
Intelligent Traffic

Classification for Detecting

DDoS Attacks using

SDN/OpenFlow

by

Jarrod N. Bakker

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Master of Engineering

in Network Engineering.

Victoria University of Wellington

2017

Abstract

Distributed denial of service (DDoS) attacks utilise many attacking entities

to prevent legitimate use of a resource via consumption. Detecting these

attacks is often difficult when using a traditional networking paradigm

as network information and control are not centralised. Software-Defined

Networking is a recent paradigm that centralises network control, thus

improving the ability to gather network information. Traffic classifica-

tion techniques can leverage the gathered data to detect DDoS attacks.

This thesis utilises nmeta2, a SDN-based traffic classification architecture,

to study the effectiveness of machine learning methods to detect DDoS

attacks. These methods are evaluated on a physical network testbed to

demonstrate their application during a DDoS attack scenario.

ii

Acknowledgments

I dedicate this work to my parents, Michael and Carol Bakker. This thesis

not only embodies countless hours of research and study, it is symbolic of

the encouragement and support that they have provided throughout my

life.

I thank my partner Molly MacKenzie. You listened and supported me

throughout the highs and lows of this research. You kept me sane, even

though it may not have appeared that way.

I thank my supervisor, Professor Winston Seah, for his guidance and

wisdom within the domain of engineering research. I also thank Dr Bryan

Ng for selflessly offering advice when asked. Matthew Hayes, whose orig-

inal research I expanded upon with this thesis, also provided insight into

the principles and context behind the larger nmeta project.

To my friends and fellow students, Jordan Ansell and Alexander Deng,

I valued your willingness to listen to my ideas, even when you were ap-

proached at the most inconvenient of times.

Finally, I would like to thank InternetNZ for their financial support of

this research.

iii

iv

Contents

1 Introduction 1

1.1 Research Problem . 4

1.2 Research Objectives . 5

1.3 Research Tasks . 6

1.4 Contributions . 6

1.5 Thesis Structure . 7

2 Background and Related Work 9

2.1 Classification . 9

2.1.1 Classification Approaches 10

2.1.2 Classifier Training . 10

2.1.3 Binary and Multiclass Classification 11

2.1.4 Binary Classifier Performance 11

2.2 Traffic Classification Techniques 13

2.2.1 Static . 14

2.2.2 Identity . 14

2.2.3 Payload Inspection . 15

2.2.4 Machine Learning . 15

2.3 DDoS Attack Detection . 16

2.3.1 DDoS Attack Description 16

2.3.2 Detection Approaches 17

2.4 Related Work . 19

2.5 Chapter Summary . 23

v

vi CONTENTS

3 Classifier Selection 25

3.1 Statistical Classification Methods 25

3.1.1 Linear Discriminant Analysis 26

3.1.2 Quadratic Discriminant Analysis 27

3.1.3 Support Vector Machine 27

3.1.4 k-Nearest Neighbours 29

3.1.5 Naive Bayes . 30

3.1.6 Decision Tree . 31

3.1.7 Random Forest . 32

3.1.8 Classification Method Summary 33

3.2 Classification Method Implementation 35

3.2.1 Scikit-learn . 35

3.2.2 Classification Method Parameters 36

3.3 Datasets . 38

3.4 Initial Classifier Selection Experiment 39

3.4.1 First Generation Classifiers 39

3.4.2 Experimental Setup . 41

3.4.3 Results and Discussion 43

3.4.4 Method and Feature Set Vetting 47

3.5 Second Classifier Selection Experiment 49

3.5.1 Second Generation Classifiers 49

3.5.2 Experimental Setup . 51

3.5.3 Results and Discussion 52

3.5.4 Final Classifier Selection 55

3.6 Chapter Summary . 58

4 nmeta2 Classifier Integration 59

4.1 Key nmeta2 System Components 60

4.1.1 nmeta2 Components 61

4.1.2 nmeta2dpae Components 61

4.2 Modifications to nmeta2 . 62

CONTENTS vii

4.2.1 Flow Treatment Advice Support 62

4.2.2 Flow Suppression . 63

4.3 Modifications to nmeta2 DPAE 64

4.3.1 Flow Information Gathering 64

4.3.2 Classifier Integration 67

4.4 Chapter Summary . 69

5 Evaluation 71

5.1 Evaluation Method . 72

5.1.1 Network Environment 72

5.1.2 Classifier-DPAE Scenarios 74

5.1.3 Cross-validation . 74

5.1.4 ISCX Dataset Replay 76

5.1.5 Intended Measurements 78

5.1.6 Data Pre-processing 79

5.1.7 Measurement Tools . 80

5.1.8 nmeta2 System Configuration 82

5.2 Measurement Hypotheses . 84

5.2.1 Classifier Prediction Performance 84

5.2.2 Classifier Execution Time Performance 85

5.3 Classifier Prediction Performance 86

5.3.1 Prediction Results . 86

5.3.2 Prediction Accuracy 87

5.3.3 Examining the Collected Results 89

5.3.4 Classifier Prediction Performance Summary 90

5.4 Classifier Execution Performance 90

5.4.1 Classifier Initialisation Time 91

5.4.2 Packet Processing Time 92

5.4.3 Number of Predictions 93

5.4.4 Classifier Execution Performance Summary 96

5.5 DPAE Host Performance . 97

viii CONTENTS

5.5.1 DPAE Host NIC Impact 97

5.5.2 DPAE Host Performance Summary 112

5.6 Final Results Discussion . 112

5.6.1 General Remarks . 112

5.6.2 Best Performing Classifier 113

5.6.3 DPAE Suitability . 114

5.6.4 Future Optimisations 115

5.7 Chapter Summary . 116

6 Conclusion 117

6.1 Final Conclusions and Discussion 117

6.2 Future Work . 119

A Problem Space Investigation for Features 129

B Initial Classifier Selection Experiment Results 133

B.1 LDA . 134

B.2 QDA . 134

B.3 SVM (RBF kernel) . 135

B.4 k-Nearest Neighbours . 135

B.5 Naive Bayes . 136

B.6 Decision Tree . 136

B.7 Random Forest . 137

C Second Classifier Selection Experiment Results 139

C.1 QDA . 140

C.2 SVM (RBF kernel) . 140

C.3 k-Nearest Neighbours . 141

C.4 Naive Bayes . 141

C.5 Random Forest . 142

Chapter 1

Introduction

Distributed denial of service (DDoS) attacks utilise many attacking entities

to prevent legitimate use of a resource via consumption [1]. The motiva-

tions for carrying out DDoS attacks vary but the main motivating factor

is to cause damage to the victim. However, this may also be accompa-

ined by personal reasons, prestige, material gain or political reasons [1].

The disruptive nature of DDoS attacks means that the infrastructure used

to forward the malicious traffic is often affected as well. Therefore DDoS

attacks often result in collateral damage.

The debilitating potential of DDoS attacks has increased with the ad-

vent of the Internet of things (IoT). IoT has been a disruptive agent within

the domain of computer networks as objects such as fridges and security

cameras are being given the capability to connect to the Internet. This

has unfortunately drawn the attention of malicious parties. The world

has been repeatedly shown that IoT devices are vulnerable to being used

as a platform to perform distributed denial of service (DDoS) attacks. A

DDoS attack utilises many attacking entities to prevent legitimate use of a

resource via consumption [1].

IoT-driven DDoS attacks became notorious in 2016 with the advent of

the Mirai botnet. KrebsOnSecurity became the target of one of the largest

ever DDoS attacks on September 20, 2016 [2]. The attack flooded the web-

1

2 CHAPTER 1. INTRODUCTION

site with around 620 Gbps of traffic. Akamai, who provides KrebsOnSe-

curity with services to mitigate such attacks, stated that the September 20

attack surpassed a 363 Gbps DDoS attack which they had seen earlier that

year.

The source of the attack on KrebsOnSecurity was initially unknown.

However it was later found that the source was the Mirai botnet. The size

of the Mirai botnet was estimated to be around 500000 to 550000 devices at

the time [3]. We live in a reality where hundreds of thousands of devices

can be recruited to perform massive attacks.

Mirkovic and Reiher attribute the difficultly in detecting and mitigat-

ing DDoS attacks to the lack of collocation in regards to network intel-

ligence and resources [1]. They go on to say that this deficit makes the

enforcement of global security policies challenging as networks are run in-

dependently of one another. Two years after their research was published,

Casado et al. presented SANE [4]. SANE embodied a networking architec-

ture that promised to increase visibility and control in networks by sepa-

rating the control and data planes in network forwarding elements such

as switches and routers. Further development in this area led to Open-

Flow [5].

OpenFlow is an implementation of a networking architecture known

as Software-Defined Networking (SDN). SDN is characterised by the sep-

aration of the control and data planes. The control-plane is responsible

for deciding how traffic is forwarded through a network and is typically

realised by a logically centralised controller. The data-plane is responsi-

ble for forwarding network traffic, specifically packets, between devices

by following the behaviour specified by the controller. OpenFlow man-

ages network traffic through the definition of flow table entries, which are

stored in a switch’s flow table. These entries describe how packets with

matching characteristics should be handled by a switch [6].

The role of the controller is to manage the behaviour of a network.

In OpenFlow, the switches within the network are given instructions on

3

how to forward packets via flow table entries and they can provide the

controller with information as required. The centralisation of intelligence

means that a device such as a switch can be enriched with information that

has been gathered from other switches. The Open Networking Founda-

tion (ONF) augment the separated control and data planes with a third, as

seen in Figure 1.1. This model contains a higher level where business ap-

plications communicate with network services, the network services then

enforce the desired behaviours on the infrastructure.

Figure 1.1: The ONF separate the SDN approach into three layers. Image

sourced from [7].

The ability to gather information from network forwarding elements

into a centralised location makes SDN a candidate for traffic classification.

Traffic classification is a process whereby network traffic is classified to

4 CHAPTER 1. INTRODUCTION

help with the management of: network resources, network security and

quality of service (QoS) [8–11]. By determining the nature of traffic within

a network, network operators can better respond to extreme changes in

traffic behaviour.

SDN and OpenFlow have been used in conjunction with traffic clas-

sification techniques in the past to detect DDoS attacks [12–16]. Traffic

classification and DDoS attack detection may seem like different topics at

first but they share a common trait: the determination of the nature of

traffic. As such, DDoS attack detection can be viewed as a special case of

traffic classification. Earlier research has not used scalable approaches for

detecting attacks [9, 12, 15, 17] and has relied on anomaly detection tech-

niques [15–17] that have a tendency to misclassify normal traffic as mali-

cious [1]. Recent research has shown how scalable traffic classification can

be performed with SDN but has not focussed on improving classification

performance by exploring alternative techniques and their effectiveness.

1.1 Research Problem

There is a process involved in applying classification techniques. The

problem at hand must be broken down and understood, typically ask-

ing the following questions: What traffic patterns or artefacts are being

classified? What features do they exhibit? Do these features make the

traffic artefacts distinguishable from background traffic? By addressing

these questions, a classifier can be developed and applied for the desired

scenario.

Classification is a well understood domain within mathematics and

computer science. Tools such as Scikit-learn1, a machine learning package

for the Python language, make this domain accessible for programmers

but they do not typically focus on applying classification methods within

the domain of network traffic classification. This can make the process of

1Scikit-learn homepage: http://scikit-learn.org/stable/

1.2. RESEARCH OBJECTIVES 5

applying classification techniques seem daunting for those who are new

to network traffic classification. Understanding the classifier selection pro-

cess is key to addressing some of the issues found with current approaches

to DDoS attack detection. Chapter 2 explores classifier performance statis-

tics such as detection rate and false positive rate in an accessible manner.

A networking context means that the magnitudes of classifier perfor-

mance statistics such as true and false positive rates (both of which are

covered in Chapter 2) must be interpreted differently. For example, a net-

work traffic classifier designed to detect DDoS attacks should avoid mis-

classifying non-malicious traffic. Such instances result in innocent flows

being flagged which is unacceptable behaviour in modern networks. This

makes DDoS attack detection intolerant to misclassifications.

Traffic classifiers also need to scale with fluctuating volumes of net-

work traffic. Existing work was leveraged to address this need as the

purpose of this research was not to assess the scalability of traffic classi-

fication. This problem has been explored by Hayes [18], who leveraged

SDN to present a scalable traffic classification architecture called nmeta2.

This research leveraged the flexibility offered by nmeta2 to support user

defined (also known as custom) classifiers.

This thesis presents a study into the application of intelligent classifi-

cation techniques using a SDN/OpenFlow-based traffic classifier for secu-

rity applications. A selection of classifiers were evaluated on a physical

network testbed using a DDoS attack dataset to determine their effective-

ness.

1.2 Research Objectives

The research objectives of this thesis were to:

1. Propose a methodology for selecting statistical classifiers to detect

DDoS attacks.

6 CHAPTER 1. INTRODUCTION

2. Use SDN to determine the effectiveness of statistical classifiers within

a network environment.

1.3 Research Tasks

The following tasks needed to be met to address the research problem and

the research objectives:

1. Survey traffic classification approaches and related work within the

domain of DDoS attack detection.

2. Determine a selection of classification methods for detecting DDoS

attack traffic in an off-line environment; i.e. not connected to a

live/evaluation network.

3. Integrate the selected classifiers with the nmeta2 system.

4. Evaluate the selected classifiers on a network testbed environment

(on-line).

1.4 Contributions

The contributions of this thesis are aimed at the field of network traffic

classification within SDN. Given the increased interest in using machine

learning methods in various domains of science and engineering, it was

important that the information within this thesis be accessible to network

engineers who may have little to no experience with machine learning.

The contributions can be broken down into the following areas:

1. An investigation into the application of statistical classifiers for DDoS

attack detection.

1.5. THESIS STRUCTURE 7

2. An evaluation method that considers various aspects of statistical

classifiers in networks such as classifier prediction performance, clas-

sifier execution time performance and the effect a classifier has on

network traffic.

3. Evaluation results that have been obtained from a physical network

testbed as opposed to a virtualised environment. Virtualised envi-

ronments tend to be more popular within SDN research that con-

cerns traffic classification [9, 12, 14, 16–19].

1.5 Thesis Structure

The thesis has the following structure. Chapter 2 provides necessary back-

ground information and discusses related work. Chapter 3 presents a

study into various statistical classification methods and examines their ef-

fectiveness for deployment on a physical network testbed. Chapter 4 ex-

plains the modifications that were made to the nmeta2 system to support

statistical classifiers. Chapter 5 determines the effectiveness of statistical

classification within an SDN/OpenFlow environment by evaluating a se-

lection of classifiers on a physical network testbed. Chapter 6 closes the

main body of the thesis by presenting the final conclusions and proposing

future work. The attached appendices provide statistical metadata on the

dataset that was used and extra results from the experiments in Chapter 3.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

The detection of DDoS attacks can be approached as a classification prob-

lem. Classification is a well understood domain that has been leveraged

within networks to perform traffic classification. This chapter provides

background information on traffic classification, DDoS attack detection

and related work within SDN.

2.1 Classification

Classification is the procedure of assigning pre-defined classes to a contin-

uing set of unseen cases based on observed attributes or features [20]. A

class is a label that describes an object within a context. Trees for instance

may be classed as being deciduous or evergreen. A case refers to an object

(a tree in the previous example) whose class is currently known, this is

in contrast to an unseen case whose class is not currently known. The at-

tributes or features of an object are used to determine its class. This section

covers some of the language and core topics within the domain of classifi-

cation. This language will be used throughout this thesis.

9

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Classification Approaches

Michie et al. describe three types of classification: statistical, machine

learning and neural networks [20]. Statistical classification uses an un-

derlying probability model to calculate the probability of a case belonging

to a class. Given a case, its class can be determined through knowledge of

its attributes. Background knowledge can be used to inform the classifica-

tion process and human intervention can be used to modify the variables

as needed.

Machine learning uses logical or binary operations to perform an auto-

matic computation. The decision process followed by a machine learning

approach can often be followed by a human. This allows observers to gain

insight into the decision process. Background knowledge may be used

in a similar fashion to statistical approaches, but human intervention is

unorthodox unlike in statistical approaches.

Neural networks combine aspects of statistical and machine learning

approaches. A neural network is constructed from interconnected nodes,

where each node produces a non-linear function of its input. A node’s

input may come from other nodes or from raw data. Neural networks

have been compared to the behaviour of networks of neurons within the

brain.

2.1.2 Classifier Training

A classifier uses a classification method and a set of features to form a

model by training on data. We will refer to a classifier as a combination of

a classification method and a set of features because of this relationship.

Training (or learning) is a process where a method takes data as an input to

generate a model. This model can then be used to classify cases by making

predictions. Several learning approaches exist but two will be described

for simplicity.

Supervised learning is an approach where training data has known

2.1. CLASSIFICATION 11

classes (also referred to as labels [20–22]. Cases are then assigned a class

from the training data when a prediction is made. Unsupervised learn-

ing assumes that the labels for the classes are unknown and methods that

use this approach cluster cases together based on some measure of simi-

larity [11, 21, 22]. The use of unsupervised methods is often referred to as

clustering as a result.

It is difficult to difficult if supervised or unsupervised learning is bet-

ter than the other. Methods that utilise unsupervised learning infer classes

when clustering [20]. The clusters themselves have no label, therefore the

types of objects within a system cannot be easily known. Supervised learn-

ing however utilises labelled data. The ground truth offered by labelled

datasets has demonstrated use within the area of anomaly detection, es-

pecially when evaluating detection methods [23]. As such, the classifiers

referred to in the rest of this thesis use supervised learning methods.

2.1.3 Binary and Multiclass Classification

Classifiers assign a class from at least two options. Classifiers that pre-

dict a class based on two options are known as binary classifiers. Multi-

class classifiers have the capability to predict a class based on more than

two options. This is not to say that multiclass classifiers are better than

binary classifiers. The nature of the classification problem defines how

many classes are necessary.

2.1.4 Binary Classifier Performance

The predictions made by classifiers can be collected to form a suite of per-

formance statistics. These statistics provide insight into how successfully

a classifier is able to classify cases. This must be done in reference to a set

of testing data where the true class of each case is known. Therefore the

actual and predicted cases can be compared.

The preliminary data needed before the statistics can be calculated will

12 CHAPTER 2. BACKGROUND AND RELATED WORK

be explained first. Following this, the formulae for the statistics will be

provided alongside a short description [24]. It is important to note that

the statistics provided below refer to binary classifiers as the scope of the

classification problem fits within the domain. This will be justified in Sec-

tion 2.3. Two classes, A and A′, will be used below where A represents a

positive prediction and A′ represents a negative prediction.

Predicted Class vs. Actual Class

• True Positive: The actual class of a case was A and the predicted class

was A. This represents a successful prediction.

• True Negative: The actual class of a case was A′ and the predicted

class was A′. This represents a successful prediction.

• False Positive: The actual class of a case was A′ and the predicted

class was A. This represents an unsuccessful prediction.

• False Negative: The actual class of a case was A and the predicted

class was A′. This represents an unsuccessful prediction.

Performance Statistics

The true positive rate (or recall) is the ratio of successful predictions made

to cases of class A. This will be referred to as the detection rate (DR)

throughout the rest of the thesis as positive predictions will concern the

detection of malicious traffic. The formula is shown in equation 2.1:

DR =
TP

TP + FN
. (2.1)

The false positive rate (FPR) is the ratio of unsuccessful predictions

made to cases of class A′. The formula is shown in equation 2.2:

FPR =
FP

TN + FP
. (2.2)

2.2. TRAFFIC CLASSIFICATION TECHNIQUES 13

Accuracy is the ratio of successful predictions made to both classes.

The formula is shown in equation 2.3:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.3)

Precision (or positive predictive value) is the ratio of correct predictions

made for class A. The formula is shown in equation 2.4:

Precision =
TP

TP + FP
. (2.4)

The f-measure statistic (or F1 score) considers both the DR and preci-

sion of a classifier to measure its quality. The forumla is shown in equation

2.5:

f -measure = 2×
DR× Precision

DR + Precision
. (2.5)

The performance statistics provided above will be used and referenced

throughout this thesis. Note that other performance statistics exist within

the domain of classification. The selection of performance statistics above

sufficed for this research.

2.2 Traffic Classification Techniques

Traffic classification concerns the application of classification techniques

on network traffic. The goal of traffic classification is to improve the man-

agement of: network resources, network security and QoS [8–11]. Traf-

fic classification mechanisms classify traffic by collecting data on packets,

unidirectional flows or bidirectional flows as information passes through

a network.

A unidirectional flow consists of traffic sent from one host to another.

It is defined using a network five-tuple (or just simply five-tuple) which

constist of a source and destination IP address, a transport layer protocol,

and source and destination port numbers (if applicable). A bidirectional

14 CHAPTER 2. BACKGROUND AND RELATED WORK

flow extends the notion of a unidirectional flow by considering the traffic

sent in both directions between hosts.

Techniques used to classify traffic include static classification, identity

classification, deep packet inspection (DPI) and machine learning. These

techniques do not necessarily follow the definition of classification where

a learning process is used. Instead traffic classification aims to identify the

class of traffic using the methods below.

2.2.1 Static

Static classification uses information contained within protocol headers

to classify traffic. A subset of this is known as port-based classification,

where TCP and UDP port numbers are used to identify applications [22].

This technique however is not resilient as some applications used dynam-

ically allocated ports or ports that are not registered with the Internet As-

signed Numbers Authority (IANA). This technique is often the fastest and

simplist traffic classification technique [25].

2.2.2 Identity

Identity classification utilises techniques to determine the identity of a de-

vice so that a specific policy can be applied to the identity [26]. Identity

is loosely defined within the context of network traffic. It could refer to

identities obtained from MAC addresses, 802.1X or Active Directory for in-

stance. Identity classification techniques that utilise 802.1X or Active Di-

rectory require identities to be verified before the respective policy can be

applied. Communication with an external service is necessary to verify

the identity as a result. This can increase classification time especially if a

person is required to provide authentication credentials.

2.2. TRAFFIC CLASSIFICATION TECHNIQUES 15

2.2.3 Payload Inspection

Payload inspection techniques look beyond the network five-tuple and de-

tails in other packet headers to determine the class of a packet or flow.

Deep packet inspection (DPI) is a popular approach as it typically pro-

vides the greatest accuracy. This accuracy comes at a high cost however as

packet payloads must be loaded into memory before being processed.

Alcock and Nelson proposed libprotoident, a mechanism that performs

payload inspection by only reading the first four bytes of a packet’s pay-

load [27]. Their research suggests that a high level of accuracy can be

achieved even when the amount of information used to classify packets

is limited. Their experiments showed that libprotoident was successful in

classifying twenty-five of the twenty-eight applications used for testing.

The second most accurate classifier, the DPI mechanism nDPI, successfully

classified twenty-three applications in comparison.

Payload inspection techniques, regardless of the depth of inspection,

must be kept up-to-date. Extensive knowledge of applications and ser-

vices is required as updates can change the semantics of their respective

flows. Furthermore, proprietary protocols and encryption can essentially

defeat efforts to classify traffic as the data within each packet becomes ob-

fuscated [22].

2.2.4 Machine Learning

Machine learning approaches utilise a learning process using training data.

The notion of training was covered earlier in Section 2.1.2 within the con-

text of classification. This similarity with classification means that statisti-

cal classification techniques can be thought of a particular kind of machine

learning approach.

