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Abstract
Image segmentation is considered to be one of the foremost image analysis techniques
for high-level real-world applications in computer vision. Its task is to change or sim-
plify the representation of an image in order to make it easier to understand or analyze.
Although image segmentation has been studied for many years, evolving technology
and transformation of demands make image segmentation a continuing challenge.

Noise as a side effect of imaging devices is an inevitable part of images in many
computer vision applications. Therefore, an important topic in image segmentation is
noisy image segmentation which requires extra effort to deal with image segmentation
in the presence of noise. Generally, different strategies are needed for different noisy
images with different levels/types of noise. Therefore, many approaches in the literature
are domain-dependent and applicable only to specific images.

A well-recognized approach in noisy image segmentation uses clustering algorithms,
among which Fuzzy C-Means (FCM) is one of the most popular. FCM is unsupervised,
efficient, and can deal with uncertainty and complexity of information in an image.
Dealing with uncertainties is easier with the fuzzy characteristic of FCM, and complex-
ity of information is being taken care of by utilizing different features in FCM, and also
combining FCM with other techniques.

Many modifications have been introduced to FCM to deal with noisy image seg-
mentation more effectively. Common approaches include, adding spatial information
into the FCM process, addressing the FCM initialization problem, and enhancing fea-
tures used for segmentation. However, existing FCM-based noisy image segmentation
approaches in the literature generally suffer from three drawbacks. First, they are ap-
plicable to specific domains and images, and impotent in others. Second, they don’t
perform well on severely noisy image segmentation. Third, they are effective on spe-
cific type and level of noise, and they don’t explore the effect of noise level variation.

Recently, evolutionary computation techniques due to their global search abilities
have been used in hybridization with FCM, mostly to address FCM stagnation in local



optima. Particle Swarm Optimization (PSO) is particularly of interest because of its
lower computational costs, easy implementation, and fast convergence, but its potential
in this area has not been fully investigated.

This thesis develops new domain-independent PSO-based algorithms for an auto-
matic non-supervised FCM-based segmentation of severely noisy images which are ca-
pable of extracting the main coherent/homogeneous regions while preserving details and
being robust to noise variation. The key approach taken in the thesis is to explore the
use of PSO to manipulate and enhance local spatial and spatial-frequency information.

This thesis introduces a new PSO feature enhancement approach in wavelet domain
for noisy image segmentation. This approach applies adaptive wavelet shrinkage using
evaluation based on FCM clustering performance. The results show great accuracy in
the case of severe noise because of the enhanced features. Also, due to adaptivity, no
parameter-tuning is required according to the type or volume of noise, and the perfor-
mance is consistent under noise level variation.

This thesis presents a scheme under which a fusion of two different denoising al-
gorithms for more effective segmentation is possible. This fusion retains the advan-
tages of each algorithm while leaving out their drawbacks. The fusion scheme uses
the noisy image segmentation system introduced above and anisotropic diffusion, the
edge-preserving denoising algorithm. Results show greater accuracy and stability in
comparison to the individual algorithms on a variety of noisy images.

This thesis introduces another PSO-based edge-preserving adaptive wavelet shrink-
age system using wavelet packets, bilateral filtering, and a detail-respecting shrinkage
scheme. The analysis of the results provide a comparison between the two feature en-
hancement systems. The first system uses wavelets and the second uses wavelet packets
as a domain to enhance features for an FCM-based noisy image segmentation. Also,
the highest segmentation accuracy among all the algorithms introduced in this thesis on
some benchmarks belong to this system.
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Chapter 1

Introduction

1.1 Problem Statement

Image segmentation is generally one of the first stages in any attempt to analyze or
interpret an image automatically. It bridges the gap between low-level image process-
ing and high-level image processing. Low/mid-level image processing algorithms are
usually designed to make the input image easier to process for the end application in
high-level image processing. Image segmentation is a basic pre-processing step to deal
with subsequent practical problems.

Image segmentation could be described at so many levels, and in many different
ways. A descriptive definition is that: image segmentation is the procedure of dividing
an image into its main components such as image salient regions, objects, or natural
parts of objects in which the process of grouping pixels together happens between pix-
els that have similar attributes such as intensity, color, or texture [133]. Pure computer
vision research often deals with relatively domain-independent considerations [40], and
results are usable in a broad range of contexts. Thus, generally, specifying the final goal
for an image segmentation algorithm is not an easy task, and is usually up to the appli-
cation. Nevertheless, unsupervised image segmentation in this manner is an important
part of image understanding and practical vision systems. Image segmentation can be
subjective or objective depending on the final application [126]. But generally it is an
objective task because the level of segmentation to which the division is carried out is
dependent on the application. No unique general method could perform adequately for

1



2 CHAPTER 1. INTRODUCTION

all applications [89]. Similarly, the segmentation procedure will stop when the regions
or objects of interest have been detected. When designing a vision system, the seg-
mentation algorithm is usually selected heuristically, and then is tuned carefully by an
image processing expert with respect to application needs [89]. This means that the se-
lected approach might not guarantee the optimal solution for a specific need while being
good enough to resolve it to a great extent. Therefore, any of the generic approaches
mentioned in next chapter (Section 2.1.2) can be chosen where a parameter-tuning can
change the results to address the problem needs. Researchers need to use their knowl-
edge of the domain to guide their choice. For example with very complex texture or
noisy images using an edge-based algorithm is not wise, because it produces many fake
and redundant edges that make the segmentation process difficult.

Image segmentation is known for being ill-defined as there are so many valid so-
lutions as interpretations of a sample image. There is no unambiguous definition of
what is/is not a region, and no objective measure exists to assess the segmentation qual-
ity [141]. Fig. 1.1 provides some segmentation results for the same image. Different
results represent different regions as segments, and they are all considered acceptable
depending on the application.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: An image segmentation example. (a) The original image. (b-f) Several segmentation results.

Noisy image segmentation is an important topic in real world applications such as
medical image processing [6, 118] and remote image analysis [120, 11]. It is among
the non-trivial problems of computer vision, for it has to address two major issues at



1.1. PROBLEM STATEMENT 3

the same time. The first issue is how to denoise a noisy image to support segmentation
which is not necessarily the same as simply denoising an image. The second issue is how
to segment a noisy image properly considering the challenges related to segmentation
itself and criteria commanded by the application. Segmentation of natural noisy images
has been less considered given that segmentation is already a non-trivial task in noise-
less natural images.

There is a domain-dependent noisy image segmentation field in the literature based
on the famous clustering algorithm Fuzzy C-Means (FCM) [90, 127, 38, 74, 60]. This
algorithm has great potential to deal with both segmentation-oriented denoising and
segmentation at the same time. The fuzzy characteristics of FCM empower it to be
effective in cases of noise and intensity inhomogeneities, and its clustering performance
has been shown to provide reasonably good segments in some areas and applications
[6, 118, 120, 11]. In FCM-based segmentation, segments are pixels inside the clusters
identified by the algorithm. They represent main or high quality regions such as objects
and coherent background/foreground regions. Fig. 1.2 provides a good FCM-based
segmentation results for a noisy image.

(a) (b)

Figure 1.2: An FCM-based noisy image segmentation example. (a) The noisy image. (b-f) FCM-based
segmentation result.

On the other hand, the common usage of FCM does not consider any spatial infor-
mation which makes it super sensitive to noise [25]. Therefore, with a high-level of
noise and other imaging artifacts, FCM loses its ability to perform image segmentation
effectively. There have been many attempts in the literature to modify FCM in order
to increase its abilities for noisy image segmentation, but none has been particularly
satisfactory, especially for severely noisy images.

Particle Swarm Optimization (PSO), is one tool that has been utilized recently to
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improve FCM performance in coping with the problem of noisy image segmentation
[13, 124, 145]. The PSO contribution has led to promising results but the best integration
of PSO and FCM is yet to be found.

The overall goal of this thesis is to develop a new domain-independent PSO ap-
proach for an automatic non-supervised FCM-based segmentation of severely noisy
images which is capable of extracting the main coherent/homogeneous regions while
preserving details and being robust to noise variation. The key approach taken in the
thesis is to explore the use of PSO to manipulate and enhance local spatial and spatial-
frequency information.

1.2 Motivations

We have had three main motivations in mind in conducting this research.

First, although for other tasks there is considerable work dealing with severely noisy
images [37, 111, 16, 31], image segmentation for severely noisy images has seldom
been investigated in the literature. This puts forward the importance of introducing
more effective methods for severely noisy image segmentation.

Second, the existing implementations of PSO in an FCM-based scheme are very
limited, and they come along with drawbacks as we will show in the next chapter. The
definitive utilization of PSO is yet to be investigated in such a paradigm. We aim at
designing new schemes for an FCM-based noisy image segmentation scenario by effec-
tively utilizing PSO.

Third, most existing algorithms in FCM-based noisy segmentation are focused on
extracting local features from the spatial domain [60, 118, 38]. However, image denois-
ing has proven to be more effective in the frequency domain. We try to demonstrate the
importance of feature domain selection, and feature manipulation/enhancement on the
noisy segmentation performance of FCM.

1.2.1 Challenges of Noisy Image Segmentation

There are a number of challenges related to noisy image segmentation. We briefly
introduce the challenges below:
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• Preserving image texture: texture is a complex structure of an image [65]. Ho-
mogeneous texture regions are confined within region boundaries and edges. Se-
vere noise causes a lot of intensity fluctuation and artifacts, resulting in mixed tex-
ture regions around the boundaries. As a result, misplacement of region borders
occurs, and segmentation accuracy decreases. Minimizing the mixture of homo-
geneous texture regions and misplacement of region boundaries is a big challenge
in noisy image segmentation.

• Preserving image details: image details show themselves as edges, corners, and
narrow/small regions that are perceptually important aspects of any image [87].
Due to the volume of noise, details could be partially/completely eliminated or
over-smoothed. Preserving these details from being either occluded by noise, or
deformed in the denoising process is challenging.

• Eliminating artifacts: noise causes fake artifacts in an image, and therefore de-
noising has to be intrinsically addressed in a noisy image segmentation algorithm.
The denoising process has to be powerful enough to remove the artifacts to the
extent that segmentation could be performed effectively.

• Extracting main regions: extraction of high quality regions such as compact/coherent
regions or main objects in a segmentation process is a necessity for many applica-
tions such as image compression [111], object detection [30], and tracking [85].
This problem originates from the segmentation process and becomes even harder
on noisy images due to existence of artifacts and intensity turbulences.

This thesis introduces new strategies to directly address detail preservation, artifact
elimination, and main region extraction. Image benchmarks in this study are not texture-
based images, therefore we do not directly look into texture preservation, although our
strategies have good results on images with simple texture properties.

1.2.2 Why PSO?

There are reasons for exploring the use of PSO:

• Novelty: there have been a few studies on general-purpose FCM-based noisy im-
age segmentation using PSO in recent years. These studies have shown that PSO
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has the potential to address some of the issues related to noisy image segmenta-
tion. However, a definitive and proper contribution is yet to be made. For the first
time, this study uses PSO in a feature-enhancement scheme for FCM-based noisy
image segmentation.

• Representation: PSO presentation is suitable for denoising and FCM-based im-
age segmentation tasks where parameter tuning is of interest. PSO can be effec-
tively used for denoising [20, 19, 143]. Also, given the nature of FCM cluster-
ing process as a continuous optimization problem, PSO can be used in different
scenarios to improve its clustering performance. In PSO, particles are encoded
in form of arrays in the swarm. This well matches adaptive image denoising
or optimization-based clustering schemes. These schemes end up being low to
medium-range dimensionality problems which is the appropriate condition for
the search space for an effective PSO-based search space.

• Simplicity: in comparison to some other evolutionary computation methods, PSO
is easier to implement, has fewer parameters to tune, and can converge faster
[138].

Throughout this thesis PSO is used for enhancement of features for more effective
segmentation. More specifically, PSO adaptively provides threshold values in a thresh-
olding scheme in wavelet domain to enhance intensity features.

1.2.3 Why FCM?

FCM is one of the most widely used techniques for data clustering [130] that has been
applied in many disciplines such as astronomy, geology, bioinformatics, and image anal-
ysis. In image analysis domain it has been applied to medical imaging [2], target recog-
nition [106, 139], image segmentation [4, 106], image retrieval [76, 105], and detection
tasks [96, 112]. It has been so popular in noisy image segmentation that we have a field
of study as FCM-based noisy image segmentation. Below are the motivations to used
FCM in this thesis to severely noisy image segmentation:

• Practicality: FCM is unsupervised, simple to implement, and fast. This makes
the combination with other models and systems such as neural networks [113],
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evolutionary computation [53, 124], Markov random field [62] and support vector
machine [67, 98] easy.

• Diversity of features: The clustering process happens based on a similarity met-
ric between a feature vector attributed to each datapoint and cluster centers. There-
fore, using a variety of features such as intensity, color, texture, and spatial, and
spatial-frequency features is possible. This specification has made FCM popular
in feature analysis and classifier designs [130].

• Maneuverability: A range of modifications and alteration can be done in the
clustering process using FCM to make the final segmentation results more ac-
curate. Different similarity metrics such as Euclidean, Mahalanobis, Manhattan,
and kernel-induced could be used based on the dimensionality of the feature vec-
tor and high-level application [13, 125]. Different strategies could be thought of
to modify the FCM objective function for better results [52, 129]. Also, type-2
fuzzy set (or higher-types fuzzy sets) can be utilized to deal with uncertainties
present in noisy images more effectively [104].

• Fuzzy characteristics: The fuzzy behavior of FCM makes it robust for ambigu-
ity, capable of retaining more information compared to hard clustering methods,
and good performance in case of poor contrast, overlapping regions, noise and
intensity inhomogeneity [13].

1.3 Research Questions

The research carried out in this thesis will try to answer the following main questions:

(i) How can PSO be used in an FCM-based noisy image segmentation system for an

effective enhancement of features?

The importance of feature enhancement for denoising [93] or segmentation [110]
algorithms is well established. To answer this research question, there are two
main issues to be addressed. First, we need to find the type of feature(s) that has
the ability to remove the artifacts caused by noise effectively. Second, a system
has to be designed utilizing this feature and PSO for enhancement of segmentation
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results. While many of the existing algorithms are parameter dependent according
to the type and volume of noise [38, 118, 25], is it possible to make the new system
parameter-tuning-free from this perspective? Severely noisy image segmentation
has been hardly investigated in the literature. High volume of noise makes the task
extra challenging due to the high volume of artifacts created in an image. This
challenge is even more serious on natural images with many descriptor details.
Thereby, is the new system capable of effective segmentation while dealing with
images corrupted with severe noise?

(ii) How can details be preserved in a noisy image segmentation? How can we im-

prove the results of the previously created system with a stress on detail preserva-

tion?

Detail preservation as mentioned before is a serious challenge in noisy image seg-
mentation particularly on images with fine details or severe noise. There are a
number of possible ideas to address this research question. The most obvious one
would be incorporating edge detection algorithms in the feature enhancement sys-
tem [43, 71, 55]. The edge map produced by edge detection algorithms is a good
source of information for the real location of edges. However, this incorporation
in the case of severe noise is a problematic, because they produce many redundant
edges causes by noise, and the proper application of edge enhancement based on
edge detection is yet to be found.

Another idea to detail preservation is utilizing more effective features. Introduc-
tion [39, 44, 81] and utilization [137, 115, 3] of more effective features is more
considered nowadays in this field. This leads to further questions such as whether
using these features in our feature enhancement system result in a better perfor-
mance.

Another intriguing idea towards retaining the details is considering edge-respectful
denoising algorithms [69]. How is it possible to take advantage of the strengths
of both the previous feature enhancing system and edge-respectful denoising al-
gorithms in a way that drawbacks of the initials algorithms are addressed?

(iii) How could a detail-preserving feature-enhancing system cope with noise type or

volume variations while remaining consistently effective and parameter-tuning-
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free?

Aside from FCM-based segmentation algorithms that are parameter-dependent,
edge detection and denoising algorithms are also required to be tuned for the vol-
ume or type of noise [144]. It is impossible to use denoising algorithms with a
fixed parameter setting effectively in a situation that noise level variation is high.
How is it possible to design a system that can predict the right parameter set-
tings for a denoising algorithm? Does this system necessarily predicts the perfect
parameter tuning for the denoising algorithm individually, or rather is it the incor-
poration with the feature enhancement system that produces the good results?

1.4 Research Objectives

This thesis addressee the above questions through a set of new algorithms and ap-
proaches for FCM-based noisy image segmentation. The objectives of these algorithms
are as follows:

1. Developing a new feature manipulation/enhancement system using PSO that can

produce effective noisy segmentation results. In this objective, FCM is used as
its original form, and feature enhancement is the main focus. To this end, two
points are taken into consideration. First, the proper choice of feature that con-
veys proper spatial information. Second, finding the proper feature enhancement
scheme that can improve the results. Wavelet domain that represents spatial and
frequency information at the same time, and also have great denoising properties
is the core focus in this objective.

2. Developing a new feature enhancement system based on the previous objective

with more effort towards detail preservation. We look at a scheme which requires
not only strong noise suppression, but also avoids over-smoothing and preserve
the details as much as possible. More specifically, this objectives addresses how
the trade-off between a strong noise suppression system (produced in the previous
objective) and another algorithm with strong detail preservation abilities should
be made. Utilizing a proper secondary algorithm and an aggregation scheme for
the fusion of the systems will play an important role in this objective.
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3. Developing an effective new feature manipulation system for noisy image segmen-

tation using PSO and other richer features. Given the previous objectives, this
objective tries to apply the same strategy utilizing other types of transformations
in the frequency domain. For instance, wavelet packets provide a more accurate
sub-band resolution of high-frequency parts of a signal which noise mostly tends
to occupy. In this objective, based on the properties of the new feature, new en-
hancement scheme also has to be developed.

1.5 Major Contributions

This section briefly outlines the main contributions of this thesis which corresponds to
the objectives in the previous section.

1. This thesis introduces a PSO feature enhancement approach in wavelet domain for
noisy image segmentation. This approach applies adaptive wavelet shrinkage us-
ing evaluation from FCM clustering performance. The PSO-based process helps
to enhance intensity features for a clustering-based denoising, and also provides
adaptivity for the system that can perform well on different noisy images with
different noise volumes and range/spatial properties. Furthermore, the algorithm
applies edge enhancement based on the Canny edge detector to the coefficients in
wavelet domain. This results in even further effectiveness for noisy image seg-
mentation and detail preservation. The algorithm shows consistent performance
over a range of noise levels and different noise types without the need for param-
eter tuning. In addition this algorithm shows promising results on severely noisy
images.

2. This thesis presents a scheme under which a fusion of two different denoising
algorithms for more effective segmentation is possible. This fusion retains the ad-
vantages of each algorithm while leaving out their drawbacks. This fusion scheme
uses the noisy image segmentation system introduced in the previous contribution
and anisotropic diffusion, the edge-preserving denoising algorithm. The first al-
gorithm is based on enhancing features in the wavelet domain, and the second
algorithm is enhancing features in the spatial domain. After the fusion of the de-
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noising results, greater accuracy and stability is observed in comparison to the
individual algorithms on variety of noisy images.

3. In line with the wavelet shrinkage algorithm introduced in the first contribu-
tion, this thesis introduces another wavelet-based shrinkage system, which uses
a richer feature domain: wavelet packets. This system also uses adaptive PSO-
based shrinkage of wavelet coefficients. This contribution provides a comparison
between feature enhancement schemes using wavelets and wavelet packets for
FCM-based noisy image segmentation. In accordance with the importance of
detail-preservation in noisy segmentation systems, this thesis extends the created
wavelet packet-based system adding two steps. The first step is a preprocess-
ing denoising algorithm based on bilateral filtering. Bilateral filtering as another
edge-preserving denoising algorithm, paves the way for an even more effective
thresholding of wavelet packets coefficients. The second step is a sigmoid-based
shrinkage scheme which introduces more accuracy to the thresholding process.
The results show that the extended algorithm is more effective than its predeces-
sor, and shows the highest accuracy in comparison to some other state-of-the-art
algorithms, and the algorithms introduced in this thesis so far.

1.6 Organization of the Thesis

Chapter design is as follows. Chapters 3-5 are the contribution chapters, and Chapters
2 and 6 are literature survey and conclusions respectively.

• Chapter 2: provides a general description of images segmentation, noise phe-
nomena, noisy image segmentation and FCM-based noisy image segmentation.
We also summarize the related work introduced in the latter to tackle the prob-
lem of FCM-based noisy image segmentation. This chapter also introduces the
generic PSO and FCM algorithms as tools we have used throughout our contribu-
tion chapters

• Chapter 3: provides the first contribution chapter. This chapter introduces a new
adaptive wavelet-based shrinkage for severely noisy image segmentation. Adap-
tive thresholding is fulfilled using PSO with a clustering criterion for segmen-
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tation performance evaluation. More specifically, PSO explores a search space
to look for threshold values which have optimum clustering performance when
applied to coefficients in the multi-scale wavelet domain. Next, the approach ex-
tended using edge enhancement on coefficients from a specific sub-band. Exten-
sive experiments are presented in this chapter using a real and a synthetic dataset
each being corrupted with with two types of common noises: Gaussian and Salt
& Pepper with different levels of noise to test the consistency of the proposed
methods.

• Chapter 4: having created two powerful FCM-based noisy image segmentation
algorithms in the previous chapter, in this chapter we address one significant draw-
back related to them. The algorithms suffer from over-smoothing of boundaries.
This chapter utilizes fusion of denoising algorithms. We use the edge-preserving
Anisotropic Diffusion in spatial domain, and the adaptive wavelet thresholding
algorithm in the previous chapter in frequency-spatial domain. We show how the
denoising results of both the algorithms could be aggregated in wavelet domain
that has better performance than both by preserving more details related to edges
and boundaries. The algorithm is designed so that it is functional over the noise
variation. Similar to the previous chapter, extensive experiments are carried out
using the two datasets. The real dataset has got more images in this chapter, and
we used Gaussian noise as the source of noise.

• Chapter 5: Similar to what was proposed in Chapter 3, in this chapter we intro-
duce an adaptive shrinkage of wavelet packets coefficients. We provide analysis
to show how the algorithm is different to that of Chapter 3. Next, as an exten-
sion, we add a preprocessing denoising step based on Bilateral Filtering to better
functionality of wavelet shrinkage. Also, we use a different shrinkage function
to preserve more details in an image. Besides the experiments presented to eval-
uate the new algorithms both quantitatively and qualitatively, this chapter also
compares the effect of feature enhancement using wavelets and wavelet packets.

• Chapter 6: Conclusion to this thesis, summarizing the achievements, and sug-
gestions to future work is discussed here.



Chapter 2

Literature Review and Methodology

2.1 Basic Concepts

2.1.1 Computer Vision

“Computer vision is the enterprise of automating and integrating a wide range of pro-
cesses and representations used for vision perception” [40]. Important aspects include
techniques like image processing and pattern recognition for geometric and cognitive
processing of images. More specifically, it is a field that includes methods for acquir-
ing, processing, analyzing, and understanding images in order to produce numerical or
symbolic information in terms of decisions [72]. A theme in the development of this
field has been to duplicate the abilities of human vision by electronically perceiving
and understanding an image. Usually, the goal is to comprise a computer system that
is closely modeled after the human visual system. Billions of neural cell connections
within the brain form the human vision, yet human vision is fallible. Illusions and ambi-
guities are encountered all the time. People have a limited attention span, which makes
them susceptible to distractions. People are also inconsistent. Individuals themselves
often exhibit different sensitivities during the course of a day or from day to day. Simi-
larly, there are inconsistencies from person to person, from shift to shift, and so on. The
eye’s response may also be a performance limiter. Another issue associated with people
includes their ability to adapt to changes. This can be either bad or good. People are
flexible in that they easily move from inspecting one product to another. On the other
hand, if in the course of inspecting a product produced in sheet form, the color, for ex-

13
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ample, changes slowly over during a day, depending on the subtlety of the change, it is
likely that color change could go undetected. This brief reasoning makes the importance
of computer vision in practical aspects of human life more clear.

2.1.2 Image Segmentation

A preliminary pure mathematical definition for image segmentation, but not accurate
for this ill-defined topic could be presented as follows [59]:

Assuming R as the entire spatial region enclosed by an image. One could see image
segmentation as a process of partitioning R into n subregions, R1,R2, ...,Rn such that:

(a)
⋃n

i=1 Ri = R.

(b) Ri is a connected set of pixels i = 1,2, ...,n.

(c) Ri∩R j =∅ for all i and j, i 6= j.

(d) Q(Ri) = TRUE for i = 1,2, ...,n.

(e) Q(Ri∪R j) = FALSE for any adjacent regions Ri and R j.

where, Q(Rk) is a logical predicate defined over the pixels set Rk, and ∅ is the null set.
The symbols ∪ and ∩ represent set union and intersection, respectively. Two regions
Ri and R j are said to be adjacent if their union forms a connected set. Condition (a)
indicates that the segmentation must be complete; every pixel must be in a region. Con-
dition (b) requires that points in a region be connected in some predefined sense (e.g.
the points must be 4- or 8-connected). Condition (c) indicates that the regions must be
disjoint. Condition (d) deals with the properties that must be satisfied by the pixels in a
segmented region. For example, Q(Ri)= TRUE if all pixels in R have the same intensity
level. Finally, condition (e) indicates that the two adjacent regions, Ri and R j, must be
different in the sense of the predicate Q.

Segmentation has two objectives. The first objective is to decompose the image into
parts for further analysis. In simple cases, the environment might be well-controlled
(in terms of noise interference, complexity of regions/background and color/gray-level
distribution) so that the segmentation process reliably extracts only the parts that need
to be further analyzed. An example is an algorithm which segments a human face
from a color video image. The segmentation is reliable, provided that the person’s
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clothing or room background does not have the same color components as a human
face. In complex cases, such as extracting a complete road network from a grayscale
aerial image, the segmentation problem can be very difficult and might require applying
a great deal of domain building knowledge. The second objective of segmentation is
to perform a change of representation. The pixels of the image must be organized into
higher-level units that are either more meaningful or more efficient for further analysis
(or both).

Based on the mathematical definition given in this chapter, generally, a good com-
plete segmentation must satisfy the following criteria:

1. All the existing pixels in an image have to be assigned to regions.

2. There is only one region for each pixel.

3. Each region has to be a connected set of pixels.

4. Regarding the certain predicate, each region should be uniform.

5. Any merged pair of adjacent regions has to be non-uniform.

Image segmentation algorithms from a very general view can be divided into two
groups bottom-up and top-down. The bottom-up approaches first divide an images into
small parts such as pixels, super pixels, and small regions, and then merge the ones that
represent a coherent region or object. They attempt to create uniform regions based
on a predefined criteria such as intensity, color, or texture. Therefore, the results of
segmentation may depend greatly on these criteria. Among this group’s techniques are
thresholding, region growing, and region splitting and merging. Top-down approaches
use information about shape, color or texture about an object prior to segmentation.
These approaches rely on class-specific information, and therefore the application is
limited to images from a specific class. The intention in top-down approaches is to
partition an image based on sudden changes and discontinuities. Approaches based on
point, edge and contour are in this group.

A critical issue is whether or not segmentation can be performed for many different
domains using general bottom-up methods that do not use any special knowledge from
the domains. According to [54], “the image segmentation problem is basically one
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of the psychophysical perceptions, and therefore not susceptible to a purely analytical
solution”.

Another more detailed division which roughly covers algorithms in this filed, cate-
gories image segmentation algorithms into six main categories [131]: histogram thresholding-
based methods, clustering-based methods, edge detection-based methods, region-based
methods, graph-based methods, and hybrid methods.

Thresholding: Image segmentation algorithms based on thresholding are popular due
to their simplicity and efficiency in some kind of images. The thresholding procedure is
done on the information obtained from the histogram of the image. However, the most
serious problem related to the traditional histogram-based thresholding is that they are
incapable of separating different regions having the same intensity but located in differ-
ent locations of an image. Using these approaches on images with unimodal histogram,
especially when the target area is much smaller than the background area is not possible
[132]. Although, thresholding-based approaches occasionally have been used in color
image segmentation [63, 12], mostly for medical image processing, their usages is often
investigated on grayscale image segmentation. Overall, thresholding-based methods do
not work well in images without recognizable peaks and valleys, and cannot consider
spatial relationships. Therefore, their applicability in non-trivial image datasets is not
still feasible.

Clustering: The process of putting a set of pattern vectors into several subsets of simi-
lar objects based on certain homogeneity criteria is called clustering which is generally
an unsupervised process. Many clustering algorithms have been proposed [68] with
the ability to be applied in image segmentation. The Clustering methods usually treat
an image as a set of multi-dimensional data. Usually, over segmentation is a problem
in this category which is needed to be taken care of. Also, Feature selection is criti-
cally important in final segmentation results. Two commonly used algorithms in this
category are k-means [84] and fuzzy c-means [17]. K-means partitions a set of data
into K clusters, with variable cluster centers in an iterative procedure. The goal is to
find cluster centers in a way that the sum of the distances between all the members of
clusters and their centers is minimum. This is fulfilled via an objective function. The
final segmentation results depend on the number of clusters, and the position of cluster
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centers. Although, the algorithm guaranteed to converge, it may not give the optimum
solution. On the other hand, in fuzzy clustering (also known as soft clustering), each
datapoint has a degree of membership to all clusters rather than belonging solely to one
cluster. The procedure of clustering is very similar to k-means. The aim is to minimize
an objective function based on the mentioned distance and the degree of membership
of each datapoint. Color, intensity, texture, and location could be used as features for
image segmentation using clustering methods.

Edge detection: In this category, the idea is to detect edges in an image using one of
the existing methods. The popular edge detection methods are Sobel, Robert, Prewitt,
Laplacian, and Canny edge detectors [28, 109, 108]. They all return a binary image as
the output in which edges have been detected. This binary image is then used to identify
the region boundaries. However, serious problems are related to these methods. It is not
easily possible to detect region boundaries in the form of a closed curve. Also, in noisy
images, or images with too many edges, the edge detection algorithms are not working
properly. They either produce a lot of extra edges, or miss the real edges [131].

Graph-based methods: In this category there is a fully connected graph in which nodes
represent pixels, and there is a link between every pair of pixels. Also, there is a similar-
ity value for each link. The idea is to cut the graph into segments representing different
regions. To do so, the links with the lowest similarity are deleted. The interpretation
of an image as a graph, whose arcs are defined by some adjacency relations, provides
different topologies to exploit optimum connectivity between pixels for effective delin-
eation. Two well-known main approaches in this field are normalized cut [114], and
graph cut-based methods [23, 24, 33]. Among disadvantages related to normalized cut,
one could mention needing to chose number of segments, high storage requirement,
time complexity, and being biased towards partitioning into equal segments.

Region Growing: Region-based techniques include region growing, region splitting,
region merging, and others. As a bottom-up technique, the region growing algorithms,
group pixels into homogeneous regions. In an iterative procedure neighboring pixels are
grouped together based on a defined predicate. This happens when a pixel satisfies this
homogeneity criterion enough. After it was included in the region, the region attributes
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such as mean color/intensity and area have to be updated. The classic way to perform
region growing is the Seeded Region Growing (SRG) in which the procedure starts with
selecting a set of seeds as the initial members of regions, and then other pixels will
be added to regions gradually. Several approaches have been proposed in this domain
with different viewpoints on similarity criteria, and selection of seeds’ locations. The
main advantages of utilizing region growing methods rely on color similarity, and pixel
proximity in the image [107].

Region growing satisfies the 2nd, 3rd, and 4th criteria of a good complete segmenta-
tion, mentioned earlier in this section, but not the others. The first criteria is not satisfied
because, in general, the number of seeds may not be sufficient to create a region for ev-
ery pixel. The 5th criterion may not hold because the regions grown from two nearby
seeds are always regarded distinct, even if those seeds are defined within a potentially
uniform part of an image.

The top-down split-and-merge algorithm considers initially the entire image to be a
single region and then iteratively splits each region into subregions or merges adjacent
regions. This continues until all regions become uniform, or the desired number of
regions establishes.

There are problems with regional segmentation of any form:

1. “Meaningful” regions may not be uniform: surface properties of a solid body will
vary in brightness or color dependent on the existence of slowly varying gradients
due to lighting conditions.

2. Lighting or curvature affect the appearance, e.g. a sphere illuminated by a point
light source may have intensities varying from pure white to black, yet is a single
surface. It is very unusual in practice for an image to be composed of uniform
regions of similar intensity, or color, or texture etc.

Hybrid Methods: All methods in each of the above mentioned categories have their
own limitations. Therefore, proposing improved algorithms which are having these
limitations removed or minimized is the goal here. By applying two methods hierarchi-
cally, it is hoped that the hybrid method improves segmentation results. For instance, a
hybrid method utilizing adaptive thresholding and region growing based on low-degree
polynomial fitting has been proposed in [42]. Edge-based region growing algorithms are
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also common hybridization attitudes [80, 99]. Another common hybridization trend is
the combination of clustering methods with region growing approaches [1, 78, 116]. In
this domain, the aim mostly is to overcome the discontinuity in clustering segmentation.

2.1.3 Noise

Image noise is random variation in intensity or color components of an image, which
is usually caused by capturing or transmitting devices and is undesirable because it
adds spurious information to the image. Both analogue and digital imaging devices can
cause noise. Two types of common noise which are more considered in the literature
are Gaussian and Salt & Pepper noise.

• Gaussian Noise: is an statistical noise that the value of noise is modeled using
a Gaussian distribution independent of the intensity of pixels. Gaussian noise in
digital images mainly arises via capturing devices during image acquisition (such
as sensor noise caused by poor illumination), high temperature, or transmission
(such as noise existing in electronic circuits). It usually causes everything look
smoothed and blurry in an image.

