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Abstract

This thesis considers the analysis of current and future cellular communication

systems. The main focus is on multiuser multiple-input multiple-output (MU-

MIMO) antenna systems. The goal of this work is to characterize the achievable

spectral efficiency of MU-MIMO systems, as well as to analyze the performance

of practical, linear MU-MIMO transceiver structures in heterogeneous propa-

gation environments. The analytical derivations in this thesis are based on

the mathematical theory of finite and large dimensional random matrices. A

collection of new general random matrix theory results, which permit efficient

numerical evaluation are derived.

With downlink regularized zero-forcing (RZF) processing at a cellular base

station (BS), a general framework for the analysis of the expected (average)

signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spectral efficiency

is developed for uncorrelated and semi-correlated Rayleigh fading, as well as un-

correlated Ricean fading propagation channels. In contrast to existing results,

the presented analyses are extremely general, applicable to single-cellular, multi-

cellular, as well as distributed antenna systems. These systems could consist of

arbitrary numbers of transmit and receive antennas, link signal-to-noise-ratios

(SNRs), equal and unequal transmit correlation structures, and line-of-sight

(LoS) levels, respectively. Numerical results are presented for single-cellular, as

well as for two-tier multi-cellular systems demonstrating the impact of novel BS

coordination strategies to suppress dominant inter-cellular interference.

With dominant LoS directions in the propagation channel, the instanta-

neous downlink zero-forcing (ZF) SNR of a given terminal is analyzed. The

ZF SNR is shown to be approximated by a gamma distribution for any num-

ber of transmit and receive antennas, link SNRs, and LoS levels. Furthermore,

for moderately sized MU-MIMO systems, simplified instantaneous and ergodic



sum spectral efficiency analyses are presented with RZF, ZF and matched-filter

(MF) transmission on the downlink, and minimum-mean-squared-error, ZF and

maximum-ratio combining (MRC) on the uplink, respectively. The simple na-

ture of the derived expressions lead to the discovery of several valuable system

level insights as a function of the contributing network parameters. Numerical

results are presented for conventional and moderate MU-MIMO systems.

Considering downlink semi-correlated Rayleigh fading channels with spatial

correlation at the BS, it is mathematically proven that common correlation

patterns for each terminal predicts lower ergodic sum spectral efficiencies in

comparison to terminal specific correlation patterns. Closed-form approxima-

tions for the expected SINR and ergodic sum spectral efficiency are derived for

both MF and ZF precoding, demonstrating the sensitivity of unequal correlation

structures on the expected signal, interference and noise powers, respectively.

The presented numerical results provide a cautionary tale of the impact of un-

equal correlation patterns on MU-MIMO performance and the importance of

modeling this phenomenon.

Finally, an approximate uplink performance analysis of large MU-MIMO

systems with MRC and space-constrained uniform linear antenna arrays (ULA)

is presented for semi-correlated Ricean fading channels. A space-constrained

channel model is proposed, encapsulating the effects of unequal receive spatial

correlation, unequal LoS levels, and unequal link gains for each terminal. The

per-terminal and cell-wide ergodic sum spectral efficiencies are characterized

and numerous practical special cases are presented. A limiting analysis of the

ergodic per-terminal and cell-wide spectral efficiencies is also carried out, as the

number of BS antennas grow without bound with a finite number of terminals

and fixed physical dimensions of the ULA. Numerical results demonstrate the

impact of space-constrained ULAs on the MU-MIMO system performance with

variation in the LoS levels, correlation structures, physical array dimensions,

and system size, respectively.
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Chapter 1

Introduction

1.1 Motivation Statement

Given the vast extent of the electromagnetic spectrum, at first sight, it would be

rather preposterous to believe that the spectral efficiency offered by the wireless

medium is limited. To draw a simile, it is like somebody sitting in a small

shelter in Wellington, New Zealand, and claiming that there is not enough space

in our universe. From an unimaginable quantity of electromagnetic spectrum,

auctioning 65 Megahertz (MHz) of bandwidth for $41.3 billion on the grounds

of scarce spectrum seems absurd. Such an auction happened in 2015 in the

United States of America (formally known as auction number 97), administered

by the Federal Communications Commission for spectrum allocated to advanced

wireless services [1]. The impact of this auction is now spreading globally, with

other countries following the same trend and auctioning spectrum for wireless

services.

These developments are being driven by a new attitude in society. We are

at the beginning of an era where humans have begun to understand what free-

dom of information means and have grasped the idea of having access to any

information, anywhere, at anytime, anyhow, at any cost. This has resulted in

a global exponential demand for wireless data, which is expected to increase to

15.9 exabytes per month by 2018, resulting in a 6-fold increase over 2014 [2, 3].

Keeping in view the freedom of communication we are able to achieve in just

1



Chapter 1. Introduction

65 MHz of bandwidth, if much larger bandwidths are to be considered e.g., 650

MHz, possibilities for future communications are limitless.

Looking into the future, the way one is seeing the electromagnetic spectrum

is changing. There is a growing push to operate future wireless (cellular) sys-

tems at carrier frequencies much higher than those in use today, such as in the

millimeter-wave (mmWave) frequency band. Here, even higher bandwidths than

those quoted above can be exploited. This line of thinking demonstrates that the

wireless medium, itself, is not be the data bottleneck as it is frequently claimed.

Instead, it is the physical implications of operation at these frequencies, which

limits the resulting performance of the system. For instance, the high electro-

magnetic losses at mmWave carrier frequencies implies that the radio waves are

unable to propagate very far, needing a large number of antennas to overcome

these losses. Naturally, these antennas have to be placed in confined volumes

with relatively small spacing between the adjacent elements. Furthermore, the

inability of the radio waves to propagate large distances may lead the system

to serve a commensurately smaller coverage area, creating line-of-sight (LoS)

components in the propagation channel. Overall, in contrast to lower carrier

frequencies, the fusion of the above physical phenomena creates a heteroge-

neous propagation environment. Such types of environments are increasingly

likely to occur in future cellular systems with large bandwidths, making their

performance analysis timely, and of vital importance. This is the aim of the

thesis.

According to the fundamental limits of reliable communication laid out by

Shannon in 1948, a single-antenna cellular link offers a spectral efficiency of

approximately 3.5 bits/seconds/Hz (bits/sec/Hz) at a link signal-to-noise-ratio

(SNR) of 10 decibels (dB) [4]. Such a spectral efficiency is rather poor for

high data rate services and is clearly not a viable solution for the future. On

the other hand, the more recently investigated point-to-point multiple-input

multiple-output (MIMO) systems promise to meet the high spectral efficiency

of up to several tens of bits/sec/Hz, dependent on the communication scenario

[5–7]. Of course, this comes at a price of complex transceiver structures, which

2



Chapter 1. Introduction

need to be designed according to the operating conditions. Nevertheless, these

costs fall well short in comparison to the potential spectral efficiency gains on

offer. Enhancing the reliability of wireless links, MIMO systems rely on spatial

diversity to combat the effects of fading in the propagation channel. By trans-

mitting multiple parallel streams of data on the same frequency, MIMO systems

are known to leverage a linear gain in the spectral efficiency as a function of the

minimum number of transmit or receive antennas. Since the landmark work of

Foschini, Gans, Teletar, and Winters [5–7], MIMO systems have gained signifi-

cant attention, and are incorporated into several wireless broadband standards,

such as Long Term Evolution-Advanced (LTE-A), IEEE 802.11n, and IEEE

802.11ac [5–7]. Having said the above, the multiplexing gains of a point-to-

point MIMO system may disappear near the edge of the transmitter coverage

area, where the desired signal levels are low relative to the interference, or in a

propagation environment which is insufficiently dominated by scattering [8, 9].

As a result, the effort to retain the spatial multiplexing gains of a point-

to-point MIMO system has shifted to a multiuser MIMO (MU-MIMO) system

where an antenna array, often at a cellular base station (BS), simultaneously

serves multiple user terminals inside the BS coverage area [8, 10]. These termi-

nals are usually low-cost, single-antenna devices, and the multiplexing gains of

the system are shared amongst the terminals. Furthermore, a MU-MIMO sys-

tem is far more tolerant of the propagation environment than a point-to-point

MIMO system [9, 11]. For instance, under LoS propagation, multiplexing gains

can disappear for a point-to-point MIMO system, but are retained for MU-

MIMO systems provided that the angular separation of the terminals exceeds

the spatial resolution of the antenna array. Nevertheless, serving multiple ter-

minals simultaneously comes at a further cost of multiuser interference, causing

the performance of a given terminal, and the system as a whole to degrade sig-

nificantly. To overcome this issue, transceiver structures which reduce or cancel

multiuser interference are employed at the transmit or receive end of the link.

The increasing interest to operate future cellular systems in the mmWave

band requires the deployment of large antenna arrays serving smaller areas
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[9, 12, 13]. With the BS array being in closer vicinity to the terminals, the

fundamental propagation characteristics are likely to be more heterogeneous.

As more antenna elements are added to a fixed antenna array form factor, spa-

tial separation between antenna elements reduces consequently inducing spatial

correlation in the channel. Moreover, the reduction in average link the distance

between the BS and the terminal may lead to less scattered propagation environ-

ments. Here, the impact of dominant LoS directions may significantly influence

the channel impulse response. The effects of the above mentioned phenomena

are likely to be unique for different terminals located in different parts of the

coverage area, due to the variability in the amount of local scattering around

each terminal. To this end, the propagation channels to two terminals can be

significantly different with unequal spatial correlation patterns and LoS direc-

tions. In addition to this, each channel also has a unique large, and small-scale

power variation, as a result of the terrain variations across multiple terminals.

A combination of all the above physical artifacts is rather difficult to handle

mathematically, when analyzing the performance of MU-MIMO system with

linear transceiver structures. This is due to the fact that most performance

metrics involve manipulation of the instantaneous channel correlation matrix,

which have extremely complex structures in heterogeneous propagation envi-

ronments. As the dominating theme of future cellular systems is likely to be

the interplay of small-cellular systems and large antenna arrays, it is imperative

to have a fundamental understanding of MU-MIMO systems with variations in

spatial correlation patterns, LoS directions, small-scale, and large-scale powers.

In general, performance analysis of such systems is critical in gaining an

in-depth understanding into the operation of MU-MIMO systems under hetero-

geneous propagation channels. To this end, performance metrics such as the

terminal signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spec-

tral efficiency are often discussed in the literature, which help characterize the

performance of current and future MU-MIMO systems [14, 15]. It is in the char-

acterization of such performance metrics that exciting opportunities lie for novel

mathematical advances, allowing one to gain a deeper understanding into the
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sensitivities of MU-MIMO performance under extremely general fading condi-

tions. This constitutes the focus of the thesis.

In the following section, the problem statement and the focus of the thesis

are presented.

1.2 Problem Statement and Focus of the Thesis

Performance results for SISO systems are well known for a wide variety of sce-

narios [16]. However, performance analysis of point-to-point MIMO systems are

fundamentally different from SISO systems, due to the higher dimensionality of

the propagation channel and its associated physical artifacts [17], as explained

in Chapter 2 of the thesis. Hence, performance analyses of MIMO systems

have been executed in parallel with linear algebra and multivariate statistical

techniques, which have directly influenced cellular research over many decades

[18–20]. As these theories have established coherent methodologies, performance

analyses of many conventional point-to-point MIMO systems are now also well

known [5, 14, 21–26].

In contrast to this, performance analysis of MU-MIMO systems under hetero-

geneous channel conditions is extremely difficult, due to the lack of a coherent

and well established framework to handle the wide range of the propagation

channels which could arise in MU-MIMO systems. Naturally, numerical eval-

uation of such systems is always possible, however, an enormous drawback of

numerical performance evaluation is that it does not allow one to efficiently iden-

tify the most influential system and propagation parameters that contribute to

the end performance. An understanding of these contributing factors is impera-

tive, as it allows one to gain a more intuitive insights into the specific parameters

which have a strong impact on system performance. Furthermore, analytical re-

sults allow greater numerical stability, accuracy, and are vital in providing a

theoretical basis to which the numerically simulated performance could be com-

pared. In addition to the above, analytical results provide improvements in the

speed and help to reduce the number of number of computations required to
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characterize the system performance.

Keeping the above in mind, analytical results for the SINR and ergodic

sum spectral efficiency are invaluable for understanding optimized design and

rapid evolution of MU-MIMO systems. Hence, the prime focus of this thesis

is to obtain analytical results for the performance of MU-MIMO systems with

linear transceiver structures. As such, the thesis contains rigorous investigations

into the performance of MU-MIMO systems in generalized fading channels and

scenarios which are relevant to current and future cellular architectures. This

leads to the main contributions of the thesis.

1.3 Main Contributions of the Thesis

Despite the lack of statistical approaches to deal with the generality of propaga-

tion channels which are likely to occur in MU-MIMO systems, the thesis is able

to analyze several practically important MU-MIMO scenarios, quantifying the

link level performance. The results contained in the thesis develop a rigorous

analytical framework for the analysis of finite and large MU-MIMO systems with

linear transceivers, and have led to solutions of several long-standing research

problems. In particular, the major contributions of the work are as follows:

1.3.1 Coordinated RZF Precoding in Multi-Cellular

Systems

Chapter 4 of the thesis demonstrates the impact of BS coordination on the per-

formance of multicellular, MU-MIMO systems. Here, a general analysis method-

ology is developed to evaluate the expected (average) SINR of a given terminal

and the ergodic sum spectral efficiency of a given cell, with coordinated regu-

larized zero-forcing (RZF) precoding. Application to two-tier small-cellular net-

works is considered, assuming independent and identically distributed (i.i.d.),

as well as semi-correlated Rayleigh fading channels, with spatial correlation at

the BS array.
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With semi-correlated Rayleigh fading, the generalized analysis methodology

caters for the presence of equal and unequal spatial correlation matrices. With

i.i.d. Rayleigh fading, and when each terminal is assigned an equal correlation

matrix, the expressions are averaged over the arbitrary and over a joint pair of

arbitrary eigenvalue densities of the instantaneous channel correlation matrix,

which follows an uncorrelated and correlated complex central Wishart distri-

bution. The correlated complex central Wishart distributed eigenvalue densi-

ties were previously unknown and are derived in Chapter 2 of the thesis. For

unequal correlation matrices, the RZF performance is approximated with zero-

forcing (ZF) precoding and insightful closed-form expressions are derived for the

expected ZF SNR and ergodic per-cell sum spectral efficiency. The numerical

results indicate the superiority of network-wide BS coordination, in comparison

to cell-wide and macro-only BS coordination strategies.

The impact of network densification on a given terminal and a given cell

is explored with uniform, cell-edge and cell-centric small-cell placements. The

performance of such systems with unequal spatial correlation is found to be

superior to that where each terminal is assigned a fixed correlation matrix.

The derived approximations are shown to be robust to variation in the system

dimensions, link SNRs and unequal levels of spatial correlation. With a general

analysis methodology, the results derived are applicable to other types of fading

channel models, and provide further advancements to the area of random matrix

theory.

1.3.2 RZF Precoding in Ricean Fading

With the emergence of small-cellular systems, a serving BS is more likely to be

in proximity of a given terminal. As a result of this, LoS in the propagation

channel from the BS to the terminal is likely to dominate future cellular access.

In chapter 5, the impact of dominant LoS directions on the terminal SINR and

system spectral efficiency is investigated. Statistically, a Ricean fading channel

model is employed to model the presence of LoS, along with many scattered

components in the propagation channel. With RZF precoding on the down-
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link, analytical expressions which approximate the expected per-terminal SINR

and ergodic sum spectral efficiency are derived. The derived expressions are

averaged with respect to the previously unknown arbitrary eigenvalue densities

of the complex non-central Wishart distributed instantaneous channel correla-

tion matrix. To aid the derivation of the expected SINR, analytical expressions

derived in Chapter 2 for the joint density of two arbitrary eigenvalues of the

complex non-central Wishart matrix are employed. Unlike previous studies, a

unique Rice factor is modeled for each terminal where the considered system

model caters for terrain variations across multiple terminals, making it suitable

for analysis of future systems.

In the high link SNR regime, an approximation to the distribution of the

instantaneous RZF SINR is developed with ZF precoding. It is shown that the

ZF SNR is well approximated by the gamma distribution, whose parameters are

derived. The presented numerical findings suggest that while the presence of

dominant LoS has an adverse effect on the expected RZF SINR, RZF ergodic

sum spectral efficiency and instantaneous ZF SNR, increasing the Rice factor

variability tends to enhance the peak RZF ergodic sum spectral efficiency and

ZF SNR. Both the developed approximations are insensitive to changes in the

system dimensions, link SNRs, and unequal levels of LoS, respectively.

1.3.3 Simplified Analysis With Linear Transceivers

As large antenna arrays are expected to feature prominently in future cellular

systems, it is likely to push MU-MIMO systems to an extreme. Nevertheless,

in order to retain wide area coverage capability in the medium-term future, the

scenario with moderate numbers of BS antennas operating at microwave fre-

quencies is also of significant interest. Motivated by this, under i.i.d. Rayleigh

fading, Chapter 6 develops a simplified analysis methodology for a general class

of linear transceivers. More specifically, the instantaneous and expected per-

terminal SINR, SNR, as well as the instantaneous and ergodic sum spectral effi-

ciency is analyzed with matched-filter (MF) and ZF precoding on the downlink,

and maximum-ratio combining (MRC), ZF, and minimum-mean-squared-error
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combining on the uplink. The approximation methodology is based on the iden-

tification of specific components in the above mentioned performance metrics

which tend to stabilize for moderate numbers of BS antennas, and replacing

only these specific components by their expected values.

In general, the resulting expressions allow for clear insights into the factors

which most contribute to the above mentioned performance metrics. Numeri-

cal evaluation of the approximations demonstrate they are extremely accurate

and stable for moderate numbers of BS antennas. Moreover, the approximation

methodology is robust to the type of fading environment assumed, and easily ex-

tendable to suit other statistical channel models, such as semi-correlated Ricean

fading.

1.3.4 Linear Precoding Analysis With Unequal Spatial

Correlation

For downlink MU-MIMO systems, it is well known that spatial correlation across

an antenna array is detrimental to the SINR, and in turn the system spectral

efficiency. Chapter 7 demonstrates that the widely used, yet overly simplified,

spatial correlation models that result in common correlation structures for each

terminal tend to underestimate the MU-MIMO system performance. As such,

such models act as a lower bound on the resulting performance. In vast contrast

to this, the use of more complex, yet physically motivated, remote scattering

models result in unequal spatial correlation structures for each terminal, leading

to higher performance. The main aim of Chapter 7 is to provide a mathemati-

cal quantification of the performance difference with equal and unequal spatial

correlation matrices in a multiuser environment.

Assuming semi-correlated Rayleigh fading with MF and ZF processing, closed-

form approximations to the expected SINR, expected SNR, and ergodic sum

spectral efficiency of a MU-MIMO system are derived. The derived expressions

provide clear insights into the impact of unequal spatial correlation matrices.

The expressions are robust to changes in the system dimensions, link SNRs, and
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unequal spatial correlation levels. Moreover, the derived approximations remain

accurate for all non-physical and physical correlation models considered.

Overall, the results from this chapter demonstrate the sensitivity of the re-

sulting MU-MIMO performance using different spatial correlation models. Such

a sensitivity analysis is extremely valuable in providing a cautionary tale of its

impact to researchers.

1.3.5 Uplink MRC Analysis With Fixed Array Sizes

In contrast to many prior studies which consider fixed inter-element spacing

between two adjacent antennas at the BS, and therefore, assume an increasing

array aperture with growing number of elements, fixed physical array sizes are

considered in Chapter 8. Here, an increase in the number of antennas in a fixed

space imposes an inversely proportional decrease in the inter-element spacing.

The chapter analyzes the uplink performance of large MU-MIMO systems, where

the BS antennas are configured in a uniform linear array (ULA) with a fixed

total space.

An investigation into the combined effects of two contradicting phenomena

is carried out: First, the reduction of spatial diversity due to reducing the spa-

tial separation between the BS elements, and second, the increase in receive

diversity by increasing the sheer number of elements. In this context, with

MRC processing at the BS, the chapter presents a general analytical frame-

work for approximating the ergodic sum spectral efficiency, by approximating

the expected per-terminal SINR. The chapter extends and generalizes a prior

space-constrained channel model, by including the effects of unequal levels of

receive spatial correlation and unequal levels of LoS for each terminal. Deter-

ministic limits of the SINR and sum spectral efficiency are also analyzed, when

the number of BS antennas are increased indefinitely with a fixed number of

terminals.

The derived analytical expressions lead to numerous useful insights into the

behavior of the expected SINR and ergodic sum spectral efficiency with varia-

tions in the system and propagation parameters. Supporting numerical results
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Figure 1.1: Overall structure of the thesis.

demonstrate that a SC ULA deployment with MRC processing causes satura-

tion of the expected SINR and ergodic sum spectral efficiency with increasing

link SNR and serving antennas. Several special cases of the derived expressions

are also presented when only non LoS components are present with equal and

unequal spatial correlation matrices, as well as when each terminal having LoS

components has equal correlation matrices.

The major contributions of the thesis can also be easily followed from the

graphic presented Fig. 1.1. This concludes the major contributions of the thesis,

and leads to the outline of the thesis.

1.4 Thesis Outline

Subsequent to the introduction chapter, the thesis is organized following the

structure.

Chapter 2 provides a detailed overview of point-to-point MIMO systems,

along with the fundamentals of wireless channels, for the purpose of presenting

novel random matrix theory results on the joint pair of arbitrary eigenvalues of
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complex correlated central and non-central Wishart matrices. The newly derived

random matrix results are then utilized in Chapters 4 and 5, in analyzing the

expected per-terminal SINR and ergodic sum spectral efficiency under semi-

correlated Rayleigh and uncorrelated Ricean fading channels, respectively.

Chapter 3 introduces the notion of a MU-MIMO system, and provides a

comprehensive review of multiuser systems and the relevant performance met-

rics. In particular, this chapter describes the difference between point-to-point

MIMO and MU-MIMO propagation channels, as well detailing the necessary

background in linear transmit and receive signal processing techniques. Such

techniques are an integral part of current and future cellular systems, as they

provide the ability to serve multiple terminals in the same time-frequency re-

source, while reducing the resultant multiuser interference. These techniques

are also frequently used to analyze the performance sensitivities in MU-MIMO

performance and constitute the foundation of the thesis.

Chapter 4 presents the impact of BS coordination on multicellular, MU-

MIMO systems. A novel analytical methodology is demonstrated where the

performance of coordinated RZF precoding is presented under i.i.d. and semi-

correlated Rayleigh fading, with spatial correlation at the BS array. Both equal

and unequal spatial correlation matrices to each terminal are considered. Ex-

tensive numerical results demonstrate the tightness of the derived analysis and

show the performance of different BS placement and coordination strategies on a

per-terminal and system basis. The performance with equal correlation matrices

is found to be lower than that with unequal correlation matrices.

Chapter 5 extends the ideas presented in Chapter 4, and demonstrates the

impact of dominant LoS components in the propagation channel, on the RZF

expected SINR and ergodic sum spectral efficiency. With Ricean fading chan-

nels, propagation parameters from both microwave and mmWave frequencies

are considered, with a unique Rice factor for each terminal. The instantaneous

RZF SINR distribution is approximated in the high link SNR regime and its

relevant parameters are derived. Rather interestingly, increasing the Rice factor

variability led to an increase in the peak performance of the system, while having
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an opposite effect at the cell-edge reducing the performance of the system.

Chapter 6 presents simplified approximations to analyze the downlink and

uplink performance of MU-MIMO systems, for a general class of linear transceiver

structures operating in i.i.d. Rayleigh fading channels. All the derived expres-

sions are shown to be numerically stable and accurate for moderate numbers of

BS antennas. The approximations offer direct insights into the most influential

system and propagation parameters contributing to the per-terminal and sys-

tem performance. Even though the presented analysis methodology is simple,

it is shown to be easily adaptable to other types of statistical channel models,

amplifying the generality of the approximation approach.

Chapter 7 presents the impact of unequal spatial correlation structures in

MU-MIMO systems. With both MF and ZF precoding, on the downlink of a

semi-correlated Rayleigh fading channel, it is mathematically proven that un-

equal spatial correlation structures yields higher performance in comparison to

equal correlation matrices. Tight closed-form expressions to the expected SINR

and ergodic sum spectral efficiencies are derived. The derived analytical ex-

pressions are extremely insightful, simple, and provide a clear indication of the

main performance contributing factors. The results from this chapter demon-

strate that the MU-MIMO system performance is ultimately governed by the

correlation structure present in the propagation channel. The results from this

chapter provide a sensitivity analysis into the impact of using different spatial

correlation models.

Chapter 8 of the thesis presents an investigation into space-constrained

ULAs, operating under spatially correlated Ricean fading environments. Un-

der the most general propagation conditions, with unequal levels of LoS, un-

equal link gains, and unequal spatial correlation matrices for each terminal, the

chapter presents closed-form analysis of expected SINR and ergodic spectral

efficiency with uplink MRC processing. The chapter extends the traditional

space-constrained channel model and presents clear insights into the impact of

unequal LoS and spatial correlation levels. Deterministic limits to the terminal

SINR and sum spectral efficiency are also derived with an increase in the num-
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ber of BS antennas and fixed number of user terminals. Supporting numerical

results show that a space-constrained deployment with MRC leads to a satura-

tion of the expected SINR and ergodic sum spectral efficiency with increasing

link SNR and BS antennas.

Finally, Chapter 9 presents the concluding remarks of the thesis by sum-

marizing each chapter and the conclusions derived throughout. Furthermore,

future research directions within the framework of the thesis are also presented.

This concludes the outline of the thesis, leading to the publications which

have resulted from the work carried out in the thesis.

1.5 Publications

The work developed throughout the thesis has resulted in the following publi-

cations:

• H. Tataria, P. J. Smith, P. A. Dmochowski, and M. Shafi, “General Anal-

ysis of Multiuser MIMO Systems With Regularized Zero-Forcing Precod-

ing Under Spatially Correlated Rayleigh Fading Channels”, in Proceedings

of IEEE the International Conference on Communications (ICC), Pages

2582 – 2588, Kuala Lumpur, Malaysia, May 2016.

• H. Tataria, P. J. Smith, L. J. Greenstein, P. A. Dmochowski, and M. Shafi,

“Performance and Analysis of Downlink Multiuser MIMO Systems With

Regularized Zero-Forcing Precoding in Ricean Fading Channels”, in Pro-

ceedings of the IEEE International Conference on Communications (ICC),

Pages 1185 – 1192, Kuala Lumpur, Malaysia, May 2016.

• H. Tataria, P. J. Smith, L. J. Greenstein, and P. A. Dmochowski, “Zero-

Forcing Precoding Performance in Multiuser MIMO Systems With Hetero-

geneous Ricean Fading”, IEEE Wireless Communications Letters, Volume

6, Issue 1, Pages 74 – 77, February 2017.

• H. Tataria, P. J. Smith, and P. A. Dmochowski, “On the General Analysis

of Coordinated Regularized Zero-Forcing Precoding: An Application to
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Two-Tier Small-Cell Networks”, IEEE Transactions on Communications,

vol. PP, no. 99, Pages 1 – 17, April 2017.

• H. Tataria, P. J. Smith, M. Matthaiou, and P. A. Dmochowski, “Uplink

Analysis of Large MU-MIMO Systems With Space-Constrained Arrays in

Ricean Fading, in Proceedings of the IEEE International Conference on

Communications (ICC), Pages 1 – 7, Paris, France, May 2017.

• H. Tataria, P. J. Smith, L. J. Greenstein, P. A. Dmochowski, and M. Matthaiou,

“On the Impact of Line-of-Sight and Unequal Spatial Correlation in Up-

link MU-MIMO Systems”, IEEE Wireless Communications Letters, vol.

PP, no. 99, Pages 1 – 4, July 2017.

• H. Tataria, P. J. Smith, A. F. Molisch, L. J. Greenstein, S. Sangodoyin,

J. Zhang, R. S. Thomä, P. A. Dmochowski, and M. Matthaiou, “Impact of

Unequal Spatial Correlation Patterns on Downlink MU-MIMO: Analysis,

Measurements, and Models”, IEEE Transactions on Wireless Communi-

cations, Pages 1 – 16, July 2017 (To be Submitted).

• H. Tataria, P. J. Smith, P.A. Dmochowski, and M. Matthaiou, “Uplink

MMSE Analysis in Spatially Correlated Ricean Fading for Massive MIMO

Systems”, IEEE Transactions on Vehicular Technology, Pages 1 – 5, July

2017 (To be Submitted).
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Chapter 2

Statistical Channel Models and

Random Matrix Theory

Summary. The performance of cellular communication systems is ultimately

governed by the propagation channels they operate in. It is thus vital to in-

vestigate the channel characteristics that are relevant to the types of cellular

systems considered in the thesis. In this chapter, an overview of the typical

propagation scenarios and their relevant statistical models are presented. Both

single-input single-output (SISO) and multiple-input multiple-output (MIMO)

cellular channels are considered. Many variations on the well known indepen-

dent and identically distributed Rayleigh fading channel model are considered,

with the presence of strong transmit spatial correlation, and line-of-sight (LoS)

directions. Furthermore, the spatial correlation properties of MIMO channels

are also statistically characterized, where novel analytical results concerning the

distribution of the arbitrary, and a joint pair of arbitrary eigenvalues are de-

rived, for a general class of correlated and uncorrelated Wishart matrices. The

derived results can be directly applied to predict the spectral efficiency of MIMO

channels, and have many other applications, such as the characterization of mul-

tiuser signal and interference powers, as demonstrated in Chapters 4 and 5 of

the thesis. Other applications of interest are also listed in the chapter. An ex-

tensive numerical comparison of channel correlation matrix eigenvalue densities

is presented with variations in the MIMO system size, LoS strengths, and link
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signal-to-noise-ratio levels. The numerical results allow one to draw many useful

insights into the behavior of conventional and large MIMO channels, reinforcing

the fact that the ultimate performance of such systems is directly a function of

the assumed propagation characteristics. Overall, the chapter contains both the

background material on SISO and MIMO channels, as well as novel results in

random matrix theory. Due to the broad scope of the work, this chapter is the

first of two (along with Chapter 3) offering a broader background of the research

related to the contributions of the thesis. Further details on each specific area

are also provided in the relevant chapters.1

2.1 Wireless Channels and Models

It is worth noting that many types of wireless channel characterizations are

available for digital cellular communications [27], indoor communications [28],

and over-the-horizon communications [29], respectively. However, unlike addi-

tive white Gaussian noise channels [16], cellular channels suffer from a funda-

mentally different physical artifact known as fading, which creates a new set of

engineering challenges that must be considered in the design of such communi-

cation systems. In this thesis, digital cellular channels are primarily considered

in outdoor environments. As a result, a brief overview of the typical multipath

propagation environment is presented in the following section.

2.1.1 A Typical Multipath Environment

In a cellular system, transmitted signals arrive at a mobile receiver via vari-

ous propagation mechanisms, over multiple propagation paths (known as multi-

path), each with different time-varying delays, directions-of-departure (DoDs),

1Specific to this and the next chapter (Chapters 2 and 3) of the thesis, in-depth “Introduc-
tion” and “Concluding Remarks” are omitted, since the chapters aim to present the necessary
background material needed to understand the contributions of the thesis. In all other sub-
sequent chapters, i.e., Chapters 4-8, chapter-wise “Introduction” and “Concluding Remarks”
sections are presented. For the same reason, Chapters 2 and 3 also omit an explicit section on
Numerical Results, as they are presented in-line with the text where applicable. For all other
chapters, i.e., Chapters 4-8, a specific section on “Numerical Results” is presented to evaluate
the performance of the considered system model.
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directions-of-arrivals (DoAs), random phases, and attenuations, giving rise to a

highly complex propagation channel. The possible physical propagation mecha-

nisms can be categorized into five types: (1) line-of-sight (LoS) propagation, (2)

absorption, (3) specular reflection, (4) diffraction, and (5) diffusion (also known

as diffuse scattering).2 With the exception of LoS, all of these physical mech-

anisms imply interaction of the propagating wave with one or more arbitrary

obstacles, such as walls, trees, cars, human beings, etc. In this thesis, these

obstacles will be referred to as scatterers. Usually, the LoS path only undergoes

free-space loss (geometric attenuation), while a specular reflection occurs when

the propagating wave impinges upon a smooth or a plane surface whose dimen-

sions are much larger in comparison to the wavelength of the transmitted signal.

Furthermore, diffraction appears when the propagating wave is obstructed by a

discontinuity, such as an edge of a surface. Transmission through an obstacle

also causes partial absorption of electromagnetic energy, and diffusion is caused

by interactions of the propagating wave with objects having dimensions compa-

rable to the signal wavelength, e.g., foliage or rough surfaces.

Due to the above artifacts, the power at a receive antenna randomly varies,

according to two broad classifications: (1) large-scale fading, which encompasses

the effects of distance based geometric attenuation, as well as shadow-fading,

occurring from blockages in the propagation paths between the transmitter and

the receiver. With large-scale fading, the average received power varies as a func-

tion of the transmitter-receiver separation distance. (2) Small-scale fading (also

known as multipath fading), where rapid fluctuations occur in the instantaneous

signal strength around the mean power, at a particular transmitter-receiver sep-

aration distance. Due to mobility of either the transmitter, the receiver and/or

the scatterers in the propagation channels, the wireless channel is a time varying

system. As a result, the strength of the received signal also varies with time,

along with the geometric attenuation, shadow-fading and multipath fading.3

2Note that in addition to these, any combination of the last four propagation mechanisms
is also possible in a typical multipath environment.

3This is a particularly important point for wideband systems, where each delay in the
propagation channel at a particular time instance is resolvable.
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As a result of the large number of influencing factors on a typical cellular

channel, physical modeling of a generic wireless link is rather difficult. There

exists a vast amount of literature in this area with many industrial standards,

where cellular channel models appear (see e.g., [14, 28, 30–32] and references

therein). Nevertheless, in this thesis, simple, yet widely accepted stochastic

modeling approaches are considered [33]. These are as discussed in Section 2.1.3

for single-input single-output (SISO) and Section 2.3 for multiple-input multiple-

output (MIMO) systems, respectively. Furthermore, a comparison between the

industrial spatial channel models and simple stochastic channel models can be

found in [34].

In the sections which follow, statistical models for the characterization of

large-scale and small-scale fading are presented.

2.1.2 Large-Scale Fading

The geometric attenuation of the transmitted waveform is often modeled via4

β = υ

(
d0

d

)α
, (2.1)

where β is known as the link gain. More specifically, α is the attenuation

exponent, and υ is the unit-less constant for geometric attenuation at a reference

distance d0, assuming far-field omni-directional transmit antennas, and d is the

actual link distance between the transmitter and receiver.5 In such models,

α typically ranges from 2-4, and is a function of the propagation environment

being considered. Free-space propagation normally tends to have values of α

close to 2, in contrast to dense urban areas, which commonly have values closer

to 4.6 In this thesis, α values are selected from above range, depending on the

propagation environment being modeled in a particular chapter. Moreover, the

4Note that this model is also known as the simplified pathloss model [15].
5Note that in many studies, the constant υ also includes the relevant transmit and receive

antenna gains.
6It is worth noting that in LoS indoor environments, attenuation exponents of less than

2 are also observed in some measurement campaigns, due to the waveguiding effects in the
propagation channel. For a further discussion, the interested reader is refereed to [35].
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effects of large obstacles such as buildings, in the propagation paths between

the transmitter and the receiver are often statistically modeled as a log-normal

random variable [14, 15, 27, 30], having the following representation:

ζ = 10(S/10), (2.2)

where S ∼ N (0, σ2
sf) and σsf is the standard deviation of shadow-fading in dB.

Similar to geometric attenuation, the standard deviation of shadow-fading de-

pends on the propagation environment and the relative terrain present in the

cellular link. Typically, values from 3-8 dB are quoted in the literature, for ru-

ral, suburban, and urban environments [14, 15, 30, 36]. In this thesis, standard

deviation values from the above range are considered, depending on the propa-

gation environment assumed for a particular chapter. As a result of the above

discussion, the combined effect of geometric attenuation and shadow-fading on

the link gain can be modeled as

β = υ

(
d0

d

)α
ζ. (2.3)

In general, throughout the thesis, it is assumed that the link gain is assumed

to be known at the transmitter. Assuming block fading, the radio channel is

often modeled as a snapshot of a real link between a transmitter and a receiver,

in a short time duration. This small transmission duration is often called a

coherence interval.7 The power variation due to large-scale fading over many

coherence intervals is negligible, which justifies the deterministic assumption of

large-scale fading. Typically, it is believed that large-scale fading co-efficients

change approximately 40 times less frequently than the instantaneous small-

scale fading, which changes rapidly within the duration of the coherence time

[37]. As a result of this, small-scale fading is treated in general (and thus in the

thesis) as a random phenomena that greatly influences the design of efficient

digital cellular systems.

7Coherence time is the time duration over which the channel impulse response is considered
to be not varying [15].
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This leads to the discussion in the following section.

2.1.3 Small-Scale Fading

Uncorrelated I.I.D. Rayleigh Fading

An uncorrelated, independent and identically distributed (i.i.d.) Rayleigh fading

model is commonly used to describe the power level of the received signal,

assuming there is rich scattering in the propagation channel [14, 36]. This is most

commonly found in dense urban environments, where no LoS exists between

the transmitter and the receiver, with a large number of scattered directions

creating replicas of the transmitted signal from each direction to the receive

antenna. This classical small-scale fading channel model is used as a baseline

case throughout the thesis for performance evaluation of the considered digital

cellular systems. With Rayleigh fading, the fading amplitude of the channel,

denoted by X, is distributed according to

fX (x) = 2xe−x
2

, x ≥ 0, (2.4)

where E [X2] = 1. Next, modeling of a dominant LoS direction in addition to a

large number of scattered directions is considered.

Uncorrelated Ricean Fading

A Ricean fading model is employed typically when describing scenarios where a

LoS direction is present in the propagation channel [14, 15, 36]. With Ricean fad-

ing, the channel fading amplitude, X is distributed according to the probability

density

fX (x) =
2x

Y
e−

x2

Y
−ϑ2

I0

(
2x2

Y
x

)
, x ≥ 0, (2.5)

where Y and ϑ2 are the power of the scattered and specular (LoS) paths, respec-

tively. Furthermore, I0 (·) is the zeroth-order Bessel function of the first-kind.

Unlike Rayleigh, an important parameter in the Ricean probability density is
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Figure 2.1: A digital SISO system.

the Ricean K-factor (also known as the Rice factor), which defines the ratio of

the powers in the LoS to the scattered components, and is given by

K =
ϑ2

Y
. (2.6)

Considering this, E [X2] = Y + ϑ2. Usually, the average power in the Ricean

amplitude is normalized to unity. This results in Y + ϑ2 = 1. This along

with the constraint in (2.6) gives Y = 1
1+K

and ϑ2 = K
K+1

. In this thesis, the

latter representation will be used for performance analysis and evaluation of the

considered systems. In the following section, a brief discussion of SISO channels

is presented before moving onto MIMO channels.8

2.2 SISO Channels

A block diagram of a typical SISO system is shown in Fig. 2.1. The figure con-

siders a scenario where the source transmits a stream of data through the entire

signal processing chain, across a frequency-flat fading channel.9 If the trans-

8The section on SISO channels is included for completeness only, and is not further utilized
in the thesis.

9Later in the thesis, as the focus is primarily on the analysis of various current and future
cellular systems, the work presented only considers frequency-flat fading channels, where the
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mitter and the receiver are assumed to be perfectly synchronized, the received

signal in the t-th time instance, in complex baseband representation, is given by

rdl (t) = ρdl [gdl (t) sdl (t)] + ndl (t) = ρdlβ
1
2hdl (t) sdl (t) + ndl (t) . (2.7)

Here, ρdl is the average transmit power available for transmission, sdl is the

transmitted complex data signal, rdl is the complex received signal, ndl is the

zero mean, variance σ2
dl complex Gaussian noise, i.e., ndl ∼ CN (0, σ2

dl), and

gdl = β
1
2hdl (t) is the complex channel response at time t.10 Note that hdl

contains the effects of fading induced by the propagation in the channel. In

Fig. 2.1, β denotes the link gain. From the previous discussion, it can be seen

that both the large-scale and small-scale fading contribute to the instantaneous

value of the received power at time t. Since the large-scale fading co-efficient is

assumed to be a deterministic value in the thesis, the overall channel response

can be decomposed into a product of large and small-scale fading, respectively.

Under i.i.d. Rayleigh fading, hdl is a complex Gaussian random variable

with zero-mean and unit-variance, such that E [|hdl|2] = 1. That is, hdl (t) ∼

CN (0, 1). In contrast to this, under Ricean fading, hdl (t) ∼ CN
(√

K
K+1

A, 1
1+K

)
,

where
√

K
K+1

A is the complex mean accounting for the power of the specular

path. For the normalized Ricean fading channel, |A|2 = 1. Hence, E [|hdl (t) |2] =

1, giving rise to E [|g (t) |2] = β. Therefore, the power in the specular path from

the transmitter to the receiver is given by βK
K+1

. The above discussion is now gen-

eralized to MIMO channels, where the statistical channel models are adapted.

Without loss of generality, for the remainder of the thesis, the time index t is

omitted for the ease of notation and only one time instance is considered. The

following section presents the necessary background on point-to-point MIMO

channels.

transfer function of the channel is essentially constant over the signal bandwidth.
10Note that the subscript dl in equation (2.7) is used to denote the down (forward) link

from the transmitter to the receiver.
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2.3 MIMO–OFDM Channels

In this section, point-to-point MIMO channels [5–7, 14] are discussed in a frequency-

flat fading environment. The use of multiple antennas at either end of the link

enables transmission of parallel data streams which are spatially multiplexed.

A downlink MIMO architecture with M transmit and L receive antennas is

considered, which can be mathematically expressed at time t as

rdl = ρdlG
H
dlsdl + ndl = ρdlD

1
2HH

dlsdl + ndl, (2.8)

where rdl is an L × 1 vector of received signal observations at the L receive

antennas at time t, sdl is the M × 1 data symbols transmitted by the M an-

tennas at time instance t, ndl is the L × 1 vector of additive Gaussian noise

entries, such that ndl ∼ CN (0, σ2
dlIL) with noise power σ2

dl. Furthermore, HH
dl

is the L×M MIMO channel matrix containing complex co-efficients from each

transmit to each receive antennas, and D is a L × L matrix of link gains from

each transmit to receive antenna. Orthogonal frequency-division multiplexing

(OFDM) waveforms across time and frequency are assumed, with narrowband

signaling within each OFDM subcarrier.11 For ease of notation, the subcarrier

index is omitted for simplicity.12 Similar to the SISO case, a block fading model

is assumed where the large-scale fading (link gain) co-efficients stay constant

during the channel coherence interval.13 The small-scale fading channel is in-

dependent in different coherence intervals. The fundamental blocks of a fully

digital MIMO architecture are demonstrated in Fig. 2.2. Here, the additional

RF chains and antennas required are explicitly shown, as they have a strong

influence on the performance of MIMO systems.

11This is assumed in today’s fourth generation (4G) Long Term Evolution-Advanced (LTE-
A) systems.

12Note that in reality, it is important to note that the small-scale fading co-efficients from
each transmit to receive antennas depend on the antenna index and on OFDM subcarrier
index. For the remainder of the thesis, the author assumes that OFDM waveforms will be
used for all systems studied.

13It is convinent to measure the length of the coherence interval in terms of the number of
OFDM symbols that can be transmitted within that interval.
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Figure 2.2: A fully digital MIMO communication system.
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Remark 2.3.1. Note that no power control is assumed and thus the total

transmit power is equally divided by M , such that each antenna receives a

net power of ρdl/M . With multiple antennas at either end of the link, a MIMO

system gives increased spectral efficiencies in comparison to a SISO system. The

spectral efficiency gain can be characterized by its multiplexing gain, defined as

[5, 38]

lim
SNR→∞

{
Rdl (SNR)

log2 (SNR)

}
= s, (2.9)

where Rdl (SNR) denotes the downlink spectral efficiency of a MIMO link given

a fixed link signal-to-noise-ratio (SNR).14 The link SNR is defined as the ratio of

the transmit power, ρdl, to noise power at the l-receive antenna, σ2
l,dl. Note that

σ2
dl,1 =, . . . , σ2

dl,L.15 The multiplexing gain characterizes the maximum number

of spatially usable degrees of freedom provided by the MIMO channel [5, 38].

Remark 2.3.2. On the other hand, the deployment of multiple antenna

elements reduces the average bit error rate of a digital communication system

for a fixed number of downlink data streams. For instance, transmitting wave-

forms with identical information exploits the additional spatial diversity in the

communication channel, provided by multiple antennas. Diversity is known as

the most effective strategy to combat the effects of fading [5, 14, 15, 38]. This

diversity gain is often characterized as

lim
SNR→∞

{
log2 Pe (SNR)

log2 (SNR)

}
= −d, (2.10)

where Pe (SNR) denotes the average probability of error at a fixed link SNR. It is

worth noting that there exists a trade-off between diversity and the multiplexing

gain of a MIMO system, since the added spatial paths can be employed for

enhancing the link reliability, or the spectral efficiency. For a further discussion

on the spatial multiplexing to diversity trade-off, the interested reader is referred

to [5, 14, 15, 38]. Note that s and d are defined in equations (2.9) and (2.10),

respectively.

14The spectral efficiency of a point-to-point MIMO link is described in Section 2.3.4.
15This holds for the remainder of the chapter.
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Remark 2.3.3. As the performance of MIMO systems ultimately depend

on the propagation channels they operate in, the following section outlines some

typical statistical models which are used to predict the performance of MIMO

systems. The presented channel models will feature extensively throughout the

thesis, and will help to develop the novel random matrix theory results. For ease

of exposition, the discussion in the rest of the chapter considers the normalized

small-scale fading channel in HH
dl, which excludes the effects of the link gains.

2.3.1 Uncorrelated I.I.D. Rayleigh Fading

As for SISO channels, the Rayleigh fading assumption is often used by cellular

engineers as it allows for modeling of very general propagation scenarios which

are rich in scattering. It corresponds to modeling the narrowband transmission

between a pair of transmit and receive antennas via a sum of a large number

of contributions, each with random and statistically independent phases, DoDs

and DoAs [39]. Due to this reason, each individual channel is still a zero-mean,

unit-variance complex Gaussian random variable. That is, the channel from

transmit antenna m to receive antenna l in hl,m ∼ CN (0, 1). As such, the

composite MIMO channel from each transmit to each receive antennas can be

modeled as

HH
dl ∼ CN (0, IM) , (2.11)

where IM is a M ×M identity matrix.

Remark 2.3.4. The assumption of uncorrelated scattering in (2.11) is rea-

sonable when the inter-element spacing between two antennas, and/or the angu-

lar spreading of the electromagnetic radiation at both sides of the link are large

enough.16 Here, minimal correlation in the spatial domain is induced, and can

be assumed to be negligible.17 Nevertheless, real world MIMO channels often

significantly deviate from such idealistic assumptions due to the reasons listed

16Note that only the azimuth domain is considered in the thesis. From now on, angular
spreading will be referred to as the angular spread for the remainder of the thesis.

17The concept of correlation over the spatial domain (spatial correlation) is further explained
in Section 2.3.2 in further detail.

28



Chapter 2. Statistical Channel Models and Random Matrix Theory

below:

Remark 2.3.5. (1) Limited angular spread and/or reduced array sizes cause

the channels to become more spatially correlated, i.e., the channels lose their

independence. (2) The specular contribution may induce the channel statistics

to become Ricean.18 As a result, the following section studies the behavior of

semi-correlated Rayleigh fading channels with spatial correlation at the transmit

end of the link for a downlink system and at the receive end of the link for an

uplink system, respectively.

2.3.2 Semi-Correlated Rayleigh Fading

Due to insufficient spacing between the transmit antenna elements and/or the

lack of scattering in the propagation channel, signals impinging on different an-

tennas in an array will often be correlated over a given space. Spatial correlation

depends on various physical parameters of the antenna array, and the scatterer

characteristics [14, 40–44].

Remark 2.3.6. The spatial correlation between adjacent antenna elements

is mainly governed by three parameters [21]: (1) the distances between antennas

[45], (2) the angular spread of the arrival incident waves, and (3) the central

DoA of the incident waves. To model a Rayleigh fading channel with spatial

correlation at the transmitter, the MIMO channel matrix can be written as [14]

HH
dl = HH

i.i.d,dl R
1
2 , (2.12)

where HH
i.i.d.,dl is as defined in (2.11), and R is the M × M transmit spatial

correlation matrix. The spatial correlation co-efficient between two transmit

antennas l and k ∈ 1, . . . ,M , is defined as [19]

R̄l,k =
E
[
hH

dl,lhdl,k

]√
E
[
hH

dl,lhdl,l

]
E
[
hH

dl,khdl,k

] , (2.13)

where hH
dl,l is a 1×M vector denoting the small-scale fading co-efficients from all

18Note that Ricean channels are covered in Section 2.3.3.
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M transmit antenna to the l-th receive antenna. From the definition in (2.13),

one can note that spatial correlation is defined over an ensamble of element-

to-element propagation channel vectors. For the case where this ensamble is

composed of all channel vectors in the entire cell (coverage area of interest), the

resulting correlation matrix is fixed (equal) for all terminals. Nevertheless, in

this thesis, a more general propagation environment is considered, where the

physical channel effects such as antenna spacing and angular spread of incident

propagation are invoked to motivate unequal correlation matrices. This is par-

ticularly applicable to multiuser systems, as shown in Chapters 4-8 of the thesis,

where the ensamble is restricted to the set of all possible locations where the

correlation patterns may be extremely similar. Given a fixed set of inter-element

spacings, this is due to the similarities in the angular spread characteristics. The

variation of the angular spread is further described in Section 7.4.2, where a re-

stricted set of ensamble is employed to physically represent spatial correlation.

Remark 2.3.7. Note that |R̄l,k| ≤ 1, with equality when the two antenna

element channels are fully correlated, i.e., fully dependent on each other. In

contrast to this, when |R̄l,k| = 0, the two channels are fully independent. Gen-

erally, spatial correlation can be reduced by altering the array geometry, such

that adjacent elements are sufficiently de-correlated. To this end, a uniform

linear array (ULA) located on the x − y plane is considered throughout the

thesis. The antenna geometry is as demonstrated in Fig. 2.3. Here, M is the

total number of antenna elements in the ULA and the inter-element spacing is

denoted by ds meters.

