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Abstract

This thesis deals with solutions to Laplace’s equation in 3D, finding new relationships between solutions,
manipulating these to find new approaches to physical problems, and proposing a new class of solutions.
We mainly consider spherical and prolate spheroidal geometry and their corresponding solutions - spher-
ical and spheroidal solid harmonics. We first present new relationships between these, expressing for
example spherical harmonics as a series of spheroidal harmonics. Similar relationships are known but we
work with the spherical and spheroidal coordinate systems being offset from each other. We also propose
a new class of solutions which we call logopoles which have many links with spherical and spheroidal
harmonics, and are related to the potential created by simple finite line charge distributions. Through
the logopoles we find another relationship between the spheroidal harmonics and the often discarded al-
ternate spherical harmonics. Then we apply one of the new spherical-spheroidal harmonic relationships
to problems involving a point charge/dipole outside a dielectric sphere. We find new solutions where the
potential is expanded as a series of spheroidal harmonics instead of the standard spherical ones, and we
show that the convergence is much faster. We also solve these problems with logopoles and the solutions
converge even faster, although they are more complicated as they involve a combination of logopoles and
spherical harmonics.
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Chapter 1

Introduction

Laplace’s equation appears in many areas of physics including electrostatics, gravity, thermodynamics
and fluid dynamics. We work with general formulae that could be applied to any of these contexts, but
for applications we focus on electrostatics. This thesis investigates new relationships between solutions
to Laplace’s equation, defines a new class of solutions, and applies these relationships and solutions to
problems involving a point source interacting with a dielectric sphere. It also attempts to generalise
these relationships to the Helmholtz equation.

1.1 Background

Solid spherical harmonics 1 are widely used as a basis of functions to model physical potentials satis-
fying Laplace’s equation, involving point sources or particles with or without spherical symmetry. For
elongated objects it is beneficial to use a basis of solid prolate spheroidal harmonics instead; the prolate
geometry is stretched in one direction. Naturally one may want to switch between these two bases, and
there exist relationships that express one harmonic as a sum of the other type for this. There are four
relationships - two between the regular spherical and regular spheroidal harmonics (regular meaning the
functions are finite at the origin), and two for the irregular harmonics. The regular relationships were
first presented in 1975 [1], and the irregular realtionships were first presented in 2000 [2]. They are also
useful for converting functions and solutions between coordinate systems and deriving translation rela-
tions for spheroidal harmonics [2], which can then be used for dealing with interactions between multiple
spheroidal particles [3].

The problem of a point source interacting with a sphere is fundamental and applicable to many ar-
eas of physics. In the case of a point charge outside a conducting sphere, the problem is simple and
was first solved by Lord Kelvin in 1845 [4] using an image charge. For the dielectric case the standard
solution was first presented by Stratton in 1941 [5], but the problem has continued to be researched until
recently because it is fundamental and the standard solution contains a series which converges slowly
near the sphere. There has been investigation into expressing the potential using image charges [6] - [9],
but these solutions are not straightforward as they involve integrals over image sources.

The Helmholtz equation can be seen as the extension of Laplace’s equation from static to harmonic
time dependence. The analogue of the solid spherical harmonics are the spherical wave functions, which
are the standard basis functions for solving problems involving electromagnetic radiation and scattering
by particles. For simple geometrical problems (eg. scattering by a prolate spheroid), series solutions
of spherical wave functions may diverge or have slow convergence [10], just as do series of spherical
harmonics. For the spherical wave functions, the problem of slow convergence is worse because they
cannot always be computed to high orders. Alternate solutions to the Helmholtz equation, for example
the spheroidal wave functions, have been widely studied as an alternative basis of for expressing fields,
but they are even more problematic as their differential equations involve transcendental numbers and
they do not have a simple orthogonality property. One of the main motivations behind the project is

1We will often omit the word solid for simplicity. The term “spherical harmonic” is commonly used to refer only to
the angular part of the full solution to Laplace’s equation, and the term “spheroidal harmonic” similarly refers to only the
dependence of one spheroidal coordinate of the solution, but we use these terms to mean the full solutions.
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to find alternative functions for problems that are poorly modelled by spherical wave functions. But we
mostly work with Laplace’s equation here because it is simpler and we can work with the underlying
concepts before extending them to the Helmholtz equation.

1.2 Overview

1.2.1 Spherical and spheroidal harmonics

Chapter 2 provides new relationships between prolate spheroidal harmonics and solid spherical harmon-
ics, similar to the known relationships described above. For the known relationships the spheroidal
coordinates have their two foci either side of the origin; we derive new similar relationships for when
one of the foci is at the origin - when the spheroidal geometry is offset by half its focal length (distance
between the foci).

1.2.2 Logopoles

Chapter 3 defines and investigates a new infinite class of solutions to Laplace’s equation called logopoles.
They have several equivalent definitions - they can be written as a finite sum of spheroidal harmonics,
as a series of irregular spherical harmonics, as a series of offset spherical irregular harmonics, a sum of
spherical harmonics of the second kind (these functions are often discarded for physical applications; their
angular part are the Legendre functions of the second kind). Logopoles can be calculated by recurrence
and have an integral form. They were actually the main inspiration for the project because they could
be applied to the problem of a point source near a sphere. We also use them to derive a relationship
between spheroidal harmonics and spherical harmonics of the second kind.

1.2.3 Point source interaction with sphere

Chapter 4 focuses on various series solutions for the potential created by different point sources near a
sphere. It demonstrates the use of one of the new relationships between spherical and spheroidal har-
monics to convert the standard series solutions (involving spherical harmonics) into series comprised of
offset spheroidal harmonics. We then show that these series converge much faster near the sphere. We
deal with various point sources - a monopole and two orientations of dipoles, both inside and outside the
sphere, and find spheroidal harmonic solutions for the internal and external potentials in each case. We
also solve some of these problems with logopoles. The logopole series solutions also converge quickly but
they are more complicated.

The reflected electric field of a dipole near a sphere is particularly important to nano optics [9]. An
oscillating electric dipole has a temporal decay rate which depends on the self induced electric field (the
scattered field from the sphere at the dipole position). The electric potential of an oscillating dipole
obeys the Helmholtz equation, which can be approximated by Laplace’s equation when the wavelength
of the light is much longer than the size of the sphere. The electrostatic field provides a first order
approximation. We calculate the electrostatic field from the gradient of the potential using both the
standard spherical solution and the spheroidal harmonic solution. The quasi-static decay rate computed
with spheroidal harmonics converges much faster than with spherical harmonics.

1.2.4 Matlab

All important results throughout this thesis are proved analytically, but we used Matlab to search for
many relationships and check every identity. In the appendix we briefly describe how Matlab was used.

1.2.5 Publications

Part of chapter 4 is currently under review in Physical Review E, under the title “Spheroidal harmonic
expansions for the solution of Laplace’s equation for a point source near a sphere”, with authors Matt
Majic, Baptiste Auguié, and Eric C. Le Ru. It is currently available on Arxiv.
I also intend to publish results from chapters 2 and 3 in early 2017.
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Chapter 2

Spherical and spheroidal harmonics - definitions
and new relations

This thesis uses many different harmonics (solutions to Laplace’s equation) and coordinate frames and in
this section we define most functions and coordinates for reference, then derive new relationships between
these harmonics.

2.1 Laplace’s equation in spherical coordinates

We use spherical coordinates and harmonics extensively in this thesis. Laplace’s equation ∇2ψ = 0 is
separable in spherical coordinates (r, θ, φ). ψ can be written as a product of three independent functions
ψ = R(r)Θ(θ)Φ(φ) where each of R,Θ,Φ obey a second order ordinary differential equation.

The Legendre functions are the solutions to the θ dependence of spherical harmonics, and they also
appear in spheroidal harmonics. Let f(u) where u = cos θ be the θ dependence of ψ. It can be shown
that f(u) obeys the Legendre differential equation:

d

du

[
(1− u2)

df(u)

du

]
+

[
n(n+ 1)− m2

1− u2

]
f(u) = 0 (2.1)

n is a non-negative integer. m can be any integer, but typically |m| ≤ n for physical solutions (all
separable solutions in spherical coordinates with m > n have an infinite line singularity which makes
them impractical), and in this thesis we only use m ≥ 0 (although it is common for authors to include
definitions for m < 0). The solutions to this equation are the associated Legendre functions of the first
and second kind, Pmn (u) and Qmn (u). Pmn (u) are far more commonly used in physical situations since
Qmn (u) are singular at u = ±1 (the entire z axis). Most of this thesis considers problems with azimuthal
symmetry (symmetry of revolution about the z axis) corresponding to m = 0. The first few orders for
these functions are (we drop the superscript for m = 0):

P0(u) = 1; Q0(u) =
1

2
ln

∣∣∣∣u+ 1

u− 1

∣∣∣∣
P1(u) = u; Q1(u) = uQ0(u)− 1

P2(u) =
1

2
(3u2 − 1); Q2(u) =

1

2

[
(3u2 − 1)Q0(u)− 3u

]
P3(u) =

1

2
(5u3 − 3u); Q3(u) =

1

2

[
(5u3 − 3u)Q0(u)−

(
5u2 − 4

3

)]
And the rest can be calculated by recurrence (Eq. 2.3).

The associated Legendre functions are defined from the m = 0 Legendre functions as

Pmn (u) = |1− u2|m/2 dm

dum
Pn(u), Qmn (u) = |1− u2|m/2 dm

dum
Qn(u) (2.2)

These functions for a general m must be used when there is no rotational symmetry of the physical
problem. Some authors include a factor of (−)m (short for (−1)m) in the definition for |u| ≤ 1, but this

3



factor would have almost no effect on our formulae anyway.
Pmn (u) and Qmn (u) both follow the recurrence relation [11] (where Xm

n = Pmn or Qmn ):

(n−m+ 1)Xm
n+1(u) = (2n+ 1)uXm

n (u)− (n+m)Xm
n−1(u) (2.3)

and the differential relations:

(1− u2)
d

du
Xm
n (u) = −nuXm

n (u) + (n+m)Xm
n−1(u) (2.4)

= (n+ 1)uXm
n (u)− (n−m+ 1)Xm

n−1(u). (2.5)

The first few orders for m = 1 are:

P 1
0 (u) = 0 Q1

0(u) = 1√
|1−u2|

P 1
1 (u) =

√
|1− u2| Q1

1(u) =
√
|1− u2|

[
Q0

0(u) + u
1−u2

]
P 1

2 (u) = 3u
√
|1− u2| Q1

2(u) =
√
|1− u2|

[
3uQ0

0(u) + 3u2−2
1−u2

]
P 1

3 (u) = 3
2(5u2 − 1)

√
|1− u2| Q1

3(u) =
√
|1− u2|

[
3
2(5u2 − 1)Q0

0(u) + 1
2

15u3−13u
1−u2

]
2.1.1 Solid spherical harmonics

The solid spherical harmonics are commonly used as a basis for solutions to Laplace’s equation. They
depend on all three spherical coordinates, but the φ dependence is simple (e±imφ) and we can omit it
from all our equations without affecting the results. Ignoring the φ dependence there are a total of four
solutions to Laplace’s equation in spherical coordinates for each n and m (there are two solutions for
each second order ordinary differential equation). However, we mostly work with the following two - the

regular solid harmonics:
( r
R

)n
Pmn (cos θ), and the irregular solid harmonics:

(
R

r

)n+1

Pmn (cos θ). In the

logopoles chapter we will also use the following functions which are rarely mentioned in literature, we
call them regular solid harmonics of the second kind and define them as (we only deal with m = 0):

(−)n+1
( r
R

)n
Qn(cos θ). We include the fixed ‘radius’ R to simplify later expressions and make things

non-dimensional. We will use this R in other definitions (coordinate systems and spheroidal harmonics)
as a place holder for some distance; it is not necessarily the same R as here unless in the same equation.
The regular solid harmonics are finite everywhere, but increase with r so are not useful for fitting solutions
that decay far from the origin. The irregular harmonics are singular at the origin, but can be used to
describe physical solutions in regions that do not contain the origin. The harmonics of the second kind
are almost never used for physical applications since they are singular on the entire z axis. In fact we
do not directly use them for physical applications either, but find some relationships between them and
other harmonics. We will use the following properties that take the solid harmonics up or down by one
order:

R
∂

∂z

[(
R

r

)n+1

Pn(cos θ)

]
= −(n+ 1)

(
R

r

)n+2

Pn+1(cos θ) (2.6)

R
∂

∂z

[( r
R

)n Pn(cos θ)
Qn(cos θ)

]
= n

( r
R

)n−1 Pn−1(cos θ)
Qn−1(cos θ)

(2.7)

These can be derived using the multivariable differentiation relation
∂

∂z
=

1

x

∂

∂r
+

sin2 θ

r

∂

∂ cos θ
, and

relations for Pn.

2.1.2 Translation relations

It is a useful tool to be able to express a solid spherical harmonic in terms of harmonics in a translated
coordinate frame. We define two translated frames, centred at O’ and O”, offset by +R and −R respec-
tively along the z-axis (see figure 2.1). Notation: we use R, O’ and O” for general formulas, but not for
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the applications section (there R→ RI and O’→ P). The new coordinates can be expressed as:

x′ = x
y′ = y

ρ′ = ρ =
√
x2 + y2

z′ = z −R
r′ =

√
ρ2 + (z −R)2

cos θ′ = z′/r′



x′′ = x
y′′ = y
ρ′′ = ρ
z′′ = z +R

r′′ =
√
ρ2 + (z +R)2

cos θ′′ = z′′/r′′

(2.8)

Harmonics in the primed frame can be written as a sum or series of harmonics centred at the origin:(
r′

R

)n
Pn(cos θ′) =

n∑
k=0

(−)n+k

(
n

k

)( r
R

)k
Pk(cos θ), where

(
n

k

)
=

n!

(n− k)!k!
(2.9)

(
R

r′

)n+1

Pn(cos θ′) =

∞∑
k=n

(
k

n

)(
R

r

)k+1

Pk(cos θ) (r > R) (2.10)

= (−)n
∞∑
k=0

(
k + n

n

)( r
R

)k
Pk(cos θ) (r < R) (2.11)

These relationships are specific cases of formulae in [12], but for a hint at their derivation:
Eq. 2.9 can be obtained by assuming some expansion coefficients αkn, and evaluating the expansion

at cos θ = cos θ′ = 1. Then the expansion reduces to (r′/R)n = (r/R − 1)n =
∑n

k=0 α
k
n(r/R)k, and it is

clear that αkn must be binomial coefficients (up to a sign).
For Eq. 2.10, the case for n = 0 comes directly from the generating function for the Legendre

polynomials: 1√
1−2ut+t2

=
∑∞

k=0 t
nPn(u) with t = r/R and u = cos θ. The formula for general n can be

obtained by differentiating both sides n times with respect to z and applying Eq. 2.6.
For Eq. 2.11, the case for n = 0 comes from the generating function, this time with t = R/r.

Differentiate both sides n times with respect to z and apply Eqs. 2.6 and 2.7.

2.2 Prolate spheroidal coordinates and harmonics

We will present new relationships between spherical and spheroidal harmonics, and new solutions to
problems using spheroidal harmonics (these will use an unconventional offset coordinate frame, but first
we will define spheroidal coordinates in the conventional frame - we will also present some known results
in the standard frame for comparison). Prolate spheroidal coordinates are defined using two focal points
on the z axis at z = R and −R. There are other definitions for prolate spheroidal coordinates but we
use (ξ, η, φ), where ξ is the normalised average of the distance from two focal points (on the z axis), η is
the normalised difference of these distances and φ is the same as in spherical coordinates:

ξ =
r′′ + r′

2R
=

√
r2 + 2Rz +R2 +

√
r2 − 2Rz +R2

2R
, η =

r′′ − r′

2R

Surfaces of constant ξ are spheroids and surfaces of constant η are paraboloids. For background we will
now sketch a derivation of the forms of prolate spheroidal harmonics. The Laplacian is [13]

∇2ψ =
1

R2(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂ψ

∂ξ
+

∂

∂η
(1− η2)

∂ψ

∂η
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2ψ

∂φ2

]
(2.12)

so Laplace’s equation is

∂

∂ξ
(ξ2 − 1)

∂ψ

∂ξ
+

∂

∂η
(1− η2)

∂ψ

∂η
+

(
1

ξ2 − 1
+

1

1− η2

)
∂2ψ

∂φ2
= 0 (2.13)

Laplaces equation is separable in prolate spheroidal coordinates. To find separable solutions, assume
that ψ = Ξ(ξ)H(η)Φ(φ) and insert this into Eq. 2.13 and divide by ψ:

1

Ξ

∂

∂ξ
(ξ2 − 1)

∂Ξ

∂ξ
+

1

H

∂

∂η
(1− η2)

∂H

∂η
+

1

Φ

(
1

ξ2 − 1
+

1

1− η2

)
∂2Φ

∂φ2
= 0 (2.14)
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Differentiating this with respect to φ, we obtain:

∂

∂φ

(
1

Φ

∂2Φ

∂φ2

)
= 0 ⇒ 1

Φ

∂2Φ

∂φ2
= a (2.15)

Technically a could be an arbitrary constant, but it must equal −m2 where m is an integer to satisfy
that Φ(φ + 2π) = Φ(φ); the solutions are Φ = e±imφ. Then we have Φ′′/Φ = −m2 and can insert this
into Eq. 2.14:

1

Ξ

∂

∂ξ
(ξ2 − 1)

∂Ξ

∂ξ
+

1

H

∂

∂η
(1− η2)

∂H

∂η
−m2

(
1

ξ2 − 1
+

1

1− η2

)
= 0 (2.16)

⇒ 1

Ξ

∂

∂ξ
(ξ2 − 1)

∂Ξ

∂ξ
− m2

ξ2 − 1
= b;

1

H

∂

∂η
(1− η2)

∂H

∂η
− m2

1− η2
= −b (2.17)

ξ=cnst

r=R

z=0

ρ
=0

O’

O’’

ξ=cnst

O

Figure 2.1: Schematic of some of the coordinates
used in this thesis for general formulae

for an arbitrary constant b. In order to have
solutions which are finite at η = ±1, we must
have b = −n(n + 1) where n is a positive in-
teger. Then Eqs. 2.17 both become Legen-
dre’s equation, and Pmn (ξ)Pmn (η), Qmn (ξ)Pmn (η),
Pmn (ξ)Qmn (η), Qmn (ξ)Qmn (η) are all solutions. How-
ever only two are commonly used - the ‘regu-
lar’: Pmn (ξ)Pmn (η) and ‘irregular’: Qmn (ξ)Pmn (η),
because the others contain infinite line singulari-
ties.

Qmn (ξ)Pmn (η) go to zero as r → ∞ and are
singular on the z-axis between z = −R and
z = R. Pmn (ξ)Pmn (η) are regular everywhere and
diverge as r → ∞. We call the ’focal length’
of the spheroidal harmonics the distance between
the origins of O’ and O” used to define ξ and
η.

We also define offset spheroidal coordinates
(ξ̄, η̄, φ) where

ξ̄ =
r + r′

R
, η̄ =

r − r′

R
.