• Salt & Pepper Noise: impulse or fat-tail distributed noise, which sometimes is
referred to as salt and pepper noise, can be produced by malfunctioning pixels
in camera sensors, faulty memory locations in hardware, analog-to-digital con-
verter errors or bit errors in a transmission [22]. This means, images are usually
damaged by impulsive noises during acquisition or transmission. It appears as
sparsely occurring white and black pixels. Since the corrupted pixel by impul-
sive noise contains no information about the present image, impulse noisy image
segmentation is a challenging issue.

Fuzzy C-Means (FCM) and Particle Swarm Optimization (PSO) are the two main
tools that we have used throughout this thesis to introduce new approaches for noisy
image segmentation. The next two sections briefly describes them.
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2.2 Fuzzy C-Means

Fuzzy C-Means (FCM) was first introduced in [48], and then extended in [64] by
Bezdek. It is a clustering algorithm in which all the datapoints are considered to be-
long to all the clusters with a degree of membership. Datapoints (pixels in our appli-
cation), are represented as a set, X = {x1,x2, ...,xN}, where xi is a feature vector in a
p-dimensional vector space associated with each pixel. The aim is to find C cluster
centers in a way that the following objective function is minimized:

J =
N

∑
i=1

C

∑
j=1

um
i jd

2(xi,v j) (2.1)

where N and C are the number of pixels and clusters respectively, m is the weighting
exponent, d(., .) is the distance metric, and d(xi,v j) is the distance between pixel xi

and cluster centre v j which uses the Euclidean metric in our approach. ui j is a value
specifying the degree of membership of pixel i to cluster j which needs to satisfy:

∀i ∈ {1,2, ...,N} :
C
∑
j=1

ui j = 1

∀i ∈ {1,2, ...,N},∀i ∈ {1,2, ...,C} : ui j ∈ [0,1]
(2.2)

Using Lagrange multipliers the two following updating equations are obtained which
are necessary but not enough to have Eq. (2.1) at its minimum:
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∑
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i j

)m
(2.4)

v and u are updating iteratively through the following steps where k is the iteration
index. These equations repeat until the algorithm converges, meaning a certain degree
of accuracy is obtained. At the end, the cluster centers and degrees of membership are
obtained:

1. Set values of C, ε, and m.
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2. Randomly initialize the centers of clusters, v0
j

3. Unless the required accuracy is obtained, repeat the following steps for all pixels
and clusters:

4. For pixel i and cluster j calculate uk
ji using vk−1

j according to Eq. 2.3.

5. Update vk
j using Eq. 2.4

6. Test if accuracy is obtained: ‖ vk
j− vk−1

j ‖< ε.

evolutionary computation

2.3 Particle Swarm Optimization

This section provides a very brief introduction to evolutionary algorithms first, then
discusses particle swarm optimization.

2.3.1 Evolutionary Computation

An area of computational intelligence is Evolutionary Computation (EC) in which the
techniques are inspired by biological mechanisms [10]. There are two main categories
in this area [10]: Evolutionary Algorithms (EAs) and Swarm Intelligence (SI). Since
EC techniques make no assumption about the search EAs follow natural selection and
survival of the fittest solutions, and SI is inspired by the collective intelligence of a
group of agents that resembles the social behavior of animals such as birds and fish
[15, 21]. EC techniques perform well in many optimization problem due to their global
search abilities. This characteristic of EC techniques is related to the usage of potential
populations of solutions in a search space rather than selecting a single solution in the
search space. As a result, EC techniques have been successively applied to a variety of
applications in different fields [51].

2.3.2 Particle Swarm Optimization

Particle Swarm Optimization is a computational optimization algorithm from the cat-
egory of SI introduced in [50, 70]. Due to efficiency, robustness, and simplicity [51]
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the technique has been modified many times, for general and specific applications. The
search algorithm is motivated by the social behaviors of organisms. Particularly, chore-
ography of birds flock led to the design of PSO. The algorithm is initialized with a
swarm of potential solutions in a multidimensional space. Each solution, also known
as particle, has the ability to move. Therefore, particle i has two parameters as x and v

which specify its location and speed in the search space, respectively. During the move-
ment, each particle updates its position and velocity according to its own experience,
and that of its neighbors. i is in interactive communication with neighboring particles in
order to find the best position (final solution). The best so-far position of each particle is
called pbest, and the best so-far position in the whole swarm is called gbest. What really
determines the goodness of pbest, gbest, and basically all particles is a fitness function
which is an essential part of PSO algorithm. The fitness function specifies the nature of
the optimization problem, and is designed according to the application. Briefly, assum-
ing a D-dimensional search space the ith particle is represented by XXX iii === (((xxxi1,,,xxxi2.........xxxiD)))

and VVV iii === (((vvvi1,,,vvvi2,,, .........,,,vvviD))) as D-dimensional arrays for the positions and velocities. xxx

and vvv are updated using these two equations:

vk+1
id = w× vk

id + c1r1(pbestd− xk
d)+ c2r2(gbestd− xk

d) (2.5)

xk+1
id = xk

id + vk+1
id (2.6)

where d = 1,2, ...,D, i = 1,2, ...,N, are the sizes of dimension and swarm, c1 and c2 are
positive constants, r1 and r2 are random numbers, uniformly distributed in the interval
[0,1], k = 1,2, ..., denotes the iteration number, pbestd and gbestd represent pbest and
gbest in the dth dimension, and ω is inertia weight which controls the influence of pre-
vious velocities on the new velocity. Larger inertia weights indicate larger exploration
through the search space while smaller values of the inertia weight restrict the search
on a smaller space [51]. Typically, PSO starts with a larger ω, and the decreases grad-
ually over the iterations. We have adopted the following equation for ω to simulate its
descending property:

ω = (ωinitial−ω f inal)×
(kmax− k)

kmax
+ω f inal (2.7)
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where winitial , is the preliminary value of w, w f inal is the final value of w, k is the iteration
number, and kmax is the maximum number of iterations.

2.4 Related Work

2.4.1 Noisy Image Segmentation

Among the applications of image segmentation, there are domains where segmentation
needs to be done on real noisy images. For instance, medical images suffer from in-
tensity inhomogeneities and noise. Also, natural images have additive Gaussian noise.
Therefore, noisy image segmentation has become widely used in the field of medical
image processing. Segmenting brain CT scan images [32], ultrasound images [7], and
magnetic resonance images (MRI) [?] are examples of medical noisy image segmen-
tation. Another field that needs to handle noisy images is remote image analysis with
applications in segmenting Synthetic Aperture Radar [120], and satellite [11] images.

2.4.2 FCM-based Noisy Image Segmentation

The traditional applications of FCM to image segmentation fail to produce accurate
noisy segmentation results as the objective function did not consider any spatial infor-
mation. In this manner, the first notable attempt to overcome this weakness is [6] known
as FCM S. The method was proposed to conquer the intensity inhomogeneities present
in the segmentation of MRI images by allowing the labeling of a pixel to be affected by
its immediate neighborhood. Since FCM S was computationally expensive, FCM S1
and FCM S2 were proposed [38] to improve both efficiency and effectiveness by using
a pre-calculated mean and median filtration of the surrounding window for FCM S1 and
FCM S2 respectively. EnFCM was proposed [118] as another modification of FCM. It
uses a linearly weighted filter applied to the noisy image, and then FCM is performed
on the intensity histogram of the image. The fact that the number of intensities in
an image is usually much fewer than the number of pixels in an average-sized image
made EnFCM quite efficient. The algorithms mentioned so far have a tuning parameter,
termed α, which has to be large enough to suppress the effect of noise, and has to be
small enough to preserve the details in an image. Since these methods are parameter
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dependent, their utilization was narrowed down to certain types and volumes of noise.
FGFCM [25] was therefore proposed later to reduce the parameter dependency of the
former modifications. FGFCM proposes a non-linear filtering factor which still has two
tuning parameters termed as λs and λg, but it was shown that the dependency of FGFCM
to these parameters is much less than that of the previous methods to α. Motivated by
the strengths of all the previous methods, the parameter-free FLICM was proposed [74].
A new fuzzy factor was introduced into the objective function that considers gray and
spatial information simultaneously. Although the method is parameter-free and per-
forms better than its predecessors, the segmentation results are not accurate in the case
of multi-intensity noisy images [52]. Also, FLICM is problematic when it comes to
identifying the class of boundary pixels [129], and severely noisy image segmentation.
To partially overcome the shortcomings of FLICM [146] is proposed in which pixel rel-
evance is introduced into the fuzzy factor of FLICM. This way non-local information
can be considered to improve FLICM performance in case of high-level noise.

A new scheme is introduced in [56] to incorporate local spatial information into
hard c-means (HCM) algorithm. The paper adds a weighted Kullback-Leibler diver-
gence function of the local spatial membership function to fuzzify HCM. A new objec-
tive function is introduced in [57] composing of two parts. The first part is a modified
version of FCM and the second part is a weighted regularization version of FCM. In
both parts distance metrics are modified to take into account the distances in a pixel
neighborhood. Both [56] and [57] are tested on simple synthetic and real images cor-
rupted with single-level low-volume noise of Gaussian and Salt & Pepper noise. To
tackle the common issues with the approaches adding spatial penalty term in FCM, a
auto-tuning-parameter algorithm is proposed in [60]. The approach detects noise pixel
from variance of gray levels around that pixel, and then uses this information to to bal-
ance a denoising term and a detail preserving term in the objective function. This paper
analyses the effect of noise level variation on low levels for real and synthetic images. A
forth order partial differentiation equation filter to deal with cancer detection in micro-
scopic biopsy is proposed in [75]. The approach improves FCM segmentation results
solves the problem of blocky artifacts and also edge preservation by incorporating de-
noising and segmentation in one package. A modified version of FCM is proposed in
[79] in which Lp norm is used instead of L2 for distance calculation. Also, spatial and
color information are incorporated into the objective function to deal with noise and
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outliers. The method considers severe Gaussian noise and has been tested on gray and
color images. The algorithm proposed in [147] introduces a new strategy based on peak
detection to initialize the cluster centers. Also, pixel relevance and spatial information
is added into the FCM objective function, and to further improve the results by detecting
the misclassified pixels and putting them into the correct clusters. The method is tested
on synthetic and real images with high levels of noise.

2.4.3 PSO for FCM-based Noisy Image Segmentation

Compared with the application of EC methods in fields such as object classification
or edge detection, there are not many works in noisy image segmentation using EC
techniques. PSO is one of the major paradigms that have been used for noisy image
segmentation. This section reviews some typical works in this area.

Recently, researches have been carried out to combine heuristic algorithms partic-
ularly PSO with FCM. The common approach deals with the initialization problem of
FCM. FCM performance is influenced by the initial position of the cluster centers, and
improper initialization of cluster centers can make FCM to fall into a local optima. PSO
can effectively be used to find good cluster centers for FCM effective performance. Po-
tential solutions (particles) in PSO as a tool for good initialization of FCM are possible
values for cluster centers within the intensity diversity of pixels. They take the objec-
tive function of a FCM-based clustering method as the fitness function, and then try
to find the optimum positions of the cluster centers that minimize the objective func-
tion the most. This eliminates the updating formula for cluster centers, but the fuzzy
membership updating formula is needed to obtain the value of degree of membership.
Knowing that, FCM-based clustering methods find their cluster centers in an optimiza-
tion process, the algorithms in this approach are only significantly more effective than
their predecessors when other accuracy steps are also added [124, 13].

PSO for FCM Initialization

In the following we briefly mention the studies in which PSO is used for a better initial-
ization of FCM. Using gray-level and neighboring spatial information, a noisy image
segmentation algorithm is introduced in [150]. First, a two-dimensional histogram is
constructed using gray-level and spatial information. The histogram uses each pixel and
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its neighboring pixels’ intensity information where mean or median filtering is succes-
sively applied (two times) to an image to create the information in the two dimensions.
Next, predator-prey PSO is used to obtain FCM cluster centers. The algorithm is tested
on synthetic images with low-level Gaussian noise.

To optimize the clustering performance of FCM, PSO and Markov random filed are
hybridized using spectral and spatial information [82]. The similarity metric in FCM in
modified using new spatial information provided by Markov random filed. The method
is tested only synthetic single-level noisy images. An image segmentation method of
thermal wave inspection is proposed in [61]. The methods uses homomorphic filtering
to enhance the noisy images, and then a PSO-derived FCM is applied for segmenta-
tion using histogram information. Images have limited diversity and are composed of
geometrically simple regions.

Multi-scale FCM is combined with PSO for ultrasound image segmentation. Multi-
scale FCM for segmentation of magnetic resonance images [145] uses a series of images
with different levels of spatial information. First, speckle reducing anisotropic diffusion
is applied to remove noise from an ultrasound image and construct a multiple scales
images. Next, PSO is used to look for the global optima of cluster centers in multiple-
scale FCM. The method is tested on synthetic and real images corrupted with speckle
and Gaussian noise. A three-step algorithm is proposed in [13] based on another mod-
ification to FCM [38]. The first step deals with a proper initialization of the objective
function of the algorithm in [38] which has added some spatial information to FCM
objective function. The second step, segments the image with the properly initialized
FCM-based clustering algorithm using Mahalanobis instead of Euclidean distance to
calculate the similarity metric. Third, a postprocessing step to refine the segmentation
results of the previous step by reclassifying misclassified pixels. The method is tested
on low-level synthetic and simulated magnetic resonance brain noisy images.

The same authors extend their work to a multi-objective FCM combining Pareto-
optimal clusters [14]. Multi-objective PSO is used to produce a set of Pareto-optimal
solutions based on two fitness metrics: a region-based fitness and an edge-based metric.
The region-based metric improves what has been proposed in [13], and the edge-based
fitness uses some contour statistics and number of connected components to find proper
segmentation solutions. To select the final solution to multi-objective optimization, a
new scheme is presented to combine all solutions to better segmentation results. An
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FCM-based magnetic resonance brain image segmentation is proposed in [5]. To divide
the noisy brain region into required number of clusters the number of boundary points
are determined from the dataset. Soft-computing techniques such as PSO, genetic algo-
rithm and bacteria foraging optimization are applied to optimize the boundary points.
The method is applicable to specific low-noise magnetic resonance brain images.

PSO is incorporated with EnFCM and FGFCM to improve the performance of these
algorithms [124]. Also, to improve the convergence speed of the proposed algorithms,
the optimal-selection-based suppression strategy [149] is applied to the membership
values. Differential evolution (DE) is used along with PSO address the initialization
problem of FCM when benefiting from the characteristic of both PSO and DE [83].
PSO has a good performance in local search and fast convergence, and DE has a good
performance in global search. The method shows to have anti-noise abilities in segmen-
tation of low level real images. Another algorithm that deals with other issues related
to FCM as well as the initialization problem is IKPCM [91]. Inspired by Kernel Possi-
bilistic C-Means (KPCM), IKPCM takes into account a few aspects of FCM clustering
by integrating initialization step, distance metric, spatial information, and outlier rejec-
tion into their algorithm. The initialization problem is taken care of by using PSO, the
membership function of KPCM is modified using outlier rejection, spatial information
is provided by using a neighboring window around the pixel under consideration, and
level set is used for segmentation. The method has been tested on synthetic and real
images of low-level noise.

PSO Hybridization with FCM in Other Schemes

There are a few other research works available combining PSO with FCM for problems
other than effective initialization which we briefly mention here. A new parameter tun-
ing algorithm using PSO and GA is introduced in [53] to tune the degree of attraction
of neighboring pixels for a modification of FCM called improved FCM (IFCM). IFCM
[113] introduces two factors into FCM to determine the contribution of neighboring
pixels in segmentation results. The first factor considers difference between features of
the pixels under consideration and the neighboring pixels, and the second factor uses
the relative location of the neighboring pixels. Tuning the parameters related to these
two factors plays an important role in the performance of IFCM. [53] uses PSO, GA,
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and a hybridization of PSO and GA based on the strengths of the two algorithms for pa-
rameter tuning in IFCM. The method is tested on synthetic and simulated/real magnetic
resonance images corrupted with low level of noise.

New similarity metrics are proposed in [119, 121] for FCM in which PSO is used
to weight different features in the new similarity metric. [121] uses neighboring pixels’
texture and relative position information to introduce the new similarity metric. Grey-
level co-occurrence matrix and wavelets are used to extract texture information from a
neighboring window around each pixel. Then PSO is used to optimize the parameters
related to features in a new similarity metric. The method is tested on synthetic texture
and real SAR (Synthetic Aperture Radar) images. The other paper [119], uses similar
strategy by using super pixels. Super pixels are extracted using information from differ-
ent scales of wavelet transform, then a new similarity metric is proposed to determine
the influence of similar and neighbor superpixels in FCM clustering. PSO is used to
optimize the parameters related to the new similarity metric. The method is tested on
synthetic, SAR and color natural image segmentation. One drawback of the the two
mentioned algorithms is their huge computational cost.

2.5 Chapter Summary

Noisy image segmentation is a filed that has being applied in real-world application.
More development and exploration is needed in this field in order to fulfill all the needs
properly. Based on the provided literature review in this chapter in the area of FCM-
based noisy image segmentation, there are limitations related to the existing approaches,
and also gaps to be addressed.

• Many of the existing approaches are parameter-dependent for the level of noise.

• Severely noisy image segmentation has not been explored properly.

• The effect of noise level variation has not been investigated.

• The number of noisy images is often too few that it is not possible to make a
correct conclusion out of the results for similar cases.

• The exiting PSO contributions is not either effective or efficient enough.
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This thesis aims to tackle these issues by developing new algorithms using PSO.



30 CHAPTER 3. ADAPTIVE WAVELET SHRINKAGE



Chapter 3

Adaptive Wavelet Shrinkage for
Severely Noisy Image Segmentation

3.1 Introduction

Tackling the problem of severely noisy image segmentation requires specific tools and
strategies. There are many FCM-based image segmentation methods that do not show
promising results on severely noisy image segmentation. While there has been much
research on modifying the objective function of FCM [6, 38, 118, 25, 74, 129], or new
similarity metrics for FCM [94, 95] to improve the performance, there has not been
a stress on the importance of feature choice and manipulation in the literature. Also,
noisy image segmentation algorithms that do not require any assumptions about the
noise are important in different applications in which the noise type or volume is un-
known. There are also domains where noise is a mixture of different types of noise,
or information about the noise is not available. This chapter proposes two new FCM-
based noisy image segmentation algorithms using PSO, wavelet transform, and edge
detection. The algorithms require no parameter tuning for the type or volume of noise,
and show stable and accurate results on different images corrupted with different noises
at different volumes.

31
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3.1.1 Chapter Goals

This chapter targets the problem of noisy image segmentation from the feature analysis
point of view. It explores the potentials of PSO and wavelet-based thresholding for
noisy image segmentation. We demonstrate the effect of appropriate choice of features
and feature processing on FCM performance with superior results compared to other
state-of-the-art methods. Following are the chapter objectives briefly:

• Investigating the effect of proper choice of features, and feature manipulation on
severely noise removal.

• Studying the effectiveness of wavelet features and wavelet-based thresholding at
providing proper spatial information, removing noise, and segmentation results.

• Exploring the abilities of PSO in feature manipulation, and proposing an approach
needing no parameter tuning which performs adaptively based on the type or vol-
ume of noise for each noisy image.

• Investigating the effect of number of wavelet transformation scales and the type
of wavelet thresholding in conjunction with PSO for denoising matters.

• Evaluating the goodness of clustering fitness metrics in the PSO-based feature
manipulating system.

• Exploring the effect of edge detection methods on preserving more details, and
more accurate segmentation results.

• Comparing the performance of the proposed methods with other FCM-objective-
function-modified methods on severely noisy image segmentation problems.

3.1.2 Chapter Organization

The remainder of this chapter is as follows. Section 3.2 is dedicated to the methodology
of the proposed methods. Section 3.3 introduces the foundation of the new proposed
severely noisy image segmentation algorithm, and an extended version of it based on
the concept of edge enhancement. The datasets, comparison algorithms, and evaluation
metrics are provided in Section 3.4. Section 3.5 is devoted to results and discussions,
and Section 3.6 concludes this chapter.
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3.2 Methodology

This section briefly explains two techniques we have utilized in the construction of the
new algorithms in this chapter: wavelets and Canny edge detector.

3.2.1 Wavelets

Wavelet transform is a technique which provides multi-resolution representations for
image analysis [86]. In comparison to other frequency-based techniques such as Fourier
transform, it has the advantage of providing information from both frequency and space
domains which is essential for dealing with non-stationary signals like images. The
main difference between different wavelets is the choice of the basis (ψ) and scaling (ϕ)
functions. Wavelet analysis is in fact the correlation between the signal under consider-
ation and the basis functions. One of the primary properties of wavelet transforms is its
sparsity when applied to real-world signals. This means that they typically contain a few
large coefficients encompassing the majority of the energy of the signal. The rest are
unimportant coefficients that carry no significant information. This feature of wavelets
is quite favorable for image denoising. Discrete Wavelet Transform (DWT) is a hierar-
chical subband system in which subbands are obtained from logarithmically spacing the
frequency domain. To apply wavelet decomposition on an image, two-dimensional Dis-
crete Wavelet Transform (2D-DWT) is applied by applying 1D-DWT along the rows,
and then the columns of an image. After applying 2D-DWT on an image, it is decom-
posed into four subbands. These four subbands are the results of applying high-pass and
low-pass filters in vertical and horizontal directions, and are named HH1, LH1, HL1,
and LL1, or diagonal (D), horizontal (H), vertical (V ) and approximation (A) coeffi-
cients respectively. Fig. 3.1 shows a single-scale two-dimensional filter bank that could
produce four subbands. In this figure, hϕ is a scaling vector, and hϕ(n) is the set of
scaling function coefficients. Also, hψ is the wavelet vector, and hψ(n) are the wavelet
function coefficients. ∗means convolution, and 2 ↓means a reduced-resolution approx-
imation of the image/subband which is done by down-sampling the convolved results
by a factor of 2.

LL1 (or A) can be further decomposed to give another set of coefficients at the
second scale (Fig. 3.2-b). Fig. 3.2 shows how further decomposition takes place in
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Figure 3.1: A two-dimensional, four-band filter bank for subband image coding (the Figure adapted from
[58]).

a three-scale 2D-DWT providing an example using a sample image. Mathematically,
decomposition scales could be infinite, but after a few scales, the subbands carry no
useful information. The coefficients at each scale can be used as features representing
texture, or be thresholded for denoising, or even as features for image compression.

(a) (b)

Figure 3.2: Three scale, 2D-DWT. (a) the resulting two-scale decomposition; (b) A sample image trans-
formed using this configuration.

Applying 2D-DWT to an image f (x,y) of size M×N is performed according to the
block diagram provided in Fig. 3.1, using the following formulas:
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Wϕ( j0,m,n) = 1√
MN

M−1
∑

x=0

N−1
∑

y=0
f (x,y)ϕ j0,m,n(x,y)

Wψ( j,m,n) = 1√
MN

M−1
∑

x=0

N−1
∑

y=0
f (x,y)ψi

j,m,n(x,y), i = {H,V,D}

(3.1)

in which j0 is an arbitrary starting scale, and the Wϕ( j0,m,n) coefficients define an ap-
proximation of f (x,y) at scale j0. The Wψ( j,m,n) coefficients add horizontal, vertical,
and diagonal details for scales j > j0. We normally set j0 = 0 and N = M = 2J so that
j = 0,1,2, ...,J−1, and m = n = 0,1,2, ...,2 j−1. ϕ j,m,n and ψi

j,m,n(x,y) are the scaled
and translated basis functions:

ϕ j,m,n = 2 j/2ϕ
(
2 jx−m,2 jy−n

)
ψi

j,m,n = 2 j/2ψi(2 jx−m,2 jy−n
)
, i = {H,V,D}

(3.2)

where i indicates the term directional wavelets assuming the values H, V and D. ϕ

and ψ are the separable scaling function and separable directionally sensitive wavelets
respectively.

3.2.2 Canny Edge Detector

The Canny edge detector [28] is an effective edge detection algorithm which we use in
our segmentation approach. It has three main objectives:

1. Find all the edges with no spurious responses. This means the detected edges
have to be as close as possible to the true edges.

2. Localize the edges in a way that the distance between a point marked as an edge
and the center of the true edge should be minimum.

3. Return only one point for each true edge point. This could be fulfilled by mini-
mizing the number of local maxima around the true edge.

If f (x,y) denotes the input image, and G(x,y) denotes the Gaussian function:

G(x,y) = e−
x2+y2

2σ2 (3.3)
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First, a smoothed image, fs(x,y), is formed by convolving G and f :

fs(x,y) = G(x,y)∗ f (x,y) (3.4)

Next it computes the gradient magnitude, M, and direction, α as:

M(x,y) =

√(∂ fs

∂x

)2
+
(∂ fs

∂y

)2 (3.5)

α(x,y) = tan−1
[gy

gx

]
(3.6)

M(x,y) and α(x,y) are matrices of the the same size as the image f (x,y). The
edges in the image correspond to the high values of M(x,y). Since gradient is used
to create M(x,y), it contains wide ridges around local maxima. To localize the edges,
these ridges have to be thinned by keeping the large values of gradient. The Canny edge
detector uses a nonmaxima suppression to thin the broad edges in M(x,y) into ridges
that are only one pixel wide. This approach specifies a number of discrete orientations
of the gradient vector, and quantizes all possible edge directions into them. The result
is a nonmaxima suppressed image which is thresholded to reduce false edge points. To
make sure false edges are removed as much as possible, and minimum number of actual
valid edge points are eliminated, Canny’s algorithm uses hysteresis thresholding with
two threshold values. The final step is a connectivity analysis to fill the gaps in the
thresholded map, and link the edges.

3.3 PSO-based Wavelet Shrinkage for Noisy Image Seg-
mentation

This section proposes an FCM-based severely noisy image segmentation algorithm and
an extension to it using PSO-based wavelet shrinkage and Edge enhancement. The fun-
damental algorithm introduces an adaptive PSO-based wavelet shrinkage, and is called
Wavelet Shrinkage-based Fuzzy C-Means (WS-FCM). The extended version adds an
edge enhancement technique to the fundamental algorithm, and is called Edge-enhanced
Wavelet Shrinkage-based Fuzzy C-Means (EWS-FCM). WS-FCM introduces a new
way of combining PSO, FCM, and wavelets for effective noisy image segmentation.
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PSO is used to adaptively search for optimal threshold values based on the noise and
intensity properties of each image to threshold wavelet coefficients. FCM is used to
evaluate the performance of threshold values, and perform the final segmentation. Fig.
3.3 shows the block diagram of the proposed WS-FCM and EWS-FCM. The flowchart
inside the blue dashed line shows the block diagram of the proposed WS-FCM, and the
flowchart inside the red dashed line shows the flowchart of the proposed EWS-FCM.
For EWS-FCM, the block diagram has four main stages. First, an image is transformed
into the wavelet domain. Second, the detail coefficients at different scales are thresh-
olded in a PSO search procedure until the best set of threshold values are found. Third,
the Canny edge detector is applied to just the approximation coefficients to create an
edge map. This map is aggregated with the approximation coefficients. Fourth, the
thresholded coefficients along with the aggregated approximation coefficient are used
to reconstruct the image, and finally the resultant denoised image is used for an FCM-
based segmentation.

Eqs. 3.7 and 3.8 show the process formulations of the steps in WS-FCM and EWS-
FCM respectively for the input image X :

(A,H,V,D)←W (X)

θbest ← PSO
(
(H,V,D),θ

)
(Ht ,Vt ,Dt)← T h

(
(H,V,D),θbest

)
X̂ ←W−1(Ht ,Vt ,Dt ,A)

Xs← FCM(X̂)

(3.7)

(A,H,V,D)←W (X)

θbest ← PSO
(
(H,V,D),θ

)
(Ht ,Vt ,Dt)← T h

(
(H,V,D),θbest

)
Ae← a×A+(1−a)×Canny(A)

X̂ ←W−1(Ht ,Vt ,Dt ,Ae)

Xs← FCM(X̂)

(3.8)

where W is the wavelet transformation, A, H, V and D are the approximation, horizontal,
vertical, and diagonal coefficients at different scales. PSO is the PSO search procedure,
and θbest is the best set of threshold values obtained from the PSO search. T h is the
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thresholding function using threshold value θbest . Canny is the Canny edge detector,
a is a constant, and Ae is an edge-enhanced version of the approximation coefficients.
W−1 is the reverse wavelet providing the reconstructed image, X̂ , and FCM is FCM
clustering creating the segmented image, Xs.

Figure 3.3: Block diagram of the proposed WS-FCM and EWS-FCM algorithms.
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3.3.1 Wavelet Transformation

Threshold selection in wavelet-based thresholding plays an important role in denoising
an image. Improper thresholding of wavelet coefficients would result in an undesirable
image. The threshold value has to be large enough to attenuate the effect of noise, and
at the same time it has to be small enough to preserve the details of the image. To
demonstrate the importance of proper thresholding on segmentation, Fig. 3.4 shows an
example in which FCM-based segmentation is carried out on a sample image that has
been under-thresholded, over-thresholded, and properly thresholded. The sample image
(Fig. 3.4-a) is contaminated with Gaussian noise of 20% variance (Fig. 3.4-b). After
applying 2D-DWT to the noisy image, the wavelet coefficients are thresholded, recon-
structed, and the reconstructed image is segmented using FCM. Fig. 3.4(c-e) show the
under-thresholded, over-thresholding, and optimally thresholded results, respectively.
Under-thresholding leaves a lot of noise which causes many redundant segmented re-
gions in the image, while over-thresholding deforms the boundary lines, and also causes
redundant segmented regions around the edges. Although not demonstrated in this ex-
ample, over-thresholding can also eliminate details from an image. These errors are
greatly reduced in the optimally thresholded image.

Most conventional approaches apply a single threshold to all the wavelet coefficients
[19]. The new research trend, however, is to have different threshold values for differ-
ent subbands or scales, but this greatly increases the difficulty of identifying optimal
threshold values. The number of scales for which the wavelet transform is performed
also becomes very important: too few scales could keep a considerable volume of noise
in the image, and too many scales increases the computational cost.

Using different wavelet filter families in the wavelet transform results in different
properties [18]. Performing different experiments with different wavelet filters at differ-
ent scales using various images, we realized using a “Coiflet 5” wavelet at a five-scale
transformation would result in an ideal compromise between segmentation accuracy and
computation.

3.3.2 PSO Representation

In our PSO-based search, each particle is a set of threshold values for thresholding of
different wavelet subbands. Since noise energy spreads at different levels at different
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(a) (b) (c) (d) (e)

Figure 3.4: The effect of different thresholding conditions on segmentation. (a) the original image, (b)
the noisy image, segmentation results of (c) under-thresholding, (d) over-thresholding, and (e) optimally-
thresholding.

frequencies, thresholding a noisy image at different frequencies makes the denoising
procedure more effective. To cover all the frequencies, we set a threshold value for each
detail coefficient at each scale. Given that we have a five-scale transformation, and there
are three detail coefficients at each scale, each particle i, Pi, consist of a 1D vector of 15
threshold values that represents a 15D search space:

Pi = [θ1,θ2, ...,θ15] (3.9)

θ1, θ2, and θ3 are threshold values allocated to H, V , and D at scale one. The next three
threshold values (θ4, θ5, and θ6) are for the detail coefficients at level two, and so on.

To make the search more efficient, we set minimum and maximum limits for the
threshold values:

0 < θi < θU (3.10)

θU is the Universal threshold, provided by the Visu Shrink method [47]:

θU = σ
√

2ln(n) (3.11)

where σ is the standard deviation of noise, and n the image size. Since we make no as-
sumption about the volume of noise, the σ value will be obtained using a robust median
estimator as proposed by [47]:

σ =
median

[
|wi j : i, j ∈ HH1|

]
0.6745

(3.12)

where wi j are noisy coefficients of subband HH1.
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The initial solutions for particles are selected from the [0,θU ] interval, and in each
iteration the members of particles outside this interval will be replaced by X pbest posi-
tions.

3.3.3 Wavelet-based Shrinkage

Thresholding is performed on wavelet coefficients to suppress the noise by removing
or attenuating the small coefficients that are more likely to be corrupted by noise, and
keeping or modifying the large coefficients that carry the image information. Two clas-
sic thresholding functions are hard and soft thresholding [47]. The hard thresholding is
also called wavelet thresholding, and simply zeros coefficients values smaller than the
threshold.

Y =

w, if |w|> θ

0, if |w| ≤ θ

(3.13)

Soft thresholding is also called wavelet shrinkage, because it not only zeros coeffi-
cients values smaller than the threshold but also “shrinks” coefficients values larger than
the threshold as shown in Fig. 3.5.

Y =

sign(w)(|w|−θ), if |w|> θ

0, if |w| ≤ θ

(3.14)

We use the soft thresholding (wavelet shrinkage) function in our method. PSO-
provided threshold values in form of particles go through this function to produce
thresholded coefficients. The approximation coefficients (A subband) are not usually
thresholded as they represent low-frequency parts of an image so they are less affected
by noise, and typically contain very important components of an image. Thresholding
this subband is likely to decrease the segmentation accuracy.

Fitness Evaluation

Performance evaluation of particles is required in each iteration to guarantee the best
solution at the end. Thresholded coefficients from the current iteration along with the
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Figure 3.5: The hard and soft thresholding functions.

approximation coefficients are used to reconstruct the image via a reverse wavelet trans-
form. The intensity resultant picture is then used to calculate the FCM objective function
as in Eq. 3.15, where datapoints are the intensity values allocated to each pixel. This fit-
ness evaluation targets the finer segmentation results directly while targeting denoising
indirectly.

J =
N

∑
i=1

C

∑
j=1

um
i jd

2(xi,v j) (3.15)

3.3.4 Edge Enhancement

The research trend in wavelet-based image denoising leaves the approximation coef-
ficients intact, because it is often considered that they have no part in improving the
denoising performance. We introduce a scheme that makes good use of approximation
coefficients to preserve more edge information in a noisy image, and results in more ac-
curate segmentation results. Instead of thresholding, we use edge detection techniques
to produce an edge-enhanced version of the approximation to improve the final segmen-
tation results.

