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Abstract

Model-based approaches to cluster continuous and cross-sectional data
are abundant and well established. In contrast to that, equivalent ap-
proaches for repeated ordinal data are less common and an active area
of research. In this dissertation, we propose several models to cluster re-
peated ordinal data using finite mixtures. In doing so, we explore several
ways of incorporating the correlation due to the repeated measurements
while taking into account the ordinal nature of the data.

In particular, we extend the Proportional Odds model to incorporate
latent random effects and latent transitional terms. These two ways of in-
corporating the correlation are also known as parameter and data depen-
dent models in the time-series literature. In contrast to most of the existing
literature, our aim is classification and not parameter estimation. This is,
to provide flexible and parsimonious ways to estimate latent populations
and classification probabilities for repeated ordinal data.

We estimate the models using Frequentist (Expectation-Maximization
algorithm) and Bayesian (Markov Chain Monte Carlo) inference methods
and compare advantages and disadvantages of both approaches with sim-
ulated and real datasets. In order to compare models, we use several in-
formation criteria: AIC, BIC, DIC and WAIC, as well as a Bayesian Non-
Parametric approach (Dirichlet Process Mixtures). With regards to the
applications, we illustrate the models using self-reported health status in
Australia (poor to excellent), life satisfaction in New Zealand (completely
agree to completely disagree) and agreement with a reference genome of
infant gut bacteria (equal, segregating and variant) from baby stool sam-
ples.
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Chapter 1

Literature Review

1.1 Introduction

A variable with an ordered categorical scale is called ordinal. That is, ordi-
nal data is categorical data where outcome levels have a logical order and
thus its order matters. Examples of ordinal responses are: socio-economic
status (low, medium, high), educational attainment (high school, voca-
tional, undergraduate, postgraduate), disease severity (not infected, ini-
tial, medium, advanced), health status (poor, fair, good, excellent), agree-
ment with a given statement (strongly disagree, disagree, neutral, agree,
strongly agree) and any other variables that use the Likert scale. Con-
versely, a categorical variable with an unordered scale is called nominal.
In this case, categories differ in quality not in quantity (Agresti 2013).
Religious affiliation (Non-religious, Christian, Muslim, Jewish, Buddhist,
Other), geographical location (North, East, South, West), preferred method
of commuting (bus, train, bike, walk, other) amongst others are examples
of nominal variables.

Analyses of ordinal data are very common but often do not fully ex-
ploit their ordinal nature. First, ordinal outcomes are treated as continuous
by assigning numerical scores to ordinal categories. Doing this equates to
assuming that the categories are equally spaced in the ordinal scale which
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2 CHAPTER 1. LITERATURE REVIEW

might be an unnecessary and restrictive assumption. Secondly, methods
for the identification of latent groups, patterns, and clusters in ordinal
data lag behind equivalent approaches for continuous, binary, nominal
and count data. In particular, traditional clustering approaches such hier-
archical clustering, association analysis, and partition optimization meth-
ods like k-means clustering; are not based on likelihoods and thus statisti-
cal inference tools are not available. For instance, model selection criteria
can not be used to evaluate and compare different models. Thirdly, an-
other common approach is to ignore the order of the categories altogether
and thus treat the data as nominal. By ignoring the ranked nature of the
categories this approach reduces its statistical power for inference.

Further challenges are posed when repeated measurements of an ordi-
nal response are made for each unit, such as in longitudinal studies. For
these two-way data (unit by time period), the correlation structure among
repeated measures needs also to be accounted for. The correlation struc-
ture could be generalised to the analysis of three-way data where for each
unit there are several ordinal responses at a given moment and these are
repeated over time (unit by question by time period). Moreover, two-way
data could also be combined with observations of an additional response
variable giving rise to joint models where a common latent variable ex-
plains both the repeated ordinal and the additional outcomes. For in-
stance, consider as a motivating example the health status of person mea-
sured several times, and whether or not they were welfare beneficiaries
over that period. Both in turn could depend on a latent variable such as
deprivation. The research goal could be to group individuals in order to
identify those at the greatest risk of living on the benefit and ultimately es-
timate their latent deprivation level. Resulting models are thus markedly
more complex both in mathematical and computational terms. We now
present a review of the existing models in the literature.
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1.2 Models for Ordinal Data

Ordinal data is often analysed by modelling the cumulative probabilities
of the ordinal response and using a link function, usually logit or probit.
Although methods for categorical data started off in the 1960s, Snell (1964),
Bock & Jones (1968), models for ordinal data were mostly developed after
the influential articles by McCullagh (1980) on modelling of cumulative
probabilities using a logit link and Goodman (1979) on loglinear models
for odds ratios of ordered categories. Substantial developments have been
made since then and are well documented elsewhere by Liu & Agresti
(2005) and Agresti (2013). Here we will review in detail the most relevant
models for our purposes and briefly mention the rest.

Cumulative logit models

The Proportional Odds model

The Proportional Odds Model (POM) by McCullagh (1980) is a cumulative
logit model and is the most popular model for analysing ordinal data. It
links the logits of the cumulative probabilities with a set of predictors.
For a ordinal response Y with q ordered categories and a set of predictors
x = (x1, . . . , xm)

′ the model can be written as

Logit[P (Y ≤ k|x)] = µk − β′x k = 1, . . . , q − 1

where µ1 < µ2 · · · < µq−1. These parameters µk are called cut points but
also regarded as nuisance parameters because they are often of no or little
interest. This model has q − 1 equations, that is it applies simultaneously
to all q − 1 cumulative logits. The parameter β captures the effect of the
predictors on the cumulative probabilities and is the same for all levels of
the cumulative probability (β is the same for all k). This Proportional Odds
property gives the model its name and implies that the odds ratios for
describing effects of explanatory variables on the ordinal response are the
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same for each of the possible ways of collapsing the q ordinal categories to
a binary variable.

We use a parametrisation with a negative sign, because it allows the
coefficients β to have the usual directional meaning of the predictor on the
response. That is, for predictor m, βm ≥ 0 implies that Y is more likely to
fall at the high end of the ordinal scale.

Figure 1.1: Individual category probabilities for the POM with five re-
sponse categories

Figure 1.1 shows a graphical representation of the POM for five re-
sponse categories and one continuous predictor. As it can be seen, P (Y =

k) has the same shape for all the ordinal categories (k = 2, . . . , q − 1) and
differs only in its location.

Alternatively, the POM has also a latent variable representation (An-
derson & Philips 1981). Assuming that the ordinal response Y comes from



1.2. MODELS FOR ORDINAL DATA 5

an underlying continuous response Y ∗ which follows a standard logistic
distribution conditional on x such that Y = k if µk−1 ≤ Y ∗ ≤ µk, then
the POM holds for Y. In other words, the POM could also be represented
as Y ∗ = β′x + ϵ where ϵ ∼ Logistic(0, π2/3). Figure 1.2 shows a graph-
ical representation, the ordinal response Y (right Y-axis) falls in category
k = 1, 2, 3, 4 when the unobserved continuous response Y ∗ falls in the kth

interval of values. The slope of the regression line is β.

Figure 1.2: Latent variable representation of the POM, reprinted from
Agresti (2013).

Maximum Likelihood (ML) methods are often used to fit cumulative
logit models. ML estimates of the model parameters are obtained using
iterative methods that solve the likelihood equations for all the cumula-
tive logits, e.g. q − 1 equations in the case of the POM described above.
Walker & Duncan (1967), McCullagh (1980) proposed the Fisher scoring
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algorithm, an iteratively reweighted least squares algorithm, for this task.
A sufficiently large n guarantees a global maximum but a finite n does not.
In the latter, the ML function may exhibit local maxima or not have one at
all (McCullagh 1980).

When the POM fits poorly or the proportional odds assumption is in-
adequate, Liu & Agresti (2005) proposed the following potential alterna-
tive strategies. (i) Trying a model with separate effects, βk instead of β.
This model however places additional constraints in the set of parameters
µ and β to make sure that the cumulative probabilities are non-decreasing;
(ii) Trying different link functions, (iii) Adding interactions or in general
additional terms to the linear predictor; (iv) Adding dispersion terms; (v)
Allowing separate effects, like in (i), for some but not all predictors. This
model, introduced by Peterson & Harrell (1990), is called the Partial Pro-
portional Odds model (PPOM); (vi) Using a model for nominal responses,
e.g. Baseline logit. We next focus on option (iii) as it the most relevant for
the purposes of this proposal. For a complete treatment see Liu & Agresti
(2005).

There are several ways to include additional terms to the linear predic-
tor when there is lack of proportional odds. Here we present the Trend
Odds Model (TOM) by Capuano & Dawson (2012) that will be extented
later to the clustering case. The TOM is a monotone constrained non-
proportional odds models that uses a logit link for the cumulative prob-
ability and adds an extra parameter γ to the linear predictor. Setting an
arbitrary scalar tk that varies by ordinal outcome (k), the TOM has the
form

Logit[P (Y ≤ k|x)] = µk − (β + γtk)
′x tk ≤ tk+1; k = 1, . . . , q − 1

where µk − µk−1 ≥ γ(tk − tk−1)x,∀x is an additional constraint required to
make sure the cumulative probabilities are non-decreasing. Intrinsically,
therefore the TOM is a constrained model where for a given value of the
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predictor, the odds parameter increases or decreases in a monotonic man-
ner (γtk with tk ≤ tk+1) across the ordinal outcomes (k). Figure 1.3 shows
a graphical representation of the TOM for five response categories and one
continuous predictor. In contrast to the POM, figure 1.1, the probabilities
for the ordinal responses P (Y = k) differ not only in their location but
also in shape. For instance, the probability that the response is equal to
the second category P (Y = 2) is no longer symmetric. Similarly, the prob-
abilities that the response is equal to the first (P (k = 1)) and last (P (k = 5))
categories are no longer mirror images of each other.

Figure 1.3: Individual category probabilities for the TOM with five re-
sponse categories

Capuano & Dawson (2012) showed that the TOM is related to logistic,
normal and exponential underlying latent variables and belongs to the
class of constraint non-proportional odds models by Peterson & Harrell
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(1990).

Other multinomial models

Alternative probability models to analyse ordinal data include: cumula-
tive link models, continuation-ratio logit models and adjacent-categories
logit model. An important related model is the Stereotype model by An-
derson (1984). Nested between the adjacent-categories logit model with
proportional odds and the general baseline-category logit model, it cap-
tures any potential lack of proportionality by introducing new parameters
for each category. Fernández et al. (2016) extend the Stereotype model to
perform model based cluster analysis, see section 1.4. We note that these
models belong within the class of multivariate generalised linear models
(Multivariate GLM) whenever the response has a distribution in the ex-
ponential family (McCullagh 1980, Thompson & Baker 1981, Fahrmeir &
Tutz 2001).

1.3 Models for repeated ordinal data

Repeated ordinal data arise when an ordinal response is recorded at vari-
ous occasions for each subject or unit, such as in longitudinal studies. We
next discuss three main approaches to analyse such data: marginal mod-
els, subject-specific models and transitional models (Diggle et al. 2002, Ver-
munt & Hagenaars 2004, Agresti 2013).

Marginal models, also known as population-averaged models, capture
the effect of the predictor averaged over all the observations. Assume for
simplicity that all responses repeat the same number of times T and let Yit
be an ordinal response with q categories for individual i in occasion t. The
marginal model with cumulative logit link has the form

Logit[P (Yit ≤ k|xit)] = µk−β′xit k = 1, . . . , q−1; i = 1, . . . , n; t = 1, . . . , T.
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where xit = (xit1, xit2, . . . , xitm)
′ contains the values of the m predictors

for individual i at occasion t. Model fitting is mostly performed using
a generalised estimating equations (GEE) approach. This approach is a
quasi likelihood method that only specifies the marginal regression mod-
els, over individuals i as in the equation above, and a working correlation
structure, a guess specified by the analyst, among the T responses. Lipsitz
et al. (1994) and Toledano & Gatsonis (1996) presented cumulative logit
and probit models for repeated ordinal responses.

Marginal models focus on the marginal distribution of Y by averag-
ing over individual responses and treat the joint dependence structure as
nuisance. Given that our aim is to explicitly classify subjects into latent
clusters, we will not be using population-averaged approach in this dis-
sertation.

In contrast to that, subject-specific models describe effects at the indi-
vidual or unit level. They are known by many names in the literature: con-
ditional models, mixed effects models, random-effects models, and multi-
level models. They jointly model the distribution of the response and the
individual effects. Random effects models belong to the class of gener-
alised linear mixed models (GLMM) when the response has a distribution
in the exponential family. Individual effects are assumed to follow a cer-
tain probability distribution and hence their name of random effects. In
our case, we use the random effects to capture the dependence among re-
peated responses but they could more generally be used to capture subject
heterogeneity, unobserved covariates and other forms of overdispersion.
The cumulative logit with random effects by subject has the form

Logit[P (Yit ≤ k|xit)] = µk − β′xit − ai

where k = 1, . . . , q − 1; i = 1, . . . , N ; t = 1, . . . , T and ai ∼ N(0, σ2). This
is the simplest model and is also known as the random intercept model. It
could be extended to other ordinal models using different link functions
as well as continuation-ratio logit models. ML estimation of these mod-
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els is based on the marginal likelihood that integrates out the random ef-
fects. For simple cases like a random intercept Gauss-Hermite quadrature
is used.

In general, multiple random effects are possible but fitting for more
than two terms is challenging (Tutz & Hennevogl 1996, McCulloch et al.
2008) due to the fact that the dimensionality of the integrals that need to
be solved numerically grows with the number of random effects. Higher-
dimensional integrals are approximated through Monte Carlo simulation
or pseudo-likelihood methods such as adaptative quadrature (Naylor &
Smith 1982, Skrondal & Rabe-Hesketh 2004) and sequential Gaussian quadra-
ture (Heiss 2008, Bartolucci et al. 2014). Of note here is the remark made by
Pinheiro & Bates (1995) that quadrature and adaptive quadrature are de-
terministic versions of Monte Carlo integration and importance sampling.

Quadrature methods need the selection of an adequate number of inte-
gration points. This is, however, a non- straightforward task and it has to
be done case by case depending on the data at hand. For instance, in fitting
a mixture of latent autoregressive models, Bartolucci et al. (2014) started
with 21 quadrature points for a given number of mixture components and
then increased it by 10 until convergence of the estimated log-likelihood
was achieved. This scheme lead them to use 51 and 61 quadrature points
for mixtures with one to 4 components. Moreover, as in all Frequentist
estimation, the above methods only provide point estimates for the model
parameters and confidence intervals need to be estimated in a separate
step, usually using the Fisher information matrix which also needs to be
approximated.

In contrast to that, Bayesian approaches provide an attractive way for-
ward. From the outset, Bayesian estimation aims to simulate the posterior
distribution of parameters conditional on the data and thus provides es-
timates of the model parameters and their related uncertainty. Secondly,
although multiple random effects might be more complex and take longer
to simulate, thanks to the theory of Markov chains we are sure that a well



1.3. MODELS FOR REPEATED ORDINAL DATA 11

constructed MCMC chain will be able to efficiently explore any target dis-
tribution in finite time. Of course, a Bayesian approach is not a silver bullet
that could be used for free. Issues such as the selection of priors, assess-
ment of the convergence of the MCMC chain, and the design of MCMC
moves for efficient exploration of the target distribution are of uttermost
importance when using a Bayesian approach. Thanks to the advances in
the Bayesian literature in the last decades, see for example Johnson & Al-
bert (1999), Robert & Casella (2005), Frühwirth-Schnatter (2006), Gelman
et al. (2014), Müller et al. (2015), we now have a standard set of tools
to tackle these issues. This together with the increase of computational
power make Bayesian approaches a natural choice in complex models like
the above. Chapter 5 presents a finite mixture for repeated ordinal data
with latent random effects that follow a random walk with cluster-specific
variance, and estimates it within a Bayesian framework.

Finally, transitional models include also past responses as predictors.
That is, they model the ordinal response Yt conditional on past responses
Yt−1, Yt−2, . . . and other explanatory variables xt. A very popular transi-
tional model is the first-order Markov model in which Yt is assumed to
depend only on Yt−1 and covariates of time t. For example, Kedem &
Fokianos (2005) used a cumulative logit transitional model in the context
of a longitudinal medical study. In our case, Chapter 6 presents a finite
mixture for repeated ordinal data with transitional terms by latent cluster
and occasion and estimates it within a Bayesian framework.

As remarked by Liu & Agresti (2005), the use of any of these three ap-
proaches depends on the problem at hand. That is, an approach should be
chosen according to whether interpretations are needed at the population
level, subject-specific predictions are of relevance, or whether or not it is
important to describe effects of explanatory variables conditional on past
responses. Furthermore, estimated effects can have different magnitude
depending on the approach taken. For example, in transitional models the
interpretation and magnitude of the effect of the past responses on the or-



12 CHAPTER 1. LITERATURE REVIEW

dinal response depends on how many previous observations are include
in the model. Also the effects of the other explanatory variables diminish
markedly (Agresti 2013). In addition to that, effects in a subject-specific
model are larger in magnitude than those in a population-averaged model.

1.4 Model based clustering analysis for ordinal

data

Traditional cluster analysis approaches treat ordinal responses as contin-
uous and reduce the dimensionality of the data by using the eigenvalues
and matrix decomposition. Amongst others, hierarchical clustering (Kauf-
man & Rousseeuw 1990) , association analysis (Manly 2005), and partition
optimization methods like k-means clustering (Lewis et al. 2003), follow
this approach. Since these approaches are not based on likelihoods, statis-
tical inference tools are not available and model selection criteria can not
be used to evaluate and compare different models.

Model based approaches, such as Kendall’s τb (Kendall 1945), Goodman-
Kruskal’s γ (Goodman & Kruskal 1954) and Somers’ d (Somers 1962); also
exists. However, they use distance metrics and similarity measures and
thus do not fully exploit the ordinal structure of the data. Their associated
statistical tests rely on Monte Carlo methods, testing only the sample at
hand and not more general hypothesis about the data generating process.
Hastie et al. (2009) presents full details.

Model based clustering using finite mixtures have been proposed by
several authors (Everitt & Hand 1981, McLachlan & Peel 2000). See a
recent literature review by Fernández et al. (2017). This approach poses
probabilistic models using finite mixtures which are mostly fitted using
the Expectation-Maximisation algorithm (EM) (Dempster et al. 1977) and
focus on either continuous, discrete or nominal responses. A major advan-
tage of this approach is the availability of likelihoods, for the probability
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models, and therefore access to various model selection criteria to evaluate
and compare different models.

Finite mixtures are also known as Latent Class (LC) models in the lit-
erature of Latent Variable models (Bartholomew et al. 2011, Wedel & De-
Sarbo 1995). Used firstly in sociology (Lazarsfeld 1950), LC have been
widely used to cluster ordinal responses, as well as continuous and cate-
gorical data. Although slight differences could be argued, McLachlan &
Peel (2000) for instance points out that mixture components in LC mod-
els often represent actual underlying classes that may have a meaningful
physical representation, both denominations have been used interchange-
ably in the literature even in early applications, see for example Aitkin’s
seminal paper (Aitkin et al. 1981). In addition to that, this literature makes
also an interesting connection of finite mixtures with random effects mod-
els. Here mixtures are a way to estimate models with discrete random
effects since the distribution of the random effects is assumed to be multi-
nomial across the latent classes. They accordingly use the terms non-
parametric random-effects and non-parametric maximum likelihood (NPML)
for the model and its estimation approach (Wedel & DeSarbo 1994, Aitkin
1996, Aitkin & Alfó 1998, Vermunt & Van Dijk 2001, Alfò et al. 2016).

Also of note in the latent variable literature are Skrondal & Rabe-Hesketh
(2004) and Vermunt & Magidson (2000) who implemented this approach
and made them available in standard software, GLLAMM (Generalised
Linear Latent Mixed Models) and Latent Gold, respectively. It is important
to stress that most of this literature has focused on parameter estimation
and not clustering nor classification, that is the assignment of subjects to
the latent classes. On the other hand, the latent variable literature has also
had an almost exclusive reliance on AIC and BIC for model comparison
(Nylund et al. 2007) which might not be appropriate for finite mixtures as
it tends to overestimate the number of latent clusters (McLachlan & Peel
2000).

Simultaneous clustering of row and columns is called biclustering, block
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clustering or two-mode clustering. Biclustering models for binary, count
and categorical data have been proposed by Biernacki et al. (2000), Pledger
(2000), Govaert & Nadif (2008), Arnold et al. (2010), Labiod & Nadif (2011),
Pledger & Arnold (2014). More recently, Matechou et al. (2016) and Fernández
et al. (2016) have extended these models to ordinal responses. The former
used the proportional odds (McCullagh 1980) and the latter the Stereo-
type model (Anderson 1984) and enable them to handle row, column and
biclustered data. The overall aim of this dissertation is to extent these finite
mixture models to the case of repeated ordinal data using the proportional
odds formulation. This is done in Chapters 5, 6 and 7.

1.5 Model based clustering for repeated ordinal

data

In analogy to the literature for longitudinal data, there are two main ap-
proaches for finite mixture-based clustering for repeated ordinal data: mix-
tures of random effects models and mixtures of transitional models which
we denote here parameter dependent (chapter 5) data dependent (chapter 6)
models. These names are however just conventions as both approaches in
turn could be viewed as special cases of non-linear state space models for
longitudinal data (Fahrmeir & Tutz 2001) and models that combined both
approaches could also be meaningful and have been proposed in the liter-
ature (Bates & Neyman 1952, Heckman 1981a, Skrondal & Rabe-Hesketh
2014).

1.5.1 Parameter dependent models

Parameter dependent models, introduce the repeated measures correla-
tion by conditioning the response on latent random effects, that is a finite
mixture of random effects models. This is useful for instance to estimate
time-varying unobserved heterogeneity as a mixture of discrete distribu-
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tions or stochastic processes (Vermunt et al. 1999, Vermunt & Van Dijk
2001, Bartolucci & Farcomeni 2009, Bartolucci et al. 2014). These models
rely on the local independence assumption, that is conditional on the clus-
ter membership, the random effects and potential observed covariates, the
subjects are assumed to be independent.

Vermunt & Van Dijk (2001) formulated a latent class regression model
with class-specific coefficients, that is a finite mixture of random-intercepts
and random-coefficients model. Given the lack of assumptions about the
distribution of the random effects, the authors also viewed this model as a
non-parametric two-level model. They applied this latent class regression
model to responses with densities in the exponential family, including or-
dinal responses (Vermunt & Hagenaars 2004).

More recently, Bartolucci et al. (2014) presented a mixture of latent
auto-regressive models for longitudinal binary, categorical and ordinal
data that includes covariates as well as time-varying unobserved hetero-
geneity as a mixture of AR(1), autoregressive processes of order one, with
different correlation coefficients but sharing the same variance. Frequen-
tist estimation is performed using EM and Newtown-Raphson (NR) algo-
rithms with sequential Gaussian quadrature to integrate out the mixture
distribution of random effects. Model comparison is carried out using BIC
and the S-index that takes into account the level of separation of the mix-
ture components. They provide an application to self-reported health sta-
tus for 7074 individuals over 8 years in the USA and taking into account
the entropy based S-index argued for a model with three components, al-
though a model with four components had the lowest BIC.

Latent Markov (LM) models (Wiggins 1973, Vermunt et al. 1999, Bar-
tolucci et al. 2012) are another class of models that could also be consid-
ered parameter dependent. They are a generalization of finite mixtures
where the cluster memberships arises from a discrete-state Markov chain
and thus varies over time among the states. LM models are also known
as Hidden Markov (HM) and Markov switching models in the time se-
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ries literature (MacDonald & Zucchini 1997, Cappé et al. 2005, Zucchini &
MacDonald 2009).

LM and HM models are more flexible than finite mixtures but also less
parsimonious since additional parameters for the initial states and a tran-
sition matrix between states need to be estimated. Among the important
contributions on this area, we highlight Bartolucci (2006) that provided
a restricted likelihood ratio test (RLRT) to compare different configura-
tions of the transition matrix for a given number of latent states, including
whether or not the transition matrix is diagonal. They thus provided a test
for the comparison of the LM and finite mixture formulations of models
with the same number of latent states.

Ordinal data has been analysed using LM models by Vermunt et al.
(1999) and Bartolucci & Farcomeni (2009). Vermunt et al. (1999) incorpo-
rates categorical time-constant and time-varying covariates to the LM for
a categorical response, although they used the model for ordinal data. Im-
portantly, in their formulation predictors affect initial and transition prob-
abilities of the latent variable and not directly the response. The latter is
also the case for Bartolucci & Farcomeni (2009), who proposed a multi-
variate extension of the dynamic logit model for binary, categorical and
ordinal data. These authors used marginal logits for each response and
marginal log-odds for each pair of responses and also allowed for covari-
ates, including lagged responses. Their proposal moreover allows for time
varying unobserved heterogeneity which is modelled as a first-order ho-
mogeneous Markov chain with a discrete number of states. The model is
estimated using the EM and backward-forward recursions from the HM
literature (MacDonald & Zucchini 1997) and model comparison is carried
out using AIC and BIC. A simulation study shows how these information
criteria worked well for the proposed model with BIC providing better
results. They presented an application to fertility and employment as bi-
nary variables for 1446 women over 7 years. Using the AIC and the RLRT
, they selected a LM model with three states which was preferred over the
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corresponding finite mixture model. Interestingly, using the BIC rendered
a different result as the model with the lowest overall BIC was a finite
mixture mixture (and not a LM) with four components.

Chapter 5 presents a finite mixture model with latent random effects
that encompasses the models of Vermunt & Van Dijk (2001) and Bartolucci
et al. (2014) within one general framework. In particular, we propose a
model with latent random effects that follow a standard normal distri-
bution and Gaussian random walk process both cluster-specific variance.
Our choice of sticking with finite mixtures, and not LM or HM models,
was guided mainly by parsimony but also the aim of having both ways
of modelling the time-varying unobserved heterogeneity within the same
encompassing model. In contrast to these authors, we fit the models using
a Bayesian approach and note their benefits and limitations in contrast to
the Frequentist solutions.

1.5.2 Data dependent models

Data dependent models, introduce the repeated measures correlation by
conditioning on a finite mixture of previous responses, that is by allowing
the lagged response to have a different effect on each cluster. These mod-
els are also known as Markov transition or latent transition models and
typically use time-homogeneous first-order Markov chains with states cor-
responding to the levels of the response(s). The latter is the key defining
characteristic of this approach, which contrast with the LM/HM models
where the Markov chain is defined over unobserved states. Markov tran-
sition models have been used for model based clustering of longitudinal
data and time series (Frydman 2005, Pamminger et al. 2010, Frühwirth-
Schnatter et al. 2012, Cheon et al. 2014).

In addition to the local independence assumption, models within this
approach have to deal with the initial conditions problem (Heckman 1981b,
Wooldridge 2005) due to their use of lagged responses as predictors. That



18 CHAPTER 1. LITERATURE REVIEW

is, a joint model for the cluster membership and the response that occurred
previous to the initial one also has to be specified. Recently, Skrondal &
Rabe-Hesketh (2014) provide advice on the main approaches to tackle this
issue.

Pamminger et al. (2010) and Frühwirth-Schnatter et al. (2012) present
a mixture-of-experts Markov chain clustering, a model based clustering
approach for categorical time series that uses a finite mixture of transi-
tional terms and include covariates in the group membership probabili-
ties. Known as ”mixture-of-experts” in the machine learning literature,
this model allows the covariate effects to be cluster specific and to deal
with the initial conditions problem by adding the initial response into the
set of regressors. This conditioning of the cluster membership on the ini-
tial response is an approach known as simple solution to the initial con-
ditions problem in Econometrics (Wooldridge 2005). Model estimation is
performed using MCMC and model selection with several Frequentist and
Bayesian information criteria that take into account the entropy of the clas-
sification estimates. The models are illustrated using wage and income
mobility in Austria. In both case studies, they found evidence for four la-
tent groups with markedly different transitions over time. On the other
hand, Frydman (2005), Cheon et al. (2014) developed restricted versions
of the Markov transition models. Cheon et al. (2014) presents a disease
progression model where the number of mixture components is equal to
the disease states and thus is fixed in advance. Frydman (2005) consid-
ers another constrained model where the transition matrices for the latent
groups are functions of the first group.