These have the same shape as the non-barred co-
ordinates, but are scaled down by 2 and translated
up the z-axis by R/2, as seen in figure 2.1. We find
new relationships between the harmonics Pmn (ξ̄)Pmn (η̄) and Qmn (ξ̄)Pmn (η̄) and solid spherical harmonics
in section ??. We also use these spheroidal harmonics in an offset frame as solutions to the problem of
a point source near a sphere in section 4.

2.3 Green’s function expansions

We present the expansion of Green’s function in terms of different harmonics - we use these expansions
for the proofs of some relations between spherical and spheroidal harmonics. Below are two known
expansions of Green’s function for points r1 = (r1, θ1, φ1) ≡ (ξ1, η1, φ1) and r2 = (r2, θ2, φ2) ≡ (ξ2, η2, φ2)
[2]. The spherical harmonic expansion which applies for r1 < r2:

1

|r1 − r2|
=
∞∑
k=0

rk1
rk+1

2

k∑
m=0

(2− δm0)
(k −m)!

(k +m)!
Pmk (cos θ1)Pmk (cos θ2) cosm(φ1 − φ2). (2.18)

6



Note that for r1 or r2 on the z-axis, Eq. 2.18 reduces to the translation relation Eq. 2.10 for n = 0.
And in terms of spheroidal harmonics with ξ1 < ξ2:

1

|r1 − r2|
=
∞∑
n=0

2n+ 1

R

n∑
m=0

(−)m(2− δm0)
(n−m)!2

(n+m)!2
Pmn (ξ1)Pmn (η1)Qmn (ξ2)Pmn (η2) cosm(φ1 − φ2),

(2.19)

where R is half the focal length of the spheroidal harmonics. However, we will need the expansion
of Green’s function in terms of the offset “barred” spheroidal harmonics, which can be obtained by
coordinate changing Eq. 2.19 into barred-spheroidal coordinates with ξ̄1 < ξ̄2:

1

|r1 − r2|
=

∞∑
n=0

2
2n+ 1

R

n∑
m=0

(−)m(2− δm0)
(n−m)!2

(n+m)!2
Pmn (ξ̄1)Pmn (η̄1)Qmn (ξ̄2)Pmn (η̄2) cosm(φ1 − φ2)

(2.20)

The coordinate change involves two steps, first translating up the z-axis by R/2, (the coordinate change
applies to both points r1 and r2) this does not change the left hand side since the distance between
the points is unaffected by a translated frame. Then scale coordinates by half; this halves the distance
between r1 and r2, and finishes the conversion to barred spheroidal coordinates.

2.4 Relations between spherical and spheroidal harmonics

We first present the four known relations between the regular and irregular spherical solid harmonics,
and the regular and irregular prolate spheroidal harmonics. The azimuthal dependence e±imφ is omitted
since it is the same on both sides.

Pmn (ξ)Pmn (η) =
n∑

k=m
n+k even

(−)(n−k)/2(n+ k − 1)!!

(n− k)!!(k +m)!

(n+m)!

(n−m)!

( r
R

)k
Pmk (cos θ) (2.21)

( r
R

)n
Pmn (cos θ) =

n∑
k=m

n+k even

(2k + 1)(n+m)!

(n− k)!!(n+ k + 1)!!

(k −m)!

(k +m)!
Pmk (ξ)Pmk (η) (2.22)

Qmn (ξ)Pmn (η) =

∞∑
k=n

n+k even

(−)m(k −m)!

(k − n)!!(k + n+ 1)!!

(n+m)!

(n−m)!

(
R

r

)k+1

Pmk (cos θ) (2.23)

(
R

r

)n+1

Pmn (cos θ) =

∞∑
k=n

n+k even

(−)(n−k)/2+m(2k + 1)(n+ k − 1)!!

(k − n)!!(n−m)!

(k −m)!

(k +m)!
Qmk (ξ)Pmk (η) (2.24)

n!! ≡ n(n− 2)(n− 4)... and (−1)!! ≡ 0!! ≡ 1. Derivations can be found in [2], [14].
There also exist two more spherical harmonics rnQmn (cos θ), r−n−1Qmn (cos θ) and two more spheroidal
harmonics Pmn (ξ)Qmn (η) and Qmn (ξ)Qmn (η), but these are not useful due to singularities along the z axis.
As far as we have seen there are no known spherical - spheroidal relationships between these except one
that we derive in section 3.10.

In the four expansions above, note that the spherical harmonics are centred half way between the foci
of the spheroidal harmonics. Eq. 2.23 is only valid for r > R and Eq. 2.24 is valid everywhere except
the singularity of Qmn (ξ) - on the z axis from z = −R to R.

Similar to Eqs. 2.21 - 2.24, we now derive new relations for when the spherical and spheroidal
coordinate frames are offset from each other so that the spherical harmonics are centred at one of the
foci of the spheroidal coordinates. So we can relate the ‘barred’ spheroidal harmonics to the spherical
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harmonics:

Pmn (ξ̄)Pmn (η̄) =
(n+m)!

(n−m)!

n∑
k=m

(−)n+k

k!(k +m)!

(n+ k)!

(n− k)!

( r
R

)k
Pmk (cos θ) (2.25)

( r
R

)n
Pmn (cos θ) = n!(n+m)!

n∑
k=m

2k + 1

(n− k)!(n+ k + 1)!

(k −m)!

(k +m)!
Pmk (ξ̄)Pmk (η̄) (2.26)

Qmn (ξ̄)Pmn (η̄) =
(−)m

2

(n+m)!

(n−m)!

∞∑
k=n

k!(k −m)!

(k − n)!(k + n+ 1)!

(
R

r

)k+1

Pmk (cos θ) (2.27)

(
R

r

)n+1

Pmn (cos θ) =
2(−)n+m

n!(n−m)!

∞∑
k=n

(−)k(2k + 1)
(k + n)!

(k − n)!

(k −m)!

(k +m)!
Qmk (ξ̄)Pmk (η̄) (2.28)

Eq. 2.27 is only valid for r > R; the focal length of the barred spheroidal harmonics is half of that for
the non-barred harmonics, so the radius of divergence of Eq. 2.27 is effectively twice the size of that for
Eq. 2.23. For an expansion of Qn(ξ)Pn(η) or Qn(ξ̄)Pn(η̄) that is valid in all space, see Eq. 3.56 later.
Eq. 2.28 is valid everywhere except the singularity of Qmn (ξ̄) - on the z axis from z = 0 to R.
These relations can be coordinate shifted down the z-axis by R/2 and scaled up by 2, so that the barred
spheroidal harmonics become non-barred and the solid harmonics become double primed - centred at
(x, y, z) = (0, 0,−R). We can also expand spheroidal harmonics in terms of spherical harmonics centred
at O’, by then reflecting coordinates around z = 0 and using the simple symmetry relations for the
Legendre functions, Pmn (−x) = (−)n+mPmn (x) and Qmn (−x) = −(−)n+mQn(x).

Proof of Eq. 2.25
Consider the expansion of Pmn (ξ̄)Pmn (η̄)eimφ in terms of regular solid harmonics rkPmk (cos θ)eimφ, which
must exist since the solid harmonics are a basis for regular solutions to Laplace’s equation. m must be
the same on both sides since eimφ are independent functions. So we write:

Pmn (ξ̄)Pmn (η̄) =
∞∑
k=m

αmnk

( r
R

)k
Pmk (cos θ). (2.29)

The associated Legendre functions can be written as

Pmn (x) = |1− x2|m/2Πm
n (x) with Πm

n (x) =
dm

dxm
Pn(x). (2.30)

Note Πm
n (x) is a polynomial of order n − m. One can show that the “barred” spheroidal coordinates

satisfy R2(1− η̄2)(ξ̄2 − 1) = 4r2 sin2 θ, from this we deduce

Pmn (ξ̄)Pmn (η̄) = (−)m
(

2r

R

)m
sinm θΠm

n (ξ̄)Πm
n (η̄) (2.31)

so Eq. 2.29 can be written in terms of Πm
n as

Πm
n (ξ̄)Πm

n (η̄) =

∞∑
k=m

αmnk

( r
R

)k−m 1

2m
Πm
k (cos θ) (2.32)

The coefficients αmnk can be determined by evaluating the expansion at θ = 0, z > R, where η̄ = 1 and
r = R(ξ̄ + 1)/2. Using the special value:

Πm
n (1) =

1

2m
(n+m)!

m!(n−m)!
(2.33)

we obtain

Πm
n (ξ̄) =

n∑
k=m

αmnk
(k +m)!(n−m)!

(k −m)!(n+m)!

1

2m

(
ξ̄ + 1

2

)k−m
. (2.34)
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We then derive from scratch the coefficients for the expansion of Πm
n (ξ̄) in terms of (ξ̄+ 1)/2. To do this,

start from the definition of the associated Legendre functions:

Pmn (ξ̄)
2nn!√
ξ̄2 − 1

m = ∂n+m
ξ̄

(ξ̄2 − 1)n

= ∂n+m
ξ̄

(ξ̄ + 1)n(ξ̄ + 1− 2)n

= ∂n+m
ξ̄

n∑
k=0

(
n

k

)
(ξ̄ + 1)n+k(−2)n−k

=
n∑
k=0

(
n

k

)
(n+ k)!

(k −m)!
(ξ̄ + 1)k−m(−2)n−k

⇒ Πm
n (ξ̄) =

n∑
k=0

(−)n−k

2m
(n+ k)!

k!(k −m)!

(
ξ̄ + 1

2

)k−m
From this, we identify

αmnk = (−)n+k (n+m)!

(n−m)!

(n+ k)!

k!(n− k)!(k +m)!
, for m ≤ k ≤ n, 0 otherwise (2.35)

which are the coefficients of Eq. 2.25.

Proof of Eq. 2.26
This proof is long and indirect compared to the previous one. Since Pmn (ξ̄)Pmn (η̄) can be written as a
finite sum over k of Pmk (cos θ), we can also write Pmn (cos θ) =

∑n
k=m βmnkP

m
k (ξ̄)Pmk (η̄) (where each βmnk

is a constant). Evaluate this assumed expansion at η̄ = 1, cos θ = 1 as before with Eq. 2.25 (and relabel
ξ̄ → x). Then the problem reduces to

(n+m)!

(n−m)!
(x2 − 1)m/2

(
x+ 1

2

)n−m
=

n∑
k=m

2mβmnk
(k +m)!

(k −m)!
Pmn (x)

Essentially we need to show that γmnk ≡ 2n (k+m)!(n−m)!
(k−m)!(n+m)!β

m
nk solves

(x2 − 1)m/2(x+ 1)n−m =
n∑

k=m

γmnkP
m
k (x) (2.36)

This can be done by finding a recurrence relation on n for γmnk and showing that the assumed expression
for γmnk defined from Eq. 2.26 satisfies the recurrence and initial values. Begin with

(x2 − 1)∂x[(x2 − 1)m/2(x+ 1)n−m] = mx(x2 − 1)m/2(x+ 1)n−m + (n−m)(x2 − 1)(x2 − 1)m/2(x+ 1)n−m−1

= nx(x2 − 1)m/2(x+ 1)n−m − (n−m)(x2 − 1)m/2(x+ 1)n−m

Plug in the assumed expansion Eq. 2.36:

(x2 − 1)∂x

n∑
k=m

γmnkP
m
k = nx

n∑
k=m

γmnkP
m
k − (n−m)

n∑
k=m

γmnkP
m
k

and use these properties

xPmk =
(k −m+ 1)Pmk+1 + (k +m)Pmk−1

2k + 1

(x2 − 1)∂xP
m
k =

k(k −m+ 1)Pmk+1 − (k + 1)(k +m)Pmk−1

2k + 1

9



to obtain everything in terms of Legendre functions:

n∑
k=m

γmnk
k(k −m+ 1)Pmk+1 − (k + 1)(k +m)Pmk−1

2k + 1
= n

n∑
k=m

γmnk
(k −m+ 1)Pmk+1 + (k +m)Pmk−1

2k + 1

−(n−m)
n∑

k=m

γmnkP
m
k

⇒
n∑

k=m

γmnk
(n− k)(k −m+ 1)Pmk+1 + (k +m)(n+ k + 1)Pmk−1

2k + 1
=

n∑
k=m

γmnk(n−m)Pmk

Re-index the sums so that they are all sums of Pmk :

n+1∑
k=m+1

γmn,k−1

(n− k + 1)(k −m)

2k − 1
Pmk +

n−1∑
k=m−1

γmn,k+1

(k +m+ 1)(n+ k + 2)

2k + 3
Pmk = (n−m)

n∑
k=m

γmnkP
m
k

(2.37)

Since the Legendre functions are linearly independent, this must hold for each value of k:

γmn,k−1

(n− k + 1)(k −m)

2k − 1
+ γmn,k+1

(k +m+ 1)(n+ k + 2)

2k + 3
= (n−m)γmnk (2.38)

Now assume that

γmnk =
2n(2k + 1)(n−m)!n!

(n− k)!(n+ k + 1)!
(2.39)

With this γmnk, we have that βmnk equal the coefficients in Eq. 2.25. It can be shown that γmnk satisfies Eq.
2.38. It is also straightforward to check that the coefficients of Pmk for k = m− 1,m, n, n+ 1 in Eq. 2.37
are equal on both sides.
We must also show it has the correct initial values - it is easiest to find γmnn, by looking at the coefficient
of xn−m in

(x+ 1)n−m =
n∑

k=m

γmnkΠ
m
k (x)

γmnn must be such that the coefficient of xn−m is the same on both sides. The left hand side coefficient
is 1, and on the right hand side, only the nth term in the sum contains xn−m, and its coefficient can be
found from Rodriguez’s formula to be (2n)!

2nn!(n−m)! . Therefore γmnn = 2nn!(n−m)!
(2n)! which is consistent with

Eq. 2.39.
For the second initial value, we need γmn,n−1, which can be found by comparing the coefficients of xn−m−1.

The l.h.s. coefficient is n−m, and for the r.h.s. only the (n−1)th term contains xn−m−1, with a coefficient

of (2n−2)!
2n−1(n−1)!(n−m−1)!

. Therefore γmn,n−1 = 2n−1(n−1)!(n−m)!
(2n−2)! , again consistent with Eq. 2.39.
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Derivation of Eq. 2.28

To prove Eq. 2.28, we will make use of the expansions of Green’s function in terms of both spherical
and spheroidal solid harmonics. For points r1 and r2 with r1 < r2 and ξ̄1 < ξ̄2:

1

|r1 − r2|
=

∞∑
n=0

rn1
rn+1

2

n∑
m=0

(2− δm0)
(n−m)!

(n+m)!
Pmn (cos θ1)Pmn (cos θ2) cosm(φ1 − φ2) (2.40)

=
∞∑
k=0

2
2k + 1

R

k∑
m=0

(−)m(2− δm0)
(k −m)!2

(k +m)!2
Pmk (ξ̄1)Pmk (η̄1)Qmk (ξ̄2)Pmk (η̄2) cosm(φ1 − φ2).

(2.41)

Now substitute Eq. 2.25 for r1 into Eq. 2.41 to express it as an expansion on the same spherical harmonic
basis:

1

|r1 − r2|
=
∞∑
k=0

2
2k + 1

R

k∑
m=0

(−)m(2− δm0)
(k −m)!2

(k +m)!2

(
(k +m)!

(k −m)!

k∑
n=m

(−)k+n

n!(n+m)!

(k + n)!

(k − n)!

rn1
Rn

Pmn (cos θ1)

)
×Qmk (ξ̄2)Pmk (η̄2) cosm(φ1 − φ2).

=

∞∑
n=0

n∑
m=0

∞∑
k=n

2
2k + 1

R
(2− δm0)

(−)n+k+m(k −m)!(k + n)!

(k +m)!(k − n)!n!(n+m)!

rn1
Rn

Pmn (cos θ1)Qmk (ξ̄2)Pmk (η̄2) cosm(φ1 − φ2)

(2.42)

where we have swapped the order of the sums using first
∑k

m=0

∑k
n=m =

∑k
n=0

∑n
m=0 and then∑∞

k=0

∑k
n=0 =

∑∞
n=0

∑∞
k=n.

Now equate Eqs. 2.40 and 2.42. Because the functions rn1P
m
n (cos θ1) are independent, we can equate

all terms with same n and m to get:

(n−m)!

(n+m)!

1

rn+1
2

Pmn (cos θ2) =
∞∑
k=n

2
2k + 1

R

(−)n+k+m(k −m)!(k + n)!

(k +m)!(k − n)!n!(n+m)!

1

Rn
Qmk (ξ̄2)Pmk (η̄2), (2.43)

which can be simplified to obtain Eq. 2.28.

Eq. 2.27 can be derived in the same way as with Eq. 2.28 - by plugging in Eq. 2.26 into the expansion
of Green’s function in terms of offset spherical harmonics, and using the independence of the Legendre
functions.

Comment on proofs
These proofs may not be how we initially found the relationships. Here is one technique to find ex-

pansion coefficients using Matlab, with the example of Eq. 2.26. Create a length n vector v of various θ
values for

(
r
R

)n
Pmn (cos θ), and create a n by n matrix M of various θ and k for Pmk (ξ̄)Pmk (η̄) and solving

Mx = v for x (solving this is easy in Matlab). x contains numerical evaluations of the coefficients of the
expansion, which hopefully can be used to guess the analytic form of the coefficients. This method can
even be useful for infinite expansions if the series converges fast enough.
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Chapter 3

Logopoles - A new class of solutions to Laplace’s
equation

The logopoles are a new class of functions found by Eric Le Ru. Investigating these was the initial idea
for this project, and this thesis is the first public available document that logopoles are mentioned. They
have singularities on a finite line along the z axis just like the spheroidal harmonics, so they can be used
to describe solutions to physical problems outside objects. They were first introduced as a part of a
fast converging solution to the problem of a point source near a sphere. In this chapter we first derive
a number of equivalent definitions and properties of logopoles. The highlight of this chapter is possibly
the new expression of spheroidal harmonics as a finite sum of spherical harmonics of the second kind
(section 3.10). We only define logopoles with symmetry of revolution (m = 0) since they are not yet
properly generalised to higher m.

Notation: Throughout this section we use the following shorthand notation:

Sn =

(
R

r

)n+1

Pn(cos θ); S̃n = (−)n+1
( r
R

)n
Qn(cos θ)

Again R is an arbitrary constant.

3.1 Series definition

The logopoles can be defined as an infinite series of multipoles:

Ln =
∞∑
k=0

n!k!

(n+ k + 1)!

(
R

r

)k+1

Pk(cos θ) =
∞∑
k=0

n!k!

(n+ k + 1)!
Sk (3.1)

which converges only for r > R. As we will see later, logopoles can be analytically continued inside this
radius.

This power series definition is straightforward but may not be convenient for practical calculations or
manipulation. It is our first definition since it was the first appearance of the logopoles, in the solution
of a point source near a sphere, so our derivations tend to use this definition frequently. This series may
converge slowly as r → R, but it seems to be numerically stable (see appendix on numerical instability).