The edge detector used in this study is the Canny edge detector [29]. We determine
the standard deviation of the Gaussian filter in the detector according to the noise level
using Eq. 3.12. Threshold values in the detector are determined heuristically depending
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on the input data. Canny suggests that the ratio of the high to low threshold should be
two or three. If A is the approximation subband, and the edge map produced by applying
the Canny edge detector to A is Ae, the new enhanced version of A, A f , is obtained as
follows:

A f = a×A+(1−a)×Ae (3.16)

in which a is a constant to be determined experimentally according to the image inten-
sity and region complexity. Eq. 3.16 performs a weighted aggregation of approximation
coefficients and its edge map in order to emphasize edge information in the final inten-
sity image.

3.3.5 Segmentation

WS-FCM and EWS-FCM use the best set of threshold values found by the PSO search
to threshold the details coefficients, and the approximation coefficients are edge en-
hanced in EWS-FCM. All the details and approximation coefficients are then used to
reconstruct the image. For wavelet reconstruction a reverse wavelet is performed using
the modified A (or intact A), H, V, and D. The result is a denoised image according to
FCM clustering criteria. A final FCM clustering using the intensity information from
the denoised image is done in order to cluster the pixels according to their intensity
value. The mean intensity value of the pixels inside each cluster determines the gray
value of the cluster. Therefore, segmented regions are pixels inside each cluster being
represented with this mean value.

3.4 Experiment Design

3.4.1 Datasets and Evaluation

We use a synthetic and a real dataset to evaluate the performance of the proposed meth-
ods on images with different properties. The synthetic dataset, SynthDB, consists of
images in which the regions are geometrically simple, easy to recognize, and are com-
posed of a single intensity value. Running experiments on noisy versions of images
from this dataset provides an understanding of how the proposed methods perform on
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segmentation of noisy regions when dealing with simple images. We have five images
in this dataset named Synth1,Synth2, ..., and Synth5. The number of clusters while per-
forming FCM-based clustering is determined by the number of coherent regions in each
region. The real dataset, BerkDB, is selected from the Berkeley dataset [88] which has
been specifically created for segmentation and boundary detection purposes. Here the
images are not so simple: the regions are not simple, they are not easy to recognize,
and each region is composed of several intensities. Experiments on this dataset reveals
how accurate and consistent the proposed method is when encountering real-world im-
ages. We have five images in this dataset named B3096,B42049,B167062,B86016, and
B196027. The number of clusters is again determined according to the number of co-
herent regions in each image. The ground truth is either selected from one of provided
groundtruths in the Berkeley dataset (the one with the minimum number of segments),
or is formed from one of the groundtruths. For the latter, all the segments belonging to a
coherent region are merged together as one segment corresponding to a cluster in FCM
results. Fig. 3.6 shows all the images from the two datasets, along with the number of
clusters.

(a)

Synth1 Synth2 Synth3 Synth4 Synth5

(C=4) (C=3) (C=3) (C=4) (C=3)

(b)

B3096 B42049 B167062 B86016 B196027

(C=2) (C=2) (C=3) (C=2) (C=2)

Figure 3.6: Original test images from the SynthDB, row (a), and BerkDB, row (b).

To generate the noisy images, we apply two types of common noises: Gaussian and
Salt & Pepper. Each image is corrupted with Gaussian or Salt & Pepper noise of dif-
ferent volumes to examine the performance of our method under different severities of
noise, and to analyze the effect of noise variation. The variance/density of the noise



3.4. EXPERIMENT DESIGN 45

level for Gaussian/Salt & Pepper noise ranges from 10% to 80% respectively. For the
rest of this chapter, “image” refers to one of the original images in Fig 3.6, and “in-

stance” refers to a sample noisy image. Given that we have five images in each dataset,
two types of noise, and eight levels of noise for each type, there are a total of 160 in-
stances, half of which are created from SynthDB (40 Gaussian instances, and 40 Sal
& Pepper instances), and the other half created from the BerkDB dataset (40 Gaussian
instances, and 40 Salt & Pepper instances).

For qualitative evaluation, we have adopted the common Segmentation Accuracy,
SA, metric [6]:

SA =
C

∑
i=1

Ai∩Si
C
∑
j=1

S j

(3.17)

in which Ai represents the set of segmented pixels belonging to the ith cluster in the
segmented image and, Si is the set of pixels belonging to the ith cluster in the groundtruth
image.

We have selected seven other state-of-the-art algorithms to compare our method
with: FCM S1 and FCM S2 [38], EnFCM [118], FGFCM, FGFCM S1 and FGFCM S2
[25], and FLICM [74]. WS-FCM and EWS-FCM are also compared to each other in
order to observe the effect of edge enhancement in segmentation accuracy.

3.4.2 Parameter Design

All the parameters related to FCM, PSO, wavelet transform, the edge enhancement pro-
cess and their values used in this chapter are listed in Table 3.1. The parameter design
has been applied based on empirical search through experiments.

3.4.3 Statistical Significance Test

To analyze the non-deterministic behavior of PSO in our algorithms, a pair-wise sta-
tistical significance test is performed. Our algorithm is run 30 times independently on
each image, and the results in the form of the SA values are compared with the results
of other methods using the test. We select the Wilcoxon test with a significance level
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Table 3.1: Parameter settings of the proposed method.

Parameter Value/Type
Wavelet filter Coiflets family

Scale number 5

Termination threshold for FCM 0.001

Maximum number of iterations for FCM 100

weighting exponent (m) 2

Population size 20

PSO iterations 50

c1 and c2 in PSO 1

Inertia weight (ω) in PSO Linearly decreasing from 1 to 0.5

a (in SynthDB) 0.9

a (in BerkDB) 0.7

of 0.05 for this comparison. For more information about this test please refer to [135].
If the p-value (the probability of observing a test statistic as or more extreme than the
observed value under the null hypothesis) is greater than the significance level, the pair-
wise comparison is not considered significantly different. Otherwise, one method is
significantly better than the other. Tables that are providing p values also use +, - and =
signs to show that one method is significantly better, worse, or not different respectively
for an instance.

3.5 Results and Discussion

This section presents the experiments to analyze the functionality of the proposed meth-
ods and also to compare them to other methods both quantitatively and qualitatively. In
the beginning we show how the proposed PSO approach functions in terms of feature en-
hancement and segmentation accuracy. The rest of the experiments are presented in sep-
arate sub-sections for different datasets and different types of noise. Each sub-section
considers two different aspects of the analysis. The first part presents a comprehensive
quantitative evaluation and the second part presents some qualitative evaluations.
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To have a valid comparison in the quantitative part, both SA and p values are con-
sidered. In this part, we first compare the proposed WS-FCM and EWS-FCM individu-
ally with the comparison methods on each instance in a pair-wise manner, and then we
present the pair-wise comparison of WS-FCM and EWS-FCM. Throughout the pair-
wise comparison, a better performance is determined according to the SA value unless
the p value from the Wilcoxon test for that pair is bigger than the significance level
(0.05). Next, in another evaluation we rank the performance of all the algorithms on
each instance. Based on the number of the best and second-best performances for each
algorithm, the overall best, second-best, and third best performers are determined. The
quantitative analysis in each sub-section concludes with an evaluation of all the algo-
rithms performances on noise level variation on each sample image. This evaluation
investigates how the variance and the mean of SA metric changes when the noise level
variance ranges between 10% to 80%. In the qualitative part we show segmented results
of some sample instances to provide a visual comparison between the algorithms.

3.5.1 Depiction of Feature Enhancement

To show how intensity feature is enhanced during the coarse of adaptive thresholding,
histograms of the original, the noisy and the thresholded images are provided in Fig.
3.7. Fig. 3.7(a) shows the histogram of image B167062 in which three main regions
are recognizable. The two big regions (forest and ground) in the image are presented
by pixels belonging to one of the two spikes, and the third region which is the smallest
region (the animal) is presented with the fewer number of pixels ranging mostly on
the right side of the left spike. Fig. 3.7(b) shows the histogram of the instance σ2 =

70% in which the pixels are divided into three big chunks. The first two chunks are
pixels having either completely white or black intensities, and the third one is composed
of pixels occupying all the gray level values between black and white by a relatively
similar cardinality. This histogram cannot provide useful information for the number
of coherent regions existing in the image as the diversity of intensities are huge and a
lot of pixels have turned black or white due to the severe effects of high-level Gaussian
noise. Fig. 3.7(c) however, shows that the adaptive thresholding turns the histogram
into something similar to the original histogram. The two spikes again present the two
big regions, and the smaller third region is ranged between the two spikes in an interval
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much smaller than the noisy image.

Fig. 3.8 is also provided to show the transition of fitness and segmentation accuracy
over the PSO iterations. Fig. 3.8(a) shows how the fitness value decreases and Fig.
3.8(b) shows how SA improves and stabilizes.

3.5.2 SynthDB

Gaussian Noise (Quantitative Analysis)

Table 3.2 shows SA values on all SynthDB Gaussian instances for WS-FCM, EWS-
FCM and all the comparison methods. For the pair-wise comparison of the proposed
WS-FCM with other methods, Table 3.3 provides the p values from the Wilcoxon test.
These are the values from the pair-wise significance test of WS-FCM with all the com-
parison methods over all the 40 instances. There is one instance in Table 3.2 where the
p value is bigger than the significance level. This instance belongs to the comparison
of WS-FCM and FLICM on Synth4, σ2 = 80%. Therefore, except for this instance the
performance difference between WS-FCM and the other algorithms is significant, and
is determined by the SA values provided in Table 3.2.

An analysis of the results from Tables 3.2 and 3.3 shows that our WS-FCM is signif-
icantly better than FCM S1, FCM S2, EnFCM, FGFCM, FGFCM S1, and FGFCM S2
in all 40 instances. In comparison to FLICM, our WS-FCM still possesses 36 (out of 40)
significantly better performances. There are only three instances that FLICM has signif-
icantly better performances than WS-FCM, and they are all low-level noisy instances,
Synth2, Synth3, and Synth4 all with σ2 = 10%. There is also one instance (Synth4,
σ2 = 80%) that WS-FCM is not significantly different from FLICM.

Table 3.4 which provides the p values from the Wilcoxon test between EWS-FCM
with all the comparison methods, shows that EWS-FCM always performs significantly
better or worse compared to other methods on SynthDB Gaussian instances. The results
show that the proposed EWS-FCM outperforms FCM S1, FCM S2, EnFCM, FGFCM S1,
and FGFCM S2 in all the instances. In comparison to FGFCM, EWS-FCM has a signif-
icantly better performance in all but one of the 40 instances. (FGFCM performs better
for the instance Synth2, σ2 = 10%). In comparison to FLICM, EWS-FCM is signifi-
cantly better in all instances except three low-level noise instances: Synth2, Synth3, and
Synth4 all with σ2 = 10%.
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hist_original.png

(a) Histogram of the noiseless image.

hist_noisy.png

(b) Histogram of the noisy image.

hist_denoised.png

(c) Histogram of the thresholded image.

Figure 3.7: Using histograms to show enhancement of intensity feature.
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Fitness_Transition.png

(a) Fitness transition

SA_Transition.png

(b) SA transition

Figure 3.8: Transition of fitness and SA over the iterations.
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To compare WS-FCM and EWS-FCM with each other, another Wilcoxon test is
conducted on all the instances using SA values from these two methods. The p values
resulted from this test are provided in Table 3.5. The bold numbers in this table indi-
cates the instances where the methods are not performing significantly different (the p

value is greater than the significance level). + indicates significantly better performance
of EWS-FCM, - indicates better performance of WS-FCM, and = indicates not signifi-
cantly different performances of the two algorithms. There are an overall 10 instances
that WS-FCM and EWS-FCM are performing not significantly different. For the rest of
the 30 instances, EWS-FCM performs significantly better in 26 instances against four
better performances of WS-FCM.

Standard deviations of the two methods in Table 3.2 show that in 26 (out of 40) in-
stances WS-FCM has a bigger standard deviation over 30 runs compared to EWS-FCM.
This shows better consistency of EWS-FCM performance on each instance. There is this
interesting instance (Synth4, σ2 = 80%) for which the standard deviation of WS-FCM
is bigger than the significance level. This has caused WS-FCM to perform not signif-
icantly different from FLICM, but having this stabilized, EWS-FCM performs better
than FLICM.

To determine the overall best performers for each instance, we sort the segmentation
accuracy of all the algorithms for that instance. Here, we mention the first-three best
performers. EWS-FCM is the overall best performer by performing the best in 26 (out
of 40) instances and the second-best in three further instances. FLICM is the overall
second-best performer by performing the best in three instances and none second-best.
WS-FCM is the overall third-best performer being the best performer in one instance
and the second-best in 27 further instances. There are 10 further instances that the best
performance is shared between WS-FCM and EWS-FCM as they perform not signifi-
cantly different.

To compare the performance of all methods over the noise level variation on all the
images in the SynthDB, two more charts are provided in Fig. 3.9. Fig. 3.9(a) shows
the variance of SA over the eight noisy instances for each image in the dataset. The
red and magenta bars belong to the performances of the proposed WS-FCM and EWS-
FCM algorithms respectively. This figure shows that the smallest SA variances always
belongs to WS-FCM and EWS-FCM. Sometimes it is so small that it is almost negligible
compared to the SA variances of other methods. Also, Fig. 3.9(b) shows the mean of SA
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Table 3.2: SA values for the SynthDB Gaussian instances. The bold numbers indicate the best overall
performance for each instance where the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM EWS-FCM

Synth1

10% 88.98 89.86 88.98 93.12 94.33 93.01 95.90 97.06± 0.03 97.24±0.03
20% 79.41 82.85 78.95 86.22 89.66 87.22 88.04 95.94± 0.05 96.09±0.02
30% 71.62 78.14 71.44 79.86 85.99 81.37 58.15 95.46± 0.09 95.58±0.05
40% 67.16 74.94 67.10 75.31 82.15 77.10 44.95 94.28± 0.10 94.30±0.06

50% 62.77 71.79 63.34 71.38 78.93 72.83 43.12 94.07± 0.07 94.09±0.07
60% 59.78 70.42 60.64 67.94 76.36 72.67 29.27 94.17± 0.10 94.19±0.12

70% 57.25 68.61 58.12 64.82 73.33 70.26 44.69 93.19± 0.14 93.30±0.12
80% 55.29 66.27 56.10 62.87 69.89 67.67 30.49 92.70± 0.04 92.68±0.06

Synth2

10% 97.85 98.41 97.89 99.11 99.02 98.73 99.18 99.12± 0.01 99.07±0.01

20% 92.26 95.05 92.42 96.51 97.85 96.98 97.35 98.67± 0.03 98.70±0.03
30% 87.25 91.49 87.72 93.58 96.51 94.87 96.28 98.36± 0.03 98.39±0.00
40% 81.72 89.21 82.85 89.11 93.49 92.02 74.52 98.13± 0.01 98.19±0.01
50% 76.60 86.52 78.22 85.39 91.32 89.71 82.32 97.64± 0.05 97.66±0.02
60% 74.44 85.53 76.40 83.65 90.05 88.70 74.51 97.38± 0.01 97.42±0.01
70% 71.04 83.49 73.47 80.16 86.40 86.54 73.24 97.68± 0.03 97.65±0.01

80% 68.52 81.58 71.02 77.76 85.56 85.59 73.89 97.18± 0.02 97.25±0.04

Synth3

10% 81.10 93.30 96.04 97.68 97.25 97.15 99.65 99.61± 0.00 99.61±0.00

20% 67.89 76.50 69.33 88.37 95.48 94.37 99.19 99.33± 0.01 99.33±0.00

30% 52.89 71.85 64.92 76.71 90.76 88.78 98.63 98.92± 0.04 98.93±0.01
40% 45.92 67.07 60.81 72.89 86.83 84.82 65.52 98.73± 0.02 98.78±0.02
50% 41.31 62.38 57.00 69.78 80.65 78.62 55.60 98.54± 0.06 98.64±0.06
60% 38.72 61.55 54.03 68.78 80.23 77.18 54.36 98.56± 0.02 98.59±0.02
70% 36.99 59.21 51.58 63.26 78.07 72.38 51.58 97.79± 0.03 97.81±0.03

80% 34.49 58.54 49.69 62.40 75.42 70.59 45.22 97.96± 0.08 98.02±0.01

Synth4

10% 72.59 77.48 85.28 93.80 92.25 93.70 98.16 96.49± 0.01 96.82±0.01

20% 54.42 67.71 72.10 72.65 84.55 82.02 92.41 95.16± 0.08 95.55±0.02
30% 51.00 60.31 66.59 65.40 65.40 75.39 82.16 93.93± 0.04 94.38±0.05
40% 49.36 58.30 61.76 62.01 60.43 76.61 81.68 93.21± 0.03 93.66±0.03
50% 48.69 55.94 53.88 57.90 57.28 72.07 81.86 91.89± 0.04 92.10±0.04
60% 48.82 54.17 50.62 56.55 56.25 70.21 88.39 90.13± 0.32 90.67±0.22
70% 48.04 54.01 48.08 51.60 54.57 68.73 88.55 90.99± 0.15 91.17±0.21
80% 47.76 52.40 47.51 47.01 50.01 68.26 85.70 81.70±10.08 87.87±0.35

Synth5

10% 85.62 86.90 85.54 90.31 93.15 90.68 57.80 96.84± 0.09 96.92±0.01
20% 75.55 79.95 76.33 82.99 88.01 84.38 58.73 95.06± 0.07 95.27±0.06
30% 67.21 74.05 69.03 76.47 82.39 78.03 58.25 93.96± 0.11 93.93±0.10

40% 62.39 70.96 64.81 72.43 78.87 74.89 59.96 93.09± 0.06 93.21±0.04
50% 57.20 66.68 60.11 67.50 73.84 70.19 58.19 90.54± 0.13 90.51±0.16

60% 54.73 65.21 57.89 65.19 71.62 68.06 39.66 90.98± 0.15 91.00±0.13

70% 52.90 63.78 56.20 63.36 69.29 66.56 58.90 89.99± 0.06 90.18±0.06
80% 51.73 62.83 55.17 62.18 68.06 65.67 39.33 88.04± 0.12 88.04±0.13
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Table 3.3: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with other
methods for the SynthDB Gaussian instances. The bold numbers indicate p values greater than the sig-
nificance level. +, - and = respectively shows where WS-FCM performs significantly better, significantly
worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCMS2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

Synth1

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

50% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

60% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth2

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.5e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

80% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

Synth3

10% 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (-)
20% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+)

30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

40% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+)

50% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+)

60% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

Synth4

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00011 (+) 0.98 (=)

Synth5

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)
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Table 3.4: Wilcoxon provided p values resulted from the pair-wise comparison of EWS-FCM with other
methods for the SynthDB Gaussian instances. The bold numbers indicate p values greater than the signif-
icance level. +, - and = respectively shows where EWS-FCM performs significantly better, significantly
worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

Synth1

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth2

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth3

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-)
20% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

30% 1.1e-06 (+) 1.1e-06 (+) 1.1e-06 (+) 1.1e-06 (+) 1.1e-06 (+) 1.1e-06 (+) 1.1e-06 (+)

40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

Synth4

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth5

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)
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Table 3.5: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with EWS-
FCM for the SynthDB Gaussian instances. The bold numbers indicate p values greater than the signifi-
cance level. +, - and = respectively shows where EWS-FCM performs significantly better, significantly
worse or not significantly different compared to WS-FCM.

Noise Level
Img. 10% 20% 30% 40% 50% 60% 70% 80%

Synth1 1.7e-06 (+) 1.7e-06 (+) 2.6e-05 (+) 0.48 (=) 0.048 (+) 0.91 (=) 0.0036 (+) 0.063 (=)

Synth2 1.7e-06 (-) 0.00049 (+) 1.7e-06 (+) 1.7e-06 (+) 0.024 (+) 1.7e-06 (+) 0.002 (-) 5.2e-05 (+)

Synth3 0.022 (+) 0.15 (=) 0.014 (+) 1.7e-06 (+) 4.8e-05 (+) 5.6e-06 (+) 0.11 (=) 1.7e-06 (+)

Synth4 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 5.7e-06 (+) 0.0024 (+) 0.5 (=)

Synth5 1.7e-06 (+) 1.7e-06 (+) 0.27 (=) 1.9e-06 (+) 0.63 (=) 0.7 (=) 1.7e-06 (+) 0.64 (=)

values over different noise volumes. The two highest mean performances always belong
to WS-FCM and EWS-FCM, and EWS-FCM is always slightly better than WS-FCM.
Overall, the smallest variances and the highest mean performances indicates the superior
consistency of the proposed WS-FCM and EWS-FCM compared to other methods on
the SynthDB Gaussian instances.

Gaussian Noise (Qualitative Analysis)

Figure 3.10 provides a sample Gaussian instance for each image in the SynthDB, and
the segmentation results for all the methods. The instances are Synth1,σ2 = 80%,
Synth2,σ2 = 50%, Synth3,σ2 = 60%, Synth4,σ2 = 40%, and Synth5,σ2 = 30%. Visual
comparison clearly shows the better performance of WS-FCM and EWS-FCM com-
pared to other methods. The only methods that can segment all the existing coherent
regions in these instances are WS-FCM and EWS-FCM. Other methods produce lots
of small redundant regions due to the volume of noise. FLICM can segment some of
the main regions, however, one general problem with FLICM, as depicted in Fig. 3.10,
is that it completely loses one or two clusters during the segmentation procedure. This
means that FLICM cannot comply with the required number of regions determined in
advance. For example, for instances Synth1,σ2 = 80% and Synth5,σ2 = 30% the prede-
fined number of regions are four and three respectively, but the number of provided re-
gions are two in both cases. Although EWS-FCM produces more redundant regions (see
Synth5,σ2 = 30% for an example) or bigger redundant regions (see Synth3,σ2 = 60%
as an example), having it perform better around the edges leads to mostly better perfor-
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(a) SA variance.

(b) SA mean.
Figure 3.9: Demonstration of different algorithms performance on noise level variation on the SynthDB
Gaussian instances.
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mance of EWS-FCM compared to WS-FCM.

Salt & Pepper Noise (Quantitative Analysis)

Table 3.6 provides the SA values for all the SynthDB Salt & Pepper instances resulted
from all the algorithms. Also, Wilcoxon test results from the pair-wise comparison of
WS-FCM and EWS-FCM with other methods are provided in Tables 3.7 and 3.8 respec-
tively. There is one p value bigger than the significance level in Table 3.7. This value
belongs to the instance S2,density= 80% when compared with FGFCM S2. Also, there
are two p values in Table 3.8 bigger than the significance level belonging to the instances
S2,density = 70% and S2,density = 80% when both compared with FGFCM S2. Other
than these instances, WS-FCM and EWS-FCM are always performing significantly dif-
ferent than other methods.

A pair-wise comparison of SA values from Table 3.6 shows that WS-FCM is always
performing better than FCM S1, EnFCM, and FGFCM S1. For the other methods, WS-
FCM performs better in 39, 36, and 27 instances (out of 40) than FCM S2, FGFCM,
and FLICM respectively. There is only FGFCM S2 that performs mostly better than
our proposed WS-FCM by performing better in 30 instances. Our WS-FCM holds nine
better performances, and there is one instance that WS-FCM and FGFCM S2 perform
not significantly different.

The same analysis for EWS-FCM shows that our proposed EWS-FCM is performing
significantly better than FCM S1, EnFCM, and FGFCM S1 in all the instances. Also,
EWS-FCM performs better in 39, 38, and 27 instances (out of 40) when compared
to FCM S2, FGFCM, and FLICM respectively. Here again FGFCM S2 is performing
overall better by holding 30 against eight better performances of EWS-FCM. There are
two instances that EWS-FCM and FGFCM S2 perform not significantly different.

For the comparison of WS-FCM and EWS-FCM on SynthDB Salt & Pepper in-
stances, Wilcoxon test results are provided in Table 3.9. There are two instances that
WS-FCM and EWS-FCM performs not significantly different: Synth1,density = 60%
and Synth3,density = 70%. Overall, there are 24 instances that EWS-FCM performs
better, 14 instances that WS-FCM performs better, and two instances that they do, not
significantly different. Table 3.9 shows that for the high levels of noise, density = 70%
and 80%, it is WS-FCM that performs mostly better, and for others EWS-FCM performs
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Synth1 Synth2 Synth3 Synth4 Synth5

(σ2 = 80%) (σ2 = 50%) (σ2 = 60%) (σ2 = 40%) (σ2 = 30%)

Noisy
Images

Groundtruths

FCMS 1

FCMS 2

EnFCM

FGFCM

FGFCMS 1

FGFCMS 2

FLICM

WS-FCM

EWS-FCM

Figure 3.10: Qualitative comparison of the proposed WS-FCM and EWS-FCM with FCM S1, FCM S2,
EnFCM, FGFCM S1, FGFCM S2, FGFCM, and FLICM on some Gaussian instances of SynthDB. Noise
variance for Synth1, Synth2, Synth3, Synth4, and Synth5 instances is 80%, 50%, 60%, 40%, and 30%
respectively.
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mostly better. In this Table, + indicates significantly better performance of EWS-FCM,
- indicates better performance of WS-FCM, and = indicates not significantly different
performances of the two algorithms.

Considering the best performance on each instance, the overall four-best perform-
ers are as follows. FGFCM S2 is the best performer being the best performer in 23
instances, and second-best performer in five more instances. FLICM is the second-best
performer acting the best on seven instances and second-best on six more instances.
The third-best performer in this regard is WS-FCM, by being the best performer on four
instances, and second-best on seven more instances. EWS-FCM is the fourth-best per-
former being the best and second-best performer in three and 16 instances respectively.

For the performance evaluation of all methods on Salt & Pepper noise level variation,
Fig. 3.11(a) and 3.11(b) are provided for SA variance and SA mean respectively. Fig.
3.11(a) shows that for three out of five images in the SynthDB known as Synth1, Synth2,
and Synth3, the proposed WS-FCM and EWS-FCM have the smallest variance when the
noise volume changes. For Synth4 and Synth5 the FLICM and FGFCM S2 have the two
smallest SA variance. Also, Fig. 3.11(b) shows that for Synth1 and Synth3, WS-FCM
and EWS-FCM have the highest mean SA, for Synth2 and Synth5 WS-FCM/EWS-
FCM have the second/third-biggest mean SA after FGFCM S2, and for Synth4, the two
biggest mean SA values belong to FGFCM S2 and FLICM, and WS-FCM and EWS-
FCM as third and fourth biggest mean performance. Unlike the Gaussian noise, here
not always EWS-FCM has a bigger mean SA than WS-FCM.

Salt & Pepper Noise (Qualitative Analysis)

Figure 3.12 provides a Salt & Pepper instance for each image in the SynthDB and the
segmentation results from all the methods. The instances are Synth1,density = 10%,
Synth2,density= 60%, Synth3,density= 80%, Synth4,density= 50%, and Synth5,density=

70%. Visual comparison shows that WS-FCM and EWS-FCM are the only methods that
can segment the coherent regions based on the predefined number of clusters without
producing any redundant regions. FGFCM S2 mostly produces the most accurate re-
sults by preserving the details, however, the number of produced redundant regions are
much more in this method compared to WS-FCM and EWS-FCM. On the other hand,
WS-FCM and EWS-FCM over-smooth the boundaries that causes these methods not to
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Table 3.6: SA values for the SynthDB Salt & Pepper instances. The bold number indicates the best
performance for each instance. The bold numbers indicate the best performance for each instance.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM EWS-FCM

Synth1

10% 93.15 95.82 92.91 97.88 96.20 99.73 99.78 97.84±0.08 98.02±0.08

20% 88.46 91.77 88.34 96.59 95.15 99.33 99.75 96.96±0.11 97.14±0.12

30% 82.48 87.64 82.11 92.70 91.11 98.90 99.72 96.03±0.00 96.15±0.00

40% 75.06 83.55 75.05 86.93 87.29 98.39 99.26 95.29±0.13 95.52±0.14

50% 66.65 35.01 66.97 77.47 78.06 98.05 52.76 93.91±0.22 93.99±0.20

60% 57.75 32.80 58.39 67.09 68.06 97.15 25.69 92.63±0.47 92.62±0.57

70% 47.88 30.50 50.54 57.48 59.76 94.74 45.18 91.38±0.04 91.08±0.05

80% 38.96 6.29 41.16 44.71 45.61 42.75 33.59 85.39±0.31 85.11±0.30

Synth2

10% 97.44 97.24 97.44 99.86 99.32 99.85 99.90 99.62±0.00 99.60±0.00

20% 94.35 94.33 94.34 99.01 98.74 99.56 99.41 99.12±0.00 99.09±0.01

30% 90.90 91.58 90.94 96.70 97.43 99.46 98.83 98.68±0.01 98.66±0.01

40% 85.79 88.81 85.95 92.67 95.67 99.15 70.76 98.25±0.04 98.27±0.05

50% 78.14 85.83 78.73 86.40 90.13 99.00 70.12 97.76±0.05 97.77±0.06

60% 69.22 82.78 70.20 77.80 80.92 98.49 53.68 96.54±0.03 96.47±0.03

70% 58.86 35.21 61.04 67.15 72.02 96.01 69.91 96.43±0.57 96.32±0.65

80% 50.92 32.70 52.12 55.89 61.33 89.28 45.49 89.09±0.85 89.25±0.99

Synth3

10% 99.08 99.80 99.33 99.85 98.23 99.80 99.95 99.79±0.01 99.77±0.01

20% 96.95 99.21 97.74 99.33 97.41 99.21 16.69 99.51±0.01 99.51±0.01
30% 89.54 98.53 93.93 98.59 96.61 98.79 91.71 99.46±0.01 99.50±0.02
40% 73.43 97.88 80.64 96.72 94.95 98.05 16.42 99.23±0.02 99.22±0.02

50% 53.37 97.46 65.51 88.37 88.63 97.69 91.70 99.05±0.02 99.02±0.02

60% 39.66 72.38 56.65 70.94 77.76 96.69 16.43 98.32±0.03 98.33±0.03
70% 30.06 10.11 48.69 62.54 65.62 92.92 88.23 97.34±0.02 97.34±0.02

80% 19.92 78.75 40.07 50.01 54.47 80.70 15.65 95.92±0.52 94.12±0.83

Synth4

10% 89.78 81.70 89.32 94.95 92.89 99.73 99.67 96.88±0.01 97.09±0.01

20% 85.07 76.93 84.64 91.93 90.36 99.25 99.55 95.64±0.04 95.99±0.03

30% 52.68 72.84 52.73 84.02 69.47 98.61 89.34 94.34±0.04 94.67±0.04

40% 47.27 73.15 46.24 74.31 60.53 98.00 89.28 92.74±0.03 93.24±0.03

50% 45.63 67.57 47.71 63.41 53.18 97.19 86.22 87.12±0.10 87.37±0.10

60% 47.41 62.75 43.91 46.60 46.22 96.26 88.95 86.59±0.04 86.77±0.20

70% 47.58 57.44 38.65 40.22 40.79 94.34 88.89 79.20±0.15 78.48±0.17

80% 44.05 47.49 32.60 32.95 31.76 87.03 80.03 49.82±2.33 51.01±2.44

Synth5

10% 94.39 97.70 94.34 97.83 95.89 99.74 57.89 97.81±0.02 97.89±0.02

20% 88.85 95.36 89.09 95.61 93.65 99.39 57.61 96.73±0.08 96.84±0.08

30% 81.75 93.24 82.02 91.86 89.78 98.95 57.43 95.82±0.09 95.85±0.09

40% 72.91 91.03 73.27 85.28 83.82 98.69 38.23 93.88±0.12 93.97±0.09

50% 63.24 88.60 64.82 75.57 75.54 98.04 57.08 91.02±0.19 91.06±0.17

60% 56.38 86.63 58.56 68.02 69.76 97.49 56.97 90.32±0.02 90.54±0.01

70% 46.99 26.92 50.54 58.28 59.75 95.20 55.62 86.64±0.05 86.61±0.04

80% 38.91 27.19 42.49 47.80 48.42 85.39 54.13 75.56±0.32 75.51±0.37
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Table 3.7: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with other
methods for the SynthDB Salt & Pepper instances. The bold numbers indicate p values greater than the
significance level. +, - and = respectively show where WS-FCM performs significantly better, signifi-
cantly worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

Synth1

10% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth2

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
20% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.6e-05 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.34 (=) 1.7e-06 (+)

Synth3

10% 1.1e-06 (+) 1.1e-06 (-) 1.1e-06 (+) 1.1e-06 (-) 1.1e-06 (+) 1.1e-06 (-) 1.1e-06 (-)
20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

50% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth4

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
80% 2.6e-06 (+) 0.00077 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)

Synth5

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0002 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)
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Table 3.8: Wilcoxon provided p values resulted from the pair-wise comparison of EWS-FCM with other
methods for the SynthDB Salt & Pepper instances. The bold numbers indicate p values greater than
the significance level. +, - and = respectively show where EWS-FCM performs significantly better,
significantly worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

Synth1

10% 1e-06 (+) 1e-06 (+) 1e-06 (+) 2.2e-05 (+) 1e-06 (+) 1e-06 (-) 1e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
30% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth2

10% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (-)
20% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (-) 1.5e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.17 (=) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.38 (=) 1.7e-06 (+)

Synth3

10% 1.1e-06 (+) 1.1e-06 (-) 1.1e-06 (+) 1.1e-06 (-) 1.1e-06 (+) 1.1e-06 (-) 1.1e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

50% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

60% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth4

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
80% 1.9e-06 (+) 4.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)

Synth5

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)
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(a) SA variance.

(b) SA mean.
Figure 3.11: Demonstration of different algorithms performance on noise variation (SynthDB Salt &
Pepper instances).
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Table 3.9: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with EWS-
FCM for the SynthDB Salt & Pepper instances. The bold numbers indicate p values greater than the
significance level. +, - and = respectively show where EWS-FCM performs significantly better, signifi-
cantly worse or not significantly different than WS-FCM.