The popularity of machine learning in recent years has seen the cou-

pling of flow statistics with machine learning approaches to classify net-

work traffic [11]. This approach is not new despite its recent interest. It

16 CHAPTER 2. BACKGROUND AND RELATED WORK

has been seen in published work to address intrusion detection as early as

1994 [28].

Machine learning has significant advantages over static and payload

inspection based techniques. The development of new approaches has

been motivated by limitations in previous efforts. For instance, static clas-

sifiers are ineffective as they assume that applications use known port

numbers that do not change. Payload inspection address this by exam-

ining the payload of each packet, encryption however defeats this ap-

proach [11]. Machine learning is the next step in the evolution of traffic

classification as it looks beyond these features.

2.3 DDoS Attack Detection

DDoS attacks were defined in Chapter 1 as an attempt to prevent legiti-

mate use of a resource by using numerous attacking entities to consume

that available resource [1]. The disruption of resources can be debilitating

to organisations, as customers expect to use reliable services. Furthermore,

the ease at which an attack can be launched at a target makes the detection

of DDoS attacks an important topic.

2.3.1 DDoS Attack Description

DDoS attacks are made possible by the Internet. Forwarding elements

within the Internet forward packets towards their destination with little to

no consideration into the behaviour of the sender or the receiver. For this

reason Mirkovic and Reiher make the observation that “the Internet [was]

not designed to police traffic” [1].

Mirkovic and Reiher also presented a taxonomy on the forms of DDoS

attacks. The most simple form of DDoS attack is arguably a flooding at-

tack. A flooding attack is characterised by a victim being sent tremendous

volumes of traffic to consume resources. The second type requires the

2.3. DDOS ATTACK DETECTION 17

attacking party to send malformed packets to machines that cause appli-

cations to freeze or reboot. The third type requires the attacking party to

gain privileged access to devices within the victim’s network. These de-

vices are then used against the victim until the target resources become

unavailable.

DDoS attacks can be described and modelled mathematically. Xiang

and Li presented a model based on the interactions between the attack-

ing and defending parties. Keeping within the scope of this thesis, they

defined a DDoS attack as a battle of resources. An attacking party is suc-

cessful if they can prevent legitimate resource use and the defender is suc-

cessful if they can filter enough attack traffic such that legitimate resource

use is maintained [29].

2.3.2 Detection Approaches

Mirkovic and Reiher’s taxonomy on DDoS attacks also identified three ap-

proaches to detecting DDoS attacks. These were: pattern detection, third-

party detection and anomaly detection.

Pattern Detection

Pattern detection uses principles similar to virus detection mechanisms.

Signatures of known attacks are used to identify DDoS attacks as traffic

passes through a network. Static classification is an example of pattern de-

tection where a signature contains a combination of IP addresses and port

numbers. Snort1 is an example of an intrusion detection system (IDS) that

uses signatures to detect malicious traffic. Pattern detection approaches

are not flexible as they must be updated regularly to learn new attacks.

1Snort homepage: https://www.snort.org/

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Third-party Detection

Third-party detection relies on external parties to detect and inform net-

works of the occurrence of an attack. A trace-back mechanism is an exam-

ple of a third-party detection approach that aims to identify the origin of a

DDoS attack [30]. The disadvantage of relying on a third-party however is

that the detection signal must travel to the victim network. As well as in-

curring transmission delay, the signal must make it to the victim network

which may not be possible during a DDoS attack. Alternatively, a separate

network may be used for signalling but this comes at a greater monetary

cost to the victim.

Anomaly Detection

Anomaly detection requires the creation of a model of normal traffic be-

haviour. Flows are compared to the model as traffic passes through a

network. Formally speaking, anomalies are patterns in data that do not

conform to expected patterns of behaviour [21]. Such patterns manifest

themselves as outliers and they can be used to determine the state of a

system or entity. Anomaly detection can also be used in other domains to

find faulty equipment in critical systems.

It is important to distinguish anomaly detection from two similar pro-

cesses that handle outliers in data: noise removal and novelty detection.

Noise removal is the process of removing unwanted data points before

data analysis is performed. Novelty detection aims to identify previously

unobserved behaviour, which is then typically included in the model of

“normal” traffic behaviour.

Anomaly detection approaches tend to excel in detecting previous un-

known attacks. Despite this, they have a tendency to misclassify non-

malicious traffic (false positives). This can inconvenient to legitimate users

of a resource as they may be flagged and treated as an attacking party. This

can be attributed to the absence of knowledge that anomaly detections al-

2.4. RELATED WORK 19

gorithms have regarding malicious traffic. Anomaly detection algorithms

are only designed to identify cases that fall outside the bounds of normal

behaviour. Unlike statistical classifiers, for instance, they have no knowl-

edge of the characteristics of malicious traffic.

2.4 Related Work

The logically centralised control-plane offered by SDN has made it a pop-

ular platform for detecting DDoS attacks and performing traffic classifica-

tion in general. This shows its versatility within the contexts of network

management, security and QoS. Table 2.1 presents a selection of previous

research concerning DDoS attack detection and traffic classification using

SDN. These examples are described in more detail below.

Braga et al. [12] address the difficulties of distinguishing legitimate traf-

fic from DDoS attack traffic. Their solution can be broken down into two

parts: the utilisation of the NOX controller and a Self-Organising Maps

(SOM) algorithm. NOX was used to provide a programmatic interface to

handle the collection of switch information. Therefore the OpenFlow pro-

tocol was only used to collect statistics on flow table entries. SOM is an

unsupervised artificial neural network. An advantage of SOM is its abil-

ity to transform n-dimensional data into a one or two-dimensional map or

grid to use in the neuron selection process. This approach was evaluated

in a virtualised environment.

Mehdi et al. [17] investigated three anomaly detection approaches within

an SDN environment. The methods, rate-limiting, entropy and NETAD,

were run on the controller. The anomalies used during their evaluation

were a TCP portscan, a TCP SYN-flood and a UDP flood. The entropy and

NETAD methods did not perform as well as the rate-limiting method. The

cost of having a 100% DR was having a FPR of at least 50% for those two

methods. This approach was evaluated in a virtualised environment.

Qian et al. [10] classify HTTP traffic within a 3G mobile network data-

20 CHAPTER 2. BACKGROUND AND RELATED WORK

plane. Their solution is unique compared to previous work as they utilise

signatures based on HTTP headers instead of just categories based on port

numbers. As with other solutions, this classification was performed on the

controller. The evaluation environment was not specified.

Ng et al. [9] developed a SDN traffic classification platform called nmeta.

This was not developed to classify a particular kind of traffic. Instead, it

allows the network operator to define their own classifiers to apply to traf-

fic. Traffic can be classified using static, identity or machine learning tech-

niques. This solution classifies traffic on the OpenFlow controller. How-

ever their results revealed that this approach does not scale. This approach

was evaluated in a virtualised environment.

Hayes [18] developed nmeta further to address the performance and

scalability concerns that were identified. This resulted in a distributed

platform called nmeta2. This approach differs from its predecessor as traf-

fic is no longer classified on the controller. A separate application called

the Data Plane Auxiliary Engine (DPAE) is forwarded traffic from switches

to perform classification. Results are forwarded to the controller via a

dedicated connection over the control-plane. Hayes found that this dis-

tributed approach does scale. Similarly to nmeta, traffic can be classified

using static, identity or machine learning techniques. Unlike nmeta, it sup-

ports payload inspection techniques. This approach was evaluated in a

virtualised environment.

Lim et al. [14] presented a detection architecture where the DDoS de-

tection mechanism was deployed on the victim server. Their mechanism

has the ability to communicate with the controller via a secure channel so

that defensive measures can be taken. Details on the detection mechanism

itself were not provided. This approach was evaluated in a virtualised

environment.

Giotis et al. [15] presented a controller-based DDoS attack detection

mechanism that utilises sFlow to collect flow statistics from switches. They

found that the use of sFlow resulted in significantly less traffic being sent

2.4. RELATED WORK 21

over the control-plane compared to a native OpenFlow approach where

the controller makes flow-statistics requests to a switch. The mechanism

was configured to gather data from switches every 30 seconds, which they

claim is representative of nearly real-time detection. The detection mech-

anism was evaluated using entropy and TRW-CB separately. When using

entropy, the DR reached 100% but the FPR ranged from 23% to 39.3%. The

high FPR is characteristic of anomaly detection approaches. This approach

was evaluated on a physical network testbed.

Wang et al. [16] implemented an entropy-based DDoS attack detection

mechanism by modifying the Open vSwitch software switch. The Open-

Flow table pipeline was modified to count the number of packets received

within a predefined time period. Their choice to detect attacks closer to the

data-plane was motivated by the desire to reduce overheads introduced

by classifying traffic on the controller. This limited the complexity of their

detection algorithm as they were constrained by the processing capabil-

ities of a switch. As such, they used an entropy-based algorithm which

they claim is computationally lightweight. Their entropy-based detection

algorithm resulted in a DR of 100% and FPR of 25%. This approach was

evaluated in a virtualised environment.

Lin et al. [19] used an SDN traffic classification architecture to detect

SYN flooding and web application attacks. Compared to other proposed

solutions, this solution moves intelligence closer to the data plane. Exten-

sions to the OpenFlow protocol were made to facilitate a two tier archi-

tecture. At tier one, a classification module on a switch inspects TCP/IP

and application headers. Failing a classification at tier one, traffic is sent

to tier two where it is subject to DPI on a network function virtualisa-

tion (NFV) module. Their work found that separating the classification

function into a NFV module reduced the amount of traffic sent from the

data-plane to the control-plane by 99.95% when classifying HTTP packets

with a layer 7 load balancer. The published work only assessed the per-

formance overheads on the controller and did not consider the accuracy

22 CHAPTER 2. BACKGROUND AND RELATED WORK

of the distributed classification mechanism. This approach was evaluated

in a virtualised environment.

The related work explored above demonstrates variety in several ways.

First, SDN/OpenFlow has been combined with classification techniques

to classify network in various scenarios. Although the use-case of traffic

classification in this thesis is DDoS attacks, it is important to show that

SDN traffic classification can be used in other scenarios.

The use of anomaly detection techniques such as information entropy

are popular choices for detecting DDoS attacks. Mechanisms that used

this however suffered from a high FPR. False positives are near impossi-

ble to avoid but they cannot be ignored. The law of truly large numbers

means that even a FPR of 5%, which may be considered to be small in

other domains, can result in large amounts of traffic being misclassified.

Networks are environments where the total number of flows increase over

time. Therefore new methods should utilise techniques such as machine

learning that balance both DR and FPR.

Classification mechanisms traditionally operate on the controller. More

recent research has seen this task be moved closer to the switches in the

data-plane. Lin et al. suggest that the processing overheads imposed by

classifiers and detection algorithms on a controller can be reliably removed

by moving the function to another device [19]. This move is well justified

as it has been shown to be scalable as well as necessary.

SDN-based traffic classification platforms are typically evaluated in

virtualised environments. There is room for concern that such an ap-

proach does not accurately capture how a system would work in the real

world despite being the convenience of the environment. Future research

needs to utilise hardware as such experiences can bring about events that

cannot be easily represented in software.

2.5. CHAPTER SUMMARY 23

Author Year Traffic Type Location Method Environment

Braga et al. [12] 2010 DDoS Controller SOM Virtualised

Mehdi et al. [17] 2011 Anomaly Controller Rate-limiting,

Entropy,

NETAD

Virtualised

Qian et al. [10] 2013 HTTP Controller BLINC Not stated

Ng et al. [9] 2014 Any Controller Static

(primarily)

Virtualised

Lim et al. [14] 2014 DDoS At victim

server

Not stated Virtualised

Giotis et al. [15] 2014 DDoS Controller Entropy and

TRW-CB

Physical

Wang et al. [16] 2015 DDoS OpenFlow

edge switch

Entropy Virtualised

Lin et al. [19] 2015 SYN Flood &

Web attacks

Switch and

NFV

Packet header

analysis

Virtualised

Hayes [18] 2016 Any DPAE Static

(primarily)

Virtualised

Table 2.1: Table illustrating contributions of previous research. Location

refers to where the classification of traffic occurs and method refers to the

method used to classify traffic.

2.5 Chapter Summary

This chapter covered background material within the domain of traffic

classification, explored approaches for detecting DDoS attacks and showed

how SDN has been used as a classification platform specific to detecting

DDoS attacks. The language specific to classification will be throughout

the rest of this thesis.

This research utilises nmeta2 to perform statistical classification on traf-

fic to detect DDoS attacks. The nmeta2 platform demonstrates scalability

by classifying traffic on the data-plane. Furthermore, it grants flexibility

to network operators by allowing custom classifiers to be integrated with

the DPAE. Statistical classification is preferred over anomaly detection ap-

24 CHAPTER 2. BACKGROUND AND RELATED WORK

proaches as the latter has been shown to misclassify traffic significantly.

The remaining chapters will: demonstrate how classifiers were chosen

to be evaluated on a physical network testbed, provide details on how

the chosen classifiers were integrated with nmeta2, evaluate the chosen

classifiers using the ISCX 2012 DDoS dataset on hardware, and present

the final conclusions and future work.

Chapter 3

Classifier Selection

This chapter presents an investigation for selecting three statistical clas-

sifiers capable of detecting DDoS attacks for deployment on a physical

network testbed. The investigation starts with the exploration of various

statistical classification methods. These are then combined with network

traffic features to form classifiers and are tested against a DDoS attack

dataset provided by the Information Security Centre of Excellence (ISCX)

at the University of New Brunswick (UNB) in two off-line experiments to

determine their effectiveness. As defined earlier, a classifier refers to the

combination of a classification method and a set of features.

3.1 Statistical Classification Methods

Chapter 2 presented a case for using supervised methods (classification)

over unsupervised methods (clustering). This section describes seven dif-

ferent supervised methods. Attributes that distinguish the methods from

one another will be mentioned without exploring the theory behind each

method.

The methods that are described were not chosen through a well-defined

selection process. They were chosen as they are well-known and estab-

lished methods that have been used to solve classification problems inside

25

26 CHAPTER 3. CLASSIFIER SELECTION

and outside the domain of networking. This mirrors the purpose of this

thesis: to apply existing methods to a SDN environment, not to explore

and present a new method.

The purpose of exploring the distinguishing attributes of each classi-

fier was to aid the preliminary classifier selection process. Knowledge of

such attributes was used to explain the results of the off-line classifica-

tion experiments and select three classifiers to be deployed on a physical

network testbed for the on-line classification experiments. Details of the

on-line experiments will be covered in Chapter 5.

The use of n below denotes the number of features used by a classifier.

3.1.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) generates a linear hyperplane to sep-

arate classes within an n-dimension coordinate system using Bayes’ The-

orem [20, 31]. As a result, the features being used for classification must

contain continuous data. LDA addresses binary classification problems

by using a single hyperplane to divide the coordinate system into two ar-

eas. Multiple hyperplanes can be used to classify three or more classes

for addressing multiclass classification problems. Further discussion on

this topic will not be provided as this thesis does not concern multiclass

classification.

LDA uses R.A. Fisher’s assumption that the probability densities of

the two classes are Gaussian and have equal covariance matrices [31]. By

extension, equal covariance matrices suggest that the classes are linearly

separable. It is also important to note that a linear hyperplane is not flexi-

ble [32].

Thapngam et al. [33] applied LDA to detect DDoS attacks on web servers.

Classification was performed on the web server itself by sampling the ar-

rival rate of incoming traffic. Pearson’s Correlation Coefficient and Shan-

non Entropy (information entropy) were used to calculate the dependency

3.1. STATISTICAL CLASSIFICATION METHODS 27

and predictability of traffic. The calculated values were used as features

for classification.

3.1.2 Quadratic Discriminant Analysis

Similarly to LDA, Quadratic Discriminant Analysis (QDA) uses a hyper-

plane within an n-dimension coordinate system to separate classes. The

hyperplane that is generated however is described using a quadratic func-

tion. QDA is preferred over LDA when the covariance matrices for the

two classes are not equal [31]. The use of a quadratic decision boundary

makes this method more flexible than LDA whilst still being able to sup-

port continuous data.

Roughan et al. [34] evaluated various QDA classifiers to classify traf-

fic for QoS policy enforcement. They evaluated the QDA-based classi-

fiers alongside LDA and k-nearest neighbour-based classifiers by using

the same sets of features. Interesting enough, they discovered that the

QDA-based classifiers performed worse compared to the other classifiers.

As with any classification problem, these results are particular to the prob-

lem being solved and are not reflective of the QDA method as a whole.

3.1.3 Support Vector Machine

The Support Vector Machine (SVM) method can be viewed as an improve-

ment on the LDA and QDA methods mentioned previously [31]. These

improvements relate to the positioning of the hyperplane and the ability

to more efficiently operate in high dimensional spaces. The position of the

hyperplane affects the classifier’s ability to handle cases where the values

for the corresponding features are close to the decision boundary, these

points can also be referred to as noise or boundary cases. Bias can be intro-

duced if the hyperplane is too close to the training data points belonging

to one class, this may result in the misclassification of noise.

The SVM method utilises support vectors to improve the positioning

28 CHAPTER 3. CLASSIFIER SELECTION

of the hyperplane. These support vectors, the namesake of the method,

are a collection of training data cases that typically make up a small per-

centage of all training cases. The position of the hyperplane is optimised

by maximising the distance between the support vectors and the hyper-

plane itself; this distance is also referred to as the margin. Once the mar-

gin has been maximised across all support vectors, the hyperplane can be

described as an optimal separating hyperplane or maximal margin classifier.

The process of fitting the hyperplane is a quadratic optimisation problem

which can result in the training time lasting on the order of minutes when

large datasets are used [35]. Therefore the use of this method may be un-

desirable despite the promise of an optimal separating hyperplane.

The performance of a SVM classifier is also dependent on the dimen-

sionality of the model being created. The dimensionality of the coordi-

nate system used in the model is equal to the number of features being

used, similarly to LDA and QDA. Therefore it follows that a training set

with n features results in a n-dimensional model. Increasing the number

of features increases the complexity of calculating an optimal separating

hyperplane.

The SVM method uses what is known as the kernel trick to address the

issue mentioned above. Unlike traditions methods where calculations are

performed in high dimensional feature space, the kernel trick utilises ker-

nel functions to avoid performing calculations in such high dimensional

spaces. This has the effect of reducing the complexity of the computational

task. The use of kernels also makes SVMs flexible as different kernels can

be selected without changing the mechanics behind the method. Exam-

ples of kernels include linear, quadratic or radial basis function (RBF) [31].

Further discussion of the SVM method and the kernel trick is outside the

scope of this thesis.

Yang et al. [36] apply a SVM classifier with a RBF kernel to detect net-

work intrusions. The network intrusions were sampled from the KDD-

Cup99 dataset from the MIT Lincoln Laboratory. They augmented their

3.1. STATISTICAL CLASSIFICATION METHODS 29

detection mechanism by using a particle swarm algorithm to optimise the

kernel coefficient and penalty parameters to the SVM classifier.

3.1.4 k-Nearest Neighbours

The k-nearest neighbours (KNN) method is quite possibly one of the easier

classification methods to understand. This is in part due to its simplicity:

unseen cases are classified based on the class of neighbouring cases [37].

To expand on this further, the process consists of two steps:

1. Find k training instances that are closest to the unseen case.

2. Take the most commonly occurring class from the k neighbours as

the class for the unseen case.

The hyperplane-based methods explored above suffer from a lack of

flexibility. Regardless of the function used to generate the decision bound-

ary, the fixed nature of the boundary means that cases may be misclassified

if they appear to be too similar to cases of another classes. In comparison,

the simple principle used by KNN is effective in situations where the de-

cision boundary contains irregularities [38].

This method has some caveats despite its simplicity and apparent ben-

efits. The first is the definition of the word closest seen above in step 1.

Closeness implies a measure of distance between neighbours, the defini-

tion of which alters the behaviour of a classifier. Examples of distance

include: Euclidean Distance, Manhattan Distance and maximum dimen-

sion distance. The use of some distances (such as Euclidean) can result

in large feature values swamping smaller ones, thus reducing the number

of features that matter. Normalising values can be used to overcome this

problem if required [37].

The second caveat regards the learning/training process of the method.

Unlike the methods that were mentioned previously, the k-nearest neigh-

bours method learns as predictions are made, this is also known as lazy

30 CHAPTER 3. CLASSIFIER SELECTION

learning [39]. Furthermore, state is not kept between predictions. This can

result in undesirably long prediction times when larger training sets are

used as distances must be calculated for each sample. Despite this, the

initialisation time of classifiers that use this method is very small (typi-

cally zero) as a model does not need to derived before classifications can

be performed.

Su [40] used the KNN method to detect Denial of Service (DoS) attacks.

This was combined with a genetic algorithm for selecting features and de-

termining weights for each of the distances. The research suggested that

cases could be classified using the presented KNN classifier within tens

of milliseconds. Su concluded that this method could be deployed to per-

form real-time classification.

3.1.5 Naive Bayes

The Naive Bayes method utilises Bayes’ Theorem to classify unseen cases

[37]. In short, Bayes’ Theorem describes how to calculate the probability

of an event occurring given the occurrence of another event. This scenario,

also known as conditional probability, can be calculated using the formula

in equation 3.1:

P (A|B) =
P (B|A)P (A)

P (B)
. (3.1)

The rest of the exploration of the Naive Bayes classifier assumes that

the reader understands the aforementioned principle of conditional prob-

ability.

The Naive Bayes method learns by using the training data to compute

a probability model. This model facilitates the calculation of multiple pos-

terior probabilities. A posterior probability is a conditional probability

that is assigned to an event once relevant evidence has been considered.

The values of features for unseen cases would be considered as evidence

within the context of classification. The posterior probabilities that are cal-

3.1. STATISTICAL CLASSIFICATION METHODS 31

culated represent the likelihood of an unseen case belonging to each class.

The class that is assigned to an unseen case comes from the largest poste-

rior probability that was calculated.

It is important to mention two assumptions behind the Naive Bayes

method. The first assumption is that the features contain categorical val-

ues. This can be handled by discretising continuous values, this can how-

ever lead to over-sensitivity. The cut-off points for ranges of continuous

values means that values which fall just above the range get treated differ-

ently to values that fall just below.

The second assumption of the method is that the features of cases are

considered to be independently distributed. This can be an issue within

the domain of computer networking as traffic features such as and byte

and packet counts are dependent on one another. The number of bytes

sent in one direction increases linearly over time with the number of pack-

ets that are sent in that direction. Despite this, the Naive Bayes method

has been shown to perform well even if this assumption is broken [41].

Toulouse et al. [42] use the Naive Bayes method alongside an average

consensus algorithm to detect DDoS attacks. Posterior probabilities are

calculated in parallel across several detection modules. The modules reach

an average consensus for each posterior probability by agreeing on the

average sum of calculated probabilities. The consensus is then used to

classify traffic.

3.1.6 Decision Tree

The Decision Tree method classifies unseen cases by traversing a decision

tree [37]. Decision Trees are created by finding the best split among all

features. Categorical values are split into the possible values that a feature

can take. Continuous values are split by determining a split value for data

less than or equal to and data greater than.

Top-Down Induction of Decision Trees (TDIDT), also known as recur-

32 CHAPTER 3. CLASSIFIER SELECTION

sive partitioning, is a popular algorithm for creating decision trees. This

algorithm is underspecified however as the method for determining the

split in values is not given. For instance, the underspecification of TDIDT

can result in over-complex trees that do not generalise well due to over-

fitting. It is also worth noting that TDIDT relies on the Adequacy Condi-

tion. This requires cases with the same values for all attributes to belong

to the same class.