3.2 Expression in terms of offset multipoles of the second kind

We will justify the following alternative expression for the logopoles:

Ln = (−)n+1

(
r′

R

)n
Qn(cos θ′) +

n∑
k=0

(
n

k

)
(−)k

( r
R

)k
Qk(cos θ) = S̃′n −

n∑
k=0

(
n

k

)
S̃k (3.2)

The Qn(cos θ) have a logarithmic singularity on the entire z-axis which is why they are always discarded
from standard solutions for physical problems. But in Eq. 3.2 the offset multipole singularity is partially
cancelled by the singularities in the sum. We prove later that the singularity is only on the z-axis from
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O to O’. Despite the change in coordinate frame, this definition is more practical as it involves a finite
sum and is valid everywhere except at the singularity, although it is not possible to numerically evaluate
the logopoles along the z axis using Eq. 3.2 because the individual terms are singular. Also, numerically
computing logopoles at points far from the origin with this sum may produce errors due to subtracting
terms that are very close in magnitude.

Justification of Eq. 3.2
Eq. 3.2 is actually a rearrangement of Eq. 3.3 below which can be viewed as a translation relation for
the regular solid harmonics of the second kind:

S̃′n =

n∑
p=0

n!S̃p
p!(n− p)!

+

∞∑
k=0

n!k!Sk
(k + n+ 1)!

. (3.3)

This equation may not be known so we will justify it by induction on n. This is a justification because
we only prove Eq. 3.3 up to some function of ρ, but it has been checked numerically that this function
should be zero. First derive the base case starting from the known expansion for an offset point charge
(Eq. 2.10 for n=0)

S′0 =
R

r′
=

∞∑
k=0

Sk (3.4)

We now integrate Eq. 3.4 with respect to z. The following integral relations will be useful. Eq. 3.5 is
obtained by integrating Eq. 2.6, Eq. 3.7 is obtained by integrating Eq. 2.7. The n = 0 case is treated
separately. ∫

Sn
dz

R
= −Sn−1

n
+ f(ρ) (n > 0) (3.5)∫

S0
dz

R
=

∫
dz

r
= − ln

r − z
ρ

+ f(ρ) = −S̃0 + f(ρ) (3.6)∫
S̃n

dz

R
= − S̃n+1

n+ 1
+ f(ρ). (3.7)

with ρ =
√
x2 + y2 and f(ρ) an arbitrary function. These also apply to multipoles in the primed frame

because integrating with respect to z is identical to integrating with respect to z′. Integrating Eq. 3.4,
splitting off the first term in the sum and using Eqs. 3.5 and 3.6, then reindexing the sum, we obtain

S̃′0 = S̃0 +
∞∑
k=0

Sk
k + 1

+ f(ρ) (3.8)

It can be seen by plugging in explicit expressions and evaluating this expression at z →∞ that f(ρ) = 0.
Then we have shown the base case n = 0 for Eq. 3.3.
Now begin the induction. Assume Eq. 3.3 is valid for n, and integrate it with respect to z to obtain the
n+ 1th case. We will use Eqs. 3.5 - 3.7.∫

S̃′n
dz

R
=

n∑
p=0

n!

p!(n− p)!

∫
S̃p

dz

R
+

∞∑
k=0

n!k!

(k + n+ 1)!

∫
Sk

dz

R
(3.9)

= −
S̃′n+1

n+ 1
= −

n∑
p=0

n!

(p+ 1)!(n− p)!
S̃p+1 − S̃0 −

∞∑
k=1

n!(k − 1)!

(k + n+ 1)!
Sk−1 + f(ρ) (3.10)

⇒ S̃′n+1 =
n∑

p=−1

(n+ 1)!

(p+ 1)!(n− p)!
S̃p+1 +

∞∑
k=1

(n+ 1)!(k − 1)!

(k + n+ 1)!
Sk−1 + f(ρ) (3.11)

=

n+1∑
p=0

(n+ 1)!

p!(n+ 1− p)!
S̃p +

∞∑
k=0

(n+ 1)!k!

(k + n+ 2)!
Sk + f(ρ) (3.12)
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which is case n+ 1 up to a function of ρ, so by induction Eq. 3.3 holds up to a function of ρ. It would
be ideal to prove that f(ρ) = 0. Naively it would seem that this problem of the arbitrary function
could be avoided by applying definite integration between some reference point and the variable z. The
reference point would be chosen to be where all the integrated functions are zero, but we could not find
such a point. Another way to complete the proof would be to find some z where Eq. 3.3 holds with
no additional function of ρ. Obvious values of z to try would be ±∞; here at least the sum over the
irregular harmonics goes to zero. Showing that the rest then equals zero seems to be difficult; it may be
helpful to use the alternative form of logopoles in the next section.

3.3 Alternative form of logopoles

Assuming Eq. 3.2 is correct, the logopoles can equivalently be expressed as

Ln =

(
−r′

R

)n [
Pn(cos θ′)L0 +Wn−1(cos θ′)

]
−

n∑
k=0

(
n

k

)(
−r
R

)k
Wk−1(cos θ) (3.13)

with Wn−1 =

n∑
k=1

1

k
Pn−kPk−1; W−1 = 0 (3.14)

which clearly distinguishes the logarithmic part L0 from the polynomial part. Then it is clear that the
logopoles are analytic everywhere except at a line of singularity from O to O’, i.e. for ρ = 0, 0 ≤ z ≤ R.

Derivation of Eq. 3.13
Begin with the expression in terms of multipoles of the second kind (Eq. 3.2) and insert the expression
Qn = PnQ0 −Wn−1:

Ln = −
(
−r′

R

)n
[Pn(cos θ′)Q0(cos θ′)−Wn−1(cos θ′)] +

n∑
k=0

(
n

k

)(
−r
R

)k
[Pk(cos θ)Q0(cos θ)−Wk−1(cos θ)]

Applying the translation relation for regular spherical harmonics, Eq. 2.9:

Ln = −
(
−r′

R

)n
[Pn(cos θ′)Q0(cos θ′)−Wn−1(cos θ′)] +

(
−r′

R

)n
Pn(cos θ′)Q0(cos θ)

−
n∑
k=0

(
n

k

)(
−r
R

)k
Wk−1(cos θ) (3.15)

Then recognise L0 = Q0(cos θ)−Q0(cos θ′) to obtain Eq. 3.13.

3.4 Expression in terms of offset multipoles of the first kind

Logopoles can also be written as a series of solid harmonics in the primed frame:

Ln =
∞∑
k=0

(−)k

n+ k + 1

(
R

r′

)k+1

Pk(cos θ′) =

∞∑
k=0

(−)k

n+ k + 1
S′k (3.16)

This converges outside the sphere r′ = R. Like the first series definition of the logopoles this seems to
be numerically stable, although the coefficients converge more slowly.

Proof of Eq 3.16
Begin with the series definition of Ln in the non-primed frame O (Eq. 3.1). The solid harmonics
centred at O can be expressed as a sum of solid harmonics centred at O’ by manipulating the translation
relation for irregular solid harmonics (Eq. 2.10) - first translate the relation down the z axis so that O’
becomes O and O becomes O”, then replace z with −z, and use the parity of the Legendre functions
Pn(−x) = (−)nPn(x). So we have

Sn =

∞∑
k=n

(−)n+k

(
k

n

)
S′k (3.17)
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Inserting this into Eq. 3.1:

Ln =
∞∑
k=0

n!k!

(n+ k + 1)!

∞∑
p=k

(−)p+k
p!

(p− k)!k!
S′p (3.18)

Rearranging the order of summation:

Ln =
∞∑
p=0

p∑
k=0

(−)k+pn!p!

(n+ k + 1)!(p− k)!
S′p. (3.19)

Now we have to simplify the sum over k. Ignoring the (−)p, the sum can be written using a binomial
coefficient:

p∑
k=0

(−)kn!p!

(n+ k + 1)!(p− k)!
=

n!p!

(n+ p+ 1)!

p∑
k=0

(−)k
(
n+ p+ 1

p− k

)
(3.20)

Now we can use Pascal’s rule: (
n+ p+ 1

p− k

)
=

(
n+ p

p− k

)
+

(
n+ p

p− k − 1

)
(3.21)

Then we have (re-indexing k → k − 1 for the sum over the second binomial coefficient):

p∑
k=0

(−)k
(
n+ p+ 1

p− k

)
=

p∑
k=0

(−)k
(
n+ p

p− k

)
−

p+1∑
k=1

(−)k
(
n+ p

p− k

)

=

p∑
k=0

(−)k
(
n+ p

p− k

)
−

p∑
k=0

(−)k
(
n+ p

p− k

)
+

(
n+ p

p

)
(3.22)

In the last step the k = 0 term in the second sum on the r.h.s. was extracted and we used the fact that
the k = p + 1 term is zero by the definition of binomial coefficients. The two sums cancel and we have
the identity

p∑
k=0

(−)kn!p!

(n+ k + 1)!(p− k)!
=

1

n+ p+ 1
(3.23)

Insert this into Eq. 3.19 and relabel p→ k to obtain Eq. 3.16.

3.5 Recurrence relation

The logopoles obey the following recurrence relation:

nLn = −z
′

R
(2n− 1)Ln−1 −

(
r′

R

)2

(n− 1)Ln−2 +
r

R
(3.24)

This is only numerically stable near the singularity. For example at the point ρ = 2R, z = 0, numer-
ical errors become apparent (on the order of the magnitute of the function itself) at n ≈ 40, while for
ρ = R/2, z = 0, errors become apparent at n ≈ 240.

Derivation of Eq. 3.24:
Begin with the series definition in terms of offset multipoles (Eq. 3.16). We use a rearrangement of the
recurrence relation for irregular solid harmonics:

(k + 2)Sk+2 = (2k + 3)
R

r
cos θ Sk+1 − (k + 1)

R2

r2
Sk (3.25)

⇒ Sk = (2k + 3)
z

R
Sk+1 − (k + 2)

r2

R2
Sk+2 (3.26)
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Using this in the primed frame and inserting into Eq. 3.16:

nLn =
∞∑
k=0

(−)kn

n+ k + 1

1

k + 1

[
z̄′(2k + 3)S′k+1 − r̄′(k + 2)S′k+2

]
(3.27)

with shorthand notation r̄′ =
r′

R
; z̄′ =

z′

R
.

Now split into two sums, and re-index so that the spherical harmonics are order k:

nLn = −z̄′
∞∑
k=1

(−)kn

n+ k

2k + 1

k
S′k − r̄′2

∞∑
k=2

(−)kn

n+ k − 1

k

k − 1
S′k (3.28)

Now we want to extract Ln−1 and Ln−2, splitting off the desired prefactors:

n
2k + 1

k
= 2n− 1 +

n+ k

k
(3.29)

n
k

k − 1
= n− 1 +

n+ k − 1

k − 1
(3.30)

Applying Eq. 3.29 to the first sum in Eq. 3.28, and Eq. 3.30 to the second sum:

nLn = −z̄′
[

(2n− 1)
∞∑
k=1

(−)k

n+ k
S′k +

∞∑
k=1

(−)k

k
S′k

]
− r̄′2

[
(n− 1)

∞∑
k=2

(−)k

n+ k − 1
S′k +

∞∑
k=2

(−)k

k − 1
S′k

]

= −(2n− 1)z̄′Ln−1 +
2n− 1

n
z̄′S′0 − z̄′

∞∑
k=1

(−)k

k
S′k

− (n− 1)r̄′2Ln−2 + r̄′2
[
S′0 −

n− 1

n
S′1

]
− r̄′2

∞∑
k=2

(−)k

k − 1
S′k (3.31)

The first two terms on the r.h.s. of Eq. 3.24 have been revealed, now we have to show that the rest of
Eq. 3.31 equates to r/R. Note for the lowest orders:

z̄′S′0 = r̄′2S′1 = cos θ′; r̄′2S′0 = r̄′

so that (and re-indexing the last sum of Eq. 3.31):

nLn + (2n− 1)z̄′Ln−1 + (n− 1)r̄′2Ln−2 = cos θ′ + r̄′ −
∞∑
k=1

(−)k

k

(
z̄′S′k − r̄′2S′k+1

)
(3.32)

= cos θ′ + r̄′ −
∞∑
k=1

(−)k
(
r̄′2S′k+1 − 2z̄′S′k − S′k−1

)
(3.33)

The last step used a rearrangement of the recurrence relation for S′k. Then re-indexing sums again and
adding the lowest orders to the sums so that they can be extended down to k = 0:

nLn + (2n− 1)z̄′Ln−1 + (n− 1)r̄′2Ln−2 = cos θ′ + r̄′ +
(
r̄′2 + 2z̄ + 1

) ∞∑
k=0

(−)kS′k − 2z̄′S′0 − r̄′2(S′0 − S′1)

(3.34)

Then use the following identities (the first is obtained by reflecting the translation relation for irregular
spherical harmonics Eq. 2.10 about z = 0 and using the parity of Pn):

∞∑
k=0

(−)kS′k =
R

r
; r̄′2 + 2z̄′ + 1 =

r2

R2
,

and cancel the remaining terms in the r.h.s. of Eq. 3.34 to find that it does equal r/R.
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3.6 Lowest orders of logopoles

There are a range of expressions for L0. First from Eq. 3.2:

L0 = S̃′0 − S̃0 = Q0(cos θ)−Q0(cos θ′) = 2Q0(ξ̄)P0(η̄)

The last equality is derived in section 3.8. Note the following expressions for Q0:

Q0(cos θ) =
1

2
log

1 + cos θ

1− cos θ
=

1

2
ln
r + z

r − z
= ln

ρ

r − z
= ln

r + z

ρ
.

The lowest orders of logopoles are best derived from the recurrence relation or Eq. 3.13, and are (with
u′ = cos θ′ and r̄′ = r′/R):

L0 = ln
r′ − z′

r − z
= ln

r + z

r′ + z′

L1 =− [u′L0 + 1]r̄′ + r̄

L2 =
1

2
[(3u′2 − 1)L0 + 3u′]r̄′2 +

1

2

[
−3u′r̄′ + 1

]
r̄

L3 =− 1

2

[
(5u′3 − 3u′)L0 + 5u′2 − 4

3

]
r̄′3 +

1

2

[
5u′2r̄′2 − 4

3
r̄′2 − 5

3
u′r̄′ +

2

3

]
r̄

L4 =
1

8

[
(35u′4 − 30u′2 + 3)L0 + 35u′3 − 55

3
u′
]
r̄′4 +

1

8

[
−35u′3r̄′3 +

55

3
u′r̄′3 +

35

3
u′2r̄′2 − 3r̄′2 − 14

3
u′r̄′ + 2

]
r̄

L5 =− 1

8

[
(63u′5 − 70u′3 + 15u′)L0 +

(
63u′4 − 49u′2 +

64

15

)(
1− r

r′

)]
r̄′5

+
1

8

[
−21u′3r̄′3 +

161

15
u′r̄′3 +

42

5
u′2r̄′2 − 32

15
r̄′2 − 18

5
u′r̄′ +

8

5

]
r̄

3.7 Differentiation and integration along z axis

The logopoles obey the following relations:

R
∂

∂z
Ln = −nLn−1 +

R

r
, (3.35)∫

Ln
dz

R
=
−1

n+ 1

(
Ln+1 + ln

r − z
ρ

)
+ f(ρ) (3.36)

where f(ρ) is an arbitrary function of ρ.

Proof of Eq. 3.35
Start from the series definition of Ln (Eq. 3.1)

R
∂

∂z
Ln =

∞∑
k=0

n!k!

(n+ k + 1)!
R
∂

∂z
Sk (3.37)

and apply Eq. 2.6: R∂zSn = −(n+ 1)Sn+1:

R
∂

∂z
Ln = −

∞∑
k=1

n!k!

(n+ k + 1)!
(k + 1)Sk+1

= −
∞∑
k=0

n!k!

(n+ k)!
Sk (k + 1→ k)

= −nLn−1 +
R

r
.

And Eq. 3.36 comes directly from integrating Eq. 3.35 with respect to z.
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3.8 Link to spheroidal harmonics

Logopoles can also be written as a finite sum of barred spheroidal harmonics and vice versa:

Qn(ξ̄)Pn(η̄) =
n∑
k=0

(−)k

2

(n+ k)!

k!2(n− k)!
Lk (3.38)

Ln =
n∑
k=0

2(−)k(2k + 1)n!2

(n− k)!(n+ k + 1)!
Qk(ξ̄)Pk(η̄) (3.39)

Eq. 3.38 is numerically unstable in all space for large n; Eq. 3.39 is much more accurate and only shows
inaccuracy either very close or very far from the singularity.

Proof of Eq. 3.38
Compare the expansions of Ln and Qn(ξ̄)Pn(η̄) in terms of spherical harmonics:

Qn(ξ̄)Pn(η̄) =
∞∑
k=n

k!2

2(k − n)!(k + n+ 1)!
Sk, (3.40)

Ln =
∞∑
k=0

n!k!

(n+ k + 1)!
Sk. (3.41)

The sum in Qn(ξ̄)Pn(η̄) starts from k = n, but it can be written as

Qn(ξ̄)Pn(η̄) =
∞∑
k=0

k!k(k − 1)...(k − n+ 1)

2(k + n+ 1)!
Sk

so that the sum extends to k = 0. This is identical to Eq. 3.40 since all terms with k < n are zero
anyway. Now assume that the spheroidal harmonics can be written as a finite sum of logopoles:

Qn(ξ̄)Pn(η̄) =

n∑
p=0

αnpLp. (3.42)

Insert the spherical harmonic expansions of Ln and Qn(ξ̄)Pn(η̄) into Eq. 3.42. Because Sk are linearly
independent, the coefficients αnp must satisfy:

k(k − 1)...(k − n+ 1)

(n+ k + 1)!
=

n∑
p=0

2p!

(p+ k + 1)!
αnp (3.43)

We want to use the fact that any degree n polynomial p(t) of an integer argument t can be expressed as
a sum of binomial coefficients:

p(t) =
n∑
q=0

aq

(
t

q

)
(3.44)

with aq =

q∑
i=0

(−)q+i
(
q

i

)
p(i)

This can be proved by substituting p(i) =
∑n

k=0

(
i
k

)
into the expression for aq, rearranging the order of

summation, and using the identity

q∑
i=0

(−)q+i
(
q

i

)(
i

k

)
= δqk [15].
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So we rearrange Eq. 3.43 to express it using binomial coefficients:

k(k − 1)...(k − n+ 1) =

n∑
p=0

2
p!(n+ k + 1)!

(p+ k + 1)!
αnp

=
n∑
p=0

2

(
k + n+ 1

n− p

)
p!(n− p)!αnp

=
n∑
q=0

2

(
k + n+ 1

q

)
q!(n− q)!αnn−q q ≡ n− p

In terms of Eq. 3.44, we have t = n+ k + 1, p(t) = (t− n− 1)(t− n− 2)...(t− 2n), so

aq = 2q!(n− q)!αnn−q =

q∑
i=0

(−)q+i
(
q

i

)
(i− n− 1)(i− n− 2)...(i− 2n).

Since i < n, we can write

p(i) = (−)n
(2n− i)!
(n− i)!