Noise Level
Img. 10% 20% 30% 40% 50% 60% 70% 80%

Synth1 1.5e-06 (+) 1.7e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.057 (=) 1.7e-06 (-) 1.7e-06 (-)
Synth2 1.4e-06 (-) 1.5e-06 (-) 1e-05 (-) 0.00035 (+) 0.00076 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+)

Synth3 9.7e-07 (-) 0.00071 (+) 1.7e-06 (+) 1.6e-06 (-) 1.5e-06 (-) 0.0031 (+) 0.066 (=) 1.7e-06 (-)
Synth4 1.6e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00036 (+) 1.7e-06 (-) 1.7e-06 (+)

Synth5 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.2e-06 (+) 1.7e-06 (+) 2.5e-06 (-) 0.00018 (-)

performer as good as the Gaussian instances. FLICM can segment the coherent regions
on some of the instances, but not according to the required number of clusters. This
causes some of the segmented regions to have the same gray values as the intensity
representative of the regions.

3.5.3 BerkDB

Gaussian Noise (Quantitative Analysis)

The results of Wilcoxon test from the pair-wise comparison of WS-FCM and EWS-
FCM with other methods are presented in Tables 3.11 and 3.12 respectively. Table
3.11 reveals that there is not any case that the p value is bigger than the significance
level. Therefore, WS-FCM always performs significantly different compared to other
comparison methods. To determine which one is the case, we have a look at SA values
provided in Table 3.10. The analysis of results from this table shows that WS-FCM
always performs significantly better than FCM S1, FCM S2, EnFCM, and FGFCM in
all the 40 instances. It also performs significantly better in 39, 38, and 28 instances
compared to FGFCM S1, FGFCM S2, and FLICM. Therefore, WS-FCM is always or
mostly better on BerkDB Gaussian instances.

The performance of WS-FCM becomes even better in EWS-FCM. Table 3.12 shows
that there is one single p value bigger than the significance level. This is for the instance
B42049,σ2 = 10% when EWS-FCM is compared with FLICM. Other than is instance,
EWS-FCM always performs significantly different than other methods. Analysis of SA
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Synth1 Synth3 Synth3 Synth4 Synth5

(σ2 = 10%) (σ2 = 60%) (σ2 = 80%) (σ2 = 50%) (σ2 = 70%)

Noisy
Images

Groundtruths

EWS-FCM

WS-FCM

FCMS 1

FCMS 2

EnFCM

FGFCM

FGFCMS 1

FGFCMS 2

FLICM

Figure 3.12: Qualitative comparison of the proposed WS-FCM and EWS-FCM with FCM S1, FCM S2,
EnFCM, FGFCM S1, FGFCM S2, FGFCM, and FLICM on some SynthDB Salt & Pepper instances.
Noise densities for Synth1, Synth2, Synth3, Synth4, and Synth5 instances are 10%, 60%, 80%, 50%, and
70% respectively.
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values in Table 3.10 shows that EWS-FCM always outperforms FCM S1, FCM S2,
EnFCM, FGFCM, and FGFCM S1 in all the 40 instances. It is also significantly better
than FGFCM S2 and FLICM on 39 and 30 instances respectively. Overall, the number
of significantly better performances of other methods in a pair-wise manner has dropped
from 15 in WS-FCM to 11 in EWS-FCM.

Wilcoxon test results on the comparison of WS-FCM and EWS-FCM is provided
in Table 3.13. There is no p value bigger than the significance level in this table. The
Table shows that EWS-FCM is significantly better than WS-FCM in 25 instances, and
WS-FCM is significantly better than EWS-FCM in 15 instances. This concludes that
EWS-FCM again performs mostly better than WS-FCM on BerkDB Gaussian instances.

Considering the best and second-best performance on each instance, the overall first
three best performers are determined by another set of analysis. EWS-FCM is the over-
all best performer by being the best and second-best performer in 15, and 22 instances
respectively. WS-FCM is the overall second-best performer, by possessing 14 best and
second-best performances, and FLICM is the overall third-best performer having 10
best, and one second-best performance(s).

The performances of all methods on noise variation are compared in Fig. 3.13. Con-
sidering the variance of SA metric (Fig. 3.13(a)), if we overlook the unusual behavior
of FLICM on image B3096 with a very low mean SA, WS-FCM is always possess-
ing the smallest SA variation except for image B167062 where FLICM has the low-
est SA variance with a slight difference to WS-FCM and EWS-FCM. EWS-FCM has
the second-lowest SA variance on images B42049, B167062, B86016, and B196027.
For the mean SA value (3.13(b)), the proposed WS-FCM and EWS-FCM always have
the highest mean performance except for image B167062 in which FLICM possess the
highest mean performance. On three images WS-FCM has a slightly better mean per-
formance than EWS-FCM, and for the two rest, EWS-FCM performs slightly better.

Gaussian Noise (Qualitative Analysis)

Figure 3.14 provides a sample Gaussian instance for each image in the BerkDB and the
corresponding segmentation results of all the methods. The instances are B3096,σ2 =

40%, B42049,σ2 = 50%, B86016,σ2 = 60%, B167062,σ2 = 80%, and B196027,σ2 =

30%. This figure shows that the only method that produces coherent segmented com-



3.5. RESULTS AND DISCUSSION 67

Table 3.10: SA values for the BerkDB Gaussian instances. The bold number indicates the best perfor-
mance for each instance. The bold numbers indicate the best overall performance for each instance where
the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM EWS-FCM

B3096

10% 64.18 67.18 68.78 76.26 82.71 84.41 6.13 83.82±0.10 84.55±0.11
20% 58.73 62.27 59.99 65.92 72.80 74.09 6.13 79.88±0.01 78.14±0.02

30% 57.00 60.56 57.54 62.73 69.95 69.36 6.13 76.67±0.03 74.45±1.73

40% 55.98 59.85 56.24 61.52 67.04 67.70 6.13 82.67±0.03 82.77±0.02
50% 54.96 58.69 54.72 59.88 65.35 63.74 6.13 84.33±0.01 83.98±0.00

60% 54.72 58.55 54.61 58.14 64.50 63.61 6.13 76.72±0.04 77.45±0.03
70% 54.45 58.53 54.12 57.79 64.24 63.45 6.13 80.44±0.07 80.29±0.16

80% 53.85 57.73 53.35 56.81 63.13 61.76 6.13 80.48±0.04 79.31±0.05

B42049

10% 93.07 93.43 93.46 94.12 93.62 93.80 95.21 94.65±0.02 95.22±0.02

20% 89.00 91.02 90.77 92.86 92.70 92.47 94.16 93.35±0.09 94.23±0.07
30% 83.74 88.65 86.63 91.37 92.05 91.43 90.16 92.75±0.08 93.29±1.24
40% 78.72 86.03 81.48 88.65 91.12 90.18 19.09 92.27±0.04 93.13±0.04
50% 75.59 84.42 77.67 86.91 90.21 89.21 19.09 91.97±1.37 92.76±1.32
60% 73.31 82.63 74.97 84.17 88.95 87.88 19.09 91.17±0.11 91.86±0.00
70% 71.37 80.71 72.17 81.81 87.78 85.65 19.09 91.93±0.14 92.54±0.20
80% 69.59 78.55 70.66 78.60 85.10 82.15 19.09 89.84±0.23 90.18±1.41

B167062

10% 79.13 79.77 85.49 98.00 97.27 81.84 99.06 98.47±0.01 98.63±0.00

20% 77.40 79.05 82.38 79.87 96.99 80.22 99.15 98.18±0.00 98.35±0.01

30% 76.64 78.56 81.45 77.91 75.23 80.17 99.20 97.84±0.01 98.05±0.00

40% 76.34 78.54 79.67 77.16 74.34 80.76 99.37 97.62±0.01 97.90±0.02

50% 75.61 77.82 78.59 77.16 73.22 80.61 99.19 97.60±0.00 97.86±0.00

60% 74.67 77.25 76.91 76.09 72.84 80.73 99.21 97.56±0.01 97.86±0.00

70% 74.00 76.78 75.50 74.68 72.52 81.54 98.94 97.21±0.01 97.51±0.02

80% 72.48 75.46 73.47 74.45 70.99 79.74 98.85 97.13±0.00 97.43±0.00

B86016

10% 86.19 87.21 89.17 92.69 94.10 93.23 99.12 98.47±0.02 98.29±0.02

20% 77.12 81.05 79.43 86.77 91.36 89.22 16.36 97.81±0.01 97.72±0.01

30% 72.44 77.88 74.32 82.22 87.90 85.65 16.36 97.43±0.02 97.13±0.03

40% 69.06 74.50 70.22 77.56 84.35 81.36 16.36 98.31±0.04 98.14±0.06

50% 67.19 73.21 68.18 74.54 82.43 78.67 16.36 97.78±0.01 97.53±2.83

60% 65.87 72.26 66.18 73.57 80.89 76.95 16.36 97.81±0.00 98.08±0.01
70% 64.06 70.43 64.69 70.91 76.82 74.56 16.36 96.12±0.15 95.83±3.05

80% 63.14 70.11 63.54 69.68 75.53 74.11 16.36 95.89±0.04 95.38±0.02

B196027

10% 73.29 74.95 76.09 78.74 79.61 80.24 91.09 79.15±0.25 79.62±0.37

20% 67.30 70.06 68.85 72.99 76.45 75.71 11.57 76.84±0.03 76.98±0.03
30% 64.64 68.19 65.46 70.20 74.40 73.88 11.57 77.78±0.02 78.45±0.01
40% 63.04 66.91 63.80 68.99 73.69 71.80 11.57 78.54±0.41 76.34±0.15

50% 61.68 66.14 61.97 67.30 72.35 70.24 11.57 80.08±0.16 80.49±0.13
60% 60.57 65.28 60.76 65.29 70.37 68.88 11.57 76.52±0.12 73.77±0.15

70% 59.69 64.07 60.36 64.67 68.43 67.26 11.57 74.19±0.06 74.50±0.07
80% 59.12 64.22 59.52 64.17 69.59 67.50 11.57 75.95±0.04 75.24±0.04
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Table 3.11: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with other
methods for the BerkDB Gaussian instances. The bold numbers indicate p values greater than the sig-
nificance level. +, - and = respectively show where WS-FCM performs significantly better, significantly
worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

B3096

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B42049

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 3.1e-05 (+) 3.1e-05 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B167062

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
50% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
80% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (-)

B86016

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B196027

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.2e-05 (+) 1.9e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)
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Table 3.12: Wilcoxon provided p values resulted from the pair-wise comparison of EWS-FCM with
other methods for the BerkDB Gaussian instances. The bold numbers indicate p values greater than
the significance level. +, - and = respectively show where EWS-FCM performs significantly better,
significantly worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

B3096

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 7.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.9e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B42049

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.068 (=)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+)

30% 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 3.1e-05 (+) 3.1e-05 (+) 3.1e-05 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 3.1e-05 (+) 2.1e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B167062

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
80% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (-)

B86016

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B196027

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.015 (+) 4.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)
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(a) SA variance.

(b) SA mean.
Figure 3.13: Demonstration of different algorithms performance on noise variation (BerkDB Gaussian
instances).
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Table 3.13: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with EWS-
FCM for the BerkDB Gaussian instances. The bold numbers indicate p values greater than the signifi-
cance level. +, - and = respectively show where EWS-FCM performs significantly better, significantly
worse or not significantly different than WS-FCM.

Noise Level
Img. 10% 20% 30% 40% 50% 60% 70% 80%

B3096 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00018 (+) 1.7e-06 (+)

B42049 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+) 1.7e-06 (+) 4.9e-05 (+)

B167062 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

B86016 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+)

B196027 3.5e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

ponents are WS-FCM, EWS-FCM, and FLICM (only in one instance for the latter).
Other comparison algorithms except FLICM suffer from over segmentation. FLICM,
except for the B167062 instance on which it shows very good segmentation accuracy,
completely misses the regions. It is clear from the B42049 and B86016 instances that
EWS-FCM performs better on preserving the boundaries.

Salt & Pepper Noise (Quantitative Analysis)

SA value from all the methods are provided in Table 3.14. Wilcoxon test results using
these values are provided in Tables 3.15 and 3.16 for the comparison of WS-FCM and
EWS-FCM to other methods respectively. There is no p value bigger than the signifi-
cance level in Table 3.15, and there is only one p value bigger than the significance level
in Table 3.16. This value belongs to comparison of EWS-FCM and FGFCM S2 on in-
stance 196027,density = 70%. Therefore, other than this instance, for the rest of the
comparisons we refer to SA measure provided in Table 3.14 to determine a significantly
better performance. This table shows that WS-FCM performs significantly better in 38
(out of 40) compared to FCM S1, 30 compared to FCM S2, 38 compared to EnFCM,
31 compared to FGFCM, and 34 compared to FGFCM S1. These are the cases that
the proposed WS-FCM performs mostly better than other comparison algorithms. As
for comparison to FGFCM S2, WS-FCM performs better in nine instances against 31
better performances of FGFCM S2. Also, when compared to FLICM, with only four
difference, FLICM performs mostly better: WS-FCM on 18 instances and FLICM on
22 instances.
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B3096 B42049 B86016 B167062 B196027

(σ2 = 40%) (σ2 = 50%) (σ2 = 60%) (σ2 = 80%) (σ2 = 30%)

Noisy Images

Groundtruths

EWS-FCM

WS-FCM

FCMS 1

FCMS 2

EnFCM

FGFCM

FGFCMS 1

FGFCMS 2

FLICM

Figure 3.14: Qualitative comparison of the proposed WS-FCM and EWS-FCM with FCM S1, FCM S2,
EnFCM, FGFCM S1, FGFCM S2, FGFCM, and FLICM on some of the BerkDB Gaussian instances.
B3096, B42049, B86016, B167062, and B196027 are corrupted with Gaussian noise of variance 40%,
50%, 60%, 80%, and 30% respectively.
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In comparison to WS-FCM performance, EWS-FCM performs generally better in
the pair-wise comparison to other methods. It is a better performer on 38 instances
when compared to FCM S1, on 32 ones when compared to FCM S2, on 38 ones when
compared to EnFCM, on 35 when compared to FGFCM, and on 35 ones when compared
to FGFCM S1. This clearly shows that the number of better performances has improved
compared to WS-FCM. In comparison to FGFCM S2, the latter performs better on 33
instances against 6 of better performances of EWS-FCM, and one instance of not doing
significantly different. Also, in comparison to FLICM, the latter performs better on on
21 instances against 20 of our EWS-FCM. Therefore, with only one difference, FLICM
mostly performs better than the proposed EWS-FCM.

For the comparison of WS-FCM and EWS-FCM, p values from the Wilcoxon test
are provided in table 3.17. There are two instances that the p value is bigger than
the significance level. For the rest, one method significantly outperforms the other.
WS-FCM performs better on 20 instances, EWS-FCM on 18 instances, and there are
two instances that they do not significantly different. Therefore, with only two better
performances, WS-FCM outperforms EWS-FCM in the number of better performances.

For the comparison of performance of all methods on noise level variation, Fig.
3.15 is provided. Fig. 3.15(a) shows SA variance and Fig. 3.15(b) shows SA mean
on all the instances of each image. Fig. 3.15(a) indicates that the proposed method
has the lowest SA variance on images B42049 and B86016, and FGFCM S2 has the
lowest SA variance for images B3096, B167062, and B196027. The second-lowest SA
variance belongs to EWS-FCM, FLICM, WS-FCM, FLICM, and WS-FCM for B3096,
B42049, B167062, B86016 and B196027 respectively. Also, Fig. 3.15(b) indicates
that the proposed WS-FCM and EWS-FCM have the two-highest SA mean on image
B86016, and for the rest of the images FGFCM S2 has the highest mean of SA. For
these images, one of the WS-FCM and EWS-FCM always possesses the second-highest
SA mean after FGFCM S2.

Salt & Pepper Noise (Qualitative Analysis)

Figure 3.16 provides a sample Salt & Pepper instance for each image in the BerkDB
dataset and the corresponding segmentation results of all the methods. The instances are
B3096,density= 70%, B42049,density= 20%, B86016,density= 50%, B167062,density=
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Table 3.14: SA values for the BerkDB Salt & Pepper instances. The bold number indicates the best
performance for each instance. The bold numbers indicate the best overall performance for each instance
where the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM EWS-FCM

B3096

10% 83.45 89.60 86.71 93.34 90.98 97.25 95.03 81.95±0.01 81.45±0.09

20% 74.16 80.24 77.20 90.05 88.09 97.34 87.23 82.93±0.04 80.63±2.63

30% 66.93 75.03 70.38 83.25 81.97 97.38 79.76 79.05±0.02 83.38±0.04

40% 60.75 70.66 63.30 73.53 72.76 97.11 43.58 81.38±0.02 78.09±2.28

50% 57.68 66.83 57.67 67.23 68.75 96.81 6.13 81.91±0.03 79.73±3.73

60% 54.84 63.19 55.12 60.86 63.83 96.29 6.13 72.81±0.06 73.87±0.15

70% 52.69 59.10 52.91 56.79 58.76 94.64 6.13 71.57±0.03 67.21±1.40

80% 51.48 56.05 50.97 54.09 57.44 88.35 6.13 63.83±0.83 68.08±2.78

B42049

10% 93.90 95.83 94.06 95.08 93.73 96.23 95.88 95.11±0.03 95.51±0.01

20% 92.42 95.18 92.91 94.65 93.49 96.00 95.64 94.47±0.01 94.98±0.01

30% 88.88 94.46 89.45 94.04 93.05 95.62 95.51 93.77±0.01 94.71±0.01

40% 83.34 93.80 83.57 92.36 92.13 95.26 94.55 93.14±0.04 93.68±0.02

50% 77.10 92.90 77.53 88.72 90.09 94.72 93.53 91.57±0.12 92.06±0.19

60% 71.30 91.88 71.35 82.40 86.02 94.28 19.09 91.08±1.59 91.72±0.11

70% 64.79 89.14 65.18 72.86 75.58 92.23 19.09 89.01±0.77 89.71±0.90

80% 58.95 82.00 59.24 64.53 67.04 85.47 19.09 85.66±0.19 81.66±0.18

B167062

10% 96.65 95.93 94.36 98.12 97.26 99.11 99.18 97.94±1.55 96.87±7.27

20% 92.89 92.84 91.30 97.78 97.19 99.00 99.31 98.17±0.00 98.31±0.00

30% 88.39 52.83 87.52 87.86 79.29 98.75 99.40 97.96±0.03 98.14±0.05

40% 83.34 49.84 83.04 82.92 76.18 98.76 99.45 97.69±0.01 98.06±0.00

50% 77.58 46.92 76.93 80.15 74.63 98.26 99.33 97.51±0.00 97.51±0.00

60% 71.52 43.91 70.44 75.58 71.86 97.97 98.98 96.91±0.00 95.34±3.75

70% 65.04 41.37 63.10 68.11 67.59 96.08 98.82 91.48±0.73 88.62±9.65

80% 60.13 48.91 55.41 56.68 57.33 89.33 62.02 88.61±0.32 82.51±5.76

B86016

10% 92.51 94.40 92.91 95.61 94.90 96.58 99.26 98.26±0.06 98.52±0.05

20% 88.30 92.24 88.72 94.81 94.35 96.70 99.22 98.60±0.00 98.12±0.00

30% 82.26 89.54 82.56 92.10 91.75 96.03 99.20 98.65±0.02 98.44±0.03

40% 75.87 86.68 76.18 87.03 88.32 95.99 99.19 97.80±0.02 98.38±0.00

50% 69.71 83.47 70.34 80.10 81.47 95.40 16.36 96.62±3.47 97.35±0.02
60% 64.70 80.65 65.67 73.07 74.99 94.18 16.36 97.41±0.05 95.37±0.05

70% 60.44 77.69 61.11 67.09 68.06 91.55 16.36 94.84±0.06 90.80±0.05

80% 56.84 74.88 57.22 62.33 64.50 86.73 16.36 89.65±0.25 84.95±0.50

B196027

10% 80.06 81.62 80.43 82.39 81.87 83.69 83.26 79.66±0.10 78.75±0.11

20% 76.60 79.91 77.62 81.87 81.42 84.19 83.17 79.73±0.07 80.14±0.11

30% 71.76 77.62 72.31 79.57 78.86 84.45 83.92 78.44±0.03 81.69±0.12

40% 68.34 75.80 68.85 76.62 76.98 84.89 74.45 78.50±0.02 77.54±0.01

50% 64.04 73.81 64.53 72.40 74.09 84.90 11.57 78.35±0.02 79.19±0.04

60% 60.21 71.79 60.58 67.16 69.14 85.56 11.57 78.67±0.14 72.10±0.28

70% 56.68 69.42 56.93 61.58 63.43 85.30 11.57 74.28±1.35 73.29±1.28

80% 54.12 66.59 54.13 57.75 59.65 83.10 11.57 69.65±0.99 68.37±0.11



3.5. RESULTS AND DISCUSSION 75

Table 3.15: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with other
methods for the BerkDB Salt & Pepper instances. The bold numbers indicate p values greater than the
significance level. +, - and = respectively show where WS-FCM performs significantly better, signifi-
cantly worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

B3096

10% 1.6e-06 (-) 1.6e-06 (-) 1.6e-06 (-) 1.6e-06 (-) 1.6e-06 (-) 1.6e-06 (-) 1.6e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

B42049

10% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 5.2e-05 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 0.00036 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B167062

10% 0.0027 (+) 3.9e-05 (+) 3e-06 (+) 0.0027 (-) 0.0027 (+) 1.6e-06 (-) 1.6e-06 (-)
20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
50% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
60% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

B86016

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (-)
30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
50% 1.6e-06 (+) 1.8e-06 (+) 1.6e-06 (+) 1.8e-06 (+) 1.8e-06 (+) 3e-05 (+) 1.6e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B196027

10% 1.9e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)
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Table 3.16: Wilcoxon provided p values resulted from the pair-wise comparison of EWS-FCM with
other methods for the BerkDB Salt & Pepper instances. The bold numbers indicate p values greater
than the significance level. +, - and = respectively show where EWS-FCM performs significantly better,
significantly worse or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM

B3096

10% 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
20% 3.1e-05 (+) 3.1e-05 (+) 3.1e-05 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

40% 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 3.1e-05 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 2.4e-06 (+) 1.7e-06 (+) 2.4e-06 (+) 2.4e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

B42049

10% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
60% 1.7e-06 (+) 2.6e-05 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 0.00036 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 4.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

B167062

10% 0.0027 (+) 0.00043 (+) 0.00038 (+) 0.0027 (-) 0.0027 (-) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.1 (=) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 7.7e-06 (-) 1.7e-06 (+)

B86016

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

B196027

10% 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

60% 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)
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(a) SA variance.

(b) SA mean.
Figure 3.15: Demonstration of different algorithms performance on noise variation (BerkDB Salt &
Pepper instances).
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Table 3.17: Wilcoxon provided p values resulted from the pair-wise comparison of WS-FCM with EWS-
FCM for the BerkDB Salt & Pepper instances. The bold numbers indicate p values greater than the sig-
nificance level. +, - and = respectively show where EWS-FCM performs significantly better, significantly
worse or not significantly different than WS-FCM.

Noise Level
Img. 10% 20% 30% 40% 50% 60% 70% 80%

B3096 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 3.2e-06 (+)

B42049 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (-)
B167062 0.0027 (-) 1.7e-06 (+) 1.7e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 0.16 (=) 0.1 (=) 0.00017 (-)
B86016 1.7e-06 (+) 1.7e-06 (-) 1.9e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-)
B196027 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 2.8e-05 (-) 3.1e-05 (-)

80%, and B196027,density = 10%. Overall, the proposed WS-FCM and EWS-FCM
perform better than other methods in terms of producing less redundant segments. How-
ever, they suffer from over-smoothing the image and eliminating the details. FGFCM S2
mostly, and FLICM sometimes, produce more accurate results because of preserving
more details and no smoothing around the edges. Other methods produce many seg-
mented regions mostly, which affects detection of the region of interest.

3.6 Chapter Summary

Two new noisy image segmentation algorithms were proposed in this chapter. The first
algorithm, WS-FCM, utilizes adaptive thresholding of wavelet coefficients, in which
the optimal values of thresholds were determined using PSO. FCM was used as a fitness
metric in the PSO search, and also as the final segmentation algorithm. The second al-
gorithm, EWS-FCM, adds edge enhancement applied to the low-frequency coefficients
of the coarsest scale. Unlike the other FCM-based noisy image segmentation methods,
the proposed algorithms look at the problem from feature enhancement/manipulation
point of view. The distinctive properties of the new method are the three following:

• It shows much better than other methods performance on severely noisy images
particularly with Gaussian noise.

• It does not need parameter-tuning for different noise levels and types.

• It produces very stable results even when noise volume has a large variation.
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B3096 B42049 B86016 B167062 B196027

(σ2 = 70%) (σ2 = 20%) (σ2 = 50%) (σ2 = 80%) (σ2 = 10%)

Noisy
Images

Groundtruths

EWS-FCM

WS-FCM

FCMS 1

FCMS 2

EnFCM

FGFCM

FGFCMS 1

FGFCMS 2

FLICM

Figure 3.16: Qualitative comparison of the proposed WS-FCM and EWS-FCM with FCM S1, FCM S2,
EnFCM, FGFCM S1, FGFCM S2, FGFCM, and FLICM on some BerkDB Salt & Pepper instances.
Noise density for B3096, B42049, B86016, B167062, and B196027 instances is 70%, 20%, 50%, 80%,
and 10% respectively.
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The proposed WS-FCM and EWS-FCM mostly perform significantly better than
other state-of-the-art methods on Gaussian noisy images with EWS-FCM being slightly
better than WS-FCM. WS-FCM segmentation results show fewer redundant segments
caused by noise compared to EWS-FCM, but the better performance of EWS-FCM
around the edges results in the greater accuracy of WS-FCM. In the case of Salt &
Pepper noise, the results are not as promising, and over-smoothing becomes a negative
point. The proposed methods still outperform the majority of state-of-the-art-methods.
The only method that outperforms ours overall is FGFCM S2.

WS-FCM and EWS-FCM perform well in extracting coherent regions and eliminat-
ing noise, but they have limitations in preserving details such as edges and small regions.
EWS-FCM is less problematic in this regard, but its performance is only slightly higher
than WS-FCM. In the next two chapters, we discuss how to address this issue by utiliz-
ing other tools or techniques.



Chapter 4

Wavelet Shrinkage and Anisotropic
Diffusion for Severely Noisy Image
Segmentation

4.1 Introduction

Severely noisy image segmentation has seldom been investigated in the literature. With
a high volume of noise, preserving the details while performing the segmentation can
be extremely challenging. In the previous chapter we introduced an FCM-based image
segmentation method for gray-level images called WS-FCM utilizing adaptive thresh-
olding of wavelet coefficients with PSO. Although the method performs successfully
in some aspects, one of its drawbacks is elimination of some of the important details.
This happens due to the over-smoothing properties of the proposed WS-FCM, and is
specifically observable in details related to region boundaries. This chapter addresses
this issue by applying another detail-preserving denoising method, and then fusing both
results in the wavelet domain. This has positive qualitative and quantitative effects on
segmentation results.

4.1.1 Chapter Goals

This chapter proposes a novel combination of two image denoising techniques in order
to explore severely noisy image segmentation based on FCM clustering performance.

81
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More specifically, we address how different denoising methods can be combined in
order to produce accurate and consistent results. The results in this chapter are based on
the algorithm introduced in the previous chapter named WS-FCM. The chapter goals
can be summarized as follows:

• Exploring the abilities of wavelet and spatial domain denoising algorithms in or-
der to benefit from the strengths of denoising algorithms in both domains in an
FCM-based noisy image segmentation scheme.

• Exploring possible ways to address the over-smoothing drawbacks of our wavelet
coefficients shrinkage approach, WS-FCM, using other edge-preserving denois-
ing algorithms for FCM-based severely noisy image segmentation.

• Exploring the abilities of existing edge-preserving denoising algorithms and se-
lecting one that has a proper performance in severely noisy images and a pre-
dictable performance with noise level variation.

• Finding a proper domain and scheme to fuse the denoising results of WS-FCM
and the selected edge-preserving denoising algorithm.

• Comparing the performance of the proposed method with several FCM-modified
algorithms, and other FCM-based feature enhancing segmentation algorithms on
severely noisy image segmentation.

4.1.2 Chapter Organization

The remainder of this chapter is as follows. Section 4.2 is dedicated to the method-
ology of the proposed approach in this chapter. Section 4.3 introduces the foundation
of the new detail-preserving severely noisy image segmentation approach. Section 4.4
provides the datasets, comparison algorithms, and evaluation metrics. Section 4.5 is
devoted to a comprehensive analysis of the results and discussions, and Section 4.6
concludes this chapter.
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4.2 Methodology

This section briefly describes the techniques we have utilized in the introduction of the
new proposed approach. The specific representation of the techniques in our approach
will be discussed in the next section.

4.2.1 Wavelets

Detailed introduction to wavelets and image denoising based on thresholding of wavelet
coefficients was given in subsection 3.2.1 in the previous chapter (page 33).

4.2.2 Anisotropic Diffusion (AD)

Methods of noise removal were known a long time before the Anisotropic Diffusion case
was first claimed in 1990. Most denoising methods typically apply a blurring/smoothing
filter as a kernel to the image, as blurring hopefully results in a smooth, less noisy image.
Such an image, with low noise levels, is a much better starting point for any image
analysis process. Blurring removes both significant details and artifact of noise. With
severe noise, the blurring has to be stronger and therefore it will remove some of the
significant details from the image. That is why there has been an everlasting search for
an effective noise removal method that is able to denoise and clarify the details in an
image as much as possible.

AD is an algorithm introduced by Prona and Malik [101] aiming at reducing the
noise in an image while preserving the details such as edges and lines that are important
for properly interpreting an image. It is an extension to the concept of Scale-space

[136], which is a technique for multi-scale signal processing. It provides a framework
to handle an image structure at different scales by representing the image as a family of
smoothed images from the finest resolution to the coarsest. The scale-space parameter,
t, controls the smoothing property of the kernels. The most popular Scale-space is
the linear Gaussian scale-space in which a Gaussian-based kernel with variance of t is
applied at each scale. Assume that I(x,y, t) are a family of images obtained from the
convolution of an original image, I0(x,y) with a Gaussian kernel, G(x,y; t) of variance
t:
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I(x,y, t) = I0(x,y)∗G(x,y; t) (4.1)

in which larger values of t corresponds to images at coarser resolutions. One could show
that one-parameter family of derived images from Eq. 4.1, is equivalent to the solution
to the isotropic heat conduction (or isotropic diffusion) equation [66, 73]:

It = div(c∇) = c∆I =
∂2I
∂x2 +

∂2I
∂y2 (4.2)

where c is the diffusion coefficient. div, ∇, and ∆ are the divergence, gradient, and
Laplacian operators. Like heat generated in a cold surrounding that tends to flux from
hotter regions to colder regions, the gradient of brightness could represents the margins
of temperature excellently. As time advances on t, each potent molecule (a “hot” unit)
spreads in the direction of its gradient vector. In an image, it is not heat, but brightness
level. So, an image could be generalized to be a surface, where bright spots are “hot”
and dark spots are “cold”.

One problem with the standard Scale-space approach is that the true location of
edges and junctions which carry a lot of spatial information, may not directly exist at
a coarse scale or are destroyed. This spatial distortion is due to the fact that Gaus-
sian smoothing does not respect the natural boundaries of regions. Proma and Malik
proposed the following criteria for a new multi-scale paradigm to describe image se-
mantically meaningful [101]:

1. Causality: a proper multi-scale representation should not produce any spurious
details moving from finer to coarser scales.

2. Immediate localization: region boundaries at each scale should be sharp and
occur at the same spatial position that semantically meaningful boundaries exist
at that resolution.

3. Piecewise smoothing: intra-region smoothing should have priority over inter-
region smoothing at all scales.

The anisotropic diffusion equation as below, unlike the isotropic equation, considers
the diffusion coefficient, c, not to be a constant:
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It = div
(
c(x,y, t)∇I

)
= c(x,y, t)∆I +∇c.∇I (4.3)

This equation becomes the isotropic heat equation as in 4.1 if c(x,y, t) is a constant.
While the linear (isotropic) approach, Eq. 4.1, treats every pixel with the exact same
convolution, the non-linear (anisotropic) approach in Eq. 4.3 treats a pixel with varying
intensity, depending on its neighborhood qualities. If we could compute a current best
estimate of the location of boundaries at a certain scale, E(x,y, t), then smoothing within
regions could be promoted in preference to smoothing across the boundaries. This will
allow smoothing to happen independently in each region with no interactions between
regions. Generally, if (x,y) is a part of an edge, little smoothing should be applied, and
if it is not part of an edge, full smoothing should be applied. We can achieve outstanding
results by setting the boundary estimation, E, to be the gradient of the intensity function
and the conduction parameter, c(x,y, t) to be a function of the magnitude of E:

E(x,y, t) = ∇I(x,y, t) (4.4)

c(x,y, t) = g
(
‖∇I(x,y, t)‖

)
(4.5)

where g(.) has to be a nonnegative monotonically decreasing function with g(0) = 1.
c(x,y, t) is large when (x,y) is not a part of an edge, and c(x,y, t) is small when (x,y) is
a part of an edge. This guarantees that the diffusion process mainly happens inside the
regions without affecting the region boundaries where the magnitude of E is large. The
authors in [101] introduce the two following functions for g(.), though other functions
could also be proposed that would provide perceptually similar results:

g(‖∇I‖) = e(−(‖∇I‖/K)2)

g(‖∇I‖) = 1

1+

(
‖∇I‖

K

)2
(4.6)

where the parameter K could be fixed at some constant value. The first equation advan-
tages high-contrast edges over low-contrast ones, and the second equation advantages
wide regions over smaller ones. Throughout this chapter the second equation has been
applied as the g(.) function.
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4.2.3 Connected Component Analysis

Extracting and labeling of various disjoint and connected components in an image is
crucial in many automated image analysis applications. Connected Component Analy-
sis (CCA), also known as connected component labeling, is a heuristic technique used
in computer vision to detect connected region in binary images. Connected components
labeling scans an image and groups its pixels into components based on pixel connectiv-
ity, i.e. all pixels in a connected component share similar pixel intensity values and are
in some way connected with each other. Once all groups have been determined, each
pixel is labeled with a gray-level or a color (color labeling) according to the component
it was assigned to. To get good results it is critical to obtain a good binary image which
separates the objects from the background, whereas CCA is straightforward part of the
automated analysis process.