Similarly to Pamminger et al. (2010) and Frühwirth-Schnatter et al.
(2012), the model proposed in Chapter 6 is a latent transition model that
induces transition matrices that are completely unconstrained for all clus-
ters. In contrast to them, the model we propose includes cluster-occasion
interactions and thus the resulting transition matrices are time-varying.
Furthermore, we construct the MCMC chain to sample from the target
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distribution in a different manner, apply a different relabelling algorithm
(Stephens 2000), and use the newly developed Widely Applicable Infor-
mation Criterion (WAIC) (Watanabe 2009, 2010) for model comparison.

1.6 Thesis Roadmap

In the chapters to follow, this dissertation develops clustering models based
on finite mixtures to attempt to fill some of these gaps. These probabil-
ity models are based on likelihoods and thus provide a fuzzy clustering
approach in which observations could come from any latent cluster with
some probability. In particular, we have developed several finite mixture
models for two-way data in longitudinal settings. To ease comparability,
we start off by formulating models where the occasions are assumed to be
independent, using mixtures based on the Proportional Odds and Trend
Odds models in Chapters 3 and 4, respectively and fitting them using the
EM algorithm. We then proceed to model the correlation explicitly with
mixtures that include latent random effects in Chapter 5, and latent tran-
sitional terms in Chapter 6. These latter models are fitted using a Bayesian
approach to take advantage of the flexibility of MCMC methods to esti-
mate models with complex correlation structures. Furthermore, in Chap-
ter 7 we use a Dirichlet Process prior to estimate the number of mixture
components within a Bayesian Non-Parametric approach.

Throughout the dissertation, we validate the models using simulated
data and also real data from socio-economic surveys and metagenomics.
In particular, we used self-reported health status in Australia (poor to ex-
cellent), life satisfaction in New Zealand (completely agree to completely
disagree) and site agreement with a reference genome (equal, segregating
and variant) of bacteria from baby stool samples. More details of the these
datasets are given next in Chapter 2.
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Chapter 2

Data

2.1 Life Satisfaction (NZAVS)

The New Zealand Attitudes and Values survey (NZAVS) is a longitudinal
survey hosted by the School of Psychology of the University of Auckland.
It aims to study social attitudes, personality and health outcomes of New
Zealanders. It was started in 2009 led by Associate Prof. Chris Sibley and
now includes many researchers from a diverse range of research areas.
Results and publication of all NZAVS data are independent of any specific
funding agency or government body.

About to start its 7th year, the NZAVS is a postal survey planned to
be a 20-year long study extending to 2029. The sample frame from this
survey is drawn from the New Zealand Electoral Roll and started with
6,518 people in 2009. Since then it has had a average retention rate of
around 80%. Including booster samples from 2011, its sample frame in-
cludes about 22,000 unique people. More technical information about the
NZAVS could be found at www.psych.auckland.ac.nz/uoa/NZAVS

In this thesis, we use waves 1 to 5, 2009-2013, of self-reported ”Life
Satisfaction” (LS). Specifically, participants were asked the following:

21
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The statements below reflect different opinions and points of view. Please indicate
how strongly you disagree or agree with each statement. Remember, the best
answer is your own opinion.

Strongly Strongly
Disagree Agree

I am satisfied with my life 1 2 3 4 5 6 7

LS is therefore an ordinal variable with seven levels, ranging from 1 (Strongly
disagree) to 7 (Strongly Agree). Given that we use all individuals with
complete responses between 2009 and 2013, this dataset has 2564 rows (n),
5 columns (p) and 7 ordinal levels (q).

Over this period, most respondents exhibited very high levels of LS.
As it can be seen in Figure 2.1, the majority of answers were very close
to the highest end of the scale (5 to 7). In addition to that, there seems
to be little variation of LS over time. Category 6 for instance was consis-
tently just above 40% within this period. Similarly, categories 5 and 7 were
around 20%. The remainder of categories all exhibited very low percent-
ages, lower than 10% in the case of category 4 and lower than 5% in the
case of categories 1,2 and 3.

More in detail, Table 2.1 shows the distribution of LS in 2009 and 2013
as well as the transitions between ordinal categories in this period. This
table shows for instance that 54% of people that responded 7 (”Strongly
Agree”) in 2009 also have the same response in 2013. In general, people
with positive perception of their LS (”Agree” and ”Strongly Agree”) have
diagonals that are higher than 50% which means that they tend to similar
perceptions at the beginning and end of the study period.
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Figure 2.1: Distribution of Life Satisfaction (LS) over 2009-2013 in the
NZAVS
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2.2 Health Satisfaction (HILDA)

The Household, Income and Labour Dynamics in Australia (HILDA) sur-
vey is a household panel study which began in 2001 and collects informa-
tion about economic and subjective well-being, labour market dynamics
and family dynamics in Australia. The HILDA Project was initiated and
is funded by the Australian Government Department of Social Services
(DSS) and is managed by the Melbourne Institute of Applied Economic
and Social Research (Melbourne Institute). Wave 1 in the panel had 7,682
households and 19,914 individuals and was topped up with an additional
2,153 households and 5,477 individuals in wave 11. More information
about this survey can be found at: www.melbourneinstitute.com/hilda/

We use self-reported health status (SRHS) in 2001-2011 from this dataset.
Using a five-level scale (Poor, Fair, Good, Very Good and Excellent) each
year respondents answer the following question: ”In general, would you
say your health is:”. We use individuals with complete records over 2001
to 2011, or 11 occasions. Therefore, for the HILDA dataset we have n =

4660 rows , p = 11 columns and q = 5 ordinal levels.

Figure 2.2 shows the distribution of SRHS in 2001 and 2011. In 2001,
most individuals reported ”Very Good” and ”Good” health. About an
eighth reported their health as ”Excellent” and about a tenth as ”Fair”.
A very low number of individuals said their health was ”Poor”. In con-
trast to that, in 2011 the same individuals reported lower health levels.
”Excellent” and ”Very Good” answers decreased and ”Poor” and ”Fair”
increased. Overall, SRHS’s distribution slightly shifted to the left and is
thus more symmetric in 2011 than in 2001.

Furthermore, for each individual SRHS is highly correlated across time.
Table 2.2 presents the 2001-2011 transitions between ordinal categories for
all individuals. Diagonal proportions are very high, about 40%, and the
same is true for the cells close to the diagonal. In words, even after 11
years individuals are very likely to report a very similar health status. The
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only exception to this, is people that responded ”Excellent” in 2001. They
have a slighter less positive perception of their health as 47% moved to
”Very Good” over this period.

Table 2.2: SRHS transition matrix 2001-2011

2011
Poor Fair Good Very Good Excellent Total

2001

Poor 0.42 0.40 0.14 0.04 0.00 1.00
Fair 0.13 0.44 0.34 0.07 0.01 1.00

Good 0.02 0.21 0.54 0.20 0.02 1.00
Very Good 0.01 0.09 0.38 0.46 0.07 1.00
Excellent 0.01 0.04 0.21 0.47 0.27 1.00
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2001

2011

Figure 2.2: Distribution of Self-Reported Health Status (SRHS) in 2001 and
2011 in HILDA
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2.3 Infant gut bacteria (Metagenomics)

Metagenomics uses samples found in the physical environment to study
genetic material. This contrasts with many other areas of Genomics where
cultured samples are used. This dataset is a timeseries of infant gut bac-
terial composition that allows us to observe the developing of the infant
gut. The main inferential goal when using this kind of data is to shed light
on the dynamics of the (latent) strains of bacteria (b.faecis) that compete to
inhabit the human gut after birth. Figure 2.3 shows the sampling timeline.

Figure 2.3: Infat gut sampling timeline. Source: Chan et al. (2015)

More in detail, this dataset consists of reference and variant allele counts
for 62,996 single-nucleotide variant (SNV) sites, specific positions in the
genome of the bacteria, followed over 45 days. These counts are then
used to produce and ordinal variable, infant gut bacteria variants, with
three levels:”fixed to reference”, ”segregating site”, and ”fixed to a non-
reference”. At each time point, these levels are defined as follows

• ”fixed to reference”: includes SNV sites where all reads are the same
as the reference;

• ”segregating site” more than 5 reads are equal to reference and more
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than 5 reads are equal to a different one;

• ”fixed to non-reference” all reads for the cell are the same allele which
is different to the reference one.

Figure 2.4 shows a heatmap of the data using yellow, red and blue for
these levels. Fitting a Poisson mixture for the reads with Automatic Dif-
ferentiation Variational Inference, Chan et al. (2015) found evidence for at
least three strains, that is at least three different patterns of reads overtime.

Given the large size of this dataset and the amount of missing obser-
vations, sites with no reads at all, we use all observations with complete
data over the first 25 occasions. Thus, the infant gut dataset has n = 1992

rows, p = 25 columns and q = 3 ordinal levels and is publicly available at
my personal repository: bitbucket.org/cholokiwi/nzsa2016/src.
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Figure 2.4: Heatmap for infant gut bacteria variants over 45 days. Source:
Chan et al. (2015)
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Part I

Frequentist Estimation
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Chapter 3

Proportional Odds Model

3.1 The Model

In this chapter, we extend the Proportional Odds Model (POM) by Mc-
Cullagh (1980) to the case of latent groups. That is, we introduce unob-
served covariates into the linear predictor of the cumulative probability of
observing the ordinal outcomes. We already introduced this model in the
previous chapter (Section 1.2). As a starting point, the models in this chap-
ter assume that the observations are independent over time. By doing so,
we thus use the same framework as Matechou et al. (2016).

The setup that follows will be used throughout the present as well as
in Chapters 3, 4, 5 and 6. Let data Y be a (n, p) matrix where each cell yij is
equal to any of the q ordinal categories, where: i = 1, ..., n ; j = 1, ..., p and
k = 1, ..., q. This is, each response yij is the realization of a multinomial
distribution with probabilities θij1, . . . θijq, where θijk ≥ 0 and

∑q
k=1 θijk =

1. We also define an indicator variable I(yij = k) equal to 1 if the condition
yij = k is satisfied and 0 otherwise. v represents the number of model
parameters.

35
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Saturated model

We begin by formulating a model where every single row (i) and column
(j) and its interactions have an effect in the linear predictor of the POM,
the saturated model

Logit[P (yij ≤ k)] = µk − αi − βj − γij (3.1)

where i = 1 . . . n, j = 1 . . . p, k = 1, . . . , q and the following identifiability
constraints:

α1 = 0

β1 = 0

γ1j = 0,∀j; γi1 = 0,∀i

µk−1 < µk, k = 1, . . . , (q − 1) and µ0 = −∞, µq = ∞

The parameter µk is the kth cut point, αi is the effect of row i, βj is the effect
of column j and γij is an interaction effect between row i and column
j. The model can also be expressed in terms of the probabilities of each
ordinal outcome θijk

P (yij = k) = θijk =
1

1 + e−(µk−αi−βj−γij)
− 1

1 + e−(µk−1−αi−βj−γij)

This model is not at all parsimonious as it has v = (q − 1) + (n − 1) +

(p− 1) + (n− 1)(p− 1) parameters.

Row and column effects model

A more parsimonious alternative is the model with only main row (i) and
column (j) effects

Logit[P (yij ≤ k)] = µk − αi − βj (3.2)

or
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P (yij = k) = θijk =
1

1 + e−(µk−αi−βj)
− 1

1 + e−(µk−1−αi−βj)

This model has the same constraints on µ, α, β as above and it has v =

(q−1)+(n−1)+(p−1) parameters. v is still potentially large and increases
linearly with the sample size. More parsimonious alternatives are thus
needed.

Row-clustering only

Suppose now that each row belongs to one of the r = 1, . . . , R row groups
with probabilities π1, . . . , πR. That is, we assume that the rows come from
a finite mixture with R components where both R and the group member-
ship ri are unknown. Note that R < n and πr ≥ 0,

∑R
r=1 πr = 1, ∀i.

Now, let θrjk be the probability that observation yij equals ordinal cat-
egory k given that row i belongs to row-cluster r: P (yij = k|i ∈ r) = θrjk.
In this simple case, row-clustering only with no column effects, the model
is:

Logit[P (yij ≤ k|i ∈ r)] = µk − αr (3.3)

which implies

θrjk =
1

1 + e−(µk−αr)
− 1

1 + e−(µk−1−αr)

Here α1 = 0, and µk−1 < µk, k = 1 . . . (q − 1), µ0 = −∞ and µq = ∞. µk is
the kth cut-off point and αr is the effect of row-cluster r.

Assuming independence over the rows and, conditional on the rows,
independence over the columns, the likelihood becomes

L(ϕ, π|Y ) =
n∏

i=1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I(yij=k)
rjk (3.4)

where ϕ = (µ, α) is the set of parameters in the linear predictor. The ex-
pression above is also referred as the incomplete data likelihood given that
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the cluster memberships of the rows are unknown. The number of model
parameters is equal to: v = (q−1)+2(R−1). Note that the linear predictor
in this simple case does not depend on the columns (j) and thus we could
have also written θrjk as θrk.

Row-clustering with column effects

To introduce column effects we augment the linear predictor to

Logit[P (yij ≤ k|i ∈ r)] = µk − αr − βj (3.5)

which implies

P (yij = k|i ∈ r) = θrjk =
1

1 + e−(µk−αr−βj)
− 1

1 + e−(µk−1−αr−βj)
(3.6)

where α1 = β1 = 0, and µk−1 < µk, k = 1 . . . (q − 1). µk is the kth cut-off
point, αr is the effect of row-cluster r and βj the effect of column j. In this
case, the likelihood is

L(ϕ, π|Y ) =
n∏

i=1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I(yij=k)
rjk (3.7)

where: ϕ=(µ, α, β) and the number of parameters in the model is v = (q −
1) + 2(R− 1) + (p− 1).

Row-clustering with column effects and interactions

To introduce column effects and interactions in the row-clustered model,
we further augment the linear predictor to

Logit[P (yij ≤ k|i ∈ r)] = µk − αr − βj − γrj (3.8)

which is equivalent to

P (yij = k|i ∈ r) = θrjk =
1

1 + e−(µk−αr−βj−γrj)
− 1

1 + e−(µk−1−αr−βj−γrj)
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Where α1 = β1 = 0; γ1j = 0, ∀j; γr1 = 0,∀r; and µk > µk−1, k = 1 . . . (q− 1).
µk is the kth cut-off point, αr is the effect of row-cluster r, βj the effect of
column j and γrj the row-cluster and column interaction. The likelihood
for this model is

L(ϕ, π|Y ) =
n∏

i=1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I(yij=k)
rjk (3.9)

where: ϕ = (µ, α, β, γ) and the number of model parameters v = (q − 1) +

2(R− 1) + (p− 1) + (R− 1)(p− 1).

Column-clustering only

Column-clustering is also one-way clustering and is equivalent to row-
clustering with the transposed data. That is, we could obtain column
groups by exchanging row and columns and applying the row-cluster
model from the previous section. Setting C as the number of mixture com-
ponents, κc as the mixture proportion for group c, and P (yij = k|j ∈ c) =

θick, the model becomes

Logit[P (yij ≤ k|j ∈ c)] = µk − βc (3.10)

or alternatively

P (yij = k|j ∈ c) = θick =
1

1 + e−(µk−βc)
− 1

1 + e−(µk−1−βc)

where β1 = 0, and µk−1 < µk, k = 1 . . . (q − 1). µk is the kth cut-off
point and βc is the effect of column-cluster c. Note also that C < p and
κc ≥ 0,

∑C
c=1 κc = 1. Assuming independence over the columns and in-

dependence over the rows conditional on the columns, the model’s likeli-
hood is

L(ϕ, κ|Y ) =

p∏
j=1

C∑
c=1

κc

n∏
i=1

q∏
k=1

θ
I(yij=k)
ick (3.11)

where ϕ = (µ, β). The incomplete information likelihood for this only
column-cluster case has v = (q − 1) + 2(C − 1) parameters.
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Column-clustering with row-effects

We introduce row-effects to the column-clustering by augmenting the model
in (3.10) to

Logit[P (yij ≤ k|j ∈ c)] = µk − βc − αi (3.12)

or alternatively

P (yij = k|j ∈ c) = θick =
1

1 + e−(µk−βc−αi)
− 1

1 + e−(µk−1−βc−αi)

where β1 = α1 = 0, and µk−1 < µk, k = 1 . . . (q − 1). µk is the kth cut-off
point, βc is the effect of column-cluster c and αi the effect of row i. Note
also that C < p and

∑C
c=1 κc = 1. Its likelihood is then

L(ϕ, κ|Y ) =

p∏
j=1

C∑
c=1

κc

n∏
i=1

q∏
k=1

θ
I(yij=k)
ick (3.13)

where ϕ = (µ, β, α) and v = (q − 1) + 2(C − 1) + (n− 1) parameters.

Column-clustering with row-effects and interactions

In this case, the model is described by

Logit[P (yij ≤ k|j ∈ c)] = µk − βc − αi − γic (3.14)

or alternatively

P (yij = k|j ∈ c) = θick =
1

1 + e−(µk−βc−αi−γic)
− 1

1 + e−(µk−1−βc−αi−γic)

here β1 = α1 = 0; γi1 = 0,∀i; γ1c = 0,∀c; and µk−1 < µk, k = 1 . . . (q − 1).
µk is the kth cut-off point, βc is the effect of column-cluster c, αi the effect
of row i and γic the column-cluster and row interaction. The likelihood for
this model is

L(ϕ, κ|Y ) =

p∏
j=1

C∑
c=1

κc

n∏
i=1

q∏
k=1

θ
I(yij=k)
ick (3.15)
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with ϕ = (µ, β, α, γ) and v = (q − 1) + 2(C − 1) + (n− 1) + (C − 1)(n− 1)

parameters.

Bi-clustering

Bi-clustering is also known as two-way, two-mode and latent block clus-
tering (Govaert & Nadif 2010, Pledger & Arnold 2014, Matechou et al.
2016) and it consists of simultaneous clustering of the rows and columns.
Here, it is assumed that rows come from a finite mixture with R row
groups while the columns come from a finite mixture withC column groups,
simultaneously. The row and column-cluster proportions are π1, . . . , πR
and κ1, . . . , κC , respectively. R,C, πr and κc are unknown. Note thatR < n,
C < p,

∑R
r=1 πr = 1 and

∑C
c=1 κc = 1.

Let θrck = P (yij = k|i ∈ r∩j ∈ c) be probability that cell (i, j) is equal to
ordinal outcome k given that it belongs to row group r and column group
c. Keeping as before αr and βc, for the row and column-cluster effects, the
linear predictor becomes:

Logit[P (yij ≤ k|i ∈ r ∩ j ∈ c)] = µk − αr − βc (3.16)

or alternatively

P (yij = k|i ∈ r ∩ j ∈ c) = θrck =
1

1 + e−(µk−αr−βc)
− 1

1 + e−(µk−1−αr−βc)

Where α1 = β1 = 0 and µk−1 > µk, k = 1 . . . (q − 1), µ0 = −∞ and µq = ∞.
In this case, the likelihood sums over all possible partitions of rows into

R clusters and over all possible partitions of columns into C clusters. As-
suming independence over the rows and independence over the columns
conditional on the rows, the incomplete data likelihood could be simpli-
fied to

L(ϕ, π, κ|Y ) =
C∑

c1=1

· · ·
C∑

cp=1

κc1 . . . κcp

n∏
i=1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I(yij=k)
rcjk

(3.17)
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where ϕ = (µ, α, β). This expression is computationally expensive to eval-
uate since it requires consideration of all possible allocations of the p columns
to the C groups. Alternatively, assuming independence over the columns
and independence over the rows conditional on the columns, it simplifies
to

L(ϕ, π, κ|Y ) =
R∑

r1=1

· · ·
R∑

rn=1

πr1 . . . πrn

p∏
j=1

C∑
c=1

κc

n∏
i=1

q∏
k=1

θ
I(yij=k)
rick

(3.18)

Likewise (3.17), ( 3.18) is very expensive to compute due to requiring
consideration of all possible allocations of the n rows to the R groups. In
either specification, the incomplete data likelihood for the bi-clustering
has v = (q − 1) + 3(R + C − 2) parameters.

Bi-clustering with interactions

In this case, the model is

Logit[P (yij ≤ k|i ∈ r ∩ j ∈ c)] = µk − αr − βc − γrc (3.19)

or alternatively

P (yij = k|i ∈ r ∩ j ∈ c) = θrck =
1

1 + e−(µk−αr−βc−γrc)
− 1

1 + e−(µk−1−αr−βc−γrc)

Where α1 = β1 = 0; γ1c = 0,∀c; γr1 = 0,∀r; and µk > µk−1, k =

1 . . . (q − 1), µ0 = −∞ and µq = ∞. µk is the kth cut-off point, αr is the r
row-cluster effect, βc is the c column-cluster effect and γrc the row-cluster
and column-cluster interaction.

Depending on the independence assumptions, over the rows condi-
tional on the columns or vice versa, the likelihood for this model is the
same as in (3.17) or (3.18) with the augmented linear predictor ϕ = (µ, α, β, γ).
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3.2 Frequentist Estimation

In this section we use a Frequentist framework to maximise the likelihoods
described above and estimate the model parameters. In particular we use
the Expectation-Maximization (EM) algorithm (Dempster et al. 1977). In
essence, the EM algorithm turns the estimation into a missing data prob-
lem and then estimates the parameters using an iterative two-fold ap-
proach. In the case of finite mixtures, it first introduces new variables for
the unknown group memberships. It then initialises these missing data
given some initial values for the parameters (E-step). Secondly, the pa-
rameters are estimated by maximizing the likelihood given the estimated
missing data (M-step). This likelihood is known as ”complete data” likeli-
hood since is assumes that the latent group memberships are known. The
new parameters in turn are fed to the E-step again and the process repeats
until the parameters converge, that is when the change in the parameters
and/or the likelihood is tiny.

Row-clustering

Let zir be the latent row group memberships for each row. zir is an indica-
tor function equal to 1 if row i belongs to cluster r and 0 otherwise. It is not
observed and thus is regarded as missing data. Note that

∑R
r=1 zir = 1,∀i,

and we define a membership matrix Z(n,R) to gather together all the zir’s.
As before ϕ denotes the linear predictor parameters so that the parameters
of the model are (ϕ, π). Given a value for the number of mixture compo-
nents R, the EM algorithm proceeds as follows.

E-step: Estimate Z. Given Y and initial values for ϕ and π, estimate the
expected value of zir as

E[zir|Y, ϕ, π] =ẑir =
πr
∏p

j=1

∏q
k=1 θ

I(yij=k)
rjk∑R

a=1 πa
∏p

j=1

∏q
k=1 θ

I(yij=k)
ajk

(3.20)
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In words, ẑir is the posterior probability that observation yij belongs to
the (row) mixture component r.

∑R
r=1 ẑir = 1,∀i.

M-step: Numerically maximise the complete data log-likelihood. Given
ẑir from the E-step maximise ℓc to obtain new values for ϕ and π

ℓc(ϕ, π|Y, Z) =
n∑

i=1

p∑
j=1

R∑
r=1

q∑
k=1

ẑirI(yij = k) log(θrjk) +
n∑

i=1

R∑
r=1

ẑir log(π̂r)

(3.21)
where π̂r = E[πr|Z] =

∑n
i=1 ẑir/n. That is, the mixing proportions π̂r are

first obtained using Z.
A new cycle starts when the parameters from the M-step are used in

the E-step and the Z matrix is re-estimated. This process repeats until
estimates for ϕ have converged.

The parameters in the linear predictor depend on type of clustering we
are performing. For the row-clustering case we have ϕ = (µ, α), for row-
clustering with column effects ϕ = (µ, α, β) and for row-clustering with
column effects and interactions ϕ = (µ, α, β, γ).

Importantly, as with any other maximization algorithm, there is a risk
of convergence to local maxima due to multimodality of the likelihood. It
is thus important to start the EM algorithm with several widely spread ini-
tial values, McLachlan & Peel (2000), and check that all of them converge
to the same place. (log-likelihood value)

Column-clustering

Let xjc be the latent column-cluster memberships for each column j and
X the membership matrix where each cell is equal to xjc,

∑C
c=1 xjc = 1.

Given a value for the number of mixture components C, the EM algorithm
proceeds as follows.

E-step: Estimate X . Given Y and initial values for ϕ, we estimate the
expected values of xjc as
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E[xjc|Y, ϕ, κ] = x̂jc =
κc
∏n

i=1

∏q
k=1 θ

I(yij=k)
ick∑C

a=1 κa
∏n

i=1

∏q
k=1 θ

I(yij=k)
iak

(3.22)

That is, x̂jc is the posterior probability that observation yij belongs to
the (column) mixture component c.

M-step: Numerically maximise the complete data log-likelihood. Given
x̂ir from the E-step maximise ℓc to obtain new values for ϕ and κ

ℓc(ϕ, κ|Y,X) =
n∑

i=1

p∑
j=1

C∑
c=1

q∑
k=1

x̂jcI(yij = k) log(θick) +

p∑
j=1

C∑
c=1

x̂jc log(κ̂c)

(3.23)
where κ̂c = E[κc|X] =

∑p
j=1 x̂jc/p. That is, the mixing proportions κ̂c are

first obtained using X .
A new cycle starts when the parameters from the M-step are use in

the E-step. This process repeats until convergence for ϕ. Again, the pa-
rameters in the linear predictor depend on type of clustering used: ϕ =

(µ, α), ϕ = (µ, α, β), and ϕ = (µ, α, β, γ) for the column-clustering, column-
clustering with row effects, and column-clustering with row effects and
interactions, respectively.

Bi-clustering

Let zir and xjc be the latent row and column cluster memberships for each
cell (i, j). As before Z and X are membership matrices formed by all the
zir, xjc values. Note that

∑R
r=1 xir =

∑C
c=1 xjc = 1. Let ϕ be the set of model

parameters for the biclustering case, we also incorporate the variational
approximation employed by Govaert & Nadif (2005)

E[zirxjc|Y, ϕ] ≃ E[zir|Y, ϕ]E[xjc|Y, ϕ] = ẑirx̂jc

That is, conditonal on the ordinal response and the parameters the ef-
fect of the row and column clusters are independent. Given this approxi-
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mation, values for the number of mixture components (R,C), and assum-
ing independence over the rows and independence over the columns con-
ditional on the rows, the EM algorithm proceeds as follows.

E-step: Estimate Z andX . Given Y and initial values for ϕ estimate the
expected values of zir and xjc as

E[zir|Y, ϕ, π] = ẑir =
πr
∏p

j=1

{∑C
c=1 κc

∏q
k=1 θ

I(yij=k)
rck

}
∑R

a=1 πa
∏p

j=1

{∑C
b=1 κb

∏q
k=1 θ

I(yij=k)
abk

}
E[xjc|Y, ϕ, κ] = x̂jc =

κc
∏n

i=1

{∑R
r=1 πr

∏q
k=1 θ

I(yij=k)
rck

}
∑C

b=1 κb
∏n

i=1

{∑R
a=1 πa

∏q
k=1 θ

I(yij=k)
abk

}
(3.24)

M-step: Numerically maximise the complete data log-likelihood. Given
ẑir and x̂jc from the E-step maximise ℓc to obtain new values for ϕ, π, κ

ℓc(ϕ, π, κ|Y, Z,X) =
n∑

i=1

p∑
j=1

R∑
r=1

C∑
c=1

q∑
k=1

ẑirx̂jcI(yij = k) log(θrck)

+
n∑

i=1

R∑
r=1

ẑir log(π̂r)

+

p∑
j=1

C∑
c=1

x̂jc log(κ̂c)

(3.25)

where: π̂r = E[πr|Z] =
∑n

i=1 ẑir/n and κ̂c = E[κc|X] =
∑p

j=1 x̂jc/p.

A new cycle starts when the parameters from the M-step are use in
the E-step. This process repeats until convergence. Note that θrck is esti-
mated using the corresponding linear predictor, bi-clustering in (3.16) and
bi-clustering with interactions in (3.19).
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3.3 Simulations

In this chapter, we use synthetic datasets to illustrate the performance of
the models presented so far. In particular, we simulate several scenarios
and evaluate the performance of the POM model with row-clustering and
column effects ( 3.5). This model is more complex than the POM model
with row-clustering but more parsimonious than the POM model with
row-clustering with column effects and interactions.