= (−)nn!

(
2n− i
n

)
Then

αnn−q =
1

2

(
n

q

) q∑
i=0

(−)n+q+i

(
q

i

)(
2n− i
n

)

=
1

2

(
n

p

) n−p∑
i=0

(−)p+i
(
n− p
i

)(
2n− i
n

)

This expression can be simplified using the identity ([18], pg 619, or [2], pg.1394):

m∑
j=0

(−)j
(
m

j

)(
a+ j

n

)
= (−)m

(
a

n−m

)

making substitutions m→ n− p, j → n− p− i, a = n+ p and using
(
n−p
n−p−i

)
=
(
n−p
i

)
:

n−p∑
i=0

(−)p+i
(
n− p
i

)(
2n− i
n

)
= (−)p

(
n+ p

p

)
⇒ αnp =

(−)p

2

(
n

p

)(
n+ p

p

)
=

(−)p

2

(n+ p)!

(n− p)!p!2

The first few orders are

Q0(ξ̄)P0(η̄) =
L0

2

Q1(ξ̄)P1(η̄) =
L0

2
− L1

Q2(ξ̄)P2(η̄) =
L0

2
− 3L1 + 3L2

Q3(ξ̄)P3(η̄) =
L0

2
− 6L1 + 15L2 − 10L3

Note that the expansion coefficients of Qn(ξ̄)Pn(η̄) in terms of Lk are almost identical to that of the
coefficients for Pn(ξ̄)Pn(η̄) in terms of rkPk(cos θ) (Eq. 2.25 for m = 0). They differ only by 2(−)k. By
noting that Eq. 2.25 can be inverted to expand rnPn(cos θ) in terms of Pk(ξ̄)Pk(η̄) (Eq. 2.26), we can
deduce the expansion of Ln in terms of Qk(ξ̄)Pk(η̄).
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We now derive a key identity that makes Eq. 2.26 the inverse of Eq. 2.25. Inserting Eq. 2.25 into Eq.
2.26: ( r

R

)n
Pn(cos θ) =

n∑
k=0

(2k + 1)n!2

(n− k)!(n+ k + 1)!

k∑
p=0

(−)k+p(k + p)!

p!2(k − p)!

( r
R

)p
Pp(cos θ)

=

n∑
p=0

n∑
k=p

(2k + 1)n!2

(n− k)!(n+ k + 1)!

(−)k+p(k + p)!

p!2(k − p)!

( r
R

)p
Pp(cos θ) (3.45)

It must be true that

n∑
k=p

(2k + 1)n!2

(n− k)!(n+ k + 1)!

(−)k+p(k + p)!

p!2(k − p)!
= δnp (3.46)

Now do the same with logopoles - first assume an expansion with coefficients βkn: Ln =
∑n

k=0 β
k
nQn(ξ̄)Pn(η̄)

and insert Eq. 3.38:

Ln =

n∑
k=0

βkn

k∑
p=0

(−)p

2

(k + p)!

p!2(k − p)!
Lp (3.47)

Again it must be true that

n∑
k=p

βkn
(−)p

2

(k + p)!

p!2(k − p)!
= δnp, (3.48)

By comparing this to Eq. 3.46, we must have

βkn =
2(−)k(2k + 1)n!2

(n− k)!(n+ k + 1)!
. (3.49)

which are the coefficients of Eq. 3.39

3.9 Integral form

The logopoles can be expressed as the potential created by a line charge with density q(z) = (1− z/R)n:

Ln =

∫ R

0

(
1− z̃

R

)n dz̃√
ρ2 + (z − z̃)2

=

∫ 1

0

(1− u)ndu√
ρ2 + (z −Ru)2

(3.50)

The line charge distribution is q = (1 − u)n which ranges from q = 1 at u = 0, to q = 0 at u = 1 (for
n > 0). q is positive which means that the logopoles are positive everywhere in space. The potential
of any continuous finite line charge can be expanded in terms of logopoles by expanding the charge
distribution as a power series in (1− u).

Derivation of Eq. 3.50
The spheroidal harmonics can be represented as the potential of a line charge distribution on the segment
from z = −R to R [16]:

Qn(ξ)Pn(η) =
R

2

∫ 1

−1

Pn(u)du√
ρ2 + (z −Ru)2

(3.51)

We actually need the corresponding equation for barred spheroidal harmonics with singularities from
z = 0 to R, which can be obtained by coordinate changing to barred coordinates (see section ??). First
express this integral completely in terms of ξ and η, plugging in z = Rξη and ρ = R

√
(ξ2 − 1)(1− η2).

Qn(ξ)Pn(η) =
R

2

∫ 1

−1

Pn(u)du√
R2(ξ2 − 1)(1− η2) + (Rξη −Ru)2

(3.52)
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Then change ξ → ξ̄ and η → η̄. The relationship will still hold because this is only a relabelling. Then
plug in the expressions of ξ̄ and η̄ in terms of z and ρ: R

√
(ξ̄2 − 1)(1− η̄2) = 2ρ and Rξ̄η̄ = 2z − R.

Also change the dummy variable u→ 2u− 1. After simplifications:

Qn(ξ̄)Pn(η̄) =
R

2

∫ 1

0

Pn(2u− 1)du√
ρ2 + (z −Ru)2

. (3.53)

Since the logopoles can be written as a finite sum of offset spheroidal harmonics, we can find the line
charge distribution that creates logopole potentials. Inserting Eq. 3.53 into the expansion of logopoles
in terms of barred spheroidal harmonics, Eq. 3.39:

Ln =

n∑
k=0

2(−)k(2k + 1)n!2

(n− k)!(n+ k + 1)!

R

2

∫ 1

0

Pk(2u− 1)du√
ρ2 + (z −Ru)2

=

∫ 1

0

Rdu√
ρ2 + (z −Ru)2

n∑
k=0

(−)k(2k + 1)n!2

(n− k)!(n+ k + 1)!
Pk(2u− 1) (3.54)

Now we present an identity to simplify the sum. Evaluate the expansion of rnPn(cos θ) in terms of
Pk(ξ̄)Pk(η̄) (Eq. 2.26) with m = 0, η̄ = cos θ = −1, (which means r = (ξ̄ − 1)R/2):

n∑
k=0

(−)k(2k + 1)n!2

(n− k)!(n+ k + 1)!
Pk(ξ̄) = (−)n

(
ξ̄ − 1

2

)n
(3.55)

Insert this into Eq. 3.54 with ξ̄ → 2u− 1 = 2z̃/R− 1 to obtain Eq. 3.50.

3.10 Alternate expression for Qn(ξ)Pn(η)

We derive a new formula expressing the relatively common irregular spheroidal harmonics as a finite sum
of the rarely used offset spherical harmonics of the second kind:

Qn(ξ)Pn(η) =
1

2

n∑
k=0

(
n

k

)(
n+ k

k

)
[(−)kS̃′k − (−)nS̃′′k ] (3.56)

Note in this section we use S̃k = (−)k+1
(
r

2R

)k
Qk(cos θ) (with 2R instead of R before). Note Eq. 3.56

has not been strictly proven since the derivation relies on Eq. 3.2 which is not strictly proven. But Eq.
3.56 has been checked in Matlab to be correct, although it is numerically unstable in regions of space
where S̃′k and S̃′′k are close in magnitude. A similar expression can be written for the barred spheroidal
harmonics using the coordinate frames O and O’ instead of O” and O’.

Derivation of Eq. 3.56
First note that we will work with stretched logopoles L̂n which have their singularity from z = −R to
R. The scaling/translation transformation between L̂n and Ln is the same as that for Qn(ξ)Pn(η) and
Qn(ξ̄)Pn(η̄). By coordinate changing Eq. 3.38 we have:

Qn(ξ)Pn(η) =
1

2

n∑
k=0

(−)k
(
n

k

)(
n+ k

k

)
L̂k (3.57)

And by coordinate changing Eq. 3.2 we have:

L̂n = S̃′k −
k∑
p=0

(
k

p

)
S̃′′p (3.58)
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Again these S̃n have 2R instead of R. Combining these two expansions:

Qn(ξ)Pn(η) =
1

2

n∑
k=0

(−)k
(
n

k

)(
n+ k

k

)S̃′k − k∑
p=0

(
k

p

)
S̃′′p

 (3.59)

=
1

2

n∑
k=0

(−)k
(
n

k

)(
n+ k

k

)
S̃′k −

1

2

n∑
p=0

n∑
k=p

(−)k
(
n

k

)(
n+ k

k

)(
k

p

)
S̃′′p (3.60)

The last sum over k can be simplified. Now we will derive a binomial identity for this purpose. Pn(ξ)Pn(η)
can be expanded in terms of Ŝ′k or Ŝ′′k . We equate these expansions and expand Ŝ′k in terms of Ŝ′′k using
Eq. 2.9, then rearrange the summation order:

Pn(ξ)Pn(η) =
n∑
k=0

(−)n+k

(
n

k

)(
n+ k

k

)
Ŝ′′k =

n∑
q=0

(
n

q

)(
n+ q

q

)
Ŝ′q (3.61)

=
n∑
q=0

(
n

q

)(
n+ q

q

) q∑
p=0

(−)q+p
(
q

p

)
Ŝ′′p (3.62)

=

n∑
p=0

n∑
q=p

(−)q+p
(
n

q

)(
n+ q

q

)(
q

p

)
Ŝ′′p (3.63)

and by the orthogonality of the spherical harmonics, each coefficient of Sk on the left hand side must be
equal to the coefficient of Sp on the right hand side when p = k, so

n∑
q=p

(−)q
(
n

q

)(
n+ q

q

)(
q

p

)
= (−)n

(
n

p

)(
n+ p

p

)
(3.64)

Apply this identity to Eq. 3.60 to obtain Eq. 3.56.

3.11 Attempt at expanding solid harmonics with logopoles

The irregular solid spherical harmonics cannot be expanded in terms of logopoles; an attempt can be
made by starting with the expansion of solid harmonics in terms of Qn(ξ̄)Pn(η̄) (Eq. 2.28) and applying
the expansion of spheroidal harmonics in terms of logopoles (Eq. 3.38), then rearranging the order of
summation. For S0:

S0 =
R

r
=
∞∑
n=0

2(2n+ 1)(−)nQn(ξ̄)Pn(η̄) (3.65)

=
∞∑
n=0

(2n+ 1)(−)n
n∑
k=0

(−)k
(n+ k)!

k!2(n− k)!
Lk (3.66)

=

∞∑
k=0

∞∑
n=k

(2n+ 1)(−)n+k (n+ k)!

k!2(n− k)!
Lk (3.67)

But the coefficient of L0 in this expansion is
∑∞

n=0(2n+ 1)(−)n which diverges. This also suggests that
Green’s function cannot be expanded in terms of logopoles, since S0 is a special case of Green’s function
where the point source is at the origin.
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3.12 Symmetric and antisymmetric logopoles

The logopoles have no parity about z, but for potential applications to problems with reflective symmetry,
we investigate defining anti/symmetric logopoles.

3.12.1 Definitions

We introduce symmetric logopoles Lsn as:

Lsn =
1

2
[Ln(x, y, z) + Ln(x, y,−z)]

=
∞∑
k=0

n!k!

(n+ k + 1)!

(
R

r

)k+1

[Pk(cos θ)− Pk(− cos θ)]

=

∞∑
k=0
k even

n!k!

(n+ k + 1)!

(
R

r

)k+1

Pk(cos θ)

The last identity comes from the parity of the Legendre polynomials Pk(−x) = (−)kPk(x). And the
antisymmetric logopoles:

Lan =
1

2
[Ln(x, y, z)− Ln(x, y,−z)]

=
∞∑
k=1
k odd

n!k!

(n+ k + 1)!

(
R

r

)k+1

Pk(cos θ)

Note that Ln = Lsn + Lan. Using the expression for Ln in terms of offset multipoles, the symmetric and
antisymmetric logopoles can be written as:

Lsn =S̃′n − (−)nS̃′′n −
n∑
k=0

(
n

k

)
(1− (−)k)S̃k

=S̃′n − (−)nS̃′′n − 2

n∑
k odd

(
n

k

)
S̃k

Lan =S̃′n + (−)nS̃′′n − 2
n∑

k even

(
n

k

)
S̃k

The first few orders are

Ls0 =
1

2
(S̃′0 − S̃′′0 ) =

1

2
ln

r′ − z′

r′′ − z′′
=

1

2
ln
r′′ + z′′

r′ + z′

La0 =
1

2
ln

(r′ − z′)(r′′ − z′′)
(r − z)2

=
1

2
ln

(r + z)2

(r′ − z′)(r′′ − z′′)

Ls1 =
1

2
(S̃′1 + S̃′′1 )− S̃1 = Ls0 − z̄La0 + r − r′ + r′′

2R

La1 = La0 − z̄Ls0 +
r′′ − r′

2R
.

The antisymmetric logopoles are proportional to the potential created by a line source between O” and
O’ with line charge density (1 − z/R)n (except for La0 which has density z/|z|). For the symmetric
logopoles, the line charge density is |1− z/R|n.

3.12.2 Spheroidal harmonics as a sum of anti/symmetric logopoles

The spheroidal harmonics (centred at the origin) can be written as a sum of either symmetric or anti-
symmetric logopoles:

Qn(ξ)Pn(η) =
n∑
p=0

(−)p

2p
(n+ p)!

(n− p)!p!2
Ls/ap (s/a for n even/odd) (3.68)
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See appendix for derivation. We note that the coefficients in the sum are almost identical to the coeffi-
cients in the sum for the expansion of Qn(ξ̄)Pn(η̄) in terms of Ln (Eq. 3.38).
The first few orders are

Q0(ξ)P0(η) = Ls0

Q1(ξ)P1(η) = La0 − La1

Q2(ξ)P2(η) = Ls0 − 3Ls1 +
3

2
Ls2

Q3(ξ)P3(η) = La0 − 6La1 +
15

2
La2 −

5

2
La3
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3.13 Intensity plots

We present intensity plots of the irregular spheroidal harmonics and logopoles on the xz-plane. The
spheroidal harmonic singularities range from z = −2 to 2, while the logopole singularities range from
z = 0 to 2.
The colour-bars give the value of the function - note that since Q0P0 is non-negative, the dark blue
corresponds to a value of zero, but for higher orders, zero is green.
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Figure 3.1: intensity plots of irregular spheroidal harmonics for m = 0 and 1. The horizontal axis of the
graph represents x in 3D space, and the vertical axis represents z.
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For the logopole plots, all logopoles are actually infinite along the central line from z = 0 to 2,
although it is not clearly seen with the higher orders because they do not diverge until very close to the
singularity, so they appear smooth where the plot is interpolated across x = 0 (they cannot be evaluated
at x = 0). The logopoles were calculated by recurrence and checked with the expansion in terms of
barred spheroidal harmonics. The equipotentials of the logopoles approach spheres as r →∞. They are
positive everywhere in space (since they are proportional to the potential created by a positive charge
distribution). Note L0 and Q0(ξ)P0(η) are the same functions but translated and scaled.
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Figure 3.2: intensity plots of logopoles. The horizontal axis of the graph represents x in 3D space, and
the vertical axis represents z.
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Chapter 4

Applications - Point source interaction with sphere

Problems involving a point source interacting with a dielectric sphere were the main motivation for this
project, in particular to find a faster converging solution to the electrostatic approximation of the decay
rate of an oscillating dipole near a dielectric sphere. We hoped to generalise this to the Helmholtz
equation to be able to apply these calculations to the exact decay rate, but are yet unsuccessful (see
conclusions and outlook). These problems have motivated investigating logopoles and offset spheroidal
harmonics since both were useful as solutions.

4.1 General definitions

This chapter deals with a sphere radius a
centred at the origin O (see figure 4.1),
and separately with three electrostatic
point sources - a charge, a dipole oriented
perpendicular to the surface and a dipole
parallel to the surface. The permittivity
of the surroundings is ε1 and the relative
dielectric constant of the sphere to the
medium is ε. The point source is located
at P where (x, y, z) = (0, 0, RP ). Image
point sources appear at I=(0, 0, RI) where
RI = a2/RP . Coordinates with subscript
P are centred at point P, and similarly
for point I. For each of the three cases we
consider both RP > a and RP < a, and
calculate the potential inside and out.

ξ=cnst
r=RI

r=a

Point source at
r=z=RP

Image 
point 
source(s)

z=0Im
ag

e 
lin

e
 c

h
ar

ge
ρ

=0

I

O

P

Figure 4.1: schematic representation of the problem. The
spheroid at constant ξ̄ is not real but we will use these
offset “barred” spheroidal coordinates in a solution of this
problem.

zP = z −RP , rP =
√
ρ2 + (z −RP )2, cos θP =

zP
rP

zI = z −RI , rI =
√
ρ2 + (z −RI)2, cos θI =

zI
rI
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4.2 Point charge near sphere

4.2.1 Standard solutions using spherical harmonics

A point charge q is at point P above the sphere. To derive the potential outside the sphere, it is useful
to expand the incident potential V ch

inc created by the charge in terms of regular solid spherical harmonics
centred at O, using Eq. 2.11 for n = 0:

V ch
inc = V ch

0

a

rP
= V ch

0

a

RP

∞∑
n=0

(
r

RP

)n
Pn(cos θ) (r < RP ) (4.1)

where

V ch
0 =

q

4πε0ε1a

Call potential inside the sphere V ch
in , and outside V ch

out = V ch
inc+V

ch
ref . The reflected potential V ch

ref (r) can be
derived by assuming solid harmonic expansions of the potential inside and out and applying electrostatic
boundary conditions:

V ch
in =

∞∑
n=0

anr
nPn(cos θ) V ch

ref =
∞∑
n=0

bnr
−n−1Pn(cos θ) (4.2)

V ch
out = V ch

in ; ε∂rV
ch
in = ∂rV

ch
out at r = a (4.3)

Applying these gives simultaneous equations to solve for an and bn. The reflected potential is

V ch
ref = −V ch

0 (ε− 1)
∞∑
n=0

n

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ) (4.4)

This solution is slowly convergent when the source and the evaluation point are near the surface (often
the most interesting case). We now reformulate Eq. 4.4 to increase the rate of convergence, as done by
[9].

