
Spatial and Temporal
Modelling of Hoki

Distribution using Gaussian
Markov Random Fields

by

Lindsay Robert Morris

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Statistics.

Victoria University of Wellington
2017





Abstract

In order to carry out assessment of marine stock levels, an accurate es-
timate of the current year’s population abundance must be formulated.
Standardized catch per unit of effort (CPUE) values are, in theory, propor-
tional to population abundance. However, this only holds if the species
catchability is constant over time. In almost all cases it is not, due to the
existence of spatial and temporal variation. In this thesis, we fit various
models to test different combinations and structures of spatial and tem-
poral autocorrelation within hoki (Macruronus novaezelandiae) CPUE. A
Bayesian approach was taken, and the spatial and temporal components
were modelled using Gaussian Markov random fields. The data was col-
lected from summer research trawl surveys carried out by the National
Institute of Water and Atmospheric Research (NIWA) and the Ministry for
Primary Industries (MPI). It allowed us to model spatial distribution using
both areal and point reference approaches. To fit the models, we used the
software Stan (Gelman et al., 2015) which implements Hamiltonian Monte
Carlo. Model comparison was carried out using the Watanabe-Akaike in-
formation criterion (WAIC, (Watanabe, 2010)). We found that trawl year
was the most important factor to explain variation in research survey hoki
CPUE. Furthermore, the areal approach provided better indices of abun-
dance than the point reference approach.
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Chapter 1

Introduction

An important part of modelling the population dynamics of marine species
involves using catch data obtained from surveys or commercial fisheries.
Information about the catch, abundance, and other features of species is re-
quired in order to make estimates about stock productivity, current stock
status, and allowable catch levels. Data available to scientists will usu-
ally include catch and effort statistics. Catch per unit effort (CPUE) is a
common assessment of local abundance, and can be summarized by us-
ing simple statistics (such as mean or median CPUE), or by more complex
models that provide an index of stock abundance. However, estimates of
CPUE can be inaccurate and imprecise if spatial and temporal variation is
not accounted for.

Indices of species abundance are most often calculated at present using
delta-generalized linear mixed models (delta-GLMM, Cooper et al. (2004))
to model a species CPUE. This involves treating spatial and temporal com-
ponents as either fixed or random effects. However, previous research (see
Shelton et al. (2014)) has shown that models that incorporate the spatial
and temporal autocorrelation as random fields can yield more precise and
accurate indices of abundance. Such models were investigated by Thor-
son et al. (2015) using a frequentist approach, however the models were
computationally intensive.

1



2 CHAPTER 1. INTRODUCTION

1.1 Aim of Research

The focus of this thesis is on improving abundance index estimation by
modelling spatial and temporal autocorrelation within a species’ CPUE
using a Bayesian approach. We propose various models to test differ-
ent combinations and structures of spatial and temporal autocorrelation
within hoki (Macruronus novaezelandiae) CPUE. We aim to model the spa-
tial and temporal components using Gaussian Markov random fields in
two ways. Data from summer research trawl surveys carried out by the
National Institute of Water and Atmospheric Research (NIWA) and the
Ministry for Primary Industries (MPI) allowed us to model spatial distri-
bution using both areal and point reference approaches. By accounting for
autocorrelation in different ways, we aim to compare each model’s ability
to explain spatial and temporal variation. We make models of this kind
easier to compute by implementing them using a Bayesian approach, thus
increasing their attractiveness and usability.

We will now review relevant literature on stock assessment models and
types of fisheries data. We review the concepts related to catch per unit
effort including standardization and modelling. This is followed by a sec-
tion on Gaussian Markov random field models and their applications in
the wider literature. We then look at model assessment and information
criteria as applied to Bayesian models. We conclude this chapter by pre-
senting the layout for this thesis.

1.2 Review of Literature

1.2.1 Fisheries Science and Stock Assessment

To begin this thesis, it is essential to introduce stock assessment modelling
in the fisheries sciences.

Stock assessment involves the use of various statistical and mathemati-
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cal calculations to make quantitative predictions about the behaviour of
fish populations in response to alternative management choices (Hilborn
& Walters, 2013). A fish stock can be defined as all fish belonging to a given
species that live in a particular geographic area at a particular time. That
is, all individuals capable of interbreeding (OSB, 1998). The purposes of
stock assessment models are: to monitor the abundance and productivity
of exploited fish populations; and to provide fishery managers a quantita-
tive evaluation of the potential consequences of alternative actions.

In the 19th century, it was thought that fishing only had minor impacts on
fish stocks (Haddon, 2010). Huxley (1883) claimed that most fish popu-
lations were so numerous and fecund that they could not be affected by
the limited activities of human fishing. The problem of overfishing gained
recognition when Russell (1931) presented a simple expression used to de-
scribe stock biomass dynamics.

Si+1 = Si + (A+G)− (C +M), (1.1)

where Si is the stock biomass in year i, A is the total weight of all indi-
viduals recruiting to the stock each year, G is the total growth in biomass
of individuals already recruited to the stock, C is the total weight of all
fish caught, and M is the total weight of all fish that die of natural causes
during the year.

Many stock assessment models have been formulated from this expres-
sion. These include the Baranov catch equation (Baranov, 1918), Ricker
model (Ricker, 1954), Beverton-Holt model (Beverton, 1957), and Schaefer
model (Schaefer, 1957).

In this thesis, we focus our attention on catch per unit effort, which can be
used as an input to a stock assessment model.

We now review dependent and independent fisheries data, with a focus
on their benefits and disadvantages.
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1.2.2 Commercial Fisheries and Research Surveys

In order to make predictions on stock biomass it is necessary to estimate
the number or weight of fish caught in the current year. Abundance in-
dices can be used for this purpose. Catch and effort data provide informa-
tion on the amount of a species caught, and the effort expended in order
to obtain the catch. Abundance indices can be calculated by standardiz-
ing catch and effort data to account for differences in fishing gear, vessels,
temporal and spatial trends, and biological and ecological factors. The fac-
tors that need to be accounted for depend on the type of catch and effort
data we are working with. There are two main types of catch and effort
data available to fisheries scientists. The first type of data comes from
scientific surveys of fish populations. Scientific surveys are meticulously
planned and well designed, which lead to observations that have minimal
bias. However, these surveys are expensive to implement. The second
type of data comes from commercial and recreational fishing vessels. This
type of data is cheap and in abundance, however, is heavily biased (Maun-
der & Punt, 2004). When constructing stock assessment models, we often
work with commercial and recreational fishing data, which creates prob-
lems due to the biased nature of these observations. Commercial data are
‘presence-only’ data: they are collected in areas and at times when fish are
available (fishing hotspots). There is also no information about the impact
that fishing has on the population, which is problematic because data can
be influenced by how a certain population reacts to fishing. In this the-
sis, we restrict ourselves to working with fisheries independent data from
scientific surveys, in order to focus only on accounting for temporal and
spatial variation.

We now review abundance indices and catch per unit effort.
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1.2.3 Catch per Unit Effort

One of the most common pieces of information to assess the status of fish
stocks is the relative abundance index. This is usually derived from catch
per unit effort (CPUE) data (Maunder & Starr, 2003; Maunder & Punt,
2004; Maunder et al., 2006; West et al., 2014). The interpretation of CPUE
rests on a fundamental relationship in fisheries science that relates amount
of catch to population abundance and fishing effort. This relationship is
given by:

Ct = hEtNt, (1.2)

where Ct is a measure of catch during time period t, Et is the fishing effort
expended in time period t, Nt is the population abundance in time period
t, and h is the catchability coefficient which is the portion of stock caught
by one unit of effort (Maunder et al., 2006).
Equation 1.2 can be rearranged to give an expression that shows an as-
sumed proportional relationship between catch per unit effort and popu-
lation abundance:

CPUE =
Ct
Et

= hNt (1.3)

In other words,
CPUEt ∝ Nt, (1.4)

given that h is constant over time.
However, in almost all cases h is not constant over time. To account for
this the raw CPUE needs to be standardized. Standardization attempts to
control the effects of factors that may cause the catchability to change over
time (Maunder et al., 2006). The factors that affect catchability depend on
whether the data is fisheries dependent (from commercial or recreational
fishing) or fisheries independent (from research surveys). Fisheries de-
pendent CPUE data needs to be standardized to account for the fact that
the catch data come from many different fishing vessels. These different
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vessels each come with their own fishing equipment and associated effi-
ciencies/deficiencies. In addition, CPUE should also be standardized to
account for year and location effects that may contribute to the variabil-
ity in catch. Because fisheries independent data come from carefully de-
signed research surveys the only necessary standardization is that of time
and spatial effects. This is because research survey data attempt to control
bias associated with different fishing vessels and equipment by keeping
these constant for each catch sample taken. In a paper written by Maun-
der & Punt (2004) it is stated that year should always be included in the
model, whether it be significant or not. This is because the primary objec-
tive of standardizing catch and effort data is to detect trends in abundance
over time. In chapter 4, we compare models with and without a temporal
effect.

1.2.4 Catch per Unit Effort Modelling

In this section we begin by introducing a variety of models used to stan-
dardize CPUE. Each successive model becomes more general in order to
incorporate other distributions. In addition to looking at models, we also
look at some distributions used to model CPUE, and factors relating to it.

Throughout this thesis, we use ‘standardized CPUE’ to denote standard-
ized catch per unit effort constructed from fisheries dependent data, and
‘modelled/predicted CPUE’ to denote standardized catch per unit effort
from fisheries independent data. The data used in this thesis comes from
fisheries independent research surveys (see Section 2.1) and hence we fo-
cus on constructing abundance indices by modelling CPUE.

A variety of methods have been used to standardize and/or model CPUE
(Gavaris, 1980; Campbell, 2004; Bolker et al., 2009; Thorson et al., 2015).
By far the most common method is to employ a generalised linear model
(GLM). GLMs can be used to account for the variation in amount of catch
using a linear combination of explanatory variables (Lynch et al., 2012). As
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a result they are relatively straightforward and can be easily implemented
(Maunder & Punt, 2004). GLMs are attractive in that there is flexibility
for the choice in distribution of the abundance index, the covariates that
relate to catch (the systematic component), and how the two components
are linked (the link function). An example of a GLM would be the classical
general linear model. The model equation, below, is taken from Nelder &
Baker (1972):

yi = xiβ + εi, (1.5)

where the continuous response variable yi is assumed to follow a Normal
distribution and is linked to a systematic component of linear predictors
xi = (xi1, xi2, ..., xiK) and their coefficients β = (β1, β2, ..., βK). Here, i =

1, ..., nwith n being the number of observations, andK is the total number
of predictors.
However, there is a model assumption that the covariates are indeed re-
lated to catch linearly. This may not always be the case, and so the use of
generalised additive models (GAMs) have gained some popularity (Swartz-
man et al., 1992; Katsanevakis & Maravelias, 2009). The model is tradition-
ally written in the following form (Hastie & Tibshirani, 1986)

g(E(yi)) =
K∑
j=1

fj(xij), (1.6)

where g is the link function, and fj(xij) is a function on the jth predictor
for the ith observation.
Another assumption of GLMs is the independence of errors. When this
assumption is relaxed, more than one error component can be introduced.
Such models are called hierarchical generalized linear models (McCullagh
& Nelder, 1989). In hierarchical generalized linear models, random effects
are introduced into the model in addition to the fixed effects. Further-
more, the random effects can be correlated and that allows us to incorpo-
rate structures such as spatial and temporal dependency between obser-
vations. Hierarchical generalised linear models have the following model
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form

g(E(yi)) = xiβ + vi, (1.7)

where g is the link function, yi is the ith observation, xi is the vector of pre-
dictors for observation i, β is the parameter vector for the predictors, and
vi is the random effect. The assumptions are that the response yi given the
random effect has some distribution, f , and the random effect has some
separate distribution fu (McCullagh & Nelder, 1989).
When the random effects are assumed to be normally distributed, then the
hierarchical GLM is called a generalized linear mixed model (GLMM).
The log-Normal distribution is commonly used for modelling CPUE. How-
ever, it is only defined for positive inputs, which has been identified as
problematic when there is a large proportion of zero catches. A solu-
tion is to use a modified GLMM. An example of this the so-called delta-
generalized linear mixed model (dGLMM), which assigns distributions to
different components of a response variable. An illustration of this is mod-
elling probability of encounter and catch rate separately, with different
distributions. The dGLMM allows us to model situations with zero catch
for non-zero effort. This makes use of a mixture distribution such that

f(yi|β) = (1− θi)I(yi=0) + θif(yi|yi > 0,β), (1.8)

where θi is the probability of encountering the target species.
An example of such a model is given in Thorson et al. (2015). Thorson
et al. apply a dGLMM to data for groundfish species. They model the
probability of a positive encounter with the species separately from the
positive catch rate. The probability of positive catch is is modelled using
a logistic GLM, with the number of positive encounters modelled by a
Binomial distribution:

log

(
θi

1− θi

)
=

K∑
j=1

βjxij + ν
(θ)
i + ε

(θ)
i . (1.9)
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The distribution of positive catch rate is modelled using a log-Normal dis-
tribution, with catch per area swept as the response variable, such that

log yi =
K∑
j=1

βjxij + ν
(y)
i + ε

(y)
i . (1.10)

In Equations 1.9 and 1.10, θi is the probability of a positive encounter with
the species in trawl i, yi is the catch per area swept of trawl i, xi1, ..., xiK
are the K predictors, β = (β1, ..., βK) is the parameter vector for the pre-
dictors, ν(θ)

i is the spatial random effect for the encounter probability, ν(y)
i

is the spatial random effect for catch rate, ε(θ)
i is the spatio-temporal inter-

action for the encounter probability, and ε
(y)
i is the spatio-temporal inter-

action for the catch rate. To model the random spatial and spatio-temporal
components in the model, Thorson et al. (2015) uses multivariate Normal
distributions that incorporate Markovian properties. These distributions
are called Gaussian Markov random fields, and we review these in the
following section.
Considering all of the methods used to standardize and/or model CPUE
described Section 1.2.4, it was decided that a hierarchical model would be
used to incorporate spatial and temporal dependence between observa-
tions. In this thesis, a Bayesian approach is used to estimate the model
parameters. This is further discussed in Chapter 3.

1.2.5 Gaussian Markov Random Fields

In this section, we investigate the use of Gaussian Markov random fields
(GMRFs) as applied to hierarchical models. We review two applications
of GMRFs and assess their suitability for modelling spatial and temporal
autocorrelation in this thesis. The first application we review is in time
series modelling, while the second is in spatial statistics. Both applications
are relevant to this thesis.
A Gaussian Markov random field (GMRF) is a finite-dimensional ran-
dom vector following a multivariate Normal distribution (Rue & Held,
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2005). The term Markov comes from satisfying conditional independence
assumptions (described further in Section 3.2.2). GMRFs play an impor-
tant role in complex hierarchical modelling, being used to describe the
spatial and temporal dynamics of natural and real systems (Rue & Held,
2005). They have been applied in a wide range of fields including struc-
tural time series (Dakos et al., 2008; Mikkonen et al., 2008), longitudinal
and survival data (Knorr-Held, 1999), image analysis (Besag et al., 1991),
and spatial statistics (Besag et al., 1991; White & Ghosh, 2009; Paciorek
et al., 2013; Thorson et al., 2015).

Autoregressive models are GMRFs applied in one dimension. They have
been a staple in modelling time series data since the 19th century (Rue
& Held, 2005). One of many examples of an autoregressive model can
be found in Dakos et al. (2008). A first-order autoregressive model was
used to compute the autocorrelation within a time series of the Earth’s
temperatures during abrupt climate change events. Dakos et al. (2008)
were able to test for evidence of decreasing fluctuations in temperature
before a major climatic event.

Another example of autoregressive models can be found in Mikkonen
et al. (2008). Here, Mikkonen et al. (2008) use autoregressive models to ac-
count for temporal autocorrelation within the commercial CPUE of baltic
herring. They use the following hierarchical model:

yijkv =(β0 + ui) + β1x1v + (β2 + v1i)x2iv + β3x3i + β4x4ijkv

+ β5x5ijkv + (αk + vik) + δv + γijkv + v2ix6ijkv + εijkv,
(1.11)

where yijkv is the log CPUE of trawl j made by vessel i in month k of year v,
i = 1, ..., n, where n is the number of vessels, j = 1, ...,mi, where mi is the
number of trawls made by vessel i, k = 1, ..., 12, and v = 1990, ..., 2002. The
x terms are various predictors, the β terms, δv, and γijkv are fixed effects,
and the u and v terms are random effects. They are all defined in Mikkonen
et al. (2008). The parameter εijkv is the residual term.
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Mikkonen et al. (2008) selected three different covariance structures for the
residual term. The covariance structures are of increasing complexity to
account for the temporal autocorrelation within baltic herring CPUE. The
first model uses a residual covariance that assumes independence between
each year. The second model uses a residual covariance that assumes
a first order autoregressive structure to model the temporal autocorrela-
tion. The third and final model uses an autoregressive moving average
(ARMA) model to account for the temporal autocorrelation. Each model
was compared using the Akaike information criterion (Akaike, 1973), and
the Bayesian information criterion (Schwarz et al., 1978). The latter two
models that accounted for temporal autocorrelation using autoregressive
models, were found to perform the best.

We decided to use a GMRF to model temporal autocorrelation within the
CPUE of hoki. This is looked at in greater detail in Chapters 2 and 3.

We now look at examples where GMRFs are generalised from one-dimensional
autoregressive models to multi-dimensional spatial models.

As mentioned previously in Section 1.2.4, Thorson et al. (2015) constructed
a dGLMM to model both positive catch rate (CPUE) and probability of
encounter, for multiple fish species off the US West Coast. GMRFs were
used to account for spatial and spatio-temporal autocorrelation present in
CPUE at a point level. Matèrn distributions were used to model the covari-
ance structures of the GMRFs, which allowed for imposing correlations
based on distances between observations. Thorson et al. (2015) compared
their GMRF model to a stratified dGLMM model on the same data. The
stratified model included a random effect to account for spatial variation
across stratified observations. They found that abundance indices were
more precise when computed using the GMRF model.

Conditionally autoregressive (CAR) models (Besag et al., 1991) use an-
other specification of the covariance matrix in order to account for spatial
autocorrelation. A CAR model assumes that strata or points that neigh-
bour (i.e. share a border, or are in close proximity) will be more correlated
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than those that do not. Therefore, the covariance matrix is a function of
either the number of neighbours for each stratum, or a function of the dis-
tances between each pair of points.

CAR models have been used extensively to model spatial variation and
autocorrelation. One such example is found in White & Ghosh (2009),
where they construct a variation of the CAR model for the purposes of
predicting cesium concentrations at unobserved locations in Switzerland.
Another example can be found in Lee (2011), and they use four variations
of the CAR model to map the spatial pattern of cancer risk in Greater Glas-
gow, Scotland. As a final example, Paciorek et al. (2013) presented two
CAR models that attempt to account for spatial autocorrelation in both
areal and point references observations.

We decided to implement CAR models to account for spatial variation
and autocorrelation in hoki CPUE. This is discussed in much more detail
in Section 3.2.3.

1.2.6 Model Assessment

An important part of constructing any model involves assessing its abil-
ity to make accurate predictions. In this thesis, we focus on constructing
models using the Bayesian approach. We first introduce the concept of
predictive accuracy. Then we review a range of information criteria that
have been used to assess Bayesian models in the literature.

Predictive Accuracy

Once a model has been fit, it is necessary to measure the model’s predictive
accuracy. Predictive accuracy allows for assessment of a model’s goodness
of fit, and can be used in the process of model comparison and selection
(Vehtari & Gelman, 2014). We can measure a model’s predictive accuracy
in different ways, which are each tailored toward the model application.
Predictive accuracy can be measured for both point predictions and prob-
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abilistic predictions. For point predictions, measures of predictive accu-
racy are called scoring functions. Gneiting (2011) provides a discussion
of common scoring functions including the mean squared error, absolute
error, and relative error. The most popular scoring function is the mean
squared error. This has the form,

MSE =
1

n

n∑
i=1

(yi − E(yi|θ))2, (1.12)

where yi is the observed response at index i and E(yi|θ) is the posterior
mean.

The MSE is advantageous due to its simplicity in calculation and interpre-
tation, however, it is not appropriate when there is a departure from the
assumption of normality of the observations.

A more general scoring function is the logarithmic score. The log predic-
tive density can be used to summarize a model’s predictive fit (Gelman
et al., 2014a). This is because it has a close connection to the Kullback-
Leibler (KL) information measure. In addition, the log predictive density
is proportional to the mean squared error if the model is Normal with con-
stant variance. Because log predictive density is derived from the KL infor-
mation, a model with the lowest KL information has the highest expected
log predictive density, and hence highest posterior probability. Therefore
it can be used as a measure of overall model fit.

An ideal measure of model fit would be its predictive performance for new
data points. This quantity is defined below:

log p(ỹi|y) = log

∫
p(ỹi|θ)p(θ|y)dθ, (1.13)

where y = (y1, ..., yn)T is the response vector, p(ỹi|y) is the posterior pre-
dictive distribution and p(θ|y) is the posterior distribution. However, the
future data points are themselves unknown, and so we define the expected
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out-of-sample log predictive density for a new data point,

elpd = Ef (log p(ỹi|y)) =

∫
log p(ỹi|y)f(ỹi)dỹ, (1.14)

where f(ỹ) is a realization of a new dataset from the true data generating
distribution, f .

In order to keep comparability with the observed dataset, a measure is
defined that takes each data point individually. This is the expected out-
of-sample log pointwise predictive density,

elppd =
n∑
i=1

Ef (log p(ỹi|y)). (1.15)

However, we do not know what the true data generating distribution, f
is. There is no general approximation for this. A naive attempt uses the
log predictive density for the existing data to approximate the elppd:

lppd =
n∑
i=1

log p(yi|y) =
n∑
i=1

log

∫
p(yi|θ)p(θ|y)dθ. (1.16)

This quantity can be computed from posterior simulations as shown be-
low,

l̂ppd =
n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)
)
, (1.17)

where S is the number of posterior simulations. This is an overestimate
of the elppd for future data. To obtain better estimates of the elppd, a
range of bias corrections have been used in the literature. The following
subsections look at two possible bias corrections, related to the number
of parameters in a model. We start with the Akaike Information criterion
(Akaike, 1973).
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Akaike Information Criterion

In a statistical analysis, inferences on the parameters, θ, can be summa-
rized by either point estimates (such as maximum likelihood estimates) or
by posterior distributions. In the case where a maximum likelihood ap-
proach is taken, the out-of-sample predictive accuracy is defined by the
expected log predictive density given the point estimate θ̂ (Gelman et al.,
2014b),

elppdθ̂ = Ef

( n∑
i=1

log p(ỹi|θ̂)
)
. (1.18)

To compute this quantity, it is necessary to use the log posterior density of
the observed data, y given a point estimate θ̂, then correct for the bias due
to overfitting (Gelman et al., 2014b).