Connected component labeling works on binary or gray-level images and different
measures of connectivity are possible. To apply binary CCA to gray level images, we
need to modify the algorithm in some ways. In this approach, we propose a scheme to
convert segmented gray level images into several binary images. There are different bi-
nary CCA algorithms to find the connected components in a binary image; this research
uses the one based on the following basic steps:

1. Search for the next unlabeled pixel, p.

2. Use a flood-fill algorithm to label all the pixels in the connected component con-
taining p.

3. Repeat steps 1 and 2 until all the pixels are labeled.

4.3 Fusion of Wavelet Shrinkage and Anisotropic Diffu-
sion

The proposed method in this chapter fuses the two denoising algorithms of adaptive
wavelet shrinkage in the frequency domain (proposed in the previous chapter with the
same parameter settings) and anisotropic diffusion in the spatial domain for severely
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noisy image segmentation. We call the proposed method Aggregation of Wavelet coef-
ficients shrinkage and Anisotropic diffusion for FCM-based noisy image segmentation
(AWA-FCM). The reason for the fusion is to benefit from both techniques to introduce
a noise suppressing algorithm with more detail- preserving properties.

Fig. 4.1 shows a detailed block diagram of the proposed method. The figure shows
four major processes named A, B, C and D. Block A is the feature enhancing part of WS-
FCM in which adaptive wavelet shrinkage using PSO is applied for image denoising.
WS-FCM is adaptive in a sense that it comes up with unique threshold values for each
image based on the noise volume, type, and intensity properties. Block B is the AD
denoising process. Having an image denoised using this method at a proper scale could
preserve the details better than WS-FCM while not removing the noise as effectively.
An improper scale number can result in either to much noise remaining in an image
or over-smoothing. Therefore, this block includes also a scale number estimation step
according to the level of noise. Block C is where the denoising results of blocks A and
B are fused together. The key issue in combining the algorithms is how to combine their
results in a way that it preserves the denoising properties of WS-FCM, but enhances the
detail information with the edge-preserving properties of AD. Block D performs final
image reconstruction and segmentation on the feature-enhanced image.

4.3.1 Scale Number Estimation in AD

As mentioned before, the scale number in AD plays an important role in denoising. It
acts like an iteration number which has to be larger when the level of noise is high.
Since the noise volume varies in our application, one important task is the estimation of
the scale number. Based on extensive empirical experiments on different noisy images,
we discovered that if the scale number changes with the estimated standard deviation of
noise according to the curve provided in Fig. 4.2, the denoised outcome image generally
has enough detail information while not having too much noise remaining in the image.
The curve equation is:

f (σ) = 270.9σ
2−45.13σ+1.564 (4.7)

in which f (σ) is the scale number, and σ is the standard deviation of noise estimated in
the WS-FCM approach according to the following equation:
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Figure 4.1: Block diagram of the proposed AWA-FCM algorithms.

σ =
median

[
|wmn : i, j ∈ HH1|

]
0.6745

(4.8)

where wmn are noisy coefficients of the finest high-frequency subband, HH1, as pro-
posed by [47]. σ is calculated in the wavelet transformation step of WS-FCM, and is
used throughout the method wherever needed.

The gradient-based implementation of diffusion in AD has a tendency to strengthen
all the edges and borders when the scale number increases, but the error in the misplace-
ment of the edges also generally increases due to the existence of noise. The higher the
noise level, the more serious the problem. Increasing the scale number also increases
redundant borders around the real image borders. To prevent this, we pad the original
image with a 10-pixel-wide margin. This margin is set to repeat border pixels of the
image.
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Figure 4.2: A curve that estimates AD scale numbers from estimated noise standard deviation (σ).

4.3.2 Fusion in Wavelet Domain

So far, we have two denoised images obtained from the denoising process of WS-FCM
and Anisotropic Diffusion based on the proposed representation. Now we have to find
a way to fuse the results in a way that takes the best out of each result. Our goal is to
add back some of the image details that are removed from the image during the wavelet
shrinkage. This means that coefficients representing boundaries that were removed in
the shrinkage process, need to be brought back. Given that the denoised image from AD
has preserved the edges and is reasonably denoised, converting it to wavelet domain
provides coefficients that are mostly related to real edge information. However, the
conversion also provides some coefficients that are related to fake edge information
caused by noise. Therefore, aggregation of detail coefficients from the two outputs in
the wavelet domain could add back some of the lost details, but would also add some
noise. Since we have a five-scale wavelet transformation for WS-FCM, the output image
of AD also has to be converted in a five-scale manner. We separate the detail coefficients
(H, V, and D) from the denoising results of WS-FCM and AD, and aggregate them
according to the following equations:
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H i
f =

H i
WS−FCM +b×H i

AD

1+b

V i
f =

V i
WS−FCM +b×V i

AD

1+b

Di
f =

Di
WS−FCM +b×Di

AD

1+b
i = 1,2, ...,5

(4.9)

in which H i
WS−FCM, V i

WS−FCM, and Di
WS−FCM are the detail coefficients at scale i from

the feature enhancing process of WS-FCM, and H i
AD, V i

AD, and Di
AD are that of the

AD feature-enhanced image, transformed to wavelet domain. The approximation co-
efficients do not take part in the aggregation process. b is a constant representing the
weighting given to AD coefficients, and is set as 2σ based on extensive quantitative ex-
periments on different noisy images. σ is the noise standard deviation estimated from
equation 4.8. b = 2σ indicates that higher levels of noise require higher contribution of
AD results. For higher volumes of noise, more coefficients tend to lose their original
values. Larger coefficients are shrunk by the soft-thresholding function in WS-FCM.
This causes more severe over-smoothing of edges. Therefore, details are more likely
to vanish in higher levels of noise. Adjusting these large coefficients to their original
values adds back the edge information. In the aggregation step, this is being taken care
of by an increasing contribution of wavelet coefficients from the AD denoised image for
higher volumes of noise.

However, in extremely high noise volumes, wavelet coefficients from the AD de-
noised image would contain too many artifacts which would be hard to eliminate. There-
fore, the contribution of AD need to be scaled down for very high volume of noise.
Again, based on extensive quantitative experiments, we discovered that when the esti-
mated σ is bigger than 0.4, b has to decrease, and also it has to increase at a lower pace
when σ increases. So the overall formula to determine the contribution of AD in the
fusion scheme is:

b =

2σ, σ < 0.4

σ, σ≥ 0.4
(4.10)

Next, the approximation coefficients are added to the aggregated detail coefficients,
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and a wavelet reconstruction is performed to obtain the intensity image. This image has
more details into it due to the aggregation. Segmentation of this image will show some
very small spurious regions created among big homogeneous regions. In the final post-
processing step, these small regions are merged into the bigger ones in their background
as explained in the next section.

4.3.3 Elimination of Small Spurious Regions

While adding edge information in the aggregation process, some spurious edge infor-
mation might be introduced to the image, caused by noise rather than real edges. Thanks
to the good performance of WS-FCM on eliminating small regions and producing com-
pact segments, it is easy to get rid of some of these spurious regions since they typically
appear at spatial positions that have big compact regions around them. For this, we use
the concept of Connected Component Analysis (CCA) to remove them. Essentially, we
search for small connected regions that are surrounded by larger background regions.

Overall, the elimination process includes the following steps:

1. Cluster the reconstructed image using FCM.

2. Find the maximum membership for each pixel to determine the cluster each pixel
belongs to.

3. Label each pixel with a number based on its cluster to differentiate pixels belong-
ing to different clusters.

4. For each label in the image: find the connected components of pixels with that
label.

5. Select the small components (based on the number of pixels inside them), and
then find the bounding rectangle surrounding those small regions.

6. For each bounding rectangle: look for the labels of the pixels inside the bound-
ing rectangle that belong to other labels, and then find the label with maximum
cardinality.

7. For each bounding rectangle: change each pixel’s label number inside the small
connected component to the label found in the previous step.
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To find connected components, an 8-connectivity analysis is performed. Small re-
gions are defined as regions with the number of pixels inside them less than 40 based
on experiments.

4.3.4 Segmentation

The final label matrix from the previous step and the original noisy image are required
in order to obtain a segmented image. Intensity values of all the pixels in the noisy
image that have the same label number in the label matrix are averaged, and the result
is assigned to all those pixels. This way, all the segments having the same label number
will be represented with a unique gray-level value. If we assume In, L, and Is are equal-
sized matrices of the noisy image, the labeled matrix, and the final segmented image
respectively, we can write:

Is(x,y) = mean
{

In(u,v)|L(u,v) = L(x,y)
}

(4.11)

4.4 Experiment Design

4.4.1 Datasets and Evaluation

We use a synthetic and a real dataset to evaluate the performance of the proposed method
on images with different properties. The synthetic dataset, SynthDB, consists of images
in which the regions are geometrically simple, easy to recognize, and are composed of
a single intensity value. Running experiments on noisy versions of images from this
dataset provides an understanding of how the proposed method performs on segmen-
tation of noisy regions when dealing with simple images. We have five images in this
dataset named Synth1,Synth2, ..., and Synth5. The number of clusters while performing
FCM-based clustering is determined by the number of homogeneous regions in each
image.

The real dataset, BerkDB, is selected from the Berkeley dataset [88] which has been
specifically created for segmentation and boundary detection purposes. Here the images
are not so simple: the regions are not geometrically simple, they are not easy to recog-
nize, and each region is composed of several intensities. Experiments on this dataset re-
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veals how accurate and consistent the proposed method is when encountering real-world
images. We have 11 images in this dataset named B3096,B42049,B167062,B86016,,
B196027, B24063, B253036, B147091, B108073, and B135069. The number of clusters
is again determined according to the number of homogeneous and coherent regions in
each image. The groundtruth is either selected from one of the provided groundtruths
in the Berkeley dataset (the one with the minimum number of segments), or is formed
from one of the groundtruths. For the latter, all the segments belonging to a coherent
region are merged together as segments that correspond to a cluster in FCM results. Fig.
4.3 provides all the images from the two datasets along with the preferred number of
clusters.

To generate the noisy images, we apply the common Gaussian noises. Each image is
corrupted with Gaussian noise of different volumes to examine the performance of our
method under different severities of noise, and to analyze the effect of noise variation.
The variance of the noise level ranges from 10% to 80%. For the rest of this chapter
“image” refers to one of the original images in Fig. 4.3, and “instance” refers to a sample
noisy image generated from either datasets. Given that we have five and 11 images in
SynthDB and BerkDB datasets respectively, and eight different levels of noise for each
image, there are a total of 128 instances, 40 of which are created from SynthDB and the
other 88 instances are created from the BerkDB dataset.

For qualitative evaluation we have adopted the common Segmentation Accuracy, SA
metric [6], which was explained in Chapter 3 (page 45).

We have selected nine other state-of-the-are algorithms to compare our method with.
Seven of these methods are FCM-modified algorithms named FCM S1 and FCM S2
[38], EnFCM [118], FGFCM, FGFCM S1 and FGFCM S2 [25], and FLICM [74]. The
two rest are WS-FCM and AD-FCM. WS-FCM is the PSO-based approach for adaptive
wavelet thresholding proposed in the previous chapter and AD-FCM is the Anisotropic
Diffusion based on the proposed representation applied for feature enhancement to
FCM-based image segmentation.

4.4.2 Parameter Design

All the parameters and settings related to FCM, PSO, wavelet transform, AD, the fusion
process and CCA, and their values/settings used in this chapter are listed in Table 4.1
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(a)

Synth1 Synth2 Synth3 Synth4 Synth5

(C=4) (C=3) (C=3) (C=4) (C=3)

(b)

B3096 B8068 B42049 B167062

(C=2) (C=2) (C=2) (C=3)

(c)

B86016 B147091 B24063 B253036

(C=2) (C=2) (C=2) (C=3)

(d)

B108073 B135069 B196027

(C=2) (C=2) (C=2)

Figure 4.3: Original test images from the SynthDB, row (a), and BerkDB, rows (b),(c), and (d), with the
number of required clusters in the segmented image.
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based on empirical search through experiments.

Table 4.1: Parameter settings of the proposed method.

Parameter/Setting Value/Type
Wavelet filter Coiflets family

Scale number 5

Termination threshold for FCM 0.001

Maximum number of iterations for FCM 100

Weighting exponent (m) 2

Padding margin size (in pixels) 10

Small regions size for merging (in pixels) 40

f (σ) 270.9σ2−45.13σ+1.564
(AD scale number estimating function) (σ is estimated according to Eq. 4.8)

Image padding size (in pixels) 10

b (the aggregation parameter) σ or 2σ

(σ is estimated according to Eq. 4.8)

Spurious region size (in pixels) 40

CCA connectivity type 8-connectivity

4.4.3 Statistical Significance Test

To analyze the non-deterministic behavior of PSO in our algorithms a pair-wise statisti-
cal significance test is performed. Our algorithm is run 30 times independently on each
image, and the results in the form of the SA values are compared with the results of
other methods using the test. We select the Wilcoxon test with a significance level of
0.05 for this comparison. For more information about this test please refer to [135].
If the p-value (the probability of observing a test statistic as or more extreme than the
observed value under the null hypothesis) is greater than the significance level, the pair-
wise comparison is not considered significantly different. Otherwise, one method is
significantly better than the other. Tables that are providing p values also use +, - and =
signs to show that one method is significantly better, worse, or not different respectively
for an instance.
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4.5 Results and Discussions

This section analyzes all the experiments in comparison to other methods both quan-
titatively and qualitatively. To have a proper comparison in the quantitative part, both
SA and p values are considered for an instance. The comparison is made in separate
sub-sections for different datasets. Each sub-section considers two different aspects of
the analyses. The first part, presents a comprehensive quantitative evaluation and the
second part presents some sample qualitative evaluations. In the quantitative evaluation
part, we compare the results of the proposed AWA-FCM with the comparison methods
on each instance in a pair-wise manner. Throughout the pair-wise comparison, a bet-
ter performance is determined according to SA value unless the p value for that pair is
bigger than the significance level (0.05). Next, another evaluation is done by ranking
the performance of all the algorithms on each instance. Based on the number of the
best and second-best performances for each algorithm, the overall best, second-best,
and third best performers are determined. The quantitative analysis in each sub-section
concludes with a performance evaluation on noise variation on each sample image. This
evaluation investigates how SA metric changes in terms of variance and mean when the
noise level ranges between 10% to 80%.

4.5.1 A Visual Example of the Segmentation Results

For further clarity, we provide a visual showcase of what takes place at different steps
of AWA-FCM . Fig. 4.4 provides the segmentation outputs of these steps. Segmenta-
tion results belong to WS-FCM, AD-FCM, fusion of WS-FCM and AD-FCM before
the postprocessing step, and fusion followed by the postprocessing. Considering the
B253036,σ2 = 30 instance (Fig. 4.4-c), this example shows how the details existing in
the AD-FCM segmentation result (Fig. 4.4-c) is carried to to the WS-FCM segmenta-
tion results (Fig. 4.4-b) in the fusion of both methods before the postprocessing (Fig.
4.4-d), and how the postprocessing step refines the results of the fusion step by remov-
ing very small segments (Fig. 4.4-e). For a better observation, zoomed shots from an
area around the tree in the image is provided in the second raw of Fig. 4.4. Fig. 4.4-f
shows the shot from the groundtruth image, Fig. 4.4-g is the shot from the WS-FCM
segmentation result, and Fig. 4.4-h is the shot from AWA-FCM segmentation result.
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Another aspect of the fusion process is that it also removes a great deal of the artifacts
causing the redundant regions. This makes the final postprocessing step more effective
as removing the small regions from AD-FCM results could be much more challenging,
and could compromise accuracy.

Noisy Image WS-FCM AD-FCM Fused Final (AWA-FCM)

Groundtruth WS-FCM Final (AWA-FCM)

Figure 4.4: A visual example of implementation of different steps in the proposed AWA-FCM. First
row: the instance B253036,σ2 = 30 along with the segmentation results of WS-FCM, AD-FCM, the
fusion process before the postprocessing, and final results (AWA-FCM). Second row: shots from similar
locations of the groundtruth, and segmentation results of WS-FCM and AWA-FCM.

4.5.2 SynthDB (Quantitative Analysis)

Table 4.2 provides the SA values for all the methods, and also Table 4.3 provides the
results of the statistical significance test. Overall, there is only one instance for which
the p value is greater than the significance level. This instance belongs to the pair-wise
comparison of AWA-FCM and WS-FCM for the instance Synth4,σ2 = 80%. Other than
this single instance, for the rest of the instances, the results from Table 4.2 indicates that
the proposed AWA-FCM performs significantly better than all other methods in a pair-
wise comparison in almost all the instances. More clearly, AWA-FCM performs better
than FCM S1, FCM S2, EnFCM, FGFCM, FGFCM S1 and FGFCM S2, WS-FCM,
and AD-FCM in all the 40 instances. In comparison to FLICM, AWA-FCM performs
significantly better in all but one instance.

Ranking the performances of different algorithms on a single instance, an analysis
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of SA and p values from Tables 4.2 and 4.3 shows that AWA-FCM, FLICM, WS-FCM,
AD-FCM are holding the highest number of best performances respectively. AWA-
FCM as the overall best performer, is the best performer in 38 instances, and second-
best performer in another instance. The second overall best performer is FLICM being
the best and second-best performer in one instance. The third overall performer is WS-
FCM being none as the best performer, and the second-best performer on 33 instances.
The fourth overall best performer is AD-FCM having none best performances, and four
second-best performances.

For the next experiments, we analyze the effect of noise variation on SA values.
For this, SA variance and mean of each method on each image when then noise level
takes eight different values is depicted in the graphs in Fig. 4.5. As the graph in Fig.
4.5(a) shows, the proposed AWA-FCM plotted in red bar, possesses four out of five
lowest SA variances on the images S1,S2,S3, and S5, and it holds the second-lowest
SA variance for the image S4 where AD-FCM has the lowest SA variance. AD-FCM
has the third-lowest variances on four other instances. WS-FCM has four second-lowest
SA variance on four images, and the third-lowest variance in an another image. Overall,
AWA-FCM, WS-FCM, and AD-FCM are the methods with the least SA variance over
the noise variation.

The other graph in Fig. 4.5 shows the SA mean of each method for each image
when the noise level increases (Fig. 4.5(b)). This graph clearly shows that AWA-FCM
plotted in red bar, has the highest mean performance on all five images. Form this point
of view, WS-FCM is always the second-best performer, and AD-FCM is the third-best
performer.

SynthDB (Qualitative Analysis)

Figure 4.6 provides segmentation results of all the methods on some samples form the
SynthDB. An instances (out of eight) has been selected from the noisy instances for each
image. These instances for S1, S2, S3, S4, and S5 are σ2 = 70%,80%,50%,60%, and
20% respectively. One could see that the segmentation results of FCM S1, FCM S2,
EnFCM, FGFCM, FGFCM S1 and FGFCM S2 are problematic, for over-segmentation
is preventing the method from segmenting the main regions in the images compactly.
FLICM could sometimes perform compact region segmentation on images S2, S3 and
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Table 4.2: SA values for the SynthDB instances. The bold numbers indicate the best overall performance
for each instance where the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM AWA-FCM

Synth1

10% 88.98 89.86 88.98 93.12 94.33 93.01 95.90 97.06± 0.03 95.58±0.00 97.74±0.03
20% 79.41 82.85 78.95 86.22 89.66 87.22 88.04 95.94± 0.05 94.79±0.00 96.80±0.02
30% 71.62 78.14 71.44 79.86 85.99 81.37 58.15 95.46± 0.09 93.64±0.00 96.14±0.05
40% 67.16 74.94 67.10 75.31 82.15 77.10 44.95 94.28± 0.10 92.92±0.00 95.53±0.05
50% 62.77 71.79 63.34 71.38 78.93 72.83 43.12 94.07± 0.07 92.69±0.00 95.07±0.01
60% 59.78 70.42 60.64 67.94 76.36 72.67 29.27 94.17± 0.10 92.99±0.00 95.56±0.03
70% 57.25 68.61 58.12 64.82 73.33 70.26 44.69 93.19± 0.14 90.55±0.00 94.11±0.07
80% 55.29 66.27 56.10 62.87 69.89 67.67 30.49 92.70± 0.04 88.11±0.00 93.56±0.03

Synth2

10% 97.85 98.41 97.89 99.11 99.02 98.73 99.18 99.12± 0.01 98.41±0.00 99.29±0.00
20% 92.26 95.05 92.42 96.51 97.85 96.98 97.35 98.67± 0.03 98.46±0.00 98.85±0.00
30% 87.25 91.49 87.72 93.58 96.51 94.87 96.28 98.36± 0.03 98.18±0.00 98.59±0.01
40% 81.72 89.21 82.85 89.11 93.49 92.02 74.52 98.13± 0.01 97.43±0.00 98.30±0.01
50% 76.60 86.52 78.22 85.39 91.32 89.71 82.32 97.64± 0.05 97.07±0.00 97.97±0.02
60% 74.44 85.53 76.40 83.65 90.05 88.70 74.51 97.38± 0.01 96.81±0.00 97.80±0.01
70% 71.04 83.49 73.47 80.16 86.40 86.54 73.24 97.68± 0.03 96.67±0.00 98.02±0.01
80% 68.52 81.58 71.02 77.76 85.56 85.59 73.89 97.18± 0.02 96.32±0.00 97.44±0.01

Synth3

10% 81.10 93.30 96.04 97.68 97.25 97.15 99.65 99.61± 0.00 99.69±0.00 99.72±0.00
20% 67.89 76.50 69.33 88.37 95.48 94.37 99.19 99.33± 0.01 99.35±0.00 99.46±0.01
30% 52.89 71.85 64.92 76.71 90.76 88.78 98.63 98.92± 0.04 99.00±0.00 99.16±0.01
40% 45.92 67.07 60.81 72.89 86.83 84.82 65.52 98.73± 0.02 98.93±0.00 99.10±0.00
50% 41.31 62.38 57.00 69.78 80.65 78.62 55.60 98.54± 0.06 98.26±0.00 98.96±0.02
60% 38.72 61.55 54.03 68.78 80.23 77.18 54.36 98.56± 0.02 97.91±0.00 98.83±0.01
70% 36.99 59.21 51.58 63.26 78.07 72.38 51.58 97.79± 0.03 97.71±0.00 98.23±0.02
80% 34.49 58.54 49.69 62.40 75.42 70.59 45.22 97.96± 0.08 97.34±0.00 98.46±0.01

Synth4

10% 72.59 77.48 85.28 93.80 92.25 93.70 98.16 96.49± 0.01 71.96±0.01 97.11±0.01

20% 54.42 67.71 72.10 72.65 84.55 82.02 92.41 95.16± 0.08 73.13±0.02 95.94±0.05
30% 51.00 60.31 66.59 65.40 65.40 75.39 82.16 93.93± 0.04 71.68±0.03 94.93±0.04
40% 49.36 58.30 61.76 62.01 60.43 76.61 81.68 93.21± 0.03 70.59±0.02 94.26±0.02
50% 48.69 55.94 53.88 57.90 57.28 72.07 81.86 91.89± 0.04 65.81±0.03 93.23±0.02
60% 48.82 54.17 50.62 56.55 56.25 70.21 88.39 90.13± 0.32 68.59±0.03 92.02±0.12
70% 48.04 54.01 48.08 51.60 54.57 68.73 88.55 90.99± 0.15 67.64±0.02 91.88±0.05
80% 47.76 52.40 47.51 47.01 50.01 68.26 85.70 81.70±10.08 66.85±0.01 86.56±4.63

Synth5

10% 85.62 86.90 85.54 90.31 93.15 90.68 57.80 96.84± 0.09 94.55±0.00 97.38±0.07
20% 75.55 79.95 76.33 82.99 88.01 84.38 58.73 95.06± 0.07 93.57±0.00 95.76±0.01
30% 67.21 74.05 69.03 76.47 82.39 78.03 58.25 93.96± 0.11 91.92±0.00 95.19±0.03
40% 62.39 70.96 64.81 72.43 78.87 74.89 59.96 93.09± 0.06 89.98±0.00 93.43±0.04
50% 57.20 66.68 60.11 67.50 73.84 70.19 58.19 90.54± 0.13 87.49±0.00 91.85±0.09
60% 54.73 65.21 57.89 65.19 71.62 68.06 39.66 90.98± 0.15 86.56±0.00 91.80±0.07
70% 52.90 63.78 56.20 63.36 69.29 66.56 58.90 89.99± 0.06 85.84±0.00 90.85±0.02
80% 51.73 62.83 55.17 62.18 68.06 65.67 39.33 88.04± 0.12 84.91±0.00 89.20±0.05
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Table 4.3: Wilconxon provided p values resulted from the pair-wise comparison of AWA-FCM with other
methods for the SynthDB instances. The bold numbers indicate p values greater than the significance
level. +, - and = respectively shows where AWA-FCM performs significantly better, significantly worse
or not significantly different.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM

Synth1

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 9.8e-07 (+) 9.8e-07 (+) 9.8e-07 (+) 9.8e-07 (+) 9.8e-07 (+) 9.8e-07 (+) 9.8e-07 (+) 1.7e-06 (+) 1.2e-06 (+)

40% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

50% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

60% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.4e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Synth2

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.6e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

50% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

60% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

80% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.6e-06 (+) 1.5e-06 (+)

Synth3

10% 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.2e-06 (+) 1.4e-06 (+) 1.2e-06 (+)

20% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.1e-06 (+) 1.5e-06 (+)

30% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+)

40% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.7e-06 (+) 1.3e-06 (+)

50% 6.9e-07 (+) 6.9e-07 (+) 6.9e-07 (+) 6.9e-07 (+) 6.9e-07 (+) 6.9e-07 (+) 6.9e-07 (+) 1.2e-06 (+) 6.9e-07 (+)

60% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

80% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+)

Synth4

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.6e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 3.1e-05 (+) 0.67 (=) 1.9e-06 (+)

Synth5

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)
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(a) SA variance.

(b) SA mean.
Figure 4.5: Demonstration of different algorithms performances on noise level variation (the SynthDB
instances).
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S5 but it usually misses one or more regions according to the groundtruth. The result
of AD-FCM still suffers from a less-serious over-segmentation issue compared to the
previous methods. WS-FCM and AWA-FCM has the most compact segmentation re-
sults, and the results look pretty similar. However, having a closer look at the redundant
boundaries created around the real edges in images S1 and S4 clearly shows how AWA-
FCM produces less redundant boundaries. Generally, AWA-FCM partially returns back
to the images some of the missing details related to edges caused by over-smoothing.

4.5.3 BerkDB (Quantitative Analysis)

SA values for the BerkDB instances resulted from each method is provided in Table 4.4,
and the p values from the statistical significance test are also provided in Table 4.5. The
latter shows that there are an overall three instances that the p value is greater than the
significance level. Two belong to the pair-wise comparison of AWA-FCM and WS-FCM
for the instances B86016,σ2 = 70% and B135069,σ2 = 60%, and the third belongs
to the comparison of AWA-FCM and AD-FCM for the instance B196027,σ2 = 40%.
These are the instances that the proposed AWA-FCM performs not significantly different
from WS-FCM and AD-FCM. For the rest of methods and instances in the pair-wise
comparison, the performance difference is significant and is determined according to
the SA value.

The analysis of the p and SA values indicates that AWA-FCM is always (in all 88
instances) performing better than FCMS 1, FCMS 2, and EnFCM. In comparison to
FGFCM, FGFCMS 1, FGFCMS 2, FLICM, WS-FCM, and AD-FCM, the majority of
better performances still belong to AWA-FCM by possessing 86, 87, 67, 73, and 75 (out
of 88) of significantly better performances. There are an overall 12 instances that WS-
FCM is performing better than AWA-FCM. Five of these instances belong to the noisy
instances of image 86016. The reason for this is that not much detail is attributed to
the boundaries of the one only “bush” region in the image. That is why emphasizing on
edge details in the aggregation process only stresses on spurious details and edges which
eventually results in slightly worse performance of AWA-FCM compared to WS-FCM.
Therefore, one conclusion from the comparison of AWA-FCM and WS-FCM is that if
fine details and edges exist around the region boundaries, AWA-FCM could produce
mostly better results by addressing the issue of over-smoothed boundaries.
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Synth1 Synth3 Synth3 Synth4 Synth5
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Continued on next page
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Figure 4.6 – continued from previous page

FLICM

AD-FCM

WS-FCM

AWA-FCM

Figure 4.6: Qualitative comparison of the proposed AWA-FCM with FCM S1, FCM S2, EnFCM,
FGFCM S1, FGFCM S2, FGFCM, FLICM, AD-FCM, and WS-FCM on some of the SynthDB instances.
Synth1, Synth2, Synth3, Synth4, and Synth5 are corrupted with Gaussian noise with variance of 70%,
80%, 50%, 60%, and 20% respectively.