We generate a total of 18 scenarios with varying sample size (3), num-
ber of columns (2) and mixture proportions (3). We use the following
setup:

• R = 3 number of mixture components

• µ = (−2.08,−1.39, 1.39, 2.08) cut points

• q = 5 ordinal levels,

• α = (0,−2, 3) cluster effects

• β = (0, 0.15, 0.30, . . . , 0.15(p− 1)) column effects.

Given this setup, the model has v = 12 and 17 parameters, for p = 5 and
10, respectively. Table 3.1 details these scenarios

Table 3.1: Labels for the scenarios (1-18) in the simulation study

p = 5 p = 10

n n

60 200 1000 60 200 1000
π = (0.50, 0.30, 0.20) 1 2 3 4 5 6
π = (0.33, 0.33, 0.34) 7 8 9 10 11 12
π = (0.90, 0.08, 0.02) 13 14 15 16 17 18

For each scenario, we generate 500 simulated datasets with 20 random
initial values each to avoid the risk of convergence to local maxima. We
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therefore estimate 3 × 2 × 3 × 500 × 20 = 180, 000 models overall. We
estimate the model parameters using the EM algorithm as detailed in Sec-
tion 3.2. Convergence is set to a maximum change of 10−8 in the absolute
value of all the parameter estimates between EM iterations. The models
are implemented in R (R 3.2.2) and C++. In particular, estimation in the M-
step is carried out using the optim() function in R and the corresponding
log-likelihoods in C++ compiled functions. Tables 3.2 to 3.8 and figures
3.1 to 3.4 present the results.

We start with scenarios 1-6 in Tables 3.2 and 3.3 where the mixture pro-
portions π = (0.20, 0.30, 0.50) are unbalanced but the smallest component
is not too small. Overall, we could see that the means of estimated pa-
rameters are close to their true values for all the model parameters. That
is, the estimates for the cut-off points µ, cluster effects α, column effects
β, and mixture proportions π all seem to converge to their true values.
The standard deviations of these estimates are large for the n = 60 sample
size. This is not surprising since we are estimating v = 12 independent
parameters with only 60 rows and 5 columns. Increasing n has the effect
of both providing estimates closer to their true values and decreasing the
standard errors. For n = 1000 the mean values are already very close the
true ones with small standard errors. Scenarios 4-6 present the estimates
with twice the number of columns (p = 10 instead of p = 5). The model
in this case has v = 17 independent parameters. Table 3.3 shows that the
mean values of the estimates are close to the true parameter values with
decreasing standard deviations in n. Furthermore, these estimates exhibit
lower variability than the previous ones.

Looking closely into the estimates of cluster effects αr, Figure 3.1 presents
all the estimates for α over the 500 replicated datasets. It is evident that
bigger n provides closer estimates to the true value for α. However, there
seem to be some estimates that are very different from the true values. For
example for n = 60 and p = 5 there are estimates near the axis and thus
are clearly far off from the true values (−2, 3) in the middle of the graph.
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Importantly, these outliers disappear when n or p increase.

Table 3.2: Scenarios 1-3. Estimated parameters for the POM with row-
clustering and column effects. Mean and standard deviation (sd) over 500
simulated datasets. π = (0.50, 0.30, 0.20) and p = 5.

n = 60 n = 200 n = 1000

Param true mean sd mean sd mean sd
µ1 -2.08 -2.21 0.58 -2.10 0.24 -2.08 0.10
µ2 -1.39 -1.49 0.58 -1.40 0.23 -1.39 0.10
µ3 1.39 1.34 0.58 1.40 0.21 1.39 0.09
µ4 2.08 2.05 0.60 2.11 0.22 2.09 0.10
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 -2.00 -2.16 0.40 -2.05 0.19 -2.00 0.09
α3 3.00 3.04 0.65 3.05 0.24 3.01 0.11
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.15 0.18 0.38 0.15 0.20 0.15 0.09
β3 0.30 0.30 0.39 0.30 0.22 0.30 0.09
β4 0.45 0.48 0.37 0.46 0.20 0.45 0.09
β5 0.60 0.64 0.39 0.61 0.20 0.60 0.09
π1 0.50 0.48 0.12 0.50 0.06 0.50 0.03
π2 0.30 0.32 0.13 0.30 0.06 0.30 0.03
π3 0.20 0.20 0.06 0.20 0.03 0.20 0.01
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Table 3.3: Scenarios 4-6. Estimated parameters for the POM with row-
clustering and column effects. Mean and standard deviation (sd) over 500
simulated datasets. π = (0.50, 0.30, 0.20) and p = 10.

n = 60 n = 200 n = 1000

Param true mean sd mean sd mean sd
µ1 -2.08 -2.12 0.33 -2.09 0.18 -2.08 0.07
µ2 -1.39 -1.42 0.31 -1.39 0.17 -1.39 0.07
µ3 1.39 1.40 0.29 1.40 0.16 1.39 0.07
µ4 2.08 2.10 0.30 2.10 0.17 2.08 0.07
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 -2.00 -2.04 0.22 -2.01 0.11 -2.00 0.05
α3 3.00 3.05 0.31 3.03 0.16 3.00 0.07
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.15 0.17 0.35 0.16 0.21 0.15 0.09
β3 0.30 0.28 0.36 0.30 0.20 0.30 0.09
β4 0.45 0.46 0.37 0.45 0.20 0.45 0.09
β5 0.60 0.63 0.38 0.60 0.19 0.59 0.09
β6 0.75 0.76 0.38 0.76 0.21 0.74 0.09
β7 0.90 0.91 0.36 0.92 0.21 0.90 0.09
β8 1.05 1.06 0.37 1.06 0.20 1.05 0.09
β9 1.20 1.20 0.37 1.22 0.20 1.20 0.09
β10 1.35 1.37 0.36 1.35 0.21 1.35 0.09
π1 0.50 0.50 0.08 0.50 0.04 0.50 0.02
π2 0.30 0.31 0.07 0.30 0.04 0.30 0.02
π3 0.20 0.20 0.05 0.20 0.03 0.20 0.01
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Tables 3.4 and 3.5 present the results for scenarios 7-12, which have
balanced mixture proportions π = (0.33, 0.33, 0.34). In general, the means
of estimated parameters are also close to their true values for all the model
parameters. However, the main difference of these new scenarios is that
the variability of these estimates (sd) is very similar among all the mixture
components. This is somewhat expected as all the mixture components
are equally represented in the data. On the other hand, occasional outliers
seem to be also present in the estimates of the cluster effects α, Figure 3.2,
but they dissapear as n and p grow.

Table 3.4: Scenarios 7-9. Estimated parameters for the POM with row-
clustering and column effects. Mean and standard deviation (sd) over 500
simulated datasets. π = (0.33, 0.33, 0.34) and p = 5.

n = 60 n = 200 n = 1000

Param true mean sd mean sd mean sd
µ1 -2.08 -2.36 0.75 -2.11 0.30 -2.08 0.13
µ2 -1.39 -1.65 0.76 -1.41 0.30 -1.39 0.13
µ3 1.39 1.18 0.77 1.38 0.27 1.39 0.12
µ4 2.08 1.91 0.77 2.07 0.28 2.08 0.12
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 -2.00 -2.31 0.77 -2.05 0.22 -2.00 0.09
α3 3.00 3.01 0.74 3.02 0.24 3.00 0.10
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.15 0.21 0.36 0.15 0.21 0.15 0.09
β3 0.30 0.33 0.36 0.30 0.22 0.30 0.09
β4 0.45 0.48 0.37 0.45 0.21 0.45 0.08
β5 0.60 0.66 0.38 0.62 0.21 0.60 0.09
π1 0.33 0.32 0.11 0.33 0.05 0.33 0.02
π2 0.33 0.36 0.13 0.33 0.06 0.33 0.02
π3 0.34 0.32 0.08 0.34 0.04 0.34 0.02
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Figure 3.1: Scenarios 1-6. Estimates for (α2, α3) in 500 simulated datasets
for the POM with row-clustering and column effects. Diamond at the cen-
ter represents true values (−2, 3).
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Table 3.5: Scenarios 10-12. Estimated parameters for the POM with row-
clustering and column effects. Mean and standard deviation (sd) over 500
simulated datasets. π = (0.33, 0.33, 0.34) and p = 10.

n = 60 n = 200 n = 1000

Param true mean sd mean sd mean sd
µ1 -2.08 -2.14 0.36 -2.10 0.18 -2.09 0.08
µ2 -1.39 -1.43 0.36 -1.41 0.17 -1.40 0.08
µ3 1.39 1.39 0.33 1.39 0.16 1.38 0.07
µ4 2.08 2.10 0.33 2.08 0.17 2.08 0.08
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 -2.00 -2.06 0.25 -2.02 0.13 -2.01 0.06
α3 3.00 3.06 0.28 3.00 0.14 3.00 0.06
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.15 0.16 0.36 0.15 0.21 0.15 0.09
β3 0.30 0.30 0.37 0.30 0.20 0.30 0.09
β4 0.45 0.45 0.36 0.46 0.20 0.45 0.09
β5 0.60 0.63 0.37 0.60 0.20 0.60 0.09
β6 0.75 0.77 0.38 0.76 0.20 0.74 0.09
β7 0.90 0.92 0.39 0.90 0.22 0.89 0.10
β8 1.05 1.10 0.39 1.06 0.21 1.05 0.09
β9 1.20 1.24 0.39 1.21 0.21 1.20 0.10
β10 1.35 1.40 0.38 1.36 0.20 1.35 0.09
π1 0.33 0.33 0.07 0.33 0.04 0.33 0.02
π2 0.33 0.34 0.07 0.33 0.04 0.33 0.02
π3 0.34 0.34 0.06 0.34 0.03 0.34 0.02
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Figure 3.2: Scenarios 7-12. Estimates for (α2, α3) in 500 simulated datasets
for the POM with row-clustering and column effects. Diamond at the cen-
ter represents true values ((−2, 3)).
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Next, Tables 3.6 and 3.7 and Figure 3.3 show the results for scenarios
13-18. These scenarios share a very unbalanced mixture proportions π =

(0.90, 0.08, 0.02) where the smallest component is tiny, only 2% of the total.
Not surprisingly, the estimates for all parameters converge to their true
values but the variability of the estimated cluster effects α is a lot bigger
than in the previous scenarios. For instance, when n = 60 and p = 5

the standard deviations for α2 and α3 are 1.47 and 3.76 (Table 3.6) which
are extremely large in comparison to the other scenarios. Doubling the
number of columns, p = 10 in Table 3.7, reduces these sd’s to 0.54 and 2.99
but these are still pretty large. Only when n = 1000 the estimated mean
values for α are close to the true ones (Figure 3.3). Notably, the unbalanced
mixture proportions do not seem to affect the estimates for the column
effects in the same way, i.e. the mean estimates for β are close to their true
values than those for α even for n = 60.

Finally, we present 95% coverage rates for α and β for all scenarios in
Table 3.8 and Figure 3.4. We define the 95% coverage rate as the proportion
of times in the simulations that the true value is included in the 95% con-
fidence interval for the estimated parameter. On one hand, the coverage
rates for the column effect β remain mostly unaffected by either sample
size or mixture proportions. The coverage rates for the cluster effects α in
Scenarios 1-12, where the mixtures proportions are not highly unbalanced,
increase with sample size and are about 80-90% when p = 5. In contrast
to that, when the mixture proportions are highly unbalanced in Scenarios
13-18 the coverages rates drop drastically to around 50-70%. In particular,
the smallest mixture component has the lowest coverages rate. Increasing
the number of columns does not change this much, in general 95% cover-
age rates in Scenarios 1-12 are higher but lower than the ones in Scenarios
13-18.

In conclusion, in order to obtain a meaningful estimates in mixture
models with very unbalanced proportions it is crucial to use large sample
sizes. Correspondingly care should be taken when mixtures are estimated
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using small datasets.

Table 3.6: Scenarios 13-15. Estimated parameters for the POM with row-
clustering and column effects. Mean and standard deviation (sd) over 500
simulated datasets. π = (0.90, 0.08, 0.02) and p = 5.

n = 60 n = 200 n = 1000

Param true mean sd mean sd mean sd
µ1 -2.08 -2.11 0.48 -2.09 0.23 -2.08 0.08
µ2 -1.39 -1.38 0.47 -1.39 0.22 -1.39 0.07
µ3 1.39 1.46 0.46 1.41 0.22 1.39 0.07
µ4 2.08 2.16 0.47 2.11 0.23 2.09 0.08
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 -2.00 -1.98 1.47 -2.11 0.62 -2.02 0.18
α3 3.00 2.96 3.76 3.47 2.40 3.03 0.50
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.15 0.18 0.36 0.15 0.20 0.15 0.09
β3 0.30 0.32 0.37 0.30 0.21 0.30 0.09
β4 0.45 0.47 0.35 0.46 0.19 0.45 0.08
β5 0.60 0.63 0.36 0.61 0.19 0.60 0.09
π1 0.90 0.66 0.30 0.85 0.15 0.90 0.02
π2 0.08 0.18 0.22 0.10 0.10 0.08 0.02
π3 0.02 0.16 0.25 0.05 0.12 0.02 0.01

3.4 Model selection

Model selection criteria for finite mixtures is an active area of research in
Statistics with no theoretical foundation completely developed to date. In
this section, we thus rely on guidance from simulation studies (McLach-
lan & Peel 2000, Fonseca & Cardoso 2007, Cubaynes et al. 2012, Fernández
& Pledger 2015). We use three Frequentist measures: the Akaike Infor-
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Table 3.7: Scenarios 13-15. Estimated parameters for the POM with row-
clustering and column effects. Mean and standard deviation (sd) over 500
simulated datasets. π = (0.90, 0.08, 0.02) and p = 10.

n = 60 n = 200 n = 1000

Param true mean sd mean sd mean sd
µ1 -2.08 -2.15 0.53 -2.11 0.20 -2.08 0.07
µ2 -1.39 -1.44 0.52 -1.41 0.20 -1.39 0.07
µ3 1.39 1.39 0.54 1.39 0.20 1.39 0.06
µ4 2.08 2.09 0.54 2.08 0.20 2.08 0.07
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 -2.00 -1.93 0.54 -2.01 0.23 -2.01 0.09
α3 3.00 2.81 3.05 3.24 1.57 3.01 0.21
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.15 0.14 0.35 0.15 0.20 0.15 0.09
β3 0.30 0.29 0.36 0.30 0.19 0.30 0.09
β4 0.45 0.45 0.34 0.46 0.20 0.45 0.09
β5 0.60 0.62 0.35 0.60 0.19 0.60 0.09
β6 0.75 0.76 0.33 0.75 0.19 0.75 0.09
β7 0.90 0.91 0.34 0.90 0.19 0.90 0.09
β8 1.05 1.09 0.36 1.06 0.19 1.05 0.08
β9 1.20 1.23 0.36 1.21 0.19 1.21 0.08
β10 1.35 1.37 0.35 1.35 0.19 1.35 0.09
π1 0.90 0.75 0.30 0.89 0.06 0.90 0.01
π2 0.08 0.15 0.21 0.09 0.06 0.08 0.01
π3 0.02 0.10 0.23 0.02 0.01 0.02 0.00
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Figure 3.3: Scenarios 13-18. Estimates for (α2, α3) in 500 simulated datasets
for the POM with row-clustering and column effects. Diamond at the cen-
ter represents true values ((−2, 3)).
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Figure 3.4: 95% Coverage rates for α2 and α3 the POM with row-clustering
and column effects. All scenarios.
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Table 3.8: 95% Coverage rates for the POM with row-clustering and col-
umn effects. All scenarios.

Scenarios 1-3 Scenarios 7-9 Scenarios 13-15
π = (0.50, 0.30, 0.20) π = (0.33, 0.33, 0.34) π = (0.90, 0.08, 0.02)

n n n
Param 60 200 1000 60 200 1000 60 200 1000
α2 0.91 0.93 0.91 0.87 0.91 0.91 0.72 0.78 0.80
α3 0.91 0.93 0.93 0.88 0.9 0.89 0.52 0.79 0.75

p=5 β2 0.95 0.94 0.95 0.94 0.94 0.96 0.95 0.94 0.95
β3 0.93 0.93 0.94 0.95 0.93 0.94 0.95 0.94 0.94
β4 0.95 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.97
β5 0.93 0.94 0.96 0.95 0.94 0.95 0.96 0.96 0.95

Scenarios 4-6 Scenarios 10-12 Scenarios 16-18
π = (0.50, 0.30, 0.20) π = (0.33, 0.33, 0.34) π = (0.90, 0.08, 0.02)

n n n
Param 60 200 1000 60 200 1000 60 200 1000
α2 0.96 0.97 0.98 0.95 0.95 0.93 0.88 0.90 0.93
α3 0.94 0.95 0.96 0.94 0.97 0.94 0.69 0.89 0.92
β2 0.96 0.92 0.96 0.96 0.93 0.96 0.96 0.95 0.95
β3 0.96 0.93 0.96 0.95 0.97 0.97 0.97 0.96 0.96
β4 0.95 0.96 0.95 0.96 0.96 0.97 0.97 0.95 0.95

p=10 β5 0.94 0.96 0.95 0.95 0.96 0.94 0.96 0.97 0.94
β6 0.92 0.94 0.94 0.94 0.95 0.97 0.96 0.96 0.95
β7 0.95 0.94 0.96 0.95 0.93 0.93 0.97 0.94 0.96
β8 0.95 0.94 0.95 0.94 0.94 0.95 0.94 0.96 0.95
β9 0.95 0.95 0.94 0.94 0.96 0.95 0.96 0.96 0.95
β10 0.96 0.95 0.94 0.94 0.96 0.96 0.96 0.96 0.95



3.4. MODEL SELECTION 61

mation Criterion (AIC), Akaike (1973), the Bayesian Information Criterion
(BIC), Schwarz (1978), and the integrated classification criterion (ICL) by
Biernacki et al. (2000).

The lack of a unified coherent theoretical foundation in this area has
occurred because comparing finite mixture models with different number
of clusters violates classical regularity conditions (Cramér 1946) and there-
fore the use of criteria based on the likelihood is doubtful. In particular,
maximum likelihood estimates under the null hypothesis (reduced model)
are on the boundary of the parameter space, e.g. the reduced model has a
smaller number of mixture components and thus at last one of the mixture
proportions is zero. Secondly, the null hypothesis corresponds to a non-
identifiable subset of the parameter space (McLachlan & Peel 2000, section
6.4). This occurs because a mixture with g components could also be re-
expressed as a mixture of g + 1 components, for example by doubling up
one of its components and halving their mixture probabilities. As a result
of these two violations, the asymptotic distribution of the test statistic un-
der the null hypothesis is not the usual χ2 with degrees of freedom equal
to the difference in the number of parameters under both hypothesis. In
general, this asymptotic distribution under the non-identifiable case is un-
known. To date, there are conjectures and simulations for some cases, in
particular for continuous data, but not for mixtures of ordinal data.

The AIC and BIC are defined in terms of the maximised incomplete
data log-likelihood ℓ and a penalty for model complexity:

AIC =− 2ℓ(Ω̂, Y ) + 2v

BIC =− 2ℓ(Ω̂, Y ) + vlog(np)

where: Ω̂ are the model parameters estimated by ML, v the number of
model parameters, n= number of rows, and p = number of columns. Lower
values of the AIC and BIC are an indication of better fit. Both criteria
differ only in the second term with the BIC having a penalty that depends
on the sample size. This penalty is higher than the one in AIC whenever
log(np) > 2.
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Simulation studies have shown that AIC and BIC tend to overestimate
the number of mixture components for continuous data (McLachlan &
Peel 2000, Cubaynes et al. 2012). However, this might not be the case when
modelling other types of data. Recently, for example (Fonseca & Cardoso
2007, Fernández & Pledger 2015) used simulations of categorical and or-
dinal data and found that BIC correctly identifies the number of mixture
components in wide range of scenarios.

The ICL is classification-based information criteria that also takes into
account the degree of separation of the estimated mixture components,
that is the fuzzyness of the estimated clusters. The ICL is formed from
the maximised complete data likehood ℓc (for example 3.25 in the bi-
clustering case) and a term to take into account the fuzziness of the es-
timated clusters. This term is also known as entropy and acts as a penalty
for the degree of separation of the mixture components. Models with well
separated mixture components will have small entropy whereas poor sep-
aration in the mixture components will lead to large entropy. As a result,
the ICL takes into account both the model’s complexity (number of pa-
rameters) and how fuzzy the cluster allocation is. Here we use the large-
sample approximation for the ICL, the ICL-BIC (Biernacki et al. 2000) cal-
culated as

ICL−BIC = −2ℓc(Ω̂, Y ) + v log(np)

where: ℓc is the complete information log-likelihood.

As can be seen, the BIC and the ICL-BIC differ only in their first term. It
has been shown to correctly selected the number of clusters in simulations
when the mixing proportions are equal (McLachlan & Peel 2000, Biernacki
et al. 2000). It has a similar behaviour to BIC but it does not require the
evaluation of the incomplete information likelihood L. This evaluation is
computationally very expensive, especially for large datasets and when
dealing with bi-clustering. In this latter case, it requires the consideration
of either all possible combinations of the p columns to C groups or all
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possible combinations of the n rows to the R groups, refer to (3.17) and
( 3.18).

3.5 Application: 2009-2013 Life Satisfaction in New

Zealand

In this section we use self-reported ”Life Satisfaction” (LS) from the New
Zealand Attitudes and Values survey (NZAVS) to illustrate the models
presented so far. We use all individuals with complete responses between
2009 and 2013, and thus this dataset has 2564 rows (n), 5 columns (p) and
7 ordinal levels (q). A detail description of this dataset and the NZAVS
survey could be found in Chapter 2.

We fit a wide range of different models (51) to this data and use the
AIC, BIC and ICL-BIC to compare amongst models. Specifically, we esti-
mate the row, column and bi-cluster models, section 3.1, usingR = 2 . . . 10

and C = 2, 3. In order to check for potential time trends in LS we also in-
clude column effects (year) and interactions in the row-clustering case. For
completeness, we also include the null, row effects, column effects, and
full main effects (row and column effects) models. The results are shown
in Table 3.9.

The information criteria provide different answers (highlighted rows
in table 3.9). AIC chooses the full main effects model with 2573 parame-
ters, BIC a six-component row-clustered model with column effects with
20 parameters and ICL-BIC a four-component row-clustered model with
column effects with 16 parameters. This is not surprising since as seen in
the previous section AIC, BIC and ICL-BIC use different penalties for the
number of parameters, with AIC penalising complexity the least and ICL-
BIC the most. As a balance of parsimony and model complexity we decide
to use the model selected by the BIC, that is a model with six row-clusters
and a fixed year effect (BIC equal to 31255).
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Table 3.9: Model comparison: Life Satisfaction in NZ using the NZAVS

Model Linear Predictor R C Pars AIC BIC ICL-BIC
Null µk 1 1 6 38205 38307 -
Row effects µk − αi 2564 1 2569 27551 71769 -
Column effects µk − βj 1 5 10 38196 38366 -
Row and column µk − αi − βj 2564 5 2573 27493 71779 -
Row-clustering µk − αr 2 1 8 33751 33811 34377

3 1 10 32031 32106 33047
4 1 12 31326 31415 32735
5 1 14 31203 31308 32769
6 1 16 31148 31268 33249
7 1 18 31153 31287 33849
8 1 20 31156 31305 34451
9 1 22 31125 31290 34925

10 1 24 31131 31310 35486
Row-clustering+ µk − αr − βj 2 5 12 33727 33816 34380
column effects 3 5 14 31998 32102 33040

4 5 16 31285 31405 32717
5 5 18 31161 31296 32748
6 5 20 31105 31255 33243
7 5 22 31109 31274 33903
8 5 24 31081 31261 34567
9 5 26 31074 31268 34709

10 5 28 31087 31297 35441
Row-clustering+ µk − αr − βj − γrj 2 5 16 33725 33845 34402
column effects+ 3 5 22 31996 32160 33092
interactions 4 5 28 31286 31495 32794

5 5 34 31165 31419 32885
6 5 40 31107 31406 33409
7 5 46 31075 31419 33631
8 5 52 31032 31421 34133
9 5 58 31027 31460 34639

10 5 64 31006 31484 34722
Column-clustering µk − βc 1 2 8 38209 38269 38269

1 3 10 38213 38288 38288
Continued on next page...
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Table 3.9 – continued from previous page
Model Linear Predictor Rows Cols Pars AIC BIC ICL-BIC
Bi-clustering µk − αr − βc 2 2 10 33755 33830 34396

2 3 12 33759 33849 34415
3 2 12 32035 32125 33066
3 3 14 32039 32144 33085
4 2 14 31329 31434 32754
4 3 16 31333 31453 32773
5 2 16 31207 31327 32787
5 3 18 31211 31346 32806
6 2 18 31152 31287 33277
6 3 20 31156 31306 33295
7 2 20 31156 31306 33955
7 3 22 31160 31325 33973
8 2 22 31127 31291 34419
8 3 24 31131 31310 34438
9 2 24 31123 31302 34990
9 3 26 31127 31321 35009

10 2 26 31135 31329 36172
10 3 28 31139 31348 36191

With respect to the trends over time, it is important to notice there is
evidence of time variation in LS since the selected model includes year ef-
fects (βj). However, these year effects do not seem to vary by cluster as the
incorporation of year-cluster interactions do not improve model fit with
BIC increasing from 31255 to 31406 when introducing these interactions to
the model. In addition to that, there is no evidence that these year effects
can be grouped over time as the column and bi-clustered models do not
improve model fit.

As a convention, we name the clusters according to their levels of the
α̂r : α1 . . . α6 so that the respondents in cluster 1 tend to have the lowest
levels of LS and those in cluster 6 tend to have the highest. We then pro-
ceed to assign individuals to each estimated cluster, a procedure known as
classification in the machine learning literature (Hastie et al. 2009). Specif-
ically, our model-based clustering approach would be called unsupervised
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classification due to the use of latent/unobserved covariates in the model.
Due to the use of mixture models the allocation of individuals to clusters
is fuzzy, that is each individual has always a probability of coming from
each cluster (zir ≥ 0,

∑R
r=1 zir = 1,∀i). Allocation ri of individual i to

cluster r is based on a highest a posteriori probability criterion:

r̂i = argmax
r∈1,...,R

ẑir , i = 1 . . . n (3.26)

Where: ẑir is the posterior probability that individual i belongs to cluster
r. See the E-step of the EM algorithm in (3.20).

Visualisation of the estimated clusters using heatmaps

We next use heatmaps to visually assess the fuzziness of this classification
of individuals into each of the six groups of the model selected by BIC. It is
important to mention that heatmaps should only be used to visualise the
best fitting model(s). That is, after statistical estimation of several models
and not to compare among all candidate models as the human eye tends
to see patterns in any given image (Wilkinson & Friendly 2009).

Estimated allocations r̂i close to 1 would mean that our fuzzy proba-
bilistic clustering is ”crisp”. To do so, we calculate the co-clustering prob-
abilities for all individuals. A co-clustering probability is the probability
that any pair of individuals (i, i′) come from the same cluster r conditional
on the model parameters Ω and the observed responses Y . It is defined as
follows:

Cii′ =
R∑

r=1

P (zir = 1, zi′r = 1|Ω̂, Y )

Cii′ =
R∑

r=1

P (zir = 1|Ω̂, Y )P (zi′r = 1|Ω̂, Y )

Cii′ =
R∑

r=1

ẑirẑi′r, i, i
′ = 1, . . . n
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Or in matrix form

C =ZZ ′

where: Z is the estimated membership matrix (n×R) in (3.20).
Figure 3.5 shows the co-clustering probabilities for all the respondents

in the original and clustered data. As we can see, there is no apparent
pattern when we look at the co-clustering probabilities in the original data
(upper panel). This changes markedly when we allocate respondents to
estimated clusters as the co-clustering probabilities within each cluster are
very high, around 0.8 on average. The allocations of individuals to clusters
of the selected model (R = 6) is therefore crisp. Plotting these co-clustering
probabilities also allows us to appreciate the relative size of each cluster.
Clusters 1 and 6 are the smallest ones, as they capture respondents at both
extremes of the ordinal scale, whereas cluster 3 and 4 are the biggest ones.
We will see this more in detail when looking at the estimated cluster pro-
portions (π̂r in Figure 3.7).