The simplest bias correction is based upon the asymptotic normal poste-
rior distribution. In this limit, subtracting k (the number of parameters es-
timated in the model) from the log predictive density given the maximum
likelihood estimate, is a correction for how much the fitting of k parame-
ters will increase the predictive accuracy, by chance alone (Gelman et al.,
2014b). We arrive at the famous formula of Akaike (1973), the so-called
Akaike information criterion (AIC):

AIC = −2êlppdAIC = −2
n∑
i=1

log p(yi|θ̂MLE) + 2k, (1.19)

where k is the number of parameters estimated in the model.

In this thesis, we intend to fit Bayesian models that contain hierarchical
structure. Because of this, we cannot simply add k to account for model
complexity. This is because hierarchical structures and informative priors
reduce the amount of overfitting, compared to the maximum likelihood
approach. As such, the measure of model complexity (the bias correction
term) needs to be altered.
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Deviance Information Criterion

An alternative to AIC to account for these hierarchical structures is the de-
viance information criterion (DIC) conceived by Spiegelhalter et al. (2002).
This information criterion substitutes the maximum likelihood estimate
for the parameters θ with the posterior mean, θ̂Bayes. As a result, DIC has
Bayesian roots, although it is not strictly Bayesian. In addition to the re-
placement of the estimate of the parameter, the effective number of param-
eters is modified to incorporate the data:

DIC = −2êlppdDIC = −2
n∑
i=1

log p(yi|θ̂Bayes) + 2pDIC. (1.20)

Here, pDIC is the effective number of parameters, with two forms given by
Gelman et al. (2014b).
The first form is defined below,

pDIC = 2

( n∑
i=1

log p(yi|θ̂Bayes)− Epost

( n∑
i=1

log p(yi|θ)
))

. (1.21)

This can be computed using the posterior simulations of θ, θs, where s =

1, ..., S:

p̂DIC = 2

( n∑
i=1

log p(yi|θ̂Bayes)−
1

S

S∑
s=1

n∑
i=1

log p(yi|θs)
)
. (1.22)

The alternative formula is variance based, which has the advantage of only
producing positive values:

pDIC,alt = 2Varpost

( n∑
i=1

log p(yi|θ)
)
. (1.23)

This is unlike the first formula, which can produce negative values when
the posterior mean is far from the mode.
Both AIC and DIC have their disadvantages in the context of model selec-
tion. AIC does not work in settings where strong prior information exists
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(Gelman et al., 2014a). In this thesis we will be using GMRFs to incorpo-
rate our assumptions of spatial and temporal dependence within CPUE.
As a result, AIC will be inappropriate as a model selection criterion. DIC
is a more likely candidate, however, it fails when a posterior distribution
is not well summarized by its mean (Gelman et al., 2014a). In this thesis,
we will look at using a fairly new information criteria for the purpose of
model selection.

The Watanabe-Akaike information criterion (also known as the widely ap-
plicable information criterion, WAIC) is more Bayesian than DIC as de-
scribed above. It was conceived by Watanabe (2010), and uses the com-
puted log pointwise posterior predictive distribution 1.17, as opposed to
the log posterior density evaluated at a point estimate. Its effectiveness in
relation to Bayesian hierarchical models has been investigated by Gelman
et al. (2014a), and we introduce the criterion in Section 3.5.

We have reviewed stock assessment and the types of data used in relation
to fisheries modelling. We decided to construct hoki abundance indices
by using Bayesian hierarchical models. The models will use GMRFs to
account for spatial and temporal variation and autocorrelation within hoki
CPUE. We will then use WAIC to compare the models.

1.3 Thesis Outline

In Chapter 2 we introduce the summer research trawl surveys carried out
by the National Institute of Water and Atmospheric Research (NIWA) for
the Ministry for Primary Industries (MPI). We discuss the design of the
surveys, as well as the variables reported in the dataset. This is followed
by an exploration of the data, which includes giving evidence of temporal
and spatial autocorrelation within hoki catch per unit of effort. Chapter
3 follows, and presents Bayesian hierarchical models, Gaussian Markov
random fields and Hamiltonian Monte Carlo posterior sampling. This is
followed by a section on convergence diagnostic methods and model as-
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sessment techniques. Chapter 4 introduces the five models we fit to the
hoki CPUE data. A discussion on convergence for the models is given.
The results from each model are given in Chapter 5, and are discussed in
Chapter 6. Lastly, Chapter 6 concludes this thesis by presenting further
considerations for future research.
All statistical programming in this thesis was written in R. Code is avail-
able on request.



Chapter 2

Data

This chapter outlines the dataset used in this thesis. We begin with an
account of the research vessel surveys conducted to obtain the data. A
description of the dataset, and each variable of interest then follows. We
present a section dedicated to exploration of the data, with a focus on de-
tecting autocorrelation due to time and space.

2.1 Research Vessel Surveys

The data used in this thesis come from summer research trawl surveys
of the sub-Antarctic region carried out by the National Institute of Water
and Atmospheric Research (NIWA) for the Ministry for Primary Indus-
tries, New Zealand (MPI). The data were provided by NIWA and MPI.
The dataset is a time series that has been accumulated from 1991 to 1993,
and then again from 2000 to 2008 (Bagley et al., 2013). It contains data on
catch weight for multiple species in the sub-Antarctic. The purpose of the
surveys was primarily to estimate abundance of a particular fish species,
Macruronus novaezelandiae, commonly known as hoki. The surveyed area
has changed over time to incorporate estimation of abundance for other
species (such as hake, Merluccius australis, and ling, Genypterus blacodes),
but the primary focus remains on hoki.

19
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The current set of strata is shown in Figure 2.1. All of the surveys in-
cluded a core set of strata that covered depths of 300–800 m on the South-
ern Plateau, as well as a stratum at Puysegur that covered depths of 800–
1000 m. The stratum at Puysegur was included to estimate abundance of
hake. From 2000 onward, strata 3A, 3B, 5A and 5B were defined to im-
prove the biomass estimates of hake and ling. The summer trawl surveys
were suspended in 1993. This was to focus on the autumn trawl surveys
that ran in March – June 1992, 1993, 1996, and 1998. However, interpreta-
tion of trends was complicated by the possibility of hoki leaving the survey
area to spawn. As a result, the summer trawl surveys were re-instated in
November 2000. When the summer trawl surveys were re-established in
2000, more strata were included to cover deeper waters to the east of the
Southland Coast, and north and south of the Southern Plateau.

It was noted that stratum 26 (depth of 800–1000 m) south of Campbell
Island was not surveyed in 2003, 2004, or 2006 due to varying reasons
(weather, emergency etc.). In addition, stratum 17 at the Bounty Platform
was only included in 1992 and 1993.

The core survey areas were based on depth intervals as alluded to above.
Stratification was based on depth intervals of 300 – 600 m, 600 – 800 m,
and later 800 – 1000 m. Furthermore, the areas were then subdivided by
latitude and longitude.

2.2 Survey Design

A 2–phase stratified random design proposed by Francis (1984) was used.
The motivation was to decrease the overall observed variation in a species
catch weight.

The first phase of the survey uses a stratified random design to allocate sta-
tions (trawl locations) within the survey area. The number of stations allo-
cated to a particular stratum is defined as being proportional to the area of
the stratum multiplied by the standard deviation of the catch weights (up
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Figure 2.1: Map of the sub-Antarctic region illustrating the surveyed area
and 21 strata (note that stratum 3 and 5 were split into 3A, 3B, 5A, and 5B
in 2000) (Bagley et al., 2013). Stratum 17 is further east, not shown here.
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to the current year) within the stratum, divided by a measure of sampling
cost, that is,

nj ∝
AjSD(Cj)√

cj
, (2.1)

where nj is the number of stations in stratum j, Aj is the area of stratum j,
SD(Cj) is the sample standard deviation of the catch weights, Cj , in stra-
tum j, and cj is the cost (effort, measured in hours aboard ship) involved
with sampling stratum j.

When estimating biomass, the trawl station locations are assumed to be
allocated to the stratum area randomly. However, there may be some in-
stances where a station is too far from the ship’s current location, in which
case a closer point is chosen. Francis (1984) states that the surveys are
carried out as if the stations were allocated randomly.

Once the first phase of sampling has been completed, the second phase be-
gins by calculating the estimated relative gain (reduction in variance), Gj ,
from adding one station to stratum j. This is calculated for each stratum,
with G, given by

Gj =
A2
jVar(Cj)

nj(nj + 1)
. (2.2)

One station is allocated randomly within the stratum with the largest Gj

value, and the relative gains are recalculated for that stratum. By adding
more stations to the strata with the highest coefficients of variation, then
we can reduce the catch weight variation in that strata, and hence reduce
the overall catch weight variation. The second phase is therefore repeated
until an overall target coefficient of variation is reached.

Sampling for the summer research trawl surveys was initially based on the
catch weight of hoki, which is the species of interest in this thesis (Bagley
et al., 2013). The target coefficient of variation for hoki was 15%.
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2.3 Species

Hoki was chosen to be the species of focus for the analysis. Hoki is an
offshore bathypelagic fish caught in bottom trawls at depths of 200-800 m
throughout New Zealand waters (MPI, 2016). It plays an important role in
the commercial fisheries industry in New Zealand. The decision to focus
on hoki was motivated by two reasons. Firstly, the survey was designed
to optimize estimation of hoki abundance to a targeted coefficient of vari-
ation. In addition, the survey reports high proportions of hoki encounters.
Of all the species encountered, hoki reported the least number of zero
catches. The proportion of zero catches for hoki was found to be 4.84%
(64 out of 1322). This allowed for the choice between modelling encounter
rate together with catch weight, or modelling catch weight alone. For the
purpose of this thesis, zero catches were assumed to occur at random, and
hence ignored. Figure 2.2 shows bar plots illustrating the percentage of
zero catch trawls by year and by stratum. In the plot by year, the spread
of zero catch trawls appears roughly even, with 2007 reporting the largest
number of zero catches. The plot by stratum shows a much more uneven
spread, with most of the zero catch trawls occurring in strata 17, 26, 27,
and 28. These strata are not core strata, in that stratum 17 was removed
after 1993, and strata 26, 27, and 28 were used in 2000 onward. We have
some reservation about the randomness of zero catch trawls, however, we
will continue as if they occurred randomly.

2.4 Dataset

The data were provided in two separate sets. Each set detailed different
aspects of the 1322 summer research trawls in the sub-Antarctic. The first
dataset describes the catch weight by species caught at each station for
each trawl. It contained 28098 observations of catch weight for all species
caught. Absence of a catch weight for a given record was indication that a
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Figure 2.2: Bar plots showing the frequency of zero catch trawls by year,
and by stratum.
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species was not encountered during the trawl. In addition, each record
had a corresponding trip code and station number, which allowed for
identification of the individual trawl.

The second dataset gave information about the variables related to each of
the 1322 trawls. In this dataset, trip code and station number were given,
which allowed for matching of the station data to the corresponding catch
weight observations. The set contained many variables, some of which
permitted standardization for a range of possible effects. Tables 2.1 and
2.2 list relevant variables reported in the two datasets.

Table 2.1: List of relevant variables recorded in the catch dataset and their
brief descriptions.

Variable Code Description
species Name of the species
weight Catch weight of species caught in kg
index Unique code for each individual trawl

The first step in preparing the data for analysis involved taking a subset of
the catch observations corresponding to the species of interest. In this case,
1322 catch observations for hoki, one for each trawl, were extracted. The
extracted records were then merged with the appropriate trawl informa-
tion from the station dataset. There were 64 records with no catch weight
recorded. We assumed that these records occurred randomly and hence re-
moved them. This left us with a dataset of 1258 observations on hoki catch
weight, with the associated date and time of trawl, depth, latitude, longi-
tude, trawl distance, and stratum (Bagley et al., 2013). Furthermore, there
were two observations that were not assigned to a stratum; these records
were also removed. Finally, the single remaining positive catch record in
stratum 17 was also removed because there was not enough information
to estimate abundance in this stratum. Hence, of the 1322 original records,
only 1255 were used. Figure 2.3 illustrates the process of data grooming
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Table 2.2: List of relevant variables recorded in the station dataset and their
brief descriptions.

Variable Code Description
stratum Label used to identify the area of a trawl
date s Trawl start date
time s Trawl start time in 24 hour time
dlat s Decimalised latitude at start of trawl
dlong s Decimalised longitude at start of trawl
date f Trawl end date
time f Trawl end time in 24 hour time
dlat f Decimalised latitude at end of trawl
dlong f Decimalised longitude at end of trawl
distance Distance of trawl in km
min gdepth The minimum recorded depth
max gdepth The maximum recorded depth
index Unique code for each individual trawl

described above.

2.5 Exploratory Data Analysis

In order to estimate fish relative abundance, it is common to obtain a stan-
dardized measure of catch per unit of effort, using covariates such as time
of year, location, vessel identifiers, ecological factors and biological factors.
This was discussed in detail in Section 1.2.4. Standardization accounts for
the factors that influence a species’ abundance over time. In the following
subsections we define the dependent variable, catch per unit effort, as well
as detailing the variables that potentially have an effect on it.
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Catch data
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Station data
1322 Observations

Subset by hoki
catch

Catch appended Station data
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and zero hoki

catches

Hoki catch dataset
1255 Observations

Figure 2.3: Flow diagram displaying the process of conditioning the data
to an appropriate set to be used for analysis.
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2.5.1 Catch per Unit Effort

When estimating relative abundance of a stock, it is necessary to use some
measure of biomass. Amount of catch is assumed to be proportional to
the population abundance, and hence can be used as an abundance index
(see Section 1.2.3). Fisheries scientists either use the number of fish caught
or the weight of the fish caught to measure amount of catch. Our dataset
contains hoki catch weight, C, in kilograms.

Each trawl had a target length of 3 nautical miles. However, due to a num-
ber of reasons, most often encountering foul ground or unusually large
catches (Bagley et al., 2013), trawls were sometimes cut short and accepted
for biomass estimation if the length was at least 2 nautical miles. As a re-
sult, some trawls had a slightly different length, and in order to adjust for
varying amounts of effort, each catch weight was divided by the respec-
tive trawl area swept. Area swept was computed by taking the distance
of the trawl (ltrawl) and multiplying it by 100 m (the nominal width of the
trawl, wtrawl , kept constant for each trawl). The new quantity was defined
as catch per unit effort (CPUE), measured in kg/km2, given by

CPUE =
C

ltrawl × wtrawl
. (2.3)

An initial look into the catch weight data showed the distribution of hoki
CPUE to be approximately log-normal (see Figure 2.4). When CPUE was
converted into log CPUE, a distribution resembling the Normal distribu-
tion was observed (see figure 2.4). As a result, CPUE was assumed to have
a log-normal distribution for model fitting.

2.5.2 Factors affecting CPUE

Trawl Year

For each observation of catch, the date and time that the trawl occurred
was recorded. Unfortunately, since each trawl occurred in the summer
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(November or December of each year), there was not enough informa-
tion to investigate a seasonal effect. As a result, temporal effect was only
explored on the year scale. It is now well known that the abundance of
species changes over time (Preston, 1960), (Magurran, 2007). Hence, in-
cluding a time component in the standardization of CPUE is absolutely
necessary.

Table 2.3: Summary of hoki CPUE (kg/km2) by trawl year (including zero
catches).

Year Mean Median Number Standard Min. Max. Zero
of Trawls Deviation Catch (%)

1991 439.56 311.38 154 634.66 4.14 6337.29 0.00
1992 388.53 302.14 160 343.23 0.00 2155.49 2.50
1993 473.61 264.40 138 656.19 0.00 4094.13 4.35
2000 215.94 124.19 107 291.25 0.00 2465.20 4.67
2001 186.98 91.01 106 276.05 0.00 1948.52 5.66
2002 187.04 87.65 105 317.57 0.00 1825.45 6.67
2003 112.36 51.02 82 263.62 0.00 1907.85 6.10
2004 288.04 56.79 90 999.91 0.00 8253.96 5.56
2005 133.10 54.26 96 195.98 0.00 960.14 8.33
2006 115.58 65.66 91 158.84 0.00 800.79 3.30
2007 289.39 120.37 98 845.58 0.00 8019.35 10.20
2008 245.60 147.72 95 336.31 0.00 2043.56 5.26

Table 2.3 gives a summary of the CPUE of hoki for each year of the research
trawls. Within each trawl year, the distribution of hoki CPUE is skewed to
larger values. Evidence for this can be seen in Figure 2.5. Because of this
asymmetry, the median provides a more robust measure of centrality.

The first three years of the survey, 1991, 1992, and 1993, have the largest
number of trawls at 154, 160, and 138 respectively. In addition, these
three years also have the largest median CPUE of hoki at 311 kg/km2,
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Figure 2.5: Histograms of hoki CPUE organized by trawl year.

302 kg/km2, and 264 kg/km2 respectively.

When the surveys began again in 2000, there were significantly fewer
trawls per year. The year that had the least number of trawls was 2003,
with 82 occurring that year. All of the median CPUE values were smaller
for the later years (2000 – 2008) compared to the earlier ones (1991 – 1993).
Of the later trawls, the year that had the largest median CPUE was recorded
in 2008, with a value of 148 kg/km2. The year that had the smallest median
CPUE was 2003 with a value of 51 kg/km2. In the years 1991, 1993, 2004,
and 2007, unusually large CPUE observations were recorded with values
of 6337, 4094, 8254, and 8019 kg/km2 respectively. These large CPUE ob-
servations are potentially outliers.
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Location

The dataset provided trawl location in two forms. Stratum number is
included, which assigns each of the catch weights to a particular survey
stratum – each of which has an estimated spatial area (km2) as indicated
in the New Zealand Fisheries Assessment Report for 2013/2014 (Bagley
et al., 2013). In addition to stratum number, the latitude and longitude in
degrees is included for the beginning and end of each trawl. These two
types of location description allow for different procedures in modelling
spatial structure. Stratification allows for an areal approach, whereas the
exact locations allow for a point reference analysis. It was decided that
both approaches would be conducted, and compared in this thesis, with
the presumption that point referenced modelling would produce more ac-
curate and precise estimates of abundance.

In order to obtain a single location for each trawl, the midpoint of the
trawl was calculated. This assumes a straight line tow for each trawl. The
CPUE could then be plotted on the map of the sub-Antarctic region (Figure
2.6). It can be seen from Figure 2.6 that the largest reported CPUE values
occur near Puysegur Bank. Figure 2.7 shows that three of the largest CPUE
observations were reported in stratum 1. This is reflected in Table 2.4 with
the largest median CPUE of 458 kg/km2 occurring in stratum 1.

Table 2.4 summarises the CPUE values in the hoki dataset by stratum. Just
as we saw within year, within each stratum, the distribution of hoki CPUE
is skewed to larger values. Evidence for this can be seen in Figure 2.7.
Because of this asymmetry, the median provides a more robust measure of
centrality.

The number of trawls changes more so from stratum to stratum than it
does from year to year. Excluding trawls unassigned to strata, the number
of trawls fluctuates from 9 to 121. After excluding zero catches, the stratum
with the fewest trawls was stratum 26, with 4 trawls. Abundance index
estimation may not be accurate for all strata, because of the low number
of trawls in some strata.
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Figure 2.6: Map of 1255 trawls where hoki was caught in the sub-Antarctic
region. The size of a point is representative of the CPUE in kg/km2,
whereas, the colour gradient is representative of the year.
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Table 2.4: Summary of hoki CPUE by strata (including zero catches).

Stratum Mean Median Number of Standard Min. Max. Zero Area
Trawls Deviation Catches (%) (km2)

83.43 0.00 5 170.16 0.00 386.93 60.00
1 940.39 457.88 59 1471.90 21.76 8253.96 0.00 2150
2 248.85 206.37 48 195.93 28.61 1003.78 0.00 1318
3 709.72 305.16 14 1033.63 0.00 3151.94 7.14 6104

003A 478.26 133.82 39 1297.75 0.00 8019.35 2.56 4548
003B 365.62 205.11 34 447.58 0.00 1948.52 5.88 1556

4 212.20 133.46 74 280.94 13.54 1571.27 0.00 21018
5 398.61 295.18 16 348.51 59.04 1116.51 0.00 6262

005A 149.87 85.47 40 174.51 5.76 795.41 0.00 2981
005B 116.71 94.06 34 91.33 13.41 407.75 0.00 3281

6 308.43 102.95 63 477.32 0.00 3146.15 6.35 16682
7 288.87 156.25 45 399.43 3.60 2155.49 0.00 8497
8 253.59 205.57 93 172.46 13.27 768.53 0.00 17294
9 366.47 213.20 116 419.73 9.33 2465.20 0.00 27398

10 297.04 139.98 58 536.06 4.32 3560.48 0.00 11288
11 250.51 188.26 62 264.43 0.00 1436.90 3.23 23008
12 192.04 124.19 121 196.36 6.30 1092.15 0.00 45259
13 214.14 175.25 80 197.69 5.36 988.30 0.00 36051
14 269.26 190.33 82 308.64 0.00 1728.22 1.22 27659
15 214.74 128.98 51 225.57 4.78 1275.02 0.00 15179
17 0.40 0.00 9 1.20 0.00 3.60 88.89 11360
25 234.46 65.33 87 499.34 0.00 3151.91 4.60 1928
26 2.26 0.00 18 5.38 0.00 20.70 77.78 31778
27 25.03 16.12 39 28.08 0.00 93.59 23.08 12986
28 25.57 4.14 35 46.04 0.00 182.91 42.86 8336
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Figure 2.7: Histograms of hoki CPUE organized by Stratum.

Depth

Both minimum and maximum ground depth were included in the dataset.
A single depth variable was created by taking the average of the minimum
and maximum ground depth for each record. Figure 2.8 shows the depth
intervals within each stratum. As expected, we can see that each stratum
covers a particular interval of depths. This is of course due to the fact that
strata were chosen according to depth intervals (as described in Section
2.1). We assume that depth need not be entered into the model because
any variation due to depth should be accounted for by stratum.

Other factors

In addition to the factors described above, the dataset also included var-
ious other variables concerned with the fishing vessel and gear specifica-
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tion. The inclusion of these variables is unnecessary since only one vessel
(RV Tangaroa) was used. Gear specification was kept constant across each
trawl. Since vessel effects were controlled for, they were not explored.

It is possible that biological variables, for example body condition and sex
ratios, could influence the variation in CPUE. However, such information
was not collected, hence we can not include them when we model CPUE.

We now look at time and location, in more detail. This is to assess whether
the inclusion of temporal and spatial effects is necessary for modelling
CPUE.