This method also exhibits the following attributes. The prediction time

is log(T), where is T is the number of training cases. This comes as a re-

sult of use of a tree data structure in the underlying model. The method

is also unstable. This means that small variations in training data can re-

sult in completely different trees or in other words: a completely different

classifier [43].

Wu et al. [44] present a DDoS defence mechanism that uses a Decision

Tree-based classifier to detect DDoS attacks. They go beyond binary clas-

sification and utilise the Decision Tree method to perform multiclass clas-

sification. In particular, they class traffic as either being: normal, a TCP

SYN flooding attack, a UDP flooding attack or an ICMP flooding attack.

3.1.7 Random Forest

The Random Forest method is similar to the Decision Tree method in that

a decision tree is used to classify cases. The key difference is that the Ran-

dom Forest method utilises randomness during the construction of the

tree to mitigate over-fitting and improve accuracy [45]. The randomness

manifests during the splitting of a node in the tree construction process.

In contrast to splitting on the the best split among all features, this method

chooses the best split across a random subset of features.

The Random Forest method has been used extensively to solve classifi-

cation problems. Its success within these problems strongly suggests that

this method is robust. For instance, research conducted by Fernandez-

3.1. STATISTICAL CLASSIFICATION METHODS 33

Delgado et al. found that Random Forest classifiers were the first and sec-

ond best in regards to accuracy when evaluated against 121 datasets [46].

These datasets are said to “Represent the whole UCI data base”.

Singh et al. [47] applied the Random Forest method to detect botnets.

This method was chosen as the authors desired a method that had a high

prediction accuracy and could handle a large number of features. Further-

more, they utilised Apache Hadoop to distribute the prediction task across

a cluster. The prediction time when using the cluster ranged between 5 to

30 seconds.

3.1.8 Classification Method Summary

Tables 3.1, 3.2 and 3.3 summarise the key properties of each classification

method that was described above.

Classifier Key Properties

LDA

• Linear decision boundary. Results in a lack of flexi-

bility.

• Assumes Gaussian density with same covariance

matrices (Fisher’s assumption).

• Requires continuous data.

QDA

• Quadratic decision boundary. More flexible than

LDA.

• Assumes unequal covariance matrices, unlike LDA.

• Requires continuous data.

Table 3.1: Key properties of the seven candidate classifiers - part 1.

34 CHAPTER 3. CLASSIFIER SELECTION

Classifier Key Properties

SVM

• Flexible decision boundary granted by the ability to

change the kernel.

• Utilises the kernel trick.

• Training an SVM is a quadratic optimisation prob-

lem.

• Requires continuous data.

KNN

• Unseen cases classified as the majority class from

neighbouring cases.

• Effective in situations where the decision boundary

is irregular.

• Is a lazy learner.

• Can handle both categorical and continuous data.

Naive Bayes

• Classifications are made using Bayes Theorem.

• Performs well even if the assumption of feature inde-

pendence is broken.

• Can handle both categorical and continuous (must be

discretised) data.

Decision Tree

• Classifies using a decision tree created using TDIDT.

• TDIDT relies on the Adequacy Condition and may

create trees that over-fit.

• Can handle both categorical and continuous data.

Table 3.2: Key properties of the seven candidate classifiers - part 2.

3.2. CLASSIFICATION METHOD IMPLEMENTATION 35

Classifier Key Properties

Random Forest

• Classifies using a decision tree that utilises random-

ness during the training phase.

• Designed to mitigated over-fitting.

• Can handle both categorical and continuous data.

Table 3.3: Key properties of the seven candidate classifiers - part 3.

3.2 Classification Method Implementation

Section 3.1 presented the principles of seven supervised classification meth-

ods. Implementations of the methods were not provided as it was not nec-

essary for this research. A machine learning library was used instead. This

section provides details on the library that was used and the parameters

used by the methods.

3.2.1 Scikit-learn

Scikit-learn is an open source machine learning library/package for the

Python programming language. The package contains implementations

of various algorithms for performing classification, regression and clus-

tering tasks. Scikit-learn’s implementation of classification methods in

the Python language means that classifiers can be easily integrated with

nmeta2; which is also written in Python. Table 3.4 below explicitly states

the classes used from within the Scikit-learn package to perform classifi-

cation.

36 CHAPTER 3. CLASSIFIER SELECTION

Classifier Scikit-learn Class

LDA discriminant analysis.LinearDiscriminantAnalysis

QDA discriminant analysis.QuadraticDiscriminantAnalysis

SVM svm.SVC

KNN neighbors.KNeighborsClassifier

Naive Bayes naive bayes.GaussianNB

Decision Tree tree.DecisionTreeClassifier

Random Forest ensemble.RandomForestClassifier

Table 3.4: Scikit-learn classes used for each classification method. Note

that the ’sklearn.’ prefix has been removed from each class name.

3.2.2 Classification Method Parameters

Most of the classification methods offered by Scikit-learn allow users to

tune their performance through various parameters. These were typically

configured to the default values set by the package. Parameter tuning was

not deemed necessary as the research problem being addressed concerned

whether or not it is feasible to deploy statistical classifiers within an Open-

Flow/SDN environment. Therefore it was more beneficial to investigate

a wider variety of methods rather than picking one or two methods and

tuning their parameters.

The parameter values are shown below in Tables 3.5 and 3.6 to clearly

illustrate the configuration of each method. Deviations from the default

values are highlighted and explained where necessary.

Classifier Parameters

LDA solver=’svd’, shrinkage=None, priors=None,

n components=None, store covariance=False, tol=0.0001

QDA priors=None, reg param=0.0

Table 3.5: Scikit-learn classification method parameters - part 1.

3.2. CLASSIFICATION METHOD IMPLEMENTATION 37

Classifier Parameters

SVM C=1.0, kernel=’rbf’, degree=3, gamma=’auto’,

coef0=0.0, shrinking=True, probability=False, tol=0.001,

cache size=200, class weight=None, verbose=False,

max iter=-1, decision function shape=None, ran-

dom state=None

KNN n neighbors=5, weights=’uniform’, algorithm=’auto’,

leaf size=30, p=2, metric=’minkowski’, met-

ric params=None, n jobs=1. Note that algorithm was

set to ’kd tree’ for the on-line evaluation of the clas-

sifiers to decrease the prediction time by storing the

training cases in a k-d tree.

Naive Bayes priors=None

Decision Tree criterion=’gini’, splitter=’best’, max depth=None,

min samples split=2, min samples leaf =1,

min weight fraction leaf =0.0, max features=None,

random state=None, max leaf nodes=None,

min impurity split=1e-07, class weight=None, pre-

sort=False

Random Forest n estimators=10, criterion=’gini’, max depth=None,

min samples split=2, min samples leaf =1,

min weight fraction leaf =0.0, max features=’auto’,

max leaf nodes=None, min impurity split=1e-07,

bootstrap=True, oob score=False, n jobs=1, ran-

dom state=None, verbose=0, warm start=False,

class weight=None

Table 3.6: Scikit-learn classification method parameters - part 2.

38 CHAPTER 3. CLASSIFIER SELECTION

3.3 Datasets

Data is required to train any kind of algorithm that makes use of prior

knowledge. Datasets are particularly useful in this regard as they typi-

cally provide data specific to a context. There resides a couple of problems

however regarding datasets for use in network traffic classification. Their

creation is expensive and their availability limited [21,22]. Researchers of-

ten respond by evaluating their work against private datasets, this serves

to compound the problem of comparing classifiers [48].

Datasets are ideally supplied with labels for all cases. The presence of

labels for all cases means that supervised learning methods can be used.

They supply ground truth, a necessary ingredient when evaluating classi-

fiers.

A popular dataset is the Center for Applied Internet Data Analysis

(CAIDA) DDoS Attack 2007 dataset [49]. This dataset contains a packet

trace (in a PCAP file) containing malicious flows from a DDoS attack. The

authors of the dataset do not guarantee that the non-malicious flows have

been completely removed from the trace. As such, researchers need to use

their own background traffic in place of the non-malicious flows. These

factors make this dataset less than desirable as ground truth is difficult to

define.

ISCX provides a dataset for evaluating intrusion detection mechanisms

[50]. This dataset contains traces on various kinds of attacks including an

HTTP denial of service (DoS), an HTTP GET DDoS attack performed by

an IRC botnet and a brute force SSH attack. Each scenario is supplied with

a PCAP file containing both malicious and non-malicious flows, as well

as a set of XML files that provide metadata on each flow. The metadata:

allows each flow to be identified via a five-tuple, provides some statistical

information on the flow and indicates if the flow was part of the attack or

not. This dataset will referred to as the ISCX 2012 DDoS dataset.

3.4. INITIAL CLASSIFIER SELECTION EXPERIMENT 39

3.4 Initial Classifier Selection Experiment

This section presents the results from the initial classifier selection exper-

iment. This experiment was conducted in order to determine the effec-

tiveness of a set of classifiers when evaluated against network data in an

off-line scenario. These classifiers will be referred to as the first generation

classifiers from now on. The rest of the section will explore the components

of the classifiers used, the experimental setup and the findings.

3.4.1 First Generation Classifiers

The first generation classifiers consisted of the seven classification meth-

ods explored in Section 3.1 and six sets of features. Each set of features

(or feature sets) consisted of two statistical features of a flow of network

traffic. Most of these features were standard network traffic statistics; the

remaining features were derived from the standard traffic statistics.

Features

Table 3.7 lists the individual features used to build the feature sets. The

source refers to the host that sent the first packet within the flow; typically

the client. The destination is the recipient of the first packet; typically the

server. It is assumed that packets or bytes sent by the source are received

by the destination and vice versa.

It is interesting to note that two of the features in Table 3.7 utilise a

base 10 logarithm. As the number of the bytes sent by a host can grow

very large1, a logarithm can be used to reduce the magnitude of such val-

ues, some of which may manifest as outliers. The hypothesis was that by

transforming features in this way, a more accurate classifier may be pro-

duced.

1Appendix A contains relevant feature information relating to the ISCX dataset used

in this research.

40 CHAPTER 3. CLASSIFIER SELECTION

Feature Description

totalSourceBytes The number of bytes sent by the source.

log(totalSourceBytes) The base 10 logarithm of totalSource-

Bytes.

totalDestinationBytes The number of bytes sent by the desti-

nation.

totalSourcePackets The number of packets sent by the

source.

FlowDuration The duration of a bidirectional flow in

seconds.

log(FlowDuration) The base 10 logarithm of FlowDuration.

SourceBytes-per-Packet The number of bytes sent from the

source divided by the number of pack-

ets sent by the source.

DestinationBytes-per-Packet The number of bytes sent from the des-

tination divided by the number of pack-

ets sent by the destination.

Table 3.7: Features used to build feature sets for the first generation classi-

fiers.

These features describe two statistical properties of traffic: the amount

of information sent in one direction and the duration of a connection.

These properties can be used to paint a picture that illustrates the stan-

dard behaviour of a host. Deviations from standard behaviour may be

indicative of anomalous behaviour, such as a DDoS attack. The nature of

DDoS attack is to consume resources to the point of exhaustion. These

events result in deviations from standard behaviour, which are assumed

to leave footprints in the aforementioned statistical features of traffic. The

footprint left behind is dependent on the attack being performed. A flood-

ing attack for instance would result in a large volume of traffic being sent

over a shorter period of time compared to a normal session.

3.4. INITIAL CLASSIFIER SELECTION EXPERIMENT 41

Feature Sets

Six feature sets were composed using the features from Table 3.7. Each

feature set combined the different statistical properties of network traffic

(as seen in Table 3.7) to form a different set of predictors to be used by

the classification methods. The feature sets only contained two features,

which is not large by any means. However this was acceptable as the

initial classifier selection experiment was exploratory.

The feature sets were:

1. totalSourceBytes and totalSourcePackets

2. totalSourceBytes and totalDestinationBytes

3. totalSourceBytes and FlowDuration

4. totalSourceBytes and log(FlowDuration)

5. log(totalSourceBytes) and FlowDuration

6. SourceBytes-per-Packet and DestinationBytes-per-Packet.

3.4.2 Experimental Setup

The first generation classifiers were tested in a test harness implemented

in Python2. Such a program facilitates the implementation and testing

of classifiers within an off-line environment. Several testing parameters

could be tuned depending on the requirements of the desired experiment.

These parameters were: the number of folds to split the dataset into, a seed

for a random number generator and the number of repeated experiments.

The first generation classifiers utilised the Scikit-learn package men-

tioned in Section 3.2.1 to implement the classifiers in Section 3.4.1. The

classifiers were trained with and tested upon data from the ISCX 2012

DDoS dataset. This data was split into training and testing sets using

2https://github.com/bakkerjarr/NetTrafClassificationExploration

42 CHAPTER 3. CLASSIFIER SELECTION

the k-fold cross validation technique. This technique has advantages over

hold-out validation; a technique where the dataset is simply split into two

arbitrarily-sized sets. For instance, hold-out validation can result in over-

fitting [51]. The Scikit-learn package offers functions for splitting datasets

for k-fold cross validation. More specifically, this was done using the Strat-

ifiedKFold object to shuffle the data, then stratify it to maintain the same

proportion of classes across all folds.

The data used for training and testing originated from the bidirectional

flow summaries stored in XML formatted files. The elements contained

within the file identify bidirectional flows using a network 5-tuple and

’DateTime’ labels for when the flow started and finished. Extra informa-

tion included within each flow record was pertinent to the experiments:

flow statistics detailing the quantities of bytes and packets sent in either

direction, and a tag that indicates if the flow was part of a DDoS attack or

can be considered to be normal.

Each classifier was subjected to numerous trials in order to get a clearer

idea of its prediction performance. The number of folds used was 30, how-

ever this was conducted in an unorthodox fashion in order to accommo-

date classifiers utilising the SVM method. In k-fold cross validation, k − 1

folds are traditionally used to train the classifier with 1 fold being used for

testing. Due to the size of the dataset however (571698 samples), training a

SVM-based classifier with 29 folds (each with roughly 19056 flows) results

in an unreasonably long training time. This is due to the SVM training al-

gorithm being a quadratic optimisation problem. As a result, the training

and testing sets were switched for all experiments. To be explicit: 1 fold

was used for training and 29 folds were used for testing.

Each experiment was repeated ten times to increase the number of re-

sults for evaluation. The random seed was incremented by one after each

experiment. As the random seed was utilised by the StratifiedKFold object

for the shuffling process, there were 10 different sets of 30 folds for train-

ing and testing. Taking into consideration the cross validation process and

3.4. INITIAL CLASSIFIER SELECTION EXPERIMENT 43

the repeated experiments, each classifier was subjected to 300 classifica-

tion trials.

3.4.3 Results and Discussion

The results of the initial classifier selection experiment were used to in-

form a classifier selection process. For the purposes of this experiment,

the mean detection rate (DR) and mean false positive rate (FPR) was cal-

culated for each classifier. The rest of this section will use tables 3.8, 3.10,

3.11 and 3.12 for the discussion of the results. These tables present a sum-

mary of the results; see Appendix B for the DR and FPRs for all classifiers.

The tables below use the following abbreviations:

• tSB: totalSourceBytes

• ltSB: log(totalSourceBytes)

• tDB: totalDestinationBytes

• tSP: totalSourcePackets

• FD: FlowDuration

• lFD: log(FlowDuration)

• SBpP: SourceBytes-per-Packet

• DBpP: DestinationBytes-per-Packet

Mean DR

Ranking the best classifiers in terms of mean DR yields interesting pat-

terns. Table 3.8 shows that the log(totalSourceBytes) and FlowDuration

feature set resulted in four of the highest DRs. To a lesser extent the QDA

method also performed well as the first and fifth highest DR ranked clas-

sifiers used this method.

44 CHAPTER 3. CLASSIFIER SELECTION

Method Features Mean DR Mean FPR

QDA ltSB and FD 0.990011046 0.022104852

LDA ltSB and FD 0.989999724 0.029018682

Naive Bayes ltSB and FD 0.989364833 0.021982912

SVM ltSB and FD 0.988362117 0.012553594

QDA tSB and tDB 0.983063906 0.013685196

Table 3.8: Five best performing first generation classifiers, sorted by mean

DR.

The success of the log(totalSourceBytes) and FlowDuration feature set

is an interesting result. This may be explained by exploring the spread

of the values for the totalSourceBytes and log(totalSourceBytes) features.

Table 3.9 shows that the difference between the minimum and maximum

values for the log(totalSourceBytes) feature is considerably smaller when

compared to the totalSourceBytes feature.

The interquartile range (IQR = first quartile (Q1) - third quartile (Q3))

for each feature shows a similar pattern. The IQR for the totalSourceBytes

feature is 1643 compared to 0.185 for log(totalSourceBytes). Noting that

the IQR is a measure of spread, the variability for the log(totalSourceBytes)

is smaller. This suggests that logarithm transformations accentuate the

trend of DDoS attack flows that have similar flow characteristics by min-

imising the effects of outliers. It must be noted that this assumption is

specific to the ISCX 2012 DDoS dataset.

Min. Q1 Median Mean Q3 Max.

totalSourceBytes 64 8063 8729 8842 9706 380100

log(totalSourceBytes) 4.159 8.995 9.074 9.063 9.180 12.850

Table 3.9: Summary statistics for the totalSourceBytes and

log(totalSourceBytes) features for ISCX attack flows.

Table 3.10 displays the bottom five classifiers when sorted by mean DR.

3.4. INITIAL CLASSIFIER SELECTION EXPERIMENT 45

Ignoring the fact that the least successful classifier in regards to detecting

attacks was LDA with the totalSourceBytes and FlowDuration feature set,

it is clear that the LDA method formed the poorest classifiers regardless.

This result can be explained by the inflexibility of LDA’s linear decision

boundary. One cannot assume that variations in features between two

classes are linearly separable.

Method Features Mean DR Mean FPR

LDA tSB and FD 0.0000253 0.002416255

LDA tSB and lFD 0.0000431 0.00185139

LDA SBpP and DBpP 0.0061397 0.007521567

LDA tSB and tDB 0.085453263 0.00489996

LDA tSB and tSP 0.335905144 0.007711583

Table 3.10: Five worst performing first generation classifiers, sorted by

mean DR.

Mean FPR

Table 3.11 ranks the best classifiers in terms of mean FPR with the smaller

values representing a higher rank. Ignoring the methods and features be-

hind each classifier, one observes that these classifiers have significantly

poorer mean DRs compared to the classifiers in Table 3.8. This suggests

that a classifier that rarely misclassifies normal traffic is not necessary well

suited to detecting attacks. The second apparent observation is that the

SVM method resulted in classifiers with low mean FPRs.

46 CHAPTER 3. CLASSIFIER SELECTION

Method Features Mean DR Mean FPR

SVM tSB and tDB 0.750116539 0.001744573

LDA tSB and lFD 0.0000431 0.00185139

SVM tSB and FD 0.74577407 0.001861962

SVM tSB and tSP 0.762044205 0.001903781

SVM tSB and lFD 0.763057881 0.002086601

Table 3.11: Five best performing first generation classifiers, sorted by mean

FPR.

The final table, Table 3.12 which ranks the worst classifiers in terms of

mean FPR, contains two common denominators. Firstly, three of the five

classifiers with the highest FPR used the Naive Bayes method. Secondly,

the log(totalSourceBytes) and FlowDuration feature set had a similar re-

sult with it being present in three of the five classifiers in the same bracket.

It is interesting to note the presence of the log(totalSourceBytes) and

FlowDuration feature set in this table as it was also predominant in Table

3.8. It appears that this feature could adequately separate normal and at-

tack flows enough for the correct identification of attacks, however it still

lead to misclassifications. This suggests that a third feature may be nec-

essary to augment the feature set to separate cases close to the decision

boundary. Finally, the QDA-based classifier had the third highest FPR yet

it also had the highest DR as seen in Table 3.8.

Method Features Mean DR Mean FPR

LDA ltSB and FD 0.989999724 0.029018682

Naive Bayes tSB and tSP 0.962315858 0.024197488

QDA ltSB and FD 0.990011046 0.022104852

Naive Bayes ltSB and FD 0.989364833 0.021982912

Naive Bayes tSB and FD 0.962605386 0.020798816

Table 3.12: Five worst performing first generation classifiers, sorted by

mean FPR.

3.4. INITIAL CLASSIFIER SELECTION EXPERIMENT 47

3.4.4 Method and Feature Set Vetting

Classification methods and feature sets were vetted using the results that

were presented above. In particular, the DR and FPR was used along-

side the attributes of the classifications methods. It is important to con-

sider such attributes within the context of the research problem at hand,

as none of the tables contained a classifier that used the KNN, Random

Forest or Decision Tree methods. Appendix B shows that they did not per-

form poorly and these methods were still subject to a vetting process like

the remaining methods.

The list below presents the methods and feature sets that were selected

along with justification:

• QDA - Two QDA-based classifiers ranked in the top five in regards

to mean DR.

• SVM - SVM-based methods exhibited instances of both low FPR and

high DR.

• KNN - Despite not receiving a ranking, this classifier offers opera-

tional advantages in regards to the absence of training time.

• Naive Bayes - Four Naive Bayes-based classifiers ranked in the top

ten in regards to mean DR and one of these ranked third. Further-

more, the assumption of feature independence can be broken [41].

This is useful as network traffic features such as flow duration and

the amount of traffic sent in a flow are typically dependent.

• Random Forest - Despite the fact that classifiers that utilised this

method did not rank highly, the formulation of the method suggests

that larger feature sets are needed. This method is also designed to

handle outliers and noise [45].

• tSB and tDB - This feature set was adopted by the fifth best classifier

in terms of mean DR. This feature set can be used to capture the

48 CHAPTER 3. CLASSIFIER SELECTION

asymmetry in the amount of traffic between hosts during a DDoS

flooding attack.

• tSB and FD - Although this feature set did not perform as well in the

experiment compared to the ltSB and FD feature set, work by Braga

et al. suggests that considering the number of packets as well as the

number of bytes may improve performance [12].

• ltSB and FD - Four of the five top classifiers in terms of mean DR

used this feature set.

The list below presents the methods and feature sets that were not se-

lected along with justification:

• LDA - Five of the six LDA-based classifiers ranked in the bottom five

in regards to mean DR.

• Decision Tree - We cannot guarantee that the Adequacy Condition

will hold with network data.

• tSB and tSP - This feature set contains features that are redundant.

Roughly speaking, the number of packets in unidirectional flow is

linearly proportional to the the number of bytes in said flow. This

relationship holds if you assume that all packets adhere to the stan-

dard length of a packet3.

• tSB and lFD - Logging the FlowDuration feature did not improve the

mean DR in the experiments. There was some success in terms of

mean FPR as two of the five lowest mean FPRs used this feature set.

However, those two classifiers exhibited poor mean DR (0.000043

and 0.76).

• SBpP and DBpP - Poorer mean DR compared to other features sets.

The derived nature of the features within did not appear to improve

results.
3The maximum transmission unit of an Ethernet frame is typically 1500 bytes.

3.5. SECOND CLASSIFIER SELECTION EXPERIMENT 49

3.5 Second Classifier Selection Experiment

This section presents the results from the second classifier selection ex-

periment. This experiment used the results from initial classifier selection

experiment to develop and test a second set of classifiers in an off-line

scenario. The purpose of this experiment was to select three classifiers to

deploy on a physical network testbed for on-line experimentation. The

rest of the section will explore the components of the classifiers used, the

experimental setup and the findings.