What do these estimated six row-clusters selected by the BIC look like?
The estimated clusters are shown in Figures 3.6 and 3.7. Heatmaps in Fig-
ure 3.6 offer a first overall look. This figure shows both the original (up-
per panel) and clustered data (lower) with rows, columns and cell colours
representing individuals, occasions and ordinal levels (red=1 to white=7).
For instance, the cluster at the bottom of the lower panel is very small and
mostly red. It is thus is composed by individuals whose life satisfaction is
at lower end of the ordinal scale. In contrast to that, a bigger cluster near
the middle is mostly white and therefore has individuals whose responses
are at the upper end.

Next, Figure 3.7 displays the distribution of LS by cluster and year. It
also shows for each cluster the estimated proportions, π̂r, and cluster ef-
fects α̂r. In this Figure, we can clearly see that all the clusters have different
LS response patterns. For example, cluster 1 is about 1% of the all the sam-
ple and is composed by individuals that have extremely low levels of LS.
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Figure 3.5: Co-clustering probabilities Cii′ for all respondents in the origi-
nal and clustered data
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They are all very close to 1. Similarly, individuals in cluster 2 are around
9% of the total and have a more neutral view of their life satisfaction with
levels closer to the middle of the ordinal scale (α̂2 = 2.8). In contrast to
that, clusters 5 and 6 are formed by people that are extremely satisfied
with their life over 2009-2013 (α̂5 = 10.2 and α̂5 = 12.8). Together, both
groups are around a quarter of the whole sample (π5 = 18% and π6 = 6%).
Finally, clusters 3 and 4 are the ones whose LS patterns over time resem-
ble the most the overall population. Unsurprisingly, they are also the ones
with the highest proportions (π3 = 25%, and π4 = 40%).

Comparison of estimated clusters with socio-economic variables in the
NZAVS

LS is known to be correlated with several socio-economic factors such
as employment, ethnicity, qualifications and many others. This begs the
question: how do our estimated clusters compare to these demographics?
Put it simply, which observables have been captured by our latent variable
approach?. Given that NZAVS is a household survey with plenty of socio-
economic information we can attempt to answer these questions. As start-
ing point here, we compare the estimated clusters with socio-economic de-
privation and income. We use the New Zealand index of socio-economic
deprivation in 2013 (NZDep2013) by Atkinson et al. (2014) and total house-
hold income as proxies for socio-economic deprivation and income.

The NZDep2013 is an area-based measure that estimates the level of
deprivation for people in a defined small area, or meshblock. Statistics
New Zealand defines a meshblock as a geographical area with a popula-
tion of around 60 to 110 people. The NZDep 2013 is based on nine Census
variables: income, home ownership, employment, qualifications, family
structure, housing, access to transport and communications. Originally
coded in deciles (1-10), we transform NZDep2013 into quintiles (Q1-Q5)
so that respondents in Q5 live in the most deprived areas of the country.

Figure 3.8 shows boxplots for the income distribution by NZDep2013
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Figure 3.6: Heatmaps for life satisfaction data (yij = k). Rows, columns
and cell colours represent individuals (i), years (j) and ordinal levels
(k =Strongly Disagree (red) . . . Strongly Agree (white)).
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Figure 3.7: Distribution of life Satisfaction in the NZAVS by cluster and
year
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quintile and cluster. When looking at the income distribution by quintile
(left) when can see that income monotonically decreases with deprivation.
Although there is a substantial amount of overlap we could see that on av-
erage more deprived people have less income. Furthermore, the median
income of people in the middle quintile (Q3) equates the overall median
income (NZ80,000) . Now, looking at the income distribution by cluster
(right) we can see that the income distribution varies greatly by cluster. In
general, the estimated cluster effect is positively correlated with the me-
dian income in the cluster. Individuals in clusters 1 and 2 for example
have the lowest cluster effects (α̂1 = 0 and α̂2 = 2.8) and thus the low-
est levels of LS (Figure 3.7). They also have the lowest median incomes
which are well below the overall median income . However, this relation
is not monotonic. Individuals in clusters 4, 5 and 6 have almost identical
median incomes, all above the overall median, but different cluster effects
(α̂4 = 7.9, α̂5 = 10.2 and α̂6 = 12.8) and thus have different LS response
patterns. Therefore, the estimated latent cluster effects α̂r are capturing
the effects of income but also some other effects.

With regard to socio-economic deprivation, Table 3.10 shows the dis-
tribution of NZDep2013 quintiles in the overall NZ population and on
each cluster. Here we see that this distribution varies greatly by cluster.
In particular, clusters 1 and 2 having the lowest levels of LS also have
much higher proportions of more deprived respondents. The proportions
of people of clusters 1 and 2 in Q5 are 31% and 24% whereas it is only
12% in the general population. Conversely, cluster 6, formed by people
extremely satisfied by life, has a higher proportion of less deprived re-
spondents, 31 and 27% for Q1 and Q2 against 26 and 25% in the general
population. Therefore, the estimated cluster effects α̂ correlate better with
deprivation than income. It is important to notice that, although the esti-
mated clusters have different deprivation patterns, they have respondents
from all levels of deprivation. That is, clusters with low/high LS levels are
not formed exclusively by the most/least deprived people. For instance,
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Figure 3.8: Income Distribution by NZDep quintiles (Q1-Q5) and es-
timated clusters. Solid line represents the overall median income
(NZ80,000) for the whole NZAVS sample

in cluster 1, 1% of the total and where respondents are extremely dissat-
isfied with life, still has 10 and 21% of least deprived quintiles Q1 and
Q2. Likewise, cluster 5, which accounts for 18% of the total and where
respondents are very positive about their life satisfaction, has 16 and 10 %
of people from Q4 and Q5 the most deprived quintiles.

In summary, the model-based clustering methods presented in this
chapter allows us to identify groups of individuals with different socio-
economic profiles based solely on their LS responses over time. Next, in
Chapter 4, although still assuming that responses within individuals are
independent, we augment the linear predictor of the clustering models
presented so far to incorporate non-proportional odds.
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Table 3.10: Proportions of individuals by NZDep quintiles (Q) by cluster
and overall

Cluster (r) π̂r α̂r Q1 Q2 Q3 Q4 Q5
1 0.01 0 0.10 0.21 0.10 0.28 0.31
2 0.09 2.8 0.19 0.17 0.18 0.23 0.24
3 0.25 5.5 0.24 0.23 0.21 0.21 0.11
4 0.40 7.9 0.28 0.27 0.20 0.15 0.10
5 0.18 10.2 0.28 0.27 0.19 0.16 0.10
6 0.06 12.8 0.31 0.27 0.16 0.15 0.11

Overall 0.26 0.25 0.19 0.17 0.12



Chapter 4

Trend Odds Model

4.1 Model

In this chapter, we extend the Trend Odds model (TOM) of Capuano &
Dawson (2012) to incorporate latent clusters. Similarly to Chapter 3, the
models here assume that the observations are independent over time. The
TOM is a monotone constrained non-proportional odds models that adds
an extra parameter to the linear predictor of the cumulative probability,
allowing parsimonious incorporation of non-proportional odds.

As before, the data Y is a (n, p) matrix where each cell yij is equal to
any of the q ordinal categories, where: i = 1, ..., n ; j = 1, ..., p and k =

1, ..., q. We now fully describe the TOM for the row-clustering case and
then summarize the main characteristics of the other models in Table 2.2.

Row-clustering

We start with the case of row-clustering. Rows are assumed to come from
any of the R row groups with a priori probabilities π1, . . . , πR. That is,
we assume that the rows come from a finite mixture with R components
where both R and the row-cluster proportions πr are unknown. Note also
that R < n and

∑R
r=1 πr = 1. Let θrjk be the probability that observation
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yij = k given that row i belongs to row-cluster r. That is P (yij = k|i ∈ r) =

θrjk. Given a trend parameter by cluster γr and an arbitrary scalar tk that
varies by ordinal outcome k, the TOM with clustering has the form

Logit[P (yij ≤ k|i ∈ r)] = µk − αr − γrtk (4.1)

or equivalently

θrjk =
exp(µk − αr − γrtk)

1 + exp(µk − αr − γrtk)
− exp(µk−1 − αr − γrtk−1)

1 + exp(µk−1 − αr − γrtk−1)
(4.2)

where α1 = γ1 = 0 and µk − µk−1 ≥ γr(tk − tk−1). The parameter µk is
the kth cut point and αr is the effect of row-cluster r. The parameter γr can
also be interpreted a shape parameter for θrjk. The term γrtk represents
any non-proportional odds for the cluster since it depends both on r and
k. Following Capuano & Dawson (2012), we set to tk = k − 1. Given
this, the constraint necessary to make sure the cumulative probabilities
are non-decreasing becomes

µk − µk−1 ≥ γr ∀r, k (4.3)

As an example, Figure 4.1 displays the probability distribution of θrjk
for the POM and the TOM with clustering. We use an ordinal response
with five outcomes (q = 5), three row-clusters (R = 3) and the following
values for the parameters: µ = (−1.95,−1.10, 1.10, 1.95), α = (0,−3, 3) and
γ = (0,−2,−1). Notice that θrjk have the same shape for all clusters but
different location (αr) in the case of the POM. In contrast to that, for the
TOM θrjk have both different shape (γr) and location (αr) in all clusters.
See also Figure 1.3 in Chapter 1 that shows a graphical representation of
the original formulation of the TOM.

Assuming independence over the rows and, conditional on the rows,
independence over the columns, the likelihood for the TOM with row-



4.1. MODEL 77

POM TOM

Figure 4.1: Probability distribution for θrjk
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clustering becomes

L(ϕ, π|Y ) =
n∏

i=1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I(yij=k)
rjk (4.4)

where ϕ is the set of model parameters (µ, α, γ). The expression above is
also referred as incomplete data likelihood given that the cluster mem-
berships are unknown. The number of model parameters is equal to:
v = (q − 1) + 3(R− 1).

Table 4.1 shows the linear predictor, the constraint for non-decreasing
cumulative probabilities and the number of parameters for all the TOM
models with clustering.
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4.2 Model selection

In this chapter, we will use the same information criteria we used for the
Proportional Odds model in Chapter 3, namely: AIC (Akaike 1973), BIC
(Schwarz 1978), and ICL-BIC (Biernacki et al. 2000).

4.3 Simulations

In order to check that we are able to recover the true model parameters
when the cluster structure is known, in this section we simulate data from
a bi-clustering model with a TOM structure and estimate it under different
scenarios. We simulate data and estimate the model 50 times for each
scenario.

In particular, we use a TOM model with three row and two column
clusters (R = 3 and C = 2) and the following parameters for the linear
predictor: α = (0,−3, 3), γ = (0,−0.2, 0.5), β = (0, 2), δ = (0, 0.5). The
model also has the same number of rows and columns on each cluster
which implies that π = (1/3, 1/3, 1/3) and κ = (0.5, 0.5).

We finally set the number of ordinal categories equal to five (q = 5)

and the number of columns equal to ten (p = 10). We estimate the TOM
under four scenarios with increasing sample size. Scenarios 1-4 present
n = 60, n = 120, n = 300 and n = 1200, respectively. Table 4.2 shows
the true model parameters, the mean and standard deviation (sd) of the
simulations for each scenario.

As it can be seen, most means get closer to their true values as the num-
ber of rows in the sample (n) increases from Scenario 1 to 4. Further, stan-
dard errors also decrease with higher n. For example, in the case of β2 = 2

the mean of the estimates goes from 1.85 with a SE of 0.05 in scenario 1
to 2.01 with a SE of 0.01 in Scenario 4. The one exception to the above, is
the case of γ3 which is overestimated even when n = 1200. Its true value
is 0.5 but the estimated means range from 1.83 to 0.68. Importantly, how-
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Table 4.2: Simulation results for TOM bi-clustering with R = 3, C = 2 for
datasets with q = 5, p = 10 and increasing n. Each scenario is based on 50
simulated datasets.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n = 60 n = 120 n = 300 n = 1200

Parameter true mean sd mean sd mean sd mean sd
µ1 −1.95 −2.19 0.08 −2.11 0.08 −1.99 0.04 −1.94 0.01
µ2 −1.10 −1.24 0.10 −1.14 0.10 −0.98 0.05 −0.91 0.01
µ3 1.10 0.95 0.14 1.11 0.14 1.32 0.07 1.44 0.01
µ4 1.95 1.86 0.17 2.06 0.17 2.30 0.08 2.45 0.02
α1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α2 −3.00 −2.72 0.69 −2.81 0.43 −2.95 0.21 −2.99 0.08
α3 3.00 4.33 4.44 3.32 2.01 3.26 0.45 3.16 0.18
γ1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
γ2 −0.20 −0.27 0.29 −0.29 0.30 −0.20 0.08 −0.20 0.03
γ3 0.50 1.83 4.20 0.71 0.37 0.62 0.14 0.68 0.19
β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 2.00 1.85 0.05 1.98 0.05 1.99 0.02 2.01 0.01
δ1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
δ2 0.50 0.43 0.02 0.44 0.02 0.46 0.01 0.47 0.01
π1 0.33 0.27 0.01 0.28 0.01 0.31 0.01 0.32 0.00
π2 0.33 0.32 0.00 0.32 0.01 0.33 0.00 0.33 0.00
π3 0.33 0.40 0.02 0.40 0.02 0.36 0.01 0.35 0.00
κ1 0.50 0.49 0.01 0.49 0.01 0.50 0.00 0.50 0.00
κ2 0.50 0.51 0.01 0.51 0.01 0.50 0.00 0.50 0.00
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ever, this does not affect the estimates for the mixture proportions π and κ.
The mean of the estimates in each scenario are very close to the true pro-
portions even with small n. As a further illustration, Figure 4.2 shows the
estimated parameters for α, γ, β, and δ in Scenarios 1 and 4. They show
that the estimated parameters are close to the true values and how they
get closer as the number of rows n in the sample increases from 60 to 1200.
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Figure 4.2: Simulation results for the bi-clustering model. True values for
α, γ, β and δ are the diamonds in the middle of the plots. Each scenario is
based on 50 simulated datasets.
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4.4 Case Study: Comparing POM and the TOM

using HILDA data

To illustrate the TOM and the POM, we apply them to data from the
Household, Income and Labour Dynamics in Australia (HILDA). We use
2001-2011 self-reported health status (SRHS) from this survey. SRHS is an
ordinal variable with 5 categories: Poor, Fair, Good, Very Good and Excel-
lent. More details about this dataset can be found in Chapter 2.

As seen in that chapter, SRHS is highly correlated across time. Table
4.3 presents the 2001-2011 transitions between ordinal categories for all
individuals. Diagonal proportions are very high, about 40%, and the same
is true for the cells close to the diagonal. In words, even after 11 years
individuals are very likely to report the same health status or the one next
to their starting status.

Table 4.3: SRHS transition matrix 2001-2011

2011
Poor Fair Good Very good Excellent Total

2001

Poor 0.42 0.40 0.14 0.04 0.00 1.00
Fair 0.13 0.44 0.34 0.07 0.01 1.00

Good 0.02 0.21 0.54 0.20 0.02 1.00
Very good 0.01 0.09 0.38 0.46 0.07 1.00
Excellent 0.01 0.04 0.21 0.47 0.27 1.00

In order to illustrate the TOM with clustering, we use a random sample
of 136 individuals with complete data over 2001-2011. Therefore, we esti-
mate the models in this chapter using dataset with n = 136 rows, p = 11

columns and q = 5 ordinal levels. In addition to that, we also fit POM
with clustering from Chapter 3 and compare the POM and TOM formula-
tions using the Frequentist information criteria introduced in the previous
chapter, namely the AIC, BIC and ICL-BIC.
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Table 4.4 shows the results. For each fitted model, we present the linear
predictor, the number of row (Rows) and columns (Cols) clusters, the total
number of parameters (Params), and the AIC, BIC and ICL-BIC.In terms of
the latter information criterion, the model with the best fit is the TOM with
five row clusters with an ICL-BIC of 2922. It has a total of 16 parameters
(µk, αr, γr and πr where k = 1, . . . , 4 and r = 1, . . . , 5). It is closely follow
by the POM with five row clusters (ICL-BIC=2927). Note that more parsi-
monious models are preferred, e.g. row-cluster and not bi-cluster models.
On the other hand, the AIC selects the least parsimonious model, a row
and column fixed effects model with 149 parameters (AIC=2424) and the
BIC selects the TOM with six row-clusters (BIC=2875). The overestimation
of the number mixture of components when using the AIC and BIC found
by McLachlan & Peel (2000) and Cubaynes et al. (2012) seems to be also
shown here.

In sum, results for this random subsample of the 2001-2011 SRHS sug-
gest that the individuals could be grouped into five clusters. What do
these estimated five row-clusters look like? The original subsample and
the resulting clusters are visualized using heatmaps and are shown in the
heatmaps in Figure 4.3. Individuals and occasions are shown in rows and
columns and cell colors represent ordinal categories. The five row-clusters
comprise: two where SRHS remains stable, two where it slightly improves
(each with different starting category) and one where it slightly worsens.

It is important to reiterate that the subsample used in this chapter is
only for demonstration purposes and comparison between the proposed
versions of the POM and TOM. A more robust analysis, will have to use
all the available observations for this dataset and pose further assumptions
for the missing data, ie missing at random (MAR) or provide a model the
missing data mechanism if the drop-out is non-ignorable (Little & Rubin
2002).

In the chapters to come, Chapters 5, 6, and 7, we will extend some of the
models presented so far to explicitly incorporate the correlation over time.
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Table 4.4: Model comparison in the case study: SRHS from HILDA

Model Linear Predictor Rows Cols Param AIC BIC ICL-BIC
Null µk 1 1 4 4089 4139 -
Row effects µk − αi 136 1 139 2446 4200 -
Col effects µk − βj 1 11 14 4094 4271 -
Row and Col effects µk − αi − βj 136 11 149 2424 4305 -

POM row clustering µk − αr

2 1 6 3313 3345 3355
3 1 8 3029 3071 3095
4 1 10 2920 2973 2999
5 1 12 2829 2893 2927
6 1 14 2809 2883 2947

µk − αr − βj

2 11 16 3310 3395 3405
3 11 18 3018 3113 3137

POM row clustering 4 11 20 2904 3010 3038
+ col effects 5 11 22 2814 2931 2964

6 11 24 2792 2919 2981
POM col clustering µk − βc 1 2 6 4092 4124 4134

POM bi-clustering µk − αr − βc

2 2 8 3313 3355 3376
3 2 10 3024 3077 3111
4 2 12 2914 2978 3015
5 2 14 2827 2901 2951
6 2 16 2803 2888 2967

TOM row clustering µk − αr − γrtk

2 1 7 3313 3351 3360
3 1 10 3025 3078 3098
4 1 13 2912 2981 3006
5 1 16 2808 2893 2922
6 1 19 2774 2875 2925

µk − αr − γrtk − βj

2 11 17 3308 3398 3407
3 11 20 3011 3117 3136

TOM row clustering 4 11 23 2895 3018 3041
+ col effects 5 11 26 2791 2929 2958

6 11 29 2759 2913 2953
TOM col clustering µk − βc − δctk 1 2 7 4095 4132 4132

TOM bi-clustering µk − αr − βc − (γr + δc)tk

2 2 10 4033 4087 4078
3 2 13 3882 3951 3938
4 2 16 3003 3088 3066
5 2 19 5541 5642 5634
6 2 22 5776 5893 5885
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Unordered data

TOM row-clustered data (5 groups)

Figure 4.3: Heatmaps for SRHS in HILDA
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These models are fitted using a Bayesian approach to take advantage of the
flexibility of MCMC methods to estimate models with complex correlation
structures. Next, we present a model with latent random effects in Chapter
5.
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Chapter 5

Parameter dependent models

5.1 Latent random effects models: random walk

by cluster

This chapter presents models where the correlation between observations
is explicitly modelled through the parameters, an approach that we de-
nominate parameter dependent models in the literature review. This ap-
proach introduces the repeated measures correlation by conditioning the
response on latent random effects, that is a finite mixture of random ef-
fects models (Vermunt et al. 1999, Vermunt & Van Dijk 2001, Bartolucci
& Farcomeni 2009, Bartolucci et al. 2014). In particular, we augment the
linear predictor of the POM with occasion and cluster specific random ef-
fects that follow a random walk with cluster specific variance . Following
the same notation as previous chapter, instead of being independent over
occasions, now βrj is assumed to arise from βrj ∼ N(βrj−1, σ

2
r). The linear

predictor for this model, which retains the row-clustering with columns
and interaction, is

Logit[P (yij ≤ k|i ∈ r)] = µk − αr − βrj (5.1)

91
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i = 1, . . . , n; j = 1, . . . , p; r = 1, . . . , R; k = 1, . . . , q

µk+1 ≤ µk for k = 0, . . . , q; µ0 = −∞; µ1 = 0; µq = ∞

βr1 = 0 for all r

Notice that following the Bayesian literature for ordinal data (Albert &
Chib 1995, Johnson & Albert 1999, Cowles 1996) we are using a slightly
different parametrisation in this chapter. In this and subsequent chapters,
we set µ1 = 0 and have no constraint on α1. By fixing the first cut point,
this parametrisation allows better mixing of the MCMC chain.

The model for the repeated ordinal outcomes yij remains the same as
before:

yij | µk, αr, βrj, πr ∼ Categoricalq(θrjk)

θrjk =
1

1 + e−(µk−αr−βrj)
− 1

1 + e−(µk−1−αr−βrj)
;

q∑
k=1

θrjk = 1

i = 1, . . . , n; j = 1, . . . , p; r = 1, . . . , R; k = 1, . . . , q

µk−1 < µk; µ1 = 0;µ0 = −∞ and µq = ∞

βr1 = 0; ∀r

(5.2)

The resulting likelihood is more complex than the corresponding one
for the POM or TOM with clustering because it requires integrating out
the distribution of the random effects. As mentioned in section 1.3, these
integrals are usually solved by numerical methods like the Gauss-Hermite
quadrature in the frequentist paradigm. Depending on the number of the
quadrature points and the integral’s dimension this can be very expensive
computationally. Here we take a different approach and carry out estima-
tion using Bayesian methods.

5.2 Bayesian Estimation

In a Bayesian setting, both data and parameters in the model are random
variables and thus we need to specify distributions for them. In particu-
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lar, in addition to the likelihood which specifies a distribution of the data
conditional on the parameters, we need to specify a prior distribution for
the parameters. By using Bayes theorem, we then obtain the distribution
of the parameters given the data, i.e. a posterior distribution. Let Y be
the data, Ω a set of parameters with prior P (Ω), the posterior distribution
P (Ω|Y ) is given by

P (Ω|Y ) =
P (Y |Ω)P (Ω)

P (Y )
=

P (Y |Ω)P (Ω)∫
P (Y |Ω)P (Ω)dΩ

=⇒ P (Ω|Y ) ∝P (Y |Ω)P (Ω)

where P (Y |Ω) represents the likelihood and P (Y ) the marginal distribu-
tion of Y. The latter is also known as marginal likelihood or evidence of the
model. To complete the specification of our model for yij , in (5.2), we use
the following priors for µ, α, β, π, σ2

µ, σ
2
α and σ2

β :

µk | σ2
µ

iid∼ Normal(0, σ2
µ) I[µk > µk−1]

αr | σ2
α ∼ Normal(0, σ2

α)

βrj ∼ Normal(βrj−1, σ
2
r)

σ2
µ ∼ Inverse Gamma(aµ, bµ)

σ2
α ∼ Inverse Gamma(aα, bα)

σ2
r ∼ Inverse Gamma(aβ, bβ)

π ∼ Dirichlet(ψ)

k = 1, . . . , (q − 1)

µ0 = −∞, µ1 = 0, µq = ∞

r = 1, . . . , R

r = 1, . . . , R; j = 1 . . . p; βr1 = 0, ∀r

r = 2, . . . , R

(5.3)

with hyperparameters: ψ = 3/2, aµ = aα = aβ = 4 and aµ = aα = aβ = 1/2.

In words, we assume that observations yij come from a hierarchical
structure with 3 levels: clusters, individuals and occasions; where only the
latter two are observed. The first level of clusters is latent and is where the
cluster proportions πr, the variance of the random effect for each cluster
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σ2
r , and the effect of the cluster in the linear predictor αr are determined.

Next, the level of individuals although observed does not contribute to
the linear predictor because we are assuming that all individuals within
a cluster are homogeneous, i.e. they have the same probability to have
outcome k given that they all are in cluster r. Figure 5.1 shows a graphical
representation of the model.

ψ

πr

yij

σ2
r

aβ bβ

βrj

θrjk

σ2
a

aα bα

αr

σ2
u

aµ bµ

µk

i = 1 . . . n

j = 1 . . . pr = 1 . . . Rk = 1, . . . , q

Figure 5.1: Graphical representation of the model

It is important to stress that this formulation assumes that the number
of mixture components R is unknown but fixed and thus exogenous to the
model. Relaxing this assumption is a natural extension and is explored
using a Dirichlet Process Mixture within a Bayesian Non-Parametric ap-
proach in Chapter 7.
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We implement a Markov-Chain Monte-Carlo (MCMC) sampling scheme
that uses the Metropolis-Hastings algorithm (MH), Metropolis et al. (1953),
Hastings (1970), to sample from the posterior of the parameters. A Metropolis-
Hastings (MH) sampling scheme is necessary because the full conditional
distributions for each parameter are non-standard. The model is imple-
mented in R and C++ and is detailed in the next section.

5.3 Construction of the MCMC chain

We now proceed to briefly describe the MH steps, a more detailed treat-
ment could be found in Metropolis et al. (1953) and Chib & Greenberg
(1995). The MH algorithm involves the use of an candidate-generating
density to sample from any given target. This auxiliary function is of-
ten called proposal density and is a probability distribution that allows the
Markov Chain to move with certain probability from the current state to a
new proposed state while maintaining detailed balance, value of the tar-
get and proposal evaluated in the current state is equal to the target and
proposal evaluated in the new state, also known as reversibility condition.
Notice that an initial portion of the chain is discarded as burn-in to allow
convergence to the stationary distribution.

Let Ψ be the parameter space of the model of interest, and π(.) a target
function with proposal q(.). Given a current state ν ∈ Ψ, we accept a new
draw ν ′ ∈ Ψ from the proposal q(ν ′|ν) with probability r

r =min
[
1,
π(ν ′)/q(ν ′|ν)
π(ν)/q(ν|ν ′)

]
=min

[
1,
P (ν ′|Y )P (ν ′)/q(ν ′|ν)
P (ν|Y )P (ν)/q(ν|ν ′)

]
r is also known as Metropolis-Hastings ratio. Notice that in addition to
the proposal q(.), the MH ratio actually involves the evaluation of the joint
probability of the whole model, likelihood and prior, for both the current
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and proposed state. That is, to evaluate P (Y |Ω)P (Ω) for Ω = ν, ν ′ at each
iteration of the MCMC chain. As a result, if the calculation of either of
these terms is computationally expensive, in particular the likelihood, the
target would be slow to simulate. In general, the efficiency of any MH
sampler depends on the choice of candidate generating density q(.) and
some tuning, trying out different parameters for these proposal, may be
needed.

In our case, the posterior distribution of Ω = (µ, α, β, π, σ2
µ, σ

2
ασ

2
β) is

proportional to

P (µ, α, β, π, σ2
µ, σ

2
α, σ

2
β|Y ) ∝

P (Y |µ, α, β, π)P (µ|σ2
µ)P (σ

2
µ)P (α|σ2

α)P (σ
2
α)P (β|σ2

β)P (σ
2
β)P (π)

Notice that the first component corresponds to the likelihood and a factor-
ization of the prior that assumes that the likelihood parameters µ, α, β, π
are independent. We now proceed to present the proposals and MH ratio
for each parameter.