2.6 Autocorrelation

Autocorrelation is defined by Yule (1921) as the dependence of successive
observations of a single variable. A common assumption to make when
constructing models is independence between observations. When au-
tocorrelation exists within data, care must be taken to take into account
such dependencies. In the following subsections, we find evidence for
the existence of spatial and temporal autocorrelation. In addition, we also
show that some interaction between space and time exists within the catch
weight observations for hoki.

2.6.1 Temporal Autocorrelation

The first type of autocorrelation explored in this thesis was temporal. In
nature, many species distributions change over time (Preston, 1960). This
change over time can happen on different time scales such as day, month,
season, or year. In this dataset, the smallest time scale possible for explo-
ration was by year. As each trawl occurred during the same time each
year, we were unable to explore the possibility of seasonal or monthly
effects. Before we constructed the models, investigation of possible tem-
poral effects were explored. A box plot was constructed which displayed
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Figure 2.9: Box plots of log CPUE in kg/km2 by year

the CPUE (in log scale) by year. Figure 2.9 shows a temporal trend, where
CPUE is higher on average in the three initial years of the summer trawls,
and decreases to a minimum in 2003. From 2004 onward, a general in-
creasing trend is seen, almost returning to the initial catch weight level
observed in 1991. Evidence for temporal autocorrelation is present, as suc-
cessive years have similar median CPUE values. In the first three years,
the median CPUE is relatively equal. The median CPUE in 2005 is closer
to that of 2004 and 2006, than that of 2003 and and 2007.

In addition to the preliminary exploration through the box plots, an au-
tocorrelation plot is constructed. The autocorrelation plot shows how the
average CPUE (in log scale) is correlated with itself at different lag points.
For example, when the series is lagged by 1, each observation of CPUE is
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paired with the catch weight of the previous year. The correlation is cal-
culated between the two series, and is displayed on the plot. Figure 2.10
shows noticeable correlation between observations when lagged by both
one year, and four years.
The evidence described above is indicative of an autoregressive temporal
effect within hoki CPUE, which needs to be accounted for in our model of
catch per unit effort.
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Figure 2.10: Plot of the autocorrelation of CPUE in kg/km2 between years
of increasing lags

2.6.2 Spatial Autocorrelation

In addition to temporal autocorrelation, the location of hoki within the
survey area is expected to be spatially autocorrelated. In nature, the dis-
tribution of species is commonly dependent on characteristics of the area,
in which the species resides. This may be due to reasons such as migra-
tion and recruitment, differences in terrain, habitability and species prefer-
ences (Abensperg-Traun & Boer, 1990; Gratwicke & Speight, 2005; Morgan
et al., 2006). Visualizing spatial autocorrelation is more complicated com-
pared to temporal autocorrelation because space extends in two dimen-
sions. We can take an initial look at the distribution of hoki catch weight
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Figure 2.11: Distribution of CPUE aggregated by year.

over the sub-Antarctic area, by aggregating the observations over time.
Figure 2.11 shows that CPUE clearly differs over area. At Puysegur Bank
(top left), the CPUE is highest. CPUE decreases toward the bottom right.
The band of no CPUE between Puysegur Bank and below Snares shelf is
due to the fact that there is no survey coverage there, and can be ignored.

In addition to the plots of spatial distribution of CPUE a common way
to measure spatial autocorrelation globally is to use Moran’s I (Moran,
1950). Moran’s I is an adaptation of the popular Pearson product moment
correlation coefficient that allows us to measure spatial autocorrelation for
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a univariate series (Moran, 1950). The statistic is:

I =
n

S0

∑n
i=1

∑n
j=1wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2
, (2.4)

where n is the number of observations, wij is the weight between obser-
vations i and j, and S0 is the sum of all the weights. The choice of weight
function between observations is important, as it allows us to specify how
close two observations are in space. Observations which are closer in space
are expected to have similar values of CPUE, and are given a larger weight
compared to observations further apart. We used a function of the inverse
of the distance between the pair of tows as the weights. To allow for the
fact that some trawls can be quite close to one another, an adjustment of
1000 m was used to ensure that the value of I is not distorted (Briggs,
2010). We calculated wij using

wij =
1000

1000 + dij
, (2.5)

where dij is the distance between the midpoints of tow i and tow j.
Other weight functions have been used in the literature, for example wij =

exp(−dij
d̄

), which specifies quasi-global correlation between points derived
from maximum entropy models (Chen, 2012).
Moran’s I takes values between -1 and 1. If I is positive, then there is pos-
itive spatial autocorrelation within the sample, whereas, if it is negative,
then there is negative spatial autocorrelation. If I is close to its expected
value, then we observe no spatial autocorrelation within the sample.
We can test whether significant spatial autocorrelation exists within hoki
CPUE by testing the null hypothesis that there is not spatial autocorrela-
tion, against the hypothesis that there is.
By standardizing I by its expected value and standard error, we arrive at
a convenient test statistic:

zI =
I − E(I)√

Var(I)
, (2.6)
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where zI is the test statistic with standard Normal distribution, E(I) is the
expected value of Moran’s I, and

√
Var(I) is the standard error.

The expected value of Moran’s I is defined as:

E(I) =
−1

n− 1
, (2.7)

where, n is the number of observations (Moran, 1950). The standard error
for Moran’s I is

√
E(I2)− E(I)2.

For the hoki CPUE data, we obtained I = 0.034, and a corresponding
E(I) = 0.00076.
We computed the standard error through bootstrapping (Efron, 1981). Af-
ter computing both the observed and expected value of I for the CPUE
observations, the CPUE observations were re-sampled and assigned to the
weights used in calculating the observed I . We called this sample the boot-
strap sample. Moran’s I was then computed for the bootstrap sample. Re-
sampling and calculating Moran’s I was repeated 200 times. Finally, the
standard error for the observed I was taken as the standard error of the
200 bootstrapped Moran’s I. The standard error was found to be 0.00256.
We therefore obtained a test statistic of zI = 13.8, with a corresponding
p-value of P (Z ≥ 13.8) + P (Z ≤ 13.8) < 0.0001.
The value we obtained (I = 0.034) was statistically significant (p-value
< 0.0001). The value is small and positive, indicating that there is some
spatial autocorrelation in hoki CPUE. This result is in agreement with vi-
sual examination of the spatial distribution plot (Figure 2.11).
Measuring global spatial autocorrelation is beneficial as a starting point,
however, we can also measure local autocorrelation. Local Moran’s I is a
measure of spatial autocorrelation between one observation and all other
observations surrounding it (Anselin, 1995), and is given by

Ii =
(xi − x̄)

∑n
j=1 wij(xj − x̄)∑n

i=1(xi−x̄)2

n

, (2.8)

where Ii is a measure of autocorrelation for observation i, x̄ is the mean
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of the observations x, and wij is the weight between observations i and j,
calculated using Equation 2.5.

Local Moran’s I allows for visualization of areas where similar CPUE ob-
servations are found. By taking the sum of all Ii, we arrive at the global
measure of autocorrelation described above.

Local Moran’s I was then plotted against longitude and latitude. The
colour gradient is now representative of the value of Local Moran’s I (Fig-
ure 2.12). We can see that local Moran’s I is most positive at Puysegur
Bank and the northeast region, indicating positive spatial autocorrelation
in this area. Trawls in these regions have similar values of hoki CPUE.
Very few observations have Ii values less than zero, indicating that most
spatial autocorrelation was positive.

2.6.3 Spatio-Temporal Autocorrelation

In addition to temporal and spatial autocorrelation, there is the possibility
of an interaction between the two. This so-called spatio-temporal autocor-
relation is the dependence of catch weight between nearby areas, within
time. This is easiest visualized as a series of plots, broken down by year
(Figure 2.13). Here we can see that CPUE changes over space within each
year as represented by the changing colouration over space. Furthermore,
the patterns change over time, which is indicative of spatio-temporal au-
tocorrelation. For example, we see that CPUE in the west of the map starts
off high in the years 1991, 1992, and 1993, but is much smaller in 2000 on-
ward. From the year 2000, CPUE in this region appears to decrease reach-
ing a low point in 2003, but increases from 2004 onward. This is indicative
that there is some interaction between space and time within hoki CPUE.

Further evidence of spatio-temporal autocorrelation can be seen in Figure
2.14, which is a plot of Local Moran’s I for each observation within each
year. The plot provides evidence of spatial autocorrelation within each
year, as shown by the regions of dark and light indicating changes in spa-
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Figure 2.12: Distribution of local Moran’s I for hoki CPUE observations.
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Figure 2.13: Hoki CPUE distribution over space for the year 1991 – 1993,
and 2000 – 2008.
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tial autocorrelation. We also see that the spatial autocorrelation patterns
change from year to year. This reinforces our evidence for spatio-temporal
autocorrelation within hoki CPUE.
In our data exploration, we found evidence of effects on hoki CPUE due to
both the year of trawl and stratum. In addition, our presumption of tem-
poral, spatial and spatio-temporal autocorrelation was validated by the
evidence provided in Sections 2.6.1, 2.6.2, and 2.6.3. When constructing
models for CPUE, autocorrelation must not be ignored. Gaussian Markov
random fields provide a useful means to model the effects of trawl year,
effects of stratum, and even CPUE itself. Gaussian Markov random fields
are particularly useful in this case, as they allow us to impose the autocor-
relation structures we see in our data. In Chapter 3, we detail the theoreti-
cal framework surrounding Gaussian Markov random fields.
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Figure 2.14: Local Moran’s I for hoki CPUE by year.



Chapter 3

Methodology

This chapter outlines the theoretical framework and methodology used
in this thesis. We begin with an introduction to hierarchical models and
the Bayesian approach. This leads into the theory underpinning Gaussian
Markov random fields including a discussion on precision matrix struc-
tures. An introduction to Hamiltonian Monte Carlo follows and an exam-
ple comparing Hamiltonian Monte Carlo to Markov chain Monte Carlo is
provided. A section on diagnostic analysis is also given. The chapter con-
cludes with a section on model comparison and assessment techniques.

3.1 Bayesian Hierarchical Models

Methods for modelling a species catch per unit effort (CPUE) were re-
viewed in section 1.2.4. Such methods can be applied using either a fre-
quentist approach or a Bayesian approach. Bayesian methods have been
used to derive standardized abundance indices with the use of Bayesian
hierarchical models (BHMs) (Bertram et al., 2015; Raghavan et al., 2016).
The benefit of using a hierarchical structure to model CPUE is the ability to
explicitly incorporate different variance components of the response. We
are aiming to explain some variability in CPUE that is due to where the
catch was obtained, and when. It is reasonable to assume that a relation-

49
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ship exists between catch weights which are close together in distance, as
well as in time. Evidence of such relationships in the data is given in sec-
tion 2.5. In addition, Bayesian methods allow for easier computation of
parameter estimates, compared to using maximum likelihood estimation.
As such, we decided to use the Bayesian approach.
Before we build our Bayesian hierarchical model (BHM), we must first
lay the groundwork for the Bayesian approach. The following subsection
presents Bayes’ theorem.

3.1.1 Bayesian Methods

Let y be a vector of observations from some distribution depending on
fixed potential predictors x and unknown parameters θ. We first start
with a joint probability model for y, x, and θ, given by

π(y,x,θ) = π(y|x,θ)π(θ|x), (3.1)

where we refer to π(y|x,θ) as the data likelihood and π(θ|x) as the prior
distribution.
By simply conditioning the joint distribution of unknown parameters on
the observed data y, we arrive at an expression for the posterior density
of the parameters:

π(θ|y,x) =
π(y,x,θ)

π(y,x)
=
π(y|x,θ)π(θ|x)

π(y,x)
, (3.2)

where π(y,x) =
∫
π(y|x,θ)π(θ|x)dθ is the marginal distribution of the

data, which does not depend on any parameters. As such, we can rewrite
the posterior density in its most recognizable form:

π(θ|y,x) ∝ π(y|x,θ)π(θ|x). (3.3)

Equation 3.2 and 3.3 provide the theoretical framework for Bayesian statis-
tics (Gelman et al., 2014a). From here, we can build hierarchical models.
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3.1.2 Bayesian Hierarchical Model

From equation 3.3, a Bayesian hierarchical model (BHM) can be built. Let
y be a response variable that is divided into groups or clusters according
to space or time. Now consider a location, or a time point, j, that has data
vector yj and parameter vector θj . Each parameter vector θj is regarded
as a random draw from a population distribution governed by some pa-
rameter φ, such that π(θ|φ) =

∏J
j=1 π(θj|φ). Therefore, our BHM has the

form:

π(θ, φ|y,x) ∝ π(y|θ, φ,x)π(θ|φ,x)π(φ|x) (3.4)

The posterior distributions for the parameters of a BHM are needed in
order to perform Bayesian inference. From equation 3.4, three components
are required to compute the posterior density.

At the first stage, a suitable distribution for the observed data is chosen.
The choice of data distribution will depend on the type of response vari-
able in question. For example, if the responses are counts, then a Poisson
distribution might be appropriate. The second stage involves carefully
choosing a prior distribution, π(θ|φ,x) for the parameters, θ, which drive
the observations. At this point, we can introduce prior assumptions we
have about latent processes which govern the distribution of the response
variable. In this thesis, we wish to incorporate spatial and temporal auto-
correlation into a model for hoki CPUE. One way of doing this is to use
Gaussian Markov random fields. Finally suitable hyperprior distributions,
π(φ|x), are selected for the parameters, φ, of the prior distributions.

3.2 Gaussian Markov Random Fields

A Gaussian random field (GRF) is essentially a random vector that comes
from a multivariate normal distribution. By satisfying additional assump-
tions of conditional independence, we can focus our attention on a special
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case of GRFs, the so-called Gaussian Markov random field (GMRF). GM-
RFs have many uses in the applications of time series, longitudinal and
survival data, image analyses, and spatial statistics to name a few (Rue &
Held, 2005). The need for understanding GMRFs is becoming increasingly
more important, as these techniques become more popular. Our goal is to
implement a BHM to model hoki CPUE where the temporal and spatial
effects are modelled by GMRFs. The motivation is that the abundance in-
dices obtained will be more precise than those obtained by other methods
(described in Section 1.2.4), and will be simpler and quicker to compute.
Before implementation, we must define the theory that underpins GMRFs.
We begin with conditional independence.

3.2.1 Conditional Independence

When looking at variables that evolve over space and/or time, it is im-
portant to note that points closer in space/time are assumed to have a
higher correlation than those separated by large distances. By introduc-
ing Markovian properties, we can take advantage of the assumption that
non-neighbouring points are independent.
Let x = (x1, x2, x3)T be a random vector, then x1 and x2 are conditionally
independent given x3 if, for a known value of x3, discovering x2 gives us
no new information about the distribution of x1. Under the assumption
of conditional independence of x1 and x2, the joint density of xmust have
the following representation

π(x) = π(x1|x3)π(x2|x3)π(x3). (3.5)

A common way to display the conditional independence relationships be-
tween variables is through the use of undirected graphs. We denote an
undirected graph as G = (V , E) where V is the set of nodes in the graph,
and E is the set of edges {i, j}, where i, j ∈ V and i 6= j. An example of
an undirected graph is shown in Figure 3.1. Nodes that share an edge are
considered to be conditionally dependent, given all other nodes.
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1

2

3

4

Figure 3.1: Undirected graph G = (V =
{

1, 2, 3, 4
}
, E ={

{1, 2}, {1, 3}, {2, 3}, {3, 4}
}

)

We can now formally define a GMRF.

3.2.2 Definition of the Gaussian Markov Random Field

A random vector x = (x1, ..., xn)T ∈ Rn is called a Gaussian Markov ran-
dom field with respect to a labelled graph G = (V , E) with mean µ and
positive definite precision matrixQ, if and only if its density has the form

π(x) = (2π)−
n
2 |Q|

1
2 exp

(
− 1

2
(x− µ)TQ(x− µ)

)
(3.6)

and
Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j.

Notice that the density is defined using a precision matrix Q, rather than
a covariance matrix Σ. The precision matrix allows us to visualize the
conditional independence between the elements of the GMRF. Formally
and in general for any GMRF, if Qij = 0, for i 6= j, then xi and xj are
conditionally independent given the other variables xk where k 6= i and
k 6= j, and vice versa. This is illustrated in graphs such as Figure 3.1,
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where two nodes not sharing an edge indicates conditional independence
(and hence a zero in the precision matrix). In general, the structure of the
precision matrix can be directly translated from the undirected graph.
The use of the precision matrix is beneficial because the elements of Q
have nice conditional interpretations (Rue & Held, 2005). The diagonal
elements of Q are the conditional precisions of xi given every other term,
x−i. The off diagonal elements give information about the conditional
correlation between xi and xj , given every other term x−ij . These are
results of the following theorem (Rue & Held, 2005).

Theorem 1 Let x be a GMRF with respect to the graph G = (V , E) with mean
µ and positive definite precision matrixQ, then

E(xi|x−i) = µi −
1

Qii

∑
j:j∼i

Qij(xj − µj), (3.7)

Prec(xi|x−i) = Qii, (3.8)

and
Corr(xi, xj|x−ij) = − Qij√

QiiQjj

, i 6= j. (3.9)

This is incredibly convenient, because it allows us to easily impose a par-
ticular correlation structure on a process variable (such as temporal or spa-
tial), by treating it as a Gaussian Markov random field. We look at possible
precision structures in the next section.

3.2.3 Precision Structures

Gaussian Markov random fields provide a flexible approach for modelling
the dependence between latent parameters such as temporal or spatial ef-
fects, and implicitly, the dependence between observed responses, yi. This
dependence can be due to various processes such as temporal, spatial, or
spatiotemporal interactions (Rue & Martino, 2007). The following subsec-
tions provide an overview of some precision structures that will be used
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in Chapter 4 to reflect the various dependencies within the observed hoki
CPUE data.

Temporal Process

It is well known that temporal dependence exists within data concerned
with measuring population abundance over time (Preston, 1960; Magur-
ran, 2007). The day, month, season, or year effect of an observation can
represent the effect of other latent unmeasured effects that vary over time
(such as climate fluctuations, or global policy changes etc.). Because of
this, year of trawl was considered a useful predictor in modelling changes
in CPUE over time as well as temporal dependence of abundance obser-
vations. From Section 2.6.1, we saw that temporal autocorrelation exists
within the hoki CPUE observations.

It is logical to consider that observations in the future will depend on those
in the past. Such a pattern is called an autoregressive structure, which is
the type of structure we wish to impose on our observations (see Section
2.6.1).

Let τ = (τ1, ..., τT ), where T is the number of time points, represent the
temporal process driving some observable response variable. In this case,
let τi represent the effect on observations recorded in year i of the survey.
We can model this process as a GMRF with a mean of zero, and a precision
matrix Q, which has a first order autoregressive (AR(1)) structure. The
model equation for an AR(1) process is shown below (Rue & Held, 2005):

τi = ρτi−1 + εi, εi ∼ N(0, φ), |ρ| < 1. (3.10)

The joint density of τ is therefore a GMRF:

τ ∼MVN(0,Q−1), (3.11)
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with

Q = φ
1

1− ρ2



1 −ρ 0 ... 0

−ρ 1 + ρ2 −ρ ... 0

0 −ρ 1 + ρ2 ... 0

... ... ... ... ...

0 ... −ρ 1 + ρ2 −ρ
0 ... 0 −ρ 1


, (3.12)

where Q is a T × T matrix, φ is the precision parameter of the temporal
effect, and ρ is a measure of the temporal autocorrelation. Hence by using
equation 3.8, we arrive at the full conditional precisions shown below:

Prec(τi|τ−i) =
1

Var(τi|τ−i)
=


φ

1−ρ2 , for i = 1, T

φ(1+ρ2)
1−ρ2 , for i = 2, ..., T − 1.

(3.13)

We now move on to look at precision structures to model spatial depen-
dence in the following subsections.

Spatial Process at the Areal Level

Here, we look at a possible precision structure to describe the spatial pro-
cess at an areal level. A spatial process is defined at an areal level if the
entire surveyed area is stratified. The value of an observation may be af-
fected by which stratum it belongs to. As described in Chapter 2, hoki
CPUE observations were recorded at an areal level.
A precision matrix with a conditional autoregressive (CAR) structure (Be-
sag et al., 1991) is ideal to specify the spatial dependence of observations
recorded at an areal level. The CAR model is derived from a GMRF spec-
ified in its full conditional form with the use of Brook’s Lemma (Rue &
Held, 2005; White & Ghosh, 2009).
A GMRF can be specified by its full conditional distributions, {π(xi|x−i)},
as opposed to using its mean and precision matrix. In order to do so, the
full conditional distributions must satisfy certain conditions in order for
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them to correspond to a valid GMRF (Rue & Held, 2005). Suppose the full
conditional distributions are specified to be Normal distributions with:

E(xi|x−i) = µi −
∑
j:j∼i

βij(xj − µj), (3.14)

and

Prec(xi|x−i) = ζi > 0, (3.15)

for i = 1, ..., n, for some {βij 6= 0, i 6= j}, and vectors µ and ζ. Here,
j ∼ i, means any point j which neighbours the point i. The neighbourhood
structure is defined implicitly through the non-zero terms {βij}.
In order for a joint density π(x) that gives rise to the full conditionals to
exist, the parameters βij and ζi must satisfy consistency requirements. By
comparing the terms above to the ones seen in 3.7, and 3.8, we see that if
the entries ofQ are

Qii = ζi, and Qij = ζiβij, (3.16)

andQ is symmetric, then we have a candidate for a joint density that gives
rise to the specified full conditionals, provided Q is positive definite (Rue
& Held, 2005). From this, a useful theorem follows that gives way to a
precision matrix that will be used to model the spatial dependence in the
data used in this thesis.
The following theorem was provided in Rue & Held (2005).

Theorem 2 Given the n Normal full conditionals with conditional mean and
precision as given by expressions 3.15 and 3.16, then x is a GMRF with respect
to a labelled graph G = (V , E) with mean µ and precision matrix Q = (Qij),
where

Qij =

ζiβij if i 6= j

ζi if i = j
, (3.17)
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provided ζiβij = ζjβji for i 6= j andQ is positive definite.

This result is proven using Brook’s Lemma, which follows below.

Lemma 1 Let π(x) be the density for x ∈ Rn, π(x′) be the density for x′ ∈ Rn,
and define Ω = {x ∈ Rn : π(x) > 0}. Let x,x′ ∈ Ω, then

π(x)

π(x′)
=

n∏
i=1

π(xi|x1, ..., xi−1, x
′
i+1, ..., x

′
n)

π(x′i|x1, ..., xi−1, x′i+1, ..., x
′
n)

=
n∏
i=1

π(xi|x′1, ..., x′i−1, xi+1, ..., xn)

π(x′i|x′1, ..., x′i−1, xi+1, ..., xn)
.