Table 4.4: SA values for the BerkDB instances. The bold numbers indicate the best overall performance
for each instance where the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM AWA-FCM

B3096

10% 63.55 66.46 68.06 74.04 80.67 83.04 6.13 80.74±0.03 81.57±0.00 83.26±0.03
20% 58.93 62.44 61.03 66.89 73.65 74.45 6.13 77.97±0.02 77.53±0.00 80.15±0.01
30% 57.04 60.84 57.65 63.23 70.29 70.70 6.13 79.40±0.04 76.35±0.00 81.97±0.04
40% 55.57 59.27 54.87 59.98 66.78 65.59 6.13 80.59±0.07 74.65±2.24 81.50±0.03
50% 55.06 58.49 54.91 58.47 64.92 62.43 6.13 78.45±0.01 71.92±0.00 79.59±0.01
60% 54.65 58.38 53.80 58.65 63.42 63.23 6.13 77.48±0.05 74.81±0.00 78.64±0.02
70% 54.08 57.55 53.94 57.66 61.80 61.18 6.13 73.98±0.06 67.50±0.00 74.13±2.08
80% 53.71 57.39 53.10 56.40 62.73 61.20 6.13 75.57±0.03 70.09±0.00 77.22±0.03

B8068

10% 94.56 94.80 94.73 94.94 95.22 95.12 95.78 95.05±1.17 95.01±0.00 95.38±0.00

20% 93.60 94.06 93.90 94.40 94.72 94.61 96.45 95.16±0.01 94.88±0.00 95.08±0.00

30% 92.25 93.30 92.98 93.84 94.35 93.97 96.92 94.93±0.01 94.80±0.00 94.90±0.00

40% 90.20 92.74 91.81 93.51 94.33 93.81 96.96 94.98±1.19 95.16±0.00 95.29±0.01

50% 87.97 92.36 90.07 93.23 94.18 93.57 96.93 95.40±0.00 95.08±0.00 95.37±0.00

Continued on next page



4.5. RESULTS AND DISCUSSIONS 105

Table 4.4 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM AWA-FCM
60% 85.27 91.17 87.59 92.04 93.72 92.81 77.69 95.07±0.01 94.64±1.74 95.27±0.00
70% 82.27 89.89 84.47 90.66 93.03 92.02 77.69 95.12±0.02 94.93±0.00 95.28±0.00
80% 80.46 89.37 82.31 89.81 92.73 91.54 77.69 94.87±0.01 94.69±0.00 94.94±0.00

B42049

10% 92.98 93.46 93.34 94.04 93.38 93.79 95.15 94.64±0.01 95.23±0.00 94.89±0.01

20% 88.83 90.87 90.70 92.70 92.79 92.65 94.02 93.40±0.01 94.60±0.00 94.07±0.00

30% 84.09 89.13 86.73 91.81 92.50 92.08 94.53 93.24±0.00 94.64±0.00 94.24±0.00

40% 78.97 86.15 81.55 88.72 90.90 89.92 19.09 92.36±0.01 93.78±0.00 93.38±0.00

50% 75.56 84.18 77.37 86.63 90.31 89.27 19.09 92.54±0.11 93.22±1.58 93.51±0.04
60% 72.97 81.88 74.13 83.44 88.77 86.74 19.09 90.64±0.09 92.80±0.00 91.96±0.05

70% 71.45 81.31 72.68 82.41 87.78 86.31 19.09 91.52±0.05 92.88±0.00 92.29±0.03

80% 69.66 79.04 70.59 78.54 85.29 83.61 19.09 89.30±0.05 92.66±0.00 91.10±0.04

B167062

10% 79.13 79.68 85.42 97.92 97.16 81.66 99.08 98.54±0.00 82.43±5.52 98.68±0.00

20% 77.43 79.21 82.03 79.52 97.04 81.68 99.19 98.23±0.01 80.99±5.06 98.38±0.00

30% 76.92 78.87 81.69 78.32 76.14 80.34 99.24 97.78±0.01 79.83±0.01 98.01±0.01

40% 76.11 77.77 79.81 77.17 74.39 80.02 99.23 97.81±0.00 78.32±0.00 97.97±0.00

50% 75.60 77.21 78.63 76.06 73.42 80.47 99.27 97.60±0.01 80.61±5.04 97.78±0.00

60% 74.64 77.10 76.99 75.75 88.21 81.03 98.80 97.51±0.01 78.55±4.32 97.41±0.01

70% 73.67 76.45 75.14 74.50 71.25 80.64 98.93 97.53±0.00 80.46±5.15 97.76±0.00

80% 72.58 75.61 73.56 74.51 71.11 79.92 98.93 97.16±0.01 78.67±5.86 96.09±4.04

B86016

10% 85.75 86.62 88.58 92.21 93.73 92.71 99.09 98.46±0.02 96.31±0.00 98.37±0.01

20% 76.81 80.21 79.30 86.78 90.70 88.64 16.36 97.65±0.01 95.98±0.00 96.85±2.68

30% 71.68 76.25 72.80 80.45 86.48 83.51 16.36 97.76±0.02 95.28±0.00 97.38±0.01

40% 69.44 75.43 70.95 78.20 84.64 82.00 16.36 96.94±2.86 95.10±0.00 97.11±0.04
50% 67.24 73.56 67.63 75.02 83.35 79.75 16.36 98.44±0.01 96.09±0.00 98.37±0.01

60% 65.75 72.43 66.10 73.31 80.68 78.14 16.36 97.84±0.00 94.87±0.00 97.63±0.00

70% 63.92 69.97 64.21 69.92 77.25 73.41 16.36 97.13±0.01 93.18±0.00 96.55±3.14

80% 63.32 70.21 63.88 69.91 76.07 74.34 16.36 94.93±3.11 92.14±0.00 95.73±0.03

B196027

10% 73.62 75.25 76.34 78.23 79.70 80.38 90.42 79.55±0.02 80.04±0.00 80.42±0.01

20% 67.89 70.80 70.11 74.12 76.61 77.32 11.57 79.79±0.05 78.73±0.00 80.26±0.02
30% 65.12 68.67 66.27 71.24 75.21 74.64 11.57 78.78±1.78 78.30±0.00 79.87±0.02
40% 62.99 67.39 63.80 69.02 73.96 72.83 11.57 76.58±0.20 77.92±0.00 77.91±0.05

50% 61.51 65.88 62.54 66.95 71.91 70.44 11.57 80.18±0.02 77.54±0.00 80.36±0.06
60% 60.52 65.28 61.13 65.74 71.09 69.83 11.57 79.87±0.02 79.03±0.00 80.28±0.02
70% 59.39 64.34 59.91 64.49 70.24 67.66 11.57 76.38±1.48 76.72±0.00 77.78±0.03
80% 59.05 63.80 59.04 63.40 68.64 66.68 11.57 80.29±0.14 75.72±1.56 80.14±0.12

B24063

10% 91.41 92.76 91.52 94.15 94.77 94.91 80.52 95.93±0.01 96.34±0.00 96.60±0.00
20% 85.99 88.53 85.99 89.82 92.24 91.51 56.98 95.07±0.12 95.51±0.00 95.70±0.00
30% 81.95 85.50 81.77 86.70 90.36 88.46 53.42 95.74±0.00 95.66±0.00 96.36±0.00
40% 79.27 83.65 78.99 84.02 87.79 86.19 58.70 94.89±0.17 94.62±0.00 95.49±0.05
50% 76.42 81.39 76.11 81.86 86.08 83.39 58.70 94.06±0.06 93.99±0.00 94.68±0.01
60% 74.74 80.45 74.39 80.23 84.18 82.20 58.70 93.75±0.06 93.28±0.00 94.52±0.01
70% 74.40 80.34 74.09 79.77 84.20 81.61 58.70 94.51±0.01 93.71±0.00 94.79±0.01
80% 71.89 78.65 71.73 77.45 81.54 79.93 58.70 93.34±0.06 92.37±0.00 94.15±0.06

B253036

10% 93.15 92.63 93.34 94.88 95.07 93.79 98.46 96.56±0.03 96.58±0.00 96.88±0.02

Continued on next page
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Table 4.4 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM AWA-FCM
20% 88.51 89.38 89.08 91.98 93.61 91.67 97.60 95.91±0.01 96.00±0.00 96.46±0.01

30% 84.94 87.91 85.57 90.07 91.98 90.49 29.45 94.73±0.01 95.12±0.00 95.54±0.01
40% 81.94 86.23 82.61 87.70 90.58 88.66 29.45 95.77±0.04 94.95±0.00 95.97±0.01
50% 78.68 84.00 78.87 84.78 88.19 86.16 29.45 93.54±0.00 93.28±0.00 93.76±1.12
60% 76.79 83.23 77.18 83.17 87.17 85.84 29.45 94.70±1.35 93.59±0.00 94.81±1.31
70% 75.35 82.45 75.84 81.87 86.48 84.72 29.45 94.45±0.05 93.50±0.00 94.91±0.04
80% 73.22 81.06 73.54 79.86 84.57 83.11 29.45 93.96±0.02 92.87±0.00 94.13±0.01

B147091

10% 87.83 88.55 87.90 88.72 88.81 89.40 88.88 89.43±0.02 89.51±0.00 89.68±0.01
20% 85.12 86.74 85.12 87.23 88.11 88.25 65.41 89.06±0.06 89.40±0.00 89.56±0.05
30% 82.34 84.69 82.23 85.03 86.78 86.01 42.74 88.21±0.02 88.53±0.00 88.66±0.01
40% 80.74 84.15 80.92 84.25 86.38 86.01 42.74 88.61±0.07 89.06±0.00 89.06±0.03
50% 78.47 82.72 78.36 82.64 85.40 84.13 42.74 88.84±0.00 89.19±0.00 89.49±0.00
60% 76.37 81.41 76.26 81.10 84.26 83.02 42.74 88.31±0.01 88.15±0.00 88.65±0.00
70% 74.87 80.71 74.68 79.93 83.55 82.06 42.74 87.50±0.05 87.38±0.00 87.69±0.02
80% 73.53 79.50 73.46 78.81 82.57 80.60 42.74 88.34±0.01 88.15±0.00 88.78±0.02

B108073

10% 78.11 77.06 80.78 82.86 83.68 80.08 87.13 82.41±0.16 83.39±1.66 83.56±0.04

20% 72.42 73.38 75.01 78.57 79.73 76.00 86.22 79.63±0.10 81.47±0.00 80.89±0.11

30% 69.52 71.56 71.44 75.79 77.13 74.20 77.45 79.97±0.19 80.87±0.00 81.44±0.08
40% 67.13 70.31 69.26 72.70 74.92 73.32 77.45 79.99±0.02 81.49±0.00 81.01±1.22

50% 65.76 69.00 67.36 70.59 73.98 70.91 77.45 80.21±0.01 80.77±1.37 81.73±0.01
60% 64.10 67.66 65.37 68.64 70.67 69.32 77.45 76.21±0.85 77.63±1.51 77.60±0.06

70% 63.37 67.62 64.60 67.77 70.51 69.26 77.45 80.05±0.14 79.56±0.00 81.26±0.12
80% 63.05 67.47 64.32 67.33 69.55 69.16 77.45 81.40±1.21 80.48±0.00 82.88±0.03
10% 58.28 60.61 59.40 64.99 69.70 72.74 5.23 66.49±0.01 67.20±0.00 67.92±0.00

20% 55.19 57.95 55.79 60.00 63.99 66.68 5.23 68.13±0.04 63.77±0.00 67.70±0.02

B135069

30% 53.39 56.13 51.88 56.99 61.40 63.04 5.23 61.01±0.61 62.56±0.91 64.68±0.01
40% 52.86 56.10 52.25 56.17 62.44 61.20 5.23 60.13±0.05 63.03±0.00 63.51±0.97
50% 52.52 55.63 51.99 55.54 59.66 59.62 5.23 63.68±0.05 63.70±0.00 65.63±1.19
60% 52.27 55.58 50.86 54.43 59.86 59.29 5.23 64.91±0.33 64.71±0.00 64.94±0.10

70% 52.47 55.69 51.13 54.73 60.11 58.89 5.23 61.36±0.04 64.79±0.00 64.40±0.06

80% 51.95 55.33 51.00 54.58 60.59 58.95 5.23 67.29±1.23 63.12±0.00 69.43±0.04

The analysis on the overall best performer shows that AWA-FCM is the overall best
performer by holding the highest number of best performances. AWA-FCM is the best
and second-best performer on 49 and 25 instances respectively. The overall second-best
performer is FLICM being the best and second-best performer on 19 and two instances
respectively, and the overall third-best performer is AD-FCM being the the best and
second-best performer on 10 and 15 instances respectively.

To have a look at the performance of different methods over different noise levels,
Fig. 4.7 is provided in which the mean and variance of SA values from all the instances
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Table 4.5: Wilconxon provided p values resulted from the pair-wise comparison of AWA-FCM with other
methods for the BerkDB instances. The bold numbers indicate p values greater than the significance level.
+, - and = respectively shows where AWA-FCM performs significantly better, significantly worse or not
significantly different.

Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM

B3096

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 1.9e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B8068

10% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (-) 1.6e-06 (+) 1.5e-06 (+)

20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.7e-06 (-) 1.6e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+)

50% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (-) 1.6e-06 (-) 1.2e-06 (+)

60% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.7e-06 (+) 1.6e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 9.9e-07 (+) 9.9e-07 (+) 9.9e-07 (+) 9.9e-07 (+) 9.9e-07 (+) 9.9e-07 (+) 9.9e-07 (+) 1.7e-06 (+) 9.9e-07 (+)

B42049

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+) 1.6e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.6e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.045 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)

B167062

10% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (-) 1.6e-06 (+) 1.6e-06 (+)

20% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.7e-06 (+) 1.7e-06 (+)

30% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+) 1.7e-06 (+)

40% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (-) 1.7e-06 (+) 1.6e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.0027 (-) 1.9e-06 (+)

B86016

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.7e-06 (-) 1.6e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.8e-06 (+) 3e-05 (+) 1.8e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 3e-05 (+)

30% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.7e-06 (-) 1.6e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 1.7e-06 (+)

50% 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.3e-06 (+) 1.6e-06 (-) 1.3e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

70% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 0.43 (=) 3e-05 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Continued on next page
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Table 4.5 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM

B196027

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.26 (=)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.3e-06 (-) 1.7e-06 (+)

B24063

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.5e-06 (+) 1.4e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.7e-06 (+) 1.5e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B253036

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.4e-06 (+) 1.7e-06 (+) 1.4e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 3.1e-05 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.8e-05 (+) 3.1e-05 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B147091

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)
0.00035
(+)

50% 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.5e-06 (+) 1.7e-06 (+) 1.5e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B108073

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 3.1e-05 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 3.1e-05 (+) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.1e-06 (+) 1.7e-06 (+) 0.00036 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

10% 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (+) 1.6e-06 (-) 1.6e-06 (-) 1.6e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

Continued on next page
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Table 4.5 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM AD-FCM

B135069

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 3.1e-05 (+) 1.7e-06 (+) 1.9e-06 (+) 3.1e-05 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 3.1e-05 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.98 (=) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

for each image in BerkDB is plotted. The value of variance or mean has been mentioned
above each bar for better comparison between close performances. In the plot related
to SA variance, if the variance is too large, to have a closer look at the small variances,
the whole bar is not shown, but the value has been mentioned on it. Also, for a better
comparison in the mean plot, the bars related to vary small mean values are not shown,
but the value has been mentioned on the location of bar. The proposed AWA-FCM
is the red bar in both plots. The variance of SA performance in Fig. 4.7(a) shows
that AWA-FCM is generally having small variances over noise variation. AWA-FCM is
having three (out of 11) smallest, and five further second-smallest SA variances. Due
to very small and unusual SA mean of FLICM for images B3096 and B135069, the
zero variance of this method has not been considered in this comparison. From this
perspective, WS-FCM has the highest number of smallest SA variance: four as smallest,
and three more as the second-smallest. The next best performer is AD-FCM having four
smallest and one second-smallest SA variance(s). Therefore, AWA-FCM is the third-
best performer considering the number of lowest SA variances.

The plot related to the mean of SA performances, Fig. 4.8(b), shows that AWA-FCM
is the performer with the highest mean values in the majority of the images. It has the
largest mean performance on eight images and the second-largest on two more images.
The next best performers from this viewpoint are WS-FCM and AD-FCM. WS-FCM
has one largest and seven further second-largest mean performance(s), and AD-FCM
has one largest and two further second-largest mean performance(s).

BerkDB (Qualitative Analysis)

For visual comparison in BerkDB, Fig. 4.8 is provided in which an instance from each
of the 11 images in the dataset is selected, and then the segmentation results from all
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(a) SA variance.
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(b) SA mean.
Figure 4.7: Demonstration of different algorithms performances on noise level variation (the BerkDB
instances).
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10 methods are presented. Like the previous dataset, due to the volume of noise, over
segmentation is a serious problem, and a lot of spurious boundaries and segmented
regions exist in the results of FCM S1, FCM S2, EnFCM, FGFCM, FGFCM S1 and
FGFCM S2 algorithms. FLICM can sometimes provide highly accurate segmentation
results as in the instances of B253036 and B167062, and sometimes completely misses
the main regions. AD-FCM performs well in retaining edge information, however it
produces redundant segments which interfere with accurate region segmentation. WS-
FCM although successful at homogeneous region segmentation and noise removal, it
also eliminates fine details around the edges. AWA-FCM on the other hand makes
a good compromise between the number of redundant regions and preserving the de-
tails. As an example, one could see how the tree body is back to the segmentation
results of AWA-FCM in the B253036 instance compared to WS-FCM result, or how the
overs-smoothed treetop region in the B147091 instance is having more details around
its boundary. One visually negative point regarding AWA-FCM segmentation results is
that it generally produces more redundant regions which could be problematic in some
advanced level applications.

4.6 Chapter Summary

By taking advantages of wavelet-based thresholding and gradient-based denoising in the
spatial domain, we introduced an FCM-based, detail-preserving severely noisy image
segmentation algorithm. The following are the main highlights of this chapter:

• The wavelet domain has the ability to add back lost details of an image. An edge-
preserving denoising algorithm such as AD can be used to supply those details.

• While segmentation based on wavelet thresholding alone may not be able to re-
spect the boundary details, and AD based segmentation may not be successful
either in homogeneous/coherent region segmentation, the combination of the two
denoising results in the wavelet domain is able to address the issues.

• Our fusion scheme considers the noise volume and works well in a wide range of
noise level variation.
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Continued on next page
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Figure 4.8 – continued from previous page
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Figure 4.8 – continued from previous page
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Figure 4.8 – continued from previous page
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Figure 4.8: Qualitative comparison of the proposed AWA-FCM with FCM S1, FCM S2, En-
FCM, FGFCM S1, FGFCM S2, FGFCM, FLICM, AD-FCM, and WS-FCM on some of the
BerkDB instances. The instances are B3096,σ2 = 50%, B8068,σ2 = 70%, B42049,σ2 = 80%,
B167062,σ2 = 80%, B86016,σ2 = 70%, B196027,σ2 = 20%, B24063,σ2 = 60%, B253036,σ2 =

10%, B147091,σ2 = 60%, B108073,σ2 = 40%, and B135069,σ2 = 30%.

• A post-processing step based on connected component analysis can be utilized to
suppress any side effect of the fusion process.
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• Severely noisy images segmentation based on the proposed approach shows greater
accuracy and consistency compared to other FCM-based state-of-the-art algo-
rithms.
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Chapter 5

Wavelet Packets and Bilateral Filtering
for Edge-Preserving Severely Noisy
Image Segmentation

5.1 Introduction

Previous chapters showed how feature enhancement in wavelet domain can achieve
great performances for FCM-based noisy image segmentation. More precisely, we
demonstrated that adaptive soft-thresholding of wavelet coefficients with FCM clus-
tering performance evaluation called WS-FCM, can successfully overcome the problem
of FCM-based severely noisy image segmentation. However, soft-thresholding atten-
uates large coefficients greatly, and the segmented images look over-smoothed around
the edges. Chapter 4 addressed this problem with a fusion of denoising results from
WS-FCM and a noise-estimating anisotropic diffusion in wavelet domain. This chapter
addresses the issue with a different strategy. We use wavelet packets from the family of
spatial-frequency transformations which is claimed to provide a richer domain analysis
for signal processing.

One serious problem with severely noisy images is that they are not sparse in the
wavelet domain, and this makes wavelet-based thresholding less effective. We use Bi-
lateral Filtering as an edge-preserving technique prior to shrinkage of coefficients to
make the wavelet domain presentation more sparse. Also, we introduce a new thresh-

119
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olding scheme using smooth sigmoid-based shrinkage [9], which overcomes the over-
smoothing problem of soft-thresholding.

Overall, this chapter introduces two algorithms for an FCM-based severely noisy
image segmentation. The first algorithm is based on the same approach proposed as in
Chapter 3 called WS-FCM, but using wavelet packets as the feature enhancing domain.
We investigate which method is providing better results under similar schemes. The
second algorithm, uses the first one in combination with image denoising in spatial
domain and a new thresholding scheme based on a sigmoid function. We compare the
algorithms introduced in this chapter with with WS-FCM proposed in Chapter 3, and
AWA-FCM proposed in Chapter 4.

5.1.1 Chapter Goals

Like the previous two chapters, this chapter also addresses noisy image segmentation.
The core focus of this chapter is feature manipulation/enhancement in wavelet packet
domain. We use denoising strategies in both spatial and spatial-frequency domains, and
then try to combine them in way that the image is denoised with higher segmentation
accuracy. More specific goals pursued in this chapter are as follow:

• Exploring the difference between wavelets and wavelet packets under similar
adaptive thresholding schemes provided by PSO for FCM-based noisy image seg-
mentation.

• Investigating the possibilities of increasing the sparsity of a noisy image in wavelet
domain using denoising algorithms in the spatial domain.

• Exploring other thresholding functions, and designing a new scheme to preserve
more details in segmentation results.

• Combining the above ideas into a strategy under which the proposed algorithm
works in a noise-varying situation.

5.1.2 Chapter Organization

The reminder of this chapter is as follows. Section 5.2 is dedicated to the methodol-
ogy of the proposed approach in this chapter. Section 5.3 introduces the foundation
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of the new detail-preserving severely noisy image segmentation approach. Section 5.4
provides the datasets, comparison algorithms, and evaluation metrics. Section 5.5 is
devoted to a comprehensive analysis of the results and discussions, and Section 5.6
concludes this chapter.

5.2 Methodology

This chapter uses another family member of the wavelet-based transforms called wavelet
packets. Also, an edge-preserving technique called bilateral filtering is used in one of
the proposed algorithms. This section provides a brief description of these methods.
Their use and specific presentation in our methods is discussed in the next section.

5.2.1 Wavelet Packets

Wavelet Packets (WP), first introduced by Coifman and Wickerhauser [39], is a general-
ization of wavelet decomposition that provides a richer analysis domain. Wavelet packet
atoms are waveforms indexed by three naturally interpreted parameters: position, scale
(as in the wavelet decomposition), and frequency. Utilizing wavelet-based counterparts
to analyze non-stationary signals is well established, because wavelets are localized in
both time and frequency. Although the Discrete Wavelet Transform (DWT) is a com-
mon tool for time-frequency decomposition of a signal, the frequency resolution in the
DWT is typically considered too coarse for practical time-frequency analysis. On the
other hand, the Continuous Wavelet Transform (CWT) is a tool to monitor the whole
spectrum of a signal with fine resolution, but is computationally expensive. In the trade-
off between DWT and CWT, wavelet packets provides a computationally affordable
solution with sufficient frequency resolution.

Wavelets vs Wavelet Packets

The generic procedure in a orthogonal 2D wavelet decomposition is to split the original
image/approximation coefficients into four parts. This results in a summation of scaling
and wavelet functions whose bandwidths are logarithmically related. That is, the low-
frequency contents of an image have narrower bandwidths, and high-frequency contents
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have wider bandwidths. 2D-DWT results in three subbands of detail coefficients, and
a subband of approximation coefficients at a coarser scale. Detail subbands capture the
information lost between the successive approximation coefficients of two decomposi-
tions. For further decompositions, the new approximation subband is split, but detail
coefficients are never considered for splitting for reanalysis. To have finer resolution of
the spatial-frequency plane, narrower bands at the high-frequency decompositions have
to be created. This more controllable decomposition is provided by wavelet packets at
the cost of higher computational complexity.

In 2D wavelet packet decomposition, each detail subband is also split into four parts
based on the same approach utilized in splitting of the approximation subbands. That is,
wavelet packets are the conventional wavelet transforms in which the detail coefficients
are also filtered iteratively. Therefore, wavelet packets decomposition provides a richer
domain for image analysis due to better resolution to high-frequency contents.

Wavelet Packets Representation

Wavelet packet also uses the filter bank introduced in Chapter 3 (Fig. 3.1) for wavelet
transform at each scale for each subband. Tree analysis (binary in the case of 1D signal,
and quad-tree in the case of 2D signal) is utilized to represent wavelet packets since
they are compact, informative, and simple to draw compared to their filter block dia-
grams. Figure 5.1 presents a partial depiction of the full quad-tree of a the three-scale
wavelet packet decomposition in which the difference between the quad-trees of wavelet
and wavelet packets is also shown. For wavelet packet transform, decomposition starts
scale-oriented and then frequency devision of subbands on each set of coefficients is
provided. The highest-scale set of approximation coefficients is called a root node, and
the detail and approximation coefficients resulting from the transform at the bottom of
the tree (nodes with no children) are called leaves. Each node is a set of coefficients that
are the results of an expansion that produces a band-limited piece of its parent node.

In Fig. 5.1, subbands are represented based on the known scaling and frequency
spectrum for the corresponding subband. The first letter indicates the subband, the
string of other letters indicates the parent node, and the subscript indicates the scale
number. For instance, DV H3 is detail coefficients D, in the third scale from parent node
V H2, which is the detail coefficients V , in the second scale from parent node H1, and
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H1 is the detail coefficients H in the first scale from parent node I.

Full decomposition quad-tree of level p has 4p leaf nodes. Also, each tree can be
presented with different decompositions. For instance, the three following decomposi-
tions are valid for the quad-tree in Fig. 5.1:

I = AA2⊕AHA3⊕HHA3⊕V HA3⊕DHA3⊕VA2⊕DA2⊕H1⊕V1⊕D1

I = A1⊕AH2⊕HH2⊕V H2⊕DH2⊕V1⊕D1

I = A1⊕H1⊕V1⊕D1

(5.1)

where ⊕ is the union of coefficients. The number of valid decompositions (union of
nodes that can represent a tree with different frequency resolutions), Nd, of a p-scale
wavelet packet quad-tree is obtained from:

Nd(p+1) =
[
Nd(p)

]4
+1 (5.2)

where Nd(1) = 1. Therefore, for a five-scale quad-tree there are 1024 leaf nodes in
case of a full decomposition, and 5.6081× 1078 possible decompositions to represent
the quad-tree. Depending on the optimality criterion, each one of these decompositions
could be considered suitable. How to find a good decomposition for our noisy image
segmentation algorithm is discussed in the next section.

Figure 5.1: Depiction of the difference between wavelets and wavelet packets decompositions in a 2D
three-scale transform. Blue box shows the quad-tree for a wavelet transform, and the red box shows the
partial quad-tree of wavelet packet transform.
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5.2.2 Bilateral Filtering

Bilateral filtering (BF) is an image smoothing method that goes beyond traditional fil-
ters by taking into account distance and similarity of neighboring pixels. BF preserves
the edge information by using a nonlinear combination of neighboring pixels’ intensity
values based on spatial closeness and photometric similarity. Priority is given to near
values in both domain and range. By domain here we mean distance between pixels’
spatial location, and by range we mean distance between pixels’ intensity values.

Kernel-based filtering is a fundamental traditional approach in image processing.
For example, one very common filtering technique is the Gaussian low-pass filtering
via kernel filtering which calculates a weighted average of pixels in a neighborhood
while the weights decrease when the distance from the center of kernel increases. Slow
spatial variation is the reason behind this averaging. In other words, images change
slowly over the space that means neighborhood pixels are more likely to have similar
information. Since noise is less correlated with these neighboring pixels, averaging
them removes the noise while preserves the signal. However, the main challenge in
local averaging filters is how to treat edges so they are not over-smoothed. Gaussian
filtering is effective when the dosage of the noise is small. For the images with high
levels of noise, it is required to average more pixels in order to suppress the effect of
noise, and this causes over-smoothing of edges and corners.

On the other hand, bilateral filtering introduces decaying weights for the kernel
based on both similarity and closeness. Two pixels are close if they are positioned in a
small spatial distance from each other, and are similar if they have nearby intensities.
Overall, BF is simple, non-iterative and respectful of edges.

In this chapter, we consider a standard bilateral filtering in which both the range and
domain filtering are performed using Gaussian kernels [35]. The bilateral filtering of an
image { f (i) : i ∈ I} (I is a finite rectangular domain of Z2) is given as:

fBF(i) =
∑ j∈Ω ω( j)×gσr

(
f (i− j)− f (i)

)
× f (i− j)

∑ j∈Ω ω( j)×gσr

(
f (i− j)− f (i)

) (5.3)

where Gσr is the range kernel and Gσs is the spatial kernel:
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Gσr(t) = exp

(
− t2

2σ2
r

)
(5.4)

Gσs( j) = exp

(
− ‖ j ‖2

2σ2
s

)
( j ∈Ω). (5.5)

where σr is the photometric spread (or width of range Gaussian) determining the re-
quired degree of combination of pixel values. Range filtering is used to restrict the
averaging to neighboring pixels whose intensity are similar or close to that of the pixel
under consideration. σs is the domain spread (width of spatial Gaussian) determining
the required amount of low-pass filtering. A larger value of σs integrates pixels from
farther locations, and therefore, it has more smoothing effects. More details about the
functioning of bilateral filtering can be found in [122] and [97].

The domain of the spatial kernel in the preceding equations is a square neighborhood
of Ω = [−W,W ]× [−W,W ], where W = 3σs in our application. For practical settings of
W , the calculation of Eq. 5.3 is computationally expensive [35]. Many research works
have been proposed to address this issue by presenting an approximation of the filter
while providing a trade-off between the speed and quality of the approximation [49, 97,
34, 35]. One category of these methods in particular decomposes bilateral filtering into
a series of spatial filtering by approximating Eq. 5.4 with polynomial and trigonometric
functions [103, 117, 36]. In our approach we use the fast and accurate bilateral filtering
[35] that proposes a new approximation to Eq. 5.4 and converts bilateral filtering into a
series of spatial convolutions. This approach was shown to be simpler, faster and more
accurate than other state-of-the-art bilateral algorithms [35].

5.3 The Proposed Algorithms

In this section, based on the idea of adaptive wavelet shrinkage, we introduce two al-
gorithms that use wavelet packets as another member of the family of spatial-frequency
transformations for feature manipulation/enhancement. The first algorithm follows a
similar pathway of adaptive shrinkage of wavelet coefficients (WS-FCM) introduced
in Chapter 3 but using wavelet packets. We named this algorithm Wavelet Packet
Shrinkage-based FCM or WPS-FCM. The introduction of WPS-FCM provides an in-
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teresting comparison between wavelets and wavelet packets in an adaptive shrinkage
scheme for FCM-based noisy image segmentation. Since it has been claimed in the lit-
erature that wavelet packets provide a richer domain for signal analysis, we put this idea
to the test in an FCM-based noisy image segmentation scheme. The second algorithm
uses the feature enhancing system introduced in WPS-FCM based on adaptive wavelet
packet shrinkage with two main differences. First, a preprocessing step is added for par-
tially denoising the noisy image. Second, based on the idea of Smooth Sigmoid-Based
Shrinkage (SSBS) [9], we incorporate a new thresholding function that preserves more
details from a noisy image. We call the second algorithm, Bilateral filtered Wavelet
Packet Shrinkage-based FCM or BWPS-FCM.

5.3.1 WPS-FCM

WPS-FCM follows the same approach as in WS-FCM. The block-diagram of the pro-
posed WPS-FCM is given in Fig. 5.2. First, the input image is transformed using
wavelet packets. Like WS-FCM, we use a five-scale transformation. Next is the adap-
tive thresholding of nodes (subbands) using PSO. Recalling from the introduction to
wavelet packets, a full five-scale transformation will lead to a quad-tree with 1024 leaf
nodes. This number of nodes is 64 times more than that of a wavelet tree. Thresholding
such a large number of subbands is computationally very expensive in the PSO-based
scheme proposed for WS-FCM. One way to reduce the number of leaf nodes is to select
a sub-tree based on other valid decompositions of the quad-tree. In a five-scale wavelet
packet transform, the number of possible decompositions is so large that it is not pos-
sible to examine all of them. It is possible to find good decompositions using a greedy
algorithm based on a cost function. This cost function is designed to determine the cost
value for each node and allows the search algorithm to determine whether it is worth
including the children of a node into the final decomposition or not.

In a search for simple criterion that is computationally efficient, classical entropy-
based criteria are selected. They have been shown to be a good measure of efficiency
of a decomposition, and can describe information cost for an accurate representation
of a signal [39]. Therefore, classical entropy-based are well suited for such situations.
Entropy-based cost function based on the following additive function is a good criterion
to efficiently search tree structures for a proper sub-tree:
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Figure 5.2: Block diagram of the proposed WPS-FCM algorithm.
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E( f ) = ∑
m,n
| f (m,n)| (5.6)

where f is the union of all the coefficients of image I, and E provides a possible value
for the energy content of f with E(0) = 0. Many entropies are available in the literature
among which we select [39] in which motivated by Shannon entropy

ES(wi) =−w2
mn log(w2

mn) (5.7)

then we have:

ES( f ) =−∑
m,n

w2
mn log(w2

mn) (5.8)

where wmn are the coefficients of f . High values of ES indicate functions with many non-
zero values. On the other hand, low values of ES shows a cost function with coefficients
with zero or near zero values. In a denoising scheme, small coefficients are thresholded
or truncated. Therefore, the optimization algorithm in the process of looking for low
noise images looks for minimum values of the Shannon entropy-based cost function.
Starting from the root node, the energy of a node and its four children is computed. A
node is decomposed if and only if the sum of the Shannon entropy of its children is lower
than that of the node. Figure 5.3-a shows a three-scale full quad-tree and Figure 5.3-b
shows the corresponding optimal tree obtained from the full tree. For this example, the
wavelet filter for the wavelet packet transform is Coiflet1. As one can see, the optimal
tree has considerably fewer nodes which makes the thresholding task more efficient.

When the optimal tree is obtained, the adaptive shrinkage scheme proposed in WS-
FCM is applied to find the proper threshold values based on a fitness metric provided
by FCM clustering performance.

PSO Representation

PSO is used here to adaptively look for threshold values based on the fitness function
provided by FCM. These threshold values are evolved in the course of the PSO search
in a way that they have effective feature enhancement properties. For effectiveness
and efficiency purposes, we set a threshold value for each scale of the wavelet packet
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(a)
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(b)
Figure 5.3: Depiction of the wavelet packet tree of a three-scale decomposed image. (a) The full tree.
(b) The optimal tree using Shannon entropy.
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decomposition tree. Since our in our approach we have a five-scale decomposition, each
particle Pi, is represented as:

Pi = [θ1,θ2, ...,θ5] (5.9)

in which θ j is the threshold value for the jth scale of the optimal decomposition tree. A
minimum and maximum is set for the value a threshold can take during the PSO search:

0 < θ j < θmax (5.10)

where θmax is motivated by the Universal threshold, θU [47]:

θmax = σ
√

2ln(N) (5.11)

where σ is the standard deviation of noise, and N is the number of pixels in the image.
Since we make no assumption about the volume of noise, the σ value will be obtained
using the robust median estimator:

σ =
median

[
|wmn ∈ {H1,D1,V1}|

]
0.6745

(5.12)

where wmn are noisy coefficients of the detail nodes H1, V1, and D1 in the first scale of
the quad-tree.

The initial solutions for particles are selected from the [0,θmax] interval, and in each
iteration the members of particles outside this interval will be replaced by the corre-
sponding member of the X pbest particles.

Wavelet Packet-based Shrinkage

The coefficients inside the nodes from the optimal quad-tree are thresholded to remove
the noise and enhance the intensity feature. A thresholding function is a function un-
der which threshold values are applied for attenuation, manipulation or preservation of
coefficients, and play an important role on how accurate the final segmentation results
are. We again use the soft-thresholding function proposed in [45] to manipulate wavelet
packet coefficients. The soft-thresholding function is continuous everywhere and un-
like hard-thresholding [45] does not generate a high variance in the thresholded signal.
Equation 5.13 show the mathematical representation for the soft-thresholding function.
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Y =

sign(w)(|w|−θ), if |w|> θ

0, if |w| ≤ θ

(5.13)

where w is a wavelet packet coefficient and θ is a threshold value.

Fitness Evaluation

As in the previous chapter, to evaluate the performance of each particle, a fitness func-
tion is utilized based on clustering performance of FCM. After all the nodes from the
optimal decomposition tree are thresholded with a sample particle, the resulting nodes
are used again to build a denoised intensity image. For this, we perform a wavelet
packet reconstruction on the thresholded coefficients. The intensity information of the
feature-enhanced image is clustered with the predefined number of clusters, and then
the objective function of FCM is calculated. The result is taken as the fitness value, and
has to be minimized. To recall, the FCM objective function (the fitness function) is:

J =
N

∑
i=1

C

∑
j=1

um
i jd

2(xi,v j) (5.14)

Differences between WS-FCM and WPS-FCM

There are two differences between WS-FCM and WPS-FCM. First, the number of sub-
bands are fixed in WS-FCM (15), whereas in the WPS-FCM the number of subbands
could vary depending on the results of the optimal decomposition tree. Theoretically,
this value could range between 16 and 1024. Using a good choice wavelet filter, we can
make sure this value is not too high, to prevent the computation from being too expen-
sive. Second, there is a threshold value for each subband in WS-FCM algorithm while
there is a threshold value for each scale of decomposition in WPS-FCM. Therefore,
there are 15 threshold values in WS-FCM and only five threshold values in WPS-FCM.
This difference in WPS-FCM keeps the computation cost low and segmentation accu-
racy high. For example, having a threshold value for each node (subband) can increase
the number of threshold values to the point that the search space becomes too compli-
cated, and PSO is unable to provide effective threshold values.
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5.3.2 BWPS-FCM

BWPS-FCM follows the same generic scheme that was proposed for WPS-FCM with
two differences. First, it uses a preprocessing step in order to partially denoise the im-
age. As we mentioned in the previous chapter, thresholding in the wavelet domain is
well established in image denoising. One feature that plays a significant role in this area
is the sparsity of coefficients in the wavelet domain. This way a minority of the coeffi-
cients that carry most of the energy of the signal can be preserved while the rest are omit-
ted. One side effect of natural images or images corrupted with high volume of noise is
that they are not really sparse in wavelet domain [102], but smoothing results in a sparse
representation in wavelet domain. Therefore, smoothing an image could pave the way
for a better coefficients thresholding. A pre-denoising step can make the spatial repre-
sentation of an image smooth, its spatial-frequency sparse, and the wavelet thresholding
effective [9]. However, smoothing should not happen on edges, otherwise it would have
an unfavorable effect. That is why we utilize the non-iterative detail-preserving bilat-
eral filtering in our algorithm to partially remove the noise from an image, and provide
a better sparse space for thresholding of the coefficients.