Often, the resultant expressions in (2.13) are too complex to perform for

any meaningful statistical analysis. As a result, a number of simplified spatial

correlation models have been developed and proposed. A simple and commonly

employed spatial correlation model, used for performance evaluation throughout

the thesis is known as the exponential correlation model [46] and is described in

the following subsection. It is worth noting that later in the thesis, in Chapter

7, the performance of a broad range of spatial correlation models is compared

and their impact on the spectral efficiency of multiuser MIMO systems is char-
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Figure 2.3: ULA geometry on the x-axis with M antenna elements, each with
an inter-element spacing of ds.

acterized.

Exponential Spatial Correlation Model

The most common and simple correlation model was proposed in [46]. The

model was proposed by fitting an exponential function to the non-monotonically

decaying peaks of the Jakes spatial correlation model, which assumes a uniform

ring of scatterers around the transmitter (see Chapter 7, Section 7.2 for a further

discussion) [47, 48]. It is a rather simplified model, as it crudely approximates

the true correlation in the channels via a single parameter, ϕ. However, the

advantage of this model over many others lies in its simplicity, as the correlation

magnitude is controlled with a single parameter. This makes the model useful for

consideration in analytical studies. Using such a model, the spatial correlation
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matrix, R, can be written as

R =


1 ϕ . . . ϕM−1

(ϕ)∗ 1 . . . ϕM−2

...
...

. . .
...(

ϕM−1
)∗ (

ϕM−2
)∗

. . . 1

 , (2.14)

where ϕ is the exponential decay parameter, with |ϕ| ≤ 1.

Remark 2.3.8. Naturally, a large value of |ϕ| indicates higher spatial cor-

relation in comparison to a smaller value of |ϕ|. From this, one can relate |ϕ|

to the inter-element spacing, ds, at the ULA with an inversely proportional re-

lationship. However, the model tends to neglect the relationship between the

spatial correlation induced with closer inter-element spacings, illuminating a fi-

nite amount of angular spread within the vicinity of the terminal, controlled

by the degree of local scattering around the terminal. Further details on the

comparison of the exponential model with other more complex models, such as

the remote scattering models can be found in Chapter 7 of the thesis.

While the representation of (2.12) is most general for semi-correlated Rayleigh

fading channels, some channels are likely to have dominant LoS directions. In

such cases, the use of a Ricean fading model is most commonly employed. This

is the focus of the discussion in the following section.

2.3.3 Uncorrelated Ricean Fading

There often exists situations in wireless systems where there may be a strong

LoS component in the propagation channel. Statistically, this leads to a Ricean

distribution of the resulting envelope fading. Typically, Ricean channels are

a mixture of scattered and specular (LoS) components, denoted by the L ×

M matrices, H̃H
dl and H̄H

dl. The matrix H̄H
dl, corresponding to the specular

32



Chapter 2. Statistical Channel Models and Random Matrix Theory

components, has fixed phase-shift only entries given by [36, 49]

H̄H
dl =


ejφ̄1,1 ejφ̄1,2 . . . ejφ̄1,M

ejφ̄2,1 ejφ̄2,2 . . . ejφ̄2,M

...
...

. . .
...

ejφ̄L,1 ejφ̄L,2 . . . ejφ̄L,M

 . (2.15)

Remark 2.3.9. Note that the value of the phase-shifts are strongly related

to the antenna array configurations and its orientation with respect to the direc-

tion of the dominant specular component(s). Moreover, when there is a single

dominant specular component, H̄H
dl is likely to be poorly conditioned, thereby

likely to decrease the multiplexing gain for a given link SNR. Given a single

dominant specular direction with a particular DoD and DoA,

H̄H
dl = arx

(
φ̄rx,l

)
aT

tx

(
φ̄tx,l

)
, (2.16)

if a sufficiently large separation between the transmit and receive antennas is

assumed [36, 49].19 In (2.16), arx

(
φ̄rx,l

)
and aT

tx

(
φ̄tx,l

)
are the L×1 and 1×M far-

field specular array responses of the receive and transmit antenna arrays, respec-

tively. In particular for a ULA, arx

(
φ̄rx,l

)
=
[
1, ej2πd̄s cos(φ̄rx,l), . . . , ej2πd̄s(L−1) cos(φ̄rx,l)

]
,

where φ̄rx,l is the DoA and d̄s is the inter-element spacing normalized by the car-

rier wavelength. Likewise, for aT
tx

(
φ̄tx,l

)
, the response has an identical structure

to arx

(
φ̄rx,l

)
, with a DoA φ̄tx,l, for a M element ULA. The above situation fea-

tures in the later chapters of the thesis, such as in Chapters 5 and 8, respectively.

Remark 2.3.10. The expression in (2.16) allows one to observe the potential

rank decrease brought by Ricean fading. For instance, considering broadside

arrays (when φ̄tx,l = 90◦ and φ̄rx,l = 90◦), H̄H
dl = 1L×M . This leads to completely

correlated channels with no spatial diversity yielding the rank reduction.

Combining H̄H
dl with the scattered components in H̃H

dl, which have zero-

mean, unit variance, complex Gaussian entries allows one to write the composite

19Note that the term “sufficiently large” refers to the separation being greater than the
angular Rayleigh resolution of the ULA at both the transmit and receive ends of the link [9].

33



Chapter 2. Statistical Channel Models and Random Matrix Theory

Ricean channel matrix as

HH
dl =

√
K

K + 1
H̄H

dl +

√
1

1 +K
H̃H

dl. (2.17)

Note that E
[
HH

dl

]
=
√

K
K+1

H̄H
dl, and K is the Rice factor, as introduced for the

SISO case earlier in Section 2.1.3. Upon characterizing the point-to-point MIMO

statistical channel models used throughout the thesis, the ergodic spectral ef-

ficiency of MIMO channels is now presented, allowing the author to motivate

the use of the eigenvalue distributions of the instantaneous channel correlation

matrices. This is the focus of the following subsection.

2.3.4 Ergodic Spectral Efficiency

Excluding the link gains, with knowledge of the instantaneous channel state

information at the receiver, and assuming equal power allocation across each

stream, the downlink ergodic spectral efficiency of a MIMO channel is given by

[5, 14, 15, 36]

Rdl = E
[
log2

(
det

(
IL +

SNR

M
HH

dlHdl

))]
. (2.18)

The landmark work of Telatar in [6] showed that the MIMO spectral efficiency

can be re-written in terms of the eigenvalues of HH
dlHdl as

Rdl = E

[
m∑
l=1

log2

(
1 +

SNR

M
λl

)]

=
m∑
l=1

E
[
log2

(
1 +

SNR

M
λl

)]
(2.19)

(a)
= m

{
E
[
log2

(
1 +

SNR

M
λarb

)]}
(2.20)

(b)
=

∞∫
0

log2

(
1 +

SNR

M
λarb

)
f0 (λarb) dλarb, (2.21)

where λl in (2.20) is the l-th eigenvalue of HH
dlHdl. Moreover, (a) is obtained re-

writing (2.19) with the arbitrary eigenvalue, λarb ∈ {λ1, . . . , λm}. Note that from

now until the remainder of the chapter, m = min (M,L) and n = max (M,L).
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In addition to the above, (b) is obtained by performing the expectation with

respect to the arbitrary eigenvalue density.

Remark 2.3.11. The formulation in (2.21) is usually preferred as it only

involves the arbitrary eigenvalue of HH
dlHdl, the channel correlation matrix. In

contrast, (2.21) is awkward because these eigenvalues have unique probabil-

ity density functions, which makes analysis of performance metrics such as the

ergodic spectral efficiency more difficult. Hence, knowledge of such arbitrary

densities for a given (statistical) propagation channel allows one to predict the

ergodic spectral efficiency of MIMO systems. For the channels of interest to

the thesis, HH
dlHdl takes on the form of a Wishart random matrix [50–54]. In

particular, when HH
dl undergoes Rayleigh and semi-correlated Rayleigh fading,

the HH
dlHdl follows uncorrelated central and correlated central Wishart struc-

ture. In the case when HH
dl undergoes uncorrelated Ricean fading, HH

dlHdl has

a non-central, uncorrelated Wishart distribution [50–54].

Remark 2.3.12. In addition to the arbitrary densities, the eigenvalue den-

sity of an arbitrary pair of eigenvalues drawn from the channel correlation matrix

is also vital for the analysis of MIMO systems. Using such densities, researchers

have been able to analyze the variance of MIMO spectral efficiency (see e.g.,

[55, 56]). Furthermore, as will be seen in Chapters 4 and 5, for multiuser MIMO

systems, knowledge of such densities also allows one to analyze the expected

signal-to-interference-plus-noise-ratio (SINR) with multiple types of transmit

precoding approaches such as zero-forcing (ZF) and regularized zero-forcing pre-

coding. Both the arbitrary and the joint arbitrary pair of eigenvalue densities

can also be used to predict the instantaneous ZF SNR at a particular receive

antenna, as demonstrated in Chapter 5. Further to the above, with growing

interest in large MIMO systems, convergence of the eigenvalue densities, as

M → ∞ with L fixed helps one to get an intuitive understanding of the re-

quired system dimensions before fast-fading and uncorrelated noise can vanish,

reaching favorable propagation conditions [9, 57–61]. This will be demonstrated

in Chapter 8 of the thesis with fixed sized ULAs.

With such a direct dependence on the performance analysis of MIMO sys-
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tems, eigenvalue densities of Wishart matrices are a necessity to facilitate an-

alytical progress. A broad overview of most other applications of eigenvalue

densities to MIMO systems is given in [62], as well as references therein. Despite

the advances in random matrix theory, tractable expressions for the joint arbi-

trary eigenvalue densities of the correlated central and uncorrelated non-central

Wishart matrices remain a challenge. These are derived in the following section

of the thesis, to facilitate further analysis. As the further analysis also relies on

the knowledge of the arbitrary eigenvalue densities, a comprehensive overview of

uncorrelated and correlated central, as well as uncorrelated non-central Wishart

eigenvalue densities is presented.

2.4 Eigenvalue Densities of Wishart Matrices

2.4.1 Uncorrelated Central Wishart Matrices

Definition 2.4.1. When HH
dl undergoes uncorrelated i.i.d. Rayleigh fading,

HH
dlHdl follows an uncorrelated complex central Wishart structure with m de-

grees of freedom (d.o.f.) having a covariance matrix Im. Let λarb denote an

arbitrary eigenvalue of HH
dlHdl drawn from λ1, . . . , λm. Then, the density of

λarb, denoted by f0, is then given by [6]

f0 (λarb) = m−1

m∑
i=1

(i− 1)

(i− 1 + n−m)
λn−marb e−λarbκ

(n−m)
i−1 (λarb)2 , (2.22)

where κ
(n−m)
i−1 is a generalized Laguerre polynomial of order i− 1, defined as [63]

κ
(n−m)
i−1 (λarb) =

i−1∑
s=0

(−1)s
(
i+ 1 + n−m
i− 1− s

)
λsarb

s!
. (2.23)

Definition 2.4.2. Under the same conditions as Definition 2.4.1., let (λ1, λ2)

be any two arbitrary, unordered eigenvalues ofHH
dlHdl. The joint density of such
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a pair of arbitrary eigenvalues is denoted by f0 (λ1, λ2) and is given by [55]

f0 (λ1, λ2) = (m (m− 1))−1
m∑
i=1

m∑
j=1
j 6=i

(λ1λ2)n−m e−(λ1+λ2)Φ
[
κ

(n−m)
i−1 (λ1)2 κ

(n−m)
j−1 (λ2)2

− κ(n−m)
i−1 (λ1) κ

(n−m)
j−1 (λ1)κ

(n−m)
i−1 (λ2)κ

(n−m)
j−1 (λ2)

]
, (2.24)

where

Φ =
(i− 1)! (j − 1)!

(i− 1 + n−m)! (j − 1 + n−m)!
, (2.25)

and κ
(n−m)
i−1 (·), as well as κ

(n−m)
j−1 (·) are as defined in (2.23).

Remark 2.4.1. The same set of densities for the correlated complex central

Wishart case are provided in the following subsection. In particular, the arbi-

trary eigenvalue density is a known result from the literature [64] and the joint

pair of arbitrary eigenvalue density is derived in the thesis.

2.4.2 Correlated Central Wishart Matrices

Definition 2.4.3. WhenHH
dl undergoes semi-correlated Rayleigh fading,HH

dlHdl

follows a correlated complex central Wishart structure with m degrees of free-

dom and a M ×M covariance matrix R. For the case when L ≥ M , the joint

density of m ordered eigenvalues of HH
dlHdl of λ1 ≥ λ2 ≥ , . . . ,≥ λm is given by

[64]

ford,sc (λ1, . . . , λm) =

m∏
k=1

λn−mk

m∏
k<l

(λk − λl) det (Ξ)

m∏
l=1

(n− l)! det (R)n
m∏
k<l

(
1
θl
− 1

θk

) , (2.26)

where the (i, j)-th element of Ξ is given by e−λi/θj with θ1, . . . , θm denoting the

m eigenvalues of R.

Definition 2.4.4. From Definition 2.4.3, the density of an arbitrary eigen-

value, λarb,sc, of the correlated central Wishart matrix can be written as [64]

fo,sc (λarb,sc) = χ

m∑
i=1

m∑
j=1
j 6=i

λn−m+j−1
arb,sc e−λarb,sc/θiD (i, j) , (2.27)
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where

χ =
1

m
m∏
l=1

(n− l)! det (R)n
m∏
k<l

(
1
θl
− 1

θk

) , (2.28)

and D (i, j) is the (i, j)-th co-factor of an m×m matrix whose (l, k)-th entry is

given by (n−m+ k − 1)!/θ−n+m−k
l .

Definition 2.4.5. Under the same conditions as Definitions 2.4.3 and 2.4.4,

for the case where L < M , the joint density of m ordered eigenvalues of HH
dlHdl,

λ1 ≥ λ2 ≥ , . . . ,≥ λm, is given by [65]

ford (λ1, . . . , λm) = T
∑
φ

(−1)per(φ)
m∏
i=1

λφii det(∆n,m), (2.29)

where the summation is over all permutations, φ, from 0, 1, . . . ,m− 1 and

T =
1

n∏
j=1

j! det (∆n)
, (2.30)

with ∆n defined as the n× n Vandermonde matrix

∆n =


1 θ1 . . . θn−1

1

...
...

. . .
...

1 θn . . . θn−1
n

 . (2.31)

Furthermore, ∆n,m is the n× n matrix defined as

∆n,m =


1 . . . θn−m−1

1 θn−m−1
1 e−λ1/θ1 . . .

...
...

...
...

...

1 . . . θn−m−1
n θn−m−1

n e−λ1/θn . . .

 . (2.32)

Definition 2.4.6. Under the same conditions as Definitions 2.4.3, 2.4.4 and
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2.4.5, the density of the arbitrary eigenvalue, λarb,sc is given by [64]

fo,sc (λarb,sc) = ζ

m∑
i=1

m∑
j=1
j 6=i

λj−1
arb,sc D (i, j)

×

(
θn−m−1
n−m+i e

−λarb,sc/θn−m+i −
n−m∑
l=1

n−m∑
k=1
k 6=l

[Ψ]−1
k,l θ

k−1
n−m+iθ

n−m−1
l e−λarb,sc/θl

)
,

(2.33)

with

ζ =
det (Ψ)

m
n∏
k<l

(θl − θk)
m−1∏
l=1

l!

, (2.34)

where Ψ is the (n−m)× (n−m) Vandermonde matrix defined as

Ψ =


1 θ1 . . . θn−m−1

1

...
...

. . .
...

1 θn−m . . . θn−m−1
n−m

 . (2.35)

Moreover, D (i, j) is the (i, j)-th co-factor of an m ×m matrix whose (l, k)-th

entry equals (k − 1)!

(
θn−m+k−1
n−m+l −

n−m∑
p=1

n−m∑
q=1
q 6=p

[Ψ]−1
p,q θ

p−1
n−m+l θ

n−m+k−1
q

)
.

Remark 2.4.2. The density in (2.33) is used to derive the ergodic spectral

efficiency of semi-correlated MIMO channels with L ≥M . The joint eigenvalue

density of two arbitrary eigenvalues is presented in the sequel. Note that the

density in (2.33) is used later in the thesis in Chapter 4 for computation of the

expected per-terminal SINR of a given terminal with downlink precoding.

Theorem 2.4.1. When L ≥ M , and the L × M channel matrix HH
dl =

HH
i.i.d.R

1
2 , i.e., the propagation channel undergoes semi-correlated Rayleigh fad-

ing, where θ1, . . . , θm denote the m distinct eigenvalues of R 6= Im×m, the joint

density of any two (unordered) arbitrary eigenvalues, (λ1, λ2) of HH
dlHdl is given
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by

fo,sc (λ1, λ2) = χ̂
m−1∑
i=0

m−1∑
j=0
j 6=i

(−1)i+j−p(i,j) λi+n−m1 λj+n−m2

m∑
k=1

m∑
l=1
l 6=k

(−1)k−1 e−λ1/θk

× (−1)l−p(l) e−λ2/θldet (Ξ)i,j;k,l , (2.36)

where

χ̂ = χ̃ (−1)b
m
2
c (m− 2)!, (2.37)

with

χ̃ =
1

m!
∏m

l=1 (n− l)! det (R)n
∏m

k<l

(
1
θl
− 1

θk

) . (2.38)

Furthermore,

p (i, j) =

 0 if i > j

1 if i ≤ j,

and

p (l) =

 0 if k > l

1 if k ≤ l.
(2.39)

Proof of Theorem 2.4.1. One can begin with the joint ordered density of

m eigenvalues ford,sc (λ1, λ2, · · · ≥ λm) as stated in (2.26). To convert (2.26) to

an unordered joint density of m eigenvalues, the ordered density can be divided

by m! with its range converted to 0 < λ1 < ∞, . . . , 0 < λm < ∞. This results

in

funord,sc (λ1, . . . , λm) = χ̃

m∏
k=1

λn−mk

m∏
k<l

(λk − λl) det (Ξ) , (2.40)

where χ̃ and Ξ are as defined in (2.38) and (2.26), respectively. Using the fact

that
m∏
k<l

(λk − λl) = (−1)b
m
2
c
∑
φ

(−1)per(φ) λφ1

1 λ
φ2

2 . . . λφmm , (2.41)

where the summation is over all permutations φ of {1, . . . ,m}, substituting

40



Chapter 2. Statistical Channel Models and Random Matrix Theory

(2.41) into (2.40) allows one to write the joint unordered density as

funord,sc (λ1, . . . , λm) = χ̃

m∏
k=1

λn−mk (−1)b
m
2
c
∑
φ

(−1)per(φ) λφ1

1 λ
φ2

2 . . . λφmm det (Ξ) .

(2.42)

After some algebraic manipulation, the expression in (2.42) can be written as

funord,sc (λ1, . . . , λm) = χ̃ (−1)b
m
2
c
∑
φ

(−1)per(φ) det (Ξ) , (2.43)

where [Ξ]i,j = λφi+n−mi e−λi/θj . Now to integrate over λ3, λ4, . . . , λm, one can

integrate over the rows of Ξ specifically involving λ3, λ4, . . . , λm. This property

follows from Laplace’s expansion for a determinant. Solving for the general case

of row k, rk, where 3 ≤ k ≤ m, one can state

rk =

 ∞∫
0

λφk+n−m
k e−λk/θ1dλk, . . . ,

∞∫
0

λφk+n−m
k e−λk/θmdλk


=
[
θφk+n−m+1

1 (φk + n−m)! , . . . , θφk+n−m+1
m (φk + n−m)!

]
. (2.44)

Note that once integrated out, λ3, . . . , λm disappear from rows 3, . . . ,m, as they

are only functions of φ3, . . . , φm. In contrast to this, rows 1 and 2 are still

functions of (λ1, φ1) and (λ2, φ2), respectively. One can note that the number

of permutations, φ, such that φ1 = i and φ2 = j for any i and j are given by

(m− 2)!. Upon reordering rows 3, . . . ,m, such that φ3, . . . , φm are ordered, one

can use Laplace’s expansion on the first two rows and write the joint density of

two arbitrary eigenvalues, (λ1, λ2) as

fo,sc (λ1, λ2) = χ̂

m−1∑
i=0

m−1∑
j=0
j 6=i

(−1)i+j−p(i,j) λi+n−m1 λj+n−m2

m∑
k=1

m∑
l=1
l 6=k

(−1)k−1 e−λ1/θk

× (−1)l−p(l) e−λ2/θldet (Ξ)i,j;k,l , (2.45)

where each constant in (2.45) is defined after (2.36). This yields the desired

41



Chapter 2. Statistical Channel Models and Random Matrix Theory

result and completes the proof. �

Remark 2.4.3. The expression in (2.45) is left in terms of finite sum-

mations, where each summation is bounded by m. This makes the densities

numerical evaluation efficient, given the complexity of the instantaneous chan-

nel correlation matrix. The derived result in (2.45) is extremely general and

further applications to analysis involving complex correlated central Wishart

matrices, such as the analysis of second order statistics of semi-correlated chan-

nels, leading to the variance of spectral efficiency for such channels. Moreover,

in Chapter 4 of the thesis, this density is utilized when computing the downlink

expected SINR of a given terminal with linear processing at a cellular BS.

Theorem 2.4.2. When L < M , and the L × M channel matrix HH
dl =

HH
i.i.d.R

1
2 , i.e., undergoing semi-correlated Rayleigh fading, where θ1, . . . , θn de-

note the n distinct eigenvalues of R 6= In×n, the joint density of any two (un-

ordered) arbitrary eigenvalues, (λ1, λ2), of HH
dlHdl is given by

fo,sc (λ1, λ2) =T (n− 2)!
m−1∑
i=0

m−1∑
j=0
j 6=i

(−1)i+1−p(i,l)
m∑
o=1

(−1)o−1 θn−m−1
o λi1e

−λ1/θ0

×
m∑
p=1
p 6=o

(−1)p−p(o) θn−m−1
p λj2e

−λ2/θp Θ, (2.46)

where T is defined in (2.30), p (i, l) and p (o) are equivalently defined in (2.39),

while Θ = det
(

[∆n]o;p [∆n,m]o,p;i,j

)
.

Proof of Theorem 2.4.2. One can begin with the joint density of m

distinct eigenvalues given by [65]

funord,sc (λ1, . . . , λm) = T
∑
φ

(−1)per(φ)
m∏
i=1

λφii det (Ξ) , (2.47)

Integrating over λ3, . . . , λm in (2.47) yields,

fo,sc (λ1, λ2) =
(n− 2)!∏m

j=1 j!

m−1∑
i=0

m−1∑
l=0
l 6=i

(−1)i+l−p(i,l) det
(
∆ [Ξ]i;l

)
, (2.48)

42



Chapter 2. Statistical Channel Models and Random Matrix Theory

where [Ξ]i;l is equivalent to Ξ with columns i and l ordered corresponding to λ1

and λ2. Upon reordering, performing a Laplace expansion on the i-th column

with λ1, one can obtain

fo,sc (λ1, λ2) =
(n− 2)!∏m

j=1 j!

m−1∑
i=0

m−1∑
l=0
l 6=i

(−1)i+l−p(i,l) (−1)n−m
m∑
o=1

(−1)o−1

× θn−m−1
o λi1e

−λ1/θo det
(
∆o [Ξ]i,l;o

)
. (2.49)

Performing a second Laplace expansion with the determinant in (2.48) with λ2

and the j-th column yields the expression in (2.46).

Remark 2.4.4. The same comments in Remark 2.4.3. applies to the re-

sult derived in (2.47). Following the results for the uncorrelated and correlated

complex central Wishart matrices, the arbitrary and joint pair of arbitrary eigen-

value densities of uncorrelated non-central Wishart matrices are presented in the

following subsection.

2.4.3 Uncorrelated Non-Central Wishart Matrices

Definition 2.4.7. When HH
dl undergoes uncorrelated Ricean fading, HH

dlHdl

follows an uncorrelated non-central Wishart structure with m degrees of freedom

and a covariance matrix of Im. For the case L < M , the joint density of m

eigenvalues of HH
dlHdl in λ1 ≥ λ2 ≥, . . . ,≥ λm is given by [54]

ford,nonc (λ1, . . . , λm) =
e−tr[KH̄H

dlH̄]∏m
l=1 (n− l)! (m− l)!

m∏
k=1

λn−mk 0F1

(
n,K, H̄HH̄ ,Λ

)
× e−tr[Λ]

m∏
k<l

(λk − λl)2 , (2.50)

where K is the Rice factor and Λ = diag (λ1, . . . , λm), a diagonal matrix of m

eigenvalues. Furthermore, one can express 0F1

(
n,K, H̄HH̄ ,Λ

)
, the hypergeo-
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metric function containing matrix arguments as

0F1

(
n,K, H̄HH̄ ,Λ

)
= (2.51)∏m−1
l=1 (m− l)l (n− l)l∏m

k<l (φk − φl)

[
det ({0F1 (n−m+ 1, φi, λj)})∏m

k<l (λk − λl)

]
,

where det ({ai,j}) is the determinant of a matrix whose (i, j)-th entry is ai,j,

while 0F1 (·, ·) is the scalar hypergeometric function. Moreover, φ1, . . . , φm are

the m eigenvalues of
√
KH̄ .

Definition 2.4.8. Under the same conditions as 2.4.7, the arbitrary eigen-

value density, λnonc,arb, of the uncorrelated non-central Wishart matrix, HH
dlHdl

can be written as [66],

fo (λarb,nonc) =
e−

∑
i φi

m ((n−m)!)m
e−λarb,conc(K+1)

λarb,conc

m∑
j=1

((K + 1)λarb,conc)
n−m+j

m∑
i=1

0F1 (n−m+ 1, (K + 1)φiλarb,conc)D (i, j)∏m
k<l (φl − φk)

, (2.52)

where D (i, j) is the (i, j)-th co-factor of the m × m matrix A whose (l, k)-th

entry is given by

(A)l,k = (n−m+ k − 1)! 1F1 (n−m+ k, n−m+ 1, φl) , (2.53)

with and 1F1 (·, ·, ·) is the Kummer confluent hypergeometric function [66]. Next,

the novel result on the joint density of two arbitrary eigenvalues is presented

and derived.

Theorem 2.4.2. When L ≤M , and the L×M channel matrix follows the

uncorrelated Ricean fading distribution following (2.17). Then, the joint density

of any two (arbitrary) eigenvalues of HH
dlHdl is given by

fo,nonc (λ1, λ2) = C

m−1∑
i=0

m−1∑
j=0
j 6=i

m∑
r=1

m∑
s=1
s 6=r

(−1)u Ξ̃ (r, s; i, j) gr,i (λ1) gs,j (λ2) , (2.54)
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where u = i+ j + r + s− p (i, j)− t (r, s) with

p (i, j) =

 0 ; j ≤ i

1 ; j > i,

and

t (r, s) =

 0 ; s ≤ r

1 ; s > r.
(2.55)

Furthermore,

C =
e−

∑
i φi

m ((n−m)!)m
∏m

k<q (φq − φk)
((n−m)!)m (−1)b

m
2
c (n− 2)!, (2.56)

and

Ξ̃ (r, s; i, j) = (φrφs)
−v/2 Ξ (r, s; i, j) . (2.57)

In addition to this,

ga,b (λ) = λv/2+be−λIv

(
2
√
φaλ
)
, (2.58)

where v = n − m. In (2.57), Ξ (r, s; i, j) is a determinant with rows r, s and

columns i, j removed, where the d-th entry of the f -th column is given by
Γ(ς+%f)

Γ(ς) 1F1 (ς + %f , ς, φd). Here, %f = f − 1, Γ (·) is the scalar gamma function,

and Iv (·) is the modified Bessel function of the first kind [18, 63].

Proof of Theorem 2.4.2. Invoking Appendix A.2 of [66], the joint un-

ordered density of the m eigenvalues, λ1, . . . , λm of the complex uncorrelated

non-central Wishart matrix is given by

funord,nonc (λ1, . . . , λm) =
e−

∑
i φi

m ((n−m)!)m
∏m

k<q (φq − φk)

m∏
k<q

(
λk − λq

)
m∏
k=1

λn−mk e−
∑m
i=1 λi Ξ1, (2.59)

where Ξ1 is the determinant of 0F1 (n−m+ 1, φiλj). Recognizing that 0F1 (a, b) =

(a− 1)!b−(a−1)/2Ia−1

(
2
√
b
)

and decomposing the first product in (2.59) into a
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summation over permutations of % from 0, 1, . . . ,m− 1, one can write (2.59) as

funord,nonc (λ1, . . . , λm) =
e−

∑
i φi

m ((n−m)!)m
∏m

k<q (φq − φk)

((n−m)!)m (−1)b
m
2
c
∑
%

(−1)per(%) Ξ2, (2.60)

where Ξ2 is the determinant of φ
−n−m

2
i λ

n−m
2

+%j
j e−λj In−m

(
2
√
φiλj

)
. To find

fo,nonc (λ1, λ2), one can integrate over λ3, . . . , λm, i.e., over columns 3, . . . ,m

of Ξ2. The resulting entries of Ξ2 can now be written as

Γ (n−m+ 1 + %j)

Γ (n−m+ 1)
1F1 (n−m+ 1 + %j, n−m+ 1, φi) . (2.61)

Reordering the columns of Ξ2, such that % is ordered from 0, 1, . . . ,m − 1 and

performing the Laplace expansion on columns i, j, containing λ1 and λ2, yields

fo,nonc (λ1, λ2) =
e−

∑
i φi

m ((n−m)!)m
∏m

k<q (φq − φk)
((n−m)!)m (−1)b

m
2
c (n− 2)!

m−1∑
i=0

m−1∑
j=0
j 6=i

m∑
r=1

m∑
s=1
s 6=r

(−1)u Ξ (r, s; i, j)φ−v/2r λ
v/2+i
1 e−λ1Iv

(
2
√
φrλ1

)

φ−v/2s λ
v/2+j
2 e−λ2Iv

(
2
√
φsλ2

)
. (2.62)

Further simplifying and denoting u = i+ j+ r+ s− p (i, j)− t (r, s), v = n−m,

Ξ̃ (r, s; i, j) = (φrφs)
−v/2 Ξ (r, s; i, j) and ga,b (λ) = λv/2+be−λIv

(
2
√
φaλ
)

yields

the expression in (2.54). This concludes the proof. �

Remark 2.4.5. As it will be seen in Chapter 5 of the thesis, Theorem 2.4.2

is used to compute the expected per-terminal SINR with linear processing on the

downlink of a multiuser MIMO system, where each link undergoes uncorrelated

Ricean fading. Furthermore, the result derived in (2.54) has general applicability

for analysis involving the complex uncorrelated non-central Wishart matrix.

Prior works (see [67, 68] and references therein) often approximate the non-

centrality of the Wishart matrix by its central counterpart, via an adjustment

of its covariance matrix. In contrast to this, the derived result omits the need
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for this conversion and allows one to analyze the non-central Wishart structure

in its exact form for further analysis.

This concludes the first background chapter in the thesis covering the sta-

tistical channel models and random matrix theory results used throughout the

thesis. The following chapter (Chapter 3) presents an introduction to multiuser

MIMO systems and the associated linear transceiver structures which are ana-

lyzed in the contribution chapters (Chapters 4-8) of the thesis.
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Chapter 3

Multiuser MIMO Systems

Summary. The main focus of this chapter is on multiuser multiple-input

multiple-output (MU-MIMO) systems, where an antenna array simultaneously

serves multiple user terminals in the same time and frequency resource. With

such an ability, MU-MIMO systems have become part of many standardized

technologies, such as Long-Term Evolution-Advanced (LTE-A), and are envi-

sioned to be the workhorse of next generation cellular systems. An overview

of the downlink and uplink MU-MIMO systems along with their assumptions

is presented, followed by a discussion on the heterogeneity introduced by MU-

MIMO systems with scenarios that are of current and future interest. As serving

multiple terminals in the same time-frequency resource gives rise to multiuser

interference, the chapter details uplink and downlink linear signal processing

techniques to mitigate or suppress the effects of multiuser interference. An

introduction to the important performance metrics of the expected signal-to-

interference-plus-noise-ratio and ergodic sum spectral efficiency is presented,

followed by a discussion on the artifacts of large MU-MIMO systems, where

the number of transmit antennas are increased without bound, serving a finite

number of user terminals. To minimize the detrimental impact of antenna cor-

relation and other electromagnetic coupling between adjacent elements at the

transmitter, wide antenna separations are required. However, in order to main-

tain a fixed form factor, large antenna arrays should be designed in confined

physical volumes. To this end, large MU-MIMO systems operating in fixed
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physical spaces are introduced. Overall, this chapter facilitates the analysis

and discussion presented in later chapters of the thesis, by introducing the key

concepts related to MU-MIMO systems.

3.1 System Operation and Assumptions

Providing an ever increasing amount of spectral efficiency in a designated area

with limited resources is one of the most fundamental problems in cellular com-

munication systems [9, 69, 70]. The majority of the proposed solutions fall into

three categories: (1) Exploitation of spectrum that is currently unused or un-

derutilized; (2) Deployment of more cellular base stations (BSs) serving a com-

mensurately smaller area; (3) Use of cellular BSs with multiple antenna ele-

ments.1 For future cellular systems, the first two approaches will be epitomized

by millmeter-wave (mmWave) carrier frequencies operating in smaller cells. The

third approach is known as multiple-input multiple-output (MIMO) [5–7], or

multiuser MIMO (MU-MIMO) [10, 15], of which large (a.k.a. massive) MIMO

is rapidly emerging as a popular form [9, 11, 57, 71].

Fig. 3.1 demonstrates the features of a MU-MIMO system. For simplicity,

the system is shown for an isolated BS site and several single-antenna termi-

nals.2 Here, downlink transmission is considered, where an array of M antennas

serve a multiplicity of autonomous, non-cooperative user terminals. The main

difference between a point-to-point MIMO system described in Chapter 2, and

a MU-MIMO system is the decomposition of a point-to-point MIMO link into

L multiple-input single-output links. Here, L is the total number of terminals

being served. Due to the physical constraints on its size, the terminals are as-

sumed to have a single-antenna each. For the purpose of the chapter and the

thesis, ideal antenna elements configured in a uniform linear array (ULA) are

assumed at the cellular BS (serving array of antennas). Perfect hardware is also

1In practice, the user terminal can also be equipped with multiple antennas, however, for
this discussion, it is assumed that each terminal will only have a single-antenna and will be
allocated one stream of data.

2In reality, multiple cells are are always present in a network of cells. However, for ease of
exposition here, the author focuses on the case where only one BS is considered.
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Figure 3.1: A classical, fully digital downlink MU-MIMO system. The antenna
array selectively transmits a multiplicity of data streams, all occupying the same
resource in time and frequency.

assumed at each user terminal. The above assumptions are a result of the thesis

primarily focusing on the performance analysis of MU-MIMO systems with a

wide range of practically feasible transceiver structures, operating in heteroge-

neous channel conditions (described further in Section 3.4). As such, the focus

is not on the system level imperfections or on a specific transceiver type, where

considering the above imperfections are imperative. Here, the author is inter-

ested in tackling the more general and fundamental problem of mathematically

characterizing the spectral efficiency performance of MU-MIMO systems over a

wide range of scenarios and fading channels, where it is sensible to make such

idealistic assumptions to make analytical progress.

The downlink operation of the system entails transmitting L data stream to

L terminals. Due to this being a broadcast system, serving multiple terminals

simultaneously leads to multiuser interference (also known as inter-user inter-

ference), as the desired data stream to a given terminal will be unwanted at

all other terminals. Hence, the main objective of a MU-MIMO system is to

ensure that each terminal receives the desired data stream, with minimal levels

of multiuser interference. It is worth noting that contemporaneous cellular sys-
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Figure 3.2: A classical, fully digital uplink MU-MIMO system. The terminals
transmit data which occupy the same time-frequency resources and the trans-
mitted signals received by the elements of the serving array are processed to
recover the individual data streams.

tems typically accomplish this multiplexing by some combination of sending the

various data streams at different times (known as time-division multiplexing)

and with different frequencies (known as frequency-division multiplexing), both

of which lead to a degradation of spectral efficiency and inefficient use of radio

resources. In stark contrast to this, MU-MIMO systems use space-division mul-

tiplexing (also known as space-division multiple access), such that the different

data streams occupy the same time and frequency resource. As mentioned in

Chapter 2, classical orthogonal frequency-division multiplexing (OFDM) wave-

forms across time and frequency are assumed, with narrowband signaling within

each OFDM subcarrier.3

A key element to performing spatial multiplexing is an array of independently

controlled service antennas at the BS. Under line-of-sight (LoS) propagation, the

data streams are carried on focused beams of data. In a heavily scattered prop-

agation conditions (statistically often modeled via Rayleigh fading), the data

3Note that the OFDM subcarrier index is omitted for simplicity in all presented downlink
and uplink performance metrics, as well as for all multiuser signal processing techniques, in
Sections 3.3 and 3.4, respectively.
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streams can arrive from many directions simultaneously. Assuming that the

necessary baseband signal processing is performed at the BS, the data streams

can be combined in order to boost the desired signal and reduce interference.

Moreover, a critical prerequisite to execute and achieve MU-MIMO spatial mul-

tiplexing is that the service array needs to have knowledge of the gains of each

downlink channel, i.e., from each of its elements to all terminals. This is known

as channel state information (CSI), and is utilized in baseband signal processing

at the service array to perform downlink precoding to each terminal.4

Downlink precoding is a way to mitigate or reduce the effects of multiuser

interference while serving multiple terminals in the same radio resource. As the

prime focus of the thesis is on the performance analysis of MU-MIMO systems

under extremely general channel conditions, perfect knowledge of the CSI is

assumed both at the terminals and at the service array. The data streams are

simultaneously mapped onto the signals that drive each service antenna.5 It

is also worth noting that all other system blocks demonstrated in Chapter 2

for point-to-point MIMO are still in place but omitted from Fig. 3.1 to avoid

cluttering the diagram. On the other hand, uplink operation of the MU-MIMO

system, as shown in Fig. 3.2, is essentially the reverse of downlink operation.

Here the terminals transmit their own data streams at the same time and over

the same frequency resources. The BS array receives the sum of the data streams

as modified by their respective propagation channels, and the combining opera-

tion, again utilizing the complete CSI, untangles the received signals to produce

the individual data streams.

Having mentioned the basic operations, assumptions and key aspects of MU-

MIMO systems considered in the thesis, the following section outlines the phys-

ical implications enforced on MU-MIMO systems by the propagation channels

they operate in.

4The author would like to note that acquisition of CSI is an important research topic in
its right. Research is actively being performed with both time-division and frequency-division
duplex protocols. It remains an open question as to which duplexing mode should be used to
acquire CSI at the BS. The ultimate answer to this question may be scenario dependent and
relies on many other factors which are outside the scope of the thesis.

5By increasing the sheer number of elements at the BS array, as in large MU-MIMO, the
beams can be focused more selectively to the desired terminal.
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3.2 Heterogeneity in MU-MIMO Systems

With spatial separation of user terminals within the vicinity of the BS coverage

area, MU-MIMO systems experience a diverse range of propagation conditions.

Depending on the geographical terrain around a given terminal, each terminal

experiences a unique link gain composing the effects of geometric attenuation

and shadow-fading.6 With a unique set of link gains for each terminal, the anal-

ysis of MU-MIMO systems is mathematically more challenging than for point-

to-point MIMO systems, where the receive antennas are co-located. In addition

to this, small-scale fading co-efficients also randomly vary due to the location

differences of multiple terminals. The standard statistical models introduced in

Chapter 2 are directly applicable in this context.

With the rise of small-cellular systems illuminating smaller coverage areas,

the average link distance between a terminal and the BS is reduced in com-

parison to conventional macro-cellular systems. For a particular terminal, this

is likely to result in higher probability of LoS, where the propagation channel

is insufficiently dominated by rich scattering. Furthermore, the local terrain

variations within the proximity of a particular terminal result in a change in

the amount of LoS present on a particular link. In turn, this means that both

the LoS and the non LoS (NLoS) powers are a function of the terrain variation

across multiple terminals. Statistically, the above scenario can not be modeled

with the classical assumption of uncorrelated, independent and identically dis-

tributed (i.i.d.) Rayleigh fading. In contrast to this, a Ricean fading model

with dominant LoS directions in addition to the contribution from the scat-

tered components is better suited to capture such environments. In particular,

such scenarios should employ the Ricean fading channel model with a terrain

dependent K-factor to capture the heterogeneity of MU-MIMO channels.

Moreover, it is envisioned that that small-cellular systems may be comple-

mented by the use of mmWave carrier frequencies for future terrestrial systems.

Here, to overcome the large propagation losses at such high carrier frequen-

6The statistical model for link gain is presented in Section 2.1.2 in Chapter 2.
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cies, future cellular BSs may be equipped with large antenna arrays, needed to

provide the necessary array gain for quality-of-service. In order to achieve the

conventional inter-element spacing of more than half wavelength which is known

to induce less antenna correlation and electromagnetic coupling, large antenna

arrays require a much larger physical space in comparison to conventional ar-

rays. Nevertheless, the physical size of the array should also be constrained

before it becomes impractical to deploy such arrays in certain scenarios, such

as dense urban, where ideally the BS array should occupy a relatively smaller

spacing. Accommodating a large number of serving antennas in confined physi-

cal volumes leads to an increased level of spatial correlation and electromagnetic

coupling, which have a detrimental impact on the performance of a given ter-

minal and the system. In addition to the small inter-element distances, spatial

correlation is also a function of the angular spread at a given terminal. A moder-

ate change in the terminal’s location implies a change in the local terrain around

the terminal. This leads to a further change in the correlation pattern, due to

the change in the distribution of the incoming wavefronts, as the BS array may

illuminate a different set of scatterers in the propagation channel. Considering

this, two terminals, far apart, can experience vastly different spatial correlation

patterns. Due to this reason, unequal levels of correlation are to be expected in

future cellular systems.7

The fusion of all three technologies, namely small-cellular, mmWave, and

large antenna arrays implies heterogeneous propagation channels, which con-

tain unequal levels of LoS, unequal levels of spatial correlation, unequal levels of

link gains, and unequal instantaneous small-scale fading. As such, performance

analysis of MU-MIMO systems considering these variations is timely, and of

great significance. Such a general structure of the propagation channel makes

performance analysis of MU-MIMO systems with transmit precoding and receive

combining extremely challenging. Despite knowledge of the above physical ar-

tifacts induced by the propagation channel, researchers have found it difficult

to make analytical progress to predict the spectral efficiency performance of

7Naturally, the terminals have to lie within the radius of the serving array’s coverage area.
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MU-MIMO systems in such situations. As a result, analyzing the performance

of current and future MU-MIMO systems with heterogeneous channels is the

central theme of the thesis, as demonstrated in Chapters 4-8.

In what follows, a comprehensive overview of the uplink and downlink MU-

MIMO signal model is given.

3.3 Signal Models

Considering the multiuser system described in Section 3.1, let Gul be the M×L

composite uplink propagation channel matrix between the M BS antennas at

the ULA and L terminals in the system. A circular coverage area of radius Rc

meters is assumed around the BS, which is located at the origin of the circle.

Note that gul,l denotes the M × 1 uplink channel vector from the l-th terminal

to the BS, and can be written as

gul,l = hul,lβ
1
2
l , (3.1)

where βl is the link gain for terminal l composed of the large-scale fading effects

of geometric attenuation and shadow-fading. In particular,

βl = υ

(
d0

dl

)α
ζl, (3.2)

where υ is the unit-less constant for geometric attenuation at a given reference

distance, d0, dl is the link distance from the BS to the l-th terminal. Moreover,

α is the geometric attenuation exponent and 10 log10 (ζl) ∼ N (0, σ2
sf) with σsf

denoting the shadow-fading standard deviation.

The nature of hul,l depends on the channel conditions. For ease of exposition,

uncorrelated i.i.d. Rayleigh fading, i.e., hul,l ∼ CN (0, IM) is considered in

this chapter for the purpose of introducing uplink and downlink transmission,

the relevant multiuser signal processing techniques, as well as large MU-MIMO

systems. It is worth noting that even though i.i.d. Rayleigh fading channels

are used for the remainder of the chapter, the mathematical system description,
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and multiuser processing approaches remain exactly the same for any type of

fading channel model.

In what follows, uplink and downlink transmission modes of the MU-MIMO

system are presented.

3.3.1 Uplink Transmission

As mentioned in Section 3.1, on the uplink, L terminals transmit data streams

simultaneously in the same time-frequency resource up to the BS. Note that sul,l

is denoted as the normalized transmitted data symbol from the l-th terminal,

such that E [|sul,l|2] = 1. Then, the M × 1 received signal at the BS array is a

combination all transmitted signals from all L terminals, and is given by

yul = ρ
1
2
ul

L∑
l=1

gul,l sul,l + nul

= ρ
1
2
ulGulsul + nul, (3.3)

where ρ
1
2
ul is the average uplink transmit power of a given terminal, Gul =

[gul,1, . . . , gul,L], sul = [sul,1, sul,2, . . . , sul,L]T is the L × 1 vector of transmitted

data symbols from all terminals. Moreover, nul = [nul,1, nul,2, . . . , nul,M ]T is the

M × 1 vector of additive white Gaussian noise terms at the BS array elements,

where nul,m ∼ CN
(
0, σ2

ul,m

)
. Note that σ2

ul,1 =, . . . ,= σ2
ul,M = σ2

ul is assumed.

Thus, the link SNR for an arbitrary link from a terminal to the BS array is

denoted by the ratio of the average uplink transmit power to the noise power at

the BS array, i.e., ρul/σ
2
ul.

8

For such composite uplink channel matrices, the Shannon sum spectral effi-

ciency is given by [36]

Rul,sum = log2

(
det
(
IL +

ρulL

σ2
ul

GulG
H
ul

))
. (3.4)

8It is also worth noting that even though the additive noise at the BS array is drawn from
the same distribution as the small-scale fading, it is independent of the small-scale fading
channel entries.
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For completeness, it is worth mentioning that the aforementioned sum spectral

efficiency can be achieved by using the successive interference cancellation (SIC)

technique [72].9 With SIC, after one terminal is detected at the BS array, its

signal is subtracted from the received signal before the next terminal is detected.

3.3.2 Downlink Transmission

In contrast to the uplink, when the BS array transmits signals on the downlink to

all L terminals, the information is carried in the M×1 vector of the transmitted

symbols sdl, where E [||sdl||2] = 1. Hence, the downlink received signal at the

l-th terminal is given by

ydl,l = ρ
1
2
dl g

H
dl,lsdl + ndl,l, (3.5)

where ρ
1
2
dl is the average downlink transmit power at the BS, gH

dl,l is the 1 ×M

downlink channel vector to the l-th terminal from the BS array, and ndl,l is the

additive white Gaussian noise at the input of the l-th terminal, such that ndl,l ∼

CN
(
0, σ2

dl,l

)
. As for the uplink case, it is assumed that σ2

dl,1,= . . . =, σ2
dl,L = σ2

dl,

and hence the link SNR for an arbitrary link is given by the ratio of ρdl to σ2
dl,

i.e., ρdl/σ
2
dl. Collectively, the L× 1 received signal vector at all L terminals can

be written as

ydl = ρ
1
2
dlG

H
dlsdl + ndl. (3.6)

The composite downlink channel is also known as the broadcast channel, whose

sum spectral efficiency (Shannon sum spectral efficiency) is known to be [73]

Rdl,sum = max
{ql}

ql≥0,
∑L
l=1 ql≤1

log2

(
det
(
IM +

ρdl

M
GH

dlD̃qGdl

))
, (3.7)

where D̃q is a diagonal matrix of power control co-efficients, whose l-th diagonal

element is ql. It can be readily observed that the Shannon sum spectral effi-

9Note that this is also known as the sum spectral efficiency of a multiple access channel
[72].
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ciency given in (3.7) requires a solution to an optimization problem. Achieving

the sum spectral efficiency requires so-called dirty-paper coding (DPC), whose

computational complexity grows exponentially with the size of the MU-MIMO

system.10 Due to this reason, the thesis focuses on linear signal processing ap-

proaches (discussed in the following section), whose complexity scales linearly

with the system size.

Moreover, it is worth noting that Chapters 4-8 of the thesis directly em-

ploy the uplink and downlink MU-MIMO system models presented above. The

subsequent section presents the theoretical background necessary on multiuser

signal processing techniques on the uplink and downlink of a MU-MIMO sys-

tem. The signal processing techniques are also a focus of Chapters 4-8 and are

used to enhance the sum spectral efficiency of MU-MIMO system with minimal

levels of multiuser interference.

3.4 Multiuser Signal Processing Techniques

To obtain optimal MU-MIMO performance11, complex signal processing tech-

niques must be implemented. For instance, in the uplink, maximum-likelihood

(ML) multiuser detection can be used. However, with ML detection, the BS has

to search all possible transmitted signal vectors, sul, and select the optimal one

such that

ŝul = arg min
sul∈SL

||yul − ρ
1
2
ulGulsul||2, (3.8)

where S is the finite alphabet of sul,l, l = 1, . . . , L. The optimization problem in

(3.8) is a least-squares problem with a finite-alphabet constraint. To implement

such an approach, the BS array has to search over |S|L vectors, where |S| denotes

the cardinality of set S. This exposes the major drawback of the ML detector,

its high computational effort. In particular, the computational effort grows

exponentially with growing numbers of user terminals in the system.

10As a result, it is believed that such types of processing techniques are practically unfeasible
for large MU-MIMO systems (the topic of Section 3.5 of the chapter).

11Here the term optimal refers to achieving the maximum spectral efficiency.
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Alternatively, the BS array can use linear processing techniques via linear

combining on the uplink and linear precoding on the downlink to reduce the

signal processing complexity at the BS. These techniques are not optimal, how-

ever, as the number of BS antennas increase, they are shown to perform near

optimally (see [9, 57, 74, 75] and references therein). As a result, the thesis con-

siders the more practical linear processing approaches. Exact details of these

techniques is presented in the sections which follow.

3.4.1 Uplink Linear Combining

With linear combining at the BS array, the composite received signal at all M

antenna elements is separated into L streams by multiplication with an L×M

linear detector matrix in T = [t1, . . . , tM ], such that the combined signal can be

written as

rul = Tyul = ρ
1
2
ulT Gulsul + Tnul. (3.9)

If each uplink data stream is decoded independently, a computational effort of

order L|S| is observed in comparison to ML decoding. As a result, the stream

transmitted from terminal l corresponds to the l-th element of rul, and is used

to decode sul,l. This can be written as

rul,l = ρ
1
2
ul tlgul,lsul,l + ρ

1
2
ul

L∑
k=1
k 6=l

tlgul,k sul,k + tl nul, (3.10)

where the first term on the right hand side of the equal sign denotes the desired

signal, the second term denotes multiuser interference and the third term denotes

additive Gaussian noise. Moreover, tl denotes the l-th column of T .