(3.18)

We can now prove Theorem 2.
Proof. Assume that µ = 0, and fix x′ = 0. Then expression 3.18 simplifies
to

log
π(x)

π(0)
= −1

2

n∑
i=1

ζix
2
i −

n∑
i=2

i−1∑
j=1

ζiβijxixj

= −1

2

n∑
i=1

ζix
2
i −

n−1∑
i=1

n∑
j=i+1

ζiβijxixj,

(3.19)

which implies that ζiβij = ζjβji for i 6= j. Therefore, the log density of x
can be expressed as

log π(x) = constant− 1

2

n∑
i=1

ζix
2
i −

1

2

∑
i 6=j

ζiβijxixj, (3.20)

which corresponds to the density of a zero mean, multivariate Normal
variable, x, provided that Q is positive definite. The precision matrix has
entries Qij = ζiβij for i 6= j and Qii = ζi. �

If we define βii = 0 in the expression above, then in matrix terms, the
precision matrix becomes:

Q = diag(ζ)
(
I + (βij)

)
, (3.21)
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whereQ is a J×J precision matrix, diag(ζ) is a J×J matrix with ζ1, ..., ζJ

down the diagonal, and zero elsewhere, and (βij) is a J × J matrix with
zero down the diagonal, and βij elsewhere, and J is the number of areas.

Then diag(ζ)I ∝ D and diag(ζ)(βij) ∝ A, and D is a J × J diagonal
matrix of the numbers of neighbours for each area, and A is a J × J ad-
jacency matrix with entries aij = 1 if area i and j are neighbours, and 0
otherwise. We rewrite equation 3.21 into a form that can be implemented
in the models:

Q = η(D − pA), (3.22)

where D and A are J × J matrices defined as above, η is a precision pa-
rameter, and p is a parameter describing the relative strength of spatial de-
pendence (White & Ghosh, 2009). In the paper by Hrafnkelsson & Cressie
(2003), it is stated that p is chosen to be such that 0 ≤ p < 1, to ensure that
Q is positive definite.

Spatial Process at the Point Referenced Level

When the geographic location of an observation is recorded, we call it
point referenced. CPUE observations in the hoki dataset have been recorded
at a point referenced level (see Chapter 2). The observations were recorded
with the start and end locations of the corresponding trawls. We can incor-
porate point referenced spatial structure into our models by using a pre-
cision matrix that has a similar form to the conditionally autoregressive
precision matrix described for areal data. This approach was explored by
White & Ghosh (2009), and by Paciorek et al. (2013).

The precision matrix allows for correlations between each pair of points,
rather than between groups of points. As a result, the size of the precision
matrix is a lot larger (n × n, where n is the number of observations). In
addition, the adjacency matrix entries are defined as functions of the dis-
tances between pairs of points, as long as the resulting precision matrix is
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positive definite. The precision matrix is assumed to have the following
structure (White & Ghosh, 2009),

Q = δ(G− κC), (3.23)

whereC is an n×n distance matrix,G is an n×nmatrix with diagonal en-
tries equal to the sum of the rows ofC and zero elsewhere, δ is a precision
parameter, and κ is a parameter describing the spatial correlation (White
& Ghosh, 2009).

Each element of C, cij , is defined as a function of distance between obser-
vations i and j,

C = (cij)n×n, (3.24)

where n is the number of observations, and

cij =


1, if dij ≤ dl

f(dij) if dl < dij ≤ du

0 if dij > du

, (3.25)

where dij is the euclidean distance between observations i and j. The term
dl is a lower distance threshold such that if the distance between observa-
tions i and j is below it, then they are assumed to be neighbouring (ad-
jacency score of 1, as defined in Section 3.2.3). The term du is an upper
distance threshold such that if the distance between observations i and j

is above it, then they are assumed to have no correlation.

We propose a function, f , which gives an adjacency score that is propor-
tional to the inverse pairwise distance between points. It assigns each pair-
wise distance a number between 0 and 1, where 0 represents no correlation
between observations, and 1 represents neighbouring observations. Points
that are closer to each other get a higher adjacency score than those further
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apart, such that

f(dij) =

1
dij
− 1

du
1
dl
− 1

du

(3.26)

and

cii = 0 for all i. (3.27)

The function is bounded by a lower and upper limit, dl and du, such that
90 % of the distances between observations lies between dl and du.

Other distance functions have been proposed, such as the one suggested
in White & Ghosh (2009), and Paciorek et al. (2013) shown below:

f(dij, α, du) = d
log(α)/log(du)
ij , (3.28)

where du is the upper distance limit, and α is a fixed term (usually set to
0.05) that specifies the amount of spatial dependence when the distance
between observation i and j, dij , is equal to the upper limit.

A comparison of the two distance functions defined above was carried out
for hoki data. A histogram was used to compare the spatial dependence
weight given by each distance function for each pair of observations as
shown in Figure 3.2.

There is a small difference between the two functions. The histogram of
the function from the literature shows that weighting between points de-
cays slower than our distance function. Observations separated by large
distances are assumed to be less correlated using our function compared to
the literature’s function. We therefore use our proposed distance function.

In White & Ghosh (2009), a stochastic neighbourhood CAR (SNCAR) is
suggested, which uses the distance function in equation 3.28, but lets the
upper distance limit, du be a random unknown quantity to be estimated.
This approach was not explored in this thesis.
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Figure 3.2: Histograms of the distance weights calculated by our function
(Proportional) and the function in White & Ghosh (2009) (Literature).
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Spatial Process at the Blocked Point Reference Level

When the location of an observation and the stratum it was sampled from
are both reported we can impose further correlation assumptions. We as-
sume that each pair of CPUE observations are correlated differently de-
pending on stratum. Furthermore, points that are not from the same stra-
tum are assumed to be independent. We can build a CAR precision matrix
similar to the one in section 3.2.3. The difference here is that the preci-
sion matrix is now a block matrix, made up of precision matrices for each
stratum.

Q =


Q1 0 ... 0

0 Q2 ... 0

: : : :

0 0 ... QJ

 , (3.29)

where

Qj = δj(Gj − κjCj), (3.30)

for j = 1, ..., J , and J is the number of strata. The matricesGj andCj have
the same form asG and C in Equation 3.23.
We have presented four precision structures that will be used to account
for spatial and temporal autocorrelation at both the areal and point refer-
enced level. We now provide the methodology for sampling from poste-
rior distributions.

3.3 Bayesian Posterior Sampling

3.3.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) has its origins in the field of physics.
A variant of this technique, Hamiltonian Monte Carlo, involves the use of
Hamiltonian dynamics to sample from a posterior distribution (Neal et al.,
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2011). Unlike Metropolis random walk or Gibbs’ sampler, the Hamiltonian
dynamics variant does not exhibit random walk behaviour. In addition,
Hamiltonian Monte Carlo (HMC) is not sensitive to correlated parame-
ters, which is a problem in MCMC. In fisheries science, it is common to
see correlated parameters. Of concern in this case, is the correlation be-
tween spatial, and temporal parameters. In order to see how Hamiltonian
dynamics can be used in MCMC, we will first look at its origins.

3.3.2 Hamiltonian Dynamics

In order to describe how an object (for example, an electron or molecule)
moves throughout a system we focus on two physical attributes of the ob-
ject. The object’s position (denoted by the d-dimensional vector q), and
the object’s momentum (its mass multiplied by its velocity, denoted by the
d-dimensional vector p) are used to describe the object’s motion through
time. For each location, the object has an associated potential energy de-
noted by U(q). Likewise, for each momentum, the object has an associated
kinetic energy denoted by K(p). Together, these two energy components
are combined to give the total energy of the object, called the Hamiltonian,
which is denoted by:

H(q,p) = U(q) +K(p) (3.31)

Partial derivatives on q and p are used to show how the position and mo-
mentum change over time, as follows

dqi
dt

=
∂H

∂pi
(3.32)

dpi
dt

= −∂H
∂qi

, (3.33)

where i = 1, ..., d.
Solving these differential equations allows us to predict an object’s loca-
tion and momentum at any point in time t.
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Four important properties are associated with Hamiltonian dynamics. Namely,
reversibility, conservation, volume preservation, and symplecticness. These
properties were discussed in detail in Neal et al. (2011) and are listed in the
following subsection.

3.3.3 Properties of Hamiltonian Dynamics

Reversibility

Hamiltonian dynamics is reversible. We can apply a mapping Ts from the
current state at time t, (q(t),p(t)) to some state at time t+ s, (q(t+ s),p(t+

s)). The mapping Ts is one-to-one, which means an inverse T−s exists.
This inverse mapping is obtained by negating the time derivatives seen in
equations 3.32 and 3.33. When K(p) = K(−p) from the Hamiltonian of
the form in 3.31, then the inverse mapping can also be obtained by negat-
ing p, applying Ts, and then negating p again. This property is important
for showing that the Metropolis updates using these dynamics leave the
distribution we wish to sample from invariant.

Conservation

The Hamiltonian is invariant, which is seen in equations 3.32 and 3.33

dH

dt
=

d∑
i=1

[
dqi
dt

∂H

∂qi
+
dpi
dt

∂H

∂pi

]
=

d∑
i=1

[
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

]
= 0. (3.34)

This is important, as for Metropolis updates using a proposal found by
Hamiltonian dynamics, the acceptance probability (when applying MCMC)
is one if H is kept invariant. An important note is that we can only make
H approximately invariant.
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Volume Preservation

Hamiltonian dynamics preserve volume in (q,p) space, which is a result
known as Liouville’s Theorem (Gibbs, 1885). If we apply the mapping Ts
to the points in some region R of (q,p) space, with volume V , the image
of R under Ts will also have volume V . Volume preservation is significant
for MCMC, as we do not need to account for any changes in volume in the
acceptance probability for Metropolis updates.

Symplecticness

Volume preservation is a consequence of Hamiltonian dynamics being
symplectic. Let z = (q,p), and

dz

dt
= J∇H(z), (3.35)

where

J =

[
0d×d Id×d

−Id×d 0d×d

]
, (3.36)

and∇H(z) is the gradient of H defined in 3.31. The symplecticness condi-
tion is that the Jacobian matrix, Bs, of the mapping Ts satisfies

BT
s J
−1Bs = J−1. (3.37)

This would imply volume preservation, since det(BT
s ) det(J−1) detBs =

det(J−1) implies that det(Bs)
2 is one.

Reversibility, volume preservation and symplecticness, are all preserved
exactly when Hamiltonian dynamics is approximated via the leapfrog method.
Approximation is a necessary step for computation of the dynamics, ex-
plored below.
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3.3.4 Discretization of Time

In order to implement Hamiltonian dynamics computationally, we must
discretize the continuous time variable, using a small step size denoted by
ε. There are different ways to discretize time. Three have been explored
by (Neal et al., 2011).

Euler’s method

A well known method for discretizing time involves the use of the approx-
imation

dq

dt
=

∆q

ε
. (3.38)

Equation 3.38 implies the following steps to update the position and mo-
mentum,

pi(t+ ε) = pi(t) + ε
dpi
dt

(t) = pi(t)− ε
∂U

∂qi
(q(t)), (3.39)

qi(t+ ε) = qi(t) + ε
dqi
dt

(t) = qi(t)− ε
pi(t)

mi

, (3.40)

where mi is the variance for the momentum variable pi as specified by the
kinetic energy equation. If we start at t = 0 with given values for qi(0)

and pi(0), we can iterate the steps above to get a trajectory of position and
momentum values at times ε, 2ε, 3ε, ..., and hence find approximate values
for q(t∗) and p(t∗) after t∗/ε steps.
Euler’s method of discretization does not preserve volume, and as a result,
trajectories of position and momentum tend to diverge with each step.

Modified Euler’s method

A modified version of Euler’s method exists, which allows for the preser-
vation of volume. This gives much better results,

pi(t+ ε) = pi(t)− ε
∂U

∂qi
(qi(t)), (3.41)
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qi(t+ ε) = qi(t) + ε
pi(t+ ε)

mi

. (3.42)

We simply use the new value for the momentum variables, pi, when com-
puting the new value for the position variable qi.

Leapfrog method

In Neal et al. (2011), it is shown that the leapfrog method provides the best
results in the context of applying MCMC. The leapfrog method uses the
following steps:

pi

(
t+

ε

2

)
= pi(t)−

(ε
2

)∂U
∂qi

(
q(t)

)
, (3.43)

qi(t+ ε) = qi(t) + ε
pi(t+ ε

2
)

mi

, (3.44)

pi(t+ ε) = pi

(
t+

ε

2

)
−
(ε

2

)∂U
∂qi

(
qi(t+ ε)

)
. (3.45)

The algorithm starts with a half step for the momentum variable seen in
expression 3.43. A full step is then completed for the position variables,
using the new values of the momentum variables, seen in expression 3.44.
Finally, another half step is taken for the momentum variables, using the
new values for the position variables (expression 3.45).

The leapfrog method preserves volume exactly, since each of the expres-
sions in 3.43 to 3.45 are only transformations. In addition, due to its sym-
metry, the method is also reversible, by simply negating p, applying the
same number of steps, then negating p again.

The leapfrog method is used in the probabilistic software, Stan (Gelman
et al., 2015), which is used in this thesis.
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3.3.5 Hamiltonian Monte Carlo Sampling

In order to relate Hamiltonian dynamics to a probability distribution, we
make use of the famous canonical distribution which is derived from Maxwell-
Boltzmann statistics (Tasaki, 1998).

The canonical distribution takes the following form

f(θ) =
1

Z
exp−E(θ), (3.46)

where f is a probability distribution on parameter vector θ, Z is a normal-
izing constant called the partition function, and E(θ) is an energy function
that depends on parameter vector θ. In our case, we let the energy function
be the Hamiltonian described by equation 3.31,

E(θ) = H(q,p). (3.47)

By combining, equations 3.46 and 3.47, we arrive at the following result,

f(q,p) ∝ exp−[U(q)+K(p)] = exp−U(q) exp−K(p) ∝ f(q)f(p). (3.48)

The expression in 3.48 shows us that we can write the joint probability
function for position and momentum as two independent canonical dis-
tributions for position and momentum separately. Here, we will let the
position vector q represent our variables of interest. The momentum vec-
tor p will therefore represent any auxiliary information that is needed to
make Hamiltonian dynamics work. Because of this, we can choose any
distribution to sample momentum from. Commonly, we use a zero-mean
normal process with unit variance given by,

f(p) ∝ p
Tp

2
. (3.49)

This makes the partial derivatives easy to compute in order to update the
momentum vector. We now need to find a potential energy function, U(q),
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such that:

U(q) = − log f(q), (3.50)

where f(q) will be the posterior distribution that we wish to sample from.
If we are able to compute the partial derivative in 3.51 below,

−∂ log(f(q))

∂qi
, (3.51)

then we can simulate Hamiltonian dynamics to be used in our MCMC
sampler.
Algorithm 1 below for implementing the Hamiltonian Monte Carlo (HMC)
sampler has two main stages – the leapfrog stage, and the acceptance-
rejection stage.

Algorithm 1 Hamiltonian Monte Carlo Algorithm

1: Generate initial position vector, q0 from some prior π(0), and initial
momentum vector, p0, from a pre-chosen canonical distribution f(p).

2: Use equations 3.43, 3.44, and 3.45 to generate a momentum and posi-
tion vector, (q∗,p∗) after L leapfrog iterations.

3: Compute the acceptance probability,

α = min
{

1, e−H(q∗,p∗)+H(q,p)} = min
{

1, e−U(q∗)+U(q)−K(p∗)+K(p)
}
(3.52)

4: Generate u ∼ U(0, 1). If u ≤ α, then the proposal state (q∗,p∗) is
accepted and set as the next state in the Markov chain. Otherwise, the
current state is re-used as the next state.

At this point, we have seen the ground work for HMC. However, there are
some problems related to hand-tuning the parameters ε and L. In order to
implement HMC to its full potential, we must carefully choose the correct
number of steps, L, and the step size, ε. If we choose the step size to be
too large, then sampling is inaccurate due to low acceptance rates. If the
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step size is too small, then precious computation time is wasted. If the
number of steps is too large, then HMC will generate trajectories that loop
back on itself. If L is too small, then successive samples will be close to
one another. This will cause random walk behavior, and slow mixing.
Finally, if L is chosen such that parameters jump from side-to-side, then
the chain may not even be ergodic. Most commonly, the chain is slow to
move between regions of low and high density. Carefully hand-tuning the
HMC may take time if the distribution we wish to sample from is complex,
as repeat runs of the algorithm are needed. A much more efficient way to
use HMC is to implement the extension, “No U-turn Sampler” (NUTS).

3.3.6 No U-turn Sampler

The basis of the NUTS algorithm is to use a criterion that indicates that the
Hamiltonian dynamics have been simulated “long enough” (Hoffman &
Gelman, 2014). Hoffman & Gelman (2014) use a convenient criterion based
on the dot product between the current momentum p(t) and the vector
from the initial position to the current position, q(t)− q(0). This is just the
derivative with respect to time of half the squared distance between the
initial and current position,

d

dt

(
q(t)− q(0)

)
.
(
q(t)− q(0)

)
2

=
(
q(t)− q(0)

) d
dt

(
q(t)− q(0)

)
=
(
q(t)− q(0)

)
p(t)

. (3.53)

This suggests an algorithm in which leapfrog steps are run until the quan-
tity in expression 3.53 becomes less than 0, indicating that the proposal
position q(t) has started to move back toward q(0). A disadvantage to this
algorithm is that it does not guarantee time reversibility, and hence is not
guaranteed to converge to the correct distribution. However, the NUTS
algorithm overcomes this issue by the means of a recursive algorithm that
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uses a slice variable ν, which has conditional distribution

f(ν|q,p) = Uniform(0, exp(l(q)− 1

2
p.p)), (3.54)

where l(q) is the likelihood for the position parameter, and p.p denotes
the inner product. Although not necessary, the slice variable simplifies the
derivation and implementation of the NUTS algorithm. The algorithm can
be found in Hoffman & Gelman (2014).

3.3.7 Cholesky Decomposition

In order to simulate a posterior distribution built from Gaussian Markov
random field priors, we need a way to sample from a GMRF. Rue & Held
(2005) provide simple algorithms for such computations, and these have
been built into the software Stan (Gelman et al., 2015). One such method
involves the useful result of Cholesky decomposition.

The result of a Cholesky decomposition is incredibly useful when compu-
tations on large sparse matrices are required. We can decompose a sparse
matrix V into a lower triangular matrix and its transpose,

V = LLT , (3.55)

where L is a lower triangular sparse matrix.

The lower triangular matrix retains the band structure from the original
matrix, which allows computations to be completed on L. This has the
benefit of greatly improving computational efficiency. If we choose V to
be the precision matrix Q of GMRF that has been permuted such that it is
a sparse band matrix, then computational cost is O(n), O(n

3
2 ), and O(n2)

for GMRFs in time, space and space-time respectively.

Algorithm 2 below (Rue & Held, 2005) is used to sample from a Guassian
Markov random field with a mean µ and precision matrixQ.

We review methods to diagnose convergence issues in the next section.
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Algorithm 2 Sampling GMRF x ∼ N(µ,Q−1)

1: Compute the Cholesky factorization,Q = LLT

2: Sample z ∼ N(0, I)

3: Solve LTv = z

4: Compute x = µ+ v

5: Return x

3.4 Diagnostics for Convergence Assessment

When simulating from a posterior distribution, using iterative approaches
such as MCMC and HMC, it is necessary to perform checks to ensure that
the resulting distribution of posterior draws are representative of the tar-
get posterior distribution. Many methods exist that help monitor the con-
vergence and mixing of a posterior sample. In order to make inferences,
we use the collection of simulated draws after discarding warm-up sam-
ples from the posterior distribution to summarize the density. The col-
lection of draws come from multiple chains, each initiated with over dis-
persed starting values.

The number of iterations is an important factor when assessing the quality
of the posterior sample. If an insufficient amount of iterations are used,
then convergence to the target distribution may not be satisfied. This
would cause the posterior draws to be unrepresentative of the target pos-
terior density. This is still an issue even if convergence is achieved, as the
earlier iterations would represent the starting approximation, rather than
the target density (Gelman et al., 2014a). A solution is to discard some of
the earlier iterations.

Another issue occurs due to the correlation of successive draws. This is not
a large problem, as the order of the draws does not matter when it comes to
inference, however, this can lead to slow convergence. If successive draws
are highly correlated, then there is slow movement about the support of
the target distribution.
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We monitor these problems visually with the use of trace plots, density
plots, autocorrelation plots and Gelman-Rubin plots (which use the po-
tential scale reduction factor) to assess convergence.

3.4.1 Trace Plots

Trace plots display the parameter value at each iteration of sampling and
are useful for visually assessing the convergence of the simulated draws
to a posterior distribution. They allow us to check whether any values are
rejected repeatedly causing the chain to become stuck on a single value
(poor mixing). When poor mixing occurs, a particular value may be over-
represented in the posterior sample.
In addition to monitoring chain mixing, trace plots allow us to check if
any patterns are present. Clear patterns in a trace plot indicate that the
algorithm may not have converged. In addition, if we use multiple chains
and observe that they traverse different parts of the parameter space, then
this is also indicative of non-convergence. To rectify these problems, we
can increase the number of iterations.

3.4.2 Posterior Density Plots

Density plots of the posterior parameters are also useful for visualizing the
quality of the posterior draws. The shapes of the densities are dependent
on the distributions involved in the construction of the posteriors. How-
ever, if large and erratic peaks are observed in the density plots, then this
indicates a lack of convergence to a single target distribution.

3.4.3 Autocorrelation Plots

When consecutive values in a Markov chain are highly correlated, then
traversing the sample space will be slow, leading to issues such as poor
mixing. This is because the proposal parameters are more likely to be
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close to the current state. A plot of the autocorrelation for each parameter
chain can be used to assess whether the correlation between successive
draws will cause issues. If high correlation is detected, then thinning the
sample (taking every kth draw) will make the values less dependent (Link
& Eaton, 2012).

3.4.4 Potential Scale Reduction Factor

The potential scale reduction factor, R̂, is used to monitor convergence of a
posterior distribution for a parameter, ψ, to a stationary distribution. It is
an estimate of the factor, by which the scale of the current distribution for
a parameter might be reduced if simulations were continued in the limit
n→∞.
To compute R̂ for a posterior simulation of ψ, we must first estimate the
marginal posterior variance, Var(ψ|y). This can be done by a weighted
average of within-chain variance, and between chain variance.
Let ψij represent the posterior draw for iteration i = 1, ..., n from chain
j = 1, ...,m. Then the between chain variance is defined as

B =
n

m− 1

m∑
j=1

(ψ̄.j − ψ̄..)2, (3.56)

where

ψ̄.j =
1

n

n∑
i=1

ψij, and ψ̄.. =
1

m

m∑
j=1

ψ̄.j, (3.57)

and the within chain variance is defined as

W =
1

m

m∑
j=1

s2
j , (3.58)

where

s2
j =

1

n− 1

∑
(ψij − ψ̄.j)2. (3.59)
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The marginal posterior variance is given by

V̂ar(ψ|y) =
n− 1

n
W +

1

n
B. (3.60)

Thus, the potential scale reduction factor is given by

R̂ =

√
V̂ar(ψ|y)

W
. (3.61)

This expression converges toward 1 as n tends to∞. As a result, if a pa-
rameter chain has a potential scale reduction factor of 1 (or close to 1), then
it can be assumed that the chain has converged to the target distribution.