4.2.2 Separation of image sources

The convergence of Eq. 4.4 can be improved by separating out an image charge from the solution. To
do this, split the fraction n/[n(ε+ 1) + 1] to isolate the dominant term as n→∞:

n

n(ε+ 1) + 1
=

1

ε+ 1
− 1

(ε+ 1)[n(ε+ 1) + 1]
(4.5)

The sum over the first fraction can be recognised as the potential due to a point charge located at I,
since

∞∑
n=0

(
RI
r

)n+1

Pn(cos θ) =
RI
rI
. (4.6)

This identity can be seen as a translation relation: Eq. 2.10 for n = 0. Then we have for the potential:

V ch
ref = −V ch

0

ε− 1

ε+ 1

[
RI
rI
−
∞∑
n=0

1

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ)

]
(4.7)

This solution converges faster but is still slow. We can continue to isolate image terms to improve
convergence; by separating the next dominant term in the fraction:

1

n(ε+ 1) + 1
=

1

(ε+ 1)(n+ 1)
+

ε

(ε+ 1)(n+ 1)[n(ε+ 1) + 1]
(4.8)
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Although the separation of 1/(n + 1) seems arbitrary (as opposed to 1/n), it makes the calculation of
the next image source easier. We now derive the analytic expression for the sum over the dominant term
in Eq. 4.8. The aim is to calculate:

∞∑
n=0

(
RI
r

)n+1 Pn(cos θ)

n+ 1
. (4.9)

To do this, start from the generating function:

1√
1− 2xt+ t2

=

∞∑
n=0

tnPn(x), (|t| < 1). (4.10)

Integrating with respect to t (from 0 to t):

ln

∣∣∣∣∣ t− x+
√

1− 2xt+ t2

1− x

∣∣∣∣∣ =
∞∑
n=0

tn+1

n+ 1
Pn(x), (|t| < 1). (4.11)

Setting x = cos θ and t = RI/r, we obtain after simplifications:

∞∑
n=0

(
RI
r

)n+1 Pn(cos θ)

n+ 1
= ln

rI − zI
r − z

(r > RI). (4.12)

Then the potential becomes

V ch
ref = −V ch

0

ε− 1

ε+ 1

[
RI
rI
− 1

ε+ 1
ln
rI − zI
r − z

− ε

ε+ 1

∞∑
n=0

1

(n+ 1)[n(ε+ 1) + 1]

(
RI
r

)n+1

Pn(cos θ)

]
.

(4.13)

The convergence has been improved again, but is still not ideal.
Note that the logarithmic term is singular on the line segment OI. It is interesting that this term is

actually the prolate spheroidal harmonic for n = 0:

Q0(ξ̄)P0(η̄) =
1

2
ln
ξ̄ + 1

ξ̄ − 1
=

1

2
ln
rI − zI
r − z

(4.14)

With ξ̄ = (r + rI)/R, η̄ = (r − rI)/R. To derive the last equality invert the definitions of ξ̄ and η̄:

r =
R

2
(ξ̄ + η̄); rI =

R

2
(ξ̄ − η̄); z =

R

2
(ξ̄η̄ + 1); zI =

R

2
(ξ̄η̄ − 1) (4.15)

and insert these into the r.h.s. of Eq. 4.14:

rI − zI
r − z

=
(ξ̄ − η̄)− (ξ̄η̄ − 1)

(ξ̄ + η̄)− (ξ̄η̄ + 1)
=

(ξ̄ + 1)(η̄ − 1)

(ξ̄ − 1)(η̄ − 1)
. (4.16)

4.2.3 New solution using spheroidal harmonics

In fact, the problem of a point charge near a sphere has been solved using image theory where the entire
image source was comprised of a point charge at I and a line charge on OI [6]. This provides motivation
to look for an expansion of the potential in terms of irregular barred spheroidal harmonics, since they
have this same singularity on the line OI. Starting from the potential with just the point image separated
out (Eq. 4.7), we apply Eq. 2.28 - the expansion of irregular spherical harmonics in terms of irregular
barred spheroidal harmonics (with m = 0):

V ch
ref = −V ch

0

ε− 1

ε+ 1

[
RI
rI
−
∞∑
n=0

1

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ)

]
(4.17)

= −V ch
0

ε− 1

ε+ 1

[
RI
rI
−
∞∑
n=0

1

n(ε+ 1) + 1

2

n!2

∞∑
k=n

(−)n+k(2k + 1)
(k + n)!

(k − n)!
Qk(ξ̄)Pk(η̄)

]
(4.18)
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Now rearrange the order of summation and relabel n↔ k to obtain:

V ch
ref = −V ch

0

ε− 1

ε+ 1

[
RI
rI
− 2

∞∑
n=0

(2n+ 1)
n∑
k=0

(−)n+k

k(ε+ 1) + 1

(n+ k)!

k!2(n− k)!
Qn(ξ̄)Pn(η̄)

]
(4.19)

However, the sum over k is numerically unstable to calculate - noticeable errors start occurring at
n ≈ 20 as seen in figure 4.2. This numerical problem can be solved by finding an alternate form for this
expression. Defining

µ ≡ 1

ε+ 1
,

we have

n∑
k=0

(−)n+k

k(ε+ 1) + 1

(n+ k)!

k!2(n− k)!
= µ

n∑
k=0

(−)n+k

k + µ

(n+ k)!

k!2(n− k)!
=

n∏
k=0

µ− k
µ+ k

(4.20)

See appendix for proof . These coefficients are plotted in figure 4.2.
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Figure 4.2: An example of numerical
error in calculating the coefficients in
Eq. 4.20. The absolute value of the
coefficients is plotted. ε = 1.4 in this
example but the results are virtually
the same for any complex ε. The coef-
ficients follow a clear decreasing curve
until numerical errors in the sum be-
come comparable to the size of the co-
efficients themselves at n ≈ 20, and
continue to increase with n. The prod-
uct form follows the same curve, sug-
gesting it has been calculated accu-
rately.

Then our final form of the potential is

V ch
ref = −V ch

0

ε− 1

ε+ 1

[
RI
rI
− 2

∞∑
n=0

(2n+ 1)

n∏
k=0

µ− k
µ+ k

Qn(ξ̄)Pn(η̄)

]
(4.21)

This converges much faster near the sphere as seen in figure 4.3. Also since the singularity of the
spheroidal harmonics is only close to the surface near θ = 0, the series converges even faster for other areas
around the surface, as opposed to the spherical harmonic expansion which converges slowly everywhere
where r → RI . Eq. 4.21 takes only 18 terms to reach double precision accuracy at r = RP , θ = π,
while 4.7 with the single point charge separated takes about 1100 terms.

The potential could instead be expanded in terms of spheroidal harmonics with foci at z = −RI
and RI ; image sources are not unique and this problem can be solved with a longer image source.
This expansion was actually derived but its convergence is slower than the barred spheroidal harmonic
expansion (not shown here). It appears that an image extending from z = 0 to RI is more natural.
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Figure 4.3: A comparison of
the rates of convergence of dif-
ferent forms (Eqs. 4.4, 4.7,
4.21) of the reflected poten-
tial of a point charge outside
a sphere. The relative error is∣∣∣partial sum−converged sumconverged sum

∣∣∣. The

distance of the charge from the
origin and the radius that the
potential is evaluated at are
both close to the sphere (r =
RP = 1.01a). The relative di-
electric constant of the sphere
and medium is ε = 1.13 but
the convergence rates are almost
identical for any complex ε. The
flattening out of the error at
10−13 − 10−14 comes from the
limit of double precision.

4.2.4 Image line charge density

As mentioned before, Lindell [6] also found an appropriate image source containing a point charge at
I and a line charge on OI. Here we compare our series solution to Lindell’s integral solution. They
calculated the line charge density to be q(z/R)−ε/(ε+1) = q(z/R)µ−1, so the potential can be written as:

Vline = V ch
0

ε− 1

(ε+ 1)2

∫ RI

0

(
z̃

RI

)µ−1 dz̃√
ρ2 + (z − z̃)2

. (4.22)

Here the tilde means a dummy variable. By comparing this solution to ours (Eq. 4.21) we can deduce
the expansion of the charge distribution in terms of Legendre polynomials. We use the expression for
barred spheroidal harmonics as the potential due to a line charge distribution along OI (similar to Eq.
3.53):

Qn(ξ̄)Pn(η̄) =
1

2

∫ RI

0

Pn(˜̄η)dz̃√
ρ2 + (z − z̃)2

(4.23)

Note that on the z-axis ˜̄η = 2z̃/RI − 1. In order for Eq. 4.22 to hold, it must be that the image line
charge distribution can be expanded in terms of Legendre polynomials as follows:(

z

RI

)µ−1

=

(
η̄ + 1

2

)µ−1

=
∞∑
n=0

(2n+ 1)
1

µ

n∏
k=0

µ− k
µ+ k

Pn(η̄) (4.24)

This has been checked in Matlab, but the sum converges very slowly for µ << 1 (for µ = 0.25, successive
terms actually increase up to atleast n = 106, but may eventually converge). Insert this identity into Eq.
4.22 and use Eq. 4.23 to see that the series and integral forms of the potential are equivalent.
Out of interest, Eq. 4.24 is actually a general case of Eq. 2.25 evaluated at m = 0, ξ̄ = 1:(

z

RI

)n
=

n∑
k=0

(2k + 1)n!2

(n+ k + 1)!(n− k)!
Pn(η̄) (4.25)

which can be seen by substituting µ→ n+ 1 in Eq. 4.24 and relabelling summation indicies.
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4.3 Perpendicular dipole near sphere

We want to find a similar expression to Eq. 4.21 for the problem of a point dipole p = pẑ at P
near the same dielectric sphere. This problem is particularly relevant for calculating the electrostatics
approximation to the decay rate of an oscillating dipole near a sphere. The incident potential of the
dipole is

V ⊥inc = V dip
0

aRP
r2
P

cos θP = −V dip
0

a

RP

∞∑
n=0

(n+ 1)

(
r

RP

)n
Pn(cos θ) (r < RP ) (4.26)

where

V dip
0 =

p

4πε0ε1aRP
.

The above expansion uses Eq. 2.11 for n = 1. The outside potential V ⊥out = V ⊥inc + V ⊥ref can be derived
by assuming solid harmonic expansions of the potential inside and out of the sphere and applying
electrostatic boundary conditions. The reflected potential is

V ⊥ref = V dip
0 (ε− 1)

∞∑
n=0

n(n+ 1)

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ) (4.27)

Like with the point charge, this converges slowly for r → a, RP → a.
The separation of image terms is similar to the point charge case except that there is an additional image
dipole. As before, separate the leading order from the fraction:

n(n+ 1)

n(ε+ 1) + 1
=

n

ε+ 1
+

εn

(ε+ 1)[n(ε+ 1) + 1]
. (4.28)

The sum over the first term can be evaluated analytically using Eq. 2.10:

∞∑
n=0

n

(
RI
r

)n+1

Pn(cos θ) =
R2
I

r2
I

cos θI (4.29)

which is proportional to the potential of a dipole located at I pointing along z. The next image term
is separated out in the same manner as with the problem of the point charge outside the sphere, and
again we do not separate any line source images because we want to express the line source as a series
of spheroidal harmonics. We have

V ⊥ref = V dip
0

ε− 1

ε+ 1

[
R2
I

r2
I

cos θI +
ε

ε+ 1

RI
rI
− ε

ε+ 1

∞∑
n=0

1

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ)

]
. (4.30)

Inserting Eq. 2.28:

V ⊥ref = V dip
0

ε(ε− 1)

(ε+ 1)2

[
ε+ 1

ε

R2
I

r2
I

cos θI +
RI
rI
− 2

∞∑
n=0

(2n+ 1)
n∏
k=0

µ− k
µ+ k

Qn(ξ̄)Pn(η̄)

]
(4.31)

The comparison of the convergence of this expansion with the spherical harmonic expansion is similar to
that of the point charge case.
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4.4 Parallel dipole near sphere

We find a similar expression to Eq. 4.31 for the case of a point dipole aligned parallel to the surface with
p = px̂ at P. If we know the potential due to a parallel and a perpendicular dipole then we solve for for
any orientation, since any orientation of dipole can be vector decomposed into a linear combination of
three orthogonal dipoles (one along each of x, y and z), and because of symmetry the parallel dipole can
represent either x or y orientations. The incident field is

V
||
inc = V dip

0

aRPx

r3
P

= V dip
0

aRP
r2
P

P 1
1 (cos θP ) cosφ = V dip

0

a

RP

∞∑
n=1

(
r

RP

)n
P 1
n(cos θ) cosφ (r < RP )

(4.32)

This expansion can be derived by expressing the Legendre functions P 1
n in terms of the simpler Legendre

polynomials:

P 1
n(cos θ) =

−n
sin θ

[cos θPn(cos θ)− Pn−1(cos θ)] (4.33)

And using the translation relation Eq. 2.11.
By applying boundary conditions, it is straightforward to determine the potential outside the sphere

V
||
out = V

||
inc + V

||
ref , with the reflected potential

V
||
ref = −V dip

0 (ε− 1) cosφ
∞∑
n=1

n

n(ε+ 1) + 1

(
RI
r

)n+1

P 1
n(cos θ) (r > RI) (4.34)

Like with the perpendicular dipole, the fraction can be split and image terms can be separated out to
make the convergence faster. Splitting the fraction as before:

n

n(ε+ 1) + 1
=

1

ε+ 1
− 1

n(ε+ 1)2
+

1

n(ε+ 1)2(nε+ n+ 1)
(4.35)

The first term results in the series

∞∑
n=1

(
RI
r

)n+1

P 1
n(cos θ) cosφ = R2

I

x

r3
I

(4.36)

Which is the potential of a dipole located at I, which is actually oppositely aligned to the source dipole.
This identity can be shown by expressing in terms of the simpler Legendre polynomials, and using the
translation relation Eq. 2.10.

The second term gives the series:

∞∑
n=1

1

n

(
RI
r

)n+1

P 1
n(cos θ) cosφ (4.37)

In contrast with the case of a perpendicular dipole where an image point charge was identified, it is not
straightforward here to recognize an analytic expression. To manipulate Eq. 4.37, we use Eq. 4.33:

∞∑
n=1

1

n

(
RI
r

)n+1

P 1
n(cos θ) cosφ = −cosφ

sin θ

∞∑
n=1

(
RI
r

)n+1

[cos θPn(cos θ)− Pn−1(cos θ)]

= −cosφ

sin θ

[
cos θ

∞∑
n=1

(
RI
r

)n+1

Pn(cos θ)− RI
r

∞∑
n=0

(
RI
r

)n+1

Pn(cos θ)

]

= −cosφ

sin θ

[
cos θ

(
RI
rI
− RI

r

)
− RI

r

RI
rI

]
using Eq. 2.10 for n = 0

=
RI cosφ

r sin θ
(cos θ − cos θI), since cos θI =

r cos θ −RI
rI

=
RIx

ρ2
(cos θ − cos θI) (4.38)
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Note that the above expression is singular on the segment OI only. Because this singularity matches
the singularity of the barred spheroidal harmonics, we include this term inside the spheroidal harmonic
expansion. So we write the potential with only the image point dipole separated:

V
||
ref = V dip

0

ε− 1

ε+ 1
cosφ

[
−
R2
I sin θI
r2
I

+

∞∑
n=1

1

n(ε+ 1) + 1

(
RI
r

)n+1

P 1
n(cos θ)

]
(4.39)

This can be converted in to barred spherical harmonics using Eq. 2.28 for m = 1, so that the sum in Eq.
4.39 becomes

∞∑
n=1

1

n(ε+ 1) + 1

(
RI
r

)n+1

P 1
n(cos θ) =

∞∑
n=1

−2

n(ε+ 1) + 1

∞∑
k=n

(−)n+k

n!(n− 1)!

(k + n)!

(k − n)!

2k + 1

k(k + 1)
Q1
k(ξ̄)P

1
k (η̄)

= −2

∞∑
n=1

2n+ 1

n(n+ 1)

n∑
k=1

(−)n+kk

k(ε+ 1) + 1

(n+ k)!

k!2(n− k)!
Q1
n(ξ̄)P 1

n(η̄) (4.40)

In the last step the order of summation was swapped and the indices relabelled n ↔ k. Now we need
to convert the sum over k into a product as was done with the point charge. To do this we first use the
following identity which is obtained by evaluating Eq. 2.25 at m = 0, ξ̄ = η̄ = 1:

n∑
k=0

(−)n+k (n+ k)!

k!2(n− k)!
= 1. (4.41)

Now note that

(ε+ 1)

n∑
k=1

(−)n+kk

k(ε+ 1) + 1

(n+ k)!

k!2(n− k)!
+

n∑
k=1

(−)n+k

k(ε+ 1) + 1

(n+ k)!

k!2(n− k)!
=

n∑
k=1

(−)n+k (n+ k)!

k!2(n− k)!
= 1 (4.42)

⇒
n∑
k=1

(−)n+kk

k(ε+ 1) + 1

(n+ k)!

k!2(n− k)!
=

1

ε+ 1

(
1−

n∏
k=1

µ− k
µ+ k

)
(4.43)

Here we used Eq. 4.20. Then the potential is:

V
||
ref = −V dip

0

ε− 1

ε+ 1
cosφ

[
R2
I sin θI
r2
I

− 2

ε+ 1

∞∑
n=1

2n+ 1

n(n+ 1)

(
n∏
k=1

µ− k
µ+ k

− 1

)
Q1
n(ξ̄)P 1

n(η̄)

]
(4.44)

Again the convergence of this series is much faster than the spherical harmonic expansion. Note the
potential cannot be evaluated at θ = 0 because both expansions are singular; however we know by sym-
metry that the potential is zero along the entire z-axis anyway.

We only separated out one point source from the expansion because there is no point charge term
for m = 1 - instead there is a line singularity (cos θI − cos θ)/ρ which corresponds to n = 0, m = 1.
So the angular part cos θ/ sin θ is a solution to Legendre’s equation for n = 0, m = 1, but it is not
Q1

0 = −1/ sin θ, it is the second independent solution. As far as we know this has no name but would
be analogous to P 1

0 (cos θ), although Pmn is zero for m > n. It turns out that the exclusion of this term
from the series has only a slight difference in the resulting spheroidal harmonic expansion. Separating
out this term leads to replacing the −1 that comes after the product (in Eq. 4.44) with −(−)n. This
has no effect on the rate of convergence, so we ignore it.

4.5 Reflected electric field and dipole decay rates

We calculate the electric field for the dipole sources because it applies to nano-optics for calculating
the decay rate of an oscillating dipole near a sphere. The full decay rate must be calculated using the
Helmholtz equation, but we can provide the electrostatic approximation when the wavelength is much
longer than the sphere size and the Helmholtz equation reduces to Laplace’s equation.
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4.5.1 Perpendicular dipole

In terms of spherical harmonics, the standard solution of the reflected electric field is (calculated from
E = −∇V ):

E⊥ref = E0(ε− 1)
∞∑
n=0

n(n+ 1)2

n(ε+ 1) + 1

(
RI
r

)n+2 [
Pn(cos θ)r̂ +

Pn+1(cos θ)− cos θPn(cos θ)

sin θ
θ̂

]
(4.45)

with

E0 =
p

4πε0ε1a3
.