From this, the signal-to-interference-plus-noise-ratio (SINR) for the l-th ter-

minal can be written as

SINRul,l =
ρul|tlgul,l|2

σ2
ul,l||tl||2 + ρul

L∑
k=1
k 6=l

|tlgul,k|2
. (3.11)
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Equivalently, the uplink spectral efficiency for terminal l can be written as

Rul,l = log2 (1 + SINRul,l) . (3.12)

As such, the uplink ergodic sum spectral efficiency over all L terminals is given

by

E [Rul,sum] = E

[
L∑
l=1

Rul,l

]
. (3.13)

Remark 3.4.1. Note that the SINR is a metric to analyze (and evaluate) the

instantaneous performance for a given terminal, in contrast to the ergodic sum

spectral efficiency, which is a metric to analyze (and evaluate) the performance

of the entire MU-MIMO system. It is also worth noting that both the SINR

and the ergodic sum spectral efficiency are sensitive to the type of processing

employed in T . In the following, the three linear combiners used throughout

the thesis (maximum-ratio combining (MRC), zero-forcing combining (ZF) and

minimum-mean-squared-error combining (MMSE)) are reviewed.

Maximum-Ratio Combining

With MRC, the BS aims to maximize the received signal power on each stream

transmitted from the terminals, neglecting the effects of multiuser interference.

From (3.10), the l-th column of the MRC receiver matrix, T , is given by

tl = arg max
tl

power(desired signal)

power(additive noise)
= arg max

tl

ρulβl |tlhul,l|2

σ2
ul,l ||tl||2

. (3.14)

Since
ρulβl |tlhul,l|2

σ2
ul,l ||tl||2

≤ ρulβl ||tl||2||hul,l||2

σ2
ul,l||tl||2

= ρulβl ||hul,l||2, (3.15)

with the equality holding when tl = hH
ul,l, it follows that for MRC combiner, for

the stream coming from terminal l is given by

tl = hH
ul,l. (3.16)
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Substituting tl from (3.16) into (3.11), the received SINR for terminal l with

MRC uplink processing is given by

SINRul,l =
ρulβl||hul,l||4

σ2
ul,l||hul,l||2 + ρul

L∑
k=1
k 6=l

βk|hH
ul,lhul,k|2

. (3.17)

Remark 3.4.2. The MRC processor has several advantages, as well as disad-

vantages. The advantage is that the uplink signal processing becomes extremely

simple, since the BS array multiplies the received signals by the conjugate chan-

nel responses, and is then able to detect each data stream separately. As a

result of this, MRC is useful because it allows operation in a distributed fash-

ion, independently at each antenna element [11]. Furthermore, at low operating

SNRs, the MRC SINR for terminal l is primarily driven by ρulβl||hl||2. This

implies that at low operating SNRs, MRC can achieve the same array gain, as

in the case of a single-user system [76]. On the other hand, the disadvantage

is that MRC neglects the effects of multiuser interference and thus is expected

to perform poorly in interference limited scenarios, such as at high operating

SNRs. This can be seen by taking the limit as ρul →∞ and observing that the

MRC SINR collapses to

lim
ρul→∞

{
SINRul,l

}
=

βl||hul,l||4

βk
∑L

k=1
k 6=l
|hH

ul,lhul,k|2
, (3.18)

where it is upper bounded by a constant value (with respect to ρul) when ρul

is large. Performance analysis with MRC is presented in Chapters 6 and 8 of

the thesis with i.i.d. Rayleigh and unequally correlated Ricean fading channels,

respectively.

Zero-Forcing Combining

In contrast to MRC, the ZF combiner considers the effects of multiuser in-

terference while neglecting the effects of additive Gaussian noise. In fact, ZF

combining completely nulls the multiuser interference by projecting each data
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stream onto the orthogonal complement of the inter-user interference. Mathe-

matically, the l-th column of the ZF combiner matrix satisfies tlgul,l 6= 0 and

tlgul,k = 0,∀k 6= l. The ZF combining matrix which satisfies the above con-

straint for all l, is the pseudo-inverse of the composite instantaneous small-scale

fading channel matrix. With ZF, one can rewrite (3.9) as

rul =
(
GH

ulGul

)−1
GH

ul yul

= ρ
1
2
ul

(
GH

ulGul

)−1
GH

ulGulsul +
(
GH

ulGul

)−1
GH

ulnul

(a)
= ρ

1
2
ulsul +

(
GH

ulGul

)−1
GH

ulnul, (3.19)

where (a) is a result of
(
GH

ulGul

)−1
GH

ulGul = IL. It is worth noting that the ZF

processor requires that M ≥ L, such that the matrix GH
ulGul is invertible.12 As

a result of this, one can observe that the l-th data stream (element) of rul in

(3.19) is free from multiuser interference, where the l-th stream used to detect

sul,l is given by

rul,l = ρ
1
2
ulsul,l + ñul,l, (3.20)

where ñul,l denotes the l-th element of
(
GH

ulGul

)−1
GH

ulnul. Due to the com-

plete cancellation of multiuser interference, the instantaneous per-terminal SINR

translates into a per-terminal SNR. For the l-th terminal, the ZF SNR is given

by

SNRul,l =
ρul βl

σ2
ul,l

[
(HH

ulHul)
−1
]
l,l

, (3.21)

where
[
(A)−1]

l,l
denotes the (l, l)-th element of (A)−1.

Remark 3.4.3. The ZF combiner is an ideal candidate for interference

limited cellular systems, due to its ability to null inter-user interference. As

a result of this, the SNR for terminal l can be made as high as desirable by

virtue of increasing the link SNR. Pushing the link SNR to an extreme, i.e.,

letting SNR → ∞ will yield an infinitely high ZF SNR for terminal l. This is

straightforward to observe from (3.21). On the contrary, since ZF processing

12The inverse does not exist for systems which violate this restriction due to rank deficiency.
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neglects the effects of additive Gaussian noise, it operates poorly under noise

limited scenarios, i.e., with low link SNR levels. Moreover, if the channel is

not well conditioned (partly controlled by the size of M in comparison to L),

then performing the pseudo-inverse tends to significantly amplify the instan-

taneous noise power, leading to poor performance. In comparison to MRC,

the ZF combiner has a high computational effort, due to the involvement of a

pseudo-inverse of the channel gain matrix. This is particularly disadvantageous

for large MU-MIMO systems, where the size of the inverse scales linearly with

the number of terminals in the system. It is also to be noted that the calcula-

tion of a particular inverse scales as the cube of its size. Hence, even a modest

increase in the number of terminals can lead to a significant growth in the com-

putational demand. Several alternatives are considered to overcome the effects

of this complexity burden by decomposing the inverse with finite series expan-

sion techniques. One example is the Neumann series (see e.g., [57, 77, 78] and

references therein), where the inverse is approximated with polynomials having

a low order. Chapter 7 in the thesis analyzes the performance of unequally

correlated Rayleigh fading channels with ZF processing using Neumann series

expansions. Also, Chapter 6 of the thesis presents simplified uplink analysis

with ZF combining over i.i.d. Rayleigh fading channels.

Minimum-Mean-Squared-Error Combining

Unlike both the MRC and ZF combining solutions, the linear minimum-mean-

squared-error (MMSE) combiner aims to minimize the mean-squared error be-

tween the estimate Tyul and the transmitted signal, sul. More particularly, the

L×M MMSE combiner matrix, T , is designed by

T = arg min
T

E
[
||Tyul − sul||2

]
= arg min

T

L∑
l=1

E
[
|tlyul − sul,l|2

]
. (3.22)
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Thus, the l-th column of T is given by

tl = arg min
tl

E
[
|tlyul − sul,l|2

]
= ρ

1
2
ul

(
ρulGulG

H
ul + IM

)−1
gul,l. (3.23)

Remark 3.4.4. As far as linear processors are concerned, the MMSE com-

biner provides the ultimate solution in-terms of the trade-off between the max-

imization of signal power, while controlling noise and interference powers. Fur-

ther inspection of (3.23) yields that at high link SNRs, i.e., high ρul, with a

fixed σ2
ul,l for all L terminals, the performance of ZF processing approaches that

of MMSE processing, while at low link SNRs, MRC performs just as well as

MMSE. Hence, depending on the operating SNR regime, MMSE combining can

be thought of as tuning between MRC and ZF combining at low and high SNRs.

Furthermore, substituting (3.23) into (3.10), the received SINR for the MMSE

combiner can be written as

SINRul,l = ρul βl

hH
ul,l

ρulβk

L∑
k=1
k 6=l

hul,kh
H
ul,k + IM


−1

hul,l

 . (3.24)

Remark 3.4.5. Using the expressions in (3.11) and (3.12), the correspond-

ing per-terminal spectral efficiency and the ergodic sum spectral efficiency can

be evaluated for any uplink processing type. In the following section, the equiv-

alent linear processing approaches on the downlink are outlined.

3.4.2 Downlink Linear Precoding

In the downlink, virtually the opposite happens with linear precoding techniques

helping the service array at the BS to serve multiple user terminals in the same

time-frequency resource. The downlink signal, sdl, transmitted from the M

elements is a linear combination of the symbols intended for the L terminals.

Let s̃dl,l be the message bearing data symbol intended for terminal l, such that
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E [|s̃dl,l|2] = 1. Hence, the linearly precoded signal at the BS array is given by

sdl = η
1
2Ws̃dl, (3.25)

where s̃dl = [s̃dl,1, . . . , s̃dl,L]T is the L × 1 vector of data symbols, W is the

M×L downlink precoding matrix and η is the precoder normalization parameter

chosen to satisfy the overall power constraint of E [||sdl||2] = 1. Therefore,

η =
1

E
[
tr
[
WW H

]] . (3.26)

Remark 3.4.6. It is worth noting that throughout the thesis, the matrix

normalization described above is used. An alternative way to normalize the

power in each downlink precoder is by normalizing each column of the precod-

ing matrix. Both approaches are widely accepted in the MU-MIMO literature,

yielding similar results [9, 57, 59, 79–83].

Substituting the precoded signal expression in (3.25) into (3.5), for a partic-

ular type of linear precoder, W , one can obtain the received signal for terminal

l as

rdl,l = ρ
1
2
dlη

1
2βlh

H
dl,lWs̃dl + ndl,l

= ρ
1
2
dlη

1
2βlh

H
dl,lwls̃dl,l + ρ

1
2
dlη

1
2βl

L∑
k=1
k 6=l

hH
dl,lwks̃dl,k + ndl,l. (3.27)

Therefore, the SINR for terminal l as a result of transmission from the BS array

to the l-th terminal can be written as

SINRdl,l =
ρdlηβl|hH

dl,lwl|2

σ2
dl,l + ρdlηβl

L∑
k=1
k 6=l

|hH
dl,lwk|2

. (3.28)

Three conventional linear precoders are often employed in MU-MIMO stud-

ies. These are matched-filter (MF) precoding (also known as conjugate beam-

forming), ZF precoding and regularized ZF (RZF) precoding (for single-stream
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transmission, also known as MMSE precoding, signal-to-leakage-plus-noise-ratio

precoding and transmit Wiener filter). On the downlink, these precoders per-

form the equivalent activity as linear combiners do on the uplink. Due to this

reason, these precoders have similar operational meanings and properties as

the MRC, ZF, and MMSE receivers, respectively. Due to this reason, the final

structure of each precoding type is provided in the following expression.13

W =


Hdl, for MF

Hdl

(
HH

dlHdl

)−1
, for ZF

Hdl

(
HH

dlHdl + L
SNR

IL
)−1

, for RZF,

(3.29)

From (3.29), by taking the l-th column of W , the SINR for the l-th terminal

in (3.28) can be written for different processing types. The downlink SINR

for terminal l with a particular type of processor can be translated into an

instantaneous downlink spectral efficiency for terminal l via the classical Shan-

non equation in (3.12). From then, the ergodic sum spectral efficiency can be

computed by following (3.13).

Figs. 3.3 and 3.4 demonstrate the uplink and downlink ergodic sum spectral

efficiency with the above mentioned processing approaches, as a function of the

operating SNR (ρul for uplink and ρdl for the downlink, assuming σ2
dl = σ2

ul = 1.

At the BS, M = 6 transmit antenna elements are considered communicating

with L = 4 terminals. In order not to obfuscate the performance trends, βl = 1,

∀l = 1, . . . , L. The noise limited and interference limited performance of

the uplink and downlink processors is clearly visible with the MMSE and RZF

processors providing the tuning between MRC/MF and ZF at low and high link

SNRs.

In what follows, a discussion on the expected per-terminal SINR is presented

for both uplink and downlink processing techniques.

13One can equally chose to precode over Gdl, instead of Hdl.
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Figure 3.3: Ergodic sum spectral efficiency performance of MRC, ZF and MMSE
uplink combiners as a function of increasing link SNRs.
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Figure 3.4: Ergodic sum spectral efficiency performance of MF, ZF and RZF
downlink precoding as a function of increasing link SNRs.
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3.4.3 Expected Per-Terminal SINR Approximation

Throughout the thesis, for both uplink and downlink MU-MIMO systems, the

average (expected) performance of a given user terminal is analyzed with a

commonly employed first-order delta approximation. The aim of this section is

to justify the validity of this approximation and identify the conditions required

for the approximation to be extremely tight. For ease of exposition, the downlink

SINR for terminal l is considered, however, the discussion equally applies to

uplink MU-MIMO systems, since the SINR takes on similar random quantities

in the numerator and the denominator. The SINR of terminal l, given a linear

precoder W can be expressed as in (3.28). The expected per-terminal SINR

requires an expectation of (3.28). In general, exact evaluation of

E [SINRdl,l] =E

 ρdlηβl|hH
dl,lwl|2

σ2
dl,l + ρdlηβl

∑L
k=1
k 6=l
|hH

dl,lwk|2

 , (3.30)

is extremely cumbersome due a multitude of factors, the biggest one being that

the expectation is performed on a function containing a ratio of random vari-

ables. Hence, communication researchers often employ the first-order Delta

method approximation, which allows one to analyze the expectation in the nu-

merator and denominator separately. The approximation allows the expected

SINR for terminal l to be written as

E [SINRdl,l] ≈
ρdlη̃βlE

[
|hH

dl,lwl|2
]

σ2
dl,l + ρdlη̃βl

∑L
k=1
k 6=l

E
[
|hH

dl,lwk|2
] , (3.31)

where η̃ = E [η].

Remark 3.4.7. The approximation in (3.31) is of the form E
[
X
Y

]
≈ E[X]

E[Y ]
,

where X and Y both contain standard quadratic forms [68, 80, 83–88]. The

accuracy of such approximations relies on Y having a small variance relative

to its mean value. This can be seen by applying a multivariate Taylor series

expansion of X
Y

around E[X]
E[Y ]

, as shown in the analysis methodology of [68]. In

particular, the quadratic forms in (3.31) are well suited to this approximation as
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M and L start to increase, where the approximation is shown to be extremely

tight. This is due to the quadratic forms averaging their respective individual

components, minimizing their variance relative to their mean values. For further

discussion, the more interested reader is refereed to [68, 88], where a detailed

mathematical proof of the approximation accuracy can be found.

Following from (3.31), the ergodic sum spectral efficiency for all L terminals

can be approximated by

E [Rdl,sum] = E

[
L∑
l=1

log2 (1 + SINRdl,l)

]
≈

L∑
l=1

log2 (1 + E [SINRdl,l]) . (3.32)

Remark 3.4.8. Note that (3.32) leads to an approximation rather than

an upper bound vis Jensen’s inequality, as the value of E [SINRdl,l] is itself an

approximation [81, 85]. Moreover, the summation over L terminals in the service

array’s coverage area takes care of the fact that E [SINRdl,l] could be different

depending on the index l, due to the relative differences in the physical location

of each terminal, causing further differences in the level of geometric attenuation

and log-normal shadow-fading.

The above mentioned approximations are utilized in Chapters 4-8 of the

thesis, for analysis of different multiuser transceiver structures over heteroge-

neous fading channels. This concludes the conventional MU-MIMO background

required for the thesis, leading to large MU-MIMO systems.

3.5 Large Multiuser MIMO Systems

Since the landmark work by Marzetta in 2010, large MU-MIMO systems have

emerged as a key solution to meet the spectral and energy efficiency demands

of future cellular networks [9, 57, 71]. Increasing the number of service antennas

by an order of magnitude, these systems push conventional MU-MIMO systems

to an extreme.

Naturally, all the previously presented background on conventional MU-

MIMO operation and signal processing aspect is also directly applicable to large
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MU-MIMO. The benefits of growing the number of BS antennas relative to the

number of active terminals include: (1) Greater selectivity in transmitting and

receiving data streams, in turn leading to greater spectral efficiency; (2) Reduc-

tion in the required radiated power, allowing for effective power control providing

uniformly good service throughout the service array’s coverage area; (3) Even

further simplification in the signal processing at the BS.14 Furthermore, letting

the number of service antennas grow without bound removes the effects of fast-

fading and multiuser interference, as the propagation channels become mutually

pairwise orthogonal.15

The effects of increasing numbers of service antennas on the composite chan-

nel matrix, sum spectral efficiency, and linear processing techniques are dis-

cussed below, where single antenna terminals are assumed for notational sim-

plicity.

3.5.1 Convergence to Favorable Propagation Conditions

In this subsection, the impact of an indefinite number of service antennas on the

channel correlation matrix is demonstrated. Again for ease of exposition, i.i.d.

Rayleigh fading channels are assumed. Later, in Chapter 8 of the thesis, the per-

formance of an uplink MRC MU-MIMO system is analyzed using the principles

described below, over unequally correlated Ricean fading channels. In particu-

lar, the typical large MU-MIMO literature examines the behavior of 1
M
GH

dlGdl

is demonstrated, where the gH
l is the 1×M downlink propagation channel from

the service array to the l-th terminal. Now, as the number of service antennas,

M →∞, with a fixed number of terminals in L, it is straightforward to observe

14As a result of simplifications in baseband signal processing, large MU-MIMO systems also
simplify media access control layer design.

15In the limit of an unlimited number of BS antennas serving a finite number of terminals,
the only remaining impairment results from imperfect CSI through the re-use of pilot sequences
in multicellular networks. For TDD systems, this corresponds to the BSs uplink channel
estimate, through channel reciprocity, being corrupted by terminals in adjacent cells using
the same pilot sequence. In FDD systems, this corresponds to the BS sending out duplicates
of the (limited) number of pilot sequences, as the number of downlink pilot sequences required
scales with the number of service antennas.
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that 1
M
GH

dlGdl approaches a diagonal matrix. Mathematically speaking,

lim
M→∞

{
1

M
GH

dlGdl

}
= lim

M→∞

{
D

1
2
HH

dlHdl

M
D

1
2

}
= D. (3.33)

This is a result of each 1 ×M propagation channel becoming asymptotically

pairwise orthogonal [9, 89]. Here, D = diag (β1, . . . , βL) is the L × L diagonal

matrix of link gains for each terminal. In the large MU-MIMO literature, this

has been famously coined as convergence to favorable propagation.

Remark 3.5.1. Numerous physical implications can be drawn from (3.33).

The most obvious observation is that channel orthogonality is a result of having

a large number service antennas. As a result of this, propagation channels

to multiple terminals become extremely diverse, facilitating maximum spatial

separation of the transmitted data streams to different terminals. Moreover,

under favorable propagation conditions, the effects of small-scale fading is seen

to vanish over the service array and each communication link is only governed

by its large-scale fading co-efficient.16 If such propagation conditions can be

realized in practice, multiuser scheduling, transmit power control, and multiuser

processing can be performed only considering large-scale fading co-efficients,

which was introduced earlier to vary at a different time scale than the small-

scale fading. This further reduces the total overheads and signal processing

complexity in the design of such systems.

In the following subsection, the implications of favorable propagation on the

sum spectral efficiency is introduced.

3.5.2 Impact on Sum Spectral Efficiency

The impact of substituting the result presented in (3.33) into the downlink

sum spectral efficiency expression presented earlier in (3.7) yields a number of

mathematically exact conclusions. For exposition purposes, the downlink case

is analyzed here, however, the same conclusions also hold for uplink systems.

16Naturally, the rate at which favorable propagation occurs is ultimately governed by the
underlying propagation characteristics.
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Since 1
M
GH

dlGdl → IL, as M →∞, the spatial multiplexing gains of the system

can be maximized and thus the sum spectral efficiency achieves the capacity

(optimal sum spectral efficiency). This can be observed by taking the limit of

(3.7), as M →∞. This results in

lim
M→∞

{Rdl,sum} = lim
M→∞

{
log2

(
det
(
IM +

ρdl

M
GH

dlGdl

))}
= log2 (det (IL + ρdlD))

=
L∑
l=1

log2 (1 + ρdlβl) . (3.34)

Remark 3.5.2. The expression in (3.34) is seen to scale with the number of

terminals in the system. With the absence of fast-fading, this suggests that the

sum spectral efficiency can be broken down into L parallel additive Gaussian

noise channels, as a function of the link SNR and the large-scale fading parame-

ter for a given terminal. As small-scale fading has no part to play in (3.34), the

sum spectral efficiency only undergoes variations induced by large-scale fading

by virtue of the link gain and link SNR. This phenomena is known as channel

hardening in the large MU-MIMO literature.

3.5.3 Space-Constrained MU-MIMO Systems

The large number of service antennas that large antenna arrays advocate im-

plies that the physical space dedicated to locate the antenna elements must also

grow, assuming they are deployed with fixed inter-element spacings [57, 89, 90].

Nevertheless, a limit in the maximum number of antennas which could be de-

ployed is to be expected due to physical size restrictions on the service array.

For instance, consider an array with M = 128 serving elements operating at

the typical carrier frequency of 2.6 GHz, where the corresponding wavelength,

λc = 11.5 cm. If each antenna was to be deployed with an inter-element spacing

of ds ≥ 0.5λc to avoid the harmful effects of spatial correlation and antenna

coupling, placing the elements in a ULA would seem impractical, since the size

of the resultant array would be at least Mλc/2 = (128) (0.115 m) /2 = 7.36 m.
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Naturally, such array sizes are larger than the physical structures currently being

employed in cellular systems of today, further complicating their deployments.

The above discussion has been the major driving force for research into

space-constrained antenna arrays, where the idea is to increase the number of

service elements in a predetermined, fixed sized array. Doing this imposes an

inversely proportional decrease in the inter-element spacing. The reduced inter-

element spacings can greatly increase the level of spatial correlation and antenna

coupling, as shown in [57, 89–94]. Rather interestingly, the study in [90] demon-

strates that in contrast to unconstrained sized arrays which achieve favorable

propagation with ever increasing number of antennas, space-constrained arrays

do not achieve favorable propagation in the asymptotic regime. Indeed, prior

studies (see e.g., [89, 93]) have analyzed the impact of space-constrained arrays

on MU-MIMO systems in rich scattering environments, with spatial correlation

and mutual coupling. However, their impact on propagation channels containing

LoS still remains largely unexplored. In this context, Chapter 8 of the thesis an-

alyzes an uplink space-constrained MU-MIMO system with spatially correlated

Ricean fading channels, where each terminal has an unequal link gain, unequal

levels of LoS and unequal spatial correlation patterns.

This concludes the necessary theoretical background required for the material

presented in the thesis. The subsequent chapters present the main contributions

of the thesis.
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Chapter 4

Coordinated RZF Precoding in

Multi-Cellular Systems

Summary. Base station (BS) coordination is viewed as a key ingredient for

interference management in cellular networks. This chapter demonstrates the

impact of BS coordination on the performance of multi-cellular systems. A

general analysis of the average (expected) signal-to-interference-plus-noise-ratio

(SINR) of a given user terminal and ergodic sum spectral efficiency for a given

cell, with coordinated regularized zero-forcing (RZF) precoding is presented. An

application to two-tier small-cellular networks is considered, assuming indepen-

dent and identically distributed (i.i.d.), as well as semi-correlated Rayleigh fad-

ing channels with spatial correlation at the BS. With semi-correlated Rayleigh

fading, the generalized analysis methodology caters for the presence of equal

and unequal spatial correlation matrices. With i.i.d. Rayleigh fading and when

each terminal is assigned an equal correlation matrix, the expressions are av-

eraged over the eigenvalue densities of the instantaneous channel correlation

matrices, which follow an uncorrelated and correlated, complex central Wishart

distribution. With unequal correlation matrices, the high link signal-to-noise-

ratio (SNR) convergence of RZF to zero-forcing (ZF) precoding is exploited,

where the RZF performance is approximated with ZF. Here, a second order

Neumann series expansion is invoked to derive closed-form expressions of the

ZF expected per-terminal SNR and ergodic per-cell sum spectral efficiency. The
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derived closed-form results provide numerous valuable insights into the impact

of different network parameters, as well as the effect of equal and unequal spatial

correlation structures. All derived expressions are robust to changes in system

dimensions, high link SNR levels and spatial correlation levels. Numerical re-

sults demonstrate the improvement in the above mentioned performance metrics

with increasing degrees of BS coordination. It is shown that network-wide co-

ordination provides better inter-cellular interference control, in comparison to

cell-wide and macro-only coordination strategies.

4.1 Introduction

It is well known that wireless communication systems composed of many un-

coordinated transmitters and receivers utilizing the same radio spectrum are

interference-limited [25, 26, 95]. This means that a further increase in the level

of transmit power does not improve the achievable spectral efficiency, once these

powers reach a sufficiently high level.1 In contemporary cellular systems, spec-

trum reuse leads to a large fraction of user terminals having a low signal-to-

interference-plus-noise-ratio (SINR) [10, 95].2 Similar effects can also be ob-

served in other types of wireless systems, such as in IEEE 802.11 (WiFi), where

inefficient contention-based medium access control is employed to protect a par-

ticular receiver from interference, by silencing the nearby transmitters. In a

by-now vast literature, it has been persuasively argued that this limitation is

not fundamental, but rather an artifact of each transmitter-receiver pair com-

municating autonomously rather than cooperatively (see e.g., [5, 83, 96–104] and

the references therein).

Assuming perfect channel state information at the transmitter, if the various

transmitters could coordinate, the corresponding downlink interference channel

1Here the term sufficiently high refers to the transmit power level after the initial gain in
the spectral efficiency with increasing the transmit power, assuming a fixed noise power level.
Note that this initial gain is often refereed to as the initial offset or the pre-log factor.

2Note that here the term cell-edge is referred to as the radio cell-edge and not the geo-
graphical (physical) cell-edge, as the presence of random obstacles causing shadow-fading is
considered on each propagation path.
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can be converted to a broadcast channel, with all the transmitters jointly encod-

ing the signal intended for a given receiver. In the context of a cellular system,

this line of thinking would lead us to believe that an arbitrary number of BSs

could coordinate to achieve enormous SINR and spectral efficiency gains over

uncoordinated systems, with the only limitation being the amount of coordina-

tion that can be practically affordable [105]. The problem described above is,

and has been of considerable theoretical and practical interest in academia, as

well as in the industry (see e.g., [99, 106]). Coordination between multiple BSs

has been attempted commercially, and is still ongoing broadly under the banner

of coordinated multipoint (CoMP) [106, 107].

Assuming the frequency-division duplex protocol and the availability of cell

specific orthogonal reference signaling, the idea is that multiple BSs are con-

nected via low-latency, high bandwidth backhaul links, usually via optical fiber

or an external interface 2 (X2) connection. Here, a given user terminal in the

system can estimate the downlink channel from the serving and interfering BSs.

After quantization of the estimated channels, channel state information is then

fed back to the serving BS via a low-rate feedback mechanism.3 This allows

the desired BS to exchange the channel state information to all interfering BSs

via the backhaul interface, where the data is often distributed through a cen-

tralized controller, known as the baseband processing unit (BPU) (or a radio

network controller (RNC)).4 This then allows each BS to form a downlink pre-

coding matrix to terminals in the desired cell of interest, while mitigating or re-

ducing intra-cellular (IUI)5 and inter-cellular (ICI) interference, respectively.6.

3Both IEEE 802.11 (WiFi) and Third Generation Partnership Project (3GPP) long-term
evolution advanced (LTE-A) support a so-called “limited feedback” feature, allowing feedback
of the quantized subspace information of the channel via a common codebook known to both
the transmitter and the receiver [108, 109].

4In the case of optical fiber, the exchange of channel state information across multiple BSs
is done via a BPU (or a RNC). However, in the case where the X2 interface is used, signaling to
and from the BPU (or the RNC) can be bypassed, allowing multiple BSs to directly exchange
the data.

5Specific to this chapter, multiple types of interference (IUI and ICI) are considered. In
the case where only IUI is present, such as in the subsequent chapters, the term “multiuser
interference” is used to denote IUI.

6At this point, it is important to note that as the focus this chapter is on the mathematical
performance analysis of a coordinated multi-cellular systems, an assumption is made in that
the above process takes place without any imperfections.
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Advances in BS coordination have also been made for small-cellular systems

with network densification becoming one of the major themes of future wireless

access [83, 99, 100]. In small-cellular systems, different tiers of BSs with varying

transmit powers and coverage areas may operate on the same frequency band,

in which case ICI rapidly degrades the expected SINR of a given terminal with

increasing numbers of overlaid small-cells in the network [83].

On the other hand, with the use of linear transmit and receive signal pro-

cessing methods, previous studies have analyzed the enhancements to the per-

terminal SINR and system spectral efficiency with conventional and large an-

tenna arrays [65, 80, 89, 110–115]. Collectively, these studies assume indepen-

dent and identically distributed (i.i.d.) and semi-correlated Rayleigh fading

channels. However, in the case of semi-correlated fading, for simplicity, all of

the prior work assumes a fixed (common) spatial correlation matrix for each

terminal, despite the differences in their physical locations, which contribute to

variations in local scattering environment around each terminal.7 In addition

to the inter-element spacing at the BS array, this significantly influences the

resulting performance. In the large system regime, deterministic limits to the

terminal SINR and system spectral efficiency with unequal correlation matri-

ces were analyzed in [41, 43, 60, 116, 117]. A more general limiting analysis with

other types of transmit and receive processing techniques, such as regularized

ZF (RZF), and minimum-mean-squared-error (MMSE) in the presence of un-

equal correlation structures is presented in [60, 61]. However, in the large system

regime, the solutions are often presented numerically (see e.g., [43, 60, 116]) by

iteratively solving a system of fixed point equations, where it is not straight-

forward to inspect the expressions and evaluate the impact of changes in the

system and/or propagation parameters. In contrast to this, explicit analytical

expressions that do not require iterative solutions to a set of linked equations is

presented in this chapter. The resulting insights are most obvious in the high

7Keeping in mind the discussion presented in Chapter 3, at this point in the thesis, the
author refrains from presenting further discussion regarding the effects of unequal spatial
correlation matrices, as a detailed investigation of its impact in a multiuser context is presented
further in the thesis, in Chapter 7.

78



Chapter 4. Coordinated RZF Analysis in Multi-Cellular Systems

link signal-to-noise-ratio (SNR) regime, where ZF precoding is used to approx-

imate the RZF performance with unequal correlation structures. In general, to

derive the expected SINR and ergodic per-cell sum spectral efficiency, averaging

over the ensamble of fast-fading is performed, unless otherwise specified in the

text.

More specifically, the contributions of the chapter are as follows:

1. Tight analytical expressions are derived to approximate the RZF expected

SINR and ergodic spectral efficiency for i.i.d. and semi-correlated Rayleigh

fading channels with spatial correlation at the BS array. For equal cor-

relation matrices at each terminal, the expressions are averaged over the

arbitrary eigenvalue densities of the instantaneous channel correlation ma-

trices. To the best of the author’s knowledge, such an analysis has not

been carried out previously and is considered to be extremely cumbersome

in [118, 119]. As a result, [118, 119] consider analyzing the expected SINR

and ergodic sum spectral efficiency over the isotropic eigenvector matrix

for simplicity.

2. With unequal correlation matrices, the high link SNR regime is consid-

ered, where RZF precoding converges to ZF precoding. Following the

spatial correlation model in [120, 121], the RZF performance is approxi-

mated with ZF, and a second order Neumann series expansion is invoked

to derive closed-form approximations of the expected ZF SNR and ergodic

spectral efficiency. In comparison to previous studies, such as [43, 60, 116],

our approximations provide clear insights into the impact of unequal cor-

relation structures, along with other system parameters that influence the

achievable expected ZF SNR and ergodic spectral efficiency.

3. For a two-tier small-cellular network, with numerical simulations, the gain

in the expected SINR, expected SNR and ergodic sum spectral efficiency is

demonstrated with network-wide BS coordination relative to macro-only

and cell-wide BS coordination strategies. The impact of network densifica-

tion on a given terminal and a given cell is explored with uniform, cell-edge
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and cell-centric small-cell placements. The performance of such systems

with unequal spatial correlation is superior to that where each terminal is

assigned a fixed correlation matrix. Finally, the derived approximations

are shown to be robust to variation in the system dimensions, link SNRs

and unequal levels of spatial correlation.

The rest of the chapter is structured as follows: Section 4.2 details the multi-

cellular system model and the respective BS coordination strategies. Section 4.3

analyzes the expected per-terminal SINR and ergodic per-cell sum spectral ef-

ficiency with i.i.d. and semi-correlated Rayleigh fading channels, where each

terminal has an equal correlation matrix. Section 4.4 details a high link SNR

approximation to the above mentioned performance metrics with ZF precoding

considering unequal correlation matrices for each terminal. Section 4.5 present

the numerical performance evaluation of the considered system, and Section 4.6

presents the concluding remarks of the chapter.

4.2 System Model

4.2.1 Downlink Received Signal

The downlink of a two-tier, multi-cellular, multiuser multiple-input multiple-

output (MU-MIMO) system is considered.8 There are K cells in total, where tier

one consists of macro and tier two consists of small-cell BSs. BS k, located at the

origin of cell k in either tier is equipped with an array of Mk transmit antennas,

simultaneously serving Lk non-cooperative single antenna user terminals in the

same time-frequency interval. Perfect backhaul links with zero latency and

infinite bandwidth are assumed between the K cells.9 Furthermore, narrow-

band transmission and no power control is assumed. The 1 × Mk downlink

channel vector from BS k to terminal l located in cell k is denoted as gH
dl,k,l,k.

8As this system model is specific to this chapter, a detailed description of the model is
presented in the chapter to maximize clarity and consistency with other chapters.

9As the focus is on understanding the best-case performance, the author does not consider
specific clusters of coordinated BSs, as typically done in conventional multi-cellular systems
(see e.g., [97, 98, 103]).

80



Chapter 4. Coordinated RZF Analysis in Multi-Cellular Systems

The ICI channel from BS j to user terminal l in cell k is denoted by gH
dl,j,l,k , where

j 6= k. Both the desired and interfering channels are assumed to follow correlated

Rayleigh fading with gH
dl,j,l,k = hH

dl,j,l,kR
1
2
j,l,k , where hH

dl,j,l,k ∼ CN
(
0, IMj

)
and

Rj,l,k is the transmit spatial correlation matrix for channel gH
dl,j,l,k. In the case

where each terminal has an equal correlation matrix, Rj,l,k = Rj, ∀ l, k. While

the discussion of the particular structure of Rj,l,k is postponed to Section 4.5,

the generality of the channel model presented is worth noting. The channel

model allows one to consider any type of antenna correlation structure in Rj,l,k.

Although the general case of MU-MIMO in a two-tier small-cellular network is

considered, the above model is also of significance to large antenna arrays, where

strong antenna correlation may arise due to inadequate inter-element spacing or

lack of multi-path diversity [61].

With channel knowledge at BS k, the received signal at the l-th terminal in

the k-th cell is given by

rdl,l,k = ρ
1
2
dl,k

(
βk,l,k
ηk

) 1
2

gH
dl,k,l,kwl,ksdl,l,k︸ ︷︷ ︸

desired signal

+ ρ
1
2
dl,k

(
βk,l,k
ηk

) 1
2

Lk∑
m=1
m 6=l

gH
dl,k,l,kwm,ksdl,m,k

︸ ︷︷ ︸
intra-cellular interference (IUI)

+

K∑
j=1
j 6=k

ρ
1
2
dl,j

(
βj,l,k
ηj

) 1
2

gH
dl,j,l,k

Lj∑
q=1

wq,jsdl,q,j

︸ ︷︷ ︸
inter-cellular interference (ICI)

+ndl,l,k︸ ︷︷ ︸
noise

, (4.1)

where ρdl,k is the average downlink transmit power at BS k, wl,k is the Mk × 1

un-normalized precoding vector for the l-th terminal in cell k and ηk is the

precoder normalization parameter, (discussed later in the text) for the k-th

cell. sdl,l,k is the transmitted data symbol from BS k to terminal l with unit

mean power and ndl,l,k denotes white Gaussian noise at the l-terminal where

ndl,l,k ∼ CN (0, σ2
dl,l,k). Note that for simplicity, σ2

dl,l,k = σ2
dl,∀l, k, respectively.

Hence, the link SNR is defined as the ratio of ρdl,k to σ2
dl for an arbitrary link

from BS k to any given terminal in the system. The desired and interfering

link gains at the l-th terminal in the k-th cell from the desired and interfering
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links are denoted by βk,l,k and βj,l,k, respectively. The link gains from BS j to

terminal l in cell k is modeled as [15]

βj,l,k = υ

(
d0

dj,l,k

)αj
ζj,l,k. (4.2)

Here, υ is a unit-less constant for geometric attenuation at the reference distance

d0, assuming far-field, omni-directional transmit antennas with an ideal radia-

tion pattern and no mechanical downtilt. Furthermore, dj,l,k is the distance from

BS j to terminal l in cell k and αj is the attenuation exponent dependent on the

transmitting BS and the propagation scenario. The random effects of shadow-

fading are modeled with a log-normal density, such that ζj,l,k = 10(Sσsf/10), where

S ∼ N (0, 1) and σsf is the shadow-fading standard deviation.

Fig. 4.1 depicts a typical two-tier cellular network composed of macrocells

with multiple overlaid small-cells. Here the effects of a downlink broadcast to

terminal 1 in macrocell 7’s coverage area is demonstrated, as it causes IUI to

terminal 2 in macrocell 7, as well as experiencing ICI from the nearby small-

cells (small-cells 1 and 4). Note that terminal 2 of macrocell 7 also experiences

ICI from small-cells 1 and 2. In order to avoid the possibility of very large

levels of interference powers (from this model), a physical exclusion radius is

designed around the macro BS in which no small-cell BSs are placed. Each BS

has an optical fiber backhaul link to the BPU. While Fig. 4.1 is only used for

illustration purposes, more insightful scenarios (with variation in the small-cell

placement) are considered in Section 4.5 to evaluate the expected per-terminal

and cell-wide performance.

4.2.2 RZF Precoding

RZF precoding is considered in the design of the downlink precoding vectors

to each terminal [118].10 Firstly, the focus is on the case where each serving

array performs RZF to the user terminals in its own coverage area, and later

10As a multi-cellular system model is employed specifically for this chapter, the signal model,
as well as the RZF precoding vectors are restated for clarity and ease of reference.
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Figure 4.1: Two-tier multi-cellular network with uniformly distributed small-
cells.

this is extended to other BS coordination strategies. The un-normalized RZF

precoding vector for the l-th terminal in cell k is the l-th column of the Mk×Lk
matrix, Wk, such that

Wk = Gdl,k

(
GH

dl,kGdl,k + ξkILk
)−1

, (4.3)

where Gdl,k = [gdl,k,1,k, gdl,k,2,k, . . . , gdl,k,Lk,k] is the Mk × Lk composite channel

matrix containing downlink channel vectors of all Lk terminals in cell k (resulting

in GH
dl,k which of size Lk ×Mk). Following [43], the precoding matrix in (4.3) is

normalized via ηk = ||Wk||2/Lk ensuring E [||wl,k||2] = 1. The constant ξk > 0

denotes the regularization parameter specific to BS k. In line with [122]

ξk =
1

KL

K∑
k=1

Lk∑
l=1
l 6=k

1

βk,l,k
, (4.4)

where K and L are the total number of cells and terminals within the system,

respectively. While selecting ξk to maximize the SINR has been considered in
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[118] for a single-cell system, maximization of SINR in the case of multiple cells

leads to a coupled optimization problem [118]. Optimization of ξk is treated

as a separate issue and is beyond the scope of the chapter and thesis. It is

worth mentioning that the computation of ξk in (4.4) requires BS k to know

all large-scale fading (typically also known as slow-fading) co-efficients via the

backhaul infrastructure. This assumption is reasonable, since designing a RZF

precoding matrix at BS k requires knowledge of the instantaneous channel state

information. Since the large-scale fading co-efficients vary much more slowly

than the fast-fading, they can be acquired with much less effort than the instan-

taneous channel.11 In the sequel, the proposed BS coordination strategies are

presented for the two-tier small-cellular network, along with the corresponding

formulation of the composite channel matrix used for RZF processing.

4.2.3 Base Station Coordination Strategies

Cell-Wide Coordination

In this strategy, the BSs in both tiers perform single-cell RZF precoding. That

is, each BS coordinates the desired and IUI locally at the serving antenna array.

However, in this strategy, ICI is still present from other BSs, as the RZF precoder

does not consider any ICI channels in its design. The composite channel matrix

to compute the RZF precoders for Lk terminals in cell k is given by

Gdl,k = [gdl,k,1,k, gdl,k,2,k, . . . , gdl,k,Lk,k] . (4.5)

One can think of this strategy as the baseline case, which will be useful for

comparison purposes with the best-case performance described in the network-

wide coordination strategy below.

11It is typically reported that large-scale fading co-efficients vary approximately 40 times
less frequently than the instantaneous fast-fading channel. The interested reader is referred
to [37] for instance, for further discussion on this matter.
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Network-Wide Coordination

In this strategy, the serving BS array applies RZF precoding not only to the

channels of its own terminals, but also considers ICI to other terminals in the

system. The serving and interfering links can be determined using cell-specific

pilot signaling (assuming perfect channel estimation in the absence of pilot con-

tamination and the availability of a sufficient number of orthogonal reference

signals). All interfering channel state information from other cells is delivered

to the serving cell BS via the backhaul interface. The composite channel ma-

trix, Gdl,k, for cell k with network-wide coordinated RZF processing can now

be defined as

Gdl,k = [Zdl,1,Zdl,2, . . . ,Zdl,j, . . . ,Zdl,K ] , (4.6)

where Zdl,j = [gdl,j,1,k, . . . , gdl,j,Lk,k]. With this composite channel matrix, (4.3)

can still be used, however, the precoder Wk only contains the Lk columns of

(4.3) corresponding to the terminals in cell k (columns
∑k−1

i=1 Li+1 to
∑k

i=1 Li).

Similarly, ηk is the Frobenius norm of Wk with these Lk columns only. Since

network-wide coordination requires knowledge of all instantaneous channel vec-

tors at BS k, it introduces significant backhaul overheads. While this may not

be practical, such a strategy allows us to evaluate the best case (upper bound)

performance of the expected per-terminal SINR and ergodic per-cell spectral

efficiency in such interference limited scenarios.

Macro-Only Coordination

In this strategy, it is assumed that the macrocell BSs have knowledge of the ICI

channels to terminals located in tier-two (small) cells. The macrocells then uti-

lize this out-of-cell channel state information to coordinate the downlink trans-

mission to its own, as well as to terminals in tier-two cells. This strategy is

useful since it attempts to suppress the most dominant sources of interference,

the macro BSs, in the two-tier network.12 The composite channel used to obtain

12It is well known that the transmit powers of small-cellular BSs are scaled down to serve
a smaller coverage area, leading to comparatively lower levels of ICI than the high powered
macro BS.
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the RZF precoding matrix for BS k is equivalent to (4.6) and (4.5), if BS k is a

macro and microcell, respectively.

The following section presents the methodology to analyze expected RZF

SINR and ergodic per-cell sum spectral efficiency under i.i.d. and semi-correlated

Rayleigh fading channels, with the above mentioned coordination strategies.

However, before presenting the analysis methodology, the integrals and special

functions that are used throughout the remainder of the chapter are defined.

4.3 Analysis Methodology

4.3.1 Integrals and Special Functions

Throughout the chapter, the following integrals and special functions are often

used. Let

Ja,b,c (ξ) =

∞∫
0

λae−λ/c

(λ+ ξ)b
dλ, where a, b and c ≥ 1. (4.7)

The integral in (4.7) can be solved by substituting λ = ω − ξ to obtain

Ja,b,c (ξ) =

∞∫
ξ

(ω − ξ)a e−(ω−ξ)/c

ωb
dω =

a∑
f=0

(
a

f

)
(−ξ)a−f eξ/c

∞∫
ξ

ωf−be−ω dω

︸ ︷︷ ︸
J(b)

.

(4.8)

For the purpose of this chapter, two special cases of J (b) (ξ) are of interest, when

b = 1 and b = 2. These are given by

J (1) (ξ) =

∞∫
ξ

ωf−1e−ω dω =

Ei (1, ξ) if f = 0

Γ (f, ξ) if f ≥ 1,

and (4.9)

J (2) (ξ)=

∞∫
ξ

ωf−2e−ω dω=


−Ei (1, ξ) + e−ξ

ξ2 if f = 0

Ei (1, ξ) if f = 1

Γ (f − 1, ξ) if f ≥ 2,

(4.10)

86



Chapter 4. Coordinated RZF Analysis in Multi-Cellular Systems

where Ei (·, ·) is the generalized exponential integral and Γ (·, ·) is the incomplete

gamma function [85].

4.3.2 Expected SINR and Ergodic Sum Spectral Effi-

ciency Analysis

From (4.1), the SINR at the l-th terminal in cell k being served by BS k is a

random quantity which depends on the random terminal location, log-normally

distributed shadow-fading and local multi-path fading can be written as

SINRdl,l,k =
ρdl,k

βk,l,k
ηk
|gH

dl,k,l,kwl,k|2

σ2
dl,l,k + ρdl,k

βk,l,k
ηk

Lk∑
m=1
m6=l

|gH
dl,k,l,kwm,k|2 +

K∑
j=1
j 6=k

ρdl,j
βj,l,k
ηj

Lj∑
q=1

|gH
dl,j,l,kwq,j|2

.

(4.11)

From (4.11), the expected per-terminal SINR can be obtained by computing

E [SINRdl,l,k]. As motivated in Chapter 3, Section 3.4.3, exact evaluation of

E [SINRdl,l,k] is extremely cumbersome, if not intractable. Hence, the com-

monly used first-order delta method expansion is employed, as demonstrated in

the analysis methodology of [68, 80, 84, 86, 87, 93]. Following this, the expected

SINR can be approximated by

E [SINRdl,l,k]≈
ρdl,k

βk,l,k
η̃k

E
[
|gH

dl,k,l,kwl,k|2
]

σ2
dl,l,k + ρdl,k

βk,l,k
η̃k

Lk∑
m=1
m 6=l

E
[
|gH

dl,k,l,kwm,k|2
]

+
K∑
j=1
j 6=k

ρdl,j
βj,l,k
η̃j

Lj∑
q=1

E
[
|gH

dl,j,l,kwq,j|2
] ,

(4.12)

where the quantities η̃k = E [ηk] and η̃j = E [ηj], respectively. The resulting

ergodic spectral efficiency for terminal l in cell k (in bits/seconds/Hz) is given by

E [Rdl,l,k] = E [log2 (1 + SINRdl,l,k)]. As such, the ergodic sum spectral efficiency

for the Lk terminals in cell k can be approximated as

E [Rsum,dl,k] = E

[
Lk∑
l=1

log2 (1 + SINRdl,l,k)

]
≈

Lk∑
l=1

log2 (1 + E [SINRdl,l,k]) .

(4.13)

Remark 4.3.1. Note that (4.13) leads to an approximation rather than
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an upper bound via Jensen’s inequality, as the value of E [SINRdl,l,k] is itself

an approximation [123]. Furthermore, the summation over all Lk terminals in

cell k takes care of the fact that E [SINRdl,l,k] could be different depending on

l and k, due to the relative differences in the physical location of the terminal,

causing further differences in the level of geometric attenuation and log-normal

shadow-fading.

In the following subsections, the expected values in the numerator and de-

nominator of (4.12) are derived separately for i.i.d. and semi-correlated Rayleigh

fading channels with equal correlation matrices for each terminal.

Expected Signal Power

The expected signal power in (4.12) is given by

δl,k = ρdl,k
βk,l,k
η̃k

E
[
|gH

dl,k,l,kwl,k|2
]
. (4.14)

Via an eigenvalue decomposition, GH
dl,kGdl,k = UΛUH. Then, the expected

value in (4.14) over the isotropic distribution of U can be written as [118]

%l,k = E
[
|gH

dl,k,l,kwl,k|2
]

= E

( m∑
l=1

λl
λl + ξk

|uk,l|2
)2
 , (4.15)

where m is the minimum of the transmit and receive dimensions. For cell-

wide coordination, m = min (Lk,Mk), while for network-wide coordination,

m = min
(∑K

k=1 Lk, Mk

)
. Equivalently, it is to be noted that n = max (Lk,Mk)

for cell-wide coordination and n = max
(∑K

k=1 Lk,Mk

)
for network-wide coor-

dination.13 Moreover, λl is the l-th eigenvalue corresponding to the l-th diagonal

entry in Λ and uk,l denotes the (k, l)-th entry of U . The expression in (4.15)

13Note that the case of macro-only coordination strategy is not specifically presented, since
this case is captured in either the cell-wide or network-wide coordination, depending on the
BS type (macro or small-cell) of interest.

88



Chapter 4. Coordinated RZF Analysis in Multi-Cellular Systems

can be further averaged over the entries of U and can be written as [118]

%l,k =
1

m (m+ 1)

Eλ

( m∑
l=1

λl
λl + ξk

)2
+ Eλ

[
m∑
l=1

(
λl

λl + ξk

)2
] , (4.16)

where Eλ [·] denotes the expectation over the eigenvalues of the complex central

Wishart matrices. From here, η̃k can also be inferred as

η̃k = τ E
[
||Wk||2F

]
= τ Eλ

[
m∑
l=1

λl

(λl + ξk)
2

]
, (4.17)

where τ = 1
Lk

for cell-wide and 1∑K
k=1 Lk

for network-wide coordination (see foot-

note 11), as every column of Wk is identically distributed.

Remark 4.3.2. The above method to compute the expected per-terminal

signal power can be applied to any eigenvalue distribution of the channel ma-

trix.14 The analysis in this chapter only uses the fact that the eigenvector

matrix U has the so-called isotropic structure, whose defining characteristic is

that pre or post multiplying U by any unitary matrix does not affect its dis-

tribution (see e.g., [71, 118]). Physically, this means that the channel is not

affected by arbitrary rotations, and that paths between the service antennas

and terminals are statistically equivalent. It is this feature that allows one to

examine the signal power (and interference power for that matter) and claim

that the analysis applies equally to the remaining terminals in the system. The

analysis methodology, therefore, applies to other channel distributions with this

rotational-invariance property, other than the complex Gaussian [118].