The potential scale reduction factor can be calculated and cumulatively
plotted at each iteration, for each chain. Such plots are referred to as
Gelman-Rubin plots (Gelman et al., 2014a) and allow for visually assessing
the convergence of posterior parameter distributions.

We now provide an example that compares HMC to MCMC, using a sim-
ple target distribution.

3.4.5 Example of Hybrid Monte Carlo Sampler

In this example, we compare the simulation of a Normal(0,1) distribution
using Metropolis random walk, and Hamiltonian Monte Carlo (without
the NUTS algorithm).

We wish to sample y from N(0, 1). In the MCMC random-walk, we need
to use a candidate distribution which allows for good mixing. We choose
a uniform distribution, x ∼ Uniform(−δ, δ). It was found that the value
of δ which gave the optimum random-walk was 3. The total number of
iterations was 1000.

For the HMC, we used a momentum function which was equivalent to a
N(0, 1) distribution. We defined the stepsize, ε, to be 0.1, and L to be 20.
The total number of iterations was 1000.
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A trace plot and histogram for the chains produced by each method can
be seen in Figure 3.3. Clearly, there appears to be much more scatter and
exploration of the support using the HMC sampler. As a result, we obtain
a histogram of observations that look much more Normal, compared with
the MCMC random-walk. Figure 3.4 shows plots of the cumulative means
for each sampling method. The convergence to the true mean of zero is
much quicker using the HMC method, compared to the MCMC random-
walk. In addition, once convergence is achieved, there is less deviation
from the true mean when using the HMC sampler which is ideal.

3.5 Model Comparison & Assessment

Following on after constructing the joint probability model and comput-
ing the posterior distributions for each parameter it is necessary to assess
the fit of the model to the observed data. In the Section 1.2.6, we reviewed
common information criteria used to assess Bayesian models in the litera-
ture. In this section, we focus on constructing the Watanabe-Akaike infor-
mation criterion (Watanabe, 2010), a fairly new model assessment criterion
for Bayesian models.

Watanabe-Akaike Information Criterion

The Watanabe-Akaike information criterion (also known as the widely
applicable information criterion, WAIC) is more Bayesian than DIC (de-
scribed in Section 1.2.6). It was conceived by Watanabe (2010), and uses
the computed log pointwise posterior predictive distribution 1.17, as op-
posed to the log posterior density evaluated at a point estimate.

WAIC = −2êlppdWAIC = −2lppd + 2pWAIC. (3.62)

Here, the effective number of parameters that is used to adjust for over
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Figure 3.3: Trace plots and histograms for the posterior mean of a N(0,1)
variable using both MCMC random walk and HMC.
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Figure 3.4: Mean plot for the posterior mean of a N(0,1) variable using
both MCMC random walk and HMC.
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fitting is similar to Equation 1.21 for DIC. It is given by

pWAIC,1 = 2
n∑
i=1

(
log(Epostp(yi|θ))− Epost(log p(yi|θ))

)
. (3.63)

WAIC and the information criteria described in Section 1.2.6 all have their
downfalls, and so there is no general selection criterion we can use in this
thesis. AIC does not work in settings where strong prior information ex-
ists (Gelman et al., 2014a), such as exhibited in the models to come (see
Section 4.1). DIC is a more likely candidate, however, it fails when the
posterior distribution is not well summarized by its mean (Gelman et al.,
2014a). This leaves WAIC, which we can use for some (but not all) of the
models to be fitted. WAIC cannot be used where data is structured, such
as when observations are point referenced. This is because WAIC depends
on partitions of the data, which would subsequently destroy the inherent
dependence between point referenced observations.

As a result, we compute WAIC where it is appropriate, as this is better
than having no formal comparison at all.

3.5.1 Residuals

It is common practice to compute the residuals between the observed data,
and the values predicted by a model. By plotting the residuals on an
axis that represents an increase in some level of a covariate (usually just
the predicted values themselves), we can assess whether the unexplained
variation is due to natural changes in the response variable, or whether
there is some underlying latent variable that is not considered by the model.

We can apply similar ideas in a Bayesian sense, by computing posterior
residuals for each observed value. In order to do so, we first compute the
posterior predicted values.

Let y be a vector of observations of size n that depends on some param-
eter vector θ, and observed covariates X . Let the likelihood function of
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the observations be Normal with y|θ ∼ N(Xθ, σ2). We sample from the
posterior distribution of θ, p(θ|y), which gives posterior draws, θ(S).
The posterior predicted values for iteration s are given by

ŷ(s) = Xθ(s). (3.64)

We end up with a distribution of predicted values for each observation.
From here, we calculate the posterior residuals by taking the difference
between the observed values and the expected values under the model.

r(s) = y − ŷ(s) (3.65)

Now that we have a distribution of posterior residuals, we plot the poste-
rior mean against an index which is ordered by a covariate (in our models,
ordered by trawl year). We can visually inspect the plot to quickly ascer-
tain whether the model excludes important features in the data.
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Chapter 4

Models

In this chapter, we introduce five models used to analyse hoki catch per
unit effort data. Descriptions of the models and their specifications are
given, followed by a section on implementation and convergence diag-
nostics. The main results are given in Chapter 5.
We would like to fit models to determine whether accounting for spatial
and temporal variation and autocorrelation is important when construct-
ing CPUE statistics. We attempt this by modelling hoki CPUE using both
trawl year and stratum as factors. The survey data are collected in such a
way that other factors, such as vessel and gear differences, are controlled
for. Therefore no other factors need to be included in the models.

4.1 Overview of Models

Five models were constructed that included variables that incorporated
temporal, spatial and both temporal and spatial patterns within the hoki
CPUE data. Table 4.1 provides an overview of each model. Model 1
attempts to account for temporal autocorrelation in hoki CPUE through
a GMRF prior with a first order autoregressive (AR(1)) precision matrix
structure (Equation 3.12). Model 2 attempts to account for spatial auto-
correlation in hoki CPUE through a GMRF prior with a conditionally au-
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Table 4.1: Description of each of the models fitted to the data. Labels T, AS,
P, and BP in the Description column stand for “temporal”, “areal spatial”,
“point referenced”, and “block point referenced” respectively

Model Description Data Likelihood
1 T log y|µ, τ , σ, ρ, φ ∼MVN(1µ+Xτ , σ2I)

2 AS log y|µ,ω, σ, p, η ∼MVN(1µ+Wω, σ2I)

3 T, AS log y|µ, τ ,ω, σ, ρ, φ, p, η ∼MVN(1µ+Xτ +Wω, σ2I)

4 T, AS, P log y|µ, τ ,ω, ρ, φ, η, p, δ, κ ∼MVN(1µ+Xτ +Wω,Q−1)

5 T, AS, BP log y|µ, τ ,ω, ρ, φ, η, p, δ,κ ∼MVN(1µ+Xτ +Wω,Q−1)

toregressive (CAR) precision matrix structure (Equation 3.22). Model 3
attempts to account for both spatial and temporal autocorrelation by in-
cluding GMRF priors for both effects. Models 4 and 5 explore different
ways of accounting for a spatial effect. Model 4 accounts for spatial depen-
dence in a point referenced way. It contains a temporal effect, a stratum
effect, and models CPUE dependence using a point referenced CAR pre-
cision matrix (Equation 3.23). Model 5 accounts for spatial dependence in
a blocked point referenced way. It contains a temporal effect, a stratum ef-
fect, and models CPUE dependence using a blocked point reference CAR
precision matrix (Equation 3.29).

Table 4.2 provides a list of descriptions of the terms used in the five models
shown in Table 4.1.

4.1.1 Data Likelihood

In Section 2.5.1, we found evidence that suggests hoki CPUE follows a
log-normal distribution. This was illustrated in Figure 2.4. As such, the
models in Table 4.1 all assume log-normal data likelihoods.
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Table 4.2: Description of the notation used in each model

Term Size Description
log y 1255 × 1 Natural log of hoki CPUE in kg km−2

1µ 1255 × 1 Intercept
τ 12× 1 Temporal effects
ω 23× 1 Areal spatial effects
σ 1× 1 Observation standard deviation
R 12× 12 Autoregressive precision matrix for temporal effect
S 23× 23 CAR precision matrix for areal spatial effect
Q 1255× 1255 CAR Precision matrix for CPUE
Qj nj × nj CAR Precision matrix for CPUE in stratum j

ρ 1× 1 Measure of temporal correlation
φ 1× 1 Precision parameter for the temporal effect
p 1× 1 Measure of the strength of areal spatial association
η 1× 1 Precision parameter for the areal spatial effect
κ 1× 1 Measure of the strength of CPUE correlation
δ 1× 1 Precision parameter for CPUE
κ 23× 1 Correlation strengths of CPUE within each stratum
δ 23× 1 Precision parameters for CPUE within each stratum
X 1255 × 12 Temporal design matrix
W 1255 × 23 Areal spatial design matrix
D 23× 23 Stratum neighbourhood matrix
A 23× 23 Stratum adjacency matrix
G 1255× 1255 CPUE neighbourhood matrix
C 1255× 1255 CPUE adjacency matrix
Gj nj × nj Neighbourhood matrix for CPUE in stratum j

Cj nj × nj Adjacency matrix for CPUE in stratum j

nj 1× 1 Number of CPUE observations in stratum j
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4.1.2 Temporal Effect

Models 1, 3, 4, and 5 all include trawl year as an explanatory variable to
account for temporal autocorrelation in hoki CPUE. Trawl year is a factor
that has 12 levels ranging from 1991 to 1993, and then again from 2000 to
2008. The year that had the fewest catch weight observations was 2003
with 77 records, and the year that had the most was 1992 with 156 records.

The vector of temporal effects, τ = (τ2, ..., τ12)T , is modelled as a zero-
mean Gaussian Markov random field that enters the hierarchical model
as a prior (Rue & Martino, 2007). The precision matrix used in the GMRF
allows for specification of the temporal structure within the data, using

τ |φ, ρ ∼MVN(0,R−1). (4.1)

Here, R is the precision matrix that has been assumed to have an AR(1)
structure (see Section 3.12).

In nature, temporal dependence tends to decrease as the time interval be-
tween successive observations widens. It was observed in the autocorre-
lation plot (Figure 2.10) that the dependence within CPUE changes as the
lag between years increases. We use an AR(1) structure to model first or-
der autocorrelation within hoki CPUE. There is also evidence to suggest
fourth order autocorrelation exists, however, we do not model it in this
thesis.

Not all years will be correlated with one another. There is a significant gap
in data between the years 1993 and 2000, and this needs to be represented
in the precision matrix. As such, we prevent any correlations between
the earlier years (1991-1993) and the later years (2000-2008). Hence, R is
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assumed to have the form below:

R = φ
1

1− ρ2



1 −ρ 0 0 ... 0

−ρ 1 + ρ2 −ρ 0 ... 0

0 −ρ 1 + ρ2 0 ... 0

0 0 0 1 + ρ2 ... 0

... ... ... ... ... ...

0 ... 0 −ρ 1 + ρ2 −ρ
0 ... 0 0 −ρ 1


, (4.2)

where R, ρ, and φ are defined in Table 4.2. The diagonal of the precision
matrix gives the conditional precisions for each year effect, given all the
rest, while the off-diagonals are the conditional correlations (see Equation
3.13).

4.1.3 Areal spatial Effect

Models 2, 3, 4, and 5 all include stratum as an explanatory variable to ac-
count for the spatial effect in hoki CPUE. To include an areal spatial effect,
the stratum variable is used. Stratum has 24 levels, corresponding to strat-
ification of the sub-Antarctic region (see Figure 2.1). Two catch weight
observations were not assigned to a stratum, and were hence removed.
Stratum 17 was excluded because there was only one observation for that
stratum. There is not enough information to estimate an effect for that
stratum. As a result, a stratum effect with 23 levels is used. The stratum
with the smallest number observations was stratum 26 with 4 observa-
tions. The stratum with the largest number of observations was stratum 9
with 116.

The dataset was organized by chronological year. The vector of spatial
effects, ω = (ω2, ..., ω23)T , is modelled by a zero-mean Gaussian Markov
random field that enters the hierarchical model as a prior. The precision
matrix used in the GMRF allows for specification of the spatial autocorre-
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lation structure within the data.

ω|η, p ∼MVN(0,S−1) (4.3)

Here, S is the precision matrix. The structure of S is representative of our
assumption that neighbouring strata (strata which share a boundary) are
likely to be correlated with one another. The precision matrix is assumed
to have a CAR structure (see Section 3.22). It is given by

S = η(D − pA), (4.4)

where S,D,A, p, and η are described in Table 4.2.

The adjacency matrixA is defined below:

A =


0 a1,2 ... a1,23

a2,1 0 ... a2,23

... ... ... ...

a23,1 a23,2 ... 0

 , (4.5)

where ai,j = 1 if stratum i and stratum j are neighbours, and ai,j = 0

otherwise.

The neighbourhood matrixD is defined below:

D =


d1,1 0 ... 0

0 d2,2 ... 0

... ... ... ...

0 0 ... d23,23

 , (4.6)

where di,i =
∑23

j=1 ai,j is the number of neighbours surrounding stratum i.

The diagonal of the precision matrix gives the conditional precisions for
each stratum effect, given all the rest, while the off-diagonals are the con-
ditional correlations (see Equations 3.15 and 3.16).
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4.1.4 Spatial Dependence with Point Referenced CPUE

Model 4 makes use of the point referenced CPUE records of hoki. In this
model, pairs of CPUE observations are assumed to be correlated such that
the correlation depends on the distance between them. The point refer-
enced observations ignore strata. To specify this in the model, a CAR pre-
cision matrix Q enters the model through the data likelihood (see Section
3.23).
The precision matrixQwas assumed to have the following form.

Q = δ(G− κC), (4.7)

whereG, C, κ, and δ are defined in Table 4.2.
The adjacency matrix C takes the same form as the adjacency matrix in
Equation 3.23. Here,

C = (cij)1255×1255, (4.8)

where

cij =


1, if dij ≤ dl

f(dij) if dl < dij ≤ du

0 if dij > du

, (4.9)

and

cii = 0 for all i, (4.10)

and dij is the distance between observations i and j, dl is a lower distance
threshold, and du is an upper distance threshold. The distance function in
Equation 4.9, f(dij), is given by

f(dij) =

1
dij
− 1

du
1
dl
− 1

du

. (4.11)
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We formulated Equation 4.11 by adapting the function proposed by White
& Ghosh (2009). This was discussed in Section 3.23.

We chose dl and du, such that 90 % of the distances between CPUE obser-
vations lie between dl and du. In this case, dl = and du =.

The neighbourhood matrix G takes the same form as the neighbourhood
matrix in Equation 3.23, in that G is a 1255 × 1255 matrix with diagonal
entries equal to the sum of the rows of C and zero elsewhere (White &
Ghosh, 2009).

4.1.5 Spatial Dependence with Blocked Point Referenced

CPUE

Model 5 also makes use of the point referenced CPUE records of hoki. In
this model, pairs of CPUE observations are assumed to be correlated with
correlation dependent on distance, but only within strata. This allows for a
different correlation structure for each stratum, and assumes observations
in different strata are independent. To specify this in the model, a blocked
CAR precision matrixQ enters the model through the data likelihood.

The precision matrixQwas assumed to have the following form:

Q =


Q1 0 ... 0

0 Q2 ... 0

: : : :

0 0 ... Q23

 , (4.12)

where

Qj = δj(Gj − κjCj), (4.13)

where the matricesGj and Cj have the same structures as the matricesG
and C in Section 4.1.4 above, (for all stratum j = 1, ..., 23). The parameter
vectors δ = (δ1, ..., δ23)T and κ = (κ1, ..., κ23)T describe the precision of
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CPUE within each stratum, and strength of dependence of CPUE within
each stratum respectively.

4.1.6 Prior Parameter Distributions

Models 1, 3, 4, and 5 contain a temporal effect. As described in section
4.1.2, the vector of temporal effects τ is a GMRF with a mean of zero and
an autoregressive precision matrix R. The parameters ρ and φ that R de-
pends on are assigned prior distributions.
The parameter φ takes positive values. The Uniform distribution is used
with support [0,+∞). The parameter ρ takes values between -1 and 1,
hence a Uniform distribution on support [−1, 1] is used, and we have

φ ∼ Uniform(0,+∞),

ρ ∼ Uniform(−1, 1).

Models 2, 3, 4, and 5 contain an areal spatial effect. As described in Section
4.1.3, the vector of spatial effects ω is a GMRF with a mean of zero and a
conditionally autoregressive precision matrix, S. The parameters p and η

that S depends on are assigned prior distributions.
The parameter η takes positive values. In Models 2 and 3, a Uniform dis-
tribution is used with support [0,+∞). However, in Models 4 and 5, it
was found that the posterior distribution for η would not converge to a
sensible value. As a result, Models 4 and 5 assign a Normal(10,10) prior
distribution to η and this resulted in improved convergence. The param-
eter p takes values between 0 and 1 to ensure that the precision matrix S
is positive definite (Rue & Held, 2005). Hence a Uniform distribution on
support [0,1] is used as a prior:

η ∼ Uniform(0,+∞) for Models 2 and 3,

η ∼ Normal(10, 10) for Models 4 and 5,

p ∼ Uniform(0, 1).
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Model 4 contained the precision matrix Q which was dependent on pa-
rameters κ and δ. The precision parameter takes positive values, and was
assigned a Uniform(0,+∞), prior. The parameter κ takes values between
-1 and 1. It was assigned a Uniform(-1,1) distribution:

δ ∼ Uniform(0,+∞),

κ ∼ Uniform(−1, 1).

Model 5 contained parameter vectors δ and κ. Each element of δ takes
positive values, and was assigned Uniform(0, +∞) priors. Each element
of κ takes values between -1 and 1. It was assigned a Uniform(-1,1) priors:

δj ∼ Uniform(0,+∞),

κj ∼ Uniform(−1, 1).

All models include the parameter µ. The parameter µ is a real valued
intercept term that can theoretically take any value from −∞ to +∞. As
a result, a non-informative Uniform distribution with support (−∞,+∞)
was used as a prior.

µ ∼ Uniform(−∞,+∞).

Models 1, 2, and 3 include the observation variance σ term. This parameter
takes positive values, so a Uniform distribution on [0,+∞) was used:

σ ∼ Uniform(0,+∞).

We use non-informative Uniform priors for many of the parameters. This
is to reflect our lack of knowledge on those parameters. Improper uniform
priors are implementable in Stan (Gelman et al., 2015).
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4.1.7 Model Posterior Distributions

The posterior distribution for Model 1 is:

π(µ, σ,τ , ρ, φ|y,X)

∝ π(log y|µ, σ, τ , ρ, φ,X)× π(τ |ρ, φ)× π(µ)× π(σ)× π(ρ)× π(φ)

∝ 1

(2π)
1255
2 |σ2I| 12

exp

{
− 1

2

(
log y − (1µ+Xτ )

)T
σ2I−1

×
(

log y − (1µ+Xτ )
)} 1

(2π)
11
2 |R−1| 12

exp

{
− 1

2
τ TRτ

}
.

(4.14)

The posterior distribution for Model 2 is:

π(µ, σ,ω, p, η|y,W )

∝ π(log y|µ, σ,ω, p, η,W )× π(ω|p, η)× π(µ)× π(σ)× π(p)× π(η)

∝ 1

(2π)
1255
2 |σ2I| 12

exp

{
− 1

2

(
log y − (1µ+Wω)

)T
σ2I−1

×
(

log y − (1µ+Wω)
)} 1

(2π)
22
2 |S−1| 12

exp

{
− 1

2
ωTSω

}
.

(4.15)
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The posterior distribution for Model 3 is:

π(µ, σ,τ ,ω, ρ, φ, p, η|y,X,W )

∝ π(log y|µ, σ, τ ,ω, ρ, φ, p, η,X,W )× π(τ |ρ, φ)× π(ω|p, η)

× π(µ)× π(σ)× π(ρ)× π(φ)× π(p)× π(η)

∝ 1

(2π)
1255
2 |σ2I| 12

exp

{
− 1

2

(
log y − (1µ+Xτ +Wω)

)T
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×
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log y − (1µ+Xτ +Wω)
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(2π)
11
2 |R−1| 12

exp

{
− 1

2
τ TRτ

}
× 1

(2π)
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2 |S−1| 12

exp

{
− 1

2
ωTSω

}
.

(4.16)

The posterior distribution for Model 4 is:

π(µ,τ ,ω, ρ, φ, p, η, κ, δ|y,X,W )

∝ π(log y|µ, τ ,ω, ρ, φ, p, η, κ, δ,X,W )× π(τ |ρ, φ)× π(ω|p, η)

× π(µ)××π(ρ)× π(φ)× π(p)× π(η)× π(κ)× π(δ)

∝ 1

(2π)
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(4.17)
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The posterior distribution for Model 5 is:

π(µ,τ ,ω, ρ, φ, p, η,κ, δ|y,X,W )

∝ π(log y|µ, τ ,ω, ρ, φ, p, η,κ, δ,X,W )× π(τ |ρ, φ)× π(ω|p, η)

× π(µ)××π(ρ)× π(φ)× π(p)× π(η)×
23∏
j=1

π(κj)×
23∏
j=1

π(δj)

∝ 1
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(4.18)

Models 1 and 2 attempt to explain some of the variation in hoki CPUE
using trawl year and strata respectively. By comparing these models to
each other and to Model 3 (which contains both variables), we can assess
whether accounting for temporal or accounting for spatial effects (or both)
is more important. Models 4 and 5 make use of CPUE at the point ref-
erenced level, allowing for a different way to account for spatial effects.
By comparing Model 4 to Model 3, we will be able to see whether an areal
approach explains more variation in hoki CPUE compared to the point ref-
erenced approach. Our hypothesis is that the point referenced data would
provide more information to the model, and should hence be better in
explaining CPUE variability. Models 4 and 5 can be compared to assess
whether modelling CPUE correlations separately for each stratum would
give a better model.
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Model Iterations Chains Warm-up Thinning Post. Size
1 50000 4 100000 2 50000
2 50000 4 100000 2 50000
3 50000 4 100000 2 50000
4 10000 2 10000 1 10000
5 10000 2 10000 1 10000

Table 4.3: Summary of each model’s fitting procedure

4.2 Implementation

These models were compiled using the software Stan (Gelman et al., 2015),
implemented through RStudio (Team, 2015). A summary of the fitting
procedure is provided in Table 4.3. For Models 1 – 3, each parameter had
four chains of 50000 iterations with over dispersed starting values. This
gave posterior distributions with 200000 iterations for each parameter, of
which half were discarded as warm-up. A thinning interval of 2 was then
applied resulting in a sample size of 50000 for each posterior parameter
distribution.

