodes (multi-hop), or
directly from N to 1 (direct). Let P be a constant that represents the receive
power required at all nodes for error free reception. The location of node
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i is given by [; € R3, and the distance between two nodes i + 1 and i by
Ili+1 — l;]|2. If we assume that the radio signals decay as an inverse square,

then the power required to transmit from node ¢ + 1 to node i is
P = Plliv1 = l5. (4.22)

The total power for the multihop scheme is the sum of the transmission

power for each single hop,

N-1

Pmultihop =P Z ”li—&—l - lz”% (423)
i=1
The total power for the single hop scheme is
Psinglehop = PHZN - l1||§ (424)
Notice that

Psinglehop = PHZN - lng

N—-1 2
=P|| Dl —l
i=1 2
N—-1 T ,N—1
:P<sz —h) ( i —zz)
=1 =1
N—-1 N-1
—P(ZWM zu2)+2P (oo = 1) (U1 — 1)
i=1 j=1,j7#1i
N—-1 N-1
= Pouitihop + 2P Z (i1 — 1) (L — 1) (4.25)

i=1 j=1ji
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from which we can conclude the following relationship,

Psinglehop > Pmultihop fOI' g > 0

Psinglehop = Pmultihop for g = 0

Psinglehop < Pmultihop fOf g < O; (426)
where
N—-1 N-1
g=2P> " " (L — 1) (U1 — 1y). (4.27)
i=1 j=1,j7#1i

The conclusion with respect to our application is that if the sum of inner
products of the cross terms in g is positive, then multihop transmission
will be cheaper than single hop, when we have assumed that the radio
transmission loss is described by an inverse square with no overheads.

@

Figure 4.3: Non-linear network. When is it cheaper to transmit directly from node N to
node 1?

The optimal set of paths could be found in order to define the network
tree by minimizing over all possible paths. In practice however, a
node must choose its downstream neighbor without knowing the loca-
tion of all of the nodes in the network. In simulation we have used a
simplified criteria for choosing the cheapest downstream neighbor. The
current node i selects the closest neighbor j whose location vector satisfies
(li = 1;)T(l; — I}) > 0 where [, is the insertion node. The location of the
insertion node is not explicitly known by a node, so the location of the tar-

get is used to estimate the location of the insertion node. It is also possible
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for the selected downstream neighbor to choose a downstream neighbor
which is not optimal for the current node. So this method of choosing
the downstream neighbor is in practice not ideal and we would expect to
see some additional reduction of the required transmission power if the
optimal set of downstream neighbors were used instead.

We are now able to find the optimal combination weights and have
a non-optimal approximation for choosing downstream neighbors and
therefore defining the tree structure. The next section presents simula-
tion results showing that the distributed BFOP calculation leads to a slight
drop in SNR performance with a large drop in transmission power re-

quirements.

4.6 Simulation Results

This section presents simulation results confirming the desirable behav-
iour of our proposed distributed BFOP calculation. Two scenarios are con-
sidered, fixed area and fixed density. A target source is placed below a
planar array of sensor nodes, mimicking a talker in a room with a sensor
array on the ceiling. Figure 4.4/ shows a typical layout. The node distri-
bution was generated randomly for each iteration of the simulation, and
each data point plotted represents the average of 10 simulation runs. The

speed of sound is assumed to be 343 ms™!

, and only direct path sound
is considered. A 1s,48kHz .flac audio file containing speech was passed

through a STFT using a square root Hann window with 50% overlap.

4.6.1 Fixed Area, Increasing Density

Figure shows the results for simulation with fixed area. At each it-
eration a new sensor distribution is randomly and uniformly generated
over a constant area. Figure shows four curves. The highest per-
formance was achieved by the centralized output calculation as expected.
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Figure 4.4: An example simulation random layout with 50 sensor nodes. The sensor
nodes are placed on a plane above the source, imitating a talker in a room with nodes
installed on the ceiling. The connection from each node to its downstream neighbor is
also shown in grey, as used in the distributed BFOP calculation.

The optimal distributed BFOP calculation performed slightly worse than
the centralized calculation. The distributed mean curve represents a dis-
tributed BFOP calculation where rather than the optimal local combina-
tion weights, each node simply averages its inputs. This results in re-
duced SNR performance, as we would expect. The last curve gives the
performance of the sensor closest to the target source for reference.