The expressions in (4.16) and (4.17) can be further averaged over the den-

sity of the eigenvalues as shown in the following Theorems and Lemmas for

uncorrelated and semi-correlated Rayleigh fading channels with equal correla-

tion matrices.

Theorem 4.3.1. When Rk = Im, the expected value of
∑m

i=1
λµi

(λi+ξk)2 , over

14Even though the remark is made at this point in the chapter, the analysis methodology
also applies to the the computation of the interference powers.
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the eigenvalues of GH
dl,kGdl,k is given by

Sµk =
m∑
i=1

(i− 1)!

(i− 1 + n−m)!

i−1∑
z=0

i−1∑
l=0
l 6=z

(−1)z+l (κz) (κl)
1

z!l!
Jµ+n−m+z−l,2,1 (ξk) ,

(4.18)

where κz =
(
i−1+n−m
i−1−z

)
, κl =

(
i−1+n−m
i−1−l

)
and Jµ+n−m+z−l,2,1 (ξk) is as defined in

(4.8) with µ > 0.

Proof of Theorem 4.3.1. Recognizing the fact that

Sµk = Eλ

[
m∑
i=1

λµi
(λi + ξk)

2

]
= m

 ∞∫
0

λµarb

(λarb + ξk)
2 f0 (λarb) dλarb

 , (4.19)

it can be noted that Eλ [·] denotes the expectation over the eigenvalues and

f0 (λarb) is the density of an arbitrary eigenvalue, λarb, from {λ1, . . . , λm}. To

evaluate (4.19) for an uncorrelated central Wishart matrix, the probability den-

sity from (2.22) in Chapter 2 is substituted into (4.19), allowing one to state

Sµk = m


∞∫

0

λµarb

(λarb + ξk)
2

1

m

m∑
i=1

(i− 1)! λn−marb e−λ

(i− 1 + n−m)!

[
i−1∑
z=0

(−1)z (κz)
λzarb

z!

]2

dλarb

 .

(4.20)

After extracting the relevant constants from (4.20), it can be written as

Sµk =
m∑
i=1

(i− 1)!

(i− 1 + n−m)!

i−1∑
z=0

i−1∑
l=0
l 6=z

(−1)z+l (κz)
2 1

z!l!

 ∞∫
0

λµ+n−m+z−l
arb e−λarb

(λarb + ξk)
2 dλarb

 .
(4.21)

The integral in (4.21) has the form of Ja,b,c (ξk) defined in (4.8), where a =

µ + n −m + z − l, b = 2 and c = 1. Following the solution provided in (4.10)

yields the desired expression in (4.19), concluding the proof. �

Theorem 4.3.2. For any Mk, Lk where Mk ≤ Lk or Mk > Lk, where

θ1, . . . , θn are the eigenvalues of Rk 6= In, the expected value of
∑m

i=1
λµ̄i

(λi+ξk)2 ,
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over the eigenvalues of GH
dl,kGdl,k is given by

S̄µ̄k =
1∏n

i<j (θj − θi)

n∑
l=1

n∑
k=n−m+1

θn−m−1
l Dl,k

Γ (m− n+ k)
Jm+k−n−1+µ̄,2,θl (ξk) , (4.22)

where Dl,k is the (l, k)-th co-factor of a n × n matrix whose (l, k)-th entry is

given by θk−1
l , Γ (m− n+ k) = (m− n+ k − 1)! is the Gamma function and

Jm+k−n−1+µ̄,2,θl (ξk) is as defined in (4.8), respectively.

Proof of Theorem 4.3.2. Substituting the arbitrary eigenvalue density,

i.e., the density of λarb,sc, defined in Chapter 2, (2.27), into (4.19) results in

S̄µ̄k =m

[ ∞∫
0

λµ̄arb,sc

(λarb,sc + ξk)
2

1

m
∏n

i<j (θj − θi)
∑n

l=1

∑n

k=n−m+1
λm+k−n−1

arb,sc

× e−λarb,sc/θlθn−m−1
l

1

Γ (m− n+ k)
Dl,k dλarb,sc

]
. (4.23)

Some mathematical simplification allows (4.23) to be expressed as

S̄µ̄k =
1∏n

i<j (θj − θi)
∑n

l=1

∑n

k=n−m+1

θn−m−1
l Dl,k

Γ (m− n+ k)

×

 ∞∫
0

λm+k−n−1+µ̄
arb,sc e−λsc/θl

(λarb,sc + ξk)
2 dλarb,sc

 , (4.24)

where the integral in (4.24) is of the form of Ja,b,c (ξ) in (4.8), where a = m+k−

n− 1 + µ̄, b = 2 and c = θl, where θl is the l-th eigenvalue of Rk. Substituting

the result of (4.10) into the required integral yields the desired expression in

(4.22). �

Lemma 4.3.1. When Rk = Im, the expected value of
(∑m

i=1
λi

λi+ξk

)2

is
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given by

Qk =S2
k +

m∑
i=1

m∑
j=1
j 6=i

Φ

( i−1∑
f=0

i−1∑
z=0
z 6=f

(−1)f+z (κf ) (κz)
1

f !z!
Jn−m+1−f+z,1,1 (ξk)

)2

×

(
i−1∑
f=0

i−1∑
z=0
z 6=f

(−1)f+z (κf ) (κf )
1

f !z!
Jn−m+1+f+z,1,1 (ξk)

)2
 , (4.25)

where Φ = ((i− 1)! (j − 1)!) / ((i− 1 + n−m)! (j − 1 + n−m)!), κf =
(
n−m+i−1
i−1−f

)
,

κz =
(
n−m+i−1
i−1−z

)
and Jn−m+1+f+z,1,1 (ξk) is as defined in (4.8), respectively.

Proof of Lemma 4.3.1. Via first principles, one can recognize that

E

[(
m∑
i=1

λi
λi+ξk

)2
]

can be written as

Qk = Eλ

( m∑
l=1

λl
λl + ξk

)2
 =Eλ

[
m∑
l=1

(
λl

λl + ξk

)2
]

+ Eλ

[
m∑
a=1

m∑
b=1
b 6=a

(
λa

λa + ξk

)(
λb

λb + ξk

)]

= m

{
Eλ

[
1

m

m∑
l=1

(
λl

λl + ξk

)2
]}

+m (m− 1)

×

Eλ

 1

m (m− 1)

m∑
a=1

m∑
b=1
b6=1

(
λa

λa + ξk

)(
λb

λb + ξk

)
 , (4.26)

where Eλ [·] denotes expectation over the eigenvalues and λa, λb denote an ar-

bitrary pair of eigenvalues. Via the result derived in Theorem 4.3.1, the first

term of (4.26) can be evaluated. By denoting the joint density of two arbitrary

eigenvalues (λa, λb) as fo (λa, λb), one can write (4.26) as

Qk = S2
k +m (m− 1)

 ∞∫
0

∞∫
0

(
λa

λa + ξk

)(
λb

λb + ξk

)
f0 (λa, λb) dλbdλa

 . (4.27)

Using the joint density, fo (λa, λb), presented in (2.24) of Chapter 2 allows one
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to write (4.27) as

Qk = S2
k +m (m− 1)

{ ∞∫
0

∞∫
0

(
λa

λa + ξk

)(
λb

λb + ξk

)
1

m (m− 1)

m∑
i=1

m∑
j=1
j 6=i

(λaλb)
n−m

× e−(λa+λb)Φ
[
κ

(n−m)
i−1 (λa)

2 κ
(n−m)
j−1 (λb)

2 − κ(n−m)
i−1 (λa)κ

(n−m)
j−1 (λa) κ

(n−m)
i−1 (λb)

× κ
(n−m)
j−1 (λb)

]
dλb dλa

}
. (4.28)

After some simplifications, (4.28) can be written as

Qk =S2
k +

m∑
i=1

m∑
j=1
j 6=i

Φ


∞∫

0

∞∫
0

(λaλb)
n−m+1 e−(λa+λb)

(λa + ξk) (λb + ξk)

[
κ

(n−m)
i−1 (λa)

2 κ
(n−m)
j−1 (λb)

2

− κ(n−m)
i−1 (λa)κ

(n−m)
j−1 (λa)κ

(n−m)
i−1 (λb)κ

(n−m)
j−1 (λb)

]
dλbdλa

}
, (4.29)

where Φ is defined after (4.25). The integrals in (4.29) can be split into two

parts, such that

Qk = S2
k +

m∑
i=1

m∑
j=1
j 6=i

Φ

{ ∞∫
0

∞∫
0

(
e−λaλn−m+1

a

λa + ξk

)(
e−λaλn−m+1

a

λa + ξk

)

×
[
κ

(n−m)
i−1 (λa)

2 κ
(n−m)
j−1 (λb)

2
]
dλbdλa −

∞∫
0

∞∫
0

(
e−λaλn−m+1

a

λa + ξk

)(
e−λbλn−m+1

b

λb + ξk

)

×
[
κ

(n−m)
i−1 (λa)κ

(n−m)
j−1 (λa)κ

(n−m)(λb)
i−1 κ

(n−m)
j−1 (λb)

]
dλbdλa

}
. (4.30)

As the double integrals in (4.30) are of the same function with different variables,

93



Chapter 4. Coordinated RZF Analysis in Multi-Cellular Systems

one can write (4.30) by squaring the result of a single integral, such that

Qk = S2
k +

m∑
i=1

m∑
j=1
j 6=i

Φ


 i−1∑
f=0

i−1∑
z=0
z 6=f

(−1)f+z (κf ) (κz)
1

f !z!

∞∫
0

e−λλn−m+1+f+z

λ+ ξk
dλ


2

−

 i−1∑
f=0

i−1∑
z=0
z 6=f

(−1)f+z (κf ) (κz)
1

f !z!

∞∫
0

e−λλ
n−m+1+f+z

λ+ ξk
dλ


2 . (4.31)

Recognizing that the integrals in (4.31) have the same form as Jn−m+1+f+z,1,1 (ξk)

and substituting the solution of (4.8) in (4.31) yields the desired expression. �

Lemma 4.3.2. Let Mk ≤ Lk, where θ1, . . . , θm are the m eigenvalues of

Rk 6= Im. The expected value of
(∑m

i=1
λi

λi+ξk

)2

is given by

Q̄k = S̄2
k + χ̂

m∑
i=0

m∑
j=0
j 6=i

m∑
k=1

m∑
l=1
l 6=k

(−1)i+j−p(i,j) (−1)k−1+l−p(l) det (Ξ)i,j;k,l

× Ji+n−m+1,1,θk (ξk) Jj+n−m+1,1,θl (ξk) , (4.32)

where χ̂ = χ (−1)b
m
2
c (m− 2)! with

χ =
1

m!
m∏
l=1

(n− l)! det (Rn
k)

m∏
k<l

(
1
θl
− 1

θk

) , (4.33)

and the (l, k)-th element of Ξ is given by e−λl/θk . Moreover,

p (i, j) =

 0 if i > j

1 if i ≤ j
(4.34)

and

p(l) =

 0 if k > l

1 if k ≤ l,
(4.35)

and the integrals Ji+n−m+1,1,θk(ξk) and Jj+n−m+1,1,θl (ξk) are defined in (4.8).

Proof of Lemma 4.3.2. To begin, one can substitute the result derived in

(2.36) of Chapter 2 into (4.27) where Qk and Sk are replaced by their correlated
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central counterparts in Q̄k and S̄k. This would result in

Q̄k = S̄2
k +m (m− 1)

[ ∞∫
0

∞∫
0

(
λa

λa + ξk

)(
λb

λb + ξk

)
χ̂
m−1∑
i=0

m−1∑
j=0
j 6=i

(−1)i+j−p(i,j) λi+n−m1 λj+n−m2

×
m∑
k=1

m∑
l=1
l 6=k

(−1)k−1 e−λa/θk (−1)l−p(l) e−λ2/θldet (Ξ)i,j;k,l dλbdλa

]
, (4.36)

where χ̂, p (i, j), p (l) and Ξ are as defined in (4.33) and (4.35). After some

mathematical simplifications, one can re-write (4.36) as

Q̄k = S̄2
k + χ̂

{
m−1∑
i=0

m−1∑
j=0
j 6=i

m∑
k=1

m∑
l=1
l 6=k

(−1)i+j−p(i,j) (−1)k−1+l−p(l) det (Ξ)i,j;k,l

×

[ ∞∫
0

e−λa/θkλi+n−m+1
a

λa + ξk
dλa

∞∫
0

e−λb/θlλj+n−m+1
b

λb + ξk
dλb

]}
. (4.37)

The integrals in (4.37) are of the same form, with varying powers of i and j for

λa and λb. Their general solution is presented in (4.8). Upon substituting the

solution of the integrals in (4.37) yields the expression in Lemma 4.3.2. �

Lemma 4.3.3. Let Mk > Lk, where θ1, . . . , θn are the n eigenvalues of

Rk 6= In. The expected value of
(∑m

i=1
λi

λi+ξk

)2

is given by

Q̃k =S̄2
k + n (n− 1)χ (n− 2)!

{
n−1∑
i=0

n−1∑
l=0
l 6=i

n∑
o=1

n∑
p=1
p 6=o

(−1)i+1−p(i,l) (−1)o−1+p−p(i,l) (−1)o−1+p−p(o)

× θn−m−1
o det (∆n)o,p det (Ξ)i,l;o,p Ji+1,1,θo (ξk) Jl+1,1,θp (ξk)

}
. (4.38)

The quantities χ, p (i, l) and p (o) are as given in (4.33) and (4.35). Moreover,

∆n is an n× n Vandermonde matrix given by

∆n =


1 θ1 . . . θn−1

1

...
...

. . .
...

1 θn . . . θn−1
n

 , (4.39)
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and Ξ is defined after (4.33).

Proof of Lemma 4.3.3. Following the steps in the proof of Lemma 4.3.2

and using the joint eigenvalue density derived in (2.46) of Chapter 2 yields the

desired expression. �

Remark 4.3.3. The generality of the results derived in Theorems 4.3.1,

4.3.2 and Lemmas 4.3.1, 4.3.2 and 4.3.3 is worth mentioning. The results are

applicable for any system dimension, link SNR and spatial correlation level.

The analysis methodology is also applicable to other channel models (so long as

the necessary densities are known), such as i.i.d and semi-correlated Ricean fad-

ing. Although an application to two-tier small-cellular networks is considered,

the derived results are equally as applicable to classical multi-cellular systems

operating with conventional or large antenna arrays.

Remark 4.3.4. The results of Lemmas 4.3.2 and 4.3.3 also have further

applications to analysis involving complex correlated central Wishart matrices,

such as the analysis of second-order statistics of semi-correlated channels, leading

to the variance of capacity for such channels.

Using the results derived in Theorems 4.3.1, 4.3.2 and Lemmas 4.3.1, 4.3.2

and 4.3.3, (4.16) can be expressed for i.i.d. and semi-correlated Rayleigh fading

channels as

%i.i.d.
l,k =

Qk + S
(2)
k

m (m+ 1)

%s.c.,Mk≤Lk
l,k =

Q̄k + S̄
(2)
k

m (m+ 1)

%s.c.,Mk>Lk
l,k =

Q̃k + S̄
(2)
k

m (m+ 1)
. (4.40)

In the same manner, the expected value of the normalization parameter, η̃k for
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cell k can also be stated for i.i.d. and semi-correlated Rayleigh fading as

η̃i.i.d.
k =

S
(1)
k

m

η̃s.c.,Mk≤Lk
k =

S̄
(1)
k

m

η̃s.c.,Mk>Lk
k =

S̄
(1)
k

m
. (4.41)

Thus, the expected signal power, δl,k, in (4.14) can be written as

δi.i.d.
l,k = ρdl,k

βk,l,k
η̃ i.i.d.
k

%i.i.d.
l,k

δs.c.,Mk≤Lk
l,k = ρdl,k

βk,l,k

η̃s.c.,Mk≤Lk
k

%s.c.,Mk≤Lk
l,k

δs.c.,Mk>Lk
l,k = ρdl,k

βk,l,k

η̃s.c.,Mk>Lk
k

%s.c.,Mk>Lk
l,k , (4.42)

for the i.i.d. case and semi-correlated cases, respectively. In the sequel, the

expected per-terminal interference power calculations are presented both for

i.i.d. and semi-correlated Rayleigh fading.

Expected Per-Terminal Interference Power Analysis

From (4.12), the expected interference power at the l-th terminal in cell k is

given by

ιl,k =
ρdl,kβk,l,k

η̃k


Lk∑
m=1
m 6=l

E
[
|gH

dl,k,l,kwm,k|2
]+

K∑
j=1
j 6=k

ρdl,jβj,l,k
η̃j


Lj∑
q=1

E
[
|gH

dl,j,l,kwq,j|2
] .

(4.43)

For network-wide BS coordination, following the methodology of [118], the ex-

pected interference power can be evaluated as the difference between the total

power (signal and interference) and the desired signal power at the l-th terminal

in cell k. The total power at terminal l is given by

γl,k = E
[
||GH

dl,kWk||2F
]

= τLk

{
Eλ

[
m∑
l=1

(
λl

λl + ξk

)2
]}

. (4.44)
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Subtracting the expected desired signal power in δl,k from γl,k yields the interfer-

ence power at the l-th terminal in cell k. More specifically, under i.i.d. Rayleigh

fading, ιl,k is given by

ιi.i.d.
l,k = ρdl,k

βk,l,k
η̃ i.i.d.
k

[(
Lk − 1

Mk − 1

)(
γi.i.d.
l,k − %i.i.d.

l,k

)]
+

ρdl,j

K∑
j=1
j 6=k

βj,l,k
η̃i.i.d.
j

[(
Lk

Mk − 1

)(
γi.i.d.
l,j − %i.i.d.

l,j

)]
. (4.45)

The equivalent expressions for semi-correlated scenarios, ιMk≤Lk
l,k and ιMk>Lk

l,k ,

can be obtained by replacing η̃i.i.d.
k , η̃i.i.d.

j , γi.i.d.
l,k , γi.i.d.

l,j , %i.i.d.
l,k and %i.i.d.

l,j with their

semi-correlated counterparts for Mk ≤ Lk and Mk > Lk, respectively. With cell-

wide coordination, the above approach can be used to find the IUI (first term

in (4.43)). However, as the RZF processor designed at BS k is independent of

the ICI channels, the second term in (4.43) must be evaluated separately, as

demonstrated in the following theorem.

Theorem 4.3.3. In the presence of cell-wide coordination, the expected

value of ICI (second term of (4.43)) for terminal l in cell k is given by

E
[
|gH

dl,j,l,kwq,j|2
]

= E
[
gdl,q,jRjg

H
dl,q,j

]
=

1

Lj

Mj∑
i=1

θ2
i f

2
i , (4.46)

where θi is the i-th eigenvalue of Rj and fi for i = 1, . . . ,Mj is derived further

in the text.

Proof of Theorem 4.3.3. Firstly, one can recognize that E
[
|gH

dl,j,l,kwq,j|2
]

=

E
[
wq,jRjw

H
q,j

]
= tr

{
RjE

[
wq,jw

H
q,j

]}
. Then, E

[
wq,jw

H
q,j

]
= 1

Lj
E
[
WjW

H
j

]
, as

the columns ofWj are identically distributed. ExpressingWj = Gdl,j

(
GH

dl,jGdl,j + ξjILj
)−1

,

one can denote Vj = Hdl,jΦj and decompose Rj = φjθjφ
H
j , where θj =

diag
(
θ1, . . . , θMj

)
giving

E
[
wq,jRjw

H
q,j

]
=

1

Lj
tr

{
φH
j R

2
jφjE

[
Vj
(
VjθjV

H
j + ξjILj

)−2
Vj

]}
. (4.47)

Noting that the expectation in (4.47) results in a diagonal matrix containing
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f1, . . . , fMj
yields the desired expression in (4.46), where fi is derived in the

sequel.

Calculation of fi in (4.46)

Denoting Vj =
[
v1, . . . ,vMj

]
, one can recognize that

fi = E
[
vi
(
VjθjV

H
j + ξjILj

)−2
vi

]
= − ∂

∂ξj
E
[
vH
i

(
VjθjV

H
j + ξjILj

)−1
vi

]
,

(4.48)

using a known result from matrix differentiation. Invoking the rank-1 adjust-

ment formula [18], one can obtain fi = − ∂
∂ξj

E
[

Xi

1+Xiθi

]
, where

Xi = vH
i

[
(Vj).;i (θ)i;i

(
(Vj).;i

)H
]−1

vi. (4.49)

Now, Xi is exactly the SINR of a MMSE combiner studied in [124]. Denoting

F̄Xi (xi) as the complimentary CDF ofXi, fi = − ∂
∂ξj

∞∫
0

F̄Xi (xi)

1+θixi
dxi. Since F̄Xi (xi)

is given in [124], fi can be found by routine integration followed by differentiation

w.r.t. ξj. Denoting (θ)i;i = diag
[
θ

(i)
1 , . . . , θ

(i)
Mj−1

]
, one can write

fi =
τ̃m1ξ

m1−1
j

(m1 − 1)!
Ii,m1+1 (ξj)−

Lj∑
l=m1+1

τ̃l
(l − 1)! det (∆0)

[
(l − 1) ξl−2

j det (∆1) + ξl−1
j det (∆2)

]
,

(4.50)

where

m1 = Lj −Mj, τ̃l =

1 if l ≥ 1

0 otherwise,

(4.51)

and

Ii,m1+1 (ξj) = eξj/θi
m1−1∑
s=0

(
m1 − 1

s

)
(−1)m1−1−s

θi+1−s
i ξs−1

j

J (2)

(
ξj
θi

)
, (4.52)

respectively. Here, J (2)
(
ξj
θi

)
is as defined in (4.10). Moreover, when r 6= Mj −

Lj + l − 2,

(∆0)r,s =
(
θ(i)
s

)r−1
and (∆1)r,s = (∆2)r,s = (∆0)r,s , (4.53)
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while when r = Mj − Lj + l − 2,

(∆1)r,s =
(
θ (i)
s

)r ∞∫
0

xm1−1
i e−ξjxi

(1 + θixi)
2 (1 + θ

(i)
s xi)

dxi,

and

(∆2)r,s = −
(
θ (i)
s

)r ∞∫
0

xm1
i e−ξjxi

(1 + θixi)
2 (1 + θ

(i)
s xi)

dxi. (4.54)

Here, both the integrals have a closed-form solutions via partial fraction decom-

position [63]. This concludes the proof. �

Expected Per-Terminal SINR and Ergodic Per-Cell Spectral Efficiency

The expected SINR in (4.12) can now be written as a function of δl,k, ιl,k, η̃k

and η̃j. That is,

E [SINRdl,l,k] ≈
δi.i.d.
l,k

σ2
dl,l,k + ιi.i.d.

l,k

E
[
SINRs.c.Mk≤Lk

dl,l,k

]
≈

δs.c.Mk≤Lk
l,k

σ2
dl,l,k + ιs.c.Mk≤Lk

l,k

E
[
SINRs.c.Mk>Lk

dl,l,k

]
≈

δs.c.Mk>Lk
l,k

σ2
dl,l,k + ιs.c.Mk>Lk

l,k

, (4.55)

for the i.i.d. and semi-correlated cases, respectively. The expected SINRs can

be translated into an approximation for the ergodic spectral efficiency of cell k

by following (4.13), giving

E [Rsum,dl,k] ≈
Lk∑
l=1

log2 (1 + E [SINRdl,l,k]) , (4.56)

for the i.i.d. and equivalently for the semi-correlated scenarios. Having de-

rived the expected SINR and ergodic sum spectral efficiency approximations,

their accuracy is evaluated with the BS coordination strategies discussed in

Section 4.2.3, for a two-tier small-cellular network detailed in Section 4.5.
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4.4 High SNR ZF Approximation

In this section, new analytical results are derived for the expected per-terminal

SINR and ergodic per-cell sum spectral efficiency considering unequal spatial

correlation matrices for each terminal. More specifically, the high link SNR

regime is considered, where the convergence of RZF precoding to ZF precoding

is exploited. Here the expected RZF SINR and ergodic sum spectral efficiency

is approximated with expected ZF SNR and ergodic sum spectral efficiency. Fo-

cusing on the case of network-wide coordination, the spatial correlation matrices

follow the model in [120], which considers an exponential structure with a com-

plex correlation co-efficient, ϕ, where |ϕ| (magnitude of ϕ) captures the effects

of inter-element spacing at the BS and a unique phase, assumed uniform on

[a, b ], some subset of [0, 2π] is used to differentiate the terminals. The channel

from BS k to terminal l in cell j with a terminal specific correlation matrix is

given by gH
dl,k,l,j = hH

dl,k,l,jR
1
2
k,l,j, as defined in Section 4.2.1.

With network-wide coordination, the
∑K

i=1 Li ×Mk composite channel ma-

trix, GH
dl,k = [Zdl,1,Zdl,2, . . . ,Zdl,K ], where Zdl,k denotes the downlink channel

to all terminals in cell k, given by Zdl,k = [gdl,k,1,k, . . . , gdl,k,Lk,k]. The cor-

responding Mk × Lk un-normalized ZF precoding matrix is defined as Wk =[
Gdl,k

(
GH

dl,kGdl,k

)−1 ]
X:Z

for the Lk terminals located in cell k withX =
∑k−1

i=1 Li+

1 and Z =
∑k

i=1 Li. The notation [A]X:Z denotes columns X to Z of A.

The ZF matrix for cell k is normalized by ηk = 1
Lk
||Wk||2F. As GH

dl,kWk =[
GH

dl,kGdl,k

(
GH

dl,kGdl,k

)−1 ]
X:Z

= [0, . . . , IX:Z , . . . , 0]T, perfect cancellation of

IUI and ICI takes place allowing us to express the received signal at terminal l

in cell k as

rdl,l,k = ρ
1
2
dl,k

(
βk,l,k
ηk

) 1
2

sdl,l,k + ndl,l,k, (4.57)

where βk,l,k, sdl,l,k and ndl,l,k are as defined in (4.1) and (4.2), respectively. With

uniform power allocation and recognizing that E [|sdl,l,k|2] = 1, the received ZF
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SNR for terminal l is given by [80]

SNRZF
dl,l,k =

ρdl,kβk,l,k
σ2
l,k ηk

=
ρdl,kβk,l,k

σ2
dl,l,k

{
trX:Z

[ (
GH

dl,kGdl,k

)−1 ]} , (4.58)

where trX:Z [A] represents the trace of the diagonal block of A involving rows

and columns X to Z. The inverse in (4.58) can be approximated with a classical

order N Neumann series (NS), as shown in the analysis methodology of [57, 77,

78]. Denoting GH
dl,kGdl,k = MkI∑K

i=1 Li
+ ∆k, one can write ∆k = GH

dl,kGdl,k −

MkI∑K
i=1 Li

with E [∆k] = 0Li , allowing the inverse to be written as

(
GH

dl,kGdl,k

)−1 ≈ 1

Mk

N∑
p=0

(−1)p
(

∆k

Mk

)p
=

1

Mk

N∑
p=0

p∑
i=0

(
p

i

)
(−1)i

(Mk)
i

(
GH

dl,kGdl,k

)i
.

(4.59)

Substituting (4.59) into (4.58) yields

SNRZF
dl,l,k ≈

βk,l,k

σ2
dl,l,k

{
trX:Z

[
1
Mk

∑N
p=0

∑p
i=0

(
p
i

) (−1)i

(Mk)i

(
GH

dl,kGdl,k

)i]} . (4.60)

From (4.60), the expected SNR of terminal l in cell k can be approximated as

SNRZF
dl,l,k ≈

βk,l,k

σ2
dl,l,k

{
1
Mk

n∑
p=0

p∑
i=0

(
p
i

) (−1)i

M i
k
E
[
trX:Z

[(
GH

dl,kGdl,k

)i]]} , (4.61)

using the univariate special case of the first-order Delta expansion motivated in

Section 3.4.3 of Chapter 3. In what follows, with a two-term NS (i.e., N = 2),

a closed-form expression of (4.61) is derived.

Proposition 4.4.1. When gH
dl,k,l,j = hH

dl,k,l,jR
1
2
k,l,j, where hH

dl,k,l,j ∼ CN (0, IMk
)

and Rk,l,j is a terminal specific transmit spatial correlation matrix, the RZF ex-

pected per-terminal SINR can be approximated with a ZF expected per-terminal

SNR with the use of a two-term NS in the high link SNR regime. For the l-th
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terminal in cell k being served by BS k, this is given by

E
[
SNRZF

dl,l,k

]
≈ βk,l,k (Mk)

3

σ2
dl,l,k

{
Lk (Mk)

2 +
{
Lk
∑K

k=1 Lk trX:Z

[
R̄R̄k

]}} , (4.62)

where R̄ =
∑K
j=1

∑Lj
l=1 Rk,l,j∑K

j=1 Lj
is the average correlation matrix of all terminals in the

system and R̄k =
∑Lk
l=1 Rk,l,k

Lk
is the average correlation matrix for the terminals

in cell k, respectively.

Method for Proposition 4.4.1. From (4.60), when N = 2, one can write

(
GH

dl,kGdl,k

)−1
=

1

Mk

{
I∑K

i=1 Li
−
GH

dl,kGdl,k

Mk

+I∑K
i=1 Li

+
1

(Mk)
2

[(
GH

dl,kGdl,k

)2− 2MkG
H
dl,kGdl,k +M2

kI∑K
i=1 Li

]}

=
1

Mk

[
3I∑K

i=1 Li
− 3

Mk

GH
dl,kGdl,k +

1

(Mk)
2

(
GH

dl,kGdl,k

)2
]
. (4.63)

Taking the partial trace of (4.63) yields

trX:Z

[(
GH

dl,kGdl,k

)−1
]
≈ 1

Mk

{
3Lk−

3

Mk

trX:Z

[
GH

dl,kGdl,k

]
+

1

(Mk)
2 trX:Z

[(
GH

dl,kGdl,k

)2
]}

.

(4.64)

After some simplifications, the expected value of (4.63) can be written as

E
[
trX:Z

[(
GH

dl,kGdl,k

)−1
]]
≈

1

Mk

{
3Lk −

3

Mk

(LkMk) +
1

(Mk)
2

[
Lk (Mk)

2 + Lk

K∑
k=1

Lk trX:Z

[
R̄R̄k

]]}

=
1

(Mk)
3

{
Lk (Mk)

2+Lk

K∑
k=1

Lk trX:Z

[
R̄R̄k

]}
, (4.65)

where R̄ =
∑K
j=1

∑Lj
l=1 Rk,l,j∑K

j=1 Lj
is the average correlation matrix of all terminals

and R̄k =
∑Lk
l=1 Rk,l,k

Lk
is the average correlation matrix for terminals in cell k.

Substituting (4.65) into (4.58) yields the desired expression in (4.62). �

Following (4.56), the expected per-terminal SNR can be easily translated to
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the ergodic per-cell sum spectral efficiency. Thus,

E
[
RZF

sum,dl,k

]
≈

Lk∑
l=1

log2

(
1 + E

[
SNRZF

dl,l,k

])
. (4.66)

The accuracy of Proposition 4.4.1 and its translation into the ergodic sum spec-

tral efficiency in (4.66) is evaluated in Section 4.5, where performance differences

between equal and unequal correlation matrices are also presented.

Remark 4.4.1. Proposition 4.4.1 provides a closed-form approximation to

an extremely complex situation where all terminals have unequal correlation

matrices. The structure of Theorem 4.4.1 demonstrates the impact of unequal

correlation matrices, primarily through trX:Z

[
R̄R̄k

]
. From here it is straight

forward to show that this partial trace tends to maximize as R̄k approaches R̄,

the case of equal spatial correlation matrices, maximizing the expected noise

power, thereby reducing the expected ZF SNR. As a result of this, the SNR

performance of equal correlation matrices tend to act as a lower bound on the

performance of such system. This fact is proven later in the thesis in Chapter 7.

Moreover, fixing the partial trace in the denominator of Proposition 4.4.1, along

with the other propagation parameters, the effects of increasing Mk and Lk can

be readily observed from the expression. Firstly, increasing Mk and Lk fixed

increases the expected signal power cubically, while increasing the expected

noise power quadratically, resulting in a net increase in the expected signal

power of order Mk. On the other hand, fixing Mk and increasing Lk leads to an

exponential amplification of the expected noise power by order 1/ (Lk +KL2
k),

while the signal power remains unaltered.15

4.5 Numerical Results and Discussion

A two-tier small-cellular network is considered, where tier one composes of macro

and tier two composes of microcell BSs in the form of small-cells.16. Unless

otherwise specified, the simulation parameters were been obtained from [125].

15Further discussion and mathematical justification on the impact of unequal spatial corre-
lation matrices is presented in Chapter 7.

16From this point onward, a small-cellular BS is denoted as a microcell BS, without loss of
generality.
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Net transmit powers of macrocell k and microcell j, ρdl,k and ρdl,j are set to

46 dBm and 30 dBm, respectively, unless otherwise stated to vary the link

SNRs. Large-scale propagation effects of geometric attenuation and shadow-

fading follow the model in (4.2), where for d0 = 10 m, υ = 31.54 dB [15].

Attenuation exponent for the macrocell is αk = 3.7 and for the microcell is

αj = 3.4, whilst the shadow-fading standard deviation, σsf = 8.0 dB. Circular

cell radii of 1 km and 70 m are assumed for cells k and j, respectively. The

location of BS k remains fixed, whilst the location of BS j varies depending on

the scenario considered (discussed later). The placement of BS j is constrained

outside a 70 m exclusion radius from BS k. The total number of single-antenna

terminals being served by BSs k and j are Lk = 5 and Lj = 3, which are

distributed uniformly over the area of the respective cells. The number of serving

antennas at BSs k and j (Mk and Mj) vary depending on the scenario considered

(Mk,Mj > Lk, Lj or Mk,Mj ≤ Lk, Lj). For the former, Mk = 8, Mj = 4 and for

the latter, Mk = 4, Mj = 2, respectively. 17 With equal correlation matrices,

the presence of spatial correlation at BSs k and j is modeled with the classical

Kronecker model, where (Rk)x,z = (Rj)x,z = ϕ|x−z| for x, z ∈ 1, . . . ,Mk, and

1, . . . ,Mj has an exponential structure, as in [46]. On the other hand, when

each terminal is assigned an unequal correlation matrix, the model in [120,

121] is employed where each correlation matrix has a structure proportional to

ϕ|x−z| modeling the inter-element spacing and an independent [0, 2π] uniformly

distributed phase component is multiplied modeling the terminal distribution

in a cell. In what follows, the resulting performance of the system with equal

and unequal correlation matrices is assessed.

4.5.1 Simulation Settings

An arbitrary network of 11 BSs comprising of 1 macro and 10 microcells is con-

sidered, unless otherwise specified. Uniform, cell-edge and cell-centric microcell

17With Mk ≤ Lk, BS k tries to serve more terminals than the number of transmit antennas.
With such high user loading factors, in practice, cellular systems rely on user scheduling
mechanisms to decide the suitable operating conditions.
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Figure 4.2: Variation in the microcell placement inside the macrocell coverage
area.

placements within the macrocell is considered, as shown in Fig. 4.2. For cell-

edge and cell-centric placements, the microcells are restricted such that they are

placed outside the cell-edge and inside the cell-centric exclusion areas, marked

with green circles in the middle and far-right sub figure of Fig. 4.2. These exclu-

sion zones were numerically determined using the 10-th and 90-th percentiles of

the cumulative distribution function (CDF) of the received SNR (defined later)

for a typical user terminal associated with the macrocell BS. In particular, the

cell-edge of a macrocell was identified as 877 m to 1000 m from the center and

the cell-center was identified from the origin of the macrocell to 230 m.18 The

70 m macro exclusion zones are marked with cyan circles in all sub figures of

Fig. 4.2. The microcells are denoted with red circles with its associated termi-

nals denoted with red crosses. Likewise, terminals associated to the macro BS

are marked with blue crosses. Finally, macro and micro BSs are denoted with

blue and green diamonds, respectively.

The results presented in Section 4.5.1 includes an evaluation of the nu-

merically simulated and approximated expected SINR and ergodic sum spec-

tral efficiency derived in (4.12), (4.13), (4.55) and (4.55) for i.i.d., as well as

semi-correlated Rayleigh fading having equal correlation matrices. Section 4.5.1

presents numerical performance evaluation of expected SINR and ergodic sum

spectral efficiency with unequal correlation matrices using the expressions de-

rived in (4.62) and (4.66). Note that all numerical results are generated using 104

18The cell-edge and cell-centric exclusion zones were calculated from a standard link budget
and are sensitive to the chosen numerical parameters.
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Figure 4.3: Expected per-terminal SINR CDF for a typical terminal associated
with the macrocell BS with link SNR = 10 dB, ϕ = 0 and M ≤ L.

independent trails with the coordination strategies discussed in Section 4.2.3.

For each numerical result, σ2
dl,l,k = σ2

dl = 1, ∀l, k.

Tightness of Expected SINR and Ergodic Sum Spectral Efficiency

Fig. 4.3 shows the expected SINR CDF of a macro terminal with cell-centric,

cell-edge and uniform microcell placements at link SNR=10 dB with ϕ = 0 and

M ≤ L. The expectation is performed over the fast-fading with the distribution

representing the randomness in terminal position and shadow-fading. The

case with no microcells is considered as a baseline. The cell-centric microcell

placement results in the best macro user SINR performance, as the terminals

are distributed uniformly over the macrocell coverage area and thus have higher

probability of being further away from the micro BSs, resulting in less ICI. This

is followed by uniform and cell-edge placements, which often result in closer

proximity to a typical macro terminal, having an adverse effect on its SINR.

The SINR gains of network-wide coordination relative to cell-wide coordination

are more prominent in the lower half of the CDF (< 0.5), where the combined
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Figure 4.4: Expected per-terminal SINR CDF for a typical terminal associated
with the microcell BS with link SNR = 10 dB, ϕ = 0 and M ≤ L.

effects of noise with IUI and ICI dominate19. In contrast, at higher probabilities

(> 0.9), the spread between the extreme cases of cell-centric microcells with

network-wide coordination and cell-edge microcells with cell-wide coordination

becomes narrower, due to the reduction in IUI and ICI relative to the signal

power. This in-turn suggests that the cell-edge rates of the system (< 0.1) may

have higher variability than the peak-rates of the system (> 0.9) and will benefit

more from coordination. It is also observed that in all cases, the derived SINR

approximations closely follow the simulated responses over the entire probability

range.

Fig. 4.4 shows an equivalent CDF of a typical micro terminal. Here, the case

of a single microcell in the macro coverage area is considered as the baseline.

Naturally, all three coordination strategies are applicable to the micro terminal.

As expected, the opposite trend to that in Fig. 4.1 is seen, where the cell-edge

microcell placement results in superior performance, followed by uniform and

19For the typical macro terminal, cell-wide and macro-only coordination result in equal
performance due to the nature of the respective coordination strategies. Thus, for clarity, the
expected SINR distributions with macro-only coordination are omitted.
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Figure 4.5: Expected per-terminal SINR CDF for a typical terminal associated
with the macrocell BS with link SNR = 10 dB, ϕ = 0 and M > L.

cell-centric placements, where ICI from the macrocell is likely to be higher. At

probability 0.5, irrespective of the microcell placement, macro-only and cell-wide

coordination strategies reduce the expected SINR by approximately 4 dB and 10

dB relative to network-wide coordination, as the CDFs exhibit parallel behavior.

As before, higher variability in the SINRs can be seen at lower probabilities and

the derived SINR approximations are seen to remain tight against the simulated

equivalents. Now, the case of M > L is considered, where the performance of

macro and microcell user terminals is evaluated in Figs. 4.5 and 4.6, respectively.

For comparison with Figs. 4.3 and 4.4, all propagation parameters are kept the

same. An increase in the expected per-terminal SINR is observed with cell-

wide, macro-only and network-wide coordination strategies for both the macro

and micro terminals20. This increase comes at the cost of increasing the spatial

d.o.f. (a result of more serving antennas), which allows better ICI control via

coordinated RZF. The improvement in the expected per-terminal SINR as a

function of link SNR is demonstrated in Fig. 4.7 for a typical macro terminal.

20Since the trends resulting from the three types of microcell placements are identical for
further results considered, to enhance legibility, the subsequent figures only include cell-edge
and cell-centric placements.
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Figure 4.6: Expected per-terminal SINR CDF for a typical terminal associated
with the microcell BS with link SNR = 10 dB, ϕ = 0 and M > L.
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Figure 4.7: Expected per-terminal SINR vs. link SNR for a typical terminal
associated with the macrocell BS. Note that ϕ = 0 and M > L and the expec-
tation is performed globally over the link gains, as well as multipath fading.

The link SNRs are varied by increasing ρdl,k for BS k. Here, the averaging is

performed globally over the link gains, as well as the multipath fading, denoted

by Eβ,h [·]. The analytical expressions remain tight throughout the entire link
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Figure 4.8: Expected per-terminal SINR vs. correlation co-efficient for a typical
terminal associated with the macrocell BS. Note that link SNR = 10 dB and
M > L. The expectation is performed globally over the link gains, as well as
multipath fading.

SNR range considered. The baseline case of no microcells demonstrates a near

linear increase in the expected SINR with increasing link SNR, as the serving

antennas at the macro BS exceeds the total number of terminals, nulling the IUI.

The remaining cases with cell-wide and network-wide coordination still suffer

from ICI, saturating the SINR in the high link SNR regime.

Under semi-correlated Rayleigh fading, the expected per-terminal SINR is

seen to degrade with increasing levels of spatial correlation at the BS. Fig. 4.8

shows the expected SINR of a macro terminal as a function of spatial correlation,

ϕ. While varying ϕ from 0 − 0.6 has very little effect on the expected SINR,

from ϕ = 0.7 onwards, a heavy penalty in the expected SINR is paid due to

a greater reduction in the usable spatial d.o.f. This trend is visible for all

microcell placements irrespective of the coordination strategy. The reduction in

the spatial d.o.f. can alternatively be interpreted as an increase in the IUI, thus

decreasing the per-terminal SINR. Although not shown, the same trend in the

degradation of expected per-user SINR can be observed for a micro terminal.
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Figure 4.9: Ergodic per-cell sum spectral efficiency for the macrocell at link
SNR = 10 dB, M > L and ϕ = 0.
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Figure 4.10: Ergodic per-cell sum spectral efficiency for a typical microcell at
link SNR = 10 dB, M > L and ϕ = 0.

For all cases, our analytical approximations remain tight even for extremely high

levels of channel correlation. The expected SINR distributions of the macro

and microcell terminals in Figs. 4.5 and 4.6 were translated into distributions of
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Figure 4.11: Ergodic sum spectral efficiency for a macrocell vs. link SNR M > L
and ϕ = 0.

ergodic per-cell sum spectral efficiencies following (4.13) and (4.56). These are

shown in Figs. 4.9 and 4.10 for the macro and a typical microcell, respectively.

For the macrocell, higher variability in the peak rates is observed in comparison

to cell-edge and median rates, as the combined effect of IUI and ICI impacts

performance. Equivalently, for the typical microcell, higher variability in the

cell-edge, median and peak rates demonstrates its sensitivity to the aggregate

interference and its location within the macrocell. This suggests that the cell-

edge, median and peak-rates will benefit from BS coordination. The macrocell

ergodic sum spectral efficiency as a function of the link SNR is shown in Fig. 4.11.

Similar trend to Fig. 4.7 is observed, where at high SNRs ICI causes the spectral

efficiency to plateau for both the network and cell-wide coordination.

Impact of Unequal Spatial Correlation

A network of 4 BSs composing of 1 macro and 3 overlaid microcells is con-

sidered. Keeping the same constraints in the microcell placements as in the

previous subsection, the performance of the system is evaluated with network-

wide coordination where each terminal is assigned an unequal correlation matrix
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Figure 4.12: CDF of the expected ZF SNR for a typical macrocell terminal with
unequal spatial correlation at link SNR = 10 dB.

capturing the effects of inter-element spacing at the BS and terminal locations

in the cell. Following the model described in Section 4.4, for each subsequent

result, |ϕ| = 0.9 with uniformly distributed phase on [0, 2π]. As ZF precoding

is employed, 16 and 10 transmit antennas are considered at macro and micro

BSs, serving 3 (macro) and 2 (microcell) terminals. Figs. 4.12 and 4.13 show

the expected per-terminal SNR for the typical macro and microcell terminals.

Due to zero interference, and the relatively large number of serving antennas in

comparison to the number of terminals, a significant increase in the macro and

micro terminal SINRs can be observed. In such scenarios, where interference is

not the performance limiting factor, the need for coordination is less convincing

than in previous cases. For both the macro and micro terminals, varying the

microcell placements has a very minor impact on their SINRs. The two-term NS

approximations to the expected ZF per-terminal SNR is seen to remain tight

for all coordination mechanisms in both Figs. 4.12 and 4.13, respectively. A

comparison to the RZF expected per-terminal SINR is made in the baseline

cases of no micros and one micro in Figs. 4.12 and 4.13, where ZF expected

SNR is shown to closely match the RZF performance. Also, the expected SNR
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Figure 4.13: CDF of the expected ZF SNR for a typical microcell terminal with
unequal spatial correlation at link SNR = 10 dB.
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Figure 4.14: Macrocell ergodic sum spectral efficiency vs. link SNR with unequal
spatial correlation matrices for each terminal.

performance with unequal correlation matrices is superior in Figs. 4.12 and 4.13

than the case where each terminal has an equal correlation matrix, due to the

denominator of (4.62) increasing, as predicted earlier in Remark 4.4.1. This

115



Chapter 4. Coordinated RZF Analysis in Multi-Cellular Systems

gap is seen to translate into the ergodic spectral efficiency for the macrocell and

remains approximately constant across the link SNR range considered. This is

shown in Fig. 4.14, where the derived approximations retain their tightness and

are thus insensitive to changes in the link SNRs.

4.6 Concluding Remarks

A general analytical framework for characterizing the expected SINR and er-

godic sum spectral efficiency of a multi-cellular system was presented. An appli-

cation to two-tier small-cellular networks was considered with varying degrees of

coordinated RZF processing. Assuming both i.i.d. and semi-correlated Rayleigh

fading, with equal correlation matrices, the analytical expressions were averaged

over the eigenvalue densities of the respective complex Wishart matrices. In the

high link SNR regime, with ZF precoding, closed-form expressions were derived

to approximate the RZF expected SINR and ergodic spectral efficiency with

unequal correlation matrices. Numerical results demonstrated the tightness of

analytical expressions over a wide range of link SNRs, spatial correlation lev-

els and system dimensions. It was observed that the gains in the expected

per-terminal SINR and ergodic spectral efficiencies were influenced by microcell

locations and varying degrees of BS coordination, as they directly impacted the

systems ability to suppress dominant ICI. Under semi-correlated fading, the ex-

pected SINR decreased with increasing levels of spatial correlation due to a loss

in the usable spatial degrees of freedom. Expected SINR and ergodic spectral

efficiencies with unequal correlation matrices were observed to be greater than

the case with equal correlation matrices, as predicted mathematically.
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RZF Analysis in Ricean Fading

Summary. With the emergence of small-cellular systems, a serving base sta-

tion (BS) is more likely to be within the vicinity of a given user terminal. As

a result of this, line-of-sight (LoS) in the propagation channel from the BS to

the terminal is likely to dominate future wireless access. In this chapter, the

impact of a dominant LoS direction on the terminal signal-to-interference-plus-

noise-ratio (SINR) and system spectral efficiency is investigated. Statistically,

a Ricean fading channel model is employed to model the presence of LoS along

with many scattered components in the propagation channel. Considering a

multiuser multiple-input multiple-output (MU-MIMO) system, analytical ex-

pressions which approximate the expected (average) per-terminal SINR and

ergodic sum spectral efficiency are derived. The analysis assumes regularized

zero-forcing precoding (RZF) on the downlink. The derived expressions are av-

eraged with respect to the previously unknown arbitrary eigenvalue densities

of the complex non-central Wishart distributed instantaneous channel correla-

tion matrix. To aid the derivation of the expected SINR, analytical expressions

derived in Chapter 2 for the joint density of two arbitrary eigenvalues of the

complex non-central Wishart matrix are employed. Unlike previous studies, a

unique Rice factor is modeled for each terminal, making the analysis and eval-

uation applicable to physical propagation channels with varying LoS strengths

as a result of terrain variations across multiple terminals. Furthermore, in the

high link signal-to-noise-ratio (SNR) regime, where RZF precoding converges

117



Chapter 5. RZF Analysis in Ricean Fading

to zero-forcing (ZF) precoding, an accurate approximation is developed for the

distribution of the instantaneous ZF SNR of a given terminal. It is shown that

the ZF SNR is well approximated by the gamma distribution, whose parameter

estimates are derived. The presented numerical findings suggest that while the

presence of dominant LoS has an adverse effect on the expected RZF SINR,

RZF ergodic sum spectral efficiency and instantaneous ZF SNR, increasing the

Rice factor variability tends to enhance the peak RZF ergodic sum spectral

efficiency and ZF SNR. Furthermore, both the developed approximations are

insensitive to changes in the system dimensions, link SNRs and unequal levels

of LoS, respectively.

5.1 Introduction

With the focus on large antenna arrays at the base station (BS), for measured

non-line-of-sight (NLoS) channels, linear pre-processing techniques such as zero-

forcing (ZF) precoding have achieved 98% of optimal dirty paper coding capac-

ity [75, 124]. However, to overcome noise inflation in the low signal-to-noise-

ratio (SNR) regime, regularized zero-forcing (RZF) precoding was proposed

[118]. Indeed, several works have theoretically characterized the terminal signal-

to-interference-plus-noise-ratio (SINR) and system spectral efficiency gains of

downlink multiuser multiple-input multiple-output (MU-MIMO) systems with

RZF precoding (see e.g., [57, 60, 116, 118], as well as the references therein).

However, most works tend to adopt the simple Rayleigh fading model, ap-

propriate for modeling rich scattering environments, where a given user terminal

is assumed to be in dense clutter, experiencing a 360 degree angular spread, with

the electromagnetic radiation coming in equally from all directions. Neverthe-

less, Rayleigh fading fails to capture the presence of line-of-sight (LoS), which

may be a dominant feature of future wireless systems operating with large an-

tenna arrays in smaller cells.1 Therefore, understanding the performance of

1This could, perhaps, take place in the candidate millimeter-wave (mmWave) frequency
bands, where the probability of a given terminal likely to experience LoS is much higher than
at microwave frequencies, as demonstrated in [82, 109, 126–133].
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MU-MIMO systems operating with dominant LoS conditions is of growing im-

portance. Limited numbers of works have considered the use of Ricean fading

channels in the MU-MIMO context [67, 68, 111, 134, 135], where the focus has

largely been on characterizing the energy and sum spectral efficiency perfor-

mance of the system. Moreover, for simplicity, [67, 68, 134, 135] evaluate the

system performance with a fixed Rice factor for each terminal, despite their dif-

ferent geographical locations leading to variations in the terrain across multiple

terminals.