5.3.1 Proposals

Recall the parameter vector Ω = (µ, α, β, π, σ2
µ, σ

2
ασ

2
β) for the model devel-

oped in this chapter (equation 5.2). After choosing initial values for these
parameters, for simplicity we use univariate random walk proposals, also
known as Metropolis random-walk, and update the current values of each
parameter according to the following :
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µ′
k | µk−1, µk, µk+1 ∼ U [ max(µk − τ, µk−1), min(µk + τ, µk+1)]

k = 2, . . . , q − 1, µ0 = −∞, µ1 = 0, µq = ∞

α′
r | αr ∼ Normal(αr, σ

2
αp), r = 2 . . . R, α1 = 0

β′
j | βj ∼ Normal(βj, σ2

βp), j = 2 . . . p, β1 = 0

logit(w′) | logit(w) ∼ Normal(logit(w), σ2
πp)

w = πr1/(πr1 + πr2), r1, r2 ∈ 1 . . . R

π′
r1 = w′(πr1 + πr2)

π′
r2 = (1− w′)(πr1 + πr2)

log(σ′2
µ ) | log(σ2

µ) ∼ Normal(log(σ2
µ), σ

2
σµp)

log(σ′2
α ) | log(σ2

α) ∼ Normal(log(σ2
α), σ

2
σαp)

log(σ′2
β ) | log(σ2

β) ∼ Normal(log(σ2
β), σ

2
σβp)

where the parameters of the proposal densities, also known as step size
or scale are fixed. In particular, for all the applications in this chapter we
use the following step sizes: τ = 0.25, σ2

αp = 0.25, σ2
βp = 1, σ2

πp = 0.1,
σ2
σµp = log(4), σ2

σαp = log(8) and σ2
σβp = log(1.5).

5.3.2 Acceptance Probabilities (Metropolis-Hastings ratio)

Updates for µ

Choose a µk for k = 2, . . . , q − 1 at random and sample µ′
k from proposal

q(µ′
k|µk−1, µk, µk+1) and accept with probability

r = min
[
1,
P (Y |µ′, α, β, π)P (µ′|σ2

µ)

P (Y |µ, α, β, π)P (µ|σ2
µ)

× min(µk + τ, µk+1)− max(µk − τ, µk−1)

min(µ′
k + τ, µk+1)− max(µ′

k − τ, µk−1)

]

where µ = (µ1, . . . , µk, , . . . , µq−1), µ′ = (µ1, . . . , µ
′
k, , . . . , µq−1) for k = 1, . . . , q−

1 and µ1 = 0, µ0 = −∞ , µq = ∞.
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Updates for α

Choose a r ∈ {1, . . . , R} at random and sample α′
r from random walk

proposal q(α′
r|αr) and accept with probability

r = min
[
1,
P (Y |µ, α′, β, π)P (α′|σ2

α)

P (Y |µ, α, β, π)P (α|σ2
α)

]
where α = (α1, . . . , αr, , . . . , αR) and α′ = (α1, . . . , α

′
r, , . . . , αR).

Updates for β

Choose a r and j from r = 1, . . . , R and j = 2, . . . , p at random and sample
β′
rj from proposal q(β′

rj|βrj) and accept with probability

r = min

[
1,
P (Y |µ, α, β′, π)P (β′|σ2

β)

P (Y |µ, α, β, π)P (β|σ2
β)

]

where β = (0, . . . , βrj, , . . . , βp) and β′ = (0, . . . , β′
rj, . . . , β

′
p).

Updates for σ2µ, σ2α, σ2β

Given σ2
µ, sample from σ′2

µ proposal q(σ′2
µ |σ2

µ) and accept with probability

r = min
[
1,
P (β|σ′2

µ )P (σ
′2
µ )

P (β|σ2
µ)P (σ

2
µ)

×
σ2
µ

σ′2
µ

]
Similarly for σ2

α and σ2
β .

Updates for π

Given π sample π′ from q(π′|π) and accept with probability

r = min
[
1,
P (Y |µ, α, β, π′)P (π′)

P (Y |µ, α, β, π)P (π)
× w′(1− w′)

w(1− w)

]
where π = (π1, . . . , πr1, . . . , πr2, . . . , πR), π′ = (π1, . . . , π

′
r1, . . . , π

′
r2, . . . , πR) ,

and w = πr1/(πr1 + πr2), w′ = π′
r1/(π

′
r1 + π′

r2)
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Notice that in the case of αr and βrj the proposal density q(.) ∼ Normal(.)
is symmetric and thus cancels out from the MH ratio. On the other hand,
updates for σ2

µ, σ2
α, σ2

β, π involve transformations so that a Jacobian in-
cluded. Finally, the proposal for µ is not symmetric and thus again it
doesn’t dropped from the MH ratio.

It is important to mention that when using MH algorithm, the scale of
the proposal distributions needs to be tuned in order to get good mixing,
that is to maximize the efficiency of the MCMC chain in exploring the tar-
get. Smaller steps sizes will have higher acceptances rates but the result-
ing MCMC chain will slowly explore the target. On the other hand, bigger
step sizes might provide better exploration at the expense of lower accep-
tance rates and thus the chain might be moving slowly as well. Roberts
et al. (1997) established that when using the MH algorithm with Gaussian
proposals to estimate high-dimensional target distributions, an acceptance
rate of 0.234 optimizes the mixing efficiency of the MCMC chain. Step
sizes for the proposals in section 6.4 have been tuned so that the accep-
tance rates are around 20%.

5.3.3 MCMC Convergence

In order to asses the convergence of the MCMC chain, we use the poten-
tial scale reduction factor (PSRF) developed by Gelman & Rubin (1992).
This statistic is also called Gelman-Rubin convergence diagnostic and un-
like other MCMC convergence diagnostics, it is a multiple chain method
that uses parallel chains to monitor convergence. In particular, it uses
the between-chain and within-chain variances of the marginal posterior
of each parameter. Values much higher than one, Gelman & Rubin (1992),
indicate a lack of convergence. Given the multimodality in mixture mod-
els this diagnostic is particularly helpful in detecting whether or not chains
with different starting values have converged to the same mode.
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5.4 Model comparison

There are several ways to compare models in a Bayesian framework: (i)
using Bayes Factors (Kass & Raftery 1995), (ii) estimating the joint poste-
rior distribution of all competing models using Reversible Jump MCMC
(Green 1995, Richardson & Green 1997) and/or other approaches that ex-
plore this joint posterior of variable dimension, and (iii) using information
criteria. We will use the latter approach here.

Importantly, Frequentist information criteria that use a loss function
evaluated at a point estimate are not directly applicable in a Bayesian set-
ting if the posterior distribution of the parameters can not be adequately
represented by an unidimensional summary statistic, e.g: mean, median.
For example, this is the case for AIC and BIC that compare model (mis)fit
by evaluating the log-likelihood at the maximum likelihood estimate. This
is especially relevant for mixture models where the likelihood is invariant
to the labelling of the individual mixture components and thus the poste-
rior distribution of the parameters is multimodal. This non-identifiability
of individual mixture components is a characteristic of mixture models
and is known in the literature with the name of the label switching problem
(McLachlan & Peel 2000, Richardson & Green 1997, Marin et al. 2005).

To compare among competing models we therefore use the Widely
Aplicable Information Criterion (WAIC) recently developed by Watanabe
(2009). For a model with parameters Ω and data Y = Y1, . . . Yn, the WAIC
is defined as

WAIC = −2
n∑

i=1

log

∫
P (Yi|Ω)P (Ω|Y )d(Ω) + 2p

≈ −2
n∑

i=1

log

[∑S
s=1 P (Yi|Ωs)

S

]
+ 2p

(5.4)
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where p is the number of effective parameters

p =
n∑

i=1

{
log

∫
P (Yi|Ω)p(Ω|Y )d(Ω)−

∫
log P (Yi|Ω)p(Ω|Y )d(Ω)

}

≈
n∑

i=1

{
log

[∑S
s=1 P (Yi|Ωs)

S

]
−

[∑S
s=1 logP (Yi|Ωs)

S

]} (5.5)

Watanabe (2009) also provides an alternative approximation for p

p2 =
S∑

s=1

Var[log P (Yi|Ω)] (5.6)

where S is the size of the MCMC chain (number of MCMC draws used
for inference). We called these versions WAIC1 and WAIC2 depending on
whether p1 or p2 is used.

Defined this way the WAIC is on the same scale as the AIC and BIC.
The contribution of the ith observation to the likelihood P (Yi|Ω) is being
called pointwise predictive density in the literature (Geisser & Eddy 1979,
Gelman et al. 2014). We follow this terminology here and further call the
WAIC’s first component, first term in (5.4), log predictive density (LPD). No-
tice that the WAIC overcomes label switching by integrating out the es-
timated parameters, posterior P (Ω|Y )d(Ω), from the pointwise predictive
density P (Yi|Ω). In practice, this integral is approximated by MonteCarlo
integration using all the MCMC draws P (Yi|Ωs) as shown in the second
line of (5.4). A similar procedure is used to approximate the integrals in-
volved in the calculation of p in (5.5).

As a comparison, we also present the Deviance Information Criterion
(DIC) (Spiegelhalter et al. 2002, 2014) used extensively in Bayesian appli-
cations. We separate its two components: Mean Deviance (D̄) and number
of effective parameters (pd) so that these could be adequately compared to
the WAIC components. However the use of the DIC needs caution when
used for singular models, such as in mixtures, hierarchical models and
models with a multimodal posterior distribution. In these cases, the num-
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ber of effective parameters pd could be negative and thus the resulting DIC
should not be trusted (Celeux et al. 2006, Spiegelhalter et al. 2014).

5.5 Simulations

In this section, we use simulated data to validate both the model estima-
tion and selection procedure. In particular, we simulate one dataset from
a three-mixture component with n = 600, p = 10 and q = 5 and the follow-
ing parameter values for the mixture model:

µ =(0, 0.85, 3.04, 3.89)

α =(−3, 1, 3)

σ2
β =(0.25, 0.50, 0.25)

π =(1/3, 1/3, 1/3)

In short, this is a medium size dataset with 600 rows, 10 columns and
five ordinal categories; generated from a three latent components with
equal proportions. The values for σ2

β imply that one of the mixture compo-
nents has a different trend over time (βrj’s are different for r = 2). Overall,
this model has 41 parameters. We used three chains with over dispersed
starting values and ran 7 million iterations for each chain. Discarding the
initial 20% draws as burn-in and thinning these chains by 5000, we used
for inference 3360 MCMC draws (3 chains of 1120 each).

Figures 5.2 and 5.3 show the marginal posterior and traceplots for all
the model parameters. True values are also depicted as vertical/horizontal
lines in the graphs. As it can be seen, for all parameters the estimated dis-
tribution of the marginal posterior includes the true values and thus the
model is able to able to recover all 41 parameters. In terms of mixing, Fig-
ure 5.3, shows that MCMC chains exhibit good mixing for all parameters.
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A more detailed view of the all 41 estimated parameters can be seen
in Table 5.1. This table shows summary statistics for the marginal pos-
teriors of the model parameters (mean, SE and credible intervals), along
with the Gelman-Rubin convergence diagnostic (point estimate and up-
per confidence interval for the PSRF). As seen before, all the credible in-
tervals include the true values of the parameters. In terms of convergence,
Gelman-Rubin convergence diagnostics are all close to 1 and well below
the threshold value of 1.2, both in terms of the point estimate and upper
bound of the confidence interval. The table also shows that these also
holds true for the log-likelihood, credible interval includes the likelihood
evaluated in the true values and MCMC chains show good mixing.

Table 5.1: Summary statistics for the marginal posterior of the model pa-
rameters and Gelman-Rubin convergence diagnostic (PSRF)

95% Credible Interval PSRF
Par True Mean SE lower upper Point.est. Upper.C.I.
µ2 0.85 0.86 0.04 0.79 0.94 1.00 1.00
µ3 3.04 3.09 0.07 2.94 3.23 1.00 1.00
µ4 3.89 3.91 0.09 3.75 4.08 1.00 1.00
σ2
µ – 1.54 0.44 0.82 2.37 1.00 1.00

α1 -3.00 -2.65 0.27 -3.17 -2.12 1.00 1.01
α2 1.00 0.88 0.14 0.61 1.15 1.00 1.00
α3 3.00 3.09 0.14 2.82 3.37 1.01 1.02
σ2
α – 1.94 0.63 0.97 3.14 1.00 1.00

β12 -0.08 -0.08 0.30 -0.64 0.55 1.00 1.01
β13 -0.05 -0.33 0.36 -1.01 0.40 1.01 1.02
β14 0.05 -0.32 0.36 -1.06 0.35 1.00 1.01
β15 0.06 -0.56 0.39 -1.29 0.21 1.00 1.01
β16 0.19 -0.48 0.39 -1.26 0.27 1.00 1.01
β17 0.27 -0.34 0.38 -1.05 0.41 1.00 1.01
β18 0.44 0.00 0.34 -0.62 0.73 1.00 1.00
β19 0.54 0.35 0.34 -0.25 1.07 1.00 1.00

Continued on next page...
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95% Credible Interval PSRF
Par True Mean SE lower upper Point.est. Upper.C.I.
β110 0.41 -0.08 0.39 -0.88 0.65 1.00 1.00
β22 -0.71 -0.60 0.17 -0.94 -0.27 1.00 1.00
β23 -0.72 -0.78 0.18 -1.16 -0.45 1.00 1.01
β24 -1.36 -1.09 0.18 -1.45 -0.73 1.00 1.00
β25 -1.42 -1.39 0.19 -1.76 -1.03 1.00 1.00
β26 -1.80 -1.48 0.20 -1.88 -1.12 1.00 1.00
β27 -1.28 -1.12 0.18 -1.47 -0.76 1.00 1.00
β28 -1.15 -1.10 0.18 -1.46 -0.74 1.00 1.01
β29 -0.88 -0.80 0.18 -1.14 -0.45 1.00 1.01
β210 -0.59 -0.55 0.18 -0.91 -0.19 1.00 1.01
β32 0.05 -0.17 0.16 -0.47 0.14 1.00 1.01
β33 -0.31 -0.40 0.17 -0.72 -0.06 1.01 1.03
β34 -0.63 -0.52 0.17 -0.87 -0.20 1.01 1.02
β35 -0.68 -0.63 0.17 -0.95 -0.27 1.00 1.01
β36 -0.48 -0.55 0.17 -0.89 -0.23 1.00 1.01
β37 -0.97 -0.77 0.17 -1.10 -0.44 1.01 1.02
β38 -0.88 -0.92 0.17 -1.23 -0.57 1.01 1.02
β39 -1.03 -1.10 0.18 -1.46 -0.75 1.01 1.02
β310 -0.79 -0.82 0.17 -1.18 -0.50 1.01 1.02
σ2
β1 0.25 0.44 0.16 0.18 0.75 1.03 1.08

σ2
β2 0.50 0.42 0.11 0.24 0.64 1.01 1.04

σ2
β3 0.25 0.33 0.10 0.18 0.53 1.00 1.00
π1 0.33 0.34 0.02 0.31 0.37 1.00 1.00
π2 0.33 0.33 0.01 0.30 0.36 1.00 1.00
π3 0.33 0.33 0.01 0.30 0.36 1.00 1.00

log-like -6158.29 -6160.99 3.86 -6168.75 -6153.86 1.00 1.00
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Figure 5.2: Marginal posterior for all models parameters. Vertical line in-
dicates true value
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Figure 5.3: Traceplots for all models parameters. Horizontal lines indicate
true values. Each MCMC chain is plotted separately
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5.5.1 Model comparison

This section compares different models for the simulated dataset using the
WAIC (see section 5.4). To do so, we fitted models with a varying number
of mixture components from R = 1 to R = 5 to the simulated dataset, with
three mixture components, we used before. Table 5.2 presents the results.

Table 5.2: Bayesian model comparison using WAIC and DIC for simulated
data where βrj ∼ N(βrj−1, σ

2
r)

R pars D pDIC DIC LPD pWAIC1 WAIC1 pWAIC2 WAIC2

1 15 15411 13 15425 15395 16 15427 16 15428
2 29 12916 -945 11971 12891 24 12940 25 12941
3 41 12322 -615 11707 12294 28 12350 28 12350
4 53 12321 -1525 10796 12290 31 12352 30 12351
5 65 12320 -3025 9296 12287 34 12354 32 12352

Here we can see that the model with the lowest WAIC is the model
where R = 3, as for both versions WAIC1=WAIC2=12350 the lowest. The
WAIC therefore correctly identifies the true model. On the other hand,
the table also shows that the DIC is not a good information criterion in
this case. The estimated number of effective parameters (pDIC) is negative
whenever R ≥ 2, that is when mixture models are fitted. This is expected
as the DIC should not be use with singular models (Celeux et al. 2006,
Spiegelhalter et al. 2014) as discussed in section 5.4.

5.5.2 Estimating a model with misspecified random effects

In order to assess the usefulness of the model proposed in this chapter,
we also estimate a model with misspecified distribution of βrj . That is,
we use the same simulated dataset but now fit a model where the occa-
sion random effects by cluster are independent. More precisely, we use
a prior βrj ∼ Normal(0, σ2

βr
) when the data is being generated under
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βrj ∼ N(βrj−1, σ
2
r). Figure 5.4 compares the estimates for some of the

model parameters under both scenarios.

Importantly, the estimates for the cluster effects α and occasion effects
by cluster βrj are very similar under both scenarios. This can be seen in
the upper panels of Figure 5.4 that show the time trends in the cluster ef-
fects by cluster, mean marginal posterior for αr + βrj , for both the correct
and misspecified priors. Regardless of small differences the time trends
are very similar. This is also the case for most model parameters, includ-
ing µ and π. Complete results for all parameters under the misspecified
random effects could be found in Table 5.8 in the Appendix at the end of
the chapter.

In contrast to that, the estimates for σ2
r differ significantly. The bottom

panel in Figure 5.4 shows the marginal posteriors for σ2
r under the correct

and misspecified random effects. It is evident that these distributions are
different, with the estimates of the latter being much larger. In words,
the variances of the occasion effects by cluster are bigger when they are
assumed to be independent. Moreover, the marginal posteriors under the
misspecified model do not include the true values for σ2

r .

Would it be possible to detect this misspecification in real datasets?
Which of these priors fits the data better? To answer this question, we use
the WAIC to compare between them. Table 5.3 presents the WAIC for the
misspecified models. For R = 3 we can see that the WAIC for the misspec-
ified model is 12360 (WAIC1=WAIC2), which is higher than the WAIC for
the model under the correct prior 12350 (again WAIC1=WAIC2) in Table
5.2 . Moreover, this is also the case for all R = 1 to R = 5. That is, regard-
less of the number of mixture components, the WAIC for a model with the
correct prior (Table 5.2) is always lower than the WAIC for a model with
a misspecified prior (Table 5.3). In sum, for the aforementioned simulated
dataset the WAIC allows us not only to identify the number of mixture
components but also the correct distribution of βrj .
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Figure 5.4: Estimated time trends (mean marginal posterior for αr + βrj)
and marginal posterior distributions for σ2

r for simulated data fitted under
both correct (left panels) and misspecified (right panels) priors
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Table 5.3: Bayesian model comparison using WAIC and DIC for simulated
data for model with prior βrj ∼ Normal(0, σ2

βr
) when true model has βrj ∼

N(βrj−1, σ
2
r)

R pars D pDIC DIC LPD pWAIC1 WAIC1 pWAIC2 WAIC2

1 15 15415 15 15430 15398 17 15432 17 15432
2 29 12924 -940 11985 12897 27 12951 27 12952
3 41 12328 -616 11712 12297 32 12360 32 12360
4 53 12327 -3181 9146 12292 35 12362 34 12361
5 65 12326 -3838 8488 12289 37 12364 36 12362

5.6 Case Study: 2009-2013 life satisfaction in New

Zealand

We now estimate the model using life satisfaction in New Zealand over
2009-2013 from the New Zealand Attitudes and Values Survey (NZAVS).
Life satisfaction is an ordinal variable with seven levels: 1 (Strongly dis-
agree) to 7 (Strongly Agree) and it is been recorded for 2564 subjects. This
dataset thus have n = 2564, p = 5 and q = 7. More details of this dataset
could be found in Chapter 3.

We also already analysed this dataset using Frequentist methods (EM
algorithm) in Chapter 3 using a model where the occasion effects βj where
independent and did not vary by cluster. In Bayesian terms, such a model
can be fitted using βj ∼ Normal(0, σ2

β), j = 1 . . . p as prior for the occasions.

5.6.1 Model comparison

We fit the model with varying number of mixture components from R = 1

to R = 6. In this case, we used five chains with over dispersed starting
values and ran the MCMC chain for 7 million iterations. Discarding the
initial 40% draws as burn-in and thinning these chains by 2500, we used
for inference 8400 MCMC draws (5 chains of 1680 each). Table 5.4 presents
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the results.
Firstly, notice that due to label switching the DIC can not be trusted in

this case. For models where R > 2, the number of effective parameters
(pDIC) is negative and therefore the value of the DIC is underestimated.
For the NZAVS data the WAIC decreases monotonically, both for WAIC1
and WAIC2, for all values of R. This means that the model with the lowest
WAIC is the model with six components. This model is not parsimonious
at all as it has 70 parameters. However, we do not choose the model with
R = 6 because as an Bayesian information criteria equivalent to the AIC,
the WAIC will tend to overestimate the number of mixture components.
In fact, as seen in Table 3.9 of Chapter 3, for the NZAVS dataset the AIC
chooses a model with individual row and column effects with 2573 pa-
rameters, that is the least parsimonious model of all considered.

Given this tendency of the WAIC to select models with a large num-
ber of mixture components, just like the AIC, we decide to present the
results for a more parsimonious model as an illustration of the model in
this dataset. We then present the results for the model with R=4, which
has the lowest ICL-BIC, Frequentist information criteria, amongst similar
models considered then (Table 3.9, Chapter 3).
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Table 5.4: Bayesian model comparison using WAIC and DIC for latent
random effects models for the NZAVS data

Model R pars D pDIC DIC LPD pWAIC1 WAIC1 pWAIC2 WAIC2

1 11 37536 19 37555 37505 31 37567 31 37568
2 16 33144 18 33162 33111 33 33176 33 33176
3 18 31436 -3056 28380 31405 31 31467 31 31467

βj ∼ Normal(0, σ2
β) 4 20 30731 -3650 27081 30702 29 30760 29 30760

5 22 30612 -1807 28806 30575 37 30650 38 30651
6 24 30560 -5376 25184 30519 41 30601 41 30602
1 11 37536 19 37555 37505 31 37567 31 37568
2 21 33138 22 33160 33104 34 33172 35 33173
3 28 31426 -3058 28368 31390 36 31463 37 31463

βrj ∼ Normal(0, σ2
βr
) 4 35 30721 -2834 27887 30682 39 30760 39 30760

5 42 30601 -2518 28083 30546 55 30656 55 30656
6 49 30544 -12972 17573 30481 64 30608 64 30610
1 11 37536 19 37555 37505 31 37567 31 37567
2 16 33144 18 33162 33111 33 33177 33 33177
3 18 31436 -3057 28379 31405 31 31467 31 31467

βj ∼ Normal(βj−1, σ
2
β) 4 20 30731 -3651 27080 30702 29 30760 29 30760

5 22 30612 -1325 29287 30575 37 30649 38 30650
6 24 30559 -4414 26145 30510 49 30608 50 30610
1 11 37536 19 37555 37505 31 37567 31 37567
2 21 33138 22 33160 33104 34 33172 34 33173
3 28 31426 -3059 28367 31389 37 31464 37 31464

βrj ∼ Normal(βrj−1, σ
2
βr
) 4 35 30720 -4286 26435 30682 39 30759 39 30760

5 42 30599 -2529 28070 30545 54 30653 54 30653
6 49 30542 -7025 23517 30477 65 30607 66 30609
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Figure 5.5: Estimated time trends for the models with the lowest WAIC
R = 4 and R = 5
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5.6.2 Parameter estimates

Table 5.5 presents the results for the NZAVS data for a model with four
mixture components. For this model, participants in the 2nd cluster have
the highest levels of life satisfaction (α2 = 10.92) and represent about a
fifth of the sample (π2 = 0.19) whereas those in cluster one have the low-
est levels (α1 = 2.8) and are also the smallest cluster (π1 = 0.09). On
the other hand, cluster three is the biggest and has high levels of life
satisfaction (α3 = 8.07, π3 = 0.44). A noteworthy feature of this model
is that the estimated variances of the random effects by cluster, σ2

βr
=

(0.46, 0.42, 0.41, 0.43) are very similar to each other, pointing out that a
more parsimonious alternative might be preferred.

In addition to that, by plotting cluster effects in the linear predictor
overtime (αr+βrj) we can see that they seem to be parallel, confirming that
there is no need to include interactions βrj as suggested by the Frequentist
model comparison in Chapter 3 (Table 3.9) where models with columns
effect only are preferred over model with column effect and interactions.

5.6.3 Classification results

We finally present in Figures 5.6 and 5.7 the classification results for the
model with four components. The former presents the probability that
each respondent belongs to the same cluster over all MCMC chains (Co-
clustering Probabilities) for both the original and clustered data. We can
see that when ordering the respondents by cluster, we are able to visualise
higher co-clustering probabilities within cluster as well as their relative
size, i.e. estimated cluster proportions π = (0.09, 0.19, 0.44, 0.27).

Figure 5.7 on the other hand, shows the distribution of life satisfaction
over 2009-2013 for each of the estimated latent groups. As remarked be-
fore, the 2nd cluster has the highest levels of life satisfaction and the 1st
one the lowest. It is also noticeable that there is not much variation over
time within each cluster, confirming the results we already obtained for
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Table 5.5: Summary statistics for the marginal posteriors and Gelman-
Rubin convergence diagnostic (PSRF) for the NZAVS dataset with R = 4.

95% Credible Interval PSRF
Par Mean SE lower upper Point.est. Upper.C.I.
µ2 1.32 0.10 1.13 1.51 1.00 1.00
µ3 2.56 0.11 2.36 2.79 1.00 1.01
µ4 4.14 0.12 3.92 4.40 1.00 1.01
µ5 6.43 0.13 6.18 6.68 1.00 1.01
µ6 9.97 0.14 9.70 10.23 1.00 1.00
σ2
µ 3.14 0.71 1.92 4.49 1.00 1.00
α1 2.80 0.16 2.50 3.11 1.01 1.01
α2 10.92 0.17 10.57 11.25 1.00 1.00
α3 8.07 0.15 7.76 8.35 1.00 1.01
α4 5.54 0.14 5.28 5.83 1.00 1.00
σ2
α 5.98 1.75 3.43 9.56 1.00 1.00

β12 -0.44 0.16 -0.76 -0.14 1.00 1.01
β13 -0.54 0.16 -0.85 -0.22 1.00 1.01
β14 -0.49 0.17 -0.81 -0.17 1.00 1.01
β15 -0.28 0.17 -0.62 0.03 1.00 1.01
β22 0.13 0.15 -0.15 0.43 1.00 1.01
β23 -0.10 0.15 -0.39 0.19 1.00 1.01
β24 -0.00 0.16 -0.32 0.29 1.00 1.01
β25 0.14 0.16 -0.17 0.47 1.00 1.01
β32 -0.08 0.10 -0.26 0.12 1.00 1.00
β33 -0.10 0.10 -0.30 0.10 1.00 1.01
β34 -0.21 0.10 -0.41 -0.01 1.00 1.01
β35 0.15 0.10 -0.05 0.35 1.00 1.01
β42 -0.40 0.11 -0.61 -0.19 1.00 1.00
β43 -0.21 0.11 -0.42 0.00 1.00 1.01
β44 -0.25 0.11 -0.47 -0.04 1.00 1.00
β45 0.03 0.11 -0.20 0.25 1.00 1.00
σ2
β1 0.46 0.18 0.19 0.83 1.01 1.04
σ2
β2 0.42 0.17 0.16 0.75 1.00 1.00
σ2
β3 0.41 0.17 0.16 0.73 1.02 1.05
σ2
β4 0.43 0.17 0.18 0.76 1.03 1.07
π1 0.09 0.01 0.08 0.10 1.00 1.00
π2 0.19 0.01 0.17 0.21 1.00 1.00
π3 0.44 0.01 0.42 0.47 1.00 1.00
π4 0.27 0.01 0.25 0.29 1.00 1.00

log-like -15628.98 3.72 -15636.43 -15622.10 1.00 1.00
log-post -15670.82 4.18 -15678.97 -15662.88 1.00 1.00
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Figure 5.6: Co-clustering Probabilities (Mean Posterior) in the original and
ordered data for the NZAVS dataset
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the NZAVS data in this and earlier chapters.
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Figure 5.7: Life Satisfaction distribution by estimated cluster
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5.7 Case Study: Variant strains in infant gut bac-

teria

In this section, we identify variant strains of Bacteroides Faecis (B. faecis)
using data from baby stool samples. Variant strains are dominant geno-
types, similar alleles configurations in a given genome, and are identi-
fied comparing sequenced data from the sample to a reference genome.
Although the original shotgun metagenomic data are counts, number of
reads that are equal and differ to a reference genome we use the following
ordinal version

• ”reference”: includes SNV sites where all reads are the same as the
reference (fixed to reference);

• ”segregating” more than 5 reads are equal to reference and more than
5 reads are equal to a different one (segregating site);

• ”non-reference”: all reads for the cell are the same allele which is
different to the reference one (fixed to non-reference).