Figure shows that after the network grows larger than 5 sensors,
the distributed total power requirement becomes constant (see section
for the transmission power model, relative transmission power refers to
the fact that we have assumed a minimum receive power of 1 for both
the distributed and centralized cases). This may at first seem counterintu-
itive however each added node can just as easily reduce the total power
requirement as increase it. For example, a power reduction would result
from a new node being placed between an existing node and the insertion

node. This behaviour occurs because we have fixed the network area and
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varied the node density.

Comparing the total power requirement for the distributed and cen-
tralized cases we can see that the distributed total power requirement is
always less than or equal to the centralized case, and for large networks
the distributed computation is far cheaper. The distributed total power re-
quirement appears to be constant for networks larger than 5 nodes, while
the centralized total power requirement appears to be linear. This seems
reasonable, as adding a node to the distributed case could increase or de-
crease the power requirement, whereas adding a node to the centralized
case always increases the power requirement. Furthermore, the expected
distance between a node and the insertion node is constant, so the ex-
pected power required per node in the centralized case is also constant.

These results suggest that the distributed performance can be improved
by simply adding nodes without increasing the total power requirement.
This is surprising, and a result of some of our assumptions and omissions.
For example, we have not considered computation overheads which would
surely increase the power requirement as nodes are added. An upper limit
on the density would also be imposed by the fact that real sensors take up
space.

The third plot figure contains no new information but compares
the SNR vs total power requirement for the distributed and centralized
BFOP calculations. It is clearly cheaper to achieve a certain SNR by using
a distributed calculation with more nodes than to use the centralized cal-
culation, though the centralized calculation has a higher maximum SNR

for a fixed network size.
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Figure 4.5: Simulation results for fixed area. Nodes are added by increasing the density.
(a) The centralized BFOP calculation has the highest performance, with the distributed
BFOP calculation slightly lower. The distributed mean curve represents a distributed cal-
culation where each node averages its inputs rather than using the optimal combination
weights. The best individual sensor gives the performance of the sensor nearest the tar-
get source. (b) The distributed BFOP calculation requires far less power for transmission.
In a real installation this would allow the battery powered sensor network to remain op-
erational for longer by using the distributed BFOP approach. (c) Comparison of SNR vs
power for the distributed and centralized BFOP calculation. It is cheaper to achieve a
specific SNR by using the distributed BFOP calculation.
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4.6.2 Fixed Density, Increasing Area

This section presents simulation results with the node density held con-
stant. A full network of 50 nodes was randomly and uniformly distributed,
from which the active set of nodes was chosen. So for a network of 20
nodes, the 20 closest nodes to the source are chosen from the uniformly
distributed 50. In this way, the area increases on average as more nodes
are included. The increase in performance as nodes are added is expected
to get smaller as the newly added nodes are further from the target source
and have lower observation SNR. This is in contrast with the previous sec-
tion where each additional node could be anywhere in the sensor plane.

Similar to the fixed area results above, figure shows the central-
ized output calculation outperforming the distributed calculation. Again
the distributed mean and best individual sensor results are included for
reference.

The total power results shown in figure show that the distributed
BFOP calculation is far cheaper than the centralized BFOP calculation. The
distributed calculation appears to be linear while the centralized calcula-
tion appears to be exponential. Therefore the power savings available by
using the distributed calculation become larger for larger networks.

Figure compares the SNR vs total power for the distributed and
centralized BFOP calculation. Again, it is clearly cheaper to achieve a tar-
get SNR using the distributed calculation, though the maximum possible
SNR on a fixed size network is still higher for the centralized BFOP calcu-

lation.
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Figure 4.6: Simulation results for fixed density. Nodes are added by including the next
closest node in the network, effectively increasing the network area. (a) The centralized
BFOP calculation gives the highest performance per node. The distributed computation
has a slightly worse SNR per node performance. (b) Distributed BFOP calculation is far
cheaper than centralized BFOP calculation. This effect becomes more pronounced the
larger the network. (c) Comparison of SNR vs power for the distributed and centralized
BFOP calculations. It is cheaper to achieve a certain SNR using the distributed calcula-

tion.
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4,7 Discussion and Future Work

The simulation results above indicate that calculating the BFOP in a dis-
tributed manner requires less total transmission power than a centralized
computation. For a fixed SNR, it is cheaper to use distributed BFOP calcu-
lation with extra nodes, than to use centralized BFOP calculation. A PSN
with many extra dormant nodes available for recruitment may find that
it is more efficient to extend the size of the network to save power using
distributed BFOP. For a fixed network size however, the maximum SNR
possible is still achieved by centralized computation.