In contrast to previous studies (see e.g., [67, 68, 111, 134, 135] and references

therein), in this chapter, a Ricean fading channel model is considered, where the

impact of LoS propagation is examined on the expected per-terminal SINR and

ergodic sum spectral efficiency of a MU-MIMO system with downlink RZF pre-

coding. Furthermore, in the high link signal-to-noise-ratio (SNR) regime, when

RZF precoding converges to ZF precoding, an approximation to the distribu-

tion of the instantaneous RZF SINR is derived with a ZF SNR, for an arbitrary

user terminal. It is demonstrated that the ZF SNR is well approximated by the

gamma distribution and the necessary shape and scale parameters are derived.

Overall, considering both microwave and mmWave channel parameters, a gen-

eral analysis methodology is developed that is scalable to any system dimension,

link SNR level, and LoS heterogeneity. To the best of the author’s knowledge,

such general treatment of the instantaneous and expected RZF SINR, RZF er-

godic sum spectral efficiency and instantaneous ZF SNR has not been carried

out previously.

More specifically, the main contributions in the chapter are as follows:

1. Tight analytical expressions are derived to approximate the expected per-

terminal SINR and ergodic sum spectral efficiency of the system with

Ricean fading channels. Expected signal and interference powers are de-

rived by averaging over the appropriate eigenvalue densities of the com-

plex non-central Wishart channel correlation matrix. To the best of the

author’s knowledge, such an analysis has not been carried out previously.
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2. In the high link SNR regime, a distributional approximation to the in-

stantaneous per-terminal RZF SINR is derived. It is shown that the ZF

SNR very accurately approximates the instantaneous RZF SINR with a

gamma distribution. The necessary shape and scale parameters of the

gamma distribution are derived.

3. The derived analytical expressions are robust to changes in system dimen-

sion and considers the important case where each terminal in the system

has a unique Rice factor. Previously, this level of accuracy over such a

wide range of scenarios has not been achieved. The presented numerical

findings suggest that increasing the mean of the Rice factor in both the

microwave and mmWave frequency bands has an adverse effect on the

instantaneous ZF SNR, expected RZF SINR and ergodic sum spectral ef-

ficiency. Furthermore, with a fixed mean, the impact of increased Rice

factor variability is demonstrated, where it is shown that the onset of low

Rice factors tends to increase the peak performance of the system, as it re-

sults in a large occurrence of higher data rates. Interestingly, the opposite

effect is observed at the cell-edge, as a highly variable Rice factor tends to

draw large values of the Rice factor, degrading the cell-edge performance.

The remainder of the chapter is structured as follows: Section 5.2 details the

system and channel model employed for the chapter with downlink RZF pre-

coding. Section 5.3 presents the RZF expected per-terminal SINR and ergodic

sum spectral efficiency approximations. Furthermore, Section 5.4 considers the

high link SNR regime, and presents a distributional approximation to the in-

stantaneous RZF SINR with a ZF SNR, for a given user terminal. Section 5.5

presents the numerical performance evaluation of the considered system with

RZF and ZF precoding, and Section 5.6 presents the concluding remarks of the

chapter.
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5.2 System Model

The downlink of a single-cell, MU-MIMO system operating in an urban microcell

(UMi) environment is considered. The BS is equipped withM transmit antennas

configured in a uniform linear array (ULA) to serve L non-cooperative single

antenna terminals (M ≥ L) in the same time-frequency interval. No mechanical

downtilt is assumed with an ideal radiation pattern. In the subsections which

follow, the channel model along with the per-terminal SINR and ergodic sum

spectral efficiency with RZF precoding is presented.

5.2.1 Channel Model

An uncorrelated Ricean fading channel is assumed, where the 1 × M small-

scale fading propagation channel between the BS and the l-th terminal can be

expressed as

hH
dl,l =

√
Kl

Kl + 1
h̄H

dl,l +

√
1

Kl + 1
h̃ H

dl,l. (5.1)

The specular (LoS) and diffuse (scattered) components of the channel are de-

noted by h̄H
dl,l and h̃ H

dl,l, respectively. Note that Kl is the unique Rice (K) factor

for the l-th terminal, denoting the ratio between the power of the specular and

diffuse component in the propagation channel to terminal l [14]. Moreover,

h̃ H
dl,l ∼ CN (0, IM), while the specular component of the channel is governed by

the response of the ULA’s transmit array steering vector [49]

h̄H
dl,l =

[
1, ej2πds cos (φ̄l), . . . , ej2πds(M−1) cos (φ̄l)

]
. (5.2)

Here, ds is the equidistant antenna spacing normalized by the carrier wavelength

and φ̄l is the direction-of-departure (DoD) of the specular component, for the

l-th terminal. As uncorrelated downlink transmission is considered, the inter-

element spacing is set to a half-wavelength. Moreover, it is assumed that the

φ̄l’s are uniformly distributed within the interval [0, 2π). From the definition of

the per-terminal channel in (5.1), a composite L×M small-scale fading channel

matrix can be defined. This is given by HH
dl = [hdl,1, . . . ,hdl,L]H. This can also
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be written as

HH
dl = Ψ

1
2

(√
K̄avH̄

H
dl + H̃H

dl

)
, (5.3)

where K̄av = (1/L)
∑L

l=1 Kl,Ψ = diag
(

1
K1+1

, . . . , 1
KL+1

)
, the L×M composite

specular channel matrix is denoted by H̄H
dl =

[√
K1

K̄av
h̄H

dl,1, . . . ,
√

KL
K̄av
h̄H

dl,L

]
and

H̃H
dl is the L×M composite diffuse channel matrix, respectively. The distribution

of terminals in the cell is modeled as a uniform random variable with respect to

the cell area. Furthermore, the link gain specific to terminal l is given by

β̃l = υ

(
d0

dl

)α
ζl, (5.4)

and is composed of the large-scale fading effects.2 In particular, υ is the unit-less

constant for the geometric attenuation at a reference distance d0, dl is the link

distance between the BS and the l-th terminal, α is the attenuation exponent and

ζl represents the effects of shadow fading which follows a log-normal distribution,

i.e., 10 log10 (ζl) ∼ N (0, σ2
sf). Since Ψ

1
2 simply scales the individual terminal

channels, the overall channel can be defined as GH
dl = D

1
2HH

dl, where D =

diag (β1, . . . , βL), is the L×L diagonal matrix of equivalent link gains, in which

βl = [Ψ]l,l β̃l = β̃l

(
1

Kl + 1

)
. (5.5)

The above definition of the channel is used for the remainder of the chapter,

which allows one to leverage previous analytical results on Ricean fading chan-

nels.

Conditioned on the cell size and the relative proximity of the terminals to

the BS, a statistical model is employed, following [82, 84, 136, 137] to determine

if a given terminal experiences LoS or NLoS propagation conditions. Natu-

rally, the LoS and NLoS probabilities are a function of the link distance, from

which the LoS and NLoS geometric attenuation and other link characteristics

are obtained. As channel parameters from both the microwave and mmWave

2The link gain definition in (5.4) is consistent with the definitions in Chapters 3,4,6,7 and
8, respectively.
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frequency bands are to be considered, the propagation parameters are obtained

from [136] for the former and [137] for the latter. For ease of notation and

consistency, further discussion in relation to the above mentioned parameters is

delayed to Section 5.5.

5.2.2 RZF SINR and Ergodic Sum Spectral Efficiency

Narrowband transmission is assumed with equal power allocation to each ter-

minal. Perfect channel state information at the BS array is also assumed, in

which case, the received signal at the l-th terminal can be written as3

rdl,l = ρ
1
2
dl

(
βl
η

) 1
2

hH
dl,lwlsdl,l + ρ

1
2
dl

(
βl
η

) 1
2

L∑
k=1
k 6=l

hH
dl,lwksdl,k + ndl,l. (5.6)

Here, ρdl is the average downlink transmit power at the BS array, wl is the un-

normalized precoding vector from the BS to terminal l, and sdl,l is the normalized

data symbol desired for terminal l, such that E [|sl|2] = 1. Moreover, η is

the precoder normalization to ensure that the overall transmit power remains

unchanged and ndl,l ∼ CN
(
0, σ2

dl,l

)
models the effects of additive white Gaussian

noise at l-th terminal. Throughout the remainder the chapter, it is assumed that

σ2
dl = σ2

dl,1 =, . . . ,= σ2
dl,L. Thus, the link SNR, for an arbitrary link is defined

as the ratio between the average downlink transmit power to the noise power at

any given terminal, i.e., ρdl/σ
2
dl.

In this chapter, RZF precoding is considered to design the downlink precod-

ing vectors, where wl is the l-th column of the M × L precoding matrix, W ,

defined as

W = Hdl

(
HH

dlHdl + ξIL
)−1

. (5.7)

Here, ξ = L/SNR ≥ 0 denotes the regularization parameter chosen from [80, 118]

to maximize SINR at the terminal, where SNR refers to the link SNR. Follow-

ing [43, 80, 122], the RZF precoding matrix is normalized with η = ||W ||2F/L,

3The downlink system expressions are presented here for the ease of exposition and are
consistent with the expressions in Chapters 3,4,6,7 and 8, respectively.
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ensuring the total average transmit power remains ρdl. The received signal in

(5.6) can be translated into a received SINR for terminal l, and expressed as

SINRdl,l =
ρdl

βl
η
|hH

dl,lwl|2

σ2
dl,l + ρdl

βl
η

L∑
i=1
i 6=l

|hH
dl,lwi|2

. (5.8)

To this end, the instantaneous downlink spectral efficiency (measurable in bits/sec/Hz)

at the l-th terminal can be computed as Rdl,l = log2 (1 + SINRdl,l). As such, the

ergodic sum spectral efficiency is given by

E [Rdl,sum] = E

[
L∑
l=1

log2 (1 + SINRdl,l)

]
, (5.9)

where the expectation is taken over the small-scale fading. In the following

section, tight analytical expressions are derived to approximate the expected

RZF SINR and ergodic sum spectral efficiency of the system.

5.3 Expected SINR and Ergodic Sum Spectral

Efficiency Approximations

As motivated in Section 3.4.3 of Chapter 3, via the first-order delta method ap-

proximation, the expected SINR at the l-th user terminal can be approximated

as [68, 80, 84, 86, 118, 138]

E [SINRdl,l] ≈
ρdl

βl
η̃
E
[
|hH

dl,lwl|2
]

σ2
dl,l + ρdl

βl
η̃

L∑
k=1
k 6=l

E
[
|hH

dl,lwk|2
] , (5.10)

where η̃ = E [η]. In the sequel, the expectations in (5.10) for the respective

signal and interference powers are derived separately, leading to the following

subsections.
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5.3.1 Computation of Expected Signal Power

The expected signal power at the l-th terminal is given by

δl = ρdl
βl
η̃
E
[
|hH

dl,lwl|2
]
. (5.11)

Now, via an eigenvalue decomposition, one can denoteHH
dlHdl = UΛUH. Then,

from [118], the expected value of the desired signal power for terminal l can be

written as a function of the eigenvalues of HH
dlHdl, an uncorrelated, non-central

complex Wishart matrix. This is given by

%l = E
[
|hH

dl,lwl|2
]

= E

( L∑
l=1

λl
λl + ξ

|ui,l|2
)2
 . (5.12)

Here, λl is the l-th eigenvalue corresponding to the l-th diagonal entry in Λ and

ui,l denotes the entry of U corresponding to row i and column l, respectively.

Further taking the expectation over the entries of U allows one to express (5.12)

as [118]

%l =
1

L (L+ 1)

E

( L∑
l=1

λl
λl + ξ

)2
+ E

[
m∑
l=1

(
λl

λl + ξ

)2
] . (5.13)

Remark 5.3.1. It is to be noted that (5.13) relies on an isotropic dis-

tribution for U , which does not hold for a fixed specular component in the

propagation channel. However, if averaged over many random DoD values in

the ULA’s steering response vector, U retains its isotropic properties leading to

(5.13). The expectations in (5.13) can be evaluated further over the eigenvalue

densities of HH
dlHdl, and are presented in the subsequent theorems.

Theorem 5.3.1. Let µ > 0 and φ1, . . . , φL be the L eigenvalues of K̄avH̄
H
dlH̄H,

then the expected value of
∑L

l=1
(λl)

µ

(λl+ξ)
2 w.r.t. the eigenvalues of HH

dlHdl, an un-
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correlated non-central complex Wishart matrix, is given by

Sµl = L

Θ
L∑
j=1

L∑
i=1
i 6=j

∞∑
p=0

(
K̄av + 1

)M−L+j ((
K̄av + 1

)
φi
)pD (i, j)

p!(M − L+ 1)p

µ̄∑
γ=0

(
µ̄

γ

)
(−ξ)µ̄−γ

× eξ(K̄av+1)
∞∫
ξ

xγ−2e−x(K̄av+1)dx

 . (5.14)

Here, µ̄ = µ− 1 +M − L+ j,

Θ =
e−

∑
l φl

L ((M − L)!)L
m∏
k<q

(φq − φk)
, (5.15)

and D (i, j) is the (i, j)-co-factor of the L × L matrix A, whose (q, k)-th entry

is given by (A)q,k = (M − L+ k − 1)! 1F1 (M − L+ k,M − L+ 1, φq), with 1F1

being a Kummer confluent hypergeometric function [18]. Moreover, (M − L+ 1)p =

(M−L+p)!
(M−L)!

and

∞∫
ξ

xγ−2e−x(K̄av+1)dx =
1(

K̄av + 1
)γ−1


−Ei(1, ξ̃) + e−ξ̃

ξ̃2 ; γ = 0

Ei(1, ξ̃) ; γ = 1

Γ(γ − 1, ξ̃) ; γ ≥ 2,

(5.16)

where ξ̃ = ξ
(
K̄av + 1

)
, Ei (·, ·) is the generalized exponential integral and Γ (·, ·)

is the incomplete gamma function, respectively [80, 139].

Proof of Theorem 5.3.1. One can begin by recognizing

Sµl = Eλ

[
L∑
l=1

(λl)
µ

(λl + ξ)2

]
= L


 ∞∫

0

(λarb)µ

(λarb + ξ)2 f0 (λarb) dλarb

 , (5.17)

where f0 (λarb) is the density of an arbitrary eigenvalue selected from λ1, . . . , λL.

126



Chapter 5. RZF Analysis in Ricean Fading

Using f0 (λarb) defined in (2.52) of Chapter 2 allows one to write (5.17) as

Sµl = Eλ

[
L∑
l=1

(λl)
µ

(λl + ξ)2

]
= L


 ∞∫

0

(λarb)µ

(λarb + ξ)2

e−
∑
l φl

L ((M − L)!)L
e−λarb(K̄av+1)

λarb

×
L∑
j=1

((
K̄av + 1

)
λarb

)M−L+j
L∑
i=1
i 6=j

∞∑
p=0

((Kav + 1)φiλarb)pD (i, j)

p! (M − L+ 1)p

/( L∏
k<q

φq − φk
)
dλarb


 .

(5.18)

Extracting the constants and simplifying (5.18) yields

Sµl = Eλ

[
L∑
l=1

(λl)
µ

(λl + ξ)2

]

= L


[

e−
∑
l φl

L ((M − L)!)L
∏L

k<q (φq − φk)

L∑
j=1

L∑
i=1
i 6=j

∞∑
p=0

(
K̄av + 1

)M−L+j

×
((
K̄av + 1

)
φi
)pD (i, j)

p! (M − L+ 1)p

∞∫
0

λµ−1+M−L+j+p
arb e−λarb(K̄av+1)

(λarb + ξ)2 dλarb

] . (5.19)

Letting µ̄ = µ−1+M−L+j+p ≥ 2, the integral in (5.19) can be evaluated via

a change of variables, such that λarb = x − ξ. This gives the integral in (5.19)

as
µ̄∑
γ=0

(
µ̄

γ

)
(−ξ)µ̄−γ eξ(K̄av+1)

∞∫
ξ

xγ−2e−x(K̄av+1)dx, (5.20)

where the integral in (5.20) is as defined in (5.16). Substituting (5.20) into (5.19)

and letting Θ = e−
∑
l φl

L((M−L)!)L
∏L
k<q(φq−φk)

yields the desired expression in (5.14). �

Theorem 5.3.2. With φ1, . . . , φL as the L eigenvalues of K̄avH̄
H
dlH̄dl, the

expected value of
(∑L

l=1
λl
λl+ξ

)2

w.r.t. the eigenvalues of HH
dlHdl is given by

Ql = S2
l +Eλ

 L∑
a=1

L∑
b=1
b6=a

(
λa

λa + ξ

)(
λb

λb + ξ

) = S2
l +L (L− 1)C

L−1∑
i=0

L−1∑
j=0
j 6=i

L∑
r=1

L∑
s=1
s 6=r

(−1)u χ,

(5.21)

where C = Θ [(M − L)!]L (−1) bL
2
c (M − 2)! and u = i+j+r+s−p(i, j)−t(r, s)
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with

p(i, j) =

 0 ; j ≤ i

1 ; j > i
and t(r, s) =

 0 ; s ≤ r

1 ; s > r.
(5.22)

Furthermore,

χ = Ξ̃ (r, s; i, j) Jr,i Js,j

= (φrφs)
−M−L

2 Ξ (r, s; i, j) , (5.23)

where Ξ (r, s; i, j) is a determinant with rows r, s and columns i, j removed,

where the d-th entry of the f -th column is given by Γ(M−L+f)
Γ(M−L+1) 1F1 (M − L+ f,M − L+ 1, φd).

Moreover,

Ja,b =
∞∑
ε=0

[
φ
ε+M−L

2
a

ε! (ε+M − L)!

]
µ̂∑
γ=0

(
µ̂

γ

)
(−ξ)µ̂−γ eξ

∞∫
ξ

xγ−1e−xdx, (5.24)

where µ̂ = ε+M − L+ b+ 1 ≥ 2 and the integral in (5.24) is a special case of

the integral defined in (5.16).

Proof of Theorem 5.3.2. Using the joint density of a pair of arbitrary

eigenvalues, say λ1 and λ2, derived in equation (2.54) of Chapter 2, one can

begin by stating

Ql =S2
l + L (L− 1)

∞∫
0

∞∫
0

(
λ1

λ1 + ξ

)(
λ2

λ2 + ξ

)
C

L−1∑
i=0

L−1∑
j=0
j 6=i

L∑
r=1

L∑
s=1
s 6=r

(−1)u Ξ̃ (r, s; i, j)

× gr,i (λ1) gs,j (λ2) dλ2 dλ1. (5.25)

Recognizing that

ga,b (λ) = λ(M−L)/2+be−λIM−L

(
2
√
φaλ
)
, (5.26)

where IM−L (·) is the modified Bessel function of the first kind [63] and substi-
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tuting their respective definitions into (5.25) yields

Ql = S2
l + L (L− 1)

L−1∑
i=0

L−1∑
j=0
j 6=i

L∑
r=1

L∑
s=1
s 6=r

(−1)u Ξ̃ (r, s; i, j) Jr,iJs,j, (5.27)

for any two arbitrary eigenvalues (λ1, λ2), where

Ja,b =

∞∫
0

λ((M−L)/2)+b+1e−λIM−L
(
2
√
φaλ
)

λ+ ξ
dλ, (5.28)

To evaluate the above integral, IM−L
(
2
√
φaλ
)

has to be converted into its equiv-

alent series form giving

Ja,b =
∞∑
ε=0

[
φ
ε+M−L

2
a

ε! (ε+M − L)!

] ∞∫
0

λε+M−L+b+1 e−λ

λ+ ξ
dλ. (5.29)

Denoting µ̂ = ε+M−L+b+1 ≥ 2, the integral in (5.29) can be evaluated with

a change of variable, where λ = x − ξ. Upon doing this, after some algebraic

simplifications, one can obtain

∞∫
0

λµ̂e−λ

λ+ ξ
λ =

µ̂∑
γ=0

(
µ̂

γ

)
(−ξ)µ̂−γ eξ

∞∫
ξ

xγ−1e−xdx. (5.30)

Note that the integral in (5.30) is a special case of the integral in (5.16). Substi-

tuting (5.30) into (5.29) and (5.29) into (5.27) yields the expression in Theorem

5.3.2. �

Using the derived results in Theorem 5.3.1 and Theorem 5.3.2, the expression

from (5.13) can be re-written as

%l =
Ql + S2

l

L (L+ 1)
. (5.31)

Therefore, the expected signal power for terminal l from (5.11) can be written

as

δl = ρdl
βl
η̃
%l. (5.32)
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The expected value of the precoder normalization parameter can also be ex-

tracted from the derived results such that

η̃ =
1

L

{
E
[
||W ||2F

]}
=

1

L

{
Eλ

[
L∑
l=1

λl

(λl + ξ)2

]}
=

1

L
S1
l . (5.33)

5.3.2 Computation of Expected Interference Power

The total expected received power (desired and interfering powers) at the l-th

terminal can be written as [118]

γ̄l =
1

L

{
E
[
||HH

dlW ||2F
]}

=
1

L

{
Eλ

[
m∑
l=1

(
λl

λl + ξ

)2
]}

=
1

L
S2
l . (5.34)

Following [80, 118, 139], the expected interference power at terminal l is denoted

by ιl, as the difference between the total expected received power and the ex-

pected signal power. The reason for computing the expected interference power

was motivated in Remark 4.3.2 in Chapter 4. Therefore,

ιl = γ̄l − δl =
S2
l

L
− Ql + S

(2)
l

L (L+ 1)
. (5.35)

Using (5.31), (5.32) and (5.35), one can now write the expected SINR for the

l-th terminal as a function of δl and η̃ and ιl as

E [SINRdl,l] ≈
ρdl

βl
η̃
δl

σ2
dl,l + ρdl

βl
η̃

(L− 1) ιl
. (5.36)

Remark 5.3.2. The generality of the results derived in Theorems 5.3.1

and 5.3.2 is worth mentioning. The theorems are applicable for any system

dimension, link SNRs and hold for arbitrary rank LoS and NLoS channels [80].

The derived results can also be applied to other systems, such as small-cellular

networks, where a hierarchy of BSs may be present. In such cases, with network-

wide coordination, the additional presence of inter-cellular interference can be

characterized in exactly the same manner as above [80].

The expected per-terminal SINR for terminal l can be used to obtain the
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ergodic sum spectral efficiency over all L terminals. This can now be approxi-

mated by

E [Rdl,sum] ≈
L∑
l=1

log2 (1 + E [SINRdl,l]) . (5.37)

The accuracy of the expected per-terminal SINR and ergodic sum spectral ef-

ficiency approximations is demonstrated in Section 5.5 of the chapter. In what

follows, at high link SNRs, a distributional approximation to the instantaneous

RZF SINR is presented using ZF precoding.

5.4 Approximation to the RZF SINR

As mentioned earlier in the thesis in Chapters 3 and 4, the performance of RZF

precoding converges to ZF precoding, as the link SNR is increased [80, 118].

This is due to the that the regularization constant, ξ = L/(link SNR) → 0, as

(link SNR) → ∞. The RZF SINR for terminal l remains as defined earlier in

(5.8), however, as ZF precoding completely eliminates multiuser interference,

the received signal only composes of the desired signal power and additive white

Gaussian noise. As a result, the received signal at terminal l with ZF processing

is given by

rdl,l = ρ
1
2
dl

(
βl
η

) 1
2

hH
dl,lwlsdl,l + ndl,l, (5.38)

where each parameter in (5.38) is defined after (5.6). Now, as ZF precoding is

employed to design the downlink precoding vectors to each terminal, wl forms

the l-th column of the M × L precoding matrix, W = Hdl

(
HH

dlHdl

)−1
. The

ZF precoding matrix is normalized by η = ||W ||2F/L, ensuring that the total

average transmit power remains ρdl. From (5.38), the ZF SNR for terminal l
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can be defined as4

SNRZF
dl,l =

ρdlβl
σ2

dl,lη
=

ρdlβl

σ2
dl,l tr{(HH

dlHdl)
−1}

. (5.39)

Remark 5.4.1. The distribution of the ZF SNR in (5.39) is particularly

difficult to analyze, since it is a random function of the uncorrelated complex

non-standard, non-central Wishart matrix formed by HH
dlHdl. Hence, analyti-

cal expressions for the probability density and cumulative distribution appear

intractable. Therefore, the distribution of the ZF SNR (and in turn the distri-

bution of the RZF SINR at high link SNRs) is approximated with the gamma

distribution. The motivation for considering the gamma distribution comes

from previous studies which have shown that in the case when no LoS is present

(i.e., in classical Rayleigh fading), the ZF SNR follows the chi-squared distri-

bution [140], a special case of the gamma distribution. More general studies

with minimum-mean-squared-error (MMSE) receive combining under spatially

correlated Rayleigh fading [141] and the presence of LoS (where the desired ter-

minal is subject to Ricean fading, whilst the multiuser interference is subject to

Rayleigh fading [142]) have shown that the MMSE SINR is well approximated by

the gamma distribution. Here, with ZF precoding, the above results are further

extended by considering the most general scenario where each terminal (desired

or interfering) experiences Ricean fading with a unique Rice factor. In order

to make such an approximation, the shape and scale parameters of the gamma

distribution have to be derived, as demonstrated in the subsequent proposition.

Proposition 5.4.1. If the downlink channel to terminal l follows a Ricean

distribution, as specified in (5.1) and SNRZF
dl,l is modeled as a gamma random

variable, then ϑ = tr{
(
HH

dlHdl

)−1} follows an inverse gamma distribution, de-

noted by Γd (ω, ν)−1, with the shape and scale parameters

ω = 2 +
E [ϑ]2

Var [ϑ]
and ν =

ρdlβk{
1 + E[ϑ]2

Var[ϑ]

}
E [ϑ]

. (5.40)

4Explicit definition of the ZF SNR is presented here for the ease of exposition. The defi-
nition is consistent with that in Chapters 3 and 4, respectively.
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Method for Proposition 5.4.1. Note that ω and ν are derived via the

method of moments. If ϑ−1 is Γd (ω, ν), using its standard properties one can

observe that

E
[
ϑ−1
]

= ((ω − 1) ν)−1 , (5.41)

and

Var
[
ϑ−1
]

=
(
(ω − 1) (ω − 2) ν2

)−1
. (5.42)

Note that re-arranging (5.41) and (5.42) allows us to derive (5.40). Moreover,

ϑ = tr{
(
HH

dlHdl

)−1} =
∑L

i=1 λ
−1
i , where λi is the i-th eigenvalue of HH

dlHdl.

From here, it is straightforward to show that E [ϑ] = LE
[
λ−1

arb

]
, where λarb is

an arbitrary eigenvalue of HH
dlHdl. Also, as

Var [ϑ] = E

[
L∑
i=1

L∑
j=1

(λiλj)
−1

]
− L2E

[
λ−1

arb

]2
, (5.43)

the first term of Var [ϑ] can be re-written as Y = E
[∑L

i=1 λ
−2
i +

∑L
i=1

∑L
j=1,j 6=i λ

−1
i λ−1

j

]
=

LE
[
λ−2

arb

]
+ L (L− 1)E

[
λ−1

1 λ−1
2

]
, where λ1 and λ2 are two distinct arbitrary

eigenvalues of HH
dlHdl. Hence, E

[
λ−1

arb

]
, E
[
λ−2

arb

]
and E

[
λ−1

1 λ−1
2

]
govern E [ϑ]

and Var [ϑ], which are demonstrated in the subsequent analysis.

5.4.1 Calculation of E
[
λ−1
arb

]
By definition

E
[
λ−1

arb

]
=

∞∫
0

1

λarb

fλarb
(λarb) dλarb, (5.44)

where fλarb
(λarb) is the arbitrary eigenvalue density given in (2.52), utilized

earlier in (5.17). From here, (5.44) can be expressed as

E
[
λ−1

arb

]
=

∞∫
0

λ−1
arb

e−
∑L
i=1 φi

L ((M − L)!)L
e−λarb

(
K̄av + 1

)
λarb

L∑
j=1

((
K̄av + 1

)
λarb

)a ×
L∑
i=1
i 6=j

∞∑
p=0

((
K̄av + 1

)
φiλarb

)pD (i, j)

p! (M − L+ 1)p

/{
L∏
k<q

(φq − φk)

}
dλarb, (5.45)
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where each term in (5.45) is defined after (5.3) and (5.14), respectively. Ex-

tracting the constants and simplifying (5.45) yields

E
[
λ−1

arb

]
=

e−
∑L
i=1 φi

L ((M − L)!)L
1∏L

k<q (φq − φk)

L∑
j=1

L∑
i=1

∞∑
p=0

(
K̄av + 1

)a ×
((
K̄av + 1

)
φi
)pD (i, j)

p! (M − L+ 1)p

∞∫
0

λM−L+j+p−2
arb e−λarb(K̄av+1) dλarb. (5.46)

Let µ = M − L + j + p − 2. It can be observed the integral in (5.46) can be

solved in closed-form as

∫ ∞
0

λµarbe
−λarb(K̄av+1)dλarb = µ!

(
K̄av + 1

)−µ−1
. (5.47)

This is consistent with (5.16) when γ ≥ 2. Substituting the solution of the

integral above into (5.46) and multiplying the resultant expression by L yields

an expression for E [ϑ].

5.4.2 Calculation of E
[
λ−2
arb

]
Following the methodology in the calculation of E

[
λ−1

arb

]
, E
[
λ−2

arb

]
has the exact

same form as E
[
λ−1

arb

]
, where µ in (5.46) and (5.47) is replaced by µ̃ = M −L+

j + p− 3.

5.4.3 Calculation of E
[
λ−1

1 λ−1
2

]
In order to evaluate Y , the first term of Var [ϑ], we require E

[
λ−1

1 λ−1
2

]
. By

definition

E
[
λ−1

1 λ−1
2

]
=

∞∫
0

∞∫
0

λ−1
1 λ−1

2 fλ1,λ2 (λ1, λ2) dλ1dλ2, (5.48)

where fλ1,λ2 (λ1, λ2) is the joint density of two distinct arbitrary eigenvalues,

(λ1, λ2), a novel result presented in Chapter 2 of the thesis (see (2.54)). Hence,
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(5.48) can be written as

E
[
λ−1

1 λ−1
2

]
=

∞∫
0

∞∫
0

C
L−1∑
i=0

L−1∑
j=0

L∑
r=1

L∑
s=1

(−1)u Ξ̃ (r, s; i, j) gr,i (λ1) gs,j (λ2) dλ2dλ1,

(5.49)

where each term in (5.49) is defined after (5.21). Substituting the definition of

gr,i (λ1) and gs,j (λ2) into (5.49), and performing some mathematical simplifica-

tions results in

E
[
λ−1λ−1

2

]
= C

L−1∑
i=0

L−1∑
j=0

L∑
r=1

L∑
s=1

(−1)w Ξ̃ (r, s; i, j) Jr,i (λ1) Js,j (λ2) , (5.50)

where the solutions to Jr,j and Js,j are presented in (5.29) and (5.30), respec-

tively. From this, the first term of Var [ϑ], Y , can be expressed as

Y =

[
L

{
Θ

L∑
j=1

L∑
i=1

∞∑
p=0

(
K̄av + 1

)a ((
K̄av + 1

)
φi
)pD (i, j)

p! (M − L+ 1)p
µ̃!
(
K̄av + 1

)−µ̃−1

}

+ L (L− 1)

{
E
[
(λ1λ2)−1]}]. (5.51)

Subtracting L2E
[
λ−1

arb

]2
from (5.51) yields the expression for Var [ϑ], concluding

the proof. �

Remark 5.4.2. In the derivation of E [ϑ] and Var [ϑ], the eigenvalue densi-

ties, fλ (λ) and fλ1,λ2 (λ1, λ2), of the instantaneous channel correlation matrix,

GHG, were used, which has an uncorrelated complex non-central Wishart struc-

ture. This is in contrast to prior work where a further approximation is often

introduced to approximate the non-central structure by its central counterpart

via an adjustment of the covariance matrix (see e.g.,[67, 68]). Furthermore, the

result derived in Proposition 5.4.1 also holds for any system dimension (number

of service antennas at the BS and terminals in the system) and link SNR. The

result also is robust to the level of LoS present in the system. In Section 5.5,

it is shown to remain tight for Rayleigh fading channels, which exhibit no LoS

effects. The analysis methodology can easily be extended to other system types,

135



Chapter 5. RZF Analysis in Ricean Fading

such as multicellular systems and distributed antenna arrays, due to the general

structure of the ZF SNR in (5.39).

In what follows, the numerical accuracy of the approximations derived in

Sections 5.3 and 5.4 is evaluated.

5.5 Numerical Results and Discussion

In this section, numerical results for a UMi scenario are presented with RZF

and ZF precoding with the parameters specified in Table 5.1. Unless otherwise

specified, parameters for the microwave and mmWave cases were selected from

[136] and [137], respectively. For both cases, circular cell radius of 100 m is

employed with a 10 m exclusion radius.5 Based on the link distance, dl, a

probabilistic approach is employed to determine whether a given user terminal

experiences LoS or NLoS propagation conditions. For the microwave case, the

probability of the l-th user terminal experiencing LoS is given by [136]

PLoS (dl) =
(
min (18/dl, 1)

(
1− e−dl/36

))
+ e−dl/36. (5.52)

Naturally, the probability of terminal l experiencing NLoS is then determined

by PNLoS = 1− PLoS. Equivalently, for the mmWave case [137],

PLoS (dl) = (1− Pout (dl)) e
−ω̄LoS dl , (5.53)

where 1/ω̄LoS = 67.1 m and Pout is the outage probability, occurring when the at-

tenuation in either the LoS or NLoS states is sufficiently large. For simplicity, in

this chapter, Pout = 0 for simplicity in determining the LoS and NLoS probabili-

ties. Note that (5.53) is also applicable for performance evaluation at frequencies

higher than 28 GHz, such as 73 GHz as shown in [137]. Upon determining the

link state of each terminal, the corresponding link parameters are selected to

model the large-scale propagation effects of geometric attenuation and shadow

fading, as specified in Table 5.1. Note that σ2
dl = σ2

dl,1 =, . . . , σ2
dl,L = 1 and

5Note that this is the reference distance, d0, in (5.4).
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Parameter Value

Microwave mmWave

Carrier frequency [GHz] 2 28
LoS unit-less attenuation constant [υ] 28 61.4
NLoS unit-less attenuation constant 22.7 72

LoS attenuation exponent [α] 2.2 2
NLoS attenuation exponent 3.67 2.92

LoS shadow fading standard deviation [σsf] 3 5.8
NLoS shadow fading standard deviation 4 8.7

K-Factor mean [dB] 9 12 [129]
K-Factor standard deviation [dB] 5 3 [129]

Table 5.1: Parameters used for the generation of numerical results.

thus the link SNR, defined as ρdl/σ
2
dl = ρdl, for the results presented in the

section. In the presented numerical results, the link SNR is referred to as SNR.

Following [136] and [129], a unique K-factor, Kl, is assigned to the l-th user

terminal from a log-normal distribution with the mean and standard deviation

specified in Table 5.1. This is refereed to as K ∼ ln (mean, standard deviation).

It is worth observing that the mean of K increases, while its standard deviation

decreases, as one transitions from microwave to mmWave frequency bands.

First, the accuracy of the proposed expected per-terminal RZF SINR in

(5.36) is examined. Fig. 5.1 illustrates the expected SINR for a given terminal

as a function of link SNR for a system with M = 10 and L = 3. In addition

to the microwave and mmWave cases, the uncorrelated Rayleigh fading case is

considered as a baseline for comparison purposes. Also for comparison purposes,

the case where each terminal is assigned a fixed K-factor of 5 dB is considered.

Two trends can be observed: First is the fact that increasing the mean of K has

an adverse effect on the expected SINR. This is due to the fact that an increase in

the mean K implies a stronger specular component in the channel, which reduces

multipath diversity and in turn reduces the channel rank. Equivalently, this

effect can be interpreted by an increase in the level of correlation in the channel,

leading to lower usable spatial degrees of freedom. This leads to higher multiuser

interference and in turn a lower SINR is observed at a given terminal. Secondly,
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Figure 5.1: Expected per-terminal RZF SINR vs. link SNR with M = 10 and
L = 3.

our proposed approximations are seen to remain sufficiently accurate for the

entire link SNR range for all cases. It is worth mentioning that in most statistical

channel models, the overall geometric attenuation (combined effect of distance

based attenuation with shadow fading) for a given terminal is unrelated to its K-

factor. In practice, LoS links are known to be associated with lower attenuation

and multipath amplitude variation. In such cases, the resulting gains in the

link budget may compensate for the loss of multipath diversity. Moreover, the

results presented here are for the most commonly occurring scenarios, where the

composite specular channel matrix may have a unit rank. It has been shown in

[24] that for certain array geometries giving a full rank specular matrix, Ricean

fading behaves like Rayleigh fading. Thus, it is likely that results for higher

rank specular channels will be scenario dependent.

Now the impact of increasing M on the expected per-terminal RZF SINR

is studied with a fixed number of terminals in the system. Fig. 5.2 depicts

the expected per-terminal SINR as a function of M with L = 5 at SNR = 10

dB. We observe that increasing M naturally increases the expected per-user
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Figure 5.2: Expected per-terminal RZF SINR vs. M with L = 5 at link SNR =
10 dB.

SINR. However, the expected SINRs can be seen to slowly saturate with growing

M . This is a result of channels to multiple terminals becoming asymptotically

pairwise orthogonal, such that the inner product of any two channel vectors

tends to zero. As mentioned earlier in the thesis, this effect has been famously

coined as convergence to favorable propagation conditions in the large MU-

MIMO literature [11, 89]. However, as uncorrelated downlink transmission is

considered with a fixed inter-element spacing, the size of the ULA grows with

increasing numbers of transmit antenna elements. Taking this into account,

only up to M = 30 transmit antennas are considered in the numerical result

with an inter-element spacing of a half wavelength. It can also be observed

that an increase in the mean of K results in a slower growth in the expected

per-terminal RZF SINR. For all cases, the derived approximations remain tight

and are robust to changes in system size. This is consistent with Remark 5.3.2,

presented earlier in the chapter.

Further to the above, the influence of LoS on the RZF ergodic sum spectral

efficiency is now examined. Specifically, in Fig. 5.3, with M = 10 and L = 3 at
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Figure 5.3: Ergodic sum-rate CDFs with M = 10, L = 3 at link SNR = 10 dB.

link SNR = 10 dB, the cumulative distribution functions (CDFs) of the derived

ergodic sum spectral efficiency approximation in (5.37) is compared with its

simulated counterpart. The RZF ergodic sum spectral efficiency is obtained

by averaging over fast-fading in the channel with the CDFs representing the

variations in the link gains and the K factors. It can be observed that although

the approximations remain extremely tight for all considered cases, the ergodic

sum spectral efficiencies achieved from (5.37) are marginally higher than the

simulated responses. It is again observed that a stronger specular component

has an adverse effect on the ergodic sum spectral efficiency, which is seen to

degrade with increasing LoS powers.

As a further matter, an investigation is made into the impact of K-factor

variability, for a fixed mean value, on the ergodic sum spectral efficiency. Fig. 5.4

depicts the RZF ergodic sum spectral efficiency at the CDF values of 0.1, 0.5

and 0.9, respectively. It can again be observed that increasing the variability of

K at the CDF values of 0.1 and 0.5 leads to a degradation in the ergodic sum

spectral efficiency. More interestingly, in contrast to this, at the upper end of
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Figure 5.4: Ergodic sum spectral efficiency comparison at CDF values of 0.1,
0.5 and 0.9 with M = 10, L = 3 at link SNR = 10 dB.

the CDF (the peak ergodic sum spectral efficiency scenario with CDF= 0.9),

increasing the variability of the K-factor improves the ergodic sum spectral

efficiency. This behavior is related to the log-normal nature of the K-factor

distribution. Increasing the standard deviation amplifies the range of K-factors

from zero to very large values. Hence, at the lower end of the sum spectral

efficiency CDF, the increased occurrence of large K-factor values tends to reduce

performance. This can be observed in Fig. 5.4 at CDF probabilities of 0.1 and

0.5. However, at the upper end of the CDF, where the ergodic sum spectral

efficiency is already high, the increased variability of the K-factor helps, as more

K-factor values close to zero are generated. Essentially, the increased variability

in the K-factor increases the variability in the ergodic sum spectral efficiency.

As a result, correspondingly the cell-edge spectral efficiencies are lowered, while

the peak spectral efficiencies are enhanced.

Considering the same cases presented in the above figures, Fig. 5.5 evaluates

the tightness of the gamma distributional approximation to the instantaneous

RZF SINR, with ZF precoding at high link SNRs. With M = 30 and L = 3,
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for multiple link SNR levels, it can be observed that the ZF SNR tightly ap-

proximates the RZF SINR.6 Furthermore, it can be observed that the proposed

gamma distributional approximations are shown to be extremely tight and are

insensitive to changes in the link SNRs, where only the most marginal devia-

tion is observed between the approximated and the simulated responses for all

cases. This is consistent with Remark 5.4.2, earlier in the thesis. The impact

of increasing the Rice factor variability is also investigated on the ZF SNR. In

this regard, Fig. 5.6 evaluates the accuracy of the distributional approximation

with M = 10 and M = 60 service antennas at the ULA, communicating with

L = 3 terminals at a link SNR of 10 dB. Naturally, increasing the number of

service antennas leads to higher terminal SNRs/SINRs. More critically though,

increasing the variability of the K-factor from K = 9 dB fixed for all terminals

to a variable K-factor with a mean of 9 dB and a standard deviation of 5 dB

enhances the peak ZF SNR, for the same reason as in Fig. 5.4. The cell-edge

and the median ZF can be seen to reduce, as the magnified K-factor variability

also produces large K-factor values, leading to performance deterioration.

5.6 Concluding Remarks

The chapter investigated the impact of LoS on downlink MU-MIMO systems

with linear precoding techniques. More specifically, the chapter presented tight

analytical approximations to the expected per-terminal SINR and resulting er-

godic sum spectral efficiency of a downlink MU-MIMO system with RZF pre-

coding under Ricean fading channels. The analysis is robust to changes in

system size, link SNR levels and can be applied to both LoS and NLoS chan-

nels. The density of an arbitrary eigenvalue and a joint density of a pair of

arbitrary eigenvalues of the complex non-central Wishart matrix were shown to

be fundamental to the analysis. With both the microwave and mmWave prop-

agation parameters, the presented numerical results suggested that increasing

6For the subsequent figures, in order not to clutter the numerical results and information
presented, only one example of the RZF SINR is demonstrated for the microwave case where
K ∼ ln (9, 5).
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Figure 5.5: Per-terminal ZF SNR distribution with M = 30, L = 3 at link SNR
levels of -10 and 10 dB.

Figure 5.6: Per-terminal ZF SNR distribution with M = 10 and 60 and L = 3
at link SNR=10 dB.
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the specular component of the propagation channel has an adverse effect on the

expected SINR and ergodic sum spectral efficiency. Furthermore, increasing the

variability of K-factor enhances the peak ergodic sum spectral efficiency, while

reducing the median and cell-edge spectral efficiencies. To the best of the au-

thor’s knowledge, the evaluation of the variability of K-factors is novel and can

help to identify the sensitivities in multiuser system performance. The same

conclusions held in the high SNR regime, where the instantaneous RZF SINR

was approximated with a ZF SNR for a given terminal. It was shown that the

ZF SNR approximately followed a gamma distribution, and the gamma parame-

ters were derived. The distributional approximation was also robust to changes

in system size, link SNR levels and arbitrary LoS levels. Such heterogeneity in

the channel has not been handled well by previous studies.
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Chapter 6

Simplified Performance Analysis

With Linear Transceivers

Summary. There is now a consensus amongst the cellular communications

community that large antenna arrays will be required for handling the growing

spectral efficiency demands of future cellular systems. While this is likely to

push conventional multiuser multiple-input multiple-output (MU-MIMO) sys-

tems to an extreme, in the near future, to retain wide area coverage capability in

cellular networks operating at microwave frequencies, the scenario with moder-

ate numbers of service antennas (between 10 and 100) at a cellular base station

is of considerable interest. It is therefore important to analyze the performance

of MU-MIMO systems with moderate numbers of BS antennas. The analysis

should be insightful, simple and adaptable to a wide range scenarios and MU-

MIMO signal processing techniques. Traditionally, with linear signal processing

at the transmit and receive ends of the link, the focus has been on exact analysis

of conventional MU-MIMO systems, which lead to complex solutions that do

not scale well with growing numbers of service antennas and terminals. On the

other hand, the freedom to assume favorable propagation conditions with large

antenna arrays have led wireless researchers to discover the fundamental limits of

key performance metrics such as the terminal signal-to-interference-plus-noise-

ratio (SINR) and system spectral efficiency. Motivated by this, under inde-

pendent and identically distributed Rayleigh fading, in this chapter, a simpli-
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fied analysis methodology is developed for a general class of linear transceivers.

More specifically, the instantaneous and expected (average) per-terminal SINR,

signal-to-noise-ratio (SNR), as well as the instantaneous and ergodic sum spec-

tral efficiency is analyzed with matched filter and zero-forcing (ZF) precoding on

the downlink and maximum-ratio combining, ZF and minimum-mean-squared-

error-combining on the uplink. The approximation methodology is based on the

identification of specific components in the above mentioned performance met-

rics which tend to stabilize for moderate numbers of BS antennas, and replacing

only these specific components by their expected values. In general, the result-

ing expressions allows for clear insights to be drawn into the factors which most

contribute to the above mentioned performance metrics. Numerical evaluation

of the approximations demonstrate they are extremely accurate and stable for

moderate numbers of BS antennas. Moreover, the approximation methodology

is robust to the type of fading environment assumed, and easily extended to suit

other statistical channel models, such as spatially correlated Ricean fading.

6.1 Introduction

Most visions of the future involve a migration from conventional multiuser

multiple-input multiple-output (MU-MIMO) (which is defined asM ≤ 10, where

M is the number of serving antennas at the base station (BS) array) to large

MU-MIMO (which is defined as M ≥ 100), where the BS is able to serve tens

of user terminals simultaneously in the same time-frequency resource [9, 11, 57].

However, in the middle ground, the scenario with moderate numbers of service

antennas (10 < M < 100) is also very important, both for the medium-term

future and for retaining wide area coverage in the microwave frequency bands.

Here the antenna array sizes required at the BS might preclude those for large

MU-MIMO. As the wireless infrastructure changes to handle higher spectral

and energy efficiency demands, it is timely to consider performance analysis ap-

proaches which are simple yet accurate, adaptable and are able to handle varied

deployments, featuring moderate numbers of service antennas at a BS. This is
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the focus of the chapter.

With conventional MU-MIMO systems, the focus has largely been on ex-

act analysis of key performance metrics, such as the per-terminal signal-to-

interference-plus-noise-ratio (SINR) and system spectral efficiency in indepen-

dent and identically distributed (i.i.d.) Rayleigh fading channels (see [22, 23, 110,

124, 143–145] and the references therein). However, such types of analyses often

lead to complex, non-insightful results. Moreover, much of the analysis remains

analytically intractable, especially for non i.i.d. Rayleigh fading channels. In

addition to this, such analyses are often difficult to generalize to any number of

transmit and receive antennas, due to numerical stability1 issues, limiting their

applicability [76, 124]. In stark contrast to this, for large MU-MIMO systems, in

the limit of an indefinite number of BS antennas, deterministic equivalents of the

SINR and sum spectral efficiency have helped simplify the analysis with linear

processing at the transmitter and the receiver, using random matrix asymptotics

[59–61].

Motivated by the above, in this chapter, novel simplified approximations to

the instantaneous and expected per-terminal SINR, signal-to-noise-ratio (SNR),

instantaneous sum spectral efficiency, as well as the ergodic sum spectral effi-

ciency of MU-MIMO systems are derived, with moderate numbers of BS an-

tennas serving a multiplicity of single-antenna terminals. More specifically, on

the downlink, matched filter (MF) and zero-forcing (ZF) precoding are analyzed,

while on the uplink, maximum-ratio combining (MRC), ZF and minimum-mean-

squared-error (MMSE) combining methods are analyzed. The analysis method-

ology is built on identifying components of the performance metrics which tend

to be stable for moderate numbers of service antennas and replacing only these

components by their expected values. Hence, limiting (large MU-MIMO) results

are selectively applied, such that the complexity of an exact analysis is avoided,

while the most important variation in the performance metrics is maintained.

Keeping this in mind, the specific contributions of the chapter are as follows:

1Note that here the term “numerical stability” is used to indicate numerical accuracy
problems using straightforward programming in numerical software.
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1. Under i.i.d. Rayleigh fading and a unique link gain for each terminal,

simplified approximations are derived to analyze the downlink and uplink

performance of moderate MU-MIMO systems for the general class of linear

transceivers, mentioned above. All derived approximations are shown to

be numerically stable for moderate numbers of service antennas.

2. The derived approximations allow us to draw direct insights into the most

influential system and propagation parameters contributing to the per-

terminal and system performance. For most uplink and downlink per-

formance metrics, these are predominantly a function of the link SNR

(defined in Section 6.2), the link gain of a particular terminal, the number

of BS antennas and the total number of terminals present in the system.

3. To demonstrate the accuracy of the derived analysis, numerical results are

presented with both cell-wide and instantaneous performance indicators.

More specifically, in cell-wide performance, each trial corresponds to a dif-

ferent channel drop, in contrast to the instantaneous performance, where

one channel drop is considered, and the variation is averaged with many

realizations of the instantaneous fast-fading. Even though the analysis

methodology is simple, it is shown to be easily adaptable to other types of

statistical channel models, amplifying the generality of the approximation

approach.