The data thus comprises an ordinal response with three levels mea-
sured for 1992 sites over 25 occasions in one infant. Figure 5.8 shows a
graphical representation of the this data. More details of this dataset can
be found in Chapter 2.

5.7.1 Model comparison

For the infant gut dataset, we estimate the model for βrj ∼ Normal(0, σ2
βr
)

and βrj ∼ Normal(βrj−1, σ
2
βr
) with a varying number of mixture compo-

nents from R = 1 to R = 4. In this case, we used five chains with over
dispersed starting values and ran the MCMC chain for 3 million iterations.
Discarding the initial 30% draws as burn-in and thinning these chains by
1250, we used for inference a chain with 8400 MCMC draws (5 chains of
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1680 each). In contrast to the previous case study, we relabelled the MCMC
chains using the algorithm proposed by Stephens (2000) for all the models
so that the DIC could also be used. In addition to that, given the patterns
display in the heatmap we only estimate models with occasions and clus-
ter interactions (βrj). Table 5.6 presents both versions of the WAIC and
DIC as well as their components.

We can see that all these Bayesian information criteria decrease mono-
tonically with R, suggesting the least parsimonious models (111 parame-
ters). Notice also that all information criteria suggest a slight preference
for models where βrj are correlated within cluster.

Table 5.6: Bayesian model comparison using WAIC and DIC for latent
random effects models for the infant gut dataset

Distribution for βrj R pars D pDIC DIC LPD pWAIC1 WAIC1 pWAIC2 WAIC2

1 27 41847 27 41874 41799 48 41896 49 41896
Normal(0, σ2

βr
) 2 57 35119 43 35162 35053 66 35184 69 35191

3 84 33531 61 33592 33445 86 33617 91 33627
4 111 33172 75 33246 33068 103 33275 111 33289
1 27 41847 26 41873 41798 49 41895 49 41896

Normal(βrj−1, σ
2
βr
) 2 57 35112 36 35148 35047 64 35176 67 35181

3 84 33526 52 33578 33442 84 33610 87 33617
4 111 33174 66 33239 33073 101 33275 106 33285

Although a better fit for the data, would a model with four variant
strains be more meaningful? Figure 5.9 compares it with a model with
three strains. As it can be seen, the former provides a better fit but their
estimates have higher uncertainty. Similarly to the NZAVS case study, a
frequentist estimation of similar models led to the same conclusion (model
selected by BIC and ICL was R = 3 whereas AIC selected a models with
higher R). In light of this, we choose a model with only three variant
strains.
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Figure 5.9: Estimated time trends for βrj ∼ Normal(βrj−1, σ
2
βr
) models with

R = 3 and 4 for the infant gut bacteria dataset.
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5.7.2 Parameter estimates

Table 5.7 we present the results for the selected model with three strains.
For this model, the smallest strain, lowest proportion in the sample (π2 =

0.05), is also the most stable over time (σ2
βr2

= 0.19). This strain has mostly
segregating sites in all occasions and is represented by the almost com-
pletely white rows in Figure 5.8.

On the other hand, the other two strains are much bigger (π1 = 0.35 and
π3 = 0.60)and have way higher levels of variation over time (σ2

βr1
= 1.46

and σ2
βr3

= 1.6). Although having somewhat parallel patterns, the esti-
mates for αr + βrj for the biggest strain (pi3 = 0.6) cross the cut points
µ a number of times, for instance at occasions 3, 5 and 9. This reflects a
higher variability on the ordinal responses over time on this most preva-
lent strain. The remaining strain (π1 = 0.35) mostly stays at one end
of the ordinal scale but is more likely to move around occasions 2 and
6. Importantly, the estimated variances of the random effects by cluster,
σ2
βr

= (1.46, 0.19, 1.6) are very different and thus highlight the importance
of including occassion-cluster interactions for this dataset.

Table 5.7: Posterior estimates for the model with R = 3 and βrj ∼
Normal(βrj−1, σ

2
βr
) for the infant gut data (84 parameters)

95% Credible Interval PSRF
Par Mean SE lower upper Point.est. Upper.C.I.

µ2 0.51 0.02 0.48 0.54 1.00 1.00
σ2
µ 0.51 0.27 0.19 0.95 1.00 1.00

α1 2.77 0.19 2.40 3.16 1.03 1.06
α2 0.75 0.14 0.50 1.03 1.00 1.01
α3 0.41 0.07 0.27 0.54 1.01 1.01
σ2
α 1.43 0.50 0.70 2.37 1.00 1.00

β12 -0.58 0.22 -1.00 -0.16 1.01 1.04
β13 2.67 0.63 1.58 3.93 1.00 1.00
β14 1.41 0.35 0.76 2.12 1.01 1.02
β15 -0.04 0.25 -0.53 0.45 1.02 1.05

Continued on next page...
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95% Credible Interval PSRF
Par Mean SE lower upper Point.est. Upper.C.I.
β16 -2.03 0.21 -2.44 -1.63 1.02 1.04
β17 -1.74 0.20 -2.18 -1.39 1.02 1.05
β18 -0.92 0.22 -1.35 -0.50 1.02 1.06
β19 -0.58 0.23 -1.02 -0.11 1.02 1.04
β110 1.33 0.36 0.64 2.08 1.00 1.01
β111 3.83 0.66 2.57 5.10 1.00 1.00
β112 4.25 0.79 2.75 5.79 1.00 1.01
β113 4.36 0.86 2.78 6.04 1.00 1.00
β114 3.50 0.65 2.23 4.76 1.00 1.01
β115 4.82 0.88 3.22 6.58 1.00 1.01
β116 4.40 0.93 2.69 6.21 1.00 1.00
β117 3.74 0.66 2.50 5.06 1.00 1.01
β118 2.99 0.51 1.99 3.99 1.00 1.01
β119 2.73 0.49 1.77 3.71 1.01 1.02
β120 4.72 0.93 3.00 6.57 1.00 1.01
β121 5.32 1.04 3.49 7.49 1.00 1.00
β122 4.84 0.92 3.09 6.64 1.00 1.00
β123 4.80 0.96 3.07 6.74 1.00 1.00
β124 4.51 0.83 3.02 6.20 1.00 1.01
β125 3.98 0.84 2.43 5.65 1.01 1.01
β22 -0.04 0.14 -0.30 0.26 1.00 1.00
β23 -0.12 0.17 -0.45 0.22 1.00 1.01
β24 -0.07 0.18 -0.41 0.27 1.00 1.01
β25 0.04 0.18 -0.29 0.41 1.00 1.00
β26 0.14 0.19 -0.22 0.51 1.00 1.00
β27 0.07 0.19 -0.30 0.43 1.00 1.01
β28 0.13 0.19 -0.23 0.50 1.00 1.01
β29 0.05 0.19 -0.33 0.38 1.00 1.01
β210 -0.11 0.18 -0.48 0.23 1.00 1.01
β211 -0.29 0.18 -0.66 0.03 1.00 1.01
β212 -0.38 0.18 -0.75 -0.05 1.00 1.01
β213 -0.40 0.18 -0.76 -0.06 1.00 1.01
β214 -0.40 0.18 -0.74 -0.05 1.00 1.01
β215 -0.41 0.18 -0.74 -0.06 1.00 1.01
β216 -0.43 0.18 -0.77 -0.08 1.00 1.01

Continued on next page...
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95% Credible Interval PSRF
Par Mean SE lower upper Point.est. Upper.C.I.
β217 -0.44 0.18 -0.79 -0.11 1.00 1.01
β218 -0.44 0.18 -0.78 -0.10 1.00 1.01
β219 -0.43 0.18 -0.79 -0.09 1.00 1.01
β220 -0.40 0.17 -0.74 -0.05 1.00 1.01
β221 -0.40 0.18 -0.77 -0.08 1.00 1.00
β222 -0.36 0.18 -0.70 -0.03 1.00 1.01
β223 -0.37 0.18 -0.72 -0.04 1.00 1.01
β224 -0.39 0.18 -0.75 -0.06 1.00 1.01
β225 -0.40 0.19 -0.76 -0.02 1.00 1.00
β32 -0.29 0.09 -0.48 -0.12 1.01 1.02
β33 2.79 0.14 2.52 3.06 1.00 1.00
β34 1.76 0.10 1.56 1.96 1.00 1.01
β35 0.02 0.09 -0.17 0.19 1.01 1.02
β36 -1.50 0.10 -1.69 -1.30 1.00 1.01
β37 -1.55 0.10 -1.74 -1.34 1.00 1.01
β38 -1.00 0.10 -1.18 -0.80 1.00 1.01
β39 -0.50 0.09 -0.69 -0.32 1.00 1.01
β310 0.69 0.09 0.52 0.88 1.00 1.01
β311 5.29 0.37 4.61 6.07 1.00 1.00
β312 7.10 0.83 5.56 8.74 1.00 1.00
β313 7.33 0.99 5.67 9.36 1.00 1.00
β314 7.70 0.96 5.97 9.61 1.00 1.00
β315 8.15 1.04 6.29 10.21 1.00 1.00
β316 6.78 0.80 5.40 8.40 1.00 1.00
β317 7.31 0.83 5.77 8.94 1.00 1.00
β318 7.43 0.94 5.81 9.34 1.00 1.00
β319 6.53 0.65 5.26 7.78 1.00 1.00
β320 5.73 0.46 4.86 6.65 1.00 1.00
β321 8.13 1.10 6.19 10.25 1.00 1.00
β322 9.01 1.34 6.58 11.50 1.00 1.00
β323 9.00 1.47 6.57 12.04 1.00 1.00
β324 8.70 1.26 6.37 11.11 1.00 1.00
β325 7.34 1.15 5.54 9.66 1.00 1.00
σ2
β1 1.46 0.29 0.95 2.04 1.00 1.00

σ2
β2 0.19 0.04 0.12 0.27 1.00 1.01

Continued on next page...
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95% Credible Interval PSRF
Par Mean SE lower upper Point.est. Upper.C.I.
σ2
β3 1.69 0.30 1.21 2.34 1.00 1.01
π1 0.35 0.01 0.33 0.38 1.00 1.01
π2 0.05 0.00 0.04 0.05 1.00 1.00
π3 0.60 0.01 0.57 0.63 1.00 1.01

log-like -16763.02 5.33 -16773.96 -16753.23 1.00 1.00
log-post -16860.69 7.14 -16875.51 -16847.71 1.00 1.00

In the next chapter, we will use latent transitional terms into the for-
mulation of the POM. We called the resulting models, data dependent to
emphasize its dependence to observed lagged responses, as opposed to
the ones presented in this chapter where the linear predictor depended on
latent lagged variables.
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Appendix: Posterior estimates for the misspeci-

fied model

Table 5.8: Convergence results with model with prior βrj ∼ Normal(0, σ2
βr
)

when true model has βrj ∼ N(βrj−1, σ
2
r)

95% Credible Interval PSRF
Par True Mean SE lower upper Point.est. Upper.C.I.
µ2 0.85 0.86 0.04 0.79 0.94 1.00 1.00
µ3 3.04 3.08 0.07 2.95 3.23 1.00 1.00
µ4 3.89 3.90 0.09 3.73 4.06 1.00 1.00
σ2
µ 1.54 0.44 0.83 2.34 1.00 1.00

α1 -3.00 -2.79 0.18 -3.15 -2.46 1.00 1.00
α2 1.00 0.78 0.15 0.47 1.06 1.00 1.01
α3 3.00 2.90 0.15 2.61 3.20 1.00 1.00
σ2
α 1.90 0.60 0.96 3.04 1.00 1.00

β12 -0.08 0.08 0.28 -0.47 0.62 1.00 1.01
β13 -0.05 -0.23 0.31 -0.84 0.36 1.01 1.03
β14 0.05 -0.03 0.28 -0.60 0.51 1.00 1.00
β15 0.06 -0.39 0.32 -1.03 0.22 1.00 1.02
β16 0.19 -0.23 0.30 -0.80 0.40 1.01 1.01
β17 0.27 -0.22 0.31 -0.84 0.38 1.00 1.01
β18 0.44 0.09 0.27 -0.41 0.66 1.00 1.00
β19 0.54 0.56 0.27 0.05 1.09 1.00 1.01
β110 0.41 -0.14 0.30 -0.80 0.40 1.00 1.00
β22 -0.71 -0.54 0.19 -0.90 -0.16 1.00 1.01
β23 -0.72 -0.65 0.19 -1.04 -0.27 1.01 1.02
β24 -1.36 -0.98 0.20 -1.36 -0.58 1.00 1.01
β25 -1.42 -1.29 0.21 -1.67 -0.85 1.00 1.01
β26 -1.80 -1.42 0.21 -1.83 -1.00 1.00 1.01
β27 -1.28 -0.95 0.20 -1.33 -0.54 1.00 1.02
β28 -1.15 -1.01 0.20 -1.42 -0.62 1.00 1.01
β29 -0.88 -0.68 0.20 -1.06 -0.30 1.00 1.01
β210 -0.59 -0.40 0.20 -0.78 -0.02 1.00 1.01
β32 0.05 0.00 0.18 -0.36 0.32 1.00 1.00

Continued on next page...
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95% Credible Interval PSRF
Par True Mean SE lower upper Point.est. Upper.C.I.
β33 -0.31 -0.23 0.18 -0.59 0.12 1.00 1.00
β34 -0.63 -0.34 0.19 -0.72 0.02 1.00 1.00
β35 -0.68 -0.47 0.19 -0.84 -0.09 1.00 1.00
β36 -0.48 -0.30 0.19 -0.68 0.06 1.00 1.00
β37 -0.97 -0.58 0.19 -0.97 -0.20 1.00 1.00
β38 -0.88 -0.70 0.20 -1.06 -0.30 1.00 1.00
β39 -1.03 -0.96 0.20 -1.34 -0.54 1.00 1.00
β310 -0.79 -0.57 0.19 -0.94 -0.19 1.00 1.00
σ2
β1 0.25 0.45 0.15 0.22 0.76 1.03 1.09

σ2
β2 0.50 0.95 0.25 0.54 1.45 1.01 1.04

σ2
β3 0.25 0.61 0.18 0.31 0.98 1.00 1.00
π1 0.33 0.34 0.01 0.31 0.37 1.00 1.00
π2 0.33 0.33 0.01 0.30 0.36 1.00 1.00
π3 0.33 0.33 0.01 0.30 0.36 1.00 1.00

log-like -6158.29 -6164.14 4.79 -6173.32 -6154.75 1.00 1.00
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Chapter 6

Data dependent models

6.1 Latent transitional models

In this chapter, we develop a latent transitional model that is an extension
of the Proportional Odds model (McCullagh 1980) and includes a mix-
ture of first-order transitional terms to account for the repeated measures
correlation. The proposed model-based clustering model thus includes
both observed (lagged response) and latent covariates (cluster member-
ship). As noted in the literature review, these are also known as Markov
transition or latent transition models and have been proposed by several
authors (Frydman 2005, Pamminger et al. 2010, Frühwirth-Schnatter et al.
2012, Cheon et al. 2014). Unlike these however, the approach developed
in this chapter models explicitly the ordinal nature of the response by us-
ing cumulative distribution functions while also allowing for time-varying
transition probabilities. We estimate the model within a Bayesian setting
using a MCMC scheme and block-wise Metropolis-Hastings sampling.

129
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6.2 Model

Let Y be an ordinal response with q levels measured over n subjects on
p occasions, with indexes i, j, k for subjects, occasions, and ordinal levels,
respectively. Suppose that subjects come from latent cluster r with proba-
bility πr (r = 1, . . . , R;

∑R
r=1 πr = 1) and let θrk′kj = P (yij = k|i ∈ r, yi(j−1) =

k′). We extend the POM (McCullagh 1980) to include a latent cluster, a pre-
vious response and occasion effects. We model the cumulative probability
of each ordinal outcome as

Logit[P (yij ≤ k|i ∈ r, yi(j−1) = k′)] =µk − αr − βk′ − γj (6.1)

or alternatively:

yij | i ∈ r, yi(j−1)=k′ ∼ Categoricalq(θrk′.j) ,
q∑

k=1

θrk′kj = 1

θrk′kj =
1

1 + e−(µk−αr−βk′−γj)
− 1

1 + e−(µk−1−αr−βk′−γj)

i = 1, . . . , n

j = 2, . . . , p

r = 1, . . . , R

µk−1 < µk; k = 0, . . . , q; µ0 = −∞;µ1 = 0 and µq = ∞

βq = 0; k′ = 1, . . . , q

γ2 = 0; j = 2, . . . , p

(6.2)

That is, each response yij is the realization of a categorical distribution
with probabilities θrk′1j, . . . θrk′qj . Notice that the linear predictor for the
probability θrk′kj contains both observed (previous response yi(j−1) and oc-
casion j) and unobserved covariates (cluster membership for subject i).
The parameter µk is the cut point for each ordinal category, with the same
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parametrisation used in Chapter 5 with µ1 = 0. The parameter αr is the ef-
fect of the latent cluster r, the parameter βk′ the effect of having an outcome
k′ at the previous occasion and the parameter γj the effect of occasion j.
The choice of a negative sign preceding αr, γ and βk′ implies that increases
in these coefficients increase the probability of observing outcomes in the
upper-end of the ordinal scale (closer to q than to 1). Note finally that we
do not model the first response and instead condition on its value.

6.2.1 Likelihood

Given the dependence on the previous outcome, we can factorize the like-

lihood to separate the contribution of the first occasion, Y = (Y1,
∼
Y ) where

Y1 = {Yi1,∀i}. Assuming independence over the rows and independence
over the columns conditional on the rows and the previous response, the
model’s likelihood for the transitions (j ≥ 2) becomes

L(
∼
Y |µ, α, β, π, yi(j−1)) =

n∏
i=1

R∑
r=1

πr

p∏
j=2

q∏
k′=1

q∏
k=1

θ
I(yij=k,yi(j−1)=k′)

rk′kj (6.3)

where: πr ≥ 0,
∑R

r=1 πr = 1 and I(.) is an indicator function equal to 1 if
the argument is true, and 0 otherwise.

6.2.2 Bayesian Estimation

The model is completed with the following weakly informative priors:
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µ | σ2
µ

iid∼ OS[Normal(0, σ2
µ)], µk > µk−1; k = 0 . . . q; µ0 = −∞;µ1 = 0;µq = ∞

αr | σ2
α

iid∼ Normal(0, σ2
α), r = 1, . . . , R;

βk′ | σ2
β

iid∼ Normal(0, σ2
β), k

′ = 1, . . . , q; βq = 0

γj | σ2
γ

iid∼ Normal(0, σ2
γ), j = 2, . . . , p; γ2 = 0

σ2
µ ∼ Inverse Gamma(aµ, bµ)

σ2
α ∼ Inverse Gamma(aα, bα)

σ2
β ∼ Inverse Gamma(aβ, bβ)

σ2
γ ∼ Inverse Gamma(aγ, bγ)

π ∼ Dirichlet(ψ), r = 1 . . . R

(6.4)

where OS=Order Statistics and the hyperparameters are set to: aµ = aα =

aβ = aγ = 4, bµ = bα = bβ, bγ = 0.5 , and ψ = 1.5.
In words, we assign Truncated Normal priors for the cut-off points µ,

Normal priors centered on zero and with an unknown variance for α, γ
and β, a Dirichlet prior for the mixing probabilities π, and Inverse Gamma
priors for the unknown variances σ2

µ, σ2
α, σ2

γ and σ2
β . Figure 6.1 shows a

graphical representation of the model and all priors.
Given the likehood (equation 6.3), the posterior distributions for the

model parameters are not available in closed form. To perform the poste-
rior computation, we use a Markov chain Monte Carlo (MCMC) sampling
scheme. In particular, we use a Metropolis-Hastings algorithm (Metropo-
lis et al. 1953, Hastings 1970) with random walk proposals to sample blocks
of parameters separately. With the exception of the transitional term β′

k

and column effects βj , the model in (6.1) has a similar parameter vector
than the latent random effects model in Chapter 5. We therefore use a sim-
ilar Metropolis-Hasting scheme to simulate the target distribution. Pro-
posals and MH ratios could be found in the Appendix at the end of the
chapter.
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Figure 6.1: Graphical representation of the model ( 6.2) and priors ( 6.4).

6.2.3 MCMC Convergence

Similarly to the previous chapter, we use the potential scale reduction fac-
tor (PSRF), or Gelman-Rubin convergence diagnostic (Gelman & Rubin
1992), to assess convergence of the MCMC chain. Lack of convergence
is indicated by PSRF values much higher than one. As remarked before,
the Gelman-Rubin convergence diagnostic uses parallel chains to monitor
convergence, between-chain and within-chain variances, and thus is very
helpful in detecting where chains have, or have not, converged to the same
mode.
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6.2.4 Model Comparison

We also use the Widely Applicable Information Criterion (WAIC) (Watan-
abe 2009) for model comparison in this chapter. See section 5.4 in Chapter
5 for formulas to calculate the WAIC and its components: log predictive
density (LPD) and number of effective parameters (p).

Additionally, we also look at the entropy of the resulting clustering. As
such this is a different model comparison criterion, since entropy measures
focus on the degree of separation of the mixture components and not the
predictive density like the WAIC, and AIC in the Frequentist approaches.
The entropy of the classification probabilities thus provides an alternative
way to compare among candidate models.

Entropy for classification probabilities

In all mixture models, each observation has some probability of coming
from a mixture component. Denoting s as an MCMC draw and keeping
the notation used earlier in the chapter, we compute classification proba-
bilities ẑir as

.

ẑir = Es[z
s
ir|Y, ϕs, πs] =

πs
r

∏p
j=2

∏q
k′=1

∏q
k=1 θ

s,I(yij=k)
rk′kj∑R

a=1 π
s
a

∏p
j=2

∏q
k′=1

∏q
k=1 θ

s,I(yij=k)
ak′kj

(6.5)

That is, ẑir is the posterior mean of the classification probabilities zsir over
the MCMC chain. The latter is in turn calculated using the parameters
ϕs, πs at each s. Note that, for each s this is the same formulae in the E-step
of the EM algorithm used before (equation 3.20 in chapter 3).

Given these classification probabilities ẑir we calculate its associated
entropy (EN) according to

EN =
n∑

i=1

R∑
r=1

ẑirlog(ẑir) (6.6)
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Importantly, the entropy for a given model is also its estimated Kullback-
Leibler (KL) distance from the true model, i.e. a measure of the distance
between these two probability distributions. In the context of mixture
models, it also can be interpreted as a proxy for the degree of separation
of the mixture components. That is, mixtures with well-separated compo-
nents will have lower entropy, high estimated classification probabilities
and as a result crisp allocation of subjects to clusters. On the contrary,
the reverse is also true, not so well-separated mixture components will be
associated with higher entropy and fuzzy clustering.

Note also that for mixture models, the maximum value of the entropy
increases with the number of mixture components (R). That is, the entropy
of the least informative classification probabilities changes according to R
and it is equal to ẑir = 1/R, ∀r, i. With two components, for instance, the
least informative ẑir = (0.5, 0.5),∀i. Such classification probabilities are the
ones we expect if would randomly allocate subjects i to clusters r.

In light of the above, we also calculate the ratio of the estimated en-
tropy of a mixture model and the entropy of a model, with the same n
and R, that has the least informative classification probabilities, i.e. the
entropy of a model that allocates observations to clusters randomly. We
call this quantity relative entropy and informally interpret it as a proxy for
the KL distance of the model from chance. That is, the relative entropy
provides a proxy of how far the estimated clustering is from a random
classification.

6.3 Simulations

We first validate the model using simulated data. We simulate a medium
size dataset with 600 rows, 15 columns and five ordinal categories from a
mixture with three components with equal proportions. This model has 29
parameters. We used five chains with over-dispersed starting values and
ran 3.6 million iterations for each chain. Discarding the initial 25% draws
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as burn-in and thinning these chains by 4000, we used for inference 3375
MCMC draws.

Table 6.1 shows the true values of model parameters as well as sum-
maries (mean, SE and credible intervals) of the estimated marginal pos-
teriors. This table also shows the Gelman-Rubin convergence diagnostic
(point estimate and upper confidence interval for the PSRF) which are all
close to 1 and well below the threshold value of no convergence of 1.2. As
it can be seen, the model is able to able to recover all parameters as the
95% credible intervals for all 29 parameters include the true values. The
table also shows that this also holds true for the log-likelihood and the
joint posterior.

In addition to that, Figure 6.2 shows the posterior classification prob-
abilities by the estimated model. All classification probabilities are very
close to one (0.997 overall median) which implies that the clustering pro-
vided by the model is crisp, ie individuals are assigned to an estimated
cluster with very high probability.

With regard to model comparison, Table 6.2 present the WAIC and en-
tropy measures (median and relative) for models with R = 1 . . . 4. All
these measures, choose the true model with R = 3 which has both the
lowest entropy (-59) and relative entropy (0.09). This reassures us that the
proposed measures can identify the most appropriate model among sev-
eral candidates model with different number of mixture components.



6.3. SIMULATIONS 137

Table 6.1: Summary statistics for the marginal posteriors and Gelman-
Rubin convergence diagnostic (PSRF) for the simulated data

95% Credible Interval PSRF
Par True Mean SE lower upper Point.est. Upper.C.I.
µ2 1.96 1.96 0.05 1.86 2.06 1.00 1.00
µ3 3.58 3.56 0.06 3.45 3.69 1.00 1.00
µ4 5.55 5.55 0.08 5.40 5.71 1.00 1.00
σ2
µ - 3.07 0.99 1.62 4.99 1.01 1.02
α1 2.77 2.87 0.13 2.63 3.11 1.00 1.00
α2 0.96 1.02 0.13 0.75 1.27 1.00 1.02
α3 4.77 4.86 0.12 4.66 5.08 1.00 1.00
σ2
α 2.00 2.48 0.77 1.32 3.91 1.00 1.00
β1 -1.67 -1.72 0.11 -1.92 -1.51 1.00 1.01
β2 -1.44 -1.48 0.09 -1.67 -1.31 1.00 1.00
β3 -0.96 -1.07 0.09 -1.22 -0.89 1.00 1.00
β4 -0.96 -1.04 0.08 -1.22 -0.90 1.00 1.00
σ2
β 0.50 1.22 0.38 0.61 1.87 1.00 1.00
γ3 1.01 0.84 0.11 0.63 1.05 1.00 1.02
γ4 1.25 1.09 0.11 0.88 1.31 1.00 1.01
γ5 1.22 1.10 0.11 0.89 1.31 1.00 1.01
γ6 1.96 1.88 0.11 1.66 2.09 1.00 1.00
γ7 3.21 3.11 0.12 2.89 3.35 1.01 1.02
γ8 1.32 1.14 0.11 0.91 1.35 1.00 1.01
γ9 1.76 1.62 0.11 1.42 1.84 1.01 1.04
γ10 -0.26 -0.34 0.11 -0.56 -0.15 1.00 1.02
γ11 1.34 1.28 0.11 1.06 1.48 1.00 1.01
γ12 1.73 1.65 0.11 1.44 1.85 1.00 1.01
γ13 0.88 0.81 0.11 0.59 1.03 1.00 1.00
γ14 1.41 1.29 0.11 1.06 1.48 1.00 1.00
γ15 0.75 0.85 0.11 0.64 1.09 1.00 1.00
σ2
γ 1.00 1.37 0.27 0.96 1.96 1.00 1.01
π1 0.33 0.35 0.02 0.32 0.38 1.00 1.00
π2 0.33 0.35 0.02 0.32 0.38 1.00 1.00
π3 0.33 0.30 0.01 0.27 0.33 1.00 1.01

log-like -10649.99 -10651.34 3.80 -10658.36 -10644.02 1.00 1.02
log-post -10743.65 -10712.52 3.95 -10720.66 -10705.70 1.00 1.02
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Median Max Entropy Relative
R pars LPD pWAIC1 WAIC1 pWAIC2 WAIC2 Entropy for R mixture Entropy

(A) (B) (A/B)
1 24 22669.1 22.5 22714.0 22.5 22714.1 - - -
2 27 21740.3 30.0 21800.3 30.1 21800.5 -60.8 -415.9 0.15
3 29 21276.7 25.9 21328.6 26.0 21328.8 -59.0 -659.2 0.09
4 31 21275.0 27.1 21329.1 27.1 21329.1 -161.8 -831.8 0.19

Table 6.2: Bayesian model comparison using WAIC for the simulated data
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Figure 6.2: Posterior classification probabilities and entropy distribution
for the simulated data
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6.4 Case Study: 2001-2011 self reported health

status from HILDA

In this section, we fit the model to self reported health status (SRHS) from
the HILDA dataset. In short, SRHS is an ordinal variable with five levels
(”Poor”, ”Fair”, ”Good”, ”Very Good” and ”Excellent”) measured for 4660
individuals over 2001-2011. Detailed information about this dataset can be
found in chapter 2. We used five chains with over dispersed starting val-
ues and ran 3.6 million iterations for each chain. Discarding the initial 25%
draws as burn-in and thinning these chains by 8000, we used for inference
1690 MCMC draws.