There are some restrictions on the applicability of these results. The
simulations were run for a single target source with independent noise
at the sensors. Future work includes extending these results to include
sources of interference and diffuse noise. Calculation of the optimal com-
bination weights requires an assumption about the observation error vari-
ance at each node. Further investigation is required to identify the best
assumptions, this step will be further complicated by the inclusion of in-
terferers in the model. It may be found that distance from the target re-
mains a useful basis for the error variance assumption even when MVDR
BFFWs are used as they already cancel the interference.

The power calculation that was used is expected to overestimate the
power requirement of the distributed BFOP calculation. This is due to the
approximation of the optimal set of downstream neighbors. It would be
interesting to compare the results with a network using the optimal set of
downstream neighbors, to quantify the cost of the approximation.

Ideal radio transmission loss has been used throughout this thesis. Real
world radio transmission losses are expected to be higher. Future work
could make use of a more realistic radio loss model. It is expected that
using higher radio transmission losses in the model would only exagger-
ate the results presented above. Higher transmission losses should have
a greater detrimental effect on the centralized transmission than on the
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distributed transmission. Future work could also include a more compre-

hensive power model that considers computation power overheads within

the nodes.



Chapter 5
Conclusion

Distributed beamforming is already capable of the distributed optimiza-
tion of the beamforming filter on an arbitrary network. However, the
beamformer output calculation is left centralized or is tied to the filter op-
timization. We have proposed a new method for calculating the output of
a beamformer in a distributed manner. The new method is independent of
the beamforming filter optimization allowing it to run on a different time
scale, and to be used with any beamforming filter optimization.

Simulation results show that the new scheme trades a small decrease
in SNR performance for a large decrease in total transmission power. The
results suggest it may be possible to use this method to increase the SNR
while reducing transmission power, by the addition of nodes. As wireless
networks are battery powered, any reduction in power use is an extension
of the network lifetime.

Networks of sensors are becoming increasingly prevalent in our soci-
ety. We expect this trend to extend to public sensor networks, where a
central body provides a sensor network for the public use. A user is able
to insert an instruction at any point and have the network calculate and
return the solution. A network such as this will necessarily be unlimited
in size and depend on distributed processing. The results presented in this

thesis make a small contribution towards the reality of such networks.
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Appendix A

A.1 Hermitian Matrix Has Real Eigenvalues

Let A € CV*Y be hermitian, so A = A”. Let x € C" be the eigenvector of

A associated with the eigenvalue A. Then,

Ax = Mz
(Az)f 2z = (\x)" 2
cH Az = Nty
Meflg = Nt g

A=A (A1)

A.2 Parseval’s Theorem

Energy must be preserved across domains. Parseval provided us with a re-
lationship between energy in the time domain and energy in the frequency
domain. Let z[n],n € [1,..., N|] be the time domain signal, and X k] be the
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Fourier transform of z[n|, then

= |X[K]* = X" [k]X K]
N—-1
x* 6]271']“37"0/1\7 Z —]27rkm/N
n=0
N—-1 N—-1
— * ZE 6]27rkn m)/N
n=0 m:O
N-1 N—-1N-1 N-1
= > | X[K])* = o [m]e2mkn=m)/N
k=0 k=0 n=0 m:O
N—-1 N—-1 N—-1
= x” x[m gl 2rk(n=—m)/N (A.2)
n=0 m:0 k:O

The summation on the right hand side is a geometric series,

=

— j2rk(n—m)/N ej?ﬂk(n—m) -1
(&

ei2rk(n—m)/N _ 1

=
Il

0

N n=m
= (A.3)
0 n#m
SO
N-1 1 M-l
| X[K]* = i > Jan])*. (A4)
k=0 n=0

Note that this is the convention that Matlab uses and it is also possible to
achieve the preservation of energy by other placement of the scaling.
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