The remainder of the chapter is organized as follows: Section 6.2 presents

the downlink and uplink MU-MIMO system models with the necessary per-

formance metrics. Considering MF and ZF precoding, section 6.3 presents the

instantaneous and expected SINR, SNR, as well as the instantaneous and ergodic

sum spectral efficiency analysis for downlink MU-MIMO systems. Section 6.4

presents the equivalent uplink MU-MIMO performance analysis with MRC, ZF

and MMSE detectors. Section 6.5 evaluates the tightness of the simplified ap-

proximations and demonstrates ways in which the analysis methodology can be

modified to suit other types and fading channels. Finally, section 6.6 presents

the concluding remarks of the chapter.
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6.2 Downlink and Uplink System Models

A single-cell MU-MIMO system is considered, where the BS is equipped with an

array of M omni-directional transmit antennas with an ideal radiation pattern

and no mechanical downtilt. The BS array communicates with L single-antenna

user terminals (with M ≥ L), in the same time-frequency resource. Transmis-

sion over i.i.d. Rayleigh fading channels is considered, where each terminal

experiences a unique link gain, composing of the large-scale fading effects of ge-

ometric attenuation and shadow-fading. Assuming perfect CSI at the BS array

with no uplink and downlink power control, the 1×M downlink channel vector

to terminal l from the BS array is given by

gH
dl,l = β

1
2
l h

H
dl,l, (6.1)

where hH
dl,l ∼ CN (0, IM) is the fast-fading channel vector with zero mean and

unit variance entries, and

βl = υ

(
d0

dl

)α
ζl, (6.2)

is the link gain, composed of distance based geometric attenuation and log-

normal shadow-fading. More specifically, υ is the unit-less constant for geo-

metric attenuation at a given reference distance, d0, assuming perfect far-field

transmit antennas, dl is the link distance from the BS to the l-th terminal. Fur-

thermore, α is the geometric attenuation exponent and 10 log10 (ζl) ∼ N (0, σ2
sf)

with σsf denoting the shadow-fading standard deviation. From the definition

in (6.1), the L × M composite channel matrix is denoted as GH
dl = D

1
2HH

dl,

where GH
dl =

[
gH

dl,1, . . . , g
H
dl,L

]
contains the individual channels to each terminal,

D
1
2 = diag

(
β

1
2
1 , . . . , β

1
2
L

)
is the L× L diagonal matrix of link gains for all L ter-

minals, and HH
dl =

[
hH

dl,1, . . . ,h
H
dl,L

]
is the L×M normalized fast-fading channel

to all L terminals from the BS.2

2Note that the channel and the link gain models are explicitly stated here for ease of
exposition.
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6.2.1 Downlink Linear Precoding

For any given M ×L downlink linear precoder, W = [w1, . . . ,wL], the received

signal at the l-th terminal is given by

rdl,l = ρ
1
2
dl g

H
dl,lWsdl + ndl,l = ρ

1
2
dlg

H
dl,lwlsdl,l + ρ

1
2
dl

L∑
k=1
k 6=l

gH
dl,lwksdl,k + ndl,l, (6.3)

where ρdl denotes the total average transmit power at the BS array,wl represents

the normalized precoding vector corresponding to the the l-th terminal, sdl =

[sdl,1, . . . , sdl,L]T is an L × 1 vector of pay load data on the downlink intended

for the L terminals. The data symbol desired for terminal l is constrained to

have unit average power, hence E [|sdl,l|2] = 1, for l = 1, 2, . . . , L. Moreover,

ndl,l ∼ CN
(
0, σ2

dl,l

)
models the effects of additive white Gaussian noise at the

input of terminal l. It is assumed that σ2
1 =, . . . ,= σ2

L = σ2
dl. Therefore, the

link SNR for any given link from the BS array to a given terminal is defined as

the ratio of the total average transmit power to noise power at terminal l, i.e.,

ρdl/σ
2
dl.

3

From (6.3), the instantaneous SINR for terminal l can be written as

SINRdl,l =
ρdl

∣∣gH
dl,lwl

∣∣2
σ2

dl,l + ρdl

L∑
k=1
k 6=l

∣∣gH
dl,lwk

∣∣2 . (6.4)

As such, the downlink spectral efficiency (measurable in bits/sec/Hz) for ter-

minal l can be written as Rdl,l = log2 (1 + SINRdl,l), leading to the downlink

ergodic sum spectral efficiency given by

E
[
RW

dl,sum

]
= E

[
L∑
l=1

Rdl,l

]
, (6.5)

with the use of a specific linear processor,W . The expectation here is performed

over small-scale fading in the channel. Note that W can be a MF or a ZF

3Note that the definition of the link SNR is consistent with the definitions in Chapters 3,
4, 5, 7 and 8.
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precoder, in which case, (6.5) will be denoted as E
[
RMF

dl,sum

]
and E

[
RZF

dl,sum

]
,

respectively.4

6.2.2 Uplink Linear Combining

Equivalently, on the uplink, the composite M × 1 received signal at the BS can

be written as

yul = ρ
1
2
ulGulsul + nul, (6.6)

where ρul is the average uplink transmit power from each terminal, Gul denotes

the composite M ×L fast-fading from L terminals to M BS antennas, including

the link gains for all terminals, sul = [s1,ul, s2,ul, . . . , sL,ul] is the L×1 is the vector

of data symbols on the uplink, such that the data symbol intended for terminal

l has unit energy, i.e., E [|sul,l|2] = 1. Moreover, nul = [nul,1, nul,2, . . . , nul,M ]T is

the M × 1 vector of additive white Gaussian noise at the BS antennas, where

nul,m ∼ CN
(
0, σ2

ul,m

)
. Note that σ2

ul,1 =, . . . ,= σ2
ul,M = σ2

ul is assumed and the

link SNR for an arbitrary link from a given terminal to the BS is denoted by

the ratio of the average uplink transmit power to the noise power at the BS

array, i.e., ρul/σ
2
ul.

5 After linear combining, yul is separated into L streams with

a L×M combining matrix, T = [t1, . . . , tM ], such that

rul = Tyul = ρ
1
2
ulT Gulsul + Tnul. (6.7)

Thus, the linearly combined signal from terminal l is given by

rul,l = ρ
1
2
ul tlgul,lsul,l + ρ

1
2
ul

L∑
k=1
k 6=l

tlgul,k sul,k + tl nul, (6.8)

4The downlink SINR, spectral efficiency and ergodic sum spectral efficiency definitions
are presented here primarily for ease of exposition. The definition is consistent with that in
Chapters 3, 4 and 5.

5Note that the definition of the link SNR here is also consistent with the definitions in
Chapters 3 and 8.

151



Chapter 6. Simplified Performance Analysis With Linear Transceivers

resulting in the corresponding uplink SINR for terminal l given by

SINRul,l =
ρul |tlgul,l|2

σ2
ul,l||tl||2 + ρul

L∑
k=1
k 6=l

|tlgul,k|2
. (6.9)

Equivalently, the uplink spectral efficiency for terminal l can be written as Rul,l =

log2 (1 + SINRul,l). As such, the uplink ergodic sum spectral efficiency given by

E
[
RT

ul,sum

]
= E

[
L∑
l=1

Rul,l

]
, (6.10)

for any given type of linear combiner in T , where the expectation is evaluated

over the small-scale fading in the channel.

In the sections which follow, simplified closed-form approximations to the

above performance metrics are presented with downlink and uplink signal pro-

cessing techniques. In particular, MF and ZF precoding are considered on the

downlink and MRC, ZF and MMSE combiners are considered on the uplink.

6.3 Downlink Performance Analysis

6.3.1 MF Precoding Analysis

With column-wise normalization, the MF precoding matrix, WMF is a scaled

version of the conjugate transpose of the composite L ×M downlink channel,

GH
dl, from M BS antennas to L terminals. Hence, WMF = GdlηMF, where

ηMF = diag
(

1
||gdl,1||

, . . . , 1
||gdl,L||

)
is a diagonal matrix which ensures that the

downlink precoding vector to each terminal (each column of WMF) has unit

norm. Considering this, the downlink MF SINR for terminal l from (6.4) can

be expressed as [146]

SINRMF
dl,l =

ρdl ||gdl,l||2

σ2
dl,l + gH

dl,l

ρdl

L∑
k=1
k 6=l

gdl,kg
H
dl,k

||gdl,k||2

 gdl,l

. (6.11)
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It is noteworthy that with a fixed number of user terminals and a moderately

large number of BS antennas,
∑L

k=1
k 6=l

(
gdl,kg

H
dl,k

)
/||gdl,k||2 in the denominator of

(6.11) tends to stabilize numerically, and one can approximate this term with

its expected value, given by L−1
M
IL. Knowing this, (6.11) can now be written as

SINRMF
dl,l ≈

ρdl||gdl,l||2

σ2
dl,l + ρdl

(L−1)
M
||gdl,l||2

=
ρdlβlχ

2
M

σ2
dl,l + ρdl

(L−1)
M

βlχ2
M

, (6.12)

where χ2
M denotes a chi-squared random variable with M complex degrees of

freedom [147]. The expected per-terminal SINR can then be approximated via

the classical first-order delta method approximation motivated in Section 3.4.3,

where the expectations of numerator and denominator of (6.12) are evaluated

separately. This leads to the following proposition.

Proposition 6.3.1. With MF processing and column-wise power normal-

ization at the BS, the expected per-terminal SINR of terminal l, undergoing

i.i.d. Rayleigh fading is approximated by

E
[
SINRMF

dl,l

]
≈ ρdlβlM

σ2
dl,l + ρdlβl (L− 1)

. (6.13)

Method for Proposition 6.3.1. Taking the expected value of the numer-

ator and denominator of (6.12) yields

E
[
SINRMF

l

]
≈ E [ρdlβlχ

2
M ]

σ2
dl,l + E

[
ρdl

(L−1)
M

βlχ2
M

] (a)
=

ρdlβlE [χ2
M ]

σ2
dl,l + ρdl

[
(L−1)
M

βl

]
E [χ2

M ]

(b)
=

ρdlβlM

σ2
dl,l + ρdlβl (L− 1)

, (6.14)

where (a) is obtained by extracting the relevant constants and (b) is obtained

by recognizing that E [χ2
M ] = M from the standard properties of the chi-squared

random variable [147], concluding the proof. �

Remark 6.3.1. The derived result in (6.13) presents a remarkably simple

and insightful approximation to the expected per-terminal SINR with MF pro-

cessing at the BS. By inspection, it can be readily observed that with a fixed

link gain at terminal l, βl, the expected signal power grows with the number of

153



Chapter 6. Simplified Performance Analysis With Linear Transceivers

service antennas, M , at the BS, while with a fixed link SNR (i.e., fixed ρdl/σ
2
dl),

the expected interference power increases proportional to the total number of

terminals, L, in the system. Moreover, it is worth noting that in the limit when

M and L → ∞, the ratio converges to a deterministic limit, as both M and L

grow without bound at the same rate.

The first-order delta approximation employed in (6.13) can be further im-

proved by considering higher order terms, as mentioned in [87]. Hence, a third-

order delta approximation is further considered here for the ratio of random

variables in (6.12). This leads to the following proposition.

Proposition 6.3.2. Under the same conditions as Proposition 6.3.1, with a

third-order delta approximation, the downlink expected per-terminal MF SINR

for terminal l is given by

E
[
SINRMF

dl,l

]
≈ ρdlβlM

σ2
dl,l + ρdlβl (L− 1)

− ρdlβ
2
l (L− 1)[

σ2
dl,l + ρdlβl (L− 1)

]3 . (6.15)

Method for Proposition 6.3.2. One can begin by denoting the numer-

ator and the denominator of (6.12) as X and Y , respectively. Then from first

principles, the n-th order Taylor series approximation for the function f (x, y)

around (x0, y0) is given by

f (x, y) ≈
n∑

i+j=0

1

i!j!
N i,j (x0, y0) (x− x0)i (y − y0)j , (6.16)

where

N i,j (x0, y0) =

[
∂ i+j

∂xi∂yj
f (x, y)

]
(x,y)=(x0,y0)

. (6.17)

Replacing (x, y) with (X, Y ) and (x0, y0) with (µX , µY ), where µX = E [X]

and µY = E [Y ] and performing the expectation of (6.16) results in the delta

approximation to the mean of a function of two random variables. This is given

by

E [f (X,Y )] ≈
n∑

i+j=0

1

i!j!
N i,j (i, j) (µX , µY )E

[
(X − µX)i (Y − µY )j

]
. (6.18)
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For a ratio of two random variables, f (X, Y ) = X
Y

, computation of N i,j (µX , µY )

gives

E
[
X

Y

]
≈ µX
µY

+
n∑
i=2

(−1)i−1

(µY )i
E
[
(X − µX) (Y − µY )i−1

]
+

n∑
i=2

(−1)i

(µY )i+1 µX E
[
(Y − µY )i

]
. (6.19)

From (6.19), it can observed that when n = 0, one can get the first-order

delta approximation of E
[
X
Y

]
≈ E[X]

E[Y ]
. Moreover, one can rather interestingly

observe that the n = 1 term has no effect as the correction terms involve either

E [X − µX ] or E [Y − µY ], which are zero. Furthermore, when n = 2, one can

arrive at the third-order approximation, given by

E
[
X

Y

]
≈ µX
µY
− E [(X − µX) (Y − µY )]

(µY )2 +
E
[
(Y − µY )2]

(µY )3

=
E [X]

E [Y ]
− cov [X, Y ]

E [Y ]2
+

E [X] var [Y ]

E [Y ]3
. (6.20)

In (6.12), X = ρdlβlχ
2
M and Y = σ2

dl,l + ρdl
(L−1)
M

βlχ
2
M . Then, using the known

moments of the chi-squared random variable, one can find the necessary terms

required in (6.20):

E [X] = ρdlβlM, (6.21)

E [Y ] = ρdlβl (L− 1) + σ2
dl,l, (6.22)

cov [X, Y ] = ρdl β
2
l (L− 1) , (6.23)

and

var [Y ] =
ρdl β

2
l (L− 1)2

M
. (6.24)

Substituting (6.21)-(6.24) into (6.20) and simplifying yields the desired result in

(6.15). �

Remark 6.3.2. Some important insights can be obtained from the presented

analysis above. For instance, from (6.20) and (6.24), it is worth noting that

with a fixed L, the variance of Y → 0 as M → ∞. This suggests that the

approximation in (6.20) will become an equality, as M → ∞ and the variance
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vanishes. This is anticipated to be particularly applicable to MU-MIMO systems

with a large number of antenna elements BS. Moreover, it can be observed that

with a fixed βl, ρdl and σ2
dl,l, the denominator of the second order term decays

quadratically as a function of (L− 1)2, whilst the numerator of the second

order term grows as a function of L − 1. A similar trend can be observed

whilst inspecting the third-order term, where the numerator seems to grow as a

function of (L− 1)2, in comparison to the denominator which decays cubically,

proportional to (L− 1)3. The higher order terms provide a correction to the

first-order approximation, particularly when the variance of Y in the first-order

approximation does not reduce sufficiently.

While the accuracy of (6.12), (6.13) and (6.15) is investigated in Section 6.5,

from (6.12), the instantaneous cumulative distribution function (CDF) of the

MF per-terminal SINR can be approximated by

P
[
SINRMF

dl,l < x
]
≈ P

[
ρdlβlχ

2
M

σ2
dl,l + ρdlβlχ2

M
1
M

(L− 1)
< x

]

= P
[
χ2
M <

xMσ2
dl,l/ (ρdlβl)

M − (L− 1)x

]
= FM

[
xMσ2

dl,l/ (ρdlβl)

M − (L− 1)x

]
, (6.25)

where FM [·] is the CDF of χ2
M given by [147]

FM [x] = 1− e−x
M−1∑
i=0

xi

i!
. (6.26)

Both the first and third order approximations in (6.13) and (6.15) can be trans-

lated into approximations of the ergodic sum spectral efficiency via

E
[
RMF

dl,sum

]
≈

L∑
l=1

log2

(
1 + E

[
SINRMF

dl,l

])
. (6.27)

The accuracy of the above approximation will also be numerically evaluated in

Section 6.5 of the chapter. In the sequel, an equivalent the simplified analysis

methodology with ZF precoding is presented.
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6.3.2 Zero-Forcing Precoding Analysis

Unlike MF precoding, ZF precoding ensures complete cancellation of multiuser

interference, given that the number of service antennas at the BS are greater

than or equal to the total number of terminals. The M×L ZF precoding matrix

has the form, WZF = Gdl

(
GH

dlGdl

)−1
ηZF, where ηZF ensures that each column

of WZF has a unit norm. As ZF precoding removes multiuser interference, the

per-terminal SINR now becomes the per-terminal SNR, given for terminal l by

[148]6

SNRZF
dl,l =

ρdl

σ2
dl,l

[
(GH

dlGdl)
−1
]
l,l

, (6.28)

where [A]l,l denotes the (l, l)-th entry of the matrix A. The expected per-

terminal SNR for terminal l can then be written as

E
[
SNRZF

dl,l

]
= E

 ρdl

σ2
dl,l

[
(GH

dlGdl)
−1
]
l,l

 . (6.29)

In the sequel, a closed-form approximation to (6.29) is derived.

Proposition 6.3.3. With ZF precoding and column-wise power normaliza-

tion at the BS, the expected per-terminal SNR of terminal l undergoing i.i.d.

Rayleigh fading is given by

E
[
SNRZF

dl,l

]
≈ ρdl

σ2
dl,l

βl (M − L) . (6.30)

Method for Proposition 6.3.3. One can begin by applying the univariate

special case of the first-order delta expansion. This gives,

SNRZF
dl,l ≈

ρdl

σ2
dl,l E

[[
(GH

dlGdl)
−1
]
l,l

] . (6.31)

6ZF SNR is also defined previously in Chapters 3, 4 and 5, however, in those chapters,
due to the matrix normalization the dependence of the ZF SNR on the inverse of the (l, l)-th

element disappears and gets replaced by tr
[(
GH

dlGdl

)−1
]
.
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From here, one can recognize that

E
[[(
GH

dlGdl

)−1
]
l,l

]
=

1

βl
E
[[(
HH

dlHdl

)−1
]
l,l

]
=

1

βlL
E
[
tr
[(
HH

dlHdl

)−1
]]

(a)
=

1

βl (M − L)
, (6.32)

for M ≥ L+1, where (a) is obtained by using the popular result on uncorrelated

central Wishart matrices, which states [62]

E
[
tr
[(
HH

dlHdl

)−1
]]

=
L

M − L
. (6.33)

Substituting the result from (6.32) into (6.31) yields the desired expression in

(6.30), concluding the proof. �

Remark 6.3.3. A number of insights can be obtained from (6.30). For

instance, if the operating SNR is fixed, then the expected ZF SNR for terminal

l is a function of βl, and the difference between M and L. Further fixing L, in the

limit of M →∞, then the expected ZF SNR can also be seen to grow without

bound, due to the absence of multiuser interference. With a fixed M , growing

L (while satisfying M ≥ L+ 1) decreases the expected ZF SNR to ρdl

σ2
dl,l
βl. This

is due to growth of E
[
[(GH

dlGdl)
−1]l,l

]
, which leads to an amplification of the

expected noise power in (6.31) and in turn (6.30), respectively. The accuracy of

(6.30) is numerically evaluated in Section 7.5.

Moreover, the instantaneous CDF of the ZF per-terminal SNR can now be

approximated by

P
[
SNRZF

dl,l < x
]
≈ FM

[
xM

βl
(
ρdl/σ2

dl,l

)
(M − L)

]
. (6.34)

This is consistent with similar results derived in [144, 149]. The first-order ap-

proximation in (6.30) can be translated into an ergodic sum spectral efficiency
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over L terminals by stating

E
[
RZF

dl,sum

]
≈

L∑
l=1

log2

(
1 + E

[
SNRZF

dl,l

])
. (6.35)

The accuracy of the above approximation will also be presented in Section 7.5

of the chapter. In the following section, analysis for uplink MU-MIMO systems

are presented with MRC, ZF and MMSE combining.

6.4 Uplink Analysis With I.I.D. Rayleigh Fad-

ing

6.4.1 Maximum-Ratio Combining Analysis

Although some exact results are known for uplink MU-MIMO systems with

MRC processing, they have been shown to have high analytical complexity and

do not lend themselves to practical insights (see e.g., [87]). Moreover, such so-

lutions are also numerically unstable for moderate numbers of service antennas.

As a result, a simpler approach to evaluate the symbol error rate with MRC was

proposed in [150]. Here, analytically friendly and numerically stable approxima-

tions are developed to evaluate the per-terminal and cell-wide performance of

the system. With MRC processing, the uplink combiner is given by TMRC = GT
ul,

and the instantaneous uplink SINR for terminal l can be written as [59]

SINRMRC
ul,l =

ρul|gT
ul,lg

∗
ul,l|2

σ2
ul,l g

T
ul,lg

∗
ul,l + ρul

L∑
k=1
k 6=l

|gT
ul,kg

∗
ul,l|2

. (6.36)

After some algebraic manipulation, (6.36) can be written as

SINRMRC
ul,l = ψlg

T
ul,lg

∗
ul,l, (6.37)
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where

ψl =
ρul g

T
ul,lg

∗
ul,l

gT
ul,l

σ2
ul,lIM + ρul

L∑
k=1
k 6=l

g∗ul,k g
T
ul,k

 g∗ul,l

. (6.38)

The expected per-terminal MRC SINR can then be approximated by evaluating

the expected value of (6.38) and E
[
gT

ul,lg
∗
ul,l

]
separately. The result of this is

expressed in the following proposition.

Proposition 6.4.1. With MRC processing at the BS, the expected uplink

SINR for terminal l undergoing i.i.d. Rayleigh fading can be approximated by

E
[
SINRMRC

ul,l

]
≈ ρul βlM

σ2
ul,l + ρul

L∑
k=1
k 6=l

βk

. (6.39)

Method for Proposition 6.4.1. One can begin by denoting the numerator

and denominator of (6.38) by X̃ and Ỹ , respectively. An approximation to the

instantaneous SINR for terminal l can be made by replacing ψl with its expected

value, i.e., E [ψl]. The author is motivated to do this as X̃

Ỹ
=
(
X̃
M

)(
Ỹ
M

)−1

,

where both
(
X̃
M

)
and

(
Ỹ
M

)
converge to constants as M →∞, by the weak law

of large numbers. Following the first-order approach outlined in (6.13), one can

approximate E [ψl] as

E [ψl] ≈
ρulβlM

βl

tr

σ2
ul,lIM + ρul

L∑
k=1
k 6=l

βkIM


=

ρul

σ2
ul,l + ρul

L∑
k=1
k 6=l

βk

. (6.40)

Thus, the SINR in (6.37) can now be approximated as

SINRMRC
ul,l ≈ E [ψl] g

T
ul,lg

∗
ul,l =

ρulβl

σ2
ul,l + ρul

L∑
k=1
k 6=l

βk

χ2
M . (6.41)
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As a result, the expected SINR for terminal l can be approximated by

E
[
SINRMRC

ul,l

]
≈ ρulβlM

σ2
ul,l + ρul

L∑
k=1
k 6=l

βk

, (6.42)

yielding the desired expression. This concludes the proof. �

Remark 6.4.1. The simple result in (6.42) allows one to draw some useful

insights: Fixing ρul and σ2
l,ul, it can be seen from (6.39) that the expected sig-

nal power (the numerator of (6.39)) grows linearly with the number of receive

antennas at the BS array, M , while the expected interference power (the de-

nominator of (6.39)) is governed by the sum of the interfering link gains in βk,

where k = 1, . . . , L and k 6= l. Furthermore, fixing all other parameters, in the

limit as M →∞, the expected MRC SINR can be seen to grow without bound.

Following from the expected SINR for terminal l, the uplink ergodic sum

spectral efficiency over all L terminals can be approximated by

E
[
RMRC

ul,sum

]
≈

L∑
l=1

log2

(
1 + E

[
SINRMRC

ul,l

])
, (6.43)

while the instantaneous CDF can be approximated by

P
[
SINRMRC

ul,l < x
]
≈ FM

[
x

(
σ2

ul,l + ρul

∑L

k=1
k 6=l

βk

)/
ρulβl

]
. (6.44)

In the subsections which follow, a simplified analysis with ZF and MMSE de-

tectors is presented.

6.4.2 Zero-Forcing Combining Analysis

The uplink and downlink performance metrics for ZF processing are the iden-

tical, with the exception that GH
ul is the composite downlink channel, whereas

Gul is the uplink composite channel. Hence, the analysis methodology outlined

in Section 6.3.2 can be re-used, where the same results and conclusions hold.

To prove this, numerical results in Section 6.5 demonstrate the accuracy of the
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downlink and uplink ZF processing, respectively.

6.4.3 Minimum-Mean-Squared-Error Combining

Analysis

Now, an MMSE combiner is considered at the BS array, where minimizing the

mean-squared-error between the true transmitted symbol, sul,l, for l = 1, . . . , L,

and the output of the MMSE detector leads to the combining matrix, TMMSE =(
GT

ulG
∗
ul +

σ2
ul

ρul
IL

)−1

GT
ul, assuming σ2

ul = σ2
ul,l = . . . = σ2

ul,M . Following the

methodology in [151], the SINR for terminal l with MMSE processing can be

expressed as

SINRMMSE
ul,l = gT

ul,l

(
σ2

ul,l

ρul

IM +G∗ul,lG
T
ul,l

)−1

g∗ul,l, (6.45)

where GT
ul,l =

[
gT

ul,1, . . . , g
T
ul,l−1, g

T
ul,l+1, . . . , g

T
ul,L

]
is the (L− 1) ×M composite

matrix of all uplink channels excluding the channel from the l-th terminal to the

BS array. In the sequel, a simplified approximation to the expected per-terminal

SINR with MMSE combining is presented.

Proposition 6.4.2. With MMSE processing at the BS, the expected uplink

SINR for terminal l undergoing i.i.d. Rayleigh fading can be approximated by

E
[
SINRMMSE

ul,l

]
≈ cMβl, (6.46)

where

c =
σ2

ul

ρulM

(M − L+ 1) +
L∑
k=1
k 6=l

(1 +Mβk)
−1

 . (6.47)

Method for Proposition 6.4.2. One can begin by recognizing that the

expected value of the inverse in (6.45) can be written as

E

[(
σ2

ul

ρul

IM +G∗ul,lG
T
ul,l

)−1
]

= cIM , (6.48)

where c is a constant derived in the sequel. Taking the trace of the equality in
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(6.48) yields

cM = E

[
tr

[(
σ2

ul

ρul

IM +G∗ul,lG
T
ul,l

)−1
]]

=
σ2

ul

ρul

(M − (L− 1)) + E

[
L−1∑
k=1

λ−1
k

]
,

(6.49)

since M − (L− 1) eigenvalues of
σ2

ul

ρul
IM +G∗ul,lG

T
ul,l are

σ2
ul

ρul
and the largest L− 1

eigenvalues are denoted by λ1, λ2, . . . , λL−1. However, as λ1, λ2, . . . , λL−1 are

also the eigenvalues of
σ2

ul

ρul
IL−1 +GT

ul,lG
∗
ul,l, we can express (6.49) as

cM =
σ2

ul

ρul

(M − L+ 1) + E

[
tr

[(
σ2

ul

ρul

IL−1 +G∗ul,lG
T
ul,l

)−1
]]

. (6.50)

It is worth noting that 1
M
G∗ul,lG

T
ul,l converges to diag (β1, . . . , βl−1, βl+1, . . . , βL),

an (L− 1)× (L− 1) diagonal matrix of link gains, as M →∞. Using this fact

in (6.50) results in

c =
σ2

ul

ρul

(M − L+ 1) +
L∑
k=1
k 6=l

(1 +Mβk)
−1

 . (6.51)

Hence, replacing the inverse in (6.45) by cIM , where c is as given in (6.51) allows

one to express the MMSE SINR for terminal l as

SINRMMSE
ul,l ≈ cβlχ

2
M . (6.52)

As the density of χ2
M is known in closed-form, the instantaneous CDF can also

be approximated as

P
[
SINRMMSE

ul,l < x
]
≈ FM

[
x

cβl

]
. (6.53)

Evaluating the expected value of (6.53) yields the desired result in (6.46). �

Remark 6.4.2. To the best of the author’s knowledge, the result derived

in (6.46) is the simplest approximation available in the literature on uplink

MU-MIMO systems with MMSE processing. The authors in [59] present a dis-

tributional approximation to the MMSE SINR in (6.45), where it was shown
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to be approximated via the gamma distribution, where its parameters are de-

rived. The authors in [124, 151] present exact closed-form analysis of the MMSE

SINR. However, the complexity of the analysis methodology and the resulting

expressions may limit their use in performance analysis and evaluation of uplink

MU-MIMO systems with moderate numbers of BS antennas. Naturally, the nu-

merical evaluation of the derived expressions in [59, 124, 151] will yield similar

results, so long as the numerical parameters in each case are consistent.

The ergodic sum spectral efficiency over L terminals with MMSE processing

can now be approximated by

E
[
RMMSE

ul,sum

]
≈

L∑
l=1

log2

(
1 + E

[
SINRMMSE

ul,l

])
. (6.54)

6.4.4 Extensions to More General Fading Channels

It is worth noticing that the simplified analysis methodology, although presented

for i.i.d Rayleigh fading channels, has wider applicability to other types of sta-

tistical fading channels. As an example, consider the uplink MRC SINR for

terminal l, approximated by E [ψl] g
T
ul,lg

∗
ul,l, as shown in (6.41). In the presence

of spatially correlated Ricean fading channels, the approximate SINR with MRC

processing is proportional to gT
ul,lg

∗
ul,l, which is a non-central complex quadratic

form in Gaussian random variables [152]. Moreover, ψl in (6.37) depends on

moments of similar random variables which can be computed. Therefore, the

same approximation approach can be applied to the above mentioned channels,

where exact analytical results are usually intractable. This approach is shown

to give excellent numerical results for a spatially correlated Ricean fading chan-

nel with equal correlation matrices for each terminal. These numerical results

are presented in Section 6.5 of the chapter. Furthermore, it is worth mention-

ing that an important topic for future work is to extend the simplified analysis

methodology to more complex, Saleh-Valenzuela type channel models, which

better capture finite numbers of propagation paths and scattering clusters in

the channel, especially at higher carrier frequencies. Due to the generality of
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such models, for a given antenna topology, they consider the transmit and re-

ceive far-field array steering responses in both the azimuth and the elevation

domains. Here, the analysis of uplink and downlink MU-MIMO performance

metrics will be extremely cumbersome, if not intractable. The simplified ap-

proximation methodology may have a role in reducing the complexity of the re-

sulting expressions for the performance metrics described above in Sections 6.3

and 6.4.

The subsequent section presents the numerical results from the derived ap-

proximations against those resulting from simulations for both uplink and down-

link MU-MIMO systems.

6.5 Numerical Results and Discussion

A circular cell of radius 100 m is considered, in which L terminals were uniformly

distributed with respect to the cell area. The BS is located at the origin of the

circular cell and a 10 m exclusion radius is designed.7 Unless otherwise specified,

all terminals experience uncorrelated i.i.d. Rayleigh fading. The large-scale

fading effects are modeled as shown in (6.2), where the attenuation exponent

α = 3.7 and the shadow-fading standard deviation σsf = 8 dB [15]. To evaluate

the accuracy of the simplified expressions, the simulations considered comprise

of the evaluation of cell-wide (where each trial corresponds to a different drop)

and instantaneous (where one drop is considered and the variation is over fast-

fading only) per-terminal SINRs, as well as downlink ergodic sum-rates for 104

independent trials. For both downlink and uplink performance metrics, unit

noise power is assumed at the receive end of a particular link, i.e., σ2
dl = σ2

ul =

σ2
dl,l = σ2

ul,m = 1, for all l = 1, . . . , L and m = 1, . . . ,M . Note that the parameter

υ is chosen such that the fifth percentile value of the instantaneous downlink and

uplink SINR equals 0 dB, post-processing, for the baseline system dimensions

of M = 30 and L = 3. This is chosen as the baseline case as it satisfies

M
L

= 10, a common scenario quoted in the recent literature. Furthermore,

7Note that this is the reference distance, d0 in (6.2).
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Figure 6.1: Downlink cell-wide MF expected per-terminal SINR for M =
10, 30, 150 with L = 3 at link SNR = 0 dB.

30 service antennas at the BS is a moderate number, well short of large MU-

MIMO system dimensions. Unless otherwise specified, the link SNRs on the

uplink and downlink are chosen to be 0 dB. For ease of notation, link SNRs in

the subsequent numerical results are referred to as SNRs.

Fig. 6.1 demonstrates the cell-wide downlink expected per-terminal CDF

with MF precoding, where M = 10, 30, 150 and K = 3. The numerical simu-

lations were generated using (6.11), while the approximations were generated

using (6.13) and (6.15). Naturally, an increase in the expected per-terminal

SINR is observed when M is scaled up from 10 to 150 with L remaining fixed.

The third-order approximation is shown to perform better than the simple first-

order approximation for all system dimensions. For smaller system dimensions,

such as the M = 10, L = 3 case, the error in the approximations and their

simulated counterparts is larger at lower probabilities. However, the analyti-

cal expressions are tighter as M increases. At high probabilities (above 0.9),

divergence from the simulated results is observed for all cases. This is due to

replacing the sum in the denominator of (6.13) by its mean value. High SINRs
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Figure 6.2: Downlink cell-wide MF ergodic sum spectral efficiency for M = 30
and L = 3.

occur when the denominator (interference plus noise) is small and the use of the

mean value prevents some of the variation in the interference term which can

lead to high SINRs. Improving the approximation at high SINRs is a topic for

future research. Hence, an extremely useful estimate of cell-wide performance

is obtained from the remarkably simple approach of generating multiple drops

whilst for each drop using the mean SINR in (6.13). Note that the case of

M = 150 was chosen as an upper bound to analyze the approximation accuracy

and strictly belongs in the large MU-MIMO category.

The expected per-terminal MF SINR was translated to an ergodic sum spec-

tral efficiency over all terminals present in the system, using (6.10). This is

demonstrated in Fig. 6.2. The approximated ergodic sum spectral efficiency ap-

proximation was evaluated from (6.27). It can be readily observed, that across

all link SNR levels considered, the derived approximations remain extremely

tight and numerically stable. Moreover, it is worth noting that the logarithm

in the ergodic sum spectral efficiency expression helps to provide extra averag-

ing, such that the simplified approximations are tight even for lower numbers
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Figure 6.3: Downlink instantaneous MF SINR performance for M = 30 and
L = 3 with link SNR = 0 dB.

of service antennas. In contrast to the cell-wide performance, the instantaneous

SINR performance with the derived CDF approximation in (6.25) is presented

in Fig. 6.3 for M = 30 and L = 3. Here, three different drops are considered,

and hence drop 2 and drop 3 result in lower instantaneous SINR performance

than drop 1. One can observe that the chi-squared distributional approximation

is numerically stable and accurate across all random drops of the terminals.

The ZF downlink precoding performance is now investigated. As the down-

link and uplink ZF performance metrics are identical, the subsequent results

are also valid for the uplink MU-MIMO equivalent, as indicated on the results

themselves. Fig. 6.4 presents the cell-wide expected ZF SNR with M = 10, 30

and 150 with a fixed number of user terminals, L = 3. The simulated cell-wide

performance was evaluated by taking the expected value of (6.28), while the

approximated performance was evaluated with (6.30). As M transitions from

being small to moderate to large, the derived uplink and downlink approxima-

tions are seen to get tighter, especially at the lower tail of the CDFs (below

0.1 probability). Overall, an excellent agreement between the approximated
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Figure 6.4: Downlink cell-wide ZF expected per-terminal SNR for M =
10, 30, 150 with L = 3 at link SNR = 0 dB.

and simulated performance is observed, that is numerically stable for moderate

number of antennas, for both the uplink and downlink cases, respectively. The

approximated expected per-terminal ZF can be translated into a ZF ergodic

sum spectral efficiency via (6.34) across all L terminals. This accuracy of er-

godic sum spectral efficiency across low and high link SNR levels is depicted in

Fig. 6.5. In addition to this, the instantaneous SNR performance approximated

in (6.33) is demonstrated in Fig. 6.6 across three different drops. As can be seen

from the figure, once again the chi-squared distributional approximation seems

to be extremely tight for M = 30 BS and L = 3 terminals, for both the uplink

and downlink cases.

Now the accuracy of the uplink MRC SINR results is evaluated. Fig. 6.7

depicts the cell-wide expected per-terminal SINR performance for MRC with

M = 30 and L = 3. As is readily observed, the proposed approximation in (6.42)

is very accurate for i.i.d. Rayleigh fading. Furthermore, the generality of the

approximation method is explored for semi-correlated Ricean fading with a fixed

Rice factor of 5 dB to all terminals, for simplicity. The specular component of the
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Figure 6.5: Downlink cell-wide ZF ergodic sum spectral efficiency for M = 30
and L = 3.
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Figure 6.6: Downlink instantaneous ZF SNR performance for M = 30 and L = 3
with link SNR = 0 dB.

channel is governed by a uniform linear array transmit steering vector response,

while a fixed transmit correlation matrix is assumed for each terminal following
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Figure 6.7: Uplink cell-wide expected per-terminal MRC SINR for M = 30 and
L = 3 at link SNR = 0 dB.

the classical exponential model, where the spatial correlation co-efficient was

chosen to be 0.9 [46, 80]. The approximation is seen to remain tight even in the

presence of strong correlation and LoS, demonstrating its robustness to other

propagation models.

The instantaneous and expected per-terminal SINR performance was also

evaluated for the MMSE combiner, as shown in Fig. 6.8 and 6.9 using (6.46)

and (6.52), respectively. The accuracy of the approximation is seen to increase

with increasing M . This has a direct relation to the fact that 1
M

[
G∗ul,lG

T
ul,l

]
tends to stabilize as M gets larger. Hence, cell-wide performance to a complex

metric like the MMSE detector can be investigated by the remarkably simple

result in (6.46), which gives straightforward insights into the impact of system

and propagation parameters. The instantaneous CDF approximation in (6.52)

is shown in Fig. 6.9 for three drops, where the simulated per-terminal SINR

closely follows the approximated SINR. Hence, not only can accurate cell-wide

approximations be developed, but simple instantaneous SINR distributions for

a single drop can also be accurately approximated for a complex performance
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Figure 6.8: Uplink cell-wide expected per-terminal MMSE SINR for M = 9, 30
and L = 3 at link SNR = 0 dB.
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metric.
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6.6 Concluding Remarks

In this chapter, simplified approximations to the instantaneous and expected

per-terminal SINR and SNR were derived for uplink and downlink MU-MIMO

systems and a general class of linear transceivers operating with moderate num-

bers of BS antennas. The instantaneous and expected SINR approximations

were translated to instantaneous and ergodic sum spectral efficiencies for the

range of performance metrics considered. It was demonstrated that the cell-

wide and single-drop performance for a wide range of metrics can be predicted

with practically useful accuracy using the remarkably simple approximations.

The possibility of such general and simple MU-MIMO performance analysis is

largely missing in the literature. The results are also shown to remain reason-

ably accurate even for conventional MU-MIMO dimensions. The approximation

methodology is easily adaptable to other types of statistical fading channel mod-

els. An example of this was demonstrated with uplink MRC processing, where

the expected per-terminal cell-wide SINR was extended to spatially correlated

Ricean fading channels and was shown to maintain good accuracy.
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Chapter 7

Linear Precoding Analysis With

Unequal Spatial Correlation

Summary. It is well known that spatial correlation across an antenna array

is detrimental to the terminal signal-to-interference-plus-noise-ratio (SINR), as

well as system spectral efficiency. For a multiuser multiple-input multiple-output

(MU-MIMO) system, it is mathematically proven that the widely used, yet

overly simplified, spatial correlation models with common correlation structures

for each terminal underestimate the expected SINR and ergodic sum spectral

efficiency. As a result, such models act as a lower bound on the resulting perfor-

mance. In stark contrast to this, the use of more complex, yet physically moti-

vated, remote scattering models results in unequal spatial correlation structures

for each terminal, leading to higher performance. Assuming semi-correlated

Rayleigh fading, with matched-filter (MF) and zero-forcing (ZF) transmit pre-

coding, closed-form approximations to the expected SINR, expected signal-to-

noise-ratio (SNR) and ergodic sum spectral efficiency of a MU-MIMO system

are derived. The derived expressions provide clear insights into the impact of

unequal spatial correlation matrices. The expressions are robust to changes in

the system dimensions, link SNRs and unequal spatial correlation levels. In

addition to the above, the derived approximations remain accurate for all non-

physical and physical correlation models considered. Overall, the results from

this chapter demonstrate the sensitivity of the achievable performance using
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different spatial correlation models. Such a sensitivity analysis is useful in pro-

viding a cautionary tale of its impact to potential analysts, who may not have

access to expensive empirical channel measurements.

7.1 Introduction

The focus of this chapter is on the downlink of a multiuser multiple-input

multiple-output (MU-MIMO) system, where a base station (BS) equipped with

a transmit antenna array simultaneously serves multiple single antenna user

terminals in the same time-frequency interval [9, 57]. In contemporary cellular

geometries, the BS is typically located on a tower or on a relatively tall building.

In this case, propagation between the BS and a given terminal usually occurs via

a large number of scattering clusters [137].1 These clusters are usually seen from

the BS with a narrow angular spread, and such types of propagation channels

can be statistically characterized by correlated Gaussian random variables [41].2

Having said this, propagation channel vectors of different terminals, which are

physically separated by many multiples of the carrier wavelength3 are typically

mutually independent in a statistical sense [41].

Indeed, spatially correlated channels with multiple transmit and receive an-

tennas have been well characterized for a variety of transmit correlation mod-

els (see for example the seminal work of the authors in [21, 154–158]). In a

MU-MIMO context, it is well known that transmit correlation is a detrimen-

tal source to the per-terminal signal-to-interference-plus-noise-ratio (SINR) and

1Note that this is a general remark. Naturally, the propagation between the BS and ter-
minals depends on many other physical factors. For instance, the operating carrier frequency,
which ultimately governs how far the electromagnetic waves can propagate through the envi-
ronment. Operating a cellular system at very high carrier frequencies, such as in those in the
millimeter-wave (mmWave) frequency bands, may not allow the BS to “see” a large number
of scattering clusters, in comparison to lower frequency bands [137, 153], due to the increase in
the level of sparsity in the radio channel. However, it is to be noted that experimental verifi-
cation of this fact is rather limited, since the rotating horn antennas typically used for channel
measurements have a coarse angular resolution, so that the determination of the number of
multipath components is not easily possible.

2It should be emphasized for the sake of clarity that this comment particularly applies for
radio channels with a large number of scattering clusters.

3In the microwave frequency band, for a typical carrier frequency between 2-5 GHz, the
channel wavelength is between 15 and 6 cm, respectively.
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system spectral efficiency, causing power loss, mostly in the high link signal-

to-noise-ratio (SNR) regime, as demonstrated in [65, 80, 89, 93, 112, 159]. This

finding is typically reported when all terminals in the system have a common

correlation structure (i.e., identical spatial correlation matrices) [80]. In con-

trast to this, a different line of investigation has identified that transmit cor-

relation can in fact improve MU-MIMO system performance (see for example

[42, 117, 120, 160–163]). The critical observation from these studies is that in

a multiuser environment, when the variations in the local terrain (scattering)

around multiple user terminals are considered, there exists a diverse range of

spatial correlation patterns. This means that in addition to the close proximity

of serving antenna elements at the BS, each terminal’s correlation matrix will

be significantly influenced by the specific terrain geometry around the terminal.

Overall, differences in the transmit correlation patterns indicate differences

in the large-scale (or long-term) dominant (preferential) directions of the prop-

agation channel to each terminal. This difference is largely a function of two

physical quantities: (1) the geometry of the local scattering environment around

the terminals’ geographical location and4 (2) inter-element spacing between suc-

cessive serving antenna elements at the transmit array [14, 40, 43, 117]. Hence,

the diverse nature of the transmit correlation patterns can be investigated in

the MU-MIMO framework to explore the differences on the terminal SINR and

system spectral efficiency, in comparison to when each terminal has a common

correlation structure. In order to fully exploit the above mentioned physical

phenomena, remote scattering models have been proposed for modeling spa-

tial correlation structures. For a given propagation environment, these mod-

els are generally parameterized in terms of the central azimuth direction-of-

arrival (DoA) to the terminal, angular spread in the azimuth domain, and inter-

element spacing at the serving array. Typical examples of such models are

the one-ring correlation model with a uniform DoA distribution in the azimuth

domain [43] and the Laplacian DoA correlation model [117]. These models

4The assumption here is that this also encapsulates any dominant line-of-sight (LoS) direc-
tion in the propagation channel. Due to this reason, the LoS direction is not explicitly stated
as a key contributor to unequal correlation.
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are a result of extensive channel measurements in urban propagation environ-

ments, both in the microwave and millimeter-wave (mmWave) frequency bands

[128, 130, 151, 164, 165].

In addition to the above, with a large number of serving antennas at the

BS, the work of [41–43] imposes a tall unitary structure on the correlation ma-

trices, resulting in the joint spatial division and multiplexing (JSDM) precod-

ing approach. Furthermore, for time-division duplex multicellular systems, the

groundbreaking work of the authors in [37, 166, 167] has reported that the use of

remote scattering models with disjoint (non-overlapping) angular support sets

eliminates the fundamental impairment of pilot contamination, associated with

the reuse of uplink pilot sequences across multiple cells.5 Nevertheless, it re-

mains to be seen just how much performance gain diversity in the correlation

matrices across multiple terminals offer, when considering different remote scat-

tering models. Currently, there exists no mathematical quantification for this

difference. Moreover, there also does not exist a rigorous performance compar-

ison between the most common remote scattering models and the simple, yet

non-physical equal correlation models. Hence, having an intuitive understanding

of the performance sensitivity using different spatial correlation models is im-

portant, as it allows researchers to select correlation models in a more informed

manner, especially in multiuser systems. This is the focus of the chapter.

Assuming perfect channel state information at the serving array with matched-

filter (MF) and zero-forcing (ZF) precoding, the expected per-terminal SINR,

expected per-terminal SNR, as well as ergodic sum spectral efficiency gains of

the MU-MIMO system with unequal correlation matrices is explored. Closed-

form approximations of the above mentioned performance metrics are derived.

It is worth mentioning that with large numbers of BS antennas, limiting ap-

proximations for the terminal SINR and system spectral efficiency with ZF and

MF precoding and terminal specific correlation (unequal) matrices have been

5Ever since the breakthrough of large antenna arrays by Marzetta (in [9]), it was believed
that pilot contamination is an impairment which will not vanish in the limit of an unlimited
number of service antennas. However, the authors in the above mentioned studies have shown
that this belief is incorrect, and it is an artifact from using simplistic channel models, such as
the uncorrelated, independent and identically distributed (i.i.d.) Rayleigh fading.
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analyzed in [43, 60, 116]. However, the majority of the analytically derived ex-

pressions with ZF and MF are left as numerical solutions in terms of fixed point

algorithms, making it extremely difficult to gain any practical insights and intu-

ition into the behavior of unequal correlation matrices. On this basis, developing

an insightful analysis of linear precoded MU-MIMO systems with unequal corre-

lation matrices is also an open problem, which is tackled in this chapter. With

clear insights into the contributing network parameters, our closed-form ex-

pressions demonstrate the impact of unequal correlation matrices on the above

performance metrics. Moreover, the analysis is capable of handling a variety of

commonly used physical and non-physical transmit correlation structures (dis-

cussed further in the text and in Section 7.5.1) in the channel.

More specifically, the contributions of this chapter are as follows:

1. Tight closed-form approximations to the expected per-terminal SINR, ex-

pected per-terminal SNR and the ergodic sum spectral efficiency with MF

and ZF precoding are derived. Considering spatially correlated Rayleigh

fading channels with transmit correlation, the closed-form expressions pro-

vide clear insights into the impact of various network parameters, such as

the number of serving antennas, the number of user terminals, link SNR

and unequal correlation matrices, respectively.

2. For both MF and ZF, it is mathematically proven that for a fixed average

correlation matrix across all terminals, equal correlation matrices increase

the total interference power in comparison to the case where each terminal

has a unique correlation matrix. Due to this reason, equal correlation

matrices provide a useful lower limit in the achievable performance of

such systems.

3. The numerical findings suggest that for both MF and ZF precoding, the

choice of a particular correlation model has a significant impact on the

expected SINR, expected SNR and ergodic sum spectral efficiency. Phys-

ically motivated models, such as the one-ring [41, 43] and Laplacian [117]

give enhanced performance in comparison to the non-physical models, such
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as the exponential [46, 80] and the Clerckx [120, 121] correlation models.

Moreover, the closed-form expressions are robust to changes in system

dimensions, link SNR and remain tight with a all considered unequal cor-

relation models. For ease of reference, the one-ring model is referred to as

(O.R.) and the Laplacian model is referred to as (Lap.) for the remainder

of the chapter.

The rest of the chapter is organized as follows: Section 7.2 presents a further

discussion on the typical spatial correlation scenarios for multiuser systems.

Section 7.3 presents the system model and performance metrics used throughout

the chapter with MF and ZF downlink precoding. Section 7.4 demonstrates the

expected per-terminal MF SINR, expected per-terminal ZF SNR and ergodic

sum spectral efficiency approximations and discusses the implications of these

results. Section 7.5 presents the numerical results and evaluates the accuracy of

the derived results in Section 7.4. Note that Section 7.5 also presents discussion

on the various spatial correlation models considered in the chapter and the

thesis. Section 7.6 outlines the concluding remarks of the chapter.

7.2 Typical Spatial Correlation Scenarios

In the case where the serving array is able to see the same set of scattering

clusters for all terminals, a constant correlation matrix is valid [47]. To illus-

trate this, one can take an example of the classical Jakes scattering, where the

serving array is surrounded by a uniform ring of scatterers. Then, the resultant

correlation matrices are simply governed by a zeroth-order Bessel function of

the first kind [47].6 Naturally, this is a more sensible model on the terminal side

of the link, which may be in dense clutter [41, 43, 117].

In contrast to this, if the serving array illuminates a distinct (unique) set

of scatterers, as captured by the remote scattering models, unequal correlation

matrices occur with wide variations in the correlation patterns for different ter-

minals. Here, differences in the terminal locations relative to the serving array

6The argument of the Bessel function contains 2πd, where d is the inter-element spacing
between two successive antenna elements normalized by the carrier wavelength.
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cause differences in the level of local scattering around each terminal. Never-

theless, the discussion thus far only captures the two extreme cases, where the

serving array is able to see either the same or disjoint (unique) set of scattering

clusters for each terminal. In reality, it is likely that some scatterers may be

common to a subset of user terminals, and distinct to others. This scenario is

depicted in Fig. 7.1, where the BS is equipped with a M element uniform linear

array (ULA) and is shown to simultaneously serve two terminals.7 The terminal

closer to the broadside of the array may experience a different level of scattering

in comparison to the terminal closer the endfire of the array. Irrespective of this

fact, in both cases, distinct scatterers may be illuminated within the vicinity of

both terminals’ physical locations, as depicted in the green dots. This further

creates a power variations, known as angular spread, demonstrated with red

circles around the terminals.8 These contribute to the inequality of the correla-

tion structures for the two terminals. In addition to this, a common scatterer

(in the form of a building) is shared amongst the two terminals, increasing the

level of similarity in the correlation matrices between the terminals. This is

demonstrated via the dotted green lines.

This line of thinking raises the following fundamental question: Assuming a

fixed propagation environment, how far apart do two terminals have to be to see

distinct scatterers being illuminated? Answering this question requires extensive

channel measurements, which is beyond the scope of this chapter and the thesis.