Table 6.3: Bayesian model comparison using WAIC for the HILDA dataset

Median Max Entropy Relative
Entropy for R mixture Entropy

R pars LPD pWAIC1 WAIC1 pWAIC2 WAIC2 (A) (B) (A/B)
1 20 100683.6 26.2 100736.1 26.4 100736.4 - - -
2 23 87249.4 28.2 87305.9 28.3 87305.9 -551.3 -3230.1 0.171
3 25 85998.3 29.6 86057.4 29.6 86057.5 -811.6 -5119.5 0.159
4 27 85021.6 29.9 85081.4 30.0 85081.5 -999.2 -6460.1 0.155
5 29 84771.1 32.3 84835.6 32.3 84835.8 -1131.6 -7500.0 0.151
6 31 84599.7 32.2 84664.1 32.3 84664.3 -1867.0 -8349.6 0.224

Table 6.3 shows the results of model comparison. For each fitted model
it presents: number of clusters (R), total number of parameters (Pars),the
two versions of the WAIC, WAIC2 and their corresponding components
(LPD, p, p2). Both versions of the WAIC suggest the same conclusion, the
model with six components seems to provide the best fit. In contrast to
that, the relative entropy is the lowest in a model with R = 5. Guided by
parsimony we choose the latter model with 5 mixture components for the
HILDA dataset.

As in the previous chapter, we post-process the MCMC chains using
the Stephens relabelling algorithm (Stephens 2000) to remove label switch-
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Table 6.4: Summary statistics for the posteriors and Gelman-Rubin con-
vergence diagnostic (PSRF) for R=5

95% Credible Interval PSRF
Par True Mean SE lower upper Point.est. Upper.C.I.
µ2 3.73 0.06 3.62 3.86 1.00 1.00
µ3 7.40 0.07 7.26 7.54 1.00 1.00
µ4 11.28 0.08 11.13 11.44 1.00 1.00
σ2
µ 6.13 2.15 3.02 9.89 1.00 1.00
α1 3.80 0.13 3.55 4.06 1.00 1.01
α2 5.97 0.09 5.78 6.15 1.00 1.00
α3 8.12 0.09 7.96 8.30 1.00 1.01
α4 10.20 0.09 10.02 10.37 1.00 1.00
α5 12.47 0.09 12.29 12.65 1.00 1.00
σ2
α 7.07 1.84 4.13 10.44 1.00 1.00
β1 -4.75 0.11 -4.96 -4.53 1.00 1.00
β2 -3.25 0.06 -3.37 -3.12 1.00 1.00
β3 -2.07 0.05 -2.18 -1.97 1.00 1.00
β4 -1.04 0.05 -1.13 -0.95 1.00 1.00
σ2
β 2.61 0.84 1.37 4.15 1.00 1.00
γ3 -0.04 0.04 -0.12 0.05 1.00 1.00
γ4 -0.09 0.04 -0.17 -0.00 1.00 1.01
γ5 -0.20 0.04 -0.29 -0.11 1.00 1.01
γ6 -0.11 0.04 -0.19 -0.03 1.00 1.01
γ7 -0.16 0.04 -0.25 -0.07 1.00 1.00
γ8 -0.33 0.04 -0.42 -0.25 1.00 1.00
γ9 0.02 0.04 -0.07 0.10 1.00 1.00
γ10 -0.51 0.05 -0.61 -0.43 1.00 1.00
γ11 -0.46 0.04 -0.55 -0.38 1.00 1.01
σ2
γ 0.34 0.08 0.20 0.51 1.00 1.00
π1 0.03 0.00 0.03 0.04 1.00 1.01
π2 0.15 0.01 0.13 0.16 1.01 1.02
π3 0.38 0.01 0.37 0.39 1.00 1.01
π4 0.35 0.01 0.33 0.36 1.00 1.01
π5 0.09 0.00 0.08 0.10 1.00 1.01

log-like -42401.67 3.42 -42408.80 -42395.74 1.00 1.01
log-post -42460.76 3.68 -42468.00 -42453.80 1.00 1.01
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ing. Summary statistics for the posterior distributions, along with the
PSRF convergence diagnostic, of the parameters of this model are shown
in Table 6.4. Also, marginal posterior for all parameters and their corre-
sponding traceplots are shown in Figure 6.3.

Next, we check for the fuzziness of the estimated cluster memberships
probabilities for this model with five clusters. Figure 6.4 displays the co-
clustering probabilities for the model in the original data (top panel) and
ordered by cluster (bottom panel). Co-clustering probabilities are very
high, around 80% in all clusters. In addition to that, Figure 6.5 shows
the distribution of the estimated classification probabilities. As it can be
seen, the membership probabilities are pretty high for all clusters with a
overall median of 0.967%. In sum, a model with five clusters does not
only provide the best fit among R = 1 . . . 6 but also provides a very crisp
allocation of individuals to the estimated clusters.

What do these estimated clusters look like? Figure 6.6 shows heatmaps
of the estimated transition probabilities by cluster θ̂rk′kj along with the
cluster effects α̂r and proportions π̂r for the selected model with five clus-
ters. We calculate θ̂rk′kj evaluating (6.2) at the mean marginal posterior
of each model parameter, i.e. µ̂, α̂, β̂,γ and π̂. This figure also includes
the empirical transition probabilities for all data (top left corner), that is
the year-to-year empirical probabilities averaged over 2001-2011. Starting
with this latter heatmap, we could see that most of the transitions hap-
pened at or nearby the diagonal. Thus, individuals tend to report a very
similar health status to the one they reported previously.

In contrast to that, the rest of heatmaps in Figure 6.6 show markedly
different patterns. Firstly, the almost vertical shapes in these transition
probabilities reflect the nearby or local nature of the transitions in this
dataset. This means that regardless of their starting SRHS, individuals
tend to move to nearby categories only. We already commented on the
stability of the SRHS when looking at the raw data in chapter 2 but it
interesting to see that the model is able to capture this characteristic.
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Figure 6.3: Relabelled MCMC output for HILDA (R = 5)
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Figure 6.4: Co-clustering probabilities for HILDA R = 5
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Figure 6.5: Distribution of the classification probabilities by cluster (R = 5)
for HILDA. Overall median classification probability in red

Secondly, the estimated clusters are formed by respondents with simi-
lar SRHS levels. For example, individuals in cluster 1, α̂1 = 3.8 and 3% of
the total, have transitions in the lower end of the ordinal category (”Poor”
and ”Fair”). Respondents in cluster 2, α̂2 = 6 and 5% of the total, are
more neutral about their health status as they have transitions over the
”Fair” and ”Good” categories. Clusters 3 and 4, α̂3 = 8 and α̂4 = 10.2,
are formed by individuals that are more positive about their SRHS with
transitions over the middle-categories (”Fair”, ”Good” and ”Very Good”).
Importantly, these two latter clusters together are about half of the total
(π̂3 = 0.38 and π̂4 = 0.35). Individuals in cluster 5, α̂5 = 12.5, represent
about 9% of the total and are very positive about their SRHS, having only
transitions between the ”Good” and ”Very Good” levels.

In addition to the above, the heatmaps also provide information on
SRHS trends over time within each cluster. Transitions above the diagonal
imply a worsening SRHS, higher probability of reporting a lower health
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Figure 6.6: Estimated transition matrices by cluster over 2001-2011. Rows
add to 1
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status in the current period. Complementary, transitions below the diag-
onal imply an improving health status between occasions. In this regard,
SRHS worsens in clusters 1 and 2 and improves in clusters 4 and 5. Cluster
3 has both types of respondents, i.e. estimated transitions in these clusters
are both below and above the diagonal.

Finally, we present the distribution of SRHS by cluster and year in Fig-
ure 6.7. We also present the distribution of SRHS for all data for compar-
ison. In this plot, we can see the different profiles of the SRHS distribu-
tion for each cluster. Clusters 1 and 2 are formed by people that have a
negative/neutral perception of their health status (”Poor” and ”Fair” cat-
egories), people in cluster 3 position their SRHS exactly at the middle of
the ordinal scale (”Good”), while respondents in the remaining clusters
are way more positive about their health status. Cluster 5 represents, for
instance, the extreme of positiveness of SRHS as respondents in these are
extremely satisfied with their health status and have responses only in
”Very Good” and ”Excellent” categories. On the other hand, this figure
also shows the temporal variations on the reported health status. Like-
wise in the heatmaps, SRHS gets worse over time in clusters 1 and 2
since these respondents tend to move towards the lower-end of the ordi-
nal scale (”Poor”). On the other hand, SRHS improves over time in cluster
5 where the SRHS distribution moves towards the upper-end categories
(”Very Good” and ”Excellent”). Lastly, in clusters 3 and 4 SRHS moves
towards the middle category (”Good”) neither worsening nor improving
but getting more ”central”.

Similarly to Chapter 5, the model proposed in the present chapter as-
sumes that the number of mixture components is fixed, that is models are
conditional on the number of mixture components R. We proceed to re-
lax this assumption in the next chapter using a Dirichlet Process Mixture
within a Bayesian Non-Parametric (BNP) framework. We show that this
BNP model is tractable, i.e. is easily computed using MCMC standard
methods.
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Appendix: MH scheme for the latent transitional

model

Proposals

Recall the parameter vector Ω = (ϕ, π) where ϕ = (µ, α, β, γ, σ2
µ, σ

2
α, σ

2
β, σ

2
γ)

for the model developed in this chapter (equation 6.1). We first choose
initial values for these parameters and then use random walk proposals to
update them.

µ′
k | µk−1, µk, µk+1 ∼ U [ max(µk − τ, µk−1), min(µk + τ, µk+1)]

k = 2, . . . , q − 1, µ0 = −∞, µ1 = 0, µq = ∞

α′
r | αr ∼ Normal(αr, σ

2
αp) r = 1 . . . R, α1 = 0

β′
k′ | βk′ ∼ Normal(βk′ , σ2

βp) k′ = 1 . . . q, βq = 0

γ′j | γj ∼ Normal(γj, σ2
γp) j = 3 . . . p, γ2 = 0

logit(w′) | logit(w) ∼ Normal(logit(w), σ2
πp)

w = πr1/(πr1 + πr2) r1, r2 ∈ 1 . . . R

π′
r1 = w′(πr1 + πr2)

π′
r2 = (1− w′)(πr1 + πr2)

log(σ′2
µ ) | log(σ2

µ) ∼ Normal(log(σ2
µ), σ

2
σµp)

log(σ′2
α ) | log(σ2

α) ∼ Normal(log(σ2
α), σ

2
σαp)

log(σ′2
β ) | log(σ2

β) ∼ Normal(log(σ2
β), σ

2
σβp)

log(σ′2
γ ) | log(σ2

γ) ∼ Normal(log(σ2
γ), σ

2
σγp)

We use the following step sizes: τ = 0.25, σ2
αp = 0.25, σ2

βp = 1, σ2
πp = 0.1,

σ2
σµp = log(4), σ2

σαp = log(8), σ2
σβp = log(1.5) and σ2

σγp = log(1.5). Follow-
ing Roberts et al. (1997), step sizes have been tuned so that the acceptance
rates are around 20%.
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Acceptance Probabilities (Metropolis-Hastings ratio)

Updates for µ

Choose a µk for k = 2, . . . , q − 1 at random and sample µ′
k from proposal

q(µ′
k|µk−1, µk, µk+1) and accept with probability

r = min
[
1,
P (Y |µ′, α, β, π)P (µ′|σ2

µ)

P (Y |µ, α, β, π)P (µ|σ2
µ)

× min(µk + τ, µk+1)− max(µk − τ, µk−1)

min(µ′
k + τ, µk+1)− max(µ′

k − τ, µk−1)

]
where µ = (µ1, . . . , µk, , . . . , µq−1), µ′ = (µ1, . . . , µ

′
k, , . . . , µq−1) for k = 1, . . . , q−

1 and µ1 = 0, µ0 = −∞ , µq = ∞.

Updates for α

Choose a αr for r = 1, . . . , R at random and sample α′
r from proposal

q(α′
r|αr) and accept with probability

r = min
[
1,
P (Y |µ, α′, β, γ, π)P (α′|σ2

α)

P (Y |µ, α, β, γ, π)P (α|σ2
α)

]
Where α = (α1, . . . , αr, , . . . , αR) and α′ = (α1, . . . , α

′
r, , . . . , αR).

Updates for β

Choose a k′ from k′ = 1, . . . , q at random and sample β′
k′ from proposal

q(β′
k′|βk′) and accept with probability

r = min

[
1,
P (Y |µ, α, β′, γ, π)P (β′|σ2

β)

P (Y |µ, α, β, γ, π)P (β|σ2
β)

]
Where β = (β1, . . . , βk′ , , . . . , 0) and β′ = (β1, . . . , β

′
k′ , . . . , 0).

Updates for γ

Choose a j from j = 3, . . . , p at random and sample γ′j from proposal
q(γ′j|γj) and accept with probability

r = min
[
1,
P (Y |µ, α, β, γ′, π)P (γ′|σ2

γ)

P (Y |µ, α, β, γ, π)P (γ|σ2
γ)

]
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Where γ = (0, 0, . . . , γj, , . . . , γp) and γ′ = (0, 0, . . . , γ′j, , . . . , γ
′
p).

Updates for σ2
µ, σ2

α, σ2
β and σ2

γ

Given σ2
µ, sample from σ′2

µ proposal q(σ′2
µ |σ2

µ) and accept with probability

r = min
[
1,
P (β|σ′2

µ )P (σ
′2
µ )

P (β|σ2
µ)P (σ

2
µ)

×
σ2
µ

σ′2
µ

]
Similarly for σ2

α, σ2
β and σ2

γ .

Updates for π

Given π sample π′ from q(π′|π) and accept with probability

r = min
[
1,
P (Y |µ, α, β, π′)P (π′)

P (Y |µ, α, β, π)P (π)
× w′(1− w′)

w(1− w)

]
where π = (π1, . . . , πr1, . . . , πr2, . . . , πR), π′ = (π1, . . . , π

′
r1, . . . , π

′
r2, . . . , πR) ,

and w = πr1/(πr1 + πr2), w′ = π′
r1/(π

′
r1 + π′

r2).

Notice that in the case of α, β and γ the proposal density q(.) ∼ Normal(.)
is symmetric and thus cancels out from the MH ratio. Updates for σ2

µ,
σ2
α, σ2

β , σ2
γ and π involve transformations so that a Jacobian included. The

proposal for µ is not symmetric and thus it can not be dropped from the
MH ratio.



Chapter 7

Bayesian Non-Parametric models

7.1 Introduction

This chapter develops Bayesian Non-Parametric (BNP) models for model-
based clustering in repeated ordinal data. A more detailed discussion and
applications could be found at Mitra & Müller (2015), Hjort et al. (2010)
whereas more mathematical treatments are given by Ghosh & Ramamoor-
thi (2003), Phadia (2013).

A parametric model is a model that belongs to a family of finite di-
mensional models, that is a model that has a finite-dimensional parameter
space. Let f be a function with parameter θ, then a parametric model is
any of the family S = {fθ : θ ∈ IRd}, where d is the cardinality of θ. Given
that the true f is unknown, misspecification of this function is always a
danger when using parametric models.

In contrast to that, a non-parametric (NP) model is a model that has a
infinite-dimensional parameter space. That is, the parameter of the model
is a set that has infinite elements. For instance, the space of positive func-
tions v on the real line S = {v(x) : v(.) > 0, x ∈ IR} has infinite dimension.

Any non-parametric model can be formulated as a semi-parametric
model by separating its infinite dimensional parameter into infinite and
finite parts. Let θ be the infinite dimensional parameter , we can always

151
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re-express it as θ = (θ1, θ2), where θ1 ∈ IRd, and θ2 ∈ S an infinite dimen-
sional set. Non-Parametric Frequentist inference usually treats infinite-
dimensional parameters as nuisance and leaves them unspecified, estimat-
ing only the finite-dimensional parameters. For instance, the well-known
proportional hazards model, (Cox 1972):

λ(t, x) = λ0(t)exp(x′β)

leaves the baseline hazard λ0(t) unspecified and focuses only on the es-
timation of β, whose dimension is equal to the number of covariates (x).
Note that λ0(t) belongs to a space of functions such that λ0(.) > 0 and is
thus an infinite dimensional parameter.

In contrast to this, BNP models place a prior for the infinite dimen-
sional parameter and therefore provide a full probabilistic description of
the model. Putting priors on infinite dimensional objects is of course not
a trivial task. The development of the Dirichlet Process prior however
provided a practical solution (Ferguson 1973). Technically, a BNP model
is a probability model on infinite dimensional probability spaces. More
precisely, given a measurable space (Ω,X ), where Ω is a set and X is
a σ-algebra on Ω, a BNP model assigns a prior to the probability space
(Ω,X , P ). Here P is a measure that satisfies the axioms of probability. No
theoretical results will be proven in this chapter so we will not use the
above technical terminology when referring to the BNP models.

In this thesis, we are interested in using BNP models to make infer-
ence on probability distributions, followed by classification, and thus a
BNP prior could also be seen as a random probability measure, that is a
probability measure on a collection of distribution functions (Müller et al.
2015). In practice, this random probability measure is centered at a given
parametric family and thus provides more flexibility and a more robust
inference against misspecification of the parametric family. This centering
family is known as the centering measure and has the role of guiding ”the
posterior distribution when the data are sparse, but allows the posterior
to adapt locally where the data are plentiful” (Jara et al. 2008).
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7.2 Dirichlet Process

Dirichlet Process (DP) Definition

Given M > 0, a probability measure G0 with support S and any measur-
able finite partition {B1, B2 . . . , Bk} of S, Ferguson (1973) showed that a
Dirichlet Process DP (M,G0) is a random probability measure G such that

(G(B1), G(B2), . . . , G(Bk)) ∼ Dirichlet(MG0(B1),MG0(B2), . . . ,MG0(Bk))

where

E[G] = G0

Var[G] =
G0(1−G0)

(M + 1)

(7.1)

G0 is known as the centering measure and M as the precision or to-
tal mass parameter. The product MG0 is called base measure of the DP.
Under mild conditions, G can weakly approximate any distribution with
the same support as G0. Notice that the number of partitions k is always
discrete, that is G is discrete with probability one.

Importantly, Ferguson (1973) also showed that a DP is a conjugate prior
with respect to iid sampling. Let y1, y2, . . . yn|G

iid∼ G and G ∼ DP (M,G0)

then

G|y1, y2, . . . yn ∼ DP (M + n,
MG0 +

∑n
i=1 δyi

M + n
) (7.2)

where δyi is a Dirac unit probability mass at location yi. In words, if we
have iid observations and we assign a DP prior for its unknown distri-
bution, the posterior for G is also a DP with an updated precision M + n

and centering measure MG0+
∑n

i=1 δyi
M+n

. Using (7.1), its expected value and
variance can also be obtained

E[G|y1, y2, . . . yn] =
MG0 +

∑n
i=1 δyi

M + n
=

G′
0

M + n

Var[G|y1, y2, . . . yn] =
G0(1−G0)

(M + 1)
=

G′
0(M + n−G′

0)

(M + n)(M + n+ 1)
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That is, the posterior mean of G can be seen as a weighted average of
the centering measure G0 and the empirical distribution of the sample
1/n

∑n
i=1 δyi . Note also that for large n

G|y1, y2, . . . yn ∝ G′
0 =MG0 +

n∑
i=1

δyi

the variance of the posterior of G is very small so that sampling from it
can be approximated by sampling directly from the (non-scaled) updated
centering measure G′

0. Figure 7.1 presents draws y from a DP using a
standard logistic distribution as a centering measure and different values
of M . Note that the empirical cumulative distribution function of y is a
step-function due to the discrete nature of the DP, i.e. there are ties in the
values of yi. As precision M increases, the steps of the empirical cumula-
tive distribution of y become smaller and the DP (M,G0) gets closer to the
centering measure G0.

Pólya Urn representation

Blackwell & MacQueen (1973) showed that G could be marginalized out
from (7.2) and that the distribution of y1, y2, . . . yn could be directly ex-
pressed as coming from a Pólya Urn scheme,

P (y1, . . . , yn) = P (y1)
n∏

i=2

P (yi|y1, . . . , yi−1)

where

y1 ∼ G0

P (yi|y1, . . . , yi−1) =
1

M + i− 1

i−1∑
h=1

δyh(yi) +
M

M + i− 1
G0(yi), i ≥ 2

(7.3)

This scheme postulates that after the first draw y1, that comes from the cen-
tering measure G0, draws yi could either be equal to one of the previous
ones y1 . . . yi−1, with probability proportional to 1

M+i−1
, or come from the
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Figure 7.1: Empirical cumulative distribution function of draws from
y ∼ DP (M,G0) with centering measure G0 ∼ Logistic(0, π2/3), standard
logistic distribution, and varying precision parameter, M = 0.1, 0.5, 1, 10.
Graphs display 20 draws yi of size 500 each. Thick red line in the middle
shows E[G] = G0.
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centering measure G0, with probability proportional to M
M+i−1

. This rep-
resentation of the DP is also known as Chinese restaurant process, where
arriving customers can either join any of the already existing tables, occu-
pied by some customers with probability proportional to the number of
people already seated on the table, or sit at a fresh new table on its own.

Stick breaking construction

As a discrete random probability measure, Sethuraman (1994) showed
that G could also be written as a infinite weighted sum of point masses
G(.) =

∑∞
h whδmh

(.) where w1, w2, . . . are probability weights and δx(.) de-
notes the point mass at location x.

Let wh = vh
∏

ℓ<h(1− vℓ) with vh
iid∼ Beta(1,M) and mh

iid∼ G0 then

G(.) =
∞∑
h

whδmh
(.) (7.4)

defines a DP (M,G0) random probability measure. Figure 7.2 shows a
graphical representation of this stick breaking construction of the DP. Lo-
cations mh are sampled from G0 while their corresponding weights wh

from the remaining of the stick using a Beta distribution vh ∼ Beta(1,M).
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Figure 7.2: Stick breaking construction of the DP

7.3 Dirichlet Process Mixture

Dirichlet Process Mixture (DPM) Definition

Let Θ be a finite-dimensional parameter space, for each θ ∈ Θ, fθ is a con-
tinuous pdf. Given G defined on Θ, a mixture of fθ with respect to G has
pdf

fG(y) =

∫
fθ(y)dG(θ) (7.5)
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fθ is known as the mixture’s kernel and G as the mixing probability (Fer-
guson 1983). The choice of the appropiate kernel depends on the underly-
ing sample space. In this case, the hierarchical representation of the joint
distribution of the DPM and the data i = 1, . . . , n is

yi|θi
ind∼ fθi

θi|G
iid∼ G

G ∼ DP (M,G0)

(7.6)

or equivalently

yi|fG
iid∼ fG where fG =

∫
fθ(y)dG(θ)

G ∼ DP (M,G0)

DPM is also conjugate prior, similarly to 7.2 a DPM is conjugate with
respect to iid sampling. Let i = 1, . . . , n and

yi|θi
ind∼ fθi

θi|G
iid∼ G =⇒ G|y ∼

∫
DP (MG0 +

n∑
i=1

δθi)dP (θ|y)

G ∼ DP (MG0)

(7.7)

That is, if an unknown pdf f with finite-dimensional parameter, θ is given
a DPM prior, its posterior distribution is also a DPM with an updated base
measure (original MG0 plus point masses located at each observation).
Additionally, for large n, G ∼ DP (MG0 +

∑n
i=1 δθi) can be approximated

by G ∝MG0 +
∑n

i=1 δθi .
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Figure 7.3: Alternative graphical representations of the DPM

Alternative representations of a DPM

Firstly, given the finite nature of θ = (θ1, θ2, . . . , θn), it will have at most n
elements and there may possibly be ties. Let θ∗j the unique values among
θ1, θ2, . . . , θn and indicator variables si = 1, . . . , K such that θi = θ∗si , then
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(7.6) could also be written as

yi|si, θ∗j ∼ fθ∗si

θ∗j ∼ G0

where P (s1, s2, . . . , sn) = Γ(M)
Γ(M+n)

Mk
∏k

j=1 Γ(nj) is the joint probability of
cluster memberships and nj =

∑
i I(si = j) number of elements of cluster

j.

Secondly, and similarly to (7.3), G can be marginalized from the DPM
to get its Pólya Urn representation

yi|θi ∼ fθi

(θ1, θ2, . . . , θn) ∼ P (θ1)
n∏

i=2

P (θi|θ1, . . . , θi−1)

where P (θi|θ1, . . . , θi−1) ∝
∑Kn

j=1 ηnj
δθ∗j +MG0

7.3.1 Finite Dirichlet Process Mixture (DPMH)

Ishwaran & Zarepour (2000), Ishwaran & James (2001, 2002) proposed to
approximate a DPM with a finite sum in (7.4). A finite DPM is thus a
DPM truncated to an upper bound H , where truncation is done by setting
vH = 1

G(.) =
H∑

h=1

whδmh
(y)

wh =vh
∏
l<h

(1− vl) and vh
iid∼ Beta(1,M) ;h = 1, . . . , H − 1; vH = 1

mh
iid∼G0;h = 1, . . . , H

(7.8)
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Hierarchical representation

yi|fG ∼ fG i = 1, . . . , n ⇐⇒ yi|ri = h ∼ fmh
i = 1, . . . , n;h = 1, . . . , H

P (ri = h) = wh

Where fG =
∑H

h=1whδmh
(y). Importantly, Ishwaran & Zarepour (2000)

also showed that H can be set to achieve a desired level of accuracy in
the approximation of G. They showed that the expected value of the tail
probability is

E

[
∞∑

h=H+1

wh

]
=

(
M

M + 1

)H

For instance, when M = 1 and H = 20, the expected value of this left-out
probability is 9.536 × 10−7 < 1 × 10−6. We will use these values of M and
H when fitting a finite DPM for repeated ordinal (Sections 7.6 and 7.7).

When G0 is a conjugate prior for the mixture’s kernel fm, a Gibbs sam-
pler can be use to simulate the posterior of a DPMH . Müller et al. (2015)
proposed the following general algorithm to sample from p(r, v,m|y):

Algorithm 1: MCMC sampler for DPMH

1. Cluster memberships ri:
ri ∼ Categorical(P (ri = 1|v,m, yi), . . . , P (ri = H|v,m, yi)), i = 1, . . . n

P (ri = h|v,m, yi) ∝ whfmh
(yi), h = 1, . . . H

2. Weights wh:
vh ∼ Beta(1 + Ah,M +Bh), h = 1, . . . , H − 1, vH = 1

wh = vh
∏

l<h(1− vl), h = 1, . . . , H

Ah =
∑

i I(ri = h) observations assigned to cluster h, and
Bh =

∑
i I(ri > h) observations not yet assigned to any cluster.