The second difference is that we use a sigmoid thresholding function for better accu-
racy. One side effect of soft-thresholding is that it attenuates the large coefficients which
results in an over-smoothed image. Also, the zero-forcing effect of the soft-thresholding
function causes singularities of the thresholding function. This would create a serious
variance of the estimation of the signal due to the sensitivity of the inverse wavelet
transform [9]. A proper thresholding function should meet the three following criteria
[9]. This sigmoid thresholding which satisfies these criteria has no discontinuity, and
has fewer side effects when manipulating coefficients.

• Smoothness: enforcing small variability among coefficients of the same ampli-
tude.

• Penalized shrinkage: coefficients with small values have less information about
the signal, and the ones with higher values contain more information. Therefore,
strong attenuation has to apply to small coefficients and weak attenuation to big
ones.

• Vanishing attenuation at infinity: the attenuation property of the function ap-
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plied to a signal reduces when the amplitude of the coefficients tends to infinity.
This resolve the over-smoothing.

Possessing the above properties, a sigmoid-based thresholding
The block diagram of the proposed BWPS-FCM with more details is shown in Fig.

5.4.

Bilateral Filtering Parameter Setting

One important important step in Bilateral Filtering is its parameter setting according
to the noise level. The width of the range Gaussian, σr and the width of the spatial
Gaussian, σs are two parameters that need tuning in a noise-volume-varying situation
for effective results. Eq. 5.15 shows how the two parameters can be estimated using the
σ value obtained in Eq. 5.12:

σr = σ , σs =
c

1+ e
(
−τ(bσ−a)

)
+d

(5.15)

in which the equation estimating σs is a sigmoid function whose parameters are exper-
imentally set at τ = 0.5, a = 12, b = 35, c = 2, and d = 1.1. The plot of the sigmoid
function is shown in Fig. 5.5. This non-linear curve shows that σs increases with higher
levels of noise estimated by σ. To estimate σ (noise standard deviation) according to
Eq. 5.12, a wavelet packet decomposition of the noisy image is required. This setting is
aimed at removing the noise partially, but not completely. To prevent Bilateral Filtering
from creating redundant borders, we pad the original image with a 20-pixel-wide mar-
gin. This margin is set to repeat border pixels of the image. Having σr and σs estimated,
and the image padded, we can now apply the Bilateral Filtering to the noisy image.

5.3.3 PSO Representation

The PSO representation, shrinkage scheme, and fitness evaluation is the same as WPS-
FCM. The only difference is the maximum limit of each threshold value. The pre-
denoising based on Bilateral Filtering decreases the magnitude of the coefficients. There-
fore, we could set a lower maximum limit for particles:

0 < θi <
θmax

2
(5.16)
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Figure 5.4: Block diagram of the proposed BWPS-FCM algorithm.

where θmax is calculated from Eq. 5.11.

Sigmoid Shrinkage

The Smooth Sigmoid-Based Shrinkage (SSBS) function is defined as below [9]:
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Figure 5.5: The plot of the sigmoid function used to estimate σs from σ.

δτ,θ =
w

1+ e
(
−τ(|w|−θ)

) (5.17)

in which w is a coefficient, θ is a threshold value, and τ determines the curvature of the
function. A depiction of the sigmoid function for different values of τ is shown in Fig.
5.6. Increasing τ increases the soft-thresholding behavior of the SSBS function, and
decreasing τ decreases its manipulating properties on the coefficients.

In BWPS-FCM, τ is determined by the number of large coefficients in each node. A
coefficient is considered large if its value is bigger than the standard deviation of noise,
σ. After extensive experiments on different noisy images, τ is defined:

τ =

2, Nl >
Nn
20

K, otherwise
(5.18) K =



8, σ≤ 0.2

10, 0.2 < σ≤ 0.3

12, 0.3 < σ≤ 0.4

14, σ > 0.4

(5.19)

in which Nl is the number of large coefficients in node n and Nn is the total number of
coefficients in the node. Different limits on σ to determine K in Eq. 5.19 are defined
for a normalized image. This setting makes sure to have a conservative thresholding,
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Figure 5.6: Sigmoid shrinkage function applied to a simple signal for different values of τ and a fixed
threshold value.

by having a low value for τ, when a node contains many large coefficients. This way,
attenuation of the large coefficients is less likely to happen. For the rest of the nodes,
τ is reasonably high, and increases with the volume of noise. These nodes contain less
useful information about the noisy image and therefore a more strict thresholding on
them results in a denoised image with fewer artifacts caused by noise. When the volume
of noise increases, bigger values of τ suppress the small coefficients more drastically.

5.4 Experiment Design

5.4.1 Datasets and Evaluation

The datasets, images, and instances are the same as the previous chapter. For qualitative
evaluation we have adopted the common Segmentation Accuracy, SA metric [6], which
was explained in Chapter 3 (page 45).

We have also taken 10 other state-of-the-are algorithms to compare our method with.
Seven of these methods are FCM-modified named FCM S1 and FCM S2 [38], EnFCM
[118], FGFCM, FGFCM S1 and FGFCM S2 [25], and FLICM [74]. The three rest are
wavelet thresholding-based algorithms introduced in this or previous chapters named
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WS-FCM, WPS-FCM, and AWA-FCM.

5.4.2 Parameter Design

All the parameters related to FCM, PSO, wavelet transform, Bilateral Filtering and
their adopted values in this chapter are depicted in Table 5.1 based on empirical search
through experiments.

Table 5.1: Parameter settings of the proposed method.

Parameter/Setting Value/Type
Wavelet filter Coiflets family (Coiflet 5)

Scale number (Wavelet) 5

Termination threshold (FCM) 0.001

Maximum number of iterations (FCM) 100

Weighting exponent, m (FCM) 2

Padding margin size (in pixels) (BF) 20

Population size & iterations in WPS-FCM (PSO) 30 & 100

Population size & iterations in BWPS-FCM (PSO) 20 & 150

c1 and c2 (PSO) 1

Inertia weight (ω) (PSO) Linearly decreasing from 1 to 0.5

σr & σs (BF) σ & 2

1+e

(
−τ(35σ−12)

)
+1.1

(σ is estimated according to Eq. 5.12)

5.4.3 Statistical Significance Test

To analyze the non-deterministic behavior of PSO in our algorithms a pair-wise statisti-
cal significance test is performed. Our algorithm is run 30 times independently on each
image, and the results in the form of the SA values are compared with the results of
other methods using the test. We select the Wilcoxon test with a significance level of
0.05 for this comparison. For more information about this test please refer to [135].
If the p-value (the probability of observing a test statistic as or more extreme than the
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observed value under the null hypothesis) is greater than the significance level, the pair-
wise comparison is not considered significantly different. Otherwise, one method is
significantly better than the other. Tables that are providing p values also use +, - and =
signs to show that one method is significantly better, worse, or not different respectively
for an instance.

5.5 Results and Discussion

This section analyzes all the experiments in comparison to other methods both quanti-
tatively and qualitatively. To have a proper comparison in the quantitative part, both SA
and p values are considered for an instance. The comparison is made in separate sub-
sections for different datasets. The first part in each sub-section, presents a comprehen-
sive quantitative evaluation and the second part presents some qualitative evaluations. In
the quantitative evaluation part, we look at the comparisons from four different aspects.
We first compare the results of the adaptive wavelet-based shrinkage, WS-FCM, and its
equivalent in wavelet packet domain, WPS-FCM. Second, we compare the results of
the proposed BWPS-FCM with the comparison methods on each instance in a pair-wise
manner. Throughout the pair-wise comparison, a better performance is determined ac-
cording to SA value unless the p value from the Wilconxon test for that pair is bigger
than the significance level (0.05). Third, another evaluation is done by ranking the per-
formance of all the algorithms on each instance. Based on the number of the best and
second-best performances for each algorithm, the overall best, second-best, and third
best performers are determined. Fourth, the quantitative analysis in each sub-section
concludes with a performance evaluation over the noise variation on each sample im-
age. This evaluation investigates how SA metric changes in terms of mean and variance
when the noise variance ranges between 10% to 80%.

5.5.1 SynthDB (Quantitative Analysis)

WPS-FCM vs WS-FCM

As mentioned before, it is an interesting comparison to know how an adaptive threshold-
ing of wavelet and wavelet packet coefficients in similar representations differ in feature
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enhancement.

Tables 5.2 provides the SA values for the two algorithms, and 5.3 provides the p

values from the Wilcoxon test. There are a total of 10 instances that the two methods
perform not significantly different from each other. These value are bold in Table 5.3.
For the remaining 30 instances, WS-FCM performs better than WPS-FCM in all the
instances with mostly very small differences as show in Table 5.2. This indicates that
from the quantitative point of view, WPS-FCM cannot add much to the segmentation
accuracy of SynthDB Gaussian instances.

BWPS-FCM vs Other Methods in SynthDB

The Wilcoxon test results from the comparison between BWPS-FCM and other meth-
ods is provided in Table 5.4 in which there are an overall 15 instances that p is bigger
than the significance level. Seven instances belong to the comparison to WS-FCM, four
instances belong to the comparison to WPS-FCM, and four others belong to the compar-
ison to AWA-FCM. Now, we can compare BWPS-FCM with other methods pair-wisely
according to the SA values provided in Table 5.2 to determine the better performance
where the difference is significant.

BWPS-FCM performs better on all 40 instances when compared to FCM S1 and
FCM S2, EnFCM, FGFCM, FGFCM S1 and FGFCM S2. The number of better per-
formances in comparison to FLICM is 39, to WS-FCM is 22, to WPS-FCM is 29, and to
AWA-FCM is only three. Thus, BWPS-FCM performs mostly better than FLICM, WS-
FCM, and WPS-FCM. However, in comparison to AWA-FCM, there are four instances
of not significantly different results, three instances of better BWPS-FCM results, and
33 instances of better AWA-FCM results.

For the overall best performer on each instance, as expected, AWA-FCM is the best
performer among all being the best performer on 31 instances, and second-best per-
former on four further instances. BWPS-FCM is the overall second-best performer
being the best performer on three instances and second-best performer on 18 more in-
stances. FLICM is the the overall third-best performer, having one instance of best
performance and none second-best performance.

The results of analysis for segmentation accuracy over noise variation is provided in
Fig. 5.7. Fig. 5.7(a) shows the mean of the SA values resulted from all the 11 methods
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for eight different noise levels for each image. AWA-FCM introduced in the previous
chapter, has the highest mean SA in all five images. The second-best performer from this
perspective is BWPS-FCM having the second-highest mean SA in four images. WS-
FCM is the next good performer being the second-highest in one and the third-highest
in four images. The results of the same analysis for the variance of SA is shown in the
bar graph presented in Fig. 5.7(b). BWPS-FCM have a low variance over the noise level
variation except for image Synth4 which has a few unusual standard deviations for a few
instances in 30 independent runs. These bigger standard deviations exist due to the sen-
sitivity of wavelet packet reconstruction to zero forcing and not due to non-deterministic
characteristics of PSO. We mentioned before that zero-forcing of thresholding functions
such as hard/soft-thresholding could cause this sensitivity of the reverse wavelet trans-
form. For high values of τ the sigmoid function turns into a hard-thresholding function
which causes the sensitivity to wavelet packet reconstruction.
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Table 5.2: SA values for the SynthDB instances. The bold number indicates the best performance for each instance
where the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM BWPS-FCM

Synth1

10% 88.98 89.86 88.98 93.12 94.33 93.01 95.90 97.06± 0.03 97.07± 0.34 97.74±0.03 97.75±0.05

20% 79.41 82.85 78.95 86.22 89.66 87.22 88.04 95.94± 0.05 95.77± 0.47 96.80±0.02 95.77±0.28

30% 71.62 78.14 71.44 79.86 85.99 81.37 58.15 95.46± 0.09 95.37± 0.39 96.14±0.05 95.68±0.12

40% 67.16 74.94 67.10 75.31 82.15 77.10 44.95 94.28± 0.10 93.95± 0.32 95.53±0.05 95.17±0.07

50% 62.77 71.79 63.34 71.38 78.93 72.83 43.12 94.07± 0.07 94.07± 0.64 95.07±0.01 94.91±0.06

60% 59.78 70.42 60.64 67.94 76.36 72.67 29.27 94.17± 0.10 94.06± 0.26 95.56±0.03 95.00±0.04

70% 57.25 68.61 58.12 64.82 73.33 70.26 44.69 93.19± 0.14 93.26± 0.36 94.11±0.07 94.16±0.10
80% 55.29 66.27 56.10 62.87 69.89 67.67 30.49 92.70± 0.04 92.37± 0.45 93.56±0.03 92.64±0.24

Synth2

10% 97.85 98.41 97.89 99.11 99.02 98.73 99.18 99.12± 0.01 99.03± 0.04 99.29±0.00 99.28±0.03

20% 92.26 95.05 92.42 96.51 97.85 96.98 97.35 98.67± 0.03 98.40± 0.19 98.85±0.00 98.66±0.07

30% 87.25 91.49 87.72 93.58 96.51 94.87 96.28 98.36± 0.03 98.17± 0.13 98.59±0.01 98.36±0.11

40% 81.72 89.21 82.85 89.11 93.49 92.02 74.52 98.13± 0.01 98.13± 0.12 98.30±0.01 98.01±0.07

50% 76.60 86.52 78.22 85.39 91.32 89.71 82.32 97.64± 0.05 97.40± 0.49 97.97±0.02 97.81±0.03

60% 74.44 85.53 76.40 83.65 90.05 88.70 74.51 97.38± 0.01 97.26± 0.25 97.80±0.01 97.64±0.04

70% 71.04 83.49 73.47 80.16 86.40 86.54 73.24 97.68± 0.03 97.43± 0.60 98.02±0.01 97.87±0.04

80% 68.52 81.58 71.02 77.76 85.56 85.59 73.89 97.18± 0.02 96.93± 0.22 97.44±0.01 97.21±0.05

Synth3

10% 81.10 93.30 96.04 97.68 97.25 97.15 99.65 99.61± 0.00 99.52± 0.08 99.72±0.00 99.71±0.02

20% 67.89 76.50 69.33 88.37 95.48 94.37 99.19 99.33± 0.01 99.09± 0.21 99.46±0.01 99.46±0.02

30% 52.89 71.85 64.92 76.71 90.76 88.78 98.63 98.92± 0.04 98.81± 0.13 99.16±0.01 99.15±0.01

40% 45.92 67.07 60.81 72.89 86.83 84.82 65.52 98.73± 0.02 98.65± 0.14 99.10±0.00 99.16±0.01
50% 41.31 62.38 57.00 69.78 80.65 78.62 55.60 98.54± 0.06 98.20± 0.26 98.96±0.02 98.94±0.01

60% 38.72 61.55 54.03 68.78 80.23 77.18 54.36 98.56± 0.02 98.41± 0.18 98.83±0.01 98.81±0.02

70% 36.99 59.21 51.58 63.26 78.07 72.38 51.58 97.79± 0.03 97.37± 0.64 98.23±0.02 98.27±0.02
80% 34.49 58.54 49.69 62.40 75.42 70.59 45.22 97.96± 0.08 97.87± 0.21 98.46±0.01 98.21±0.02

Synth4

10% 72.59 77.48 85.28 93.80 92.25 93.70 98.16 96.49± 0.01 95.96± 0.60 97.11±0.01 97.08±0.03

20% 54.42 67.71 72.10 72.65 84.55 82.02 92.41 95.16± 0.08 94.34± 0.68 95.94±0.05 95.10±3.06

30% 51.00 60.31 66.59 65.40 65.40 75.39 82.16 93.93± 0.04 93.12± 0.94 94.93±0.04 79.15±3.22

40% 49.36 58.30 61.76 62.01 60.43 76.61 81.68 93.21± 0.03 92.50± 1.16 94.26±0.02 87.56±8.04

50% 48.69 55.94 53.88 57.90 57.28 72.07 81.86 91.89± 0.04 90.33± 1.37 93.23±0.02 89.01±5.15

60% 48.82 54.17 50.62 56.55 56.25 70.21 88.39 90.13± 0.32 89.19± 1.38 92.02±0.12 91.65±0.27

70% 48.04 54.01 48.08 51.60 54.57 68.73 88.55 90.99± 0.15 89.66± 1.04 91.88±0.05 91.03±1.74

80% 47.76 52.40 47.51 47.01 50.01 68.26 85.70 81.70±10.08 75.97±10.52 86.56±4.63 79.46±1.58

Synth5

10% 85.62 86.90 85.54 90.31 93.15 90.68 57.80 96.84± 0.09 96.48± 0.44 97.38±0.07 96.91±0.08

20% 75.55 79.95 76.33 82.99 88.01 84.38 58.73 95.06± 0.07 94.83± 0.40 95.76±0.01 94.68±0.32

30% 67.21 74.05 69.03 76.47 82.39 78.03 58.25 93.96± 0.11 93.81± 0.40 95.19±0.03 94.49±0.09

40% 62.39 70.96 64.81 72.43 78.87 74.89 59.96 93.09± 0.06 92.64± 0.71 93.43±0.04 92.62±0.14

50% 57.20 66.68 60.11 67.50 73.84 70.19 58.19 90.54± 0.13 89.40± 0.64 91.85±0.09 91.08±0.14

60% 54.73 65.21 57.89 65.19 71.62 68.06 39.66 90.98± 0.15 90.39± 0.37 91.80±0.07 90.88±0.11

70% 52.90 63.78 56.20 63.36 69.29 66.56 58.90 89.99± 0.06 89.90± 0.69 90.85±0.02 89.58±0.24

80% 51.73 62.83 55.17 62.18 68.06 65.67 39.33 88.04± 0.12 87.11± 0.28 89.20±0.05 88.44±0.26



5.5. RESULTS AND DISCUSSION 143

Table 5.3: Wilconxon provided p values resulted from the pair-wise comparison of WPS-FCM with WS-
FCM for the SynthDB instances. The bold numbers indicate p values greater than the significance level.
+, - and = respectively show where WPS-FCM performs significantly better, significantly worse or not
significantly different than WS-FCM.

Noise Level
Img. 10% 20% 30% 40% 50% 60% 70% 80%

Synth1 0.18 (=) 0.2 (=) 0.85 (=) 4.3e-06 (-) 0.49 (=) 0.11 (=) 0.079 (=) 1.6e-05 (-)
Synth2 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 0.69 (=) 0.0035 (-) 0.02 (-) 0.0082 (-) 1.7e-06 (-)
Synth3 1.7e-06 (-) 1.7e-06 (-) 0.0002 (-) 0.0023 (-) 2.1e-06 (-) 1.3e-05 (-) 5.8e-05 (-) 0.047 (-)
Synth4 0.00014 (-) 9.3e-06 (-) 4.1e-05 (-) 0.0028 (-) 3.9e-06 (-) 0.00072 (-) 1.7e-06 (-) 0.0053 (-)
Synth5 8.2e-05 (-) 0.06 (=) 0.16 (=) 0.005 (-) 1.7e-06 (-) 1.7e-06 (-) 0.56 (=) 1.7e-06 (-)
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Table 5.4: Wilconxon provided p values resulted from the pair-wise comparison of BWPS-FCM with other methods
for the SynthDB instances. The bold numbers indicate p values greater than the significance level.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM

Synth1

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (=) 0.16 (=)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0023 (-) 0.77 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.6e-06 (+) 0.00024 (+) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.011 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.38 (=) 0.02 (+) 1.7e-06 (-)

Synth2

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (=) 0.085 (=)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.71 (=) 1.7e-06 (+) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.86 (=) 2e-05 (+) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 6.9e-06 (-) 0.00032 (-) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.14 (=) 1.7e-06 (+) 1.7e-06 (-)

Synth3

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0023 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (=) 0.21 (=)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00061 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0015 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00013 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.1e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (-)

Synth4

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 3.9e-05 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.4e-06 (+) 1.7e-06 (+) 0.00036 (+) 0.0026 (-) 0.00042 (=) 0.75 (=)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.4e-06 (+) 8.2e-05 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.2e-05 (+) 0.0014 (+) 0.082 (=) 0.094 (+) 0.0077 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.5e-05 (+) 0.21 (=) 0.89 (+) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 5.2e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 3.1e-05 (+) 3.1e-05 (+) 1.9e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.98 (=) 0.023 (+) 3.1e-05 (-)

Synth5

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0034 (+) 3.2e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.7e-05 (-) 0.033 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.39 (+) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0087 (-) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 7e-06 (-) 0.017 (-) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 9.3e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
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(a) SA variance.

(b) SA mean.
Figure 5.7: Demonstration of different algorithms performance on noise level variation (SynthDB).

SynthDB (Qualitative Analysis)

Some segmentation results are shown in Fig. 5.8 for all the 11 algorithms. A sam-
ple instance for each image is provided in this visual comparison. These instances
for Synth1, Synth2, Synth3, Synth4, and Synth5 are the instances with noise variance
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of 10%,60%,70%,80%, and 30% respectively. Algorithms based on modification of
FCM objective function (except for FLICM) suffer from over-segmentation. Segmen-
tation of compact/homogeneous regions is hardly possible from the outcomes of these
algorithms. This deficiency is more serious in FCM S1, FCM S2, and EnFCM, and
less serious in FGFCM, FGFCM S1, and FGFCM S2. FLICM can perform better form
this perspective for example on the Synth1 instance, or suffer from over-segmentation
for example in the Synth3 instances, and sometimes miss one or two distinguishable
regions existing in the groundtruth for the instances of Synth2, Synth4, and Synth5.

There is no significant visual difference in the segmentation results of WS-FCM
and WPS-FCM. Generally, it seem that boundaries are less over-smoothed in WPS-
FCM segmentation results, and more details are related to them. This is observable
from the Synth1 and Synth3 instances, although this is not true for the Synth4 instance.
AWA-FCM and BWPS-FCM mostly produce the most acceptable visual segmentations
by having not so much redundancy around the boundaries. AWA-FCM performs even
better by not producing spurious regions caused by noise.

5.5.2 BerkDB (Quantitative Analysis)

Similar to the SynthDB dataset results, we first present a comparison of WS-FCM and
WPS-FCM, and then a comprehensive comparison of the proposed BWPS-FCM with
all other methods.

WPS-FCM vs WS-FCM in BerkDB

Table 5.6 shows the SA values for all the methods tested on BerkDB instances, and
Table 5.5 shows the p values from the Wilcoxon test for the comparison of WS-FCM
and WPS-FCM. There are an overall 25 instances in Table 5.5 that the p value is big-
ger than the significance level (0.05). These are the instances that the methods perform
not significantly different. Having 25 out of 88 not significantly different results is an
indication of the fact that WPS-FCM and WS-FCM are performing almost the same
in term of segmentation accuracy in BerkDB. In fact, this is confirmed to some extent
when the number of significantly better results are obtained. WPS-FCM performs better
in 30 instances, and WS-FCM does so in 33 instances. Although WS-FCM is overall
performing slightly better than WPS-FCM, having a look at table 5.6 shows that the per-
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S1 S3 S3 S4 S5

(σ2 = 10%) (σ2 = 60%) (σ2 = 70%) (σ2 = 80%) (σ2 = 30%)

Noisy Im-
ages

Groundtruths

FCMS 1

FCMS 2

EnFCM

FGFCM

FGFCMS 1

FGFCMS 2

Continued on next page
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Figure 5.8 – continued from previous page

FLICM

WS-FCM

WPS-FCM

AWA-FCM

BWPS-FCM

Figure 5.8: Qualitative comparison of the proposed BWPS-FCM with FCM S1, FCM S2, EnFCM,
FGFCM S1, FGFCM S2, FGFCM, FLICM, WS-FCM, WPS-FCM, and AWA-FCM on some instances
from SynthDB. Synth1, Synth2, Synth3, Synth4, and Synth5 are corrupted by Gaussian noise of variance
10%, 60%, 70%, 80%, and 30% respectively.

formance difference is mostly very low. Having said that, there are a total of six images
(B3096, B8068, B253036, B147091, B108073, and B135069) for which the number of
significantly better performances over the eight instances is bigger for WPS-FCM in
comparison to WS-FCM. In one image the number of significantly better performances
are equal (B24063), and in four other images WS-FCM is possessing the majority of sig-
nificantly better performances (B42049, B167062, B86016, and B196027). Therefore,
image-wise, WPS-FCM performs better than WS-FCM.
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Table 5.5: Wilconxon provided p values resulted from the pair-wise comparison of WPS-FCM with WS-
FCM for the BerkDB dataset corrupted with Gaussian noise. The bold numbers indicate p values greater
than the significance level. +, - and = respectively show where WPS-FCM performs significantly better,
significantly worse or not significantly different than WS-FCM.

Noise Level
Img. 10% 20% 30% 40% 50% 60% 70% 80%

B3096 2e-05 (+) 0.25 (=) 0.32 (=) 0.0039 (+) 0.55 (=) 0.0039 (+) 0.028 (-) 0.24 (=)

B8068 0.21 (=) 0.16 (=) 2.6e-05 (-) 0.00055 (+) 0.00023 (-) 0.006 (+) 1.7e-06 (+) 0.0022 (+)

B42049 0.00026 (-) 0.0012 (-) 7.7e-06 (-) 0.072 (=) 0.14 (=) 0.53 (=) 2.4e-06 (-) 0.11 (=)

B167062 1.7e-06 (-) 2.6e-06 (-) 0.0045 (-) 1.7e-06 (-) 0.038 (-) 1.7e-06 (-) 1.7e-06 (-) 2.6e-06 (-)
B86016 0.019 (+) 0.012 (-) 1.7e-06 (-) 3.1e-05 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 5.3e-05 (+)

B196027 0.082 (=) 4.7e-06 (-) 0.0011 (+) 0.021 (-) 0.00089 (-) 0.00053 (-) 0.13 (=) 0.019 (-)
B24063 0.00039 (-) 0.78 (=) 0.0017 (+) 8.2e-05 (-) 2.6e-06 (-) 2e-05 (+) 0.00039 (-) 0.007 (+)

B253036 1 (=) 0.00049 (+) 0.0012 (+) 0.047 (-) 1.7e-06 (+) 0.77 (=) 4.9e-05 (+) 0.0066 (-)
B147091 0.0008 (+) 1.7e-06 (+) 2.4e-06 (+) 0.0047 (+) 0.00028 (-) 1.7e-06 (-) 0.63 (=) 1.9e-06 (+)

B108073 0.34 (=) 0.95 (=) 0.48 (=) 0.012 (+) 0.13 (=) 0.45 (=) 0.054 (=) 0.043 (+)

B135069 1.2e-05 (+) 0.15 (=) 0.00015 (+) 1.7e-06 (+) 0.014 (+) 0.15 (=) 0.18 (=) 0.012 (+)

Table 5.6: SA values for the BerkDB dataset corrupted with Gaussian noise. The bold number indicates
the best performance for each instance. The bold numbers indicate the best performance for each instance
where the difference is significant.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM BWPS-FCM

B3096

10% 63.55 66.46 68.06 74.04 80.67 83.04 6.13 80.74±0.03 81.19±0.54 83.26±0.03 85.69±0.17
20% 58.93 62.44 61.03 66.89 73.65 74.45 6.13 77.97±0.02 78.04±0.38 80.15±0.01 82.31±0.13
30% 57.04 60.84 57.65 63.23 70.29 70.70 6.13 79.40±0.04 79.45±0.32 81.97±0.04 82.83±0.08
40% 55.57 59.27 54.87 59.98 66.78 65.59 6.13 80.59±0.07 80.78±0.30 81.50±0.03 83.44±0.13
50% 55.06 58.49 54.91 58.47 64.92 62.43 6.13 78.45±0.01 78.59±0.85 79.59±0.01 81.12±0.41
60% 54.65 58.38 53.80 58.65 63.42 63.23 6.13 77.48±0.05 77.70±0.52 78.64±0.02 80.41±0.15
70% 54.08 57.55 53.94 57.66 61.80 61.18 6.13 73.98±0.06 73.93±0.71 74.13±2.08 74.28±0.18
80% 53.71 57.39 53.10 56.40 62.73 61.20 6.13 75.57±0.03 75.10±2.04 77.22±0.03 77.15±0.22

B8068

10% 94.56 94.80 94.73 94.94 95.22 95.12 95.78 95.05±1.17 95.29±0.07 95.38±0.00 95.24±0.02

20% 93.60 94.06 93.90 94.40 94.72 94.61 96.45 95.16±0.01 95.17±0.05 95.08±0.00 94.94±0.03

30% 92.25 93.30 92.98 93.84 94.35 93.97 96.92 94.93±0.01 94.86±0.07 94.90±0.00 94.92±0.02

40% 90.20 92.74 91.81 93.51 94.33 93.81 96.96 94.98±1.19 95.16±0.05 95.29±0.01 95.19±0.03

50% 87.97 92.36 90.07 93.23 94.18 93.57 96.93 95.40±0.00 95.36±0.04 95.37±0.00 95.32±0.02

60% 85.27 91.17 87.59 92.04 93.72 92.81 77.69 95.07±0.01 95.08±0.03 95.27±0.00 95.28±0.02
70% 82.27 89.89 84.47 90.66 93.03 92.02 77.69 95.12±0.02 95.26±0.04 95.28±0.00 95.06±0.03

80% 80.46 89.37 82.31 89.81 92.73 91.54 77.69 94.87±0.01 94.91±0.07 94.94±0.00 94.88±0.01

B42049

10% 92.98 93.46 93.34 94.04 93.38 93.79 95.15 94.64±0.01 94.50±0.17 94.89±0.01 95.20±0.05
20% 88.83 90.87 90.70 92.70 92.79 92.65 94.02 93.40±0.01 93.20±0.31 94.07±0.00 94.78±0.03
30% 84.09 89.13 86.73 91.81 92.50 92.08 94.53 93.24±0.00 92.81±0.34 94.24±0.00 94.54±0.18

40% 78.97 86.15 81.55 88.72 90.90 89.92 19.09 92.36±0.01 92.26±0.43 93.38±0.00 93.64±0.21
Continued on next page
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Table 5.6 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM BWPS-FCM
50% 75.56 84.18 77.37 86.63 90.31 89.27 19.09 92.54±0.11 92.35±0.45 93.51±0.04 93.67±0.16
60% 72.97 81.88 74.13 83.44 88.77 86.74 19.09 90.64±0.09 90.77±0.62 91.96±0.05 92.84±0.12
70% 71.45 81.31 72.68 82.41 87.78 86.31 19.09 91.52±0.05 90.60±0.68 92.29±0.03 92.93±0.14
80% 69.66 79.04 70.59 78.54 85.29 83.61 19.09 89.30±0.05 89.66±0.95 91.10±0.04 92.22±0.06

B167062

10% 79.13 79.68 85.42 97.92 97.16 81.66 99.08 98.54±0.00 98.34±0.14 98.68±0.00 98.56±0.02

20% 77.43 79.21 82.03 79.52 97.04 81.68 99.19 98.23±0.01 97.91±0.15 98.38±0.00 93.87±5.66

30% 76.92 78.87 81.69 78.32 76.14 80.34 99.24 97.78±0.01 97.70±0.12 98.01±0.01 96.02±4.98

40% 76.11 77.77 79.81 77.17 74.39 80.02 99.23 97.81±0.00 97.41±0.23 97.97±0.00 94.72±5.57

50% 75.60 77.21 78.63 76.06 73.42 80.47 99.27 97.60±0.01 97.57±0.24 97.78±0.00 97.67±0.04

60% 74.64 77.10 76.99 75.75 88.21 81.03 98.80 97.51±0.01 96.56±2.04 97.41±0.01 97.32±0.02

70% 73.67 76.45 75.14 74.50 71.25 80.64 98.93 97.53±0.00 97.24±0.35 97.76±0.00 97.66±0.04

80% 72.58 75.61 73.56 74.51 71.11 79.92 98.93 97.16±0.01 96.57±0.35 96.09±4.04 95.53±4.74

B86016

10% 85.75 86.62 88.58 92.21 93.73 92.71 99.09 98.46±0.02 98.49±0.08 98.37±0.01 97.65±0.07

20% 76.81 80.21 79.30 86.78 90.70 88.64 16.36 97.65±0.01 97.60±0.09 96.85±2.68 97.08±0.08

30% 71.68 76.25 72.80 80.45 86.48 83.51 16.36 97.76±0.02 97.54±0.13 97.38±0.01 97.32±0.04

40% 69.44 75.43 70.95 78.20 84.64 82.00 16.36 96.94±2.86 97.10±0.11 97.11±0.04 97.00±0.06

50% 67.24 73.56 67.63 75.02 83.35 79.75 16.36 98.44±0.01 98.21±0.19 98.37±0.01 98.01±0.10

60% 65.75 72.43 66.10 73.31 80.68 78.14 16.36 97.84±0.00 97.64±0.14 97.63±0.00 97.15±0.10

70% 63.92 69.97 64.21 69.92 77.25 73.41 16.36 97.13±0.01 96.81±0.23 96.55±3.14 96.70±0.14

80% 63.32 70.21 63.88 69.91 76.07 74.34 16.36 94.93±3.11 95.27±0.16 95.73±0.03 95.64±0.04

B196027

10% 73.62 75.25 76.34 78.23 79.70 80.38 90.42 79.55±0.02 79.49±0.19 80.42±0.01 80.52±0.04