3.5.1 Second Generation Classifiers

The second generation classifiers consisted of five classification methods

and five feature sets. Unlike the first generation classifiers, the feature sets

used for the second generation classifiers contained more than two fea-

tures. The classification methods used here were vetted as a result of the

initial classifier selection experiment. These are listed below as a reminder:

1. QDA

2. SVM

3. KNN

4. Naive Bayes

5. Random Forest

Features

The features used to form the new feature sets are shown in Table 3.13

below. The new features are labelled with a ∗.

50 CHAPTER 3. CLASSIFIER SELECTION

Feature Description

totalSourceBytes The number of bytes sent by the source.

log(totalSourceBytes) The base 10 logarithm of totalSourceBytes.

totalDestinationBytes The number of bytes sent by the destina-

tion.

totalSourcePackets The number of packets sent by the source.

∗log(totalSourcePackets) The base 10 logarithm of totalSourcePack-

ets.

∗totalDestinationPackets The number of packets sent by the desti-

nation.

FlowDuration The duration of a bidirectional flow in sec-

onds.

Table 3.13: Features used to build feature sets for the second generation

classifiers.

Feature Sets

Five feature sets were built using the features table Table 3.13. The fea-

ture sets used for the first generation classifiers were made explicitly for

exploratory purposes. The feature sets seen below however were made

using the lessons learnt from the initial classifier selection experiment.

Therefore, the feature sets below include justification for their formation

as well as the feature set that it was based on.

1. totalSourceBytes, totalSourcePackets and FlowDuration - Based on

totalSourceBytes and FlowDuration feature set. Braga et al. use both

packets and bytes of a flow as they argue that packets in a DDoS

flooding attacks have smaller payloads than packets from normal

flows of traffic [12].

2. log(totalSourceBytes), totalSourcePackets and FlowDuration - Based

on log(totalSourceBytes) and FlowDuration feature set. The log(total

3.5. SECOND CLASSIFIER SELECTION EXPERIMENT 51

SourceBytes) and FlowDuration feature set performed well in the

initial experiment so it was augmented with the totalSourcePackets

feature using the justification above.

3. log(totalSourceBytes), log(totalSourcePackets) and FlowDuration -

Based on log(totalSourceBytes) and FlowDuration feature set. Tak-

ing the base 10 logarithm of the totalSourceBytes feature improved

the detection rate in the initial experiment. The decision was made

to take the base 10 logarithm of the totalSourcePackets feature to in-

vestigate if a similar effect can be found.

4. totalSourceBytes, totalDestinationBytes and FlowDuration - Based

on totalSourceBytes and totalDestinationBytes feature set. DDoS at-

tacks can be characterised by a particular volume of traffic sent over

a period of time. The FlowDuration feature was appended following

this reasoning.

5. totalSourceBytes, totalSourcePackets, totalDestinationBytes, totalDes-

tinationPackets and FlowDuration - Based on totalSourceBytes and

totalDestinationBytes feature set. This feature set was devised to ex-

plore how a large feature set would affect the performance of each

classification method.

3.5.2 Experimental Setup

The second generation classifiers were tested in a test harness implemented

in Python4. This bares resemblance to the experimental setup used dur-

ing the initial classifier selection experiment. In fact, the same number of

repeats and the same folds were used to test the second generation clas-

sifiers. The only difference lies in the classifiers that were used for this

experiment. Refer to Section 3.4.2 for more information on the setup of

these experiments.

4https://github.com/bakkerjarr/NetTrafClassificationExploration

52 CHAPTER 3. CLASSIFIER SELECTION

3.5.3 Results and Discussion

The results of the second classifier selection experiment were used to select

classifiers to be evaluated in an on-line networking environment. For the

purposes of this experiment, the mean DR, mean FPR and mean f-measure

statistics were calculated for each classifier. The inclusion of the f-measure

statistic was for the purpose of selecting classifiers; this will be explored in

more detail later on. The rest of this section will use tables 3.14, 3.15, 3.16

and 3.17 for the discussion of the results. These tables present a summary

of the results; see Appendix C for the DRs, FPRs and f-measures for all

classifiers. The tables below use the following abbreviations:

• tSB: totalSourceBytes

• ltSB: log(totalSourceBytes)

• tDB: totalDestinationBytes

• tSP: totalSourcePackets

• ltSP: log(totalSourcePackets)

• tDP: totalDestinationPackets

• FD: FlowDuration

Mean DR

Table 3.14 sorts the results for the second generation classifiers in descend-

ing order with regards to mean DR. The most prevalent feature set con-

tained the ltSB, ltSP and FD features. This was used by the Naive Bayes,

QDA and SVM methods.

The five feature sets shown in Table 3.14 are based on the

log(totalSourceBytes) and FlowDuration feature set from the initial classi-

fier selection experiment. The purpose of appending an extra feature to

the feature set was to observe changes in the detection rate of classifiers.

3.5. SECOND CLASSIFIER SELECTION EXPERIMENT 53

The second generation classifier with the fifth highest mean DR (SVM with

ltSB, ltSP and FD) had a mean DR of 0.9893688. This classifier has a higher

mean DR than the third highest first generation classifier when they are

ranked by mean DR; Naive Bayes with ltSB and FD, and a mean DR of

0.989364833. These results indicate an increase in detection performance

when the feature set is augmented.

Method Features Mean DR Mean FPR

Naive Bayes ltSB, ltSP and FD 0.990108069 0.029333478

QDA ltSB, tSP and FD 0.990000645 0.027850928

QDA ltSB, ltSP and FD 0.989906291 0.014991284

Naive Bayes ltSB, tSP and FD 0.989756706 0.024335124

SVM ltSB, ltSP and FD 0.9893688 0.012388389

Table 3.14: Five best performing second generation classifiers, sorted by

mean DR.

Table 3.15 sorts the worst results for the second generation classifiers

in ascending order with regards to mean DR. These results rank more

favourably compared to the five worst first generation classifiers depicted

in Table 3.10, as only three of the bottom five second generation classi-

fiers have a mean DR smaller than 90%. Besides this, the most interesting

feature of the table below is that four classifiers utilised the SVM method.

Method Features Mean DR Mean FPR

SVM tSB, tDB and FD 0.725160172 0.001547747

SVM tSB, tSP, tDB, tDP and FD 0.726826225 0.001583319

SVM tSB, tSP and FD 0.738530663 0.001656662

SVM ltSB, tSP and FD 0.929109403 0.004674993

KNN ltSB, tSP and FD 0.935423086 0.005043936

Table 3.15: Five worst performing second generation classifiers, sorted by

mean DR.

54 CHAPTER 3. CLASSIFIER SELECTION

Mean FPR

Table 3.16 sorts the results for the second generation classifiers in descend-

ing order with regards to mean FPR. The most common denominator is the

SVM method. The third SVM-based classifier (with the tSB, tSP and FD)

had a mean FPR of 0.001656662, this result is smaller and therefore better

than the first generation classifier with the smallest mean FPR; SVM with

tSB and tDB, and a mean FPR of 0.001744573. Similarly to the mean DR, it

appears that the inclusion of more traffic features can be used to improve

mean FPR.

It is important to note the trade-off between mean FPR and DR despite

these improvements. The first three classifiers in Table 3.16 (showing low

mean FPR) were also the first three classifiers in Table 3.15 (showing low

mean DR). This shows that there is a trade off between classifiers that can

reliably detect attacks and those that tend to not misclassify normal traffic.

Method Features Mean DR Mean FPR

SVM tSB, tDB and FD 0.725160172 0.001547747

SVM tSB, tSP, tDB, tDP and FD 0.726826225 0.001583319

SVM tSB, tSP and FD 0.738530663 0.001656662

Random Forest tSB, tSP, tDB, tDP and FD 0.948062485 0.002653073

Random Forest tSB, tDB and FD 0.947373016 0.002765957

Table 3.16: Five best performing second generation classifiers, sorted by

mean FPR.

Table 3.17 sorts the results for the second generation classifiers in as-

cending order with regards to mean FPR. The most obvious pattern is that

four Naive Bayes-based classifiers had poor mean FPRs compared to the

other classifiers. Strangely, the least effective classifiers in terms of mean

FPR was also the most effective in terms of mean DR. This was followed

by the second and third least effective classifiers in terms of mean FPR

being ranked second and fourth most effective in terms of mean DR re-

3.5. SECOND CLASSIFIER SELECTION EXPERIMENT 55

spectively. This result reiterates the trade-off between the DR and FPR of

a classifier. It highlights the need for a method of selecting classifier that

considers both true and false positives.

Method Features Mean DR Mean FPR

Naive Bayes ltSB, ltSP and FD 0.990108069 0.029333478

QDA ltSB, tSP and FD 0.990000645 0.027850928

Naive Bayes ltSB, tSP and FD 0.989756706 0.024335124

Naive Bayes tSB, tSP and FD 0.962656107 0.022301342

Naive Bayes tSB,tSP, tDB, tDP and FD 0.988954563 0.019051931

Table 3.17: Five worst performing second generation classifiers, sorted by

mean FPR.

3.5.4 Final Classifier Selection

The vetting of feature sets and classification methods for the initial clas-

sifier selection experiment utilised knowledge of the methods and the re-

sults from the experiment. At this point however, it is necessary to utilise a

different selection method for classifiers to be deployed within a network-

ing environment. The results from the second classifier selection exper-

iment showed that three classifiers ranked within the top five mean DR

were also ranked within the five worst mean FPR. Interestingly enough,

the three worst classifiers in terms of mean TPR were also the three best

when ranked by mean FPR.

This situation poses the question: How does one choose a classifier

based on its performance? The results have shown that selecting classifiers

based on their DR or FPR leads to trade-offs in either metric. Considering

other measures such as precision and recall may be a solution however

there is still the issue of deciding how to weight each measure against

each other.

The method used to select three classifiers involved ranking the second

generation classifiers by their mean f-measure results. This choice was

56 CHAPTER 3. CLASSIFIER SELECTION

made in part to avoid bias and trade-offs when using the mean DR and

FPR of the classifiers. With this being said, it is fair to note that because

the f-measure statistic is an algebraic formula, it subject to favouring clas-

sifiers with particular values for precision and recall (also known as DR).

Despite this, the f-measure statistic considers other measures of classifier

performance in a way that is well understood within the domain of statis-

tics.

The f-measure statistic has been used to compare and rank the perfor-

mance of classifiers within the domain of network traffic classification [48].

The context of the referenced research, which manifests itself in an appli-

cation named NeTraMark, is important to note. The purpose of this thesis

was not to contribute to research within the domain of machine learning.

Instead, the target for the contributions lie within the domain of DDoS at-

tack detection and network traffic classification using SDN. For this reason

it sufficed to use a well understood metric such as f-measure as an optimal

solution was not needed.

Table 3.18 ranks the second generation classifiers by their f-measure

statistics. Selecting the three best performing classifiers from the table be-

low would have resulted in three classifiers that use the Random Forest

method. Observing the table further shows that the methods tend to clus-

ter to one another. As a result, the three best performing classifiers with

unique methods were chosen. This ensured that different methods could

be evaluated on the physical network testbed to obtain more breadth in

the results.

Using the described selection process against the results in Table 3.18

yields the following three classifiers:

• Random Forest with the totalSourceBytes, totalSourcePackets, to-

talDestinationBytes, totalDestinationPackets and FlowDuration fea-

ture set.

• k-Nearest Neighbours with the totalSourceBytes, totalDestination-

3.5. SECOND CLASSIFIER SELECTION EXPERIMENT 57

Bytes and FlowDuration feature set.

• Support Vector Machine with the log(totalSourceBytes), totalSour-

cePackets and FlowDuration feature set.

Method Features f-measure

Random Forest tSB, tSP, tDB, tDP and FD 0.954795172

Random Forest tSB, tDB and FD 0.953657985

Random Forest tSB, tSP and FD 0.94864049

Random Forest ltSB, tSP and FD 0.948592306

Random Forest ltSB, ltSP and FD 0.948583216

KNN tSB, tDB and FD 0.948387955

KNN tSB, tSP, tDB, tDP and FD 0.948385248

KNN ltSB, ltSP and FD 0.943749165

KNN ltSB, tSP and FD 0.932025381

SVM ltSB, tSP and FD 0.931058739

KNN tSB, tSP and FD 0.921951716

QDA tSB, tSP, tDB, tDP and FD 0.915662191

SVM ltSB, ltSP and FD 0.913524809

QDA tSB, tSP and FD 0.911904559

QDA tSB, tDB and FD 0.911523632

QDA ltSB, ltSP and FD 0.89844222

Naive Bayes tSB, tDB and FD 0.884021726

Naive Bayes tSB, tSP, tDB, tDP and FD 0.878745778

Naive Bayes tSB, tSP and FD 0.863597597

Naive Bayes ltSB, tSP and FD 0.847633059

SVM tSB, tSP and FD 0.838201025

SVM tSB, tSP, tDB, tDP and FD 0.830928575

QDA ltSB, tSP and FD 0.830602444

SVM tSB, tDB and FD 0.83005504

Naive Bayes ltSB, ltSP and FD 0.822862165

Table 3.18: Second generation classifiers sorted by f-measure.

58 CHAPTER 3. CLASSIFIER SELECTION

3.6 Chapter Summary

This chapter presented an investigation into various statistical classifiers.

The purpose of the investigation was to determine three classifiers that

could be deployed on a physical network testbed to detect DDoS attacks

from within the ISCX 2012 DDoS dataset. The investigation consisted of

two off-line experiments where the results were used to inform selection

making processes. As a result of the second selection making process,

the following classifiers were selected to be integrated with nmeta2 and

deployed on a physical network testbed:

• Random Forest with the totalSourceBytes, totalSourcePackets, to-

talDestinationBytes, totalDestinationPackets and FlowDuration fea-

ture set.

• k-Nearest Neighbours with the totalSourceBytes, totalDestination-

Bytes and FlowDuration feature set.

• Support Vector Machine with the log(totalSourceBytes), totalSour-

cePackets and FlowDuration feature set.

Chapter 4

nmeta2 Classifier Integration

This chapter presents the modifications that were made to the nmeta2 sys-

tem to support the detection of DDoS attacks using the statistical classifiers

that were selected at the end of Chapter 3. Key components of the nmeta2

system that were leveraged will be explored. Details on the modifications

that were made will then be described.

This chapter does not set out to justify the design decisions that were

made by following the code line-by-line. It instead paves the way between

the classifier selection process seen in Chapter 3 and the subsequent eval-

uation of the classifiers on a physical network testbed. The latter is pre-

sented in Chapter 5.

The modified nmeta2 system provided a platform for evaluating the

statistical classifiers in a network environment using SDN and OpenFlow.

More specifically, the evaluation set out to test the classifiers in two situa-

tions. In the first situation, the DPAE needed to gather flow information by

processing each packet that was forwarded to a switch on the data plane.

In the second situation, the DPAE needed to periodically sample packets

from the switch in order to gather flow information. This chapter shows

how the modifications to the nmeta2 system realise this.

59

60 CHAPTER 4. NMETA2 CLASSIFIER INTEGRATION

4.1 Key nmeta2 System Components

The nmeta2 system consists of two separate applications. The first ap-

plication, simply called nmeta2, is a Ryu controller application that man-

ages OpenFlow 1.3 compliant switches. The second application, called

nmeta2dpae, is designed to run on a machine that is separate from the con-

troller and perform traffic classification on bidirectional flows. Both ap-

plications communicate with one another to configure policies and relay

classification results. The system architecture for nmeta2 is illustrated in

Figure 4.1. The relationships described in sections 4.1.1 and 4.1.2 are de-

picted in this figure. The rest of this section will not explore the internals

of each application in depth, instead it will cover a selection of points that

aid the understanding of the modifications that were made to the system.

Switch

Data plane

packets in

Data plane

packets out

Data Plane
Auxiliary
Engine

(DPAE)

TC App

Controller

Cloned (passive mode) or

forwarded (active mode) packets

API

API

Administration

Data Plane

Control Plane

Key

Network link

OpenFlow Channel

API

OpenFlow

Active mode return

packets

Figure 4.1: System architecture of the nmeta2 traffic classifier (TC). Dia-

gram sourced from [18].

4.1. KEY NMETA2 SYSTEM COMPONENTS 61

4.1.1 nmeta2 Components

This application is designed to run on the Ryu controller. First and fore-

most, it manages OpenFlow 1.3 compliant switches that have connected

to the controller by configuring their respective flow tables. This is used

to forward packets through a network, be it to another switch, a host, the

controller or to a DPAE.

The second responsibility of the nmeta2 controller application is to man-

age one or more DPAE. Configuration information is sent to a DPAE to

inform it of its expected behaviour as part of a connection protocol. The

controller and DPAE then maintain connectivity throughout the DPAE’s

uptime. This is necessary for the controller to maintain global knowledge

of the classifications that have been made by one or more DPAE.

The relationship between the controller and DPAE is important for the

management of network traffic. Once classifications have been made by

the DPAE and the controller has been informed, QoS treatment may be

enforced on the switches for example. The controller also has the ability to

prevent flows from being sent to the DPAE when requested. This feature

is useful as it allows the network operator to determine how much traffic

can be sent to the DPAE for classification.

4.1.2 nmeta2dpae Components

This application is designed to be executed on a host that has the sole pur-

pose of classifying network traffic. Switches forward packets to the DPAE

host to be parsed and classified. Classification results are then sent to the

controller. The relationship between the controller and DPAE applications

is discussed above.

The controller can instruct a DPAE to operate in one of two modes.

While in active mode, all data plane traffic that arrives at a switch is for-

warded to a DPAE instead of being of being forwarded to its destination.

Once a DPAE has processed a packet, it gets sent back to the switch where

62 CHAPTER 4. NMETA2 CLASSIFIER INTEGRATION

it is then forwarded towards its destination. In contrast, passive mode in-

forms the DPAE not to send packets back to the switch once they have

been processed. This occurs because the packet is cloned after it arrives at

the switch. The switch forwards one copy to its destination and the other

to the DPAE.

The DPAE maintains a database on the host during its operation. The

Flow Classification in Progress (FCIP) database is used to store informa-

tion on bidirectional flows of traffic. When the DPAE processes a packet, it

harvests information pertaining to its source and destination and collects

statistics such as byte and packet counts. This information is associated

with a matching entry within the FCIP database. This information can be

used to provide context to the packet and the flow that it is part of. The

current DPAE implementation uses MongoDB to store FCIP database in-

formation.

4.2 Modifications to nmeta2

This section presents the changes made to the nmeta2 code to support the

chosen statistical classifiers1. The changes will be addressed by focusing

on two key areas: flow treatment advice support and flow suppression.

Incidentally, both modifications were made to the FlowTable class within

the nmeta2 file switch_abstraction.py.

4.2.1 Flow Treatment Advice Support

Flow treatment advice is a process where the controller deploys flow ta-

ble entries to enforce flow treatment policies in response to a classification

1The forked repository containing the modifications used in this work can be found

at https://github.com/bakkerjarr/nmeta2/tree/jnb_ME. The original im-

plementation made by Matthew Haytes can be found at https://github.com/

mattjhayes/nmeta2.

4.2. MODIFICATIONS TO NMETA2 63

made by a DPAE. Flow treatment policies utilise QoS mechanisms within

OpenFlow-enabled switches. This may only be performed on flows that

are specified with the main_policy.yaml file. Non-matching flows still

follow the flow treatment advice process but they do not receive QoS treat-

ment.

The flow treatment advice process in the original implementation of

nmeta2 only supported TCP flows encapsulated by IPv4. This was ex-

tended to support flows that utilised ICMP and UDP, both encapsulated

by IPv4. Modifying the logic within the add fe tt advised method al-

lowed the controller to support ICMP and UDP flows. It was necessary

to modify this functionality even though traffic treatment was not used

explicitly to handle DDoS attacks.

4.2.2 Flow Suppression

Flow suppression is a feature of nmeta2 where the DPAE can make a re-

quest for packets matching a specific flow to no longer be forwarded to

the DPAE for classification. The ability to temporarily prevent flows traf-

fic from being forwarded to the DPAE can be utilised to implement packet

sampling on a flow-level. The add fe tcf suppress method required

modifications to support this.

The add fe tcf suppress method required similar modifications to

the add fe tt advised method mentioned previously. The original im-

plementation of the method was only able to deploy flow table entries to

suppress TCP flows encapsulated in IPv4. The logic within the function

was modified to support ICMP and UDP as well.

Flow-level packet sampling was implemented by modifying the time-

out behaviour for suppressed flows. The original implementation sup-

pressed flows with flow table entries that utilised the idle timeout field.

This field is a feature of the OpenFlow 1.3 protocol that is used to specify

the length of time (in seconds) before a flow table entry is removed if no

64 CHAPTER 4. NMETA2 CLASSIFIER INTEGRATION

matching packets are received [6]. This is not appropriate for sampling as

the sampling rate would be at the mercy of the flow. In other words, the

sampling rate would be non-deterministic.

The OpenFlow 1.3 protocol offers the hard timeout field as an alter-

native option for flow table entry timeouts. This field indicates the max-

imum amount of time (in seconds) that a flow table entry can remain in

a switch before it is removed. Changing the implementation to utilise

the hard timeout field instead meant that a deterministic sampling rate

could be specified. This rate can be modified by changing a parameter in

nmeta2’s config.yaml file: suppress idle timeout. The unit for this

configuration parameter is seconds.

4.3 Modifications to nmeta2 DPAE

This section presents the changes made to the nmeta2 DPAE code to sup-

port the chosen statistical classifiers2. The changes will be addressed by

focusing on two key areas: the harvesting of bidirectional flow informa-

tion and the integration of the classifiers themselves.

4.3.1 Flow Information Gathering

Section 4.1.2 described the purpose of the FCIP database. To recap, flow

information is collected on a per-packet basis and is stored to a matching

bidirectional flow entry in the FCIP database. It is possible to harvest flow

information from this database during the classification process. The pro-

cess of gathering flow information needed to be modified to collect the

desired information for the three statistical classifiers.

2The forked repository containing the modifications used in this work can be found

at https://github.com/bakkerjarr/nmeta2dpae/tree/jnb_ME. The original

implementation made by Matthew Hayes can be found at https://github.com/

mattjhayes/nmeta2dpae.

4.3. MODIFICATIONS TO NMETA2 DPAE 65

The original DPAE implementation only collected information on TCP

flows encapsulated by IPv4. Directionality of a flow is computed by ob-

serving the TCP flags, however this determination may not be accurate as

the process relies on capturing packets during the TCP three-way hand-

shake. IP addresses are labelled as either server or client once a determina-

tion is made. The information that was originally collected and stored by

the DPAE is displayed in the following list:

• hash - A hash that uniquely identified the bidirectional flow.

• ip A - The IPv4 address of one of the hosts.

• ip B - The IPv4 address of the other host.

• port A - The TCP port number used by the host identified by ip A.

• port B - The TCP port number used by the host identified by ip B.

• proto - The transport protocol (in this case TCP).

• finalised - Integer (0 or 1) that can be used to indicate whether or not

this flow has been classified.

• packet count - Integer counting the number of packets sent in either

direction for this flow.

• packet timestamps - List of packet timestamps. Updated until the flow

is finalised.

• tcp flags - List of TCP flags. Updated until the flow is finalised.

• packet lengths - List of the sizes of the packets in bytes. Updated until

the flow is finalised.

• client - IPv4 address of the host that was determined to be the client.

• server - IPv4 address of the host that was determined to be the server.

66 CHAPTER 4. NMETA2 CLASSIFIER INTEGRATION

• packet directions - Direction of the packet within the flow. Updated

until the flow is finalised.