For Models 4 – 5, each parameter had two chains of 10000 iterations with
over dispersed starting values. This gave posterior distributions with 20000
iterations for each parameter, of which half were discarded as warm-up.
Thinning was not applied to these samples. The resulting size of each pos-
terior parameter distribution was therefore 10000.

We used a smaller number of iterations in Models 4 and 5 because of com-
putational time constraints. Due to the large precision matrices in these
models, significantly more time was needed to compute posterior draws.

We assess convergence in Subsection 4.2.1.



4.2. IMPLEMENTATION 97

4.2.1 Convergence Diagnostics

To assess whether the posterior parameter distributions in our models
have converged to stationary distributions, it is necessary to perform con-
vergence diagnostics. We used trace plots (Appendix A), posterior den-
sity plots (Appendix B), autocorrelation plots (Appendix C) and Gelman-
Rubin plots (Appendix D) to visually monitor the convergence of the pa-
rameter distributions. In addition, the software Stan computes the poten-
tial scale reduction factor, R̂, for each parameter.

Figures A.1 to A.15 display the trace plots for the parameters in Models 1
– 5. For the first four models, there appears to be good mixing for all of
the parameters. In addition, there are no obvious patterns suggesting that
the chains for each parameter have converged to a stationary distribution.
Larger fluctuations in the trace plots for the Gaussian Markov random
field parameters ρ, φ, p, η, κ, and δ can be seen in all of the models, how-
ever, these are of no concern due to their rarity. We have some reservations
about whether the parameters of Model 5 have converged to the target
posterior distributions. The majority of trace plots for the parameters τ ,
ω, µ, ρ, φ, p, and η display random walk behaviour, even after discarding
warm-up samples. This indicates that the HMC chains for Model 5 need
to be run for longer.

Figures B.1 – B.15 display the density plots for the posterior parameter
distributions of each model. In all plots, we see smooth and symmetric
curves, with the exception of ρ, φ, p, η, κ, and δ, which are skewed due
to being bounded. There is no evidence of over representation, indicating
the distributions are sufficiently mixed for all models.

Figures C.1 – C.15 display the autocorrelation plots for the parameters in
Models 1 – 5. For all parameters in Models 1 – 4, the correlation between
values of increasing lag decreases rapidly. Autocorrelation is virtually
zero for all parameters at lag 10 and over. Candidate values are being
computed far enough away from the current value, which has allowed
for sufficient exploration of the posterior distribution. For Models 2 – 4,
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the autocorrelation plots for µ show that autocorrelation decreases slower,
however, since the chains are permuted before use, this is not an issue.
The autocorrelation plots for Model 5 show that there is still significant
autocorrelation at lag 40 for the parameters ω, µ, and p.
Figures D.1 – D.21 display the Gelman-Rubin plots for the parameters
in Models 1 – 5. In the plots for Models 1 – 4, we see that the potential
scale reduction factor (called “shrink factor” on the plots) reduces to one
at the end of each chain. This indicates convergence is satisfied for the
parameters in each of these models. In general for Model 4, the poten-
tial scale reduction factor takes longer to converge to 1. For Model 5, the
Gelman-Rubin plots show that the potential scale reduction factor takes
much longer to converge to 1, and in some cases (for example, ω) does not
converge to 1 at all.
We are satisfied with the convergence of parameter distributions for Mod-
els 1 – 4. However, for Model 5, it is clear that convergence to the target
densities has not been achieved. In order to rectify this, the HMC chains
for Model 5 should be run for more iterations. Unfortunately, due to time
restraints, we must continue with what we currently have for Model 5.



Chapter 5

Results

This chapter presents the main results from fitting the five models de-
scribed in Chapter 4. In each section, we interpret the posterior density
plots (see Appendix B) for the parameter estimates of the fitted models.
In addition, we provide tables for each model summarising the posterior
parameter distributions by their median and 95% highest posterior den-
sity (HPD) interval. We also compute model predicted catch per unit ef-
fort values using the posterior distributions and the data likelihoods for
each model. These are presented visually, as well as summarised in tables.
Throughout this chapter, comparisons are made to the observed data. At
the end of this chapter, a section is dedicated to the comparison of the
models.

5.1 Model 1: Temporal Effects

Posterior distributions for the parameters µ, τ2, ..., τ12, σ, ρ, and φ in Model
1 (defined in Table 4.1) are presented in Figures B.1 and B.2. Table 5.1
summarises these posterior parameter distributions.
Figure B.1 gives the posterior densities of τ2, ..., τ12, which are the temporal
effects on hoki catch per unit effort for the years 1992 – 2008 with respect
to the year 1991 (the reference level for the temporal effects). First of all,

99
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Table 5.1: Summary of the posterior distributions for the parameters in
Model 1.

Median 95% HPD
µ 5.58 (5.40, 5.76)
τ2 0.09 (-0.16, 0.35)
τ3 0.11 (-0.15, 0.36)
τ4 -0.72 (-1.00, -0.44)
τ5 -0.96 (-1.24, -0.67)
τ6 -1.07 (-1.35, -0.79)
τ7 -1.63 (-1.95, -1.32)
τ8 -1.36 (-1.66, -1.07)
τ9 -1.41 (-1.70, -1.12)
τ10 -1.42 (-1.72, -1.12)
τ11 -0.78 (-1.07, -0.49)
τ12 -0.70 (-0.99, -0.41)
σ 1.19 (1.14, 1.23)
ρ 0.85 (0.66, 0.99)
φ 1.81 (0.12, 4.19)

we observe a noticeable difference between the effects of each trawl year.
The posterior distributions of the effects for 1992, and 1993 have most of
their density above zero suggesting that average CPUE was higher in these
years than it was in 1991. Furthermore, the effects for the later trawls in
years 2000 – 2008 have posterior distributions centred below zero suggest-
ing that CPUE was lower in these years compared to in 1991.

The posterior densities for the temporal effect parameters are symmetric.
We summarise the densities in Table 5.1 by their corresponding medians
and 95% HPD intervals.

Model predicted CPUE values were calculated for each trawl year, using
the posterior distributions and the data likelihood for Model 1. For each
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value of the HMC chain we calculated:

ĈPUEt =

exp(µ̂), for t = 1991

exp(µ̂+ τ̂t), for t = 1992, ..., 1993, 2000, ..., 2008,
(5.1)

where ĈPUEt is the model predicted CPUE value for trawl year t, µ̂ is the
estimate for µ, and τ̂t is the estimate for τt, the effect of trawl year t.
The model predicted CPUE distributions and the observed median CPUE
for each trawl year are shown in Figure 5.1 and summarised in Table 5.2.
We can see that each density overlaps with the observed median CPUE
for each trawl year. In general, the model predicts median CPUE better in
the middle trawl years (2000 – 2006), than in the earlier trawl years (1991
– 1993) and the later trawl years (2007 – 2008). This is indicated by the
fact that the observed CPUE values are closer to centre of the predicted
densities in years 2000 – 2006, and are in the tails of the densities in 1991
– 1993 and 2007 – 2008. The fact that not all of the observed CPUE values
line up with the centres of the model predicted CPUE densities suggests
there is some unexplained variation in hoki CPUE.
Figure B.2 displays the posterior densities of the rest of the parameters in
Model 1. The posterior density for µ represents the model predicted log
CPUE for the reference trawl year, 1991.
The posterior distribution for ρ estimates the correlation in hoki log CPUE
between successive trawl years. The 95 % highest posterior density inter-
val for the posterior density of ρ is (0.66, 0.99), and the posterior median is
0.85, which suggests there is strong and positive year-to-year autocorrela-
tion within hoki CPUE that is captured by the model.
The parameter φ gives a measure of the total variation of mean CPUE be-
tween trawl years. The 95% HPD interval for φ is (0.12, 4.19).
Residuals were calculated by taking the median of (log CPUE−log ĈPUEt),
where ĈPUEt is the model predicted CPUE for all iterations in the HMC
chain for year t.
Figure 5.2 displays a plot of the residuals. The first thing to note is the few
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Figure 5.1: The posterior distributions of CPUE by trawl year, as predicted
by Model 1. Vertical lines represent the observed CPUE for each year.
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Figure 5.2: Residuals from Model 1, ordered by trawl year.
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Table 5.2: The median CPUE for each trawl year, as predicted by Model 1
and observed in the dataset.

Year Predicted (95% HPD) Observed
1991 264.41 (218.91, 314.25) 311.38
1992 289.74 (240.23, 344.61) 305.44
1993 293.60 (241.22, 353.05) 276.19
2000 128.64 (102.31, 158.43) 134.09
2001 101.59 (81.23, 125.21) 106.82
2002 90.48 (72.16, 111.93) 96.48
2003 51.57 (39.35, 65.16) 52.92
2004 67.81 (52.92, 84.56) 62.35
2005 64.29 (50.32, 79.74) 63.10
2006 64.09 (49.78, 79.77) 66.57
2007 121.16 (94.93, 151.16) 140.81
2008 131.26 (102.60, 163.66) 152.72

large outliers associated with the year 2004. There were a few trawls in
2004 which obtained higher than usual catch weights for hoki. If we ignore
the upper two outliers in 2004, we observe an even, but wide, spread of
residuals. This suggests that most of the variation in CPUE is explained
by trawl year, but there is some variation left unexplained.

In Section 5.2, we look at the results of the areal spatial effects models,
which will illustrate the importance of including trawl year to account for
temporal autocorrelation.

5.2 Model 2: Areal Spatial Effects

Posterior densities for the parameters µ, ω2, ..., ω23, σ, p, and η in Model 2
(defined in Table 4.1) are presented in Figures B.3 and B.4. Table 5.3 sum-
marises these posterior parameter distributions.
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Figure B.3 gives the posterior densities for ω2, ..., ω23, the effects due to
stratum on hoki catch per unit effort in 22 of the strata with respect to stra-
tum 1 (the reference level). We observe differences in the stratum effects,
most noticeably between strata 26, 27, 28, and all others. In addition to
this, we can see that the strata form clusters with relatively similar effects
on hoki CPUE. One such cluster would be strata 26, 27, and 28. Another
would be strata 10 to 15. Initially it was thought that the groups of strata
would correspond to the depth intervals they represent. Figure 5.3 shows
separation between the depth interval 800m-1000m and the others, how-
ever, there is no clear difference in hoki CPUE for depth intervals 300m –
600m and 600m – 800m. Therefore clustering may be based on some other
variable (for example, sea temperature).
All of the stratum effects have the majority of their densities below zero,
indicating that CPUE was lower in strata 2 to 28, compared to stratum
1. The model suggests that strata 26, 27, and 28 had much lower CPUE
compared to all others. Strata 27 and 28 are neighbouring, suggesting that
hoki catches in the north eastern area of the sub-Antarctic region is lower
than near Puysegur bank.
Model predicted CPUE values were calculated for each stratum, using the
posterior distributions and the data likelihood for Model 2. This is given
by

ĈPUEw =

exp(µ̂), for w = 1

exp(µ̂+ ω̂w), for w = 2, ..., 23
(5.2)

where ĈPUEw is the model predicted CPUE value for stratum w, µ̂ is the
estimate for µ, and ω̂t is the estimate for ωw, the effect of stratum w.
The model predicted log CPUE distributions and log observed CPUE for
each stratum are shown in Figure 5.3 and summarised in Table 5.4. The
model predicted log CPUE densities overlap with the log observed me-
dian CPUE for most strata. In some cases, such as for stratum 3, and 5,
and 26, we can see that the density of predicted log CPUE has more spread
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compared with the rest of the strata.

In general, the difference in observed and predicted median CPUE is larger
by stratum than it is by year. This suggests that trawl year accounts for
more variation in hoki CPUE than stratum.

Figure B.4 displays the posterior densities of the rest of the parameters in
Model 2. The posterior density for µ represents the model predicted log
CPUE for the reference stratum, 1.

The posterior distribution of p has 95% of its highest density between 0.87
and 1. This suggests that there is a strong association between the mean
CPUEs of each stratum. The value of η gives a measure of the total vari-
ation of mean CPUE between strata. The 95% HPD interval for η is (0.30,
1.40).

Residuals were calculated by taking the median of (log CPUE−log ĈPUEw),
where ĈPUEw is the model predicted CPUE for all iterations in the HMC
chain for stratum w.

Figure 5.4 displays a plot of the residuals between the model predicted
log CPUE and the observed log CPUE ordered by time. The first thing
that strikes the viewer is the obvious trend over time. A slow decline from
positive to negative residuals can be seen in the first two-thirds of the plot,
followed by a sharper increase from negative to positive residuals in the
final third. This matches the trend observed in CPUE over time, as re-
flected by the box plot displayed in Figure 2.9. This indicates that Model
2 has not accounted for the obviously apparent year effect within CPUE,
and highlights the importance of including trawl year as an explanatory
variable.

In the following section, we see the main results from Model 3, which con-
tains both a year component, and stratum component to explain variation
within hoki CPUE.
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Figure 5.3: The posterior distributions of log CPUE by stratum, as pre-
dicted by Model 2. Vertical lines represent the observed median log CPUE.
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Table 5.3: Summary of the posterior distributions for the parameters in
Model 2.

Median 95% HPD
µ 6.01 (5.68, 6.32)
ω2 -0.78 (-1.24, -0.32)
ω3 -0.23 (-0.93, 0.46)
ω4 -1.20 (-1.70, -0.70)
ω5 -0.76 (-1.28, -0.25)
ω6 -1.22 (-1.63, -0.79)
ω7 -0.50 (-1.12, 0.13)
ω8 -1.43 (-1.93, -0.95)
ω9 -1.48 (-1.97, -0.95)
ω10 -1.13 (-1.57, -0.69)
ω11 -1.06 (-1.54, -0.60)
ω12 -0.77 (-1.18, -0.38)
ω13 -0.72 (-1.11, -0.33)
ω14 -1.27 (-1.72, -0.83)
ω15 -1.03 (-1.46, -0.58)
ω16 -1.28 (-1.65, -0.88)
ω17 -1.13 (-1.54, -0.71)
ω18 -1.17 (-1.58, -0.76)
ω19 -1.17 (-1.62, -0.71)
ω20 -1.56 (-1.97, -1.14)
ω21 -2.87 (-4.01, -1.76)
ω22 -2.88 (-3.43, -2.36)
ω23 -2.78 (-3.41, -2.18)
σ 1.23 (1.18, 1.28)
p 0.97 (0.87, 1.00)
η 0.75 (0.30, 1.40)
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Table 5.4: The median CPUE for each stratum, as predicted by Model 2
and observed in the dataset.

Predicted 95% HPD Observed Depth
1 405.74 (282.25, 542.53) 457.88 300m–600m
2 186.10 (128.56, 255.12) 206.37 600m–800m
3 323.57 (152.36, 559.80) 307.90 300m–600m

003A 122.31 (80.60, 174.22) 134.32 300m–600m
003B 189.06 (118.62, 272.57) 208.25 300m–600m

4 119.50 (89.84, 153.64) 133.46 600m–800m
5 246.89 (128.91, 396.80) 295.18 600m–800m

005A 97.23 (65.09, 136.55) 85.47 600m–800m
005B 92.60 (60.39, 132.96) 94.06 600m–800m

6 131.47 (95.30, 174.37) 124.55 300m–600m
7 140.47 (95.32, 193.02) 156.25 600m–800m
8 186.99 (143.79, 235.24) 205.57 600m–800m
9 197.04 (156.79, 242.59) 213.20 300m–600m

10 113.77 (81.44, 151.65) 139.98 600m–800m
11 144.72 (104.41, 191.80) 191.34 600m–800m
12 112.73 (89.01, 138.08) 124.19 300m–600m
13 131.71 (99.68, 168.90) 175.25 300m–600m
14 125.83 (95.11, 160.67) 195.64 300m–600m
15 125.65 (87.94, 169.86) 128.98 600m–800m
25 85.51 (64.74, 110.02) 77.83 800m–1000m
26 22.99 (5.18, 55.26) 7.68 800m–1000m
27 22.72 (14.18, 33.61) 25.56 800m–1000m
28 25.22 (13.78, 39.95) 18.74 800m–1000m
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Figure 5.4: Residuals from Model 2, ordered by trawl year.
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5.3 Model 3: Temporal and Areal Spatial Effects

Posterior densities for the parameters in Model 3 (defined in Table 4.1)
are presented in Figures B.5 to B.7. Table 5.5 summarises these posterior
parameter distributions.

Figure B.5 gives the posterior densities of τ2, ..., τ12, which are the temporal
effects on hoki catch per unit effort for the years 1992 – 2008 with respect
to the year 1991 (the reference level for the temporal effects). The distri-
butions of the effects due to trawl year for Model 3 are nearly identical to
the ones in Model 1. We observe a noticeable difference between the ef-
fects of each trawl year. The posterior distributions of the effects for 1992,
and 1993 have most of their density above zero suggesting that CPUE was
higher in these years than it was in 1991. Furthermore, the effects for the
later trawls in years 2000 – 2008 have posterior distributions centred be-
low zero suggesting that CPUE was lower in these years compared to in
1991.

Figure B.6 gives the posterior densities for ω2, ..., ω23, the effects due to
stratum on hoki catch per unit effort in 22 of the strata with respect to
stratum 1 (the reference level). Again, we see a striking resemblance to the
densities observed for the stratum effects in Model 2. As we saw for Model
2, we observe differences in the stratum effects, most noticeable between
strata 26, 27, 28, and all others. In addition, the same stratum clustering
observed in Model 2 is evident here.

All of the stratum effects have the majority of their densities below zero,
indicating that CPUE was lower in strata 2 to 28, compared to stratum
1. The model suggests that strata 26, 27, and 28 had much lower CPUE
compared to all others. Strata 27 and 28 are neighbouring, suggesting that
hoki catches in the north eastern area of the sub-Antarctic region is lower
than near Puysegur bank.

Model predicted CPUE for each year (ĈPUEt) and each stratum (ĈPUEw)
for each iteration in the HMC chains were calculated by aggregating over
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strata and year respectively:

ĈPUEt =
23∑
w=1

ĈPUEt,w, (5.3)

ĈPUEw =
12∑
t=1

ĈPUEt,w, (5.4)

where

ĈPUEt,w =



exp(µ̂) for t = 1, w = 1

exp(µ̂+ ω̂w) for t = 1, w = 2, ..., 23

exp(µ̂+ τ̂t) for t = 2, ..., 12, w = 1

exp(µ̂+ τ̂t + ω̂w) for t = 2, ..., 12, w = 2, ..., 23

(5.5)

The model predicted CPUE distributions and the observed median CPUE
for each trawl year are shown in Figure 5.5 and summarised in Table 5.6.
We can see that most densities overlap with the observed median CPUE
for each trawl year. In general, the model predicts median CPUE better in
the years 1991 and 2000 – 2008 than the years 1992 and 1993. This is indi-
cated by the fact that the observed CPUE values are closer to centre of the
densities in years 1991, and 2000 – 2008, and are in the tails of the densities
in 1992 and 1993. Compared to Model 1, the predictions for the years 1991,
2007 and 2008 have improved. However, the fact that not all of the ob-
served CPUE values line up with the centres of the model predicted CPUE
densities suggests there is some unexplained variation in hoki CPUE.

The model predicted log CPUE distributions and log observed CPUE for
each stratum are shown in Figure 5.5 and summarised in Table 5.7. The
model predicted log CPUE densities overlap with the log observed me-
dian CPUE for some strata. Prediction of CPUE by strata appears to be
less accurate in Model 3 compared to Model 2. This may be due to the
aggregation over year.
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Table 5.5: Summary of the posterior distributions for the parameters in
Model 3.

Median 95% HPD
µ 6.98 (6.65, 7.29)
τ2 0.09 (-0.14, 0.32)
τ3 0.11 (-0.13, 0.34)
τ4 -0.72 (-0.98, -0.47)
τ5 -0.92 (-1.17, -0.66)
τ6 -1.11 (-1.36, -0.84)
τ7 -1.69 (-1.99, -1.41)
τ8 -1.52 (-1.79, -1.25)
τ9 -1.48 (-1.75, -1.21)
τ10 -1.52 (-1.80, -1.25)
τ11 -0.86 (-1.14, -0.60)
τ12 -0.71 (-0.98, -0.44)
σ 1.06 (1.02, 1.11)
ρ 0.86 (0.68, 0.99)
φ 1.71 (0.16, 3.99)
p 0.98 (0.93, 1.00)
η 0.96 (0.36, 1.76)

Median 95% HPD
ω2 -0.84 (-1.24, -0.45)
ω3 -1.23 (-1.85, -0.62)
ω4 -1.09 (-1.51, -0.65)
ω5 -0.60 (-1.05, -0.16)
ω6 -1.58 (-1.94, -1.22)
ω7 -1.42 (-1.96, -0.87)
ω8 -1.24 (-1.66, -0.81)
ω9 -1.34 (-1.79, -0.91)
ω10 -1.42 (-1.80, -1.04)
ω11 -1.33 (-1.73, -0.92)
ω12 -1.15 (-1.49, -0.80)
ω13 -0.95 (-1.28, -0.62)
ω14 -1.68 (-2.05, -1.29)
ω15 -1.37 (-1.75, -0.99)
ω16 -1.63 (-1.96, -1.29)
ω17 -1.50 (-1.86, -1.15)
ω18 -1.71 (-2.07, -1.35)
ω19 -1.54 (-1.93, -1.14)
ω20 -1.71 (-2.06, -1.35)
ω21 -2.96 (-3.94, -2.00)
ω22 -2.75 (-3.21, -2.28)
ω23 -2.74 (-3.26, -2.21)
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In general, the difference in observed and predicted median CPUE is larger
by stratum than it is by year. This suggests that trawl year accounts for
more variation in hoki CPUE than stratum.

Figure B.7 displays the posterior densities of the rest of the parameters in
Model 2. The posterior density for µ represents the model predicted log
CPUE for the reference year, 1991, and reference stratum, 1.

The posterior distribution for ρ estimates the correlation in hoki log CPUE
between successive trawl years. The 95% highest posterior density inter-
val for the posterior density of ρ is (0.68, 0.99), and the posterior median is
0.86 which, suggests there is strong and positive year-to-year autocorrela-
tion within hoki CPUE that is captured by the model.

The parameter φ gives a measure of the total variation of mean CPUE be-
tween trawl years. The 95% HPD interval for φ is (0.16, 3.99).