20% 67.89 70.80 70.11 74.12 76.61 77.32 11.57 79.79±0.05 79.31±0.41 80.26±0.02 80.24±0.07

30% 65.12 68.67 66.27 71.24 75.21 74.64 11.57 78.78±1.78 78.85±0.25 79.87±0.02 80.40±0.01
40% 62.99 67.39 63.80 69.02 73.96 72.83 11.57 76.58±0.20 76.42±0.49 77.91±0.05 78.25±0.07
50% 61.51 65.88 62.54 66.95 71.91 70.44 11.57 80.18±0.02 80.00±0.34 80.36±0.06 79.93±2.17

60% 60.52 65.28 61.13 65.74 71.09 69.83 11.57 79.87±0.02 79.66±0.38 80.28±0.02 80.80±0.03
70% 59.39 64.34 59.91 64.49 70.24 67.66 11.57 76.38±1.48 76.68±0.44 77.78±0.03 77.65±0.04

80% 59.05 63.80 59.04 63.40 68.64 66.68 11.57 80.29±0.14 79.63±2.23 80.14±0.12 80.14±0.08

B24063

10% 91.41 92.76 91.52 94.15 94.77 94.91 80.52 95.93±0.01 95.72±0.21 96.60±0.00 96.92±0.03
20% 85.99 88.53 85.99 89.82 92.24 91.51 56.98 95.07±0.12 95.09±0.25 95.70±0.00 95.91±0.07
30% 81.95 85.50 81.77 86.70 90.36 88.46 53.42 95.74±0.00 95.78±0.13 96.36±0.00 96.38±0.02
40% 79.27 83.65 78.99 84.02 87.79 86.19 58.70 94.89±0.17 94.61±0.30 95.49±0.05 95.59±0.02
50% 76.42 81.39 76.11 81.86 86.08 83.39 58.70 94.06±0.06 93.88±0.13 94.68±0.01 94.67±0.06

60% 74.74 80.45 74.39 80.23 84.18 82.20 58.70 93.75±0.06 94.12±0.28 94.52±0.01 94.71±0.04
70% 74.40 80.34 74.09 79.77 84.20 81.61 58.70 94.51±0.01 94.39±0.14 94.79±0.01 94.85±0.01
80% 71.89 78.65 71.73 77.45 81.54 79.93 58.70 93.34±0.06 93.44±0.16 94.15±0.06 94.07±0.08

B253036

10% 93.15 92.63 93.34 94.88 95.07 93.79 98.46 96.56±0.03 96.57±0.15 96.88±0.02 97.04±0.02

20% 88.51 89.38 89.08 91.98 93.61 91.67 97.60 95.91±0.01 96.04±0.17 96.46±0.01 96.65±0.08

30% 84.94 87.91 85.57 90.07 91.98 90.49 29.45 94.73±0.01 94.82±0.14 95.54±0.01 95.76±0.03
40% 81.94 86.23 82.61 87.70 90.58 88.66 29.45 95.77±0.04 95.68±0.21 95.97±0.01 95.91±0.02

50% 78.68 84.00 78.87 84.78 88.19 86.16 29.45 93.54±0.00 93.80±0.19 93.76±1.12 94.41±0.01
60% 76.79 83.23 77.18 83.17 87.17 85.84 29.45 94.70±1.35 94.89±0.23 94.81±1.31 94.97±0.04

70% 75.35 82.45 75.84 81.87 86.48 84.72 29.45 94.45±0.05 94.63±0.19 94.91±0.04 95.33±0.02
80% 73.22 81.06 73.54 79.86 84.57 83.11 29.45 93.96±0.02 93.87±0.17 94.13±0.01 94.51±0.12

Continued on next page
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Table 5.6 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM BWPS-FCM

B147091

10% 87.83 88.55 87.90 88.72 88.81 89.40 88.88 89.43±0.02 89.52±0.11 89.68±0.01 89.82±0.01
20% 85.12 86.74 85.12 87.23 88.11 88.25 65.41 89.06±0.06 89.34±0.13 89.56±0.05 89.78±0.04
30% 82.34 84.69 82.23 85.03 86.78 86.01 42.74 88.21±0.02 88.50±0.13 88.66±0.01 88.72±0.09
40% 80.74 84.15 80.92 84.25 86.38 86.01 42.74 88.61±0.07 88.80±0.27 89.06±0.03 88.91±0.06

50% 78.47 82.72 78.36 82.64 8high5.40 84.13 42.74 88.84±0.00 88.75±0.11 89.49±0.00 89.48±0.04

60% 76.37 81.41 76.26 81.10 84.26 83.02 42.74 88.31±0.01 87.84±0.40 88.65±0.00 88.54±0.13

70% 74.87 80.71 74.68 79.93 83.55 82.06 42.74 87.50±0.05 87.48±0.13 87.69±0.02 87.63±0.02

80% 73.53 79.50 73.46 78.81 82.57 80.60 42.74 88.34±0.01 88.53±0.07 88.78±0.02 88.89±0.14

B108073

10% 78.11 77.06 80.78 82.86 83.68 80.08 87.13 82.41±0.16 82.48±0.27 83.56±0.04 84.43±0.04

20% 72.42 73.38 75.01 78.57 79.73 76.00 86.22 79.63±0.10 79.63±0.15 80.89±0.11 81.55±0.12

30% 69.52 71.56 71.44 75.79 77.13 74.20 77.45 79.97±0.19 79.97±0.37 81.44±0.08 81.92±0.04
40% 67.13 70.31 69.26 72.70 74.92 73.32 77.45 79.99±0.02 80.13±0.25 81.01±1.22 81.34±0.09
50% 65.76 69.00 67.36 70.59 73.98 70.91 77.45 80.21±0.01 80.18±0.38 81.73±0.01 81.81±0.05
60% 64.10 67.66 65.37 68.64 70.67 69.32 77.45 76.21±0.85 76.39±0.16 77.60±0.06 77.91±0.09
70% 63.37 67.62 64.60 67.77 70.51 69.26 77.45 80.05±0.14 80.16±0.29 81.26±0.12 81.17±1.24

80% 63.05 67.47 64.32 67.33 69.55 69.16 77.45 81.40±1.21 81.69±0.22 82.88±0.03 83.10±0.03

B135069

10% 58.28 60.61 59.40 64.99 69.70 72.74 5.23 66.49±0.01 66.88±0.44 67.92±0.00 68.48±0.09

20% 55.19 57.95 55.79 60.00 63.99 66.68 5.23 68.13±0.04 68.25±0.54 67.70±0.02 67.82±0.36

30% 53.39 56.13 51.88 56.99 61.40 63.04 5.23 61.01±0.61 61.42±0.40 64.68±0.01 63.24±0.06

40% 52.86 56.10 52.25 56.17 62.44 61.20 5.23 60.13±0.05 60.83±0.79 63.51±0.97 64.23±0.15
50% 52.52 55.63 51.99 55.54 59.66 59.62 5.23 63.68±0.05 63.98±0.76 65.63±1.19 66.60±0.36
60% 52.27 55.58 50.86 54.43 59.86 59.29 5.23 64.91±0.33 64.53±1.38 64.94±0.10 67.23±0.11
70% 52.47 55.69 51.13 54.73 60.11 58.89 5.23 61.36±0.04 61.73±0.96 64.40±0.06 65.05±0.17
80% 51.95 55.33 51.00 54.58 60.59 58.95 5.23 67.29±1.23 67.66±0.38 69.43±0.04 70.02±0.25

BWPS-FCM vs Other Methods in BerkDB

Table 5.7 provides the results of the Wilconxon test on the pair-wise comparison of
BWPS-FCM vs other methods. This table shows that there are a total of 20 pair-wise
comparisons in which the p value is bigger than the significance level. These cases be-
long to the comparison of BWPS-FCM to, FGFCM S1 (one case), FLICM (one case),
WS-FCM (four cases), WPS-FCM (six cases), and AWA-FCM (8 cases). This means
that out of 880 pair-wise comparisons maid, there are 20 cases that BWPS-FCM per-
forms not significantly different from the aforementioned methods. Putting aside these
cases, for the rest of the comparisons BWPS-FCM is performing always/mostly better
than the other methods. More importantly, BWPS-FCM outperforms AWA-FCM in this
dataset.

BWPS-FCM outperforms the performance of FCM S1, FCM S2, EnFCM, and FGFCM
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on all the 88 instances. It outperforms the other FCM-objective-modified algorithms
FGFCM S1, FGFCM S2, and FLICM, on 86, 87, and 68 instances respectively. Also,
BWPS-FCM outperforms, the adaptive shrinkage-based algorithms, WS-FCM, WPS-
FCM, and the powerful AWA-FCM on 70, 67, and 51 instances respectively.

To determine the overall best performer based on the highest number of best and
second-best performances, the best performer of all is the proposed BWPS-FCM being
the best performer on 42 instances, and second-best on 13 further instances. In this man-
ner, the overall second-best performer is FLICM with 19 instances as the best performer,
and two further instance as the second-best performer. The third- and fourth-best per-
former are respectively AWA-FCM and WS-FCM having 12 and five best performances
respectively, and 46 and five further second-best performances. Therefore, in addition to
the previous pair-wise comparison, the mentioned overall best comparison also specifies
BWPS-FCM as the best noisy image segmentation algorithm in the BerkDB dataset.
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Table 5.7: p values provided by the Wilcoxon significance test for the BerkDB dataset corrupted with Gaussian noise.
The bold numbers indicate p values greater than the significance level.

Algorithm
Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM

B3096

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 4.3e-06 (+) 0.003 (+) 3.1e-05 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.25 (=)

B8068

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0013 (+) 1.7e-06 (+) 1.7e-06 (-) 0.002 (+) 0.0047 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.0058 (-) 8.2e-05 (+) 0.00027 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.53 (=) 0.005 (+) 1.7e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 9.7e-05 (-) 1.9e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00042 (+) 0.009 (-) 1.7e-06 (-)

B42049

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00022 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.39 (=) 1.7e-06 (+) 1.7e-06 (+) 7.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00011 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B167062

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.3e-05 (+) 1.7e-06 (+) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.21 (=) 1.7e-06 (+) 1.7e-06 (-) 0.2 (=) 0.21 (=) 1.7e-06 (-)
30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.057 (=) 0.057 (=) 0.057 (=)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.98 (=) 0.67 (=) 0.85 (=)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 0.0012 (+) 2.1e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.015 (-) 0.015 (-) 0.0012 (-)

B86016

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 3.1e-05 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 8.5e-06 (-) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 0.00083 (-) 5.2e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 3.1e-05 (-) 1.7e-06 (-)
60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.028 (-) 3.1e-05 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.4e-06 (+) 1.7e-06 (+) 1.7e-06 (-)

B196027

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.084 (=)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 6.3e-05 (-) 0.00036 (-) 0.11 (=)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.00028 (-) 0.2 (=) 0.92 (=)

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+)

Continued on next page
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Table 5.7 – continued from previous page
Algorithm

Img. Vol. FCM S1 FCM S2 EnFCM FGFCM FGFCM S1 FGFCM S2 FLICM WS-FCM WPS-FCM AWA-FCM

B24063

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.5e-05 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.27 (=)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.0023 (-)

B253036

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 2.1e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 4.7e-06 (+) 1.9e-06 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.029 (+) 0.15 (=) 0.00023 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B147091

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.019 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.22 (=) 2.3e-05 (-)
50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 0.16 (=)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 3.1e-05 (+) 1.9e-06 (+) 1.9e-06 (-)
70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 4.3e-06 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 6.3e-06 (+) 3.1e-05 (+)

B108073

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 4.3e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 3.1e-05 (+) 3.1e-05 (+) 0.001 (-)
80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

B135069

10% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 1.7e-06 (-) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

20% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+) 1.7e-06 (-) 0.00066 (-) 0.015 (+)

30% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (-)
40% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

50% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.6e-06 (+)

60% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+)

70% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.9e-06 (+) 1.7e-06 (+)

80% 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 1.7e-06 (+) 2.6e-06 (+)
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The final quantitative experiment shows the performance of the proposed BWPS-
FCM over noise level variation compared to other methods. Fig. 5.9 provides the mean
and the variance of the SA values while the noise level changes. Fig. 5.9(a) shows the
mean values according to which in 8 (out of 11) images the proposed BWPS-FCM has
the highest mean values. AWA-FCM, WS-FCM, and FLICM each have one highest
mean performance. Therefore, BWPS-FCM is the best performer having the largest
number of the highest mean performances. Also, Fig. 5.9(a) shows that WPS-FCM
has a higher mean performance on six images versus five higher mean performances
of WS-FCM. This indicates that in this quantitative experiment (the largest number of
the highest mean performances), WPS-FCM performs better than WS-FCM. For the
lowest variance of the SA value over noise variation, Fig. 5.9(b) is provided. This bar
graph indicates that each of BWPS-FCM, AWA-FCM, and WS-FCM has the lowest
SA variance on three images, and each of WPS-FCM and FLICM has the lowest SA
variance on one image. This way the best performer ranking (considering the largest
number of the lowest variance of SA), jointly belongs to BWPS-FCM, AWA-FCM, and
WS-FCM algorithms.

BerkDB (Qualitative Analysis)

Some segmentation results from all the algorithms are shown in Fig. 5.10 in which
an instance is selected from each image (due to space limitations the results are shown
in this order: first, images B3096, B42049, B86016, and B135069, then images B8068,
B24063, B253036, and B167062, and finally images B147091, B108073, and B196027).
FCM-objective-modified methods such as FCM S1 and FCM S2, EnFCM, FGFCM,
FGFCM S1 and FGFCM S2 suffer from over-segmentation even on noisy images with
low volume of noise. Redundancy of spurious regions caused by noise makes the detec-
tion of the main regions almost impossible. FLICM provides a mixture of bad and good
results. There are instances such as the one for image B167062 that the method has
outstanding results, and there are instances such as the ones related to images B3096,
B42049, B86016, B135069, and more that the method produces uninterpretable results
for not being able to comply with the required number of clusters in the segmented
image.

Generally, WPS-FCM produces results that show better performance on preserva-
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(a) SA mean.
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(b) SA variance.
Figure 5.9: Demonstration of different algorithms performance on noise level variation (BerkDB).
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tion of edges compared to WS-FCM. This is clearly visible on the instances of im-
ages B3096, B42049, B253036, B147091, B108073, and B196027. From the detail-
preserving perspective, BWPS-FCM shows better performance than other adaptive wavelet-
shrinkage-based methods (WS-FCM, WPS-FCM, and AWA-FCM). This is observable
on the instances of images B42049, B253036, and B108073. However, BWPS-FCM
produces more redundant regions such as the ones in the instance of B108073. Since the
results produces by BWPS-FCM still have higher SA values compared to other methods
in the majority of the instances, one can realize the importance of edge preserving on
noisy segmentation applications.

5.6 Chapter Summary

Motivated by the adaptive wavelet shrinkage algorithm proposed in chapter 3 (WS-
FCM), we introduced another algorithm named WPS-FCM using wavelet packets as a
domain for feature enhancement. WPS-FCM did not produce overall better results than
its counterpart, WS-FCM, based on the number of better performances according to
the SA metric on the instances of the SynthDB and BerkDB. However, considering the
instances related to each image, WPS-FCM performs better than WS-FCM in BerkDB
by holding a larger number of better performances, as well as possessing a higher mean
performance over the noise level variation. In addition, qualitatively, WPS-FCM tends
to preserve more details related to edges and boundaries compared to WS-FCM.

Next, using the same idea as in WPS-FCM, we introduced another algorithm termed
BWPS-FCM with two differences. Naturally noisy images, or images destroyed by
severe noise volume may suffer from non-sparsity. A pre-denoising step is applied
using bilateral filtering which returns the sparsity back to the wavelet coefficients. Also,
a new thresholding scheme based on smooth sigmoid-based shrinkage was designed to
overcome the problems caused by zero-crossing and attenuation of soft-thresholding
function. Like the other previous wavelet-shrinkage-based algorithms introduced in this
thesis, BWPS-FCM is parameter-free for the volume of noise, is effective in severely
noisy image segmentation, and showed consistency with noise volume variations.

Overall, BWPS-FCM outperforms WS-FCM and WPS-FCM quantitatively and qual-
itatively. However, in comparison to AWA-FCM proposed in Chapter 4, it showed dif-
ferent behaviors in SynthDB and BerkDB. In the SynthDB, since the regions are single-
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Continued on next page
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Figure 5.10 – continued from previous page
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Figure 5.10 – continued from previous page
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Figure 5.10 – continued from previous page
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Figure 5.10 – continued from previous page

BWPS-FCM

Figure 5.10: Qualitative comparison of the proposed BWPS-FCM with FCM S1, FCM S2, EnFCM,
FGFCM S1, FGFCM S2, FGFCM, FLICM, WS-FCM, WPS-FCM and AWA-FCM on some instances
from the BerkDB. B3096, B8068, B42049, B167062, B86016, B196027, B24063, B253036, B147091,
B108073, and B135069 are corrupted by Gaussian noise with variances of 10%, 60%, 80%, 50%, 70%,
40%, 10%, 50%, 20%, 30%, and 60% respectively.

intensity, noise corruption does not cause as much damage it causes in multi-intensity
regions. In an FCM-based segmentation scheme, this is justifiable by the experimental
intuition that more distinguishable regions can be segmented in SynthDB compared to
the BerkDB. Having said that, in SynthDB, it is the new thresholding scheme that has
more effect than the pre-denoising step. In fact, in this dataset there is nothing the pre-
processing step can do that wavelet packet shrinkage can not do. Overall, AWA-FCM
performs better than BWPS-FCM in SynthDB. On the other hand, in BerkDB where
the natural images have multi-intensity distinguishable regions, the pre-denoising con-
tributes more. The pre-denoising step provides better thresholding process by creating
a better sparsity of coefficients. This causes the overall better performance of BWPS-
FCM compared to AWA-FCM in BerkDB.
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Chapter 6

Conclusion and Future Work

This chapter is dedicated to highlighting the achieved objectives, main conclusions, and
future research directions. This thesis was focused on PSO for FCM-based noisy image
segmentation. The overall goal of the thesis was to develop new domain-independent
PSO approaches for an automatic non-supervised FCM-based segmentation of severely
noisy images which is capable of extracting main coherent/homogeneous regions while
preserving details and is robust to noise variation. We have successfully achieved this
goal in this thesis where domain-independence was achieved by using image raw pix-
els directly as the input of the developed systems, although due to the usage of FCM,
we need to know the preferred number of clusters in advance. The key approach taken
in the thesis is to explore the use of PSO to manipulate and enhance local spatial and
spatial-frequency information. To this end, a number of approaches were successfully
developed in this thesis using PSO. The proposed methods were evaluated extensively
using different image segmentation benchmarks, and were compared to state-of-the-art
algorithms. The results showed that appropriate utilization of PSO for feature enhance-
ment and proper incorporation of other detail-preserving methods in noisy images pro-
duce mostly better performances compared to state-of-the-art algorithms.

6.1 Answers to the Proposed Research Questions

We raised three research questions in the first Chapter that are answered here based on
our achievements in the Chapters 3, 4, and 5:

165
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(i) “How can PSO be used in an FCM-based noisy image segmentation system for an

effective enhancement of features?”

Response: We demonstrated that PSO can be effectively used for adaptive thresh-
olding in both wavelet and wavelet packet domains. Using a specific filter (Coiflet
family in this thesis) in five-scales transformation provides subbands that can be
searched for proper threshold values using PSO. Particles in PSO are in fact sets
of threshold values that can swing in a predefined interval and are evolved using a
FCM clustering metric.

(ii) “How can details be preserved in a noisy image segmentation? How can we im-

prove the results of the previously created system with a stress on detail preserva-

tion?”

Response: We found that preserving details in severely noisy image segmenta-
tion can be a very difficult task. Common approaches such as edge detection or
gradient-based methods do not work. We introduced detail-preserving algorithms
in this thesis using edge detection and edge-preservative denoising methods tai-
lored through many qualitative and quantitative experiments based on intuitive
and logical processes.

(iii) “How could a detail-preserving feature-enhancing system cope with noise type or

volume variations while remaining consistently effective and parameter-tuning-

free?”

Response: To make the proposed algorithms effective on images with different
levels of noise we introduced two nonlinear noise estimating systems based on
the variance of noise measurable in the wavelet domain. Again, extensive empir-
ical and hypothetical experiments were conducted to make the systems practical.
Also, the adaptive nature PSO helps immensely with the accurate segmentation in
images with noise level or type variation.

6.2 Achieved Objectives

The fulfilled research objectives this thesis presents are as follows:
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• The thesis proposes a new PSO approach for adaptive shrinkage of wavelet coef-
ficients for enhancement of features in an FCM-based noisy image segmentation
process. PSO adaptively evolves threshold values that have a proper denoising
performance using a soft-thresholding function and FCM clustering evaluation.
Next, we extend the method by incorporating the well-known Canny edge de-
tector. The extension benefits from adaptive thresholding of detail coefficients
and edge enhancement on some coefficients that are less likely to be corrupted by
noise. This causes the extended algorithm to perform slightly better than its prede-
cessor by preserving more edge information. The new algorithms perform well in
elimination of severe noise and consequently severely noisy image segmentation
particularly for Gaussian noise. Also, a very good consistency of segmentation
accuracy is observable when noise level varies. Visually, this approach performs
well on extracting the main objects/regions while not so much respectful of small
region, edges, and details.

• This thesis proposes a new combination of two denoising algorithms for detail-
preserving in severely noisy image segmentation. The new method uses the adap-
tive wavelet shrinkage PSO approach introduced above and the edge-preserving
anisotropic diffusion. This approach aims at returning some of the details that
exist in the anisotropic diffusion denoising results, and are removed in the PSO
approach, without returning back the noise. To this end, we introduced a new
scheme to fuse the coefficients of both denoising results in the wavelet domain.
To remove side effects of the fusion process, a final elimination of small regions
based on connected component analysis is performed. The new method bene-
fits from the advantages of both denoising algorithms, and partially overcomes
the drawbacks of each. Details related to boundaries are preserved better, and
segmentation accuracy is higher compared to both primary algorithms.

• This thesis introduces a new PSO approach for adaptive shrinkage of wavelet
packet coefficients for feature enhancement in an FCM-based noisy image seg-
mentation. We use wavelet packets as another tool for multiscale analysis. The
new approach includes formation of an optimum wavelet packet decomposition
tree based on Shannon entropy, and adaptive shrinkage of different subbands
in the optimum tree using PSO. The threshold values are again evaluated using
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FCM clustering performance. Next we extend the approach by adding a pre-
denoising step, and a new shrinkage scheme. The pre-denoising step uses an
edge-preserving bilateral filtering, and the new thresholding scheme uses smooth
sigmoid-based shrinkage. By a proper thresholding and detail preservation pro-
cesses, the new approach achieves the highest segmentation accuracy so far on
some of the image benchmarks (in comparison to algorithms proposed in this
thesis and the state-of-the-art comparison algorithms) .

6.3 Summary of the Research

Overall, this thesis finds that PSO can be effectively used for feature enhancement to
FCM-based noisy image segmentation. While the common approach is to modify FCM
objective in order to extract and enhance features from a local neighboring window
around each pixel, we showed that keeping the original FCM but using a proper feature
enhancement scheme can result in outstanding performances. This thesis also intro-
duces a number of approaches to enhance the edge information in segmentation results.
The new approaches introduced in this thesis are parameter-tuning free for the volume
of noise (sometime the type of noise), effective in case of severe noise, and consistent
with noise volume variations. In the following, we discuss the detailed conclusions from
each contribution chapter.

6.3.1 Adaptive Wavelet Shrinkage for Severely Noisy Image Seg-
mentation

Chapter 3 introduces a new PSO approach for adaptive shrinkage of wavelet coefficients,
and the extension of the approach introduces the application of edge detection to edge
enhancement.

Wavelets

Thresholding wavelet coefficients could result in proper image denoising. The scheme
for thresholding plays an important role in the results. The number of scales, num-
ber of threshold values, and the thresholding function are the factors to be investigated
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precisely. We showed the two dimensional discrete wavelet transform in a five-scale
transformation can provide a proper decomposition of a noisy image. In our approach,
there is a threshold value for each subband, and the soft-thresholding function [47] is
used. Any other settings would result in over/under segmentation, expensive compu-
tation, or unstable results. The choice of wavelet filter also has different segmentation
results. Denoising, compression or segmentation, each require their own choice of filter.
We have used the Coiflet filter family in our noisy image segmentation approach.

PSO Representation and Fitness Evaluation

Having a threshold value for each subband in a five-scale transformation requires 15
threshold values, which need proper tuning otherwise they result in over-smoothed or
over-segmented images. An array of 15 threshold values can effectively and efficiently
be represented as particles in the PSO search space in our approach. We set restrictions
for threshold vales to keep them positive and less than the Universal threshold [47]. This
helps proper thresholding while prevents over-smoothing. The fitness metric provided
by the FCM objective function guides the search effectively to find good threshold val-
ues. We also found that, PSO search guided by an unsupervised denoising performance
as in [148] under the provided scheme eliminates many of the large coefficients and
results in over-smoothed segmentation results. in

Edge Enhancement

This part is an extension to the the above adaptive wavelet shrinkage algorithm by
adding up some enhanced edge information. For this extension, we introduce an scheme
under which edge detection is incorporated into wavelet thresholding. Being applica-
ble in the wavelet domain makes the extension simple and efficient because no extra
transformation is required, and the only extra computational cost comes from the edge
detection process. Applying edge detection algorithms on detail coefficients in case of
severe noise produces many redundant regions in segmentation results. Our scheme
aggregates the approximation coefficients with an edge map obtained from these co-
efficients. To obtain the edge map, Canny edge detector is applied to approximation
coefficients. Results show that emphasizing on edge coefficients before the reconstruc-
tion process leads to more accurate edge information, and therefore better segmentation
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accuracy.

6.3.2 Wavelet Shrinkage and Anisotropic Diffusion for Severely Noisy
Image Segmentation

Chapter 4 introduces an edge-preserving noisy image segmentation to address the over-
smoothing drawback of the previously proposed approach. Soft-thresholding causes
over-smoothing of edges due to attenuation of large coefficients. In an attempt to an
edge-respectful approach, we use anisotropic diffusion in integration with the PSO ap-
proach introduced in the previous chapter. The PSO approach performs well in noise
elimination and anisotropic performs well in edge preservation.

Anisotropic Diffusion

We found that the iterative edge-preserving denoising algorithm, anisotropic diffusion
[101], has the abilities to enhance features in an FCM-based severely noisy image seg-
mentation scheme. However, it needs parameter tuning according to noise volume. This
specific parameter is the number of iterations according to which the filter has to apply to
the image. Larger volumes of noise require larger numbers of iteration. Experimentally,
we found a quadratic curve according to which this number could be estimated. This
number of iterations does not guarantee the best performance of anisotropic diffusion,
but results in a good denoised image with enough edge information.

Fusion Scheme

The denoise image resulted from anisotropic diffusion and the thresholded coefficients
resulted from the PSO approach are fused in wavelet domain. After wavelet decompo-
sition of the resulted image from the anisotropic diffusion process, detail coefficients
from the two methods are aggregated with different weightings. We found that this ag-
gregation not only adds more edge information to the image, but also removes some of
the noise existing in the anisotropic denoised image. However, some noise is yet added
to the reconstructed image as a side effect of the fusion process. This results in some
small redundant regions in the segmentation results. These redundant regions are eas-
ily detectable, because they are sparsely located in other wider segments belonging to
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main regions or objects. We introduced a new elimination strategy using the concept of
connected component analysis which can safely eliminate these redundant regions.

6.3.3 Wavelet Packets and Bilateral Filtering for Edge-Preserving
Severely Noisy Image Segmentation

The final contribution chapter, Chapter 5, introduces a PSO approach for adaptive thresh-
olding of wavelet packet coefficients, similar to the PSO approach in Chapter 3. We then
extend the approach by adding a preprocessing step based on bilateral filtering, and a
final sigmoid-based shrinkage function.

Wavelet Packets

Wavelet packet transform decomposes low-frequency as well as high-frequency sub-
bands in each scale. This provides a finer frequency resolution domain of high fre-
quency content. Since there are too many nodes in a wavelet packet decomposition tree,
for efficiency matters, an optimal tree needs to be formed. This optimal tree is formed
through minimizing an additive energy function using the Shannon entropy [39]. Hav-
ing a threshold value for each scale, and restricting them as before (the maximum limit
is different this time) resulted in the best enhancement of features under the PSO search
space and FCM clustering evaluation for Gaussian corrupted noisy images. Although
wavelet packets are known to provide a richer domain analysis, under the proposed
scheme, they could not quantitatively produce better results than the wavelet approach
in Chapter 3. However, in a visual comparison, they could preserve more edge informa-
tion in some cases.

Bilateral Filtering

Bilateral filtering is another edge-preserving denoising algorithm applicable in spatial
domain. We found that a pre-denoising step before the wavelet packet approach can
make the wavelet packet coefficients more sparse. Sparsity might be eliminated in nat-
ural images or severely corrupted noisy images. This preprocessing step is designed to
only partially remove noise. Again, predicting the parameters related to the algorithm
while noise volume increases is required. Experimentally, we showed that a sigmoid
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function could be used to tune the parameter (width of spatial Gaussian) related to the
specific bilateral filtering [35] we used in this approach.

Smooth Sigmoid-Based Shrinkage

PSO uses soft-thresholding in evaluation process which causes over-smoothing of edges.
We use a new scheme for thresholding of coefficients based on smooth sigmoid-based
shrinkage [9] that addresses this issue to some extent. We found that threshold values
obtained via a soft-thresholding function could be safely used in the sigmoid thresh-
olding function. In other words, threshold values obtained from a soft-thresholding
process are large enough to suppress the effect of noise, but they are not properly used
in confrontation with large coefficients. In the new scheme, nodes with many large co-
efficients are treated cautiously by having a low-slope transiting sigmoid thresholding
function, and other nodes depending on the estimated volume of noise are shrunk by an
abrupt transiting sigmoid function that resembles soft-thresholding. This new shrink-
age scheme preserve more large coefficients with their original magnitude and therefore
preserves more details in the segmentation results.

6.4 Future Work

This section mentions the conceivable key areas for the future work.

6.4.1 Other Multiscale Analysis Tools

One thing we partially investigated in this thesis but has tremendous potential for more
contributions is the utilization of other mathematical and computational tools for multi-
scale analysis. These features are other members of the wavelets family, and they pro-
pose different representations of the spatial-frequency transformation. Depending on
the scheme, they could lead to better accuracy to FCM-based noisy image segmentation
compared to the original wavelets. Here, we briefly mention a few of them.

• Curvelets: was first introduced by Candes et al. [27], and then the second-
generation 2D discrete transform was presented in [26]. This transform intro-
duces a new architecture to multiscale analysis. Wavelets are only localized in
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spatial and frequency (or position and scale), but curvelets are also localized in
orientation. More particularly, curvelets provide an optimally sparse representa-
tion of curves along the boundaries of objects. They could be used as an effec-
tive tool for the analysis and computation of partial differential equations. This
means that curvelets can act as waveforms that have enough frequency and spa-
tial localization that they can behave as waves (since they have enough frequency
localization), and at the same time as particles (since they have enough spatial
localization). Also, curvelets have optimal image reconstruction abilities dealing
with problems with missing data which is a case usually for severely corrupted
noisy images.

• Contourlets: was initially introduced with a discrete-domain construction by
Minh et al. [44]. It was intentionally introduced in discrete domain to address
the challenges in presenting the geometrical properties of discrete data such as
images. Two-dimensional wavelets are incapable of seeing smoothness along
the contours in natural images. Also, in best case scenario (separable wavelets),
wavelets can capture limited directional information. Inspired by characterization
of human visual system and statistics of natural images, contourlet, apart from
being multiscaled and localized like wavelets, is also directional and anisotropic.
Directionality introduces much more basis elements in different directions com-
pared to separable wavelets, and anisotropy helps to capture smooth contours us-
ing elongated shapes with different aspect ratios.

• Shearlets: motivated by the strengths of multiscale directional tools such as
curvelets and contourlets, discrete shearlet transform was proposed by Wanf [81]
to address the the drawbacks of band-limited shearlets [77], and other directional
systems. The discrete shearlet transform has stable reconstruction properties,
well-localized basis elements in both space and frequency domain, efficient im-
plementation and sparse approximation.

• Other Tools: Apart from the mentioned tools, there are other multiscale tools
for proper representations of geometrical properties of images such as bandelets
[100], wedgelets [46], Gabor wavelets [41], the cortex transform [134], and brush-
lets [92].
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6.4.2 Multi-Objective PSO

Having more than one objective in finding the proper threshold values could be another
interesting future research direction. Although the clustering metric we used in this
thesis provided us with good results, there are other criteria that could evaluate thresh-
olding and segmentation results more accurately. Based on some edge, intensity and
region metrics, multi-objective PSO has shown to show promising results [14] in an
FCM-based noisy image segmentation paradigm. Introducing new objectives or refin-
ing the objectives as in [14] could further improve the segmentation accuracy. To this
end, unsupervised segmentation metrics [142], fuzzy validity indices [8, 128], edge de-
tection evaluation metrics such as [140] or other experimental edge-based metrics can
be considered.

6.4.3 Color Noisy Image Segmentation

Image segmentation of severely color noisy images using FCM has rarely being inves-
tigated in the literature. Extension of the proposed methods in this thesis to the case of
severely noisy color images is another interesting field of research. However, there are
issues that have to be addressed. For instance, when dealing with gray images, applying
any low-pass filters, will produce a blurring effect on edges. This is due to the fact that
the smoothing or low-pass filtering results in intensity values between the intensities
of edge and non-edge pixels which are yet intermediate gray level values. However,
in color images, assuming that there are three color channels, low-pass filtering will
produce other colors which are actually disturbing color bands produced by smoothing
the edges [123]. This phenomena becomes even more serious in case of severely noisy
images with many false and redundant edge information. Therefore, new strategies has
to be developed to address this issue.
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