• verified direction - Describes how the directionality of the flow was

determined.

• suppressed - Number of packets in the flow at the time when the con-

troller was instructed to stop forwarding packets within the flow to

the DPAE.

This flow data was not broad enough to support the three statistical

classifiers. Support for flows that use the ICMP and UDP transport proto-

cols, and the collection of additional flow statistics was needed.

In order for the DPAE to collect flow statistics for flows that did not

use TCP, specific flow classes were made for ICMP and UDP flows. This

was supported through the creation of a parent flow class. This abstraction

contained the general properties and features for a flow that can be shared.

The support for more transport protocols was mirrored in the FCIP

database by creating specific MongoDB collections for ICMP, TCP and

UDP flows.

The three statistical classifiers each need to be aware of the amount of

traffic sent in either direction of a bidirectional flow and the duration of

the flow. The amount of traffic refers to the total number of packets and

the sum of the packet lengths in bytes. The DPAE was originally built to

monitor the amount of traffic for the entire flow, with no regard for sep-

arate statistics for each direction. Packet timestamps were only collected

until a flow was noted as being finalised.

None of the existing flow statistic fields were modified to support the

classifiers. New fields were created instead to ensure that existing func-

tionalities were not damaged. Four fields were created to record the num-

ber of packets and bytes sent in either direction of a flow. As the direc-

tionality of a flow is determined when the first packet is processed by the

4.3. MODIFICATIONS TO NMETA2 DPAE 67

DPAE, the relative direction of each subsequent packet need only be de-

termined and the respective counts updated.

Flow duration was not calculated and stored in the FCIP database di-

rectly. Instead, a field was created to store the timestamp of the most recent

packet within the flow. As the timestamp of the first packet in a flow is

recorded, the duration of a flow can be calculated by taking the difference

of the latest and first timestamps.

Each new flow statistics field is updated for every packet that is pro-

cessed by the DPAE. To be explicit, the new fields are:

• latest timestamp - The timestamp of the most recent packet in the flow.

• total pkt len A - Total number of bytes sent by the host identified by

ip A.

• total pkt cnt A - Total number of packets sent by the host identified

by ip A.

• total pkt len B - Total number of bytes sent by the host identified by

ip B.

• total pkt cnt B - Total number of packets sent by the host identified

by ip B.

4.3.2 Classifier Integration

The DPAE offers functionality whereby custom classifiers can be imple-

mented in Python without the need to include the class explicitly in the

code. Once a class that represents a desired classifier has been imple-

mented, the DPAE can be instructed (via the nmeta2 controller application)

to instantiate the classifier when the application is loaded. Scikit-learn

classes that implement the Random Forest, KNN and SVM classification

methods were encapsulated in separate classes that obey the syntax of cus-

68 CHAPTER 4. NMETA2 CLASSIFIER INTEGRATION

tom classifiers. Using this methodology, the classifiers are created in the

TC class3 during application runtime.

Classifier Initialisation

The statistical classifiers begin their initialisation processes when they are

instantiated. As mentioned previously, statistical classifiers must undergo

a training or learning phase before classifications can be made. The ini-

tialisation process not only includes the training phase of a classifier, but

also the necessary steps to load and prepare training data before training

may begin. The implementation of the classifiers for the DPAE required

the following Python packages:

• lxml - For loading and parsing the training data that was stored in

XML formatted files.

• numpy - For creating and handling sklearn-compliant data struc-

tures.

• sklearn - For utilising Scikit-learn classification methods.

Classifier Predictions

The statistical classifiers predict the class of a bidirectional flow each time a

matching packet is encountered. The features used by the classifiers have

a notion of a source and destination which roughly map to the notions

of client and server that are used by the DPAE. These notions typically

represent who initiated a session, namely the source or client.

Given the DDoS attack context of the dataset being used, one cannot

assume that an attack is commenced by the party who initiated the con-

nection. Therefore when a classifier makes a prediction, the total number

of bytes sent in the current direction will be used as the source bytes. This

is done regardless of the label assigned to the direction of a flow.

3This class is contained within the file tc.py.

4.4. CHAPTER SUMMARY 69

Consider hosts A and B, a flow that was initialised by host A to host

B and the selected KNN classifier as an example. At some point in time,

host B sends a packet to host A. For the flow to be classified by the KNN

classifier data referring to the totalSourceBytes, totalDestinationBytes and

FlowDuration is needed. As host A initiated the flow one may be tempted

to use the host A’s byte count for the totalSourceBytes feature. Given the

aforementioned assumption however, this may not result in an attack be-

ing detected. Therefore we use host B’s byte count for the totalSourceBytes

feature and host A’s byte count for the totalDestinationBytes feature.

Flow information is harvested for use in the classifiers using the ob-

jects instantiated from the flow classes mentioned earlier. An alternative

approach would be to use an interface for performing data mining opera-

tions. This approach looks nice as it reduces the amount of code within the

flow classes and may facilitate the caching of data in the future. However,

this functionality is made redundant by flow classes. The necessary infor-

mation for the classifiers is obtained when the packet is processed which

already results in a connection being made to the MongoDB database. Cre-

ating another class to mine data when required would only result in more

connections being made thus increasing the packet processing time.

4.4 Chapter Summary

This chapter presented the modifications that were made to the nmeta2

system to support the three chosen statistical classifiers. The controller

was extended to handle flow treatment advice messages from the DPAE

that contained information on ICMP and UDP flows encapsulated by IPv4.

Modifications were also made to support flow-level packet sampling.

70 CHAPTER 4. NMETA2 CLASSIFIER INTEGRATION

The DPAE was extended to gather information on ICMP and UDP flows

encapsulated by IPv4. Further extensions were made to gather more flow

statistics as per the requirements of each statistical classifier. More impor-

tantly, the statistical classifiers were integrated into the DPAE application

by leveraging the Scikit-learn Python package.

Chapter 5

Evaluation

This chapter presents an evaluation of the statistical classifiers that were

selected in Chapter 3 using the modified nmeta2 system shown in Chapter

4. The suitability of each statistical classifier when being deployed within

a SDN/OpenFlow environment is assessed. This evaluation assesses the

prediction performance, the execution performance and the DPAE host

performance for each classifier. The experiments performed in the envi-

ronment are described as on-line experiments, this is in contrast to the

off-line experiments as seen in Chapter 3.

To reiterate, the chosen classifiers were:

• Random Forest with the totalSourceBytes, totalSourcePackets, to-

talDestinationBytes, totalDestinationPackets and FlowDuration fea-

ture set.

• k-Nearest Neighbours with the totalSourceBytes, totalDestination-

Bytes and FlowDuration feature set.

• Support Vector Machine with the log(totalSourceBytes), totalSour-

cePackets and FlowDuration feature set.

These will be referred to by the classification method (Random Forest,

KNN and SVM) for the rest of this chapter.

71

72 CHAPTER 5. EVALUATION

5.1 Evaluation Method

This section describes the methodology used for the evaluation below.

The network environment and tools used during the experiments are de-

scribed. The scope of the measurements that were taken are also dis-

cussed. Finally, appropriate nmeta2 configuration details are provided.

5.1.1 Network Environment

The testbed used for the evaluation was built using a hardware-based en-

vironment. Figure 5.1 illustrates the network topology and provides a

high-level overview of the traffic sent between each device. The network

can be sliced in two. The first slice was used for network traffic sent over

the data-plane and the second for the control-plane and test control net-

work.

The data-plane consisted of three hosts and a switch. A host was con-

figured to replay network traffic (traffic source), a host configured to re-

ceive the traffic (sink), a host configured to run the nmeta2 DPAE appli-

cation (DPAE) and an OpenFlow 1.3 compliant Allied Telesis switch (AT-

x930-28GSTX).

The control-plane and test control network connected all of the devices

using a layer 2 Ethernet switch. This facilitated communication between

the controller, switch and DPAE for the purposes of the nmeta2 system, as

well as the orchestration of experiments. This network also consisted of a

host that utilised Ansible playbooks1 to orchestra each experiment and a

host that was configured to run the nmeta2 controller application on Ryu.

1Documentation for Ansible can be found at http://docs.ansible.com/

ansible/.

5.1. EVALUATION METHOD 73

Traffic Source Sink

Test Control Server

͚Dumď͛ switĐh

AT-x930-28GSTX

Controller (Ryu)

Data Plane Network

Test Control Network

OpenFlow Control Plane

DPAE-Controller Link

Three connections on

the same interface.

DPAE

Two connections on

the same interface.

Figure 5.1: Physical network testbed topology used for the on-line experi-

ments.

The following list contains information on each device within the net-

work:

• Allied Telesis: AT-x930-28GSTX, OpenFlow 1.3 compliant switch.

• Allied Telesis: AT-FSW708, layer 2 Ethernet switch.

• Test Control Server: Raspberry Pi 3 running Raspbian GNU/Linux

8.0 (Jessie).

• Controller: Dell OptiPlex 9010 running Ubuntu 16.04 LTS (64-bit).

Intel i7-3770 CPU (3.40 GHz × 8). 2 × 4 GB DDR3 RAM (1600 MHz

each).

74 CHAPTER 5. EVALUATION

• Traffic Source: Dell OptiPlex 9010 running Ubuntu 16.04 LTS (64-bit).

Intel i7-3770 CPU (3.40 GHz × 8). 2 × 4 GB DDR3 RAM (1600 MHz

each).

• Sink: Dell OptiPlex 9010 running Ubuntu 16.04 LTS (64-bit). Intel

i7-3770 CPU (3.40 GHz × 8). 2 × 4 GB DDR3 RAM (1600 MHz each).

• DPAE: Dell OptiPlex 9020 running Ubuntu 16.04 LTS (64-bit). Intel

i7-4790 CPU (3.60 GHz × 8). 2 × 4 GB DDR3 RAM (1600 MHz each).

5.1.2 Classifier-DPAE Scenarios

Classifier-DPAE scenarios refer to the combinations of classifier and DPAE

mode that were used as the experiments were running. Two DPAE modes

were used: active and passive with flow-level packet sampling. The three

classifiers and a control experiment were tested with the two DPAE modes.

The control experiment did not use a classifier and therefore performed no

statistical classification. This was used for establishing baselines for execu-

tion and DPAE host performance. In summary, there were eight classifier-

DPAE scenarios.

5.1.3 Cross-validation

The experiments for selecting classifiers had the benefit of being able to be

completed within a reasonable amount of time. The use of bidirectional

flow metadata (counts of bytes and packets sent in either direction etc)

instead of packet data greatly decreased the running-time of experiments.

This allowed experiments to be conducted using 30-fold cross validation

and be repeated 10 times. Roughly speaking, a set of such experiments

where seven different classification methods need to be tested with six

different sets of features could be be completed in two to three days. This

produces 12600 sets of results.

5.1. EVALUATION METHOD 75

The above benefit does not hold when testing classifiers using data on

a live network. The ISCX 2012 DDoS dataset includes a PCAP file con-

taining captured packets over a 24 hour period. Using the same rigour

as before with the 24 hour packet trace would take 300 hours for a single

classifier (one classification method with one set of features). Therefore

it is necessary to reduce the number of folds and repeats for experiments

when using the traffic data in the PCAP file.

The classifier selection experiments were re-run for the three chosen

classifiers to investigate other options. The following three scenarios were

tested against each classifier: 10-fold cross validation repeated 10 times,

5-fold cross validation repeated 10 times and 5-fold cross validation with

no repeats. The purpose of these experiments was to investigate if there

were significant variations in the coefficient of variation (COV) of the f-

measure for each classifier when the number of folds and repeats were

varied. As the flow metadata used for classifier selection represents the

flows contained with the PCAP file, conclusions on classifier performance

can be considered to be equivalent for both off-line and on-line classifier

testing.

Table 5.1 shows use that there is no significant variation between ex-

periments with the same classifier and a different number of folds when

we round COV to two decimal places. Furthermore, reducing the number

of repeats from ten to one does not adversely affect the COV. As a result,

the tests on the physical testbed will be conducted using 5-fold cross vali-

dation with no repeats.

76 CHAPTER 5. EVALUATION

Classifier k-fold No. Experiments COV f-measure

Random Forest 5 1 0.00099966701644763

Random Forest 5 10 0.00065650435919871

Random Forest 10 10 0.00082674768864716

Random Forest 30 10 0.00205295057699385

K Nearest Neighbours 5 1 0.00317414815060351

K Nearest Neighbours 5 10 0.00459777310723121

K Nearest Neighbours 10 10 0.00431762721635929

K Nearest Neighbours 30 10 0.00453013494114403

SVM 5 1 0.00125285766453559

SVM 5 10 0.00108220751797692

SVM 10 10 0.00118310590013836

SVM 30 10 0.00242391553407141

Table 5.1: COV of the f-measure for the chosen classifiers with differing

values for k-fold and experiment repeats.

5.1.4 ISCX Dataset Replay

The ISCX 2012 DDoS dataset is a collection of network data that contains

both DDoS (attack) and background (normal) network traffic. The net-

work data is presented in a PCAP file (captured over a 24 hour period:

24GB in size, 34983042 packets) and a collection of three XML files sum-

marising the flows within the PCAP file. One can assume that the net-

work data in PCAP and XML files are statistically equivalent as the XML

files have been derived using information from the PCAP file. Figure 5.2

provides an illustration for the relationship between the PCAP file and the

collective XML data.

5.1. EVALUATION METHOD 77

PCAP filePCAP file

Packet 1

Packet 2

...

XML fileXML file

Flow 1

Flow 2

...

Packet 3 Flow 3

Packets are represented

in bidirectional flow

metadata.

Figure 5.2: Relationship between PCAP and XML data within the ISCX

2012 DDoS dataset.

Flows within the XML files are bidirectional flows. The summarises

within the XML files contain information such as: the IP addresses, port

numbers (if applicable), timestamp of when the flow started and stopped,

number of packets sent in either direction and the number of bytes sent in

either direction.

The classifiers that have been implemented train their models using

data derived from the XML flow summary files. Each classifier has no

knowledge of an individual packet as a result. Instead, the classifiers dis-

criminate classes of traffic based on the state of a bidirectional flow.

When evaluating the accuracy of a classifier it is commonplace to di-

vide an entire dataset into training and testing sets. This means that the

XML flow summaries need to be divided up into training and testing sets.

It could follow that the PCAP file also be cloned and filtered such that each

clone contained packets belonging to flows within the various testing sets.

Instead of processing the 24GB PCAP file into different testing sets, the

PCAP file can simply be replayed in its entirety.

Prior to each test we know what flows are part of the testing set. There-

fore once a test has ended and the results have been collected, the data

points that refer to flows within the training set can be removed. This

leaves behind the data for flows within the testing set; which is data that

would have otherwise been collected had the PCAP file been split ear-

78 CHAPTER 5. EVALUATION

lier. Furthermore, as the flows that are used to train the classifiers are not

formed from random packet samples from the PCAP file, selectively re-

moving the results associated with training flows will not alter the distri-

bution of the results. The results have merely been sanitised of data points

that would have resulted in overfitting.

5.1.5 Intended Measurements

The measurements that were taken are described below. The scope of each

measurement is also described. This was done for the three classifiers

as well as a control experiment (no classifier). The control experiment

presents a baseline for comparison for all measurements except the pre-

diction performance and classifier initialisation time.

Classifier Prediction Performance

The prediction results made for each flow needed to be recorded and col-

lected during the replay of the PCAP file. Once collected, the number of

true positives, true negatives, false positives and false negatives were de-

termined. Theses quantities allowed the mean DR, mean FPR and mean

f-measure to be calculated for each classifier.

Classifier Initialisation Time

A distinction needed to be made in regards to the measurement of classi-

fier training time. This could either refer to the time taken for the nmeta2

DPAE class containing a classifier to train or the method used by the Scikit-

learn module to train a model i.e. <classifier>.fit(). In order to get an

idea of the impact a machine learning classifier has on a network environ-

ment, it is important to consider the time that it takes to load training data

from file. Therefore the time that was measured was the time taken for a

classifier to be in a state where it could start making predictions, i.e. its

initialisation time.

5.1. EVALUATION METHOD 79

Packet Processing Time

Similar to the measurement of classifier training time, a distinction needed

to made with respect to the packet processing time. The measurement

could either consider the time taken for a Scikit-learn module to make a

prediction or for the nmeta2 DPAE class containing a classifier to train.

The latter was assumed given that the focus of this research was to use

machine learning classifiers to detect DDoS attacks using SDN. As a re-

sult, the measurement not only considered the time taken for a classifier

to make a prediction but also the time taken for a classifier to prepare net-

work data for use in a classifier.

DPAE Host Performance

The DPAE host was monitored throughout each of the experiments. MOSP2

is a program for monitoring the performance of a machine. Information

such as the CPU utilisation and the amount of traffic sent and received by

the host was recorded to a file. This information was gathered so that fur-

ther insight into the performance of the classifiers could be made. MOSP

was configured with a fetching interval of 1 second and was run through-

out the duration of each experiment.

5.1.6 Data Pre-processing

The ISCX 2012 DDoS dataset PCAP file contains packets with the MAC

addresses of the machines used within the capture environment. As the

testbed being used for the evaluation of the classifiers does not contain

those machines, it is necessary to pre-process the PCAP data such that it

is compatible with the classifier evaluation testbed. The PCAP file was

replayed using tracereplay3 with the traffic being directed to the sink.

2Code can be found at https://github.com/mattjhayes/mosp.
3This program is part of libtrace which can be found at https://github.com/

wanduow/libtrace.

80 CHAPTER 5. EVALUATION

The destination MAC addresses of the packets within the PCAP file

were changed to the MAC address of the sink’s data-plane network inter-

face card (NIC). This served to direct the packets to a termination point.

This does not change the statistical distribution of each bidirectional flow

within the PCAP file. Care was taken to not change any packets with

the broadcast destination MAC address as this would have altered the be-

haviour of flows. Furthermore, there was no issue of conflicting IP ad-

dresses as the subnet for the data-plane of the testbed does not match any

private IP address subnet within the data set [50].

5.1.7 Measurement Tools

Relevant tools that were used to take readings are mentioned below.

Execution Time

The nmeta2 system is built following Python version 2. One method of

measuring execution time of a process would involve the use of the timeit

module [52]. This module can be used to measure the execution time of

functions. This function was not appropriate for use in these experiments

as there was no need to measure the time spent on lines of code within the

functions of interest. As a result it was necessary for to measure execution

time using the time module [53].

The time module offers two functions for fetching the current time:

time.time() and time.clock(). The return value of time.time() is

the number of seconds since the epoch expressed as a floating point num-

ber. This representation of time can also be referred to as ’wall-clock’ time.

The return value of time.clock() differs from operating system to oper-

ating system. On Unix operating systems it returns the current processor

time in seconds as a floating point number. It does not return the proces-

sor time in seconds on Windows operating systems however. It instead

returns the elapsed number of wall clock seconds since the first call to the

5.1. EVALUATION METHOD 81

function. It is important to note that the precision of the value returned by

time.clock() is higher than the return value from time.time().

Another option is the use of the cProfile module [54]. This module

utilises C code to profile Python code. The generated profile contains

statistics describing how often parts of a program were executed and for

how long. The module can be used to profile an entire program or sections

of code within the program. The cProfile module was too heavyweight for

the purposes of this evaluation as there was no need to measure the time

spent in individual functions within a section of code.

The choice of timing method was motivated by the setting of this re-

search. The measurements concerning the execution time of the training

and prediction phases of classification should consider the stress of the

machine running the system. Such measurements reflect the effects of re-

ceiving traffic, especially DDoS attack traffic, on machine learning-based

statistical classifiers. Therefore the chosen method of measuring execution

time was time.time(). In contrast, the time.clock() function only

measures the time that the code was running on the processor. It does not

capture any moments when the program was interrupted by the operating

system to perform other tasks due to the arrival network traffic. Despite

this, this second method was also used as a point of comparison.

Prediction Results

The DPAE distinguishes bidirectional flows by using a five-tuple. Us-

ing this definition, the bidirectional flows within the dataset change their

behaviour over time. Traffic with a particular five-tuple may be non-

malicious at one moment and malicious at a later time. This demonstrates

the reuse of addresses within a five-tuple.

Each prediction result was written to file. Attached to each result was

the time the prediction was made, the five-tuple of the flow and the execu-

tion times of the prediction. As the PCAP file contains 34983042 packets,

one would expect 34983042 predictions to have been made at the most

82 CHAPTER 5. EVALUATION

when running the DPAE in active mode. The prediction results were cor-

related with the flow summaries within the XML files for each fold to cal-

culate the prediction performance statistics.

5.1.8 nmeta2 System Configuration

The nmeta2 controller and DPAE applications allow the network operator

to configure their behaviour. This is enabled through YAML formatted

configuration files. The configurations used during the evaluation experi-

ments are given below.

nmeta2 Controller Application

The file main policy.yaml describes the classification behaviour for the en-

tire nmeta2 system. A network operator can specify what information is

collected through the definition of policies. The following settings were

changed from the original values as pulled from GitHub:

1. Identity information was not collected by setting the arp, lldp, dns

and dhcp fields to 0.

2. A port set was created to specify that traffic only need be classified if

it arrives on the switch port of the load generator.

3. A traffic classification rule set was created to specify that all traffic

should be classified against the implemented classifiers.

4. A traffic classification policy was created to apply the previously cre-

ated traffic classification rule set on the aforementioned port set and

set the DPAE mode to either active or passive.

The file config.yaml is used to configure the nmeta2 controller applica-

tion. For the purposes of the experiments, the only item that was edited

was the suppress idle timeout field during the experiments where the DPAE

5.1. EVALUATION METHOD 83

was run in passive mode. This field denotes the suppression time for send-

ing traffic to a DPAE from a switch. This was used to implement flow-level

packet sampling. This was set to 1 during the passive mode experiments.

This value was set to 0 during the active mode experiments as all traffic

was being forwarded to the DPAE from the OpenFlow switch.

The choice of 1 second for the flow suppression time was chosen as

it was the smallest value. This provided the DPAE with the maximum

amount of information from a sampling configuration. However this will

result in the largest amount of control plane traffic between the controller

and DPAE for a sampling configuration (compare with value set to 5 sec-

onds for instance). Despite this, 1 second was chosen in order to improve

the likelihood of better classifier performance.

nmeta2 DPAE

The file config.yaml is used to configure the nmeta2 DPAE application. The

following settings were changed from the original values as pulled from

GitHub:

1. The field nmeta controller address was set using URL syntax to point

to an HTTP endpoint on the nmeta2 controller application.

2. The field sniff if names was set to the interface on the DPAE machine

connected to the switch.

3. The field console log enabled was set to the 0 to disable console log-

ging during experiments. This style of logging was not necessary as

the experiments were orchestrated using Python scripts and Ansible

playbooks. This did not disable logging to syslog.

Default parameters were used for each classification method as the

purpose of the research was not to optimise classifier parameters. The

only parameter that was changed was the “algorithm” parameter for the

KNN classifier. This was set to “kd tree” and has the effect of storing the

84 CHAPTER 5. EVALUATION

training data in a k-d tree. This option promises to decrease the prediction

time. The leaf size was left at the default value.

Other Items

After each fold was finished, the MongoDB logfile located at /var/log/

mongodb/mongodb.log was deleted. Allowing this file to grow too big

prevented test data from being collected as the available space on the

filesystem was exhausted.

5.2 Measurement Hypotheses

This section presents the hypotheses for the results that were used to eval-

uate the classifiers.