Starting from the barred spheroidal harmonic expansion of the potential (Eq. 4.31), E⊥ref can be obtained

in terms of unit vectors r̂ and θ̂ by using the gradient in spherical coordinates. The electric field of the
point terms is easily calculated, but for the spheroidal harmonics we need the gradient in spheroidal
coordinates, which we derive for the case of constant φ:

∇V = − ∂

∂r
r̂− sin θ

r

∂V

∂ cos θ
θ̂

= −
(
∂ξ̄

∂r

∂V

∂ξ̄
+
∂η̄

∂r

∂V

∂η̄

)
r̂−

(
∂ξ̄

∂ cos θ

∂V

∂ξ̄
+

∂η̄

∂ cos θ

∂V

∂η̄

)
θ̂

= − 2

RI(ξ̄ − η̄)(ξ̄ + η̄)

(
(ξ̄2 − 1)

∂V

∂ξ̄
+ (1− η̄2)

∂V

∂η̄

)
r̂− r

rI

(
∂V

∂ξ̄
− ∂V

∂η̄

)
θ̂. (4.46)

After some algebraic manipulation, the reflected electric field is:

E⊥ref =− E0
ε(ε− 1)

(ε+ 1)2

[
ε+ 1

ε
R3
I

(
−2

cos θ

r3
I

+ 3
RP r sin2 θ

r5
I

)
+
R2
I

r3
I

(RI cos θ − r)

+2
RI
r

∞∑
n=0

(2n+ 1)(n+ 1)
n∏
k=1

µ− k
µ+ k

(
Qn(ξ̄)Pn(η̄) +

Qn(ξ̄)Pn+1(η̄)−Qn+1(ξ̄)Pn(η̄)

ξ̄ − η̄

)]
r̂

− E0
ε(ε− 1)

(ε+ 1)2
sin θ

[
R3
I

r3
I

+
ε+ 1

ε

R3
I

r5
I

(r2 +RP z − 2R2
I)

−2
RI
r

∞∑
n=0

(2n+ 1)(n+ 1)

n∏
k=1

µ− k
µ+ k

(
Qn(ξ̄)Pn(η̄) cos θ

sin2 θ
+

r

rI

(
Qn(ξ̄)Pn+1(η̄)

η̄2 − 1
− Qn+1(ξ̄)Pn(η̄)

ξ2 − 1

))]
θ̂

(4.47)

Now we evaluate the field at the dipole position. The dipole position corresponds to coordinates

r = RP , θ = 0, rI = rIP = RP −RI , ξ̄ = ξ̄P = 2
R2
P

a2
− 1, η̄ = 1

The self-field Esf is the reflected electric field at the dipole position. Note that the angular field at
the dipole is zero. We present both the standard solution (Eq. 4.48) and new solution (Eq. 4.49) for
comparison:

E⊥sf = E0(ε− 1)

∞∑
n=0

n(n+ 1)2

n(ε+ 1) + 1

(
a2

R2
P

)n+2

ẑ (4.48)

= E0
ε(ε− 1)

(ε+ 1)2

{
2
ε+ 1

ε

R3
I

r3
IP

−
R2
I

r2
IP

+
R2
I

RP rIP

√
ξ̄2
P − 1

∞∑
n=0

(2n+ 1)

n∏
k=1

µ− k
µ+ k

Q1
n(ξ̄P )

}
ẑ (4.49)

The decay rate is deduced directly from the self-field [9]:

Γ

Γ0
= 1 +

6πε0ε1
k3

1

Im (p∗ ·Esf )

|p|2
, (4.50)
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where Γ0 is the decay rate of the oscillating dipole in the absence of the sphere (which depends on the
surrounding medium) and k1 is the wavenumber in the surrounding medium. Note that ε, the dipole
moment p and Esf are complex in general.

Γ⊥
Γ0

= 1 +
3

2(k1a)3
Im

 ε(ε− 1)

(ε+ 1)2

2
ε+ 1

ε

R3
I

r3
IP

−
R2
I

r2
IP

+
R2
I

√
ξ̄2
P − 1

RP rIP

∞∑
n=0

(2n+ 1)
n∏
k=1

µ− k
µ+ k

Q1
n(ξ̄P )


(4.51)

This expression converges much faster than the corresponding expression involving spherical harmonics.

4.5.2 Parallel dipole

In terms of solid harmonics, the reflected electric field is

E
||
ref = −E0

∞∑
n=1

n(ε− 1)

n(ε+ 1) + 1

(
RI
r

)n+2 [
(n+ 1)P 1

n(cos θ) cosφr̂

+
nP 1

n+1(cos θ)− (n+ 1) cos θP 1
n(cos θ)

sin θ
cosφθ̂ +

P 1
n(cos θ)

sin θ
sinφφ̂

]
(4.52)

In terms of barred spheroidal harmonics:

E
||
ref = −E0

ε− 1

ε+ 1
cosφ

[
R3
I sin θ(2r2 −RIz −R2

I)

r5
I

− 2

ε+ 1

RI
r

∞∑
n=1

(2n+ 1)

(
n∏
k=1

µ− k
µ+ k

− 1

)(
Q1
n(ξ̄)P 1

n(η̄)

n
+
Q1
n(ξ̄)P 1

n+1(η̄)−Q1
n+1(ξ̄)P 1

n(η̄)

(n+ 1)(ξ̄ − η̄)

)]
r̂

− E0
ε− 1

ε+ 1
cosφ

[
R3
I

(
cos θ

r3
I

− 3RIr sin2 θ

r5
I

)
+

2RI
(ε+ 1)ρ

∞∑
n=1

(2n+ 1)

(
n∏
k=1

µ− k
µ+ k

− 1

)

×
(
Q1
n(ξ̄)P 1

n(η̄)

n

z

r
−
Q1
n(ξ̄)P 1

n+1(η̄)(ξ̄2 − 1)−Q1
n+1(ξ̄)P 1

n(η̄)(η̄2 − 1)

(n+ 1)(ξ̄ + η̄)(ξ̄ − η̄)

)]
θ̂

− E0
ε− 1

ε+ 1
sinφ

[
R3
I

r3
I

+
2

ε+ 1

RI
ρ

∞∑
n=1

2n+ 1

n(n+ 1)

(
n∏
k=1

µ− k
µ+ k

− 1

)
Q1
n(ξ̄)P 1

n(η̄)

]
φ̂ (4.53)

To calculate the self-field E
||
sf (the field at the dipole position) we need to take limits as θ → 0. For the

Legendre polynomials:

lim
θ→0

P 1
n(cos θ)

sin θ
=
n(n+ 1)

2
(4.54)

Then the self-field is (note that θ̂ = x̂ at the dipole and the self field in the z-direction is zero):

E
||
sf = E0

ε− 1

2

∞∑
n=0

n2(n+ 1)

n(ε+ 1) + 1

(
a2

R2
P

)n+2

x̂

= −E0
ε− 1

ε+ 1

 R3
I

r3
IP

− 2

ε+ 1

∞∑
n=1

(2n+ 1)

(
n∏
k=1

µ− k
µ+ k

− 1

)
Q1
n(ξ̄P )√
ξ̄2
P − 1

 x̂ (4.55)

And the decay rate is

Γ||

Γ0
= 1− 3

2(k1a)3
Im

ε− 1

ε+ 1

 R3
I

r3
IP

− 2

ε+ 1

∞∑
n=1

(2n+ 1)

(
n∏
k=1

µ− k
µ+ k

− 1

)
Q1
n(ξ̄P )√
ξ̄2
P − 1

 (4.56)
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4.6 Potentials inside the sphere

The potential inside the sphere can also be expanded in terms of (radially inverted) spheroidal harmonics.
The inside potential is a series of regular spheroidal harmonics, so we would assume that this could be
re-expressed in terms of regular spheroidal harmonics using Eq. 2.26, but this does not work. Instead,
by changing coordinates to r̀ = 1/r and R̀P = 1/RP , the potential becomes a sum of irregular solid
harmonics just like the reflected potential, and the same derivation can be applied to expand it in
terms of inverted spheroidal harmonics. We present new solutions to the potentials inside the sphere for
each point source. The results are similar to that of the outside potentials and the comparison of the
convergence of the spheroidal harmonic solutions to the spherical harmonic solutions is very similar to
figure 4.3.

4.6.1 Point charge

The inside potential V ch
in can be calculated from boundary conditions on the sphere. Note that the

solution involves regular solid harmonics and the radius of convergence is r = RP .

V ch
in = V ch

0

a

RP

∞∑
n=0

2n+ 1

n(ε+ 1) + 1

rn

RnP
Pn(cos θ) (4.57)

We can separate out the image charge using the identity

2n+ 1

n(ε+ 1) + 1
=

2

ε+ 1
+

ε− 1

(ε+ 1)[n(ε+ 1) + 1]
(4.58)

The sum over the first term on the r.h.s. can be evaluated analytically using Eq. 2.11 for n = 0:

∞∑
n=0

(
r

RP

)n
Pn(cos θ) =

RP
rP

(4.59)

which is proportional to the potential of a point charge located at P (the same location as the source).
Inserting this into the potential:

V ch
in = V ch

0

a

RP

1

ε+ 1

[
2
RP
rP

+ (ε− 1)
∞∑
n=0

1

n(ε+ 1) + 1

rn

RnP
Pn(cos θ)

]
(4.60)

As demonstrated in [6], the image source can be taken to be a line singularity extending from P to infinity.
Consider the barred spheroidal harmonics Qn(ξ̄)Pn(η̄). If we radially invert coordinates about the radius
RP - take the origin to infinity, infinity to the origin while r = RP stays the same, the singularity of these
harmonics is now from P to infinity just like the image source. Therefore we define radially inverted
coordinates r̀ = 1/r and R̀P = 1/RP , and rewrite the potential:

V ch
in = V ch

0

a

RP

1

ε+ 1

2
RP
rP

+ (ε− 1)
RP
r

∞∑
n=0

1

n(ε+ 1) + 1

(
R̀P
r̀

)n+1

Pn(cos θ)

 (4.61)

This is now a sum of irregular solid harmonics and we can apply Eq. 2.28, as long as we also transform
the spheroidal coordinates:

ξ̀ =
r̀ + r̀P

R̀P
=
RP
r

+

√
R2
P

r2
− 2RP cos θ

r
+ 1

ὴ =
r̀ − r̀P
R̀P

=
RP
r
−
√
R2
P

r2
− 2RP cos θ

r
+ 1

Then plugging Eq. 2.28 with this coordinate system into the potential, rearranging the order of summa-
tion, relabelling n↔ k and using the product form of the expansion coefficients:

V ch
in = V ch

0

a

RP

2

ε+ 1

[
RP
rP

+ (ε− 1)
RP
r

∞∑
n=0

(2n+ 1)
n∏
k=0

µ− k
µ+ k

Qn(ξ̀)Pn(ὴ)

]
(4.62)
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Radially inverting a solution can be used to create another solution to Laplace’s equation - if φ(r, θ, φ)
is a solution then it is straightforward to show that r−1φ(R/r, θ, φ) is also a solution. Therefore
r−1Qmn (ξ̀)Pmn (ὴ)e±imφ and r−1Pmn (ξ̀)Pmn (ὴ)e±imφ are harmonics, and also V ch

in in the form of Eq. 4.62
satisfies Laplace’s equation.

4.6.2 Perpendicular dipole

The inside potential in terms of spheroidal harmonics is

V ⊥in = −V dip
0

a

RP

∞∑
n=0

(n+ 1)(2n+ 1)

n(ε+ 1) + 1

rn

RnP
Pn(cos θ) (4.63)

Before making the coordinate change, the image dipole and point charge should be separated out as with
the reflected potential:

V ⊥in = −V dip
0

a

RP

ε− 1

(ε+ 1)2

RP
rP
− 2

ε+ 1

ε− 1

R2
P

r2
P

cos θP + ε
RP
r

∞∑
n=0

1

n(ε+ 1) + 1

(
R̀P
r̀

)n+1

Pn(cos θ)


(4.64)

Then following the same derivation as for the inside potential for a point charge, we find:

V ⊥in = −V dip
0

a

RP

ε− 1

(ε+ 1)2

[
RP
rP
− 2

ε+ 1

ε− 1

R2
P

r2
P

cos θP + 2ε
RP
r

∞∑
n=0

(2n+ 1)
n∏
k=0

µ− k
µ+ k

Qn(ξ̀)Pn(ὴ)

]
(4.65)

4.6.3 Parallel dipole

The inside potential in terms of spheroidal harmonics is

V
||
in = V dip

0

a

RP

∞∑
n=0

2n+ 1

n(ε+ 1) + 1

rn

RnP
P 1
n(cos θ) cosφ (4.66)

As with the reflected potential, there is only one point image source. The spheroidal harmonic expansion
is:

V
||
in = V dip

0

a

RP

2 cosφ

ε+ 1

[
R2
P sin θP
r2
P

− ε− 1

ε+ 1

RP
r

∞∑
n=1

2n+ 1

n(n+ 1)

(
n∏
k=0

µ− k
µ+ k

− 1

)
Q1
n(ξ̀)P 1

n(ὴ)

]
(4.67)

4.7 Sources inside the sphere (RP < a)

Results are similar when point source is inside the sphere, but not identical. The image position
I=(0, 0, RI) is now outside the sphere, and the inside potential is Vin = Vinc + Vref . Again the conver-
gence of the spheroidal harmonic solutions are faster than the corresponding solutions involving spherical
harmonics; the comparison in every case is very similar to that for outside sources.

4.7.1 Point charge

Unlike when the point charge was outside the sphere, the source potential V ch
inc should now be expanded

in terms of irregular solid harmonics in order for the series to converge on the surface where boundary
conditions will apply.

V ch
inc = V ch

0

RP
rP

=

∞∑
n=0

(
RP
r

)n+1

Pn(cos θ) (4.68)
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Following a similar derivation to the case of the source being outside the sphere we obtain:

V ch
out = V ch

0 ε
∞∑
n=0

2n+ 1

n(ε+ 1) + 1

(
RP
r

)n+1

Pn(cos θ)

= V ch
0

2ε

ε+ 1

[
RP
rP

+ (ε− 1)

∞∑
n=0

(2n+ 1)

n∏
k=0

µ− k
µ+ k

Qn(ξ̄)Pn(η̄)

]
(4.69)

and the reflected potential inside the sphere is:

V ch
ref = V ch

0

RP
a

(ε− 1)
∞∑
n=0

n+ 1

n(ε+ 1) + 1

(
r

RI

)n
Pn(cos θ)

= V ch
0

a

RP

ε− 1

ε+ 1

[
RP
rI

+ 2ε
RP
r

∞∑
n=0

(2n+ 1)
n∏
k=0

µ− k
µ+ k

Qn(ξ̀)Pn(ὴ)

]
(4.70)

This time the radially inverted coordinates are inverted about r = RI .

4.7.2 Perpendicular dipole

The inside and outside potentials in this case are:

V ⊥inc = V dip
0

a

RP

R2
P

r2
P

cos θP = V dip
0

∞∑
n=1

n

(
RP
r

)n+1

Pn(cos θ) (r < RP ) (4.71)

V ⊥out = V dip
0

a

RP

∞∑
n=0

n(2n+ 1)

n(ε+ 1) + 1

(
RP
r

)n+1

Pn(cos θ)

= V dip
0

a

RP

ε− 1

(ε+ 1)2

[
RP
rP

+ 2
ε+ 1

ε− 1

R2
P

r2
P

cos θP − 2
∞∑
n=0

(2n+ 1)
n∏
k=0

µ− k
µ+ k

Qn(ξ̄)Pn(η̄)

]
(4.72)

V ⊥ref = −V dip
0 (ε− 1)

∞∑
n=0

n2

n(ε+ 1) + 1

(
r

RI

)n
Pn(cos θ)

= V dip
0

ε− 1

(ε+ 1)2

[
(ε+ 2)

RI
rI

+ (ε+ 1)
R2
I

r2
I

cos θI − 2
RI
r

∞∑
n=0

(2n+ 1)

n∏
k=0

µ− k
µ+ k

Qn(ξ̀)Pn(ὴ)

]
(4.73)

4.7.3 Parallel dipole

The inside and outside potentials in this case are:

V
||
inc = V dip

0

aRPx

r3
P

= V dip
0

a

RP
cosφ

∞∑
n=1

(
RP
r

)n+1

P 1
n(cos θ) (4.74)

V
||
out = V dip

0

a

RP
ε cosφ

∞∑
n=1

2n+ 1

n(ε+ 1) + 1

(
RP
r

)n+1

P 1
n(cos θ)

= V dip
0

a

RP

2ε

ε+ 1
cosφ

[
R2
P

r2
P

sin θP −
ε− 1

ε+ 1

∞∑
n=1

2n+ 1

n(n+ 1)

(
n∏
k=0

µ− k
µ+ k

− 1

)
Q1
n(ξ̄)P 1

n(η̄)

]
(4.75)

V
||
ref = V dip

0 (ε− 1) cosφ

∞∑
n=0

n+ 1

n(ε+ 1) + 1

(
r

RI

)n
P 1
n(cos θ)

= V dip
0

ε− 1

ε+ 1
cosφ

[
−
R2
I

r2
I

sin θI +
2ε

ε+ 1

RI
r

∞∑
n=1

2n+ 1

n(n+ 1)

(
n∏
k=0

µ− k
µ+ k

− 1

)
Q1
n(ξ̀)P 1

n(ὴ)

]
(4.76)
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4.8 Logopole solutions

Logopoles can be used as part of the series expansion for problems with point sources outside spherical
objects. The series converge faster than the spheroidal harmonic expansions but the spheroidal harmonic
solutions are simpler. The logopole solution for a perpendicular dipole near a sphere was originally found
by Eric Le Ru and I used his method to find the point charge solution.

4.8.1 Potential of point charge near sphere

We will derive the logopole solution for the reflected potential starting from the standard solution:

V ch
ref = −V ch

0 (ε− 1)
∞∑
n=0

n

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ) (4.77)

We want to expand n/[n(ε + 1) + 1] as a sum of fractions that can be related to the coefficients in the
first series definition of the logopoles. We split off terms in the same way as when we applied spheroidal
harmonics to this problem, but continue indefinitely. Each term that is split will reveal the next order
logopole in the solution. The fraction should be split as follows:

n

n(ε+ 1) + 1
=

n(ε+ 1) + 1− 1

(n(ε+ 1) + 1)(ε+ 1)

=
1

ε+ 1
− 1

(ε+ 1)(n(ε+ 1) + 1)

=
1

ε+ 1
− (n+ 1)(ε+ 1)

(n+ 1)(ε+ 1)2(n(ε+ 1) + 1)

=
1

ε+ 1
− 1

(n+ 1)(ε+ 1)2
− (1(ε+ 1)− 1)

(n+ 1)(ε+ 1)2(n(ε+ 1) + 1)

=
1

ε+ 1
− 1

(n+ 1)(ε+ 1)2
− (n+ 2)(ε+ 1)(1(ε+ 1)− 1)

(n+ 2)(n+ 1)(ε+ 1)3(n(ε+ 1) + 1)

=
1

ε+ 1
− 1

(n+ 1)(ε+ 1)2
− 1(ε+ 1)− 1

(n+ 2)(n+ 1)(ε+ 1)3
− (1(ε+ 1)− 1)(2(ε+ 1)− 1)

(n+ 2)(n+ 1)(ε+ 1)3(n(ε+ 1) + 1)

... (4.78)

This process can be extended to infinity (the terms approach zero as q →∞):

n

n(ε+ 1) + 1
=

1

ε+ 1
− 1

(ε+ 1)2

∞∑
q=0

n!q!