The posterior distribution of p has 95% of its highest density between 0.93
and 1. This suggests that there is a strong association between the mean
CPUEs of each stratum. The value of η gives a measure of the total vari-
ation of mean CPUE between strata. The 95% HPD interval for η is (0.36,
1.76).

Residuals were calculated by taking the median of (log CPUE−log ĈPUEt,w),
where ĈPUEt,w is the model predicted CPUE for all iterations in the HMC
chain for for year t, and stratum w.

Figure 5.7 displays a plot of the residuals between the model predicted
log CPUE and the observed log CPUE. We see an even, but wide spread of
residuals, with no obvious curvature. This suggests that most of the vari-
ation in CPUE is explained by trawl year and stratum, but there is some
variation left unexplained. There are fewer potential outliers compared
to the residuals of Model 1, suggesting that more variation in CPUE is
explained by Model 3.
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Figure 5.5: The posterior distributions of CPUE by trawl year, as predicted
by Model 3. Here, the predictions were aggregated over strata. Vertical
lines represent the observed CPUE.
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Figure 5.6: The posterior distributions of log CPUE by stratum, as pre-
dicted by Model 3. Here, the predictions were aggregated over trawl year.
Vertical lines represent the observed log CPUE.
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Figure 5.7: Residuals from Model 3, ordered by trawl year.
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Table 5.6: The median CPUE for each trawl year, as predicted by Model 3
and observed in the dataset.

Year Predicted 95% HPD Observed
1991 303.61 (411.67, 720.40) 311.38
1992 333.49 (173.81, 317.32) 305.44
1993 338.03 (85.52, 263.67) 276.19
2000 147.21 (128.47, 252.77) 134.09
2001 121.47 (202.27, 424.94) 106.82
2002 100.39 (89.49, 142.15) 96.48
2003 55.85 (77.75, 203.75) 52.92
2004 66.52 (111.83, 216.92) 62.35
2005 69.25 (99.37, 199.73) 63.10
2006 66.13 (101.22, 170.78) 66.57
2007 127.96 (104.61, 193.23) 140.81
2008 149.06 (141.16, 215.58) 152.72

5.4 Model 4: Point Referenced CPUE Model

Posterior densities for the parameters in Model 4 (defined in Table 4.1)
are presented in Figures B.8 to B.10. Table 5.8 summarises these posterior
parameter distributions.

Figure B.8 gives the posterior densities of τ2, ..., τ12, which are the temporal
effects on hoki catch per unit effort for the years 1992 – 2008 with respect
to the year 1991 (the reference level for the temporal effects). The distribu-
tions of the effects due to trawl year for Model 4 are similar to the ones in
Model 1 and Model 3. We observe a noticeable difference between the ef-
fects of each trawl year. The posterior distributions of the effects for 1992,
and 1993 have most of their density above zero suggesting that CPUE was
higher in these years than it was in 1991. Furthermore, the effects for the
later trawls in years 2000 – 2008 have posterior distributions centred be-
low zero suggesting that CPUE was lower in these years compared to in
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Table 5.7: The median CPUE for each stratum, as predicted by Model 3
and observed in the dataset.

Stratum Predicted 95% HPD Observed
1 554.84 (411.67, 720.40) 457.88
2 240.48 (173.81, 317.32) 206.37
3 162.27 (85.52, 263.67) 307.90

003A 186.55 (128.47, 252.77) 134.32
003B 304.65 (202.27, 424.94) 208.25

4 113.96 (89.49, 142.15) 133.46
5 133.68 (77.75, 203.75) 295.18

005A 160.81 (111.83, 216.92) 85.47
005B 145.76 (99.37, 199.73) 94.06

6 133.84 (101.22, 170.78) 124.55
7 146.49 (104.61, 193.23) 156.25
8 176.57 (141.16, 215.58) 205.57
9 214.97 (175.70, 258.21) 213.20

10 103.79 (78.35, 133.38) 139.98
11 140.50 (105.70, 179.37) 191.34
12 108.97 (89.14, 130.20) 124.19
13 123.94 (97.87, 154.08) 175.25
14 100.57 (79.70, 125.05) 195.64
15 119.03 (86.43, 154.02) 128.98
25 100.84 (79.04, 125.47) 77.83
26 28.66 (8.41, 62.08) 7.68
27 35.57 (23.12, 50.06) 25.56
28 35.85 (21.76, 54.15) 18.74
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1991.
Figure B.9 gives the posterior densities for ω2, ..., ω23, the effects due to
stratum on hoki catch per unit effort in 22 of the strata with respect to
stratum 1 (the reference level). Again, we see resemblance to the densities
observed for the stratum effects in Models 2 and 3. As we saw for Mod-
els 2 and 3, we observe differences in the stratum effects, most noticeable
between strata 26, 27, 28, and all others. In addition, the same stratum
clustering observed in Model 2 is evident here.
All of the stratum effects have the majority of their densities below zero,
indicating that CPUE was lower in strata 2 to 28, compared to stratum
1. The model suggests that strata 26, 27, and 28 had much lower CPUE
compared to all others. Strata 27 and 28 are neighbouring, suggesting that
hoki catches in the north eastern area of the sub-Antarctic region is lower
than near Puysegur bank.
Model predicted CPUE for each year (ĈPUEt) and each stratum (ĈPUEw)
for each iteration in the HMC chains were calculated by aggregating over
strata and year respectively:

ĈPUEt =
23∑
w=1

ĈPUEt,w, (5.6)

ĈPUEw =
12∑
t=1

ĈPUEt,w, (5.7)

where

ĈPUEt,w =



exp(µ̂) for t = 1, w = 1

exp(µ̂+ ω̂w) for t = 1, w = 2, ..., 23

exp(µ̂+ τ̂t) for t = 2, ..., 12, w = 1

exp(µ̂+ τ̂t + ω̂w) for t = 2, ..., 12, w = 2, ..., 23

(5.8)

The model predicted CPUE distributions and the observed median CPUE
for each trawl year are shown in Figure 5.8 and summarised in Table 5.9.
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Table 5.8: Summary of the posterior distributions for the parameters in
Model 4.

Median 95% HPD
µ 6.90 (6.60, 7.17)
τ2 0.14 (-0.11, 0.39)
τ3 0.18 (-0.07, 0.42)
τ4 -0.70 (-0.96, -0.41)
τ5 -0.87 (-1.15, -0.59)
τ6 -1.09 (-1.36, -0.81)
τ7 -1.56 (-1.86, -1.26)
τ8 -1.26 (-1.54, -0.97)
τ9 -1.32 (-1.60, -1.04)
τ10 -1.46 (-1.75, -1.17)
τ11 -0.64 (-0.92, -0.37)
τ12 -0.62 (-0.90, -0.35)
ρ 0.83 (0.62, 0.99)
φ 1.88 (0.19, 4.21)
η 1.05 (0.39, 1.99)
p 0.99 (0.94, 1.00)
κ 0.21 (-0.37, 0.77)
δ 9.02 (8.34, 9.78)

Median 95% HPD
ω2 -0.83 (-1.22, -0.42)
ω3 -1.24 (-1.90, -0.57)
ω4 -1.08 (-1.49, -0.65)
ω5 -0.58 (-0.95, -0.24)
ω6 -1.56 (-1.94, -1.18)
ω7 -1.35 (-1.94, -0.71)
ω8 -1.27 (-1.60, -0.93)
ω9 -1.35 (-1.69, -0.99)
ω10 -1.40 (-1.81, -0.97)
ω11 -1.32 (-1.79, -0.87)
ω12 -1.16 (-1.54, -0.79)
ω13 -0.96 (-1.33, -0.58)
ω14 -1.62 (-1.94, -1.30)
ω15 -1.36 (-1.66, -1.04)
ω16 -1.65 (-1.94, -1.33)
ω17 -1.46 (-1.83, -1.13)
ω18 -1.73 (-2.07, -1.35)
ω19 -1.51 (-1.91, -1.10)
ω20 -1.68 (-2.06, -1.31)
ω21 -2.73 (-3.86, -1.69)
ω22 -2.72 (-3.23, -2.18)
ω23 -2.64 (-3.23, -2.03)
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Figure 5.8: The posterior distributions of CPUE by trawl year, as predicted
by Model 4. Here, the predictions were aggregated over strata. Vertical
lines represent the observed CPUE.
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Figure 5.9: The posterior distributions of log CPUE by stratum, as pre-
dicted by Model 4. Here, the predictions were aggregated over trawl year.
Vertical lines represent the observed log CPUE.
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Table 5.9: The median CPUE for each year, as predicted by Model 4 and
observed in the dataset.

Year Predicted 95% HPD Observed
1991 283.33 (231.24, 339.99) 311.38
1992 325.24 (262.15, 389.66) 305.44
1993 338.09 (276.63, 405.88) 276.19
2000 141.34 (110.43, 174.47) 134.09
2001 118.50 (93.39, 146.76) 106.82
2002 95.32 (76.12, 116.90) 96.48
2003 59.46 (46.01, 74.96) 52.92
2004 80.46 (63.37, 99.64) 62.35
2005 75.90 (60.51, 93.33) 63.10
2006 66.07 (51.02, 81.75) 66.57
2007 149.02 (118.87, 185.32) 140.81
2008 152.18 (121.41, 185.14) 152.72

We can see that densities overlap with the observed median CPUE for
some trawl years. The model appears to predict median CPUE for trawl
years 2000, 2002, 2006, 2007, and 2008. This is indicated by the fact that
the observed CPUE values are closer to centre of the densities in those
years. Compared to Models 1 and 3, the predictions have become worse
in general. This suggests that the model has not improved the fit to the
data.

The model predicted log CPUE distributions and log observed CPUE for
each stratum are shown in Figure 5.9 and summarised in Table 5.10. We
see that stratum does not predict the observed log CPUE very well. For
most strata, there is no overlap between the log CPUE densities and ob-
served log CPUE medians. This suggests that stratum does not explain
much variation in hoki CPUE.

In general, the difference in observed and predicted median CPUE is larger
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Table 5.10: The median CPUE for each stratum, as predicted by Model 4
and observed in the dataset.

Stratum Predicted 95% HPD Observed
1 549.45 (419.83, 681.81) 457.88
2 240.25 (169.82, 330.73) 206.37
3 159.56 (75.28, 276.03) 307.90

003A 186.08 (128.86, 257.64) 134.32
003B 308.83 (228.21, 410.86) 208.25

4 115.27 (82.85, 152.56) 133.46
5 141.89 (73.63, 232.47) 295.18

005A 154.05 (116.70, 195.74) 85.47
005B 143.10 (108.52, 181.92) 94.06

6 135.50 (90.27, 184.83) 124.55
7 146.13 (93.60, 211.57) 156.25
8 171.33 (124.87, 226.58) 205.57
9 210.37 (150.85, 278.90) 213.20

10 108.83 (84.85, 134.92) 139.98
11 141.08 (113.95, 172.91) 191.34
12 105.47 (86.32, 128.38) 124.19
13 127.64 (94.88, 162.27) 175.25
14 97.89 (74.03, 125.74) 195.64
15 121.31 (84.25, 165.10) 128.98
25 102.77 (76.78, 135.48) 77.83
26 35.78 (7.93, 82.97) 7.68
27 36.23 (20.55, 54.74) 25.56
28 39.44 (21.10, 64.82) 18.74
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by stratum than it is by year. This suggests that trawl year accounts for a
little more variation in hoki CPUE than stratum.

Figure B.7 displays the posterior densities of the rest of the parameters in
Model 2. The posterior density for µ represents the model predicted log
CPUE for the reference year, 1991, and reference stratum, 1.

The posterior distribution for ρ estimates the correlation in hoki log CPUE
between successive trawl years. The 95% highest posterior density inter-
val for the posterior density of ρ is (0.62, 0.99), and the posterior median is
0.83 which, suggests there is strong and positive year-to-year autocorrela-
tion within hoki CPUE and is captured by the model.

The parameter φ gives a measure of the total variation of mean CPUE be-
tween trawl years. The 95% HPD interval for φ is (0.19, 4.21).

The posterior distribution of p has 95% of its highest density between 0.94
and 1. This suggests that there is a strong association between the mean
CPUEs of each stratum. The value of η gives a measure of the total vari-
ation of mean CPUE between strata. The 95% HPD interval for η is (0.39,
1.99).

The posterior distribution of κ has 95% of its highest density between -
0.37 and 0.77, with a median of 0.21. This suggests that there is a weak
association between each pair of CPUE observations. The value of δ gives
a measure of the precision in hoki CPUE. The 95% HPD interval for δ is
(8.34, 9.78).

Residuals were calculated by taking the median of (log CPUE−log ĈPUEt,w),
where ĈPUEt,w is the model predicted CPUE for all iterations in the HMC
chain for for year t, and stratum w.

Figure 5.10 displays a plot of the residuals between the model predicted
log CPUE and the observed log CPUE. We see a wide spread of residuals,
with some very slight curvature. This suggests that some of the variation
in CPUE is explained by trawl year and stratum, but there is some varia-
tion left unexplained. This model appears to explain less variation in hoki
CPUE compared to Models 1 and 3.
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Figure 5.10: Residuals from Model 4, ordered by trawl year.
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5.5 Model 5: Blocked Point Referenced CPUE Model

Posterior densities for the parameters in Model 5 (defined in Table 4.1) are
presented in Figures B.11 to B.15. Tables 5.11 and 5.12 summarise these
posterior parameter distributions.

Figure B.11 gives the posterior densities of τ2, ..., τ12, which are the tem-
poral effects on hoki catch per unit effort for the years 1992 – 2008 with
respect to the year 1991 (the reference level for the temporal effects). The
distributions of the effects due to trawl year for Model 5 are similar to the
ones in Model 1, Model 3, and Model 4. We observe a noticeable differ-
ence between the effects of each trawl year. The posterior distribution of
the effect for 1993 has most of its density above zero suggesting that CPUE
was higher in this years than it was in 1991. Furthermore, the effects for
the later trawls in years 2000 – 2008 have posterior distributions centred
below zero suggesting that CPUE was lower in these years compared to in
1991. The effect for the year 1992 appears to be centred around zero. This
indicates that 1992 had a similar effect on hoki CPUE to the year 1991.

Figure B.12 gives the posterior densities for ω2, ..., ω23, the effects due to
stratum on hoki catch per unit effort in 22 of the strata with respect to stra-
tum 1 (the reference level). Again, we see resemblance to the densities ob-
served for the stratum effects in Models 2, 3, and 4. As we saw for Models
2, 3, and 4, we observe differences in the stratum effects, most noticeable
between strata 26, 27, 28, and all others. However, these differences are
not as extreme compared to the previous models.

Most of the stratum effects have their densities centred on zero, indicat-
ing that stratum has little effect on hoki CPUE in model 5. The model
suggests that strata 26, 27, and 28 had much lower CPUE compared to all
others. Strata 27 and 28 are neighbouring, suggesting that hoki catches
in the north eastern area of the sub-Antarctic region is lower than near
Puysegur bank.

Model predicted CPUE for each year (ĈPUEt) and each stratum (ĈPUEw)
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for each iteration in the HMC chains were calculated by aggregating over
strata and year respectively:

ĈPUEt =
23∑
w=1

ĈPUEt,w, (5.9)

ĈPUEw =
12∑
t=1

ĈPUEt,w, (5.10)

where

ĈPUEt,w =



exp(µ̂) for t = 1, w = 1

exp(µ̂+ ω̂w) for t = 1, w = 2, ..., 23

exp(µ̂+ τ̂t) for t = 2, ..., 12, w = 1

exp(µ̂+ τ̂t + ω̂w) for t = 2, ..., 12, w = 2, ..., 23

(5.11)

The model predicted CPUE distributions and the observed median CPUE
for each trawl year are shown in Figure 5.11 and summarised in Table 5.13.
We can see that densities overlap with the observed median CPUE for
some trawl years. The model appears to predict median CPUE for trawl
years 1991, 2002, 2003, 2005, 2006, and 2008. This is indicated by the fact
that the observed CPUE values are closer to centre of the densities in those
years. Compared to Models 1 and 3, the predictions have become worse
in general. However, there appears to be an improvement compared to
Model 4.
The model predicted log CPUE distributions and log observed CPUE for
each stratum are shown in Figure 5.11 and summarised in Table 5.14. We
see that stratum does not predict the observed log CPUE very well. For
most strata, there is no overlap between the log CPUE densities and ob-
served log CPUE medians. This suggests that stratum does not explain
much variation in hoki CPUE in Model 5.
In general, the difference in observed and predicted median CPUE is larger
by stratum than it is by year. This suggests that trawl year accounts for a
little more variation in hoki CPUE than stratum in Model 5.
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Table 5.11: Summary of the posterior distributions for the parameters in
Model 5.

Median HPD
τ2 0.02 (-0.17, 0.20)
τ3 0.21 (0.01, 0.42)
τ4 -0.63 (-0.85, -0.43)
τ5 -0.95 (-1.18, -0.71)
τ6 -1.09 (-1.33, -0.85)
τ7 -1.79 (-2.04, -1.53)
τ8 -1.77 (-2.02, -1.53)
τ9 -1.58 (-1.83, -1.31)
τ10 -1.53 (-1.82, -1.28)
τ11 -0.92 (-1.18, -0.67)
τ12 -0.72 (-1.00, -0.46)
µ 5.82 (5.40, 6.53)
ρ 0.86 (0.69, 0.99)
φ 1.57 (0.10, 3.56)
η 1.29 (0.34, 3.07)
p 0.63 (0.09, 1.00)

Median 95% HPD
ω2 0.54 (-0.20, 1.04)
ω3 0.13 (-0.86, 0.89)
ω4 -0.11 (-1.01, 0.63)
ω5 0.51 (-0.33, 1.18)
ω6 -0.23 (-1.10, 0.36)
ω7 -0.22 (-1.08, 0.43)
ω8 -0.12 (-0.88, 0.37)
ω9 -0.14 (-0.71, 0.37)
ω10 -0.25 (-0.98, 0.24)
ω11 -0.07 (-0.88, 0.45)
ω12 -0.06 (-0.79, 0.34)
ω13 0.24 (-0.45, 0.70)
ω14 -0.46 (-1.21, 0.08)
ω15 -0.03 (-0.81, 0.43)
ω16 -0.40 (-1.12, 0.02)
ω17 -0.33 (-1.07, 0.10)
ω18 -0.03 (-0.78, 0.45)
ω19 0.41 (-0.39, 1.01)
ω20 -0.41 (-1.16, 0.15)
ω21 -1.55 (-2.83, -0.35)
ω22 -1.32 (-2.34, -0.49)
ω23 -1.26 (-2.32, -0.38)
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Table 5.12: Summary of the posterior distributions for the parameters in
Model 5.

Median 95% HPD
κ1 0.44 (-0.31, 0.99)
κ2 0.00 (-0.81, 0.75)
κ3 0.66 (-0.32, 1.00)
κ4 0.89 (0.63, 1.00)
κ5 0.85 (0.41, 1.00)
κ6 0.07 (-0.85, 0.95)
κ7 0.34 (-0.48, 0.97)
κ8 -0.00 (-0.82, 0.71)
κ9 -0.01 (-0.75, 0.75)
κ10 -0.22 (-0.97, 0.53)
κ11 0.67 (0.06, 1.00)
κ12 -0.08 (-1.00, 0.74)
κ13 0.98 (0.92, 1.00)
κ14 -0.78 (-1.00, -0.19)
κ15 0.20 (-0.76, 0.97)
κ16 0.77 (-0.40, 1.00)
κ17 0.01 (-0.91, 0.80)
κ18 -0.01 (-0.90, 0.82)
κ19 -0.40 (-1.00, 0.55)
κ20 0.09 (-0.78, 0.90)
κ21 0.09 (-0.84, 0.97)
κ22 0.05 (-0.91, 0.84)
κ23 0.36 (-0.62, 0.99)

Median 95% HPD
δ1 0.45 (0.30, 0.63)
δ2 1.29 (0.84, 1.88)
δ3 2.22 (0.71, 4.16)
δ4 13.45 (7.75, 20.58)
δ5 1.20 (0.62, 1.87)
δ6 0.71 (0.48, 0.96)
δ7 5.03 (2.04, 9.01)
δ8 2.42 (1.46, 3.57)
δ9 18.25 (10.56, 27.20)
δ10 4.31 (2.86, 5.96)
δ11 2.08 (1.26, 3.00)
δ12 0.66 (0.48, 0.86)
δ13 2.03 (1.49, 2.57)
δ14 2.16 (1.40, 3.04)
δ15 0.84 (0.55, 1.16)
δ16 0.43 (0.32, 0.55)
δ17 1.11 (0.80, 1.47)
δ18 1.16 (0.82, 1.54)
δ19 3.09 (2.01, 4.47)
δ20 4.56 (3.25, 6.15)
δ21 1.53 (0.19, 4.03)
δ22 2.12 (1.13, 3.25)
δ23 1.49 (0.66, 2.51)



132 CHAPTER 5. RESULTS

1991
1992

1993
2000

2001
2002

2003
2004

2005
2006

2007
2008

0 100 200 300 400 500

CPUE

de
ns

ity

Figure 5.11: The posterior distributions of CPUE by trawl year, as pre-
dicted by Model 5. Here, the predictions were aggregated over strata. Ver-
tical lines represent the observed CPUE.
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Figure 5.12: The posterior distributions of log CPUE by stratum, as pre-
dicted by Model 5. Here, the predictions were aggregated over trawl year.
Vertical lines represent the observed log CPUE.



134 CHAPTER 5. RESULTS

Table 5.13: The median CPUE for each year, as predicted by Model 5 and
observed in the dataset

Year Predicted 95% HPD Observed
1991 315.85 (261.09, 376.89) 311.38
1992 321.29 (266.38, 383.89) 305.44
1993 388.80 (314.99, 474.19) 276.19
2000 167.67 (135.51, 208.12) 134.09
2001 122.59 (97.96, 152.98) 106.82
2002 105.67 (82.71, 133.32) 96.48
2003 52.87 (40.62, 67.48) 52.92
2004 53.45 (41.46, 67.66) 62.35
2005 65.33 (50.59, 82.62) 63.10
2006 68.11 (51.65, 85.80) 66.57
2007 125.53 (98.26, 157.38) 140.81
2008 153.73 (118.34, 196.74) 152.72

Figure B.15 displays the posterior densities of the rest of the parameters in
Model 2. The posterior density for µ represents the model predicted log
CPUE for the reference year, 1991, and reference stratum, 1.

The posterior distribution for ρ estimates the correlation in hoki log CPUE
between successive trawl years. The 95% highest posterior density inter-
val for the posterior density of ρ is (0.69, 0.99), and the posterior median is
0.86 which, suggests there is strong and positive year-to-year autocorrela-
tion within hoki CPUE and is captured by the model.

The parameter φ gives a measure of the total variation of mean CPUE be-
tween trawl years. The 95% HPD interval for φ is (0.10, 3.56).