5.2.1 Classifier Prediction Performance

The expectation was for the ranking of each classifier in terms of f-measure

to match the ranking of the three classifiers in the second classifier selec-

tion experiment. The places Random Forest classifier first, followed by the

KNN and SVM classifiers. The values for each f-measure value were not

expected to match between the selection experiments and the hardware

testbed experiments. These values were expected to be lower in fact, as

the classifiers in the selection experiments were provided with perfect in-

formation. That is, information that is not subject to variation caused by

networking equipment.

A Receiver Operator Characteristics (ROC) curve is an evaluation tool

for assessing the performance of a classifier [55]. The DR is plotted against

the FPR for various classifier experiments where the parameters of the

classifier are changed. The resulting curve depicts the performance of the

classifier as it is tuned. This tool was not appropriate for this evaluation

as the parameter that was changed for each classifier was the the DPAE

5.2. MEASUREMENT HYPOTHESES 85

mode, of which there were two. This was too few parameter changes for a

ROC curve to be used effectively.

5.2.2 Classifier Execution Time Performance

Hypotheses must be given for the classifier initialisation and packet pro-

cessing times. These are given below.

Classifier Initialisation Time

The initialisation time for each statistical classifier was expected to be de-

pendent on the method behind each classifier. It can be assumed that the

time taken to load the training data from file will consistent for each classi-

fier as the files were all the same size. The KNN classifier should have the

lowest initialisation time as it is a lazy learner. The SVM classifier should

have the highest initialisation time as the method needs to perform several

calculations using support vectors to find an optimally placed decision

boundary.

Packet Processing Time

The first expectation was that the mean packet processing time for the

control experiments (i.e. when using the empty classifier) was going to

be smaller than the scenarios where an actual classifier was being used.

The KNN classifier was expected to exhibit the highest mean packet pro-

cessing time as it is a lazy learner. In terms of the shortest mean packet

processing time for the classifier, the belief was that the SVM classifier will

perform better than the Random Forest classifier. This is because the Ran-

dom Forest prediction method involves a search through a tree-based data

structure to determine classes.

86 CHAPTER 5. EVALUATION

5.3 Classifier Prediction Performance

This section discusses the results regarding the prediction performance

of the three statistical classifiers. The results will first be presented with

comparisons being made to the respective hypothesis (Section 5.2.1) and

the results of the second classifier selection experiment. This is followed

by a closer examination into the predictions.

5.3.1 Prediction Results

The prediction performance measures used for the second classifier selec-

tion experiment were also used for on-line experiments. The DR and FPR

was calculated for each classifier alongside the f-measure to rank the clas-

sifiers. Table 5.2 presents the results for each classifier and includes both

DPAE modes.

Classifier DPAE Mean DR Mean FPR Mean f-measure

SVM Active 0.144378318 0.002040893 0.021384715

Random Forest Active 0.003937928 0.002657403 0.000594661

SVM Passive 0.000749199 0.002534000 0.000114200

KNN Passive 0.000700116 0.000119214 0.000104720

KNN Active 0.000273643 0.000092519 0.000040693

Random Forest Passive 0.000053412 0.002272015 0.000007984

Table 5.2: Prediction statistics for the deployed statistical classifiers -

ranked by mean f-measure.

The first hypothesis for the prediction results stated that the f-measure

ranking would follow the ranking provided at the end of the second classi-

fier selection experiment. This order was Random Forest, KNN and SVM.

Table 5.2 shows that was not the case regardless of the DPAE mode. The

active mode experiments yielded the order of SVM, Random Forest and

5.3. CLASSIFIER PREDICTION PERFORMANCE 87

KNN. The passive mode experiments yielded the order of SVM, KNN,

Random Forest.

The second hypothesis for these results stated that the f-measure val-

ues would be lower than their counterparts in the second classifier selec-

tion experiment. This hypothesis is confirmed by the results in Table 5.2.

It is worth pointing out that the difference in the orders of magnitude is

larger than one might expect. The f-measure statistics used to rank the

classifiers during the selection process suggested that the classifiers should

have yielded promising results.

The mean DR for all classifiers was also low. The highest mean DR

was given by the SVM classifier when the DPAE was run in active mode.

This value suggests that it could accurately identify roughly 14% of the

malicious flows. The mean FPR results showed more promise as lower

values indicate better performance in this context. The smallest mean FPR

was given by the KNN classifier when the DPAE was run in active mode.

The results suggest that having the DPAE in active will produce more

palatable results. Of the six classifier-DPAE scenarios, two of the active-

based classifiers were in the top three when ranking the classifiers by mean

f-measure. Furthermore, the lowest mean FPR was given by the KNN clas-

sifier when the DPAE was run in active mode. The disadvantage of using

the DPAE in passive mode with packet sampling is that predictions are

made with less information. Active mode puts the DPAE into a position

where it has a closer relationship with the flows of traffic. Thus the DPAE

is closer to having perfect information, similar to the off-line experiments

used for classifier selection.

5.3.2 Prediction Accuracy

The prediction results presented in Table 5.2 show that the classifiers were

not successful in detecting the malicious flows in a DDoS attack. This

conclusion was made on the basis of the f-measure, however the results

88 CHAPTER 5. EVALUATION

were also examined from a different point of view: accuracy. Table 5.3

ranks the classifiers by their accuracy.

Classifier DPAE Mean DR Mean FPR Mean Accuracy

SVM Active 0.144378318 0.002040893 0.93468575

KNN Active 0.000273643 0.000092519 0.92575702

KNN Passive 0.000700116 0.000119214 0.92521195

Random Forest Passive 0.000053412 0.002272015 0.92318754

Random Forest Active 0.003937928 0.002657403 0.92252053

SVM Passive 0.000749199 0.002534000 0.92159593

Table 5.3: Prediction statistics for the deployed statistical classifiers -

ranked by mean accuracy.

Each classifier was roughly 92% to 93% accurate which was in itself

was a very promising result. However such measurements should be

taken with a grain of salt. Equation 2.3 showed how to calculate accu-

racy using the number of true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN). Immediately one can see that the

calculated value is governed by the TP and TN terms in the numerator.

This can be used to explain the high accuracy of the classifiers despite their

low f-measure.

The high accuracy was attributed to the low mean FPR. The low mean

DR for each classifiers informs us that the number of TP predictions must

have been smaller than the number of FN predictions. Similarly, the low

mean FPR informs us that the number of TN predictions must have been

larger than the number of FP predictions. Using these two pieces of infor-

mation, one can infer that the high accuracy was due to a large number of

TN predictions. This tells us that the classifiers were successful in correctly

identifying non-malicious flows of traffic.

5.3. CLASSIFIER PREDICTION PERFORMANCE 89

5.3.3 Examining the Collected Results

The results and observations presented in sections 5.3.1 and 5.3.2 paint a

fairly bleak picture. The classifiers were not successful in detecting ma-

licious flows within an live network environment. Despite this they can

still be considered to be accurate as they appeared to correctly identify

the non-malicious flows of traffic. Table 5.4 contains the mean prediction

quantities (flows) which can be used to explain the aforementioned phe-

nomena.

Classifier DPAE Mean TP Mean TN Mean FP Mean FN Mean N/A

Random Forest Active 118 366873.4 975 29844.4 59547.6

KNN Active 8.2 373966 34.6 29957 53392.6

SVM Active 4326 373540.4 764.4 25637 53090.6

Random Forest Passive 1.6 370154.8 842.6 29955.4 56404

KNN Passive 20.8 367232.2 43.8 29642.6 60419

SVM Passive 22.2 358570.2 910.6 29595.4 68260

Table 5.4: Mean prediction quantities (flows) for each statistical classifier -

True Positives (TP), True Negatives (TN), False Positives (FP), False Nega-

tives (FN) and No Answer (N/A).

Each classifier produced a large amount of TN predictions on average.

When this is compared to the mean number of FP predictions we can un-

derstand why the mean FPR for each classifier was low. A similar compar-

ison can be made with the mean number of TP and FN predictions. The

significantly lower number of TP predictions resulted in a low mean DR.

This is very apparent when the Random Forest classifier with the passive

DPAE results are considered. The packet sampling approach resulted in

1.6 malicious flows being detected on average.

Included in Table 5.4 is a column named “Mean N/A”. This column

presents the mean number of flows that did not receive a prediction. The

reasons for this will be discussed in Section 5.5.1. The worrying large

number of flows that did not receive predictions is problematic for the

90 CHAPTER 5. EVALUATION

prediction quantities. However this can be used to explain why the mean

number of TP predictions was so low. It is possible that flows that should

have been identified as malicious did not receive any prediction value at

all. It is important to note that at this stage of the evaluation, this is only

speculation.

5.3.4 Classifier Prediction Performance Summary

The three statistical classifiers produced results that defied the expecta-

tions given by the second classifier selection experiment. The low mean

f-measure across all classifier-DPAE scenarios makes it difficult to deter-

mine what classifier performed the best. Despite this, the classifier-DPAE

scenario with the highest f-measure was the SVM classifier with the DPAE

configured in active mode.

The low mean f-measure statistics are matched with equally low mean

DRs. However it is important to consider each classifier’s mean FPR as

well, which got no larger than roughly 0.27%. The accuracy of each clas-

sifier fell within the range of 92-93%. While being satisfactory results, it is

important to not let this paint a false picture of the predictive performance

of each classifier. The last point to note is the sizeable amount of flows that

did not receive a prediction value.

5.4 Classifier Execution Performance

This section discusses the results regarding the execution performance of

the three statistical classifiers. Three areas were explored to address this:

the initialisation time of each classifier, the packet processing time of each

classifier and the number of packets processed by each classifier. The sec-

ond and third measurements were also collected for control experiments

where the DPAE was not configured to perform any statistical classifica-

tion. The resulting impact that statistical classification has on the DPAE

5.4. CLASSIFIER EXECUTION PERFORMANCE 91

portion can then be understood. The hypotheses for each set of results

(Section 5.2.2) will be addressed where appropriate.

5.4.1 Classifier Initialisation Time

Section 5.1.5 defined classifier initialisation time as the time taken for a

classifier to be in a state where it can make predictions. This includes the

time taken for training data to be loaded from file as well as the time taken

for the classifier to train. These results are displayed in Table 5.5.

Classifier DPAE Mean Proc. Time (s) Mean Wall Time (s)

Random Forest Active 5.6848638 6.258123016

KNN Active 5.448394 6.004147053

SVM Active 443.2090188 443.9620652

Random Forest Passive 5.7031904 6.177779818

KNN Passive 5.4808608 6.127974558

SVM Passive 443.1051298 443.8416832

Table 5.5: Mean statistical classifier initialisation times - Processor (Proc.)

and Wall time.

The hypothesis regarding classifier initialisation times successfully pre-

dicted what classifiers would be the quickest and the slowest. Both in-

stances of the KNN classifier were the quickest to initialise within their

respective DPAE mode scenarios. Furthermore, this holds across both the

mean processor and wall time columns. This result is unsurprising as the

KNN method is a lazy learner. Each KNN classifier was followed closely

by the Random Forest classifiers. The SVM classifier took the longest to

initialise, taking roughly 7 minutes and 23 seconds.

The difference between the mean processor and wall times for each

classifier-DPAE scenario is fairly consistent. Some of this difference can

be accounted for by the order in which time was recorded; processor then

wall. These results suggest that the DPAE host was able to consistently

92 CHAPTER 5. EVALUATION

concentrate on the initialisation process without being interrupted by other

processes.

It is well understood that modern operating systems (OS) share pro-

cessor time among numerous processes. A significant difference between

the mean processor time and the mean wall time would indicate that mod-

ern OSs are not be suitable for use within a networking environment. An

alternative option might involve the use of dedicated hardware running

a unikernel; however, this would cost more to develop in a temporal and

monetary sense.

5.4.2 Packet Processing Time

Section 5.1.5 defined packet processing time as the time taken for a classi-

fier to gather the required information to make a prediction and then make

the prediction itself. These results are displayed in Table 5.6.

Classifier DPAE Mean Proc. Time (s) Mean Wall Time (s)

No classifier Active 0.000512707 0.000974115

Random Forest Active 0.004153738 0.004366805

KNN Active 0.001187487 0.001447127

SVM Active 0.000788909 0.001097702

No classifier Passive 0.000480256 0.001844048

Random Forest Passive 0.004201095 0.004400715

KNN Passive 0.001138495 0.002002197

SVM Passive 0.000740066 0.002011115

Table 5.6: Mean packet processing times - Processor (Proc.) and Wall time.

Three hypotheses were made regarding the packet processing times

and two of these were confirmed. Firstly, the mean packet processing

time when no classifiers were used was smaller than when a classifier was

used. Secondly, the SVM-based classifiers had smaller packet process-

ing times on average compared to the Random Forest-based classifiers.

5.4. CLASSIFIER EXECUTION PERFORMANCE 93

The third hypothesis incorrectly predicted that the KNN-based classifiers

would have the highest mean packet processing time. This was made on

the assumption that a lazy learner would exhibit longer processing times.

A strange observation that can be made concerns the difference in times

between the different DPAE scenarios. The mean processor time for each

classifier scenario was higher when the DPAE was in active mode, except

for the Random Forest classifier. This fits the assumption that an active

DPAE is put under more stress as it must process all traffic being for-

warded to its neighbouring switch. However, the same increase was not

observed when using mean wall time. It is counter-intuitive that an active

DPAE would increase the time spent on a processor instead of the time

from the perspective of the OS.

The packet processing results for the Random Forest classifier indicate

that it is the least suitable for deployment. Compared to the control ex-

periment, the mean processor time increased by a factor of 10 (or 1000 mi-

croseconds). The SVM classifiers only increased the mean processor times

by 200 microseconds. The longer packet processing time for the Random

Forest classifier could be attributed to two things. The Random Forest

classifier that was selected utilised a feature set that contained five fea-

tures whereas the other two classifiers utilised three. In terms of packet

processing time, a larger feature set means that more time must be spent

preparing the required data before a classification can be made. Also, the

Random Forest method relies on a search through a tree-like data struc-

ture.

5.4.3 Number of Predictions

The purpose of counting the number of predictions made by each classifier

was to check for possible packet loss. This can be done by comparing

the number of predictions that were made against the number of packets

contained within the dataset’s PCAP file. The current implementation of

94 CHAPTER 5. EVALUATION

the DPAE means that they will never be equal however as the DPAE does

not subject all packets to the entire classification pipeline. Packets that

are part of DNS, DHCP, LLDP or ARP-based flows are not processed by

custom classifiers. Baselines were provided by running the DPAE with

no classifier. This provided the expected number of packets that could be

processed by the classification pipeline.

Another way of detecting packet loss involves counting the packets

that are received by the sink. This could be done as all of the packets

sent on the data-plane should be forwarded to the sink, regardless of their

type. Table 5.7 displays that the mean number of predictions that were

made and the mean number of packets that were received by the sink for

each classifier-DPAE scenario.

Classifier DPAE Mean Pred. Mean S. Pkt.

No classifier Active 22913939.4 24326964.6

Random Forest Active 13182770.6 16099466.8

KNN Active 21781835.4 23817711.8

SVM Active 22798603 24116786.6

No classifier Passive 22648513.2 20003418

Random Forest Passive 13361685.6 20212835.4

KNN Passive 24862596.8 19517048.2

SVM Passive 23788578.2 19477950.4

Table 5.7: Mean statistical classifier predictions - mean number of predic-

tions (Pred.) and mean number of packets received by the sink (S. Pkt.).

Key Features of the Results

The most glaring feature of these results is that the quantities are signif-

icantly less than the number of packets in the dataset’s PCAP file. The

largest mean number of packets received by the sink (24326964.6) was

roughly 10 million fewer packets than the 34983042 contained within the

PCAP file. Fewer predictions were expected to be made as not all packets

5.4. CLASSIFIER EXECUTION PERFORMANCE 95

were going to be subjected to statistical classification. Regardless, the lack

of packets and predictions would offer a possible explanation for the poor

prediction performance.

The second most glaring feature of the results is that three of the four

passive-based scenarios had sinks that received fewer packets on average

than the mean number of predictions that were made. An explanation

for this can be given using the behaviour of the flow table pipeline used

by nmeta2. The key principle for this explanation is that the last table in

the pipeline is used for forwarding packets to their destinations and the

preceding tables are used for handling packets before they are classified.

One of these tables is used for copying packets, one copy to be forwarded

to the DPAE and the other to be sent through the rest of the pipeline. The

fact that the latter packet is still being processed means that it is possible

for packets to be lost if the switch’s buffer becomes full.

The above argument does not explain why the three classifiers made

more predictions on average when flow-level packet sampling was used.

Logic would dictate that packet sampling should result in fewer predic-

tions being made, assuming that the packet arrival rate in each flow is less

than the packet sampling rate.

This phenomena can be explained as follows. Assume that the mean

number of predictions made for each classifier when the DPAE is in active

mode is the processing capacity for the system. We know that there was a

sizeable amount of packets that did not receive a prediction and logic dic-

tates that sampling should result in fewer predictions being made. How-

ever it is possible the number of packets that are sampled from the switch

is larger than the packet processing rate of the DPAE. This means that one

would never observe fewer predictions when sampling traffic from the

switch.

96 CHAPTER 5. EVALUATION

Other Observations

The order of both columns in Table 5.7 for the active DPAE scenario

matches the order of both packet processing time columns in Table 5.6 for

the same scenario. The same observation cannot be made for the passive

scenario. By putting the DPAE into passive mode and giving the switch

the responsibility to sample packets, the expected results have changed.

The cause of this cannot be concluded given there are two contributing

factors. However, the results suggest that switch-based packet sampling

is not desirable. All traffic should ideally be forwarded to the DPAE for

classification where sampling decisions can be made away from the data-

plane.

The average number of predictions made by the Random Forest clas-

sifier is still less than the average number of packets received by the sink

within the passive DPAE scenario. This is in contrast to the other set of

experiments within the same DPAE scenario. This is to be expected as the

mean packet processing times for the Random Forest method were higher

than the other classifiers. Therefore it is unsurprising that fewer predic-

tions were made.

5.4.4 Classifier Execution Performance Summary

The classifier execution results show that classifiers with shorter initialisa-

tion periods may not be desirable. The SVM classifier, despite having the

longest initialisation time, had the least significant impact on the average

packet processing time. These results also provide an insight into the rea-

sons why some flows did not receive predictions. The average number of

predictions that were made in each classifier-DPAE scenario was signifi-

cantly lower than the number packets in the dataset’s PCAP file.

5.5. DPAE HOST PERFORMANCE 97

5.5 DPAE Host Performance

This section examines the performance impact the statistical classifiers had

on the DPAE host in terms of the amount of traffic sent and received by

the DPAE host. Analysing this information provides details into why the

classifiers produced the results seen in sections 5.3 and 5.4 as it shows how

different traffic conditions can effect the classification process. In this case:

traffic arriving at a normal rate and traffic from a DDoS attack.

The results consider the mean and maximum values. The mean is typ-

ically used to determine what one could expect on average. This does not

adequately capture the extreme ends of the scale. Examining the max-

imum values over a period of time shows how the worse case scenario

may change. This is important for researchers and network operators as it

helps in understanding the upper bounds of a system, an understanding

which may be used to build and maintain a resilient network.

5.5.1 DPAE Host NIC Impact

The DPAE acts as a sponge. By observing how it absorbs and releases

packets one can draw conclusions regarding its performance. The DPAE

used in these experiments was setup with one NIC connected to an Open-

Flow switch and another connected to the control plane network (see Fig-

ure 5.1). The NIC connected to the OpenFlow switch receives packets from

the switch to be classified. This interface is also used to forward packets

back to the switch when the DPAE is in active mode. The NIC connected

to the control plane network (abbreviated to contr.) is used by the DPAE

to send classification information to the controller via a TCP session. Mon-

itoring both NICs shows how the data and control planes are effected by

statistical classifiers.

98 CHAPTER 5. EVALUATION

No Classifier

The first set of results to be explored concern the control experiments. By

observing the DPAE when no statistical classification is being performed,

the performance baseline can be established. Figures 5.3, 5.4, 5.5 and 5.6

will be referenced.

Figure 5.3 clearly shows the impact a DDoS attack has on the aver-

age number of packets received by a switch. It also highlights a discrep-

ancy between the traffic received by the DPAE and the traffic forwarded

back to the switch. Monitoring the traffic forwarded from the DPAE to the

switch is important as it reveals how many packets can be processed by

the DPAE. Active mode is distinguishable by its responsibility to forward

packets back to the switch once they have been processed. Therefore we

can conclude that the DPAE can process most packets in an active manner

on average when no statistical classifiers are being run.

●●
●
●●●●●

●

●

●●●
●
●●●

●
●●●

●
●●●●●●●

●
●
●
●
●
●

●●●●●●
●●

●
●●●●●●●●

●●●●
●●

●
●●

●
●●

●

●●
●

●

●●●

●

●●●●●●●●
●●●●

●
●
●
●●●●●●●●

●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Mean NIC Packets: No Classifier − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●
●
●●●●●

●

●

●●●
●
●●●

●
●●●

●
●●●●●●●

●
●
●
●
●
●

●●●●●●
●
●
●
●●●●●●●●

●●●●
●●

●
●●

●
●●

●

●●

●

●
●●●

●
●●●●●●●●●●●●●

●
●
●●●●●●●●

●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.3: Active DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with no statistical classification.

5.5. DPAE HOST PERFORMANCE 99

Figure 5.4 shows the same discrepancy but on more occasions. This

shows that the maximum amount of packets that can processed by the

DPAE is around 1500 per second (as the readings were taken every sec-

ond). This figure also accentuates the discrepancy mentioned in Figure

5.3. This represents a significant amount of packet loss on the DPAE. This

accounts for the smaller number of predictions that were made and num-

ber of packets that were on received by the sink.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●●●●

●●
●●●

●
●
●●●●●●●

●
●●●●

●

●

●

●

●

●
●
●

●
●●

●
●
●●

●
●●●●●

●
●●

●●●
●●●●●

●
●●

●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Max NIC Packets: No Classifier − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●●●●

●●
●●●●

●
●●●●●●●

●
●●●●

●

●

●

●●●
●
●

●●●●●●●
●●●●

●●●●●
●●

●

●●●●
●
●
●
●

●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.4: Active DPAE: Maximum number of packets sent and received

by the DPAE host during the experiments with no statistical classification.

Figures 5.5 and 5.6 contain the results for the control experiment with

the DPAE was in passive mode. The data-plane traffic does not show the

same spikes that were seen during the active DPAE experiments. Packet

sampling from the switch has reduced the spikes of traffic received from

the data-plane on average. In contrast, the amount of traffic increases at

around 30000 seconds and plateaus.

100 CHAPTER 5. EVALUATION

●

●

●
●
●
●
●
●
●

●

●●●

●

●●●

●

●●
●

●

●
●
●●

●
●
●

●

●
●

●

●
●

●
●
●
●
●●●●

●

●●●
●
●●●

●●●
●
●
●
●

●

●

●

●

●

●

●

●●●●

●●

●

●

●
●

●
●●●

●
●

●
●

●●

●

●

●

●●●
●
●
●●

●

●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Mean NIC Packets: No Classifier − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.5: Passive DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with no statistical classification.