Nevertheless, some experimental validation to the above discussion is presented

in a recent study carried out by the authors of [75]. In this study, results of a

mmWave MU-MIMO channel measurement campaign are presented at 60 GHz

in downtown Helsinki, Finland. It is reported that with a 8× 8 uniform planar

array, where the inter-element spacing does not exceed λc, the wavelength at

the operating carrier frequency, on average only 2 scattering clusters out of

7In order not to cluter the diagram, the concept is illustrated with ray optics, a rather sim-
plistic model for electromagnetic propagation, from a reference antenna element m. In reality,
there are electromagnetic waves which radiate in wavefronts from each antenna elements.

8The author wishes to provide another cautionary tale here in that the literature quotes
many definitions of the angular spread. For the sake of this chapter (and the thesis), the
author refers to the term angular spread as the intra-cluster angular spread in the azimuth
domain.
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Figure 7.1: A birds eye view of a downlink MU-MIMO propagation scenario.

a total of 10 were shared between two single-antenna terminals spaced 4 m

apart. This is in comparison to when the terminals are 1 m apart, nearly 8

scattering clusters were observed to be common. To achieve completely different

correlation patterns at the two terminals, inter-user distance of approximately 20

m is reported. Moreover, the average number of common scattering clusters as a

function of the inter-user separation was reported to decrease exponentially, and

increasing the array size to 16× 16 with the same inter-element spacing further

reduced the level of correlation in the propagation channel, due to increased

spatial diversity. The above mentioned scenarios are explored in this chapter

and analytical results are derived considering MF and ZF downlink precoding.

The following section presents the MU-MIMO system model considered in the

chapter.

7.3 System Model

7.3.1 Signal Model

The downlink of a MU-MIMO system is considered. The BS is equipped with

a ULA consisting of M ideal, omnidirectional transmit antenna elements, si-

multaneously serving L non-cooperative, single-antenna terminals (M ≥ L) in
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the same time-frequency interval. No mechanical downtilt at the array is as-

sumed. Narrow-band transmission with equal power allocation to each terminal

is assumed. With channel knowledge at the BS, the received signal at the l-th

terminal can be written as9

rdl,l = ρ
1
2
dl

(
βl
η

) 1
2

gH
dl,lwlsdl,l + ρ

1
2
dl

L∑
k=1
k 6=l

(
βl
η

) 1
2

gH
dl,lwksdl,k + ndl,l, (7.1)

where ρdl is the average downlink transmit power at the BS, βl is the link gain

of the l-th terminal (discussed in the next paragraph). The 1 ×M downlink

small-scale fading channel to terminal l is denoted by gH
dl,l. As this chapter

considers semi-correlated Rayleigh fading with spatial correlation at the BS ar-

ray, gH
dl,l = hH

dl,lR
1
2
l , where hH

dl,l ∼ CN (0, IM) and Rl is the M ×M transmit

spatial correlation matrix specific to terminal l. While the discussion of the

particular structure of Rl is postponed to to Section 7.5, the presented channel

model allows one to analyze any type of antenna correlation structure in Rl.

Furthermore, wl is the M × 1 un-normalized downlink precoding vector from

the BS to terminal l, obtained from the l-th column of W , the M ×L compos-

ite un-normalized precoding matrix. Note that sdl,l is the downlink normalized

data symbol desired for the l-th terminal, such that E [|sdl,l|2] = 1. Moreover,

ndl,l ∼ CN
(
0, σ2

dl,l

)
models the effects of additive white Gaussian noise at the

l-th terminal with noise power σ2
dl,l. Following [80], η = ||W ||2F/L is the normal-

ization parameter for downlink precoding, such that the overall transmit power

remains unchanged (discussed in the following section).

The link gain for terminal l takes the form of

βl = υ

(
d0

dl

)α
ζl, (7.2)

and composes of the large-scale fading effects of geometric attenuation and

shadow-fading, specific to terminal l.10 In particular, υ is the constant for

9For ease of exposition, the key system equations and performance metrics are repeated
here and are consistent with Chapters 3,5 and 6.

10This is also stated for ease of exposition and is consistent with Chapters 3,4,5 and 6.
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geometric attenuation at a reference distance d0, dl is the link distance between

the BS array and terminal l, α is the attenuation exponent and ζl models the

effects of shadow-fading with a log-normal density, i.e., 10 log10 (ζk) ∼ N (0, σ2
sf),

where σsf is the shadow-fading standard deviation. The corresponding value of

each parameter is defined in Section 7.5. For the remainder of the chapter, the

link SNR is defined as the ratio of ρdl with σ2
dl for any arbitrary link, i.e. ρdl/σ

2
dl,

where σ2
dl = σ2

dl,1 = . . . = σ2
dl,L. For simplicity, it is assumed that σ2

dl = 1.

Next, the MF SINR, ZF SNR and ergodic sum spectral efficiency perfor-

mance metrics are introduced.

7.3.2 MF SINR, ZF SNR and Ergodic Sum Spectral

Efficiency

With MF precoding, wl, the l-th column of the composite M × L precoding

matrix, WMF = Gdl is chosen to maximize the desired signal power at the

l-th terminal. Here, GH
dl = [gdl,1, . . . , gdl,L]H is the L × M composite matrix

containing downlink channels for all L terminals in the system. From (7.1), the

SINR for l-th terminal can be written as

SINRMF
dl,l =

ρdl
βl
ηMF |gH

dl,lwl|2

σ2
dl,l + ρdl

βl
ηMF

L∑
k=1
k 6=l

|gH
dl,lwk|2

, (7.3)

where ηMF = ||WMF||2F/L = tr
[
GdlG

H
dl

]
/L. On the other hand, with ZF

precoding, the per-terminal SINR translates into a per-terminal SNR due to

its ability to null multiuser interference. Here, wl forms the l-th column of

the M × L precoding matrix W ZF = Gdl

(
GH

dlGdl

)−1
. Upon recognizing that

GH
dlW

ZF = GH
dlGdl

(
GH

dlGdl

)−1
= IL, the ZF SNR at the l-th terminal is given

by

SNRZF
dl,l =

ρdlβl
σ2

dl,l η
ZF

=
ρdlβl

σ2
dl,l

{
1
L

{
tr
[
(GH

dlGdl)
−1
]}} , (7.4)
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with ηZF = ||W ZF||2F/L = tr
[(
GH

dlGdl

)−1
]/

L. The received SINR with MF

precoding in (7.3) can be translated into the an ergodic sum spectral efficiency

(measurable in bits/seconds/Hz) of the system for all L terminals. This is given

by

E
[
RMF

sum,dl

]
= E

[
L∑
l=1

log2

(
1 + SINRMF

dl,l

)]
. (7.5)

Replacing SINRMF
dl,l with SNRZF

dl,l yields the ergodic sum spectral efficiency, E
[
RZF

sum,dl

]
,

with ZF precoding. Note that for both E
[
RMF

sum,dl

]
and E

[
RZF

sum,dl

]
, the statistical

expectation is performed over the small-scale fading in the downlink channel.

In the following section, tight analytical approximations to the expected per-

terminal SINR, expected per-terminal SNR and ergodic sum spectral efficiency

are derived for both MF and ZF precoding.

7.4 Analysis Methodology and Implications

7.4.1 Expected MF SINR and Ergodic Sum Spectral Ef-

ficiency

From (7.3), the expected SINR for terminal l can be obtained by performing

E
[
SINRMF

dl,l

]
. As motivated in Chapter 3, Section 3.4.3, the exact evaluation

of E
[
SINRMF

dl,l

]
is extremely challenging [68, 80, 86, 87, 93]. Hence, a first-order

delta expansion is again employed, as shown in the analysis methodology of the

above references. This allows one to decouple the numerator and the denomina-

tor of (7.3), such that the expected MF SINR for terminal l can be approximated

by

E
[
SINRMF

dl,l

]
≈

ρdl
βl
η̃MFE

[
|gH

dl,lwl|2
]

σ2
dl,l + ρdl

βl
η̃MF

L∑
k=1
k 6=l

E
[
|gH

dl,lwk|2
] , (7.6)

where η̃MF = E
[
ηMF

]
. In the following lemmas, we derive the expectations in

the numerator and denominator of (7.6).

Lemma 7.4.1. When gH
dl,l = hH

dl,lR
1
2
l , where hH

dl,l ∼ CN (0, IM) and Rl is a
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spatial correlation matrix specific to terminal l, then

E
[
|gH

dl,lwl|2
]

= M2 + ||Rl||2F. (7.7)

Proof of Lemma 7.4.1. One can begin by recognizing that

E
[
|gH

dl,lwl|2
]

= E
[
|gH

dl,lgdl,l|2
]

= E
[
|hH

dl,lRlhdl,l|2
]
. (7.8)

Invoking Lemma 2 of [168] and performing the expectation over the small-scale

fading allows one to state

E
[
|hH

dl,lRlhdl,l|2
]

=
∣∣tr [IMRl]

∣∣2 + tr
[
IMR

H
l IMRl

]
= M2 +

M∑
m=1

M∑
n=1
n6=m

|Rl;m,n|2
(a)
= M2 + ||Rl||2F, (7.9)

where (a) is obtained by recognizing that
∣∣tr [IMRl]

∣∣2 = M2 and
M∑
m=1

M∑
n=1
n 6=m

| [Rl]m,n |2 =

||Rl||2F, with [Rl]m,n being the (m,n)-th entry of Rl. This yields the desired re-

sult in (7.7). �

Lemma 7.4.2. With gH
dl,l = hH

dl,lR
1
2
l , the expected interference power for

terminal l in (7.6) is given by

L∑
k=1
k 6=l

E
[
|gH

dl,lwk|2
]

= (L− 1)
{

tr
[
RlR̄−l

]}
, (7.10)

where R̄−l =
∑L
k=1,k 6=lRl

L−1
is the average correlation matrix of all interfering

terminals from k = 1, . . . , L with k 6= l.

Proof of Lemma 7.4.2. With some algebraic manipulation, one can show

that

E
[
|gH

dl,lwk|2
]

= E
[
|gH

dl,lgdl,k|2
]

= E
[
|hH

dl,lZhdl,k|2
]
, (7.11)
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where Z = R
1
2
l R

1
2
k and

E
[
|hH

dl,lZhdl,k|2
]

= E
[
hH

dl,lZ
Hhdl,kh

H
dl,kZhdl,l

]
. (7.12)

Consider the eigen-decomposition of ZHhdl,kh
H
dl,kZ = QΛQH, where Λ is the

diagonal matrix of eigenvalues. It is noteworthy that Λ has a unit-rank, i.e., it

only contains one non-zero eigenvalue, which is denoted as λ1. From here, it is

straightforward to show that λ1 = hH
dl,kZZ

Hhdl,k. Hence,

E
[
hH

dl,lZ
Hhdl,kh

H
dl,kZhdl,l

] (a)
= tr

[
R

1
2
kRlR

1
2
k

]
(b)
= tr [RlRk] , (7.13)

where (a) is obtained by performing the expectation over hdl,k and recognizing

that E
[
hdl,kh

H
dl,k

]
= IM . Furthermore, (b) is obtained by applying the cyclic

permutation property of the trace, allowing one to manipulate the order of

the elements. Keeping this in mind, the total expected interference power at

terminal l in (7.6) is given by

L∑
k=1
k 6=l

E
[
|gH

dl,lgdl,k|2
]

=
L∑
k=1
k 6=l

tr [RlRk] = tr

Rl

L∑
k=1
k 6=l

Rk


= (L− 1)

{
tr
[
RlR̄−l

]}
. (7.14)

This completes the proof. �

Lemma 7.4.3. With gH
dl,l = hH

dl,lR
1
2
l , the expected value of the normalization

parameter, η̃MF, is given by

η̃MF = E
[
ηMF

]
= M. (7.15)

Proof of Lemma 7.4.3. The proof follows from the definition of ηMF
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allowing one to state

η̃MF =
1

L

{
E
[
tr
[
GdlG

H
dl

]]}
=

1

L

{
E

[
tr

[
L∑
l=1

gdl,l g
H
dl,l

]]}

=
1

L

L∑
l=1

E
[
tr
[
gdl,l g

H
dl,l

]]
=

1

L

L∑
l=1

tr [Rl] = M. (7.16)

This yields the desired result, leading to the following proposition. �

Proposition 7.4.1 With MF precoding on the downlink, when gH
dl,l =

hH
dl,lR

1
2
l with hH

dl,l ∼ CN (0, IM) and Rl being the correlation matrix specific

to terminal l, the expected SINR for terminal l in (7.6) can be approximated as

E
[
SINRMF

dl,l

]
≈

ρdl
βl
M

(M2 + ||Rl||2F)

σ2
dl,l + ρdl

βl
M

(L− 1)
{

tr
[
RlR̄−l

]} , (7.17)

where R̄−l is defined after and (7.10).

Method for Proposition 7.4.1. Substituting the results from Lemmas

7.4.1, 7.4.2 and 7.4.3 gives the desired expression in (7.17). �

Remark 7.4.1. Proposition 7.4.1 presents a simple approximation to a

complex situation where each terminal has a unique correlation matrix. With a

fixed link gain, βl, and a fixed noise power, σ2
l , for terminal l, it is clear that both

the numerator and the denominator of (7.17) are proportional to the number of

service antennas, M , at the ULA, as well as the size of the spatial correlation

matrix, Rl, for terminal l. The denominator is also proportional to L, the

total number of terminals served by the ULA. With all other parameters held

constant, increasing M increases the expected signal power quadratically, while

increasing the expected interference power linearly, resulting in a net increase of

order M to the expected SINR for the l-th terminal. In contrast to this, fixing M

along with all other propagation parameters while increasing L leads to a linear

increase in the expected interference power proportional L−1. Moreover, fixing

all other parameters, it can be observed that as tr
[
RlR̄−l

]
increases, the total
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expected interference power at terminal l also increases. As it directly influences

the expected interference power, a more fundamental question is: When does

tr
[
RlR̄−1

]
reach its maximum value? To answer this question, the impact of

variation in the correlation matrices on the expected MF SINR is considered. It

is to be noted that the unequal correlation case results in Rl 6= R̄−l. In order to

make a fair comparison with these distinct values of Rl and R̄−l, for the equal

correlation case, a common value given by 1
2

(
Rl + R̄l

)
is assumed for both

correlation matrices. Therefore, the interference term relies on tr
[
RlR̄−l

]
for

the unequal correlation case and tr
[(

1
2

(
Rl + R̄−l

))2
]

for the equal correlation

case. Beginning with the fact that tr [A2] ≥ 0 for any Hermitian matrix A, one

can write11

tr

[(
Rl − R̄−l

2

)2 ]
≥ 0, (7.18)

tr

[
R2
l

4
+
R̄2
−l

4
− RlR̄−l

4
− R̄−lRl

4

]
≥ 0, (7.19)

tr

[
R2
l

4
+
R̄2
−l

4
+

1

4
RlR̄−l +

1

4
R̄−lRl −RlR̄−l

]
≥ 0, (7.20)

tr

[(
Rl + R̄−l

2

)2
]
≥ tr

[
RlR̄−l

]
. (7.21)

Hence, if Rl = R̄−l, the case for equal correlation matrices, terminal l will

have a higher total expected interference power in comparison to Rl 6= R̄−l, the

case of unequal spatial correlation. Since this holds across all terminals, it can

be concluded that conclude that equal correlation matrices result in the lowest

SINR, assuming a fixed overall average correlation matrix. Therefore, the equal

correlation matrices provide a useful lower bound for analysis of such systems.

Note that (7.17) can be further translated to approximate the ergodic sum

11Note that real eigenvalues are needed for this to hold, and thus the A has to be Hermitian.
Since R1, . . . ,RL are Hermitian matrices, it follows that R̄−l and RlR̄−l are also Hermitian.

189



Chapter 7. Linear Precoding Analysis With Unequal Spatial Correlation

spectral efficiency of the system by

E
[
RMF

sum,dl

]
≈

L∑
l=1

log2

(
1 + E

[
SINRMF

dl,l

])
. (7.22)

Consistent with Chapters 3,4,5 and 6 of the thesis, it is also to be noted that

(7.22) is an approximation to (7.5), as E
[
SINRMF

dl,l

]
itself is an approximation.

In the following subsection, an analysis with ZF precoding is carried out with

unequal spatial correlation matrices.

7.4.2 Expected ZF SNR and Ergodic Sum Spectral

Efficiency

The denominator of the ZF SNR for terminal l in (7.4) contains tr[
(
GH

dlGdl

)−1
].

Finding the exact moments of this term is an extremely challenging task, except

for the simplest case of uncorrelated i.i.d. Rayleigh fading [140]. Hence, we

approximate the inverse in (7.4) by a finite Neumann series (NS) expansion, as

demonstrated in Chapter 4 [77, 78].12 To do this, GH
dlGdl is separated into its

expected diagonal component and correction terms, such that

GH
dlGdl = MIL + ∆, (7.23)

where

∆ = GH
dlGdl −MIL, (7.24)

and E [∆] = 0. As a result, with an order N NS, one can approximate the

inverse of GH
dlGdl as

(
GH

dlGdl

)−1 ≈ 1

M

N∑
p=0

(−1)p
(

∆

M

)p
. (7.25)

12This approach was mentioned briefly in Chapter 4, where the effects of unequal correlation
matrices were first analyzed.
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Substituting the definition of ∆ yields

(
GH

dlGdl

)−1 ≈ 1

M

N∑
p=0

(−1)p

(M)p
(
GH

dlGdl −MIL
)p
. (7.26)

Further expansion and simplification results in

(
GH

dlGdl

)−1 ≈ 1

M

N∑
p=0

(−1)p

(M)p

p∑
q=0

(
p

q

)(
GH

dlGdl

)q
(−M)p−q

=
1

M

N∑
p=0

p∑
q=0

(
p

q

)
(−1)q

(M)q
(
GH

dlGdl

)q
. (7.27)

Substituting (7.27) allows us to approximate SNRZF
dl,l in (7.4) as

SNRZF
dl,l ≈

ρdlβl

σ2
dl,l

{
tr

[
1
M

N∑
p=0

p∑
q=0

(
p
q

) (−1)q

(M)q
(GH

dlGdl)
q

]} . (7.28)

To evaluate (7.28), the univariate special case of the first-order delta expan-

sion motivated in Chapter 3, Section 3.4.3 is employed. After some algebraic

manipulation, one can express the expected ZF SNR for the l-th terminal as

E
[
SNRZF

dl,l

]
≈ ρdlβl

σ2
dl,l

{
1
M

N∑
p=0

p∑
q=0

(
p
q

) (−1)q

(M)q
E
[
tr
[
(GH

dlGdl)
q]]} . (7.29)

In the following proposition, with a two-term NS (i.e., N = 2), a closed-form

solution to (7.29) is presented for the general case where each terminal has an

unequal spatial correlation matrix.

Proposition 7.4.2. When gH
dl,l = hH

dl,lR
1
2
l , where hH

dl,l ∼ CN (0, IM) and

Rl is a terminal specific transmit spatial correlation matrix, the expected per-

terminal SNR at the l-th terminal with ZF precoding in (7.4) can be approxi-

mated by

E
[
SNRZF

dl,l

]
≈ ρdlβlM

3

σ2
dl,l

{
L
(
M2 + L

{
tr
[
R̄2
]})} , (7.30)

where R̄ =
∑L
j=1 Rj

L
is the average correlation matrix of all terminals in the
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system.13

Method for Proposition 7.4.2. From (7.28), when N = 2, one can write

(
GH

dlGdl

)−1 ≈ 1

M

[
IL −

GH
dlGdl

M
+ IL +

(
GH

dlGdl

)2

(M)2 − 2

M
GH

dlGdl + IL

]

=
1

M

[
3IL −

3

M
GH

dlGdl +
1

M2

(
GH

dlGdl

)2
]
. (7.31)

Taking the trace of (7.31) yields

tr
[(
GH

dlGdl

)−1
]
≈ 1

M

{
3L− 3

M
tr
[
GHG

]
+

1

M2
tr
[(
GH

dlGdl

)2
]}

. (7.32)

The subtraction of the first two terms on the right-hand side of (7.32) results

in a constant (discussed prior to (7.35)). This allows one to primarily focus on

the trace in the final term of (7.32), which can be re-written as

tr
[(
GH

dlGdl

)2
]

=
L∑
i=1

L∑
j=1

gH
dl,i gdl,j g

H
dl,j gdl,i. (7.33)

Performing the expectation of (7.33) over the fast-fading yields

E
[
tr
[(
GH

dlGdl

)2
]]

=E

 L∑
i=1

(
gH

dl,i gdl,i

)2
+

L∑
i=1

L∑
j=1
j 6=i

gH
dl,i gdl,j g

H
dl,j gdl,i



=E

 L∑
i=1

{
M2 + tr

[
R2
i

]}
+

L∑
i=1

L∑
j=1
j 6=i

tr [RiRj]


=LM2 +

L∑
i=1

L∑
j=1

tr [RiRj]

=LM2 + tr

[
L∑
i=1

Ri

L∑
j=1

Rj

]

=L
(
M2 + L

{
tr
[
R̄2
]})

. (7.34)

13This is in contrast with the expected MF SINR result in (7.17), whose denominator
composed of tr

[
RlR̄−l

]
, where R̄−l was the average correlation matrix of all interfering

terminals, instead of all terminals in the system.
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Substituting (7.34) into (7.32) and simplifying using the fact that E
[
tr
[(
GH

dlGdl

)]]
=

ML, yields

E
[
tr
[(
GH

dlGdl

)−1
]]
≈ 1

M3
L
{
M2 + L tr

[
R̄2
]}
, (7.35)

where R̄ is defined in (7.30). Substituting (7.35) into the denominator of (7.29)

and performing some routine algebra yields the desired expression. This con-

cludes the proof. �

Remark 7.4.2. The result in Proposition 7.4.2 also provides a closed-form

solution to a complex scenario, where each terminal experiences unequal levels

of spatial correlation. The remarkably simple structure of (7.30) readily demon-

strates the impact of unequal correlation matrices, through the tr
[
R̄2
]

term

in the denominator of (7.30). Unlike the MF case, with the global power nor-

malization of the ZF precoding matrix, the expected SNR is the same for each

terminal, with the exception of the link gain, βl, which is dependent on terminal

l. Holding all other propagation and system parameters fixed and increasing the

number of serving antennas, M , will indefinitely increase the expected SINR at

the rate of order M due to the numerator of the expected SINR containing

a M3 and the denominator containing a M2 term. In contrast to this, hold-

ing all other parameters constant and increasing L without bound will lead to

an increase in the expected noise power proportional to L2. Such insights are

missing at large from more complex solutions derived in the literature (see e.g.,

[43, 44, 60, 61, 116] and the references therein) which require a linked set of equa-

tions, even in the large system regime, where M and/or L can be assumed to

be pushed to infinity.

Remark 7.4.3. The generality of the results presented in Propositions 7.4.1

and 7.4.2 is worth highlighting. The results are applicable for any system dimen-

sion, link SNR level and are capable of handling any type of spatial correlation

structure. The derived results can also be applied to conventional multicellular

systems, distributed antenna arrays, as well as small-cellular systems, where

the additional effects of inter cellular interference can be characterized in the
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exact same way.14 In addition to this, the ergodic sum spectral efficiency of the

system with ZF precoding can be approximated in the same manner as for MF

precoding, such that

E
[
RZF

sum,dl

]
≈

L∑
l=1

log2

(
1 + E

[
SNRZF

dl,l

])
. (7.36)

Numerical evaluation of the derived results in Propositions 7.4.1 and 7.4.2, along

with their respective ergodic sum spectral efficiency approximations is presented

in the subsequent section.

7.5 Numerical Results

Unless otherwise specified, parameters for the numerical evaluation are as fol-

lows: A circular cell with a radius of 100 m is considered, with terminals which

are uniformly distributed over the cell coverage area. A reference distance of

d0 = 10 m is assumed with the unit-less geometric attenuation constant, υ,

where υ is chosen for the subsequent numerical results such that the instanta-

neous SINR with processing is 0 dB, 95% of the time. The attenuation exponent

and shadow-fading standard deviation are α = 3.7 and σsf = 8 dB, respectively

[15]. The noise power for each terminal is set to σ2
dl = 1 and for each subsequent

result, 104 Monte-Carlo trails were carried out. An inter-element spacing of

0.5λ is assumed between adjacent elements in the ULA. Prior to presenting the

numerical results, details for the spatial correlation models under investigation

is presented.

7.5.1 Spatial Correlation Models

Considering a ULA, as a baseline case, equal correlation for each terminal is

modeled with the widely used non-physical exponential correlation model, where

the correlation matrix for terminal l is given by [Rl]i,j = ϕ|i−j| , ∀l = 1, . . . , L

14This is merely pointed out to demonstrate the true generality of the derived results, hence,
no numerical evaluation of the performance of such systems is presented.
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for i, j ∈ 1, . . . ,M [46] with 0 ≤ ϕ ≤ 1. The advantage of this model lies in its

simplicity, as it is controlled by a single-parameter, ϕ, common to each termi-

nal. On the other hand, when each terminal is assigned an unequal correlation

matrix, three models in the Clerckx [120], one-ring (O.R.) [43, 117] and Lapla-

cian (Lap.) [14, 117] are employed. While the former is non-physical, the two

latter models are in the category of remote scattering models and are physically

motivated by channel measurements [14]. For the Clerckx correlation model,

terminal l’s correlation matrix is given by [Rl]i,j = ϕ
|i−j|
c , where ρc = |ϕ|ejφl .

Here, |ϕ| = ϕ in the exponential model and is the same for each terminal, as

it captures the effects of inter-element spacing at the ULA. Moreover, a unique

phase φl ∼ U [a, b], a subset of [0, 2π] is used to differentiate the terminal loca-

tions in the azimuth domain. In the subsequent figures, the Clerckx model is

refereed to as C. Corr and the exponential model is refereed to as Exp. Corr.,

respectively. In contrast to the above, the O.R. model with a ULA for terminal

l states

[Rl]i,j =
1

2∆

∆+φl0∫
−∆+φl0

e−j2πds(i,j) sin (φl)dφl, (7.37)

where ∆ denotes the angular spread in the azimuth domain, φl0 denotes the

central azimuth angle seen from the serving array, φl is the actual DoA and

ds (i, j) captures the inter-element spacing normalized by the carrier wavelength

between the i-th and j-th antenna elements. Note that the O.R. model as-

sumes a uniform distribution of received power from planar waves impinging on

the serving antennas. Alternatively, modeling the correlation with a Laplacian

power azimuth spectrum results in

[Rl]i,j =
1

γ

φl0+π∫
φl0−π

e−
√

2
θ
|φl−φl0|−j2πds(i,j) sin(φl)dφl, (7.38)

where γ = 1
/√

2θ(1 − e
−
√

2π
θ ) is the normalization constant [169]. For a fair

comparison between the O.R. and Lap. correlation models, both the models

were ensured to have the same root mean square (rms) angular spread, denoted
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as σφl . Hence, for the O.R. model with a uniform power azimuth spectrum,

∆ =
√

3σφl and for the Lap. case, θ is the numerical solution to

σlφ =

√√√√γ

[
−π2δ√

2/θ
− 2πδ(√

2/θ
)2 −

2δ(√
2/θ
)3 +

2

(
√

2/θ)3

]
, (7.39)

respectively, where δ = e−
√

2
θ π [169].

In the following subsection, numerical results for the analytical approxima-

tions derived in (7.17), (7.22), (7.30) and (7.36) with above mentioned correla-

tion structures are evaluated for a MU-MIMO systen.

7.5.2 Performance of Unequal vs. Equal Spatial

Correlation

Fig. 7.2 illustrates the expected per-terminal SINR with ZF precoding as a

function of the link SNR with M = 8 and L = 3. In addition to the exponen-

tial (baseline) and Clerckx correlation models, the uncorrelated i.i.d. Rayleigh

fading case is also considered as an upper bound for performance comparison

purposes.

Three trends can be observed from the figure: Firstly, with unequal corre-

lation matrices from the Clerckx model, the larger the spread of the random

phases in φl, the higher the expected SINRs. In spite of the correlation mag-

nitude being as high as ϕ = 0.99, increasing the spread of φl to U [0, π] and

U [0, 2π] in comparison to fixing φl (equal correlation) yields a 6 and 9 dB gain

respectively in the expected SINR at any given link SNR level.15 This tremen-

dous performance difference is owed due to the fact that increasing the spread

of φl increases the amount of spatial diversity induced between the channels,

allowing the composite channel rank to increase. This results in an increase in

the spatially usable degrees of freedom giving the superior performance. Such

a significant performance difference demonstrates the sensitivity of MU-MIMO

15Note that a slight discrepancy can be observed in the numerical results, where the symbol
“u[a, b]” is used to signify U [a, b], a uniform distribution on [a, b].
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Figure 7.2: Expected ZF SNR vs. link SNR with M = 8 and L = 3.

systems to changes in the phase of the correlation matrices between terminals.

On the other hand, fixing φ′ls to a particular value diminishes the diversity of

the phases in the correlation matrices, resulting in equal (exponential) corre-

lation structures, yielding lower expected SINRs. Secondly, decreasing ϕ from

0.99 to 0.7 also provides a large enhancement in the expected SINRs both with

equal (exponential) and unequal (Clerckx) correlation matrices. A decrease in

the level of correlation causes higher diversity to be leveraged in the channel,

leading to lower noise noise enhancement in the ZF precoder. As the correlation

magnitude is relatively small, one can observe a lesser difference between the

uncorrelated i.i.d. and correlated cases. Thirdly, the derived approximations

are sufficiently accurate for the entire range of link SNR for all cases considered.

The above discussion is in agreement with Remarks 7.4.1 and 7.4.2, where it

was analytically predicted that equal correlation structures would result in lower

performance in comparison to unequal correlation.

Fig. 7.3 demonstrates the expected MF SINR vs. link SNR for the same

system parameters. Here, similar trends as in Fig. 7.2 can be observed for both
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Figure 7.3: Expected MF SINR vs. link SNR with M = 8 and L = 3.

ϕ = 0.7 and 0.99. It is noteworthy that for both ϕ = 0.7 and ϕ = 0.99, the

gain obtained from increasing the spread of ϕl (unequal correlation matrices)

from U [0, π] to U [0, 2π] is not as prominent as in the ZF case. This is due to

the MF precoder’s inability to mitigate the presence of multiuser interference.

Thus, the expected SINRs are seen to reach a plateau at higher link SNRs (> 10

dB). For lower values of link SNRs (< 0 dB), the performance of MF precoding

gives significantly better performance due to its ability to maximize the desired

signal power whilst being insusceptible to the strong receiver noise presence at

such low SNRs. The derived expressions for the expected SINR with increasing

link SNRs are observed to be tight.

Now the influence of increasing the number of serving antennas with a fixed

number of terminals is investigated on the ergodic sum spectral efficiency with

unequal and equal correlation matrices, considering MF and ZF precoding.

Fig. 7.4 depicts the ergodic sum spectral efficiency as a function of link SNR.

Increasing M from 8 to 30 (transitioning from top to the bottom subfigure)

naturally increases the ergodic sum spectral efficiency for both the exponential
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Figure 7.4: ZF (and MF where explicitly stated) ergodic sum spectral efficiency
vs. link SNR with M = 8, 30 and L = 3.

(equal) and Clerckx (unequal) correlation models. When M = 8, the ergodic

sum spectral efficiency with MF precoding saturates (in the top subfigure) due

to the remaining interference and crosses its equivalent ZF counterpart at a link

SNR level of 11 dB. For both M = 8 and 30 (i.e., in both the subfigures), it can

be readily seen that the derived approximations remain tight over the range of

link SNRs considered, consistent with Remark 7.4.3.

The expected ZF SNR as a function of the link SNR is now compared with

O.R. and Lap. unequal correlation models for M = 8 and K = 3. Fig. 7.5

demonstrates two trends: First, with a wide rms angular spread, σφl = 70◦,

performance of both the O.R. and Lap. correlation models is equivalent to the

uncorrelated i.i.d. Rayleigh case. This is owed to the increased spatial diversity

in the propagation channel due to the larger angular spreads. As a further con-

sequence of this, one can also observe that the expected SNR is insensitive to

changes in the terminal’s central azimuth angle, where a marginal change in the

expected ZF SNR can be observed when serving each terminal broadside to the

ULA. Nevertheless, the O.R. model with its uniform power azimuth spectrum
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Figure 7.5: Expected ZF SNR vs. link SNR with M = 8 and L = 3.

still outperforms the Lap. model, which has a narrow peak in its power azimuth

spectrum. Secondly, for narrow rms angular spreads, the gap between the O.R.

and Lap. models widens, where the expected ZF SNR with the O.R. model is

higher than the Lap. case with both fixed and variable central azimuth angles.

Here, the expected SNR is sensitive to the variability in the central azimuth an-

gles. We observe an expected SNR difference of approximately 5 dB going from

fixed to variable central DoA. Moreover, for smaller rms angular spreads, both

O.R. and Lap. give higher expected SINRs than the Clerckx correlation model.

This may be due to the fact that in addition to the unique phase components,

the correlation magnitudes in the O.R. and Lap. models are also unique for each

terminal. As a result, their combined effect induces an even higher degree of

spatial diversity, further improving the per-terminal performance. Once again

one can observe that equal (exponential) correlation matrices yield a much lower

performance and thus is an effective baseline performance measure, as shown in

Remarks 7.4.1 and 7.4.2.

In Fig. 7.6, a similar trend to Fig. 7.3 can be observed for MF precoding
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Figure 7.6: Expected MF SINR vs. link SNR with M = 8 and L = 3.

where the O.R. model is again seen to give higher SINRs than the Lap. for both

narrow and wide rms angular spreads. Both models give higher SINRs than the

Clerckx model, whilst all simulated and analytical responses are seen to saturate

due to the large presence of interference at high link SNRs. In Fig. 7.7, with

M = 30 and K = 3, the ergodic sum spectral efficiency of both MF and ZF

precoders was evaluated for narrow rms angular spreads. It can be seen that

at low SNRs, MF performance dominates ZF, while at link SNR> 12 dB, ZF

outperforms MF. In both Figs. 7.7 and 7.6, the analytical expressions are again

seen to retain their accuracy.

7.6 Conclusion

This chapter presented closed-form approximations of expected per-terminal

SINR, expected per-terminal SNR and ergodic sum spectral efficiency of a MU-

MIMO system with MF and ZF precoding. Considering spatially correlated

Rayleigh fading with unequal correlation matrices, the analysis is robust to

changes in the system size, link SNR levels and various physical and non-physical
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correlation models. With both MF and ZF precoding, it is found that the total

expected interference and noise terms tend to increase with equal correlation

matrices for each terminal, resulting in smaller expected SINR and SNR, re-

spectively. More physically motivated remote scattering models such as O.R.

and Lap., which consider unique correlation magnitudes and phases per-terminal

tend to predict higher performance than the exponential and Clerckx correlation

models, which consider fixed correlation magnitudes for each terminal. To the

best of the author’s knowledge, such a performance analysis and evaluation of a

MU-MIMO system is unique and emphasizes that fact that the performance of

the system is ultimately governed by the respective spatial correlation model in

use. Moreover, it also emphasizes the fact that unique levels of scattering around

each terminal contributes to greater spatial diversity in the channel. Such an

important detail is missing from models which design a fixed correlation matrix

for each terminal, yet is present in remote scattering models which design unique

correlation matrices for each terminal.
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Chapter 8

Uplink MRC Analysis With

Fixed Physical Array Sizes

Summary. The unprecedented spectral and energy efficiency gains on offer

with large antenna arrays are commonly based on the existence of favorable

propagation. That is, as the number of service antennas at a cellular base sta-

tion (BS) grows without bound, propagation vectors to and from two distinct

terminals become mutually orthogonal, removing multiuser interference. In con-

trast to many prior studies which consider fixed inter-element spacing between

two adjacent antennas, and therefore an increasing array aperture with growing

number of elements, fixed physical array sizes are considered in this chapter.

Here, an increase in the number of antennas in a fixed space imposes an in-

versely proportional decrease in the inter-element spacing. More specifically,

the chapter analyzes the uplink performance of large multiuser multiple-input

multiple-output systems, where the BS antennas are configured in a uniform

linear array (ULA) with a fixed total space. An investigation into the combined

effects of two contradicting phenomena is carried out: (1) the reduction of spa-

tial diversity due to reducing the spatial separation between the BS elements,

and (2) the increase in receive diversity by increasing the sheer number of ele-

ments. In this context, with maximum-ratio combining (MRC) at the BS, the

chapter presents a general analytical framework for approximating the ergodic

sum spectral efficiency, by approximating the expected (average) per-terminal
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signal-to-interference-plus-noise-ratio (SINR). Furthermore, the chapter extends

and generalizes a prior physical space-constrained (SC) channel model, by in-

cluding the effects of unequal levels of receive spatial correlation and unequal

levels of line-of-sight (LoS) for each terminal. In addition to the above, deter-

ministic limits of the SINR and sum spectral efficiency are also analyzed when

the number of service antennas is increased indefinitely with a fixed number of

terminals. The derived analytical expressions lead to numerous useful insights

into the behavior of the expected SINR and ergodic sum spectral efficiency with

variations in the system and propagation parameters. Supporting numerical

results demonstrate that a SC ULA deployment with MRC processing causes

saturation of the expected SINR and ergodic sum spectral efficiency with in-

creasing link signal-to-noise-ratio (SNR) and serving antennas. Several special

cases of the derived expressions are also presented when only non LoS compo-

nents are present with equal and unequal spatial correlation matrices, as well as

when each terminal having LoS components has equal correlation matrices.

8.1 Introduction

The emergence of large-scale antenna arrays has posed new engineering chal-

lenges, which must be overcome before its rapid expansion on a scale com-

mensurate with its true potential. One of the critical issues is accommodating

a large number of antenna elements in constrained physical spaces at the BS

[9, 57, 89, 90, 170]. This tends to increase the level of spatial correlation and an-

tenna coupling, as successive elements are placed in close proximity with inter-

element spacings less than the desired half-a-wavelength [81, 84, 89, 156, 171]. In

the multiuser context, this is known to cause a detrimental impact on the termi-

nal signal-to-interference-plus-noise-ratio (SINR) and system spectral efficiency,

as the radio channel is unable to provide sufficient decorrelation between the

different closely spaced antennas. It is thus important to rigorously analyze

and evaluate the performance of large multiuser multiple-input multiple-output

(MU-MIMO) systems with space-constrained (SC) antenna arrays.

204



Chapter 8. Uplink MRC Analysis With Fixed Physical Array Sizes

With the knowledge of channel state information at both the transmitter and

the receiver, a number of works have investigated the impact of SC antenna ar-

rays on the performance of large MU-MIMO systems. For instance, the effects of

fitting a large number of antennas in size-constrained structures have been stud-

ied in [59, 89–93, 159]. More specifically, [89] analyzed the ergodic sum spectral

efficiency of large MU-MIMO systems with fixed array dimensions. The au-

thors of [90] demonstrated that multiuser interference does not vanish in large

SC MU-MIMO systems with growing numbers of antennas. The uplink per-

formance with maximum-ratio combining (MRC), zero-forcing and minimum-

mean-squared-error receivers has been analyzed in [59, 93] where the authors

derive upper and lower bounds on the ergodic sum spectral efficiency. More-

over, [91, 92, 159] investigated the energy efficiency performance of SC systems

with various large-scale antenna array topologies considering antenna coupling.

However, almost none of the above mentioned studies consider the effects

of line-of-sight (LoS) components1, which may be a dominant feature in future

wireless systems with the rise of smaller cell sizes, potentially operating in the

millimeter-wave (mmWave) frequency bands [80, 109]. Hence, understanding the

performance of large MU-MIMO systems with SC arrays and LoS presence, i.e.,

with Ricean fading is of particular importance [82]. It is also worth noting that

the respective channel models in [59, 93, 159] assume that all terminals are seen

by the BS array via the same set of incident directions, resulting in equal spatial

correlation structures for each terminal. However, in reality, as each terminal is

located in a unique geographical location, differences in local scattering around

each terminal can give rise to wide variations in the correlation patterns across

their local terrain [40]. In addition to the smaller inter-element spacings, this

further influences the level of correlation in the channel, impacting the terminal

SINR and system spectral efficiency. Therefore, to more accurately capture the

correlation and LoS differences in multiple user channels, this chapter considers

unequal correlation matrices and unequal LoS levels, unique to each terminal.

1An exception is made for [90], which considers pure LoS channels. This is an extreme
case, which in general may not be realizable in practice even at mmWave frequencies, where
at least 1-3 scattering clusters are anticipated on average in the propagation channel [137].
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Motivated by the aforementioned considerations, with a SC uniform linear array

(ULA), the chapter presents a general analytical framework for the analysis of

expected per-terminal SINR and ergodic sum spectral efficiency of large uplink

MU-MIMO systems with MRC receiver processing at the BS.2

More specifically, the notable contributions of this chapter are listed as fol-

lows:

1. The performance of uplink MU-MIMO systems with SC ULAs under spa-

tially correlated Ricean fading is analyzed. In doing so, the chapter ex-

tends and generalizes the physical space-constrained channel model pre-

sented in [59, 89–93, 159] to cater for unequal correlation matrices and LoS

levels with an unequal Rice factor for each terminal. To the best of the au-

thors’ knowledge, such generality in the channel model has not previously

been considered.

2. With MRC at the BS array, tight closed-form approximations to the ex-

pected per-terminal SINR and ergodic sum spectral efficiency are derived.

It is observed that the SC antenna deployment causes a saturation of

the expected SINR, as the number of BS antennas and link signal-to-

noise-ratio (SNR) is increased. The derived expressions lend themselves

to important insights into the behavior of the expected SINR and ergodic

sum spectral efficiency as a function of various system and propagation

parameters.

3. With a fixed number of user terminals, as the number of antenna ele-

ments in the ULA increases without bound in a fixed physical space, novel

closed-form expressions are derived to analyze the deterministic limits of

the expected SINR and ergodic sum spectral efficiency. The limiting ex-

pressions demonstrate the convergence behavior of large SC MU-MIMO

systems and emphasize their inability to leverage favorable propagation

conditions.

2Though not shown, the analytical approach presented in the chapter can be extended to
other SC arrays, such as the uniform rectangular and cylindrical arrays.
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4. In addition to the above, special cases of the derived analytical expressions

are presented when considering both LoS and NLoS with equal correlation,

and additionally considering NLoS with unequal correlation, respectively.

The rest of the chapter is structured as follows: Section 8.2 details the SC

system model, performance metrics of interest and presents the proposed chan-

nel model for SC ULAs. Section 8.3 analyzes the expected per-terminal SINR

and ergodic sum spectral efficiency with spatially correlated Ricean fading chan-

nels. Section 8.4 presents the special cases of the expected SINR approximation

derived in Section 8.3, under the conditions of equal and unequal spatial correla-

tion structures in Rayleigh fading channels, as well as for Ricean fading channels

having equal correlation structures for all terminals. Section 8.5 analyzes the

deterministic limits of the expected SINR and ergodic sum spectral efficiency,

as the number of receive antennas at the ULA are increased indefinitely with a

fixed number of terminals. Section 8.6 presents the numerical performance eval-

uation of the derived approximations, while Section 8.7 presents the concluding

remarks of the chapter.

8.2 System Model

8.2.1 Signal Model

The uplink of a large MU-MIMO system operating in an urban microcellular

(UMi) environment is considered. Here, L non-cooperative single-antenna user

terminals transmit data to M receive antennas at the BS (M � L) in the same

time-frequency interval. The BS comprises of a ULA with equispaced, omnidi-

rectional antennas. No mechanical downtilt is assumed at the BS array. Channel

knowledge at the BS is assumed with narrow-band transmission and no uplink

power control. The composite M × 1 received signal at the BS array can be

written as

yul = ρ
1
2
ulGulD

1
2sul + nul, (8.1)
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where ρul is the average transmit power of each terminal, Gul denotes the nor-

malized M × L fast-fading uplink channel matrix between M BS antennas and

L terminals (discussed further in Section 8.2.2), D is an L × L diagonal ma-

trix of link gains for the L terminals in the system, such that [D]l,l = βl. The

large-scale fading effects for terminal l are captured

βl = υ

(
d0

dl

)α
ζl. (8.2)

In particular, υ denotes the unit-less constant for geometric attenuation at a

reference distance d0, dl denotes the link distance between the BS array and

terminal l, α denotes the attenuation exponent and ζl models the effects of

shadow-fading following a log-normal density, i.e., 10 log10 (ζl) ∼ N (0, σ2
sf), with

σsf denoting the shadow-fading standard deviation.3 Numerical values for the

above are tabulated in Section 8.6. The L×1 vector of uplink data symbols from

the L terminals is given by sul, such that the l-th entry of sul, sl has E [|sul,l|2] =

1. Additive white Gaussian noise entries at the M BS antennas are given by

the M × 1 vector nul, such that the m-th entry of nul, nul,m ∼ CN
(
0, σ2

ul,m

)
.

For the remainder of the chapter, it is assumed that σ2
ul = σ2

ul,m = 1, for all

m = 1, . . . ,M . Hence, the link SNR is defined as ρul/σ
2
ul = ρul.

8.2.2 Proposed Space-Constrained Channel Model

Previous studies (see e.g., [59, 93, 159]) on large SC MU-MIMO systems consider

a physical channel model based on full NLoS propagation conditions, where the

BS sees the same set of scattered directions from each terminal. Such a model

is extended here to cater for the presence of LoS in the propagation channel,

as well as a unique set of scattered directions from each terminal taking into

account differences in the local scattering around each terminal. Specifically,

Gul = [gul,1, . . . , gul,L], where gul,l, the l-th column of Gul contains the M × 1

3Note that the classical large-scale fading model is employed here from the earlier chapters
in the thesis. As the uplink of a MU-MIMO system is considered, the received signal in (8.1)
is scaled by the average uplink transmit power, assumed equal for each terminal. Due to this
reason, the expression in (8.2) is not scaled by the average uplink transmit power.
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uplink channel vector from terminal l to the BS array given by

gul,l =

(√
1

1 +Kl

1√
P

)
Alhul,l +

√
Kl

Kl + 1
h̄ul,l. (8.3)

In the above,
√

1/ (1 +Kl) and
√
Kl/ (Kl + 1) balance the amount of power

present in the diffuse and specular components of the channel according to the

Ricean K-factor, Kl, specific to terminal l [14]. Moreover,
√

1/ (1 +Kl) is

further scaled by a factor of 1√
P

to normalize the steering vectors in Al, the

M × P transmit steering matrix associated with the diffuse components of the

channel. Here, P denotes a large yet finite number of diffuse wavefronts. For

ULAs

Al = [a (φl,1) ,a (φl,2) , . . . ,a (φl,P )] , (8.4)

where each vector in (8.4) is given by

a (φl,i) =
[
1, ej2πd sin(φl,i), . . . , ej2π(M−1)d sin(φl,i)

]
. (8.5)

Note that i ∈ 1, . . . , P , with d denoting the equidistant inter-element spacing

normalized by the carrier wavelength, λc; φl,i ∈ [−∆/2,∆/2] denotes the i-

th direction-of-arrival (DOA) from terminal l to the BS array and ∆ is the

angular spread in the azimuth domain. With such a model, different degrees of

receive correlations can be modeled by varying the angular spread. Moreover,

hul,l ∼ CN (0, IP ) is the P × 1 vector of diffuse channel gains, whilst h̄ul,l is the

M × 1 vector denoting the specular component of the channel and is governed

by the ULA’s steering response with a LoS DoA, φ̄l for terminal l, such that

h̄ul,l =
[
1, ej2πd sin(φ̄l), . . . , ej2π(M−1)d sin(φ̄l)

]
. (8.6)

Remark 8.2.1. For both a (φl,i) and h̄l, it is to be noted that the nor-

malized total array length, d̄0, is fixed at the BS, such that the inter-element

spacing between two successive antenna elements is given by d = d̄0

M−1
λc. Since

the physical dimensions of the BS array are predetermined, the above model ac-
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curately allows us to capture the correlation due to close proximity of adjacent

antenna elements positioned at the array. This, along with the unique correla-

tion matrices for each terminal created by the Al for l ∈ 1, . . . , L, constitutes

our focus in the following sections.

Remark 8.2.2. Furthermore, it is to be noted that when two successive ele-

ments receiving (or transmitting) electromagnetic waves are placed in extremely

close proximity, some of the energy which is primarily intended for one particu-

lar element is seen at other elements [91, 92, 172]. More specifically, the electric

and the magnetic field of a particular element impacts the current distribution

of the adjacent elements, which leads to perturbation in the radiation pattern

and input impedance of each antenna element [173]. This is known as mutual

coupling. Indeed, one would expect the performance of such systems to be influ-

enced by this physical artifact. However, it has been shown in [174] (and quoted

in [91]) that the effects of mutual coupling can be reduced significantly with

impedance matching approaches. In line with these previous studies, the per-

formance of space-constrained arrays is studied without considering the effects

of mutual coupling.

To determine the level of LoS and NLoS present in the simulated propaga-

tion channel from a given terminal to the BS, a probability based approach is

employed in line with [81, 84]. Both LoS and NLoS probabilities are a function

of the link distance, from which the LoS and NLoS geometric attenuation, as

well as other link characteristics are obtained. Propagation parameters from

both microwave [136] and mmWave [137] frequency bands are considered. For

notational clarity, the discussion of the above mentioned parameters is deferred

to Section 8.6.

8.2.3 SINR and Ergodic Sum Spectral Efficiency

As linear signal processing techniques perform near optimally for large MU-

MIMO systems [9, 57, 74], a linear receiver in the form of a MRC is considered

at the BS. The L ×M MRC matrix, T = GH
ul, is used to separate yul into L
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streams by4

rul = GH
ulyul = ρ

1
2
ulG

H
ulGulD

1
2sul +GH

ulnul. (8.7)

Thus, the linearly combined signal from terminal l is given by

rul,l = ρ
1
2
ulβ

1
2
l g

H
ul,lgul,lsul,l + ρ

1
2
ul

L∑
k=1
k 6=l

β
1
2
k g

H
ul,lgul,ksul,k + gH

ul,lnul, (8.8)

resulting in the corresponding SINR given by

SINRul,l =
ρulβl||gul,l||4

||gul,l||2 + ρul

L∑
k=1
k 6=l

βk|gH
ul,lgul,k|2

. (8.9)

Hence, the instantaneous achievable uplink spectral efficiency for terminal l

(measured in bits/sec/Hz) can be computed as Rul,l = log2 (1 + SINRul,l). As

such, the ergodic sum spectral efficiency over all L terminals is given by

E [Rsum,ul] = E

[
L∑
l=1

Rul,l

]
, (8.10)

where the expectation is performed over the small-scale fading. In the following

section, tight analytical expressions are derived to approximate the expected

value of (8.9) and (8.10), respectively.