3. Locations mh:
mh ∼ P (mh|y, r) ∝ G0(mh)

∏
i∈Sh

fmh
(yi), h=1,. . . H

Sh = {i : ri = h} denotes the set of observations with ri = h
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Notice that some Sh may be empty, that is no observations i have been
assigned to cluster h. Importantly, this algorithm is very general and can
also be used when G0 and fm are not conjugate by replacing steps 1 and 3
with appropriate Metropolis-Hastings transitions.

7.4 Post-hoc clustering of clusters

As seen before in (7.3), a DP is almost surely discrete which implies a pos-
itive probability of ties among its realizations. Further to that, Korwar &
Hollander (1973) showed an analytic expression for the expected number
of distinct values K,

E[K] =
n∑

i=1

M

M + i− 1

≈M log(n) (as n =⇒ ∞)

(7.9)

In other words, the expected number of distinct values K, active point
masses or non-empty clusters, in a sample that follows a DP is asymp-
totically smaller than n (M log(n) << n). A very important implication
for our model-based clustering purposes is that K grows (slowly) with n

and this is not appropriate if we believe that there is a true model whose
dimension, number of latent components, does not depend on the sam-
ple size. Importantly however, a small number of the ties repeat often
and large number repeat rarely so that there are a small number of big-
size groups and a big number of groups that are singletons or have a very
small size.

For instance, Figure 7.4 displays the posterior distribution of K for a
Poisson mixture with three components estimated using a finite DPM .
The mixture has equal proportions and rates λ = (1, 4, 8), and a base mea-
sure G0 ∼ Gamma(1,0.05) which is conjugate to the Poisson likelihood.
Setting H = 100, M = 1 and taking a sample of n = 500 observations, we
estimate the DPMH using Algorithm 1. For this sample, it can be seen that
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the most likely values for K are 4 to 6 (with E[K] ≈ 6.21) in the upper
panel. In contrast to that, when we focus on groups that not so small, for
instance groups have at least 5% of the sample size (25 observations) in the
bottom panel, the distribution for K changes markedly. Now, the number
”non-neglible” clusters is most likely to be 3 or 4 (the former being the true
number of mixture components).

Although different, the point masses of a DPM are likely to be located
around similar places if the data is truly being generated by a finite mix-
ture. We can therefore post-process all these locations from the DPM to
see if any pattern emerges. We called this procedure post-hoc clustering
of clusters, i.e. clustering the locations mh estimated by the DPM. Fraley
& Raftery (2002) pointed out that model based clustering can also be use-
ful to deal with such a ”meta-problem”. For instance, given mh ∈ IR, a
mixture of normals could be used for this aim.

In contrast to that, we use here two non-model based approaches: k-
means clustering of the posterior distribution of all the locations of the
DPM model and hierarchical clustering using the estimated distance ma-
trix (complement of the co-clustering matrix). Moreover, both approaches
also allow to deal with label switching. An alternative approach is pre-
sented by Dahl (2006), who uses the MCMC draw that minimises the
squared distance to the co-clustering matrix, as the optimal partition.

K-means clustering of all DPM locations

One way to cluster the locations of the DPM would be to use a partition op-
timization method such as the k-means algorithm Lewis et al. (2003). We
begin by plotting the distribution of the locations over the Markov chain.
Doing so, will reveal any pattern and multimodality in this distribution.
A histogram and kernel estimator can be useful to estimate the number of
potential modes.

Secondly, given that the labels and its number (K) vary over MCMC
iterations we apply the k-means algorithm to the locations over all the
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Figure 7.4: Posterior distribution ofK (number of clusters) for a simulated
Poisson mixture with three components with equal proportions and rates
λ = (1, 4, 8) and n = 500. Mixture is estimated using a finite DPM with
G0 ∼ Gamma(1,0.05), H = 100, and M = 1.
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Markov chain. That is, if S is the number of MCMC draws and we have n
responses, we use the k-means algorithm to cluster S×n locations into the
number of modes obtained above. Due to the possibility of observations
being allocated to different groups over MCMC, we further allocate each
subject to the group where it appeared most often.

Let c = 1, . . . , C be the number of modes of the distribution of the DPM
locations over the MCMC iterations s = 1, . . . , S, then the probability that
individual i comes from mode c, zic is

ẑic =

∑S
s=1 I{li = c}

S

Note that, by clustering the locations into C groups over the MCMC chain,
and not at each iteration, there is no label switching. After that, allocation
li of individual i to mode c can based on a highest a posteriori probability
criterion:

l̂i = argmax
c∈1,...,C

ẑic , i = 1 . . . n

In this dissertation we use this procedure to carry out the post-hoc clus-
tering of clusters. Examples of this procedure are presented in Figures 7.6
and 7.9.

Hierarchical clustering based on the distance matrix

Let G be the DPM, we define the co-clustering probability of observations
i and j as:

pij =

∑S
s=1 I(ri = h, rj = h|Y,G)

S
≡ 1− dij (7.10)

where: S is the number of MCMC draws and dij the distance between
observations i and j. The co-clustering probability matrix P , also known
as average incidence matrix or pairwise probability matrix, is an n by n
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matrix that gathers all the pij . Notice that pij is invariant to label switching
because it compares the allocation of both observations to the same cluster
h, regardless of the naming of component h at that iteration. Futhermore,
it is also invariant to the number of non-empty components at iteration s.

Distances are then calculated as the complement of co-clustering prob-
abilities dij = 1 − pij and the cluster memberships for all individuals
are finally obtained using hierarchical clustering (Kaufman & Rousseeuw
1990) with these distances. Molitor et al. (2010) and Si et al. (2014) have
used this postprocessing procedure to cluster survey and RNA expression
cross-sectional data, respectively. In this dissertation we use this proce-
dure mainly for visualisation purposes, dendograms in Figures 7.7 and
7.10, after the k-means post-hoc clustering of all locations.

In the following sections, we present two examples to show how BNP
models work in practice for repeated ordinal data. The former is a simu-
lation and the latter is a case study where a BNP model is fitted to the life
satisfaction in New Zealand dataset, already analysed in Chapter 5.
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7.5 A DPM model for repeated ordinal data

We now use a finite Dirichlet Process Mixture to estimate a model for re-
peated ordinal data. This model is similar to the one in Chapter 5 (Param-
eter dependent models) where the occasion effects follow a random walk,
ie βj ∼ Normal(βj−1, σ

2).

Using the same notation we used previously, we model the ordinal
response yij as

yij | (µk), αi, βj ∼ Categoricalq(θij.),

θijk =
1

1 + e−(µk−αi−βj)
− 1

1 + e−(µk−1−αi−βj)
,

q∑
k=1

θijk = 1

µk | σ2
µ∼Normal(0, σ2

µ) I[µk > µk−1]; k = 1, . . . , q

βj | σ2
β ∼ Normal(βj−1, σ

2
β); j = 1, . . . , p; β1 = 0

αi = mh | ri = h ∼ N(0, σ2
α); i = 1, . . . , n; h = 1, . . . , H

wh = P (ri = h) = vh
∏
l<h

(1− vl) and vh
iid∼ Beta(1,M); h = 1, . . . , H − 1; vH = 1

σ2
µ ∼ Inverse Gamma(aµ, bµ)

σ2
α ∼ Inverse Gamma(aα, bα)

σ2
β ∼ Inverse Gamma(aβ, bβ)

(7.11)

with hyperparameters: M = 1, aµ = aα = aβ = 3 and bµ = bα = bβ = 5.

Notice that this model also could be seen as a Dependent Dirichlet Pro-
cess (DPP) (MacEachern 1999, De Iorio et al. 2004) where the dependence
is introduced only through the locations and with a logit link for the latent
variable that generates the ordinal response. Also, Bao & Hanson (2015),
DeYoreo & Kottas (2017) presented DPP models for multivariate ordinal
data in cross-sectional settings. These models include covariates exploit-
ing the normal latent variable representation of ordinal data. We choose
the above formulation to facilitate comparsion with previous chapters.
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7.5.1 Construction of the MCMC chain

Given the logit link for ordinal data, there are no conjugate priors for µ
and β. In contrast to that, and given that the DP is a conjugate prior, the
posterior distribution is also a DP with updated parameters (see 7.2). We
therefore use Metropolis-Hasting (MH) transitions for µ and β and Gibbs
samplers for the DP locations (mh) and weights (wh) and the cluster mem-
berships (ri). Variances are also simulated using a Gibbs sampler.

Updates for µ (MH)

Choose a µk for k = 2, . . . , q − 1 at random, sample µ′
k from proposal

q(µ′
k|µk−1, µk, µk+1) = U [ max(µk − τ, µk−1), min(µk + τ, µk+1)] and accept

with probability

r = min
[
1,
P (Y |µ′, α, β)P (µ′|σ2

µ)

P (Y |µ, α, β)P (µ|σ2
µ)

× min(µk + τ, µk+1)− max(µk − τ, µk−1)

min(µ′
k + τ, µk+1)− max(µ′

k − τ, µk−1)

]

where τ = 0.1, µ = (µ1, . . . , µk, , . . . , µq−1), µ′ = (µ1, . . . , µ
′
k, , . . . , µq−1) for

k = 1, . . . , q − 1 and µ1 = 0, µ0 = −∞ , µq = ∞. Note that this is the same
scheme used for µ in previous chapters.

Updates for β (MH)

Sample β′ from proposal q(β′|β) = Normalp−1(β, σ
2
βpI) and accept with

probability

r = min

[
1,
P (Y |µ, α, β′)P (β′|σ2

β)

P (Y |µ, α, β)P (β|σ2
β)

]

Where β = (0, . . . , β2, . . . , βp), β′ = (0, β′
2, . . . , β

′
p), σ

2
βp = 0.1 and I is an

identity matrix with rank p−1. Note that the only difference of this scheme
and the ones used in previous chapters for β is the multivariate proposal.
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Updates for m (MH)

Sample m′ from proposal q(m′|m) = NormalH(m,σ2
mpI) and accept with

probability

r = min
[
1,
P (Y |µ,m, β′)P (m′|σ2

m)

P (Y |µ,m′, β)P (β|σ2
m)

]
Where m = (m1, . . . ,mH), m′ = (m′

1, . . . ,m
′
H) and σ2

mp = 0.1. I is an iden-
tity matrix with rank H . Note that the only difference of this scheme and
the ones used previous chapters for α is the multivariate proposal.

Updates for wh and ri

We sample wh and ri using the following:

1. Cluster memberships ri:
ri ∼ CategoricalH(P (ri = 1|.), . . . , P (ri = H|.)), i = 1, . . . n

P (ri = h|.) ∝ wh

∏p
j=1Categoricalq(yij|µ, βj,mh), h = 1, . . . H

2. Weights vh:
Letting Ah =

∑
i I(ri = h) and Bh =

∑
i I(ri > h) then

vh ∼ Beta(1 + Ah,M +Bh), h = 1, . . . , H − 1, vH = 1

wh = vh
∏

l<h(1− vl), h = 1, . . . , H

The derivation of the full conditionals could be found in Appendix 1 at the
end of the chapter.

Updates for σ2
α, σ2

β and σ2
µ (Gibbs)

Given that the prior for the σ2
α ∼ Inverse Gamma(aα, bα) is conjugate to

the distribution of αi | ri = h ∼ N(0, σ2
α), the posterior for σ2

α proportional
to

σ2
α | α1, . . . αn ∝ Inverse Gamma(aα + n/2, bα +

n∑
i=1

αi/2)
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with hyperparameters: aα = 3 and bα = 5. Updates for σ2
β and σ2

µ are
obtained in a similar fashion.

7.6 Simulations

We now proceed to validate the model in (7.11) using simulated ordinal
responses from a four component mixture with parameters:

n =3000, p = 5, q = 5

µ =(0, 1.0, 1.8, 2.8)

α =(−2.5,−0.4, 1.44.2),

β =(0,−2.2,−1.0, 0.9, 0.4), σ2
β = 1.1

π =(0.14, 0.20, 0.24, 0.42).

The above settings imply a synthetic dataset with similar charactetistics
to the NZAVS dataset to be used later in the case study. In terms of the
parameters for the finite DPM, we use a truncation value of H = 10 and
the hyperparameters detailed in (7.11). Discarding the initial 2500 draws
as burn-in we used for inference 125000 MCMC draws (25000 thinned by
5). Figures 7.5 and 7.6 display the results.

Firstly, Figure 7.5 shows the posterior distribution of the non-empty lo-
cations of the DPM (K) given the data. Importantly, the expected number
of non-empty groups could be easily computed using (7.9)

E[K] = log(n)×M = log(3000)× (1) = 8.0064

This is what we observe in the top panel, as the mode of the posterior is 9.
However, due to the use of the DPM prior, this posterior distribution has
a lot of singleton and small groups and a few bigger groups. For instance,
in the bottom panel the distribution of groups with more than 15 obser-
vations (0.5% of the sample size 3000) has a mode of 6. Given that E[K]

grows with sample size, setting a threshold for what constitutes a small
group in real-life applications would be arbitrary.
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Figure 7.5: Posterior distribution for K for a DPM for the simulated ordi-
nal data (n = 3000, p = 5, q = 5). True model is a four-component mixture
with µ = (0, 1, 1.8, 2.8), α = (−2.5,−0.4, 1.44.2), β = (0,−2.2,−1.0, 0.9, 0.4),
and π = (0.14, 0.20, 0.24, 0.42).
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In contrast to that, the top panel of Figure 7.6 shows a histogram of the
posterior distribution of the DPM locations (αi). This figure also shows the
distribution of locations for each MCMC iteration (black dotted lines) and
its expected value over all MCMC iterations (red line). Here we can see
that although a different number of point masses might be used on each
MCMC draw (ranging from h =, . . . , H), they tend to gather around a
few common places and form a multimodal distribution with four modes
around the true values (blue vertical dash lines) and modal densities pro-
portional to the true mixture proportions. We therefore, set C = 4 the
number of modes of the posterior distribution of the DPM locations. No-
tice finally that, there are three clusters of locations that are relatively
closer to each other and this will be reflected in the uncertainty of their
associatted classification.

In addition to that, the lower panel of Figure 7.6 shows a heatmaps of
the co-clustering probabilities pij from the DPM model ordered by C = 4

clustering of clusters using the k-means clustering of all DPM locations
(Section 7.4). The ordered heatmap of co-clustering probabilities shows
that the classification probalities into any of the four clusters of locations
are pretty good, except for the smallest group, where it is around 40%,
which corresponds to the cluster of locations near zero in the top panel.
On the other hand, classification probabilities in the biggest cluster of lo-
cations are the highest since it is relatively further away from the others
(cluster around 4).

An alternative way of visualising the clustering of locations is shown
Figure 7.7. This figure displays downwards and unrooted dendograms
constructed using hierarchical clustering of the distance probability matrix
as detailed in Section 7.4. We can see that, the four clusters of locations,
shown in colours, are also very evident. Interestingly, the unrooted den-
dongram is the most revealing as it clearly shows that there is one cluster
of locations that is further away from the other.

In sum, we can say that for this simulated dataset, the finite DPM



7.6. SIMULATIONS 173

alpha.dpm

D
en

si
ty

−2 0 2 4

0.
0

0.
5

1.
0

1.
5

Figure 7.6: Posterior distribution of the locations (top) and ordered co-
clustering probabilities (bottom) for the simulated ordinal data. True
model is a four-component mixture with π = (0.14, 0.20, 0.24, 0.42).
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Figure 7.7: Dendograms for the simulated ordinal data. True model is
the four-component mixture with π = (0.14, 0.20, 0.24, 0.42). Downwards
dendogram and unrooted dendogram in the top and bottom, respectively.
Clusters of DPM locations are shown in yellow, green, red and blue
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model and the proposed post-hoc clustering of its locations, recovered the
true structure of the model, both in parameter values and mixture propor-
tions. Moreover, dendograms and ordered heatmaps can be useful tool to
visualize the results.

7.7 Case study: 2009-2013 Life Satisfaction in New

Zealand

In this section, we estimate a finite DPM model for the Life Satisfaction in
New Zealand dataset. Life satisfaction is an ordinal response with seven
levels and repeated over 5 occasions on 2564 individuals (n = 2564, p =

5, q = 7). We fully describe the data in Chapter 2 and analyse it in Chapters
3 and 5. The main conclusions from these earlier chapters were that the
correlation between ocassions needed to be taken into account and that
there were at least four clusters with similar patterns over time.

Taking this into account, we use the finite DPM model proposed in this
chapter (equation 7.11) to fit this dataset. The MCMC chain has 100,000
draws with a burn-in of 2000 and thinning of 50. We thus use 2000 draws
for inference. Figures 7.8 and 7.9 show the results. Traceplots and marginal
posteriors for all parameters could be found in Appendix 2 at the end of
the chapter.

Figure 7.8, displays the posterior distribution of the non-empty groups
(K). In the top panel, we can see that the most likely value for this is
somewehre between 6 and 10, with a mode of 8. Given n for this dataset,
this posterior distribution matches the expected value of the number of
non-empty components 7.8. As expected and due to the use of the DPM
prior, many of these non-empty groups are very small so when we look
at the distribution of groups that have at least 13 individuals (0.5% of
the sample size) in the bottom panel, we see that this changes drastically,
and now we are more likely to see four and five of these relatively bigger
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groups. Given that this definition of what constitutes a ”big” or ”small”
groups is arbitrary we proceed to look at the distribution of all the loca-
tions αi in Figure 7.9.

The top panel of Figure 7.9 shows a histogram of all estimated locations
αi as well as all the draws from the DPM prior (black dotted lines) and
their expected value (red line). We can see that, the distribution for αi is
multimodal and has four well-separated components with peaks around
2.2, 4.8, 7.2 and 10 and proportions: 0.1 0.25 0.43 0.22. In other words,
although the DPM selects a different number of point masses on each
MCMC iteration for αi they tend to be around the similar places form-
ing a multimodal distribution with evident, well-separated peaks (for this
dataset). We thus set C = 4 and post-process the DPM locations using the
k-means and hierarchical clustering as outlined in Section 7.4.

The lower panel of Figure 7.9 shows a heatmap for co-clustering prob-
abilities sorted by the above four groups using the k-means algorithm.
It can be seen that the resulting classification is crisp as the co-clustering
probabilities are high. Given that the clusters of DPM locations are well-
separated for the NZAVS dataset this is not too surprising.

Finally, Figure 7.10 plots dendograms of the distance probability ma-
trix obtained using hierarchical clustering. We can see that, clusters of
locations are very evident (yellow, green, red and blue strips). Again, the
unrooted dendongram is the most interesting as it shows that there are
clearly separated clusters of locations.

Overall, the BNP model allows us to reach similar conclusions to the
models presented in Chapters 3 and 5 for the NZAVS dataset: there is
evidence of four latent groups, all of which have a very positive life sat-
isfaction (all α’s are positive when µ1 = 0) with stable patterns over time
(occasion effects β are small in comparison to cluster effects α). Moreover,
most of the population have a very positive life satisfaction as the biggest
latent group, about 43% of the total, is close to the upper end of the ordinal
scale.
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Figure 7.8: Posterior distribution for K for the DPM for the NZAVS data
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Figure 7.9: Posterior distribution of the locations (top) and ordered co-
clustering probabilities (bottom) for the NZAVS dataset
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Figure 7.10: Dendograms for the NZAVS data. Downwards dendogram
and unrooted dendogram in the top and bottom. Clusters of DPM loca-
tions are shown in yellow, green, red and blue
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Appendix 1. Full conditionals for the DPM for re-

peated ordinal data

P (µ, β, α, σ2
µ, σ

2
β, σ

2
α|Y ) =

P (µ, β,m, v, r, σ2
µ, σ

2
β, σ

2
m|Y ) ∝

P (Y |µ, β,m, r)

P (r|v)P (v|M)P (µ|σ2
µ)P (σ

2
µ|aµ, bµ)P (β|σ2

β)P (σ
2
β|aβ, bβ)P (m|σ2

m)P (σ
2
m|am, bm)

Let Sh = {i : ri = h} and Ah =
∑n

i=1 I(ri = h), then:

Updates for r

P (r|.) ∝P (Y |µ, β,m, r)P (r|v)

∝
n∏

i=1

p∏
j=1

P (yij|µ, βj,mh)P (ri|v)

For ri = h:

P (ri = h|.) ∝
p∏

j=1

P (yij|µ, βj,mh)P (ri = h|v)

∝
p∏

j=1

Categoricalq(yij|µ, βj,mh)wh

and thus for h = 1 . . . H :

P (ri|.) ∝ CategoricalH(P (ri = 1|.), P (ri = 2|.), . . . , P (ri = H|.))

Updates for v

P (v|.) ∝P (r|v)P (v|M)

∝
n∏

i=1

P (ri|v)P (v|M)
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For each h, vh
iid∼ Beta(1,M), h = 1 . . . H − 1 then:

P (vh|.) ∝
n∏
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∏
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{vri
∏
l<ri
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∏

i:ri=h
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∏
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(1− vh)

∝ (1− vh)
M−1vAh

h (1− vh)
Bh

∝ vAh
h (1− vh)
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Appendix 2. MCMC output for the finite DPM for repeated ordinal data
estimated using the NZAVS dataset (H = 20)
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Chapter 8

Conclusions

8.1 Summary and discussion

This PhD dissertation proposes several models to cluster repeated ordinal
data using finite mixtures. In contrast to most of the existing literature,
our aim is classification and not parameter estimation and thus to provide
flexible and parsimonious ways to estimate latent populations and classi-
fication probabilities for repeated ordinal data.

After reviewing the relevant literature (Chapter 1) and describing the
datasets (Chapter 2) used as case studies through the dissertation, we
begin with simple models which assumed that conditional on the latent
cluster membership observations were independent across time in Part I.
Using the parametrisations of the Proportional Odds (McCullagh 1980)
and Trends Odds (Capuano & Dawson 2012) models we built finite mix-
ture models and fitted them using the EM algorithm in Chapters 3 and 4.
These finite mixture models are compared using several information cri-
teria: AIC, BIC, and ICL-BIC and applied to simulated data as well as life
satisfaction and self-reported health status from the NZAVS and HILDA
surveys. An important highlight of the above simulation studies was the
importance of sample size to obtain meaningful estimates of the parame-
ters when the mixture proportions are very imbalanced, that is when the
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mixture model has very small clusters and big clusters.

In Part II, the repeated measurements correlation is explicitly mod-
elled. This is done by extending the Proportional Odds model to incorpo-
rate latent random effects (Chapter 5) and latent transitional terms (Chap-
ter 6). Following the terminology of the time-series literature, we called
these approaches parameter dependent and data dependent, respectively.
Models in this part are fitted using Bayesian methods to take advantage of
the flexibility of MCMC methods to estimate clustering models (Frühwirth-
Schnatter et al. 2012). For instance, estimation of random effects in the
Bayesian paradigm, whether associated to an observed or latent variable,
is an essential part of the estimation of the joint posterior distribution
as both parameters and data are considered random variables. Despite
being computationally more intensive than the Frequentist alternatives,
Bayesian estimation is now removemore feasible thanks to the advances
computer power over the last two decades.

The model proposed in Chapter 5 is a latent random effects model
where the cluster effect varies over time according to a random walk with
cluster-specific variance. This parametrisation provides a flexible and par-
simonious ways to introduce different time patterns by cluster. Due to
unavailability of the full conditional distributions in close-form, the joint
posterior is simulated using a Metropolis-Hastings scheme with random-
walk proposals. Model comparison is performed using the WAIC (Watan-
abe 2009), Bayesian information criterion for singular models such as fi-
nite mixtures. We validate the model using simulated data, and confirmed
that the true values were recovered and the WAIC selected a model with
the true number of mixture components. In addition to that, the WAIC
allowed us to distinguished the proposed model to one with independent
latent random effects (Section 5.5.2).

Chapter 6 presented a latent transitional model for repeated ordinal
data. Similarly to the previous chapter, the joint posterior was simulated
using a Metropolis-Hastings scheme with random-walk proposals and model
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comparison carried out using the WAIC. Further to that, we also used en-
tropy and relative entropy to compare models with different number of
clusters. We validated the proposed model using simulated data and cor-
rectly identified the number of mixture components using the WAIC and
the entropy measures.

Next, Chapter 7 used a Bayesian Non-Parametric approach as an al-
ternative way to compare amongst candidate models with different num-
ber of mixture components. The use of Dirichlet Process Mixture (DPM)
and the post-hoc clustering of locations provided us with a flexible way
to model mixture distributions for repeated ordinal data. In a similar way
to the reversible-jump MCMC (RJMCMC), Green (1995), this two-step ap-
proach allowed us to avoid the need to separately fit models with different
number of mixture components and instead fit a more general encompass-
ing model. We also presented dendograms and heatmaps and found them
to be useful tools to visualize the resulting clusters.

Finally, with regard to the case studies, we saw that different informa-
tion criteria selected models with different number of mixture components
for all three datasets analysed: NZAVS, HILDA, and infant gut bacteria. In
this respect, the predictive measures, Frequentist AIC and Bayesian WAIC,
were the least parsimonious, tending to select models with higher number
of parameters.The most extreme example of this was presented in Chap-
ter 3 when clustering the NZAVS data. There, the model with the lowest
AIC was a model with one parameter per each person and occasion with a
total of 2613 parameters (Table 3.9). On the other hand, ICL-BIC, entropy
and relative entropy; selected models with a much lower number of pa-
rameters. Guided by parsimony and interpretability, we used the models
chosen by the BIC, BIC-ICL and the entropy measures in Chapters 3, 4, 5,
and 6. Moreover, entropy could also be viewed as an indicator of degree
of separation of the mixture components and thus provides models that
are more interpretable.
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8.2 Extensions and future work

There are a number ways to extend the models presented here. A first ex-
tension is the inclusion of other covariates by augmenting the linear pre-
dictor for the corresponding models. For instance, in the case of the latent
transitional model, the inclusion of cluster-occasion interactions which
will bring more flexibility to the model proposed in Chapter 6.Secondly,
it would be interesting to incorporate missing data in the models. Ap-
proaches to handle missing data in longitudinal settings are well devel-
oped (Little & Rubin 2002) but unless the assumptions of missing com-
pletely at random or missing at random (MCAR and MAR) holds, these
approaches rely on a case by case modelling of the non-ignorable drop out
mechanism at hand. Recently, Skrondal & Rabe-Hesketh (2014) postulate
a promising approach for transitional models for longitudinal binary data.
They proposed joint working models to handle both the initial conditions
problem and the missing responses. Succinctly, the unobserved response
previous the first one is considered as missing an a joint working model
is posed for them. Later missing responses are modelled with the same
joint model with the response after the missing one being the new initial
response. We plan to extent this approach to the case of repeated ordinal
data.

Thirdly, extending the model to multivariate responses are also an im-
portant task for the future. In this respect, the Dependent Dirichlet Pro-
cess within a Bayesian Non-Parametric approach would be an interesting
avenue to explore. To date, the work in this area (Bao & Hanson 2015,
DeYoreo & Kottas 2017) uses the probit link due to computational con-
venience. A logistic version could be developed using the approach of
Holmes et al. (2006) who augmented the latent continuous representation
of ordinal data with an additional layer of parameters that are iid from the
Kolmogorov-Smirnov distribution.

Lastly, another important extension is to make the model scalable to
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big data. Currently, models take a few hours to run on datasets with
thousands of rows but estimation might become impractical with bigger
datasets (millions of rows). In general, this is the case for MCMC based in-
ference but in our case it is complicated by the unavailability of the poste-
rior distribution in closed form and the need to simulate the joint posterior
using the Metropolis-Hastings sampler. This is a technological limitation
that can be alleviated by the use of grid computing and optimizing the
computer code used for estimation. More importantly, however, is the
development of more efficient sampling schemes that could allow faster
exploration of the target distribution (or a suitable approximation). For
instance, along the lines of Cowles (1996), Wainwright & Jordan (2008),
Srivastava et al. (2015) joint proposals, Variational approximations and
divide-and-conquer schemes could provide essential gains in this direc-
tion.
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