●
●
●
●●●

●

●

●

●

●●●●
●
●●

●

●
●

●

●

●

●●●

●

●●
●
●

●

●

●●●
●●

●●

●
●

●

●●●
●
●

●●
●

●
●
●

●
●

●

●
●
●●

●
●
●

●

●

●●

●

●
●
●

●
●
●
●
●●

●

●
●●●

●

●

●●●
●●

●

●

●●
●
●

●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Max NIC Packets: No Classifier − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.6: Passive DPAE: Maximum number of packets sent and received

by the DPAE host during the experiments with no statistical classification.

5.5. DPAE HOST PERFORMANCE 101

Packet sampling has affected the amount of traffic received from the

data-plane during the DDoS attack at 60000 seconds. Figure 5.6 shows that

the maximum amount of packets received at this time approached 2500

whereas it was greater than 4500 when the DPAE was in active mode. The

amount of packets received during the passive scenario at this time is still

greater than the maximum amount of packets that the DPAE processed

during the active experiments. Therefore packet loss would still have been

occurring even though Figures 5.5 and 5.6 provide no direct indication.

Figures 5.3, 5.4, 5.5 and 5.6 all show the same features in regards to the

traffic sent on the control plane. The first feature is that the traffic sent from

the DPAE to the controller does not increase once it has plateaued. This is a

promising result as it suggests that if the data-plane imposes a significant

load on the DPAE, the control-plane will not suffer adverse effects. The

results from the control experiments suggest that the OpenFlow controller

will not be flooded with traffic from the DPAE.

The second feature is that the number of packets sent on the control-

plane is typically equal to the number of packets received from the control-

plane. This is expected as the DPAE communicates with the conroller us-

ing TCP. Therefore each packet sent by one host must be acknowledged

by the other.

Random Forest Classifier

Figures 5.7, 5.8, 5.9 and 5.10 show the traffic received and sent by the

DPAE host when the Random Forest classifier was being run. These fig-

ures share many similar features to the figures depicting the control exper-

iment when no classification was being performed.

102 CHAPTER 5. EVALUATION

●●
●
●●●●●

●

●

●●●
●
●●●

●
●●●

●
●●●●●●●

●
●
●
●●

●

●●
●
●●●●●

●
●●●●●●●●

●●●●
●●

●
●●

●
●●

●

●●
●

●

●●●

●

●●●●●●●●
●●

●●
●
●
●
●●●●●●●●●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Mean NIC Packets: Random Forest − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●●●●●●
●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●
●●●

●
●
●●●●●●●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.7: Active DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with the Random Forest classifier.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●
●●●●

●●●●●
●●●●●●●●●●

●
●●

●●

●

●

●

●

●
●

●

●

●●●
●●

●●

●
●●

●
●●

●
●●

●●●
●●●

●●
●●

●

●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Max NIC Packets: Random Forest − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.8: Active DPAE: Maximum number of packets sent and received

by the DPAE host during the experiments with the Random Forest classi-

fier.

5.5. DPAE HOST PERFORMANCE 103

●
●

●
●
●
●
●
●
●

●

●●●

●

●●●

●

●
●●

●
●
●
●
●
●
●
●

●

●
●

●
●●

●●
●
●●●●●

●

●
●
●●●●

●●●
●●●

●●
●

●
●

●
●
●

●
●
●●

●

●
●
●

●

●●
●
●●

●●
●
●●

●●
●
●
●

●●●●
●●●

●
●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Mean NIC Packets: Random Forest − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.9: Passive DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with the Random Forest classifier.

●
●

●
●
●
●

●

●●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●●
●●

●

●

●●

●
●●

●
●●●

●
●
●
●

●
●

●
●
●●

●●

●

●
●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●●
●
●
●●●

●

●
●

●

●
●●●

●
●
●

●
●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Max NIC Packets: Random Forest − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.10: Passive DPAE: Maximum number of packets sent and re-

ceived by the DPAE host during the experiments with the Random Forest

classifier.

104 CHAPTER 5. EVALUATION

The main difference when considering the figures for the active exper-

iments however is the positions of the line for the number of packets sent

from the DPAE back to the switch. Figures 5.3 and 5.4 showed that this

line matched closely with the number of packets received from the switch

the majority of the time. Figures 5.7 and 5.8 do not show this however.

The discrepancy between the two quantities means that the Random

Forest classifier was unable to process all of the packets from the data-

plane as fewer packets were being forwarded back to the switch. The av-

erage packet processing time for the Random Forest classifier was higher

than the processing time for the control experiment. The longer process-

ing time would result in fewer packets being processed per second and

by extension fewer packets being forwarded back to the switch. This pro-

vides an explanation as to why the Random Forest classifier made fewer

predictions compared to the other classifier-DPAE scenarios.

A strange feature within the Figure 5.10 is the absence of the spike seen

at around 10000 seconds during the control experiment. This instance can

be considered to be anomalous with the sampling behaviour when the

Random Forest classifier is being used.

KNN Classifier

Figures 5.11, 5.12, 5.13 and 5.14 show the traffic received and sent by the

DPAE host when the KNN classifier was being run. These figures largely

contain results that one would expect after having seen the results for the

control experiment. The results for the Random Forest classifier showed

that variation can be found in the amount of traffic sent back from the

DPAE when it is in active mode. The results that will be discussed below

indicate why the KNN classifiers resulted in more flows being classified

compared to the Random Forest classifiers.

The discussion of the NIC results for the Random Forest classifier iden-

tified the difference between the traffic sent and received by the DPAE on

the data-plane compared to the control experiment. The results for the

5.5. DPAE HOST PERFORMANCE 105

KNN classifier still do not compare too favourably to the control experi-

ment however they are considerably better than the results for the Ran-

dom Forest classifier. Figure 5.11 illustrates that the KNN classifier with

the active DPAE was able to forward packets back to the switch on aver-

age.

●●
●
●
●●●●

●

●

●●●
●
●●●

●
●●●

●
●●●●●●●

●
●
●
●
●
●

●●●
●●●

●●
●
●●●●●●●●

●●●●
●●

●
●●

●
●●

●

●●
●

●

●●●

●

●●●●●●●●●●●●●
●
●
●●●●●●●●●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Mean NIC Packets: k−Nearest Neighbours − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●
●
●
●
●●●●●

●

●●●
●
●●●

●
●●●

●
●●●●●●●

●
●
●
●
●
●

●●●
●●●

●●
●
●●●●●●●●

●●●●
●●

●
●●

●
●●

●
●●●

●
●●●

●

●●●●●●●●●●●●●
●
●
●●●●●●●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.11: Active DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with the KNN classifier.

The improvement presented by the KNN classifier is still far from opti-

mal. The best examples that back this claim can be seen in Figure 5.12. As

stated earlier, the maximum amount of traffic forwarded from the switch

when the KNN classifier was running closely matches that during the con-

trol experiment. This is expected as the amount of traffic forwarded from

the switch is independent of the classifier when the DPAE is in active mode

in the context of this evaluation. The amount of packets sent from the

DPAE to the switch during the time period 0 to 20000 seconds does not

follow the amount of packets that were received as closely as in the con-

106 CHAPTER 5. EVALUATION

trol experiment (see Figure 5.4).

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●●●

●●
●●●

●●●●●●●●●●
●
●
●●

●

●

●

●

●●

●

●

●●●
●●

●●

●
●●●

●●
●
●●

●●●
●●●

●●

●
●●

●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Max NIC Packets: k−Nearest Neighbours − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●

●
●

●

●

●

●
●
●
●
●

●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●
●●●●●●●

●●
●●●

●●●●●
●●

●

●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.12: Active DPAE: Maximum number of packets sent and received

by the DPAE host during the experiments with the KNN classifier.

It has been mentioned before that a discrepancy between the traffic sent

to a DPAE in active mode and the traffic sent back from the same DPAE

represents packet loss and fewer predictions being made. The results for

the KNN classifier when the DPAE was in active mode show how statis-

tical classification can impact negatively on network traffic. This is rather

apparent at 60000 seconds in Figure 5.12 as the maximum amount of traf-

fic being forwarded from the DPAE to the switch does not increase with

the amount of traffic being sent to it for classification.

5.5. DPAE HOST PERFORMANCE 107

Figure 5.13 does not show anything that is worth discussing as it shows a

very similar graph to what has been seen prior.

●

●

●

●
●
●
●

●
●

●

●
●
●

●

●●●

●

●
●
●

●

●

●
●●

●
●
●

●

●

●

●

●
●

●●
●●●●●●

●

●●
●●●●●●●

●●●

●●
●

●

●

●
●
●

●●●●●

●●
●

●

●
●
●●●

●●
●

●
●

●●

●

●

●

●●●●
●●

●
●

●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Mean NIC Packets: k−Nearest Neighbours − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.13: Passive DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with the KNN classifier.

Figure 5.14 however does contain some features that are distinguish-

able. The first large spike in traffic just before 10000 seconds was present

in the control experiment graph (Figure 5.6) but not in the Random Forest

classifier graph (Figure 5.10). The presence, or lack thereof, of this feature

is peculiar. Furthermore, the spike in traffic at 60000 second is smaller that

the spike seen in the aforementioned graphs. This will be discussed in

further detail when the results for the SVM classifier are examined.

108 CHAPTER 5. EVALUATION

●●
●
●●●

●

●
●

●

●
●

●
●
●
●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●●
●

●

●●
●
●

●
●●●●●●

●

●

●
●

●

●
●
●

●●
●
●
●

●
●●

●
●

●

●

●

●
●
●

●●

●●
●
●●●

●
●●●●

●●●
●●●

●
●

●
●

●

●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Max NIC Packets: k−Nearest Neighbours − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.14: Passive DPAE: Maximum number of packets sent and re-

ceived by the DPAE host during the experiments with the KNN classifier.

SVM Classifier

Figures 5.15, 5.16, 5.17 and 5.18 show the traffic received and sent by the

DPAE host when the SVM classifier was being run.

Discussion concerning the Random Forest and KNN classifiers when

the DPAE was in active mode referred to the discrepancy between the traf-

fic received and sent by the DPAE on the data-plane. Figures 5.15 and 5.16

reveal that the discrepancy for the SVM classifier most closely follows the

discrepancy seen in the control experiment.

5.5. DPAE HOST PERFORMANCE 109

●
●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●●●
●●●●

●
●
●●

●●●

●

●

●●

●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Mean NIC Packets: SVM (RBF kernel) − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●
●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●●●
●●●●

●
●
●●

●●●
●

●●●
●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.15: Active DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with the SVM classifier.

●

●

●
●●

●
●●

●

●

●●
●
●
●
●●

●

●

●●

●

●

●●
●●

●
●●

●
●●

●●
●
●
●
●●●

●●
●
●●●●●●

●●●●●●
●●

●●●
●

●

●

●

●

●

●●

●●●
●●●●

●
●●

●●●●●●●●●
●●●

●●
●●

●

●

0 20000 40000 60000 80000

0
1
0
0
0

3
0
0
0

Max NIC Packets: SVM (RBF kernel) − active DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●

●
●●

●
●●●

●

●
●
●●●

●●

●
●

●●

●

●●●
●
●
●
●●

●
●●

●●
●
●
●●●●●●●

●●●●●●●●●●●●●●
●●●

●

●

●

●
●
●●●

●●●
●
●●●

●
●●●

●●●●●●●●
●●●●●

●●

●
●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.16: Active DPAE: Maximum number of packets sent and received

by the DPAE host during the experiments with the SVM classifier.

110 CHAPTER 5. EVALUATION

The discrepancy in Figures 5.15 and 5.16 can be interpreted as less

packet loss and therefore a larger quantity of packets being processed for

classification. Table 5.7 showed that the combination of the SVM classifier

and DPAE in active mode resulted in highest average number of packets

being received by the sink, out of the three classifiers. This classifier-DPAE

scenario also had the highest mean DR and the fewest number of flows

that did not receive a prediction.

Figure 5.17 is very similar to the other figures of its kind as it shows

very similar traffic patterns. Figure 5.18 however contains a significant

anomaly that also occurs in Figure 5.16. What is being referred to specifi-

cally is the spikes of control-plane traffic. This is strange as it is seen when

the DPAE is either in active or passive, albeit at different times. The largest

volume of traffic in both instances was sent by the DPAE itself. It is un-

likely that the anomaly was caused by the DPAE as it is configured to use

the associated NIC for nmeta2 related tasks only. These tasks produce low

volumes of traffic and are typically messages used to inform the controller

of a classification result.

The spike in traffic seen at around 60000 seconds in Figure 5.18 has

been seen before in Figures 5.6, 5.10 and 5.14. The magnitude of the spike

however has been different each time. Although it is not necessarily sig-

nificant, it does show the variability in the quantity of packets received

from the data-plane when packet sampling is conducted at the switch.

5.5. DPAE HOST PERFORMANCE 111

●

●●
●

●
●●●●

●

●●●●

●

●●●

●

●
●
●
●
●

●

●●●●
●

●

●

●

●
●

●

●
●●●●

●
●

●
●
●●●●●●●●

●
●●●

●

●
●
●

●
●●

●
●●●●

●
●
●

●
●
●●●●●

●
●
●●

●●

●●
●●

●●●●
●
●

●●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Mean NIC Packets: SVM (RBF kernel) − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.17: Passive DPAE: Mean number of packets sent and received by

the DPAE host during the experiments with the SVM classifier.

●
●●●●●●●

●

●

●
●●●●●

●●
●

●
●
●
●
●
●
●●

●●
●
●
●
●
●●

●
●
●●

●●
●

●

●●●●
●
●

●
●●

●

●●●●

●

●

●

●

●●●

●

●●

●
●

●●
●

●●

●●
●
●●

●
●
●●●●

●●●
●●●●

●
●●

●
●

0 20000 40000 60000 80000

0
5
0
0

1
5
0
0

2
5
0
0

Max NIC Packets: SVM (RBF kernel) − passive DPAE

time (s)

p
a
c
k
e
ts

 (
s
e
n
t/
re

c
e
iv

e
d
)

●●●

●DPAE In

DPAE Out

Contr. In

Contr. Out

Data−Plane Traffic

Contr.−Plane Traffic

Figure 5.18: Passive DPAE: Maximum number of packets sent and re-

ceived by the DPAE host during the experiments with the SVM classifier.

112 CHAPTER 5. EVALUATION

5.5.2 DPAE Host Performance Summary

This section showed how the quantity of packets sent and received by the

DPAE host changed over time for the eight classifier-DPAE scenarios. The

results show that the characteristics of the scenario affect the packets sent

between the switch and the DPAE, and the traffic between the DPAE and

the controller to a lesser effect. For instance the Random Forest classifier

run alongside an active DPAE will result in less traffic being forwarded

back to the switch than the SVM classifier with the same DPAE mode.

The results concerning the active DPAE more importantly illustrate the

varying degrees of packet loss between the three classifiers and the con-

troller. As expected, the classifiers with shorter average packet processing

times also had smaller discrepancies between the traffic sent and received

by the DPAE to the data-plane. These results explain why each of the clas-

sifiers within this DPAE scenario processed as many packets as they did.

5.6 Final Results Discussion

Sections 5.3, 5.4 and 5.5 explored different areas of classifier performance.

This section uses these findings in conjunction with one another to discuss

the effectiveness of the statistical classifiers.

5.6.1 General Remarks

Section 5.4.2 showed that using statistical classifiers to classify traffic in-

creases the packet processing overhead. Furthermore, the classifiers with

higher overheads processed fewer packets on average during the course of

the experiments. Section 5.3.3 showed that a significant number of flows

did not receive a predicted value. It follows that packet loss over contigu-

ous periods of time would result in flows not receiving predictions.

Figures concerning the active DPAE scenario in Section 5.5 also re-

vealed instances of packet loss during the experiments. This was shown

5.6. FINAL RESULTS DISCUSSION 113

through the difference in traffic that was received and sent back to the

switch from the DPAE, which was especially apparent at 60000 seconds. It

fits to reason that the majority of malicious flows within the dataset would

have been sent around that time period in the experiment. The DPAE’s in-

ability to process that volume of traffic would mean that flows would not

have received predictions. As a result, the number of positive predictions

that could have been made were reduced.

The quantity of positive predictions should have been high given the

performance of the classifiers in Chapter 3. Packet loss within the network

meant that this quantity was low enough for the mean DR of each classi-

fier to be less than satisfactory. It is important to remember that the very

nature of networking hardware and software means that packets will be

lost. The DDoS attack within the dataset was able to exploit this feature

which impacted negatively on each classifier’s ability to process traffic.

Earlier in this chapter we justified why the data within the XML files

and PCAP file were statistically equivalent. As a result, one would expect

the difference between the prediction results in this chapter with the those

in Chapter 3 to be smaller than it was. The volume of data summarised

within the XML files can be assumed to have been sent through the net-

work during the experiments. The statistical feature that would have been

subject to variability however would have been time. The duration of each

flow could be modified by latency introduced at the switch or at the DPAE

itself. This variability could quite possibly have modified the statistics that

were collected by the DPAE and used by the classifiers.

5.6.2 Best Performing Classifier

Networks change how one must approach classification problems. The

investigations in Chapter 3 very much follow traditional approaches to

classification problems within different scientific domains. The Random

Forest method has shown versatility when evaluated against datasets rep-

114 CHAPTER 5. EVALUATION

resenting the UCI data base [46]. This evaluation suggests that the method

may not be suitable for deployment within a live network environment.

The results for the SVM classifier demonstrate a couple of desirable

qualities. The SVM classifier had the shortest average packet processing

time of the three classifiers when the DPAE was in active (processor time

and wall time) and passive mode (processor time only). This is important

when the DPAE is in active mode as a shorter packet processing time re-

duces the end-to-end delay of a packet and means that fewer packets will

be dropped by the DPAE.

It terms of prediction performance, the SVM classifiers performed bet-

ter compared to the other classifiers within their respective DPAE scenar-

ios. When used alongside the DPAE in active mode, the SVM classifier

had the highest mean f-measure and was also the most accurate. When

used alongside the DPAE in passive mode with packet sampling, the SVM

classifier had the highest mean f-measure but its accuracy was the lowest.

The initialisation time for the SVM classifier (greater than 7 minutes)

dwarfed the initialisation times for the Random Forest and KNN classi-

fiers. This was expected however as it is well understood that the train-

ing algorithm for the SVM method is a quadratic optimisation problem.

Classifier initialisation time may be an important factor when deciding to

deploy a machine learning method within a network environment. The re-

sults suggest that if this time is of no concern, then a classifier that utilises

the SVM method may be appropriate for deployment.

5.6.3 DPAE Suitability

An objective of this thesis was not to determine if the DPAE would be

suitable for statistical classification or detecting DDoS attacks. The results

however do provide some insights into this topic that are worth covering.

The two DPAE scenarios used were active mode and passive mode

with flow-level packet sampling. The active mode scenario generally re-

5.6. FINAL RESULTS DISCUSSION 115

sulted in better classification results, both in terms of f-measure and ac-

curacy. A disadvantage of the active mode however was that the DPAE

introduced packet loss which was measured at the sink and observed at

the DPAE. Packet loss was also measured at the sink when passive mode

was used; however, this cannot be observed at the DPAE as it does not

forward packets back to the switch.

Having the DPAE in active mode would be the most desirable of the

two scenarios mentioned above. This is because it resulted in more desir-

able prediction results. An alternative approach would be to use passive

mode without sampling packets from the switch. This would mean that

overheads caused by statistical classifiers at the DPAE would not result in

packets being lost on their way to their destination. This does not consider

any overhead at the switch caused by the cloning of packets. Furthermore,

packet sampling could then be performed on the DPAE if necessary.

Each figure in Section 5.5.1 shows the same trend in regard to the traffic

sent between the DPAE and controller. The results suggest that regardless

of the volume of traffic on the data-plane or the DPAE mode, the DPAE

will not flood the controller with traffic most of the time. Despite the

anomalies that were observed, the results confirm the scalability of the

DPAE shown by Hayes [18].

5.6.4 Future Optimisations

Some future optimisations may provide some improvements to results in

the future. The DPAE does not treat flows with the same five-tuple but ini-

tiated at different times as different flows. Modifying this mechanism of

the DPAE would prevent statistical data from different flows from being

aggregated. Another optimisation would involve using a different classi-

fier for the scenario where packet sampling is used. Statistical classifiers

that take less flow information into account would be more appropriate in

this scenario.

116 CHAPTER 5. EVALUATION

5.7 Chapter Summary

This chapter evaluated three statistical classifiers on a physical network

testbed. These classifiers did not classify traffic nearly as successfully as

when they were tested using off-line data. It is important to note that the

poor classification of traffic concerns the classifiers’ abilities to detect mali-

cious flows within the dataset. Each classifier was successful in identifying

non-malicious flows.

The results do offer hope however. Looking beyond the prediction re-

sults of the classifiers, it appears that it is plausible to deploy particular

statistical classifiers into networking environments because of their packet

processing times. The classifier that performed best in this regard was the

SVM classifier.

Chapter 6

Conclusion

This chapter presents the final concluding remarks for the thesis. Future

work is presented following these remarks.

6.1 Final Conclusions and Discussion

This thesis has shown how statistical classification can be deployed using

SDN to detect DDoS attacks. Three classifiers were selected in an off-line

environment to be integrated with nmeta2. These were then evaluated on

a physical network testbed by replaying a DDoS attack scenario.

An SVM classifier combined with the DPAE in active mode provided

the highest f-measure and accuracy. Using the DPAE in a situation where

no packet sampling was being performed proved to be advantageous. A

greater volume of network traffic information typically resulted in more

attacks being detected.

The experiments also showed that the SVM classifier had the short-

est packet processing time on average. This was reflected in the deficit

between the amount of traffic received from a switch to the DPAE and

the amount of traffic sent back. This information is important to consider

when deploying machine learning techniques in networks. The methods

that were investigated in Chapter 3 utilise processes with ranging compu-

117

118 CHAPTER 6. CONCLUSION

tational costs. Chapter 5 showed that weighing the cost between initialisa-

tion and packet processing times is just as important as classifier accuracy.

Anomaly detection approaches utilised in previous research demon-

strated a tendency to misclassify non-malicious traffic despite having a

high DR. For instance, Giotis et al. used information entropy to detect

DDoS attacks with a DR of 100% but a FPR ranging between 23% and

39.3%. Ignoring the low mean DRs of the classifiers that were evaluated

on the physical testbed, which can attributed to packet loss during the

DDoS attack itself, the mean FPRs were all smaller than 0.3%. The high-

est FPR experienced during the second classifier selection experiment was

no larger than 3%. These results suggest that statistical classification ap-

proaches can be used to reduce the number of misclassified non-malicious

flows.

The use of SDN potentially enables us to discern if performance is

caused by the control and/or data planes. The packet loss experienced

by the DPAE during the DDoS attack suggests that further improvements

to the data-plane are necessary. By better handling traffic during a DDoS

attack, more information can be gathered thus improving the chances of

determining the offending flows. Making such conclusions using a tra-

ditional networking paradigm is difficult as the control and data planes

have a tighter coupling.

Statistical classification can be deployed using SDN to classify traffic.

Careful consideration must be made to pick classifiers that result in the

smallest possible packet processing overhead. While the classifiers did not

demonstrate a high DR, results did suggest that particular statistical clas-

sification methods can classify network traffic under normal conditions

using the nmeta2 architecture. Under a DDoS attack scenario however,

nothing is safe.