(n+ q + 1)!
γq. (4.79)

where γ0 = 1,

γq =
[1(ε+ 1)− 1][2(ε+ 1)− 1]...[q(ε+ 1)− 1]

q!(ε+ 1)q
=

q∏
k=1

(
1− 1

k(ε+ 1)

)
q ≥ 1

Putting Eq. 4.79 back into the the reflected potential Eq. 4.77:

V ch
ref = −V ch

0

ε− 1

ε+ 1

∞∑
n=0

1− 1

ε+ 1

∞∑
q=0

n!q!

(n+ q + 1)!
γq

(RI
r

)n+1

Pn(cos θ) (4.80)

swapping the order of the summation of n and q, using the closed form expression for the image charge
term R/rI , and the first definition of the logopoles (Eq. 3.1):

= −V ch
0

ε− 1

ε+ 1

RI
rI
− 1

ε+ 1

∞∑
q=0

γqLq

 (4.81)
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The logopoles used here have their singularity from z = 0 to z = RI . However, it turns out that the
convergence of this solution is slower than the standard solution. To derive a faster converging solution,
truncate the sum in Eq. 4.79 at some Q and add the remainder:

n

n(ε+ 1) + 1
=

1

ε+ 1
− 1

(ε+ 1)2

 Q∑
q=0

n!q!

(n+ q + 1)!
γq +

n!(Q+ 1)!γQ+1

(n+Q+ 1)!

ε+ 1

n(ε+ 1) + 1

 (4.82)

This time putting Eq. 4.82 back into the the reflected potential Eq. 4.77:

V ch
ref = −V ch

0

ε− 1

ε+ 1

∞∑
n=0

1− 1

ε+ 1

Q∑
q=0

n!q!

(n+ q + 1)!
γq −

n!(Q+ 1)!

(n+Q+ 1)!

γQ+1

n(ε+ 1) + 1

(RI
r

)n+1

Pn(cos θ)

= −V ch
0

ε− 1

ε+ 1

RI
rI
− 1

ε+ 1

Q∑
q=0

γqLq − γQ+1

∞∑
n=0

n!(Q+ 1)!

(n+Q+ 1)!

1

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ)


(4.83)

The sum over q is chosen to continue up to some Q, then this Q must be used in the next sum over n,
which can be summed up to say N . So there are two parameters that determine the accuracy of the
solution. The logopole part of the solution can be seen as an approximation, and the spherical harmonic
part is then the remainder. Even though the logopole approximation converges slowly, the remainder
converges very fast. At the dipole position, we found that the total number of terms N + Q to reach a
given accuracy is minimised if N = Q. For r = RP = 1.01a, θ = 0, the solution takes N = Q = 18 terms
to reach double precision (≈ 10−15). In comparison, the spheroidal harmonic solution takes about 100
terms, while the spherical harmonic solution (with the point charge separated) takes about 1100 terms.
The rates of convergence of the logopole solutions for different Q are compared in figure 4.8.1.
It is interesting to compare the image line charge distribution to that of the logopoles and spheroidal
harmonics. The logopoles are the potential created by the charge distribution (1 − z/R)n which is
qualitatively similar to the the charge distribution in the problem (z/R)µ−1: both are positive and
decrease from the origin to the point I. The spheroidal harmonics are the potential created by the line
charge distribution of a Legendre function which has positive and negative regions, but despite this the
spheroidal harmonic expansion converges faster.
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Figure 4.4: Comparisons of the
rate convergence of the spherical
harmonic part of the logopole solu-
tions for different Q. The relative

error is
∣∣∣partial sum−converged sumconverged sum

∣∣∣.
For Q > 0, the partial sum starts
with the initial sum over logopoles.
As Q increases, the next sum over
n starts with a smaller magnitude
and converges faster. The poten-
tial is evaluated at r = RP =
1.01a, θ = 0, and ε = 1.2 but the
results are qualitatively ε indepen-
dent. For Q = 64 the flat base of
the curve is due to limited floating
point precision.
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4.8.2 Perpendicular dipole near sphere

The application of logopoles to this problem is similar to that of the point charge near a sphere problem.
Starting from the expression with the image point sources separated:

V ⊥ref = V dip
0

ε− 1

ε+ 1

[
R2
I

r2
I

cos θI +
ε

ε+ 1

RI
rI
− ε

ε+ 1

∞∑
n=0

1

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ)

]
, (4.84)

Rearranging Eq. 4.82:

1

n(ε+ 1) + 1
=

1

ε+ 1

 Q∑
q=0

n!q!

(n+ q + 1)!
γq +

n!(Q+ 1)!γQ+1

(n+Q+ 1)!

ε+ 1

n(ε+ 1) + 1


And inserting this into the potential:

V ⊥ref = V dip
0

ε− 1

ε+ 1

[
R2
I

r2
I

cos θI +
ε

ε+ 1

RI
rI

− ε

(ε+ 1)2

 Q∑
q=0

γqLq + γQ+1

∞∑
n=0

n!(Q+ 1)!

(n+Q+ 1)!

ε+ 1

n(ε+ 1) + 1

(
RI
r

)n+1

Pn(cos θ)

 (4.85)

4.8.3 Parallel dipole near sphere

A definition of logopoles for m = 1 would be helpful (just as the solutions with spherical and spheroidal
harmonics involve the corresponding harmonics for m = 1); this would be an investigation for future
work.
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Chapter 5

Generalization to Helmholtz

The Helmholtz equation (∇2 + k2)Φ(r) = 0 appears in applications involving electromagnetic radiation
where the fields have harmonic time dependence eiωt . k is the wavenumber and ω the frequency. Here
the spacial part of the electric potential satisfies the Helmholtz equation. This chapter attempts to
generalize some of the concepts presented above from Laplace’s equation where k = 0.

The problem of a point dipole near a sphere in section 4 is related to the discrete dipole approximation
for a spherical particle with a layer of surface material that can be modeled by a large number of dipoles.
In the full electromagnetic problem, the spherical Bessel functions are used to express the electric fields
of the dipoles. Numerical computation is problematic if the dipoles are close to the sphere; large numbers
of Bessel functions are needed for each dipole, but the functions cannot be computed due to overflow -
the values exceed 10308 which is the largest number representable with double floating point precision.
Therefore we look for alternative functions, similar to the spheroidal harmonics, that might provide
solutions with faster convergence.

We begin by extending the expansions between spherical and spheroidal harmonics to the Helmholtz
equation, and show that the Helmholtz Green’s function can be expanded as a series of these new
functions. Then we look at the problem of a radiating point source near a sphere. The point sources that
we dealt with in the context of Laplace’s equation are the long-wave limit of a radiating point source.
Here the problem is more complicated because spherical Bessel functions replace the simple powers of r,
which stops us from generalizing our method of solving this problem as we would hope.

5.1 Generalisation of spherical-spheroidal harmonic expansions

We define new functions that are some kind of analogue of the spheroidal harmonics for the Helmholtz
equation (but are not the standard spheroidal wave functions). These have the same coefficients of
expansion in terms of the spherical wave functions as do the barred spheroidal harmonics in terms of
spherical harmonics. We define them from their expansions:

F̄mn =
(−)m

2

(n+m)!

(n−m)!

∞∑
p=n

(2p+ 1)p!(p−m)!

(p− n)!(n+ p+ 1)!
hp(kr)P

m
p (cos θ) (5.1)

f̄mn =
(n+m)!

(n−m)!

n∑
p=m

(−)n+p(n+ p)!

p!(p+m)!(n− p)!
jp(kr)P

m
p (cos θ) (5.2)

where jp(x) and hp(x) are the spherical Bessel and Hankel functions of the first kind. Eq. 5.1 is based on
Eq. 2.27 where F̄n is analogous to Qmn (ξ̄)Pmn (η̄); the expansion coefficients are the same (except for the
(2p+ 1) which is added because this factor appears in the expansion of the Helmholtz Green’s function).
Similarly Eq. 5.2 is based on Eq. 2.25 where f̄n is analogous to Pmn (ξ̄)Pmn (η̄). These expansions can
then be inverted just like Eqs. 2.26 and 2.28, because the inverse relationships rely on combinatorial
identities (similar to the derivation of the expansion of logopoles in terms of spheroidal harmonics, Eq.
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3.39):

hn(kr)Pmn (cos θ) =
2(−)n+m

n!(n−m)!

∞∑
p=n

(−)p
2p+ 1

2n+ 1

(p+ n)!

(p− n)!

(p−m)!

(p+m)!
F̄mp (5.3)

jn(kr)Pmn (cos θ) = n!(n+m)!
n∑

p=m

2p+ 1

(n− p)!(n+ p+ 1)!

(p−m)!

(p+m)!
f̄mp (5.4)

5.2 Alternate expansion of Green’s function

Green’s function for the Helmholtz equation can be expanded in terms of F̄mn and f̄mn with the same
coefficients as the expansion of the Laplace Green’s function in terms of Qmn (ξ̄)Pmn (η̄) and Pmn (ξ̄)Pmn (η̄).
The Laplace Green’s function was 1

4π|r1−r2| for two points r1 and r2, and the Helmholtz Green’s function

is eik|r1−r2|

ik|r1−r2| . Here we derive the expansion of the Laplace Green’s function in terms of offset spheroidal
harmonics, starting from the expansion in terms of spherical harmonics. Then we argue that the same
works for Helmholtz. Start with Eq. 2.18 and introduce the arbitrary radius R which will become the
focal length of the spheroidal harmonics:

1

|r1 − r2|
=

1

R

∞∑
k=0

k∑
m=0

(2− δm0)
(k −m)!

(k +m)!
cosm(φ1 − φ2)

(r1

R

)k
Pmk (cos θ1)

(
R

r2

)k+1

Pmk (cos θ2) (5.5)

This holds for r1 < r2. Then insert the spheroidal harmonics using Eqs. 2.26 and 2.28:

1

|r1 − r2|
=

1

R

∞∑
k=0

k∑
m=0

(2− δm0)
(k −m)!

(k +m)!
cosm(φ1 − φ2)k!(k +m)!

×
k∑

n=m

2n+ 1

(k − n)!(n+ k + 1)!

(n−m)!

(n+m)!
Pmn (ξ̄1)Pmn (η̄1)

× 2(−)k+m

k!(k −m)!

∞∑
p=k

(−)p(2p+ 1)
(p+ k)!

(p− k)!

(p−m)!

(p+m)!
Qmp (ξ̄2)Pmp (η̄2) (5.6)

Now rearrange the order of summation. We want to have the summation over k last, but it is currently
first. This is best done by shifting one place at a time:

∞∑
k=0

k∑
m=0

k∑
n=m

∞∑
p=k

→
∞∑
m=0

∞∑
k=m

k∑
n=m

∞∑
p=k

→
∞∑
m=0

∞∑
n=m

∞∑
k=n

∞∑
p=k

→
∞∑
m=0

∞∑
n=m

∞∑
p=n

p∑
k=n

(5.7)

Then we have

1

|r1 − r2|
=

1

R

∞∑
m=0

∞∑
n=m

∞∑
p=n

(2− δm0) cosm(φ1 − φ2)(2n+ 1)(2p+ 1)
(n−m)!

(n+m)!

(p−m)!

(p+m)!
(5.8)

× Pmn (ξ̄1)Pmn (η̄1)Qmp (ξ̄2)Pmp (η̄2)

p∑
k=n

(−)k+p(p+ k)!

(k − n)!(k + n+ 1)!(p− k)!
(5.9)

This simplifies because of the identity

p∑
k=n

(−)k+p(p+ k)!

(k − n)!(k + n+ 1)!(p− k)!
=

δnp
2p+ 1

(5.10)

Therefore we have (after inverting the summation over n and m)

1

|r1 − r2|
=
∞∑
n=0

2
2n+ 1

R

n∑
m=0

(−)m(2− δm0)
(n−m)!2

(n+m)!2
Pmn (ξ̄1)Pmn (η̄1)Qmn (ξ̄2)Pmn (η̄2) cosm(φ1 − φ2)

(5.11)

44



This derivation also works for the Helmholtz equation because it relies solely on the expansion coefficients
between the spherical and spheroidal harmonics/wave functions. So starting from the expansion of
Green’s function in spherical wave functions ( Jackson [17], p. 428) we can find the expansion in terms
of f̄mn and F̄mn :

eik|r1−r2|

ik|r1 − r2|
=
∞∑
n=0

n∑
m=0

(2−δm0)(2n+ 1)
(n−m)!

(n+m)!
jn(kr1)hn(kr2)Pmn (cos θ1)Pmn (cos θ2) cosm(φ1 − φ2)

=

∞∑
n=0

2(2n+ 1)

n∑
m=0

(−)m(2−δm0)
(n−m)!2

(n+m)!2
f̄mn (r1)F̄mn (r2) cosm(φ1 − φ2) (5.12)

This result encourages us to look for analytic formulae or recurrence relations for F̄n and f̄n.

5.3 Expanding acoustic pressure with new functions

We expand the potential due to a point source near a sphere in terms of F̄n. However, due to the more
complex form of the radial part (spherical Bessel functions) this method does not simplify as much as
we hoped.
It is easier to deal with acoustics in Helmholtz because in electromagnetism the electric field must be
worked with which is a vector, and Green’s function becomes a matrix. The velocity of a particle in
space is determined by the gradient of the velocity potential V (r). Consider a radiating monopole source
on the z axis at z = RP outside an acoustically soft sphere with radius a. The (adimensional) external
potential radiated by the source is

Vext =
eikrP

ikrP
=

∞∑
n=0

(2n+ 1)hn(kr>)jn(kr<)Pn(cos θ)

where k is the wavenumber in the medium, rP =
√
r2 − 2RP z +R2

P , r< = min(r,RP ) and r> =

max(r,RP ). This expansion is analogous to the expansion of the offset point charge in Laplace’s equation
and is actually a specific case of the expansion of the Helmholtz Green’s function.
Assume that the scattered potential Vsca can be expanded as a series of hn(kr)Pn(cos θ). The boundary
condition for a soft sphere is that the total potential must be zero at the boundary. From this the
scattered potential is

Vsca = −
∞∑
n=0

(2n+ 1)
jn(ka)

hn(ka)
hn(kRP )hn(kr)Pn(cos θ) (5.13)

We now substitute in F̄n using Eq. 5.3. The expression for the velocity potential becomes

Vsca = −
∞∑
n=0

jn(ka)

hn(ka)
hn(kRP )

2

n!2

∞∑
p=n

(−)n+p(2p+ 1)
(p+ n)!

(p− n)!
F̄p

= −2

∞∑
p=0

(2p+ 1)

p∑
n=0

jn(ka)

hn(ka)
hn(kRP )

(−)n+p

n!2
(p+ n)!

(p− n)!
F̄p

Before with Laplace’s equation, the jn(ka)
hn(ka)hn(kRP ) would have been powers of RP and a which combine

to give a new radius RI . This RI was actually absorbed into the spheroidal harmonics (Eqs. 2.25 to 2.28

contain the arbitrary parameter R which can be set to RI). We could instead include
jp(ka)
hp(ka)hp(kRP ) in

the definition of F̄n (call this new function F̂n):

F̂n =
1

2

∞∑
p=n

(2p+ 1)p!2

(p− n)!(n+ p+ 1)!

jp(ka)

hp(ka)
hp(kRP )hp(kr)Pp(cos θ) (5.14)
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If we repeat the above derivation with F̂n, we would have

Vsca = −2
∞∑
n=0

(2n+ 1)
n∑
p=0

(−)n+p (n+ p)!

p!2(n− p)!
F̂n (5.15)

which can be simplified using the following identity obtained by evaluating Eq. 2.25 at ξ̄ = η̄ = 1, m = 0:

n∑
p=0

(−)n+p (n+ p)!

p!2(n− p)!
= 1 (5.16)

so that

Vsca = −2

∞∑
n=0

(2n+ 1)F̂n (5.17)

but this F̂n would be more complicated and involve two extra parameters, so finding alternative expres-
sions for F̄n would be even more difficult.
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Chapter 6

Conclusions and outlook

To conclude we discuss some possible extensions of this work.

6.1 Relationships for spheroidal harmonics

The new relationships between spherical and spheroidal harmonics may be useful for deriving translation,
scaling and rotation relations for spheroidal harmonics, which may then be useful for problems involving
multiple spheroidal particles [8]. All three of these relations are given in [2] (for regular harmonics only).
They were derived by expressing the spheroidal harmonics in terms of spherical harmonics (using the
known relations), then applying translation/scaling/rotation relations for spherical harmonics, then re-
expanding these into spheroidal harmonics (the formulas involve multiple sums). We could derive these
formulas using our new relations between spherical and spheroidal harmonics instead, and possibly find
simpler forms.
The known spherical-spheroidal harmonic relationships could also be used to find the T-matrix for a
spheroid in the electrostatic approximation, by solving the problem with spheroidal harmonics then
expanding these in terms of spherical harmonics. Integral forms of the matrix elements are known, but
it would be ideal to find analytic formulae.

6.2 Interacting dielectric spheres

The application of spheroidal harmonics to the problem of a point source was successful and it may be
possible to apply spheroidal harmonics to the more complicated problem of two interacting spheres.
This problem could potentially be solved using two bases of spheroidal harmonics - one for each sphere.
To one sphere, the other acts as a series of multipoles which induce a reflected field from the first sphere
which could be expanded on a basis of spheroidal harmonics, similar to the point source problems. In
order to use this approach we would first have to determine the solution for any multipole outside a
sphere using spheroidal harmonics.

6.3 Logopoles

Investigating logopoles has found many interesting formulae and a new expansion of spheroidal harmon-
ics in terms of offset spherical harmonics of the second kind. We should investigate other electrostatics
problems to see if they are physically useful.
It would be interesting to find a definition for logopoles with m > 0 which would be particularly useful
for the problem of a parallel dipole near a sphere. But there could be many different generalisations.
One would be to simply replace Sn with Smn in Eq. 3.1 (this generalisation fits nicely with a few of the
logopole formulae). Another would be to take the expansion in terms of Qn(ξ̄)Pn(η̄) (Eq. 3.39) and
generalise it using the same coefficients as in Eq. 2.26.
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Appendix

A Proof of Eq. 3.68

This derivation is similar to the one for the relationship between Qn(ξ̄)Pn(η̄) and Lk (Eq. 3.38).
We use the series expansion [2]:

Qn(ξ)Pn(η) =

∞∑
k=n

n−k even

k!

(k − n)!!(k + n+ 1)!!
Sk =

∞∑
k=0

n−k even

2nk!
(
k+n

2

)
!(

k−n
2

)
!(k + n+ 1)!

Sk (A.1)

Note the sum can be extended down to k = 0 since all terms with k < n are zero anyway. Without
loss of generality, consider the even spheroidal harmonics (n and therefore k are even). The symmetric
logopoles are:

Lsn =
∞∑
k=0
k even

k!n!

(k + n+ 1)!
Sk (A.2)

Now assume that the following expansion exists:

Qn(ξ)Pn(η) =

n∑
p=0

ζnpL
s
p (A.3)

⇒
∞∑

k even

2nk!
(
k+n

2

)
!(

k−n
2

)
!(k + n+ 1)!

Sk =
n∑
p=0

ζnp

∞∑
k even

k!p!