The posterior distribution of p has 95% of its highest density between 0.09
and 1. This suggests that there is weak association between the mean
CPUEs of each stratum. This suggests that any spatial correlation due to
strata has already been captured by κ. The value of η gives a measure of
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Table 5.14: The median CPUE for each stratum, as predicted by Model 5
and observed in the dataset

Stratum Predicted 95% HPD Observed
1 172.11 (110.14, 337.91) 457.88
2 304.66 (218.67, 407.46) 206.37
3 201.94 (93.37, 362.75) 307.90

003A 159.01 (77.50, 266.32) 134.32
003B 300.98 (156.94, 482.92) 208.25

4 135.92 (90.76, 209.54) 133.46
5 143.12 (74.97, 224.26) 295.18

005A 156.13 (108.75, 211.37) 85.47
005B 156.06 (85.38, 271.93) 94.06

6 136.02 (102.68, 174.71) 124.55
7 162.89 (115.76, 225.99) 156.25
8 163.98 (141.1, 187.42) 205.57
9 225.15 (174.68, 279.00) 213.20

10 112.43 (70.57, 156.71) 139.98
11 170.28 (127.06, 218.50) 191.34
12 116.39 (100.73, 132.25) 124.19
13 124.70 (99.43, 149.44) 175.25
14 170.41 (122.92, 222.98) 195.64
15 268.77 (163.53, 408.40) 128.98
25 116.58 (84.66, 164.73) 77.83
26 37.66 (9.29, 93.96) 7.68
27 46.37 (23.81, 90.62) 25.56
28 49.43 (22.86, 96.81) 18.74
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the total variation of mean CPUE between strata. The 95% HPD interval
for η is (0.34, 3.07).

The posterior distributions of κ displayed in Figure B.13 as a boxplot. The
values of κj give the spatial correlations between each pair of hoki CPUE
observations, within each strata. We see asymmetry, and differences across
each κj (j = 1, ..., 23).

The values of δ give measures of the precision in hoki CPUE within each
strata. The densities for each δj are shown the vary across strata.

Residuals were calculated by taking the median of (log CPUE−log ĈPUEt,w),
where ĈPUEt,w is the model predicted CPUE for all iterations in the HMC
chain for for year t, and stratum w.

Figure 5.13 displays a plot of the residuals between the model predicted
log CPUE and the observed log CPUE. We see a somewhat narrower spread
of residuals, with some curvature, and potential outliers in the earlier
trawl years. This suggests that some of the variation in CPUE is explained
by trawl year and stratum, but there is quite a bit of variation left unex-
plained. This model appears to explain less variation in hoki CPUE com-
pared to Models 1, 3, and 4, but more than possibly more than Model 2.

5.6 Model Comparison

WAIC and DIC were calculated for Models 1, 2, and, 3. The values are
shown below in Table 5.15, along with log posterior density values (lpd)
and computed effective numbers of parameters, p. An information crite-
rion could not be applied to Models 4 and 5, because they involve parti-
tioning of the data. In Models 4 and 5, we assumed that hoki CPUE ob-
servations were structured, where each pairwise set of observations was
assumed to be correlated. DIC and WAIC would break these dependen-
cies.

From Table 5.15, we see that the model with the lowest DIC and WAIC
values is Model 3. The model with the highest values is Model 2. We can
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Figure 5.13: Residuals from Model 5, ordered by trawl year.

Table 5.15: Deviance information criteria and Watanabe-Akaike informa-
tion criteria for Models 1, 2, and 3.

Model lpd pDIC DIC pWAIC WAIC
1 -1987 15.3 4037 12.7 4000
2 -2029 31.0 4181 22.4 4103
3 -1841 41.3 3848 34.2 3750
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conclude that Model 3 performed the best, providing the best fit to the
data compared to Models 1 and 2. Model 2 provided the worst fit. This
agrees with our visual assessment of the models, using the residual plots.
We now move on to Chapter 6, where we discuss the results presented in
this chapter.



Chapter 6

Discussion and Conclusion

The aim of this research was to improve the precision and accuracy of
hoki abundance indices by accounting for spatial and temporal autocor-
relation within CPUE using Gaussian Markov random fields (GMRFs). In
this thesis, we built five models that attempted to explain spatial and tem-
poral variation in hoki CPUE. Trawl year and stratum were modelled us-
ing GMRFs with various precision structures. In this Chapter, we discuss
the main results outlined in Chapter 5. We start by comparing trawl year
and stratum in their abilities to account for temporal and spatial variation
respectively. This leads on to discussion of the survey design. We then
debate whether depth interval would explain more spatial variation than
stratum. Model 3 is then compared to both Models 1 and 2. We then com-
pare and contrast the areal approach with the point referenced approach.
Models 4 and 5 are discussed and we debate which dependency structure
was more appropriate given the survey design. We conclude the discus-
sion by listing future research considerations after this thesis.

By comparing the plots of residuals for Model 1 (Figure 5.2) to Model 2
(Figure 5.4), we see that trawl year explained much more variation than
stratum. This is not surprising when one considers the survey design. The
2-phase random stratification survey design proposed by Francis (1984)
attempts to minimise the overall coefficient of variation within hoki catch
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weight. This was achieved by allocating more stations to the strata with
the most varied catch observations (see Section 2.2). As a result, most of
the variation due to strata has been accounted for by sampling design.

A similar result was obtained in Tian et al. (2009). In Tian et al. (2009),
survey CPUE of neon flying squid (Ommastrephes bartramii) was modelled
using both a generalized linear model, and a generalized additive model.
In both cases, it was found that the month of trawl explained more varia-
tion in CPUE than any other factor (including spatial effects). This result
agrees with our conclusion that location factors are less important than
time factors when modelling CPUE from a well-designed survey.

The stratum CPUE predictions we made in Chapter 5 were imprecise for
Models 2 – 5. This is illustrated in each model’s section by the density plots
of CPUE by stratum (Figures 5.3, 5.6, 5.9, and 5.12). Small stratum sizes
can contribute to the imprecision of CPUE predictions. Table 2.4 in Chap-
ter 2 displays a summary of hoki CPUE by stratum. We can see that the
number of trawls with positive catches were low for some strata (for ex-
ample: 13 trawls in stratum 3; 16 trawls in stratum 5; and only 4 trawls in
stratum 26). For comparison, the stratum with the largest number of pos-
itive trawls was stratum 12 with 121 trawls. This could have contributed
to the imprecise CPUE predictions for strata. The problem of estimating
CPUE for strata with few observations was also encountered in Shelton
et al. (2014). We propose that the problem could be resolved by amalga-
mating some strata.

The issue of small numbers of observations in strata could be addressed to
improve CPUE prediction by using a different measure of spatial distribu-
tion, such as depth intervals. As discussed in Section 2.1, stratification in
the summer research trawl surveys was based on depth intervals of 300 –
600 m, 600 – 800 m, and 800 – 1000 m. By replacing the stratum factor with
depth interval in our models, we would decrease the number of estimated
parameters and increase the number of observations within each group.
This may improve the precision of CPUE prediction, and possibly explain
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more spatial variation in hoki CPUE, than stratum. Francis et al. (2002)
and Fujita (2016) found that depth was a statistically significant predictor
of CPUE for species on the Chatam Rise. Depth interval could be explored
with further research.

Model 3 was a combination of both Models 1 and 2, in that it included
both trawl year and stratum as factors to account for temporal and spatial
variation in hoki CPUE. Table 5.15 shows that Model 3 had the lowest DIC
and WAIC value of the first three models. We therefore conclude that a
model with both factors included explains more variation than a model
with only one of these factors. Even though stratum explains much less
variation in hoki CPUE, it still contributes to Model 3. This suggests that
trawl year alone does not account for all the variation in hoki CPUE col-
lected from scientific surveys; a model including stratum as an additional
factor is more suitable.

Results from Models 3 and 4 can be compared to investigate the differ-
ences between the areal approach and point referenced approach to ac-
count for spatial and temporal variation. We hypothesised that modelling
point referenced CPUE would lead to more precise predictions than with
an areal approach. However, our results indicate that this was not the case.
The first noticeable difference can be seen in the plots of predicted CPUE
by year and by strata (Figures 5.5 and 5.6 for Model 3, and Figures 5.8 and
5.9 for Model 4). The precision and accuracy of Model 4 predictions appear
to be lower compared to that of Model 3. The density plots of predicted
CPUE for Model 4 are more spread than those of Model 3. In addition,
the Model 4 predicted CPUE densities have less overlap with observed
CPUE values than can be seen for Model 3. The dependence structure we
assumed for CPUE in Model 4 may not have been appropriate.

Model 4 assumed that each pair of hoki CPUE observations were spatially
correlated depending on their distance. The spatial correlation also de-
pended on two parameters: a correlation parameter κ; and a precision pa-
rameter δ. The parameters κ and δ were kept constant across each pair of
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hoki CPUE observations. This meant that a pair of observations within one
stratum had the same covariance as a pair of observations in another stra-
tum, provided the each pair of observations were the same distance apart.
Model 5 assumed that each pair of hoki CPUE observations were associ-
ated within a stratum, but independent between them. In other words,
hoki CPUE had a different dependence structure within each stratum. We
hypothesized that by modelling spatial autocorrelation of hoki CPUE sep-
arately for each stratum, we would arrive at more precise CPUE predic-
tions compared to Model 4. By comparing the residual plots of Model 4
(Figure 5.10) and Model 5 (Figure 5.13), we can conclude that Model 5 pro-
vided a worse fit to the data, thus disproving our hypothesis. However,
this conclusion may be invalid, since we have serious reservations about
parameter convergence in Model 5 (see Section 4.2.1, and the diagnostic
plots in the appendices). By running Model 5 for more iterations, we may
see it providing a better fit. This should be considered for future research.

We compared our results to the analysis on commercial scallop (Pecten
maximus) CPUE performed by Murray et al. (2013). Murray et al. (2013)
modelled scallop CPUE using commercial fisheries data from the Isle of
Man. They constructed a series of generalized linear models that included
factors to account for differences in vessels, location, and time. Models
that contained a location factor explained more variation in scallop CPUE
than models with a time factor. From our models, we found that trawl year
explained more variation in hoki CPUE than stratum. We deduce that the
difference between our results and the results of Murray et al. (2013) is due
to survey design. As discussed previously, our survey was designed to ac-
count for most of the spatial variation in hoki CPUE. As such, any stratum
effect we include would not add much explanatory power to model of
survey CPUE. However, commercial data is not sampled in the same way
as survey data. Commercial data is “presence-only” data, meaning they
are collected in areas and at times when fish are available. This does not
account for spatial variation in the same our survey does. As such, loca-
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tion factors can explain much more spatial variation in commercial CPUE
compared to survey CPUE.
In this thesis, we found that both trawl year and stratum (to a lesser extent)
are important factors to be considered when modelling hoki CPUE. By
modelling both factors using GMRFs, we were able to explain a significant
amount of spatial and temporal variation in hoki CPUE. Furthermore, we
found that using the areal approach to model hoki CPUE was better in
that it accounted for more spatial and temporal variation than the point
referenced approach. We illustrated that using an appropriate and well
designed survey can significantly account for spatial variation without the
need for including a spatial effect.
In addition to the results achieved in this thesis, there were a multitude of
areas where improvement could be made. Future research considerations
include:

• Running the HMC chains of Models 4 and 5 for more iterations. Con-
clusions drawn from the current Model 5 results 5 are likely to be in-
correct due to the lack of convergence as seen in the diagnostic plots.

• Replacing stratum with depth interval as a different form of spatial
effect in the hoki CPUE models. Our hypothesis is that a model with
depth interval will explain more spatial variation in hoki CPUE than
a model with stratum.

• Repeating the analysis for a fish species that the survey was not de-
signed for. We hypothesise that stratum would explain more spatial
variation in the CPUE of another species. This is because the survey
will not account for as much spatial variation as it does for hoki.

• Repeating the analysis using catch and effort data from commercial
fisheries, where other factors (for example, vessel and gear effects)
affect CPUE. We would be able to investigate how much variation
time and space explain relative to other factors.
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• Investigating the use of stochastic partial differential equations (SPDE)
for the approximation of Gaussian random fields, as opposed to the
conditionally autoregressive GMRFs we used in this thesis. Gaus-
sian random fields allow for modelling in continuous space, which
may be more appropriate for point reference data (Lindgren et al.,
2011)

• Investigating how to account for the interaction of spatial and tem-
poral autocorrelation. In Chapter 2, we found evidence for the ex-
istence of spatio-temporal autocorrelation within hoki CPUE. With
more data (for example, commercial data), we could implement a
GMRF to model the spatio-temporal autocorrelation in hoki CPUE.
This has been researched by Thorson et al. (2015).

• Investigating pivotal discrepancy measures (Yuan & Johnson, 2012)
and other model comparison techniques to compare structured Bayesian
hierarchical models. We could not compute an information crite-
rion for Models 4 and 5. This was due to the dependence structure
on hoki CPUE that both models assumed. Pivotal discrepancy mea-
sures can be used to compare hierarchical models, however, it is still
unknown whether they can be extended to models with structured
dependencies.
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A.1 Model 1: Temporal Effects

Figure A.1: Trace plots for the posterior distributions of τ2, ..., τ12 in Model
1.
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Figure A.2: Trace plots for the posterior distribution of µ, σ, φ, and ρ in
Model 1
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A.2 Model 2: Areal Spatial Effects

Figure A.3: Trace plots for the posterior distributions of ω2, ..., ω23 in Model
2.
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Figure A.4: Trace plots for the posterior distributions of µ, σ, p, and η in
Model 2.
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A.3 Model 3: Temporal and Areal Spatial Effects

Figure A.5: Trace plots for the posterior distributions of τ2, ..., τ12 in Model
3.
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Figure A.6: Trace plots for the posterior distributions of ω2, ..., ω23 in Model
3.
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Figure A.7: Trace plots for the posterior distributions of µ, σ, ρ, φ, p, and η

in Model 3.
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A.4 Model 4: Point Referenced CPUE Model

Figure A.8: Trace plots for the posterior distributions of τ2, ..., τ12 in Model
4.
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Figure A.9: Trace plots for the posterior distributions of ω2, ..., ω23 in Model
4.
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Figure A.10: Trace plots for the posterior distributions of µ, ρ, φ, p, η, κ,
and δ in Model 4.
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A.5 Model 5: Blocked Point Referenced CPUE

Model

Figure A.11: Trace plots for the posterior distributions of τ2, ..., τ12 in Model
5.
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Figure A.12: Trace plots for the posterior distributions of ω2, ..., ω23 in
Model 5.



158 APPENDIX A. TRACE PLOTS

Figure A.13: Trace plots for the posterior distributions of κ1, ..., κ23 in
Model 5.
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Figure A.14: Trace plots for the posterior distributions of δ1, ..., δ23 in
Model 5.
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Figure A.15: Trace plots for the posterior distributions of µ, ρ, φ, p, and η

in Model 5.
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B.1 Model 1: Temporal Effects
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Figure B.1: The posterior distributions for the 11 parameters, τ2, ..., τ12, rep-
resenting the effects on hoki CPUE due to year. The reference level was set
to the year 1991.
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Figure B.2: The posterior distributions for the parameters µ, σ, ρ, and φ.
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B.2 Model 2: Areal Spatial Effects
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Figure B.3: The posterior distributions for the 22 parameters, ω2, ..., ω23,
representing the effects on hoki CPUE due to stratum with reference to
stratum 1.
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Figure B.4: The posterior distributions for the parameters µ, σ2, p, and η.
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B.3 Model 3: Temporal and Areal Spatial Effects
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Figure B.5: The posterior distributions for the 11 parameters, τ2, ..., τ12, rep-
resenting the effects on hoki CPUE due to year.
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Figure B.6: The posterior distributions for the 22 parameters, ω2, ..., ω23,
representing the effects on hoki CPUE due to stratum.
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Figure B.7: The posterior distributions for the parameters µ, σ2, ρ, φ, p, and
η.
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B.4 Model 4: Point Referenced CPUE Model
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Figure B.8: The posterior distributions for the 11 parameters, τ2, ..., τ12, rep-
resenting the effects on hoki CPUE due to year in Model 4.
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Figure B.9: The posterior distributions for the 22 parameters, ω2, ..., ω23,
representing the effects on hoki CPUE due to stratum in Model 4.
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Figure B.10: The posterior distributions for the parameters µ, ρ, φ, p, η, κ,
and δ in Model 4.
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B.5 Model 5: Blocked Point Referenced CPUE
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Figure B.11: The posterior distributions for the 11 parameters, τ2, ..., τ12,
representing the effects on hoki CPUE due to year.
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Figure B.12: The posterior distributions for the 22 parameters, ω2, ..., ω23,
representing the effects on hoki CPUE due to stratum.
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Figure B.13: The posterior distributions for the 23 parameters, κ1, ..., κ23,
representing the correlations between strata.
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Figure B.14: The posterior distributions for the 23 parameters, δ1, ..., δ23,
representing the precisions.
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Figure B.15: The posterior distributions for the parameters µ, ρ, φ, p, η.
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C.1 Model 1: Temporal Effects

Figure C.1: Autocorrelation plots for τ2, ..., τ12 in Model 1.
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Figure C.2: Autocorrelation plots for µ, σ, φ, and ρ in Model 1.
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C.2 Model 2: Areal Spatial Effects

Figure C.3: Autocorrelation plots for ω2, ..., ω23 in Model 2.
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Figure C.4: Autocorrelation plots for µ, σ, p, and η in Model 2.
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C.3 Model 3: Temporal and Areal Spatial Effects

Figure C.5: Autocorrelation plots for τ2, ..., τ12 in Model 3.
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Figure C.6: Autocorrelation plots for ω2, ..., ω23 in Model 3.



184 APPENDIX C. AUTOCORRELATION PLOTS

Figure C.7: Autocorrelation plots for µ, σ, ρ, φ, p, and η in Model 3.
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C.4 Model 4: Point Referenced CPUE Model

Figure C.8: Autocorrelation plots for τ2, ..., τ12 in Model 4.
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Figure C.9: Autocorrelation plots for ω2, ..., ω23 in Model 4.
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Figure C.10: Autocorrelation plots for µ, ρ, φ, p, η, κ, and δ in Model 4.
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C.5 Model 5: Blocked Point Referenced CPUE

Model

Figure C.11: Autocorrelation plots for τ2, ..., τ12 in Model 5.
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Figure C.12: Autocorrelation plots for ω2, ..., ω23 in Model 5.
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Figure C.13: Autocorrelation plots for κ1, ..., κ23 in Model 5.
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Figure C.14: Autocorrelation plots for δ1, ..., δ23 in Model 5.
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Figure C.15: Autocorrelation plots for µ, ρ, φ, p, and η in Model 5.
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D.1 Model 1: Temporal Effects
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Figure D.1: Gelman-Rubin plots for the parameters in Model 1.
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Figure D.2: Gelman-Rubin plots for the parameters in Model 1.
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D.2 Model 2: Areal Spatial Effects

0 4000 10000

1.
00

1.
02

1.
04

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω2

0 4000 10000

0.
99

1.
01

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω3

0 4000 10000

1.
00

0
1.

01
5

1.
03

0

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω4

0 4000 10000

1.
00

1.
04

last iteration in chain
sh

rin
k 

fa
ct

or

median
97.5%

ω5

0 4000 10000

1.
00

1.
02

1.
04

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω6

0 4000 10000

0.
99

0
1.

00
5

1.
02

0

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω7

0 4000 10000

1.
00

0
1.

01
5

1.
03

0

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω8

0 4000 10000

1.
00

1.
04

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω9

0 4000 10000

1.
00

1.
02

1.
04

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω10

0 4000 10000

1.
00

1.
04

1.
08

1.
12

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω11

0 4000 10000

1.
00

1.
02

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω12

0 4000 10000

1.
00

1.
02

1.
04

last iteration in chain

sh
rin

k 
fa

ct
or

median
97.5%

ω13

Figure D.3: Gelman-Rubin plots for the parameters in Model 2.
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Figure D.4: Gelman-Rubin plots for the parameters in Model 2.
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Figure D.5: Gelman-Rubin plots for the parameters in Model 2.
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D.3 Model 3: Temporal and Areal Spatial Effects
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Figure D.6: Gelman-Rubin plots for the parameters in Model 3.
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Figure D.7: Gelman-Rubin plots for the parameters in Model 3.
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Figure D.8: Gelman-Rubin plots for the parameters in Model 3.
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Figure D.9: Gelman-Rubin plots for the parameters in Model 3.
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D.4 Model 4: Point Referenced CPUE Model
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Figure D.10: Gelman-Rubin plots for the parameters in Model 4.
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Figure D.11: Gelman-Rubin plots for the parameters in Model 4.
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Figure D.12: Gelman-Rubin plots for the parameters in Model 4.
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Figure D.13: Gelman-Rubin plots for the parameters in Model 4.
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Figure D.14: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.15: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.16: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.17: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.18: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.19: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.20: Gelman-Rubin plots for the parameters in Model 5.
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Figure D.21: Gelman-Rubin plots for the parameters in Model 5.



Bibliography

Abensperg-Traun, M. & Boer, E. S. (1990). Species abundance and habitat
differences in biomass of subterranean termites (isoptera) in the wheat-
belt of western australia. Australian Journal of Ecology, 15(2), 219–226.

Akaike, H. (1973). Information theory and an extension of the maximum
likelihood principle. In Proceedings of the Second International Symposium
on Information Theory (pp. 267–281).

Allcroft, D. J. & Glasbey, C. A. (2003). A latent gaussian markov random-
field model for spatiotemporal rainfall disaggregation. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 52(4), 487–498.

Alqallaf, F. & Gustafson, P. (2001). On cross-validation of bayesian models.
The Canadian Journal of Statistics/La Revue Canadienne de Statistique, , 333–
340.

Anselin, L. (1995). Local indicators of spatial associationlisa. Geographical
analysis, 27(2), 93–115.

Bagley, N. W., Ballara, S. L., ODriscoll, R. L., Fu, D., & Lyon, W. (2013).
A review of hoki and middle depth summer trawl surveys of the sub-
antarctic, november december 1991–1993 and 2000–2009. New Zealand
Fisheries Assessment Report, 41, 63.

Baranov, F. I. (1918). On the question of the biological basis of fisheries.

215



216 BIBLIOGRAPHY

Beare, D., Batten, S., Edwards, M., McKenzie, E., Reid, P., & Reid, D. (2003).
Summarising spatial and temporal information in cpr data. Progress in
Oceanography, 58(2), 217–233.

Bertram, D. F., Drever, M. C., McAllister, M. K., Schroeder, B. K., Lindsay,
D. J., & Faust, D. A. (2015). Estimation of coast-wide population trends
of marbled murrelets in canada using a bayesian hierarchical model.
PloS one, 10(8).
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