6.2. FUTURE WORK 119

6.2 Future Work

Future work will explore using the DPAE in other network security re-

search problems involving SDN. Bakker et al. [56] presented a network-

wide firewall using SDN/OpenFlow. Their solution was limited to filter-

ing traffic in a stateless manner however. Stateless firewalls are vulnerable

to attacks where a malicious host masquerades as a web server and sends

harmful traffic to host from outside a network. A stateful firewall can

prevent this by only allowing traffic into a network if the connection was

initiated from a host inside the network. The DPAE could be leveraged to

monitor the state of TCP connections and inform a SDN firewall of con-

nections that have been initialised and completed. This could perform the

role of a stateful SDN firewall. It would be important to monitor TCP flow

performance as part of the evaluation of the architecture.

120 CHAPTER 6. CONCLUSION

Bibliography

[1] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and DDoS

Defense Mechanisms,” SIGCOMM Computer Communication Review,

vol. 34, pp. 39–53, Apr. 2004.

[2] KrebsOnSecurity, “KrebsOnSecurity Hit With Record DDoS,”

2016. https://krebsonsecurity.com/2016/09/

krebsonsecurity-hit-with-record-ddos/ (Accessed on

20/09/2016).

[3] SDxCentral, “IoT Botnet To Blame for Big DDoS Attack,”

2016. https://www.sdxcentral.com/articles/news/

iot-botnet-blame-big-ddos-attack/2016/10/ (Accessed

on 02/11/2016).

[4] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,

N. McKeown, and S. Shenker, “Sane: A protection architecture for

enterprise networks,” in Proceedings of the 15th Conference on USENIX

Security Symposium - Volume 15, USENIX-SS’06, (Berkeley, CA, USA),

USENIX Association, 2006.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-

son, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling In-

novation in Campus Networks,” SIGCOMM Comput. Commun. Rev.,

vol. 38, pp. 69–74, Mar. 2008.

121

122 BIBLIOGRAPHY

[6] Open Networking Foundation, “OpenFlow Switch Specification

- Version 1.3.5,” Mar. 2015. Retrieved 17 March, 2016, from

https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/

openflow/openflow-switch-v1.3.5.pdf.

[7] Open Networking Foundation, “Software-defined networking

(sdn) definition,” 2017. https://www.opennetworking.org/

sdn-resources/sdn-definition (Accessed on 08/02/2017).

[8] M. Crotti, F. Gringoli, P. Pelosato, and L. Salgarelli, “A statistical ap-

proach to IP-level classification of network traffic,” in IEEE Interna-

tional Conference on Communications, 2006. ICC ’06., vol. 1, pp. 170–176,

IEEE, June 2006.

[9] B. Ng, M. Hayes, and W. K. G. Seah, “Developing a Traffic Classi-

fication Platform for Enterprise Networks with SDN: Experiences &

Lessons Learned.,” in 2015 IFIP Networking Conference (IFIP Network-

ing), pp. 1–9, IEEE, May 2015.

[10] L. Qian, B. Wu, R. Zhang, W. Zhang, and M. Luo, “Characterization

of 3G Data-Plane Traffic and Application towards Centralized Con-

trol and Management for Software Defined Networking,” in 2013

IEEE International Congress on Big Data (BigData Congress), pp. 278–

285, IEEE, June 2013.

[11] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network

Traffic Classification,” IEEE/ACM Transactions on Networking, vol. 23,

pp. 1257–1270, Aug. 2015.

[12] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS Flooding At-

tack Detection Using NOX/OpenFlow,” in 2010 IEEE 35th Conference

on Local Computer Networks (LCN), (Denver, CO, USA), pp. 408–415,

IEEE, Oct. 2010.

BIBLIOGRAPHY 123

[13] R. T. Kokila, S. T. Selvi, and K. Govindarajan, “DDoS Detection and

Analysis in SDN-based Environment Using Support Vector Machine

Classifier,” in 2014 Sixth International Conference on Advanced Comput-

ing (ICoAC), (Chennai, India), pp. 205–210, IEEE, Dec. 2014.

[14] S. Lim, J.-I. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-Oriented

DDoS Blocking Scheme for Botnet-Based Attacks,” in 2014 Sixth In-

ternational Conf on Ubiquitous and Future Networks (ICUFN), pp. 63–68,

IEEE, July 2014.

[15] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and

V. Maglaris, “Combining OpenFlow and sFlow for an Effective and

Scalable Anomaly Detection and Mitigation Mechanism on SDN En-

vironments,” Computer Networks, vol. 62, pp. 122–136, Apr. 2014.

[16] R. Wang, Z. Jia, and L. Ju, “An Entropy-Based Distributed DDoS De-

tection Mechanism in Software-Defined Networking,” in 2015 IEEE

Trustcom/BigDataSE/ISPA, vol. 1, pp. 310–317, IEEE, Aug. 2015.

[17] S. Mehdi, J. Khalid, and S. Khayam, “Revisiting Traffic Anomaly De-

tection Using Software Defined Networking,” in Recent Advances in

Intrusion Detection (R. Sommer, D. Balzarotti, and G. Maier, eds.),

vol. 6961 of Lecture Notes in Computer Science, pp. 161–180, Springer

Berlin Heidelberg, 2011.

[18] M. J. Hayes, “Scalability and Performance Considerations for Traffic

Classification in Software-Defined Networks,” MSc thesis, School of

Engineering and Computer Science, Victoria University of Welling-

ton, Wellington, New Zealand, 2016.

[19] Y.-D. Lin, P.-C. Lin, C.-H. Yeh, Y.-C. Wang, and Y.-C. Lai, “An Ex-

tended SDN Architecture for Network Function Virtualization with a

Case Study on Intrusion Prevention,” IEEE Network, vol. 29, pp. 48–

53, May 2015.

124 BIBLIOGRAPHY

[20] Michie, D. and Spiegelhalter, D.J. and Taylor, C.C., Machine Learning,

Neural and Statistical Classification. Ellis Horwood, 1994.

[21] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Sur-

vey,” ACM Comput. Surv., vol. 41, pp. 1–58, July 2009.

[22] T. T. T. Nguyen and G. Armitage, “A Survey of Techniques for Inter-

net Traffic Classification using Machine Learning,” IEEE Communica-

tions Surveys & Tutorials, vol. 10, pp. 56–76, Oct. 2008.

[23] H. Ringberg, M. Roughan, and J. Rexford, “The Need for Simula-

tion in Evaluating Anomaly Detectors,” SIGCOMM Comput. Com-

mun. Rev., vol. 38, pp. 55–59, Jan. 2008.

[24] B. Kolo, Binary and Multiclass Classification. Weatherford Press, 1st ed.,

2011.

[25] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future direc-

tions in traffic classification,” IEEE Network, vol. 26, pp. 35–40, Jan-

uary 2012.

[26] M. Hayes, “Traffic Classification in Enterprise Networks with the Era

of IoT,” COMP489 Report, Victoria University of Wellington, Nov.

2014.

[27] S. Alcock and R. Nelson, “Measuring the Accuracy of Open-Source

Payload-Based Traffic Classifiers Using Popular Internet Applica-

tions,” in 2013 IEEE 38th Conference on Local Computer Networks Work-

shops (LCN Workshops), (Sydney, Australia), pp. 956–963, IEEE, Oct.

2013.

[28] J. Frank, “Artificial Intelligence and Intrusion Detection: Current and

Future Directions,” in Proceedings of the 17th National Computer Secu-

rity Conference, (Baltimore, Maryland, USA), 1994.

BIBLIOGRAPHY 125

[29] Y. Xiang and Z. Li, “An Analytical Model for DDoS Attacks and De-

fense,” in International Multi-Conference on Computing in the Global In-

formation Technology, 2006. ICCGI ’06., (Bucharest, Romania), pp. 66–

66, 1-3 Aug 2006.

[30] V. A. Foroushani and A. N. Zincir-Heywood, “Deterministic and Au-

thenticated Flow Marking for IP Traceback,” in 2013 IEEE 27th In-

ternational Conference on Advanced Information Networking and Applica-

tions (AINA), (Barcelona, Spain), pp. 397–404, March 2013.

[31] A. J. Izenman, Modern Multivariate Statistical Techniques: Regression,

Classification, and Manifold Learning. Springer, New York, 2008.

[32] scikit-learn developers, “1.2. Linear and Quadratic Discrimi-

nant Analysis,” 2014. http://scikit-learn.org/stable/

modules/lda_qda.html (Accessed on 16/08/2016).

[33] T. Thapngam, S. Yu, and W. Zhou, “DDoS discrimination by Lin-

ear Discriminant Analysis (LDA),” in 2012 International Conference on

Computing, Networking and Communications (ICNC), pp. 532–536, Jan

2012.

[34] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service

mapping for qos: A statistical signature-based approach to ip traffic

classification,” in Proceedings of the 4th ACM SIGCOMM Conference on

Internet Measurement, IMC ’04, (Taormina, Sicily, Italy), pp. 135–148,

ACM, 2004.

[35] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm

for Optimal Margin Classifiers,” in Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, (Pittsburgh, Pennsylva-

nia, USA), pp. 144–152, 1992.

[36] Q. Yang, H. Fu, and T. Zhu, “An Optimization Method for Parame-

ters of SVM in Network Intrusion Detection System,” in 2016 Interna-

126 BIBLIOGRAPHY

tional Conference on Distributed Computing in Sensor Systems (DCOSS),

(Washington, DC, USA), pp. 136–142, May 2016.

[37] M. Bramer, Principles of Data Mining. Undergraduate Topics in Com-

puter Science, Springer London, 2nd ed., 2013.

[38] scikit-learn developers, “1.6. Nearest Neighbors,” 2014. http://

scikit-learn.org/stable/modules/neighbors.html (Ac-

cessed on 09/08/2016).

[39] L. Jiang, Z. Cai, D. Wang, and S. Jiang, “Survey of Improving K-

Nearest-Neighbor for Classification,” in Fourth International Confer-

ence on Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007.,

vol. 1, (Haikou, Hainan, China), pp. 679–683, Aug 2007.

[40] M.-Y. Su, “Real-time anomaly detection systems for Denial-of-Service

attacks by weighted k-nearest-neighbor classifiers,” Expert Systems

with Applications, vol. 38, no. 4, pp. 3492 – 3498, 2011.

[41] H. Zhang, “The Optimality of Naive Bayes,” in Proceedings of the Sev-

enteenth International Florida Artificial Intelligence Research Society Con-

ference, (Miami Beach, FL, USA), pp. 562–567, 2004.

[42] M. Toulouse, B. Q. Minh, and P. Curtis, “A Consensus Based Network

Intrusion Detection System,” in 2015 5th International Conference on IT

Convergence and Security (ICITCS), (Kuala Lumpur, Malaysia), pp. 1–

6, Aug 2015.

[43] scikit-learn developers, “1.10. Decision Trees,” 2014. http:

//scikit-learn.org/stable/modules/tree.html (Ac-

cessed on 09/08/2016).

[44] Y. C. Wu, H. R. Tseng, W. Yang, and R. H. Jan, “DDoS Detection and

Traceback with Decision Tree and Grey Relational Analysis,” in 2009

BIBLIOGRAPHY 127

Third International Conference on Multimedia and Ubiquitous Engineer-

ing, (Qingdao, China), pp. 306–314, June 2009.

[45] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–

32, 2001.

[46] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do

We Need Hundreds of Classifiers to Solve Real World Classification

Problems?,” Journal of Machine Learning Research, vol. 15, pp. 3133–

3181, Jan. 2014.

[47] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, “Big Data Analytics

framework for Peer-to-Peer Botnet detection using Random Forests,”

Information Sciences, vol. 278, pp. 488 – 497, 2014.

[48] S. Lee, H. Kim, D. Barman, S. Lee, C.-k. Kim, T. Kwon, and Y. Choi,

“NeTraMark: A Network Traffic Classification Benchmark,” SIG-

COMM Comput. Commun. Rev., vol. 41, pp. 22–30, Jan. 2011.

[49] “The CAIDA ”DDoS Attack 2007” Dataset.” http://www.caida.

org/data/passive/ddos-20070804_dataset.xml.

[50] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward

developing a systematic approach to generate benchmark datasets for

intrusion detection,” Computers & Security, vol. 31, pp. 357 – 374, 2012.

[51] S. Yadav and S. Shukla, “Analysis of k-Fold Cross-Validation over

Hold-Out Validation on Colossal Datasets for Quality Classifica-

tion,” in 2016 IEEE 6th International Conference on Advanced Computing

(IACC), pp. 78–83, Feb 2016.

[52] Python Software Foundation, “26.6. timeit measure execution time

of small code snippets python 2.7.12 documentation,” 2016. Re-

trieved 20 November, 2016, from https://docs.python.org/2/

library/timeit.html.

128 BIBLIOGRAPHY

[53] Python Software Foundation, “15.3. time time access and con-

versions python 2.7.12 documentation.html,” 2016. Retrieved 20

November, 2016, from https://docs.python.org/2/library/

time.html.

[54] Python Software Foundation, “26.4. the python profilers python

2.7.12 documentation,” 2016. Retrieved 20 November, 2016, from

https://docs.python.org/2/library/profile.html.

[55] D. L. Olson and D. Delen, Advanced Data Mining Techniques. Springer,

2008.

[56] J. N. Bakker, I. Welch, and W. K. G. Seah, “Network-wide Virtual

Firewall using SDN/OpenFlow,” in 2016 IEEE Conference on Network

Function Virtualization and Software Defined Network (NFV-SDN), (Palo

Alto, CA, USA), 2016.

Appendix A

Problem Space Investigation for

Features

This appendix contains information on bidirectional flow features in the

ISCX 2012 DDoS dataset. This dataset contains 571698 labelled bidirec-

tional flows. Table A.1 contains information on features that were derived

directly from the dataset provided. Tables A.2 and A.3 contain informa-

tion on features that need to be derived using the features from Table A.1.

All tables show that all features, raw and derived, are arguably contin-

uous variable types. This point may be contested as the features relating

to packet and byte counts for flows can only be expressed as discrete in-

tegers. However, due to the large range of values that these statistical

features encompass, it makes it impractical for them to be considered cate-

gorical. Further discretisation into ranges of values would be necessary for

the categorical type to hold but this is a lossy process.

129

130APPENDIX A. PROBLEM SPACE INVESTIGATION FOR FEATURES

Feature Properties

totalSourceBytes

• Value type: Continuous, Integer, Uni-

modal

• Min: 0 Median: 477 Max: 763277598

totalDestinationBytes

• Value type: Continuous, Integer, Uni-

modal

• Min: 0 Median: 1691 Max: 176755516

totalSourcePackets

• Value type: Continuous, Integer, Bimodal

• Min: 0 Median: 6 Max: 514794

totalDestinationPackets

• Value type: Continuous, Integer, Bimodal

• Min: 0 Median: 6 Max: 538076

startDateTime

• Value type: Continuous, DateTime with

the format ”%Y-%m-%dT%H:%M:%S” e.g.

2010-06-04T21:54:57

stopDateTime

• Value type: Continuous, DateTime with

the format ”%Y-%m-%dT%H:%M:%S” e.g.

2010-06-04T21:54:57

Table A.1: Properties of the features within the ISCX 2012 DDoS Dataset.

131

Feature Properties

FlowDuration

• Derived from:

stopDateTime−startDateTime

• Value type: Continuous, Integer,

Unimodal

log(FlowDuration)

• Derived from: natural logarithm of

stopDateTime−startDateTime

• Value type: Continuous, Integer,

Multimodal

• Note: As log(0) is not defined, I

interpreted log(0) = 0.

log(totalSourceBytes)

• Derived from: natural logarithm of

totalSourceBytes

• Value type: Continuous, Integer,

Multimodal

• Note: As log(0) is not defined, I

interpreted log(0) = 0.

SourceBytes-per-Packet

• Derived from: totalSourceBytes

totalSourcePackets

• Value type: Continuous, Integer,

Multimodal

Table A.2: Features derived from features within Table A.1 - part 1.

132APPENDIX A. PROBLEM SPACE INVESTIGATION FOR FEATURES

Feature Properties

DestinationBytes-per-Packet

• Derived from: totalDestinationBytes

totalDestinationPackets

• Value type: Continuous, Integer,

Multimodal

Table A.3: Features derived from features within Table A.1 - part 2.

Appendix B

Initial Classifier Selection

Experiment Results

This appendix contains the complete list of results for the initial classifier

selection experiment. Separate tables are used for each method. The fol-

lowing abbreviations are used:

• tSB: totalSourceBytes

• ltSB: log(totalSourceBytes)

• tDB: totalDestinationBytes

• tSP: totalSourcePackets

• FD: FlowDuration

• lFD: log(FlowDuration)

• SBpP: SourceBytes-per-Packet

• DBpP: DestinationBytes-per-Packet

133

134APPENDIX B. INITIAL CLASSIFIER SELECTION EXPERIMENT RESULTS

B.1 LDA

Feature Set Mean DR Mean FPR

ltSB and FD 0.989999724 0.029018682

SBpP and DBpP 0.0061397 0.007521567

tSB and FD 0.0000253 0.002416255

tSB and lFD 0.0000431 0.00185139

tSB and tDB 0.085453263 0.00489996

tSB and tSP 0.335905144 0.007711583

Table B.1: Mean Detection and False Positive Rates for LDA-based first

generation classifiers.

B.2 QDA

Feature Set Mean DR Mean FPR

ltSB and FD 0.990011046 0.022104852

SBpP and DBpP 0.75763138 0.005886225

tSB and FD 0.962506798 0.014008363

tSB and lFD 0.922515947 0.017442291

tSB and tDB 0.983063906 0.013685196

tSB and tSP 0.975312122 0.014930263

Table B.2: Mean Detection and False Positive Rates for QDA-based first

generation classifiers.

B.3. SVM (RBF KERNEL) 135

B.3 SVM (RBF kernel)

Feature Set Mean DR Mean FPR

ltSB and FD 0.988362117 0.012553594

SBpP and DBpP 0.928522653 0.007447488

tSB and FD 0.746 0.001861962

tSB and lFD 0.763 0.002086601

tSB and tDB 0.750116539 0.001744573

tSB and tSP 0.762044205 0.001903781

Table B.3: Mean Detection and False Positive Rates for SVM-based first

generation classifiers.

B.4 k-Nearest Neighbours

Feature Set Mean DR Mean FPR

ltSB and FD 0.941112196 0.004893325

SBpP and DBpP 0.938639201 0.005284846

tSB and FD 0.93536111 0.007139069

tSB and lFD 0.920191745 0.007936338

tSB and tDB 0.94632216 0.003572972

tSB and tSP 0.933408686 0.007366625

Table B.4: Mean Detection and False Positive Rates for KNN-based first

generation classifiers.

136APPENDIX B. INITIAL CLASSIFIER SELECTION EXPERIMENT RESULTS

B.5 Naive Bayes

Feature Set Mean DR Mean FPR

ltSB and FD 0.989364833 0.021982912

SBpP and DBpP 0.398054629 0.005845593

tSB and FD 0.962605386 0.020798816

tSB and lFD 0.92243702 0.019069295

tSB and tDB 0.975657684 0.015039642

tSB and tSP 0.962315858 0.024197488

Table B.5: Mean Detection and False Positive Rates for Naive Bayes-based

first generation classifiers.

B.6 Decision Tree

Feature Set Mean DR Mean FPR

ltSB and FD 0.930443237 0.004166076

SBpP and DBpP 0.936057959 0.004597989

tSB and FD 0.930418475 0.004179437

tSB and lFD 0.929958674 0.004132092

tSB and tDB 0.943267767 0.003760251

tSB and tSP 0.935239892 0.004232693

Table B.6: Mean Detection and False Positive Rates for Decision Tree-based

first generation classifiers.

B.7. RANDOM FOREST 137

B.7 Random Forest

Feature Set Mean DR Mean FPR

ltSB and FD 0.933274492 0.00399865

SBpP and DBpP 0.939866433 0.003926908

tSB and FD 0.932887318 0.003989646

tSB and lFD 0.932399254 0.003949279

tSB and tDB 0.945090213 0.003108191

tSB and tSP 0.938066354 0.003907299

Table B.7: Mean Detection and False Positive Rates for Random Forest-

based first generation classifiers.

138APPENDIX B. INITIAL CLASSIFIER SELECTION EXPERIMENT RESULTS

Appendix C

Second Classifier Selection

Experiment Results

This appendix contains the complete list of results for the second classi-

fier selection experiment. Separate tables are used for each method. The

following abbreviations are used:

• tSB: totalSourceBytes

• ltSB: log(totalSourceBytes)

• tDB: totalDestinationBytes

• tSP: totalSourcePackets

• ltSP: log(totalSourcePackets)

• tDP: totalDestinationPackets

• FD: FlowDuration

139

140APPENDIX C. SECOND CLASSIFIER SELECTION EXPERIMENT RESULTS

C.1 QDA

Feature Set Mean DR Mean FPR f-measure

tSB, tSP and FD 0.987526269 0.012491378 0.911904559

ltSB, tSP and FD 0.990000645 0.027850928 0.830602444

ltSB, ltSP and FD 0.989906291 0.014991284 0.89844222

tSB, tDB and FD 0.988821823 0.012680678 0.911523632

tSB, tSP, tDB, tDP and FD 0.988482794 0.011960445 0.915662191

Table C.1: Mean Detection and False Positive Rates, and f-measure for

QDA-based second generation classifiers.

C.2 SVM (RBF kernel)

Feature Set Mean DR Mean FPR f-measure

tSB, tSP and FD 0.738530663 0.001656662 0.838201025

ltSB, tSP and FD 0.929109403 0.004674993 0.931058739

ltSB, ltSP and FD 0.9893688 0.012388389 0.913524809

tSB, tDB and FD 0.725160172 0.001547747 0.83005504

tSB, tSP, tDB, tDP and FD 0.726826225 0.001583319 0.830928575

Table C.2: Mean Detection and False Positive Rates, and f-measure for

SVM-based second generation classifiers.

C.3. K-NEAREST NEIGHBOURS 141

C.3 k-Nearest Neighbours

Feature Set Mean DR Mean FPR f-measure

tSB, tSP and FD 0.93788822 0.00678328 0.921951716

ltSB, tSP and FD 0.935423086 0.005043936 0.932025381

ltSB, ltSP and FD 0.944430283 0.004001303 0.943749165

tSB, tDB and FD 0.948361482 0.003619612 0.948387955

tSB, tSP, tDB, tDP and FD 0.948345925 0.003618799 0.948385248

Table C.3: Mean Detection and False Positive Rates, and f-measure for

KNN-based second generation classifiers.

C.4 Naive Bayes

Feature Set Mean DR Mean FPR f-measure

tSB, tSP and FD 0.962656107 0.022301342 0.863597597

ltSB, tSP and FD 0.989756706 0.024335124 0.847633059

ltSB, ltSP and FD 0.990108069 0.029333478 0.822862165

tSB, tDB and FD 0.969123479 0.014176686 0.884021726

tSB, tSP, tDB, tDP and FD 0.988954563 0.019051931 0.878745778

Table C.4: Mean Detection and False Positive Rates, and f-measure for

Naive Bayes-based second generation classifiers.

142APPENDIX C. SECOND CLASSIFIER SELECTION EXPERIMENT RESULTS

C.5 Random Forest

Feature Set Mean DR Mean FPR f-measure

tSB, tSP and FD 0.941803212 0.003069825 0.94864049

ltSB, tSP and FD 0.941674526 0.003067095 0.948592306

ltSB, ltSP and FD 0.941763447 0.003075131 0.948583216

tSB, tDB and FD 0.947373016 0.002765957 0.953657985

tSB, tSP, tDB, tDP and FD 0.948062485 0.002653073 0.954795172

Table C.5: Mean Detection and False Positive Rates, and f-measure for

Random Forest-based second generation classifiers.