(k + p+ 1)!
Sk (A.4)

by the orthogonality of Sk, ζ
n
p must satisfy

2n
k!k+n

2

(
k+n

2 − 1
)
...
(
k+n

2 − n+ 1
)

(n+ k + 1)!
=

n∑
p=0

p!k!ζnp
(p+ k + 1)!

(A.5)

⇒ 2n
k + n

2

(
k + n

2
− 1

)
...

(
k + n

2
− n+ 1

)
=

n∑
p=0

(
n+ k + 1

n− p

)
(n− p)!p!ζnp (A.6)

=

n∑
q=0

(
t

q

)
q!(n− q)!ζnn−q (A.7)

Where t = n+k+ 1 and q = n−p. This is in the form where we can use the binomial coefficient formula
Eq. 3.44. The polynomial on the left hand side is p(t) = t−1

2

(
t−1

2 − 1
)
...
(
t−1

2 − n+ 1
)
. We have

aq = q!(n− q)!ζnn−q = 2n
q∑
i=0

(−)q+i
(
q

i

)
i− 1

2

(
i− 1

2
− 1

)
...

(
i− 1

2
− n+ 1

)
(A.8)

p(i) is zero for i = 2b+ 1 for some b in the range 1 to 2n− 1. These i values are all odd so the (−)i can
be neglected. Then

ζnn−q =
(−)n−q2n

(n− q)!

q∑
i=0

1

i!(q − i)!

n−1∏
b=0

(
i− 1

2
− b
)

(A.9)

For the antisymmetric case (n odd), the same derivation as above can be used to find the same ζnp - the
only difference is that both Qn(ξ)Pn(η) and Lan are sums over k odd instead of even which does not affect
the derivation.
Now we want to write this with positive integer binomial coefficients in order to use a known identity.
Expand the product over b:

n−1∏
b=0

(
i− 1

2
− b
)

=
1

2n
(i− 1)(i− 3)...(i− 2n+ 1)
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All factors with b ≥ i/2 are negative - there are n− i/2 of these so multiply by (−)n−i/2 and switch the
sign of the negative factors:

n−1∏
b=0

(
i− 1

2
− b
)

=
(−)n−i/2

2n
(i− 1)(i− 3)(2n− i− 1)(2n− i− 3)...1

=
(−)n−i/2

2n
(i− 1)!!(2n− i− 1)!!

=
(−)n−i/2

2n
i!

2i/2(i/2)!

(2n− i)!
2n−i/2(n− i/2)!

⇒ ζnn−q =
(−)q

2n(n− q)!

q∑
i=0

(−)i/2

(q − i)!
(2n− i)!

(i/2)!(n− i/2)!

=
(−)q

2n(n− q)!

q/2∑
k=0

(−)k
(2n− 2k)!

k!(q − 2k)!(n− k)!
k ≡ i/2

=
(−)q

2n

(
2n− q
n

) q/2∑
k=0

(−)k
(
n

k

)(
2n− 2j

2n− q

)

This can be simplified using the relation ([18], pg 620):

q/2∑
k=0

(−)k
(
n

k

)(
2n− 2k

2n− q

)
= 2q

(
n

q

)
(A.10)

Therefore, subbing back in p = n− q:

ζnp =
(−)p

2p

(
n+ p

p

)(
n

p

)
=

(−)p

2p
(n+ p)!

(n− p)!p!2
. (A.11)

B Proof of equation 4.20

We want to prove that

n∑
k=0

(−)k

k + µ

(n+ k)!

(n− k)!k!2
=

(−)n

µ

n∏
k=0

µ− k
µ+ k

=
(1− µ)(2− µ)...(n− µ)

µ(µ+ 1)(µ+ 2)...(µ+ n)

First convert the left hand side into a single fraction:

1

µ
− (n+ 1)n

µ+ 1
+

(n+ 2)(n+ 1)n(n− 1)

(µ+ 2)2!2
+

(n+ 3)(n+ 2)(n+ 1)n(n− 1)(n− 2)

(µ+ 3)3!2
− ...+ (−)n

2n(2n− 1)...1

(µ+ n)n!2

=
(µ+ 1)...(µ+ n)− (n+ 1)nµ(µ+ 2)...(µ+ n) + 1

2!2
(n+ 2)(n+ 1)n(n− 1)µ(µ+ 1)(µ+ 3)...(µ+ n)− ...

µ(µ+ 1)(µ+ 2)...(µ+ n)

Now both the left and right hand sides are fractions with denominator µ(µ+ 1)(µ+ 2)...(µ+n), and the
numerators are a polynomial degree n. The numerators can be shown to be equal if they are equal at
n + 1 points. Define f(µ) as the l.h.s. numerator and g(µ) as the r.h.s. numerator. Choose the n + 1
points to be at µ = −q where q = 0, 1, 2, ...n. For g(µ) it is easy to show that

g(−q) = (1 + q)(2 + q)...(n+ q) =
(n+ q)!

q!
.

f(µ) is composed of a sum of terms containing [(−)b/b!2]µ(µ+ 1)...(µ+ b− 1)(µ+ b+ 1)...(µ+n)× (n+
b)(n+ b− 1)...(n− b+ 1) for some b ∈ {0, 1, ...n}. When we set µ = −q, all the terms vanish except the
one with b = q. This term is

f(−q) =
(−)q

q!2
(n+ q)(n+ q − 1)...(n− q + 1)× (−q)(−q − 1)...(−1)× (1)(2)...(n− q) =

(n+ q)!

q!

This applies to all n+ 1 values of q, so f(µ) = g(µ), and Eq. 4.20 holds.
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C Matlab

All important equations have been checked in Matlab, usually by computing both sides of the equation
separately and computing the error. Ideally the error should be ≈ 10−15 if the equation is correct,
because this is the maximum accuracy that Matlab (or any other program) can compute to using double
floating point precision. However, sometimes this method can produce large errors even if the equation
is correct, due to numerical instability. Below is a simple working example script that checks Eq. 2.26
for m = 0.

N=40; % check values for n up to n=N

r=12; % choose some radius to evaluate the equation at

th=pi/3; % theta

R=4.7; %focal length of spheroidal coordinates

rp=sqrt(r^2-2*R*cos(th)+R^2); % rp=r’

xib=(r+rp)/R; % barred xi

etab=(r-rp)/R;

PP=createPn(xib,N).*createPn(etab,N); % see function createPn below

P=createPn(cos(th),N);

S=zeros(1,N+1); % S will be the regular spherical harmonics

for n=0:N

S(n+1)=r^n/R^n*P(n+1); % Matlab indicies start at 1 hence the n+1 instead of n

end

s=zeros(1,N+1); % s will be the reg. spherical harmonics created by a sum over PP.

for n=0:N

for k=0:n

s(n+1)=s(n+1)+(2*k+1)*factorial(n)^2/factorial(n-k)/factorial(n+k+1)*PP(k+1);

end

end

(S-s)./s % display the error. Output contains N values

This script uses the function createPn(x,N):

function [ P ] = createPn(x,N)

% create legendre functions of the second kind for a range of x values

% P is N by length(x) and P_n is actually P(n+1)

% x can be a vector

P=zeros(length(x),N+1);

P(:,1)=x./x; % a vector of ones

P(:,2)=x;

for n=2:N

P(:,n+1)=( (2*n-1)*x.’.*P(:,n)-(n-1)*P(:,n-1) )/n;

end

In this example only one point in space is compared, and depending on the point there may be noticeable
numerical instability or slower convergence, but that is not the case with this equation. For many
equations a matrix of values for r and θ were checked at once.

D Numerical instability

Calculating a sum or recurrence relation may produce inaccurate results due to the limited accuracy of
floating point numbers. We work with double precision (≈ 15 digits accuracy). Consider two numbers
which are identical for the first 10 digits - their subtraction can only be accurate to 5 digits. This
means that sums of terms with alternating signs can be inaccurately calculated - the best way around
this problem is to find an alternate form of the expression. A recurrence relation can be unstable if it
involves the subtraction of similar sized terms; the best way around this is to do the recurrence backwards.
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E Computation of Legendre functions

Both Pmn and Qmn can be computed using the recurrence relation Eq. 2.3:

(n−m+ 1)Pmn+1(u) = (2n+ 1)uPmn (u)− (n+m)Pmn−1(u) (E.1)

E.1 Computation of Pm
n (u)

Pmn (u) can be computed using Eq. 2.3 with the initial values

Pmm (u) = (2m− 1)!!|1− u2|m/2, Pmm+1(u) = (2m+ 1)uPmm (u) (E.2)

This method is numerically stable - the limitation of numerical precision does not accumulate to produce
large errors as n increases.

E.2 Computation of Qm
n (u) for |u| > 1

Calculating Qmn using the recurrence relation Eq. 2.3 is numerically unstable. Computing the recursion
backwards avoids this problem because it no longer involves subtracting two very similar numbers. We
use the method descibed by [19], briefly the method is:
Guess a small value for QmN are for some large N , then use the modified Lentz algorithm [20] to calculate
the ratio TmN = QmN/Q

m
N−1 and use this to guess QmN−1. Then recur backwards to n = 0, where the value

for Qm0 will be wrong but the ratio of all Qmn to each other will be correct. Then rescale all Qmn by the
same factor, knowing what the correct value of Qm0 should be.

Lentz algorithm for Qmn
Here our notation is based on [20]. We want to calculate TmN which follows the continued fraction
recurrence:

TmN =
QmN (u)

QmN−1(u)
=

N +m

(2N + 1)u− (N −m+ 1)TmN+1

=
amN

bmN + TmN+1

(E.3)

The recurrence is over N and we can treat each value of m separately. amN and bmN are:

amN =
−N

N −m+ 1
bmN = − 2N + 1

N −m+ 1
u (E.4)

Below is the Lentz algorithm to find TmN to a desired accuracy ε (ideally ε = 10−15 for double precision)

set TmN = tiny

set C = tiny

set D = 0

for j = N,N + 1, N + 2, ... :

set D = bj + ajD

if D = 0, set D = tiny

set D = 1/D

set C = bj + aj/C

if C = 0, set C = tiny

set TmN = TmN CD

if |CD − 1| < ε, exit

In the notation of [20] f = TmN and they use subscript j’s (fj) which we can ignore as only the last TmNj
is needed. tiny should be less than ε|bmj |. Here |bmj | is always greater than u, so we can set tiny = ε|u|.
The last line leaves the loop when TmN is accurate to ε.
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Then calculate Qmn :
Set QmN any number and QmN−1 = QmN/T

m
N . These will be initial values for the backward recurrence on

n (Eq.2.3). After the recurrence all these Qmn will be off from their correct value by the same scaling
factor: this can be obtained by dividing the incorrect Qm0 by the actual value of Qm0 . Note that unlike
Pmn , Qmn is non-zero for n < m. Qm0 can be obtained by using the following recurrences on m:√

1− u2Qm0 = (2−m)Qm−1
1 −muQm−1

0 (E.5)√
1− u2Qm1 = (2−m)uQm−1

1 −mQm−1
0 (E.6)

With initial values

Q0
0 =

1

2
ln
u+ 1

u− 1
, Q0

1 = uQ0
0 − 1 (E.7)

You have to compute all Qm0 and Qm1 and discard the Qm1 . Multiply all Qmn by the scaling factor for the
corresponding m to obtain the correct values. Note that even if TmN is calculated incorrectly, Qmn will be
accurate for n << N which may lead to a false sense of success (see figure D.1).
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u=20 Figure D.1: the error in calculat-

ing Qn(u) with the incorrect ratio
TN = QN/QN−1 is plotted for var-
ious u. Here N = 50. The error
is the difference between the incor-
rect Qn with TN = 1 and the cor-
rect Qn with TN calculated by the
Lentz algorithm (TN ≈ 0.02 − 0.2).
The error is quickly corrected by the
backwards recurrence.
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An example Matlab script is shown below:

function [ Q ] = createQnmbackwards(x,N,M)

% create Legendre functions of the second kind for a range of x values.

% x must be a row vector with all |x(:)|>1

% Q is length(x) by N by M and Q_n^m is actually Q(:,n+1,m+1) in Matlab

x=x.’; %convert x to a column vector

Q=zeros(length(x),N+1,M+1);

Qs=zeros(length(x),2,M+1); % Qs(:,1,m+1) is the scaling factor for that m

% Need n=0 and n=1 to create all Qs but in the end only need scaling factors for n=0

Qs(:,1,1)=1/2*log((x+1)./(x-1));

Qs(:,2,1)=x.*Qs(:,1,1)-1;

for m=1:M

Qs(:,1,m+1)=((2-m)*Qs(:,2,m)-m*x.*Qs(:,1,m))./sqrt(x.^2-1);

Qs(:,2,m+1)=((2-m)*x.*Qs(:,2,m)-m*Qs(:,1,m))./sqrt(x.^2-1);

end

for m=0:M % treat each m separately

T=1e-14*x; % start with any small value of T=T_N=Q_N/Q_{N-1}

C=1e-14*x; % used to compute T

D=0*x; % used to compute T

exit=0;

j=N;

while exit==0

D=-(2*j+1)/(j-m+1)*x - (j+m)/(j-m+1)*D;

for i=1:length(x)

if D(i)==0 || isnan(D(i)) % check if D=0 or undefined for any x value

D(i)=1e-14*x(i); % reset to a small value, here epsilon = 10^{-14}

end

end

D=1./D;

C=-(2*j+1)/(j-m+1)*x - (j+m)/(j-m+1)./C;

for i=1:length(x)

if C(:)==0 || isnan(C(i))

C(i)=1e-14*x(i);

end

end

Delta=C.*D;

T=T.*Delta;

if max(abs(1-Delta(:))) < 1e-14

exit=1;

end

j=j+1;

end

% now guess values for Q_N^m - will correct all Q_n^m later with scaling factor Qs

Q(:,N+1,m+1)=1e-14*x./x;

Q(:,N,m+1)=Q(:,N+1,m+1)./T;

for n=fliplr(2:N) % apply backwards recurrence

Q(:,n-1,m+1) = ( (2*n-1)*x.*Q(:,n,m+1) - (n-m)*Q(:,n+1,m+1) )/(n+m-1);

end

scale=Qs(:,1,m+1)./Q(:,1,m+1); % all Q_n satisfy the recurrence, just need to scale them:

for n=0:N

Q(:,n+1,m+1)=Q(:,n+1,m+1).*scale;

end

end

53



Bibliography

[1] J. W. Perram, P. J. Stiles, Multipolar expansions of molecular fields, Proceedings of the Royal Society
of London. Series A, Mathematical and PhysicalSciences, Vol. 349, No. 1656 (Apr. 13, 1976), pp. 125-
139

[2] G. Jansen, Transformation properties of spheroidal multipole moments and potentials J. Phys.
A:Math. Gen. 33(2000) pp. 1375-1394

[3] Volodymyr I. Kushch, Micromechanics of Composites: Multipole Expansion Approach, 2013

[4] W. Thomson (Lord Kelvin), Extrait dune lettre de M. William Thomson (reported by A. M. Liou-
ville), J. Math. Pure Appl, 10 (1845), pp. 364367.

[5] Stratton, J. A. (1941). Electromagnetic Theory. McGrawHill, New York.

[6] I.V. Lindell, Electrostatic image theory for the dielectric sphere, Radio Science Vol 27, 1992

[7] Weigan Lin, The electrostatic images of a dielectric sphere, Journal of Electrostatics 36 (1995) 129-137

[8] Wei Cai, Shaozhong Deng, Donald Jacobs, Extending the fast multipole method to charges inside or
outside a dielectric sphere Journal of Computational Physics 223 (2007) 846864

[9] A. Moroz, Superconvergent Representation of the Gersten-Nitzan and Ford-Weber Nonradiative Rates,
J. Phys. Chem. C 115, 19546 (2011).

[10] B Augui et al, Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by
a particle J. Opt. 18 (2016) 075007

[11] William Hobson, Theory of Spherical and Ellipsoidal Harmonics, 1931

[12] Martin van Gelderen, The shift operators and translations of spherical harmonics, DEOS Progress
Letter 98.1: 5767, 1998

[13] Morse and Feshbach, Methods of Theoretical Physics, 1953

[14] V. A. Antonov and A. S. Baranov, Relation between the Expansions of an External Potential in
Spherical Functions and Spheroidal Harmonics, Technical Physics, Vol. 47, No. 3, 2002, pp. 361363.

[15] A. T. Benjamin, J. J. Quinn, An alternate approach to alternating sums: a method to DIE for

[16] T. H. Havelock, The wave resistance of a spheroid, Proc. R. Soc. A 131 27585, 1931

[17] J. D. Jackson, Classical Electrodynamics 3rd ed., 1998, pp 428

[18] A.P. Prudnikov, Integrals and Series, vol. 1, 1986

[19] B.I. Schneider et al. Computer Physics Communications 181 (2010) 20912097, page 2094

[20] Numerical Recipes Software, 1992, Numerical Recipies in Fortran 77: The Art of Scientific Com-
puting, chapter 5.2

54


	Introduction
	Background
	Overview
	Spherical and spheroidal harmonics
	Logopoles
	Point source interaction with sphere
	Matlab
	Publications


	Spherical and spheroidal harmonics - definitions and new relations
	Laplace's equation in spherical coordinates
	Solid spherical harmonics
	Translation relations

	Prolate spheroidal coordinates and harmonics
	Green's function expansions
	Relations between spherical and spheroidal harmonics

	Logopoles - A new class of solutions to Laplace's equation
	Series definition
	Expression in terms of offset multipoles of the second kind
	Alternative form of logopoles
	Expression in terms of offset multipoles of the first kind
	Recurrence relation
	Lowest orders of logopoles
	Differentiation and integration along z axis
	Link to spheroidal harmonics
	Integral form
	Alternate expression for Qn()Pn()
	Attempt at expanding solid harmonics with logopoles
	Symmetric and antisymmetric logopoles
	Definitions
	Spheroidal harmonics as a sum of anti/symmetric logopoles

	Intensity plots

	Applications - Point source interaction with sphere
	General definitions
	Point charge near sphere
	Standard solutions using spherical harmonics
	Separation of image sources
	New solution using spheroidal harmonics
	Image line charge density

	Perpendicular dipole near sphere
	Parallel dipole near sphere
	Reflected electric field and dipole decay rates
	Perpendicular dipole
	Parallel dipole

	Potentials inside the sphere
	Point charge
	Perpendicular dipole
	Parallel dipole

	Sources inside the sphere (RP<a)
	Point charge
	Perpendicular dipole
	Parallel dipole

	Logopole solutions
	Potential of point charge near sphere
	Perpendicular dipole near sphere
	Parallel dipole near sphere


	Generalization to Helmholtz
	Generalisation of spherical-spheroidal harmonic expansions
	Alternate expansion of Green's function
	Expanding acoustic pressure with new functions

	Conclusions and outlook
	Relationships for spheroidal harmonics
	Interacting dielectric spheres
	Logopoles
	Appendices
	Proof of Eq. 3.68
	Proof of equation 4.20
	Matlab
	Numerical instability
	Computation of Legendre functions
	Computation of Pnm(u)
	Computation of Qnm(u) for |u|>1