8.3 Expected SINR and Ergodic Sum Spectral

Efficiency Analysis

As motivated in Chapter 3, Section 3.4.3, the expected SINR for terminal l can

be obtained by taking the expectation of the ratio in (8.9). This gives

4For ease of exposition, the key system equations are repeated here.
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E [SINRul,l] ≈
ρulβlE [||gul,l||4]

E [||gul,l||2] + ρul

L∑
k=1
k 6=l

βkE
[
|gH

ul,lgul,k|2
] . (8.11)

In the sequel, Lemmas 8.3.1, 8.3.2 and 8.2.3 derive the expectations in the

numerator and denominator of (8.11). For the ease of reference, the remainder

of the chapter denotes ςl =
√

1
1+Kl

, ς̄l =
√

Kl
Kl+1

and ς ′l = ςl
1√
P

.

Lemma 8.3.1. For a ULA with M receive antennas in a fixed physical

space at the BS, considering a correlated Ricean fading uplink channel, gul,l,

from terminal l to the BS array

δl = E
[
||gul,l||4

]
= (ς ′l)

4
{
P 2M2+ tr

[(
AH
l Al

)2
]}

+ 2PM2 (ς ′l)
2

(ς̄l)
2

+2 (ς ′l)
2

(ς̄l)
2 h̄H

ul,lAlA
H
l h̄ul,l + (ς̄l)

4M2. (8.12)

Proof of Lemma 8.3.1. Via its definition, δl = E [||gul,l||4] = E
[

(||gul,l||2)
2 ]

.

Furthermore, substituting the definition of gul,l and denoting vl = ς ′lAlhul,l and

ql = ς̄lh̄ul,l allows us to state

δl = E
[(
||gul,l||2

)2
]

= E
[(
vH
l vl + vH

l ql + qH
l vl + qH

l ql
)2
]
. (8.13)

Expanding (8.13) and simplifying allows us to state

δl = E
[(
||gul,l||2

)2
]

= E
[(
vH
l vl
)2
]

+ E
[
2
(
vH
l vl
) (
qH
l ql
)]

+ E
[
vH
l qlq

H
l vl
]

+ E
[
qH
l vlv

H
l ql
]

+ E
[(
qH
l ql
)2
]
. (8.14)

Furthermore,

E
[
vH
l vl
] (a)

= E
[
ς ′lh

H
ul,lA

H
l ς
′
lAlhul,l

]
= (ς ′l)

2 E
[
hH

ul,lA
H
l Alhul,l

]
= (ς ′l)

2 E
[
tr
[
hH

ul,lA
H
l Alhul,l

]]
(b)
= (ς ′l)

2
tr
[
AH
l Al

]
= (ς ′l)

2
MP, (8.15)
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where (a) is obtained by substituting the definition of vl and (b) is obtained by

performing the expectation over hul,l. This allows one to express (8.14) as

δl = E
[(
||gul,l||2

)2
]

= E
[(
vH
l vl
)2
]

+ 2
(
qH
l ql
)

(ς ′l)
2
PM + 2 (ς ′l)

2
qH
l AlA

H
l ql +

(
qH
l qlq

H
l ql
)
.

(8.16)

Note that the expectation in the last four terms of (8.14) is performed over

hul,l. Now as E
[(
vH
l vl
)2
]

= E
[
vH
l vlv

H
l vl
]
, substituting the definition of vl and

extracting the relevant constants yields

E
[
vH
l vlv

H
l vl
]

= (ς ′l)
4 E
[(
hH

ul,lΘhul,l

)2
]
, (8.17)

where Θ = ΨHΓΨ is an eigenvalue decomposition of AH
l Al. As a result,

E
[(
vH
l vl
)2
]

= (ς ′l)
4 E
[(
hH

ul,lΓhul,l

)2
]

= (ς ′l)
4E

( P∑
p=1

[Γ]p,p | [hul,l]p |
2

)2
 , (8.18)

where [hul,l]p denotes the p-th element of hul,l. Performing the expectation with

respect to hul,l and further simplifying yields

E
[
vH
l vlv

H
l vl
]

= (ς ′l)
4

{
(tr [Θ])2 + tr

[
Θ2
]}

. (8.19)

This allows (8.19) to be written as

E
[
vH
l vlv

H
l vl
]

= (ς ′l)
4

{(
tr
[
AH
l Al

])2
+ tr

[
AH
l AlA

H
l Al

]}
. (8.20)

From (8.15), recognizing that the tr
[
AH
l Al

]
= PM allows one to write

E
[
vH
l vlv

H
l vl
]

= (ς ′l)
4

{
P 2M2 + tr

[(
AH
l Al

)2
]}

. (8.21)

Substituting back the definition of ql, recognizing that E
[
h̄H

ul,lh̄ul,l

]
= M , com-

bining (8.21) with the remaining terms in (8.16) and extracting the relevant
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constants yields the desired result in (8.12). �

Lemma 8.3.2. Under the same conditions as Lemma 8.3.1,

ιl,k = E
[
|gH

ul,lgul,k|2
]

= (ς ′l)
2

(ς ′k)
2

tr
[
AkA

H
kAlA

H
l

]
+(ς ′l)

2
(ς̄k)

2 tr
[
h̄H

ul,kAlA
H
l h̄ul,k

]
+ (ς̄l)

2 (ς ′k)
2

tr
[
h̄H

ul,lAkA
H
k h̄ul,l

]
+(ς̄l)

2 (ς̄k)
2 h̄H

ul,l h̄ul,k h̄
H
ul,k h̄ul,l.

(8.22)

Proof of Lemma 8.3.2. From (8.3), applying the definition of gul,l and

gul,k into E
[
|gH

ul,lgul,k|2
]

and denoting vl = ς ′lAlhul,l and ql = ς̄l h̄ul,l yields

ιl,k = E
[
|gH

ul,l gul,k|2
]

= E
[∣∣ (vH

l + qH
l

)
(vk + qk)

∣∣2] . (8.23)

Expanding and simplifying (8.23) allows one to write

ιl,k = E
[
|gH

ul,lgul,k|2
]

= E
[(
vH
l vk + vH

l qk + qH
l vk + qH

l qk
) (
vH
k vl + qH

k vl + vH
k ql + qH

k ql
)]
.

(8.24)

Further expanding and simplifying yields

ιl,k = E
[
|gH

ul,lgul,k|2
]

= E
[
vH
l vkv

H
k vl
]
+E

[
vH
l qkq

H
k vl
]
+E

[
qH
l vkv

H
k ql
]
+E

[
qH
l qkq

H
k ql
]
.

(8.25)

Upon noting that vl and vk are independent of each other, E
[
vlv

H
l

]
= (ς ′l)

2 tr
[
AH
l Al

]
.

Substituting the definitions of vl and ql into (8.25) and extracting the relevant

constants yields

ιl,k = E
[
|gH

ul,lgul,k|2
]

= (ς ′l)
2

(ς ′k)
2 E
[
hH

ul,lA
H
l AkA

H
k

]
+(ς ′l)

2
(ς̄k)

2 [h̄H
ul,kAl A

H
l h̄ul,k

]
+

(ς̄l)
2 (ς ′k)

2 [
h̄H

ul,lAkA
H
k h̄ul,l

]
+ (ς̄l)

2 (ς̄k)
2 [|h̄H

ul,lh̄ul,k|2
]
. (8.26)

Taking the trace of (8.26) and further simplifying yields the desired expression

in (8.22). �

Lemma 8.3.3. Under the same conditions as Lemma 8.3.1,
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χ̄l = E
[
||gul,l||2

]
= M

[
P (ς ′l)

2
+ (ς̄l)

2
]
. (8.27)

Proof of Lemma 8.3.3. Substituting the definition of gul,l into χl and

expanding allows one to write

χ̄l = E
[
||gul,l||2

]
= E

[
(ς ′l)

2
hH

ul,lA
H
l Alhul,l

]
+ E

[
(ς̄l)

2 h̄H
ul,lh̄ul,l

]
. (8.28)

Performing the expectations with respect to hl and extracting the relevant con-

stants yields

χ̄l = E
[
||gul,l||2

]
= (ς ′l)

2
tr
[
AH
l Al

]
+ (ς̄l)

2 E
[
h̄H

ul,l h̄ul,l

]
. (8.29)

Recognizing that tr
[
AH
l Al

]
= PM and E

[
h̄H

ul,lh̄ul,l

]
= M allows one to write

χ̄l = E
[
||gul,l||2

]
= M

[
P (ς ′l)

2
+ (ς̄l)

2
]
, (8.30)

concluding the proof. �

Proposition 8.3.1. With MRC at the BS consisting of a space-constrained

ULA, the expected uplink SINR of terminal l in a spatially correlated Ricean

fading channel can be approximated as

E [SINRul,l] ≈
ρulβlδl

χ̄l + ρul

L∑
k=1
k 6=l

βk ιl,k

. (8.31)

Method for Proposition 8.3.1. Substituting the results from Lemmas
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8.3.1, 8.3.2 and 8.3.3 for δl, ιl,k and χ̄l yields the desired expression in (8.31). �

Remark 8.3.2. The result in (8.31) is extremely general and is a closed-form

solution to a complex scenario, where in addition to fixed physical spacing and

MRC at the BS, each terminal has a unique LoS direction, unique Rice factor,

unique receive correlation matrix and a unique large scale link gain. It can be

readily observed via inspection, that both the numerator and the denominator

of (8.31) are influenced by each of the above factors. The result allows for a

general evaluation of large MU-MIMO systems with space-constrained ULAs

and lends itself to many useful special cases (as shown in Section 8.4). However,

before doing this, some important insights from Proposition 8.3.1 are brought

to light.

The result in Proposition 8.3.1 is expanded and further simplified on the fol-

lowing page. Due to space restriction, the expressions are presented in landscape

style.
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E [SINRul,l] ≈

ρulβl

{
(ς ′l)

4
{
P 2M2 + tr

[(
AH
l Al

)2
]}

+ 2PM2 (ς ′l)
2 (ς̄l)

2 + 2 (ς̄l)
2 (ς ′l)

2 h̄H
ul,lAlA

H
l h̄ul,l + (ς̄l)

4M2

}

MP + ρul

L∑
k=1
k 6=l

βk

{
(ς ′l)

2 (ς ′k)
2 tr [AkAH

kAlAH
l ] + (ς ′l)

2 (ς̄k)
2 tr
[
h̄H

ul,kAlAH
l h̄ul,k

]
+ (ς̄l)

2 (ς ′k)
2 [h̄H

ul,lAkAH
k h̄ul,l

]
+ (ς̄l)

2 (ς̄k)
2 [|h̄H

ul,lh̄ul,k|2
]} , (8.32)

when substituting the respective terms in the numerator and the denominator. Substituting the definition of ς ′l and ς̄l, (8.32) can

be simplified further to give

E [SINRul,l] ≈
ρulβl

{
1

P 2(1+Kl)
2

{
P 2M2 + tr

[(
AH
l Al

)2
]}

+ 2M2Kl
(Kl+1)2 + 2Kl

P (Kl+1)2 h̄H
ul,lAlA

H
l h̄ul,l +

K2
l

(Kl+1)2M2

}

MP + ρul

L∑
k=1
k 6=l

βk

{
tr[AkA

H
kAlA

H
l ]

P 2(Kk+1)(Kl+1)
+

(h̄H
ul,kAlA

H
l h̄ul,k)Kk

P (Kl+1)(Kk+1)
+

(h̄H
ul,lAkA

H
k h̄ul,l)Kl

P (Kl+1)(Kk+1)
+ KkKl

(Kl+1)(Kk+1)
|h̄H

ul,lh̄ul,k|2
}

=

ρulβl
P 2(1+Kl)

2

{
P 2M2 (1 + 2Kl +K2

l ) + tr
[(
AH
l Al

)2
]

+ 2
P
Kl h̄

H
ul,lAlA

H
l h̄ul,l

}

MP + ρul

L∑
k=1
k 6=l

βk
P 2(Kk+1)(Kl+1)

{
tr [AkAH

kAlAH
l ] +KkP

(
h̄H

ul,kAlAH
l h̄ul,k

)
+KlP

(
h̄H

ul,lAkAH
k h̄ul,l

)
+KkKl |h̄H

ul,lh̄ul,k|2
} . (8.33)
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Remark 8.3.3. A number of important insights can be drawn from (8.33).

It can be observed that for any particular system dimensions and link SNR, both

the numerator and the denominator of (8.33) contain quadratic forms of the type

h̄H
ulAA

Hh̄ul. Via the Rayleigh quotient theorem (see e.g., [18]), such quadratic

forms are maximized when h̄ul is parallel (aligned) to the maximum eigenvector

of AlA
H
l . From this, an interesting observation can be made: Alignment of h̄ul,l

with AlA
H
l amplifies the expected signal power for terminal l, maximizing the

quadratic form in the numerator of (8.33). In contrast to this, alignment of h̄ul,k

with AlA
H
l , h̄ul,l with AkA

H
k and h̄H

ul,l with h̄ul,k amplifies the expected interfer-

ence power for terminal l, leading to a lower expected SINR. Likewise, if AkA
H
k

and AlA
H
l are aligned, i.e., alignment of the long-term preferential directions

of propagation channel from terminals l and k, then tr
[
AkA

H
kAlA

H
l

]
increases,

further degrading the expected SINR. It is worth mentioning that this observa-

tion was made in Chapter 7, when analyzing the expected SINR performance of

MF precoding with unequal spatial correlation matrices under Rayleigh fading.

Therefore, the global phenomena is that the expected SINR reduces by virtue of

channel similarities of various types (LoS and spatial correlation), and increases

if the channels are more diverse.

It is worth noting that (8.31) (and in turn (8.33)) can be further used to

approximate the ergodic sum spectral efficiency of the system by

E [Rsum,ul] ≈
L∑
l=1

log2 (1 + E [SINRul,l]) . (8.34)

The accuracy of the derived closed-form approximations in (8.31) (and in turn

in (8.33)) and (8.34) is demonstrated in Section 8.5. In the following section,

three special cases of (8.33) are presented to demonstrate its generality.

8.4 Special Cases

Corollary 8.4.1. With MRC at the BS consisting of a SC ULA, the expected

uplink SINR of terminal l with no LoS, i.e, Rayleigh fading with unequal corre-
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lation matrices for each terminal, can be approximated as

E [SINRul,l] ≈
ρul

βl
P 2

{
P 2M2 + tr

[(
AH
l Al

)2
]}

MP + ρul

L∑
k=1
k 6=l

βk
P 2

{
tr [AkAH

kAlAH
l ]

} . (8.35)

Proof of Corollary 8.4.1. Substituting Kl = Kk = 0, ∀l, k = 1, . . . , L in

(8.33) yields the desired expression in (8.35). �

Corollary 8.4.2 (Proposition 1 in [93]). With MRC processing at the

BS containing of a SC ULA, the expected uplink SINR for terminal l with no

LoS and equal correlation matrices, i.e., Rayleigh fading with a fixed correlation

for each terminal, can be approximated as

E [SINRul,l] ≈
ρul

βl
P 2

{
P 2M2 + tr

[(
AH
l Al

)2
]}

MP + ρul

L∑
k=1
k 6=l

βk
P 2

{
tr
[
(AlAH

l )
2
]} . (8.36)

Proof of Corollary 8.4.2. Setting Al = Ak, ∀l, k = 1, . . . , L in (8.35)

gives the desired result. Note that the result is consistent with [93]. �

Corollary 8.4.3. With MRC at the BS consisting of a SC ULA, the ex-

pected uplink SINR of terminal l with LoS i.e., correlated Ricean fading, with

equal correlation matrices for each terminal can be approximated as

E [SINRul,l] ≈

ρulβl
P 2(1+Kl)

2

{
P 2M2 (1 + 2Kl +K2

l ) + tr
[(
AH
l Al

)2
]

+ 2
P
Klh̄

H
ul,lAlA

H
l h̄ul,l

}

MP+ρul

L∑
k=1
k 6=l

βk
P 2(Kk+1)(Kl+1)

{
tr
[
(AlAH

l )
2
]
+KkP

(
h̄H

ul,kAlAH
l h̄ul,k

)
+KlP

(
h̄H

ul,lAlAH
l h̄ul,l

)
+KkKl|h̄H

ul,lh̄ul,k|2
} .

(8.37)

Proof of Corollary 8.4.3. Replacing Ak = Al in (8.33) yields the desired
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expression in (8.37), concluding the proof. �

Remark 8.4.1. Corollaries 8.4.1 and 8.4.2 share a common trend in that

both the numerators and denominators are governed by spatial correlation ma-

trices inAl andAk, respectively. In the case where correlation matrices are fixed

for each terminal, the trace in their respective denominators can be readily seen

to translate from tr
[
AkA

H
kAlA

H
l

]
to tr

[
(AH

l Al)
2
]
. Likewise, for Corollary 8.4.3,

as the case of equal correlation matrices is considered for all terminals, Ak = Al,

∀l, k = 1, . . . , L in (8.33) resulting in (8.37).

In the subsequent section, the convergence of the expected SINR and ergodic

sum spectral efficiency is analyzed with MRC, as the number of BS antennas,

M , grows without bound with a fixed number of user terminals, L.

8.5 Limiting Expected SINR and Ergodic Sum

Spectral Efficiency Analysis

Proposition 8.3.1 presents an expected uplink SINR approximation for terminal

l which is suitable for any system size, as well as any link SNR, LoS level, spatial

correlation level and physical array spacing. The asymptotic behavior of (8.31)

(and in turn of (8.33)) and (8.34), as M → ∞, with a fixed (finite) L is now

examined. Firstly, dividing the numerator and denominator of (8.31) (and in

turn of (8.33)) by M2, the limit can be observed as

E
[
SINRlim

ul,l

]
= lim

M→∞


ρul

βl
M2 δl

χ̄l
M2 + ρul

L∑
k=1
k 6=l

βk
( ιl,k
M2

)

. (8.38)

The numerator of (8.38) can now be written as

ρulβl

M2
δl =

ρulβl
M2

(
δ1
l + δ2

l + δ3
l

)
, (8.39)
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where δ1
l , δ

2
l and δ3

l are the three quantities in the numerator of (8.31) (and in

turn in (8.33)). Likewise, the denominator of (8.38) can be written as

χ̄l
M2

+ ρul

L∑
k=1
k 6=l

βk

( ιl,k
M2

)
=

χ̄l
M2

+ ρul

L∑
l=1
l 6=k

βk
(
ι1l,k + ι2l,k + ι3l,k + ι4l,k

)
, (8.40)

where ι1l,k, ι
2
l,k, ι

3
l,k and ι4l,k are the four quantities in the denominator of (8.31)

(and therefore in (8.33)).

Referring to the numerator of (8.38), it is interesting to observe that two

terms in

δ1
l = (ς ′l)

4

tr
[(
AH
l Al

)2
]

M2

 , (8.41)

and

δ2
l = 2 (ς ′l)

2
(ς̄l)

2

{
h̄H

ul,lAlA
H
l h̄ul,l

M2

}
, (8.42)

do not vanish from δl as M grows without bound, while the denominator of

(8.38) has four terms in ιl,k, which do not vanish as M →∞. These are,

ι1l,k = (ς ′l)
2

(ς ′k)
2

{
tr
[
AkA

H
kAlA

H
l

]
M2

}
, (8.43)

ι2l,k = (ς ′l)
2

(ς̄k)
2

{
tr
[
h̄H

ul,kAlA
H
l h̄ul,k

]
M2

}
, (8.44)

ι3l,k = (ς̄l)
2 (ς ′k)

2

{
tr
[
h̄H

ul,lAkA
H
k h̄ul,l

]
M2

}
, (8.45)

and

ι4l,k = (ς̄l)
2 (ς̄k)

2

{
h̄H

ul,lh̄ul,kh̄
H
ul,kh̄ul,l

M2

}
. (8.46)

In the sequel, Lemmas 8.5.1, 8.5.2 and 8.5.3 derive the deterministic limits of

(8.41) - (8.46), respectively.
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Lemma 8.5.1. lim
M→∞

ι4l,k is given by

ῑ4l,k = (ς̄l)
2 (ς̄k)

2

 lim
M→∞


∣∣∣∣∣h̄H

ul,lh̄ul,k

M

∣∣∣∣∣
2



= (ς̄l)
2 (ς̄k)

2 ϑ
(
φ̄l, φ̄k

)2
, (8.47)

where ϑ
(
φ̄l, φ̄k

)
=
∣∣sinc

(
π d0

λ

(
sin
(
φ̄l
)
− sin

(
φ̄k
)))∣∣. Here sinc (·) denotes the

sinc function and d0 is the total length of the ULA at the BS.

Proof of Lemma 8.5.1. One can take note of the fact that

ϑ
(
φ̄l, φ̄k

)
= lim

M→∞

{∣∣∣∣∣h̄H
ul,lh̄ul,k

M

∣∣∣∣∣
}

= lim
M→∞

{∣∣∣∣∣ 1

M

M−1∑
c=0

ej2π
c
λ

d0
M−1(sin(φ̄l)−sin(φ̄k))

∣∣∣∣∣
}

=

∣∣∣∣∫ 1

0

ej2π
d0
λ (sin(φ̄l)−sin(φ̄k))fdf

∣∣∣∣
=

∣∣∣∣sinc

(
π
d0

λ

(
sin
(
φ̄l
)
− sin

(
φ̄k
)))∣∣∣∣ , (8.48)

using the limit of a Riemann sum to represent an integral. Taking the square

of ϑ
(
φ̄l, φ̄k

)
yields the desired result in (8.47).

Remark 8.5.1. The expression in (8.48) is another closed-form solution

and can be readily seen to be dependent on the respective LoS angles unique to

terminals l and k.

Lemma 8.5.2. lim
M→∞

ι3l,k is given by

ῑ3l,k = (ς̄l)
2 (ς ′k)

2

{
lim
M→∞

{
tr
[
h̄H

ul,lAkA
H
k h̄ul,l

]
M2

}}
= (ς̄l)

2 (ς ′k)
2

P∑
p=1

ϑ
(
φ̄l, φk,p

)2
.

(8.49)

Proof of Lemma 8.5.2. Expanding the trace in (8.49), one can state
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ῑ3l,k = (ς̄l)
2 (ς ′k)

2

{
lim
M→∞

{
tr
[
h̄H

ul,lAkA
H
k h̄ul,l

]
M2

}}

= (ς̄l)
2 (ς ′k)

2


lim
M→∞


1

M2
h̄H

ul,l


[
a (φk,1) a (φk,2) . . . a (φk,P )

]

aH (φk,1)

aH (φk,2)
...

aH (φk,P )




h̄ul,l




= (ς̄l)

2 (ς ′k)
2

{
lim
M→∞

{
1

M2

P∑
p=1

∣∣∣a (φ̄l)H
a (φk,p)

∣∣∣2}}

= (ς̄l)
2 (ς ′k)

2
P∑
p=1

ϑ
(
φ̄l, φk,p

)2
. (8.50)

This yields the desired result, concluding the proof. �

Remark 8.5.2. Note that as ι2l,k and δ2
l have a similar structure to ι3l,k, the

limiting values of ι2l,k and δ2
l in ῑ2l,k and δ̄2

l have the same form as (8.49), with the

exception that the angles in ϑ (·) are replaced with φ̄k, φl,r for ῑ2l,k and φ̄l, φl,r for

δ̄2
l , respectively. Furthermore, both ῑ2l,k and δ̄2

l will need to have the necessary

scaling of (ς ′l ς̄k)
2 and 2 (ς ′l)

2 (ς̄l)
2, as shown in (8.44) and (8.42), respectively.

Lemma 8.5.3. lim
M→∞

ι1l,k is given by

ῑ1l,k = (ς ′l)
2

(ς ′k)
2

{
lim
M→∞

{
tr
[
AkA

H
kAlA

H
l

]
M2

}}

= (ς ′l)
2

(ς ′k)
2

P∑
r=1

P∑
t=1

ϑ (φk,r, φl,t)
2 . (8.51)

Proof of Lemma 8.5.3. One can notice that

ῑ1l,k = (ς ′l)
2

(ς ′k)
2

{
lim
M→∞

{
tr
[
AkA

H
kAlA

H
l

]
M2

}}

= (ς ′l)
2

(ς ′k)
2

{
lim
M→∞

{
tr
[
AH
kAlA

H
l Ak

]
M2

}}
. (8.52)
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Then,

ῑ1l,k = (ς ′l)
2

(ς ′k)
2

{
lim
M→∞

{
tr
[
AH
kAlA

H
l Ak

]
M2

}}

= (ς ′l)
2

(ς ′k)
2

{
lim
M→∞

{
1

M2

P∑
r=1

a (φk,r)
HAlA

H
l a (φk,r)

}}

= (ς ′l)
2

(ς ′k)
2

{
lim
M→∞

{
1

M2

P∑
r=1

P∑
t=1

∣∣∣a (φk,r)
H a (φl,t)

∣∣∣2}}

= (ς ′l)
2

(ς ′k)
2 1

M2

P∑
r=1

P∑
t=1

ϑ (φk,r φl,t)
2 , (8.53)

giving the desired result. �.

Remark 8.5.3. Note that δ1
l has a similar form to ι1l,k. Using the same

methodology as in Lemma 8.5.3, one can obtain δ̄1
l , the limiting value of δ1

1,

where the angles in ϑ (·) will be replaced by φl,r, φl,t with (ς ′l)
4 providing the

required scaling.

Theorem 8.5.1. The limiting uplink SINR for terminal l with MRC and a

SC ULA at the BS can be written as

E
[
SINRlim

ul,l

]
=

ρulβl
(
δ̄1
l + δ̄2

l

)
ρul

L∑
k=1
k 6=l

βk(ῑ1l,k + ῑ2l,k + ῑ3l,k + ῑ4l,k)

. (8.54)

Proof of Theorem 8.5.1. Using the results from Lemmas 8.5.1, 8.5.2, 8.5.3

and keeping in mind Remarks 8.5.2 and 8.5.3 yields the desired expression. �

As such the limiting ergodic sum spectral efficiency is given by

E
[
Rlim

sum,ul

]
=

L∑
l=1

log2

(
1 + E

[
SINRlim

ul,l

])
. (8.55)

Remark 8.5.4. It is noteworthy that in the limit, the results presented

in (8.54) and (8.55) are exact, as the variance of the denominator in (8.54)

approaches zero with M → ∞. A rigorous mathematical proof of this can be

found in Appendix I of [68].

In the following section, the tightness of the closed-form approximations
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Parameter Value

Microwave mmWave

Carrier frequency [GHz] 2 28
LoS attenuation exponent [α] 2.2 2
NLoS attenuation exponent 3.67 2.92

LoS shadow fading standard deviation [σsh] 3 5.8
NLoS shadow fading standard deviation 4 8.7

K-Factor mean [dB] 9 12 [129]
K-Factor standard deviation [dB] 5 3 [129]

Table 8.1: Parameters used for the generation of numerical results.

derived in Sections 8.4 and 8.5 is evaluated.

8.6 Numerical Results and Discussion

In this section, numerical results are presented to evaluate the analytical approx-

imations in Sections 8.4 and 8.5 for a SC ULA with fixed physical space, d̄0.

The ULA receives simultaneous uplink data streams from L single-antenna user

terminals in the same time-frequency resource. Unless otherwise specified, the

parameters used for the numerical results are specified in Table 8.1 for an UMi

scenario. For all numerical results, propagation parameters for the microwave

and mmWave frequency bands were obtained from [136] and [137], respectively.

A circular cell having a radius 100 m is considered with an exclusion radius of

d0 = 10 m. A uniform distribution of terminals is assumed in the cell coverage

area and 104 Monte-Carlo realizations for each result are considered. The pa-

rameter υ is chosen such that the instantaneous per-terminal SINR is 0 dB, 95%

of the time, at link SNR (ρul) = 0 dB, for the system dimensions of M = 256

and L = 32.

In line with the numerical results presented in Chapter 5 of the thesis, given

a link distance rl, a statistical approach is employed in determining whether the

terminal experiences LoS or NLoS conditions on the uplink to the BS. For the
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microwave case, the probability of terminal l experiencing LoS is governed by

PLoS (rl) = (min (18/rl, 1)
(
1− e−rl/36

)
) + e−rl/36. (8.56)

Naturally, the probability of the terminal experiencing NLoS is then determined

by

PNLoS = 1− PLoS. (8.57)

Equivalently, for the mmWave case [137],

PLoS (rl) = (1− Pout (rl)) e
−ωLoS rl , (8.58)

where 1/ωLoS = 67.1 meters and Pout is the outage probability, occurring when

the combined geometric attenuation and shadow fading in either the LoS or

NLoS states is sufficiently large. In this chapter, for simplicity, Pout = 0 when

determining the LoS and NLoS probabilities. Upon determining the link state of

each terminal, the corresponding link parameters are selected to model the large-

scale propagation effects of geometric attenuation and shadow-fading. These are

as specified in Table 8.1. A unique K-factor, Kl, is assigned to the wireless

link from the l-th terminal to the BS from a log-normal distribution with the

mean and standard deviation specified in Table 8.1. This is referred to in the

subsequent numerical results as Kl ∼ ln (mean, standard deviation).

The accuracy of the proposed expected per-terminal SINR in (8.29) is exam-

ined. Fig. 8.1 illustrates the expected SINR of a given terminal as a function of

ρul (link SNR) for a system with M = 256 and L = 32, P = 50 and d̄0 = 8λ. In

addition to the microwave and mmWave cases, the correlated Rayleigh fading

case is considered for comparison purposes. Also, the case where each terminal

is assigned a fixed K-factor of 5 dB is considered. Three trends can be ob-

served: Firstly, transitioning from large to small angular spread (∆ ∼ U [−π
2
, π

2
]

to ∆ ∼ U [−π
16
, π

16
]) tends to significantly reduce the expected SINR for all cases.

This is despite the fact that the ULA contains very large numbers of antenna

elements at the BS, and is due to the reduction in the spatial diversity (rank)
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Figure 8.1: Expected per-terminal SINR vs. ρul (link SNR) with M = 256, L =
32, P = 50, d̄0 = 8λ.
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256, L = 32, P = 50, d̄0 = 8λ.
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of the uplink channel, allowing the BS array to only see a very narrow spread of

incoming power. Secondly, increasing the mean of the K-factor has an adverse

effect on the expected SINR. This is because a stronger specular component in

the channel tends to reduce the multi-path diversity and in turn reduces the

overall spatial selectivity of the channel. Equivalently, this can be interpreted

as an increase in the overall level of correlation in the channel leading to an

increase in the inter-terminal interference and lower per-terminal SINR. Third,

our proposed approximations are seen to remain extremely tight for the entire

link SNR range for all cases. The analytical expressions are also seen to remain

tight for the special case presented in Corollary 8.4.1 (8.35), where each termi-

nal undergoes Rayleigh fading with unequal correlation matrices. In addition to

the above, the expected per-terminal SINR in each case is seen to saturate with

growing link SNR, due to the inability of the MRC to mitigate the remaining

inter-terminal interference. The expected per-terminal SINR is translated to an

ergodic sum spectral efficiency via (8.34). This is depicted in Fig. 8.2, where

similar conclusions to Fig. 8.1 can be drawn.

Considering the special cases in Corollary 8.4.2 (8.36) and Corollary 8.4.3

(8.37), the influence of LoS, as well as equal and unequal correlation matrices

on the ergodic sum spectral efficiency is examined. This is demonstrated in

Fig. 8.3. Using the same system parameters from Fig. 8.1 and Fig. 8.2, (listed

in the figure captions) at ρul (link SNR) = 10 dB, the cumulative distribution

functions (CDFs) of the derived ergodic sum spectral efficiency approximation

in (8.34) is compared with its simulated counterparts. Note that the CDF is

obtained by averaging over the fast-fading in the channel with each value repre-

senting the variations in the link gains and K-factors. Notice that irrespective

of the underlaying propagation characteristics (Rayleigh or Ricean fading), un-

equal correlation matrices results in a higher ergodic sum spectral efficiency of

the system allowing the ULA to leverage a larger amount of spatial diversity.

Furthermore, it is again observed that a stronger specular component tends to

decrease the ergodic sum spectral efficiency. The derived approximations are

robust to the presence of equal and unequal correlation matrices, as well as
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fied in the figure).

changes in the level of LoS.

Next, the accuracy of the limiting expected per-terminal SINR expression

derived in (8.54) is inspected with growing numbers of BS antennas and a fixed

number of terminals, where L = 32. This is depicted in Fig. 8.4. Three trends

can be observed from the result: After recognizing that increasing M (the num-

ber of receive antennas at the ULA) increases the expected per-terminal SINR,

for each case the expected SINR slowly saturates with growing M and ap-

proaches its limiting value at approximately 500 antenna elements for each case,

respectively. This is a result of channels from multiple terminals becoming

asymptotically orthogonal.5 Secondly, decreasing the physical size of the array

further reduces the inter-element spacing, reducing the spatial diversity which

then translates into a reduction in the expected SINR for all cases respectively.

Furthermore, one can observe that each case converges to the derived limiting

value. The limiting expected per-terminal SINR was then translated into a

5In the large MU-MIMO literature, this effect has been famously coined as favorable prop-
agation [9, 57].
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limiting ergodic sum spectral efficiency via (8.55), as shown in Fig. 8.5. Here

similar trends to Fig. 8.4 can be found for both d̄0 = 8λ and d̄0 = 4λ.

8.7 Concluding Remarks

In this chapter, the uplink performance of large MU-MIMO systems under spa-

tially correlated Ricean fading is investigated with ULAs at the BS employed in

a fixed physical space. Closed-form approximations to the expected per-terminal

SINR and ergodic sum spectral efficiency are derived with MRC processing at

the BS. In the limit of a large number of BS antennas, asymptotic expressions

for the expected per-terminal SINR and ergodic sum spectral efficiency were

derived. Our numerical results show that with constraints on the physical size

of the ULA, the expected SINR saturates with increasing link SNR and BS

antenna numbers. The analysis accommodates changes in system dimensions,

link SNR, LoS levels, spatial correlation levels and variation in fixed physical

spacings. Unequal correlation matrices at each terminal result in a performance

increase, whilst LoS had an adverse impact on system performance.
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Chapter 9

Conclusions and Future Work

9.1 Thesis Summary

Analyzing the spectral efficiency performance of conventional and large-scale

multiuser multiple-input multiple-output (MU-MIMO) systems in heterogeneous

channel conditions holds the key to a more thorough understanding of the perfor-

mance of current and future cellular systems. The increasing pressure to operate

future wireless systems in commensurately smaller areas with large antenna ar-

rays at both microwave and millimeter-wave (mmWave) frequency bands, is

likely to raise the amount of heterogeneity present in propagation channels. Ac-

cordingly, this thesis analyzes and evaluates the performance of conventional

and large MU-MIMO systems with linear transceiver architectures to theoreti-

cally characterize their performance in scenarios of current and future interest.

In doing so, the thesis presents a variety of analytical techniques to tackle the

complex statistics resulting from heterogeneous propagation channels. A num-

ber of practically useful insights on the performance of conventional and large

MU-MIMO systems were obtained, leading to a deeper understanding of such

systems in diverse propagation environments.
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9.2 Chapter Summary and Concluding Remarks

Following the Introduction chapter, the thesis presented a general overview of

statistical channel models and random matrix theory results which are specific to

MIMO communication systems. Along with known results, novel joint probabil-

ity density functions for the complex correlated central and uncorrelated non-

central Wishart distributed channel correlation matrices were presented. An

overview of conventional and large MU-MIMO systems was then presented with

a particular emphasis on uplink and downlink multiuser digital signal process-

ing techniques. A number of shortcomings in these technologies were identified,

which further motivated the research presented in the contributions chapters of

the thesis. A summary and concluding remarks for each contributions chapter

of the thesis is presented below:

• Chapter 4 proposes a general analytical framework for characterizing the

expected per-terminal signal-to-interference-plus-noise-ratio (SINR) and

ergodic sum spectral efficiency of a coordinated two-tier small cellular

system. Overall, the key contributions of the chapter are:

– With regularized zero-forcing (RZF) precoding, under i.i.d. and semi-

correlated Rayleigh fading, with equal correlation matrices, the ana-

lytical expressions were averaged over the eigenvalue densities of the

respective complex Wishart matrices derived in Chapter 2. In the

high signal-to-noise-ratio (SNR) regime, ZF precoding was consid-

ered and closed-form expressions of the above performance metrics

were derived with unequal spatial correlation matrices for each ter-

minal.

– Base station coordination is central to interference limited small-

cellular systems, directly influencing the gains in the expected SINR

and ergodic spectral efficiencies. Both of these performance metrics

were also influenced by small-cell locations and by variation in the de-

grees of BS coordination, as they directly impact the system’s ability
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to suppress dominant interferers. With semi-correlated fading, the

expected SINR decreased with increasing levels of spatial correlation

due to a loss in the usable spatial degrees of freedom. Expected

SINR and ergodic spectral efficiencies with unequal correlation ma-

trices were observed to be greater than the case with equal correlation

matrices, as predicted mathematically.

• The impact of dominant line-of-sight (LoS) directions on the terminal

SINR and system spectral efficiency is investigated in Chapter 5, assuming

a Ricean fading propagation channel and RZF precoding on the downlink.

The key contributions of the chapter are as follows:

– Analytical expressions for the expected SINR and ergodic sum spec-

tral efficiency are derived. The derived expressions are averaged with

respect to the previously unknown arbitrary eigenvalue densities of

the complex uncorrelated non-central Wishart matrix, as presented

and derived in Chapter 2. Unlike previous studies, a unique Rice fac-

tor is modeled for each terminal, where the considered system model

caters for terrain variations across multiple terminals, making it suit-

able for analysis of current and future systems. In the high SNR

regime, a tight distributional approximation to the ZF per-terminal

SNR is presented with a gamma distribution, whose parameters are

derived.

– With both the microwave and mmWave propagation parameters, the

presented numerical results suggest that increasing the specular com-

ponent of the propagation channel has an adverse effect on the ex-

pected SINR and ergodic sum spectral efficiency. On the contrary,

increasing the variability of Rice factor enhances the peak ergodic

sum spectral efficiency, while reducing the median and cell-edge spec-

tral efficiencies. The evaluation of the variability of Rice factors is

novel and can help to identify the sensitivities in multiuser system

performance.
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– Furthermore, both the developed approximations are insensitive to

changes in the system dimensions, link SNRs and unequal levels of

LoS, respectively. Previous approximations were unable to handle

such heterogeneous channels.

• A simplified methodology to approximate the uplink and downlink MU-

MIMO system performance with a moderate number of BS antennas was

presented in Chapter 6. A general class of linear transceivers was consid-

ered, where the main conclusions of the chapter were:

– Under i.i.d. Rayleigh fading, the instantaneous and expected per-

terminal SINR and SNR were approximated with maximum-ratio

combining, ZF combining and minimum-mean-squared-error (MMSE)

combining on the uplink, and matched-filter (MF), ZF and RZF pre-

coding on the downlink. The approximation methodology is based

on the identification of specific components in the above mentioned

performance metrics which tend to stabilize for moderate numbers of

BS antennas, and replacing only these specific components by their

expected values.

– In general, the resulting expressions allows for clear insights to be

drawn into the factors which most contribute to the above mentioned

performance metrics. Numerical evaluation of the approximations

demonstrate they are extremely accurate and stable for moderate

numbers of BS antennas. The approximation methodology is are ro-

bust to the type of fading environment assumed, and easily extended

to suit other statistical channel models, such as spatially correlated

Ricean fading.

• Chapter 7 mathematically proves that the widely used, yet overly simpli-

fied spatial correlation models that result in common spatial correlation

matrices for each terminal under estimate the expected SINR and ergodic

sum spectral efficiency performance of the system. As a result perfor-

mance with equal correlation structures acts as a useful lower bound. In
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contrast to this, the use of more complex and physically motivated remote

scattering models results in unequal spatial correlation structures which

lead to higher performance. The main contributions can be summarized

as follows:

– Assuming semi-correlated Rayleigh fading, with MF and ZF precod-

ing, closed-form approximations to the expected SINR, expected SNR

and ergodic sum spectral efficiency of a MU-MIMO system are de-

rived. In general, the derived expressions demonstrate that equal cor-

relation structures tend to maximize the expected interference power

and hence lead to a lower SINR. The results derived are the simplest

form of results derived for such complex systems avoiding the pre-

viously proposed iterative solutions, such as fixed point algorithms.

The derived approximations remain accurate for all non-physical and

physically motivated spatial correlation models.

– Overall, the results from this chapter demonstrate the sensitivity of

the achievable performance using different spatial correlation models.

Such a sensitivity analysis is useful in providing a cautionary tale of

its impact to potential analysts, who may not have access to expensive

empirical channel measurements.

• Chapter 8 presents the final contributions chapter of the thesis, where the

performance of uplink MRC MU-MIMO system is studied. Assuming a

uniform linear array (ULA) at the BS with a fixed total physical spacing, a

general framework for approximating the expected SINR and ergodic sum

spectral efficiency is developed under spatially correlated Ricean fading

channels. Unequal receive spatial correlation levels, unequal LoS levels,

and unequal link gains are considered. The derived analysis leads to nu-

merous insights regarding the impact of LoS and spatial correlation on the

space-constrained system performance. In particular, the alignment of a

desired spatial correlation matrix with the desired LoS direction amplifies

the expected signal power, while the alignment of interfering correlation
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matrix with the desired LoS direction tends to increase the expected in-

terference power. The global phenomena emerging from this is that the

expected SINR reduces by virtue of channel similarities of various types

(LoS and spatially correlated), and increases if the channels are more di-

verse. Other major conclusions of the chapter are as follows:

– The chapter also extends and generalizes a prior physical space-

constrained channel model, by including the effects of unequal levels

of receive spatial correlation, unequal levels of LoS and unequal link

gains for each terminal.

– Deterministic limits of the SINR and sum spectral efficiency are ana-

lyzed when the number of service antennas are increased indefinitely

with a fixed number of terminals.

– Numerical results demonstrate that a space-constrained ULA deploy-

ment with MRC processing causes saturation of the expected SINR

and ergodic sum spectral efficiency with increasing link SNR and

BS antennas. Several special cases of the derived expressions are also

presented when only non LoS components are present with equal and

unequal spatial correlation matrices, as well as when each terminal

having LoS components has equal correlation matrices.

This concludes the major contributions of the thesis.

9.3 Future Work

The conclusions developed throughout the thesis motivate further investigations

in unexplored research areas directly related to the contents of the thesis. These

are identified and discussed in the following section. More specifically, the author

wishes to propose the following specific research areas for further exploration.
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9.3.1 MU-MIMO Analysis With Spatial Channel Models

It is known that the propagation characteristics at microwave and mmWave

frequency bands are vastly different, with experimental validation showing that

mmWave systems experience much larger geometric attenuation, blockages and

diffraction [12, 128, 130, 131, 137, 175]. This requires large antenna arrays to

close the link budget and to overcome the high electromagnetic losses [11, 13].

In turn, this may lead the propagation channel to illuminate fewer dominant

scatterers [137]. While the research community is still investigating and under-

standing the true nature of mmWave channels, it is often claimed that mmWave

channels are sparser than microwave channels [12, 127, 137, 153, 165, 176]. Due

to this increased sparsity, the propagation channel can not be statistically mod-

eled via a complex Gaussian distribution, an assumption made throughout the

thesis to capture rich scattering propagation environments.

To accurately model mmWave channels and its physical artifacts, cluster

based spatial channel models (also known as Saleh-Valenzuela type channel mod-

els) with a finite number of scatterers and paths are often considered [128, 131–

133, 136, 137, 164, 177]. Such models are heavily influenced by the random ge-

ometry of the propagation environment along with the transmit and receive

far-field antenna array responses, making it extremely difficult to make any an-

alytical progress in terms of theoretical predictions of the maximum achievable

spectral efficiency with linear transmit and receive processing techniques.1 Nat-

urally, one can numerically simulate such systems to gain an understanding of

how they operate. However, for a more fundamental understanding of the dom-

inant parameters that influence system performance, analytical progress has to

be made with such models.

In order to solve the above mentioned problem, the thesis introduces several

possible approaches, such as the simplified analysis methodology in Chapter 6,

as well as the Neumann Series expansion in Chapters 4 and 7 to approximate a

wide range of SINR and sum spectral efficiency performance metrics. Therefore,

1This is particularly an issue with higher dimensional antenna arrays, such as the uniform
rectangular and uniform cylindrical arrays which utilize both the azimuth and zenith domains.
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an attempt to extend the current analysis in the thesis to cluster based spatial

channel models should be made using the these analytical methods. If one is

able to successfully make progress, such solutions will allow for further design

and optimization of transceiver signal processing techniques, as well forming a

basis for system evaluation and design of mmWave cellular systems.

9.3.2 Terminals vs. Pilots for Large MU-MIMO Systems

As the focus of the thesis was to get an analytical grasp on conventional and

large MU-MIMO systems operating in heterogeneous channel conditions, idealis-

tic assumptions such as availability of perfect channel state information (CSI) at

the BS and absence of pilot contamination were made. Naturally, these assump-

tions are hard to justify in practice and therefore such imperfections have to be

considered in the analysis of MU-MIMO systems in order to better understand

their performance in heterogeneous environments. To this end, performance

analysis of large MU-MIMO with such imperfections are of significant interest

and importance.2 Here, it would be sensible to assume the time-division duplex

(TDD) protocol to acquire the instantaneous CSI at the service array due to its

scalability (see footnote 3), where the uplink and downlink transmission takes

place in the same frequency resource but are separated in time.3 This means

that the physical propagation channels are reciprocal, i.e., the channel responses

are the equivalent in both the uplink and downlink directions with the necessary

radio frequency (RF) calibration on the respective paths.4

2Naturally, these results would also be interesting to observe for conventional MU-MIMO
systems.

3This time separation is considered within one transmission time interval of a classical
time-frequency grid with orthogonal frequency division multiplexing waveforms. Moreover,
there are several good reasons for operating large MU-MIMO system in TDD mode. First,
only the BS needs to know the channel responses to coherently process the received signal [9,
11, 57, 79]. Second, the uplink estimation overhead is proportional to the number of terminals,
but independent of the BS antennas (which is the case for frequency-division duplex systems),
making the TDD protocol scalable with respect to the large number of service antennas.
Furthermore, from basic estimation theory, it is known that the estimation quality (per-
antenna) cannot be reduced by adding more antennas at the BS. In fact, the estimation
quality improves with the BS antennas if there is a known correlation structure between the
channel responses over the array [79, 178].

4Calibration in the uplink and downlink is necessary since the transceiver hardware is
generally not reciprocal [11, 57, 79]. Fortunately, the uplink and downlink mismatches only

240



Chapter 9. Conclusions and Future Work

Until now, the majority of the research on large MU-MIMO systems has

focused on establishing the fundamental physical layer (PHY) properties. In

contrast to this, the communications fraternity has only briefly introduced the

resource allocation problems, usually handled in the medium access control

(MAC) layer, despite the fact that their true spectral efficiency performance

can be better understood if the PHY and MAC layers are jointly optimized.

For a multicellular system, the importance of resource allocation for large MU-

MIMO was described in [179], where initial guidelines were given. A main

insight was that the limited number of orthogonal pilot sequences needs to be

allocated intelligently among the terminals to reduce interference, which can be

done by capitalizing on geometric attenuation differences [180, 181] and spatial

correlation [178].

In this context, a related resource allocation question of how many terminals

should be scheduled per-cell to maximize spectral efficiency is of interest. This

question has only been partially answered by the authors in [181], who consider

i.i.d. Rayleigh fading channels with unequal link gains for each terminals. To

this date, the validity of the conclusions in [181] for more heterogeneous prop-

agation channels, such as unequally correlated Ricean fading still remains an

open problem. It is anticipated that factors such as the unequal correlation

matrices, unequal levels of LoS, coherence block length, number of BS antennas

and total number of terminals will determine the answer to the above question.

Keeping this in mind, on the downlink, analytical expressions for the expected

SINR and ergodic sum spectral should be derived with MF, ZF and RZF linear

processing. Numerical results should focus on answering the key question of the

number of terminals which can successfully be scheduled given a fixed number

of service antennas, such that the spectral efficiency performance is maximized.

change by a few degrees over a one-hour period and can be mitigated by relatively simple
calibration methods without extra reference transceivers, by relying on the coupling between
the antennas in the service array [79].
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9.3.3 Large MU-MIMO With Double Scattering

Large antenna arrays complement the operation of future MU-MIMO systems

in the millimetric frequency bands [11–13, 127]. At such frequencies, the high

electromagnetic losses rapidly degrade the quality of the received power at a

given terminal. For this reason, such systems aim to serve a commensurately

smaller area in comparison to contemporaneous cellular architectures. In order

to minimize the propagation losses at mmWave frequency bands, research has

proposed a reduction in the small-cell BS height (see for e.g., [182] and references

therein). As an artifact of this, scattering near the BS is also likely to influence

the channel impulse responses to multiple terminals. Naturally, if the terminals

are also in cluttered environments, the differences in their geographical location

leads to variations in their angular spreads. As explored in Chapter 7 of the

thesis, in spatially correlated propagation environments, this leads to differences

in the correlation patterns over the terrain of multiple terminals. Furthermore, a

difference in the angular spread around the BS array is now also to be expected,

since lowering the BS height allows the service array to see far more scatterers

than it would otherwise. The work presented in Chapter 7 only considers the

impact of the remote scattering models on the terminal side of the link, which

captures the differences in the correlation patterns by assuming that the BS is

elevated and is free from local obstructions within its vicinity.

To extend this, the performance of large MU-MIMO systems should be ex-

plored under double scattering channel models, which utilizes the geometry of

the propagation environment to model spatial fading correlation. Thanks to its

flexibility, this model has gained a vast amount of interest in multiple antenna

communication [183, 184]. However, these works do not consider large multicel-

lular MU-MIMO systems with linear processing and pilot contamination under

heterogeneous fading channels. Analytical progress on such models is also slow

due to the complexity involved in modeling the overall propagation channel.

As a result, an attempt to derive the expected terminal SINR and ergodic sum

spectral efficiency should be made with double scattering models considering
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the above level system imperfections.

This concludes the future work component of the chapter.

9.4 Final Remarks

Overall, this thesis has presented a variety of analytical techniques and ap-

proaches to analyze the performance of conventional and large MU-MIMO sys-

tems with linear transceiver architectures. The author hopes that the analytical

results and evaluation presented in the thesis contribute to a more fundamental

understanding of MU-MIMO systems and their operation in heterogeneous envi-

ronments, forming a basis for further research in this area. The work presented

in this thesis has led to 8 peer-reviewed publications in highly regarded journals

and conferences.
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